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SUMMARY AND INTRODUCTION 

Quite a number of engineering design techniques for 

circuit and system theory depend heavily on the construc- 

tion of an analytic function of a minimal norm in the open 

unit disc D satisfying some interpolation conditions. 

The above problem was solved constructively by Pick (32J 

and Nevanlinna L29] at the beginning of this century. This 

is the well known Nevanlinna-Pick interpolation problem. 

In 196.7 Saito and Youla [393 first introduced 

Nevanlinna-Pick theory into engineering literature. They 

showed how interpolation theoretic constructions corresponded 

to circuit theoretic ones. 

In 1968 two very important articles were published by 

D. Sarason [40] and V. M. Adamjan, D. Arov and M. Krein(A-A-K) 

1](. 2j giving the solution of the classic interpolation 

problems in operator terms. These two approaches are quite 

different. 

The approach of A-A-K related significant implications 

of interpolation theory for some important engineering topics, 

such as broadband matching [18)(19], digital filter design [16) 

(which is widely used for stationary stochastic processes), 

model reduction [22], cascade synthesis of networks [10] and 

linear estimation theory [21). Their results have led to 

the use of approximation of functions in the "Hankel norm" 

for such applications. This Hankel norm approximation has 

three important properties from an engineering viewpoint. 

Firstly, the Hankel norm lies between the most popular 

least squares norm (L2-norm) and the most stringent Chebyshev 

norm (LOD -norm). 
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Secondly, this norm is the largest singular value of 

a Hankel matrix and this value is known to be insensitive 

with respect to perturbations. 

Thirdly, the best approximation in the Hankel norm can 

be explicitly computed, thanks to A-A-K, it reduces to finding, 

singular values and vectors of an infinite Hankel matrix. 

There are two methods of doing this, proposed by S. Y. Kung 

22]( 23 3 and Delsarte, Genin and Kamp [9] in 1979,1980. 

The most important of these algorithms is that of Kung,. 

His point. of departure is to consider an impulse response 

function for-an unknown stable linear system. For a pre- 

assigned error tolerance, it is required to obtain a best 

approximation to the function of degree as small as possible 

from input/output, data. Such a problem has a long history 

and has been approached in various ways, but each method 

leads only to a sub-optimal solution. 

It appears that using the A-A-K approach is fertile and 

rich in both pure mathematics and applied engineering. But 

none of these methods can claim to be stable, accurate and 

efficient for numerical computation. However there is a 

sigpificant. dis-covery in the scalar case by N. J. Young 14J 

in which a completely new algorithm for such interpolation 

problems was proposed and proved to be very successful in 

pratical tests. Young's algorithm is based on Sarason's 

theory [4; 0]. 

In realistjx engineering problems one is more concerned 

with systems with several inputs and outputs than 1-input 

and 1-output. In mathematical terms this corresponds to 

studying interpolation by functions whose values are matrices 

rather than scalars. 
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The aim of this thesis is to extend Sarason's theory 

and Young's algorithm to solve such interpolation problems 

numerically. As far as we can see, the generalization is 

not easy to achieve. The difficulties come in many ways. 

Firstly, one must find a suitable setting for the 

generalized Sarason operator. 

Secondly, the reduction from an operator to a matrix 

problem involves decomposing a certain space of rational 

matrix functions in such a way that the advantages of the 

scalar method are retained. This can be done through some 

kind of factorization. 

Thirdly, and most significantly the interpolating 

function of minimal norm is not unique: thus in order to 

compute a minimizing function we must impose further 

conditions to ensure uniqueness, or make some arbitary 

choice and this entails quite new considerations. 

Let Mmxn denote the space of mxn matrices over the 

complex field. For ff Hin, the space of bounded analytic 

functions on the op-en unit disc D with values in Mmxn' 

we write 

UfII = supIf(z)II co zeD 

where4 It is the operator norm in Mmxn. By Fatou's 

theorem, any function fF Hon has a radial limit almost 

everywhere on D, and hence defines a function also denoted 

by f in I, 
m0Xn, 

the space of bounded measurable functions 

on the unit, circle aD with values in Nn(modulo equality 

a. e. w. r. t. Lebesgue measure). The maximum principle 

shows that the m norm agrees with the natural norm 



of Hm0° 
xn 

(Chebyshev norm) 

II f II = II fI= ess sup It f (z) II 
L00 H°° zebD 

In particulat when m=n=1, H0D is the space of bounded 

analytic functions which is the case treated by Nevanlinna 

and Pick: 

IN-P] Given distinct points -: ýl, O12, ... , otn in D, complex 

numbers Wl, 2, ... , w1, find a function fF H0° 

such that f(o'i)=i, i=1,2,..., n and II -f Noo 

is minimized. 

We can reformulate the [N-P] problem in terms of 

distances. Suppose. &p is any bounded analytic function 
n z-°. 

satisfying (p(«i)=', i=1,2...... n, and let b(z)= 7- 
IZ j=l 

be a Blaschke product of O(i(i=1,2,..., n) of degree n. 

Then a function fk HO° , such that f(0()=', if and only if 

(f-(p) (oi)=0, in other words f- (p =bk for some k in H°D , 

so that 
infif: f(oci) =W, i=1,2,..., n} 

def 
(I ýQ +bHOO (I 

H00 
= inf 11 cp +bg Y 00 

/4"'bHoo def 

= dis(%P, bH9. 

Observe that bHoo consists of all functions in H°° which 

vanish at all the zeros of b and have zeros at least the 

same order as b at these points. The [N-P] problem is 

mathematically equivalent to 

IN-P11 Given a Blaschke product b of degree n, and a 

function 'p E H00 , find a function f e. t+bHO0 such 

4 

that Mf 11 
00 

is minimized. 
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D. Sarason showed that the infimum is attained and 

equals the norm of the Sarason operator ¶(Sb), where Sb is 

the forward shift operator S*compressed to H2 G bH2. Since 

the zeros of b are in D, H2 p bH2 is an n-dimensional Hilbert 

space, and we can choose a suitable basis for H2 Q bH2 and 

express Sb in matrix form. If the zeros of b(z)=O are known, 

then it is easy to write down a basis in terms of the zeros 

of b. However it is well known that a numerical instability 

can occur in solving the equation b(z)=0. Young, C4) found 

a convenient and natural basis of H2 p bH2 in terms of the 

coefficients of the numerator of b. This plays a key role 

in Young's algorithm; the matrix of Sb with respect to this 

basis is a companion matrix, the computation of a matrix of 

'-Q(Sb) can therefore be reduced to finding g(CT), where g is 

a polynomial with degree less than n and Cb is the transpose 

of the companion matrix of b. This can be done with an 

operation count of 0(n3) rather than the 0(n4) one might 

expect. Moreover, although this basis is not orthonormal, 

the Gram matrix of the basis can be obtained by a very simple, 

recursive formula. This formula is also one of the key 

techniques that have been developed in Young's algorithm. 

Now let us state the [N-P) problem in the matrix valued case: 

OD CO LM-N-P] Given an inner matrix BFH , and a function P in Hmxn 

find 

(1) II F+ BH 
HC1D xn Noon/BH 

n 
.0 

(2) a function G Cr F+ BH 
n such that 

G III F+ BI 
n° 
Xn 11 

as Hmxn/BC " 

xn 
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An inner matrix is defined to be an element of H0m which 

is unitary on "6D, almost everywhere. 

Firstly, we need to characterize the norm in Hin/B °D Hmxn 
This can be done by establishing an isometric bounded 

linear mapping between Hin/B co and a class of operators 
nxn 
22 T from Hhxl Q (det B)HHxl to I 1Q BI 1. We study this 

characterization in Chapter two by using the dual extremal 

approach. Such operators T are generalizations of the 

Sarason operator from the scalar case to the matrix valued 

case. An example is constructed to show that two subspaces, 

Hnx1 Q (det B)Hnxl and H2 ýxl $B 
nxl' are necessary in the 

matrix valued case: these coincide in the scalar case. 

Some techniques of operator theory and function theory 

are necessary for our theory and algorithms, and these are 

presented in Chapter one. 

In Chapter three we give a description of a direct 

22 
lO BH"l, in terms of the coefficients decomposition of I 

of the numerator of B. We make our choice in such a way 

that the Gram matrix of the decomposition can be calculated 

economically. Theorems 3.2.2,3.3.1 and 3.3.2 are the main 

theorems in this chapter. 

In Chapter four a computational form of the orthogonal 
222 

projection from 'mxl O (det B')H 1 to H; l 0 BH; 
xl 

is obtained; 

and this plays an important role in our algorithm. Therefore 

the advantages in Young's algorithm are retained. 

The whole of Chapter five deals with some aspects of 

implementation, comments on our algorithm and compares the 

other algorithms. 

Finally two numerical examples are presented in Chapter 

six. 
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CHAPTER ONE 

PRELIMINARIES 

1.1 General concepts 

The general concepts contained in this thesis can 

be found in the following list of books. 

(1) Operator theory, I. Gohberg and S. Goldberg(l4), 

(2) Hardy space, K. Hoffman C20j, H. Helson [17], 

Nagy-Foias L27 J and R. G. Douglas [12 ] 

(3) Interpolation theory, J. L. Walsh [47] 

(4) Numerical analysis, G. W. Stewart L42] and A. Gourlay [151 

(5) Hankel operators, D. Sarason L41], S. Power L34]. 

1.2 Singular value decompositions 

Let H1, H2 be separable Hilbert spaces. Let L(Hl, H2) 

denote the Banach space of all bounded linear operators 

from H1 to H2. Let t fiJ 
>l oi° 

1, J=1,2 be an orthonormal 

base for H H. The matrix M corresponding to A and tf(J)l 

is (aij); 

aid = (Af(l), f(2) )2 

Since 

(A fý2), fil))1 (fý2), Afil))2 = (Affil), fý2))2, 

where (, )1 and (, )2 are the inner products for H1 and H2. 

The matrix corresponding, to A* and { f(b) } is the complex 

conjugate e= (äji) of the matrix M= (aij) of A. The 

range of AE L(H1, H2), written Range A, is the subspace 
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AHl = 

{Ax; 
xE Hlj. If Range A is finite dimensional, A 

is called an operator of finite rank and dim Range A is 

called the rank of A. If a bounded linear operator 

A FL(H1, H2) has finite rank r then there exist positive 

numbers s0, '91"S2 ....., and orthonormal sequences e0, el, 

....., er_1 in H1 and f0, f1,..., fr_1 in H2 such that 

r-1 
(1) A= sý ei i j=0 

in the sense that, for all xF Hl, 

r-1 
Ax = 'E s. (x, e. )fj 

. j=0 

We make the convention that s0 for j>, r. 

The sj are called the Singular values of A and are unique, 

being the eigenvalues of (A A) , together with 0. e1 and 

fi are called singular vectors of A. An ordered pair 

<e, f >f H1xH2 is called a Schmidt pair corresponding to s if 

Ae = sf and Af= se . (2) 

Thus <ej, fi > is the Schmidt pair corresponding to Si. 

The relation (1) is called a Singular value decomposition 

of A(SVD). This is the most reliable characterization 

for computing the rank of a matrix. The rank of a matrix 

is equal to the number of nonzero singular values of the 

matrix. The SVD in matrix form is defined as follows. Let 

A be an mxn matrix having rank r. Then there exist mxm 

and nxn unitary matrices U and V such that 

0 
A=U *V (3) 

00 
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where 

Ir is a diagonal matrix with the nonzero singular 

values of A along its diagonal. 

1.3. Gram matrices 

Let juilinl be a basis for H. The Gram matrix of 

the basis is defined to be the nxn matrix G= l(uj, ui)}. 

Let, Hi be an ni- dimension Hilbert space, i=1,2, and let 

A, Ql, Q2 be linear operators in L(Hl, H2), L(H1), L(H2) 

having matrices [Alt [Q11 ,L Q2I respectively with respect 

to the bases ul, u2,..., un1of Hl and vl, v2,..., vn 
2 

of H2. 

Then 

(1) If Ql and Q2 are invertible then the matrix of A, 

[A]0 with respect to Qlul, Qlu2, """"", Qlun1 and 

Q2vl1 Q2v2,....., Q2vn 
2 

is 

[A]0 = CQ2]-1 CA)CQ1 ], (4) 

(2ý Qlul' Qlu2,..., Qlun1 is an orthonormal bases of 

H1 if and only if [Q1) [ Ql ]= Gl1, where G1 is the 

Gram matrix of u1, u2,..., un1. 

These- facts are elementary can be founded in many texts on 

linear algebra [24]. 
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CHAPTER TWO 

THE GENERALIZED SARASON OPERATOR 

Introduction: 

Given an inner matrix BF H00 , we show how to relate Mxm 
00 Hmxn/BHO 

n 
to operators T acting on certain subspaces of 

H2 (D (detB)H2 and H2 Q BH2 . Such operators T are 
nx1 nx1 mx1 mx1 

generalizations of the Sarason operator from the scalar 

case to the matrix valued case. Now a generalization. of 

the Nehari theorem [28] can be used to show that the 

quotient norm of Hý 
n/BHoo can be expressed in terms of 

mxn 
a certain Hankel operator (the A-A-K operator) ' acting 

from Hn2 2 
xl 

to Hmx1' one might therefore expect that the 

generalized Sarason operator T would be closely related 

,, and in fact T is a unitary multiplied by the nonzero to [' 

part of [' 
. Functions of minimum norm in any coset of 

BH0n in Hon can be obtained using the A-A-K one step 

extension [3] " The analogue of this one step extension 

is here examined in the Sarason-type formulation. 

Contents: 

2.1. Analytic vector functions. 

2.2. The isomorphism between HO 
n/BHOn and HOD ( ý, B). 

2.3. The Sanason operator and the A-A-K operator. 

2.4'. One step extension matrices 
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2.1 Analytic vector functions 

Let aD ={zEC: I z1= lj be the unit circle and let 

D= 1z E C: izl <li be the open unit disc. Let Mmxn denote 

the linear space of all mxn matrices over the complex 

field C. For AE Mmxn, 1Lp1oo, let 1I A II 
p 

be the Schatten-Von 

Neumann norm: 

IýA lip = (L sn' )1/P (1) 
n-0 

Iý A N(m = sup 
, 

sn 
n 

where Isnýn-NO is the sequence of all singular values of A. 

it 11l and lI U2 are the familiar trace and Hilbert-Schmidt 

norms and it 1100 is the operator norm. Let Lin, lLplzoo , 

denote the Banach space-of all measurable functions on aD 

with values in Mmxn, modulo the subspace of functions equal 

to zero almost everywhere, such that 

27 
II f Up = (2ý. U f(eie)p P de)ý'/Pzao , (2) 

ap 

and let Loin be the space of essentially bounded Mmxn-valued 

functions on öD with the essential supremum norm: 

IIfllm= ess sup 11f(z)Uc (3) 
ZE aD 

The spaces we are concerned with are Lin, Lmxn and L0 

and their subspaces. Let Iily� be the subspace of functions 

n with the property that for every pair of vectors g in I, L 

x t- Cn, yE Cm, the scalar function (g(z)x, y) is in Hl. In 

particular, I 
Xn 

is a Hilbert space under the inner product 

(f, g)2 = 2ý 
27r 

trace (f(eie)g(eiE) )de 
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where * denote the complex conjugate transpose in Mmxn' 

A function G in Lin is called analytic if the scalar 

function (G(z)x, y) belongs to H2 for each vector xE Cn, 

yF Cm. The analytic functions in Lmxn form a subspace, 

which we denote by Hmxn" In fact any function fF 
Xn 

can be extended to an analytic function on D with values 

in Mmxn having the following expansion 

f(7, ) = fo+flz+f2z2+.. . 

OD 
_ 

7, fizl, fi6 M=n 
i=0 

with 2r 

11 fat = sup 21 II f(reie)p2 d9 Loo .o* 
rc I 

io 

The key operator for generalizing Sarason approach is the 

backward shift operator S acting on Hx1: this is defined 
^0 m 

by 
S(f0+f1z+f2z2+... ) = fl+f 2z +... 

or equivalently by 

Sf(z) =Z 
(f(z)-f(0)) if z40 

f'(0) if z=0 . 

When m=l, we write S in place of S. It, is easy to show 

that the adjoint operator S* of S is the forward shift operator: 

S*f(z) = zf(z). 

and S S* = I, I-SS is rank m, where I is the identity operator 

on H1. We shall assume a familarity with the basic 

properties of such spaces and operators L171 [20) C271. 

00 Let Hm 
xn 

be the space of bounded analytic functions on D 

with values in Mmxn By Fatou's theorem, any function in 

Hý00 
xn 

has a radial limit almost everywhere on D, and hence 

defines a function in I L. The maximum principle shows 



that the qxn norm agrees with the natural norm of 
00 

n 
(Chebyshev norm): 

def 
(1 f11 = II f II 

0= sup II f(z) III . (6) 
LH zF aD 

Hence we can identify Hýxn with a subspace of Lm 00 
n. 

Let 

RHG 
n 

be the space of rational matrices with no poles on 

a D; in this thesis we restrict attention to RH 
n 

for 

practical reasons. The adjoint of TC-HQn 00 is defined by: 

LP (Z) 
= 

[(Q(2)]*, 
Z EC D 

which is also analytic, so that *E Ham. 
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Definition 2.1.1 Let . "Lp be in HZMt (p is a rigid matrix 

if T (z)*p(z)=In for a. e. ze '61D. When m=n (pis called an 

inner matrix if '9 (z) is a unitary matrix for a. e. zE bD. 

A Potapov Blaschke product (33] is the standard 

example for an inner matrix: the general form is 

00 
B (Z) = 1T" V o( 1-öl. z 

Ip o 
(7) 

j-l jjý Wj 
0 Iq 

where p+q=m, Vj, Wi are constant. unitary matrices, ai6D, Vj. 

2.2 The isomorphism between HHXn/BHmoo and H0°(e, B) 
xn 

To any .P in IimoXn there corresponds a multiplication 

operator MV from H to Her, defined by 

(1" f)(Z) _ tP(Z)f(Z)9 f62 xr z. Cr D. 

Let B be an inner matrix in Hm 
m. 

Let Q (z) = 
1 

(det B(z))Im 

= B(z). adj B(z) = adj B(z). B(z). form two We spaces 
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Hn2 222 

xlnxl and Hmxl e BI1. The orthogonal projections 

in H22221, H1 with range Hnxl 0ß 
xl' 

11nxl S BHýxl will 

be denoted by j PB, respectively. In a later chapter 
22 

we will show that Hnxl ©P 
xl and H1O BHýxl are 

invariant under the backward shift operator S. We therefore 

introduce S SB the restriction of S to 22 
il 

3P Hnxl' 

22 
xl 

O BHnxl' respectively. i. e. Hm 

P*S* = S* *P S* = S*P Bam. NB B 

For Lp E-H°xn let PBMPPP denote the projection onto I1O BHx1 

of the multiplication operators M acting on 
2p2 

If 
ýxl e Hnxl' 

we call P AP a generalized Sarason operator. Then the 

generalized Sarason operators PBM, P* are precisely the 

operators that intertwine S and S, since 
. ºý NB 

PBMqP* )Sf= PBMPý S 

= PB MS Pp 

= FBS MýPý 

= SBPBMýPp J = SB(PBM 
ý 

Pf 

It is more important that the converse is also true. 

Theorem 2.2.1 If T is an operator from IIx1 (D1 Hnx1 

to I x1 E)BH 1 that intertwines Ste, S then there is a 

00 
n such that function LQ FI 

Y c-p u= nTa and T= PBP'? P (8) 

This theorem is a special case of the well known Nagy-Foias 

lifting theorem L261 [111. This theorem can be proved by 

using the duality approach followed by Sarason in the 

scalar case [40]. The key point of this approach is the 

isometric isomorphism between Sarason operators and the 



15 
quotient space HIxn/BHm oo . This holds in the matrix 

xn 
valued case. 

Let H0°(?, B) denote the space of Sarason operators 

There is a natural map of Ixn onto Hm (p 
, B) defined by 

1 

PBM#f Pß (9) 

This is a bounded linear mapping and the Kernel of this 

bounded linear mapping is BHm°Xn We therefore get a natural 

algebraic isomorphism from I00 
n/B o0 onto H00 (ý3 

, B) . 
nxn 

Moreover this isomorphism is norm preserving. To prove 

this, it is necessary to identify the dual space of 

Hmxn/B mn 

Lemma 2.2.2 Let j be the map from Hm00 
xn 

to H°° B) 

defined by 

j= PB MP'F Hm00 
xn 

then 
00 Ker j= BHA 

xn " 

Proof: We first show Ker jS BHoxn. Suppose pE Ker j 

then 
222 

Lp ( 
xl aý Hnxl) SB nxl 

and 
P 4., 

= tf ( 
xl 

(D ý 
xl) +cp ý 

xl' 

It follows from 

That 

I=B. adj B= adj B. B 

222 
xl I& BHnxl +ßI. LQ Hnxl 

BHnxi + B(adj B)4' kxl 

B mxl 
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but 

T (- Hm°Xn0 this implies (p E BI- 
) 

On the other hand, if cQ E BI 00 
n. 

then 

Hnxl S BHX1. 

so 

222 Hýxl eFH 1) c BHmx1. 

This means (pt Ker j. 

The proof 'is complete. 

Lemma 2.2.3 (1) The 00 space L 
r 

is the dual of Lr 

under the duality 
2Tr 

i >= 2n. trace(! (ei6)f(eiG)T)d9, (10) 
jo 

EL 00 
r, 

fF L; 
r, where f(eie)T denote the transpose of 

the matrix. 

(2) The space 0H0°n/B oo is the dual space of EzH /zHl . 
nxn mm 

(3) Each function fkH; 
r 

has a factorization 

flf2 
-9 

(11) 

22 
where fl F Hk, f2 E Hkxr for some positive integer k, 

and 

f*f2 = (f*f) flfl = f2f2 

Proof : A complete proof is given in [40, j'93, [30,2J 

which is analogous to the well known theorem for the 

scalar case. 

Let Cr denote the Hilbert space of r-dimensional complex 

column vectors, and let lei1r=1 be the standard orthonormal 
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basis for 0 r. Let %xl ® Cr denote the space 

gle1+g2e2+... +grer : gi t Hmxl I 

with inner product 
rr 21r 

(fog) = 
ýF 

(fj, gj)2 = 7- ; 
21T trace(fi(ei6)gj(ei9)*)d8. 

so 

The space HmxlVCr may be regarded as the orthogonal sum 

of r copies of H1 which is iir For T an operator on mx; 
" 

l®C by Hmxl' TOI acts on Ha r 

(TOI 
r)(glel+. ... +grer) = Tgle1+.... +Tgrer . 

The operator T®Ir may also be represented as rxr diagonal 

matrix operator with entry T. 

T. 0 

T®Ir = T. 

0T rxr . 

Theorem 2.2.4 If fF 2Hn then there is a positive 

integer r and functions 

with 

2222 
92 e Hxr OF Hxr g1 Hnxr G BHmxr 

1 11 91112 ý 11 f0l, It 9212 4df 11 

such that 

<s Bf _ (PBMFý* ®Ir)g2'S1)2 (12) 

for all T>(: 

g1 Ei xr 
Q 

H°xn. 

B%xr 

Conversely, if 

then there is a 

92 F iinxr e 
xr' 

function fE zHmxn such 

00 that (12) holds for all ? in Hý 
xn" 

Proof: Let fF zH xn. 
By the factorization of z-lf , 

there exist f1 E zH r' 
f2 F 

xn 
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such that 

f_ f1 f2' fi f1 _ fT4 

and 
f2 f2 = (f*f )i 

then 
2r 

Bf 2ý. trace( (ei6)CB(ei6)f(e16)j )de ST a 
2ir 

= 2ý 
` 

trace( I(ei6)f(ei6)TB (ei6))de so 

= 21Tr 
ý2trace( I(ei) f2(ei9) fl(ei6)TB(ei6)T)d6 

o 
27r 

= 2ý 
C trace( (eie)f2(eie)(B(ei9)fl(eie))*)d6 S. 

= (If2, Bf1)2 . 

For fl zHmxr, the function fl E (Hm 
xr)1, 

Bfl F (BHm 
xr) 

and 

Bf1 E( 22222 
xr 

0B 
nxr) nxr =[ Hmx1 e BHmxl) 0 Hmxl, l®Cr' 

PB®Ir is the orthogonal projection from H. 2 
onto Hmxr 0 BH 

Xr' 
Hence 

_y1 
Bfl - (PBýºIr)Bfl (Hmxr) =H lSer 

and setting 

we have 

ýPBK 
r)Bfl = g1, 

( (If 2' Bfl)2 = ("If2' (PB®Ir)Bfl)2 

= (If2, g1)2 " 

Moreover, Pý ®Ir is the orthogonal projection from Hnxr 

onto Hnxr ®ßHnxr' The function 

f2 - (P®®Ir)f 
2 ßHnxr 

1_ 1 
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and therefore so is 

(f2-(P ®Ir)f2) e Hnxr -ýýHnxr 
4xr SBxr' 

setting 

g2 = (PQ ®Ir)f2, 

we have 

( 1f21 91) 2= 
(i(P? BIr)f2, g1)2 

_ (fg2" gl)2 

(PB@Ir )192' 91)2 

_( (PB@Ir) 
,T 

(Pp ®Ir)92" g1)2 

_ ([(PB MP*)®Ir3g21 g1)2 1 

and 

II glll 
2= (I (PB®Ir) Bf 192 

= IIBf1I2 L IIf1112 =1! flit2 

= 11 flflu 2= II (ff>1ý2 

=11fu1 
(IfW1 Similarly 11 '3242 

2 

Conversely, suppose g. 2 f- Hnx2 2 
r¬ 

Hnxr' 

then J. 
22 

xr 
BE, & zHmxr Sgl 6 Hn 

and we may take 

T 
f= Bg1g2 " 

22 
gl Hmxr e BHmxr 

Combining Lemmas 2.2.2,2.2.3 and Theorem 2.2.4 gives us 

the following theorem. 
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Theorem 2.2.5 The natural isomorphism of H 
x00 n/Bfq, xn 

onto H°o(ß, B) is norm preserving. 

Proof: Let' be a function in I cxn such that 

Y +BH 4= inf ry +Bg o. 

Let. E >0. 

As H°Xn/B oo is the dual of BzI 
n/z 

1 there is a ýnxn Hmxn 

function fE zHmnn such that 

II f P= 1 and J<(i, Bf> I) 1-F. 

By Theorem 2.2.4 there are functions 

2222 
g2 (- Hxr 9P Hxr' gl (- Hnxr (D B%xr 

with 

It 911 2< 1 and II 9212 .1 

such that 

'-P . Bf >ý=I ((PB ýý ®Ir)92' gl)2 

PB ß II1IIPBMP®Ir tI = "PBMq, P 

i. e. II PB 
CfPp (I >1-ý. 

As ý is arbitary we have 

II PAp Iý =1= II Y+B °Ii: ° 
n 11 

The proof is complete. 

An example can easily be constructed to show that two spaces 
2222 

xl 
Q ýHnxlt Hmxl G BIxl are necessary. Theorem 2.2.5 Hn 

222 
may fail if Hnxl e3 Hixl is replaced by Hnxl 0 BH 

ixl' 

even when m=n. This is not so in the scalar case. 
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Example 2.2.6 Let kp(z) _j01,, for all z E- D and 

let B(z) _ 
1z 

11 . 

Then 

H2x1 0 BH2x1 =tfF H2x1 :f (O)=f (Z)=(C) 
0cE. C 

(0C )+( 0 )7 
+(p)z2+..., cECJs 

), 
ciFC, i=1,2 H2x1 0 (det B )H2x1 =IgF H2x1 9(0)=g(z)=(C 

1 

For MIf PB =Ih (- H2x1 : h(z)=h(0)=(ä) ,d E- IC}, so PBMPPB =10}. 

However U +BHC 2I=0. For if II p+BH2X2 II = 0, then cp E BHOX2; 

i. e. 

Z 

0 

0 u11(z) 

1 u21(z) 

u12(z) 

u22(z) 

This implies 

u12(z) =Z, but u12 t H°D. 

Therefore 

II PB MPß Ilk 11 PBM PB II 

By a maximising vector for-an operator T we mean a vector x -*o and 

such that 

11 Tx ii = ii T ii xi, 

Theorem 2.2.7 Let T be the Sarason operator PBMFPP 

2222 
acting from Hnxl OP Hnxl to Hmxl ©BI-1. Assume T has 

maximising vector u0. Then there is a function G in 

° F+ BHHXn such that. 



11 G1(ýo =U T II 

and 

Guo = Tu0, (13) 

22 

Proof: It follows from Theorem 2.2.1 that there exists 
00 GE F+BHm 

x such that Y G1 1li T Y. If_ T has a maximising 

unit vector u0, 

-then 

HTU= 11 Tu0II = 11 PBMGPf u011 = It PBMGuO II 

4 II Gu0II AIITII. 

It follows that 

PBMGPpuQ = PBGuO = Tu0 

and 

Gu0 = Tu0 . 

Remark: In the case m=l, G is uniquely determined by 

(13) when such a u0 exists : G= Tu0 ! 
0. 

But this is not 

true in the general matrix valued case. However, G would 

be determined if we had sufficiently many linearly indepen- 

dent maximising vectors. Supposel% Ta is a singular value 

of T with multiplicity n: then they ensure that we have 

exactly n independent : maximising vectors ul,... un 

corresponding to Q TO. By (13) we have that 

Gui = Tui y 

thus 

G[ ul, u2, .... un]= [Tul, Tut, .... Tun'] 
s 

and G can be determined by 

G=t Tul, .... , Tun] L ul, .... un]- 
1 
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as long as L ul(z), u2(z),..., ün(z)] is nonsingular. It 

is very unlikely that il T His a singular value of T with 

multiplicity n, and [ul(z).... 
, un(z)] is nonsingular. 

Motivated by the A-A-K results [3) we extend the two 

subspaces HHxl of Hnxl' Hnxl 9 BHnxl to Hnxl Hnxl' 

Hal Qý gI1 in such a way that Hmxl e BHmxl Hr 22 
xl 

OB 
nxl' 

2222 HHxl 93 Hnxl C Hnxl Gß Hxl and, for a suitable choice 

of F, 1 TO is a singular value of the larger generalized 
AO 

Sarason operator 
^T 

= PBMFPn , with multiplicity n, 
N 'r ,L 

T p=11 T II and the corresponding maximising vectors 

' l' '2'"'' 
, 
gin with [ý1(z),...., un(z)] is nonsingular. 

Such so called one step extension operator T exists and 

we will examine them in the following section. 

2.3 The A-A-K operator and the. Sarason operator 

There is another way to. characterize wcýo 
xn/BHýOD ' 

xn 
due to Nehari [28) in the scalar case and A-A-K [3] in 

the general case, in terms of Hankel operators and 

Hankel matrices. It is not surprising that they are 

closely related. Young., [46] pointed out that the Sarason 

operator is a unitary multiple of the nonzero part of the 

A-A-K operator. In fact this is still true in the matrix 

valued case. The one step extension idea in the A-A-K 

approach is one of the methods we are using to form an 

extremal function. The existence of such a one step extension 

follows from the fundamental study by A-A-K in [3]. In 

particular, if the so called symbol function is rational 

then the existence of such a one step extension is equivalent 

to the existence of a solution to a matrix quadratic equation 
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-Riccati equation. This follows from Kung [22) [23]. In 

view of the relation between the Sarason operator and the 

A-A-K operators the one step extension method can also be 

used in our approach. This is different from Arsene, Ceausescu 

and Foias' 1-PCID method [5) in this particular situation. 

Let ý 
mxl 

denote the set of all square summable infinite 

sequences, i. e. jo° ,i Mil such that i =-00 

00 
(1112 =I trace (ýj ý)< 

oa, 
2 j=-co 

t 
and by, 

mal, 
)Q mxl' respectively, the set of all square 

summable sequences such that: ýi=0, j=-l, -2,......... and 

=0, j=0,1,2,.... The generating function ý in 2 LýXlq 

corresponding toli"ý j=-oo is defined by 

OD 

ý(Z) =Z ýi zi , zEaD. OD 

The L2-norm is defined as 

11 112 = 2ý 

21r 
trace (el&) *(eie )* )d0 

0 

andj is the j-th Fourier coefficient of ý(z); 

ý 
j= 

ýýj) = 2l 
(eie)e-ijedO. 

, rr 

222 
We shall not distinguish between J mxl 

and I'm 
xl' 

Q 
mxl and xl' 

, 
tmxl and Hmx1 = 14nx1 45 Hmxl For any f 

xl 
there exists a 

unique partition 

f(z) _ 
Zim fizl = f+(z) + f_(z) 

where 
f+(Z) =2 Ofiz ' f+ 6 1rnxl and 

i 

f (Z) = Zo if -iZ-i, 
g- Hmxi 
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Let-T2+, -F-2 be the orthogonal projections from Li onto 

2 2- 
xl and H. Let Pi be the orthogonal projection maps Hm 

0' 
ý1' 

.''. 
)Ef 

mxl onto its j-+. component Jj. Let 

Jej}jml be the standard orthonormal basis for Cm; then 

I z®®ei I -co 4jZ oo , i=1,2, ... mI is a basis forxl' 

where zi®ei denotes the mxl column vector with value zi at 

iit coordinate and 0 elsewhere. We consider this basis 

ordered as follows ....... z4e.. 
d®e......... 

z0 ®e . 

zj+l®e1....... I zj+l®em,...... 

Let. R be the operator on Iii defined by 

Rf(z) =Z f( Z), 
zE aD. 

i. e. 

R( 
I 

flzi) = .z flz-i-1 
-oo -o0 

Obviously, f(z) =Z Rf( Z) 
and if f E'-Hmxi, then Rf E H2 

xi, 

and vice versa. 

Lemma 2.3.1 (1) RT 2R 
=1r 

(2) RR* = R*R = I. 

Proof: The proof is straightforward. 
00 

(1) Let fEI 
x1 and f (z) = fie 

, 
then 

CD 

Rf(z) = Z-oofiz-i-1 

thus 

and 

72Rf(z) = f_1 +f_2z +... , 

f 
R1f2Rf(z) 

z-(f-l + z2 +.... ) 

= f_((z) =T f(z). 
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(2) it follows that the adjoint of R is given by 

R*f(z) =Z f( Z ). 

The proof is complete. 

Given a function (PE Ion, the Hankel operator H 
22 

acting from H1 to HJ is defined by 

Hf=r Rpf, fFH1, 

where LQ is called the symbol (transfer function) of H. 

We can write down the Hankel matrix r for H in terms of 

the-Fourier coefficients of P, namely if cpg- Lrn and 

ao -i ýZý _ i=1'p iZ , LPi F Mmxn' then the matrix ['(f has the 

entry LP 
j+k-1 in the j-th row, k-th column position; it is 

constant, on the cross diagonals. 

CP1' 

ýP3' (p4'.......... 

so 

In other words, is the matrix of H with respect to the 

standard orthonormal basis 
IdOe 

i: j=0,1,2,..., i=1,2,... m} 

and 4P j+k-1 is the j+k-1 Fourier coefficient-. of ýP 
. 

Suppose 14 }1FQ' ý), 
j Fýj 

nxl mx1 

and 

C'elio}= I71i I, 

then 

00 
j= G k=1yj+k-1 

lk 
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Before we go any further, let us observe the following 

example which shows the key point of the relation between 

the Sarason operator and the A-A-K operator. 

then z0 Example 2.3.3 Let B(z) 
z2 0 

0 z2 

(11 
0 0ý 

(0) 
1z 

is a basis of H2x1 0 BH2xi' 

for any g, E H2x1' 

P J(z) _ PB 
gl(z) 

_ 
g1(0)+g'(0)z 

B) 
(15) 

Z) 

( 

0)+ 0)z g2( ) g2(0)+g, g2ý 

= g(o)+g'(o)Z. 

Let B(z) = [B(z)] and consider 

HB-9(Z) _ -F2Rg(Z) _ 'F2(zg( 
Z )) = g1 (0)+g(O)Z. (16) 

Compare (15) (16, ): iwe see that 

Z2( 
Z (gl(o)+ )) = Z2 R(g'(o)+g(o)z) 

z 

= BR(g'(O)+g(O)Z). (17) 

The formula (17) in fact is the relation we are looking for. 

Theorem 2.3.4 Let B be an inner matrix in °HQ°m. 

Then for all gE xl' 

PBg. = BRHBg = BR TF 2R 'g 
, 

where: 

(18) 

B(Z) 
= LB(z)]* 
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Proof: For any g (- 2 Hnxl 

g- BT g= BBg - B-rr 2Bg 

IV v 
= B(Bg - li2Bg) 

= B((1-T2)Bg) = BRT 2RBg. 

J- 
2 

Pick fF H1 (D BHmxl' then PBg =g and 
Bf F Hmxl, so 

BRHBf =f- B1r2Bf = f. 

On the other hand, for fF BH1, so PBf = 0. 

Let f= Bh, h6 
xl' 

then 

BRHf =f-B lT 2BBh 

=f- Birth = f- Bh = 0. 

The proof is complete. 

Remark : If f (-B HL2 2 
l, then f =Q g for gF Hnxl and 

BRHtf =f-BT 2Bf 

= Qg - B1F2BB"adjBg 

=ýg-B adjBg =pg -pg = 0. 

Therefore, if fe HnXl, then BRHBf = BRHBPaf. 

The fundamental fact about Hankel operators is due 

to Nehari and A-A-K. 
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Theorem 2.3.5 Let F LO)m and let H? be the Hankel 

operator with symbol I. Then 

II H) 
ý 

ýI = dis(t, Hn def inf U cp -gli0 
00 g EHmxn 

Proof: Reference also Gohberg [7) [301. 

Theorem 2.3.6 Let B be an inner matrix in Hý and 

let FE 00 Then 

(1) PBMF = BRHHF 

(2) Il F+B °Xf II 
00 = dis(BF, HmOD (19) 
nxn/B °, 

=N HBF j1 = 11 PBMFPß 0. 

Proof: (2) follows from Theorem 2.2.5 and 2.3.5. 

(l) For gF xl 

PBMFg = PBFg =BR TT' 2RBFg; 

= BRH BFg . 

As we have proved in Theorem 2.3.6 that 

PBMFPg = BRHbF 22 
[ %xl 

xl 

and BR is a unitary operator. The Sarason operator Is 

therefore a unitary multiple of the nonzero part of the 

A-A-K operator. 
22 nx1 0 ýxl 

PQMF ý6F 
(20) 

222 Hmx1 eB 
nxl 4 x1 

8 R. 
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The most remarkable result of the A-A-K theory concerns 

the one step extension. For completeness we restate the 

one step extension of the A-A-K operator and the corresponding 

extension in the Sarason operator framework. This extension 

technique is one of the methods whereby extremal functions 

can be calculated. 

Definition 2.3.7 Let f (z) _1l? 
° 

1 p1z_i, cQ E :E 
Afl" 

A one step extension of the Hankel matrix 
1ý, denoted by Fcp 

is a Hankel matrix with symbol whereWQ(z) _ 
I-P 0+ 1+... 

~"zz 

i. e. 
ofW14LP21...... 

_ 
ý1, 'P2 

, ........ 
.w 

WW1 1 (21) 

where LPi are mxn matrices. 

The one step extension problem is: Given a Hankel'matrix 

[74? ON 
C'f uP, does there exist a one step extension Hankel 

matrix [' such that is a singular value of with 
M1 

multiplicity n 

The existence of such a-0 and the description of all 

of them we will summarize in the following theorem. For 

details see [3] [23] or Dym and Go hberg 1133. 

Theorem 2.3.8 Given a rational function kp of finite 

Mp the one step extensions as in order such that II Ulf 

(21) such that p is a singular value of with multiplicity 
1 

n are defined by those and only those 40 Mmxn which are 

of the form 

(C = pAUB +C9 (22) 
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Where U is an arbitary mxn isometric matrix. 

A2 =1- Pl['ý(Q2-(Sr')*(S['ý)) P1 

B2 =1- P1 P2-S ['ý ['ý)*) 

c= Plý(ý2-(sý)*(sc))-1(scr)*ýý P1. 

Remark: Let 
I 'l)), 

i=1,2....... nI be a set 

of linearly independent Schmidt pairs of corresponding 

to ; i. e. 

=Pýj(i) ,=r ý(1) . 

Let xx= (x0, x1,...... ) and y= (yo, y1,...... ) be the 

corresponding sequences of nxn matrices in Hnxn 

with 

and 

((1) (2) 
xi =j 

'i 

(-71ý i)-ý2 
yj `1 140 

j=0,1,2,3,...... 

and let 

X(Z) =L =0 
x1z ' Y(Z) _ ZI p Yizl 

Then x(z) and y(z) are nonsingular for each z6D. For a 

complete proof of this property see H. Dym and I. Gohberg 

[13] or Kung [23] for the details. 

From Theorem 2.3.6, if 13 is an inner matrix in Hmx 
m, 

FFHmxnthen 

PBMFPP = BRHgFPý 

is the Let T= PBMFPe , 
VB = BR and let T= BF. If 

Schmidt pair for ( of Hý , i. e. 



It follows that 

Tý= UBH 
if 

ý= C UB I and T*UBI =r3 
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This implies that (j, UBt) is the Schmidt pair corresponding 

to ý of T. Conversely if (J, UB7t) is the Schmidt pair for 

of T, then (1,91) is the Schmidt pair corresponding to 

of H1 . Suppose HIt is the one step extension of H(, : 

then the corresponding Sarason operator T of H is 

T= UB 7 
~NN 

Since 

p (z) =0N +Z z) = BF 
ti 

for some 1? 
0 

is the form of (22). 

so 

BL<(z) = B(z) (i+Z ýP (z) = F(Z) 
. MO rv 

Letting 

we have 

and 

Therefore 

that is 

B(Z) = ZB(Z), 
N 

B(z)C0 + B(z)'P(z) = F(z), 

B (f= F. 

F(z) = F(z) +B(z)f0 
N 

T= PBMF 
s Ny 

with B= zB and F=F+B. 
o 

for pp0 is the form of (22). 
NN 

2 
xl 

2 Hnxl 

-ý- T 
ti 

22 
x1 iD B 

x1 22 
Hn 

Hmxl© ZBHmx1 



Theorem 2.3.9 Given B an inner matrix inR"M and 
00 FF RI 

xn, and let the generalized Sarason operator 

T= PBMI, P, satisfy fl T II cf. Then there exists FG F Mmxn 

such that if F=F+ BFO 
(then 

P is a singular value of 

T= PMP with multiplicity n. 
zB Fz ßI 

ti ` 
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Proof: Let H be the Hankel operator with symbol 

= BF and by the Theorem 2.3.6 T= UB HP where UB=BR 

and 
(S 

II UBHýPg 1 1T1 15 P. 

Choosing FO to be the form of (22) 

and let 

Nzz' 
then from Theorem 2.3.8 p is a singular value of Hf 

of multiplicity n. In view of the relation of the Sarason 

operator and the A-A-K operator 
N 

=BF F14, ,W . 1W 

for some FE Hm°D and some inner matrix BFI OO 
^, xn xm' 

Letting 

then 

F=F+ BFO , N 

F+BFO=BtP 
H 

F 0 4f 
= B( 

Z+Z) 
F 0F B/\Z+Z). 

N 

Thus setting B to be zB which is inner 

and 
x BRHN =PMP=T, 

ý, B 
W, w 

F 
zB F zßI 

uT u=u C'Yýi =P. ti 
Remark: This one step extension is different from 

Arsene's 1-PC1D [5] and is much earier to handle computationally. 
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2.4 One step extension matrices 

Let Fr RI 00 D 
n and let BF RHH°Xm be an inner matrix. 

The generalized Sarason operator is 

T PBMF) :2222 xflýxj 
Sp 

x1 
H 

nx1 
9B 

nx1. 

Let fiTII=? , then by Theorem 2.3.9, there always exists 

F0 F Min such that if F=F+ BFO, B= zB, (= zp, then r 

is a singular value of T= PB MI, Pppp with multiplicity n. 
NN ry 

In view of the relation between a Hankel operator and the 

Sarason operator such an F0 can be obtained in terms of a 

Sarason-type formula. 

Let PZ, PzB be the orthogonal projections from Hmxl 

onto H; l Q zH 1, Hmxl ® zBHmxl, respectively. Then we 
22 

have the following simple lemma. 

Lemma 2.4.1 PZB PB + BPZMB 

Proof: Pick fEH 
x1 

p zBHHX1; then PzBf = 0. 

It is not hard to varify that 1Q zBH 1 can be decomposed 

into Hmxi (D HI1 and B(H 22 
1Q zH 1) 

(see Lemma 4.1.2), 

i. e. 
H222222 10 zBHmxl = (H (D B 

nx1) 
E) B(Hmxl (D zHmxl) 

and 

f=f1+f2 

where 

f1 E Hmxl e BH21 and f2 F B(H2 G zHmxl). 

Then 

(PB + BPZMg)(f) = PBfl + BPZMMf2 
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Let 

f2 = Bg for some gr H2 2 
10 zH x1, 

then 

BPZMBBg = BPZg = Bg = f2 . 
Hence 

PzBf = (PB + BPzM4)(f) for fF Hmxl e zBHmxl. 

On the other hand, for f6 zBH 
22 

1' fe BHnx1 and so PBf = 0. 

Let f= zBg, g E- xl' 
then 

BPZMBzBg = BPzzg = 0. 

Therefore 

PzBf = (PB + BPZM)(f), for fE zBH 1 

The proof is complete. 

By a simple calculation, the one step extension Sarason 

operator T and T have the following relation 
N 

T= PzBMF+BFOPz 

(PB + BPZMB)(F + BFO)Pz 

=T+ BPzMBFPz¢+ BPZFOPZg . 
(23) 

1 

Let 

h= PZMBF and = PZ 

and let 

Tl = BPz%p* + BPZFOPZ . 
1 
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Lemma 2.4.2 Let u0 (- Hý2 

xl 
2 G)ý 

xl 
be a maximising 

vector for T. Then 

I) T U= IIT 11 if and only if h(u0)+FOu0(0) =0 

and 

II TI _iIIýlIT11. 

Proof : If IIT II = II T I, then 11 TIü II 149 TO, so we have 
0 

to show h(u0) + FOu0(0) = 0. Suppose h(u0) + FOu0(0) k 0, 

then T1u0 N 0. Since 

IT12 =U TO2 +II T1w2 

so 

T fý > Ii T II . This is contradiction. 
N 

Conversely, if h(u0) + FOu0(0) = 0, then T1u0 = 0, 

and 

(I Tu0 (I 
2=11 Tu0 11 

2= II T (I 2 
11 uo 11 

2r 
N 

thus 

11 TuoII = MT 9 IIu011, 
N 

By hypothesis jf TIulp4 11 T II 
0 

But II T P-4 11 T II . Therefore 

this implies II T 11 11 T V. 

$1 T II = II T I. 
The proof is complete. 

In fact, we also require p to be a singular value of 

T with multiplicity n. This means that UT 11 =P"T 
If. U 

N0 

and the nullity of Q2 - TOTO is not less than n-l, where 

TO = TluL. Let us denote the nullity of e2 
OTO by )(P2-T*TO) 

0 
In order to characterize the required FO a well known result 

on the factorization is used. 
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Lemma 2.4.3 Let K, G, H be Hilbert spaces, and 

A6 L(K, G), B Cr L(K, H). Then 

A*A ' B*B if and only if there exists a contraction 

X6 L(H, G) (I X1 A 1) such that A= XB. 

Proof: see Lemma 2.1 of (11]. 

Lemma 2.4.4 Let QE L(u0 ), XF L(u0 L, CM). Then 

i(Q*(1-x*x)Q) '- ý(1-x* x). 

Proof : 

)(Q*(1-X*X)Q) 4 "Q) + dim(Ker(1-X*X)A Range Q) 

= dim u0 - dim Range Q+ )(1-X X) 

+ dim Range Q- dim(ker(l-X X)V Range Q) 

l3 L)(1-x*x). 

Theorem 2.4.5 Let uO be a maximising vector for T. 

Then p is a singular value of T with multiplicity n, and 

pTj= II Tr =P, if and only if F0 E- Mmxn satisfies 

(1) h(uO) + FOuO(O) = 0, (24) 

(2) there exists XF L(u" , Cm) such that 0X N= 1, 

where 

Proof : 

º%(Q*(1-X*X)Q) n-1 and h0 + F0E0 = XQ (25) 

h0 _h 
(ui 

,E0EIu1. and T0 =TIu s- 
000 

Q*Q =P- TOTO , where QE L(u0 ). 

e is a singular value of T with multiplicity n N 
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and II T II =p if and only if TU = P, gT I 

uý pte and 
`0 

( P2 - T*TO) = n-1.11 T lu l11 =D and Il (Q - ., 
TITO) n-1 

01' 

if and only if P- TOTO '- 0 and ýJ(p - TITO) n-1. 

P2- TITO *- 0 is equivalent to 
1 

(h0 + F0FO)* (h0 + F0E0) Z P2 - T0* To. (26) 

Let Q Cr L(uý ) be such that Q*Q = p2 - T0* To . Then by 

Lemma 2.4.3, (26) holds if and only if there exists 

XE L(u0 i, Cm), II Xv=1 such that h0 + FA = XQ. 

Moreover, 

� (P T*T0) = ºI( P2 - T*T0 -(h0 + Fo EO)*(ho + FDfo) ) 
20 

=�(Q- Q*x*XQ) 

= J(Q*(1-x*x)Q) 

jo (i - x*x ). 

Therefore, combine Lemma 2.4.2 and the above to complete 

the proof. 

Observe from (24) and (25) that X satisfies a finite 

number of relations of the type Xxi = yi' 

if ge uO and g(O) = 0, then 

(XQ)(g) = (h0 + FOE)(g) 

= h0(g) + Feg, (O) 

= h0(g), 

and if gF uo and g(O) = u0(0), then 

(XQ)(g) = (h 0+ FOE)(g) 

(27) 

(28) 

= h0(g) + Fpu0(O) = h(g - u0). 



Indeed, if X (- L(uO , Cm) such that M Xu = 1, 

and satisfies (26)&(27), then we can construc 

(24) and (25) are satisfied. In other words, 

value of T with multiplicity n and AT II = 0. 
NN 

our main theorem, we need two simple results. 
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J(1-X*X)> n-1 

t FO such that 

r is a singular 

Before we prove 

Lemma 2.4.6 { (g) :gE uÖ ýC an if and only if u0 

is a constant, where u0 F I; 
Xl - 101. 

Proof: If JE(g) 
:g k- u10} is properly contained in Cn, 

then there exists a6 Cn such that a0 and 

a1 fi (g), for all gE uO . 

Let a(z) =a; then a IZ(g), so (a, g(0)) n=0, 
i. e. 

C 

Z1Uiý a(z)*g(z) aZ = °' 
c 

this implies 
NaF 

u011 , thus a= ku0, i. e. a(z) = ku0(z), 

therefore, u0(z) =k is a constant function. 

Conversely, if u0 is a constant function, then u0(z)-u0(0). 
1 

Let g C- u0 9 then g J. u0, so 

z 
21 u0(z)*Z dz =0 Jgi 

C 

i. e. 
u0(0)*g(0) =0. 

This means u0(0) -1- 
ýý(g) 

;gE u0 I so that 

SL (g) ge7uý 
J. 

Lemma 2.4.7 Let Xe L(u1 ý, Ca) Then 

) (1 -X *X) = ,) (1 - xx*) . 
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Proof: Define a mapping j: Ker(1-X*X) Ker(1-XX*) 

by 

j(f) = Xf. 

Then the Lemma is proved if j is bijective. First, let 

us show the injectivety; if ft Ker(1-X*X) and Xf = 0, 

then X*Xf =f=0. Surjectivity, let gF Ker(1-XX*), then 

there exists X*g F Ker(1-XXX) such that j(X*g)=g, for 

(1-XX* )g = 0, then 

J (X*g, ) =X X*g =g, 

and 

(1-X*X)X*g =X-X 

=Xýg-X*g=0 

Theorem 2.4'. 8 Let XF L(uo , em), bX8=1 and I)(1-X*X)»n-1 

and 

XQ(g) = h(g) if ge uo , g(0) =0 (27) 

XQ(g) - h(g-u0) if gF uOL, g(0) = u0(0). (28) 

Then there exists F0 E Mmxn such that 

h(u0) + FO40(0) =0, 

and 

h0 + FOEO = XQ 

Furthermore, if F=F+ BF0, B= zB, zP, then P is a 
ti 

singular value of T= PZBMFPý with multiplicity at least n. 

Proof: We consider two cases. 

Case 1. When uO is not a constant function, then by 
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Lemma 2.4.6 {ý (g) :g E- uö . 
Define 

FO(E(g)) = (XQ - h)(g), g6 uO . (29) 

FO is well defined, for if E(g) =0= g(0), then (XQ-h)(g)=0. 

Therefore h0+FOF0 XQ. Since I£(g) 
:gE u0 = Cn, we 

can pick up gE u0 such that g(0) = u0(0), then by (28) 

and the definition of F0, we have 

FO(u0(O)) = FO(g(O)) - FO(f(g)) 

= (XQ-h)(g) 

= XQ(g) - h(g) 

=- h(u0) 
, 

i. e. 

h(u0) + F0(u0(D)) - 0. 

Therefore FO satisfies (24) and (25). 

Case 2. When uO is a constant function, then 

UO(O) AE(g) :ge up ý" 

Define 

Fo(f. (g) )- (XQ - h) (g) g- uo 

and F0(u0(O)) =- h(u0). 
(30) 

This is well defined on Cn, and satisfies (24) and (25). 

From Theorem 2.4.5 and the above it follows that r is a 

singular value of one step extension Sarason operator 

T= PzBMF+BF0Pzý with multiplicity at least n. T 

The proof is complete. 
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CHAPTER THREE 

AN ORTHOGONAL DIRECT DECOMPOSITION 

OF 

22 Hmxl 0B 
nxl 

Introduction: 

In Chapter two we have already set up the theoretical 

part of the generalized Sarason operator T= PBMFPP acting 

from HL1 Qý 222 
xl 

to I 
xl 

Q BH 
xl. 

The matrix computation 

of the operator T is rather technical. There are several 

problems that need to be solved: 

(1). Finding a suitable direct decomposition of 

Hm2 2 
xl 

0 BH 1 in such a way that the Gram matrix of this 

decomposition can be calculated easily. In this chapter, 

we will give a full description of a decomposition which 

generalizes Young's algorithm [4]. Theorems 3.2.2,3.3.1 

and 3.3.2 are the main results. 

(2). Forming the projection PB. This problem can be 

solved but the technical details are laborious. The idea 

comes from the fact that Hal O BHHXl is contained in 

Hmxl Q FHmxl, hence T can be written as T ='r PMFP where 

P MFP is the generalized Sarason operator acting on Hmxlp2 
ý (3 f Hnxl 

which is the direct sums of m copies of H2 ef H2. Hence the 

calculation of P MF, P can be effected applying Young's 

algorithm to every entry F. and this does yield an efficient 

method. Therefore finding a computational formula for IF is 
N 

extremely important to us, and it is fortunate that there 

is a formula which is neat and simple, depending on a 
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recursive relation. This subject comprises the main part 

of the next chapter. 

Contents: 

3.1 An operational calculus. 

3.2 The standard decompositiion of i22 lO BH1. 

3.3 The Gram matrix of the decomposition. 
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3.1 An operational calculus 

Let ( H00 be the set of all polynomial functions in. D 

and let 
SPacP 

T"Txn be the 
Aof 

all mxn matrices with elements in tPH00. 

Let N and E be in THmM ;a matrix M in said to be a 

common-left divisor of N and E iff there exist N1 and E, 

o such that N= MN1 and E= MEN; both N and E are in T'lo 'mxn 

said to be right multiples of M; a matrix L E(I HoXn is 

said to be a greatest common left divisor (gcld) of N and E iff 

(1) it. is a common left divisor of N and. E, and 

(2) it is a right multiple of every common left divisor 

of N and E. 

When gcld L is unimodular (i. e. detL = 1), then N and E are 

said to be left coprinie We define similarly a greatest common 

right divisor (gcrd) and right coprime. Consider ('(z) in 

RHý . If we write &P (z) as a matrix polynomial fraction 

(P (z) = Nr(z)Dr(z)-1 

= D1(z)-1'NQ(z), 

then there can be many right and left matrix fraction 

descriptions(MFDs) of q'(z); an MFD tq(z) = N(z)D(z)-l will be 

said to be irreducible if N(z) and D(z) are coprime. Irre- 

ducible MFD of tf(z) are not unique, because if N(z)D(z)-1 is 

irreducible so is N(z)W(z)(D(z)W(z))-1 for any unimodular 

W(z). Suppose that we have an irreducible right MFD: 

p (z) = N(z)D(z)-1, 

then the poles of if(z) are, by definition, the roots of 

detD(z) = 0, and the zeros of q(z) are the roots of detN(z)=0. 

It, is well known (37] that for any mxm rational matrix 

LQ(z) having all its poles outside the unit disc there 
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exists a left factorization: 

4(Z) = 4, t(Z) 47 () , 
and also a right factorization 

(Z) LflID (Z) 
9 '? (z) u 'f 

where +Pý(z), 400 (z), q' (z) and or° (z) are in R , 

and they have the following properties: 

(1) L4, ° 
, are inner matrices and their zeros are the zeros 

of %? (z) located inside a D; 

(2) if , 
Co are maximal phase, i. e. none of their zeros 

and poles are inside D. 

We will show in the next section that maximal phase factors 

play no role in-our problem. A detailed algorithm for 

obtaining an irredicible MFD one can find in (43)(31](21]. 

Let Cm®H2 denote the space of mxl column vector 

functions on D with entries belonging to H. Cm 2 2 ®H is a 

Banach space with respect to the norm 

m 
ff Ilým®H2 =( 

JT 
Ufj 11 

H2 
(1) 

where fj denotes the (j, 1) entry of f. 

Suppose f t- C1°®H2, f= (f1, f2,... , fm)T , where 
00 

fý E H2 and fý (z) =, aid 
)zl 

Then 
i=0 

m 
ýý f ýý 

ýmýH2 
= Z1 11 fj ii 

x2 

_ 2T1' 

ifj(e)j(ei9)d6 

J=1 
0 



2T 
f, (ei6) ? (eid)dO 

2Tf J 

1 21- 

- trace(f(e1'o)f(eie)*de 2T 0 

2T 22 
=2 II f(eie) II 2= ýý f II 2 

0 

48 

ao 
Thus if g(z) _ aiz1, where ai =( ai(1), ai(2),...... a(m))T, 

A=o 

then gEI1 and II f 11 Cm®H2 = 11 g 112 
. In fact Cm®H2 and 

2 Hrnx 1 are isometrically isomorphic. The isomorphism can be 

characterized as following 

00 
(1) i 

ai(m) zi 

00 

_ aizl 
juo 

(2) 

We will use this isomorphism t throughout the thesis without 

mentioning afterward. ei®zi 
I i=1,2,.., m J=0,1,,,., j is 

the standard basis for Cm®H2, where ei®zJ denotes mx1 column 

vector with values zi at i-th coordinate and 0 elesewhere, we 

consider this basis ordered as following e1®z0, e1®z1,...., 

e1®zm,......, e2cz0, e2®z1to ....... .. Therefore the isomorphism 

can also be characterized as follws 

C (ei 0 zJ )= z0 0 ei . (3) 

Roughly speaking . is a permutation of the basis. 
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When Te L(H2), then RHoocontains functions which are 

analytic on some neighborhood of the spectrum of T, G(T). 

Let U be an open subset of G whose boundary C consists of 

a finite number of rectifiable Jordan curves. Suppose 

U ?, r(T), cq E RHoo , then UV C is contained in the domain 

of analyticity of (. The operator p(T) is defined by 

the equation 

LP (T) = 2t1ri -P(z)(zI-T)-ldz . (4) 
G 

The integral exists as a limit of Riemann sums in the norm 

of L(H2). This operational calculus can be generalized 

directly to any FF RHOn, which is analytic on a neigh- 

borhood U of the spectrum of T, F(z) = [Fil(z)] 
mxn as follows: 

F(T) =C Fi j 
('T)) 

mxn 

where 

F1ý(T) = 2w F1j(z)(zI-T)-1dz 
C 

or equivalently, 

F(T) = 2ýi 
F(z)®(zI-T)-1dz 

" (5) 
C 

-by the definition of (5) we have some immediate results which 

will be useful in the sequel. 

Lemma 3.1.1 Let FF RHm 
n, 

T EL(H2) and let F be analytic 

on some neighborhood U of the spectrum of T. Then 

F*(T*) = [F(T)] 

Proof: Let C be the boundary of U consisting of a finite 

number of rectifiable Jordan curves. 
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IF(T)]* 
2iri 

F(z)O(zI-T)-1dzI 

C 

ý[F(z)]*®(zI-T*)-adz 

C 
1 

_ -ir- 
kF (z)®(zI-T)-'dz 

= F*(T*) 

where C is counterclockwise. 

Lemma 3.1.2. Let F, G E RHý 
n, 

Tk L( H2) and let F, G be 

analytic on some neighborhood U of the spectrum of T. Then 

(F"G) F(T)"G(T). 

Proof: Let F(T) beevaluatedby an integral around 

a suitable curve Cl. As for G(T), let it beevaluatedbY 

an integral around a curve C2 which lies entirely in the 

interior of Cj. 

c2 \ c1 

04. 
u 

F(T)G(T) 
4F(z)®(zITY1dz] 

Ce 
ti G(u)®(uI-T)-1du 

cc2 

(M) -2 F(z)G(u)G(zI-T)-1(uI-T)-ldzdu 
C, cl 

_ (2"Ti)-2 F(z)G(u)® 
1 [(zI-T)-1-(UI-T)-1]dzdu 

CZ uz 

_ (2ri)-2 F(z)O(zI-T)-1( G(u)0(' )du)dz - 
C, CZ 

(21ii)-2 ( F(z)@(-L-)dz) G(u)®(uI-T)-1du 
C2 C. 
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_ (2n'i)-2 ( F(Z)® zýu 
dz)G(u)®(uI-T)-1du 

CR C, 

_ (21fi)-2(21ri) ý 
F(u)G(u)®(uI-T)-1du 

C2- 

_l F(u)G(u)®(uI-T)-1du 
2V C 
(F"G)(T). 

In the above calculation, we have used the functional equations 

of the resolvent and the classical fact that an integral of 

the form 
k (a -ý)-1d« is 2lVi if lies within C and 0 if 

c 
lies outside C. The proof is complete. 

For BE RH; 
m 

there exists ad jB F RH 
m such that 

B(z)- adjB(z) = adjB(z)"B(z) = (detB)(z) Im =(3(z)Im, 

where is a scalar analytic function. It is easy to show 

that if B is inner, then I. adjB are also inner [. 27]. 
2) 

therefore, it follows from Lemma 3.1.2, for any TE L(H 

and B is analytic on some neighborhood U of the spectrum 

of T, that 

B(T)" adjB(T) _ (ß I)(T) = ICm 0 F(T) _ (T), 

where ICm® ý(T) denotes the diagonal operator on Cm®H2 

with entries t3(T), and T= ICm @T. In particular, when 

B is unimodular, then B(T) is invertible. 

Lemma3.1.3" Let WF RH® 
m 

be unimodular, TF L(H2) and 

let W be analytic on some neighborhood U of the spectrum 

of T. Then W(T) is invertible. 

Proof: Let W be unimodular, then detW(z) = 1, and 

W(z)-1 = adjW(z)/detW(z) , by Lemma 3.1.2, W(T)-1= adjW(T). 
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The following L is the isomorphism from 0mmH2 to Hj 

defined in (2) above. 

Theorem 3.1.4 Let Cp E RHam , let S be the backward 

shift operator on H2 and M, be a multiplication operator 

Then 

(1 )- c. qq(S*)t *= MT 

(2). If cp is inner, then t CP (S) (p (S*)[. *=IH; 

xl 
(3). If (Pis inner, then Range(I 2 -1. p(S*) Cp*(S) c-*) 

= Ker y p(S)e " 

(4). If CP is inner, then Ker 4 cP (S) L*=H1p cp H; , 

Proof: (1) Apply both sides to the orthonormal base 

{ zOOei 

(Ly(S*) 
. 

*) (zJ®ei) =L T(S*)(ei®zj ) 

=G( (u)B(uI-S*)-1du)(ei@zJ) 2ni fc(f 

=L(j 
ýcp(u)ei®(uI-S*)-1 

zidu) 

zj 
21ii 

f! (u)el9 
uz 

du ) 

=G( (P(z)e19zJ) = cp (z) G (ei®zj ) 

= (f(z)(zJ®ei) = MIf (zJ®ei) 

where (uI-S*)-l zj _" and the integral. is taken counter- 

clockwise round the curve C aD 

(2). If L is inner, then 

(S) T (S*)G *= 
L CP (S) L*G (p (S*)L 

= ri s*) L- *J *Cgy(S*)L 

= MT ý=Mý =I%1 
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(3). Let hF Range(IH2 -L cp(S*)c* (S)L*) ; 
mxl 

then 

(S)L)f h= (IH2 -t 
mxl 

cP(S*)170 

for some fFH 1, and 

= (<<P (S)c* - z9 (S)Z-*)f = 0. 

This implies hE Ker j, -p(S) . 

Conversely, if hE Ker cýP(S)c. 
*, then cp (S)ý*h = 0, 

thus 

cP (S) /- 
*h 

= 
(LýQ (S)L (S)[. *)f 

L (P(S*) p (S)L*h = Or 

therefore 

h=h -LCp(S*). P*(S)L h 

_ (IH2 -Lc'(S*)tp (S), )h F Range(I-ccp(S*)(P (S)/-*) 
mxl 

The proof of (3) is complete. 

(4) follows that 

Kertc. p (S)4* = Ker(c(P(S*)L*)* 

=K er M* _ (gyp Hmx 1 
22 

= Hmx1 Q92Hmx1 

3.2 The Standard decomposition of Hal (D BHnxl 

Let B&m. The Smith-McMillan form L6 of B(z) is 

given by 
B(z) = A(z)M(z)C(z), 

where 
(1). A(z), C(z) are unimodular polynomial matrices. 

(2). M(z) has the form 

(6) 

M(z) = diag( 
"'4'1(z) ß'2(z) vt(z) 

for some positive integer t, and 
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(a) ei(z) and'4i(z), i=1,2.... ,t are monic 

coprime polynomials; 

(b) ei(z)l ei+l(z), i=1,2,..., t-1; 

(c) 'wi(z) Iipi-1(z)" i=2,3,..., t , and ^Pl(z) is 

the least common multiple of all the denominators 

of the entries of B(z). 

Clearly the polynomials ei(z) andt}>i(z) are uniquely determined 

by B(z). We can factor M(z) as follows: 

M(z) _ l(z)-lEß(Z) 

Er(z)V, (z)-1 
" 

where 

ß(z) = diag('P1(z), 4'2(z),..., 

EI(z) = diag(el(z), e2(z),..., et(z), 

There are similar expressions for'lP 
r(z) and Er(z). 

Let, us define 

Dy(z) ='WQ(z)A(z)-1, Nj(z) = E1(z)C(z). 

Since, for i=l, 2,...., t, ei(z) and Vi(z) are coprime, it 

follows that 'Yiz) and Et(z) are coprime matrices. The 

same holds for DI(z) and N1(z) because A(z) and C(z) are 

unimodular. For, the right coprime polynomial factorization, 

we consider 

Dr(z) = C(z) 'Pr(z) , Nr(z) = A(z)Er(z). 

From (6)(7) it follows that the finite poles of B(z ) 

are the zeros of the polynomialqp i 
(z) in its McMillan form 

(6. ). Similarly, the zeros of ei(z) are the zeros of B(z): 

Therefore B(z) has an irreducible right MFD 

B(z) = Nr(z)Dr(z)-1 . 
(8) 



Moreover, if N(z)D(z)-1 is another irreducible right MFD, 

then there exists a unimodular U such that D(z) =Dr(z)U(z), 

N(z) = Nr(z)U(z). This property can be easily proved by 

the fact [ 21] that N(z) and D(z) are right coprime if and 
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only if there are polynomial matrices X(z) and Y(z) such 

that X(z)N(z) + Y(z)D(z) = Im. In other words, the irre- 

ducible MFDs are unique up to multiple by unimodular matrices. 

Theorem 3.2.1 Let BF RHm be an inner matrix. Suppose 

we have an irreducible right MFD 

B(z) = N(z) D(z)-1. 

Then 22 Hmx1 (3BHnx1 = Kerl B*(S) c*= Kerr N*(S) t 

Proof: The theorem is proved if D (S) is invertible. 

Let the Smith-McMillan form of B(z) be 

B(Z) = Nr(Z)Dr(Z)-1_ A(z)Er(z)[C(z)-1_., 
r(Z)J 

-1 

as in the form (6)(8) above 
l 

By the uniqeness of the irreducible MFD, 

D 
, 
(Z) =Dr(z) U(z) 

for some. unimodular matrix U(z) and detDr(z) = detD(z). 

This shows that the zeros of D(z) are the zeros of Dr(z). 

Since B is an inner matrix, all the poles of B(z) are 

outside the unit circle. From Lemma3.1.3 C(S)-1yr(S)=Dr(S) 

is invertible, and 

B*(z) =[N(z)D(z)-1] 
* 

=D*(z)-1N*(z) 9 
so 

It follows that 

B*(S) =D (S)-1N*(S) . 

Kerl B*(S)c* = KeriN (S)t* 
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Remark: D(z) is called maximal phase, and this function 

plays no role in our problem. N(z) is called the numerator 

of B (Z). 

Let B' 6 RIm00 
xm 

be an inner matrix with irreducible MFD 

B(z) = N(z) D(z)-1 

where N(z) is a regular polynomial matrix of degree k, i. e. 

N(z) = B0 +B1z+....... + Bkzk , with det Bk *0 . (9) 

Such an inner matrix we will call r-inner matrix . It is 

not hard to show that Kerl B* (S) G*= Ker 1 N* (S) c*i s the 

space of all vector valued sequences x= (x0, x1,...... )F 21+ 

satisfying the recurrence relation 

Box, + B1xr+1 +.......... + Bk-1xr+k-1 + Bkxr+k =0 (10) 

for r=0,1,2,....... 

Clearly Ker l B*(S)L * is invariant under the backward shift 

operator S, that is 
N 

S( Ker1, B*(S)L *)C. Ker 1B*(S)i 
*. 

N 

It is helpful to have a more explicit decription of 

Kerl B*(S)'-* =H10 BH 1 in terms of the coeffici ents 

of the numerator of B(z), and this is quite important to 

22 the problem of decomposition of I 1B BI 1 

Theorem 3.2.2 Let BF Rmxm be an r-inner matrix. Then 

22 
1 is the subspace of Hj consisting of all rational Ham, (D BH 

functions of the form 

N(Z)-1( ; 
=O 

ks 
TJ(Z) Xi )' xi( Cm , 

(11) 

where A**kk N(z) = Bk + Bk_1z +....... + B0 z=z N(1/ z) 

T (z)= B 
tzý + Erz ~+...... 

. +B zk-1 
jel 



57 
aD 

Proof: Let XF Ker t B*(S)t* and X(z) _x zl , i=0 1 
By (10) 1 xiý °i° 

0 satisfies the recurrence relation 

B0 
r+ 

B1Xr+l +"" '+ BkXr+k =0 

for r=0,1,2,.... 

Then by a matrix calculation it is easy to verify 

and 

Now let 

Bk_ýzJX(z) = Bk_jx0zi + Bk_jxlzj+l +... + Bk_jxk_jZk+... 

(Z Bk-jzj)X(z) _Z (Bkjzjxý+Bk_jzj+1x1+... +Bkjzkxk_j) 
J-0 j-0 

Ak 
N(z) =L Bk_ýZJ 

J=O 

Ti(z) = Bkzj + Bk-lzj+l +..... + Bý+lzk-1, 

j=0,1,2,...... i. e. 

A k-1 
N(z)X(z) _jL Tj(z)xj. 

A 
By the hypothesis that, B is r-inner matrix, N(z)-1 is in Ho 

m. 
This can be proved as follows : Let «12, "..., °1s be the zeros 

of detN(z) = detNr(z) = det(A(z)Er(z)) = detEr(z), As in (7), 

it follows that each e(z) can be written as a product of 

linear factors 

e(z) 

By assumption, l«JL 141 and N(z) is regular matrix of degree 

k with detB k#0. Thus 

, k= mk j 

and 
J 

det(zk diag(e1( Z )*, e )*,......., e 2( m( 
Z )*)) 

*m5Ke 
= zmke1( Z)....... 

em( 
1)_7 lt (1- 9. z) . z j=1 1=1 J 
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A(z) is unimodular, so is A( 1 ), and 

detN(z) = det, (zkN( Z )*) 

= det.. (z' E1(4_.. )*A(-Z )*) 

= det(zkEl( Z-)*)detA( Z )* 

ms 
= 1º' W (l_ 

. z)kjt. 
j=1 t=1 i 

A 
This means that, all the zeros in det N(z) are outside the 

1 
unit disc, and : N(z)- will be in Ham. Therefore X(z) can 

be written in the following form: 

X(z) = N(z)-1( Z T. (z)xj) 
j=0 

^ k-1 
= 

ad'N z( T(z)x 
detN(z) j=0 

k-1 
(ad NzTz 

A. A 

j=0 detNA(z) 

This completes the proof. 

Remark: When m=1 one can see [4)(35J [36J)C461 
. 

From the observation (11) we have a direct decomposition 

of Hmxl i3 BHmxl, and each summand can be identified with Cm. 

22 Indeed, let Gi be the subspace of te BHnxl defined 

by 

(z) =Y xnzn, x0=... =xj-1= Gj = 
jx 

t Hmxl BH 1 
1x 00 

n=0 
xj+1=... =xk-1 

=0 (12) 

j=0,1,2,...., k-1. 
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and let 

7i : Cm > Gi 

be defined by 

(7ix)(z) = xzj + 0(zk)x (13) 

xECm 9 zED . 
It follows from Theorem 3.2.2 that 

(t 7-)(Z) = N(z)-1Ti (z)x. (14) 

This map is well defined, linear and 1-1 onto. Let us show 

injectivity; the remainder can be seen easily. If 7jx =0, 

i. e. (? 
jx)(z) =0 for all zE D, by definition 

(N(z)-'T 
i(z))x =0 

or equivalently 

Bkzj + Bk*1zj+1 +..... + Bj+1zk-1)x= 0 

and det Bk = det Bk *0 imples x=0. 

Bq means of the invertible mapping 7 we can therefore 

identify Cm with Gj-, and this decomposes H1 0 BHJ1 into 

direct decomposition G0 Q G1 (+.. """ Q+ Gk-1 

t-Zj(ei). 
- j= 0,1,..., k-1, i=1,2,..., m I is a basis for 

H1 Q BHj1 , where 7.. (e. ) denotes the i th column of the 
A 

matrix function N(z)-1Ti (z), i. e. 

Zj(ei)(z) -C N(z)-1Tj(z)] ei " 

We consider this basis ordered as ? 0(eß), Z0(e2),....,, TD(em), 

-[, (el), T(e2),....., (em), 
.............. . and will 

call this the standard basis for Hmxj Q BHJ 1. These 

symbols will be used throughout the thesis without further 

mention. 
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The matrix of the restriction of the backward shift 
22 SB of 

NS 
to H jQ BHmx1 with respect to the standard 

basis [? 
f(ei)} 9 is the companion matrix CN* of N*(z): 

For j=1,2,..., k=1, zED, xE Cm 

SB( 7 (x)(z)) = SB ( N(z)-1Ti(Z) x) 
e. i ^o 

,=Z( N(z)-1T j 
(z) - N(0)-1T i(0))x . 

Since for j>1, T (0) =0, so for j, 1 

SB( 7ý(X)(Z)) =Z (N(Z)-1T, (Z)x ) 

A1B*zj+* zj+1 +.... +B* zk-1 
= N(z) k Bk-1+1 

x 

z 

= N(z)-1(Bkzj-1 +Bk*1zi +... +Býzk-1_Býzk-1)x 

=(N(z)-1Tj_1(z) - N(z)-1Býzk-1) x 
1 

= Z, 
-1(x)(z) - 

N(z)-1Bkzk-1(Bk Bix) 

-1 
- i-1(X)(z) 

k-1 (Bk Bjx)(z) , 
X15) 

while 

ti B( 70(x)(0)) = SB( N(z)-ýTý(z)x) 

=z (N(z)-1T0(z) - N(0)-1T0(0))x 

=Z( N(z)-1T0(z) - Bk 
-1Bk )x 

= 
Z. N(z)-1(TO(z) - 

N(z))x 

= N(Z)-'( -B0zk-1)x 

= N(z)-1 Bkzk-1(-BkBÖ x) 

k-1(-Bk BQ x)(z) . 
(16) 
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Putting (15)(16) together we have the following result. 

Theorem 3.2.3 Let BF RIoxm be an r-inner matrix, 
ESB 

be the restriction of the backward shift operttor S on 

H2 1Q BH 1. The block matrix of SB with respect to the 

standard basis { 7j(ei) :j=0,1,2,.., k-1, i= 1,2,3,.., m 

is the companion matrix C N* of N, where 

N(z) = B* + B*z +...... + B*z 

0, , Im ,00 
0,0 

m0 

0, - --- -- Im 

ýBk B0 9 -Bk B1,........, -Bk Bk-1 

Remark: When m=n=1, there are three different bases for 

22 H 
mx1 

Q which were, given by Young and Ptak in [4] 35] BHrnx1 

and the matrices of 
ESB 

with respect to these bases were 

also discussed there. 

3.3 The Gram matrix of the decomposition 

PB : H, -4 Hmx, Q BH1 is the orthogonal projection 

operator; then PB : HL, 2 Q BH 1 
2 > Hmx, is the natural 

1e BHI1, injection and PBPB is the identity operator on Hmx2 2 

2 
while PBPB is the Hermitian projection operator on H, 

which maps each function onto its projection on He BH 1 1. 

Now by Theorem 3.1.4t B(S*). * is the operator on H1 of 
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multiplication by the inner matrix B, and is an isometry, 

so that LB*(S)B(S*)G * is the identity operator. Hence 

t B(S*)B*(S)L * is the orthogonal projection operator on 

the range t B(S*)` *, 
and so 12-, t B(S*)B*(S) L* is the Hýxl 

orthogonal projection on 
1 

LRange tB(S*)t* = KerLB*(S)t 
*=H22 

rmx 1 QBH 1 

Thus 

PBPB =12- B*(S)* B*(S)[. *, (18) 

Let Cm®Ck denote the direct sum of k copies of Cm. 

Define a mapping K: Hl Cm®Ck 
N 

by 

j 010 
K( Z xjz )= (19) 

j=0 
( x0, xl,....., xk_1). 

Then K* is the natural injection of 0m®Ck into H2 and 
/1-0 mx1 

KK* is the identity operator on Cm®Gk, and K*K is the 

Hermitian orthogonal projection operator on H1 with range 

Ker Sk. When m=1 we write K instead of K. Let 
^11 Ao 

1% Ker Sk )H22 je BHmx1 

be the linear mapping defined by 

3) (x0-+x1z +.... +xk-1zk-1 )= ZO(x0)(z)+..... + k? 1(xk-1)(z)ß(20 

The property (11)(14) of the standard basis can then be written 

ý- K Pg " 

Hence we have 

-1 
v* v )_I = V-1 v 

= KPB PBK* 

=K(I-L B(S*)B*(S) L-*) K* 
N ti 

= KK* -K `B(S*)B*(S) L*K* 
NNNM 

= ICm®Ck -K tB(S*)B*(S) t* K* 

(21) 
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I Cm®Ek 
C 

,K 
LB 

* (S) `* K* J[Kt B* (S) L* K* 
ti 

Now use the integral formula for B*(S) and the fact that 

K L. is the mxm diagonal operator with values K: H2 _4 g; k, 
N 

i. e. 

ýK 
=Ihm®K 

We finch 

Kc B*(S) t. 
*K* 

_ (ICm®K)( 2. 
ýifB*(z)®(zI-S)-ldz)(ICm®K*) ti C 

2 B*(z)OK(zI-S)-1K* dz 
ýC, 

_§ B*(z)®(zI-KSK*)-l dz. (22) 
C 

Write Sk = KSK . Making suitable choices of curve C, we 

can infer (22) that 

(v )-ý Iým60k - B*(Sk)*B*(Sk) 

= Ihm®Ck - B(Sk)B*(Sk). (23) 

It is easy to calculate that, with respect to the natural 

basis in H2, j 
zj: j=0,1,2,.... k-1 I 

of Ker Sk, Sk has matrix 

0, 1, o,...... to 
0, 0, 1,....... ,0 

0, 0, ......... 91 
0, 0, ........ ,0 kxk . 

Theorem 3.3.1 Let BE RHm be an r-inner matrix and 

let ii be the operator from Ker Sk onto Ham, D BH 1 defined 
ti 

by((20). Then 

( V*1% )-ý = Irin®Ck - B(Sk)B*(Sk) (24) 

where 
Sk = KSK 
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As a matter of fact V is the Gram matrix of 

the standard basis {(e) Ij 
=0,1,2,..., k-1, i=1,2,.., m 

l 

The Gram matrix of 
IT (ei)} is the operator 

v 
ZC, Zl ...... , Zk-ýý Cm®Ck --ý Cý®Ck 

, 

with block matrix whose (i, j) entry, say Gij , is the 

operator on Cm defined by 

Gi J (C1 Cm 

N ij(x) _1 Zj-1(X)9 

or write the operator in matrix form: 

ZO 70, 

G(Z0,71 9 ... 9Yk-1ý - 71 70 

7k-170, 

(25) 

---- , 
ZO 7k-1 

------ 71 - k-1 
10 

, 
'k-17 k-1 

This definition indeed generalizeSthe Gram matrix. In 

22 
particular, according to the decomposition of Hmx jQ BHmx1 

the Gram matrix can be expressed by B. 

Theorem 3.3.2. Let BF RI 
m 

be an r-inner matrix, 

and let y be the operator from Cm®Ck onto Hmx1 0 BHL1 

defined by (20). Let G be the Gram matrix of 
I-C. (ei)js 

JIV 
Then 

G=V 1/ , ti 
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Proof: Let Pi be the j-th coordinate projection from 

Cm9Ck onto Om; then 

k-i 
Tj "j 

j=0 

and 
k-1 k-1 

7 
j=0 j =O 1Z 

k-1 k-1 
=i 7- Pjj 'Z 7,2 rt 

j=0 g=0 

=22 P*Z J7R 12 

It, is easy to see that Pi Ti-1 Zj-1Pj is exactly Gij 

Therefore G= V*ºý . 

Remark: When m=n=1, one can see [441L45). 
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CHAPTER FOUR 

COMPUTATION OF PROJECTIONS 

Introduction: 

All the notation of Chapter two and Chapter three is 

retained. In this chapter we study the relation between 
2222 two spaces Hm 

xl 
c3 BHmxl and Hmxl 9F %xl. Since P is a 

scalar inner function in H2, the space 11; 
x, 

OP H2 ýxl can be 

indentified with the direct sum of m copies of H2e PH 2. i. e. 
22 
x1 

e )p Hmxl = (H2 ©eH2)®Cm" In view of this important Hm 

property the generalized Sarason operator T= PBMFP, can be 

formulated as irPe MFPP, where 3E is the orthogonal projection 
ti 222 
xl 

to 
nxl 

a BHnxi. This is the key idea in from Hnxl ep n 

our matrix computation of the operator T. In this way T 

can be calculated very efficiently. With respect to our 
22e 

decompositions of H 
mxl 

1H1 and H; l O BH 1,1f is 
mX A. 

expressible by a block matrix in terms of the coefficients of 

the numerator of B(z). Theorem 4.2.1 is the main theorem. 

Contents: 

4.1 The direct decomposition of I2 2 
1GF Hmxl 

4.2 Computation of projections 
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4.1 The direct decomposition of o2 

2 f eýHmx1 

Let B be an inner matrix in RH 
M0 

The determinant 

of B,?, is a scalar inner function in HOO. An inner matrix 

and its determinant are related in the following way 
22 Hmxl S Bnxl 

It follows that 
221 BHnxl) c( Hnxl ) 

In view of Theorem 3.2.2, this means 
2222 

xi ED B%xl %xi p Hmxl Hm 

or 
Ker , B*(S)L* C Ker c 63 (S)I c 

where j_ is the isomorphism from Cm®H2 onto xl' 
Kp denote Ker[B*(S)c. * 

and Kerl. ý (S)I c*. 

Then 

(1) 

Let; KB, 

l 
Kp = KB (D KB f1 Kp 

= KB O (LB(S*)ý*) Ker 4 adj B*(S)t* (2) 

In order to show the identity (2) we need the following 

simple lemma. 

Lemma 4.1.1 Let BF RHQ00 
m 

be an inner matrix and let 

adj B(z) denote the adjugate of B(z). Then 

L (Range B(S*)A Ker(adj B*(S). B*(S))). 

= (Z B (S*) L*) Ker c ad j B* (S) L* , 

Proof: Let hF (tB(S )L. ) Ker c adj B (S)c. , 
then 

h= (LB(S*)t )(f) 
s 

where 

fE Ker /_ adj B*(S)L*, i. e c adj B*(S)t f=0, 
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and 

(Ladj B*(S)L-*)(/B*(S)L*h) 

_ adj B*(S)t*LB*(S)L LB(S*)( f 

= Zadj B*(S)B*(S)B(S*)L f 

=t adj B*(S)L*f 

= o. 

This implies hE Ker c adj B*(S)L* and h (- Range LB(S*)L*. 

The other hand is trivial. 

Since 

KB nK= Range(LB (S)L*) iý Ker 
.ß 

(S)I L. 

_ (Range I B(S )L)A Ker t adj B*(S). B*(S)L*, 

We: have by lemma 4.1.1 

Thus 

KB /A K LB(S*)L. (Ker Ladj B*(S)L*). 

K KB ©Bnxl ad j BH1) 

In fact we have the following result. The proof is similar 

to Lemma 4.1.1. 

Lemma 4.1.2 Let B (-, Im be an inner matrix, and let 

B1 and B2 be inner matrices such that 

B=B1B2 
. 

Then 
2pB22222 
nxl Hýxl =( xl 

0 Bi nxl) 
(DB, 1(Hmxl (5 B2Hmx1). 

Let BFH xn be an inner matrix with an irreducible right MFD 

B(z) N(z)D(z)-1 (3) 
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with N(z) a regular polynomial matrix of degree k, 

say 

N(z) = B0 + B1z +.... +Bkzk , with det Bk *0. (4) 

Then the determinant of B(z) is 

det N(z) ý(z) = det B(z) = det D(z) 
(ý) 

under the hypothesis that N(z) is regular with degree k, 

P is a rational function in HCO with the numerator bN of 

degree km; 

and 

bN(z) = b0 + b1z +.... +bkmzkm 
A- 

(6) 

Hm2 2 
x1 

O Hmx1 = Kerl (I 
C m® 

S)) 

= Ker [ (Ic 
m®bN(S) 

)Z* 

==2 
2) ®Cm Hmxl O bNHl (HO bNH (7 ) 

when m=1, Ker 4(I6m®b*(S))4* = Ker b*(S). 

From Theorem 3.2.2 or from [4] [35] 136] it follows that 

-I 
H2 Q bNH2 is the space of all bN(z)w(z) where w(z) is a 

of ologrcc 
polynomial less than km, and 

bN(z) _ zkmbN( 
1) 

-b km +bkm-lz +.... bozkm. (8) 
z 

Now let 
A 

fj(Z) = bN(Z)-l(bkmzJ + lb 
km-lZý+l+... +bý+lzkm-1) (9) 

j=0,1,2,... km-1. 

It, looks more natural if we write (9) in power series form: 

Fý/Z` 
=z+ 

0(Zkm) 

e 
(ý0) 

Since bkmZJ + bkm_lzj+l +.... + b. zkm-1 can be written ii-''bN(z) 

+z 
mbN(z)k(z) 
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for some k in H2. Thus if we define Fi to be the subspace 
22 

of I 1Of xl 
61 

Fi =< fi®ei i i=1,2, ..... m, . (11) 

where < denotes the linear span. Then let 

(ri : 0m ) Fý 

be defined by 

0'ßW = fi (z)x = (fi ox)(z), (12) 

0`j<km-1. 

Therefore, there are km summands7in the decomposition of 
22 

xl 
9P Hmxl' FO (D Fl '. '.. G Fkm-1' and each summand Hm 

can be identified with Cm, Ifj®ei: j=0,1,2,..., km-1, i=1,2,.., mJ 

is a basis for 22 Hx1 O%x1, where fj ®ei = (7 (ei). We 

consider this basis ordered as f0®el, fl®el, ..., fkm-1®el, 

f0®e2, fl®e2,.. ", fkm_l®e2,....., and will call this the 

standard basis for Hxl Oý %Xl' These symbols will be used 

throughout the thesis without further mention. From the 
2222 

observation of the basis of 

f uCO 

/H 1' nxl 
QC Hnxl is 

the direct sum of m copies of H2 Qß H2, i. e. Hmxl Oß %xl 

_ (H2 Oß H2)®ým, and if we let PP be the orthogonal 
22 

projection of Hmx1 onto H1O (3Hmxi, then P= P®Im, mxm 

diagonal matrix operator with entry P, P is the orthogonal 
2 

projection of H to H2 pß H2. Let Im®P = (P®Im)L. 

22 
Certainly, H 1 (p ýH1 is invariant under S. The restriction 

of S 
.., 

to mxl O ýHxl is denoted by SR. 

S22 

nxl nxl 

As we have seen in the previous chapter, Theorem 3.2.2 the 

matrix of S with respect to Ifi®ei} is 
I"- Q 
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Im Cb* 

where Cb is the companion matrix of the polynomial bN 
N 

and Im is the mxm identity matrix. 

b*(z) = b0 + b1z +.... +bkmzkm 

in other words, 

o 1 0..... 0 

0 0 1..... 0 

C bN 0 1 ... ... ........ 
-1 -1 bkmbO........... bkmbkm-1 J kmxkm , 

Im ® Cb* is the tensor product of two matrices. 
N 

Let G be the Gram matrix of {fj : j=0,192 km-l} : 

then the Gram matrix Gß of cfj®ei: j=0,1,2,..., km-1, i= 1,2,.. m} 

is 
Gý = Im®G 

Q1, Q2 .............. Qkm 

0, Q1,....... Qkm-1 

Q= 

0,0,...... Q1 

b0 

1 bkm 

There is a remarkable, simple result in Young (4]; it is a 

formula for the inverse G-1 of the Gram matrix of 

ýfj: j=0,1,2.... km-1', to wit 

G-1 = 1-Q*Q 

where 

and 

(13) 

(14) 

(i5) 

Qi = (bi-l-bkm-i+lel-bkm-i+2Q2 
"" -bkm-lQi-l)/bkm 

2: e i: 5 km. 
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4.2 Computation of projections 

Let T be the orthogonal projection from H22 1Qý %xl 

into Hmxl 9 BIl. Then 

PB, P 
l" 

(16) 

The generalized Sarason operator T= PBMFPP acting from 

2222 
xl 

ePHnxl to %x, p B%xl can be written Hn 

as 
T=I MFPf (17) 

111 f 
i. e. PMF P* 

Hnxl 9ý 
xl 

%xl e Hmxl 

-IT 
N 

Hmxl i BHnxl 
. 

The operator PF MPP acts from Hnxl Hý2 22 
x1 

to Hnxl 9 Hmx1 

and P MFPý =Pc F(S* )L*P (P L F* (S )t *Pp) 

P F*(S) 4 Pý (Im®P)F*(S)(Im®P*) c. 

= (Im®P) 
21i'i F* (z) ®(z I -S) -1d z (Im®P*) ý 

C 

=L 2i F*(z)®P(zI-S)-1P* 

C 
Lý F* (z) ®(zI -PSP* )1* 

-l F*(SIH2 e? H2) 
t 

The adjoint of i F*(S)L* 
llýxl 

9C H2 is the compression 
M. 

F(S*)ý to H22 1O Hnxl 

Therefore 

Pr MF, PR =PiF (S* )t *P=p(3*)_* 
(18) 
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With respect to the basis Jfj®ei Ij = 0,1,2,..., km-1, 

i=1,2,..., mý , the matrix of PMFPe can be calculated 

by applying Young's algorithm to every entry of F. 

Therefore forming the matrix of the orthogonal projection 

T with respect to 1 
f(ei) : j= 0,1.2,..., k-1, i=1,2.... ml 

N 

and 
Jfi®ei :j=0,1,2,... km-1, i= 1029... m } is the 

vital step to us. 

The main idea comes from the fact that 22 
xl 8B nxl 

is contained in 22 
xl 

Oß Hnxl. Firstly, we are going to 

show that given any xe 0m, 'Z (x) is in 22 
x1 

B 
nxl' and 

therefore in Hxl eß Hnxl' which can be expressed in 

terms of 
{u-j(x) :j=0,1,2,...., km-1} . It needs a 

laborious calculation. 

Since 

bN(z)Im = det N(z) = N(z)"adj N(z) = adj N(z)"N(z) 

degree bN(z) = km, thus the degree of adj N(z) is km-k. 

Let 

adj N(z) = Co+C1z....... Ckm-kzkm-k 9 

thus 

adj N(z) -* Ckm-k+Ckm*-k-1z+..... +C1*zkm-k-1+C0 
*z km-K 

Moreover, 

0 
(x)(z) = N(z)-1Tj(z)x = N(z)-'adj N(z)adj N(z)T. (z)x 

Cadj N(z)N(z))-1(adj NA (z)Tj(z)x) 

= bN(z)-1(adj N(z)Tj(z)x) (19) 
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and 

(b0+blz+... +bkmzkm _)Im = N(z)"adj N(z) = adj N(z)"N(z) 

= (BO+B1z+... +Bkzk)(C0+C1z+... +Ckm-kzkm-k) 

= (C0+C1z+... +Ckm-kzkm-k)(BO+B1z+... +Bkzk). (20) 

By comparing the coefficients of both sides of (20) we get 

the following relations: 

b0 B0 0... 0 CO 

bl Bl , BO Cl 

®Im !\ 
N 

bk-1 LB B k-1 Bk-2 " .., '. B0 Ck-1 
y 

bk CC C1 Ck Bk 

C1 C2 Ck+l Bk-1 

®Im - 

bkm-k Ckm-2k' Ckm-k BD 

bkm-k+l B1 B2 Bk Ckm-k 

B2 B3 Bk 0 Ckm-k-1 

®Im - 

r 

km1 Bk1 Bk 00 

km IL Bk 000 Ckm-2k+1 
, 
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-7ý(x)(z) can be written as follows 

-Tý(x)(z) N(z)Ti (z)x 

=bN(z)-'(adj 
N(z)Tj(z)x) 

=ýN(Z) «Ckm-k+Ckm-k-1Z+... +COzkm-k) (B * +... +Bi+1Zk-l))X 

_ýN(Zý-1(Ckm-kBkZJ+(Ckm-kBk-l+Ckm-k-lBk)zJ+1+...... 

ex +...... +C0Bj+iZkm-1 

n 
=bN(z)-1 bkmzi+bkm-1zj+l+..... +bkm-k+j+1Zk-1 

*k 
+ 

[km_k+jIm_(0rn_kB 
j) z 

***- 
+[km_k+j_1Im_Cm_k_1Bj+Ckm_kBj_1Jz111 

+.......... 

***** 
zk+l +[ km-klm-(Ckm-k-jBj+Ckm-k-j+1Bj-1+.. +Ckm-kBo 

+.......... 

* 
+[bj+llm-(C*1B*j+C*2Bj*-1+... +C* j+1B0)]z 

km-1 

bN(Z)-l(bkmZ, +bkm-1ZJ+1+... +bý+1Zkm-l)x - 

bN(Z)-1((Ckm-kBjz ý+ýýkm-k-lBj+Ckm-kBj-lýZk+l+... 

*)Zkm-11x 
+......... +(C* 1 B*+C 2 B* i-1 +... +C* j+1 B0 J 

_0'. (X)(Z)+ok(ykJ))(z)+... +orkm-1(ykm)1) (Z) (21) 

for j=0,1,2.... k-1, where 

y(i) = A(J)X 
rr 

for some Ark) 6Nm, r=k, k+1,... km-1. 
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Then 

C k(YkJý)+ +l(y 
+ 

kl)+... + km-1(ykm)1) 
(Z) 

1 (ý) k (ý) (ý) 
= bN(z) (b 

km k A( z +bkm-lAk zk+1+... +bk+lA zkm-1 

+b A(j)Zk+l. +... +b A(j)Lkm-1 km k+l k+2 k+l 

+......... 

(j) km-1ý 
+bkmAkm-lZ x 

- 
bNýZý-1 ýbkm 

kj)Zk+(bkm-lA(i4 mAk+l 
)Zk+l 

+( A(ýý+b A(j)+b A(i)- ) Zk+2 qkm-2 k km-1 k+l km k+2' 

I" 

+(b Aýýý+b A(j)+.... +b A(j 
ý)Zk+j 

km-j k km-j+l k+l km k+j 

+........... 

+(b Aj) +b A(j)+....... +b AýZkm-1 
jx 

k+l k k+2 k+l km km-1 ,I 
(22) 

From (21) and (22) we have the following relations. 

Let 

0 km-k j 

S(j) 
1= Ckm-k-lBj+Ckm-kBj-1 

a(j) 
= C* B*+C* B* +... +C* B* 

r km-k-r j j-1 km-k j-r 

(23) 

0r km-k-1. 
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Then 
5 Off) 

__ (bkmAk j) ) 

i1 
= -(b km-1Ak) +b km4k+l) 

2ý) 
_ -(bkm-2Ak, 

) 
+ bkm-1Ak+1 + bkmAk+2) (24) 

(ýý 
- -(b A(i) +b A(i) +...... + b A(i» 

r- km-r k km-r+l k+l km k+r 

where 0 ig r 1=km-k-1. 

Let us define the sequence t& 
il i=0,1,2....... km-k-13 

by the following relations. 

0= -b km 

°l1 - 'ý'(O(0Obkm-1) 

0 12 = a0 (a( 
0b km-2+albkm-1) (25) 

°ýr - ol 0("-0 km-r+ bkm-r+l+' 0''''''t 
ýr-1bkm-1) 

where r=0,1,.... km-k-1. 

Now combining the formulas (24) and (25), this gives us 

4J) 
= (-bkm-1) ( 

0J) _ o[O ( 
0J 

) 

Ak+l = (-bkm-1) (bkm 
-14 

+ 
1J)) 

i ý) ) _ (-bkm-1) (bkm-1 ý0 8-(i)+ 

= 0l0(0 
Obkm-1) 

O(J) 
+ °ý0 1, 

=oi1ýOJ)+ ooj1i) 
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and 

so 

k+r km A(J)+b bkm-r k A(J)+.... +b km-r+1 k+l 
A(J)) 

km-1 k+r 

= ot (ol b +oý b 00 km-r 1 km-r+l ..... ab 
r-1 km-1) 

5 (J 
0 

+""""""""""" 

ýJ ) 
+ «0 (a0bkm-1 )0 

r-1 

+p(0 ý8 ) 

r00)+ý-15 
1ý)+..... +a Er01 

0arJ) Ak+r - 
da 

where r=0,1,.... km-k-1. j= 0, l...... k-1. By (23) 

A (j) = o((* * 
k+r r 

Ckm-((C 

+-l(Ckm-k-lBj+Ckm-kBj-1) 

+ 

+Cý(Ckm-k-rBj+Ckm-k-r+1Bj-1....... Ckm-kBj-r) 

(c( C* +a C* +..... +ý C )B* 
r km-k r-1 km-k-1 0 km-k-r j 

+( ar-1Ckm-k +o10 km-k-r+ljBj-1 

+a C )BOkm-k 
j-r" 

From these observations we have 

Let oc 0 0.......... 0, 

0(0 0.......... 

OZ 
ti r -1 

ýr-2 ý0 

km-k-1 

0 

0 

0 

°(o 

vim 

(km-k)x(km-k) 
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c= 

Then 

C00 km-k 

Ckm-k-1 00 km-k 

Ckm-2k+1 Ckm-k 

qkm-2k Ckm-2k+1 - . --. 
Ckm-k-1 

1, 

ci c2 ck 

lw i=1 
.V^, 

%l rs 

where 

WO - 00km-k 

w0 00 ------ 0 

w1 w0 0 --- -0 

wk-1 wk-2 w0 

wk wk-1 wl 

wkm-k-1 ------- 
wkm-2k 

(km-k)xk 
, 

(km-k)xk , 

W1 =04 OCkm-k-1+alCkm-k 

= 04 C +c, C+........ +aC Wr 0 km-k-r 1 km-k-r-1 r km-k 

Define E by 

BON B1 
.......... Bk-1 

- B p 8..... 1 ß k-2 
N ý \1 

' 

.......... B kxk o 



80 

and it is easy to see that (r, j+1) entry in W"E is 
NN 

wrBj+wr-1Bj-l+.... +wr-1B0 

- 
(° 

OCkm-k-r+ 1Ckm-k-ii+1+ ""+ rCkm-kýBj+.... 

+........ +(c'ZOCkm-k)Bj-r 

_ Am k+r 

where r=0,1,... km-k-1. 

In summary, the calculation of the injection is contained 

in the following theorem. 

Theorem 4.2.1 Let J be the natural injection of 

Hmx1 (D BH; 1 into B'x1 Qß Hal . The matrix CJ Jof J with 

respect to the standard bases f(ei) : j=0,1,2,..., k-1, 

i=1,2,..., m1 , 
. [fj®ei 

:j =0,1,2,..., km-l, i=1,2,..., m 
I 

is a block matrix : 

Im 0 
Im 

Im kxk 

CE (nmk-k)x(km-k) N ti ý 

o<, C and E are block Toeplitz matrices given by 
1v NN 

o'. 000 

k 
m-k-1........ ""00 

(26) 

®Im (27) 

(km-k)x(km-k) 
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and 

a0- -bkm-1 

0r- C40 (oc bkm-r+ °ýlbkm-r+l+" + «r-lbkm-1 

r=1,2,.... km-k-1, 

c= 
ti 

E= 

Ckm-k 00 

cl 

qkm-2k+1 --- "- Ckm-k 

qkm-2k - 0km-k-1 

B0 B1 

0 BO Bl 

000-_ 

Ck 

Bk-1 

Bk-2 

Bo 

(28) 

(km-k)xk 

(29) 

kxk . 

Corollary_ 4.2.2 Let -F be the orthogonal projection 
22 

l&eH from H; 1 into HH 0 2 BH . The ma trix (irj of 11 
Xl 1 ti 

with respect to the standard bases fj®ei: j=0,1,2,... km-1, 

i=1,2,... mß 9 
1C (ei) :j= 0,1,2, ... k-l, i 

is a block matrix 

ýýý = GB-1 IJJ*G (30) 

Ga and G are the Gram matrices of 
lo-j(ei)l 

and ifs®eil 

res-pectively. 
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Proof: Let J be the natural injection of I 
xt 

O BH1 
22 into Hýxl (R)ý Hnxl, then 

222 
of I1 Gc Hýxj onto 

constructive proof, the 

Tj(ei) j and 
{fj0ei} 

J is the orthogonal projection 
2 

Kl 
B From the above ý ýnxl' 

matrix of J with respect to 

is a block matrix 

I 

Ljl= 
CE 114 

i 

f- All 0.0 

Choose. matrices [ Q81 ,[ QP] such that [ QB' E QB1 = GB 

[3[ QpJ = Gß , and let QB, Qp be the operators on 
2222 

xl 
9 BHnxl and 11nxl Ge Hnxl, respectively, such that the Hin 

matrices of QB, Qp with respect to {G (ei) }, ifi 0eij are 

QBJ and [ Qý). By 1.3 (2) IQB( 
f(ei))} and I QF(fj®ei) 

222 are orthonormal bases of A; 1 0 BH 1 and xl 
9P Hnxl, 

the matrix of [J] with respect to I QB((7'j(ei)) l and 

jQ¢(fl®ei)l is 

teßr, u) 1 B7 . 

Thus the matrix of J with respect to these bases is 
-1 

[QBAJ]*IQf]* ,. and therefore the matrix of T with 

respect to l '. (ei) } and if®ei s is 

Cý] = CQB7 C QB7* [J ]* C QpJ *C QeI-1 

=GB1 LJ ]*Gp 

The proof is complete. 
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CHAPTER FIVE 

IMPLEMENTATION AND COMMENTS 

Introduction: 

In this chapter we shall present our algorithm for 

the matrix valued Nevanlinna-Pick problem and compare it 

with other algorithms. The final computational version 

of the generalized Sarason operator is given in Theorem 

5.5.1. We will comment only on a few of the significant 

procedures in the algorithm. Since the computation of 

the corresponding matrix of the Sarason operator is rather 

complicated, a higher level programming language is required. 

ALGOL 68 t253 was chosen not only because of its elegant, 

mathematical style but also because of its powerful operators 

and flexible structure. The standard ALGOL 6.8 NAG or 

FORTRAN NAG library provides routines for some of our 

procedures. Two simple numerical examples accompany this 

theoretical work and are given in the final chapter. 

Contents: 

5.1 The matrix form of the generalized Sarason operator. 

5.2 Details of algorithm 

5.3 Other algorithms 

5.4 Conclusion 
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5:. 1 The matrix form of the generalized Sarason operator 

For the sake of concrete computation, it is helpful 

to have a restatement. of the solution of the (M-N-P) 

problem in terms of matrices rather than operators. The 

main results of our theory are theorems 2.2.5,2.2.7, 

2.3.9,3.3.2 and 4,. 2.1. 

Theorem 5-" 1.1 Let, FE RH 00 00 
n and let BF RHHxm be an 

inner matrix with an irreducible MFD, B(z)=N(z)D(z) -1 with 

numerator N(z) of degree. k and N(z)=BO+B1z+.... +Bkzk with 

det BkkO, and let p(z)=det. N(z). Let {7j(ei) Ij=0,1,2,... 

... k-l, i=1,2,... M19 
ýfj®ei ( j=0,1,2,... km-1, i=1,2 .... nj 

22 from (3-144) (4-12) be the standard bases of Hm 
xl 

e)BHmxl 
22 

and I 
xl 

o ýHnxl, and let (J] be the matrix of the injection 
22lQ BHmxl into Hmx1 p eH 1 with respect to the from Ha 

standard bases. Let. S have matrix Cr with respect to 

f j} Im01. Let. GB, GP be the. Gram matrices of 
ý'7j (ei )J and 

{fj@ei}, and let [UB), [Ui] be mkxmk, nmkxnmk matrices 

such that 

CUB] L UB) GB1, [Up] [Up)* = Gý1 " 

Then 
(1) The infimum M of JI G II00, over all GE RH 00 

n such 
00 

n 
is given by that GE F+BHQ 

M s0 

where s0 sl s2 .... * are the singular values of the matrix 

A= [UB)*[JJ*F(C*) [u ]*_l 
. (1) 

There exists FO F Mmxn from (2-22) such that if =z p, B=zB 
IV 

and F=F+BF0, then M is a singular value of the one step 
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extension matrix 

A= [UBU*UJ)*F(C*)[U 
z1 (2) 

with multiplicity n, where [UB), )�[J1 [J J and CC. * are defined 

the same way as the above corresponding B, F and 
ti N, 

(2) One extremal function G for which this infimum is 

attained is given by 

(vG, vl,... ' vn-11 I uG, ul, ... t un-11-1 (3) 

where 
(r) 

yr ýj-1+mi(Zi(ej))' ur Y (i+r) 
(j-1)(k+l)mfi®ej 

Ti(ed) I and i fl®e, } are the standard bases of H22 1Q zBH x1 
22 

and Iinxl 4 z(Hnxl' 

and 

U ]*Xr = (10rß 
ºs 

it k 
.... , nmk+n-1 

w 

UN]*Axr = (7Or ß 
, 'i1 r) "'ýmk+m-1 

for r=0,1,2.... n-1, and xr is a right eigenvector ofA A 

corresponding to the eigenvalue 
, 
s. 

Z(=M2) 

Proof: Let Q, be the operator on H2 Qß H2 whose matrix 

with respect to ýfj} is Uß, I. By 1.3 (1)(2)91 Qßß fj} is 

an orthonormal basis of H2 Qf H2. The matrix of SP with 

respect to this basis: is 

t u,, ] -1cß . CUB- ]. 

Since tQ fi ®ei l is an orthonormal basis of H2 ýxl 9ý Hnxl' 

the matrix of F(S*) with respect to I Qý'fi®ei J is 
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and 

thus 

F( ( (Uß, ]-1Cý*1Uý, ])*) 

c* _ 0p , [u ]= Im®CU. 

F(CUa ]*C. Cup-] )_ [ut I F(C )CUB ]. 

Let QB be the operator on F22 lO BHl whose matrix with 

respect to I0`j(ei)Y is [UBj, tQB(O'J (ei))hI is an orthonormal 

basis of Hex, G BH 1, and the matrix [J] of the orthogonal 

injection J with respect to IQB(O'j* (ei)) J and { Qäfj®ei } is 

[U¢1-lLJ1 (us]. 

Therefore the matrix A of the generalized Sarason operator 

T=PBMFPr with respect to {Q 
ßi 

f®ei } and 
IQB( Q'*j (ei) )} is 

A=L UB, C J, *CUp3 L uf) *F(cý )LUeI 

[UB]*CJ)*F(C )[Up 

and the matrix of A *A is 

Cu¢)-1F(C )*CJI[ UB' C UB)*LJJ*F(Cý )[U 

Let 
D=[JI CUB) C UB]CJ ]*, 

then 

A*A =1 UP ]-1F(Cß)*DF(CT)[Uý ] 

Thus M2, which by theorem 2.2.5, is 

ji J*F(S*) p2 

is the largest eigenvalue of the latter matrix: 

M2 = sup 
JA E- IR : det(xI-A*A)=0 } 

sup 
tk6 IR : det(XLUUI C Uff] * -F(CT)*DF(CT))=0}. 



M2 is equal to the largest generalized eigenvalueX0 of 

the problem. Moreover, if x0 F 0kmn _101 

and 

then 

(Ao 1-F(CT )*DF(CT) )Xo =4 

( ö-`Uf)-1F(CT)*DF(CýT)(U ]*-1)[UF]*xo =0 f 

and hence [UU)*x 0 is an eigenvector of AA which implies 

that [UI xo is a maximising vector for A. Hence if 

UPI*xO = (ý 0, 
l1 

l ... , cmn-1 

and 

j®e 9J+(i-1)km, 

Q, fj®ei gj+(i-l)km, 

87 

kmn-1 
then jjg. is a maximising vector for the generalized 

J_O 
Sarason operator T=PBMI, P (Theorem 2.2.7). If we write 

CU 
f) = lUi 

j] kmxkm ' 

then 

krnn-1 
Z 
j=0 

UrjgT) 
j0r 

urjgr 

Z (UrjVror 

j. r 

(L uIl Ugh Xp)rgr 
t 
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Let 

Gý1x0 - ýý0' '61' 52" 

then 

u0 = ý0(fp®el)+ (fl®el)+... + km-l(fkm-1®el) 

+........ + Okmn-1(fkm-1®em) 

is a maximising vector for T. 

Let 07j(ei) = bi+mj" then Tu0 is given by 

-1 

[ UB' *CJ]*F(C() CUI* [ Up 7x0 

=LUB ]*CJ )*F(CT )x0 
9 

hence 

Tu0 =G (CUB) *LJ I*F(CT )XC) 
jQBb. 

_ S[UB] [UB7*CJl*F(CT )xo)i bj 

_ (G-'LJ, *F(CT )x0)Jb 

1'7j bj = v0 9 

where 

GB1 [J J*F (Cß )x0 
, 'rfkm-1) 

By the above method we can calculate the maximising vector 

uO and Tu0. It follows from Theorem 2.2.7 that there exists 

GFF+ BH o3 such that 11 G 11(n = II T II and Gu0=Tu0. But this 

equation is not enough to solve for the rational function G. 

However, by Theorem 2.3.9, there exists FO E MMxn such that 

the one step extension Sarason operator T= PBMPPQ has 

singular value M with multiplicity n, where B= zB, F= F+BFQ. 
Ir 

By the same procedure as above, the matrix A of T can be 
A. r 

formed. Corresponding to the first n singulai values of A, 
N 
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there are n linearly independent maximising vectors u0, ul, 

u2.... un_l such that [u0(z),..., un_1(z)] is nonsingular 

for every z (- D. By using Theorem 2.2.7 there exist 

GE F+ BH0° C F+ BHmxn such that 
- ti mxn 

11 G 11 = (I TU= II T II 

and 

Therefore 

z -D . 

G fu0, 
.... 1 un-1) =C Tu., Tul, .... , Tun ]. 

G(z) =[ Tu0(z),..., Tun(z)1 [u0(z),... 
9 un-l(z)l-1 

5.2 Details of algorithms 

Here we give the main details of the algorithms developed 

in Chapter two, three and four. We shall explain how the 

generalized Sarason operator and the interpolating function 

of minimal norm can be computed numerically with the aid of 

the following five main steps. 

Step 1: Find bases for I; 
xl 

Q BHm2 22 
xl and %xl' 

xl_ 

Perform the irreducible MFD on B(z)=N(z)D(z)-1; 

write down the determinant of N(z); say P(z); 

22 
choose standard bases for Hnxl 0 B1xi and H2 Qý H2, in 

terms of the coefficients of N(z) and ß(z) from 

(3-14) (4-12); 

form the inverse of the Gram matrices GB and GG for 

these bases; 

perform Choleski decomposition [42] to yield two upper 

triangular matrices [UBl* and[Uý ]* such that [UBICUBl*=GB1, 

CU¢ (UU] *=G¢1" 
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Comments: To obtain the irreducible MFD, one can 

use Gaussian elimination. We follow the algorithm in 

L31, P192]. However, we feel such irreducible MFD can 

be avoided. Details of this are studied in the next 

section. Procedures " gbinverse", "g2inverse " and 

"f03ahb" in the ALGOL68 NAG library are provided for 

these calculations. Since Hmxl OF Hmxl =, / Cm0(H22H2), 

we only need to calculate the Gram matrix for thel 

basis in H29PH2. One can take advantage of this to 

reduce storage requirements. 

Step 2: Form F(Cä) 

Write down the matrix C* of SP with respect to the 

basis in H2 OD H2 from (4-9) ; 

evaluate the matrix F(C* )=F(Ce), where Ft RHmCo 

Comments: We observed that Cý is the companion 

matrix of and F(Cý)=[Pij($T )]Mxn. There is a 

remarkable way to calculate Fij(CT) which can be 

reduced to finding gij(d ), where gib is a polynomial 

with degree less than m; the degree of This is an 

important feature in Young's algorithm. The idea is 

to find a polynomial gib such that f IFij-gii. This 

can be done by using the Euclidean algorithm to find 

a polynomial Sij such that 

DijS1j = I(mod f) 

so that 

NljSij = gij(mod ý) 

where 
Ni 

Fij =D 
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For detains see [4, ý 4- J. Procedures "invertmodp", 

"multpolymodp", "shiftmodp" and "fuofcompanion" are 

designed for the above calculations. In order to remove. 

the highest term of a polynomial with negligibly small 

coefficients, we introduce a procedure "adjustdegree" 

in the Euclidean algorithm. 

Step 3: Form the matrix of the generalized Sarason operator: 

Form the matrix of the orthogonal injection [J] 

from (4-26) with respect to the bases in step 1; 

form A=(UB]*[J)*F(CT)[U*-l and calculate the largest 

singular value of A. 

Comments: We use a procedure "proj" for calculating 

the matrix of the injection operator. One simple but 

important operator contained in "prof" is the isomorphism 

between H1 and Cm®H2. In other words, we need to 

pay attention to the order of the bases. Procedures 

"permutationrow" and "permutationcolumn" are designed 

for this. Since the matrices CUB] and CUf] are upper 

triangular, we can use procedures "ua" and "auinverse" 

using'back substitution to form the matrix A. The most 

straightforward method of calculating the largest 

singular value of A is to compute the eigenvaluea of 

A A(or AA*) using "fo2axf" from NAG library. However, 

a more stable way to do this is by a singular value 

decomposition of A using a standard routine "fo2waf" 

which is only available for a real matrix. But by 

means of Householder transformations and the QR decom- 

position one can reduce the singular value problem for 

a complex matrix to the corresponding problem for a 

real bidiagonal matrix. This technique has also been 
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used in the scalar method. In the case m=1, then 

to step 5 directly. 

Step 4: Find the one step extension matrices 

Calculate a one step extension matrix F. from (2-22) or 

Theorem 2.4.8; 

form the new inner matrix B= zB,, = z& and F= F+BFC; 
1 ti 

find the full singular value decomposition of 

A= (UB] *[ J ]*F(Ci T )LUD ] 

Comments: From Theorem 2.4.6, the one step extension 

FO can be determined by finding X. Let X0 be the matrix 

of X with respect to some bases of u0 and Cm. It follows 

that (2-27) and (2-28) give us a finite number of relations 

of the type X0mi= ni with mi . linearly independent, and 

so X0 satisfies 

X0M =N 

By the QR decomposition M can be decomposed into the 

product of a unitary matrix Um and an upper triangular 

matrix Rm; since m1, m2,.... are linearlyindependent, Rm 

has nonzero diagonal. By back substitution XOUm can be 

written in the following form: 

XDUm =iAIB 

where A is an mx(nk-n) known matrix and B is an mx(n-1) 

unknown matrix. Therefore the remaining problem is 

to determine B in such a way that I) X p= 1 and ) (l-X X); ýn-l 

Since II X II4 1,1-AA*-BB* -0 or BB* 41- AA*. Let us 

apply a cholesky decomposition to 1-AA*; we have 

1- AA* = LL* 
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and let 
n-1 

1 

B= L1 
c) 

n-1 
= LUB 

1 

O 
then 

J%(1-AA*-BB*) = V(L(1-UBUB)L*) n-1. 

FO can be constructed from (2-29) or (2-30). 

From the construction of FO it follows thatp Allis 

the largest singular value of A and has multiplicity n. 
N 

The n Schmidt pairs of A corresponding to IAII will be 
N 

calculted. Therefore, n linearly independent maximising 
22 

vectors u0(z), u1(z), ... un_1(z) in I 
xl 

e zt%xl can 

be constructed with respect to the basis of H2 ýx10 zfHiixl 

and luo(z),..., un_1(z)] is nonsingular for every z E-D. 

Consequently, the corresponding Tu0(z), Tu1(z),..... ' 

Tun_1(z) can also be constructed. Procedures 

"onestepext", "combinkerb", "combine2", "ubstartmat", 

"ubetastarmat" and "matrixvector" are provided for 

the step 4calculations. 

Step 5: Calculate and check an extremal function 

Form the extremal function 

G(z) = [Tu0(z).... Tun-1(z)][ up(z),... un-1(z)ý -1 ' 

check G(z). 

Comments: There are three main properties that can 

be used to check this result. Firstly, [u0(z),... un_l(z)] 

is nonsingular for z FD, and ui E H0°, so the denominators 

of ui must have no zeros inside the unit circle. We 
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use Cohn's algorithm L 83 to find the numbers of zeros 

of a given polynomial. Secondly, we have that 

GFF+ Bi oo F+ BH i. e. for every z k- D, 
N ti xn n 

G(z)=F(z)+B(z)g(z) for some gen For example, if 

B(d)= 0 then G(a)=F(c), (o D). We write a procedure 

"evaluemnratn" to check G. Thirdly, by Theorem 2.2.7 

sup 11 G (z) 1100 = II A ýi =hAG (z) has constant modulus 
zeaD 

on the unit circle, we-also write a procedure 

"checksmnratn" that calculates IG(z)II at six points 

on the unit, circle; we expect the result to be constant 

and equal to 11 A II. 

5.3 Other algorithms 

To derive the Nevanlinna-Type algorithm of Ph. Delsarte, 

Y. Genin and Y. Kamp [9] from our result, is rather easy. 

Let us take the inner matrix B to be a scalar matrix with 

entry a Blaschke product having simple distinct zeros at 

0ý, Ck 2,..., 
n; in other words 

B(z) = b1b2..... bn(z)In I 

where bi(z) = ýä .. Then ýaj®ei : j=1,2,... n, i=1,2,... n11 

22 
1Q BH l Cn®(H2 (Q bib2.... bnH2), where is a basis of H 

1 Since the inner matrix B is scalar, the aj(z) = 1-ajz 

generalized. Sarason operator can therefore act from 

Cn®(H2 9 b1b2.... bnH2) to a; m®(H2 9 b1.... bnH2). i. e. 

and 

Hnx1 e Hnxl = Cn®(H2 (D b1b2.... bnH2) 

22 ID 2 2). 
Q BI 

nx1 =0 ®(H O b1...... bnHý 
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The orthogonal projection from Iimxl G)f Hn2 22 
xl 

to Hnxl G BHmxl 

is an identity operator. Let-us consider the basis ordered 

as follows al®el, al®e2,.... ß al®en,....., a2®el,...., a2®en, 

....... The compressed shift operator Sf with respect to 

I ai ? ei is a diagonal block matrix I=diag In, 'ý2In''. '° In 

The-Gram matrices GP, GB for these bases are 

[ rid ] ®In ,( rid] ®Im 

respectively, and rid = (aj, ai) = 1_a 
lc' 

ii 

Let, JE RIC, , by step 1 and step 3 in 5.2, there exists 

matrices [ UBI ,LU3 such that LUBA [ Ug] *= GB1, [U, 1 [LTA] *=Gý 1 

and A=[ UBJ (DD)[U 
e] 

*-1. The corresponding eigenvalue 

problem from (5-4) is 

(AI -AA* )x 0 

or 

(xz-LUB'*ý(D*)CuC] _ltup]- p(D )*IUB])X = o. 
This implies 

(1ýI-IUB)*f(D*)Gg i (D*)*LUBf)x =0 

Thus 

[ý[uBý*_1[uB] 1- j(D*)Gf'J(D*) ]uB1x =o; 
i. e. 

(X, GB- (D*)Ge 1 (D*)*)[UB'x =0" 

Therefore the problem reduces to the following 

E [UBj 

1-0. nxn 

( )nxn is the matrix that the Nevanlinna-Type algorithm 

is concerned about. 
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There are two disadvantages of this algorithm: we need' 

to solve the equation of B(z)=0, and we also require to 

know the distinct simple zeros of B(z)=O. A numerical 

instability can occur in solving the equation B(z)=O and 

also in the case of dl's being very close to each other. 

The method of Kung is based on the A-A-K one step 

extension theory. He solves the corresponding interpolation 

problems in terms of "the minimal basis" and "algebraic 

Riccati equation". In view of the relation of the A-A-K 

operator and the generalized Saramon operator, which we 

studied in Chapter two, one can see that the one step 

extension matrix from (2-22) is exactly the same in both 

theories. In terms of our notation, Kung shows that the one 

step extension matrix can be obtained as follows: 

Let IF, B (- RH 
m and B be inner.. Let (p(z)=[B(z)]*F(z) 

=a 
Hz 

. where a(z) is the least common multiple of the 

denominators ofY(z). And N(z) is a matrix polynomial. Let 

dis(F, BI °Xm) = s0 = It CI u, and let ä(z)=zna(Z), N(z)=zn-IN (z), 

where n is the degree of a(z). Then the singular vectors of 

the one step extension Hankel operator [', 
ý are the solutions 
ti 

x(z) of the following equations 

a(z)Im, _N(z), 8öä(z)Imv 0 (10) 

x(z) =0 
0, spa(z)Imv -N (z) 

, 
a(z)IM 

Where (Q = Zo +zf, FO E Mmxm" 

If we write 
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X(Z) - 

x11(2) x12(z) 

x 21(z) x22(z) 

x31(2) 
, 

x32(z) 

x41(2) x4: 2(z) 

where xij (z) is a mxm matrix polynomial, then one step 

extension matrix FO is a- solution of the algebraic Riccati 

equation 

Iý xll(0)y- x12(O) 

Im9 FO 0. (11) 

x21(0), - x22(0) F0 

The extremal function such that the norm attained is given 

by 

G(z) = -T 22 
{Lx11(z)-x12(z)Fý]Cx21(z)-x22(z)F*0 

1 -1 (12) 

There are two difficulties in Kung's method: 

Firstly, to obtain the accurate Hankel normIlEt? U, we require 

a lengthy computation, and this certainly creates a rounding 

error in the solution space of (10). Secondly, to calculate 

the co-analytic part of [xll(z)_x12(z)Fä[x21(z)_x22(z)1'0 ]-' 

in (12), one has to compute the poles of the above rational 

function. This can cause numerical instability. Numerical 

tests of the two algorithms will be carried out in subse- 

quent work. 

5-"4 Conclusion 

On close inspection of our algorithm, we can make the 

following two conjectures. 



98 

Firstly. is the irreducible MFD on the inner matrix B necessary? 

We factorize Bez) into an irreducible MFD, N(z)D(z)-', 

then Ker z. B (S)i_ = Kerl N (S)t. 
, and we can decompose 

Kerl N*(S)L into GO n+ Gl Q... Q+ Gk_l, for some k, such 

that Gi can be identified with Cm, i. e. 

7j(x)(z) = N(z)-1'Ti (z)x 6 Gi C Hmx1 

for every xe Cm 

However, it may be possible to avoid using irreducible 

MFD on H(z). We are lead to this conjecture by the follow- 

ing observations. 

Consider B(z) to be the Potapov Blaschke product of 

degree n; 
nb WI 0 

B(z) _TVP 
j=1 j0 Iq 

Wj 

where b. (z) 
1-ajz z, 

lot I< 1. 

Let n 
h(z) _ lt z) = h0+hlz+.... +hnzn 

j=1 
and let 

NO(z) 1 (B' ''n 
B(z) 

h(z) h(z) 
(B0 + Blz +... + Bnz ) 

Assume det Bn v 0, and let 

(z) = det B(z) = >, ýbo.... bn =X 
Az, (x(= 1s 
h(z) 

then 

Kert Nl*(S)t is the subspace of Z1 consisting of all 

functions of the form 

J'0 Tj (z)xi) for xjF CIE, 
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where 

Tý(z) = Bnz +... + Bj+1zn-1 

Let; G be the subspace of Ll defined by 

n= _a) n 
Gý =1.1 00 x zn f x1 I 

x0 = xl =.... xj -1 xj 

_... = xn =0 

j=0,1,2,... n-1. 

Then 

KerLB*(S)* _ (GI CD Gl® 
... (B Gn-1)^ Jýxj 

i. e. 

Hm2 22 
xl 

0B nxl = (Kerr c N'* (S) c. 
*) 

/1 nxl. 

This suggest us that there exist some x k- Cm 

such that 

Zj(x)(z) = N'-1(z)TI(z)x F Gj CIZxl' 

Let b(z)=det- N'(z), and let, Ký = Kert N'*(S)i. *, then 
22 
x1 

eS Hxl K" Therefore, the generalized Sarason operator Hn 

T= PBMFPP can be modified as 

T= IrB jý Pe MFPf 

ýxj 2P MFP 
(E)ý Hnx1 22 

xlHnxl 

lT 
KK B-i KB, 

Where jß is the orthogonal projection from 2G op Nnxl ý 
nxl 

into Ker Lb*(S)L*, and-IºB is the orthogonal projection 

from Ke to KB. The matrix form of TB with respect to the 

decompositions of Ker L b* (S) and Kerl N' (S) i-* can be 



obtained in the same way as in Chapter four. The matrix 
22 

of jB with respect to the decompositions of Hnxl (Dp Hnxl 

and Kt is 

I®CA* 
®In 

, h 

where 

0 1 0,..... .... 0 

0 0 1,......... 0 

h 
_ h0 hn-1 

hn hn 

Secondly, is the one step extension operator T absolutely 

necessary ? 

When we form the extremal function with minimal norm, 
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we use the one step extension method to get enough maximising. 

vectors. But, this increases the storage requirement. 

However, Young proposed a very promising method to deal with 

this problem, the mathematical proof of which is presently 

being, examined. 

Legt 

T= PBMFpp ' n2 
222 

xl 
Et Hnxl Hmx1 B 

nxl' 
let 

XO H22 
i 49 F 

-71X1 

122 
xi =< u0, uV-901 un-1) Hnx1 op Hnxl 

where ui is the maximising vector of 

Ti =T- 
xi 

i=0,1,2,..., n-1. 



Let 11 Ti 11 = ti, and 

Tui = tiwi. 
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Then there is a function GEF+ BHO 
n such that . 11 G III = II T II 

is given by 

G =[u0, u1,..... tun-11 ftOWO't1W1"*'*I tn-1Wn-11 
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CHAPTER SIX 

NUMERICAL EXAMPLES 

To illustrate the foregoing results let us see how 

the algorithm performs in calculating the matrix of a 

g, eneralized Sarason operator and in finding a minimising 

function. 

2+ l+i z f11 (z) 
Example 1. Consider n=1, m=2, F(z) = 

1-0.2z 

1+2i +3z 
f21(z) 

1-0.3z 

and the Potapov Blaschke product B(z) from (2-7) as 

101 
vi'w1=v2= 1 

01' W2- 
,ý 

[_1 
11 

' 
10 1 

v3= W3=V4=W4- 10 and 

z -e( 
bi(z) 1-ä z' 

ýi 1. i. e. 

(z-42) (z-oll) (z-o4 
2) 

(1-otlz)(1-2z) ' (1- z)(1-2z) 
1 blb2, blb2 

B(z) - 
2 (z-o43) (z-c 

4) 
(z-a3) (z-o(4) 42 

[_b3b4b3b4J 

(1-z)(1-ýc4z) (1-oz)(1-ä4z) 

Step 1 take 011=0.3, «2=0.5, '0" 3=0.4,014=0.6. An 

irreducible MFD of B(z) is N(z)D(z)-1, whexre 

N(z) 1 0.15 0.15 1 -0.8 -0.8 pw+111 z2 
42 t-0.24 0.24 .121 -1 2 -1 1 

= BO + B1z + B2Z2. 

ß(z) = 0.036 - 0.342z + 1.19z2 - 1.8z3 + z4 . 
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1-0.8z+0.15z2 0 -1 1_ Nýzý- 
24z2 0 1-z+0. 

P(z) = 1-1.8z+1.19z2-0.342z2+0.036z2. 

The standard basis for H2Xi O BH2X1 is 

1-0.8z 

? O(el)(z) =1 

I1_O. 

8z+O. 15z2 

12 , 
1-0.8z 

1-z+0.24z2 

ZlýelXZ) =1 
1-O. 8z+0.15z2 

2- 
Z 

1-z+0.24z 2 

-1+z 

C(e2)(z) -1 
1-0.8z+0.15z2 

I 
1-z 

1-z+0.24z2 

r -z 

71(e2)ýzý 1 1-0.8z+0.15z 
J2 

z 
1-z+0.24z2 

and the standard basis for H2 i 9f H2 is 

1-1.8z+1.19z2-O. 342z2 

f (Z) 

f (Z) 
f3(Z) = z2 1= 

f(Z) a 
z-1.822+1.1923 

1 
(z) 

" f4(Z) _, Z3 
f(Z) 

On applying Choleski decomposition to GB1 and Gý 1, 
we have 

u BI C UB ]* = GB 12 0Cu ]tu ]* = G-1 

where, 

0.9994 0.0100 -0.0234 0.0105 

0 0.9601 0.1978 -0.1085 
L Uý ]=000.6797 

0.5885 

0000.2425 
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0.9887 0 0.1032 0 

0 0.9708 0--. 0.1879 
[UBi _ 

000.7103 0 

0000.5740 

Step 2 The matrix F(CT) equals P(CT), 

where 

(1.9994-0.0004i)+(1.4055+1.0039i)z 

+(0.2616+0.1869i)z2+(0.0818+0.05841)z3 
P(z) _ 

(0.9943+1.9990i)+(3.3529+0.6096i)z 

+(0.8159+0.1483i)z2+(0.5321+0.09671)z3 

Step 3 The matrix of the generalized Sarason operator 

A is a 4x4 matrix. 

2.1004+0.0869ij 

1.1511+2.0410iß 

A= 
1.1761+0.8401iß 

2.6267+0.4776i? 

0.0744-0.0857iß-0.3040-0.08711ß-0.1719-0.0382i 

-0.0993+0.3194i, -0.5704-0.2618i, -0.4715-0.3036i 

2.4099+0.6646i, 1.8168+0.41101,0.7355+0.15421 

3.1079+1.6521i, 2.6873+1.7077i, 1.5905+1.08791 

and 11 A 11= &. 8303 (=P). The left singular vector of A is 

[ 0.1304-0.0357i, 0.0870+0.1576.1,0.4879-0.05901,0.8413 3, 

Ste A maximising vector for the adjoint of the 

generalized Sarason operator T* is 

(0.0315-0.13311)+(-0.1117+0.0749i)z 

1-0.8z+0.15z2 

v0(z) 
(0.1508+0.0832i)+(0.4749-0.0995i)z 

1-z+0.24z2 " 
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and 

u0(z) =QT v0(z) = (3.4558-0.9060i)+(-2.5321-0.1942i)z 

+(0.1816+0.6375i)z2+(0.1015-0.1542i)z3. 

The extremal function(unique, since we are dealing with F 

of type 2x1) G(z) is 

G11(z) 
G(z) = LG (z) 

_ 
21 

(6.0155-1.64461)+(5.9659+0.8326i)z 

+(-10.5376+0.41721)z2+(2.8755-0.1 

(3.4558-0.9060i)+(-2.5321-0.1942i)z 

i )z3l 

+(0.1816+0.6375i)z2+(0.1015-0.15421)z3 

(3.9378+7.1382i)+(16.2045-11.46721)z 

+(-14.8931+5.6760i)Z2+(2.9032-0.8635i)z 

(3.4538-0.906.01)+(-2.5321-0.19421)z 

+(0.1816+0.63751)z2+(0.1015-0.1542i)z3 

= v0(Z)u0(Z)- 
1 

Step 6_ Checks of the result. 

Since G(z) = F(z)+B(z)g(z), for some g(z) = 
gll(z) 

ß21(z) 

F11(z)+bl(z)b2(z)gll(z)+bl(z)b2(z)g21(z) 

G(z) 
F21(z)-b3(z)b4(z)gll(z)+b3(z)b4(z)g21(z) 

Therefore G11(c'12) = F11(042) and G21( 4) ° F21( 4) 

F11(°2) 2.777+0.5551 G11(ý2) 

a 
F21(0141) 3.415+2.4391G21(ý4) 
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Let e=0, ý, 
,6,6,6 , and ze = cos9 + isin9, 

which is on the unit circle. Then 11 G(z0) () = 6.8303 = P. 

Constancy is observed up to 13 decimal places. 

The Cohn algorithm shows that the denominator of G(z) 

has no zeros in the unit circle. Therefore G is in H2x1. 

Example 2. Consider m=n=2. The simplest candidate for 

this case is F(z) =fz 
3z 

and B(z) =1z2 z2 
Z 2+z1 

72 
L-z2 z2 

The purpose of this simple example is to show how to use 

the one step extension method to form an extremal function 

with minimal norm. 

The norm of the Sarason operator T =PBMFPP is 3.9681 

From step 4, one extension matrix FO is 

1-2.0216 
-0.0216 

FO a 
2.6595 -1.0865 

From step 5, form the new rational functions; F= F+BF0 and 

= zB; then the singular values of the one step extension Al 
Sarason operators T are-, IV 

3.9681,3.9681,3.9681,1.0429,0.1228. 

Two linearly independent maximising vectors are 

[-O. 0260+O. 2111z+O. 8037z2 

v (z) 
0 

-0.0260+0.35632-0.4256z2 

I 
-0.2533-0.3209z+0.364722 

v (z) _ 1 L_o. 
2533+o. 23YoZýo, 76o6Z2 

i 

ýw 
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and 

-0.7478+1.13662 
T* vo(z )== L_o. 

2899ý316?? 6Zýo. 534? Z2] 

2.2283+0.5158z 

=P ul (z). 
2 T*v1(z) 

-2.8207-0.16002+1.59142 

An extremal function with minimal norm is 

G(z) =[ ß%0(z), vl(z)j[ u0(z), ul(z)]-' 

z-6.061922+5.364523+8.761624, 

1-4.0402z-1.618922+0.5564z3 

z-1.3808z-13.1424z 
3 

1-4.0402Z-1.6189z2+0 . 5564z3 

3z-12.1424z2-4.3808z3 

1-4.0402z-1.6189z2 +0-5564Z3 

2-7.0805z-8.3645z2-4.3808z3 

1-4.0402z-1.6189z2+0.5564z3 

Since G(z) E F(z)+B(z)HOm, and B(O)=O, so 

G(0) = F(0) 00 

02 

Let e= 09 r 
,, 

6, 
-, -, and z9 = cos0 +isine, 

which is on the unit circle. Then JIG(ze)Il = 3.9681. 

Constancy is observed up to 12 decimal places. 

has multiplicity 342. This indicates that G(z) is not in 

its lowest terms. By using the Cohn algorithm the numerator 

and denominator of every entry of G(z) have one zero inside 

the unit circle. By using "co2adb" from ALGOL 68 NAG, the 

linear term is z-0.2283. 
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