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Abstract 

 
Glasgow contains many buildings made from local ‘blond’ sandstones that are showing 

the legacy of 150 years of urban weathering and this decay may accelerate as climate 

changes in the future.  Most of the blond sandstones are Carboniferous in age and 

comprise of micaceous quartz arenites with varying amounts of diagenetic minerals 

including ankerite and kaolinite.  Chemical decay can be visually identified in the 

carbonate minerals, but the combination of quantitative X-ray microanalysis (chemistry of 

mineral) and Raman spectroscopy (structure of mineral) also allows chemical decay to be 

observed in both kaolinite and muscovite.  The Raman spectroscopy shows a variation in 

the muscovite minerals between the outermost surface and internal region (20 mm 

depth), demonstrating that structural decay is occurring within the micas and reduces 

them to an “ionic slurry state” in a relatively short time frame.  The impact of microbial 

colonisation on the stones was also investigated.  Using osmium stained polished blocks, 

complimented by scanning electron microscope imaging, microorganisms were found to 

be living cryptoendolithically in a few samples but at very shallow depths (<2 mm).  Light 

penetration results revealed that a thin weathered crust (<1 mm) on the surface of 

sandstone will restrict the transmission of light into the rock, thereby preventing the 

colonisation of photosynthetic microbes.  As a result, most microbial communities are 

restricted to the stone surface but only where they will not be subjected to photo-

oxidative damage, which frequently occurs during summer months.  Consequently, the 

most extensive microbial colonisation is restricted to the sandstone’s surface and during 

the winter.  Using novel internal microclimate monitoring technologies it was found that 

stone temperature and humidity is decoupled from ambient conditions.  During the 

summer the stone interior is considerably hotter than air temperature, whilst relative 

humidity is generally comparable to external conditions, whereas in the winter interior 

temperatures are closely related to ambient conditions and relative humidity is generally 

much higher.  To understand how sandstone buildings will react to a change in climate, 

current conditions were extrapolated to 2080 using predictive models for the Glasgow 

region and the impact of these conditions was investigated by accelerated weathering 

experiments in a climate chamber.  Results reveal rapid granular disintegration, the rates 

of which are independent of grain size.  Overall, this study concludes that rates of 

chemical decay will increase as the climate warms and becomes wetter overall, primarily 
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through dissolution, decay and loss of diagenetic minerals, and the extent of microbial 

activity will change, but these effects will be strongly dependent on local 

microenvironment.   Implications of these findings are that more work on conservation 

and preservation techniques will be very important to protect the stone-built heritage of 

Scotland.
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1 Introduction  

To successfully undertake this study, all the different factors that may influence the decay 

of sandstone have to be understood.  A comprehensive literature review was conducted 

regarding all possible factors potentially influencing building sandstone.  In addition to 

this information, it was also important to understand the geological nature of the 

sandstone and the diagenetic conditions under which they were originally formed, thus 

providing a background to the sandstones used in the construction of Glasgow.  Finally 

the climatic conditions that the sandstones have encountered since placed into the 

buildings will have a significant role in past weathering of the buildings.  All this 

information is detailed in the present chapter.  However, a definition of weathering is 

presented first.      

1.1 Definition of Weathering 

The definition of weathering used is dependent on the circumstance within which it is 

being referred to.  Geomorphologists often use the Reiche, (1962) definition “the 

response of materials which were in equilibrium within the lithosphere to conditions at or 

near to its contact with the atmosphere, the hydrosphere and perhaps more importantly, 

the biosphere”.   

More recent definitions of weathering have been put forward by Ollier (1991), Selby 

(1993) and Price (1995).  The definition proposed by Ollier (1991) suggests “weathering is 

the alteration and breakdown of rocks near the earth’s surface, mainly by reactions with 

water and air to form clay, iron oxides and other weathering products”.  Price (1995) 

agrees: “weathering is the irreversible response of soil and rock material and masses to 

their natural or artificial exposure to the near surface geomophological or engineering 

environment.   These authors provide adequate definitions, although fail to outline all the 

mechanisms of weathering in one definition.  Therefore, within this study, Selby’s (1993) 

definition of weathering will be used, “... the process of alteration and breakdown of soil 

and rock material at and near the Earth’s surface by physical, chemical and biotic 

processes”.  However, Price (1995) did identify that weathering is caused by individual 

weathering processes.  Therefore these weathering processes will be out detailed next. 
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1.2 Literature Review of Weathering on Sedimentary 

Rock 

A wealth of research has been published worldwide on the interactions between natural 

building materials (I.E sandstone, limestone, granite) and the weathering processes that 

contribute to their deterioration.  Various overview studies have also been published on 

this subject (Whalley and Mcgreevy, 1985; Turkington and Paradise, 2005), although 

these overviews often focus only on one aspect of weathering such as salt or biological 

deterioration.  The present review will concentrate on decay of sandstone but will 

examine all factors that can be attributed to the weathering of sandstone buildings and 

monuments.  For this discussion weathering processes have been divided into seven 

categories: pollution; salt crystallization; freeze-thaw; chemical action; clay expansion; 

thermal heating and biological activity.  These factors have tended to be studied 

individually to assess their weathering potential on sandstone.  Whilst it is important to 

understand each process individually, efforts must be made to recognise that many of 

these processes are interrelated.  In this review, the literature relevant to each process 

will be examined in turn to evaluate what is known about their role in stone decay.  Key 

references are listed in Table 1-1. 

Table 1-1: Important references for each aspect of stone decay discussed. 

Topic  Key References 

Overviews (Whalley and Mcgreevy, 1985; Turkington and Paradise, 2005) 
Pollution  (Bluck and Porter, 1991b; Butlin et al., 1992; Sabbioni and Zappia, 

1992; Machill et al., 1997; Turkington et al., 2003) 
Salt 
Crystallisation 

(Cooke and Smalley, 1968; Winkler and Singer, 1972; Mcgreevy and 
Smith, 1982; Rodriguez-Navarro and Doehne, 1999; Smith et al., 2002; 
Mottershead et al., 2003) 

Freeze-thaw (Thomachot and Jeannette, 2002; Hall, 2004) 
Chemical (Lasaga, 1998; Franke, 2009) 
Clay Expansion (Madsen and Muller-Vonmoos, 1989; Chin and Mills, 1991; Maurice 

et al., 2001; Jimenez-Gonzalez et al., 2008; Sebastián et al., 2008) 
Thermal Heating 
and  albedo 
climate 

(Kerr et al., 1984b; Jenkins and Smith, 1990; Warke et al., 1996; 
Warke and Smith, 1998; Hall et al., 2005; Hall and Andre, 2006; Smith 
et al., 2008b) 

Biological (Golubic et al., 1981; Friedmann, 1982; Ortega-Calvo et al., 1991; 
Viles, 1995; Young, 1997; Welton et al., 2003) 
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1.2.1 Weathering due to Pollution  

The effects of anthropogenic pollution are particularly important in urban environments, 

especially those which are, or have been, located in areas of heavy industry (e.g. coal 

mining and steelworks).  Pollution in these areas often manifests itself as a black crust or 

patina covering the surface of the sandstone.  These crusts are often complex in 

composition but are commonly a combination of fly ash (industrial particulates), soot 

(vehicle combustion outputs) and salts (mainly gypsum).   These substances accumulate 

on the surface and are thought to be damaging to the sandstone beneath, but they may 

also protect the stone by reducing the inward flow of water.   

Many studies have been have been undertaken on limestone crusts (Moropoulou et al., 

1998; Grossi et al., 2003; Török, 2003), but only a few of them have examined crusts on 

sandstones.        

One such study was the National Material Exposure Program (Butlin et al., 1992) which 

experimentally studied the interactions between pollutants and Portland Limestone, 

White Mansfield Dolomitic Sandstone and Monks Park Limestone.  Some of the 

experimental blocks were sheltered whereas others were exposed to the local climate at 

29 locations throughout Britain, over a period of four years.  It was concluded that the 

main weathering was caused by pollution, although Butlin et al. (1992) did not say which 

pollutants had accumulated on their sandstone samples.  They commented that the 

problems caused by the pollutants are the removal of cements present and were evident 

through increased definition of ooids in the limestone samples.  Furthermore, chemical 

analyses showed an increase in the concentrations of soluble ions (Na+, K+, NH4
+, Ca2+, 

Mg2+, Cl-, NO3
-, SO4

4-) near the surface of the sheltered tablets compared to the exposed 

tablets, with one exception SO4
4-.  Butlin et al. (1992) proposed that, due to their 

exposure, salts may have been washed away by rainfall. 

Sabbioni and Zappia (1992) studied the main pollution components within the patina on 

some northern Italian sandstones and calc-arenite sandstones.  They identified 

anthropogenic aerosols, lead (a vehicle-derived pollutant) and zinc (an oil tracer from 

refineries) through X-ray diffraction (XRD), differential thermal analysis and thermal 

gravimetric analysis.  The sandstones studied could be divided into two layers: the thin 
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black patina (1 mm) and an underlying thicker (1 cm) white layer which had a crumbly 

texture.  Gypsum occurred in both layers, although in higher concentrations in the black 

patina.  The sulphur within the gypsum was shown to be derived from atmospheric 

deposition (gaseous and aerosol SO2) whilst the calcium was sourced from the minerals 

within the rock.  They suggest a weathering cycle of sulphation-decohesion-detachment 

was taking place on the sandstone.   

Machill et al. (1997) detailed the exact pollutants within the crust by analysing a building 

constructed from Saxonean Cretaceous sandstone using gas chromatography and mass 

spectrometry.   Numerous substances were identified with three principal sources, 

atmospheric pollution (denoted by the presence of alphatic hydrocarbons originating 

from petroleum residues), microorganisms and plants (denoted by alkanols and fatty 

acids) and thirdly the metabolites of organic materials (shown by carbohydrate 

derivatives, dicarboxylic and hydroxyl acids).  Sabbioni and Zappia (1992) and MacHill et 

al. (1997) agree that pollutants are damaging but fail to demonstrate the process by 

which they mediate weathering, only mentioning that the crusts are acidic and promote 

corrosion.   

Laboratory experiments were undertaken by Ausset et al. (1996) using the Lausanne 

Atmospheric Simulation Chamber (LASC), with the aim of examining sulphation on 

Jaumont Limestone (calcite = 94%, quartz = 2.5%) and Berne Sandstone (calcite = 23%, 

quartz = 40%).  Samples were either bare or covered in fly ash or soot particles, then 

placed in the chamber for a year while SO2 and NO2 gases were pumped in and the 

samples were analysed in 3 month intervals.  Results show that the two stones behaved 

very differently, which is to be expected given the mineralogical contrasts.  Jaumont 

Limestone was much more reactive and therefore more SO2 was deposited on the 

surface.  However, the soot particles seem to shield the sandstones from sulphation for a 

much longer period of time compared to the bare and fly ash samples.  

Lefevre and Ausset (2002) give an in-depth description of how sulphation of sandstone 

can occur and describe two processes of sulphation, “below” and “above” the surface. 

“Below” is characterised by gypsum developing due to available calcium in the substrate, 

then gaseous (SO2) or liquid (H2SO4) penetrates in to the rocks and reacts with the calcite 

which is then replaced by gypsum.  “Above” sulphation occurs due to the reaction 
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between atmospheric SO2 and calcium ions present in fog, and this reaction then 

generates precipitates onto the surface of the stone and forms gypsum.  In both cases the 

salts, when created, trap atmospheric particles and produce a blackened colouration.  

They state that “below” sulphation is often more damaging as it leads to fracturing, 

blistering and slab detachment and is also much more frequently occurring.  These 

observations complimented their previous study (Ausset et al., 1996). 

Pollutants do not only have a corrosive effect, they are also visually unsightly after a 

period of time (Webster et al., 1992).  To quantify the time period in which pollution 

begins to adhere and affect the sandstone, Turkington et al. (2003) mounted blocks of 

Baumberger Sandstone and a quartz rich Dunhouse Sandstone in various locations 

throughout Belfast to run exposure trials.  These were left for six years and sampled after 

three months, two years, four years and then at the end.  The experiment shows that, 

within three months, fly ash will adhere preferentially to Dunhouse Buff but by two years 

it can adhere to both sandstones, due to both lithological and environmental controls.  In 

addition, after six years, the percentage of fly ash pollution on the exposed samples 

decreases in comparison to the four year tests.  Their conclusions suggest that 

environment is a more significant control on the decay processes rather than the 

weathering caused by the pollutants, which have adhered to the stone. 

1.2.2 Summary of Pollution Weathering 

Pollution is still seen as a problem, although its importance as a weathering agent in the 

future may diminish in the United Kingdom, due to the Clean Air Act 1956 and more 

recent legalisation by Clean Air For Europe such as the 1996 96/62/EC report on air 

quality assessment and management, but pollution is still an important topic for many 

cities worldwide and conservation groups.  However, it is unclear the exact role pollution 

plays in the overall weathering process.  These studies previously discussed mention that 

pollution can cause granular disintegration and the removal of cement, although, these 

may have been caused instead by climatic conditions and it is difficult to isolate the effect 

of pollution.  In addition, a black crust may actually play a protective role to sandstone, by 

repelling the attack of microbes (Bluck and Porter, 1991b) and reducing the penetration 

of water (Young 1995).  We therefore have to understand whether climate or pollution is 

the most damaging process.   
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1.2.3 Weathering due to Salts  

Crystallisation of salt within sandstone is one of the main areas of stone weathering 

research, as its occurrence and consequences vary widely.  There are many factors to 

consider such as the salt solution composition and concentration, pore size, sandstone 

mineralogy and environmental conditions such as relative humidity and temperature.   

One of the earliest studies by Cooke and Smalley (1968) focused on the processes 

through which the salt caused damage.  Three main processes were identified: 1) the 

initial growth of salt crystals from solution; 2) thermal expansion; 3) salt hydration.  

Cooke and Smalley (1968) considered initial crystallisation and growth of salt to be the 

most effective weathering process as this process could cause the most damage.  Thermal 

expansion of salt is only a significant factor within hot desert climates where temperature 

changes can be in excess of ±54°C daily.  Nevertheless, this would result in a volumetric 

expansion of ~1% for halite (NaCl) salt (Cooke and Smalley, 1968). 

Winkler and Wilhelm (1970) investigated “salt burst” by hydration pressures.  These salt 

bursts cause flaking and efflorescence on the surface of sandstone.  Hydration pressure is 

particularly important when sandstone monuments or artefacts move from low to high 

humidity environments, such as monuments or artefacts which have been open to the 

natural environment being moved to within a museum.  They calculated that the 

hydration of bassanite (CaSO4.0·5H2O) to gypsum (CaSO4·2H2O) under the condition 65% 

RH and 30°C has the highest hydration pressure at 842 psi compared to those of MgSO4 

hydrates, which are particularly low whilst under the same conditions at 29 psi. 

Winkler and Singer (1972) then calculated the pressure exerted by the growth of salt 

crystals.  They combined temperature and saturation level for many salts to reveal 

crystallisation pressure under a variety of different conditions.  Anhydrite (CaSO4), halite 

(NaCl) and thenardite (Na2SO4) repeatedly produced the highest pressures in all 

circumstances (Table 1-2).   
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Table 1-2: Table of salt crystallisation pressures. 

 
Salt 

 
Chemical Formula 

Cyststallisation Pressure (psi) 
       2                             10                           50 
0°C     50°C            0°C     50°C           0°C     50°C 

Anhydrite CaSO4 335      398               1120    1325            1900   2262 
Bischofite MgCl2·6H2O 119      142               397      470               675     803 
Dodekahydrate MgCl4·12H2O 67        80                 222       264               378     450 
Epsomite MgCl4·7H2O 105      125               350      415                595     708 
Gypsum CaSO4·2H2O 282      334               938      1110              1595   1900 
Halite NaCl 554      654               1845    2190              3135   3737 
Heptahydrite NaCO3·7H2O 100      119               334      365                568      677 
Hexahydrite MgSO4·6H2O 118      141               395      469                671      300 
Kierserite MgSO4·H2O 272      324               910      1079              1543   1840 
Mirabilite Na2SO4·10H2O 72        83                 234       277                397     473 
Natron Na2CO3·10H2O 78        92                 259       308                440     524 
Tachhydrite 2MgCl2·CaCl2·12H2O 50        59                 166       198                282      336 
Thenardite Na2SO4 292      345               970      1150              1650   1965 
Thermonatrite Na2CO3·H2O 280      333               935       1109             1590   1891 

Calculated for supersaturation ratios of 2, 10 and 50, modified from Winkler and Singer 
(1972).  

 

Williams and Robinson (1981) conducted laboratory experiments using Ardingly 

Sandstone from southeast England, to test how salts within sandstone may affect the 

frost cycle.  Blocks were soaked in salt solutions of either sodium chloride, sodium 

sulphate or a control liquid of water and exposed to cycles of freeze-thaw.  Disintegration 

on the surface was seen in both salt sample sets.  However, the blocks soaked in the 

sodium sulphate showed much more damage whilst the control block suffered the least 

damage.       

McGreevy and Smith (1982) conducted an overview of the methodology used in previous 

salt weathering experiments in hot deserts, and made many recommendations such as 

using realistic temperature and relative humidity values and to use salts native to the 

desert.  McGreevy and Smith (1985) incorporated these improvements, where their 

quartz sandstones were sprayed with MgSO4 and Na2SO4 solution and then heated in a 

climate cabinet, ranging from 22°C to 54°C, over a period of 24 hours and repeated this 

cycle over 60 times.  The damaged surface was then brushed off and analysed.  They 

conclude that the salts caused the detachment of quartz overgrowths because these 

overgrowths are only lightly “resting” on the quartz grains, therefore allowing salt 

solutions to exploit these regions.  This theme was then revisited in Wright’s (2000) study 

where she also concluded that the removal of the “resting” quartz overgrowths by salt 

penetration has lead to weathering.          



 Introduction  29 

Smith and McGreevy (1988) then repeated a similar experiment to McGreevy and Smith 

(1985) but cycled blocks of Darney Sandstone between 22°C and 52°C whilst applying a 

10% solution of sodium sulphate and magnesium sulphate to half the blocks daily for sixty 

days within a climate cabinet.  The treated blocks had extensive surface disaggregation 

and subsurface cracking which were associated with microcrystalline salts, unseen in the 

control blocks.  However, these studies failed to quantify the amount of damage that the 

salts caused. 

To examine the growth and damage potential of sodium chloride (NaCl) and sodium 

sulphate (Na2SO4) salts, Rodriguez-Navarro and Doehne (1999) conducted experiments on 

their crystallisation at both the microscale and the macroscale.  Microscale experiments 

involved observing the crystallisation of the salt solutions on a glass plate within a range 

of relative humidity values, and comparing the salts that crystallised within glass test 

tubes of a range of diameters.  The macroscale experiment was to cycle the salt solutions 

through oolitic limestone.  Microscale results show that NaCl salt has three crystallisation 

stages: 1) euhedral cubic crystals forms; 2) large hopper form crystals appearance at the 

edge of the droplet; 3) massive skeletal dendritic crystals.  Variations in RH conditions did 

not affect this process.  The Na2SO4 experiment by comparison has only two stages: 1) 

prismatic mirabilite crystals form and 2) acicular and dendritic groups of mirabilite form at 

the centre of the droplet at RH greater than 50%.  Below 50%, only thenardite salt crystals 

grew as prismatic acicular or bulky crystals.  The macroscale experiments show that halite 

precipitation is very slow (minutes) whilst mirabilite is almost instantaneous and that little 

damage took place to the stone from the growth of halite whilst the mirabilite and 

thenardite cause considerable damage to the limestone.  

The papers discussed thus far are on salt weathering and have been laboratory-based 

reports and few have included field evidence.  However, later studies show a shift on 

focus toward the incorporation of real world examples.    

Mottershead et al. (2003) compared two historic structures in Merseyside: one coastal 

(Fort Perch Rock at the entrance of the Mersey Estuary) and one inland (Stafford Castle) 

as both were built from red sandstone of similar composition and age (ten years 

difference).   They compared their recession rates and concluded that the weathering rate 
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is accelerated by a factor of 1.59 in the coastal building.  This is due to marine salts in the 

area enhancing the weathering at the coastal site.   

Přikryl et al. (2007) studied quartz sandstones of the Bohemian National Park in 

Switzerland.  Their results showed that the types of salts present varied as a factor of 

both aspect and height.  Soluble salts such as chlorides and nitrates dominate the south 

faces whereas the north faces are most likely to have less soluble phases such as gypsum.  

Their results suggest that aspect and height are of great importance to the production of 

salts. 

Smith et al. (2002) used laboratory based simulation experiments alongside a case study 

building (St Matthew’s Church, Belfast) to examine salt weathering.  The church was 

constructed from Scrabo and Scottish Dumfries sandstones and a combination of ion 

chromatography, atomic absorption spectroscopy and XRD were used to identify the salts 

present.  These showed that, whilst scaling and flaking was confined to a depth of 15 mm 

from the outermost surface of the stone, CaSO4 (gypsum) and NaCl (halite) were evident 

to a maximum depth of 60 mm.  For the complimentary laboratory experiments, fresh 

blocks of Scrabo, Dumfries and Dunhouse sandstones were cycled in a salt corrosion 

cabinet.  Blocks were cycled from 15°C to 50°C twice within 23 hours and were sprayed 

with 10% MgSO4 solution for three hours whilst cooling down.  After 43 cycles, only the 

Scrabo sandstone showed any significant weight loss.  The depth to which salt had 

penetrated was also studied.  In Dunhouse and Dumfries samples, salts were restricted to 

the outer 20-30 mm compared to the Scrabo sandstone where salt was found in excess of 

50 mm depth.  From these results, Smith et al. (2002) produced a model of sandstone 

decay in a wet polluted maritime environment (Figure 1-1).  



 Introduction  31 

 

Figure 1-1: Schematic diagram illustrating possible decay pathways of sandstone. 

Decay pathways associated with the rapid retreat of building sandstone blocks through salt 
weathering and crust formation (Smith et al., 2002).    

 

The impact of porosity and permeability on salt damage potential was investigated in 

laboratory experiments by Warke et al. (2006).  Fine-grained Stanton Moor sandstone has 

a large range of permeability values (7.70-205.67 mD) and a porosity of 17% whilst the 

coarse-grained Stanton Moor has a limited range of permeability values (4.75-113.97 mD) 

and only 13.5% porosity.  These were subjected to the same weathering cycles using a 

2.5% solution of sodium sulphate.  Their data show that the fine-grained blocks had a 

greater range of potential for salt and moisture ingress and retention, which would 

eventually lead to greater damage.   

The presence of salts within sandstone may affect the properties of the stone. Franzen 

and Mirwald (2009) studied the effect of three different salt mixtures on the absorption 

of moisture.  The data indicates that the presence of Mg-sulphates increases moisture 

uptake compared to Na salts.   

 

1.2.3.1  Summary of Salt Weathering 

As outlined, the presence of salt can be very harmful to sandstone.  However, it is quite 

difficult to constrain how damaging it may be, to any one individual building, as the 

impact depends on many factors: salt composition and concentration, environmental 
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conditions, temperature, relative humidity and the properties of the particular sandstone 

in question.  Therefore, each case has to be considered individually and all properties and 

environmental conditions have to be taken into account.  Also, it can be seen that there 

are definite links between pollution and salts.  The main pollutants discussed in section 

1.2.1 are fly ash and soot, these are normally incorporated into the salt, even though 

some studies may consider these two constituents as part of the same weathering cycle, 

we have divided them into two sections, as it can be seen that salt can cause may 

different forms of weathering. 

1.2.4 Weathering due to Freeze-thaw  

The action of freeze-thaw has been considered a weathering process in sandstone for 

many years and numerous papers examining sandstone decay in cold climatic conditions 

argue that the mechanical weathering of freeze-thaw is the dominant breakdown process 

(Ballantyne and Harris, 1994; Matsuoka, 2001; Kamh, 2005b).  Freeze-thaw operates 

when porous material becomes saturated by water and as temperatures fall, the water 

cools, and expands by 9% at 0°C (Price, 1995).  This cycle might be repeated many 

hundreds of times and this expansion causes microfracturing, which may eventually lead 

to failure of the material and could be particularly destructive in cold and wet climates.  

However, most studies of this topic assume this process occurs without providing any 

significant evidence.   Only a few papers have tried to provide direct evidence for the 

process of freeze-thaw within sandstone.   

Wright (2000) subjected Dunhouse Sandstone to two different temperature regimes: -5°C 

to +15°C and -12°C to +15°C.   The debris produced was then collected and viewed under 

a Scanning Electron Microscope (SEM) so that particle analyses could be conducted.  

Within this quartz debris, overgrowth fragments were found and it was suggested that 

freeze-thaw weathering might have caused their detachment.  Thomachot and Jeannette 

(2004) also simulated freeze-thaw experiments using two sandstones: Vosgien (18% 

porosity) and Meules (23.5% porosity).  Three samples were set up as partial saturation, 

total saturation and control blocks.  These were then subjected to three series of 30 

freeze-thaw cycles and then the porous network of the sandstone was studied to identify 

any changes, using mercury porosimetry and capillary inhibition and dilation.  The results 

showed fracturing within the saturation set of samples, which increased the porosity of 
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the sandstones, therefore it is assumed that freeze-thaw caused this increase.  They state 

that these results cannot be transposed to natural conditions due to absorption-drying 

which occurs simultaneously with freeze-thaw.  

Hall (2004) investigated freeze-thaw in nature, using cement paving blocks in northern 

Canada which were embedded with temperature data loggers, recording on a minute 

interval scale.  This fine temporal scale was used so that the exothermic reaction 

associated with the release of latent heat as the water freezes could be recorded.  This 

small release of heat was observed in their data, which gives unequivocal evidence of 

freeze-thaw events taking place.  However, Hall (2004) also concluded that there is no 

fixed temperature for the exothermic initiation and that, although the process of freeze-

thaw is present within rock, there is no evidence to its effectiveness as a weathering 

agent. 

1.2.4.1  Summary of Freeze-thaw 

The research to date shows that freeze-thaw weathering in sandstone may be effective 

when accelerated and enhanced in laboratory experiments and it definitely occurs in 

nature.  However, it has not been proven in sandstone buildings so its power as a 

weathering agent in temperate climatic conditions is still unknown, and may only be 

effective in climates where air temperature dips below freezing on a daily basis.  In other 

circumstances, it may only help accelerate other active decay processes on the 

sandstone.  In addition, many sandstone buildings are warmed from the inside (from 

central heating systems), again limiting the freeze-thaw that may have otherwise 

occurred.  The water trapped within the pores of sandstone is also salty and these 

solutions have a much lower freezing point temperature compared to pure water.       

1.2.5 Weathering due to Chemical Decay 

Chemical decay in sandstone is a change to the original bulk chemical composition of the 

material whether it is an addition or removal of a mineral or some of its constituents.  

This process is therefore highly individual to each sandstone as sedimentary rocks have a 

wide ranging primary mineralogy and also highly varied diagenetic histories.  Other 

features important to chemical decay, complimentary to mineralogy, are the porosity and 
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permeability of the sandstone.  Therefore, it is critical to understand the primary 

characteristics of the sandstone so that it is possible to distinguish between the 

diagenetic features and weathering characteristics.  This has been done for many 

sandstones such as Stanton Moor (Mckinley et al., 2006) and Saxony sandstones (Götze 

and Siedel, 2007).  

Lasaga (1998) undertook laboratory experiments to deduce the dissolution rate of the 

main sandstone constituents under varying conditions.  The results suggest that 

carbonate minerals dissolve at a very rapid rate in comparison to the silicates in all 

conditions (Table 1-3).       

Table 1-3: Lifetime of a 1 mm sized grain at 25°C and pH 5. 

Mineral Lifetime Dissolution rate 
(log moles m-2s-1)  

Quartz 34,000,000 yrs -13.4 

Kaolinite 6,000,000 yrs -13.3 

Muscovite 2,600,000 yrs -13.1 

K-Feldspar 921,000 yrs -12.5 

Dolomite 36 days -5.5 

Data from Lasaga (1998). 

 

Whole rock studies into chemical decay were not investigated until later.  Since then a 

few studies have been undertaken to compare weathered sandstone to the unweathered 

sandstone to identify the specific chemical weathering changes that have occurred. 

A common mineral to form within building sandstone weathering is gypsum and this is 

covered largely in section 1.2.3.  However, gypsum can also form in the outer layer 

through the interaction of actinolite (Ca rich mineral) with atmospheric sulphur, as seen 

in Scrabo Sandstone (Mckinley et al., 2001; Smith et al., 2002).  The sulphur reacts with 

the actinolite and forms gypsum leading to pore spaces being in-filled and blocked.   

Friolo et al. (2003) studied Hawkesbury Sandstone composed of 60-68% quartz, 16-25% 

clays and 7% siderite determined by using a combination of Fourier transform infrared 

spectroscopy (FTIR), X-Ray diffraction (XRD), SEM, inductively coupled plasma-atomic 

emission spectroscopy (ICP-AES) and thermal analysis.   They showed that when the 
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siderite (FeCO3) chemically breaks down, a proportion of the released Fe3+ is substituted 

into the kaolinite matrix for Al3+.  This replacement of Fe3+ for Al3+ disrupts the structure 

of the kaolinite, which then becomes unstable and so weathers at an increased rate.   

Sérgio De Melo and César Fonseca Giannini (2007) show that in the unweathered sections 

of the Furnas Formation in southern Brazil, which is composed predominantly of quartz 

arenites, the kaolinite present is well crystallised (booklets 50 µm) and cements the 

sandstone together.  Upon the onset of weathering, the kaolinite is dissolved out and 

reprecitated within cracks or on exposed surfaces as microcrystalline kaolinite (booklets 

10 µm).  This chemical change in the sandstone leaves it weakened and increases 

formation of erosional features such as furnes, sinkholes and tunnels.    

Franke (2009) simulated chemical weathering on 39 different rock-forming minerals to 

test their resilience.   Mineral chips were immersed in an appropriate exchange resin 

slurry under conditions of 20˚C and pH 5.5.  Weight measurements were taken at 

intervals dependent on the mineral chip over a period of four years.  As expected the 

calcite weathered at a quicker rate (600 mg m-2d-1) compared to the silicate minerals 

(alkali feldspar 2.10 mg m-2d-1). 

1.2.5.1  Summary of Chemical Decay 

These papers suggest that chemical alteration to the original sandstone is much more 

likely to be seen in the diagenetic minerals (carbonates, clays and Fe-oxides) compared to 

the detrital minerals (quartz, Or-rich feldspars and micas).  When such chemical reactions 

do occur, the precipitates are formed closer to the outermost surface.  As noted at the 

beginning of the section, chemical alteration within any sandstone is likely to be highly 

individualistic due to variable primary composition and so makes chemical decay very 

difficult to generalise.   

1.2.6 Weathering due to Clays   

Many different types of clay minerals occur within sandstone including illite 

((K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)]), kaolinite (Al2Si2O5(OH)4) and montmorillonite 

((Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2·nH2O), which is a variety of smectite.  Illite and kaolinite are 
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classified as non-expandable, whereas montmorillonite can cause destruction to 

sandstones by exerting pressure, through shrinking and swelling cyclic behaviour (Piffy 

1979).  Intracrystalline swelling and also osmotic swelling to a lesser degree, can affect 

the layered structure of these phyllosilicates.  Intracrystalline swelling occurs when the 

cations binding the clay platelets together become hydrated upon contact with water and 

rearrange themselves as a layer between the clay layers, thus causing widening (Figure 

1-2).  This process will double the size of a Na-montmorillonite crystals whereas Ca-

montmorillonite expands to a much lesser extent as it cannot absorb as much water 

(Madsen and Muller-Vonmoos, 1989). 

The second swelling process is osmotic swelling, which involves the repulsion between 

electric double layers.  Osmotic swelling is caused by the large differences in 

concentration between the ions electrically held close to the clay surface and the ions in 

the pore water of the rock. The irregularities in the crystal lattice are manifested by an 

excess negative charge, which must be compensated by positive ions close to the surface 

of the clay.  The positive ion concentration decreases with increasing distance from the 

surface, whereas the concentration of negative ions increases.  The negatively charged 

clay surface and the cloud of ions combine to form the electric double layers causing 

swelling (Figure 1-2) (Madsen and Muller-Vonmoos, 1989).       

Both intracrystalline and osmotic swelling are fully reversible and therefore they can 

occur repeatedly over a long time period (Madsen and Muller-Vonmoos, 1989). 



 Introduction  37 

 

Figure 1-2: Schematic diagrams of intracrystalline and osmotic swelling.  

Left) intracrystalline, right) osmotic swelling, taken from Madsen and Muller-Vonmoos 
(1989). 

 
Two Spanish studies have examined the clays within sandstone from the Tafina region 

(Cadiz, Spain), which contains ~7 wt% clay.  Sebastián et al. (2008) explains how the 

sandstone experiences weathering through the swelling of smectite and chlorite.  Within 

a low porosity sandstone, this can have a significant impact through both intracrystalline 

swelling and osmotic reactions.  The expansion of the clays within these sandstones leads 

to the development of several types of weathering phenomena: scaling, flaking and 

contour scaling.  Jimenez-Gonzalez et al. (2008) used the same sandstones from the 

Tafina region in a second study and various tests were conducted to determine the 

behaviour of the clay and the mechanics of its swelling.  To clarify whether or not the 

weathering seen is caused by the expansion of clays, one set of samples was soaked in 

diminoethane dihydrochloride, which adsorbs negative charge and therefore minimises 

osmotic swelling.  Stones were then subjected to repeated wetting and drying cycles 

before their strength tests were recalculated and compared to their original values.  

Strength tests showed the treated stone to be stronger than the damaged, non-treated 

sandstone.  The swelling strain test indicated that the clays present expand by 200 μm/m 

whilst wet, and that swelling inhibitors may prove useful in conservation of sandstone 

which contain high proportions of swelling clays.  

Kaolinite is present in many sandstones as a cement and helps bind detrital grains 

together.  Although it is a non-expandable clay, kaolinite clay lost from the sandstone will 
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cause structural weaknesses.  A few studies have looked at the dissolution of kaolinite in 

the presence of biological material.  Chin and Mills (1991) suspended kaolinite in low 

molecular weight organic ligands, soil humic acid and organic matter dissolved in stream 

water.  The soil humic acid and stream water did not promote the dissolution of kaolinite 

although in the presence of the organic ligands, the rate of aluminium dissolution was 

generally much greater than silicon.  Maurice et al. (2001) then showed bacteria could 

mobilise iron from the kaolinite for metabolism in aerobic environments when iron is a 

limited nutrient.   This increased the weathering rate of the kaolinite and also enhanced 

the release of Al from the kaolinite.   

1.2.6.1  Summary of Clay Weathering 

The role of kaolinite has been the focus of this review section due to its abundance in 

Scottish sandstones and the literature above indicates, that although it is a non-

expandable clay, it can still cause damage, sometimes severe.  Kaolinite clay weathering 

occurs both through loss of the clay, which weakens the internal structure, and by the 

breakdown of the clay as elements are substituted into its structure.   

1.2.7 Weathering due to Thermal Heating  

One of the most significant factors affecting exposed sandstone is the ambient climate, 

which is directly responsible for weathering, but also drives many associated secondary 

processes.  One of the most studied aspects within this area is the thermal properties of 

sandstone and research on these thermal properties connected to weathering is 

described herein.  Kerr et al. (1984a) investigate the effects of both albedo and thermal 

conductivity as controls on weathering regimes.  They placed chalk, granite and 

sandstone samples in Er Rachida, Morocco and measured temperatures at known depths 

within the stone and the external environment.  This showed that the sandstone sample, 

which had the lowest albedo and thermal conductivity, attains the highest surface 

temperature whereas the opposite extreme, chalk, which has a high albedo and high 

thermal conductivity, reaches a much lower surface and sub-surface temperature.   They 

concluded that these sandstone properties should be taken into consideration when 

assessing weathering controls.   
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Jenkins and Smith (1990) then used quartz sandstone blocks that were placed in locations 

throughout Tenerife to investigate how temperature affects weathering mechanisms on 

the sandstone surface.  They embedded sensors at various depths within the stone and 

on the surface.  Results showed that the surface of the sandstone is subject to large 

fluctuations in temperature and that the temperature change can be very rapid leading to 

increased thermal stress.  They also highlighted the fact that there may be seasonal 

changes reflected in the weathering patterns.   

Warke et al. (1996) then tested the observations by Kerr et al. (1984a) and Jenkins and 

Smith (1990) within a controlled laboratory experiment.   They tested Portland Limestone, 

Dunhouse Sandstone, Baumberger Sandstone and Pentellic Marble, which all have high 

albedo values in accordance to the Munsell colour notation.  Using a climate chamber, 

the stones were subjected to periods of heating and cooling to observe how the stone 

surface temperature corresponds to air temperature.  The results indicate that Dunhouse 

Sandstone and Pentellic Marble conducted the surface heat to deeper layers (and 

therefore experience uniform heating) compared to the Baumberger sandstone and 

Portland Limestone.  An explanation for this is that the latter two rock types have poor 

thermal conductivity.  Warke et al. (1996) highlight how topography on the surface of the 

sandstone as seen on the Portland Limestone and Baumberger Sandstone may make 

them more prone to thermal stress weathering.  However, they concluded that these low 

magnitude events of thermal stress are unlikely to cause catastrophic failure, but still 

must be considered as a weathering mechanism.  Furthermore, they also suggest that the 

removal of black crust will reduce thermal stress inflicted on the stone as the low albedo 

surface will be removed leaving a high-albedo surface exposed.  

Warke and Smith (1998) continued their work using Portland Limestone, Dunhouse 

Sandstone and Antrim Basalt.  These were tested under direct (natural systems) and 

indirect (laboratory experiments) light sources, and the subsurface temperature response 

was quite different.  Under natural systems, the varying rock types respond differently 

due to their thermal properties i.e. albedo and thermal conductivity, whilst indirect light 

sources cause all lithologies to behave in a similar manner.  These results highlighted the 

need to use realistic temperature regimes gained from both direct and indirect light 

sources when working with climate chambers. 
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McGreevy et al. (2000) undertook a similar study investigating the differences of indirect 

and direct heating of Antrim Chalk, Mounre Granite and Scrabo Sandstone.  Temperature 

measurements were again taken from the subsurface and show that these rock types also 

respond differently under the conditions.  Again, one of the main conclusions is that 

thermal heating and albedo are important influences on the surface and internal 

temperatures.  McGreevy et al. (2000) also suggest that previously conducted 

oven/indirect heating based studies may have produced exaggerated results as they had 

not considered the albedo effect.        

The process of thermal cycling has also been linked to the development of tafoni in the 

Antarctic, where processes such as biological and salt accumulations have been ruled out.  

The high temperature range experienced on a daily cycle, which has caused thermal 

stress, has been thought to be a leading factor (Hall and Andre, 2006).  Hall et al. (2005) 

suggests that albedo may not play as much of a significant role as portrayed previously in 

this section.  Hall et al. (2005) painted paving bricks in intervals of 20% reflectivity from 

black to white and attached temperatures sensors to the surface and base of each block.  

It was indeed seen that the black blocks became warmest.  However, in situations where 

the surface temperatures exceeded those of the air, the black bricks were at the same 

temperatures or lower than those of the white bricks.  They argue that the effect of 

albedo is overpowered by the convection of internal heat being expelled to cooler 

surroundings.  However, the white blocks being the warmest only occurs when the 

sandstone’s surface temperature is greater than the air temperature and this 

circumstance rarely occurs in the natural environment.   

1.2.7.1  Summary of Thermal Weathering 

The research summarised here shows that two main themes are apparent in the role of 

weathering: 1) the albedo of the sandstone and 2) the thermal conductivity.  However, in 

these papers, a relatively wide-ranging selection of rock types was analysed.  Due to the 

high albedo and thermal conductivity of many sandstones, its thermal heating does not 

influence weathering as much in comparison to many of the other rock types tested, such 

as those with a high percentage of dark coloured minerals.  As Scottish sandstones are 

primarily composed of light coloured minerals (discussed later)   
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1.2.8 Weathering due to Biological Activity  

Organic material causes weathering by many processes: e.g. production of chelating 

agent and acids; physically burrowing into and displacing minerals; leaching and depleting 

minerals of elements to name a few.  These processes are dependent on the type of 

organism present, whether it is bacteria, cyanobacteria, algae, fungi, lichen or most likely 

a combination. Their weathering potential has been tested and observed in both the 

natural environment and in laboratory experiments and both will be discussed in detail 

within this section.  Due to the large amount of information on biodeterioration, a few 

overview articles have also been written on the subject (Warscheid and Braams, 2000; 

Burford et al., 2003; De La Torre et al., 2003; Fernandes, 2006).   

The relationship between microbes and stone has been discussed since the late 19th 

century, but the terminology for microbes and their habitation was not clarified until the 

work of Golubic et al. (1981), who describe those living on the surface as epiliths and 

those living within pore spaces as cryptoendolithic.  After this work, there was an 

increased interest in their role in weathering.  Friedmann (1982) describes how 

cryptoendolithic organisms weather sandstone in Antarctic conditions.  Within rocks 

which are formed predominantly from translucent minerals, the microbes form a series of 

layers: surface crust, black zone, white zone and green zone.  The black zone is a dense 

mat of fungal hyphae, but fungal hyphae also form the white zone (but in a looser web 

network) and the green zone is caused by flourishing algae.  The white zone is weak due 

to leaching of iron compounds, which are transported to the outer crust by the microbes, 

and as a result, the black zone is enriched in iron.  All layers are not always seen but a 

characteristic weathering pattern emerges, with a step-like weathering cycle occurring as 

the black and some of the weak white microbial weakened zone peels away, before the 

pattern repeats itself on the newly exposed surface (Figure 1-3).   
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Figure 1-3: Diagram detailing the various layers formed by microbial communities and the 
step like weathering process. 

Diagram taken from Friedmann (1982). 

 

Antarctic microbes were then reinvestigated by Vestal (1988) who showed that the 

biomass of the cyptoendolithic microbiota was dominated by lichens Buellia and 

Lechidea, and had a spatial variation of about 14% over the surface of the samples.  

Spatial variation was calculated using the amount of lipid phosphate present on the 

surface of the stone at specific points.  Work on cryptoendolithic microbes in extreme 

cold environments has continued until recently (Wierzchos et al., 2003; Omelon et al., 

2006b, and, 2007) in an effort to further the understanding of microbial communities in 

these extremes.  However, it was in the 1990’s that the study of the role of microbes in 

the weathering of sandstone buildings became popularised.  

Ortega-Calvo et al. (1991) sampled the most common type of microbe living on a variety 

of building materials (terracotta, sandstone, limestone, marble and granite) from 

locations in Spain and Sweden and found cyanobacterium Microcoleus vaginatus and the 

chlorophyte Klebsormidium flaccidium to be the most common.  Sandstone samples were 

then inoculated with these two species identified in the case study and, under 

examination show the cyanobacteria to be firmly bound to the surface by mucilage 

cementing stone grains.  This appears to lead to spontaneous detachment of the 

microbial films causing disintegration of grains and mechanical deterioration. 

Gómez-Alarón et al. (1994) studied the fungi on the church of Carrascosa del Campo in 

Spain (constructed from sandstone) and isolated seven different genera of fungi, with 

Penicillium being the most numerous.  It was found that Penicillium, and other fungi such 
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as Fusarium, have the ability to excrete oxalic, fumaric and succinic acids, which are all 

corrosive to the minerals beneath.  Gómez-Alarón et al. (1995) studied the same 

sandstone but shifted their focus from fungi to cyanobacteria and algae.  The 

cyanobacteria and algae had been observed producing biofilms on the stone surface.  The 

authors state that these biofilms have the potential to retain water and trap soil, dust 

particles, spores and seeds; this then helping to expose the sandstone surface to more 

harmful invasion from higher order mosses and plants.  Although the presence of a 

biofilm is not directly harmful, these secondary effects can prove detrimental.  Gómez-

Alarón et al. (1995) conclude that microbial weathering is complex on natural stone and it 

cannot be limited to one species, so many should be considered together. 

Viles (1995) did not specifically examine biological weathering of buildings but did 

compile a comprehensive review outlining how the ecology on the rock surface might 

shape the topography beneath it, publishing a model of how the environment dictates 

the efficiency of weathering experienced (Figure 1-4).   The model suggested that, in wet 

regions there is more microbial growth on the surface causing more damage, whilst drier 

environments may cause all growth to occur subsurface.  This may suggest that, in a wet 

climate such as Scotland microbes may be causing more decay on the surface.   

 

Figure 1-4: Model of the changing effectiveness of biological weathering. 

Biological weathering on various rocks types, across differing environmental stress 
gradients, taken from Viles (1995). 

 

Spanish monuments were once again used by Flores et al. (1997) to classify the algae and 

bacteria on limestone and granite buildings, and how their presence may influence 
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weathering.  Bacteria belonging to the genera Bacillus, Micrococcus and Thiobacillus were 

found in addition to Apatococcus algae.  Flores et al. (1997) suggest that algae may cause 

mechanical weathering through volumetric change (when wetting and drying cycles 

occur), but its main role in weathering may be to support the growth of other species.  

Several species of hetrotrophic bacteria were seen to create biofilms, and it is also 

thought that Thiobacillus, an autotrophic bacterium, can cause damage to the limestone 

by the transformation of calcium carbonate to calcium sulphate.   Although the research 

was not directly conducted on sandstone, the porous nature may be affected heavily by 

this process of shrinking and swelling seen within the algae of this study.   

Wakefield (1996) considered microbial growth on sandstone in Scotland,  studying 

Hermitage Castle in the Scottish Borders, which is constructed of fine-grained red 

sandstone as well as a medium-grained quartz rich sandstone but unfortunately the 

sandstones were both of unknown origin.   This study examined algae on the stone, 

specifically Trentepohlia, and showed how this one cyanobacteria can, very efficiently, 

mechanically decay sandstone through blistering and spalling its surface.  This blistering 

and spalling occurs due to the volume change of the cyanobacteria in sandstone during 

successive wetting and drying cycles.  The Hermitage Castle study also suggests that the 

volume expansion of a cyanobacteria crust can be as much as 300%, causing massive 

pressures on the sandstone and therefore potentially exploiting minute fissures. 

These studies on sedimentary rocks show that a wide variety of microbes live both within 

and on the surface of stone and the various authors have made tentative explanations 

into how they cause weathering.  In the early 2000’s a few studies concentrated on 

investigating the impact of microbes on individual minerals rather than whole rock 

studies before returning to whole rock studies later in the decade.  

Welton et al. (2003) conducted laboratory experiments using communities of algae 

(Chlorella, Vulgaris, Chlorococcum, Tetrasporum, Scenedesmus obliquus, Oocystis 

marssonii and Stichococcus) to assess how a blend of algal microbes affect the dominant 

rock forming minerals: albite, calcite, dolomite, labradorite, orthoclase, quartz and 

siderite.  Mineral chips were immersed in water or an algal mix.  The pH was tested 

weekly and water chemical composition tested fortnightly.  After a 90 day period, 

biologically mediated etching of minerals was seen (Figure 1-5).  This showed algae to 
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have the capability to etch and weather minerals independent of any other microbes, and 

in particular, the algal populations preferentially affected the carbonate and feldspar 

mineral chips. 

  

Figure 1-5: Algal weathering on siderite. 

A) Siderite surface prior to algal colonisation, B) Siderite surface after 60 days algal 
colonisation. Both views are 1.5 cm across (Welton et al., 2003). 

 

It was suggested by Bennett et al. (2001) that, in environments where nutrients are 

scarce, bacteria may weather minerals to gain their nutritional requirements.  To test this 

idea, mineral chips were suspended in polyethylene chambers and buried into aquifers, 

where the ground water was abundant in carbon and lacking in phosphate.  When 

retrieved, the samples were examined for microbial abundance, their colonization 

pattern and any changes to the host mineral surface.  Results showed that, in these 

environments, silicate minerals such as Ca-feldspars can become weathered very quickly 

by the bacteria releasing nutrients from the mineral.    

Poikilotrophic fungi were identified settling on a surface of sandstone and forming 

biofilms by Dornieden et al. (2000) who considered the impact and potential damage of 

these fungi.  They show that, during the initial growth and establishment stage, they 

cause substantial damage to the substrate by excreting many types of acids.  However, 

once established, the impact is significantly reduced as the fungi lived with a much lower 

metabolic rate.      



 Introduction  46 

Souza-Egipsy et al. (2004) studied the microbial growth on sandstone in the semi-arid 

Torrollones de Gabarda area of Spain.  Using SEM techniques, they compared the 

weathering effects on the vertical and horizontal surfaces, which yielded significant 

differences:  The vertical surfaces were dominated by grain disintegration, etching and 

biomineralization by calcium oxalate and entrapment of minerals within extracellular 

polysaccharides.  However, on the horizontal surfaces, holes formed as well as the 

development of a crust, which favours intense flaking.  They also explored the protective 

aspect of biogeneic soils on these surfaces.  Souza-Egipsy et al. (2004) suggest that green 

algal lichens may have a layer of calcium oxalate, which shields the rock beneath from 

environmental conditions, and this web of microbes may also protect an unstable surface 

beneath. 

To discover which stone types may be most prone to weathering, Miller et al. (2006) 

studied the bioreceptivity of Ançã and Lioz Limestone, Portalegre Granite and Vila Viçosa 

Marble all from Portugal.  After four months of inoculation with microalgae Stichococcus 

bacillaris and cyanobacteria Gloeocapsa alpine, results showed that the limestone had 

the highest biorecepivity whilst granite exhibits the lowest.  This could have been 

expected due to the low porosity of the granite, although this study neglected sandstone, 

which may have a high bioreceptivity due to its range of porosity.     

Suihko et al, (2007) used DNA classification techniques to identify the bacterial and fungal 

microbiota on six Scottish monuments.  These included actinobacteria belonging to the 

genus Sterptomyces, Arthrobacter and Pseudomonas and fungal species of Cladosporium, 

Penicillium and Philophora.  However, they did not discuss their role in weathering, only 

documenting the species present.        

Now that a good understanding of which microorganisms are likely to be residing on 

sandstone had been established, Jain et al. (2009) studied the optimal environmental 

conditions for the growth of fungi.  One of the main factors affecting growth is the 

influence of relative humidity (RH).  Whilst keeping temperature constant at 25°C, a 

mixture of fungi were grown within a range of RH.  The study showed that maximum 

diversity of fungi was found at 96% and 85% RH, while levels lower than 62% RH 

produced no fungal growth on the sandstone.  Jain et al. (2009) state that, in general, one 

species would gain dominance on the sandstone over time.  The fungi are shown to have 
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a dynamic weathering effect on sandstone as they precipitated minerals such as dolomite 

whilst also dissolving out cements such as calcium carbonate.  Fungi have also been found 

to excrete higher concentrations of effective chelating agents thus enhancing dissolution 

of stable aluminosilicates.   

1.2.8.1  Review of Biological Activity 

A large volume of research has been focused on the relationship between microbial 

communities and the weathering of sandstone constructions.  Most work has been 

centred on algae, cyanobacteria and fungi as these have been deemed the most 

detrimental to the sandstone while they are also the most commonly identified living on 

the buildings.  These studies provide information on the products of the organisms and 

how these damage the stone, but there is often a lack of information on the time scale 

over which they take place and also to what depth within the stone they cause damage 

on a building exposed to the environment.  In many studies, it seems difficult to 

specifically state that any weathering observed was exclusively due to microbial decay.     

1.3 Research on Sandstone Decay in Scotland 

As is evident from the literature review, there is a wealth of information on the 

weathering of sandstones throughout the world, particularly the Mediterranean 

countries, as it has been used for construction purposes for centuries.  However, these 

studies are not so relevant to Scotland when understanding the Scottish decay process, 

for many reasons: 1) the wide range of sandstone mineral compositions, textures and 

diagenetic histories of the sandstones studied; 2) the local climate in which the 

weathering has occurred is unlike that of Scotland; 3) differences in weathering time 

scale.  As seen, research on northern British sandstone is limited and focuses mainly on 

the mechanical breakdown of sandstone as a consequence of salt infiltration and 

microbes (Wakefield, 1995 and Suihko et al., 2007).  Thus far, there is limited detailed 

understanding of how Scottish sandstones erode and decay.  The work that has been 

undertaken to date is reviewed next. 
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1.3.1 Decay of Sandstone within Scotland    

The decay process of Glasgow sandstones was first analysed in detail by Bluck and Porter 

(1991b), who produced a model of breakdown within the blond and red categories of 

sandstone (Figure 1-6 andFigure 1-7).  They were the first to observe that the blond 

variety of sandstone is much more susceptible to decay.  There model for blond 

sandstone weathering begins with aqueous fluid entering the rock and then a period of 

chemical redistribution, when fluids dissolve unstable minerals from the interior of the 

sandstones and reprecipitate them on or close to the outer surface.  This reprecipitation 

builds up a tough patina, which can become impermeable.  Once this chemical stage has 

been completed a mechanical set of breakdown processes start to take effect.  The 

impermeable layer causes a build up of water within the rock, thus increasing the time 

that water is in contact with clay minerals, allowing them to expand to a greater degree 

than achieved by otherwise periodic wetting.  The trapped water also increases the risk of 

freeze-thaw taking place, potentially further increasing mechanical damage (Figure 1-6).  

Bluck and Porter’s (1991b) model is the same for red sandstones but, as their mineralogy 

is less complex in comparison to blond sandstones, it takes a longer time for a thick patina 

to develop and therefore there is less decay within the same time scale (Figure 1-7).  

However, these models were constructed from observations only and were not backed 

up with experimental data.      

 

Figure 1-6: Bluck and Porter (1991A) model of fluid flow through a blond sandstone. 

Showing all the decay steps taken from Bluck and Porter (1991b). 
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Figure 1-7: Bluck and Porter (1991A) model of fluid flow through a red sandstone. 

Showing decay steps, taken from Bluck and Porter (1991b). 

 

Bluck and Porter (1991a) also conducted work on how building stones decay after 

cleaning.  This study concluded that a building chemically cleaned in the past will suffer 

from algal growth in the future, although abrasively cleaned buildings will not. This is 

thought to be linked to the change in the water flow after the differing cleaning 

processes. 

The work by Bluck and Porter (1991a and b) highlights two important factors to consider 

in the degradation of sandstone.  First is that the original composition of the stone is very 

important; complex mineralogy equates to complex weathering.  Secondly, they show 

that weathering is not a static process, but will instead vary with time and also with the 

fluctuation of rainwater and evaporation.  

Kamh (2005b) undertook an investigation on sandstone decay using Jedburgh Abbey in 

the Scottish Borders as a case study.  The abbey is approximately 890 years old.  He 

compared weathered samples from the interior and exterior of the building, to fresh 

samples of similar stone type from a natural exposure.  He concluded that one of the 

most important decay processes was the chemical weathering of feldspar and dolomite 

and their breakdown.  He also hypothesised that “spalling” of quartz overgrowths may be 

an important factor during the freeze-thaw process. 

1.3.1.1  Microbial Decay on Sandstones within Scotland 

The effects of microbial communities have long been considered a significant factor in the 

decay of sandstone.  Many microbial decay studies have been carried out in 
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Mediterranean countries (Ortega-Calvo et al., 1991; Gómez-Alarcón et al., 1995), but few 

have been undertaken in Scotland.  In Scotland, the comparatively cooler and wetter 

climate will dictate which microbes may be present and their roles in the resulting decay.   

As previously outlined in section 1.2.8 Wakefield et al. (1996) conducted an investigation 

into the effect of filamentous green algae Trentepohlia on Scottish sandstone at 

Hermitage Castle.  The weathering observed in this sandstone was mainly mechanical 

decay in the form of spalling and grain disaggregation caused by the algae.    

Young (1997) showed that in general the diversity of biological growths was greater in 

rural rather than urban areas.  Young (1997) focused on algae, and identified mainly 

unicellular or colonial forms on the sandstone, whilst filamentous forms were found in 

areas that are persistently damp.  The most common species of microorganisms were the 

genii Chlorococcum and Pleurococcus.  Young (1997) also suggested that the architectural 

complexity of the buildings plays a large factor in the distribution, stating there was little 

algal colonisation on plain unornamented facades. 

Suihko et al. (2007) also undertook a study of microbes present on Scottish stone using 

rRNA as previously outlined in section 1.2.8 and identified pigmented bacterial species 

such as Arthrobacter and Bervundimouas, and fungi cladosporium and penicillum.   

However, they did not evaluate how their presence on the sandstone may affect the 

weathering process of its surface.    

As shown, very limited work has been conducted on Glasgow sandstones in particular 

apart from a few overviews of chemical and microbial work.   

As stated previously it is fundamental to understand the primary product which is being 

weathered.  Therefore, the next section will detail the diagenetic history of the Glasgow 

sandstones and provide a brief introduction to the predominant mineralogy of the 

sandstones found in the Glasgow region.    

1.4 Geology of the Glasgow Region 

Sandstone is a naturally durable material and is abundant in the west of Scotland and for 

these reasons, was used extensively to construct local monuments and buildings.  
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Sandstone is still used in modern construction, both new and when replacing damaged 

blocks in older buildings.  The buildings surveyed in this study are all approximately 150 

years old and built within the Glasgow district using blond sandstone, which were 

acquired from numerous small local quarries within the Glasgow district (Figure 1-8).  

Therefore, it is important to understand the diagenetic history and mineralogy of the 

sandstones used so that it is possible to distinguish between products of diagenesis and 

of weathering post-construction. 

 

Figure 1-8: Image of historic quarries within the Glasgow region. 

Each green dot highlights an individual quarry, all map rights reserved to ©NERC. 

 

The Glasgow region and therefore the main source of building material, is dominated by 

two sandstone groups: the Clackmannan Group (CKN) and the Scottish Coal Measures 

Group (SCMG) (Figure 1-9), which are both Carboniferous in age (Figure 1-10). 

The description by Browne et al. (1999) provides the main reference used in the 

geological descriptions below.   

The Clackmannan Group (CKN) is the main geological unit covering the north, west and 

south of the Glasgow region.  The CKN includes the Lower Limestone Formation, 

Limestone Coal Formation, Upper Limestone Formation and the Passage Formation 
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(Browne et al., 1999).  The group is predominantly Namurian in age (335 Ma to 315 Ma) 

and was deposited in a fluviodeltaic environment (Woodcock and Strachan, 2000).  

Sandstone occurs in all of the Formations in small quantities but is most common in the 

Passage Formation.  The Passage Formation sandstone alternates between fine and 

medium-grained lithologies and the dominant clay within them is illite (Wilson et al., 

1972).  These sandstones are generally off-white to grey in colour.   

The Scottish Coal Measures Group (SCMG) dominates the east of Glasgow and contains 

the Lower, Middle and the Upper Coal Measures, which are Westphalian in age (315-306 

Ma).  The SCMG was deposited within a large array of environments ranging from alluvial 

to lacustrine, however the thickest sandstone units were deposited in river and delta 

distributary channels (Browne et al., 1999).  The sandstone units may be both upward 

fining and upward coarsening, with colours ranging from grey to off-white and vary from 

fine to medium grained.  The main clay found within these is kaolinite (Wilson et al., 

1972).  Sedimentation of these sandstones was dominated by episodic progradation and 

abandonment of delta lobes which had sediment supplied from both the north east and 

west (Browne et al., 1999).  The SCMG sandstones are generally seen to be moderately 

sorted and quite mature with quartz, feldspar and mica as the main constituents.  

 

Figure 1-9: Map of the geology underlying the Glasgow region. 

Modified from Browne et al. (1999).  
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Figure 1-10: Stratigraphic column. 

Column taken from the international commission on stratigraphy (2010).   

 

1.4.1 Mineralogy of Glasgow Sandstones 

Bluck and Porter (1991b) first described the mineralogy of sandstones that were used to 

construct the infrastructure of Glasgow.  These were general observations, comparing 

blond and red sandstone.  In 2004, Scottish Enterprise Glasgow (SEG) commissioned the 

British Geological Survey (BGS) and the Scottish Stone Liaison Group (SSLG) to undertake 

a two-part study of Glasgow’s stone built heritage.   This was prompted by concerns 

about the health of Glasgow’s buildings, due to factors such as: 1) their age; 2) air 

pollution (legacy of industrial and domestic coal burning); 3) inappropriate repairs, such 

as plastic surface repairs, mechanical and chemical cleaning; 4) the use of incompatible 

replacement stone.  Hyslop et al (2006) also noted that climate change was an additional 

problem, and conducted a visual survey complimented by examination of sandstone 

samples using optical microscopy.  Through this work, they proposed the main decay 

processes on uncleaned sandstone to be crust formation, granular disintegration 

(particularly on lower facades enhanced by de-icing salts), biogenic soiling and the 

saturation of pore space within the sandstone by water.  Bluck and Porter (1991b) and  

Hyslop et al. (2006) both also noted that scaling on blond sandstone is a much greater 
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problem compared to the red sandstones due to mineralogy, as the blond sandstones 

contain variable proportions of carbonates, iron oxides and clay minerals, which can 

enhance disintegration.  In addition to effects of the detrital and authigenic minerals, the 

blond sandstone buildings are also generally older than those made from red sandstone, 

as red sandstone was imported later with the advent of railways.  Although many blocks 

are face bedded (identified by the alignment of micas) this does not seem to be a primary 

reason for stone decay, but it may exacerbate the scaling issues (Hyslop et al., 2006).   

There are 24,349 stone buildings in Glasgow, of which 60% are constructed from blond 

sandstone, and will require 293,787 tonnes of stone for repairs (each facade requiring on 

average 20.11 tonnes of stone).  This is twice as much repair required than for the red 

sandstone facades (Hyslop et al., 2006).    

Hyslop et al. (2006) classified Glasgow blond sandstone based on their basic mineralogy 

of quartz, potassium feldspar and mica, as well as using their porosity values. They 

collected samples from 112 buildings within Glasgow and the sandstone were 

characterised into six sub groups these were named B1, B2, B2a, B3, B4, and B5.  Each is 

described below, in accordance with the observations of Hyslop et al. (2006) and Hyslop 

and Albornoz-Parra (2009).  Also noted are the currently available stone types that may 

be used for replacement.     

1.4.1.1  Blond Sandstone Descriptions  

B1:  This is a uniform medium-fine grained quartz arenite, containing quartz and minimal 

clays and carbonates.  The fresh surfaces appear pale to white in colour (Figure 1-11A).  

As the B1 sandstone (Craigleith) is no longer available, Clashach and Cullalo sandstones 

are now used for replacement.  Prestigious buildings were often built using Craigleith and, 

therefore, a good replacement sandstone is essential.    

B2:  A medium-grained quartz arenite, with a small proportion of feldspar.  B2 contains 

iron oxide, carbonates and clay minerals in varying quantities, but in total comprise ~20%.  

Fresh surfaces are pale in colour (Figure 1-11B) but, during weathering, the carbonate is 

altered and stained by the iron oxides producing an orange-brown appearance.  Original 

sources are no longer available, so Scotch Buff and Blaxter sandstones are commonly 
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used for repair and replacement, but these normally have a more intense colouration as 

they contain a larger proportions of iron oxides.  

B2a:  These are medium-coarse grained sandstones but show greater variability in grain 

size.   Quartz accounts for the largest proportion of the sandstone’s mineralogy but 

significant amounts of iron oxides are present (3-7%) and give a speckled appearance 

(Figure 1-11C).  During weathering, the iron oxides progressively change the stone to an 

orange colour.  Replacement sandstones with similar characteristics are Blaxter, 

Dunhouse Buff and Stainton.    

B3:  This is a poorly sorted immature sandstone containing a higher proportion of clays 

and iron oxides compared to other Glasgow blond sandstones.  Due to a relatively low 

porosity, it is quite dense (Figure 1-11D).  As the main diagnostic characteristic is variable 

grain size, there are several main alternatives available for replacement when decayed 

such as Blaxter, Blaxter High Nick, Black Pasture, Stainton, Witton Fell and Stanton Moor.  

B4:  This is a fine-grained sandstone with an open pore structure.  Internal layers are 

composed of dark iron oxides (12%), carbonaceous material and mica giving the 

sandstone a “wispy” look (Figure 1-11E).  Due to the striking appearance of this 

sandstone, a similar stone is difficult to identify but Scotch Buff, Darney and Spynie have 

the same open pore structure whilst being fine grained, but do not exhibit the “wispy” 

appearance.  

B5:  This is a poorly sorted coarse grained stone with variable bedding (however the 

thickness of the bedding is not stated in Hyslop et al., 2006) and appears “gritty” (Figure 

1-11F).  Other such coarse-grained sandstones are Bearl, Catcastle, Course Buff and Peak 

Moor. 
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Figure 1-11: Images showing the typical appearance for each blond sandstone group. 

Modified image from Hyslop et al., 2006. 

 

1.5 Glasgow’s Past Climate 

To fully understand the weathering that has taken place on the buildings sampled, it is 

necessary to consider the local environmental conditions within which they have been 

residing.  Data from Springburn Park (NS 609 686) and Glasgow University (NS 569 666) 

weather stations (Figure 1-12) were analysed, spanning a time frame of 109 years 

between 1886-1995.  The data from these two weather stations were provided courtesy 

of the Meteorological Office Scottish archive.  These weather stations were chosen due to 

their close proximity to the current weather data collection point at the University of 

Glasgow weather station (NS 559 667; Figure 1-12) and for the range of the records they 

provide.   Data between June 1920 and 1937 for Springburn Park are unavailable due to 

the station being decommissioned during this period.  Three weather parameters were 
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analysed to give an overall view of the climate, and they may play an important role in 

understanding historical (and future) weathering: temperature, rainfall and hours of 

sunshine.    

 

Figure 1-12: Location map of weather stations. 

 

1.5.1 Temperature  

Mean temperature data were plotted using the weather station in Glasgow University to 

cover the period from 1886 to 1913, and then Springburn Park data was used from 1914 

to 1994 (Figure 1-13 andFigure 1-14).  In the winter months (December, January and 

February as defined by the UKCIP02 report) there is generally a shift to cooler monthly 

averages over the time-period (Figure 1-13).  This is confirmed by the mean temperature 

for the first 20 years (1868-1888) compared to the mean value for the last 20 years (1975-

1995).  The mean temperature in January decreases from 3.5°C to 3°C, a change of 0.5°C, 

which is in accordance with results from February, which decreases from a mean of 4.1°C 

to 3.2°C, a change of 0.9°C.  Overall, in winter, there has also been an increase in the 

frequency of cold average temperatures compared to the absolute means.  Between 1868 

and 1919 (51 years), only three years show evidence of the January monthly average 

temperature being less than 2°C below the absolute mean whilst in the 55 years between 

1939 and 1994 this has doubled to six, and is also observed in February’s data.   
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Summer (June, July and August as defined by the UKCIK02 report) shows the opposite 

trend.  June and July (Figure 1-14) show a marginal increase in average temperature, and 

the August data, when first and last 20 year average temperatures were compared show 

a rise in temperature of 0.6°C.   

When the deviation from the absolute mean for August is analysed it shows that a 2°C 

deviation from the absolute mean occurs once in the first 50 years but four times in the 

latter 50 years.  These events have changed to a lesser degree for June and July (Figure 

1-14).   

 

Figure 1-13: Left) Absolute winter temperature values from 1868 – 1994 with linear trend 
line, Right) Offset in temperatures from the absolute mean. 

January mean = 3.1°C, February mean = 3.4°C, December mean = 3.7°C.   
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Figure 1-14: Left) Absolute summer month temperature values from 1868 – 1994 with linear 
trend line, Right) Offset in temperatures from the absolute means. 

June = 13.1°C, July = 14.5°C, August = 14.2°C.   

 

The temperature results indicate that the mean winter temperature is becoming cooler 

whilst there is no immediately obvious meaningful change in the summer average 

temperature.   

1.5.2 Rainfall 

Rainfall was recorded at the Glasgow University weather station between 1886 and 1910 

and the Springburn Park weather station between 1911 and 1990.  No overall winter 

seasonal change in rainfall patterns can be easily seen in the data (Figure 1-16).   On a 

monthly scale, January and December show no clear patterns, although February data 

show a strong decreasing trend in the mean amount of rainfall.  In February, the mean 
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rainfall for the first 20 years data (1886-1906) is 85.8 mm, decreasing to 66.8 mm 

between 1970 and 1990.  Taking the summer data as a whole, there is also no obvious 

seasonal change in the amount of rainfall.  However, June, when analysed in isolation, 

indicates a slight decrease in average rainfall between the first and last 20 years average 

of 70 mm to 58 mm.  However, there are no other significant changes apparent in this 

data set. 

 

Figure 1-15: Left) Absolute winter month rainfall values from 1866 – 1990 with linear trend 
line, Right) Offset in rainfall from the absolute mean. 

January = 96 mm, February = 74 mm, December = 102 mm.   
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Figure 1-16: Left) Absolute summer month rainfall values from 1866 – 1990 with linear trend 
line, Right) Offset in rainfall from the absolute mean. 

June = 68 mm, July = 82 mm, August = 97 mm.   

 

Rainfall data indicates that although no seasonal trends are apparent on a monthly scale, 

there is definite evidence for drying occurring in both February and June. 

1.5.3 Sunshine 

Hours of sunshine were measured at the Glasgow University station between 1881 and 

1988.  The meteorological office used a Mk2 sunshine recorder (previously named the 

Campbell-Stokes sunshine recorder; Figure 1-17) until ~1969 when they were replaced by 

the Mk3C, which was specifically designed to be used in latitudes between 45° and 65° 

north or south of the equator and are still being used today.  These are glass spheres that 

concentrate the sunshine and leave a burn imprint on the specially treated card beneath 
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the glass sphere.  During less intense periods of sunshine, e.g. sunrise and sunset, a 

brown scorch mark will be produced.   As the rays become more intense they will burn 

through the card.  On days of broken sunshine, typical in Glasgow, hours of sunshine are 

complicated to measure as the scorch is not a fine line but a broad burn (~3 mm wide) 

which exaggerates the duration of short bursts of sunshine, and allowance must be made 

for this.  Care has to be taken when calculating the total sunshine hours within a 

particular day, as there will be rounded ends due to “burn spread”, therefore measuring 

is preformed between points half way between the centres of curvature.  Although the 

recorders are very sensitive, a thick veil of high cloud such as cirrus-stratus seen on hazy 

days may stop recording.  This information has been derived from the Meteorological 

Office Observer's Handbook (Third edition) HMSO 1969. 

 

Figure 1-17: Sketch diagram of the MK2 sunshine recorders.  

Taken from the Meteorological Office Observer's Handbook (Third edition) HMSO 1969. 

 

Despite the above caveats leading to slight inaccuracies and imprecision, a clear trend in 

monthly sunshine hours over the measured period does emerge.  The winter months 

show a dramatic increase in the hours of sunshine, although the summer months show no 

variation over the period 1881-1988 (Figure 1-18).  The mean for the first 20 years 

compared to the latter 20 years in February show that the sunshine hours for the month 

have risen by 19 hours, whilst December data shows a rise from 17 to 33 hours for the 

month (Figure 1-18).  This large increase in sunshine hours during the winter is probably 
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an outcome of the Clean Air Act 1956 and a reduction in the amount of open fires in 

homes within Glasgow, with the associated burning fuel throughout the winter months, 

which has led to a decrease in the amount of smog in winter, thus increasing the sunshine 

levels.    

 

Figure 1-18: Total number of sunshine hours in each month. 

For summer and winter from 1868 – 1988, with trend line.   

 

1.5.4 Discussion 

These data, particularly the mean temperature and the average rainfall, must be viewed 

with caution and objectively.  Glasgow has a highly variable climate throughout the year.  

The winter weather is heavily affected by the North Atlantic Oscillations, whilst the 

summer weather is affected by the Atlantic Meridinal Oscillations.  These control the 
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climate throughout the west of Scotland and small changes in these, and the heat that 

they bring heavily impacts the local climate.  Therefore, due to the relatively short period 

of time analysed in this study, it is difficult to say whether or not these are overall 

significant climatic trends.  The gap in the data also leads to complications with statistical 

analysis required to verify the trends. 

The Glasgow sandstone buildings were constructed 200-150 years ago, when the winter 

months were, in general, slightly milder with higher rainfall, combined with limited 

daylight due to higher levels of cloud/smog in comparison to the present conditions.  

However, the summer climate has remained relatively stable.  This change in the winter 

climate would have meant that, in the past, there was less solar heating of sandstone and 

there would have been less light to penetrate into the sandstone.  These are likely to 

causing any microbes present to live at shallower depths, and may also have changed the 

species of microbes which inhabit the building surfaces.  The milder climates during 

winter will also have meant less need for de-icing salts in the past, while the actions of 

freeze thaw, would have been more limited than at present due to the warmer winters.      

1.6 Detailed Aims of the Present Study 

As described in this chapter, the blond sandstone local to Glasgow, contains varying 

proportions of diagenetic minerals shown by Hyslop et al. (2006) due to the fluviodeltaic 

environment in which it was deposited and as a result, it is much more susceptible to 

weathering in comparison to the local red sandstone, which is mineralogically much 

simpler than the blond.  For this reason, blond sandstone was used as the main sample 

type within this study.   

The blond Glaswegian sandstones have been sub divided into a range of classifications in 

previous studies but, whilst being useful for tasks such as stone matching, do not quantify 

how the accessory minerals (such as iron oxides and the clay minerals present) may alter 

the internal structure and decay response of the stone.   

There is an abundance of knowledge on how sandstones weather throughout the world 

(with particular relevance to Mediterranean climates).  However, there is a general lack of 

information on how Scottish sandstones respond to the cool, wet environment, they are 
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exposed to, with the only available model produced by Bluck and Porter (1991b).  

Weathering processes acting on the sandstone (past and present) will be explored within 

the context of chemical and microbial decay in an attempt to understand the future 

weathering processes.   

However, the Glasgow environment is set to alter in the future due to climate change, 

which will modify the weathering processes. 

This study therefore sets out to combine present understanding of stone properties from 

the geological knowledge with reference to the past weathering procedures and 

environment to predict which weathering events or mechanisms will be acting upon the 

buildings in 2080.  

The three main research questions are: 

 What weathering processes have occurred historically and are at work presently 

on the blond sandstones of Glasgow? 

 How will current weathering cycles alter with climate change? 

 Which buildings are most at risk and how can we mitigate against these 

degradation processes? 

The objectives of this study are to: 

 To characterise the sandstone, in terms of its mineralogy and permeability. 

 Detail the internal environment of the blond sandstone, in relevance to its 

temperature, relative humidity and liquid water. 

 Understand how the external conditions affect the syrface and internal conditions 

of the sandstone. 

 To model how the future climate will alter present day decay processes. 
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 To observe and identify the microbes which exist on and within the sandstone. 

 To determine the amount of microorganisms living on and within the sandstones. 

 To deduce the amount of light, which can pass through the surface of blond 

sandstones.  

  To determine the effectiveness of produces designed to mitigation against 

sandstone decay.    

These issues will be investigated using a multitude of experiments and technology ranging 

from chlorophyll-a assays to Raman spectroscopy, combined with unique datalogging 

techniques.   
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2 Methods and Materials  

A suite of procedures and samples were used to answer the questions previously 

outlined.  This chapter provides a comprehensive description of all the materials used and 

an in depth review of each procedure and the techniques applied, together with a 

detailed review of the experimental design.  

 

2.1 Methods  

The first half of this chapter will detail the experiments conducted.  

2.1.1 SEM Techniques 

Initially, before any SEM analysis could be undertaken, the samples had to be prepared 

first.  Both rough surface fragments and polished block samples were examined within 

the SEM.  The polished blocks were produced by embedding the sample in Buehler 

epoxicure epoxide resin, within a vacuum, to ensure maximum penetration of the resin 

into the sandstones pore space.  Once the resin hardened, the standardised procedure to 

prepare polished blocks was followed.  Excess resin was ground away through a series of 

decreasing roughness sandpapers (80P to 4000P,where P = the grit size) and then the 

sample was polished through 6 µm to 0.3 µm diamond paste, to leave a highly polished 

surface which could then be imaged by SEM.   Many SEM techniques were utilised within 

this study and these will be outlined, in detail, in turn.  However, these techniques were 

conducted on two different SEMs and these machines are described below.   

The first SEM used was the Quanta 200F field-emission environmental SEM (from herein 

known as the FEG-SEM).  This SEM can operate in high, low and environmental modes.  

The X-ray chemical microanalysis was undertaken using the EDAX Genesis software 

system and a panchromatic detector was used for cathodoluminescence (CL) imaging.   

The second SEM used was the Zeiss Sigma field-emission analytical SEM (although also a 

FEG-SEM, from herein will be referred to as the ZS-SEM to differentiate between the 

SEMs).  The ZS-SEM can operate in high and low vacuum conditions and the X-ray 

http://web2.ges.gla.ac.uk/~mlee/cl.htm
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chemical microanalysis is undertaken using an Oxford instruments X-Max system, with 

INCA software.   

High vacuum conditions are preferable within the chamber as this means that particles 

will not interfere with the electron beam, providing a higher quality image.   

Low vacuum conditions can be used to help eliminate charging effects as it allows 

samples to be imaged without coating (discussed next) and without the loss of natural 

contrast caused by the coating, but are unable to achieve the resolution attainable by 

conventional SEMs with coated specimens. 

Both these systems are typically operated at 20 kV in all conditions and modes.  Of the 

two SEMs, the FEG-SEM was used most frequently.  

As stated, the SEMs can be used in many operating modes and conditions to obtain 

varying information.  However, for the SEMs to provide maximum information, it is 

necessary to eliminate charge on the polished block samples, meaning they have to be 

prepared with differing coatings, dependent on the mode.  These are outlined in Table 

2-1.  A gold coat was applied as a very thin (few tens of nanometers) veneer onto the 

surface of samples using an Agar Sputter Coater B7340 and is most often used when the 

topography of a sample (Table 2-1) is being studied in high vacuum.  The carbon coat was 

applied using two different machines: an Agar Carbon Coater B7367 and an Edwards 

Model 306 Evaporation Carbon Coater.  These both have advantages and disadvantages. 

Whilst the Edwards evaporation carbon coater provides a more even spread of carbon 

onto the surface of the samples, it is also very time consuming with the higher vacuum 

needed taking a long time to obtain.  The Agar carbon coater is quicker but the coat is 

uneven and less conductive and therefore 2-3 coats may be required to adequately 

prepare the whole sample.  These coatings stop the incident electrons from building up 

on the sample surface, which would cause it to become negatively charged. 

 

 

 

http://www.oxinst.com/products/microanalysis/eds/detectors/large-area-silicon-drift-detector/Pages/x-max-sdd.aspx
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Table 2-1: Coating and operating conditions required for the various operating modes. 

Applicable for both the FEG-SEM and the ZS-SEM.  All at 20 kV and variable beam current. 

Operating conditions Coating Operating mode 

High Vacuum 
(7x10-5 Pa) 

Gold 
Carbon 
Carbon 
Carbon 

SE (topography) 
CL 
X-ray microanalysis 
BSE imaging 

Low Vacuum (60 Pa) None SE (topography) 
BSE imaging 

Environmental (660-800 Pa) None SE (topography) 

   

2.1.1.1 SEM Imaging     

The SEMs image samples in two modes: secondary electron (SE) and backscatter electron 

(BSE).  SE images are generated from a very small area around the point of contact 

between the primary electron beam and sample (Figure 2-1), which makes this imaging 

ideal for surveying the topography of a sample.  BSE images are generated from signals 

returned from much deeper into the sample (Figure 2-1), when the backscattered 

electrons are produced by interaction of the primary beam with the nucleus of sample 

atoms.  They provide images with atomic number contrast, which can be obtained in high 

or low vacuum operating conditions (Table 2-1), although best results are obtained in 

high vacuum mode with a carbon coat.  The detectors for these rays within the FEG-SEM 

chamber are shown in Figure 2-2.     
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Figure 2-1: Schematic diagram of where signals are generated within a sample, when viewed 
under SEM conditions. 

 

 

Figure 2-2: Position of detectors within the FEG-SEM. 
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2.1.1.2  Point Counting and Grain Size 

Point counting was performed on all samples using the FEG-SEM to quantify porosity, 

mineralogy and any mineralogical changes within the weathering profiles.  This provided 

a volume measurement of the mineralogy and porosity.  Point counting was undertaken 

in BSE mode at 1000 times magnification, and a distance of 300 μm was moved each click 

and the area at the centre of the cross hairs on screen was noted.  This was chosen 

because the geological review of the area (section 1.4) stated that most sandstone’s 

within the Glasgow region are fine to medium-grained.  Therefore, the distance was just 

slightly smaller than the Plas and Tobi  (1965) rule that “the point counting distance 

chosen should be larger than the largest grain fraction that is to be included in the 

analysis.”  Point counting was performed in a series of 1 mm wide strips (between 150 

and 350 points) parallel to the outermost surface with a millimetre gap between each 

strip (Figure 2-3).  A millimetre gap was left so that a clear systematic grid pattern could 

be used on all samples to provide a control as to where sample analysis was preformed.  

Also, this helped to identify any small variations in the mineralogy as the point-counted 

zone edges did not become blurred.     

The point counting data was then used to make ternary plots so that the relative 

proportion of main rock-forming minerals could be determined and analysed. Quartz, 

feldspar and muscovite ternary plots were used, as when analysis was undertaken no rock 

fragments were identified therefore these plots provided a better representation of the 

main rock-forming minerals.  In addition kaolinite, Fe-oxide and ankerite plots were 

produced to show the minor mineral proportions. 

According to Dryden (1931), when conducting point counting, 300 grains should suffice 

for most ordinary work.  However, when Van Der Plas and Tobi (1965) undertook more 

statistical analysis, their chart suggests that when small mineral percentages are being 

analysed, a greater number of total points need to be counted in order to validate the 

accuracy of the results. However, owing to the limitations on the samples used in this 

study, as well as the size of the resin blocks, the amount of total points counted varies 

between each sample, but are generally less than ~300 points.  Nevertheless, the Van Der 

Plas and Tobi (1965) method of calculating uncertainty in point counting was used within 
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this study, because it was deemed sufficient for the purpose of understanding the 

possible uncertainties associated with the research. 

Grain size for quartz was calculated using the XT Doc software on the FEG-SEM.  

Approximately 30 quartz grains were measured against the long axis, and an average was 

calculated for each sample.   

Pore size was calculated by printing BSE images of the sandstone and measuring the 

width of pores (in mm), which were seen as black areas of resin between grains.  The 

pores were measured on a series of parallel lines, parallel to the outermost surface, 

superimposed onto the digital print outs.  These measurements were then converted into 

microns.  The amount of pores counted was dependant on the porosity of the sandstone 

and ranged between, 30-100 pores.    

 

Figure 2-3: Schematic diagram illustrating point counting procedure. 

Images show outline of a sandstone block within resin mould.  Dots indicate the location of 
points that were counted.   

 

2.1.1.3  EDS Maps 

Both SEM machines were used to obtain Energy Dispersive Spectroscopy (EDS) maps 

which revealed the sandstone elemental compositions and therefore mineralogy.  

Because EDS maps were produced using INCA hardware and software on the ZS-SEM, as 

well as EDAX hardware and software on the FEG-SEM, comparison EDS maps were run on 

the same area within the same sample, which allowed resolution and colour blending to 

be compared.  Also the optimum frame size was calculated so that image quality was not 
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lost due to a decrease in dwell time.  The FEG-SEM maps were obtained at resolutions of: 

1024-800, 512-400 and 256-200 pixels (Figure 2-4) using the set up outlined in Table 2-2.  

The high resolution (1024-800 pixel) map takes a longer time to obtain whilst 512-400 

pixel maps are much quicker without losing the depth of information gained.  The 256-

200 pixel maps are very quick but the images are very pixillated and less informative.  

Therefore the majority of maps used the 512-400 pixel resolution. 

 

Figure 2-4: Comparison of optimum acquisition conditions for EDS maps on the FEG-SEM. 

Sample area within CS4, A) 256x200 pixel resolution, B) 514x400 pixel resolution. Green = 
Silicon, Red = Aluminium, Blue = potassium.  

 

Table 2-2: Set up used on ZS-SEM and FEG-SEM to compare EDS maps. 

Property FEG-SEM (high vacuum) ZS-SEM (high vacuum) 

kV 20 20 
Spot  5 Not measured 
Aperture 40 μm 60 μm 
Magnification  150x 124x 
Counts 102,000 /sec 100,000 /sec 
Working Distance  11.5 mm 8.2 mm 
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2.1.1.4  Cathodoluminescence Imaging 

Cathodoluminescence (CL) imaging works by gathering the light generated by the electron 

beam striking the sample (Figure 2-1) in high vacuum conditions.  This technique can 

provide information on the different generations of the same mineral.  This is because it 

identifies small variation in trace element chemical composition and helps to infer any 

mechanically induced defects within the mineral lattice.  CL imaging was conducted on 

carbon coated samples using the FEG-SEM.  This process was carried out on a variety of 

samples to help understand their diagenetic history in great depth and, in particular, to 

see whether quartz overgrowths were breaking off in the weathered region.      

2.1.1.5  X-ray Microanalysis Under High and Low Vacuum 

Comparisons were conducted to evaluate the differences between X-ray spectra acquired 

under high and low vacuum conditions, both using the FEG-SEM.  This is important 

because the primary electron beam disperses as it collides with water molecules in the 

chamber.   A prominent sub-micrometer tin-copper-nickle sulphide particle from rough 

sample EE1 was used for the experiment.  The FEG-SEM configuration was 20 kV, spot 

size 3, working distance 11 mm, 6000 counts/sec, 50 sec count time, 0.53 Torr in low 

vacuum and 5x10-5 Torr in high vacuum.  The resultant spectra (Figure 2-5) show that, 

under low vacuum conditions, a decrease in the concentration of silicon (Si) is recorded, 

compared to high vacuum conditions.  Also, high vacuum shows an increase in sulphur 

(S), indicating that the S is liberated from within the particle rather than the surrounding 

region.  The low vacuum analysis detected increased levels of iron (Fe), which must be 

from the surrounding minerals (Figure 2-5).  It was concluded that, although spot analysis 

can be conducted in low vacuum conditions, analysis with superior spatial resolution is 

performed in high vacuum.     
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Figure 2-5: Low and high vacuum comparison within FEG-SEM. 

Compassion conducted on a Cu-Ni-Sn sulphide particle in EE1, A) low vacuum spectrum, B) 
high vacuum spectra. A) Shows a greater quantity of both silicon and iron, reflecting 
‘contamination’ of the spectrum by scattering of incident electrons. 

 

2.1.1.6  Quantitative EDX 

The ZS-SEM was used to conduct quantitative energy-dispersive X-ray spectrometry 

(EDX), which can determine mineral chemistry.  Although qualitative X-ray microanalysis 

can provide chemical compositions, it does not allow specific concentrations of elements 

to be determined within the minerals, so quantitative EDX was used.  

Two sample preparation methods for the EDX were tested to help understand the 

limitations of this quantitative analysis.  Sample preparation method one (SP1) reused the 

polished blocks previously prepared for the other SEM methods (see section 2.1.1 for full 

detail on how these were produced).  However, when analysed, SP1 produced excessive 

charging due to the block’s size (1.5 x 3 cm) and topography caused by the high 

percentage of porosity within the sandstones.   

Sample preparation method two (SP2) involved using small amounts of crushed 

sandstone from the interior of the sample which were then embedded into resin to 

produce grain mounts.  This provided a much smoother surface after polishing as this 

eliminated porosity which causes topography on the surface.  Due to the smoother 

surface, electrons were much easier to disperse over the surface and less charging of the 

sample occurred.   

To test whether the charging seen in SP1 skewed the analytical results, kaolinite, 

muscovite and carbonate grains prepared by both methods were analysed under the 

same conditions using the ZS-SEM (Table 2-3).  Results from the two preparation methods 



 Methods and Materials  76 

show that SP1 was quite accurate despite the charging although a larger spread in the 

results were seen compared to that seen in SP2, which produced tightly clustered results 

for all the minerals (Figure 2-6 Figure 2-7 and Figure 2-8), full results are seen in chapter4.  

However, the main conclusions were that a larger difference was seen in the carbonate 

results, and that SP2 should be employed in future analytical work for coarse sandstones.        

Mineral standards were used to calibrate the ZS-SEM before analysis was undertaken, the 

main minerals used for this was cobalt, pyrite, periclase, rhodonite, calcite, jadite, rutile, 

kyanite and orthoclase. The kaolinite and muscovite results were produced in element 

percentage, whilst the results for ankerite were gained as weight present element and 

then converted to mole percentage so that they could be analysed.  The full formula is on 

the electronic appendix.  

Table 2-3: ZS-SEM set up used during quantitative EDX, on the silicate, phylosilicates and 
the carbonate minerals. 

Property Silicates and Phylosilicates Carbonate 

Process Time 5 sec 5 sec 
Live Time 30 sec 30 sec 
Dead Time 40 sec 40 sec 
Acquire Time  50 sec 50 sec 
Beam Current 1.1 nA 1.1 nA 
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Figure 2-6: Quantitative EDX comparison of kaolinites. 

Within EE3 and D7 using the SP1 and SP2 methods outlined, showing tighter clustering of 
the SP2 results.  
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Figure 2-7: Quantitative EDX comparison of muscovites. 

Within CS4, using the SP1 and SP2 sample methods outlined, showing tighter clustering of 
the SP2 results. 

 

Figure 2-8: Quantitative EDX results from carbonates. 

Plotted on a Ca, Mg, Fe ternary plots, comparing SP1 and SP2 in EE3, data expressed as 
moles % carbonate. 

 

2.1.2 Permeability 

Permeability tests were undertaken to help understand the flow of water through the 

various different rock types, because high permeability coupled with high porosity could 

accelerate weathering issues.  
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The permeability tests were undertaken at Aberdeen University with help from Professor 

John Parnell.  Large sample blocks were provided so that multiple cores (~5) with a 

diameter of 2.5 cm and maximum length of 6 cm could be taken to conduct repeat 

experiments on each sandstone.  This requirement limited the sandstones that could be 

examined, so a selection of six suitable sandstone types was tested: UE2, UN2 (both 

University samples), Dunhouse Buff (fresh quarry stone), EE3 and CS4 (both St Vincent 

Street samples).  These samples provide a representative cross-section of the sandstones 

examined in this research.  The procedure used is described in detailed by Parnell et al. 

(2010), whereby a gas pereameter was used to inject nitrogen into each core at a known 

and controlled pressure.  The core is held in a Hassler sleeve and is plugged to stop 

leakage of gas around the samples.  The pressure difference at the two ends is then used 

to calculate the permeability, which is quantified in millidarcies.       

2.1.3 Raman Spectroscopy 

Raman spectroscopy was conducted using a Renishaw InVia Raman microscope.  It works 

using the principle of a single beam of laser light which is diffracted through a series of 

mirrors, before reaching the sample.  The Raman scattered light produced is then 

gathered and focused back to the detector (Figure 2-9). 

The Raman affect has been understood since 1928 but only in the 1960’s, when laser 

technology had improved sufficiently, could it be established as a viable method to 

characterise materials.  Raman works on the principle that monochromatic light will pass 

through matter, although a small proportion will be scattered.  The measurement of this 

scatter reveals information about the bonds between the atoms. 

X-ray microanalysis only provides information on which elements are present in a 

sandstone mineral grain, not how the elements are bonded.  Therefore, Raman was used 

here to further understand the mineralogy of the samples, and to determine whether any 

changes could be seen in the molecular structure of those minerals nearest the 

weathered outer stone surface compared to the interior.  Raman spectroscopy was 

chosen rather than Fourier Transform Infrared Spectroscopy (FT-IR) (which it is closely 

related to), as Raman has better spatial resolution and sample preparation is minimal, but 

a full list of differences are outlined in Table 2-4. 
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Figure 2-9: Diagram of laser pathway through the Raman microscope. 

Image taken from Leng (2008). 

 

Table 2-4: The characteristic advantages and disadvantages of FT-IR and Raman micro 
spectroscopy. 

Property  FT-IR Raman 

Phenomenon Absorption Scattering 
Sample Preparation Required None 
Accessories Multiple Single 
Data Collection Fast Slow 
Sensitivity Good Fair 
Water interference Strong Very weak 
Spatial resolution ≥ 10 µm2 

≥ 1 µm2 

Signal-to-Noise High Low 
Fluorescence None Overwhelming 
Heat destruction None Strong 
Mapping/imaging Yes Yes 
Light  Infrared Monochromatic & infrared 

Data modified from Lin et al. (2007). 

 

The minerals studied by Raman spectroscopy were those suspected to be most 

susceptible to weathering within the sandstone: muscovite, kaolinite, carbonates and Fe-

oxides.  The layered microstructure of muscovite and its complex elemental composition 

produces an array of bonds that results in mica having a intricate Raman spectrum, with 

peaks occurring at 160, 195, 220, 240, 270, 640, 654, 702, 715 and 1058 cm-1 (Tlili et al., 

1989).  As kaolinite is a much simpler compound than muscovite, it has only four main 

peaks at 3620, 3652, 3669, 3697cm-1 (Frost et al., 2001).  The type of carbonate cement 

within these sandstones was also determined by the use of Raman spectroscopy.    

Iron oxides are complex and difficult to distinguish by SEM, as the ferric oxyhydroxides 

exist in several forms which X-ray microanalysis cannot distinguish.  However, due to their 

different crystal structures, Raman spectroscopy can be used to discriminate between the 
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iron minerals.  Some of the main iron oxides which can develop within sandstone are: 

goethite, akaganeite, lepidocrocite, haematite and maghemite (Dapples, 1967).  These 

ferric oxyhydroxides and their expected band positions are outlined in Table 2-5.    

Table 2-5: Raman band positions of various oxides and oxyhydroxides of iron. 

Formula Mineral Band Position (cm-1) 

α-FeOOH Goethite 393, 307A 

299, 387,554C 
β-FeOOH Ankaganeite 400, 680B 
γ-FeOOH Lepidocrocite 257 393A            

250, 379,525, 650B                                                                                                                     
α-Fe2O3 Haemitite 222, 296, 406A 

293,299,412,613C 
γ-Fe2O3 Maghemite 380, 500, 700, 670, 720B 

Data from  
A
 = Johnston (1990), 

B
 = Neff et al. (2006), 

C
 = Larroumet et al (2007). 

 

2.1.4 Protein and Chlorophyll-a assay  

Protein assays were conducted to quantify the mass of protein on the surface of the 

sandstone samples.  This was used as an indication of biomass from all organisms 

inhabiting the surface of the sandstone.  In contrast, the chlorophyll-a assays were used 

to determine the mass of photosynthetic organisms on the stone surface.  Samples for 

both procedures were obtained by scraping the outermost surface of the block (no 

deeper than 1 mm) using a stainless steel spatula on an area of a known size.  When cores 

were used, half of the outermost surface was used for each procedure, although the 

surface area was highly dependent on the sample. 

The protein assay used was a modified Lowry protein assay from Peterson (1977) and 

Phoenix et al. (2001).  The Lowry method (Lowry et al., 1951) does not involve heating the 

samples and is also not so good at distinguishing small sample quantities of protein 

compared to the modified Lowry protein method which has that advantage.  In addition, 

the modified version is better at absorbing thicker celled wall organisms such as 

cyanobacteria and algae (Peterson, 1977), hence why the modified version was 

implemented.    

For the protein assay, four different reagents were employed:   

Reagent A: 2 g Na2CO3 in 100 ml deionised water + 0.1 M NaOH, 
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Reagent B: 0.1 g CuSO4.5H2O in 20 ml% (w/v) sodium tartrate, 

Reagent C: A mix of 50 ml of A with 1 ml of B, 

Reagent D: Folin’s reagent.  

The samples were washed with deionised water and centrifuged for six minutes at 4000 

rpm.  2.5 ml of 1 M NaOH was added to the sample, and heated to 120°C for 15 minutes.  

Samples were then centrifuged at 4000 rpm for six minutes again before adding 1 ml of 

supernatant to 5 ml of reagent C.  This was subsequently mixed and left to stand for ten 

minutes at room temperature, before adding 0.5 ml of reagent D and being left to stand 

for 30 minutes.  An absorbance reading was taken using a HACH/LANGE DR 5000 UV/VIS 

spectrophotometer at 750 nm.  The reading was then calibrated with the graph in Figure 

2-10, before being converted to mg/cm-2 using Equation 1.  

 

Figure 2-10: Protein calibration graph.   

 

 

Equation 1: Protein assay conversion equation. 
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Chlorophyll-a assay samples were washed with 50 ml of deionised water before being 

centrifuged at 4000 rpm for six minutes.  The deionised water was decanted off before 5 

ml of 90% methanol was added to the solids.  Samples were left in the dark for one hour 

before a second centrifuge.  The supernatant was pipetted into cuvettes for testing in the 

HACH/LANGE DR 5000 UV/VIS spectrophotometer at 665 nm.  Chlorophyll-a 

concentrations were then calculated using Equation 2. 

 

A = Absorbance reading at 665 nm, Area = cm2 

Equation 2: Chlorophyll-a assay conversion equation. 

 

2.1.5 Osmium Stained Polished Blocks 

To identify biological communities within stone, osmium stained polished blocks were 

prepared.  The osmium only attaches itself to lipids within organic material (Adams, 1960) 

and its high atomic number simplifies the identification of stained organic matter when 

using backscattered electron SEM imaging.   This technique was adapted from Omelon et 

al (2006a). 

 

Osmium staining of sandstone consists of three steps.  1)  The cells were fixed by cross-

linking the proteins using glutaraldehyde (fixer); 2.5% of the fixer was prepared to neutral 

pH in 0.05 M HEPES Buffer.  The samples were then submerged in the glutaraldehyde 

liquid for a minimum of 24 hours, after which they were washed using a pH neutral 0.05 

M HEPES Buffer three times for a minimum of four hours each time.  2) For osmium 

staining of the samples a 1% solution of osmium tetroxide was used.  Samples were 

submerged in the osmium tetroxide for three hours before being washed three times 

with distilled water.  3) Samples were dehydrated through a graded ethanol series (30%, 

50%, 70%, 90%, 100%, 100%, 100%), each step lasting a minimum of two hours with the 

third 100%, lasting 12 hours.   

 

Once the staining procedure was completed, the samples were embedded in London 

white resin (LR), within a vacuum, to ensure maximum penetration of the resin into the 
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sandstone pore space.  LR white was used as it is less harmful to the microbial cells in 

comparison to other resins.  Once the resin had hardened the same procedure are 

described in section 2.1.1 was undertaken.   

2.1.6 Optical Light Transmission 

For cryptoendolithic photosynthetic organisms to be able to live, light has to penetrate 

into the sandstone.  Therefore, the depth at which they inhabit is controlled by depth of 

light penetration (Nienow et al., 1988).  The optimum light levels required are 50 - 500 

μmol m-2s-1, but microbes can survive with conditions as low as 5 μmol m-2s-1 (Litchman et 

al., 2003; Phoenix et al., 2006).  If light levels are greater than the optimum the 

microorganisms will suffer photo-oxidative damage, whereas insufficient light equates to 

no photosynthetic communities being viable.    

The optical light transmission (OLT) protocol for experimentation in this study was 

adapted from Phoenix et al. (2006) and Hall et al. (2010).  The aim of these experiments 

was to determine how surface weathering, as well as stone type, might affect the depth 

of light transmission.  The experiment was set up using a hand held Macam Q203 

Quantum Radiometer pyronometer (spectral range 400-700 nm) and a desk lamp.  The 

pyronometer was placed directly under the light source with a constant distance of 14 cm 

between the light source and the pyronometer (Figure 2-11).  Sandstone samples were 

then attached to a glass slide using Lakeside resin.  This meant that 1 mm slivers could be 

removed from the bottom of the sample without any damage occurring to the surface of 

the sandstone occurring (Figure 2-11).  The glass slide and dry sandstone samples were 

then placed over the sensor (glass slide facing upwards) and the reading was noted.  To 

minimise any external light the experiments were conducted in a dark room and all sides 

of the sample were sealed with black insulating tape so that only light travelling through 

the topmost horizontal surface was recorded. 

The data collected in these experiments were extrapolated and coupled with the 

macroclimate data gathered using the fixed CMP3 pyronometer (spectral range 310 - 

2800 nm) located at the University of Glasgow weather station.  When combined this 

information then provides data on how deep microbes can live within buildings situated 

in the environment local to Glasgow.  It is understood that water saturation of porous 
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matter such as sandstone can affect the behaviour of light (Nienow et al., 1988), although 

only minimally, and therefore, this experiment was conducted on dry sandstone only.  A 

selection of sandstones were used with varying degrees of weathering on the surface, 

ranging from clean to thick black crust.   

 

Figure 2-11: Image and sketch of optical light transmission experimental design. 

Left) actual set up, right) sketch diagram of sandstone sample thickness, T1 = whole 
thickness T4 = T1-(T1-T2)-(T2-T3)-(T3-T4). 

 

As this experiment has many components and has a unique design there are many 

sources of uncertainty to consider.  The manufacturers of the Macam Q203 Quantum 

Radiometer state an error of 1% whilst the CMP3 operator’ manual state an error of 2.5%.  

The average amount of light emitted from the lamp was 116.49 ± 3.8%.  In addition to 

these, the amount of light in which the lakeside glue stops form travelling through was 

calculated to be 20 ± 6.5 μmol m-2s-1.  Whilst the samples were cut on the Buehler IsoMet 

5000 precision low speed saw, which has an error of ±5 μm. 

2.1.7 Chamber Experiment   

As the literature review shows a variety of environmental chambers have been used in 

previous studies of stone decay to simulate effects such as salt weathering (Mcgreevy and 

Smith, 1985; Warke et al., 2006), pollution (Ausset et al., 1996) and thermal weathering 

(2003; Prikryl et al., 2003; Smith et al., 2008a).  To examine how changes in the climate 

may affect the weathering processes and the microorganisms present on Glasgow 

sandstones, a simulation experiment was set up in a Sayno Fitotron Plant Growth 

chamber located in the workshop of Historic Scotland, Edinburgh.  The environmental 

http://www.buehler.com/productinfo/precision_saws/isomet4k5k.pdf
http://www.buehler.com/productinfo/precision_saws/isomet4k5k.pdf
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chamber replicates a preset range of temperatures, relative humidity and light settings.  

This control over the set up of the chamber and the cycling of programmed conditions 

means that future climate conditions for Glasgow (as predicted by the UKCIP02) can be 

run within the chamber and on many samples simultaneously.     

Six blond sandstones were used in this experiment: Bearl, Blaxter, Clashach, Cullalo, 

Dunhouse Buff and Scotch Buff (full mineralogical description of each stone is given in 

section 2.2.5).  This sample set represents one commonly used replacement sandstone 

for each of the blond sandstone categories identified by Hyslop et al (2006).  These 

sandstones were chosen as the majority of original quarries are now disused, leaving no 

present-day source for sampling of the stones.  In addition, these are the stone types that 

are expected to be used for the majority of future constructions and repairs.     

Each stone type was prepared by cutting it into three 9x9x9 cm cubes.  During sawing of 

the blocks, oil was used as a lubricant, then washed with water.  However, a few samples 

were left with small amounts of oil residues on the surfaces, which were later abraded 

off.  In more extreme circumstances, where oil had penetrated into the sample, the top 3 

mm of the affected surface was sawn off using only water as a lubricant.  An unaffected 

face of the block was then used for the experiment.    

After the blocks were cut, three stainless steel screws were drilled into the same surface 

of each block in a triangular pattern.  Stainless steel screws were chosen as they would 

not corrode over time and thus could then be used as reference points for monitoring 

stone surface degradation.  The screws should not interact with the block as plastic 

casings (raw plugs) were placed in first to restrict contact between the sandstone and the 

metal.  Using a Konica Minolta Vivid 9i laser scanner, each block was scanned before 

being installed (02/08/2008) in the environmental chamber and rescanned at the end of 

the experiment on the 26/01/2010.  The manufacturer’s specifications state that for the 

Konica Minolta Vivid 9i scanner it has a precision of 0.008 mm with an accuracy of 0.05 

mm.  Within the chamber, the blocks were divided into three sets, which each comprised 

of one block of each stone type.  The three sets were comprised of an inoculated set, 

water only set and a chamber set (Figure 2-12).  These sets were then arranged on one 

level within the chamber (Figure 2-13). 
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Figure 2-12: Plan view of environmental chamber set up.  

1) Inoculated set, 2) water set, 3) chamber set. 

 

 

 

Figure 2-13: Internal view of the environmental chamber. 

 

 The inoculated blocks involved using a variety of microbes, sampled from six different 

areas of typical weathering on blond sandstone surfaces from the West End of Glasgow.   

These were collected from walls surrounding properties within the Dowanhill area of 

Glasgow.   The microbes gathered were combined and thoroughly mixed before being 

equally divided up into seven 0.2 g samples.  The microbe mixture was applied within one 

week of collection into the rock surface using droplets of water to help it bind, one 

portion was retained for visual identification of the microbes.  Visual identification was 

undertaken using a Zeiss Axioplan microscope, and three main species were identified.  

The first has an elongated form with a green to brown coloured internal configuration, 

contained within a clear outer structure.  This microbe is morphologically consistent with 

the algae Hyalotheca (Figure 2-14 A and B).  The second main microbe has a morphology 

consistent with the fungi Rhizopus, which has previously been observed living within 

sandstone (Burford et al., 2003).  Rhizopus has two distinct parts: the fibrous stolons and 

clusters of brown sporangium (Figure 2-14C and D).  The third microbe has a plant-leaf-

like structure (Figure 2-14E), but is yet to have been formally identified, although the 
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most likely option is for it to be a lichen or algae due to its size and form.  Artificial rain 

water (composition in Table 2-6) was sprayed onto these inoculated blocks twice a week 

when in the chamber so that free water was available for the growth of microbes.    

   

Figure 2-14: Comparison images of microbes seen and its morphological consistent image 
of suggested microbe.   

A) typical Hyalotheca, (http://www.algalweb.net), B) microorganism seen in the mixture, C) a 
typical Rhizopus (http://www.doctorfungus.org), D) microbe seen in the mixture, E) 
unidentified lichen. 

 

The water-only set of blocks had no microbes present but required additional artificial 

rainwater sprayed onto their surface, in conjunction with the standard environment 

chamber set up, to imitate an increase in high magnitude events which are linked with 

heavy rainfall events, defined as 5 ml per minute (Svensson and Jakob, 2002).  A spray 

bottle was used to distribute the artificial rainwater and tests were conducted to see how 

many sprays were required to deliver the right amount of water.  Results showed that 

one spray equated to ~1.3 ml of water, therefore four sprays were used in each set of 

blocks (full detail of results are found on the electronic appendix). 

The chamber set of blocks experienced only the internal conditions within the 

environmental climate chamber rather than being subjected to extra weathering 

processes, such as microbial action or wetting.  

Artificial rainwater was used as the chamber could not run at the high humidity levels 

required, so this water helped to achieve the correct RH for the experiment.  Artificial 

rainwater was preferred rather than collected rainfall so that its elemental composition 
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could be precisely controlled (shown in Table 2-6), using a formula modified from 

(Wakefield et al., 1996). 

Table 2-6: Chemical composition of artificial rain water. 

Chemical  Moles  g per l 

NaCl 0.28 16.4 
MgSO4 0.016 1.9 
KNO3 8x10-3 0.8 
CaSO4 8m10-3 1.1 

Used in environmental chamber experiments. 

 
Once the blocks were placed in the chamber, conditions were set to mimic summer and 

winter seasons.  The chamber was set to simulate two weeks of summer and then two 

weeks of winter. 

Summer and winter cycles were chosen as the predicted changes to these seasons are 

better constrained within the UKCIP02 report as changes to spring and autumn are often 

stated to be within “natural” variability.  Therefore, using these seasons, allowed us to 

clearly observe the changes in the decay process due to seasonal conditions.  Also, 

summer and winter were used so that the extremes of weathering within Glasgow could 

be identified.  

Summer months were defined as June, July and August within the UKCIP02 report whilst 

winter months were defined as December, January and February.  These will be the 

standard throughout this study. 

The summer set up is shown in Table 2-7 and is repeated 14 times in each cycle.  The 

winter set up again is run 14 times in each cycle and is shown in Table 2-8.  The 

temperature reduction after six hours in both cycles was to compensate for the heat 

produced by the fluorescent tubes and incandescent lamps within the environmental 

chamber.  The amount of light produced also varied by 25% from the centre (605.9 μmol 

m2s-1) to the back right corner (455.8 μmol m2s-1) of the chamber, which was measured 

using a hand held Macam Q203 Quantum Radiometer pyronometer.    
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Table 2-7: Environmental chamber set up for summer cycle. 

Time Temperature (°C) Relative Humidity 
(%) 

Light Setting 

6 Hours  18.2 78.6 On 

6 Hours  16.2 78.6 On 

12 Hours  18.2 78.6 Off 

 

 

Table 2-8: Environmental chamber set up for winter cycle. 

Time Temperature (°C) Relative Humidity 
(%) 

Light Setting 

6 Hours  8 87.8 On 

6 Hours  6 87.8 On 

12 Hours  8 87.8 Off 

 

Due to a breakdown of the environmental chamber from September 2008 to January 

2009, the blocks were transferred to the University of Glasgow’s Gregory building where 

they were placed in a laboratory on the 4th floor and faced a southerly directed window.  

This was to allow them to receive natural light whilst in a controlled environment.  While 

being located at the University of Glasgow regular artificial rain continued to be sprayed 

on.  Once returned to the chamber, to compensate for the reduction of time within the 

chamber, the cycles were shortened to ten days of summer and winter, to help maximise 

the amount of “years” the blocks experienced.  The full cycle experienced by the 

sandstone blocks over the two year period are schematically represented in Figure 2-15.  

To monitor the actual temperature and RH that the blocks experienced throughout the 

whole experiment, an IButton datalogger (detailed latter in section 2.1.8) was kept with 

the blocks at all times to record these parameters on an hourly basis.  A sample of the 

results from the IButton is shown in (Figure 2-16).  A large range was seen in the recorded 

temperature and RH as the environmental chamber tries to regulate the conditions and 

establish an average.   
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Figure 2-15: Sketch graph of cycles experienced by chamber blocks.  

Blue) winter cycle, red) summer cycle, green) time out of chamber.  Solid lines = two week 
cycles, dotted lines = 10 day cycle.   
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Figure 2-16: Data from environmental chamber showing the programmed conditions against 
data recorded by the IButton.   

Graph shows a 10 day cycle of both summer and winter, Y-axis in °C for temperature and % 

for RH. 

 

2.1.7.1  Prediction of Future Climate Conditions 

The temperature and RH settings used in the climate chamber experiment were 

determined using the average present day values for summer and winter seasons.  These 

data were derived from the archive data collected by the University of Glasgow weather 

station over the summer months of 2003-2007 and winter months of 2004-2007 to 

estimate the conditions experienced in the Glasgow area.  Then, using the United 

Kingdom Climate Impacts Program 2002 (UKCIP02) report (Hulme et al., 2002) which 

outlined various emission paths and indicated how these scenarios may affect the 

climate.  The outlined scenarios are: low (525 ppm CO2 by 2080s), low to medium (562 



 Methods and Materials  91 

ppm CO2 by 2080s), medium to high (715 ppm CO2 by 2080s) and high (810 ppm CO2 by 

2080s) (Table 2-9).  More up-to-date predictions (UKCIP09 report) have been published 

but were not available when experiments for this study were designed.  The UKCIP09 

report is on a 25 Km grid plot, whereas the model from the UKCIP02 report is of 

comparatively poorer spatial resolution, (plotted on a 50 Km grid) but still sufficient for 

the needs of this study.  The UKCIP02 calculations are reported on a map of the UK in a 

colour code fashion.  The area used to represent Glasgow and the surrounding area is 

shown in Figure 2-17.  Calculations presented later are based on the “medium to high” 

scenario, as this is believed to be the most likely (Anderson and Bows, 2008).  

 

Figure 2-17: A replica of the UK maps used in the UKCIP02 report. 

The grey square represents the area used to predict the Glasgow changes. 

 

These average values for present day conditions were then extrapolated out using the data 

for the 2080 conditions in order to predict the climate of the Glasgow region in a medium-to-

high scenario (Table 2-9).  The year 2080 was used as this is the model limit that the UKCIP02 

report covers.  

Table 2-9: UKCIP02 report figures for the four climate change scenarios. 

Scenario 2020s CO2 (ppm) 2050s CO2 (ppm) 2080s CO2 (ppm) 

Low Emissions 422 489 525 
Medium-Low Emissions 422 489 562 
Medium-High Emissions 435 551 715 
High Emissions 437 593 810 

Data retrieved from Hulme et al. (2002). 
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2.1.8 Observatory Wall Microclimates 

This particular experiment was used to evaluate the microclimatic conditions within the 

sandstone.  The parameters recorded were temperature and RH, in order to understand 

how they differ between the external conditions.  The data collected could then be 

extrapolated and combined with climate predictions for 2080.   

To enable this, test blocks (Figure 2-18) were erected at the University of Glasgow’s 

Garscube complex at 55° 54' 8.29'' N, -4° 18' 25.93'' E (see Figure 1-12), where the 

experiments ran from May 2008 to April 2010.  The blocks were placed at the Garscube 

complex so that the external condition in which the internal conditions were compared to 

were collected at the same site, less than 10 m away from the experiment.  

Four different sandstone blocks were studied to evaluate how variations in porosity, grain 

size and building aspect may affect the heat and RH within the sandstones.  The 

sandstones used were: 1) Dunhouse Buff, a very fine-grained sandstone with a porosity of 

~16.5%; 2) Bearl, a very coarse-grained sandstone with a porosity of ~14%; 3) A Dalry 

primary school block with well established black crust.  These were positioned to face 

south, whilst 4) Blaxter sandstone (similar in properties to Dunhouse Buff) was positioned 

to face north.  IButton dataloggers were placed at depths of 3 mm and 6 mm below the 

stone surface, and were set to record both temperature and RH every hour on the hour.  

The north facing block only had one IButton embedded within it, at 6 mm depth.  Whilst 

the Bearl, Dunhouse Buff and North block recordings were from a vertical facade, the 

recordings from the Dalry block were from an angled surface (Figure 2-18).   

The Maxima IButton dataloggers are 5 mm thick and 17 mm in diameter (Figure 2-19).  

Each IButton has a data contact (called the 'lid') and a ground contact (called the 'base'), 

which are connected to the silicon chip inside.  The lid is the top of the datalogger and the 

base forms the sides and the bottom of the datalogger.  Data are stored and then 

downloaded from the IButton manually, using a PC 1-wire connection, which has a USB 

port attached to an IButton port, from which the stored information can then be 

transferred to the computer.  Before being secured into the sandstone, the accuracy of 

the IButtons was calibrated over a 24 hour period.  During this time, all IButtons were left 

within a laboratory to record the temperature and RH on a 10 min interval and 
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demonstrated the precision between IButtons.  The temperature readings had a standard 

deviation of 0.2°C, whilst the manufacturers state an accuracy of 0.5°C.  RH readings had 

a standard deviation of 0.6%, however the manufactures guidelines state that they should 

have accuracy within 5%.  To embed the logger into the sandstone block a small hollow 

was drilled into the surface of the sandstone to a known depth and marginally wider than 

the IButton.  The IButtons were then placed into the hollow with the ‘lid’ facing outwards 

and then a stone cap (taken from the original core) was placed over the hollow and 

grouted into place using Polycell weather proof polyfilla to form a secure seal while trying 

to minimise the alterations to the sandstone properties.   

 

Figure 2-18: Test blocks situated at Garscube campus (University of Glasgow). 

1) Dunhouse Buff, 2) Bearl, 3) Dalry primary school block (unknown sandstone), green 
circles = 3 mm depth IButton, red circles = 6 mm depth IButton.  
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Figure 2-19: IButton dimensions. 

A modified sketch of the IButtons taken from the manufacture guidelines. 

 

2.1.9 Thermal Imaging 

Thermal imaging cameras are often used as a non-invasive data collection technique on 

historic buildings, to gather information on the physiochemical behaviour of conservation 

treatments such as stone cleaning and repair mortars (Avdelidis and Moropoulou, 2003a)  

and also to monitor heat flow through building materials (Griffith and Arasteh, 1999).  

Thermal imaging in this instance is used to determine exact stone surface temperatures 

to correlate with the internal data.  This provides spatially and temporally accurate data 

on the surface of the sandstones.  Temperature measurements of the stone surfaces 

were collected on both a representative summer and winter day.  An image of each 

sandstone block (Bearl, Dunhouse Buff and Dalry sandstones) was taken on the hour 

between 9 am and 4 pm to correlate with the data being collected by the IButtons; 

images were captured using a Flir ThermaCam B400.  The Flir ThermaCam B400 has a 

thermal sensitivity of <0.05°C and an IR resolution of 320 X 240 pixels.  

The value set for the emissivity is very important to gain accurate and correct results 

(Avdelidis and Moropoulou, 2003b).  As the emissivity is the ability of a surface to emit 

radiant energy compared to that of a black body at the same temperature with the same 

area, this emitted heat value has to be therefore compensated for so that accurate 
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surface temperatures can be gained.  As only one material was being imaged this matter 

was simplified and a value of 0.9 was used for the sandstones.      

 

2.1.10 Calibration of Decagon Dataloggers  

 

To test whether free water was trapped within stone, Decagon Leaf Wetness Sensors 

were used.  Leaf Wetness Sensors (LWS) measure only the amount of free water on the 

sensor (rather than RH for the IButtons).  The LWS was originally designed to measure 

water densities on leaves for botany research and therefore has dimensions similar to 

leaves (Figure 2-20).  However, here they were used to measure free water whilst 

encased within sandstone. 

 

Figure 2-20: Image of leaf wetness sensor with dimensions (actual size). 

 

As the LWS loggers had not been constructed for use in sandstone, instead for use in 

exposed natural environments, they had to be calibrated specially for this purpose.   

To calibrate and deduce the errors on the LWS, a beaker was filled with sand and the two 

LWS sensors (LWS1 and LWS2) were placed within the sand.  10 ml of water was then 

added at five minute intervals until 100 ml of water had been added in total.   This 

experiment was run three times to ensure reproducibility.  The procedure was then 

repeated but the time interval between water addition was increased to ten minutes and 

again run three times.  The minimum and maximum counts in which the LSW records 

were also tested.  Between each test, the sand was oven dried for a minimum of five 

hours at temperatures between 47 and 50°C.  These calibration experiments revealed 
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that LWS2 recorded at a slightly elevated level compared to LWS1 (for 100 ml of water 

LWS1 recorded 692 counts whilst LWS2 recorded 773 counts).  Over the three five minute 

tests the error in LWS1 ranged from 9.4-18.2 counts which is smaller than the error range 

in LWS2 (2.3-30.1 counts) (Figure 2-21 andFigure 2-22).  The minimum count was 445 

when recording in air and 1023 counts when submerged in water, these are in 

accordance with the manufactures guidelines.  The calibration graph for LSW1 is shown in 

Figure 2-23, showing a confident R2 value of 0.95. 
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Figure 2-21: Calibration graph for LWS1. 

Where 10 ml of water was added every five minutes, with error bars.  
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Figure 2-22: Calibration graph for LWS2. 

10 ml of water was added every five minutes, with error bars.  
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Figure 2-23: Calibration graph used for LWS1. 

  

2.1.11 Internal Moisture Experiments 

Blaxter sandstone was used in this experiment (full mineralogical details found in section 

2.2.5.2). 

The block was 9x15x17 cm in size and the sensors were placed into a notch 0.5 wide was 

cut 6 mm from the vertical face of the block.   

The sides of the notch were then sealed using a waterproof silicon sealant.  The sensor 

LWS1 was placed as close to the front of the notch as possible.  

The sandstone sliver originally cut from the block was ground to form sand and it was this 

material which was compacted around the sensors and then the top was also sealed with 

silicon sealant to ensure it was watertight (Figure 2-24). Although some sand will have 

come between the sandstone and sensor this was restricted as much as possible so that 

the sand grains did not affect the properties of the sandstone, as the sand grains will have 

a different affect on the capillary action of the water.  

The experiment was placed at the University of Glasgow’s observatory beside the 

observatory microclimate experiment (section 2.1.8), with stones surrounding all sides so 

that only the vertical face was directly exposed, to try and mimic the outermost surface of 

a building facade.   
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LWS2 was placed unprotected at the University of Glasgow’s observatory facing the same 

direction so that comparisons could be made between the external and the internal 

sensor readings.   

 

Figure 2-24: Apparatus set up for internal free water experiments. 

Left) is a sketch diagram of the internal free water block set, Right) cross-section images 
along indicated line. 

   

2.1.12 Mitigation Experiments 

With the weathering damage increasingly visible on sandstone, many conservation 

companies are now designing products that they suggested will increase the life of 

masonry.  One of the most common mitigation products are water repellents for 

masonry.  Therefore, tests were conducted on some of the sandstone water proofing 

sealants available.  These were: Kingfisher Extreme Climate - Next Generation Water Seal 

and Thompson’s water seal.  These were painted on blocks of the Scotch Buff sandstone 

(quartz = 77% and porosity =21%) in accordance to the manufacturers instructions.  A 

blue dye was dissolved into each sealant so that the flow of sealant could be tracked 

under the microscope when thin sections were prepared, which has a standard procedure 

(Casadio and Toniolo, 2004; Cnudde et al., 2007).  The dissolution of the blue stain 

crystals was examined before being applied to the sandstone to make sure that its 

presence would not affect the viscosity of the sealant.  One coat of water repellent was 

applied onto the vertical surface of the sandstone and left to dry.  A cross section from 
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both the top and bottom of the vertical block was then made into a thin section so that 

depth of penetration could be observed.    

Un-dyed Kingfisher sealant was also applied to the Bearl and Dunhouse Buff sandstone 

blocks situated at the observatory, to avoid changing the characteristics of the sandstone 

to much.  Sealant was applied in accordance to the manufacturers instructions in April 

2010 and the experiment ran until October 2010.  Therefore, prior to application, the 

blocks were taken inside and dried out for a week to remove excess moisture and then 

the dust and dirt particles were cleaned off the surface to which the sealant was being 

applied.  As the IButtons within these blocks have established well defined temperature 

and RH patterns over the previous two years, any changes within these patterns will 

therefore be due to the presence of the water sealant on the surface.    

 

2.2 Background to all Sandstone Samples 

Within this section, an overview of all the samples used during this project will be 

supplied.  In addition the location of the building studied or the quarry location will be 

given (shown in Figure 2-25).  
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Figure 2-25: Location of the buildings and quarry’s of the sandstone samples used in this 
study. 

Within enlarged map of Glasgow region: Uni = University location; SVS = St Vincent Street 
location. 

 

 

2.2.1 Dalry Samples 

The Dalry samples were obtained from a disused primary school on Sharon Street located 

in the village of Dalry, 25 miles south west of Glasgow (Figure 2-25).  Given the location of 

the village and the low through-flow of traffic (Figure 2-26), the sandstones here are 
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presently experiencing low levels of pollution, although, from the 1840’s to 1980’s coal 

mining was common in the area.  This building was constructed in 1863 and sampled for 

this study in 2007, prior to its demolition, meaning the sandstones had been exposed for 

approximately 145 years.  Cores with a 6 cm diameter and 7-8 cm depth were acquired 

using a 110v Makita electric drill in dry conditions, and were taken from both the 

northeast facing facade (Figure 2-27) and southeast facade (Figure 2-28).  Sampling 

strategies were focussed on the four main weathering types observed on multiple sides of 

the building (Table 2-10).  The whitened zones were areas which seemed to have been 

kept clean, due to run-off water flowing over the surface.  The vertical surface of the sills 

was tested as they had an easily visible dark greenish surface.  Cores were taken from a 

sandstone block which had suffered general weathering.  The mullions were tested as 

they had a uniform block colouration over their surface.      

The sandstone used in construction is currently unidentified, although a variety of local 

lithologies may have been used.   

Table 2-10: Weathering zone type and corresponding sample identification for Dalry School. 

Weathering Zone NE Facade SE Facade 

Whitened zone D1 D7 
Sills  D2 D5 
General  black weathering D3 D6 
Mullion D4 D8 
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Figure 2-26: Google satellite image of Dalry village. 

Plan view of Dalry with the primary school located in the centre of image. 

 

 

 

Figure 2-27: Northeast facing facade of Dalry school. 

A) Whole of the northeast facing facade front of building.  White rectangle shows area of (B).  
B) Location of cores 1-3, dimensions in centimetres. Circled numbers represent from where 
cores were taken. Core 2 was taken from the vertical surface of the sill.  
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Figure 2-28: Southeast facing facade of Dalry school. 

A) Whole of the southeast facing facade front of building.  White rectangle shows area of (B).  
B) Location of cores 5-8. Dimensions in centimetres. Circled numbers represent from where 
cores were taken on the wall behind the railing. 

 

2.2.2 RGU Samples  

The “RGU” samples were obtained from test walls built on the Garthdee campus of the 

Robert Gordon University (RGU), Aberdeen (Figure 2-25).  The test walls are located 

within a courtyard area (Figure 2-29) and are south facing.  Due to their semi-enclosed 

location, the samples have experienced little direct traffic pollution whilst also being 

sheltered from the full force of the weather.  Five test walls were constructed in 1997, 

through a partnership between RGU and Historic Scotland.  Four of these walls are to 

assess the effectiveness of various consolidates and water repellents whilst the fifth wall 

is used as a control; samples were therefore obtained from this fifth “control” wall.  The 

walls are built from a variety of sandstones and granites frequently used as replacement 

stones throughout Scotland (Figure 2-30).  Core samples were taken from six rock types 

on the 26th of March 2009, using a 110v Makita electric drill with a 6 cm diameter 

diamond tipped core bit to a depth of 7-8 cm in dry conditions.  The core collected were 

Leoch granite, Cat Castle Sandstone, Stainton Sandstone, Locharbriggs Sandstone, 

Unknown Stirling Sandstone and Clashach Sandstone.  However, the blond sandstone 

samples were predominantly used in the experiments. 
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Figure 2-29: Google satellite image of Garthdee campus of RGU.  

RGU samples taken from the test walls located within red rectangle. 

 

 

Figure 2-30: Image of test wall situated at RGU. 

1) Leoch granite, 2) Cat Castle Sandstone, 3) Stainton Sandstone, 4) Locharbriggs 
Sandstone, 5) Unknown Stirling Sandstone, 6) Clashach Sandstone. 
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2.2.3 University Samples 

South Park Terrace was built in 1862, meaning the samples had been in place for 147 

years before being sampled in 2009.  The building is located on South Park avenue (Figure 

2-31), within the main Gilmorehill campus of the University of Glasgow in the west end of 

Glasgow (Figure 2-25).  Built in a renaissance style, they were originally used as three-

storey housing before being converted into university offices in 1984.  The stone type and 

origin used in the construction are unknown at present.  Samples were taken during stone 

replacement work from the east-south-east and north-north- east face’s of the building 

(Figure 2-32, Table 2-11).  At present, traffic emissions within the area are at a medium 

level due to the location in the centre of the campus.  However, the building may have 

been subjected to pollution from the heavy industry in Glasgow during the 1900’s.  The 

exact location of the sample retrieval is unknown but, the location of the fresh 

replacement blocks (as seen in Figure 2-32) suggests they are most likely from both sills 

and mullions, at heights above ground level, exceeding 2 m.    

Table 2-11: Facade where sample was collected from and sample identification. 

East-South-East facade North-North-East facade 

UN1 UE1 
UN2 UE2 
UN3 UE3 

 UE4 

 

 

Figure 2-31: Google satellite image of South Park Terrace. 

Red box indicates sample building. 
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Figure 2-32: Image of South Park Terrace.  

East south east (ESE) and North north east (NNW) facades post-stone replacement. 

 

2.2.4 St Vincent Street Samples (SVS) 

The St Vincent Street (SVS) samples came from the Free Church of Scotland on St Vincent 

Street, Glasgow, which is a major route through the city centre, leading towards the M8 

motorway (Figure 2-34).  The church is located at the west end of the street (Figure 2-25).  

Traffic pollution within this region is high at present (Kent et al., 2010) and has been in 

the vicinity of heavy industry (e.g. steelworks and coal mining) in the recent past (200-100 

years ago).  The church was built in 1859 by Alexander Thomson and sampled in 2009, 

150 years later.  The building style is based on his personal interpretation of Greek revival 

(Figure 2-33) and was constructed using Giffnock sandstone, known through his 

investments into the quarry.  Samples were taken from the east elevation (EE numbered 

samples) and the northwest corner (CS (corner section) numbered samples) during 

conservation work (Figure 2-34).  Exact locations for each sample are unknown; all that is 

known is that the samples were taken from the upper regions of the church and some 

samples are associated with surface mortar repairs.    
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Figure 2-34: Google satellite image of St Vincent Street church. 

Church is located (within large white rectangle), white triangle) CS sample, white rectangle) 
EE samples.   

 

 

Figure 2-33: Image of St Vincent Street church. 

Image taken from the south west, viewing both the north and west facing facades of the 
building.    



 Methods and Materials  108 

2.2.5 Replacement Samples  

Fresh, unweathered sandstones were used in a variety of experiments within the study, 

such as the environmental chamber and in datalogging experiments.  Fresh sandstones 

were also used to evaluate the impact of climate change on the sandstone’s weathering 

characteristics and for predicting how they might perform if used as a replacement stone.  

The sample set contains six of the most common replacement stones used in the Glasgow 

region, and each was characterised by point counting using the SEM.  These sandstones 

are:   

2.2.5.1  Bearl 

Bearl is quarried in Stockfield, Northumberland (Figure 2-25); is a medium-grained 

Carboniferous sandstone (Figure 2-35A) and has a porosity of ~14% (Table 2-12).  This 

sandstone is moderately sorted and contains a significant proportion of kaolinite, mica 

and K-feldspar, and the quartz grains are rounded.  The feldspar grains show partial 

dissolution and the kaolinite pre-dates any quartz overgrowths observed (Figure 2-35B).  

 

Figure 2-35: Images of Bearl sandstone. 

A) Image of hand specimen 9x9 cm, B) FEG-SEM BSE overview image at 150 magnification. 
Q = quartz grains, KF = K-feldspar grains, K = kaolinite. 

 

2.2.5.2  Blaxter  

The Blaxter sandstone is quarried in Otterburn, Northumberland (Figure 2-25) and is 

Lower Carboniferous in age with a fine-medium grained texture.  Porosity is generally 
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quite low in this sample, ~12% (Table 2-12).  Blaxter is poorly sorted, containing 

significant volumes of kaolinite, mica and K-feldspar.  The quartz grains are sub-angular 

with well developed overgrowths.  The K-feldspar grains in this sample are fresh and 

show minimal alteration, while many iron oxides are present giving it a soft yellow 

colouration in hand specimen (Figure 2-36A and B). 

 

Figure 2-36: Images of Blaxter sandstone. 

A) Image of hand specimen 9x9 cm, B) FEG-SEM BSE overview image at 150 magnification. 
Q = quartz grains, KF = K-feldspar grains, FO = Fe-Oxides, K = kaolinite grains, M = 
Muscovite.   

 

2.2.5.3  Clashach 

Clashach sandstone is quarried from the Moray Firth coast (Figure 2-25), is Permian in age 

and medium-grained.  This sample has high porosity values: up to 19.8% (Table 2-12).  

This sample has relatively low quantities of feldspar, mica and iron oxides, therefore 

meaning that Clashach is very clean and a well sorted sandstone.  Both the quartz and 

feldspar crystals show coarse overgrowths making the grains sub-rounded (Figure 2-37A 

and B).   
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Figure 2-37: Images of Clashach sandstone.  

A) Images of hand specimen 9x9 cm, B) FEG-SEM BSE overview image at 150 magnification. 
Q = quartz grains. 

 

2.2.5.4  Cullalo 

Cullalo is a Carboniferous sandstone quarried at Burntisland, Fife, and has a very fine-

grained texture.  This sandstone is very well sorted with trace amounts of fine-grained 

kaolinite (Figure 2-38), whilst the quartz grains are also well rounded.  The low 

proportions of iron oxides, gives the sandstone a cream colour (Figure 2-38). 

 

Figure 2-38: Images of Cullalo sandstone. 

A) Images of hand specimen 9x9 cm, B) FEG-SEM BSE overview image at 150 magnification. 
Q = quartz grains, K = kaolinite. 
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2.2.5.5  Dunhouse Buff 

Dunhouse Buff is quarried in Darlington (Figure 2-25), is Carboniferous in age is a fine-

grained, well sorted sandstone.  Dunhouse Buff has a mean porosity of ~16.5% (Table 

2-12) and the sub-rounded quartz grains have well developed overgrowths.  Both the K-

feldspar and mica grains present have undergone dissolution. There is a significant 

quantity of goethite which gives the stone an orange buff colour (Figure 2-39).    

       

Figure 2-39: Images of Dunhouse Buff sandstone. 

A) Image of hand specimen 9x9 cm, B) FEG-SEM BSE overview image at 150 magnification. 
Q = quartz grains, KF = K-feldspar grains, M = Muscovite. 

 

2.2.5.6  Scotch Buff 

Scotch Buff sandstone is quarried near Scotch Corner in Richmondshire (Figure 2-25), is of 

Carboniferous age and medium-grained.  It has a very pure, well sorted mineralogy, 

containing only well rounded quartz and kaolinite (Figure 2-40) but with a high porosity of 

~20% (Table 2-12). 
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Figure 2-40: Images of Scotch Buff sandstone. 

A) Image of hand specimen 9x9cm, B) FEG-SEM BSE overview image at 150 magnification.  

Q = quartz grains.  

 

Table 2-12: Mineralogical properties for the replacement sandstone. 

Mineral Bearl 
(%) 

Blaxter 
(%) 

Clashach 
(%) 

Cullalo (%) Dunhouse 
Buff (%) 

Scotch 
Buff (%) 

Quartz 71.0 69.9 72.8 83.1 70.0 77.0 
Porosity 14.3 11.9 19.8 13.5 16.5 20.7 
Kaolinite 7.8 7.7 4.3 -- 5.0 2.1 
Mica 1.4 3.1 -- -- 1.7 -- 
K-feldspar 4.6 4.7 1.2 3.5 4.5 -- 
Fe-oxide 1.0 2.1 1.6 -- 1.7 -- 
Total Points 217 193 257 261 242 280 

Values determined by SEM point counting, -- denotes when mineral is not present. 
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3 Description of External Crust 

and the Structure of 

Weathering Layers  

Buildings constructed from sandstone are often found with coatings and accretions, 

which mar the surface; the outermost layer has been classified as the crust layer within 

this study.  However, these crusts on the outermost surface are only one layer in the 

weathering profile, and therefore a cross-sectional view has to be examined.  Four 

questions relating to the crust and internal layering were posed: 

 What is the composition and origin of the crust? 

 Is there any stratigraphy to the internal structure? 

 How long do these crusts and layers take to form? 

 Are the crusts having a positive (protective) affect or negative (damaging) 

affect? 

These questions will be answered using cross-sectional views under light microscopy, 

which was undertaken on all samples to examine the thickness of the surface crust and to 

identify any other layers and structures formed within the sandstone at depth.  For all 

samples, an in-depth analysis was undertaken by examining rough crust surfaces of the 

samples in low vacuum conditions, using the FEG-SEM as well as BSE imaging of polished 

blocks.     



External Crust and Structure of Weathering Layers  114 

3.1 Dalry School 

3.1.1 Light Microscope Observations.  

The Dalry polished block samples were viewed under an Olympus SZX7 light microscope, 

which showed that over half of the samples have a dark weathered crust on the surface 

(Figure 3-1B, C, D, E, F and H).  In most circumstances they are very thin (<10 μm), 

however D4 exhibits a 1 mm thick crust.  The stones in Figure 3-1A and G have a very light 

coloured outermost surface in comparison to the other samples.  Weathering profiles are 

difficult to define visually, although D2 and D4 (Figure 3-1B and D) are the only samples to 

have a light weathered zone (layer 1) beneath its outer surface, presumably caused by a 

depletion of iron oxides.  D7 (Figure 3-1G) is the only sample with a thick red layer (layer 

2) beneath the crust, which is presumably an iron oxide rich layer.  
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Figure 3-1: Light microscope images of Dalry school polished block samples.  

Outermost surface of each block is at the top of each image. 1 = bleached layer, 2 = rusty 
red layer.  Black line denotes the separation between layers. 
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3.1.2 SEM Imaging of Outer Surface 

FEG-SEM analyses of rough samples of the outermost stone surface as well as polished 

blocks were conducted.  Samples D1-D4, D6 and D7 have ordinary black accretions which, 

in these samples, are dominated by mineral fragments littering the surface and infilling 

depressions (Figure 3-2).  These are combined with possible atmospheric debris which 

produces the black coloration.  No salt crystals were seen however, as the fine nature of 

this debris may have hindered visual identification of any salt.    

 

Figure 3-2: FEG-SEM SE rough surface overview images of Dalry samples D1-D4, D6 and 
D7.  
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The detrital sandstone minerals at the outermost surface of D5 (sill) have a thick film 

coating their surface.  Under SEM conditions, it shows that the coating is smoothing the 

surface and therefore making the grain shape beneath less pronounced (Figure 3-3A).  In 

cross-section this coating has a layered structure (Figure 3-3B).  Layer one is densely 

packed and has a continuous thickness of ~25 μm, with a smooth surface.  Layer two has 

a much looser structure with greater porosity and chemical analysis shows it contains 

higher abundances of barium and lead (Figure 3-4) in comparison to layer 1 (Figure 3-4).  

Layer two’s thickness varies as it infill’s topography between the grains, ranging from ~10 

μm to ~75 μm. 

 

Figure 3-3: Images of D5. 

A) FEG-SEM SE image of rough surface, B) FEG-SEM BSE cross-sectional image of 
polished block outermost surface. Yellow lines represent boundaries between the two 
layers: L1: layer 1; L2: layer 2. 
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Figure 3-4: FEG-SEM raster spectra for layer 1 and 2 in D5. 

These show increased amounts of barium and lead in layer 2 compared to layer 1.  

 

The D8 (mullion) sample also has a film covering grains at the stone surface, which 

appears white under BSE (Figure 3-5A), suggesting it contains elements with a high atomic 

number.  However, the grains beneath this are much more pronounced (compared to 

D5), suggesting that this crust is much thinner than on D5.  The cross-section view 

confirms this as the coating appears as an intermittent <10 μm thick veneer (Figure 3-5B). 
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Figure 3-5: FEG-SEM images of D8. 

A) SE plan view of fracture surface, B) BSE cross-sectional view of the polished block 
outermost surface, yellow arrows indicating the surface layer.    

 

Due to the placement of these sandstones on the building (D5 sill and D8 mullion), these 

samples may have been contaminated with paint from wooden window frames.  Paint is 

suggested due to the spot X-ray analysis detecting traces of both barium and lead in the 

compound.  However, the hand specimens of these samples do not show coloured paint 

on the surface rather a black surface similar to all the other samples.  D5 may have been 

contaminated to a greater extent as it was lowest, whereas D8 (mullion) could have 

benefited from the effects of rain wash and gravity which may have lessened the extent 

of contamination.     

A few of these surfaces also contain a proportion of organic material and these will be 

discussed later in chapter 5.  However, as can be seen, the majority of surfaces (six out of 

eight) on Dalry school stones are dominated by a fine grained mineral black crust.  

Beneath these crusts no clear layering can be defined.  Also, the presence of possible 

paint on the surface does not seem to have caused any obvious damage to the sandstone 

situated below it, or caused any preferential internal layering. 

3.2 RGU Samples 

3.2.1 Light Microscope Observations 

Polished blocks of RGU2, RGU3, RGU5 and RGU6 were studied using the Olympus SZX7 

light microscope, as these were the blond sandstones in the sample set.  The only sample 

to have any surface coating is RGU2 where the crust is extremely thin and has a very light 
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coloration.   No clear layering could be identified in the cross-sectional view within any of 

these samples (Figure 3-6A).  Banding is seen in RGU6, although this is inferred to be 

bedding within the sandstone, given the thickness, depth and angle of the layers (Figure 

3-6D).  Organic matter was highlighted in RGU2 at a depth of 3 mm by its green 

colouration, although this occurred in small patches and so did not represent a 

continuous microbial layer within the sandstone (Figure 3-6A).   

Neither the rough fracture surface sample nor the polished blocks, when viewed within 

the FEG-SEM, showed crust formations on the surface.  Microbial matter was seen but 

this will be discussed in chapter 5.  The lack of crusts and internal layering is most likely a 

factor relating to their age, having been exposed to the environment for less than 15 

years in a relatively unpolluted area.   

 

Figure 3-6: Light microscope images of RGU samples. 

The yellow box within RGU2 at a depth of 3 mm beneath the surface is highlighting 
microbes within the sandstone.  Outermost surface of the sample is at the top of each 
picture. 
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3.3 University Samples 

3.3.1 Light Microscope Observation 

Visually, black crust formations could be identified on all samples with the exception of 

UN1, although not all samples show a well developed weathering profile (Figure 3-7).    

The main internal layers identifiable are: layer 1) a pale bleached layer, which ranges in 

thickness from 0.25 – 2.5 mm; layer 2) a speckled red rusty layer, which is generally the 

thickest layer seen ranging from 2.5 - 5 mm, where the colour of the layer is dependent 

on the amount of iron oxides available, which are presumably causing the coloration; 

layer 3) a darkened zone, although it is unknown what is causing this layer to occur.  

Samples UE1 and UE2 (Figure 3-7A and B) show a well developed weathering profile 

comprising all three layers, whereas UE3, UN2 and UN3 only contain layer 2 (Figure 3-7C, 

F and G).  Samples UE4 and UN1 show no visible weathering profiles (Figure 3-7D and E). 

The red rusty layer is the most common layer (found in five out of seven samples, and 

dominates the sample due to its relative large thickness (~5 mm).  There is no specific 

order in which the layers occur, however, if layer 2 is present, it is found deepest within 

the sample (Figure 3-7).  The weathering style does not differ depending on the facade.  

This would agree with the Dalry samples which also show varying orders of internal layers 

on both facades.  However, the internal layers on the university samples are much more 

developed in comparison to the Dalry samples.       
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Figure 3-7: Light microscope images of University samples. 

Layers: 1) Bleached zone; 2) red rusty layer; 3) darkened layer.  A) UE1, with well developed 
weathering profile, with all layer occurring, B) UE2, same as UE1, C) UE3 only layer 2 
present, D) UE4, no weathering layers evident, E) UN1 no weathering layers evident, F) UN2, 
thick dark crust with layer 2 present, G) UN3 layer 2 evident. 

 



External Crust and Structure of Weathering Layers  123 

3.3.2 SEM Imaging of the Outer Surface 

FEG-SEM analyses were conducted on both the rough samples of the outermost surface 

and polished blocks.  Rough surface analysis shows that the majority of samples (UE3, 

UE4, UN1 and UN3) have “typical” black crusts, similar to those seen on Dalry school 

samples where quartz grains can be identified with small fragments of kaolinite, quartz 

and other debris  amalgamating in depressions between grains (Figure 3-8).  When these 

samples are viewed in cross-section, this debris is not identifiable as a distinct layer.   

 

Figure 3-8: FEG-SEM SE rough surface images of University samples. 

 

Within the University sample set, the fracture surface images of the outermost parts of 

UE1 and UE2 are very similar.  On some regions of the surface a thin film is present, the 

film covers the raised surfaces of the quartz grains (Figure 3-9 A and B).  It is identifiable 

by the much whiter coloration compared to the quartz in SE mode, it therefore must 
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contain elements with a higher atomic number.  The X-ray spot analysis produces a 

spectra with high quantities of silicon, sulphur, aluminium and iron (Figure 3-10).  

This crust was then examined in the polished blocks.  In cross-section, the film is seen at 

the edge of the quartz grains and is less than 10 µm thick, as the fracture images show 

(Figure 3-9C).  The covering is not laterally continuous and these combined factors made 

identification difficult in some regions.  

To investigate this crust further Raman spectroscopy was also undertaken.  The spectra 

gained from these investigations into the crusts were identified as quartz.  Considering all 

the data gathered, it was concluded that a silica glaze was present on these samples.  Five 

types of silica glaze are found on sandstone and, from the properties found in this study, 

it is most like a “type three” alumina-iron rich silica glaze (Dorn, 1998).  The formation of 

these glazes is poorly understood and the most common idea in the literature is that silica 

glaze is a product of the chemical precipitation of monosiliciic acid (Si(OH)4) through 

complexing with organic matter (Dorn, 1998).  This may have happened in the past but, at 

present, no organic material was found on the surface of these samples. 
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Figure 3-9: Images of UE2 surface. 

A)  FEG-SEM SE overview image of fracture surface, red square shows area of image B, B) 
magnified image of (A) showing the film covering quartz grains, red spot indicates area of X-
ray spectra, C) FEG-SEM BSE image of polished block, showing a cross-section view of the 
surface coating.  Yellow arrows denoting surface coating.    

 

 

Figure 3-10: FEG-SEM X-ray spectrum. 

Spectrum is from the visually white areas on the rough surface image.  
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The surface of UN2 is smooth, obscuring the grains beneath it (Figure 3-11A).  The coating 

is thick (300 μm) and infill’s the spaces between grains (Figure 3-11B), while it has a 

barium and sulphur-rich composition (Figure 3-11C), pointing towards a paint origin.   

However, the coating is not laterally extensive over the surface, therefore this may have 

been deposited onto the surface from a painted source near the sandstone sample.  The 

light microscope image (Figure 3-7F) shows lighter areas on the outermost surface mixed 

in with darker areas and so are not easily identifiable as possible paint.      

 

 

Figure 3-11: FEG-SEM images and X-ray spectrum from UN2. 

A) SE overview of fracture surface, B) BSE image of polished block cross-section of 
outermost surface, C) X-ray spectrum from possible paint substance, showing large 
quantities of barium and sulphur.   
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3.3.3 Summary  

These samples have a large variety of crusts including probable silica glazes, which occur 

on the south facade.  As samples have a high likelihood of a lintel setting (see Section 

2.2.3) these sandstones may have been contaminated by paint from the windows, but 

most other samples also have a fine-grained mineral black crust.  Well defined layering 

has occurred within the samples and the mineralogical expression of these internal layers 

will be investigated later in the study.   

3.4 St Vincent Street Samples 

3.4.1    Light Microscope Observations 

This study concentrated on sandstone samples which had not previously been repaired, 

or cleaned, to remove the effects of weathering caused by these processes.  However, 

due to the constraints on the samples obtained, a proportion of the SVS samples had 

mortar repairs associated with them.  For these reasons, only CS4, EE1, EE3 (no mortar) 

and EE4 (which had a partial covering of mortar) were analysed in these experiments.  

Under light microscopy, CS4 shows a thin black surface crust with layer 2 (red rusty layer) 

directly beneath it, which is presumed to be rich in iron-oxide minerals.  This layer is 

highly variable in thickness across the sample, ranging from 1 mm to 6 mm (Figure 3-12A), 

whereas EE1 layer 2 has an almost constant thickness (Figure 3-12B).  Furthermore, a very 

thin layer 1 (bleached layer) is present at the surface of CS4 above layer 2.  Although 

crusts are evident on EE3 and EE4, there are no observable weathering layers present 

beneath them.   The internal weathering pattern on the SVS samples is difficult to define 

due to the use of mortar on the surface of the building, and therefore only a small 

proportion of samples could be analysed.    
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Figure 3-12: Light microscope images. 

Black line represents depth of weathering within layer 2 (rusty red layer).  On EE4 the red 
enclosed area defines the extent of mortar present. 

 

3.4.2 SEM Imaging of the Outer Stone Surface 

Outer surface fragments were analysed using the FEG-SEM.  The surfaces of EE1 and EE3 

are very similar.  They are densely packed with fine grained mineral shards, which distort 

the shape of the detrital grains beneath (Figure 3-13).  The surface of EE1 is also 

combined with carbon rich material, identified by spot analysis.  The carbon rich material 

is seen coating mineral grains on the surface making identification of these particles 

difficult (Figure 3-13).   
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Figure 3-13: FEG-SEM SE images of the outermost surface of EE1 and EE3. 

The yellow arrows on EE1 are indicating the carbon rich material. 

 

The surface of CS2 (mortar covering) has a “salt accretion” black crust formation on its 

surface, where salt crystals (mainly gypsum, identified by the chemistry and thin platy 

crystal shape) have combined with presumably atmospheric particulates  to produce the 

black coloration of the crust.  In general, the gypsum has formed in a chaotic manner over 

the surfaces although, in some areas, the crystals have some alignment and are found 

surrounding quartz grains (Figure 3-14).  These thin platy crystals are also apparent on the 

surface of CS4 mixed with mineral fragments in an unorganised fashion. 
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Figure 3-14: FEG-SEM SE images of the outermost surface of CS2 and CS4. 

Yellow G = Gypsum crystals surrounding quartz grains. 

 

When polished block cross-sections of the outermost surfaces were viewed no black crust 

could be identified.  This may have been due to damage during the sample preparation 

procedure.  The surface of EE1 does appear to be slightly more densely packed with 

fragmented minerals occupying space between quartz grains.  However this is difficult to 

distinguish as an individual layer.          

3.4.3 Summary  

Only a red rusty layer is detailed as an internal structure.  The black crusts found on the 

surface are quite difficult to fully understand due to the mortar coverings which have 

possibly enhanced the production of salt crystals. 

3.4.4 Discussion  

Although the vast majority of samples surveyed have an outermost black crust, only a few 

have any defined internal layering profiles.  Three main types of crust are evident: The 

first are crusts which are composed of a layer of small mineral fragments infilling all 

indentations on the stone surfaces and enveloping the detrital grains.  The fine mineral 

detritus on the surface is most likely composed of kaolinite and quartz, which are most 

likely to have been transported from the interior of the stone (Cnudde et al., 2009).  The 

black colour seen on the surface is most likely due to the mineral detritus combining with 

a proportion of atmospheric particulates of metal, such as Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb 

and Zn  as collected in a study of Glasgow’s atmosphere by McDonald and Duncan (1979), 

as well as some salt crystals.  The salts are difficult to identify due to the quantity and size 
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of the matter being observed.  Crystals of gypsum are evident in the SVS samples, 

although these are the only sample set which had mortar repairs associated with it.  

Mortar acts as a large store of calcium which could provide the source of the calcium ions 

to form salts.  The black crusts are the most commonly occurring formation (Table 3-1).  

They are normally less than 1 mm thick and are difficult to distinguish in cross-section, 

but this may be due to damage by the sample preparation methods.  However, as this 

was consistent throughout all sample sets, it is unlikely to be wholly a preparation 

artefact.   

The role the crusts play in weathering is difficult to determine, as the proportion of 

atmospheric pollutants is unknown.  However, by restricting the pore space at the 

surface, they seem to provide a layer that is limiting water flow deeper into the 

sandstone and a limited supply may therefore protecting the sub-layers. 

The second crust is the “silica glaze”, which appears only on UE1 and UE2 (Table 3-1) and 

is an extremely thin (~10 μm) veneer which leaves the block with a black and slightly 

glossy lustre.  Dorn (1998) states that the presence of a silica crust on the surface will 

protect and strengthen the sandstone beneath.  

The third main surface crust found was paint (Table 3-1).  Paint on the surface of 

sandstone provides an impermeable layer, and therefore has a detrimental effect on the 

sandstone beneath as any water which becomes trapped behind this layer cannot 

evaporate from within.  However, the paint seen on these samples is often not laterally 

extensive and probably has caused minimal harm to the sandstone below.  

The internal layers identified beneath the crust formations were: layer 1) a pale bleached 

zone which is normally very thin (<1 mm) and, in most situations, is formed just below the 

crust; layer 2) a red, rusty speckled zone which ranges widely in thickness from 1 mm to 6 

mm and is most likely formed by the oxidation of any iron compounds present and layer 

3) a darkened region, generally 3-4 mm thick.  The process of formation for this third 

layer is as yet undetermined.  The weathering profiles have no reoccurring pattern and 

only two samples show evidence of all three layers (Table 3-1).  The most common layer 

is layer 2 and occurs in eight out of the ten samples which have any weathering layers 

present therefore appearing to be the most dominant weathering process in these 
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Scottish sandstones.  To determine if the colour changes seen are due to mineral 

proportions point counting data was acquired, for all the cross-sections and will be 

discussed in greater depth within chapter 4.  However, results show that those samples 

that develop a red rusty layer do not show larger quantities of Fe-oxide, or a loss of Fe-

oxides from the internal regions.  Nevertheless, very small amounts of strongly coloured 

minerals, such as iron oxides, can impart a strong colour on the rock.         

Within the time frame of 150 years, a well developed crust has adhered itself to the 

surface of most of the sandstones, whether it be a mineral fragment crust or a silica glaze.  

Although internal layers were found in many samples, well-developed internal 

stratigraphy is much more rarely seen, suggesting that it takes a longer time frame to 

develop.  Layer 2 (Fe-oxide rich layer) may be the first to establish as it is the most widely 

found.  

Whether the crusts identified have a positive or negative effect on the decay of 

sandstone beneath is not easy to determine from these results.  However, once chemical 

analysis has been undertaken on the minerals beneath the crust, this can maybe be 

resolved.   
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Table 3-1: Key facts concerning the crusts and weathering profiles. 

Sample Weathering 
profile layers 

Crust/no 
crust 

Silica 
glaze 

Mineral 
fragment crust 

Salt Paint 
residue 

D1 
D2 
D3 
D4 
D5 
D6 
D7 
D8 

--- 
1 
--- 
1 
--- 
--- 
2 
--- 

--- 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

 
Yes 
Yes 
Yes 

 
Yes 
Yes 

 

-- 
-- 
-- 
-- 
-- 
-- 
-- 
-- 

-- 
-- 
-- 
-- 

Yes 
-- 
-- 

Yes 
RGU2 
RGU3 
RGU5 
RGU6 

--- 
--- 
--- 
--- 

Yes 
--- 
--- 
--- 

-- 
-- 
-- 
-- 

Yes 
-- 
-- 
-- 

-- 
-- 
-- 
-- 

-- 
-- 
-- 
-- 

UE1 
UE2 
UE3 
UE4 
UN1 
UN2 
UN3 

3, 1, 2 
1, 3, 2 

2 
--- 
--- 
2 
2 

Yes 
Yes 
Yes 
Yes 
--- 

Yes 
Yes 

Yes 
Yes 
-- 
-- 
-- 
-- 
-- 

-- 
-- 

Yes 
-- 
-- 
-- 

Yes 

-- 
-- 
-- 
-- 
-- 
-- 
-- 

-- 
-- 
-- 
-- 
-- 

Yes 
-- 

CS4 
EE1 
EE3 
EE4 

1, 2 
2 
--- 
--- 

Yes 
Yes 
Yes 
Yes 

-- 
-- 
-- 
-- 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
-- 
-- 

-- 
-- 
-- 
-- 

Table represents all samples analysed.  --- denotes not present.  
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4 Mineralogical and Chemical 

Results 

Chemical decay is one of the many processes active in weathering sandstone, and the 

blond sandstones of Glasgow due to the presence of carbonate cement, are potentially 

highly susceptible.  Therefore, to understand the processes and quantify the magnitude 

of chemical decay in the net weathering cycle, detailed large scale whole rock 

investigations were undertaken to quantify the properties of each sample.  Any 

mineralogical changes at the outer surface could then be identified as caused by 

weathering rather than being a diagenetic feature of the sandstone.  Once whole rock 

analysis was completed, mineral specific chemical and molecular analyses were also 

undertaken.    

This chapter aims to answer the following questions: 

 What is the mineralogy of the sandstone and what is the variability both intra-

and-inter-building? 

 Which minerals are most reactive? 

 How do these minerals decay? 

 What is the spatial scale of decay? 

 Can a rate of decay be determined? 

The methods used to answer these questions include a variety of SEM techniques (e.g. 

mapping, point counting and CL), Raman spectroscopy and permeameter measurements.    
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4.1 Dalry School   

4.1.1 Sandstone Mineralogy, Porosity and Grain Size 

Eight samples (D1 to D8) were collected in cores from the outer walls of Dalry primary 

school (Table 4-1, pages 144-146).  Point counting was conducted on all samples, using 

the method outlined in section 2.1.1.2, and the mineralogical compositions of the 

sandstones were then plotted on a ternary diagram (Figure 4-1; where, as describe in 

section 2.1.1.2 quartz, feldspar, mica and kaolinite, Fe-oxide, ankerite plots were used).  

To avoid any weathering-related anomalies and ensure a true representative ‘bulk rock’ 

value, an average value of the data from the innermost 4 mm of the sample was plotted.  

The ternary diagrams show that quartz arenite sandstones were used to construct the 

school (Figure 4-1A).  Figure 4-1B shows that accessory minerals occur in all samples, 

mainly in the form of clays, which range in volume from 3% in D1 to 23% in D7.  Oxides 

are found in much smaller percentages, with D5 having the largest proportion at 4%, 

whereas D4 has only trace quantities.  Carbonates are not seen in any samples with the 

exception of core D7, which has a small fraction (<2%) of carbonate cement (identified as 

ankerite, as discussed later in this chapter).  All point counting data are presented in Table 

4-2.   

These sandstones are mainly medium-grained (quartz mean = 207 ± 14 μm for D1, D2, D3, 

D4, D5 and D8) with the exceptions of D6 and D7 which are fine-to-medium grained 

(quartz mean = 141.3 ± 24 μm) as represented in Figure 4-2A.  The quantities of quartz 

and porosity occur within a relatively small range within the eight samples: quartz = 58.4 - 

66.5%, porosity = 17.0 - 26.7%.  The pores have a mean diameter generally less than 124 

μm (Figure 4-2B).  The largest feldspar proportion is seen in D7 (3%), whilst D4 and D8, 

have none at all.  These samples are quartz arenites and consistent with the Hyslop et al. 

(2006) description of B1 sandstones (see section 1.4.1.1).  Due to the similarity in their 

mineralogical properties, the samples are assumed to have been derived from one quarry 

source.   
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Table 4-1: Weathering zone and corresponding core sample identification for Dalry School 
samples. 

Weathering Zone NE Facade SE Facade 
Whitened Zone D1 D7 
Sills D2 D5 
General  Black Weathering D3 D6 
Mullions D4 D8 

 

 

Figure 4-1: Ternary plots of the Dalry sandstone cores.  

A) Quartz, K-feldspar and muscovite plot, B) kaolinite, Fe-oxide and ankerite plot.  Ternary 
plots reveal that samples have a quartz arenite composition containing limited ankerite.  
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Figure 4-2: Cumulative grain size frequency chart for quartz (right) and pore size fraction 
graph for the Dalry samples (left). 

 

4.1.2 Mineralogical Impact of Decay on the Minerals 

Point counting was also conducted to identify small changes to mineralogical composition 

and porosity between the internal and outermost regions of the core samples.  Therefore, 

as each sample was compared with itself, any changes seen could be attributed to effects 

of weathering.  All point counting data is in Table 4-2.   
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Between the surface and a maximum depth of 5 mm, a high percentage of quartz occurs 

in comparison to the average bulk quartz percentage for the stone interior.  Of the eight 

samples six, show evidence in the first 3 mm (Table 4-2).  Five of the eight samples have a 

high quartz percentage between 0 - 1 mm before recording a comparative low between 2 

– 3 mm depth (Figure 4-3).  The high and low value is relative to the “bulk rock 

percentage”, which is an average of the data from the innermost 4 mm of the sample.  

Although the average porosity is the same for the outermost and innermost 6 mm, a 

porosity low is clearly identifiable in most samples within this first 6 mm; although D6 is 

an exception (Figure 4-3, Table 4-2). 

The kaolinite results show that, within the outermost 5 mm of the samples, an area of 

low kaolinite concentration occurs (Table 4-2).  Other kaolinite “percentage lows” may be 

seen further into some samples but are sporadic in their occurrence and so no other clear 

and conclusive trends are identifiable.  This low relative proportion often occurs between 

0-1 mm depth, which is followed by a sharp increase in the amount of kaolinite recorded 

at 2-3 mm depth (seen in samples D3, D5, and D7; Figure 4-3)     

Between depths of 2 to 5 mm below the outermost surface, many of the samples show a 

high in Fe-oxide abundance compared to directly above and below this region (Figure 

4-3). 
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Figure 4-3: Depth against sandstone constituent proportion graphs for Dalry samples. 

A) quartz, B) porosity, C) kaolinite, D) Fe-oxides. Data obtained by point counting. 

 

4.1.3 Physical Weathering Evidence 

The outermost regions of each core (surface to 2 mm depth) were studied using a FEG-

SEM in BSE mode to help identify any physical features that may be indicative of chemical 

weathering.  However, most samples show no obvious physical evidence of weathering 
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features.  Quartz grains are intact with no visible pitting or cracking.  The K-feldspars are 

fractured but this is also seen at much greater depths within the sandstone, and so is 

likely to be a sample preparation artefact or a process which has occured pre-quarring.  A 

cracked layer is evident on the surface of D5, but this is not a weathering product as it has 

been identified as a paint layer (see section 3.1.2).  Beneath this layer in D5, there is no 

evidence of weathering affecting the detrital quartz and K-feldspar grains.  The presence 

of Fe-oxide pseudomorphs in D5 show that ankerite has been dissolved away: However, 

as these pseudemorphs are seen all the way through the sample (Figure 4-4), it is difficult 

to know whether they are a diagenetic feature or have been caused by extensive 

weathering post-construction.  D7 also contains evidence for dissolution of ankerite, and 

a systematic weathering profile is observed: 0-2 mm depth shows no evidence of any 

ankerite or Fe-oxide psuedomorphs; 2-6 mm depth shows skeletal Fe-oxides and 

hydroxides; and intact ankerites are observed at depth exceeding 7 mm from the surface 

(Figure 4-5).      

 

Figure 4-4: FEG-SEM BSE images of D5 polished blocks. 

A) Surface of D5 showing Fe-oxide pseudomorphs of ankerite crystals (left of centre) below 
the crust surrounded by unaffected detrital grains. B) 23 mm beneath the outer surface 
showing Fe-oxide pseudomorphs of ankerite (located in the upper middle of image). 
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Figure 4-5: FEG-SEM BSE images of D7 polished blocks. 

A) Partially dissolved ankerite at 4 mm depth. B) Unweathered ankerite at a depth of 20 mm.  
Ankerite crystals denoted by yellow A.  

 

4.1.4 X-ray Mapping  

False colour EDS maps of the surface of the block as well as an interior section (normally 

half way through the block) were produced to examine the mineral distribution 

throughout samples.  This distribution should help to identify any variation between the 

outermost surface and the interior (Figure 4-6).  The images show kaolinite being 

distributed evenly throughout the samples, although the outermost surfaces of D2, D4 

and D8 seem to have a diluted proportion of clay compared to greater depths in those 

samples (Figure 4-6G and H).  
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Figure 4-6: A selection of EDS maps of Dalry samples produced on the FEG-SEM. 

A and B) D2; C and D) D3; E and F) D4; G and H) D8.  Each set is complied of one outer 
surface and one inner map, and the scale bar is 500 μm long. Green = silicon, red = 
aluminium, blue = potassium. Inner images are from 12 mm below the outermost surface.  
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4.1.5 Summary 

The Dalry stones produce clear evidence of chemical alteration.  Where carbonate 

cements are present, such as in D7, intact ankerite crystals occur below depths of 6 mm.  

However, above that level, only Fe-oxide/hydroxide pseudomorphs are observed, which 

suggests that they were once present in this zone.  For the samples that lack diagenetic 

ankerite, the magnitude and depth of weathering proves much harder to identify.  The 

point counting data shows some mineralogical layers to occur in the outermost 5 mm of 

the samples.  Loss and gain of minerals has taken place in these near surface regions, 

producing a Fe-oxide enriched layer and a kaolinite depleted layer, whilst a peak of quartz 

abundance and a porosity low also occur in the outermost 6 mm (Figure 4-3). 

The trends seen in each mineral within the sandstone are easily identifiable, although 

when combining the data for all the minerals appears more tricky.   

Common patterns are shown schematically in Figure 4-7 and these layers combine to 

produce a possible ‘case hardened’ layer at the surface of (or within) the sandstone. 

Figure 4-7A and B show a Fe-oxide abundant layer at 4-5 mm depth, while the porosity 

low always occurs at the surface.  Of these scenarios ‘A’ shows a greater argument for 

case hardening, as the quartz high and porosity low both occur at the same depth unlike 

‘B’.  Figure 4-7C indicates that case hardening is occurring at deeper levels within the 

sandstone, with a Fe-oxide high, quartz peak and porosity low all being located at the 

same depth.  In these circumstances, the placement of the kaolinite low is difficult to 

precisely define.  These patterns have no preferred facade orientation.  These are the 

average overall trends and not all samples show each of these features and, as can be 

seen, are highly variable which makes one general trend difficult to isolate within the 

data.         

The average porosity for the outermost 2 mm is generally slightly higher than the interior 

(1-2%).  Curiously though, in D7, which has experienced ankerite dissolution, the porosity 

is significantly less at the outermost dissolved region than internally (13.1% to 17.5%).   
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Figure 4-7: Schematic models for the mineralogical trends observed in the Dalry school 
samples using point counting. 

The three models were produced using the patterns observed in the point counting data. 
The main differences are in the position of the porosity low and quartz high position.  
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4.2 RGU Samples 

4.2.1 Sandstone Mineralogy, Porosity and Grain Size 

The mineralogy of the blond sandstone samples within the RGU set are very different to 

each other (Figure 4-8A and B), as they have been sourced from quarries throughout 

Scotland and England.  Figure 4-8A is a quartz, feldspar, muscovite ternary plot (discussed 

in section 2.1.1.2) illustrating the sandstone classification for each sample.  Figure 4-8B is 

a kaolinite, Fe-oxide, ankerite ternary plot, highlighting the accessory mineral quantities 

within each sample.  RGU2 (Cat Castle) is a medium-grained quartz arenite sandstone 

with kaolinite and Fe-oxides, accounting for a small proportion of the mineralogy, whilst 

carbonates are absent.  RGU2 has an average quartz grain size of 414 ± 105 μm (Figure 

4-9A) and pores are generally small, i.e. less than 124 μm in size (Figure 4-9B).  RGU3 

(Stainton Sandstone) has a quartz arenite composition and kaolinite is the main accessory 

mineral (~6%) but contains minimal Fe-oxide and no carbonates.  The grain size of RGU3 

is an average of 180 ± 42 µm and, therefore, classified as fine-to-medium grained (Figure 

4-9A).  Pores are mainly small in diameter, with a low proportion (5.4%) of medium to 

large pores (Figure 4-9B).  RGU5 is an unknown Stirling Sandstone with a litharenite 

composition where feldspar contributes ~25% and there are small proportions of 

kaolinite and Fe-oxides with trace amounts of ankerite.  RGU5 is medium grained (mean 

quartz = 194.5 ± 71 μm) (Figure 4-9A) with no accessory minerals observed apart from a 

tiny proportion of kaolinite (<1%), while pores are mainly small (average = 65.3 μm) 

(Figure 4-9B).  Sample RGU6 is a Clashach Sandstone, which is medium-grained and with 

quartz grain diameters averaging 205.9 ± 63.8 μm (Figure 4-9A), and has the highest 

proportion of medium and large pores in this sample set (Figure 4-9B). 
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Figure 4-8: Ternary plots of the RGU samples. 

A) quartz, feldspar, muscovite plot, B) kaolinite, Fe-oxide, and ankerite plot.  RGU2 = red, 
RGU3 = blue, RGU5 = green, RGU6 = black. 
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Figure 4-9: Cumulative grain size frequency chart for quartz (left) and pore size fraction 
chart (right) for each RGU sample. 

 

4.2.2 Mineralogical Impact of Weathering on the Minerals 

Although there is a range of sandstone types within this sample set, the point counting 

data, showed that quartz consistently has a peak abundance at 4-5 mm depth in samples 

RGU2, RGU3 and RGU5, whilst sample RGU6 has a peak between 2-3 mm depth (Figure 

4-10).  All point counting data are in Table 4-3 (pages 153-154).   

Porosity lows and highs were both evident in these samples.  The high occurs immediately 

beneath the surface of each sandstone, whilst the low generally coincides with the quartz 

peak area.   

In those samples which contain kaolinite, a relative low in kaolinite abundance occurs, at 

4- 5 mm below the outermost surface.  This coincides with the high abundance of quartz 
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seen. In RGU2 and RGU3 a relative high proportion of kaolinite is seen occurring above 

this (2-3 mm depth).  The Fe-oxide point counting results, however, show no conclusive 

patterns (Figure 4-10). 

These results indicate that the formation of a hardened layer (lower porosity plus quartz 

high) at a depth of 4 -5 mm below the surface may be the first step in the weathering 

process.   
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Figure 4-10: Depth against mineral proportion graphs for RGU samples. 

A) quartz, B) porosity, C) kaolinite, D) Fe-oxides proportions. Data obtained through point 
counting. 

 

4.2.3 Physical Weathering Evidence 

Samples were imaged in BSE mode using the FEG-SEM to determine whether any 

chemical modification could be seen on either the detrital or diagenetic minerals.  RGU2, 

RGU5 and RGU6 show no clear physical decay features on the minerals within the 
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outermost regions of the samples.  RGU3 contains Fe-oxide pseudomorphs of carbonate 

cement beneath the surface but, as these are present throughout the whole sample 

(Figure 4-11), it is unknown whether they are a diagenetic feature or a weathering 

product.  Due to the RGU’s samples having a very short duration of exposure (10 years), it 

is unlikely that the pseudomorphs are purely a weathering product.  Instead diagenetic 

dissolution may be the most likely process to have created the pseudomorphs.   

 

Figure 4-11: FEG-SEM BSE images of RGU3. 

A) Image from 1 mm beneath the outermost surface, B) image from 21 mm beneath the 
outermost surface.  Both images show Fe-oxide pseudomorphs replacing areas of 
carbonate cement. 

 

4.2.4 Summary  

These samples provide insight into the early stages of weathering once placed into a 

construction environment and indicate that case hardening at depth may be the first step 

in chemical weathering, and that processes such as the mobilisation of Fe-oxides take a 

greater time to develop.  They also confirm that dissolution of ankerite can occur pre-

construction.   

In this sample set, a developed weathering profile is seen in both RGU2 and RGU3, where 

a relative porosity low, quartz high and kaolinite low occur together at a depth of 4-5 mm.  

These, circumstances are also partially, seen in RGU5 and RGU6, producing case 

hardening at depth, whilst the surface is relatively soft due to the high porosity values 

observed in all samples (Table 4-3).  Although there is a high level of uncertainty within 

the point counting data, the consistency of the data throughout the samples validates the 

trends seen.  However, this consistency in the decay trends is surprising due to the 
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variation in the original mineralogy and their limited exposure time.  The mineralogical 

variation found, could possibly be an artefact of the sample collection process, where the 

vibrations of the drill may have caused movement of the minerals.  This damage caused 

by drilling has not been reported before, but cannot be ruled out as a possibility.  If not, a 

sampling artefact, these data indicate that chemical weathering develops and, affects 

sandstone very quickly after initial exposure to the environment. 

 

Figure 4-12: Mineralogical patterns identified in the RGU2 and RGU3. 
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4.3 University Samples 

4.3.1 Sandstone Mineralogy, Porosity and Grain Size 

The samples and their source locations are listed in Table 4-4 (on pages 163-165).  Point 

counting was conducted on all samples using the method outlined in section 2.1.1.2.  The 

bulk compositions of the sandstones, using the average of the innermost 4 mm of point 

counting data (to any avoid decay effects) are plotted on ternary diagrams.  These plots 

show that the University samples have a quartz arenite composition (Figure 4-13A), with 

widely ranging diagenetic mineral abundances (Figure 4-13B) with all samples being fine-

to-medium grained (mean 176.9 ± 10.4 μm) (Figure 4-14A).  The pore size of these 

samples is generally small (71.6 μm), but ~20% of the pores within each sample are 

medium to large (Figure 4-14B). 

Quartz quantities are very similar in all samples, ranging from 61.9% - 70.5%.  The Fe-

oxide proportions are also consistent between samples.  However, the abundance of 

kaolinite has the largest proportional range, varying from 6.4% in UE1 to 12.3% in UN3. 

Carbonate cement is present in all samples apart from UE1, and is in the form of ankerite 

(discussed later) and occurs throughout the whole sample, apart from UE2, which only 

shows evidence of carbonates below 12 mm depth.  These overall similarities in 

mineralogy indicate that the stone used to construct this building was sourced from one 

quarry.  The mineral characteristics for the samples are consistent with the Hyslop et al. 

(2006) description of B2 sandstone (section 1.4.1.1). 

Cathodoluminescence (CL) images were obtained from the outermost layer of the 

samples and the interior regions to provide information on the diagenetic history of the 

sandstone, and to assess if any effects of weathering can be diagnosed.  As the similarity 

of the mineralogy of the samples suggests one quarry source, only some samples were 

chosen for analysis using CL (UN2, UE2 and UN3).  Their diagenetic histories are quite 

similar; moderate compaction has occurred causing point contacts between grains (Figure 

4-15).  Quartz overgrowths are generally <20 μm in width, although slightly thicker in UE2 

(Figure 4-15C and D).  In all three samples, there is evidence that fracturing of quartz 
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grains occurred prior to cementation, as quartz overgrowths material is seen infilling 

fracture space.  The overgrowths are non-luminescent and are presently seen intact in 

the outermost regions of the sandstone.    

Table 4-4: Sample identification and facade for University samples. 

East South East Facade North North East facade 

UN1 UE1 
UN2 UE2 
UN3 UE3 

 UE4 

 

 

Figure 4-13: Ternary plots of all the University samples. 

A) quartz, feldspar, mica plot, B) kaolinite, oxide, ankerite plot. UE1 = black, UE2 = red, UE3 
= blue, UE4 = green, UN1 = pink, UN2 =orange and UN3 = light blue.  Data obtained by SEM 
point counting. 
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Figure 4-14: Cumulative grain size frequency chart for quartz (left) and pore size fraction 
graph (right) for the University samples. 
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Figure 4-15: FEG-SEM CL images of University samples. 

A and B) UN2. C and D) UE2. E and F) UN3. Inner images from 12 mm depth. Scale bars are 3 
mm long, CG indicates cemented grains and arrows indicate quartz overgrowths. Lighter 
gray between grains represents the resin. 
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4.3.2 Mineralogical Impact of Weathering on the Minerals 

Point counting was also conducted to assess any weathering related variations in mineral 

abundance and porosity between the surface and the internal part of each sample; all this 

data can be found in Table 4-5.  

The University samples show no particularly obvious patterns within the quartz. 

When any low porosity values are recorded, they occur at 2-5 mm below the outer 

surface and the average porosity for the outermost 6 mm is 1-2% greater than the 

innermost 6 mm.  In UE2, where the ankerite has been lost at the surface, the porosity 

has been increased by 1% (Table 4-1).  These porosity average values are comparable to 

those seen within the Dalry results. 

Five of the seven University samples (UE2, UE3, UE4, UN2 and UN3) show a depleted 

quantity of kaolinite situated at a depth of 2 -3 mm below the surface.  These generally 

coincide with a high proportion of clay observed at the surface of the sample (Figure 

4-16).   

Five out of seven samples also show Fe-oxides to be absent within the first millimetre 

below the surface (Figure 4-23).  Generally, deeper than this, there is a high proportion of 

Fe-oxides.  The high and low values are relative to the “bulk rock percentage”, which is an 

average of the innermost 4 mm of point counting data.  
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Figure 4-16: Depth against mineral proportion graphs for University samples. 

A) quartz, B) porosity, C) kaolinite D) Fe-oxides, proportions within the University samples. 
Data obtained by point counting. 

 

4.3.3 Physical Weathering Evidence 

The upper regions of the polished blocks were viewed in BSE mode using the FEG-SEM, to 

aid identification of any physical features associated with weathering.  Samples UE1, UE3, 
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UE4, UN1, UN2 and UN3 do not show any weathering effects on any detrital or diagenetic 

minerals near the surface.  The carbonate cement crystals are intact and only a few show 

signs of slight dissolution within the outermost 2 mm.  However, the carbonate minerals 

are affected to a much greater depth within UE2.  Pristine ankerite crystals occur at 12 

mm whereas, above this depth, only Fe-oxide and hydroxide pseudomorphs are found 

(Figure 4-17 A and B).  Therefore there is good evidence for weathering to a depth of 12 

mm for carbonate cements in UE2. 

Despite UN2 having possible paint deposits on its surface (section 3.3.2), their presence 

does not seem to have increased the rate of chemical decay and, damaged the minerals 

beneath.     

The depth of chemical weathering is generally difficult to identify within this set, apart 

from UE2 as it contains sequential degradation of the carbonate minerals. 

 

Figure 4-17: BSE FEG-SEM images of UE2. 

A) UE2, Fe-oxide pseudomorph of ankerite at 3 mm beneath the weathered surface, B) UE2, 
partially ankerite crystal at a depth of 20 mm within the sample.   

 

4.3.4 X-ray Mapping 

False colour X-ray maps were made for a selection of the University samples.  These 

images detail the surface of the blocks and highlight the quantity and extent of carbonate 

minerals present at the surface of the sandstones.    
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Figure 4-18: EDS false coloured maps for University samples. 

Images were produced on the FEG-SEM. A) UE2 and B) UE3 at their outermost surface. C) 
UE4, image taken at a depth of 1 mm from the outermost surface.  Green = silicon, red = 
aluminium, blue = potassium, light gray areas (particularly prominent in B) are carbonate 
minerals.     

 

 

4.3.5 Summary 

The outermost 6 mm of these samples contains the greatest evidence for chemical decay, 

through the loss and gain of minerals which causes a change to the original mineral 

proportions at various depths.  However, a general weathering profile is harder to define 

when combining all the mineral trends.  Nevertheless, two general models were 

produced from the evidence, which are schematically represented in Figure 4-19.  Both 

Figure 4-19A and B show Fe-oxide rich and porosity low zones at 2-3 mm depth, with a 

kaolinite high directly below this.  Any pattern of quartz abundance variations proves 

more difficult to constrain.  Four samples out of the six lack any Fe-oxide in the outermost 

layer but are enriched below.  This may indicate that the Fe-oxides are very mobile within 

the sandstone, forming an enriched layer before being ‘washed away’.  The occurrences 

of these patterns have no preference for orientation on the building.  

Analysis of UE2 shows chemical weathering to be active in the outermost 6 mm in the 

form of mineral enrichment and depletion, but also shows the weathering of the 

carbonate cement occurs to a depth of 12 mm.  It therefore has two ‘levels’ of chemical 

weathering occurring within the sample.   
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Figure 4-19: Models for the weathering profiles observed in the University samples.  

Models were produced using the trends observed in the point counting data. A) has a quartz 
high at the surface whilst in B) the quartz high is 2-3 mm depth.  
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4.4 St Vincent Street Samples 

4.4.1 Sandstone Mineralogy, Porosity and Grain Size  

Four samples were analysed from the SVS set: EE1, EE3 and EE4 from the east elevation 

of the building and CS4 from the northwest corner.  The mineralogical compositions of 

the sandstones (using an average of the deepest 4 mm point counted to eliminate 

anomalous results due to weathering) were plotted onto ternary diagrams (Figure 4-20A 

and B) to represent the bulk composition.  All the point counting data can be seen in 

Table 4-6 (pages 172-173).  The ternary diagrams show that all samples from this building 

have predominantly a quartz arenite composition (Figure 4-20 A).  They are medium-

grained (mean = 170.5 ± 3.4 μm) (Figure 4-21A).  Pores are generally small, with EE4 

exhibiting the largest variation in pore size, ranging from 291.6 – 8.3 μm (Figure 4-21B).  

The accessory minerals are quite wide ranging in their proportions (Figure 4-20B).  The 

clay minerals vary from 4.7% in EE1 to 12.7% in EE3, although little variation in the 

quantities of Fe-oxides occurs.  The proportion of carbonate within stone from the two 

facades is quite different.  The east elevation (EE) samples show an average of 6%, 

ranging up to 10.5% in EE4, whilst the average carbonate content for the northwest 

corner (CS) samples is markedly different at 1.5%, with the highest abundance only 

reaching 2.8%.  Based on the diagenetic minerals present, these samples correspond to 

the Hyslop et al. (2006) description of the B2 sandstone category, and historical records 

indicate that the sandstones are all from the Giffnock quarry, located on the outskirt of 

Glasgow.  Therefore, the difference in proportion of carbonate cement proportions on 

the differing sides of the building may be a characteristic of the sandstone and so an 

artefact of where the stone was taken from within the quarry. 

The FEG-SEM was used to obtain CL images, which were taken from the outermost layer 

of the sample as well as the interior to provide information on the diagenetic history of 

the sandstone.  CL imaging may also provide information on whether the outermost layer 

has been affected by weathering since being placed within a building.  As mineralogical 

and historical evidence suggests one quarry source, only CS4 and EE4 were analysed 

within this set and both show very similar features.  The images of the sandstone show 

that they have suffered moderate compaction with point contacts between the quartz 
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grains, and only thin non-luminescent quartz overgrowths present (Figure 4-22).  Both 

samples show evidence of quartz fracturing occurring prior to cementation, as the 

overgrowths infill fractures (Figure 4-22).  The overgrowths at the surface of the 

sandstone appear unaffected by weathering.   

 

Figure 4-20: Ternary plots of the St Vincent Street samples. 

A) Quartz, K-feldspar and muscovite plot, B) kaolinite, Fe-oxide and ankerite plot.  EE3 = 
black, EE4 = red, EE1 = blue, CS2 = green and CS4 = orange. 
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Figure 4-21: Cumulative frequency chart for quartz size (left) and pore size fraction (right) 
for each SVS sample. 
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Figure 4-22: Series of CL images taken on the FEG-SEM of CS4 and EE3. 

A and B) CS4. C and D) EE3. Scale bars are 3 mm long.  CG = carbonate grains, arrows 
indicate quartz overgrowths.  Gray between quartz represents resin. 

 

4.4.2 Mineralogical Impact of Decay on the Minerals 

Point counting was also conducted to investigate any small alterations and/or repeating 

patterns in the mineralogical composition between the surface and the internal part of 

the core, potentially caused by weathering.  All data is in Table 4-6.  

The highs and lows in mineral abundance are compared with the bulk average which was 

taken from the innermost 4 mm of point counting data.    

Some samples (EE1, EE4 and CS4) show a high abundance of quartz occurring at the 

surface and, directly below this is a low in abundance relative to the internal average 

(Figure 4-23).  EE3 gives an anomalous result, as the observed low quartz abundance 

occurs at 4 – 5 mm below the outermost surface.   
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The porosity results show that a high in quartz is recorded alongside a low in exists, and 

vice versa (Figure 4-23). 

The kaolinite point counting data shows a consistent low at a depth between 2-5 mm 

below the sandstone surface in each sample (Figure 4-23). 

CS4 exhibits a relatively enriched layer of Fe-oxides between 8-9 mm depth, which is 

followed by a dramatic decrease in the Fe-oxide at 10-11 mm depth, while only a small 

proportion of Fe-oxide is recorded at deeper levels.  This pattern is also seen in EE3 but 

each stage is seen a millimetre deeper than in CS4 (Figure 4-23).    
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Figure 4-23: Depth against mineral proportion graphs for SVS samples. 

A) quartz, B) porosity, C) kaolinite D) Fe-oxides, proportions within the SVS samples. Data 
obtained by point counting. 

 

4.4.3 Physical Weathering Evidence 

The upper regions of each block were studied in BSE mode using the FEG-SEM, to help 

identify any physical features which may be linked to decay.  Samples CS4, EE1, EE3 and 
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EE4 were analysed in this section.  Both CS4 and EE3 show no weathering features within 

the quartz grains and there is no dissolution of the carbonate minerals as they remain 

intact at the very surface of these samples.  Whole ankerite crystals are present at the 

surface of EE1, although kaolinite is infilling the regions between the quartz grains on the 

surface (Figure 4-24A).  The surface of EE4 is half covered in mortar, while the half with 

no mortar shows kaolinite crystals infilling the gaps between the detrital quartz and K-

feldspar grains at the surface.  The quartz grains are highly fractured at the surface 

(Figure 4-24), which is not thought to be an artefact of sample preparation because such 

extensive fracturing is not observed on any other side of the sample.  Whole ankerite 

crystals at the surface can also be seen in EE3 and EE4 (Figure 4-25). 

 

Figure 4-24: BSE FEG-SEM images of SVS polished blocks. 

A) EE1, showing kaolinite dominating regions between quartz grains on the surface (red 
arrows).  B) EE4, showing cracked and broken quartz grains at the surface (yellow arrows).  

 

 

Figure 4-25: FEG-SEM BSE images of ankerite minerals within EE3 and EE4. 

A = ankerite, Q = quartz, both images from the outermost surface.  
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4.4.4 Summary 

The carbonate cements in these samples appear totally unaffected by chemical 

weathering, with intact carbonates occurring at the outermost surfaces.  This could be 

because a new surface has recently been exposed, but the samples show a dark crust on 

the surface which dismisses this possibility. 

The main effects of weathering are again symbolised by the loss and gain of minerals 

within the outermost 6 mm of the sandstones (Figure 4-26).  Although the uncertainty 

associated with point counting is high, clear trends are still identifiable. Generally, the 

outermost millimetre has a quartz and Fe-oxide peak accompanied by a porosity low.  The 

clays are likely being lost from 4-5 mm depth and brought to the surface to cause a high 

abundance in the outermost layer (Figure 4-26).  This may be the evidence of chemical 

weathering, causing the surface of the sandstone to become case hardened.   

 

Figure 4-26: Models for the weathering profiles observed in the SVS samples.  

Models were produced using the trends observed in the point counting data.  Due to Quartz 
and Fe-oxide high at surface case hardening may be forming. 
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4.4.5 Discussion of Overall Decay Patterns 

Once the mineralogy and porosity values have been well established for each sample, it is 

easier to distinguish the diagenetic features from the weathering features.  As previously 

described, chemical weathering can occur in many different forms, such as the movement 

of minerals through reprecipitation, complete dissolution of particular minerals and the 

chemical and physical alteration of minerals.  All samples analysed in this study show 

chemical weathering occurring, but to varying degrees.   

The easiest samples to identify evidence of chemical weathering in are those that show a 

progressive degradation of carbonate cement from the interior to the exterior of the 

sample (e.g. D7 and UE2).  The depth of carbonate weathering is expressed as the depth 

to where altered carbonate minerals are seen, beyond which the carbonate crystals 

remain unaffected and whole.  D7 has a carbonate weathering depth of 6 mm whilst, 

within UE2, it is as deep as 12 mm.  Carbonate cement is expected to dissolve rapidly in 

comparison to other minerals (Price, 1995; Lasaga, 1998) and their dissolution is 

common-place in limestone (Evamy, 1967; Al-Hashimi and Hemingway, 1973; Frank, 

1981) and sandstone (Wang, 1992), which is believed to produces secondary porosity.  

However, Lee et al. (2006) conducted one of the few studies that have discussed the 

dissolution of carbonate cement as a viable weathering process in sandstone buildings.  

The present study, together with Lee et al. (2006), shows that porosity within the 

dissolved carbonate region of the stone was reduced, rather than the expected increase.  

This contradicts the previous studies mentioned, where dissolution was believed to cause 

secondary porosity.  The two main possibilities for this contradictory result are: 1) due to 

the weakened structural integrity at the surface, the remaining minerals have collapsed 

inwards onto themselves to reduce porosity; 2) the presence of increased void space 

could allow atmospheric debris to penetrate, blocking the pores and reducing the 

porosity.  Carbonate cement is observed in many of the samples occurring at the 

outermost surface, where it appears as whole intact crystals, although it is unknown why 

this ankerite is unaffected by decay.  These crystals may contain trace elements which are 

causing the ankerite to be resilient to decay.  Alternatively, the overlying black crust may 

have formed quicker than the initialisation of dissolution of the cement, therefore acting 
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as a protective layer.  The last hypothesis may be that the rain water solution is not as 

efficient at dissolving these carbonates. 

Chemical and physical weathering is also expressed through the abundance and reduction 

of minerals within layers, in the outermost ~6 mm of the sandstone, which can occur at a 

rapid rate.  The RGU samples indicate a well defined weathering structure, despite their 

very short duration of exposure to the environment and their range of original 

compositions.   

The main weathering layers observed in the building stone samples are: 

 quartz abundance/quartz reduction  

 Fe-oxide abundance/ Fe-oxide reduction 

 porosity reduction 

 kaolinite abundance/kaolinite reduction 

Due to the variability in the original composition of the differing sample sets, it is difficult 

to incorporate all the data gathered into a general model, However, the most common 

trends are shown in Figure 4-27A and B. 

The features worked into the models are the quartz high, porosity low and Fe-oxide high. 

However, as a consequence of enrichment of a mineral in one layer, a depleted instance 

of that mineral will form in another layer.  Kaolinite concentrations do show significant 

enrichment and depletion in layers within the outermost 6 mm.  However, the precise 

location of these layers is less well defined and, therefore, harder to incorporate into the 

generalised models.     
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Figure 4-27: Most common internal structures seen throughout all the samples. 

Measurements are in mm.  

 

Internal layers within sandstone have been previously described and discussed 

extensively, although these studies are normally in association with microbial activity 

(Friedmann, 1982; Gómez-Alarcón et al., 1995; Omelon et al., 2006b, 2007).  In these 

studies, the weathering layers are defined by colour, and the only mineralogical change 

discussed is the depletion and enrichment of Fe-oxides caused by the mobilisation and 

activity of microorganisms, as the layers are caused by large mats of microbial matter.  As 

detailed further in the chapter 5 (microbial results), no extensive layers of 

cryptoendolithic microbes were identified during the present study.  Therefore, it is 

unlikely that the layering seen in these samples are an outcome of microbe assisted 

movement of minerals.    

A few previous studies focus only on chemical changes which cause a mineralogical 

stratification within sandstone.  Jefferson (1993) and Bluck and Porter (1991a and b) both 

suggest that the ingress and later egress of water will dissolve the slightly unstable Fe-

oxides and clay minerals at depth, then redeposit them at the outermost surface, which 

will consequently produce a porosity low due to the influx of kaolinite.  Price (1995) 

acknowledges that chemical weathering occurs within sandstone and that minerals will 

be transported to shallower levels due to water movement, although does not provide 

further detail regarding any layering structures this may cause.  

The model presented by Bluck and Porter (1991a) has three layers beneath the crust: 1) 

an enriched layer, 2) a light brown patina and 3) a depleted layer.  However, no scale is 

given on the thickness and placement of each layer and only vague details of their 

compositions are provided.  Lee et al. (2006) identifying, one layer within the blond 

sandstone located at a depth of 8-10 mm which is characterised by the production of Fe-
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oxides and hydroxide by ankerite dissolution.  There is no mention of regions abundant in 

kaolinite and quartz.                          

Results from the present study also indicate that case hardening may be an important 

process on the surface of the sandstones.  A case hardened crust consists mainly of host 

rock with a fine-grained cement and kaolinite, and is 0.5-5 mm thick (Conca and Rossman, 

1982).  Results from the Glasgow stones show that a layer abundant in quartz, Fe-oxide 

and kaolinite is evident in most samples near or at the outermost surface, which also 

coincides with a porosity low (~1 mm thick).  Comparable layers have been seen on other 

sandstones of similar ages (Mcalister et al., 2003) and case hardening is a common 

feature found on many different sedimentary rock types including sandstone.  Case 

hardening can be caused by entirely physical and chemical processes, but it has been 

suggested that micro-organisms may play an important role in the hardening of rock 

(Viles and Goudie, 2004), although the specific role microbes may play is still uncertain.  

As the least exposed samples (RGU), show case hardening at a depth beyond possible 

microbe habitation (detailed later), it is unlikely the microorganisms have significantly 

altered these sandstones.  Instead, it may be that case hardening gradually progress 

towards the surface, rather than occurring on the surface on the sandstone and 

progressing inwards.     

In the present study, no weathering related physical alterations are seen on the detrital 

grains.  Although some were identified on K-feldspar by Kamh (2005b), the results from 

the present study disagree instead showing that the dissolution of K-feldspars is a pre-

construction feature, because partially dissolved K-feldspar minerals are evident 

throughout the depth of each sample and in all the sets.  It has also been suggested that 

quartz overgrowths may spall off (Wright 2000) as a form of weathering.  The CL-SEM 

results showed that overgrowths are fully attached to the quartz mineral substrate.  

Therefore, the detachment of overgrowths does not seem to be significantly affecting 

these sandstones.  Wright’s (2000) study was a laboratory based experiment and the 

spalling of overgrowths may not have established on these relatively young case study 

sandstones.  



Mineralogical and Chemical Results  179 

4.5 Permeability 

The porosity and permeability of a sandstone determines the movement of water within 

the rock, and so permeability tests were undertaken on representative samples of the 

sandstones studied, to further understand the characteristics.  Not all samples could be 

tested due to the constraints on the volume of material needed for the experiment 

(section??).  The samples analysed were: UE2, UN2, UN3 (all from the University set), 

Dunhouse Buff (DH; a fresh quarry stone), EE3 and CS4 (both from St Vincent Street).  

These were chosen to represent the large variety of sandstone used to construct the 

buildings sampled and also those used during replacement.  Permeability tests were 

completed by the University of Aberdeen using the method outlined by Parnell et al. 

(2010) and is discussed in methods section 2.1.2.  Repeat tests were carried out on the 

samples and their average permeability was plotted against the samples’ mean porosity, 

(taken from the inner most 4 mm of the sample) (Figure 4-28).  The data shows that 

increased porosity leads to increased permeability with UN2, UN3, DH and EE3 showing a 

good correlation.  The exceptions are CS4, which shows a very high porosity but lower 

permeability and UE2, which only has a marginally higher porosity but much greater 

permeability than the other samples.   

The standard deviations for permeability range widely within each sample (1.7 in 

Dunhouse Buff to 35.2 in UE2) and, therefore, can be discounted as a reason for the 

skewed results.  However, CS4 shows the highest standard deviation for porosity, CS4 

(5.1), compared to the others which range from 1-2.9 for porosity.  Therefore, given this 

high standard deviation, the porosity values for CS4 may be underrepresented, causing 

the result to be ‘out of sync’ with the others.  Although this does not explain UE2’s result, 

UE2 does contain the highest proportion of large pores (10% are >251 μm) within the 

tested samples.  This large pore size distribution can alter the porosity permeability ratio 

(Sperl and Trckova, 2008) and therefore may explain the skewed result.  Overall, all the 

sample data are in agreement with other porosity/permeability results for sandstones 

compiled by Tucker (1981), indicating that CS4 and UE2 are not highly unusual.  

Although these findings show that the data is ‘normal’ in the context of sandstone, the 

data also highlights the variability in the porosity/permeability ratio within the sandstone 

used to construct one building.  Figure 4-28 shows that UE2 has a much higher 
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permeability compared to the other University samples.  Whilst the SVS samples have 

similar permeability values, their porosity values differ by 10%.  These spatial variations 

within a type of sandstone used on one building may, in some part, explain why a 

‘patchwork’ of weathering appears on the surface of the sandstone. 
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Figure 4-28: Sample permeability plotted against porosity, for selected samples. 

Samples tested were from a selection of sandstones used within the present study. 

 

4.6 Chemical and Structural Damage to Individual 

Minerals  

Minerals within the sandstones were also investigated using Raman spectroscopy.  This 

was to determine whether decay had caused any structural deformation, by chemical or 

mechanical means, to those minerals at the stone’s outermost surface, compared to 

minerals situated internally.  This work was complimented by quantitative energy 

dispersive X-ray spectroscopy (EDX) using the ZS-SEM; both these techniques are outlined 

in sections 2.1.1.6 and 2.1.3.  The quantitative chemical analysis can be used to identify 

the elements and their relative proportions within the minerals.  When these techniques 

are combined, any changes seen in the Raman spectra from the outermost regions can 

then be determined as a result of structural or composition modifications to the mineral.   

Due to the time frame of weathering under consideration (maximum 150 years), the only 

minerals likely to dissolve and be subjected to chemical change are the carbonate 

cements as calculated by Lasaga (1998), whose results are shown in Table 1-3, section 
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1.2.5.  Therefore, the carbonate cements were analysed to constrain their composition 

and to see whether any chemical differences between the sample sets could be observed.  

Carbonates were also investigated to identify any possible leaching of elements from 

within the crystals, which may be the first step in their dissolution and breakdown.  As the 

Fe-oxides within the sandstone are often reprecipitated through water movement, these 

techniques were also used to assess whether different generations of Fe-oxides could be 

identified.  The other minerals within sandstone which may be susceptible to weathering 

are muscovite and kaolinite.  Their sheet structure may act as a weak plane for chemical 

weathering to exploit, although these minerals should not be dissolved away in the 

relatively short lifetime of the buildings.  However, small precursors to decay may still be 

evident by analysing the results.   

4.6.1 Kaolinite    

Kaolinite is the most common clay found in the samples studied, but trace amounts of 

illite are sometimes also present.  Kaolinite (AlSi2O5(OH)4) is present within every sample, 

although sometimes in very small quantities.  However, small proportions of Fe and K 

may be substituted into the platelet structure (Piffy, 1979).    

4.6.1.1  EDX Microanalysis of Kaolinite 

EDX analyses of kaolinite were taken from: D7 (Dalry School), UN3 (University sample), 

CS4 and EE3 (SVS samples), as these contained plentiful amounts of kaolinite.  A 

comparison of the effects of sample preparation methods was firstly undertaken (SP1 = 

polished blocks, SP2 = grain mounts; full details in section 2.1.1.6). 

When the ratio between the main constituent elements (SiO2 and Al2O3, which have not 

been normalised) are compared, both sample preparation methods (SP1 and SP2) agree 

generally that most of the EDX analyses lie within a well constrained region, although SP2 

results showing slightly tighter clustering (Figure 4-29A and B).   

All analyses are low in aluminium (SP1 range = 32.01 – 38.99, SP2 range = 33.43 – 37.25) 

in comparison to the standard kaolinite plotted (Figure 4-29).  The standard kaolinite ratio 

for Al and Si were derived from Jepson and Rowse (1975), who conducted an electron 
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microscope microprobe study on English kaolinites which were derived from the best 

available materials in terms of mineralogical purity.  These were then plotted by Deer et 

al (1992). However, a few spectra are also relatively low in silicon concentrations (SP1 

range = 41.46 – 49.86%, SP2 range = 44.19- 47.18%) in comparison to the majority of 

kaolinite analysed (Figure 4-29).  A few factors may have affected the results: 1) a ~5x5 

µm raster area was used, although this area will include empty space due to the sheet 

structure of the kaolinite, where electron beams may have entered, reducing the X-ray 

signal; 2) much of the kaolinite has been produced through the breakdown of muscovite 

which has been visually identified within various samples (Figure 4-30).  This will increase 

the proportion of trace elements such as potassium while decreasing the amount of Al 

and Si, although only small amounts of trace elements were recorded.  All data can be 

seen within the electronic appendix.  As stated, all these results have a low Al content 

compared to the standard muscovite plotted.  This is true for both the sample 

preparation methods and is therefore most likely an indicative feature of kaolinite within 

Scottish sandstones.  
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Figure 4-29: Quantitative EDX results for preparation methods when tested on kaolinite. 

These are Al2O3 against SiO2 plots, SP1 shows a greater range within the results. The 
standard data for kaolinite is from Deer et al. (1992). 

 

 

Figure 4-30: BSE ZS-SEM image of Mica grain within CS4. 

Image shows the mineral edges of the mica being broken down into kaolinite, confirmed by 
EDS chemical analysis. Q = Quartz, KF = K-feldspar, K = kaolinite and M = mica.   
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Kaolinite minerals were then sampled in D7 and CS4 from the weathered region at the 

outermost surface and as well as the interior.  These samples were chosen due to their 

high abundance of kaolinite, whilst the kaolinites sampled were chosen to provide a 

cross-section of the kaolinite population within the sample (i.e. small and large platelets).  

The ratio between the Si and Al was compared and results show that the compositions of 

the kaolinites are similar in both regions of the samples (Figure 4-31).  SP1 (polished 

blocks) was chosen for this as it means the exact location of the mineral within the 

sample is known.  The kaolinite samples in both sets of data (as shown in Figure 4-31) 

have an average of 46 wt% SiO2, although D7 has a much greater range of SiO2 (41.5 – 

49.9 wt% SiO2) compared to CS4 (46.5 – 49.2 wt% SiO2).  No conclusive difference in 

chemistry can be seen between those kaolinite crystals at the surface and internally.  All 

kaolinite EDX data can be found in the electronic appendix.     

30.0

31.0

32.0

33.0

34.0

35.0

36.0

37.0

38.0

39.0

40.0

40.0 42.0 44.0 46.0 48.0 50.0

A
l 2

O
3

(w
t%

)

SiO2 (wt%)

D7

D7 
Outermost 
region 

D7 
Innermost 
region

30.0

31.0

32.0

33.0

34.0

35.0

36.0

37.0

38.0

39.0

40.0

40.0 42.0 44.0 46.0 48.0 50.0

A
l 2

O
3

 (w
t%

)

SiO2 (wt%)

CS4

CS4 
Outermost 
region 

CS4 
Innermost 
region

 

Figure 4-31: Quantitative EDX results for kaolinite at the surface and interior of D7 and CS4. 

Al2O3 against SiO2 plots, D7) left and CS4) right, comparing crystals from the outermost 2 
mm to those within the innermost 2 mm.  
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4.6.1.2  Raman Spectroscopy of Kaolinite  

Kaolinite has four main peaks, known as the inner surface hydroxyl group (OuOH), which 

includes bands V1,  V2 and  V3 whose centres are at 3697, 3669 and 3652 cm-1, and the 

inner hydroxyl group V5 situated at 3620 cm-1 (Frost et al., 2001).  Kaolinite was examined 

in samples D7, D6 (Dalry school), CS4, EE4 (St Vincent Street), UE3, UN1 (University) and 

RGU5, an unknown Stirling sandstone.  These samples were chosen to represent a cross-

section of the material studied and, where possible to correlate with samples used in EDX 

analysis.  Raman spectra taken from kaolinite were collected from the surface to a depth 

of one millimetre and from the bottom millimetre of the sample (i.e. an innermost region 

of the sandstone) in order to identify any weathering related differences in the spectra. 

Of the peaks, V5 (3621 cm-1) and V1 (3695 cm-1) are the most important in this study as 

they are most clearly related to changes in the kaolinite crystal structure (Frost 1995, 

1998).  Spectra of kaolinite in UN1, EE4, RGU5 and UE3 show no clear changes between 

the top and the bottom of each polished block.  The spectra from the top samples often 

show the V5 band as having a lower peak height but, as peak height is strongly dependent 

on crystal orientation relative to the laser beam (Frost et al., 1998), this feature cannot be 

confidently ascribed as, purely a product of weathering.  

Spectra collected from the top of D7 and D6 are very similar to those from the bottom 

region of each.  However, a few kaolinite crystals in the outermost regions do show a shift 

in the position of V1 from 3697 to 3707 cm-1 and V5 from 3621 to 3623 cm-1 (Figure 4-32).   

These band shifts are related to changes in the inner surface hydroxyl group and the inner 

hydroxyl group, and indicate that the kaolinite has transformed into dickite (Frost et al., 

1998).  Dickite is chemically identical to kaolinite but its layers are arranged in a two 

layered cell unlike kaolinite, which is a single layer cell.  When the OH bonds within 

kaolinite are stretched, its single layer cell is transformed into this two layered structure 

of dickite.  Dickite has four main peaks: the inner hydroxyl group InOH = V4 = 3622 cm-1  

and the outer hydroxyl group OuOh = V1 V2 V3 at 3708, 3655 and 3643 cm-1 (Frost et al., 

1998).   No other sample sets show the presence of dickite within the top millimetres or 

indeed any other region.  
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Figure 4-32: Raman spectra of kaolinite within D7. 

Spectra are from the outermost surface and internally regions showing the shift in the V1 
and V4 position. Dashed lines on the second image signify the centre of the peak V1 and V4 

for the internal and outermost spectra.  

 

 The CS4 sample also shows an alteration of the V5 band in some kaolinite crystals at the 

sample surface. Spectra from the bottom show an average placement for V5 at 3621 cm-1, 

whereas the top spectra show an average centre of 3623 cm-1 (Table 4-7).  No other peak 

movement is associated with these shifts.  The shift in peak V5 is thought to be due to the 

kaolinite being less crystalline.  As shown by Frost, (1995), crystalline kaolinite has a V5 

peak nearer 3620 cm-1 whilst, in less well crystalline minerals there is a shift to 3624 cm-1. 

This V5 shift could occur because the kaolinite at the top is starting to be broken down or 

is undergoing the first step in becoming dickite.  
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Table 4-7: Table of Raman data on where the centre of V5 occurs for kaolinite minerals 
within CS4. 

Peak Centre of V5 (cm-1) 
Outermost area                                                                              Innermost area 

                            3623                                                3622 
                            3622                                                3622 
                            3623                                                3621 
                            3623                                                3621 

 

4.6.1.3  Summary 

The kaolinite results show that, although no chemical differences could be identified 

between minerals at the surface and internally using EDX, a few structural differences 

were identified by Raman spectroscopy.  In D7 and D6 from the southeast facade of Dalry 

School, dickite crystals are found in the outermost region of the samples.  These do not 

seem to be original as they are not located at any other depth within the samples.  A 

kaolinite to dickite transformation is also seen on sandstone taken from St Mary’s 

Cathedral, Sydney (Australia) (60 - 68% quartz with up to 25% clay); this was identified 

using FTIR spectroscopy (Ip et al., 2008) and attributed to weathering.  Sample CS4, from 

the northeast facade of St Vincent Street, also shows a change in the form of the crystals 

becoming less crystalline in the outer regions of the sample compared to the interior.  

This may indicate the breakdown of the crystal caused by weathering.  Chemical 

weathering is therefore affecting the kaolinite within the outermost regions of the 

sandstone samples. 

4.6.2  Mica 

The phyllosilicate minerals occur throughout all samples studied.  Its chemical 

composition is KAl2(Si3Al)O10(OH,F)2 and this mineral is constructed from layers of silicate 

and gibbsite.  Elements such as potassium within the structure have been shown to be 

leached by lichens (Prieto et al., 1994; Wierzchos and Ascaso, 1996) meaning their sheet 

structure may be susceptible to chemical weathering over the timescale of building stone 

decay.  
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4.6.2.1  EDX Microanalysis of Muscovite 

For every mica crystal studied, triplicate spectra on a ~5x5 μm raster area were taken so 

that an average composition could be determined.  The raster size was chosen so that a 

large sample area could be analysed without having interference from crossing mica 

layers.  Minerals from D7 (Dalry school), UN3 and UN1 (University), CS4 and EE3 (SVS) 

were analysed.  The results using SP2 (outlined in section 2.1.1.6) for the muscovites are 

shown in Figure 4-33.  As these are grain mounts from crushed samples, it is harder to 

constrain where precisely the minerals came from; although crushed rock only from the 

lower region of the sample was used.  The SiO2 varies from 42.5% to 47.7% and a larger 

variation is seen in Al2O3, ranging from 25.0% to 36.0%.  Micas from D7 and EE3 have the 

largest compositional spread whereas UN3 micas have a particularly low proportion of 

SiO2 compared to CS4 micas which have a particularly high concentration of SiO2.  The 

compositions of the micas in comparison to the literature standard are a few percent 

lower in SiO2 but generally also have a greater proportion of Al2O3.  The comparison 

muscovite is from low-grade psammitic schist from the Inverness region of Scotland (Deer 

et al., 1992).  The minor elements, potassium and iron, were then analysed and show that 

EE3 has the closest values to those of the literature mica, with the rest tightly clustered 

and containing a significantly smaller proportion of Fe in contrast to the standard mica 

plotted (Figure 4-34).  

It is possible that the chemical analyses were influenced by the sheet structure, with the 

incident electrons being channelled between sheets to yield micas with lower apparent 

element concentrations.  Care was taken to eliminate this problem by taking triplicate 

results and avoiding areas with obvious cracks.  Therefore, as all micas, appear to follow 

this pattern, it is possible that mica within Glasgow region sandstones typically have a 

composition different to that obtained from literature.   
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Figure 4-33: Quantitative EDX results for the micas major element ratios, for a range of 
samples. 

Samples are plotted as SiO2 against Al3O2 and compared with a standard (Deer et al., 1992). 
Results obtained using SP2 method. 
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Figure 4-34: Quantitative EDX results for the micas minor elements, for a range of samples. 

Samples are plotted as FeO against K2O and compared with a standard (Deer et al., 1992). 
Results obtained using SP2 method.  

  

Micas from the outermost region and from internal regions of the sandstone were then 

compared to investigate any differences potentially caused by decay within this region.  

Figure 4-35 shows that, in the two samples studied there is little difference in the element 

ratios between the outermost and innermost regions.   These were performed using SP1, 

which has a slightly greater potential error than SP2, but does provide an accurate 

mineral position within the sandstone.  No clear difference is seen in the Si and Al ratios 

between the top and bottom, whilst data from UN1 is tightly clustered. 
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The minor element composition was then examined for the same micas used in Figure 

4-35.  Within these there does seem to be a slight variation in the element quantities 

between the outermost regions and the inner regions.  For both the CS4 and UN1 micas, 

those at the surface have a fractionally smaller quantity (~1.5%) of potassium (Figure 

4-36).  In addition, the micas from the top in CS4 also have a smaller proportion of iron, 

although this is not seen in the UN1 sample (Figure 4-36).  All mica EDX data can be found 

in the electronic appendix. 
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Figure 4-35: Quantitative EDX results for SiO2 v Al3O2 within muscovite. 

Compositions between outermost surface and interior regions within CS4 and UN1, 
prepared using the SP1 method. 
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Figure 4-36: Quantitative EDX results for ratio of K2O to FeO within muscovite. 

Compositions between outermost surface and interior regions within CS4 (left) and UN1 
(right), prepared using the SP1 method. 

 

4.6.2.2  Raman Spectroscopy of Muscovite 

Raman spectroscopy was undertaken to determine whether any changes to the crystal 

structure of the mica had occurred within the outermost region (2mm) of the sandstone. 

The phyllosilicate minerals show a range of peaks between 50-1250 cm-1; for 

simplification these have been divided into two main sub-categories.  The low 

wavenumber region is 50-300 cm-1, and includes peaks at 100, 160, 195, 220, 240 and 270 

cm-1 which have been assigned to vibrations involving the interlayer cation (Tlili et al., 
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1989).  The second sub category is from 300-1250 cm-1 and includes peaks at 640, 654, 

702, 715, 1058 cm-1 and a wide shoulder between 400- 435 cm-1; these peaks are 

assigned to vibrations of the Si2O5 layers (Tlili et al., 1989).  A third set of peaks were also 

identified between 3600-3750 cm-1 and are attributed to the stretching of the OH bonds 

(Wang et al., 2002).  In this study, only peaks between 50-1250 cm-1 were analysed in 

order to minimise confusion due to the large array of peaks within the micas.  In addition, 

owing to the variety of phyllosilicates and therefore range of possible bonds not all of the 

peaks will be of equal strength and in some cases may be absent (Tlili et al., 1989).   

Raman spectra were taken from phyllosilicates in samples CS4, UN1 and UE3 and, where 

possible, from the same micas as chemically analysed by EDX.  Spectra were obtained 

from crystals in both the outermost two millimetres and the innermost two millimetres of 

the sample with a minimum of four micas being analysed in each region.  For each 

mineral grain analysed, a minimum of two spectra were acquired so that an average 

spectra could be determined, as the spectra may change over the length and breadth of 

crystals due to their complex layered structure and potential zoning.  

The spectra collected are mostly consistent with the dioctahedral phyllosilicates 

muscovite and paragonite.  Spectra collected from the internal parts of each sample 

consistently show peaks at 195, 262, 270, 408, 464, 702, 750 and 1058 cm-1, but an 

additional peak at 220 cm-1 is frequently masked by the more prominent 195 cm-1 peak.  

The strongest peak is at 270 cm-1.  Of the two analyses taken from each mineral grain 

within the internal section, one spectrum shows a very clear correlation to muscovite.  

This is in contrast to minerals in the outermost region of the sample where much weaker 

spectra were obtained and in most cases no clearly defined muscovite spectra were 

collected, an example of this is shown in Figure 4-37. 

Furthermore, internal spectra show a peak at 1058 cm-1 which is absent in the spectra 

from the outermost region of the sandstone.  This feature is prominent in UN1 and CS4 

and could be due to a loss of one of the SiO bonds.  The 220 cm-1 peak is much more 

obvious in the outermost surface spectra as the 195 cm-1 peak is much weaker and is 

therefore not over shadowing it.    
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During analysis, a few weak spectra were acquired from the micas from within the 

interior of the samples.  These few weak spectra from within the “unweathered” region 

of the sample may be a relic of the original diagenetic history.  In contrast, the lack of any 

strong defined muscovite spectra from the top regions of the samples shows that this is a 

product of later weathering, i.e. post-construction. 

These results show that there is a very clear difference between grains in the outermost 

parts of samples and the internal muscovite observed in both CS4 and UN1, and indicate 

that SiO2 and the interlayer cation bonds are being broken down to produce weakened 

Raman spectra.  Spectra from UE3 show a few high quality muscovite spectra within the 

surface region and at 2 mm depth (Figure 4-38) and may indicate that the micas within 

this sample have experienced less weathering in comparison to the other sample.  The 

lack of weathering evidence is possibly a product of the microenvironment surrounding 

the University building.     

 

Figure 4-37: Raman spectra from muscovite at surface and interior within CS4. 

Black: two spectra from one mica grain at a depth of ~20 mm, blue: two spectra from one 
mica mineral at a depth of 0.1 mm from the surface.  
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Figure 4-38: Raman spectra from UE3. 

All spectra taken from the outermost 2 mm of the sample. 

 

4.6.2.3  Depth Profile Using Muscovite 

Due to the clear difference between Raman spectra from its interior and exterior regions, 

UN1 was used to investigate whether muscovites could be used to define and quantify a 

weathering profile within the sample.  For this study, a ~2 mm wide section through the 

middle of the sample was investigated from the surface to the interior and each mica 

grain within this cross-section was analysed, and its depth from the sample surface was 

recorded.  Three spectra were taken from each grain to compensate for any anomalous 

results that may have been caused by the sheet structure.  A total of 26 micas were 

recorded, and their Raman spectra show very good correlation with depth.  Until a depth 

of 12.6 mm from the surface, none of the 14 micas analysed show a significant Raman 

spectrum.  However, the next mica examined at a depth of 14.6 mm shows weak spectra 

and, between 14.6 mm and 21 mm, intermediate defined spectra are located in the 

sample.  Once a depth of 21 mm is exceeded, all micas analysed (five in total) showed 

high-quality spectra with well defined peaks; a representative selection of these results is 



Mineralogical and Chemical Results  194 

shown in (Figure 4-40).  With this evidence it can be concluded that there is a weathering 

profile for mica minerals located at a depth between 14.6 mm to 21 mm in the UN1.  To 

test the consistency of these results, the same procedure was conducted on CS4 and 

similar results were found, although it was not until a depth of 12- 16 mm from the 

outermost surface that unmodified and strong mica spectra were identified; a 

representative selection of results are shown in Figure 4-39.        

 

Figure 4-39: A selection of Raman spectra for micas from UN1. 

A selection of spectra was chosen to highlight the main Raman trend within the sample. 
Dark green: 4.1 mm from surface; green: 5 mm from surface; black: 14.6 mm from surface; 
purple: 17.2 mm from surface; red: 21.9 mm and 22.4 mm from surface. 
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Figure 4-40: Raman spectra for micas within CS4. 

Dark green: 0.6 mm from outer surface; green: 1.1 mm from surface; black: 12.4 mm 
surface; purple: 15.2 mm from surface; red: 23.8 mm from surface. 

 

The use of Raman spectroscopy in locating weathered minerals is a completely new 

technique, which enables identification of weathering in sandstones and, in particular, 

those which are carbonate poor.  It can accurately show the spatial weathering as well as 

the intensity of weathering the sandstone has experienced and this process also shows 

the power of Raman spectroscopy in identifying modifications to minerals undetectable 

by other techniques. 

 

4.6.2.4  Summary 

These results indicate that micas are affected strongly by chemical weathering and these 

effects are seen in less than 200 years.  Although the EDX analysis does not indicate any 

change in the major element compositions of the micas with depth, there is a small shift 

in the potassium concentration between those at the surface and those internally.  This 

coincides with the breakdown cycle of muscovite and biotites where the first stage of 

weathering involves the replacement of potassium ions by water molecules (Mitchell and 

Taka, 1984).  Thus, this first stage in breakdown may be reflected in the EDX results.  
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Furthermore, when the same mica crystals were analysed by Raman spectroscopy, it 

shows clearly that micas at the outermost surface are being strongly affected and 

producing spectra that are not easily distinguishable as muscovite.  Therefore, although 

ions are present (shown by the EDX results), the bonds between them are being broken 

to leave an “ionic slurry” and most probably it is the potassium bonds which are being 

affected.  This leaves the mica minerals susceptible to attack from lichens and other 

microorganisms scavenging for nutrients as well as chemical weathering by dissolution.  

The weathering depth profiles show that the breaking of bonds in muscovite is happening 

down to depths greater than ~12 mm from the exterior surface.  Therefore these micas 

have suffered a great deal of weathering within a short time frame (150 years).  

4.6.3 Carbonate cement 

Each sample set contains a minimum of one block with a carbonate cement. Using BSE 

imaging with SEM equipment often leads to difficulties in distinguishing the type of 

carbonate minerals present, as small variations in the proportions of Ca, Fe or Mg will 

change the classification of the carbonate.  Therefore, EDX and Raman spectroscopy 

techniques were conducted to constrain the cement present within each sample set. 

4.6.3.1  EDX Microanalysis of Carbonate 

As the structure and composition of these minerals is completely different to the 

phyllosilicates, a new EDX set up was used (as outlined in section 2.1.1.6).  The main 

alterations regarding this set up are that oxygen is measured, while carbon is added 

stoichometerically.  Again, the two sample preparation methods (SP1 and SP2) were 

compared.  For each sample, numerous EDX spectra were acquired from the carbonate 

throughout the sample.  Although the preparation method is a very important 

consideration, results from SP1 and SP2 are found to be very similar.  SP2 does, however, 

produce a slightly tighter clustered set of data (Figure 4-41A and B), suggesting a lower 

error within the results.   

The EDX results were collected as weight percent element, which was then converted to 

weight percent carbonate.  The atomic weight of the molecule could then be used to 

finally convert the original data into moles percent, the results of, which are presented in 
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the following ternary diagrams.  Full details about the formula used for the ankerite data 

can be found in the electronic appendix.     

 

Figure 4-41: Quantitative EDX results from carbonates plotted on a Ca-M-Fe, ternary plots, 
comparing SP1 and SP2. 

Left) EE3; Right) CS4.  Data are expressed as mole % carbonate.  Black line represents the 
cross over from dolomite to ankerite with all plots on the ankerite side of the division.  

 

As SP2 produced a tighter cluster of results in comparison to SP1, these data were used 

for all sample sets and results are plotted in Figure 4-42.  All data points plot in the 

ankerite segment of the ternary diagram, with CS4, EE3 and UN3 having very similar 

compositions whereas D7 has a slightly higher Fe content (Figure 4-42), although it is still 

categorised as ankerite.  The average amount of each constituent for the samples are 

shown in Table 4-8.  All carbonate EDX data can be found in the electronic appendix. 
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Figure 4-42: Quantitative EDX results plotted on Ca-Mg-Fe, ternary plot for ankerites. 

Chemical analyses have been obtained from samples which were prepared using SP2; data 
are expressed as mole % carbonate.  

 

Table 4-8: The average amount of each constituent within the ankerite expressed as moles 
percent, with the standard deviation. 

Sample CaCo3 Mg CO3 FeCO3 

CS4 50.2 ± 0.4 32.1 ± 1.2 17.2 ± 0.7 
EE3 50.4 ± 0.4 32.9 ± 0.7 16.2 ± 0.4 
UN3 49.9 ± 1.1 33.9 ± 1.2 15.6 ± 0.2 
D7 49.1 ± 1.4 28.8 ± 2.6 21.3 ± 2.9 

 

4.6.3.2  Raman Spectroscopy of Carbonate 

EDX results confirmed the carbonate cement to be ankerite, but greater insight into the 

identity and properties of the carbonates was provided by Raman spectroscopy.  The 

peaks unique to ankerite are at 165, 290, 720, 1095 cm-1 (Bernard et al., 2008), although 

their positions are not allocated to specific bonds.  The internal regions of samples, UN1, 

UE3, UN3 (University), EE4 and CS4 (SVS) were analysed.  In these samples, the majority 

of spectra show the three longer wavenumbers bands (290, 720 and 1095 cm-1), although 

the 165 cm-1 peak was absent.  However, most spectra also show a peak at 170±1 cm-1 

(Figure 4-43).  Some of the spectra show all the main ankerite peaks but, below            

~200 cm-1, there are a variety of extra peaks, which may be due to contamination by 

kaolinite or Fe-oxides.  Analyses were then taken from ankerite located in the outermost 

region and the deepest internal region of EE4 for comparison.  The 170±1 cm-1 peak is 

seen in both the top of the sample and in its lower regions (Figure 4-44) and therefore is 
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not believed to be an effect of weathering.  However, a small shift has occurred in the 

position of the major peak at 1095 cm-1, and this feature may be a product of weathering.  

However, as previously stated, it is unknown what bond within the sample this 

represents.   

 

Figure 4-43: Raman spectra for ankerite. 

 

 

Figure 4-44: Raman spectra from ankerite within EE4 only. 

Black) two ankerite spectra from the sample outer surface, blue) two ankerite crystal 
spectra from internal regions. 

 



Mineralogical and Chemical Results  200 

4.6.3.3  Summary  

All sample sets contain ankerite with a similar chemical composition, rather than a unique 

composition per set (no trace minerals were indentified), which may have helped identify 

the quarry from which the original sandstone was excavated.  In EE4, a slight shift in the 

main peak position has occurred, which may be an effect of weathering however, the 

particular bond that has been changed is unknown. 

4.6.4 Oxides 

As Fe-oxides and hydroxide minerals are composed of the same two elements they are 

difficult to distinguish by EDS and EDX alone.  Raman spectroscopy was also used as it 

should detect the differences in the structure of the bonds and hence help identify 

different generations of Fe-oxide produced by decay. 

4.6.4.1  Raman Spectroscopy of Oxides 

Raman spectroscopy was undertaken on Fe-oxides in samples D7 (Dalry School), RGU2 

and RGU5 (Unknown Stirling sandstone) and UN1 and UN3 (University).  As the structure 

is highly variable within the Fe-hydroxides and oxides, considerable research has already 

been conducted into them using Raman spectroscopy ((Johnston, 1990; Neff et al., 2006; 

Larroumet et al., 2007); their results are listed in Table 4-9.   

Table 4-9: Raman band positions of various iron oxides and oxyhydroxides. 

Data taken from,  
A
 = Jonston (1990), 

B
 = Neff et al (2006), 

C
 = Williams and Smith (2007).    

Mineral Formula Band Positions (cm-1) 
Goethite α-FeOOH 393, 307A  

299, 387,554C 

Ankaganeite β-FeOOH 400, 680B 

Lepidocrocite γ-FeOOH 257, 393A            

250, 379,525, 650B  

250, 376C                                                                                                                    

Haematite α-Fe2O3 223, 296, 406A 

293, 299, 412, 613C 

Magnetite  380, 500, 700, 670, 720B 

 Fe(OH)3 303, 387, 698C 
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The most commonly occurring spectra belongs to goethite, which was detected in D7, 

RGU2 and RGU5 (Figure 4-45).  This is not wholly unexpected, as goethite is one of the 

most common Fe-oxides.  The wide range in peak position for each Fe-oxide/hydroxide 

makes identification very difficult, as the spectra may also be variations of structures 

which are in different states of weathering.  The Fe-oxides and hydroxides may also be 

contaminated by ankerite, as many are produced through this weathering process.  

However, haematite may be present in RGU5 and possible rhodochrosite, which has been 

previously found in other Glasgow sandstone (Hughes and Tennent, 2008), although 

further investigations would be necessary to clarify this.    

 

Figure 4-45: Raman spectra of goethite from 1 mm depth from the surface within RGU2. 

  

4.6.4.2  Raman and EDX results discussion  

Raman spectroscopy indicates that there are differences between the kaolinite and 

muscovite crystals at depth, compared to those in the outer ~2 mm of the sandstone.  

Raman results suggest dickite to be present in the outer regions of samples D6 and D7 

and, as this mineral is not found elsewhere within the samples, its presence indicates a 

kaolinite to dickite transformation has occurred.  In addition, kaolinite was less crystalline 

at the outermost surface of CS4 in comparison to the internal region, shown by a shift in 

the V5 position.  Less crystalline varieties of kaolinite were also detected by mid- and far-

infrared studies in the weathered section of Maroubra Sandstone from Sydney (O'connor 

et al., 2001).  Raman spectroscopy also reveals a “weakened” mica structure in the outer 
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regions of samples showing increasingly diluted spectra, suggesting that many bonds are 

being broken down simultaneously rather than one specific bond.  Within this study, this 

process has been identified in the Dalry, University and SVS samples.  CS4 (St Vincent 

Street) is the only sample where both mica and kaolinite are affected.  However, unlike 

mica weathering, the changes in the kaolinite Raman spectra are much more subtle and, 

if both a wider set of samples and more kaolinite minerals were analysed, more kaolinite 

changes may have been identifiable.  The chemical changes shown by Raman 

spectroscopy and EDS are summarised in Figure 4-46.   

 

Figure 4-46: Sketch of chemical weathering for muscovite and kaolinite depths identified by 
Raman spectroscopy in CS4.   

  

4.6.5 Chemical Weathering Discussion 

All the sandstone used in the Glasgow buildings studied originate from the Scottish Coal 

Measures Group, which is known to have kaolinite as the main clay present suggesting 

that the sandstones were laid down in rivers, delta distributaries and channel 

environments (see section 1.4).  These depositional environments have been found to 

produce sandstones with inherent weak petro-physical properties leading to greater rates 

of decay (Weber and Lepper, 2002).  The sandstones in this study have also been shown 

to have rapid rates of decay, and the associated weathering processes observed are 

discussed next.   

The results from the detailed point counting, EDX and Raman spectroscopy, show that 

many forms of chemical weathering are identifiable in the sandstone, affecting both 

detrital and diagenetic minerals.  The formation of a hardened layer is evident in most 
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samples, whether it is at the outermost surface or a few millimetres below.  Case 

hardening is caused by a quartz-rich layer in comparison to the overall quartz proportion 

and is normally seen in conjunction with a porosity low and a layer enriched in either Fe-

oxide or kaolinite.  This process seems to occur rapidly after the initial placement into the 

building.  The RGU samples, which have only been weathered for 12 years and already 

have a wide ranging original composition, show the formation of this layer at a depth of 

4-5 mm from the outermost surface.  The permeability results indicate that the samples 

tested (UE2, UN2, UN3, DH, EE3 and CS4) have a very normal porosity to permeability 

ratio, therefore the rate of water transport is within the expected range for the 

sandstones used to construct many of Glasgow’s buildings.  The movement of the Fe-

oxides and kaolinite are associated with the transport of water.  The production of a 

quartz rich layer at depth has not previously been described because it is normally seen 

as a surface feature (Conca and Rossman, 1982; Viles and Goudie, 2004).  However, the 

buildings studied by those authors are much older than the ones used in the present 

study.  Therefore, the hardened layer may form at depth and progressively move to the 

outermost surface as seen in the older sample sets as the sandstone becomes weathered, 

producing a typical case hardened surface.            

As previously discussed, the carbonate cement, in rare cases, was altered through 

chemical weathering to form Fe-oxide and hydroxide pseudomorphs, showing a clear 

depth profile of weathering.  However, the majority of samples which contain carbonate 

contain unreacted carbonates.  Raman and EDX results both indicate that ankerites in 

both reative and unreactive sample sets has a very similar composition.  Therefore, we 

can assume that the composition of the carbonate cement is not rendering it unreactive.  

Possibly the black crust on the surface is protecting the ankerites from dissolution, as the 

crust may have formed more rapidly than the cement could breakdown.  

Kaolinite and muscovite have also experienced chemical weathering.  Kaolinite 

experiences two types of transformation: 1) a less crystalline form seen at the weathered 

surface and 2) a kaolinite to dickite reaction.  These both occur within the outermost 2 

mm but with no evidence of deeper transformations.   

There is evidence of muscovites being altered at a much greater depth; ~12 mm within 

the samples.  The bonds within the muscovite are being broken down, rather than the 
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depletion of a specific element, as EDX results indicate invariant ratios of elements in the 

outermost and interior minerals.  Interestingly, the processes affecting the kaolinite and 

micas are seen within samples where the ankerite has remained unreactive, such as CS4.  

This may mean the initial stages of muscovite weathering can occur much more rapidly 

than ankerite (i.e. before the protective crust can form) and/or that the muscovites are 

much more reactive than first thought.        

As outlined above, several minerals have experienced various forms of chemical 

weathering, but these results reveal no visual evidence of physical weathering affecting 

any mineral grains besides the ankerite.  The CL-SEM results indicate intact quartz 

overgrowths, whilst BSE imaging shows no pitting or cracking of the quartz grains.  

Although secondary porosity is seen within the K-feldspars, this is a feature present 

throughout the whole sample depth and so is very unlikely to purely be a weathering 

effect. 

This is surprising as the dissolution rate of K-feldspar is so slow that, even in the most 

acidic solutions, only a few micrometres of material will be lost per century (Lasaga, 1998; 

Duthie et al., 2008).  Thus, contrary to Kamh (2005b), we propose that feldspar 

dissolution is not an important decay process in building sandstones.  

In conclusion, these results indicate that, within the ≤150 year life time of these buildings, 

chemical weathering is definitely taking place.  Kaolinite and muscovite, which may have 

previously been thought to be unaffected by weathering, are primarily being broken 

down.  The bonds present are disintegrating, leaving the structure weakened and more 

likely to be affected by subsequent weathering processes.  Chemical weathering is 

predominantly affecting samples to a depth of 6 mm but, in many sandstones sampled, 

the effects of chemical weathering can be seen to a depth of ~12 mm within the 

carbonate and muscovite grains. 
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5 Microbial Results 

Microorganisms are found inhabit rock in almost all environments from polar extremes 

(Friedmann, 1982; Hughes and Lawley, 2003; Omelon et al., 2007) to hot desserts (Potts 

and Friedmann, 1981; Schlesinger et al., 2003; Davila et al., 2008).  This research has also 

shown their presence to be damaging to the substrate.  Microbial activity is particularly 

harmful to free standing monuments and buildings, as highlighted in section 1.2.8, 

although little work has been conducted within Scotland’s built heritage.   

This chapter aims to answer the following questions: 

 Where do the microorganisms inhabit, surface or internal? 

 Which microorganisms are present, and in what quantities do they occur? 

 What is the rate of colonisation? 

 What impact does the external climate have on the microbial communities? 

 What impact do microbes have on stone properties and what impact do stone 

properties have on microbes? 

 Finally, how do microorganisms impact on the rates and mechanism of sandstone 

decay? 

These topics will be examined using a variety of techniques such as protein and 

chlorophyll-a assays, osmium stained polished blocks and optical light transmission 

experiments.     

5.1 Dalry School  

Eight samples were taken from two facades of the Dalry school building, as listed in Table 

5-1.  An in-depth mineralogical description of each sample can be found in section 4.3.1. 
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Table 5-1: Sample identifiers and corresponding sample sites for Dalry. 

Sampling Area NE Facade SE Facade 

Whitened zone D1* D7 
Sills D2 D5 
General  black weathering D3* D6 
Mullions D4 D8 

Where * appears it indicates multiple core samples were taken. 

 

5.1.1 Protein and Chlorophyll-a Assays 

Protein and chlorophyll-a assays were undertaken as outlined in section 2.1.4.  For this 

set of experiments, approximately half of the core’s surfaces were sampled for each 

assay. 

Protein assay results are shown in Figure 5-1A.  The modified Lowry protein assay results 

show that all cores sampled do have protein present on their surfaces.  Cores D2 and D5 

(from sills) have the highest concentrations of proteinaceous material (257 μg/cm2 and 

104 μg/cm2 respectively), whilst D4 has the smallest amount (4.1 μg/cm2) within this set 

(Figure 5-1A).  The three D1 cores (1A, 1B, 1C) were taken from a block with an area of 25 

x 40 cm, the results have a relative standard deviation (RSD) of 50.4%, whilst the D3 cores 

(3A, 3B, 3C) taken from a similar sided area as D1 have a RSD value of 45.8%.  This shows 

a large degree of spatial variability in the location and amount of proteinaceous matter 

on the surfaces of these samples.   

Chlorophyll-a assays confirmed the presence of photosynthetic material on the surface of 

all cores (Figure 5-1B) with the exception of D6 and D1A.  D7 (whitened zone) shows the 

highest concentrations of chlorophyll-a, peaking at 0.97 mg/cm2, whilst the rest of the 

samples range from 0.05 - 0.5 mg/cm2.  Triplicate chlorophyll-a assays were undertaken 

on D1 and D3 cores.  The chlorophyll-a on the D1 core has a RDS of 88.9% whilst the RSD 

of the D3 cores is 23.1%.  
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Figure 5-1: Protein and chlorophyll-a assay’s for Dalry samples. 

A) Protein assay, which is positive on all samples, B) chlorophyll-a assay, which shows it is 
present on all samples except D6 and D1A.  

 

These results indicate that both photosynthetic and non-photosynthetic microorganisms 

inhabit the surface of the sandstone.  The types of microorganisms present do not show a 

particular preference towards either side of the building, with D2 (NE facade), D5 and D7 

(both SE facade) showing the largest quantities of protein and chlorophyll-a within this 

sample set.  The zero chlorophyll-a result for D6 could either be because all protein 

detected is from a non-photosynthetic source or due to the variability of photosynthetic 

material that was sampled.  The results show that the spatial variation of protein and 

chlorophyll-a is very high within these samples, as there is a high variability (protein = 

50.4% and chlorophyll-a = 88.9% over a small area (25 x 40 cm). 
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5.1.2 SEM Imaging of the Outer Surface of the Stones 

Small fragments of the outermost surfaces of each stone block were broken off and 

examined using the FEG-SEM in low vacuum conditions, in order to image and identify the 

microbes present.  

The surface of D1 (whitened zone) shows quartz grains surrounded by fragments of 

kaolinite, quartz and unknown particulates possibly atmospheric dust which may include 

pollutants (Figure 5-2).  Dehydrated extracellular polysaccharides (EPS) are seen in oval 

crevices between larger grains.  These have a honeycomb appearance (~250 µm in 

length), and the gel-like EPS has trapped small mineral fragments (Figure 5-2).  There are 

some possible filamentous cyanobacteria with a similar morphology to that of 

Phormidium (Rippka et al., 1979).  These are unbranching and appear smooth, while the 

filaments are only a few microns thick.  Calcium oxalates are also present on the surface 

of the sample (Figure 5-2) and were identified through spot X-ray chemical analysis in the 

SEM (location of spot analysis is illustrated on Figure 5-2).   

On the surface of D2 (sill) large quantities of filamentous cyanobacteria with a 

morphology similar to Ossillatoria or Scytonema (Rippka et al., 1979) are seen.  These 

microbes are ~10 µm thick and no internal cell structure can be seen in the FEG-SEM 

(Figure 5-2).  Calcium oxalates were identified but, due to the “dirty” appearance of the 

surface (caused by the abundance of small mineral fragments and likely atmospheric dust 

debris), dehydrated mats of EPS could not have been seen even if they were present.   

The surface of D3 (general back weathering) shows large quantities of the dehydrated 

EPS, occurring within depressions on the sample surface, as well as communities of 

possibly both the filamentous Phormidium and Ossillatoria/Scytonema.  Thicker and 

thinner strands are both present and resemble a web-like network covering the 

sandstone (Figure 5-2).   

The surface of D4 (mullion) had a large mass of kaolinite and quartz fragments and 

possibly contains fly ash and soot particles (Figure 5-2) (as these are typical Glasgow 

pollutants; McDonald and Duncan, 1979), infilling the space between larger detrital 
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grains.  It was therefore difficult to draw any conclusions about whether organic matter 

was present, as this debris may have obscured microbial matter.   

The minerals on the surface of D5 (sill) have a possible thick paint coating distorting the 

grain shape beneath (discussed section 2.1.1.6 ).  However, on top of this surface and 

sitting within depressions are areas of dehydrated EPS (Figure 5-3) up to 150 µm in 

diameter.   

D6 (general black weathering) has a similar surface to D4 (Figure 5-3).   

The surface of D7 (whitened zone) has an abundance of calcium oxalates in small (20 μm) 

patches.  These calcium oxalates have the same honeycomb texture as the dehydrated 

EPS (Figure 5-3), although no EPS was identified on this sample.   

D8 (mullions) has a film covering the grains at the surface, which is white under the SEM 

in BSE imaging mode (i.e. has a high atomic number Figure 5-3) and is discussed 

extensively in section 3.1.2.  However, dehydrated EPS is seen on the surface but is 

restricted to crevices, which are normally oval in shape and 150 - 250 µm in length (Figure 

5-3). 
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Figure 5-2: FEG-SEM SE images of Dalry outer surfaces fragments D1-D4 (note varying 
scales on images). 

Yellow arrows = dehydrated EPS, orange arrows = Ca oxalates, red arrows = filamentous 
cyanobacteria, D1) Ca oxalates and dehydrated EPS within a crevice, spot indicates area of 
spot analysis for the Ca oxalates, D2) filamentous cyanobacteria, D3) mat of filamentous 
cyanobacteria, D4) undistinguishable surface with large amounts of small fragment on 
surface. 
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Figure 5-3: FEG-SEM SE images of Dalry outer surfaces fragments D5-D8 (note varying 
scales on images). 

Yellow arrows = dehydrated EPS, orange arrows = Ca oxalates, D5) smooth surface with 
EPS forming in hollows, D6) undistinguishable surface with large amounts of debris, D7) Ca 
oxalate with honeycomb structure of the dehydrated EPS below, D8) hollows filled with 
dehydrated EPS. 

 

5.1.3 Osmium Stained Cross-Sections  

An osmium stained polished block was made for each sample to show a cross-section of 

the core, from the outermost surface to internal regions.  As osmium has a high atomic 

number and preferentially stains organic material, it highlights any cryptoendolithic 

communities within the sample (detailed in section 2.1.5).  Of the eight samples studied, 

only four showed any osmium stained organics within the sandstone, and these were the 

samples from the SE facade (cores D5, D6, D7 and D8).  Core D7, taken from the whitened 

zone, was most abundant in organics within this set whilst core D8, retrieved from the 

black weathered mullions, had the least.   The organisms present in D5, D7 and D8 have a 

morphology consistent with cyanobacteria Gleocaspsa (Rippka et al., 1979).  These are 

globular cells generally less that 5 μm in diameter within large expanses of EPS (Figure 
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5-4).  These microbes were found to a depth of 2 mm, with the highest concentrations 

occurring between grains at the sample surface.  Some filamentous cyanobacteria, or a 

fungus, are seen in D6.  It has thin hyphens and was found at a greater depth within the 

sample (up to 13 mm beneath the surface) exploiting a fracture infilled with a highly 

organic-rich substance (Figure 5-4), a high abundance of carbon was identified by spot X-

ray chemical analysis.  These are likely to be fungi rather than cyanobacteria due to the 

light requirements for photosynthesis (see later discussion). However, no globular 

cyanobacteria were present in D6.     

 

Figure 5-4: FEG-SEM BSE images of osmium stained polished blocks of Dalry stones. 

Q = quartz grain, R = resin, yellow arrows indicate globular cyanobacteria, red arrow 
indicates filamentous cyanobacteria.  D5) cyanobacteria on the surface between quartz 
grains, D6) filamentous cyanobacteria within organic rich area of the sample, D7) 
cyanobacteria infilling a pore space 2 mm beneath the surface, D8) shows minimal 
cyanobacteria on the surface of the sample.  
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5.1.4 Dalry Summary 

Results from the FEG-SEM analysis of the outer stone surface and the protein and 

chlorophyll-a assays generally correlate very well.  Those samples that displayed a high 

protein and chlorophyll-a assay results also show an abundance of microorganisms, which 

were easily identifiable under the SEM.  The only surface which does not show a clear 

relationship is D2, as only a small amount of microbial matter was identifiable on the 

outer fracture surface, whereas the assays suggests much more should be present.   

Dehydrated EPS has been identified on both facades of the building and is the most 

widespread organic material recognised on the surface of these samples.  Calcium 

oxalates are also prevalent on both sides of the building and are often seen to be 

mimicking the honeycomb texture of the dehydrated EPS.  In the case of D7 where no EPS 

is directly seen, the presence of the Ca-oxalates in a honeycomb formation provides 

evidence that microorganisms within the EPS may have once been present on this 

surface.  Significantly, the filamentous cyanobacteria seen on the stone surface are 

restricted to stone surfaces on the northeast facade whilst only minimal evidence for 

surface colonisation by microbes was found on the southeast facade.  However, when the 

osmium stained polished blocks were analysed, no subsurface (cryptoendolithic) 

communities were observed in the northeast face, but large communities of globular 

cryptoendolithic were seen in the southeast facade.  Results are summarised in Table 5-2.       

Two species of filamentous cyanobacteria were identified on the surface of the 

sandstones and these had morphologies consistent with Phormidium and 

Oscillatoria/Scytonema, whilst the cryptoendolithic cyanobacteria have a bulbous form 

consistent with Gleocapsa. 

Table 5-2: General microbial observations from the Dalry School samples. 

Facade Surface Interior Type 

NE  X filamentous 
cyanobacteria 

SE X  globular 
cyanobacteria 

 



Microbial Results  214 

5.2 RGU Samples 

Six cores were acquired from the RGU test walls, but only four of these were blond 

sandstones: Cat Castle (RGU2); Stainton (RGU3); unknown Stirling sandstone (RGU5); and 

Clashach (RGU6).  Core one is Leoch granite (RGU1) and core four is Locharbriggs red 

sandstone (RGU4) and, as these were not blond sandstone, they were not analysed in all 

experiments.  In addition, a loose block of Blaxter (blond) sandstone was retrieved from 

RGU.      

 

5.2.1 Protein and Chlorophyll-a Assays 

Protein assays were conducted on all samples with the exception of the Blaxter sandstone 

block and RGU6, where the fine-grained texture and thick quartz overgrowths of Clashach 

meant that no scrapings could be collected from its surface.  Protein was found on all 

surfaces, generally ranging from 4.2 µg/cm2 to 15 µg/cm2 (Figure 5-5A).  The RGU4b result 

is much higher (78.1 µg/cm2) than the other results, as the sample was taken from an 

area which had a patch of moss growing on it. 

Chlorophyll-a assays were conducted on the same samples as the protein assays.  

However, the results are much sparser with only RGU4 and RGU5 showing any 

chlorophyll-a: RGU4a = 0.23 mg/cm2 and RGU5 = 0.28 mg/cm2 whilst RGU4b is much 

higher again due to the moss (Figure 5-5B).  The lack of chlorophyll-a in RGU1, RGU2, and 

RGU3 indicate that the protein found on their surfaces was from non-photosynthetic 

sources, such as fungi or bacteria, whilst RGU4 and RGU5 contain either purely 

photosynthetic microorganisms or a mixed community.  
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Figure 5-5: Protein and chlorophyll-a assays for RGU samples. 

A) Protein assay, B) chlorophyll-a assay.  These results show that although protein is 
present on all sample surfaces, it is not always from a photosynthetic source.  

  

5.2.2 SEM Imaging of the Outer Surfaces of the Stones 

Only the blond sandstone samples were examined in these experiments (RGU2, RGU3, 

RGU5 and RGU6).  Small fragments of the surface were broken off and observed using the 

FEG-SEM in BSE mode.  The fracture surface of RGU2 is speckled with dark clusters of 

deflated pods; each pod is 10-20 µm in size, indicating an algal species.  These colonies of 

algae live within hollows on the surface (Figure 5-6).  There is no evidence of any other 

organic material on the RGU2 surface, although it may be obscured by the kaolinite and 

quartz fragments found littering the surface and infilling depressions.  The surface of 

RGU3 shows no microbial communities living on its surface, although small quantities of 

dehydrated EPS with a honeycomb structure are seen, with Ca-oxalate encrusting the 

surface and taking on the form of the EPS (Figure 5-6).  Large quantities of a filamentous 

cyanobacteria <5 µm thick, with no identifiable internal structure, were found on the 

surface of RGU5 and have a morphology consistent with Phormidium (Rippka et al., 1979; 

Phoenix et al., 2006).  The inter-locking webs of filaments have gathered mineral 

fragments and atmospheric particles, binding them together on the surface of RGU5 

(Figure 5-6).  RGU6 has scattered dehydrated EPS which has decreased in size in the 

hollows where it occurs (Figure 5-6).  These regions of dehydrated EPS mats are ~200 µm 

in diameter, which is consistent in size with other EPS mats on Dalry samples but no 

calcium oxalates were found on RGU6.       
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Figure 5-6: FEG-SEM SE images of outer surface samples from RGU samples. Note varying 
scale bar on images.  

Yellow arrows = dehydrated EPS, orange arrows = Ca-oxalates, red arrows = filamentous 
cyanobacteria, green arrows = algal pods.  RGU2) algal pods within a hollow, RGU3) calcium 
oxalates forming on dehydrated EPS, RGU5) showing Phormidium binding rock fragments, 
RGU6) shrunken dehydrated EPS within hollows.   

 

5.2.3 Osmium Stained Cross-Sections 

The blond sandstone cores (RGU2, RGU3, RGU5 and RGU6) and the loose block of Blaxter 

sandstone were all used for the osmium staining experiments.  This technique did not 

show any stained microbes to be present within RGU2 and RGU5, but stained organic 

material does occur in RGU3, RGU6 and the Blaxter block. 

In RGU3, communities of bulbous microbes, which are comprised of 1-4 cells surrounded 

by gelatinous EPS, are found to a depth of 2 mm.  There, they form communities which 

can be seen infilling pore spaces with dimensions of ~1.5 x 1.5 mm (Figure 5-7); each unit 

is ~5 μm in diameter.  This microorganism is morphologically consistent with the 
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cyanobacteria Gleocaspa (Rippka et al., 1979).  The communities at the surface are 

dominated by EPS and are less densely populated than the internal communities (Figure 

5-7).  Small quantities of filamentous cyanobacteria material were also identified to a 

depth of 2 mm.   

RGU6 results show an abundance of microbial matter that lives between the surface and 

2 mm depth.  At the surface, large expanses of EPS with a low density population are seen 

infilling gaps between grains (Figure 5-7) whilst, at depth, semi-rounded cells (~2 µm in 

diameter with no internal structure) are infilling pores ~1.5 x 0.5 mm in size.  A smaller 

quantity of EPS is seen to surround these cells, in comparison to those at the surface and 

seen in RGU3, and are an unknown species at present.   

The microorganism communities found within Blaxter show a highly developed structure 

throughout the sample.  On the surface, only a few globular cyanobacteria are found 

(Figure 5-8A) but, at depths of 2-3 mm, dense populations of the same cyanobacteria are 

observed (Figure 5-8B) and these appear morphologically consistent with Gleocaspa.  

Deeper than this, the densely packed communities of cyanobacteria become sparser and 

are replaced by filamentous organisms at a depth of 7 mm (Figure 5-8C).  These branching 

filaments are only 2 μm thick and appear translucent under the FEG-SEM.  Due to their 

depth within the sandstone, they are likely to be fungus rather than filamentous 

cyanobacteria, given the light requirements for photosynthesis (see later discussion).  
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Figure 5-7: FEG-SEM BSE images of RGU polished blocks. 

RGU3 and RGU6, both samples show cyanobacteria and EPS engulfing pore space within 
the sandstone.  Q = quartz, K = kaolinite, yellow arrows = Gleocapsa cyanobacteria, green 
arrows = unknown globular cyanobacteria.  Both RGU3 and RGU6 show sparser 
populations on the surface with larger denser communities at 2 mm depth.   

 

 

Figure 5-8: FEG-SEM BSE images of Blaxter polished block. 

R = resin, Q = quartz, yellow arrows = globular cyanobacteria, red arrows = filamentous 
cyanobacteria.  A) Surface image of the cyanobacteria, B) dense community of 
cyanobacteria beneath the surface, C) fungus at a depth of 7 mm 

 

5.2.4 Summary 

Results from the surface protein and chlorophyll-a assay are consistent with the FEG-SEM 

observations of the rough surface.  The only inconsistency arises in evidence from RGU2, 
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where the chlorophyll-a assay detects nothing whereas the SEM images show large 

communities of algae living on the surface.  This may be due to them living within hollows 

and so were protected during sample collection, or the algae seen could possibly have 

contained chlorophyll ‘b’ or ‘c’ which were not tested for.   

Results for the blond RGU samples show a divide between the sandstones that have 

surface dwelling microbes in comparison to the cryptodendolithic microbial communities. 

Microbes seem to preferentially live on the surface of RGU2 (Cat Castle) and RGU5 

(unknown Stirling sandstone), whereas microbial communities are cryptoendolithic in 

RGU3 (Stainton) and RGU6 (Clashach).  A reason for this may be the translucency of the 

sandstones, with those containing cryptoendolithic communities having considerably 

smaller proportions of all other minerals besides quartz.  RGU3 and RGU6 have less than 

10% of these whilst RGU2 and RGU5 have 17.7% and 26.3%.  The purer quartz sandstones 

will allow more light to penetrate, supporting cryptoendolithic cyanobacteria (detailed 

further in later discussion).        

5.3  University Samples 

The samples for the University set were obtained from Southpark Avenue, University of 

Glasgow (a compositional review is in section 4.3.1).  Two facades of the building were 

sampled for microbial work, as listed in Table 5-3.    

Table 5-3: Sample identifier and associated facade for University set. 

East South East Facade North North East Facade 

UN1 UE1 

UN2 UE2 

UN3 UE3 

 UE4 

 

                                                                                                                                                                                            

5.3.1 Chlorophyll-a Assay 

The chlorophyll-a assays show that all the samples have a proportion of photosynthetic 

material on the surface (Figure 5-9), ranging from 0.03 mg/cm2 to 0.41 mg/cm2.  The 

largest amount within these samples is found on UE3.  The amount of chlorophyll-a found 
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on these samples is marginally lower than that on the RGU and Dalry samples.  However, 

two groups emerge from this data: UN1, UE1 and UE2 (0.03 mg/cm2 to 0.05 mg/cm2) have 

similar proportions of chlorophyll-a, whilst UN2, UN3, UN4 and UE3 have slightly higher 

levels (0.29 mg/cm2 to 0.41 mg/cm2) within this data set (Figure 5-9).   
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Figure 5-9: Chlorophyll-a graph for University samples. 

 

Protein assays were also conducted, but all samples returned with zero results.  This is 

theoretically impossible, as chlorophyll-a assays show that some photosynthetic microbes 

are present.  Therefore, it may be that the experimental procedure was not conducted 

properly.  However, due to limitations of the size and number of available samples these 

experiments could not be repeated. 

5.3.2 SEM Imaging of the Outer Surface of the Stones 

Outer surface fragments from these samples were broken off and imaged using the FEG-

SEM, to determine whether any organic material could be identified on the surface, but 

none was observed on any sample.  Large quantities of kaolinite, quartz, other mineral 

fragments, and possibly atmospheric dust, lie on the surface and these particles have 

infilled depressions on UN3, UE3 and UE4 (Figure 5-10).   Therefore, organic matter may 

have been obscured and hidden by the debris.  Samples UE1 and UE2 had surfaces similar 

in nature, where the quartz grains had a thin film coving them (discussed further in 

section 3.3.2).  The surface of UN2 is also discussed in section 3.3.2.  These surfaces with 

coverings did not show any evidence of inhabitation by microorganisms either.    
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Figure 5-10: FEG-SEM SE images of outer most surface of University samples.  

Samples UE3, UE4 and UN3, highlighting the particle-rich surfaces of the blocks. 

 

5.3.3 Osmium Stained Cross-Sections 

The osmium stained blocks from the University sample set were studied using the FEG-

SEM and prepared as outlined in section 2.1.5.  Of all the University samples studied, UE2 

is the only one that contains any stained microbial matter.  Microorganisms were found in 

abundance at the surface and to a maximum depth of 2 mm.  These microbes consist 

mainly of spherical cyanobacteria or algae with complex internal structures situated 

largely around the edge of the cell.  Cells range from 2-10 µm in size and are occasionally 

seen to be dividing (Figure 5-11).  These microbes are found within large expanses of EPS, 

colonising pore spaces and attaching themselves to mineral surfaces (Figure 5-11).  

However, no fungi or filamentous cyanobacteria were observed.  
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Figure 5-11: FEG-SEM BSE image of UE2 polished block. 

Q = quartz grain, yellow arrows = spherical microorganism within EPS.   

 

5.3.4 University Summary   

The FEG-SEM images of surface fracture samples indicate that the sandstones have been 

very poorly colonised by microorganisms, with only minimal identification possible.  

However, the chlorophyll-a assay shows all the University building samples to be positive, 

with an average of 0.22 mg/cm2 of chlorophyll-a on the surface.  This is marginally lower 

than the averages for RGU (0.25 mg/cm2) and Dalry (0.26 mg/cm2).  All these samples 

have a crust formation, whose presence may be obscuring and covering the microbes.      

When osmium stained polished blocks were examined, the results showed that only UE2 

contained osmium stained microorganisms living cryptoendolithically.  The only major 

difference between UE2 and the rest of the University samples was the lack of ankerite 

crystals at its surface.      

5.4  St Vincent St Church Samples 

All samples obtained from the St Vincent Street Church, Glasgow, are listed in Table 5-4.  

Some of these blocks have a mortar covering on the surface, and so not all were used in 

each experiment.   

 

 



Microbial Results  223 

Table 5-4: Sample identifiers for St Vincent Street church samples. 

East facade North-west corner 

EE1 CS1 (mortar) 

EE2 CS2 (mortar) 

EE3 CS3 (mortar) 

               EE4 (mortar)                        CS4 

Those with a mortar covering are indicated. 

 

5.4.1 Chlorophyll-a Assay 

The samples used for the chlorophyll-a assays were EE1, EE2, CS1, CS3 and CS4 and all 

tested positive for chlorophyll-a on the surface.  The results range from 0.07 to 0.42 

mg/cm2; CS1 has the most, peaking at 0.42 mg/cm2 (Figure 5-12), which is consistent with 

chlorophyll-a assay data from other sample sets.   

Protein assays were also conducted, but all samples returned with no results.  In common 

to the University results, this may be because the experiment procedure was not 

conducted properly but, due to sample size limitations, repeat experiments could not be 

carried out to validate the data preparation method.   

 

Figure 5-12: Chlorophyll-a graph for SVS samples. 
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5.4.2 SEM Imaging of the Outer Surface of the Stones 

Surface fragments were collected from CS4, EE1, and EE3 (those without mortar) and 

studied using the FEG-SEM in BSE low vacuum conditions.  The surface of EE1 is covered 

in fine-grained debris, comprised of fragments of kaolinite, quartz, and possible 

atmospheric particulates, as discussed in section 3.4.2.  However, some strands of 

filamentous cyanobacteria were detected, which are ~10 µm thick and appear semi-

transparent in SEM imaging; no internal structure could be seen due to the filaments 

gathering debris (Figure 5-14A).  These are akin to cyanobacteria Oscillatoria or 

Scytonema.  Figure 5-14A demonstrates the difficulty in identification when debris coats 

the filaments, thus hampering classification.   

 

Figure 5-13: FEG-SEM SE images of EE1’s outermost surface. 

Red arrows highlight Oscillatoria/Scytonema strands. 

 

The surface of EE3 and CS4 (Figure 5-14B) are both very similar to EE1 with a coating of 

fine-grained fragments although no other organics were identified (Figure 5-14).  

However, no microbial matter was identifiable.   
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Figure 5-14: FEG-SEM SE images of outermost fracture surfaces of SVS samples EE3 and 
CS4. 

No identifiable microbial matter was seen on these surfaces.   

 

5.4.3 Osmium Stained Cross-Sections 

When the SVS samples were osmium stained, all blocks tested negative for organic 

material with the exception of CS4 (this is also the only non-mortar covered sample from 

this facade).  A cyanobacterium consistent with the morphology of Gleocapsa was found 

and in association with EPS.  It was seen bridging quartz grains at the outermost surface 

(Figure 5-15).  However, the microbes were only seen to a maximum depth of 0.5 mm. 

 

Figure 5-15: FEG-SEM BSE image of CS4 polished block. 

Cyanobacteria surrounded by EPS between quartz grains on the surface. Q = quartz grains, 
yellow arrows = cyanobacteria.   

 

5.4.4 Summary of SVS Samples 

A clear view of the microbes living on the sandstone surfaces of these samples was 

particularly difficult to obtain due to the presence of mortar on the surface of many of 
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the samples, although the sandstone samples did seem to have a low bioreceptivity.  

Filamentous cyanobacteria are present, on the surface of EE1 and, internally on CS4 small 

proportions of globular cyanobacteria are also distinguishable.  These samples have a 

black crust on their surfaces which contains gypsum crystals (see section 3.4.2) and this 

crust is likely to be hindering the growth of microorganisms because the salt creates a 

hostile acidic environment on the surface.    

5.5 Discussion 

To examine microbial colonisation on the outer surface of the sandstones two techniques 

were employed: 1) protein and chlorophyll-a assays on surface scrapings and 2) FEG-SEM 

SE imaging of rough outer surfaces.  However, discrepancies between the two methods 

did arise for the D2, University and RGU2 samples.   

In the case of D2, the second highest chlorophyll-a measurement of any samples was 

recorded, but very little evidence of microorganisms was found through imaging of the 

surface.  

This discrepancy may be a product of spatial variation in colonisation, because the 

scrapings (for proteins and chlorophyll-a assays) and surface fragments (for SEM) were 

produced from different regions of the same core.  The triplicate results from D1 and D3 

also show that a large amount of spatial variation can occur on these stones, for both 

protein (RSD 47%) and chlorophyll-a (RSD ranging from 21-81%).  

The poor correlation in the University results, where chlorophyll-a was detected but no 

microbes were seen, may be due to the nature of the stone surface.  The samples were 

littered with loose mineral fragments and debris, potentially obscuring the identification 

of microbial matter.  Moreover, the surface filamentous cyanobacteria on other samples 

were seen to have mineral fragments caught within their structure, which could also 

hinder the identification of microbes on the University samples.  

In observations from RGU2, it was the chlorophyll-a assays which were negative whereas 

the SEM imaging clearly reveals algal matter inhabiting the surface of the sandstone.  The 

first possible reason for this contradiction is that only chlorophyll-a is analysed in the 
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experiments, whilst the algae may have contained chlorophyll ‘b’ or ‘c’.  However, this is 

unlikely as chlorophyll-a is much more abundant within algae, especially those identified 

on Scottish buildings (Urquhart et al., 1995).  Therefore, it is much more likely, that during 

collection, the algal microbes were not sampled, as they inhabit depressions protecting 

them from surface scraping (see Figure 5-7C).   

These methods, in general, complimented each other but highlight the benefit of 

combining the techniques as each procedure when conducted in isolation, has some 

limitations. 

The main surface microbes identified were filamentous cyanobacteria, with two main 

morphologies:  1) A thin (2 µm wide) unbranching cyanobacteria similar to Phormidium; 

and 2) a thicker variety (10 µm wide) which is also unbranching, but closer resembling 

Oscillatoria or Scytonema.  Calcium oxalates were also present on the surface of some 

samples, and these suggest that microbes were once present.  The calcium oxalates occur 

as a by product of reactions between microorganisms and calcium carbonates (Del Monte 

et al., 1987).  

The osmium staining results show that a third of all sandstones analysed had 

cryptoendolithic microbial communities and they occur within all the sample sets.  All 

internal microbes identified are globular cyanobacteria or algae, with up to three 

different morphologies identified, with the exception of D6, where filamentous 

microorganisms were observed, (Table 5-5).  One of the globular cyanobacteria seen 

could be Gleocapsa, whilst the other cyanobacteria is unknown but may be Gleocapsa at 

a different stage of growth/dehydration.  The globular cells in UE2 are thought to be algae 

due to their complex internal structure and large size.    

Surface and subsurface species identification have both been undertaken using visual 

criteria only.  To provide more precise classification, DNA testing such as 16s rRNA, could 

be used on the microbes.  

However, Gleocapsa has previously been found on Scottish sandstones (Young, 1997) 

and, although Phormidium and Osillatoria have not been found inhabiting Scottish 

sandstone, they have been shown to live on and within sandstone in environments as 
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different as Antarctica (Omelon et al., 2006b) and the Mediterranean (Ortega-Calvo et al., 

1991; Macedo et al., 2009).    

The Dalry samples, which are composed of the same sandstone on both facades, highlight 

the fact that facade orientation may influence which type of microbe is dominant.  In 

these samples, the SE facing set has abundant internal (cryptoendolithic) globular 

cyanobacteria, whereas the NE facade has plentiful surface filamentous cyanobacteria.  

The summary in Table 5-5 shows that this is also generally true for the other sample sets.   

The surface microorganisms tend to be more concentrated (although not always present) 

on sheltered facades of the buildings such as the northeast and east, i.e. where the 

impact of solar radiation is less.  The cryptoendolithic microbes generally coincide with 

south facing facades, although this is not always the case (e.g. samples RGU2, RGU5 and 

UE1, UE3).  Therefore, a second control on their presence must influence the placement 

of organisms, possibly the sandstone’s mineralogical composition influencing the areas 

that become colonised by affecting porosity or light penetration.   

A second common mineralogical feature corresponding to the location of globular 

cryptoendolithic microbes congregating is the ankerite content of the sample.  Samples 

that have suffered depletion of ankerite at the surface or samples in which ankerite has 

always been absent have globular cyanobacteria (samples D7, RGU5 and UE2). 

The paucity of microbes identified on the University building and SVS samples could be a 

combination of many factors.  One factor could be that the sandstone used to construct 

these buildings has a very low bioreceptivity to microbial colonisation.  Most sandstone 

types have a reasonably high bioreceptivity in comparison to other rocks such as 

limestones or granites; bioreceptivity is normally closely related to the porosity of the 

material (Miller et al., 2006).  The University samples have a mean porosity of 19.5% in 

the outermost regions (surface to 4 mm depth) while porosity is ~22.4% in the SVS 

samples.  However, this is similar, to the porosity found within the Dalry cryptoenolithic 

bearing sandstones (21.4%) which contain more microbial matter.  Consequently, 

porosity cannot single-handedly explain the poor bioreceptivity of the University and SVS 

samples.   The other main control on the bioreceptivity of stone is its chemical 

composition (Miller et al., 2006).  However these sandstones are mineralogically similar 

to the other sandstones which test positive for microbial communities.  Consequently, 
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there must be a third factor, reducing the bioreceptivity of the University and SVS 

samples, although this is unknown at present.        

Table 5-5: Summary of microbial communities and their placements within or on the 
samples. 

Sample 
set 

Aspect Surface (SEM 
Identification) 

Type Internal (SEM 
identification ) 

Type 

Dalry 1 
         2 
         3 
         4 
         5 
         6 
         7 
         8 

NE 
NE 
NE 
NE 
SE 
SE 
SE 
SE 

YES 
YES 
YES 
NO 
NO 
NO 
NO 
NO 

Filamentous 
Filamentous 
Filamentous 
 

NO 
NO 
NO 
NO 
YES 
YES 
YES 
YES 

 
 
 
 
Globular 
Filamentous 
Globular 
Globular 

RGU 2 
         3 
         5 
         6 
Blaxter 

S 
S 
S 
S 
S 

YES 
NO 
YES 
NO 
--- 

Algae pods 
 
Filamentous 

NO 
YES 
NO 
YES 
YES 

 
Globular 
 
Globular 
Globular 

Uni UN1 
        UN2 
        UN3 
        UE1 
        UE2 
        UE3 
        UE4 

SES 
SES 
SES 
NNE 
NNE 
NNE 
NNE 

NO 
NO 
NO 
NO 
NO 
NO 
NO 

 NO 
NO 
NO 
NO 
YES 
NO 
NO 

 
 
 
 
Globular 

SVS  EE1 
         EE3 
         EE4 
         CS2 
         CS4 

E 
E 
E 
NW 
NW 

YES 
NO 
---- 
NO 
NO 

Filamentous NO 
---- 
NO 
YES 
NO 

 
 
 
Globular 

      

The previous reasons help explain why the filamentous and globular cyanobacteria are 

found on different sandstones, but Table 5-5 also indicates that both epilths and 

cryptoendolithic microbes are never found on the same sample, with no exceptions to 

this rule.  Most likely is that the internal microbes were established first and later 

migrated to the surface.  As the Phormidium may be more tolerant to solar radiation and 

the extreme weather experienced at the surface causing, the dominant species to change 

from Gleocapsa to Phormidium as the microbial communities move towards the surface.  

The change in dominant species may be due to the changing environmental conditions or 

the surface or the sandstone’s surface, changing colour and or texture (discussed further 

later in this chapter).    
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5.6 Light Penetration into Sandstone 

Photosynthetic organisms need light to survive and therefore, to support cryptoendolithic 

communities, light has to be able to penetrate into the sandstone.  The optimum amount 

of light (photosynthetically active radiation (PAR) intensity) needed for photosynthetic 

communities to thrive is between 50 and 500 μmol m-2s-1 (Litchman et al., 2003; Phoenix 

et al., 2006).  Too little light means microbes will not be active and communities cannot 

be maintained, although some species will survive with the minimum requirements of 5 

μmol m-2s-1 of PAR (Nienow et al., 1988; Phoenix et al., 2006).  Yet, too much light will 

result in photo-oxidative damage to the cells, hindering and ultimately stopping microbial 

activity.  This need for light to fuel metabolic activity, along with the requirement of 

protection from intense sunshine (which in Glasgow can reach over 1000 μmol m-2s-1 

regularly), dictates the depth at which the photosynthetic organisms present can 

penetrate and inhabit the sandstone.  To quantify this, a series of optical light 

transmission (OTL) experiments were undertaken, as outlined in section 2.1.6.     

Five samples were used, which all showed differing degrees of surface weathering, to 

provide a representative cross-section of crusts seen on Glasgow buildings.  A fresh, 

unaltered sample of Bearl sandstone (quartz = 71%, porosity = 14%) was used to 

represent the optical penetration in cleaned or new constructions.  Samples UE2 from the 

south facade of the University (quartz = 62%, porosity = 25%), EE3 from the east facade of 

the SVS samples (quartz = 61%, porosity = 21%) and CS4 from the northwest corner of the 

SVS samples (quartz = 49%, porosity = 32%) were used to represent Glasgow’s buildings 

and these have varying degrees of weathering crusts in the surface.  Furthermore, a 

uniform black crust was present on UE1 from the University sample set (quartz = 72%, 

porosity = 15%).  The samples used are shown in Figure 5-16.       
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Figure 5-16: Images of cross-sectional and plan views of samples used in the OTL 
experiments. 

Outermost surface of the core is at the top of the image.  

 

During the experiment, a minimum of five measurements were taken to allow an average 

to be calculated for each sample, and help to quantify the repeatability, and so reliability 

of the results.    

To ensure that the experimental data (collected by a Macam Q203 Quantum Radiometer 

pyrometer, measuring in μmol m-2s-1, known as the Hp) could be compared with daily 

pyrometer data (gathered at the University of Glasgow weather station by a Kipp and 

Zonen CMP3 pyranometer (Op) measuring in Wm-2), a conversion was calculated.  On the 

06/06/2010, the Hp pyrometer was used to simultaneously gather data at the weather 

station site.  These data were plotted against the weather station pyrometer results to 

provide a conversion graph (Figure 5-17).  Although the weather during this day was a 

mixture of sunshine and showers, a linear correlation can be seen between data collected 

from the two pyrometers (Figure 5-17). 
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Figure 5-17: Conversion graph for the Hp to Op pyrometer. 

Hp) hand held pyrometer, Op) the outside fixed pyrometer at Glasgow University weather 
station.  

 

The experimental light penetration data was combined with the observatory solar 

radiation data to determine the actual amount of sunlight reaching a given depth at a 

given time interval (Equation 3).  As the observatory units were in Wm-2, these needed to 

be converted to μmol m-2s-1 using the conversion in Figure 5-17.  This was done because 

μmol m-2s-1 are more meaningful when considering the light impact on microbes (i.e. 

μmol m-2s-1 are more commonly used in the literature and so allow greater comparison). 

 

Equation 3: Amount of light at depth 

 
L1 is the amount of light penetrating a given thickness of rock.  

L0 is the amount of light incident on the rock surface during the experiments 

LDO is the amount of light at a specified depth in concordance with the Hp pyrometer 
(μmol m-2s-1).  

Op is the results from the University of Glasgow’s pyronometer.  

This equation was used to convert various data sets, to produce models for both summer 

and winter for light penetration into sandstones through a variety of surfaces, both 

weathered and unweathered.  A detailed outline of the errors concerned with these 

results are given in section 2.1.6.  The first data discussed are from a “typical” Glasgow 
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summer’s day of sunshine and cloud cover, taken from 06/06/2010 (the conversion data 

day).  As 5 μmol m-2s-1 is the minimal amount of PAR needed for cyanobacteria activity, it 

is used as a base amount throughout these experiments. 

Bearl with its fresh clean surface is the most translucent of the samples, with a maximum 

of 77 μmol m-2s-1 PAR penetrating to a depth of 1 mm.  At 1 mm depth, PAR 

measurements greater than 5 μmol m-2s-1 are seen throughout the day from 8 am to 3 

pm.  At a depth of 1.5 mm the amount of light transmitted is a third of that at 1 mm, with 

the maximum PAR measurement recorded at 1.5 mm being 26 μmol m-2s-1.  By a depth of 

4 mm from the surface only a 20th of the light at 1 mm is able to penetrate, with a 

maximum of 3.8 μmol m-2s-1 (Figure 5-18).   

Of the weathered surface samples (CS4, EE3 and UN2), EE3 is the only sample able to 

transmit over 5 μmol m-2s-1 of light to a depth of 1 mm.  EE3 reaches a maximum of 7.4 

μmol m-2s-1 PAR at 1 mm depth, and could sustain cyanobacteria life at a depth of 1 mm 

between the hours of 12 to 2 pm, on this “typical” Glasgow’s summer day.  Within the 

CS4 and UN2 samples a maximum light penetration of 1.5 μmol m-2s-1 is achieved (Figure 

5-18).  The UE1 sample with black crust shows only negligible amount of light at 1 mm 

beneath the surface.   
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Figure 5-18:  Plot of the amount of light at specific depths from the surface against time of 
day on the 06/06/2010, within each sample.  

Data obtained on a “typical” summer’s day with sunny spells. Observatory readings for the 
same time period are also plotted in the pyrometer graph.  Note different scales on Y axis.  
Dashed line denotes 5 μmol m-2s-1, the cut-off for microbial activity. 

 

These experiments were repeated for a sunny and hot summer’s day, i.e. when the 

temperature was greater than the average Glasgow summer temperature, 15.2°C and no 

rain fell.  To comply with these, models were produced for the 29/07/2010 as the air 

temperature was greater than 15.2°C between 9 am and 9 pm and reached a maximum 

temperature of 19.3°C, while no rain fell.  Bearl shows the greatest transmission of light, 

with a maximum of 189 μmol m-2s-1 PAR occurring at 1 pm at 1 mm depth.  PAR of > 5 

μmol m-2s-1 at 1 mm occurs between the hours of 7 am and 7 pm.  At a depth of 4 mm, 
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enough light to support photosynthetic activity penetrates between the hours of 12 and 5 

pm (Figure 5-19).  In the weathered crust samples, only EE3 allows sufficient light to 

penetrate to a depth of 1 mm in order to support photosynthesis.  Here, a maximum of 

18.2 μmol m-2s-1, enough light to activate photosynthetic microbes, penetrates between 9 

am and 6 pm at a depth of 1 mm.  Light penetration at 2 mm is half of the value at 1 mm 

depth, but the lower light levels nevertheless can still support photosynthesis between 10 

am and 5 pm, but no deeper in EE3 (Figure 5-19).  CS4’s peak intensity is just below the 5 

μmol m-2s-1 cut-off for sustaining photosynthetic microbes (3.7 μmol m-2s-1).  Insufficient 

light for photosynthesis is transmitted to 1 mm depth in the UE2 and UE1 samples (Figure 

5-19).   
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Figure 5-19: Plot of the amount of light at specific depths beneath the surface against time, 
within each sample, on a hot sunny day.  

Data used from a hot summer’s day (29/07/2010). The observatory readings for same time 
period (pyrometer graph) are also included.  Note that different scales are used on the y-
axis. Dashed line denotes 5 μmol m-2s-1, the cut-off for microbial activity. 

 

The models were further repeated for a sunny and cold winter’s day (i.e. when the 

temperature was below the average for winter, 5.6°C).  To adhere to this, the 07/01/2010 

was chosen to model the winter results, as the day was sunny with air temperatures 

below 0°C all day with no rainfall.  The samples follow a similar pattern to the “typical” 

and hot summer’s day data.  Light can penetrate into the top 1 mm of the fresh Bearl 

sample, with a maximum PAR of 46.8 μmol m-2s-1 occurring at 1 pm.  Light levels at 1 mm 

depth are above 5 μmol m-2s-1 from 11 am to 4 pm and between 12 pm and 3 pm at 1.5 
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mm depth (Figure 5-20).  In all other samples, the amount of PAR transmitted to a depth 

of 1 mm is insufficient to uphold growth of photosynthetic microbes (Figure 5-20).   
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Figure 5-20: Plot of the amount of light at specific depths beneath the surface against time, 
within each sample, on a winter’s day.  

Data used from a hot summer’s day (29/07/2010). The observatory readings for same time 
period (pyrometer graph) are also included.  Note that different scales are used on the y-
axis. Dashed line denotes 5 μmol m-2s-1, the cut-off for microbial activity. 

 

To fully understand the depth to which light can travel into these rocks, at particular 

times of the day, graphs were constructed which display the amount of PAR against depth 

in the early morning (8 am) and at midday on the hot sunny summers day (Figure 5-21).  A 

second set of graphs were then constructed to show the same information,  but instead 

showing the cold winters day data (Figure 5-22).  However, these graphs only show 
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midday data as sunrise in winter is later, and hence no pyrometer data was gathered for 8 

am. 

These results show that, at 8 am on a hot sunny day during the summer, the PAR intensity 

is only high enough to enable microbial activity in the Bearl sandstone and to a maximum 

depth of ~1.2 mm.  However, by midday, over 5 μmol m-2s-1 is reaching a depth of 3 mm 

and may reach a depth of 4 mm within Bearl (Figure 5-21).  Also at midday, enough light is 

penatrating to a depth of 1.7 mm within EE3.  However, PAR cannot penatrate deep 

enough into any other sandstones for microbial growth to occur (Figure 5-21).   
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Figure 5-21: Light penetration against depth beneath the stone surface, at 8 am (31.9 PAR) 
and 12 (762 PAR) on a hot summer’s day.  

Note different scales on the y-axis.  Dashed line denotes 5 μmol m
-2

s
-1 

cut-off. 
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The winter results show that, at noon, 16 μmol m-2s-1 of PAR is transmitted to 1 mm in 

Bearl.  In addition 5 μmol m-2s-1 penetrates to a maximum depth of 1.7 mm within the 

Bearl sandstone (Figure 5-22), whereas the other sandstones transmit negligible amounts 

of light (Figure 5-22).       
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Figure 5-22: Light penetration against depth. At 12 on a cold sunny winter’s day the PAR 
was 90.4 μmol m

-2
s

-1
. 

Note the different scales on the y-axis and dashed line denotes 5 μmol m
-2

s
-1 

cut-off. 

 

5.6.1 Discussion of OLT Experiments  

The amount of solar radiation which initially travels into the sandstones varies widely 

between different stone types (Table 5-6) and seems to be dictated by the amount of 

weathering crust on the surface.  The fresh sandstone surface allows the greatest 

proportion of light to be transmitted through the surface (20% at 1 mm) (Table 5-6).  The 
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weathered surface on the samples dramatically decreases the light transmitted into the 

rock, with only 2% of the solar radiation reaching a depth of 1 mm in EE3, and this is even 

lower in CS4 and UE2 (Table 5-6).  The graphs for sample UE2 (weathered crust) and UN1 

(black crust) show a slight increase of light nearer the surface, although this is very slight.  

Furthermore, the hot day results indicate there will never be enough solar radiation (at 

least in Glasgow) to penetrate beneath the surface, making subsurface phototroph 

colonisation impossible beneath these heavily weathered crusts.      

Once the light enters the sandstone, the amount that penetrates to deeper levels also 

varies.  Bearl (unweathered) sandstone observations show that the light intensity levels 

drop exponentially whereas, in EE3, the trend is more linear (Figure 5-23).  Therefore, by 

2 mm in Bearl light has decreased by 87.5% whilst only by 50% in EE3, suggesting that the 

two sandstones behave differently when transmitting light to depth.  When the total 

amount of nontransmissive minerals (i.e. feldspar, mica, Fe-oxide, kaolinite and ankerite) 

were calculated the totals within the two sandstones were very similar, (Bearl = 14.7%, 

EE3 = 16.7%).  However, a large difference is seen in the porosity between the samples 

(Bearl = 14.3%, EE3 = 20.6%).  This variation in porosity is, therefore, more likely to be 

responsible for the differences in light transmission patterns (Figure 5-23).   

Table 5-6: Percentage of light which travels through the sample. 

 Bearl EE3 CS4 UE2 UN1 

1 mm 20 1.9 0.4 0.04 --- 
1.5 mm 6.9    --- 
2 mm  0.95 0.02 0.02 --- 
4 mm 1 0.07 --- --- --- 

Where dashed lines appear (---) it represents that less than 0.01% of light is transmitted.   
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Figure 5-23: Percentage of light transmitted within sandstones.  

Bearl shows an exponential decrease in the light being transmitted, whilst the decrease is 
more linear within EE3.  

 

The amount of solar radiation available to penetrate the sandstone is highly dependent 

on the season and, therefore, annual variation in solar radiation may alter phototroph 

activity.     

During the summer months, ambient daily PAR levels within Glasgow regularly exceed 

500 μmol m-2s-1 (the threshold above which photoxidative damage occurs).  In July 2010, 

10% of daylight hours exceeded this level, therefore surface dwelling photosynthetic 

microbes may experience some photo-oxidative damage and consequently seek shelter 

and protection (either by gliding or growth migration) within the sandstone.  The (OTL) 

results show that photosynthetic microbes can obtain enough light to survive to a depth 

of 3 mm in unweathered sandstone and to a depth of 2 mm in some circumstances where 

a weathering crust is present.   

Also during summer, sunlight shines for a maximum of 17 hours within Glasgow, which 

equates to eight hours of sufficient PAR at a depth of 2 mm to activate photosynthetic 

microbes in some weathered crust samples.  The internal length of day within a sample is 

increased when nearing the surface and especially in samples with a cleaner surface.  The 

light levels within these sandstones then provide an environment in which 

cryptoendolithic photosynthetic communities can be sustained.   
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During the winter months, the amount of solar radiation is much less than that of the 

summer, with the 500 μmol m-2s-1 PAR threshold never being exceeded in December 2009 

and January 2010.  Therefore, during the winter months, microbial activity at the surface 

may be much more prevalent as they can gain large amounts of energy without incurring 

photo-oxidative damage.  This is coupled with a reduction in the number of sun light 

hours (November only has a maximum total of 8 hours of sunlight).  This means that 

these light levels can only support cryptoendolithic photosynthetic communities within 

the fresh unaltered sandstone as the intensity of light is too low to penetrate the 

weathered surfaces.  These factors combine to ensure that sandstones with weathered 

surfaces cannot support cryptoendolithic microbes during the winter.  Therefore as the 

microbes are restricted to the surface of the sandstone, this is where they will cause most 

damage by releasing chelting agents and acids.      

However, the amount of light available may affect different species of photosynthetic 

microbes in different ways.  Phormidium (possible surface filamentous cyanobacteria) has 

shown that it has the lowest growth efficiency under short day length situations (6:18 

hours light : dark) in comparison to other species of cyanobacteria and algae such as 

Nitzschia and Sphaerocystis (Litchman et al., 2003).  This light ratio is similar to the winter 

months within Glasgow, suggesting that the surface damage potential is limited if 

Phormidium is present.  Thus, although this organism appears to be suited to the surface 

growth, its slow metabolic activity during short-day cycles means it, fortuitously, will 

cause less damage to the sandstone than the other cyanobacteria.   

The presence of water within the sandstone can change the optical properties of the 

stone by enhancing the absorption of light by ~3% (Phoenix et al., 2006), although this is a 

minimal amount and, therefore, the use of dry wafers in this experiment should not have 

affected the depth estimations.    

These results indicate that, regarding cryptoendolithic bacteria, most damage is likely to 

occur on unweathered buildings rather than those with a prominent weathering crust.  As 

crusts form on these previously unweathered sandstones, the microbial communities will 

be forced nearer the surface.  The general conclusion is that summer conditions will 

support cryptoendolithic microbes which may cause damage to the subsurface whilst, in 
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winter, the epilith microbes may be activated on the surface and cause harm to the 

outermost surface of the sandstone.   

5.7 Discussion and Conclusions of Microbial Results  

The depth to which microbes are seen in the osmium stained polished blocks is consistent 

with the light penetration results.  The majority of osmium stained samples indicate that 

microbes were found no deeper than 2 mm.  The OTL results show that in those 

sandstones with weathered crusts, light can only penetrate sufficiently for photosynthesis 

to a maximum of 2 mm.     

When the Blaxter from RGU block was examined, cyanobacteria were found at a depth of 

5 mm, but this was a fresh unaltered sample (when placed outside 10 years ago) and the 

OTL results show that light penetration is much deeper in unaltered sandstones and may 

explain the evidence of microbial communities at 5 mm depth.  Microbes were also found 

in the Blaxter samples between 6-7 mm and were classified as fungi, as the light could not 

penetrate to that depth to sustain filamentous cyanobacteria.  For this reason, the 

microbes found at a depth of 13 mm within D6 were also classified as fungi. 

When previous investigations have been conducted on microbial colonisation of building 

sandstones, the research has predominantly been restricted to the surface, with little or 

no emphasis on cryptoendolithic communities and, even when these are mentioned, no 

depth of penetration is stated.  However, colonies of cryptoendolithic photosynthetic 

cyanobacteria have been found between 3-7 mm depth within halite crusts in the 

Atacama Desert (Davila et al., 2008) and at 5 mm within sandstone from Ellesmere Island, 

Canada (Omelon et al., 2006a, 2007); both sets of results were from vertical rock 

exposures.  Each of these studies show cyanobacteria much deeper than the majority of 

the Glasgow samples (i.e. < 2 mm deep).  A few reasons could account for this: 1) the 

samples used by Davila et al. (2008) and Omelon et al. (2006a, 2007) have much simpler 

mineralogy, compared to the Glasgow sandstones, which are only ~70% quartz, with 

significant proportions of other detrital and diagenetic minerals hindering the 

transmission of light.  2) The grains within the sandstones and crusts may have been 

larger, reducing the impact of light scattering and increasing the depth of light 

penetration (De et al., 1992).  3) The Glasgow sandstones have been exposed to an 
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environment that is much “dirtier”, with atmospheric pollution from heavy industry in the 

past and vehicle derived pollutants at present, affecting the surface of the sandstone and 

adding the formation of dark crusts.  The halite and sandstones of the Atacama Desert 

and Ellesmere Island are in areas of minimal population and hence minimal atmospheric 

pollution, reducing the formation of surface crust and, as the OTL experiments show, dark 

crusts reduce light penetration, and therefore limit the depth cyanobacteria can occur at. 

In the RGU Blaxter block, which shows deeper cyanobacteria communities, in comparison 

to the RGU3 and RGU6 samples which also contain subsurface microbes, the one major 

difference to all other samples examined is that its surface was horizontal rather than 

vertical.  This surface will therefore receive a larger proportion of solar radiation striking it 

compared to the vertical faces and hence a larger quantity of light can be transmitted 

inwards, increasing the depth of potential inhabitation.  Pyronometer readings taken at 

the University of Glasgow’s weather station (on the 30/06/2010 and 20/07/2010) show 

that, in general, the vertical surfaces receive 30% less PAR compared to the horizontal 

surfaces.  This difference can reach a maximum of 50% (in the early morning 7 and 8 am) 

and as little as 8% at midday.   

On vertical faces, the microbial growth within Glasgow samples is restricted to very 

shallow depths (<2 mm) and this is seen in both the young sandstones (RGU which is 12 

years old) and old sandstones (Dalry which is 150 years old).  The placement of these 

communities is restricted by a complex series of factors including: 

1) The fine-grained nature of the sandstone increases light attenuation (De et al., 

1992; Schlesinger et al., 2003). 

2) The high abundance of nontransmissive mineral grains i.e. muscovite and clays 

which, reduce the penetration of light (Hall et al., 2008). 

3) The crust formation on the surface of the sandstone also hinders the penetration 

input of solar radiation, as shown in the OLT data results.   

In ideal circumstances, where large (25 mm thick) single quartz crystals are present in 

high solar radiation conditions (2200 μmol m-2s-1), approximately 2 μmol m-2s-1 of solar 

radiation can penetrate through these quartz pebbles (Schlesinger et al., 2003).  As can be 
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seen, many of the characteristic of the Glasgow sandstones are impeding the penetration 

of light and therefore the growth of cryptoendolithic communities.  However, the macro 

climatic features such as the amount of solar radiation in the area will ultimately 

determine the depth of cyanobacteria penetration. 

These conclusions, when understood together indicate that only small proportions of 

microbes live on and within the Glasgow sandstones and at very shallow depths (only 2 

mm).  Therefore microbial communities may have, in the past, caused more weathering 

to the sandstones when crust formations were thinner.  Their destructive properties are 

most likely to affect a building in its early years whilst the surface is fresh and light can 

easily penetrate, causing larger communities to occupy the pore space.  As the building 

ages, and a weathered crust has formed (due the combination of microbes, pollution and 

salt) the microorganisms become restricted until no light can penetrate to sustain the 

cryptoendolithic cyanobacteria communities, and they will eventually die out.  Then the 

microbes are restricted to being surface-dwelling and, in the summer, they will be 

harmed by photo-oxidative damage.  Therefore, they are only active in the winter and 

cause most damage during this period, as the surface is more hospitable for microbes.  

However, the black crust of Glasgow buildings may be harmful to microbes as suggested 

by Bluck and Porter (1991b) and, therefore, the few microorganisms that do survive only 

cause minimal damage in comparison to other processes affecting the sandstone.  

Moreover, reduced growth of phototrophs on the black crust may diminish the supply of 

organic matter (dead phototrophs) to fungi and bacteria deeper in the sandstone, which 

also reduces deeper internal weathering. 

Although the microbial weathering cycle is expected to be different for each facade, the 

likelihood is that the north, east and west facing facades receive conditions much more 

similar to those during the winter all year and this means that few cryptoendolithic 

microbial communities are able to survive due to receiving much less solar radiation.   

Turning clockwise from the west to east only one sample out of 13 has internal microbes 

associated with it.  However, five of these have surface dwelling microbes (Figure 5-24).  

Whilst continuing around from southeast to southwest only two of the 12 samples show 

surface microbes (Figure 5-24), whereas five of these have internal microbes.  The 
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placement of the microbes may be because the conditions are generally too harsh on the 

surface for microbes to survive.      

As the dynamics of the building’s mineralogy, crust and environmental conditions 

changes over time, due to weathering, crust formation and a change in environment, the 

species of microbe present, their location and the resultant damage caused will 

continually change and adapt on a seasonal and annual scale.  These are discussed further 

in chapter 7. 

 

Figure 5-24: Schematic representation of the microbe’s position with relevance to facade 
orientation. 
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6 Internal Monitoring and 

Accelerated Weathering 

Results 

Atmospheric pollution, together with the regional climate, has dictated how historic 

buildings and monuments have decayed during the last 150 years.  Equally, the future 

climate and air quality will remain the driving factor behind stone decay.  As the amount 

of air pollution has decreased due to the clean air act (1956) and the reduction of heavy 

industry in Glasgow, pollution has and will continue to become less of a factor.  However, 

future climate change predictions suggest ambient conditions will be quite different from 

the past and present, as discussed in the next section.  Furthermore, the response to this 

in sandstone weathering is unknown and therefore, these questions are posed: 

 What will the future climate in Glasgow be in 2080? 

 What is the relationship involving the air temperature/RH between the stone’s 

surface and interior conditions? 

 What is the impact of changing climate on stone surfaces? 

 What is the link between RH and free liquid water within the sandstone? 

 What are the implications of changing climate for both the inorganic and organic 

weathering processes? 

To answer these questions, sandstones were subjected to accelerated weathering within 

an environmental chamber.  This was complimented by a variety of datalogging 

experiments, which were conducted to determine the internal microclimate of sandstone 

at the present-day, allowing results to be extrapolated to model future scenarios.  

Therefore, the first step was to determine the future climate conditions. 
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6.1 Climate Change 

Using the method outlined in section 2.1.7.1  the following results for the 2080 climate for 

Glasgow were produced:  The UKCIP02 report states that the temperature over the 

United Kingdom is expected to rise during both summer and winter.  The model for 

temperature rise in the Glasgow area is shown in Figure 6-1, constructed using the 

present day values combined with the prediction. 
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Figure 6-1: Climate change temperature predictions for the Glasgow region in winter and 
summer. 

Blue data) winter, blue line indicates 2004-2008 winter average temperature, Red data) 
summer, the red line indicates 2004-2008 summer average temperature. Error bars are 
±1.5°C as stated in UKCIP02, (Hulme et al., 2002). 

 

Summer temperatures for Glasgow are expected to have risen by 3.25°C ±1.5°C by 2080, 

whereas the winter temperatures are only expected to rise by 1.75°C ±1.5°C. 

The total annual precipitation from 2009 to 2080 is expected to change within “natural 

variation”, although there will be a modification to the distribution of rainfall throughout 

the year.  Natural variation is defined within Hulme et al. (2002) as one standard deviation 

of 30 year average climates, estimated from the control models simulations of the 

HadRM3.  In summer, rainfall may decrease by as much as 40% ± 30% over the Glasgow 

region whereas, in winter by 2080, it may have increased by 20% ± 15% (Figure 6-2). 
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Figure 6-2: Rainfall climate change predictions for Glasgow in winter and summer. 

Blue data) winter, blue line indicates 2004-2008 winter average rainfall, Red data) summer, 
the red line indicates 2004-2008 summer average rainfall. Winter error bars = ±15%, summer 
error bars = +30% from UKCIP02, (Hulme et al., 2002). 

 

Relative humidity is expected to decrease in both the summer and winter months (Figure 

6-3).  The decrease in RH throughout winter may still occur despite the predicted increase 

in rainfall, as the rain is expected to fall in more heavy rainfall events with “dry” (low 

humidity) periods in between these events. 

 

Figure 6-3: RH values comparing 2008 figures to predictions for 2080. 

 

The annual average wind speed is predicted to change, mainly within natural variability by 

2080, although wind speed may decrease slightly (-3%) during the summer months in 

particular.  There is no indication in the UKCIP02 report as to whether the prevailing wind 
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direction will change.  Further studies on wind direction and speed were then undertaken 

by the “Built Environment: Weather Scenarios for Investigation of Impacts and Extremes” 

report (Hanson and Goodess, 2004), whose results are in agreement with UKCIP02.  

Hanson and Goodess (2004) indicate that major changes in direction or speed are unlikely 

and the authors state that, if changes in wind speed do occur, these may only be in the 

order of ± 0.1ms-1. 

Other predictions which, may impact upon sandstone decay includes a decrease in the 

annual cloud cover (by 3% by 2080) where a greater proportion of this will occur during 

the summer months and, in addition, the number of depression lows or “storm events” 

will increase.  At present, an average of five depression lows occur during the winter 

months and, by 2080, this is expected to increase to an average of eight events during 

winter over the Glasgow region. 

All the climate change components outlined so far will have an effect on the decay of 

sandstone buildings and monuments, although some more so than others.  Below are a 

set of predictions that encapsulate the three most relevant sets of changes. 

Winter months with an increase in temperature coupled with higher rainfall: 

 May encourage faster chemical reactions thereby increasing the amount of 

dissolution of relatively soluble carbonate minerals (Smith et al., 2008a). 

 Higher winter temperatures will also reduce the number of days where temperature 

is below 0°C, limiting both the impact on of freeze thaw on stone and also the need 

for de-icing salts, which can become absorbed into the sandstone and cause 

mechanical weathering (Hyslop et al., 2006). 

 Improved environmental conditions for microbes leading to larger communities 

within the sandstone, which has already been observed in Northern Ireland (Smith et 

al., 2008a).  These microbes can then produce a greater quantity of organic acids, 

which will weaken minerals further.  Greater densities of microbial communities may 

then infill more pore spaces, disrupting the natural flow of water through the rock. 
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Summer months with an increase in temperature coupled with dry periods and heavy 

rainfall events, may lead to: 

 Increased mechanical destruction to the sandstone through microbial shrinking and 

swelling.  It has been shown that cyanobacteria on the surface of stone can expand by 

300% when wet (Wakefield et al., 1996) and this process is likely to happen internally. 

 Faster rates of chemical decay (Smith et al., 2008a). 

 Increased heavy rainfall events may also lead to periodical flushing out of the 

microbial communities.  However, microbes may also play an important bioprotective 

role, shielding the stone from other decay processes or by holding the sandstone 

together using a “wire mesh” system of fungi. 

Other predicted changes in the climate which have to be considered are the high 

magnitude events, which may lead to: 

 An increased frequency of “storm events”, which may promote more frequent bursts 

of sandstone surface detachment.  This is because decay happens as episodic bursts 

of sandstone detachment rather than continuous detachment (Smith et al., 2008a). 

 Other climate elements will also play a part in the decay process but to a much lesser 

extent.  If a change in wind direction occurs, sandstone which was once sheltered will 

now be exposed to wind blasting, potentially causing an increased decay on a face of 

the building which had not previously been exposed to the full force of the wind. 

6.2 Quantifying the Impact of Future Climate on Stone 

Surfaces 

To examine how sandstone may respond to these predictions, in regards to temperature, 

RH, and how the current microbial communities may cope, a variety of stones commonly 

used as replacements in Glasgow buildings were placed within an environmental chamber 

at the Historic Scotland conservation laboratory, as described in section 2.1.7.  Three sets 

of blocks were placed within the chamber, these being the inoculated, water only and 
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chamber set.  The environmental chamber was set up to simulate 20 years of the 

predicted 2080 climate conditions.  The chamber experienced technical difficulties (full 

details in section 2.1.7) but the climate conditions that the blocks did endure throughout 

the full period of the experiments were logged by an IButton (Figure 6-4).  The intended 

programmed climate condition can be seen in section 2.1.7.  Before starting the 

experiments, the blocks were scanned using a Konica Minolta Vivid 9i laser scanner, giving 

a sub-millimetre accurate model of the stone surface and rescanned when finally 

removed.  Both times the scanning was conducted under the same conditions and at the 

same resolution.  Visually, the majority of blocks appeared unchanged in colour and 

roughness after the experiments, with the exception of some of the inoculated blocks.  

However, laser scanning reveals the majority of blocks have undergone various amounts 

of mass loss and gain to the surface, as shown by compiling the laser scan data into shell 

to shell deviation images.  The shell to shell deviation (SSD) maps were prepared on 

"Rapidform 2006" software by Colin Muir from Historic Scotland.  These are colour-coded 

pictures to compare the ‘before’ and ‘after’ images, which were then used to calculate 

the difference in surface height.  On the SSD images, dark blue equates to no change, then 

ranges through light blue, green, yellow, and finally red indicating the largest changes.  

However the SSD maps do not differentiate whether this is a gain or loss in height change, 

and are therefore used in conjunction with the initial and final laser scanning images to 

provide 2D profiles of the vertical surface of the block that was studied.  
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Figure 6-4: Temperature and RH conditions experienced by the test blocks throughout the 
running time of the experiment. 

Measurements were logged by an IButton datalogger.  GU = time in the University of 
Glasgow, TG = temperature gauge broke. 

 

 

6.2.1 Bearl 

Bearl is the coarsest grained sandstone used in this experiment.  When these samples 

were taken out of the chamber, their rough surface texture visually appeared to have 

been accentuated for both the inoculated and water only blocks.  The SSD images show 

that the average change on the surface of the inoculated blocks is 0.055 mm, the water 

only block is 0.050 mm, whilst the control block has an average change of 0.038 mm.  The 

maximum change for each block, in the same order, is 0.276 mm, 0.250 mm and 0.183 

mm (Figure 6-5,Figure 6-6, and Figure 6-7 and all data is in Table 6-1).  The inoculated and 

water only set show similar amounts of change occurring at the centre of the block, whilst 

the change occurring on the chamber block was focused around the edge of the face.  The 

scanned images indicate that the changes on these surfaces are predominantly due to 

surface loss (Figure 6-5Figure 6-6 andFigure 6-7). 
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Figure 6-5: Bearl inoculation block, initial and final scan images and coloured SSD image. 

Colour scale at the side runs from blue indicating smallest, red indicating largest change.  
The peach area to the right of the scale represents the amount of area on the surface which 
has changed by that amount.  Significant amount of granular disintegration have occurred 
over the surface with a large amount taking place in the central region of the face. 
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Figure 6-6: Bearl water block, initial and final scan images and coloured SSD image. 

For key see Figure 6-5. Granular disintegration has occurred on the surface of the block, 
with most occurring in the central upper area of the face. 

 



 Internal Monitoring and Accelerated Weathering   257 

 

Figure 6-7: Bearl chamber block, initial and final scan images and coloured SSD image. 

For key see Figure 6-5.  Only small amount of evenly distributed granular disintegration are 
seen on the sandstone. 
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6.2.2 Blaxter 

The Blaxter blocks visually had a smooth cut surface.  The inoculated block surface 

changed by an average of 0.040 mm, the water only block by an average of 0.038 mm, 

whilst the chamber block changed by an average of 0.031 mm.  The maximum 

topographic change seen on the inoculated set was 0.325 mm, water only was 0.175 

whilst the chamber block maximum change was 0.150 mm (images in Figure 6-8,Figure 

6-9, Figure 6-10 and data in Table 6-1).   

A large range of measurements are recorded on the inoculated Blaxter block, although 

the colour scale remains the same.  This skews the colour scale in comparison to the other 

blocks and makes the SSD images predominantly dark blue, which would suggest small 

amounts of change but due to the skewed scale, it actually records the largest average 

change (Figure 6-8).  The water only block has also experienced significant change (Figure 

6-9) whilst the change to the chamber blocks is minimal (Figure 6-10).  The modification 

to the surface of the inoculated block was patchy, whereas it is more evenly distributed 

over the surface of the water block.  All blocks show signs of mass loss as the original 

smooth surface of the sandstone has become visually rougher.  The inoculated block, 

however, also shows signs of significant mass gain occurring around the inserted screws 

and in small patches (<1 mm in diameter).  The possible mass gain on this block is either a 

product of microbial colonisation or an accumulation of inorganic debris and will be 

discussed later. 
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Figure 6-8: Blaxter inoculated block, initial and final scan images and coloured SSD image. 

For key see Figure 6-5.  The inoculated block shows loss over the surface of the sandstone 
whilst small patches (<1 mm) of gain occur predominantly on the left-hand of the surface. 
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Figure 6-9: Blaxter water only, initial and final scan images and coloured SSD image. 

For key see Figure 6-5.  Granular disintegration has occurred evenly over the whole surface 
of the block. 
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Figure 6-10: Blaxter chamber only, initial and final scan images and coloured SSD images. 

For key see Figure 6-5. Granular disintegration occurred over the whole surface of the block. 

 

 

6.2.3 Clashach 

The SSD data shows that the inoculated block have an average topographical change of 

0.039 mm over the surface, and a maximum change of 0.328 mm.  The water block has 

an average change of 0.030 mm and a maximum of 0.163 mm, whilst the control block 
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has an average change on the surface of 0.024 mm and a maximum change of 0.121 

mm (Figure 6-11, Figure 6-12,Figure 6-13 and all data in Table 6-1).  

 The data range from the inoculated bock results is larger than those from the water 

and chamber blocks, although they have the same colour chart to represent the data.  

Therefore, care must be taken when drawing comparisons between areas of similar 

colours on the different blocks.  As a consequence, although the inoculated SSD image 

looks dark blue which implies that little change has occurred, it has experienced similar 

amounts of average loss as the water block (Table 6-1).  The inoculated block shows 

evidence of both surface gain and loss.  In the top left-hand corner of the final laser 

image, there is a heightened region which agrees with the SSD image, whilst an 

originally indented area in the lower left-hand side of the block has been enlarged 

(Figure 6-11).  The water block only shows evidence of loss on the cut surface with 

enhancement to the rough texture and a depression has also formed in the bottom 

right hand corner (Figure 6-12).  The laser images indicate that original surface features 

(saw markings) on the chamber block may have been accentuated by the loss of 

surface material, although the SSD images do not show this to be true (Figure 6-13) 

and suggest only minimal loss to the surface. 



 Internal Monitoring and Accelerated Weathering   263 

 

Figure 6-11: Clashach inoculated block, initial and final scan images and coloured SSD 
image. 

For key see Figure 6-5.  Both signs of granular disintegration (enlargement of the 
indentation) and gain (around screws) can be seen. 
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Figure 6-12: Clashach water only block, initial and final scan images and coloured SSD 
image. 

For key see Figure 6-5. Evenly distributed granular disintegration has occurred on the 
surface of the block. 

 

 



 Internal Monitoring and Accelerated Weathering   265 

 

Figure 6-13: Clashach chamber block, initial and final scan images and coloured SSD image. 

For key see Figure 6-5.  Evenly distributed granular disintegration has occurred over the 
surface of the block. 

 

6.2.4 Cullalo 

The inoculated block has an average change of 0.040 mm and a maximum change of 

0.552 mm.  The water block has an average change of 0.030 mm and a maximum change 

of 0.309 mm.  Whilst the chamber block has an average change of 0.020 mm and a 
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maximum change of 0.180 mm (Figure 6-14,Figure 6-15,Figure 6-16 and Table 6-1).  The 

inoculated Cullalo block has experienced the largest change to its surface within this set.  

Both loss and gain are identified, gain of matter has occurred predominantly around and 

in the screws and a patch in the upper left hand corner.  The loss identified on the scan is 

restricted to small areas with a general wide spread loss over the rest of the surface 

(Figure 6-14).  The large maximum change on the water block is caused by an increase in 

mass around the screws and also a chip on the right edge of the block causing loss. The 

water only block has also suffered damage to the surface in the form of mass loss, with 

the surface roughness being increased (Figure 6-15).   The chamber block has suffered 

negligible amounts of damage.  The loss of grains from the analysed facade of the water 

and chamber block is evenly distributed over the surface of the stone (Figure 6-16). 
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Figure 6-14: Cullalo inoculated block, initial and final scan images and coloured SSD image. 

For key see Figure 6-5.  The areas around the screws are the focus of gain on the block. 
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Figure 6-15: Cullalo water only block, initial and final scan images and coloured SSD image. 

For key see Figure 6-5.  The granular disintegration seen is evenly distributed over the 
surface of the face. 
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Figure 6-16: Cullalo chamber block, initial and final scan images and coloured SSD image. 

For key see Figure 6-5.  The changes seen over the surface of the face are evenly 
distributed. 

 

6.2.5 Dunhouse Buff 

A small amount of surface change has occurred to the inoculated block with an 

average of 0.034 mm and a maximum change of 0.184 mm, particularly on the left 
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hand side and lower centre of the block face (Figure 6-17 and Table 6-1).  The water 

block has an average change of 0.021 mm and a maximum change of 0.147 mm, whilst 

the chamber block has an average change of 0.029 mm and a maximum change of 

0.144 mm (Figure 6-18 Figure 6-19 and all data in Table 6-1).  This set shows very 

similar average and maximum changes, and seems to have reacted similarly under 

each set of conditions.  Loss has been widespread over the surface, rather than in 

patches and, therefore the original surface features have remained intact (Figure 

6-18). 
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Figure 6-17: Dunhouse Buff inoculated block, initial and final scan images and coloured SSD 
image. 

For key see Figure 6-5. The largest change to this block has occurred in and around the 
screws. 
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Figure 6-18: Dunhouse Buff water only block, initial and final scan images and coloured SSD 
image. 

For key see Figure 6-5.  This image shows that minimal change has occurred, leaving 
original surface features intact. 
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Figure 6-19: Dunhouse Buff chamber block, initial and final scan images and coloured SSD 
image. 

For key see Figure 6-5.  The image shows change is minimal and evenly distributed over the 
surface. 

 

6.2.6 Scotch Buff 

The inoculated block has an average change of 0.046 mm and a maximum change of 

0.231 mm, whilst the water block has an average change of 0.030 mm and a maximum 

change of 0.136 mm.  The control block has an average change of 0.020 mm and a 
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maximum of 0.118 mm (Figure 6-21,Figure 6-22,Figure 6-22 and Table 6-1).  These values 

indicate that the inoculated block has experienced the greatest amount of change, which 

is the result of a few small patches of increased height, coinciding with a general loss of 

grains from the surface making the texture increasingly rough (Figure 6-20).  The water 

only block has also suffered damage to its surface, the final scan indicating a rougher 

texture with the original saw markings being lost (Figure 6-21) whilst, the main area of 

decay is on the top edge of the block.  This loss at the top edge is reflected in the chamber 

block SSD image, although in general it has seen lower levels of change (Figure 6-22). 
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Figure 6-20: Scotch Buff inoculated block, initial and final scan images and coloured SSD 
image. 

For key see Figure 6-5. The image shows overall granular disintegration, whilst patches 
of gain have occurred.   
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Figure 6-21: Scotch Buff water only block, initial and final scan images and coloured SSD 
image. 

For key see Figure 6-5. The image shows granular disintegration along the top edge of the 
block face, in addition original markings have been lost. 
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Figure 6-22: Scotch Buff chamber block, initial and final scan images and coloured SSD 
images. 

For key see Figure 6-5.  The image shows small amounts of change along the top edge of 
the face. 
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Table 6-1: The change recorded on all the blocks within the environmental chamber 
(mm). 

Sandstone Inoculated 
Av               Max 

Water 
Av                   Max 

Chamber 
Av                   Max 

Bearl 0.055 0.276 0.050 0.250 0.038 0.183 
Blaxter 0.040 0.325 0.038 0.175 0.031 0.150 
Clashach 0.039 0.328 0.030 0.163 0.024 0.121 
Cullalo 0.040 0.552 0.030 0.309 0.020 0.180 
Dunhouse Buff 0.034 0.184 0.021 0.147 0.029 0.144 
Scotch Buff 0.046 0.231 0.030 0.136 0.020 0.118 

The table includes both average and maximums. All results are subject to ±0.05 mm 
error. 

 

6.2.7 Discussion 

Most environmental chamber experiments use a much more aggressive configuration of 

temperature and time period cycles during their running, such as 8 hours at 40°C followed 

by 8 hours at 10°C (Warke and Smith, 1998).  The environmental chamber experiment in 

this study simulates much more realistic conditions over a prolonged period of time and 

was therefore much less aggressive.  The combination of the use of Rapidform 2006 

software and laser scanning is very accurate, detecting the smallest of changes on the 

investigated surfaces.  The greatest alteration was seen on the Cullalo inoculated block, 

where a maximum change of 0.552 mm had occurred.  The average change seen on all the 

inoculated blocks was 0.042 ± 0.007 mm, the mean change on all the water only blocks 

was 0.035 ± 0.01 mm, whilst the chamber set had an average change of 0.029 ± 0.007 mm 

for all the blocks. 

The total amount of loss experienced on the sandstone surface was crudely calculated 

using Equation 4.  The average change over the surface was divided by the average quartz 

diameter for the appropriate sandstone, which then provided an estimate of the amount 

of grains lost and, therefore, the amount of grains lost per day could be calculated (Table 

6-2), however, this assumes that all loss is quartz grains rather than kaolinite, K-feldspar 

or mica and that the average change was due to loss.  To understand the effect of the 

heavy rainfall the chamber results were subtracted from the water block to gain insight to 

the effect of the extra water.  The results in Table 6-2 are probably over-estimates for the 

inoculated blocks, because not all topographical change was mass loss (a small proportion 

was mass gain), but the data are more realistic for the water and chamber blocks, which 

predominantly experienced mass loss.  These calculations indicate that Cullalo had the 
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highest amount of grain loss per day whilst Clashach has least on both the water block 

and the chamber block (Table 6-2). 

Equation 4: Equation of total loss 

 

Table 6-2: The total and daily number of sand grains lost. 

Sandstone Av Grain  
size (µm) 

Inoculated  
block 

Water 
 block 

Chamber 
block 

Water only 

Bearl 450.0 992A    
 1.7B         

902A  
1.6B            

685A  
 1.2B         

217A 

0.4B 

Blaxter 188.7 1723A 

3B 
1637A 

2.8B          
 

1335A 

2.3B        
 

302A 

0.5B 

Clashach 394.2 801A  
 1.4B 

616A            
1.06B 

493A  
 0.85B 

123A 

0.2B 

Cullalo 135.2 2400A  
 4.1B    

 
1800A     
3.1B 

1200A        
 2.1B 

400A 

1B 

Dunhouse Buff 163.7 1689A               
2.9B 

1441A           
2.5B 

1043A         
1.8B 

398A 

0.7B 

Scotch Buff 221.3 1685A               
2.9B 

1099 A          
1.9B 

733A          
 1.3B 

366A 

0.6B 

Total grains lost indicated by A and the daily loss is indicated by B.  These results are 
equated by assuming all change on the stone surface is loss. The water only column was 
calculated by subtracting the chamber results from the water block results. 

 

The Cullalo sample may be the most reactive because the petrography results indicate 

that it has experienced minimal compaction, while there is no carbonate cement to help 

bind the grains together (section 2.2.5.4).  

There is error associated with all these results, when the error is added to these results 

it shows that all the error bars between the sample blocks overlap.  However, the fact 

remains that the inoculation block, in each set, always shows the highest amount of 

average change and the chamber block in each set suggests the lowest average change 

signifies that there is some truth in these results.    

The final image scans indicate that all of the inoculated blocks have experienced surface 

gain (with the exception of Bearl), combined with increased roughness to their surface, 

which may be due to granular disintegration.  The height gain is not uniform over the 

inoculated blocks, occurring mainly in small patches over the surface, which are generally 

<2 mm in diameter.  The largest patch of gain was seen on Scotch Buff at 10 mm in length.  

Bearl shows no gain to the surface; if the surface gain is a product of microbial growth 
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then pore size (Bearl mean = 73 μm) may have impeded the colonisation of microbes.  As 

it has previously been suggested, that the optimum conditions for microbial colonisation 

are sandstones with a porosity of <14% and small pore size, preferably with diameters 

between 2 and 20 µm (Warscheid and Braams, 2000).  However, all sandstones studied 

here show a larger pore diameter, ranging from 55.3 µm – 181.4 µm, whilst porosity 

ranges from 11.9% to 20.7%.  Thus, if these height gains are from microbes there is no 

clear explanation for why Bearl has so few microbes on the surface. 

These proposed gains to the surface height on the inoculated block have to be viewed 

with slight caution, as scanning of the blocks was undertaken before inoculation so the 

gain of material on the surface may just be an artefact of the inoculation procedure, and 

later experiments in this study should indicate if this is so.  This will be tested by 

conducting protein and chlorophyll-a assay on the sandstone surface as well as osmium 

staining, to investigate whether any microbes have managed to penetrate into the 

sandstones’ substrate, to seek an environment less exposed to the environmental 

chamber conditions. 

The water set, which experienced the ambient environmental conditions in addition to 

artificial rainwater (to simulate increased heavy rainfall), only show signs of loss from 

their studied surface.  The final scan images show a more undulating surface with the loss 

of original surface features occurring, this is most likely due to minerals being lost.  Bearl 

and Blaxter show the largest amount of average change (0.050 mm and 0.038 mm 

respectively), whilst Clashach, Cullalo and Scotch Buff all have an average change of 0.030 

mm, whilst Dunhouse Buff shows the lowest average change to its surface.  Granular 

detachment has been seen in other studies (Mcgreevy and Smith, 1985; Smith and 

Mcgreevy, 1988), although these have been in situations where salts were used rather 

than climatic impacts only and rates of granular detachment were not calculated. 

The chamber blocks, which were exposed only to the environmental chamber settings, 

show the least amount of change to their surface with blocks only marginally increasing in 

surface topography.  The largest average change is seen on Bearl, whilst Cullalo and 

Scotch Buff show the least.  The chamber blocks indicate that, if only an increase of 

temperature and RH were to take place in the future, then sandstones may be resilient 
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and therefore other decay processes would be more predominant in weathering the 

sandstone, such as microbial, chemical and salt processes.   

Of the blocks tested, Bearl and Clashach were the most resilient overall.  In the case of 

Clashach this resilience is likely due to its compacted grains and thin quartz overgrowths 

observed.  Bearl sandstone has also suffered compaction during diagenesis and contains 

thick quartz overgrowths (~ 50 μm wide).  As this experiment focused only on change due 

to climatic events, and was carried out over a long time period, no other studies are 

available to compare results with. 

6.2.8 Further Chamber Block Experiments 

To investigate the accumulation of material on the inoculated blocks, protein and 

chlorophyll-a assays were undertaken as outlined in section 2.1.4.  These tests were 

conducted on all blocks within the chamber to check whether cross contamination had 

occurred.  However, all the protein and chlorophyll-a results agreed in detecting no signs 

of microbes.  Therefore, the gain seen on the inoculated surfaces can be assumed to be a 

product of the inoculation procedure (i.e. dead matter) or accumulations of debris from 

weathering. 

Although no microbial matter was identified on the surfaces, osmium stained blocks were 

prepared to clarify whether any microbes had migrated (either by gliding or growth 

migration) to the substrate for protection from the environmental chamber conditions.  

Osmium stained polished blocks were prepared as outlined in section 2.1.5.  The results 

showed all blocks were in agreement with assay results, where no stained microbial 

matter was identified. 

A few reasons can be suggested to account for why no microbial matter was found on the 

samples: 1) 0.2 g of microbial matter was placed on the surface during inoculation.  This 

may have been too small a quantity to initiate a thriving community; 2) the microbes were 

nutrient deprived.  Although artificial rain water was used, this did not fully simulate 

external environmental conditions where sandstone gathers atmospheric debris at an 

increased rate which provides extra nourishment; 3) Granular disintegration occurred at a 

greater rate than the microbial inhabitation could occur; 4) Climatic conditions within the 
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environmental chamber were too harsh for the microbes that were placed on the 

sandstone surface.  However, it is most likely a combination of the first three factors that 

has inhibited the growth and development of a microbial community on the sandstone 

surfaces.  As microbes survive in much harsher conditions around the world, option four 

can therefore be discounted. 

These results do suggest that slow, long duration, climate chamber experiments can 

provide useful data on how the sandstone will react to future climate situations.  

However, there were problems with this new experiment’s procedure set up.  Therefore, 

a suggested improved protocol for future work would include a greater proportion of 

microbial matter to the surface of the sandstone during inoculation and, if time allowed, 

inoculated sandstones should be exposed to the natural environment for up to a year to 

increase the probability of microbial communities establishing.  These blocks should then 

be sampled before being placed into the controlled environment to see how the microbial 

communities react to the new environment.  This would help gain more detailed and 

reliable results. 

 

6.3 Internal Monitoring Results: Part 1 

Results from the previous chapter on microbes show that many of the organisms are 

cryptoendolithic and, in some cases, living to a depth of 6 mm (e.g. the RGU Blaxter 

block).  Therefore, it cannot be simply assumed that they are experiencing the same 

climatic conditions as those living on the stone surface.  The main climatic differences are: 

solar radiation, temperature and relative humidity conditions.  The internal climate will 

also affect other processes such as chemical decay and freeze-thaw weathering. 

To observe these internal conditions IButton dataloggers were inserted into the 

sandstone blocks (Figure 6-23) as outlined in section 2.1.8.  The sandstones above and 

below the test blocks were placed there to provide some shelter from rain and solar 

heating.  This set-up allowed a comprehensive record of the temperature and RH at a 

depth of 3 mm and 6 mm beneath the surface, to be recorded.  Different sandstone types 

were tested as well as different aspects.  A thermal imaging camera was used to provide 

spatially and temporally resolved surface temperature of the various stone surfaces over 
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a daily cycle.  Decagon leaf wetness sensors were additionally embedded into the 

sandstones to measure free water (section 2.1.11).  The running time of each datalogging 

experiment is shown in Figure 6-24. 

 

Figure 6-23: Internal climate modelling stones at the Glasgow observatory. 

1) Dunhouse Buff, 2) Bearl, 3) Dalry stone, green circles indicate 3 mm deep IButtons, red 
circles indicate 6 mm deep IButtons. 

 

 

Figure 6-24: Time line of internal datalogging experiments. 

Purple line shows IButton experiment using Dunhouse Buff and Bearl, thickened part of line 
shows when water sealant was applied, blue line shows IButton experiment using Dalry and 
North blocks, red: thermal imaging days. 

 

A large data set (~118,000 points) was collected over a two year period.  This data set is 

too extensive to examine visually or statistically as one entity, as this may hide subtle 

features.  Therefore, it was broken down to highlight specific features and key trends.  

The data set was split into “macro” monthly sets and “micro” daily sets; month and day 

sets for both summer and winter are discussed next.  
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6.3.1 IButton Observations “micro”: Winter Day (20th Jan 2010) 

6.3.1.1 Temperature 

The 20/01/2010 was chosen to coincide with the thermal imaging which was also 

conducted on this day.  Thermal imaging data were collected on the hour to compliment 

the internal IButton collection time.  The weather was predominantly overcast all day 

with drizzle starting at 3 pm.  The thermal imaging data, combined with the IButton 

measurements, show that the three sandstone surfaces (Bearl, Dunhouse Buff and Dalry) 

behaved in a similar manner over the 9 am to 4 pm period (Figure 6-25).  The surface 

temperatures of the three blocks are very similar until 10 am, when Dalry becomes 

warmer than the other blocks by an average of 0.3°C.  However, all blocks follow the same 

pattern of warming, with a peak at 11 am and 2 pm.  By 4 pm, all blocks are recording 

similar surface temperatures (Figure 6-25).  The internal sensors all follow the same trend 

rising from 1.5°C at 9 am to 2.5°C by 12, where they become cooler than the surface 

temperatures.  After 12, the Dalry internal sensor records warmer conditions than the 

Dunhouse Buff and the Bearl sensors.  At 1 pm both 3 mm deep sensors show an increase 

in temperature, whilst the 6 mm deep sensors plateau at 3°C, all with the exception of 

Bearl 3 mm deep sensors, which reach 3°C by 4 pm, the same temperature as the surface 

measurements (Figure 6-25).  The surface temperatures are not directly reflected 

internally; surface peaks may have been caused by a burst of solar radiation, because 

surface temperatures do not follow air temperature either.  Air temperature is only 

exceeded for short periods of time by the surface temperatures of Bearl and Dalry.  The 

only internal sensors which exceed air temperature are those at 3 mm depth and the 

Dalry sensor, whilst the deeper sensors at 6 mm do not exceed air temperature.  The 

maximum air temperature recorded was 4.2°C; the maximum surface temperature was 

3.7°C (Dalry) and maximum internal temperature was 3.5°C (Bearl 3 mm). The surface 

temperatures for each block at 9 am are all ~1.5°C (Figure 6-25) which may be evidence 

that, during night time hours, air temperature is heating the blocks whilst during the day, 

the most dominant force is solar radiation. 
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Figure 6-25: Internal, surface and air temperatures on 20/01/2010. 

 

6.3.1.2  Relative Humidity 

Relative humidity on this winter day within the stone is almost constant with internal 

sensors generally recording 110% ± 5% RH (Figure 6-26), with the exception of Dunhouse 

Buff at 115 ± 5% RH.  The IButtons are accurate to 100%, therefore any value recording 

greater that 100%, the manufactures have suggested, to be due to the presence of liquid 

water and will be discussed later.  The air RH is much lower than internal stone conditions 

but steady at 90% (Figure 6-26). 
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Figure 6-26: Internal and air RH on the 20/01/2010. 
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6.3.2 IButton Observations “micro”: Summer Day (6th July 2009) 

6.3.2.1 Temperature 

The 6th of July 2009 was chosen to coincide with the thermal imaging data also acquired 

on this date.  The weather on this day was warm but overcast, with small showers at 11 

am and 3 pm.  When the thermal imaging data are combined with the ambient air data, 

they show that the blocks all behave in a similar manner.  Internal sensors and surface 

temperatures of all three blocks exceed air temperature by a considerable margin (Figure 

6-27).  The surface temperatures at 9 am range between 18-20°C and remain steady until 

11 am when they rise to a peak temperature at 12, the surface temperatures then slowly 

decline until 3 pm when they rise again (Figure 6-27).  The surface temperatures of 

Dunhouse Buff and Bearl are very similar, although Bearl has a slightly warmer surface 

temperature by an average of 0.4°C, and this difference mainly occurs in the afternoon.  

During the morning hours, the Dalry surface temperature is higher than the surface 

temperature of both the other blocks by an average of 1.4°C (with a maximum difference 

of 3.3°C), until 1.30 pm when the temperature on Dalry’s surface decreases and matches 

the other blocks (Figure 6-27).  The internal sensors of Dalry and Bearl 3 mm follow the 

surface temperatures of their representative block very closely.  The other sensors 

(Dunhouse Buff 3 and 6 mm and Bearl 6 mm) give a maximum temperature one hour 

before their surface and then have a slower decline in temperature until 3 pm (Figure 

6-27).  The rain showers indicated seem to have no immediate effect on the temperatures 

recorded.  Internal and surface temperatures are very similar, although all internal 

temperatures do exceed those of the surface temperatures at some point during the day 

(Figure 6-27).  The maximum air temperature recorded was 17.3°C, maximum surface 

temperature was 25.3°C (on the Dalry sandstone) and maximum internal measurement 

was 25.6°C (Dalry sandstone). 
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Figure 6-27: Internal, surface and air temperature on the 06/07/2009. 

Dashed vertical lines indicate timing of rain showers. 

 

6.3.2.2  Relative Humidity 

Relative humidity within the stones in this data appears reasonably stable (Figure 6-28).  

Dunhouse Buff sensors are similar to the air RH then, after midday, the internal RH 

becomes lower than the air RH, caused by the air RH increasing whilst the Dunhouse Buff 

remains stable (Figure 6-28).  The internal RH of Bearl and Dalry sensors are higher than 

the air RH (Figure 6-28).  The average RH for Dunhouse Buff is 78.5 ±5% whilst Bearl’s 

average is 99 ± 5% RH.  The range of values at 3 mm depth is much greater than the 6 mm 

range, (3 mm varying by 17.3% and 6 mm by only 3.2%).  When the 5% error is taken into 

account on the RH data, the Bearl and Dunhouse Buff sandstones only overlap at two 

points during the day (11 am and 2 pm). 

Dalry has the highest and most stable readings (with a range of 2%) and overall never 

drops below 100%. 
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Figure 6-28: Internal and air RH on the 06/07/2009. 

Dashed vertical lines indicate timing of rain showers. 

 

6.3.3 IButton Observations “macro”: Winter Cycle (January 2010) 

6.3.3.1 Temperature 

The month of January 2010 was examined to see whether the daily cycles observed were 

representative of the monthly data.  These data show that the daily trend concurs with 

the monthly trend (Figure 6-29), with internal sensors recording temperatures close to 

the air temperature for a large proportion of the month.  Only four occasions occur when 

all internal sensors record temperatures that exceed air conditions by more than 2°C (on 

the 18th, 29th, 30th and 31st of January).  However, during the first ten days of January, 

where air temperatures were predominantly below 0°C, the internal sensors remained 

warmer than the air during the extreme cold events (4th, 7th and 8th) (Figure 6-29).  The 

maximum and minimum air temperatures recorded were 9.4°C and -10.2°C, whilst 

maximum and minimum internal temperature recorded was 14.1°C (Dalry) and -9.0°C 

(Dunhouse Buff and Bearl 6 mm). 

To gain more information on how the air and internal temperatures are linked, the air 

temperature was subtracted from internal temperature and plotted on a frequency graph 

to show how often that particular difference between the environments occurs (Figure 
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6-30).  The difference in temperature ranges from the internal conditions being 8.9°C 

warmer than external temperature to internal temperatures being 6.9°C colder than 

external temperature.  Therefore the latter range of number will appear in the negative 

area of the graph (Figure 6-30).   

The most common difference found to occur is for the internal conditions to be 0.1 to 

0.9°C cooler than external temperatures (Figure 6-30).  All the sensors show very similar 

patterns of differences, indicating that they are recording comparable internal 

environment conditions. 

Dunhouse Buff and Bearl record that, 35.9% of the time, the internal temperatures are 

warmer than the external conditions whilst, the rest of the time (64.1%), it is cooler within 

the blocks compared to the air temperatures.  The Dalry internal temperatures, spend an 

even larger percentage of time (69.5%) colder than the external conditions.   

When the lower limits of the internal temperature compared to external conditions are 

viewed it shows that there is scatter, the lowest difference for Bearl 6 mm is for internal 

conditions to be 6 - 6.9°C cooler than the external conditions whilst it is only between 4 - 

4.9°C for Bearl 3 mm.   All but one sensor, records the maximum internal temperature to 

be 8 -8.9°C hotter than the external conditions.  

The fact that the internal temperatures are spending over half the time recording 

conditions colder then the air, may correlate with lower amounts of solar radiation in 

Glasgow in winter, compared to during the summer months. 
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6.3.3.2  Relative Humidity 

The January 2010 internal RH data (Figure 6-31) are consistent with the daily winter data.  

However, the air RH is more variable over the monthly scale compared to the daily scale.  

All internal sensors record RH measurements above 100%, when values are above 100% it 

has been suggested an error has occurred due to free water within the sandstone.  The 

maximum and minimum RH recorded for air were 96% and 57% whilst the maximum 

values for all the sensors were greater than 100%, whilst the minimum RH was 93.7% 

within Dalry (Figure 6-31).  Any variation seen internally does not appear to follow 

variations in the air.   

As the internal sensors always record higher RH conditions than the external RH, there 

is no opportunity for internal “drying” to occur, i.e. times when the internal RH is lower 

than the air RH, so that evaporation of internal moisture may occur.   
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6.3.4 IButton Observations “macro”: Summer Cycle (July 09) 

6.3.4.1 Temperature 

July 2009 was examined to identify whether the summer daily cycle observed was 

representative of the monthly data.  The IButton data shows that, during the day, the 

internal temperatures on all sensors surpass the air temperature by over 2°C on an almost 

daily basis (Figure 6-32).  Then, during the evening and night hours in-stone temperatures 

fall to similar levels as the air (Figure 6-32).  This is the same as the daily scale results.  The 

air maximum and minimum temperatures were 28.3°C and 7.1°C whilst the internal 

maximum and minimum temperature were 40.1°C (Dalry) and 10.1°C (North). 

To gain more information on how the air and internal temperatures are linked, the air 

temperature was subtracted from internal temperature and plotted on a frequency graph 

to show how often that difference between the environments occurs (Figure 6-32).  

The difference in temperature ranges from the internal conditions being 18.9°C warmer 

than external temperature to internal temperatures being 4.9°C colder that external 

temperature (Figure 6-33).  Therefore, the latter range of numbers will appear in the 

negative area of the graph and indicate that the air temperature is greater than the 

simultaneous internal temperature recorded.   

The most frequent difference to occur is for the internal conditions to be 1 to 2.9°C 

warmer than external temperatures (Figure 6-33). 

The temperature difference experienced between the sensors (i.e. at the different depths 

and within different sandstones) and external conditions are very similar (Figure 6-33).  

The south facing blocks show that, internally, the sensors record warmer temperatures 

compared to the air temperature 95.5% of the time.  Therefore, there is only a small 

percentage of time (4.5%) when it is colder internally compared to the air temperature.  

In comparison, the North block records more than double the time (11.2%) when it is 
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colder internally (Figure 6-33).  This indicates that the North block is experiencing much 

less internal heating in comparison to the south facing blocks.   

The Dalry block shows the largest differences between the internal and external 

conditions, where the internal conditions are up to 18°C warmer than the air which occurs 

four times (Figure 6-33).  The Dalry block may be experiencing higher temperatures due to 

the darker crust on the surface and also due to the surface angle.
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     Figure 6-32: July 2009 internal and air temperature data.
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6.3.4.2  Relative Humidity 

During July 2009, RH is more erratic than the single day results had suggested (Figure 

6-34).  The internal and air RH data are highly variable and internal conditions replicate 

external conditions. Of the south facing blocks, Dalry generally experiences the highest 

internal RH conditions throughout the month (Figure 6-34).  The maximum and minimum 

air RH was 95% and 44%, whilst maximum and minimum for internal were 108.4% (Dalry) 

and 32.1% (Dunhouse Buff 3 mm). 

To gain more information on how the air and internal RH are linked, the air RH was 

subtracted from internal RH and plotted on a frequency graph to show how often that 

particular difference between the environments occurs during the month (Figure 6-35). 

The difference in RH ranges from the internal conditions being 59% higher than external 

RH to internal RH being 29% lower than that of the external RH.  Therefore, when the 

internal is lower than the air, it will appear in the negative area of the graph. 

The most frequent difference for the south facing sandstones ranges between being 19% 

higher than air conditions to 9% lower than the external RH conditions.  The North block 

most frequent difference is between 1% - 29% lower, than the external RH conditions 

(Figure 6-35).  The North block result indicates that it has less moisture trapped internally 

compared to the south sandstone. 

The trends seen between Dunhouse Buff and Bearl blocks are quite different.  When the 

differences between the internal and air RH are examined, it can be seen that, in 

Dunhouse Buff, a large proportion of the difference counts are located around zero in 

comparison to Bearl (Figure 6-35).  The high proportion of difference counts located in 

this region, indicates that the Dunhouse Buff internal conditions are more closely related 

to the external environment.  In addition, the Dunhouse Buff block shows many more of 

the internal RH conditions to be lower than the air conditions, with 44.1% of the time 

accounting for the internal RH being lower than external RH.  This is 4 times more than in 

the Bearl block, where only 9.55% of the time accounts for the internal conditions being 
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lower than that of the air RH.  The large percentage of time when the Dunhouse Buff 

block records lower RH compared to the air indicates that the blocks may experience 

more internal drying compared to the Bearl sandstone.   

However, both these blocks record significantly lower internal conditions compared to the 

Dalry block.  During the month Dalry only records 2.1% of the time when internal 

conditions are lower than the external RH.  Therefore almost always records higher 

internal RH compared to air RH. 

The North block, which records the most negative values (64.6%), shows that it 

experiences the most time when perhaps drying can occur, because internally it has a 

lower RH in comparison to external conditions.
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Figure 6-34: July 2009 internal and air RH data. 
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6.3.5 Discussion 

The “micro” and “macro” data show that the relationship between internal and external 

temperature and RH is complex and varies on both a daily and seasonally scale.  The full 

extent of these variations are reviewed and discussed below. 

 

6.3.5.1 Temperature Summary 

The key observations for the data throughout January were that: 1) internal temperatures 

were similar in each sandstone observed; 2) internal temperatures closely followed the air 

temperatures throughout both day and night, leading to a narrow range of differences; 3) 

the 3 mm and 6 mm deep sensors show no significant differences in the temperatures 

they recorded.  Therefore, little internal heating is occurring within the sandstones, and 

this is the case for all the south facing blocks.  However, when air temperature is 

extremely cold, the sandstone remains internally warmer than air. 

During July 2009 the key trends are that: 1) Dunhouse Buff, Bearl and the Dalry blocks 

exhibit notably higher internal temperatures in comparison to the surrounding air 

temperature during the day, producing a large range of differences; 2) during the evening 

internal temperatures fall and follow the air temperature closely; 3) the 3 mm and 6 mm 

deep sensors record similar temperatures; 4) Dalry internally heats up the most and 

exhibits the largest temperature differences, compared to Dunhouse Buff and Bearl.  This 

internal heating during daytime causes a wide range of differences to occur between the 

internal and external data.  The North block does warm up internally but not to the same 

extent as the south facing blocks. 

After analysis of all the data recorded during the experiments (June 2008 to March 2010), 

two defined “seasons” of sandstones internal microenvironments, based on temperature 

cycles could be identified. The “summer” cycle between May and September and the 

“winter” cycle between October and March (all data sets can be found on the electronic 

appendix).  These were based on the key trends observed, outlined above.  April and 

September are cross-over months and can be defined as either summer or winter 

dependant on the external weather conditions.  Jenkins and Smith (1990) alluded to 
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varying winter and summer weathering regimes, but did not allocate specific months to 

these seasons and failed to detail how they differ. 

The thermal imaging data provided information on the temperature of the outermost 

surface of the blocks and show that the surface can have an erratic rise and change in 

temperature throughout the day, whereas the internal temperature rises and changes at 

a steadier rate.  These erratic surface temperatures may be due to weather events such as 

gusts of wind cooling the surface, or periods of cloud cover causing momentary shading, 

as the level of direct solar radiation is reduced (Jenkins and Smith, 1990; Smith et al., 

2008b).  However, results indicate that these short periods of loss of direct sunshine do 

not penetrate to deeper levels, which is in agreement with Jenkins and Smith (1990) who 

state that short duration temperature fluctuations are restricted to a thin layer at the 

surface, which these results show to be <3 mm. 

In order to investigate solar heating further, the colour of the sandstones was tested using 

a Konica Minolta CR-400 chromo meter, which produced colour results on the Hunters lab 

colour space scale L* a* b*.  The L* data measures the brightness level on a scale of 0% 

(black) to 100% (white).  The a* values run from green to magenta, where negative values 

signify green while positive values specify magenta, whilst b* indicates blues and yellows, 

where negative values indicate blue and positive values equate to yellow.  An average of 

30 measurements were taken over the surface of the blocks and the mean values and 

standard deviation are listed in Table 6-3. 

Table 6-3: Colour of sandstone blocks using Hunters lab colour space scale, including SD. 

Block L* a* b* 
Dunhouse Buff 53.73 ± 3.87 6.48 ± 0.58 26.26 ± 1.28 
Bearl 61.12 ± 7.47 4.12 ± 1.35 20.49 ± 3.10 
Dalry 40.22 ± 2.23 0.30 ± 0.59 11.20 ± 0.89 

 

These results indicate that Bearl is the lightest coloured sandstone whilst Dalry is much 

darker with the lowest L* value (due to this being a previously weathered sandstone, 

having a well formed black crust).  As all a* values are positive the sandstone blocks are 

redder in colouration with Dunhouse Buff containing the largest proportion of red and 

Dalry has almost no red or green pigment (Table 6-3).  The results of the b* also show that 

Dunhouse Buff and Bearl have a significant yellow proportion providing the buff 

colouration (Table 6-3). 
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These colours are then directly proportional to the albedo of the sandstone.  The dark 

crust of the Dalry sandstone absorbs a greater percentage of light wavelengths, giving it a 

low albedo.  This light energy is then transformed into longer wavelengths, which equates 

to lower energy infrared heat.  As the Dunhouse Buff and Bearl sandstone have a lighter 

colouration they therefore have a higher albedo, meaning a smaller percentage of 

wavelengths are absorbed and therefore less heat can be produced. 

Although many people use this theory to state that the dark rocks will heat up more than 

light coloured rocks (Small, 1972; Ahnert, 1998; Bland and Rolls, 1998) these are all 

assumptions with no evidence.  A few studies have recorded field evidence of darker 

rocks having higher surface temperatures (Kelly and Zumberge, 1961; André, 1992), 

however, these studies contain significant variability between exposures used and 

physical properties of the samples.  Using advanced dataloggers and concrete blocks 

within one environment, Hall et al. (2005) investigated the link between colour and heat.  

Hall et al. (2005) applied paint with varying reflectance properties to concrete blocks and 

monitored surface temperatures.  They found that in general the black block is warmer 

than the white block but, in some exceptional circumstances, this is not true.  When the 

block’s temperatures were equal to or cooler than air temperature, then the black surface 

recorded the coolest temperatures.  However, as stated, this is only on the surface and 

does not explain how coloration may affect the deeper internal temperatures which this 

study has predominantly been monitoring. 

The idea that dark coloured rocks heat up more at the surface, and that heat can be 

transmitted to depth to a greater extent than light coloured rocks, can be said to be true 

for these result during summer, as the Dalry block is generally hotter at depth than the 

Dunhouse Buff and Bearl sandstones.  However, during the winter, the Dalry sandstone 

had a very similar internal temperature to those recorded within Dunhouse Buff and 

Bearl.  Therefore, a second factor is controlling how much heating can take place and 

affecting the sandstone this may be the amount of solar radiation available. 

The average solar radiation recorded in January 2010 was 39.8 W/m2 whilst the maximum 

was 283.1 W/m2; this is much lower than the 2009 July average of 197.4 W/m2 and 

maximum of 1073.0 W/m2.  This difference in available solar radiation is why during the 

summer data shows considerably higher internal heating occurring on the south facing 



 Internal Monitoring and Accelerated Weathering  305 

blocks compared to the winter months.  As the sun never directly illuminates the North 

block at any point within the year, much less internal heating takes place as it is only the 

ambient air temperature which is going to affect the surface and internal heat of the 

sandstone.    

Therefore, the two factors controlling the internal heating of these sandstones are the 

amount of solar radiation available and the colour of the surface (which directly relates to 

its albedo).  Peel (1974) and Kerr et al. (1984a) suggested that thermal conductivity will 

affect the amount of heating which can occur.  However, as the mineralogy and porosity 

of these sandstones is similar (see chapter 4), thermal conductivity will probably only act 

as a minimal factor between each of the sandstones studied. 

Previous studies on internal heating of sandstone outlined in section 1.2.7 are difficult to 

correlate with the results gathered in these experiments, as often they are oven based 

tests or have been conducted in a climate and latitudes unlike that of Scotland, such as 

Morocco (Kerr et al., 1884a) or Death Valley (Warke and Smith, 1999).  However, these 

studies may help to provide an insight on how temperature regimes may change with the 

warming Scottish climate. 

6.3.5.2  Relative Humidity Summary 

The key trends for RH during January 2010 are: 1) Dunhouse Buff, Bearl and Dalry blocks 

all record internal RH values that are notably higher than the ambient air RH; 2) that this 

trend is prevalent throughout the whole month, producing a very narrow range of 

differences; 3) the largest differences between internal and external RH are caused by a 

lowering of the external RH (rather than a change to internal conditions); 4) the Dalry 

block continually records the highest values.  Glasgow’s average RH during January 2010 

was 86% RH and ranged between 100% and 56%.  The averages recorded by the internal 

sensors were all above 100%; this high RH within the sandstone suggests the presence of 

liquid water during the entire month.  Throughout January 2010, the RH internally was 

never lower than the external conditions and, therefore, no periods occurred when 

potential internal moisture loss could take place.  This is due to the already present high 

RH for air in the Glasgow region in the winter giving the sandstone no opportunity to 

lower its internal moisture content. 
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The key trends for RH during July are: 1) within all the sandstones RH is highly variable, 

reflecting the high variability of external conditions; 2) Dalry, in general, has the highest 

RH.  Dunhouse Buff records the lowest humidity loss internally at both its 3 mm and 6 mm 

sensors.  Of the sensors at 3 mm depth, Dunhouse Buff records the most internal RH 

below that of the air and, of the 6 mm depth sensors, Dunhouse Buff again records the 

most internal RH below that of air.  The average air RH during July 2009 was 74%, 

although it ranged between 96% and 43%.  During the summer, there is a larger 

proportion of time where the internal sensor records a lower RH than air (in comparison 

to the winter), which indicates periods when internal drying may be occurring.  There is a 

larger range of RH at 3 mm in comparison to the 6 mm sensors, illustrated schematically 

in Figure 6-36. 

The discussed months above were then compared to all the other data recorded (June 

2008- March 2010) and two internal microclimate cycles have been identified based on 

these RH trends.  These are a summer cycle during May to late August and a winter cycle 

between September and April (full data set can be found on electronic appendix), which 

were deduced from the above characteristics for January and July. 

 

Figure 6-36: Schematic diagram of the range or variations experienced at different depths 
within sandstones. 

 

These internal RH cycles are completely dictated by the external conditions.  The RH 

within Glasgow during the winter is very high, limiting any internal moisture loss.  

However, the lower ambient RH, which occurs for longer periods of time throughout 

summer, allows periods where significant loss of moisture can occur. 
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The Dalry data show that, internally, it retains the highest RH values throughout the year.  

This suggests that the black crust may be acting as a barrier for the evaporation of water 

whilst still allowing inward penetration of water.  It also may be a product of being 

situated on the concrete ground. 

The North block records the most time when internal RH is lower than the external 

conditions, which may be due to the block receiving lower amounts of rainfall on its 

surface in comparison to the south blocks.  

When internal datalogging of building stone has been undertaken by previous studies, 

most only focus on the internal temperature rather than also monitoring the internal RH 

of sandstone.  This is because, in the past, the technology has not been adequate to 

quantify RH rather than liquid water and, therefore, only the internal temperature has 

been considered. 

When both the temperature and RH cycles are combined, their timings correlate well.  

The cycles include the summer cycle (May to late August), which is characterised by all the 

internal sensors recording higher day time temperatures compared to air temperature, 

with a maximum difference of 15.3°C.  The RH during summer is erratic within these 

months and internal moisture loss will occur, as internal RH drops below external RH 

frequently.  The winter cycle (September to April) is recognized by internal temperatures 

closely following the air temperatures and only diverging to either side of it by a few 

degrees (average difference is 0.1°C).  The internal RH is higher than the air RH but, during 

the winter cycle, there are minimal “drying events”, and the range in differences is much 

smaller (maximum range 35.4). 

6.4 Internal Monitoring Results: Part 2 

The IButton dataloggers were used to measure RH within sandstone, although the values 

obtained frequently surpassed 100% RH in summer and for prolonged periods of time in 

winter.  This indicates an error with the measurements as RH cannot exceed 100%.  The 

manufacturers (Maxima) of the IButtons state that they should be accurate to ±5% RH 

and work between 0 - 100% RH.   These errors, as suggested previously, may be caused by 

free water within the sandstone block.  To test this theory, Decagon leaf wetness sensor 
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(LWS) were enclosed in a block of Blaxter sandstone (quartz = 70%, porosity = 12%) at a 

depth of 6 mm as detailed in section 2.1.11.  Blaxter sandstone was chosen due to its 

similar properties to Dunhouse Buff (quartz = 70%, porosity = 14%), where RH was 

recorded above 100%.  As the LWS were originally designed to be used in the open air, a 

new calibration for their use in sandstone was undertaken, as outlined in section 2.1.10.  

The LWS only records free water on the surface of the sensor and will therefore confirm 

whether or not water is present within the sandstone at 6 mm and is therefore causing 

errors in the IButton data.  One LWS (LWS-INT) sensor was embedded into the block 

whilst the other was placed in open air (LWS-EXT) next to the block facing the same 

direction, so that direct comparisons could be made between internal and external data 

gathered by the loggers.  After an initial two week trial period, the sandstone block was 

placed outside with sensors facing south for a four month period from the 30/04/2010 – 

17/08/2010. 

6.4.1 Leaf Wetness Sensor Results 

The LWS works by measuring the dielectric constant on the top of the sensor.  The sensor 

then outputs a mV signal proportional to the dielectric of the sensor area and therefore 

proportional to the amount of water on the surface. 

The LWS-INT was calibrated in sand of different moisture contents as described in section 

2.1.10.  The calibration profile is shown in Figure 6-37, and this graph was then used to 

convert the raw data counts recorded by the LWS-INT within the Blaxter sandstone and 

has a R2 value of 0.95.  However, once converted, the baseline data were found to be 

consistently 15 ml high, even when first embedded into the dried block and sand.  For this 

reason, 15 was subtracted from the converted data to correct for this offset and then 

divided by the leaf meter area (30.3 cm2) to produce a recording in ml/cm2.  As LWS-EXT 

was being used in the same format as originally designed for (open to the air), Equation 5 

was used to convert the raw data into ml/cm2, this formula was provided by the 

manufacturer Decagon Devices, and the conversion has an R2 value of 0.97. 
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Figure 6-37: Calibration plot for LWS-INT. 

 

 

 

Equation 5: Calibration equation for LWS-EXT 

 

These data are presented in Figure 6-38A and show that the LWS-INT is sensitive to 

external conditions, recording many of the rain showers detected by the external sensor 

and the LWS-INT frequently returns to 0 ml/cm2 between showers.  However, between 

the 25/06/2010 – 23/07/2010, rain fall was frequent and heavy with only small intervals 

between showers.  During this time period, the internal base line increased for LWS-INT to 

0.004 ml/cm2 (Figure 6-38A).  This was perhaps because less time was available for 

evaporation to occur due to the external conditions and therefore the sandstone 

contained residual moisture throughout the period.  However, for long periods of time 

the internal sensor remained dry despite external rain showers occurring; 10 and 12 dry 

day periods, are recorded between 21/05/2010 – 31/05/2010 and 14/06/2010 – 

26/06/2010 (Figure 6-38A). 
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Figure 6-38: Leaf wetness sensor data. 

A) The full data set collected.  Graphs 1 to 11 represent areas of the large data set.  Blue = internal sensor, red = external sensor, orange = PAR readings. LWS-INT on primary axis (ml/cm
2
), LWS-EXT on secondary axis 

ml/cm
2
.  PAR is in µmol m

-2
s

-1
.  



Climate Change Results  311 

A series of 11 individual graphs were produced to highlight the finer details of the large plot 

(Figure 6-38 1-11).  These time periods were chosen due to their relative isolation in relation 

to other rain showers, making characteristics of the events easier to identify.  These 

individual graphs show four peak profiles sketched in Figure 6-39.  The profiles of A and B are 

very similar, although A is a symmetrical profile where the leading edge of the peak is 

mirrored by the decreasing evaporation edge (Figure 6-39A); these can be seen in Figure 

6-38.3, 4 and 5.  Profile B differs in that the evaporation side of the peak is curved and a 

quicker initial decrease of liquid water occurs before the evaporation rate slows down 

(Figure 6-39B andFigure 6-38.1 and 7).  These two peak profiles indicate a similar rate of 

transport of water to the stone interior but the evaporation rate differs.  The C peak (Figure 

6-39C) is characterised by having a long slow leading edge rising to the crest of the peak, 

before the water quickly dissipates (Figure 6-38.2 and 6).  In this scenario, the absorption 

rates are much slower than rates of evaporation.  The profile of peak D (Figure 6-39D) is only 

seen once within the data peaks observed, however its form is similar to that of the C shaped 

peaks, but has a bulbous curved crest rather than a sharp defined peak (Figure 6-38.10). 

 

Figure 6-39: Sketch diagrams of LWS-INT peak profiles identified. 

 

Key observations concerning the environmental conditions and the internal peak type are 

summarised in Table 6-4.  It shows that, on occasions when LWS-INT produces A and B 

shaped peaks (Figure 6-38.1-5 and 7), the lag time between maximum LWS-EXT and 

maximum LWS-INT recordings are highly variable, ranging from 6 – 20 hours.  For the five 

profiles within this category, two groupings emerge.  The first, with a very short lag time of 

6-7 hours, and the second, with a very long lag time between 20-22 hours, no obvious 

reasons are identified for this difference.  Of this set, only Figure 6-38.7 has any pyrometer 

data associated with it and shows sunshine whilst absorption is taking place and darkness 

during the evaporation leg.  The timings of the evaporation and absorption leg were 

analysed for the rest of the set and they follow the same pattern: absorption = daytime, 

evaporation = night time.  The C and D shaped peaks have a good correlation of 15 hours 

between maximum LWS-EXT to maximum LWS-INT readings.  Solar radiation data are known 

for Figure 6-38.10 (D peak).  The shallow leading edge is in darkness and when the sun begins 
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to shine the water quickly begins to evaporate giving a drop in the internal water levels.  This 

is not true for the C shaped peaks where the solar radiation information is compatible with 

the A and B peak formation.  These results are summarised in Figure 6-40. 

 

Figure 6-40: Sketch summaries of when the peaks are in daylight and when they are in 
darkness. 

Orange) daylight, dark blue) night time. 

 

Situations also occur where no significant internal peak in water measured occurs, even 

though external rain is recorded (Figure 6-38.8 and 11).  The data in Figure 6-38.8 occurred 

when very light rain fall ensued over an 11 hours period of time, although Figure 6-38.11 

does not follow this pattern.  However, these events both occur after a significant dry period 

(Figure 6-38A).  The lack of an internal peak may be caused by a combination of factors such 

as the rain intensity and volume being too insignificant to penetrate inwards, or evaporation 

was high at the time, thereby limiting water ingress. 
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Table 6-4: Table of key observations linked to Figure 6-38 graphs. 

Graph Peak 
Profile 

Length of rain 
shower 
 (Hours) 

Total  
rainfall  
(ml) 

Lag between max 
internal and max 
external readings 
(Hours) 

Av Temp  
(°C) during 
shower 

Wind 
MaxA 

AvB 

Av Dir 

Sunshine  
Info 

1 B 10 2 7 9 7A 
2B 

WSW 

No 

2 C 5 3.75 19 9.7 2A 
0.09B 

E 

No 

3 A 14 7.51 6 11 5A 
0.7B 

SE/SSW 

No 

4 A 29 11.25 22 11.6 4A 
1B 

Variable 

No 

5 A 9 8.29 20 13.8 3A 
0.2B 

WSW 

No 

6 C Over 15h 2 rain 
events 4 &2 

6.78 15 14.7 4A 
0.5B 

SW 

Yes 

7 B 9 12.88 7 11.9 5A 
0.4B 

S 

Yes 

8 --- 11 3 --- 10.0  --- 
9 A and B       
10 D 24 21.9 15 13.4 3A 

0.1B 

NW 

Yes 

11 --- 5 5.28 --- 8.9  --- 

Where dashed lines appear (--) it denotes not relevant. 

 

To gain further information on the absorption and loss of each peak, these were examined 

individually. 

6.4.2 Evaporation 

The maximum volume of water detected internally on the LWS-INT is 0.9 ml/cm2 but the 

standard maximum is 0.5 ml/cm2 (Figure 6-41).  The majority of peaks (exceptions being 2 

and 10) show that it takes 6 to 7 hours for 0.5 ml/cm2 to dissipate, which means an average 

of 0.08 millilitres per hour (ml/hr) evaporates.  Peak 2 has a rate of 0.06 ml/hr and peak 10 

has a rate of 0.05 ml/hr (Figure 6-41).  The slow evaporation speed shown by peak 10 may be 

linked to the fact that it was recorded during a particularly wet period with higher humidity 

than average for the month (87% compared to 81%).  Hall et al.(2011) identified a large 
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seasonal trend between the potential evaporation (PE) during summer and winter where PE, 

is defined as the amount of evaporation that would occur if a sufficient water source were 

available.  PE is generally much higher in summer rather than in winter (Figure 6-42), as the 

amount of PE is highly dependent on external conditions such as temperature, solar 

radiation and RH (Hall et al., 2011).  Although the results from this study are only 

evaporation rates rather than PE rates, it can be assumed that the evaporation rates 

calculated are for summer months only.  Therefore the evaporation rate in Glasgow during 

the summer is 0.08 ml/hr.  Hall et al.(2011) show that, during winter, London has a lower PE 

compared to during the summer months (Figure 6-42) following this logic much less 

evaporation and PE will therefore also occur in Glasgow.  In addition, regarding Glasgow, the 

PE may be even lower due to its higher latitude, reducing the amount of solar radiation 

further in comparison to London. 

 

Figure 6-41: Evaporation leg of each peak identified in Figure 6-38. 

Each line goes from peak ml/cm
2
 recording to base of 0.05 ml/cm

2
. 
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Figure 6-42: Daily potential evaporation graph. 

Graph shows raw data for London and superimposed regression curve (solid line) for both 
London and Athens taken form Hall et al.(2011). 

 

6.4.3 Absorption 

Results from the internal moisture sensors indicate that the maximum penetration of water 

to a depth of 6 mm can take a significant time after the start of rain, in some cases the rain 

has often stopped falling before any water is recorded at 6 mm depth. 

The results from this study for rate of water penetration to depth are shown in Figure 6-43.  

The absorption values have a much greater range compared to the evaporation. Peak 5 and 

6 have an absorption rate of 0.04 ml/hr whereas 1, 3, 4 and 10 have an average rate of 0.08 

ml/hr, with peak 2 showing an absorption rate of 0.07 ml/hr.  Peak 7 is an unknown as it 

starts at a higher baseline due to a large internal peak prior to absorption of peak 7 and, 

therefore, the baseline had not fully recovered (Figure 6-38.7).  The data reveals that rate of 

water ingress is much more difficult to predict (compared to the loss of water), as no obvious 

differences in environmental conditions are observed. 
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Figure 6-43: Absorption leg of each peak identified in Figure 6-38. 

Each line goes from base to maximum recording on the LWS-INT. 

 

Many attempts have been made to understand how liquids are absorbed and flow through 

porous media (Hall, 1977; Gummerson et al., 1980; Wilson et al., 1995; Terheiden, 2008).  

This process of liquid absorption is complicated by many factors, in addition to the porosity 

and permeability of the material which also have to be taken into consideration.  These are: 

whether the sandstone is free from salts (if salts are present they will change the flow 

dynamics of the water); the pore size; the saturation levels within the stone and external 

conditions such as temperature.  However, the studies listed above all focus on absorption 

by capillary rise ascertained by drying sandstone blocks which are then placed in a tray of 

water and at various intervals removed and weighed, therefore the water content can be 

calculated.  This is useful in understanding ground water rise in monolithic monuments, but 

buildings are largely affected by the penetration of rain water, rather than capillary rise 

which only affects the lower most 2 m of buildings (Hall et al., 2011).  To calculate 

penetration by rain fall, factors such as the angle in which the rain is hitting the surface 

(which is influenced by the wind speed) and the intensity of rain fall also have to be 

considered.  These variables will all affect the amount of water absorbed and the rate of 

absorption.  Hall and Kalimeris (1982) accounted for these conditions and their results are 

reported in Table 6-5.  In the table, Vo is the rate at which rain is received per unit area of the 

surface.  If the material has high sorpitivity value (more pore space) the surface will take 

more time to become saturated than a material with low sorpitivity values (minimal 

porosity) under the same rainfall conditions.  This demonstrates that the time for a porous 

surface to become saturated when exposed to rain depends mainly on the sorpitivity of the 
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material (sandstone generally have high sorpitivity values at 1 mm min-1/2, Hall et al., 2010) 

and the rate at which rain is received per unit area of the surface.  Hall and Kalimeris (1982) 

only consider the very outermost surface (depth of 1 mm) and do not imply any rate of 

absorption to depth.  Furthermore these results are based on stone at an angle rather than 

vertical which would cause an increase of rainfall run-off. 

As Hall and Kalimeris (1982) indicate in their results, the surface may become saturated 

quickly.  With a rainfall of 75 mm/h onto sandstone with a sorpotivity of 1 mm min-1/2, it will 

take 0.41 of a minute to saturate the surface (Table 6-5) however, the rate of water 

transportation to depth is a much slower process, as shown by the Glasgow LWS results. 

Table 6-5: Table of surface saturation times for different rainfall intensity values. 

Sorpotivity 
mm min-1/2

 

 
VO 25 mm/h             VO 50 mm/h          VO 75 mm/h 

0.50 0.92 0.23 0.11 
1 3.69 0.92 0.41 
1.50 8.29 2.07 0.92 
2 14.75 3.69 1.64 

Data taken from Hall and Kalimeris (1982). On an angled surface where gravity is factored in to 
give a more realistic building surface saturation rates. VO = intensity. 

 

Other methods which can be used to test the moisture of walls are an adaption of a 2D 

electrical resistivity survey and the wooden dowel method (Sass and Viles, 2006).  The 2D 

electrical resistivity survey is fast and non-destructive and provides good spatial and 

temporal resolution.  However, this does not provide information on the ingress and 

evaporation and the rate of movement of the water within the sandstone only providing a 

snap-shot of where the moisture is within the wall. 

6.4.4 Summary 

The maximum volume of water detected on LWS-INT is generally 0.5 ml/cm2, with the 

exception of Figure 6-38.10 showing a much larger amount.  However, LWS-EXT (outside) 

regularly reaches 1 ml/cm2, which would indicate complete saturation.  Therefore, the 

internal LWS is consistently recording a lower saturation level compared to the external LWS.  

The lower 0.5 ml/cm2 recorded by LWS-INT is likely to be internal saturation , as some sand 

grains will cover the sensor and hinder the amount of surface space on the LWS-INT available 

for water detected.  When the LWS-INT records 1 ml/cm2 it may be that the pressure of the 
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water being absorbed has forced the liquid behind the grains onto the sensor and this only 

occurred during extreme periods of rainfall. 

During the experiment, the evaporation of water out of Blaxter sandstone has a consistent 

value of 0.08 ml/hr, although the absorption is much more variable, ranging from 0.04 – 0.08 

ml/hr.  The predominance of absorption occurring during daytime may be a factor of 

Glasgow’s rainfall occurring mainly during night time hours and, as absorption is a slow 

process, taking time to reach 6 mm depth it therefore then occurs during the day.  This is in 

agreement with Svensson et al. (2002), who showed that rain is found to start significantly 

more often in the first four hours after midnight in Glasgow. 

However, when considering the results, some possible sources of error should be 

acknowledged.  Once the water penetrates the sandstone it encounters the impermeable 

sensor and becomes trapped next to it rather than flowing freely, causing the water to be in 

contact with the surface of the sensor for a prolonged period of time compared to the 

external sensor, which is subjected to wind, which may dry the surface much more rapidly.  

Also, gravity will cause the rain droplets to fall off quicker on the external sensor.  Although, 

even with these complications considered, the results from the LWS dataloggers still provide 

an important new insight to the flow of water within sandstone in the Glasgow environment.  

The results provided by the LWS-INT prove the presence of water between the surface and a 

depth of 6 mm.  The evidence of water internally verifies that the IButton data inaccuracies 

were caused by free water and demonstrate that the sandstone is very sensitive to the 

external conditions. 

6.5 Internal Monitoring and Accelerated Weathering 

Summary 

To understand the impact of climate change on internal microenvironments, and how they 

influence weathering at present and in the future, these internal monitoring and accelerated 

weathering experiments were conducted.  The long term environmental chamber 

experiments indicate (on the chamber and water only blocks) that, with a change in 

temperature and RH, climate will only cause small amounts of change to the sandstone 

surface predominantly in the form of granular disintegration.  Also, the fine-grained 

sandstones such as Dunhouse Buff (quartz average size = 163 µm) will lose a greater number 
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of grains compared to the coarse-grained sandstones such as Bearl (quartz average size =450 

µm) (Figure 6-44).  This suggests that coarse-grained sandstones may be more resilient to 

granular disintegration.  However, the total mass lost is approximately the same (i.e. 2000 

fine-grains are the equivalent to the volume of 1000 coarse-grains). 

 

Figure 6-44: Graph of grain size against total number of grains lost. 

 

The internal monitoring results signify that, for almost half of the year, the temperature at 3 

mm and 6 mm depth is very different to the external conditions with internal day time 

temperature readings throughout the summer months much higher than the ambient air 

temperatures.  The likely cause is the higher amount of incident solar radiation during the 

summer.  During winter, solar radiation is much lower and therefore the internal 

temperature is similar to the air temperature.  When these results are extrapolated out to 

the 2080 medium-high emission scenario, where air temperature is supposed to increase, 

this will not affect the internal temperature regime on the south facing blocks.  The ambient 

air temperature is not controlling the internal regime within the sandstone; the driving factor 

instead is the solar radiation.  These changes are illustrated in Figure 6-45.  An increase in air 

temperature will only reduce the difference experienced between the internal sandstone 

and the external conditions.  The amount of solar radiation Glasgow receives will be affected 

by the percentage of cloud cover experienced.  UKCIP02 predicts cloud cover to decrease 

marginally (3%) during the summer months, although this aspect of climate is very difficult to 

predict.  However, if this does happen, then the internal temperature of the south facing 
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facades will increase.  Moreover, an increase in air temperature will have a larger impact on 

the east, west and north aspect of the building rather than the south facades, because the 

internal heating on these is dictated directly by the air temperature as no direct solar 

radiation is striking their surfaces.  Therefore, an increase in air temperature will increase the 

internal temperatures experienced (Figure 6-45). 

During the winter months, the internal water content of the sandstones is dominated by 

liquid water.  The UKCIP02 predictions state that RH may decrease marginally during both 

summer and winter.  Internal RH conditions during winter are unlikely to change as internal 

RH is considerably higher than external RH causing it to continue to have liquid water 

internally.  During the summer, the internal RH, which follows the patterns of the external 

conditions, will fall and may perhaps cause an increase of periods when loss of internal 

moisture can occur.  In the summer months the rainfall is predicted to be more intense, with 

heavy showers combined with longer dry spells between these (i.e. no overall change to the 

amount of rain, more a change to how it falls).  These prolonged dry periods, may provide 

greater opportunities for internal moisture loss to occur. 
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Figure 6-45: Sketch summary of predicted temperature change and the internal impact on the 
sandstone. 

 

The implications of these climatic changes for both the inorganic and organic weathering 

processes will be discussed further in the following chapter. 
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7 Thesis Discussion   

So far, the discussion in each chapter has focused on individual aspects of the research.  

Here I aim to bring together all the results to answer the questions set out at the 

beginning of the study.  

7.1 What weathering processes have occurred 

historically and are at work presently on the blond 

sandstones of Glasgow? 

To explain how weathering is taking place currently, the seven types of weathering as 

defined in the literature review will be used to analyses the results.  These categories 

were: pollution; salt crystallization; freeze-thaw; chemical action; clay expansion; thermal 

heating and biological activity.  Although the study focused on a subset of these actions, 

evidence for all weathering processes was noted.  This discussion aims to give a full 

perspective of internal and surface decay methods.  

7.1.1 Pollution 

The historic buildings of Glasgow display effects of the past clearly on their surfaces as 

they have become modified through time reflecting the changing urban environment.  In 

particular, many buildings are blemished by black crusts, which have accumulated 

throughout the industrial period and are at present forming by vehicle-derived pollutants.  

The FEG-SEM data of crusts are outlined in chapter 3.  A synopsis of the results obtained 

are that, a thin and loosely compacted deposit, mostly composed of mineral fragments, is 

the most common crust formation, with a few silica glaze crusts evident as well.  The 

mineral crusts only have a small microbial content as indicated by the protein and 

chlorophyll-a assays.  The surfaces of minerals directly below the crust did not show any 

evidence for pitting or dissolution, and no evidence of enhanced chemical reactions due 

to its presence was observed.  It is unknown whether the crust’s presence was causing 

granular disintegration as the environmental chamber experiments show that this can 
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occur purely due to the ambient climate (i.e. temperature and RH with and without 

additional liquid water).     

An indirect weathering effect caused by the presence of a black crust on the stone surface 

is that internal heating is much more effective than in the fresh blond sandstones, whilst 

also altering the internal RH cycle.  The internal IButton datalogging measurements from 

the Dalry sandstone, (which had a well-formed black crust on its surface) record the 

highest temperatures and RH values throughout both summer and winter.  The crust 

therefore, seems to be hindering evaporation of moisture, in spite of higher 

temperatures, leaving the subsurface stone damper.  The RH cycle within Dalry could also 

be a consequence of sitting on a concrete surface.  However, the presence of a dark crust 

is defiantly altering the internal temperatures. 

Previous studies have speculated that the occurrence of a black crust may have a positive 

‘protective’ effect by reducing the impact that microbial communities can have on the 

sandstone (Bluck and Porter, 1991b).  Of the ten samples identified as having “mineral 

fragment black crusts” only three, have microbial matter identifiable within the FEG-SEM 

(EE1 from SVS, and Dalry samples D2 and D3).  In addition, the silica glaze samples also, 

have no visually identifiable microbial communities associations with them.  Therefore, 

the black crusts could be assessed as reducing the likelihood of microbial colonisation 

impacting on the stone surface.  The reason for this is unknown, although two theories’ 

are that: 1) the crust is toxic to the microbes, 2) the crust is blocking the pore space 

needed by the microbes to colonise. 

With the evidence outlined, it seems that the overall impact of the black crust is not 

damaging the sandstone beneath; the crust seems to inhibit the growth of microbes and 

at present the rates of chemical decay are not dramatically enhanced.  The biggest effect 

that pollution has on the Glasgow sandstones is predominantly an aesthetic problem. 

Therefore, we should not forcefully remove the black crust, and allow it to wear away 

naturally.      
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7.1.2 Salt 

Results indicate that salts are not prominent within these sandstones.  When analysis was 

undertaken only small quantities of salt were detected residing on the surface, and none 

were seen internally.  Any salts that were present may have dissolved out during sample 

preparation.  Although care was taken to use a dry core bit when sampling (to avoid 

dissolution by water), the sample preparation into polished blocks may have destroyed 

any salt crystals present. Although, it is of note that the fractured surface samples which 

required minimal preparation and no polishing, also, did not show any salt crystals in 

significant quantities, with the exception of CS4.  CS4 (St Vincent St building) shows large 

deposits of salt on the surface of the sandstone, the main crystal being gypsum 

(CaSO4·2H2O).  However, this sample was taken from an area where mortar repairs had 

been widespread.  As mortar is a combination of putty lime (Ca(OH)2) enhanced with 

additives such as sand, the mortar was most likely the source of calcium, which then 

combined with sulphur from pollution in the air to form the gypsum crystals on the 

sandstone surface.  This is an example of the below sulphation process detailed in Lefevre 

and Ausset (2002). 

Calcium is found in many other samples analysed, stored in the form of ankerite.  The 

largest quantity of ankerite found was 10.6% in EE4 (SVS).  This is a high proportion in 

comparison to the average of Dalry and RGU samples (0%), and the University samples 

(3.5%).  This much smaller quantity of internal calcium and magnesium, compared to the 

lime mortar may explain why calcium/magnesium salts have not been produced on, or 

within the majority of samples.  Lack of calcium is the most likely reason, to explain why 

salt crystals were not present on the stone surface or at depth, but a multitude of factors 

influence where and when salts will form.  Another feature, which may have contributed 

to the lack of salt crystals in the Glasgow sandstones, is that the saturation levels of salt in 

the liquid are below that needed for crystallisation.  The University and SVS samples 

(those that contain ankerite) were taken from a height on the buildings where the 

samples were mainly exposed to rainwater (Hall et al., 2011).  Therefore samples are 

relatively unaffected by the groundwater, which is laden with natural salts and de-icing 

salts used during the winter months.  Kamh (2005a) tested water sources in Chester City 

(UK) and showed that rainwater has only 94.1 ppm of total dissolved salts whilst 

snowmelt contaminated with de-icing salts has 225.5 ppm of total dissolved salts.   
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The data gathered from these samples, suggest that, the presence of salt is only 

minimally decaying the blond Glasgow sandstones.  Where salt crystals do occur, they are 

not seen penetrating to depth, residing only on the surface.  Therefore, the salts are not 

causing any mechanical damage within pore space through crystallisation or hydration 

pressures, only attacking the surface of the few sandstones on which they are present.   

7.1.3 Freeze-thaw 

Freeze-thaw as a weathering process was not specifically investigated within this study, 

due to the difficulties in gathering precise temperature measurements (as continuous 

datalogging on a 1 minute interval or less is needed to identify the latent heat associated 

with the freeze-thaw event Hall, 2004).  However, the microenvironment climate 

monitoring shows that the internal temperature at 3 mm and 6 mm occasionally does dip 

below freezing during the winter months, whilst RH measurements were greater than 

100% (i.e. liquid water is present) indicating that conditions are suitable for the process of 

freeze-thaw to occur.  In December 2009, January 2010 and February 2010 this 

combination happened ~30 times in Dunhouse Buff and Bearl sandstone at each depth, 

with fewer occurrences in the Dalry sandstone (with black crust).  This estimate was 

calculated using points which crossed 0°C (whilst at 100% RH), but the process of freeze-

thaw (microgelivation) can occur between 0°C and -4°C, and colder temperatures, are 

needed in low porosity rocks (Matsuoka, 2001).  These factors suggest that 30 freeze-

thaw events are likely to be an over estimate.  The low occurrence of freeze-thaw events 

within the Glasgow sandstones, may be due to extended cold periods of time rather than 

the external climate hovering around 0°C causing lots of potential freeze-thaw fracturing.  

Other considerations are that, the Glasgow climate is mild in comparison to other areas in 

the world.  In addition, variables around the building such as broken gutters, elevation 

and external features such as trees shading the sandstone, will all cause localised changes 

to the amount of freeze-thaw events in which the sandstone experiences.  Furthermore, 

internal heating of the stone within occupied buildings, will have a significant impact on 

the number of freezing events, which can occur. 

Backscatter electron and CL imaging of the outermost surface, did not show any signs of 

mechanical defects caused by freeze-thaw, such as physical fracturing of the quartz grains 

or overgrowth detachment, as no small cracks were seen to be forming either between or 
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within grains.  However, this does not mean that freeze-thaw was not causing micro 

defects to the mineral structure.  However Raman spectroscopy produced standard 

spectra for the quartz grain at the surface, indicating no change to the minerals.   

Freeze-thaw is only potentially operating for a few months of each year within Glasgow 

(December, January, February and March) making it insignificant in the larger framework 

of sandstone weathering on these Scottish blond buildings.  Furthermore, the 

effectiveness/ineffectiveness of freeze-thaw (discussed in section 1.2.4) is largely 

unknown as quantitative analysis has not been undertaken for the natural environment.  

Thomachot and Jeannette (2002) suggest that after 250 freeze-thaw events no damage 

had occurred on a German sandstone which had porosities ranging between 4-19%.  

Therefore, a maximum of 30 freeze-thaw events annually is likely to be insignificant in 

weathering the Glasgow sandstones.   

7.1.4 Chemical 

The use of Raman spectroscopy combined with quantitative X-ray microanalysis has 

produced clear results showing that chemical decay is having a profound effect on the 

muscovite minerals at the outermost stone surface.  More subtle changes also occur in 

the kaolinite clay.  The EDX analysis indicate that muscovite at the outermost surface 

have chemical compositions close to that of muscovites from the internal regions, with 

only a slight depletion in potassium.  However, Raman spectra are very different from the 

two regions: at the top of the samples few bonds seem to survive leaving an “ionic 

slurry”, showing that the micas are being broken down relative to those of the interior, 

where conclusive mica spectra are recorded.  The Raman spectroscopy also shows that 

the kaolinite is less crystalline at the surface and in some cases has been transformed into 

dickite through the stretching of bonds, brought about by chemical weathering, (detailed 

in section 4.6.1.2). 

Ankerite minerals were expected to be the most chemically reactive due to their high 

solubility in comparison to the other minerals present within the sandstone.  However, 

the transformation of ankerite, being dissolved out and leaving Fe-oxide pseudomorphs, 

is only detected in three out of twelve samples containing ankerite.   Many samples have 

unaffected ankerite crystals directly beneath the outermost surface.  This shows that 
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carbonate cement dissolution is not a weathering process common to all Glasgow 

sandstones.  In addition, the detection of ankerite dissolution in RGU5, which has had 

minimal exposure to the elements, suggests that this process can also occur pre-

construction and may not be a reliable indicator as to how much weathering has 

occurred, following emplacement into a building.  However, when systematic weathering 

of the carbonate cements does occur within a sandstone, this weakens the internal 

structure and can be thought of as a significant decay process.   

A third form of chemical weathering is also seen in the light microscopy images and is 

revealed by point counting.  Light microscopy results show internal layering defined by 

colour.  The bleached zone seen in samples correlates well with point counting results 

where no or proportionally low quantities of Fe-oxides occur for that sample.  The red 

rusty layer is much more difficult to correlate with point counting data.  However, the 

data does reveal much more subtle chemical variations within the substrate undetectable 

by eye.  Point counting indicates defined mineral-rich and mineral-poor layers, for 

kaolinite, quartz and Fe-oxides, including variation in porosity, all occurring in the 

outermost 6-8 mm zone.  Therefore, there is active transport of minerals with the 

weathering regions changing the original composition of the layers.  The transport of 

minerals particularly Fe-oxides has been assigned two modes of transport, water (Bluck 

and Porter, 1991a; Jefferson, 1993) and microbial (Gómez-Alarcón et al., 1995; Omelon et 

al., 2006a, b, 2007).  As no microorganisms are seen living at this depth, the main 

transportation method is through the movement of water (ingression and regress).    

The breakdown of micas, coupled with the transport of minerals within the internal 

regions, are the main chemical weathering processes affecting the sandstone, rather than 

the dissolution and reprecipitation of minerals. 

7.1.5 Clays  

Clay weathering is seen within these sandstones, as demonstrated by the Raman 

spectroscopy and EDX analysis.  The kaolinite as discussed is observed to be transforming 

into dickite and less crystalline forms showing subtle chemical decay process, rather than 

mechanical damage.  As kaolinite is a non-expandable clay, and as no montmorillonite 

was seen and only very minimal amounts of potential illite were detected (using Raman 
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spectroscopy), shrinking and swelling of clays has a minimal effect on the sandstone.  

Although kaolinite is being chemically decayed at the outermost surface, the main 

weathering process affecting the sandstone is the transportation of the platelets towards 

the surface.  Point counting detected a kaolinite deprived and enriched layer near the 

outermost surface of the sandstones.  This loss and movement of kaolinite may cause the 

internal structure of the sandstone to become weakened increasing the likely hood of 

decay, as noted by Sérgio De Melo and César Fonseca Giannini (2007) and Friolo et al. 

(2003).  The leaf wetness sensor shows that there is a very dynamic movement and flow 

of water within the sandstones.  This movement of water is likely to be the main medium 

of redistribution of the kaolinite.  As the kaolinite is transported by water from the 

deeper regions, a depleted layer is formed and a new enriched layer is created nearer the 

surface.  If the kaolinite enriched layer reaches the surface, it may be washed out of the 

sandstone completely, or cause a case hardened crust to form. 

As a large majority of Scottish sandstones contain kaolinite, and this clay deprived layer 

was seen in a large cross-section of the samples, it is therefore a significant weathering 

factor.  The transportation of kaolinite also has a knock-on effect to the movement of 

water within the stone, as it changes the porosity and permeability within the kaolinite 

enriched and deprived layers.  

7.1.6 Biology 

Results show microorganisms living on the sandstone surface and cryptoendolithically, 

but never occurring in both places within any given sample.  Of the 23 samples studied, 

six were found to have surface microbes and eight to have internal microbial 

communities.  An array of microbes was seen including both filamentous and globular 

cyanobacteria, fungi and algae, but in general, filamentous cyanobacteria were restricted 

to the surface, whilst globular cyanobacteria was found internally.  The vast majority of 

microbes occur no deeper than 2 mm.  The microclimate deeper than 2 mm is not 

harmful to the microbial communities, with summer conditions of up to 30°C and a 

healthy supply of free water to aid the microbial activity.  The restriction in depth of 

microbial penetration is a consequence of the poor light conditions recorded within the 

sandstone.  The OLT results show that any form of weathering crust present on the 

surface hugely reduces the penetration of light.  The amount of light penetration also 
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explains why cryptoendolithic microbes are almost always confined to facades with a 

southerly facing aspect to their direction, as these are the only facades, which receives 

enough solar radiation to activate communities at depth.  The south face of a building 

during the summer receives the maximum flux of light and therefore the photosynthetic 

activated microbes cannot survive on the surface due to photo-oxidation harm (and seek 

protection within the sandstone).  The surface location of the filamentous cyanobacteria 

is predominantly on the west, north and east facing facades, and again is most likely a 

product of the available solar radiation.   

When observed living cryptoendolithically, the microbes swamp pore spaces, and may be 

causing mechanical damage to grains during shrinking and swelling episodes.  However, 

as they do not form a continuous layer within the sandstone, unlike the cryptoendolithic 

microbes of Antarctica (Friedmann, 1982; Omelon et al., 2006a, b, 2007), their 

mechanical damage potential is patchy.  The microbes not only cause mechanical decay 

to the sandstone but due to the chelating agents and acids that they produce, also 

chemically corrode the mineral grains within the sandstone.  There is possible evidence of 

this process occurring in UE2, were the quartz grain beneath the EPS and at the edges 

appears rough and undulating (Figure 5-11).  Chemical decay due to microbes may be a 

more prominent weathering effect internally as only small amounts of microbes were 

seen living on the surface (supported by the protein and chlorophyll-a results).  

Therefore, the amount of corrosive damage that these sparsely spread filaments can 

produce on the sandstone is unknown.  However, in addition to these microbes seen it is 

also possible that bacteria undetectable by eye or osmium staining are living both on and 

within the sandstones producing acids.  40% of bacterial strains isolated on German 

sandstone monuments were found to be acid producers (Warscheid et al., 1991).  This 

means that much more chemical weathering could be occurring on and within the 

sandstone.   

In contrast to these negative effects, the filamentous cyanobacteria could also be 

beneficial to the stone.  As the filaments are seen binding mineral fragments together, 

displaying a wire mesh network over the surface, therefore “holding” the quartz grains in 

place (Figure 7-1). 
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Figure 7-1: FEG-SEM BSE image of a surface scraping. 

Quartz grain on the surface of a sandstone being held in place by a network of filamentous 
cyanobacteria.  

 

For buildings that have crust formation on the surface the microbial results combined 

with OLT data indicate that during the winter and the summer varying colonisation and 

potential weathering patterns are taking place.  During the summer, microbes will be 

active on the surface of all facades with the exception of the south where they are in the 

subsurface.  Whilst during the winter microbes will be active on the entire building and at 

depth on the south facade.   

However, on fresh sandstone, the light can penetrate to a maximum depth of 5 mm and 

the microbial communities are shown to be living at these greater depths (RGU Blaxter).  

The internal microclimate data indicates that during the summer the microbes are 

residing in an environment that is much hotter than the ambient air conditions, and this 

excess heat may stimulate greater microbial activity.  The IButton and LWS data shows 

that a loss of moisture and water is occurring frequently, which would indicate that the 

microbial communities are shrinking and swelling regularly, potentially causing greater 

amounts of damage.  Therefore, at present those new builds and cleaned sandstone are 

likely to be suffering from much greater microbial damage, in comparison to the older 

weathered buildings, when colonised.    

The presence of microbes on old buildings with crusts is interpreted as having some 

positive (protective) effects.  However, whether these outweigh the negative (damaging) 

effects it is unknown, and it would be very difficult to test.  Nevertheless, microbial 

communities are certainly influencing the weathering cycle on sandstone buildings both 

old and new.    
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7.1.7 Thermal heating  

The albedo of the sandstone is certainly having an impact on the internal temperature as 

data logging shows, that the weathered Dalry block has substantially higher internal 

temperatures than the fresh cut blocks of Dunhouse Buff and Bearl during the summer 

months on the south facade.  However, albedo is not a weathering process in its own 

right (as implied by other studies, section 1.2.7) and needs to be combined with solar 

radiation to make it effective.  The albedo of the sandstone was calculated by testing the 

sandstone’s colour which for Dunhouse Buff and Bearl were very similar (see section 

6.3.5.1).  This when combined with the external conditions do not make albedo a viable 

weathering concept as the sandstone has a high albedo and the latitude position of 

Scotland dictates much lower levels of PAR compared to many countries.  In addition, the 

premise of thermal stress occurring due to the differing amounts of heat a mineral grain 

will absorb, will only have a minimal effect on these blond sandstones.  As the minerals 

present have similar colour qualities, they will absorb similar amounts of heat.  Unlike the 

differences seen between quartz (light) and pyroxene (dark) in granite buildings, where 

this may have a significant influence on weathering. 

Furthermore, the process of thermal heating is an ever changing factor due to the 

dynamic characteristic of the sandstone surface.  Over the last 150 years it is likely that on 

the Glasgow buildings a green crust formed first due to biogenetic soiling then as 

weathering progressed this green was slowly replaced by a brown coloration, as the 

pollutants built up.  Which, will suffocate the cryptoendolithic microbial communities of 

light, and eventually will died out.  Eventually this process leads to a black crust, which 

will then be weathered away to start the cycle again.  Therefore, the magnitude of 

thermal heating is dependent on the surface conditions and colour.   

7.1.8 Summary 

As has been demonstrated, the failure of sandstone within a building at present is a 

cumulative effect of many reactions occurring within the stone at varying depths, which 

are ultimately being controlled by the external conditions. 
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In the introduction section 1.4.1 it was noted that the Hyslop et al. (2006) study of 

Scottish sandstone, found that the main decay processes active on Glasgow’s buildings at 

present are: crust formation; granular disintegration (particularly on lower facades 

enhanced by de-icing salts); biogenic soiling and the saturation of pore space within the 

sandstone by water.  The data from the present study supports some of these 

conclusions.  However, crust formation may be less important than suggested by Hyslop 

et al. (2006) as this study suggests there is no corrosion effect associated with their 

occurrence.  Also, granular disintegration may happen, but the driving mechanism is 

unclear.   

In addition, data from the present study show that the weathering of sandstones on 

Glasgow’s buildings seems to be dominated by chemical decay, breaking down minerals 

such as muscovite and kaolinite, redistribution of minerals to produce enriched and 

depleted layers in the outermost 6 mm, and to a lesser extent microbial decay.  Biological 

decay may only have a large impact where lichen or wall climbing plants such as ivy are 

located on the building facade (Seaward, 1997; Adamo and Violante, 2000), causing large 

amounts of decay to specific areas of that construction.  Nevertheless, the weathered 

stone used in this research suggested that microbes generally only play a supporting role 

in the overall weathering process.   

The weathering processes contributing to decay at present are summarised in the sketch 

Figure 7-8, and these are in agreement with Bluck and Porter’s (1991b) model (Figure 

1-6)but with enhanced detail.   

As shown these weathering processes are driven and controlled primarily by 

environmental conditions, and thus climate change will impact on the summer and winter 

weathering cycles of buildings in the future.  In conjunction with microclimate changes, 

the weathering cycle will adapt in response to the changes on the surface of the 

sandstone, which as highlighted, is a forever-changing plane. However, the main question 

is:     
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7.2 How will current decay cycles alter with climate 

change? 

As discussed, climate change will alter the weathering cycle of Glasgow buildings.  A few 

studies have addressed the question of “how will climate change affect stone 

deterioration” from the perspective of historic buildings and monuments cast from 

sandstone.  Cassar (2005) suggests that in the north west of England “fluvial flooding, 

storminess, extreme winds and rain are of greatest threat” affecting built heritage in the 

future.  However, Viles (2002) and Brimblecombe and Grossi (2007) provide much more 

in depth predictions for the weathering processes by 2080.  The processes highlighted in 

these papers are discussed alongside the predictions from the present study to evaluate 

how climate change will alter sandstone decay.   

7.2.1 Pollution 

In the case of pollution, Brimblecombe and Grossi (2007) predict that crusts on buildings 

will become thinner and richer in diesel-derived carbon and organic material.  These 

elemental carbon particles are responsible for the dark colour of current deposits.  They 

raise the importance of aesthetic considerations and also suggest that biological activity, 

perhaps, will be supported by an ongoing increase in organic pollutants from deposited 

diesel emissions.  

This study indicates that pollution is not a significant weathering factor at present, 

therefore its affects should not be detrimental to buildings in 2080.  Especially, since the 

clean air act was enforced and due to the decline of heavy industry, there has been a 

large reduction of sulphur dioxide (a major component of fly ash and soot particulates) in 

Glasgow, reducing from 155 μg/m3 in 1962 to 25 μg/m3 in 2001 (Figure 7-2).  Although, 

Glasgow’s population may have swollen by 2080 leading to increased car usage, the fuels 

of the future are becoming cleaner, making the build up of external crusts increasingly 

slow and difficult.  There is also speculation that buildings may begin to self-cleaning due 

to heavy rainfall events.  Therefore pollution will remain a minimal contribution to the 

weathering of sandstone and may also become less of an aesthetic problem at the same 

time (Saiz-Jimenez, 1995; Bonazza et al., 2009).  In present-day Mediterranean climates 

(which by 2080 Glasgow will moving towards), Garcia-Valles et al. (1998) shows that crust 
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erosion is a more active process than deposition, and that the crusts and patinas tend to 

disappear from the surface of the monuments.  

However, the removal of the black crust (whether by man, rain or both) will have 

consequences on the sandstone beneath.  It may reduce the internal RH, which builds up 

behind the impermeable layer-potentially reducing weathering.  In addition, the 

reduction of the crust will encourage surface colonisation of microbes, which at present it 

seems to hamper.  It will also let a larger percentage of light to penetrate to depth, 

increasing microbial communities within the sandstone.  These interconnected processes 

are discussed in detail later in the chapter.   

 

Figure 7-2: Sulphur dioxide concentration for Scottish cities, from 1962-2001 

Data shows a general decline in their concentrations. Data from the ‘Key Scottish 
Environmental Statistics Handbook’. 

 

7.2.2 Salt  

In the case of salt weathering, both Viles (2002) and Brimblecombe et al. (2006) agree 

that predicting future salt decay is difficult, but suggest that its effects will increase.  

Brimblecombe and Grossi (2007) use the example of sodium sulphate.  Stating that, at 

higher temperatures, this salt will become increasingly soluble, (e.g. sodium sulphate is 

only 14% as soluble at 0°C as at 35°C) warming may hinder crystallisation from solution.  

However, these increased temperatures encourage evaporation, which will promote 

crystallization through the production of supersaturated solutions.  Viles (2002) uses the 

prediction that “climate is likely to be less humid in the summer months so there will be 

more frequent transitions across the critical value of RH and this change will lead to more 

crystallisation-dissolution cycles”.  Brimblecombe et al. (2006) estimated the annual 
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number of critical humidity transition for sodium chloride within England, and found that 

the number of transitions are to increase substantially over the period of 1961-2099 

(Figure 7-3).  The increase of transitions will exert salt crystallisation and hydration 

pressures more frequently within the pore spaces.    

 

Figure 7-3: The number of transitions each year across the critical humidity (75.5%) for 
change in sodium chloride in central England. 

Data extracted from Brimblecombe et al. (2006). 

 

These phase transitions are likely to increase in Scotland but to a lesser extent due to the 

annual higher RH and smaller predicted change to the RH in Glasgow compared to 

England.  In addition, the sandstones contained minimal salt content and with less de-

icing salts being distributed during the winter months (owing to warmer winters) these 

factors will keep salt degradation as a minimum effect on Glasgow sandstone decay.    

7.2.3 Freeze-thaw 

The freeze-thaw process is likely to become less of a problem within historic structures 

due to the increase in temperatures expected for winter, causing fewer freezing events 

(Viles, 2002; Brimblecombe and Grossi, 2007).  Grossi et al. (2007), predict that the 

number of freeze-thaw cycles per year for London will decrease from the present day of 

ten to approximately four by 2099.  The warming temperatures expected for Glasgow in 

winter will also decrease the number of freeze thaw events seen, diminishing the present 

day annual ~30 occurrences, reducing the mechanical decay of freeze-thaw further, as a 

weathering mechanism. 
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7.2.4 Chemical 

In respect to chemical weathering, Viles (2002) suggests that increasing air temperatures 

and more rainfall will favour and encourage chemical reactions in general, hence, 

chemical weathering will be of increasing importance.  This statement by Viles (2002) 

agrees with our conclusions, however results from the present study provide an in-depth 

microscale review of the chemical weathering taking place on Glasgow buildings.     

We have concluded that, with increased temperatures, there will be greater rates of 

chemical dissolution but by how much?  To support these predictions, dissolution rates 

for ankerite, a relatively soluble mineral and feldspar a stable silicate mineral (both 

commonly found within sandstones), were calculated for 2080 conditions.  

Using the work of Golubev et al. (2009) on the dissolution rate of siderite and Gautelier et 

al. (1999), work on dolomite dissolution rates it was possible to estimate the dissolution 

rate of ankerite, whose composition lies between these carbonates.      

At predicted temperatures of 18°C (predicted summer 2080 temperature) the south 

facing surface ankerite crystals, at pH4, will have a dissolution rate of 0.09 cm/year 

(Figure 7-4).  However, during the summer months the internal (6 mm depth) 

temperatures have been shown to be much warmer than the ambient air and surface 

temperature, frequently reaching upwards of 25°C.  This will not change in the future as 

the internal temperature is controlled by solar radiation rather than air temperature.  But 

these higher temperatures experienced internally will substantially increase the 

dissolution rate of ankerite to 0.11 cm/year (Figure 7-4).  To counteract these very high 

summer surface and subsurface dissolution rates the cooler temperatures of winter (8°C) 

both on the surface and internally produce slower ankerite dissolution rates of 0.03 

cm/year (Figure 7-4).   

These dissolution rates for the ankerite are, as expected very high when compared to 

feldspar rates.  Chen and Brantley (1997) provided dissolution rates for feldspar and show 

dissolution at the surface (18°C) in acidic conditions (pH3) to be 0.00006 cm/100 year, 

and this will only increase to 0.00008 cm/100 year when the temperature is raised to 

25°C (Figure 7-5) to mimic internal conditions.  In winter the rate of feldspar dissolution is 
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diminished further to 0.00004 cm/100 year (Figure 7-5).  Note the difference in the units 

used for the ankerite and feldspar rates.   
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Figure 7-4: Dissolution rates for carbonate minerals 

Siderite data from Golubev et al. (2009) and dolomite data Gautelier et al. (1999), with 
ankerite inferred.  
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Figure 7-5: Dissolution rate for feldspar. 

Data derived from Chen and Brantley (1997).  

 

Furthermore, the data used by Gautelier et al. (1999), Golubev et al. (2009) and Chen and 

Brantley (1997) are based on the minerals being in saturated conditions continually, 

whereas the LWS data gathered shows this to be unrealistic.  The LWS readings show that 

between the dates of 30/04/2010 to the 16/08/2010 (a 109 day period in the summer) 
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the mineral grains at 6 mm depth were only partially or completely saturated for 20% of 

the time.  The IButton data retrieved, however suggests 100% saturation for the mineral 

grains during the winter. 

This information means that the high dissolution rates experienced in the summer by the 

ankerite and feldspar minerals at depth (6 mm) will be reduced by up to 80%.  The revised 

calculations show that the ankerite will have a dissolution rate of 0.021 cm/year (Figure 

7-6), in summer conditions, whilst the feldspar is reduced to the minuscule amount of 

0.000005 cm/100 year (Figure 7-7).  
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Figure 7-6: Dissolution rate for carbonate minerals at 20% water saturation. 

Siderite data from Golubev et al. (2009) and dolomite data Gautelier et al. (1999), with 
ankerite inferred.  
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Figure 7-7: Dissolution rate for carbonate minerals at 20% water saturation. 

Data derived from Chen and Brantley (1997).  

 

Although a seasonal variation is expected in the dissolution rates between the summer 

and winter (as the summer temperatures are much warmer internally) this is not seen.  

When the time spent in saturation during summer is considered the rate of decay of 

ankerite and feldspar crystals is similar in both seasons, thus suggesting a constant 

dissolution rate throughout the whole year. 

These predicted future rates for ankerite dissolution are much greater than the 

dissolution rates the building sandstones experienced in the past.  Using marble 

gravestones McNeill (1999) found that the average gravestone weathering rate for 

Scotland was 0.00875 cm/year however higher values of 0.0205 cm/year were found 

around the Glasgow area.  This shows very slow dissolution rates for the carbonate 

minerals and indicates that the dissolution of carbonate cement in the future will be a 

much more significant factor compared to the past.  

 

As stated beforehand the internal dissolution rates on these minerals will not increase.  

However the rates of internal mineral reactions in 2080 will be enhanced if solar radiation 

does increase as a consequence of a decrease in cloud cover.  The UKCIP02 report 

suggested that over the west of Scotland, cloud cover may decrease by a maximum of 9% 

during summer which equates to solar radiation increases by up to 30 Wm-2 (Hulme et al., 
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2002).  However this small increase will have a limited impact on the internal dissolution 

rates.      

Although, only the dissolution rates for two minerals have been discussed, this process 

will also change for the muscovites, kaolinites and Fe-oxides as well. 

Physical movement of minerals altering the compositions at the outermost surface will 

also be affected by the changes to the rainfall patterns forecasted.  In winter the total 

amount of rainfall is expect to increase, however as the sandstones at present are 

showing signs of being saturated (RH above 100%) the sandstone will not have the 

opportunity to dry out and for the water to transport minerals.  The longer dry spells with 

intense bursts of rainfall predicted for summer may encourage the ingress and egress of 

water and encourage mineral transportation.  In addition, if the minerals are chemically 

decaying faster than at present, the grains will become progressively easier to transport 

and in the long run, will be removed from the sandstone. 

These chemical decay factors are combined and summarised in the predictions outlined 

below.  The microclimate data used in the summer predictions are based on an increase 

in temperature and decrease in rainfall, which occurs as heavy downpours with prolonged 

dry periods.  The winter predictions are based on an increase in both the temperature 

and rainfall.  Both scenarios assume a decrease in the prominence of the crust formations 

as discussed in section 7.2.1.  

South Face Summer:  The rate of chemical dissolution of minerals at the surface is likely 

to increase as the ambient air temperature increases, speeding up the reaction rate 

occurring on the grains.  However, the rate of chemical dissolution of minerals below this 

depth is likely to stay the same.  This is because the internal temperatures during the 

summer on the south facades are primarily controlled by solar radiation.  Therefore all 

that is going to occur is that the difference between the internal and external 

temperature is going to decrease (see Figure 6-45).  A decrease in the summer rainfall will 

cause less transportation of minerals within the sandstone.  However, as the pattern of 

rainfall alters to longer dry spells with heavy showers this may cause large irregular 

movements of mineral causing episodic sandstone failure.       
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South Face Winter:  The rate of chemical dissolution will increase as the ambient air 

temperature is the controlling factor of both the surface and internal temperatures (due 

to low solar radiation levels).  Therefore, an increase in reactions is set to occur 

throughout the whole sandstone, and to aid this there will also be larger quantities of 

available moisture to drive the dissolution process. 

North, East and West Facades Summer:  The rate of chemical dissolution at the surface 

and internally, during the summer months is likely to increase as temperatures on this 

facade are controlled by the ambient air conditions, which are predicted to increase.  In 

addition, the transport of minerals within the sandstone will also increase. 

North, East and West Facades Winter: Like the south face, chemical dissolution and 

transportation of minerals should increase due to the increased ambient air temperature 

and moisture available.  

In conclusion, more chemical decay is likely on all facades during the summer and winter 

playing an increasingly significant role in the weathering of sandstone. 

7.2.5 Clay  

Neither Viles (2002) nor Brimblecombe and Grossi (2007) refer to clays within sandstone 

and how these minerals may be affected in the future.  However, this study has found 

that clay plays a significant role in weathering and this is likely to continue. 

As the amount of rainfall is only going to increase by a small amount, the pattern in which 

it falls becomes increasingly important.  As discussed, in the west of Scotland heavier 

rainfall coupled with prolonged dry periods are predicted during the summer, with wetter 

winters.  These sustained wet winters will cause increased transportation of clay minerals 

within the stone producing thickened enriched and depleted layers.  In turn, this will 

increase the risk of the clay platelets being washed out of the sandstone during the 

summer heavy rainfall events.  This episodic purging of clay will also be assisted by the 

increased chemical decay reducing the usually large kaolinite platelets (Piffy, 1979) to 

smaller less crystalline platelets that are easier to mobilise.  These processes will leave the 

interior of the sandstone depleted in kaolinite and hence more susceptible to failure.    
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7.2.6 Thermal heating 

Only Brimblecombe et al (2007) refers to thermal heating as an increasingly important 

factor in future sandstone weathering stating that, “a few degrees in the temperature of 

monumental heritage is much less important ... however if the annual range between 

max and min air temperature was to increase, thermal shock could be important”.  

Thermal shock will not weather sandstone within Glasgow as the temperature range is 

much less than in other parts of the world where thermal shock may be a significant 

weathering agent.  In addition the main minerals present are similar in colour.   

7.2.7 Biological  

Viles (2002) makes tentative suggestions as to how biological weathering will take place 

in the future.  After stating, that “almost nothing is known about the likely response of 

most of these organisms to climate change”, Viles (2002) then suggests that the likely 

impact on biodeterioration is that, as rainfall increases biological growth will also 

increase.  However, the growth will be more benign and less damaging, these suggestions 

are extrapolated from Viles’ (1995) paper, discussed in section 1.2.8.   

However, results of the present study suggest a different conclusion.  The season and the 

facade in question dictate the effectiveness and form of microbial weathering that will 

take place. 

Summer predictions are based on an increase in temperature and decrease in rainfall 

overall, whilst the rainfall occurs as heavy downpours with prolonged dry periods.  Winter 

predictions are based on an increase in both temperature and rainfall, and both seasons 

are coupled with a decrease in crust thickness on the surface (it is believed it will naturally 

wash away as described in section 7.2.1). 

South Face Summer:  The microbial communities will be able to penetrate to deeper 

levels due to better optical properties of the sandstone, as the surface of the sandstone is 

cleansed of the black crust.  Also, those microbes living cryptoendolithically will cause 

more damage through shrinking and swelling as dry periods will become more frequent. 
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However, the intense light conditions on the surface will remain the same, hindering any 

growth of surface phototrophs.       

South Face Winter:  Microbial weathering during the winter months may become more 

prevalent as the ambient air temperature rises and more moisture is available within the 

sandstone.  This will enable greater microbial activity, increasing the size of the microbial 

communities on the surface and at depth, enhancing decay due to biofouling. 

North, West and East Facades, Summer:  During summer the weathering affect of 

microbes may be felt to a greater level on the north, east and west-facing facades.  The 

warmer temperature and lower rainfall may increase the surface communities.  

Cryptoendolithic colonies may also have a greater chance to establish as the black crust is 

washed away.  Therefore, the microbes may not be constrained to the surface, however, 

those on the surface may flourish, producing increased levels of chemical and mechanical 

decay.  

North, West and East Facades, Winter:  There may be an increase in surface microbial 

weathering during the winter months as ambient air temperature rises and conditions in 

general become milder and wetter.  However, the PAR levels are likely to remain too low 

to support cryptoendolithic communities during the winter on this facade. 

Counteracting these increases in microorganism communities the frequency of storms are 

also predicted to increase.  These may periodically wash away microbial communities 

making it harder for extensive biofilms to establish.  The periodical flushing of 

communities may be particularly prevalent on the south facade, which will be the facade 

most highly affected by driving rain (Smith et al., 2008).  

Whether the species of microbes present will be the same in the future is difficult to 

predict without rRNA analysis of those identified.  In this study the microbes were 

characterised visually, however, if rRNA results concurred with the morphological analysis 

it is likely that the same species of microbes will persist in the future.  The microbes that 

have been linked to those seen are very resistant, being identified on both Scottish and 

Mediterranean buildings.  Macedo et al (2009) identifies Gleocapsa and Phormidium in 

sandstone substrates within Mediterranean sandstone buildings whilst Young (1995) 
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observed Gleocapsa on Scottish monuments.  Therefore, the same microbe can survive 

under various environmental conditions.    

The above statements show that microbial communities may become more prevalent and 

that an increase in the summer and winter temperatures may lead to greater activity of 

the microbes already there.  It has been shown that the optimum temperature for 

productivity of Phormidium is at 25°C (Vincent and Howard-Williams, 1989).  It has also 

been demonstrated that many species of cyanobacteria will stop activity at 2°C (Seaburg 

et al., 1981).  Therefore an increase in winter temperature will help maintain the growth 

and production of cyanobacteria species and increase their weathering potential.    

This increase in ambient temperature will have knock-on consequences to any microbial 

chemical processes such as the production of acids.  The leaching of acids by microbes will 

become more rampant due to an increase in the metabolic processes of the 

microorganisms.  Laing et al. (2003) state that the ambient RH is more important than 

temperature in controlling the amount of microbial activity, with values between 60-70% 

producing the most intense activity.  These results are in contrast to those of Jain et al. 

(2009) who quotes greater RH values.    

Jain (2009) tested how effectively fungi communities could establish themselves on 

porous material at varying RH levels.  Results show that maximum diversity is 

accomplished at 85% and 96% (i.e. during the winter months more fungal diversity could 

occur).  In contrast, at RH levels lower than 62% no fungal growth occurs (Jain 2009).  The 

average RH in Scotland during summer is very unlikely to reach this low level but a 

decrease in future RH could produce less diversity and less colonisation within and on the 

sandstone.    

7.2.8 Other effects  

Storm events are expected to have increased from five in winter at present to eight by 

2080.  This could have knock-on effects too many aspects of weathering, results may be 

that: 1) the black crust is washed away at an increased rate, 2) the extreme rainfall may 

flush microbes out of the sandstone on a regular basis, making the colonisation by 
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cryptoendolithic communities difficult, 3) mineral fragments will also be purged on an 

increased frequency, which will weaken the internal structure of the sandstone.   

During storm events, not only will rain play an important part but also the associated 

wind.  Wind may more frequently blast the building causing increased granular 

disintegration.  The general wind direction will also play a vital role in the weathering of 

sandstone built heritage.  If the prevailing wind direction changes, then previously 

unaffected facades of a building will come under attack from strong winds.  The wind will 

drive rain into previously unexposed areas, which at present only contain a small 

proportion of liquid water.  

Cassar (2005) suggested that fluvial flooding will have a detrimental impact on built 

heritage in northern England.  This does not seem to be the case for Glasgow’s heritage.  

In accordance to the SEPA flood map, Glasgow buildings are quite safe from the impact of 

flooding and the only minimal risk is in some areas due to river flooding.  Therefore, 

flooding is not a major influence on most historic buildings within Glasgow.           

Dependant on the season and facade in question the rate and dominant weathering 

process is variable.  All the data obtained on present-day weathering and how this may 

alter in the future are summarised in Figure 7-8.  The data produced in this study, unlike 

Brimlecombe and Grossi (2007) and Viles (2005) who look at the macroscale, is specific 

for Glasgow and is focused on one material type.   The data presented show that chemical 

weathering, clay weathering, mineral reactions and microbial decay are the dominant 

forces altering and controlling the shape of the exterior of buildings.  Some buildings are 

at more risk than others and now that the mechanisms of decay have been identified the 

buildings can be protected better, discussed next.     
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Figure 7-8: Sketch diagram of alterations to the weathering processes due to climate 
change. 

The shading on the surface indicates the amount of crust formation. Changes to the north 
and south facade include increased depth of chemical decay, increased through flow of 
chemicals enhancing layering and greater abundance of microbial communities.   

  

7.3 Which buildings are most at risk? In addition, how 

can we mitigate against these degradation 

processes? 

As one of the main processes working against sandstone integrity is chemical decay, those 

at risk are the buildings constructed from sandstone that have a significant muscovite and 

or kaolinite proportion (i.e. the minerals most affected by chemical weathering).  As 

stated, chemical breakdown is suggested to increase in the future, therefore elevating the 

rate of disintegration.  Buildings that have been cleaned, or where sandstone has been 

used in new constructions or replacements, will be most susceptible to microbial attack.  

In addition, those buildings constructed from sandstone with a high porosity (~20%) will 

be resilient.  This latter factor is important as the OLT experiments show the light is 

transmitted to depth more efficiently, in sandstones with lower porosity.  The climate 

chamber results suggest that fine-grained sandstone such as the Dunhouse Buff will lose 
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more grains due to granular disintegration in comparison to those with a large grain size, 

for example Cullalo.  All factors are listed in Table 7-1.   

Table 7-1 Key feature to a resilient sandstone.  

Sandstone Feature Low Resilience High Resilience 

Porosity <20% >20% 
Grain Size 
Kaolinite % 

Coarse-grained 
Little 

Fine-grained 
Lots  

Mica % 
Surface 

Little 
Slight weathering 

Lots  
Fresh unaltered 

 

In section 4.6.2.3 it was described how Raman spectroscopy analyses of muscovite may 

be able to determine how highly weathered a sandstone is, and to what depth it is being 

affected by this process.  These data will be able to provide an overall estimate of how 

vulnerable a building is to the changing external environment.  This process goes beyond 

the black crust formations on the surface to test whether the sandstone is damaged or 

not.  This method could be used to test whether the sandstone has suffered from 

chemical decay in almost all Glasgow blond sandstones, and would help construct a 

database on Glasgow buildings, including their decay statues.  

This database of information would help monitor the buildings and in circumstances 

advice on how best to protect the building from future decay.  Maintaining external 

features on the building, such as guttering, will help reduce the amount of decay.  In rural 

environments, the planting of trees and bushes can be undertaken now, so that in the 

future the surrounding foliage can provide protection to the buildings from the full force 

of the weather.   

Other measures can be taken to protect the sandstone, such as applying a waterproof 

sealant.  Some preliminary tests on available waterproofing sealants were undertaken as 

outlined in section 2.1.12.  The two experiments undertaken were to first determine the 

depth of sealant penetration into the sandstone and secondly, to investigate whether the 

presence of the water sealant affects the internal RH of the sandstone, which would 

indirectly provide information on the amount of free water.  The products used were 

Thompson’s water sealant, which is a combination of hydrocarbon resins and 

polyoxyaluminium distearate in aliphatic hydrocarbon (mineral) spirit, and Kingfisher 
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water repellent, which is a solvent based fluorochemical resin.  The results from the two 

experiments proved inconclusive.   

Previous studies have suggested that water repellent solutions can penetrate to a wide 

range of depths, with maximum depths of 15 mm (Zoghlami and Gómez-Gras, 2004; 

Cnudde et al., 2007) to 1.5 mm (Casadio and Toniolo, 2004) and a minimum of only 

several tens of micrometers (Domingo et al., 2008).  The later study is most similar to the 

result from this study where no depth of penetration could be visually determined using 

the Olympus SZX7.  Previous experiments were conducted with the sealant applied from 

above to a horizontal surface or by capillary absorption, potentially providing 

unrealistically high depth penetrations in comparison to when applied to a vertical face of 

a building.  Young et al (2003) applied a silicon based aliphatic water repellent to vertical 

faces of building stones and the penetration depth for fresh blond sandstone was a 

maximum of 12 mm.  However, the films that the solution produces around the grains in 

the treated section are often only 1.5-3 µm thick (Zoghlami and Gómez-Gras, 2004; 

Domingo et al., 2008) and only minimally reduces the porosity of the sandstone, affecting 

the microporosity more than the macroporosity (Young et al., 2003; Zoghlami and 

Gómez-Gras, 2004).  This could help explain the lack of sealant seen in this depth 

penetration experiments.  The intrinsic sorpitivity of the water repellents tested may also 

be less than the other liquids, which have been trialled, as the capillary absorption of a 

liquid is based on its surface tension and the viscosity (Gummerson et al., 1980).     

A very thin film may have been deposited to the surface of the grains unidentifiable with 

the microscope.  This thin layer of water repellent may also explain the moisture results 

gathered.  There seems to be a significant decrease in the moisture reaching the IButton 

dataloggers in comparison to the previous years during June 2010 signifying that the 

sealant is working, however little evidence is seen in July and August of this effect.  The 

rainfall data for July 2010 is very high in contrast to the previous years and may have torn 

and damaged this extremely thin layer of sealant rendering it ineffective, as the sealant 

did not penetrate to depth on the vertical surface.  This damage may be more prominent 

on the Dunhouse Buff sandstone as its average pore size is smaller (55.3 µm) reducing 

again the potential depth of penetration leaving the sealant on the surface exposed to 

damage by the environment conditions.  In comparison Bearl, which has a slightly larger 
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average pore size of 73.2 µm, shows signs of the sealant reducing moisture ingress in 

August.      

These preliminary results indicate that the application of a waterproofing sealant to a 

building may be an effective form of reducing the infiltration of moisture.  However, to 

compliment this case study a much more in-depth laboratory experiment would need to 

be conducted to reduce the amount of external factors such as: wind direction, wind 

speed, rate of rain fall, length of dry periods between rainfall.  These factors all change on 

a daily, monthly and yearly cycle affecting the ingression of water.  Also the use of water 

proofing solutions would need to be investigated further to see whether they cause any 

secondary weathering processes unidentifiable in this short study, such as freeze thaw.  

However, Young et al (2003) did indicate that their presence did not seem to affect this 

cycle.  In addition, mitigation procedure should only be undertaken with great care as 

each sandstone (due to composition and porosity structure) will react in different ways to 

the application of water repellents and consolidates.    

Therefore, the mitigation strategy used for the protection of sandstone constructions 

needs much more experimentation.   
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8 Further Work 

There are a number of suggested avenues to follow on from this study.  The most 

important, as previously outlined, would be mitigation techniques.  In time, the aim is to 

create widely-applicable procedures to preserve our stone built heritage.  There are other 

aspects of this research which could be examined in further detail.  This study focused on 

blond sandstone buildings in Glasgow which were all ~150 years old.   To enhance the 

conclusions gained from this study, many more blond Glasgow buildings could be 

examined.  In addition, a set of buildings with a broader age range could be investigated, 

which would provide a more comprehensive knowledge of the dominant decay processes 

and their rates, helping to identify when particular weathering processes begin to affect 

the sandstone.  Furthermore, it would be of great interest to gain a set of samples from 

the same height and placement around all four facades of one individual building.  This 

would provide a clearer view of the weathering processes and decay rates for the 

orientation of each facade of a building. 

To complete the understanding of the weathering cycle for Glasgow, the red sandstone 

buildings should also be subjected to the same scrutiny as the blond sandstone buildings, 

as 40% of Glasgow’s sandstone buildings are constructed from this material.   

As, previously shown, one of the major factors which has to be considered whilst studying 

the decay processes of a construction stone is its primary mineralogy.  As each town and 

city has its own unique local building material source, there will be a variation in the 

dominant factors behind the decay processes.  The other main factor that dictates which 

decay processes are dominant is the local climatic conditions.  Therefore, a 

comprehensive study of the decay process occurring, similar to this study, could be 

undertaken in every city within Scotland and the rest of the UK.  Comparing the regional 

variations, whilst understanding the differences in the local environment, could allow 

correlations to be made throughout the UK and may help to prevent decay process acting 

as quickly.        

These suggestions are quite large scale, although there are some individual features of 

the present study which could be focused on and in more detail. 
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One such research area would be to, further investigate the breakdown of the muscovite 

minerals, possibly through the use of (K-Ar) dating. 

This procedure would supply data on whether argon is being lost during breakdown and 

this subsequently provides information on which bonds are being broken within the 

mineral, as has been suggested by Michell and Taka (1984). 

Potassium-Argon dating would test how much potassium has been lost from the 

muscovite.  Once a 50% loss of potassium has occurred, the potassium will become 

“stabilised” within the muscovite structure.  Once more than 60% has been lost, the grain 

loses its mechanical strength.  If the potassium content could be deduced, then we would 

understand where in the breakdown process the micas were.      

Further benefits may come from expanding the Raman spectroscopy investigation on the 

Fe-oxides and hydroxides.  If additional work were to be conducted into the distribution 

of the various Fe-oxides and hydroxides, a weathering succession may become 

identifiable.  This would then provide information on how weathered the sandstone had 

become through analysing the ‘generation’ of Fe-oxides/hydroxides, which are present.  

Such work has already been successfully undertaken on archaeological artefacts (Neff et 

al., 2006).  This would also supplying data on the depth of Fe-oxide decay. 

The use of organism DNA identification techniques, such as rRNA could be undertaken on 

the microbes samples, to determine the exact species of microorganism present.  This 

information would help to more accurately predict the microbial weathering cycle at 

present and for 2080.  Experiments could then be run to understand how the species 

present will react to the change in the climate.  Although different species of microbes 

can survive in a wide variety of environments, each microbial genus has an optimum 

temperature, RH and light requirements needed to sustain all the processes essential to 

live and therefore, weathering the sandstone.  In addition, if the bacterial communities 

could be further investigated, then a better idea of the amount of acid corrosion due to 

microbial communities could be gained.  Lead citric tests could be used to determine the 

bacteria communities (Venable and Coggeshall 1963).      
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As previously outlined in section 6.2.8 improvements to the climate chamber experiments 

could be made, such as the protocol undertaken and to the running time of the 

environmental chamber.  These improvements would hopefully produce more accurate 

and reliable results, reflecting natural weathering better.  In addition, the laser scanning 

of the blocks could be undertaken at more frequent time intervals so that the progression 

of the granular disintegration could be more closely monitored, to provide information on 

whether the granular disintegration occurs gradually or in episodic bursts.   

Much of the work conducted on sandstone decay has focused on the outermost surface 

such as the crust which, in reality, is the end product of countless small weathering 

processes which are taking place at depth, and these need more investigation.  Most 

weathering papers forget to mention or do not even realise that the internal microclimate 

differs from that of the external and, when it is actually investigated, generally only the 

temperature has been recorded in detail.  In addition, when internal microclimate data is 

recorded, this is in isolation and is not combined with other weathering processes to see 

how this “new” climate may affect or alter the established decay processes already 

occurring.   Finally many papers on sandstone weathering wait until the sandstone has 

suffered failure due to decay, rather than investigating the processes and early warning 

signs of failure so that precautions can be undertaken to limit weathering before it 

becomes critical.  This work suggests that the ankerite, kaolinite and muscovite minerals 

can all be used to determine the “health” of the sandstone before the decision to replace 

the sandstone is made. 
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