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SUMMARY AND INTRODUCTION

Quite a number of engineering design techniques for
circult and system theory depend heavily on the construc-
tion of an analytic function of a minimal norm in the open
unlit disc D satisfying some interpolation conditions.

The above problem was solved constructively by Pick [32])
and Nevanlinna [29] at the beginning of this century. This
is the well known Nevanlinna-Pick interpolation problemn.

In 1967 Saito and Youla [39] first introduced
Nevanlinna-Pick theory into engineering literature. They
showed how interpolation theoretic constructions corresponded
to circuit theoretic ones.

In 1968 two very important articles were published by
D. Sarason [40] and V.M.Adamjan, D. Arov and M. Krein(A-A-K)
L 1J{ 2] giving the solution of the classic interpolation
problems in operator terms. These two approaches are quite
different.

The approach of A-A-K related significant implications
of interpolation theory for some important engineering topics,
such as broadband matching [18][19], digital filter design [16]
(which is widely used for stationary stochastic processes),

model reduction {22], cascade synthesis of networks [10] and

linear estimation theory [[21). Their results have led to

the use of approximation of functions in the "Hankel norm"

for such applications. This Hankel norm approximation has

three important properties from an engineering viewpoint.
Firstly, the Hankel norm lies between the most popular

least squares norm (L2-norm) and the most stringent Chebyshev

norm (La)—norm).



Secondly, this norm is the largest singular value of
a Hankel matrix and this value is known to be insensitive
with respect to perturbations.

Thirdly, the best approximation in the Hankel norm can
be explicitly computed, thanks to A-A-K, it reduces to finding
singular values and vectors of an infinite Hankel matrix.

There are two methods of doing this, proposed by S.Y. Kung
[ 22)[ 23 ) and Delsarte, Genin and Kamp [9] in 1979, 1980.
The most important of these algorithms is that of Kung.

His point of departure is to consider an impulse response
function for an unknown stable linear system. For a pre-
assigned error tolerance, it is required to obtain a best
approximation to the function of degree as small as possible
from input/output data. Such a problem has a long history
and has been approached in various ways, but each method
leads only to a sub-optimal solution.

It appears that using the A-A-K approach is fertile and
rich in both pure mathematics and applied engineering. But
none of these methods can claim to be stable, accurate and
efficient for numerical computation. However there is a
significant dis-covery 1in the scalar case by N.J. Young (4]
in which a completely new algorithm for such interpolation
problems was proposed and proved 1t be very successful 1in
pratical tests. Young's algorithm is based on Sarason's
theory [ 40].

In realistic engineering problems one is more concerned
with systems with several inputs and outputs than l-input
and l=-output. In mathematical terms this corresponds to

studying interpolation by functions whose values are matrices

rather than scalars.



The aim of this thesis is to extend Sarason's theory

and Young's algorithm to solve such interpolation problems

numerically. As far as we can see, the generalization is

not easy to achieve. The difficulties come in many ways.

FPirstly, one must find a suitable setting for the

generalized Sarason operator.

secondly, the reduction from an operator to a matrix
problem involves decomposing a certain space of rational
matrix functions in such a way that the advantages of the
scalar method are retained. This can be done through some
kind of factorization.

Thirdly, and most significantly the interpolating
function of minimal norm is not unique: thus in order to
compute a minimizing function we must impose further
conditions to ensure uniqueness, or make some arbitary

choice and this entails quite new considerations.

Let men denote the space of mxn matrices over the

complex field. For £ € Hgin’ the space of bounded analytic

functions on the op-en unit disc D with values in men’
we write
i £l = sup i f(z) Il
QO zeD [
where ¥ I 1s the operator norm in M__ . By Fatou's

theorem, any function f € Hg;n has a radial limit almost
everywhere on D, and hence defines a function also denoted
by £ in Lg;n’ the gpace of bounded measurable functions

on the unit circle oD with values in M__ (modulo equality
a. e. w. r. t. Lebesgue measure). The maximum principle

shows that the Lg;n norm agrees with the natural norm



of Hg;n (Chebyshev norm)

i £ = £ = ess sup N f(z)Mh.
1° P 269D

In particulat when m=n=1l, H® is the space of bounded
analytic functions which is the case treated by Nevanlinna

and Pick:

[N-P] Given distinct points dl’dz’ ++ey0l 1n D, complex

numbers W,,%,,...,w , find a function f € g®

is minimized.,
We can reformulate the [N-P] problem in terms of

distances. Suppose ¢ is any bounded analytic function
Z=-X,

n
satisfying @ (ui)=°~_!l._, i=1,2,+..,.n, and let b(z)="T"C
J=1

be a Blaschke product ofcxi(i=1,2,...,n) of degree n.

Then a function £ € H®, such that f£(®,)=W, if and only if

(f—cp)(di)=0, in other words f-¢ =bk for some k in H> ,

so that
inf{f: f(o(i) =Wi, i = 1,2,...,n}
0 def
- 1 +bHZ £, o e e
o0
PH™ 4er

= dis(®, bHD,

Observe that bE® consists of all functions in Hoo which
vanish at all the zeros of b and have zeros at least the
same order as b at these points. The [N-P] problem 1s

mathematically equivalent toO

!
{N-P] Given a Blaschke product b of degree n, and a

function @ ¢ H® , find a function f & '-P+bHOO such

that i £ llm is minimized.



D. Sarason showed that the infimum is attained and

*
equals the norm of the Sarason 0perator‘?(8;), where Sb 18

the forward shift operator S*compressed to H2(9 bH2. Since

2 S, bH2 1s an n-dimensional Hilbert

space, and we can choose a suitable basis for H2 © bH2 and

the zeros of b are in D, H

express S: in matrix form. If the zeros of b(z)=0 are known,
then 1t 1s easy to write down a basis in terms of the =zeros
of b. However 1t is well known that a numerical instability
can occur in solving tne egquation b(z)=0. Young (4] found

2 2

a convenient and natural basis of H  © bH™ in terms of the

coefficients of the numerator of b. This plays a key role

in Young's algorithm; the matrix of Sy, with respect to this
basis is a companion matrix, the computation of a matrix of
<f(s;) can therefore be reduced to finding g(CE), where g 1s

a polynomial with degree less than n and Cg is the transpose
of the companion matrix of b, This can be done with an
operation count of O(n3) rather than the 0(n4) one might
expect. Moreover, although this basis is not orthonormal,
the Gram matrix of the baslis can be obtained by a very simple,

recursive formula. This formula is also one of the key

techniques that have been developed in Young's algorithm,

Now let us state the {N-P ] problem in the matrix valued case:

[M-N-P] Given an inner matrix B(-HOO , and a function F in Hﬁxn
find
co
(1) W F+ BH Il o
men BHﬁxn
(2) a function G & F + BHg;n such that

Wen = §F+ BHD |
Hmxn/B @



An inner matrix is defined to be an element of Hg;m which
1s unitary on oD, almost everywhere.
: , : o0
Firstly, we need to characterize the norm in Hﬁxn/BHggn’
This can be done by establishing an isometric bounded

linear mapping between Hg;n/BHg;n and a class of operators

T from Hﬁxl O (det B)Hﬁxl to H‘r%xl ©, BHr%.xl' We study this
characterization in Chapter two by using the dual extremal
approach. Such operators T are generalizations of the
Sarason operator from the scalar case to the matrix valued
case. An example is constructed to show that two subspaces,
Hrzlxl © (det B)Hﬁxl and Hrixl @ BHrixl’ are necessary in the
matrix valued case: these colncide in the scalar case.

Some techniques of operator theory and function theory
are necessary for our theory and algorithms, and these are
presented in Chapter one.

In Chapter three we give a description of a direct
decomposition of Hrixl o, BHrixl’ in terms of the coefficients
of the numerator of B. We make our choice in such a way
that the Gram matrix of the decomposition can be calculated
economically. Theorems %.2.4, 5.3.1 and 3.3.2 are the main

theorems in this chapter.

In Chapter four a computational form of the orthogonal
projection from HZ . @ (det B)HS . to HS , © BHS ; is obtained;
and this plays an important role in our algorithm. Therefore
the advantages in Young's algorithm are retained.

The whole of Chapter five deals with some aspects of
implementation, comments on our algorithm and compares the
Other algorithms.

FPinally two numerical examples are presented in Chapter

S1X.



CHAPTER ONE

PRELIMINARIES

l.1 General concepts

The general concepts contained in this thesis can
be found in the following list of books.
(1) Operator theory, I. Gohberg and S. Goldberg{14],
(2) Hardy space, K. Hoffman (20), H. Helson [17],
Nagy-Foias [27] and R.G. Douglas (12}
(3) Interpolation theory, J.L. Walsh [47]
(4) Numerical analysis, G.W. Stewart (42] and A. Gourlay [151
(5) Hankel operators, D. Sarason [41]}, S. Power [ 34 ).

1.2 Singular value decompositions
Let Hl’ H2 be separable Hilbert spaces. Let L(Hl,Hz)

denote the Banach space of all bounded linear operators
from H1 to H2. Let {fij)}ﬁl, j=1,2 be an orthonormal

base for Hj' The matrix M corresponding to A and {fﬁj)}

is (aij);
a4 = (Afgl), fi(2))2 .
Since

(A*fgz)r fil))l = (f§2)1Af§l))2 = (Afgl)’ fgz))zi

where ( , )l and ( , )2 are the inner products for H, and H,.

The matrix corresponding to A" and {fﬁj)} is the complex
conjugate M = (Eji) of the matrix M = (aij) of A. The
range of A ¢ I(Hi, H2), written Range A, is the subspace



AH, = {Ax; x € H,J. If Range A is finite dimensional, A

is called an operator of finite rank and dim Range A is
called the rank of A. If a bounded linear operator

A eL(Hl, H2) has finite rank r then there exist positive
numbers S % 817 S5 % cesney and orthonormal sequences €nr €7

cessey €, 9 1n Hy and £y, fy,..., I, 5 in H, such that

A = Z SJ( ’ej)f,] (l)

in the sense that, for all x ¢ Hl’

r-1

= . N B
Ax égésa(x,eJ) 3

We make the convention that Sj=0 for j2 r.

The 5 5 are called the Singular values of A and are unique,

*
being the eigenvalues of (A A)%, together with O. ej and

fj are called singular vectors of A. An ordered pair

<e,f> ¢ Hle2 is called a Schmidt pair corresponding to s 1if
¥*
Ae = sf and A f = se . (2)

Thus.<ej,fj:>is the Schmidt pair correspending to sj.

The relation (1) is called a Singular value decomposition

of A(SVD). This is the most reliable characterization

for computing the rank of a matrix. The rank of a matrix
is equal to the number of nonzero singular values of the
matrix. The SVD in matrix form is defined as follows. Let

A be an mxn matrix having rank r. Then there exist mxm

and nxn unitary matrices U and V such that

A=U*[Zr Olv (3)



where Z - is a diagonal matrix with the nonzero singular

values of A along its diagonal.

1.3. Gram matrices

Let 'iu13121 be a basis for H. The Gram matrix of

the basis is defined to be the nxn matrix G=-{(uj,ui)1.

1,2, and let

. —dimension Hilbert space, 1

IetJHi be an n.

A, Q;, Q, be linear operators in L(Hl’Hz)’ L(Hl), L(H2)
having matrices (LA}, [Q;1, LQ,1 respectively with respect

to the bases Ujpy Upyesey U of Hl and Vi Voseeey Vo of H2:

n 2
Then

(1) If Q, and Q, are invertible then the matrix of A,
[A]O with respect to Q vy QluZ"""’ Qlunl and
Qévl’ Q2v2,....., Q2vn2 18
-1

(2) Quuys QUosece, Qlunl is an orthonormal bases of

. : ¥ -1 .
H, if and only if [Ql] [ Q; ¥ = Gy, where G, 1is the

Gram matrix of Uyy Upyeessy unl.

These facts are elementary can be founded in many texts on

linear algebra [24].
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CHAPTER TWO

THE GENERALIZED SARASON OPERATOR

Introduction:

W

Given an i1nner matrix B & HOO we show how to relate

mxm?
00

men/BHg;n to operators T acting on certain subspaces of

2 2

2 , © (detB)H:_, and H- , © BH. .. Such operators T are

an1

generalizations of the Sarason operator from the scalar
case to the matrix valued case. Now a generalization of
the Nehari theorem [28] can be used to show that the

: 00 :
quotient norm of men/Bﬂﬁin can be expressed in terms of

a certain Hankel operator (the A-A-K operator) [  acting
2 > .
from an1 to me1. one might therefore expect that the

generalized Sarason operator T would be closely related
to [? ,, and in fact T is a unitary multiplied by the nonzero

part of [7 . Functions of minimum norm in any coset of

00 - oo : . A
Bmen in men can be obtained using the A-A-K one step
extension [3]) . The analogue of this one step extension

is here examined in the Sarason-type formulation.

Contents:

2.1, Analytic vector functions.

. . Q0 Q0 O
2.2, The isomorphism between men/Bmen and H ( B B).

W

2.3, T.e Sarason operator and the A-A-K operators

24 One step extension matrices



2.1 Analytic vector functions

Let 0D = 12 € C : |lzl= 1} be the unit circle and let
D= {zie C:lzl<l} be the open unit disc. Let M ., denote

tthe linear space of all mxn matrices over the complex

field C. For A ¢ men’ liép£ , 1etlLA"p be the Schatten-Von

Neumann norm:

I AN, = (Z_Osnp)l/p , (1)
n=

where:{snknéo 1s the sequence of all singular values of A,
W, andW¥ V¥, are the familiar trace and Hilbert-Schmidt

norms and W 4 1s the operator norm. Let LrI;xn’ 1£péoo ,

denote the Banach space of all measurable functions on oD
with values 1n thn’ modulo the subspace of functions equal

to zero almost everywhere, such that

Qm
| £y = (-él—g t £(ei%NP a0)/ P, (2)
p T 5
O

and let Lg;n be the space of essentially bounded men-valued

functions on &D with the essential supremum norm:

Il £y = ess sup h £(2)i _< o (3)
Z edD
The spaces we are concerned with are Ll L2 and I P
P mxn’® "mxn mxn

and their subspaces. Let Héxn be the subspace of functions

g 1in Iéxn with the property that for every pair of vectors
X € Cn, y € ﬂm, the scalar function (g(z)x,y) is in Hl. In

particular, Léxn is a Hilbert space under the inner product

T . :
(f,g)2 = -é%-r-g trace(:li'(ele)g(ele)*)de (4)
o
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where ¥ denote the complex conjugate transpose in men'

A function Giﬂ.lﬁxn 1s called analytic if the scalar
function (G(z)x,y) belongs to H2 for each vector x € Cn,
Yy € ¢"'. The analytic functions in Lixn form a subspace,
2 . 2
which we denote by men' In fact any function f € Hhxn

can be extended to an analytic function on D with values

in men having the following expansion
_ 2
f(z) = fotf z+f,2%+. ..
% i
= 2 fi27, f, eM_
1=0
with 2m
| fﬂz = Sup —!'-—X |If(1:'eie)l2 dO <oo,
2 2w 2
ot Y« O
The key operator for generalizing Sarason approach is the
backward shift operatorigracting on Hixl: this is defined

by
2
S(fo+flz+fez tooo) = fl+f2z oo

or equivalently by
1
sf(z) =1 = (£(z)-£(0)) if z»0 ,

£'(0) if z=0 .

(5)

When m=1, we write S in place of1§, It is easy to show

»*
that the adjoint operator S

S of_§ is the forward shift operator:

_g#f(z) = zf(z).
andjg_gf = I, I-§i§ is rank m, where I is the identity operator
on Hﬁxl' We shall assume a familarity with the basic
properties of such spaces and operators [17] L20) (27).

Let Hgin be the space of bounded analytic functions on D

with values in men' By Patou's theorem, any function (P in

HX has a radial limit almost everywhere on D, and hence

mxn
defines a function in Lg;n. The maximum principle shows
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that the Lr?xn norm agrees with the natural norm of

Hg;n (Chebyshev norm):
def

i £ = 8§ sup 0 f£(z)u_ . 6
L® H® € 3D @ (6)

Hence we can identify Hr?xn with a subspace of Lr?gcn' Let

RHg;n be the space of rational matrices with no poles on
OD; in this thesis we restrict attention to RHrOrfxn for
practical reasons. The adjoint of tpeHoo is defined by:

@ (z) = [¢(2)]", 2zedD

which i1s also analytic, so that LP* C Hx?;cm‘

Definition 2.1.1 Let p be in Hr?)m’ P is a rigid matrix
*
if ¢(z) <.€:'(.'z.)=Il,l for a.e. z€é 3dD. When m=n P is called an

inner matrix if Y (z) is a unitary matrix for a.e. z &dD.

A Potapov Blaschke product [33] is the standard

example for an inner matrix: the general form is

0 |45 a""(j I 0

= T V 1-&,
B(2) j=1 J o‘j G‘JZ P W . (7)
0 I, J
where p+q=mn, Vj’ WJ are constant unitary matrices, O(jeD‘Vj.
. : oo 00
2.2 The isomorphism between Hﬁxn/BHﬁ;n and H (e, B)

To any ¢ in H°  there corresponds a multiplication

2 2 .
operator MlP from I-%m to mer’ defined by

(Me£)(2) = @w(2)f(z); f e H,., =€ D.

Let B be an inner matrix in Hg;m. Let P (z) = (det B(z))I_

= B(z)+ adj B(z) = adj B(z). B(z). We form two spaces
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anl G.)Fanl and Hm 1 © Bmel The orthogonal projections

2
nxl’ mel with range anl GP anl’ mel © Bmel will
be denoted by B , PB’ respectively. In a later chapter

E 2

we will show that }ﬁxl op Hﬁxl and HS , © Bﬂéxl are

in H

invariant under the backward shift operator S. We therefore

introduce ~(; the restriction of to anl G)(j anl’
2 ]
nxl ) Bmel’ respectlvely. i.e.
P.S. = §P, P.S = SiP
pRp =2 5 ‘B ~UBBe

For @ e-Hrcr? n let P M F denote the projection onto Hx?xxl G BHr?xxl

of the multiplication operators Mq’ acting on anl eP anl
we call I’Bl‘%l’(3 a generalized Sarason operator. Then the

generalized Sarason operators M@P are precisely the

operators that intertwine h? and S since

P )S, = PLMP S,
(PBM“’(’)”F B‘?P"f

= P.M S P
B‘P"P
- P, *M P
“"F’P
= SSP.M P = S-(P.M P}
- BB'PF ~ “B Bcpe

It is more important that the converse is also true.

Theorem 2.2.1 If T is an operator from Hﬁxl G)P H‘ﬁxl

2 2 : : * * :
to mel © Bmel that intertwines S_, EB’ then there 1is a

a4

function ¥ € H[?;m such that

%
\ Qu=0Tu and T = PgMP (8)

f

This theorem is a special case of the well known Nagy-Folas
lifting theorem [26)[11). This theorem can be proved by

ﬁsing the duality approach followed by Sarason in the
scalar case [40]. The key point of this approach is the

lgometric isomorphism between Sarason operators and the
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quotient space Hg;n/Bng . This holds in the matrix
Xn

valued case.

Let HQD(B, B) denote the space of Sarason operators

@® _ L 00
i (6’ B) "{PBM?Pg ¢ € men} J
There 1s a natural map of I-Igoxn onto H® (F , B) defined by
*
¢ —> Pl . (9)
This is a bounded linear mapping and the Kernel of this

bounded linear mapping 1s BHE;H. We therefore get a natural

n/BHTcI?XI].

Moreover this l1somorphism 1s norm preserving. To prove

algebraic isomorphism from Hg; onto Ha)(p,B).

this, 1t is necessary to identify the dual space of
o0

“mxn /B
. 00 00

Lemma 2.2.2 Let j be the map from H___ to H (P’ B)
defined by

: * 00

Jtp:PBM(fPF T L
then

. 00

Ker j = BHhxn .
Proof: We first show Ker j¢ BH;Oxn. Suppose @ ¢ Ker j
then

¢ anl ePanl - mel

and

2 _ 2 2 2
P Hpyy = ? (anl eﬁanl) +LPPanl'
It follows from
pI=3B.2adjB=oadjB.B .
That
< C B 2 + 01 H2
('Pﬁnxl— mel P - $inx1
= BH._, + B(adj B)Y K,
E.BHémﬂ.
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but

00 s . 00
¢ € H ., » this implies (p € BH _ .

On the other hand, if € BH). .

then

2 2
CPanl < Bmel'

SO
2 2 2
q;’(anl eFanl) & B%xl'
This means {p & Ker J.

The proof is complete.

00 : 1
Lemma 2.2.3 (1) The space L. is the dual of L ___
under the duality
o
< Lye 'é'%r“j trace(@(e:®)s(e1®)Tas,  (10)
o

d € LI?;(I,, f € Lr]r;xr’ where f(ele)T denote the transpose of

the matrix.

(2) The space Hg;n/BHg; is the dual space of 'B'zHl '/zHl N
n mXy

(3) Each function f ¢ Hixr has a factorization

r=14,, (11)
where fle Héxk’ f2 c Hﬁxr for some positive integer Kk,
and
¥* * B ¥* *
f2f2 = (f )=, flfl = f2f2 "
Proof: A complete proof is given in [40, ’;9], [ 30, $21]

which is analogous to the well known theorem for the

gscalar case.
Let €° denote the Hilbert space of r-dimensional complex

column vectors, and let{ei}§=l be the standard orthonormal
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basis for . Let H2 1 ® C* denote the space

, 2
1 81°1*6p%p*- - *8pey P €5 € Hyyy |

with inner product
2T

= 1 16 16 *
(f,g) = jél (£5,85), = jz.l—gﬁ- o‘crewe(f'.j(el )gj(el )" )ase.

The space Hﬁxl@Cr may be regarded as the orthogonal sum

2
mxl

<1? TI° acts on Hixl@cr by

of r copies of H which is Hﬁxr' For T an operator on

2
o

The operator TGIr may also be represented as rxr diagonal

matrix operator with entry T.

T 0
191 = T
O - XY .
Pheorem 2.2.4 If £ ¢2H  then there is a positive

integer r and functions

2 2 2 2
82 € nxr GF Hhxre 81 € Hpxr © SHpyr

wilth ,
| glllg < flll, W €505 & "flll

such that

iy

<%, B> = ((2MpR 6L, )g,.81), (12)

for all & ¢ H[?xn. Conversely, if 8r € Hr21xr @P H121xr’

gy € ngr o BHrixr then there is a function f ¢ ZHr]ﬁxn such
. Q
that (12) holds for all @ in Hon
. 1 . : -1
Proof: Let £ € Zmen' By the factorization of z —f,

: 2 T 2
there exist fl ¢ Zmer . f2 € ern
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such that
*
_ T * S L
f = flf2, flfl = f2f2
and *
fg (£%£)%
then

v . ‘o T
trace( & (e1?)[B(e1®)£(e1®)] )ao

Sﬁ%race( & (e:ie )£ ( e 1© )TB (eie;)de

j trace( §(ele)f2(e19)fl(eie)Tﬁ(eie)T)ae

il
N N N
4|~ A= 3

|
—
1o
I—b
AN
td
5
-
~
N
@

- > - >
the function f; ¢ (mer) y Bf, € (Bmer)

and

- L 4
Bty € (Hrixr © BHflxr) ® HI?]XI‘ - [(Hrixl © Bﬂixl) ® Hixl_]ﬂcr.

. . . 2
PBMr is the orthogonal projection from H ., onto mer © BH mxr

Hence N N
Bf, - (P,8I_)Bf, ¢ (HS ) = HS .6c"
and setting
(PB@Ir)BEl = 8y,
we have

(1, BJ:?"I)2 (@f,, (PR8I )Bfl)2

( §f2! 51)2 :

Moreover, %:@I 1s the orthogonal projection from ngr

onto ann G_'-)F nxr The function

2

£, - (PP @Ir)f2 € eanr
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and therefore so 1s

- 2 - 118 2 2
Q(ff(% ®Ir)f2) < §Fanr =e@anr9€ mer SB}%xr’
setting

g2 = (PF GIr)fz,
we have
(§f2! g1)2 = (E(Pealr)f‘?l gl)z
— *
¥
= ([(PB“%PE )01 1e,, 81),
and
I g,05 = Il (Py8I_)BE 15
e ol = 1 2 2
=||Bfln24 ule2 =i £33
* %
—_— " f”l °

Similarly | gzug €ifvy .

Z 2
Conversely, suppose g, € H O P nxr? 81 € Hpyr © BH ..

then 5 ol 5
Bgl € mer ’ Béi € Zmer ’

and we may take

- T
f = Bgng .

Combining Lemmas 2.2.2, 2.2.3% and Theorem 2.2.4 gives us

the following theorem,
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Theorem 2.2.5 The natural isomorphism of Hgin/BHg)
Xn

onto HGD(B, B) is norm preserving.

Proof: Let f be a function in H)) = such that

I =an+BHg;nu

inf it ¢ +Bgir.

geH

Let & 5 0,

a : = .1 :
As men/BHa)n 1s the dual of Bszxn/ZHixn there is a
function f ¢ zHixn such that

I £ #=1 and <P, B> |> 1-¢.

By Theorem 2.2.4 there are functions

2 2 2 2
82 € Hyxr @P fnxre €1 € Hpyr @ BH o p

with
I 890 5¢ 1 and 8oM 5 <1
such that
*
| <, Bf>| = l((PBM?PF OI_.)8,s &), |
*
& IIP M, P ®I lI=||PMP I,
1 ¢ f

. *
l.€o II PBMlPPF ")‘l_é-

As & is arbitary we have

| M F ||— 1 -"LP+Bme
ot men/BHg;n ’

The proof is complete.

An example can easily be constructed to show that two spaces

2
H .1 6(}an1, mel S Bmel are necessary. Theorem 2.2.5

may fail if S nxl @Panl is replaced by anl e Banl’

even when m=n. This is not so in the scalar case.



21

Example 2.2.6 Let @(z) = [g é], for all z ¢ D and
let B(Z) = [g 8] .
Then
gxl G Bngl { L€ Hg 1 ° f(0)=f(z)=(8J y C € C}
{ (O, (O)z +{ )z +.009 C € C }"
g 1 O (det B)H2 1 = { € € ngl . g(O)—g(z) (cz) lcif'c’i=1,2}-
For Mqu;:lhengl : h(z)=h(0)= (O) d e C}, soPMP { }

2

However | Y +BHL . k= 0. For if Il ¢ +BH,. ,

2X2 W= 0, then ¥ € BHL

2x2°
1.2

2 0 ull(z) ulz(z)
$(z)

0 1 uzl(z) u22(z) .

This implies

u,(2) =

Therefore

* | .M P |
|\ PoM P 1% | PB PB Il o

Bg_pF

By a maximising vector for.an operator T we mean a vector x=*0 and

such that
H Tx =0T uex yy ,
%
Theorem 2.2.7 Let T be the Sarason operator PBMFPp

2
acting from H nxl GP Hn 1 to H nxl © BHm_xl Assume T has

maximising vector Uy. Then there is a function G 1in

P + BHg;n such that
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| Gloo=u T I
and
Gug = Tu,, (13)
Proof: It follows from Theorem 2.2.1 that there exists

G € F+BHI?1':;:-_n such that |\ G"oo= i T, If T has a maximising

unit vector U,

Then
¥*
h T8 =1 Tugy i = { PBMGPF ug |l = [ PBMGuO I

IN

Z
! GuOHL—llTu.

It follows that
*

B G p
and
Guo = Tuo "
Remark : In the case m=l, G is uniquely determined by

(13) when such a Un exists : G= Tuq/ﬁo. But this is not
true in the general matrix valued case. However, G would
be determined if we had sufficiently many linearly indepen-
dent maximising vectors. Supposel Ty is a singular value
of T with multiplicity n: then they ensure that we have

exactly n 1ndependent - . maximising vectors Ugypeeold,

corresponding to N TlH. By (13) we have that

Gui = Tui,

thus

G'[ul’ u2’lli' un]= [Tul’ Tu2,-.--Tun]

3

and G can be determined by

G- =[Tul’illl’ Tun] Lul’l"'un]-l
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as long aslhul(z), u2(z),..., ﬁn(z)] is nonsingular. It
is very unlikely thatii T lis a singular value of T with
multiplicity n, and [ul(z),..., un(z)] is nonsingular.
Motivated by the A-A-K results [3] we extend the two

2 2 2 2 2 172
subspaces )y, @F Tnx1 Hnx1 © BHpyy 0 Hpy @E fx1

2 |12 : 2 2 2 2
mx 1 9§ fyy 10 such a way that H ., O B x1 S Hnxa O©b Hnx1

Hﬁxl ePHl?le < Hrzlxl Gp }ﬁxl and, for a suitable choice

of F, § Tl is a singular value of the larger generalized
N

H

%
Sarason operator ,3 = PBM:lE“ with multiplicity n,
N

I T =T Il and the corresponding maximising vectors

Ugs Upseeey Uy with.LEl(z),...., Bn(z)] is nonsingular.

Such so called one step extension operator T exists and

we will examine them in the following section.

2 e The A-A-K operator and the Sarason operator

There is another way to.characterize xn/BHg;n ,

due to Nehari [28 ] in the scalar case and A-A-K [3] in

the general case, 1in terms of Hankel operators and

Hankel matrices. It is not surprising that they are

closely related. Young [46] pointed out that the Sarason
operator is a unitary multiple of the nonzero part of the
A-A-K operator. In fact this is still true in the matrix
valued case. The one step extension idea in the A-A-K
approach is one of the methods we are using to form an
extremal function. The existence of such a one step &xtension
follows from the fundamental study by A-A-K in [3]. 1In
particular, if the so called symbol function is rational

then the existence of such a one step extension 1s equivalent

to the existence of a solution to a matrix quadratic equation
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-Riccati equation. This follows from Kung [22) [23]. 1In
view of the relation between the Sarason operator and the
A-A-K operators the one step extension method can also be

used in our approach. This is different from Arsene, Ceausescu

and Foias' 1-PCID method [ 5] in this particular situation.
Letjﬂéxl denote the set of all square summable infinite

sequences, 1l.e. -‘i :

jiimmcr By €M

mx1 such that

QO

.2 * |
“§||2"' Z trace (i.];j)<m

and byf f mx]? respectively, the set of all square

mxl’

summable sequences such that#§j=0, j==Lly=25e0eeeeees and

B . : . : 2
éJ_O J=0,1,2y 004 The generating function $ in Loyt

corresponding toli i 1s defined by

j==-00
2(2)=%§-zj , 2z & OD.
o Y
The L2-norm is defined as
VAL | _
W3 ll e g trace ( % (ele)é(ele)*)de
o

and éj is the j=-th Fourier coefficient of'é(z);
m
2 1 i0, =ij6
o +

+ » - 2 2 2 2
We shall not dlstlngulsh between § ., and L_q» ¢ @nd H .,
2 2 :
ﬁmx and H mel © mel For any f € L, there exists a

unique partltlon

f(z) = zig—)-cn fizi = f+(z) + f_(z),

where

00 i | 2
£ (z) = 35 _of;2° » £, € H 4 and

f_(Z) Z?ilf_iz_is f_ G mel .
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Let'“-;,'ﬂ“é be the orthogonal projections from Lﬁxl onto

2 2=

H and mel' Let Pj be the orthogonal projection maps

mxl

+ ; .

{ej}jzl be the standard orthonormal basis for Cm; then

fzige, | ~@¢ j ¢ 0, i=1,2,...nm] is a basis for LS .,

where zJﬁei denotes the mxl column vector with value zY at

i4 coordinate and O elsewhere. We consider this basis
ordered as follows ......,za®e1, zaﬁez,......,zaeem,
za+1@e

j+1
1o e , 2 @em)...... .

Let. R be the operator on Hixl defined by

Rf(z) = —=—f(==) , =z ¢ 3D.

i.e.
00 . 00 .
i -i-=-1
R(_éfiz ) = _é f.2
Obviously, f(z) = —— Rf(—:-) and if f &-H2 -, then Rf & HZ .
I z Z mxl’? mx1’?
and vice versa.
Lemma 2.%..1 (1) RTI';R =--"|TE )
(2) RR. = RR = I.
Proof: The proof is straight~forward.
2 X i
(1) Let f € L ., and f(z) = —czn £.2° , then
Rf(z) = ©p 11
-00 i ’
thus

+
T ,RE(2) = £ 1 +f_52 +...,

and

RTF;RI‘(Z)

It
..-L
-

|
by
T
§
e’
I#l
N
H,
—
N
S
S
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(2) it follows that the adjoint of R is given by
x 1 1
R f(z) = — f(—g—).

The proof 1s complete.

Given afunction.CPE;Igin, the Hankel operator HLP

acting from Hﬁxl to Hﬁxl is defined by

H f =1r£RcPf, f € Hr21xl’

)
where (p is called the symbol (transfer function) of ﬁp'
We can write down the Hankel matrix E; for HP in terms of

. . . 00
the: Fourier coefficients of ¥, namely if & L., and

Q0 -3 :
P(z) =% ic1P 1% P, € M .,» then the matrix th has the
entry ij+k-1 in the j-th row, k-th column position; it is

constant on the cross diagonals.

(.Pl’ LP2’ (PB,----------

Por Pzs Pyrecenccnnns

L

In other words, [’ 1s the matrix of H, with respect to the

v
standard orthonormal basis i_ J@el: j=0,1924 ¢ 0 ey 1-1,2,...m}

and LPj+k 1 is the j+k-1 Fourier ciffficient.of i
2'* , 2
suppose {5 }J-l ¢ ( nx1? i’lj} ('ﬁmxl

and

Colsst= 171,
then

723' B Z ]rc(]?-lLPj+k-1 ék ’
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Before we go any further, let us observe the following
example which shows the key point of the relation between

the Sarason operator and the A-A-K operator.

2® 0 1 0\ {0
Example 2.5.5 Let B(z) = of then ( ) (Z) ( ) ( )
O 2 O J O-} 1) \z
: : 2 2
is a basis of Hs; 4 Q, BH, 1+
for any g € ngl’
'
g,(2z) g,(0)+g (0)z
PBg(Z) = PB( 1 ) =( L ' ) (15)
g,(z) | \g,(0)+g,(0)z

= g(0)+g (0)z.
Let B(z) = [B(z)]* and consider
Hxe(z) =1T§Rﬁg(2) =1T§(zg0—%—)) = g (0)+g(0)z. (16)

Compare (15) (16):1we see that

- g e g

z°R(g (0)+g(0)z)

22(-%-(g'(0)+gégl))

BR(g'(0)+g(0)z). (17)

The formula (17) in fact is the relation we are looking for.

Theorem 2.3%.4 Let B be an inner matrix in Hﬁ;m.

Then for all g € Hixl'
= BRHzg = BRT['ERBQ ’ (18)

where:



e - BT }BB-adjBg

. 2
Proof': For any g € mel
g - B']T;ﬁg = Bﬁ'g - BTI'Egg
= B(Bg - T,Bg)
= B((1-T})Bg) = BRT }RBg.
2 2 ~ >
Pick f € H , © BH 4,3 then Pog = g and Bf ¢ H 19
+~
BRHﬁf = f - BTT2Bf = f.
2
On the other hand, for f € Bmel’ SO PBf = 0.
Let £ = Bh, h ¢ H_,;
then
+N
BRHﬁf = f - BTW,BBh
= f - BT,h = f- Bh = O,
The proof is complete.
. 2 _ 2
Remark: If f (-% H .q» then f =g 8 for g € H__ 4

=§g - B aijg=(3g-Fg = 0.

Therefore, if T € Hﬁxl' then BRHﬁf = BRHx

The fundamental fact about Hankel operators 18 due

to Nehari and A-A-K.

B

*

[

f.

SO

and

28
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Theorem 2.3.5 Let 4 € L and let H,, be the Hankel
operator with symbol ¢ . Then
o 00 def
| H‘f = dis(y, men) =" inf 0 @ -gu_,
g €Hn
Proof: Reference also Gohberg [ 7] [30].
. | o @
Theorem 2.%.6 Let B be an inner matrix in H om and
00
let F ¢ men' Then
(1) PBMF = BRHﬂF
Qo - 0o
(2) F+BHpyn Hrcflo o dis(BF, men) (19)
xn/BHyyn
= | Hyp il = Il PgMy Pﬁ .
Proof: (2) follows from Theorem 2.2.5 and 2.3%.5.

(1) For g € Hﬁxl ,

»RBFg,

PMog = P Fg =BRT

= BRH~Fg

As we have proved in Theorem 2.%.6 that

PBMFPF BRHﬁF

anl eF anl >

and BR 1s a unitary operator. The Sarason operator is
therefore a unitary multiple of the nonzero part of the

A-A-K operator.

Hhxl'QWFanl

(20)

“mel C Bmel T H‘nxl
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The most remarkable result of the A-A-K theory concerns

the one step extension. For completeness we restate the
one step extension of the A-A-K operator and the corresponding
extension in the Sarason operator framework. Thils extension

technique is one of the methods whereby extremal functions

can be calculated.

Definition 2.3.7 Let ¢ (z) = Z?:ltPiZ-i’ ¢ c I'r?xn'
A one step extension of the Hankel matrix [}, denoteda by L
is a Hankel matrix with symbol i’ ., where Y(z) = _ng + -:?2—:-]'-+. . o
~ Z Z
1e€e |
(.PO’&P]_‘(Pz,...'..
f _ | L P2, ...,
¥ L (21)

where ¥ ; are mxn matrices.

The one step extension problem is: Given a Hankel matrix

[7 u(? | < (3, does there exist a one step extension Hankel

matrlx P such that f) is a singular value of [7 with

N

multlpllclty n .

The existence of such a‘{’o and the description of all

of them we will summarize in the following theorem. For

details see [3) [23] or Dym and Gohberg [13].

Theorem 2.3.8 Given a rational function q»of finite
order such that ll[’ i £ (’ the one step extensions [7 as 1in
(21) such that P 1s a singular value of [2’ with multlpllclty

n are defined by those and only those‘Pb € men which are

of the form
.-.()AUB+ C , (22)
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Where U 1s an arbitary mxn isometric matrix.

A% = 1 - B (p%-(SE) (ST By,
2 *y-1 *
B = 1 - 2P, (pP-SO(S0) )T By

= 2 G35 3G TR G

Remark: Let }(g(i),éi)), 1 = 1,250000 ,n} be a set
of linearly independent Schmidt pairsof E; corresponding
to P ; lL.e.

[—;ﬁ(l) =P7'(l) ’ I-’Lf*ql(i) =(9§(i).

Let x = (x4, xl,......) and y = (yo, yl,......) be the

. : : 2
corresponding sequences of nxn matrices 1in Hn

XN
with
_4(1) (2) (n)
xj = (éj ’éj 9 o réa ) ,
e (i) .(2) (n)
1 Il
yj - (7lj ’71']- g o ¢ 0 0 0 ",zj ) ’

j=0,1,2,3,...--. »
and let

x(2) = i-.o xizl » ¥(2) = 3, i 0 Yiz:L

Then x(z) and y(z) are nonsingular for each z ¢ D. For a

complete proof of this property see H. Dym and 1. Gohberg
[13] or Kung|:23] for the details.

From Theorem 2.3.6 if [ is an inner matrix in Hg;m’

OO
F € men then
*

¥*
PBMPP(! = BRHgFPe .
I .
- = = . is the
Let T = PBMFPP . UB BR and let Lf’ BF. If (2,7)
Schmidt pair for (’of H‘i’ , i.e.

H‘finfnﬁ H‘T7I=(’§ .
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It follows that

T4 = UBH?Q =(C>UB7I and T UB"[=(9§ .

This implies that (4, UBQ) is the Schmidt pair corresponding
to F of T. Conversely if (%, UBQ) is the Schmidt pair for
() of T, then (4,7 ) is the Schmidt pair corresponding to

Q of H, . Suppose quis the one step extension of Hq,:

I.f
then the correspondiné’ Sarason operator T of H? is

ot

T = U
~ E [7:5 o
Since

a

¢ (2) = 72+ 4-9(2) = §

for some Y is the form of (22),
Y

SO
Bg(z) = B(z) (-2 + - (2) = F(z).
Letting -
B(z) = 2B(z),
we have )
B(z)¥ + B(2)¢(z) = F(z),
and
BY = E’.
Therefore
3(z) = F(z) +B(z M, »
that 1s
~ = Fplp ,

with B = zB andJE = F + B, forip, is the form of (22).

2
anl
nxl
2 2
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Theorem 2.3.9 Given B an inner matrix inRH )  and

F € RHE;H’ and let the generalized Sarason operator

* _ :
T = PBMFP@ satisfy | Tilgf’ . Then there exists Fy € M

such that if FP = I + BFO then P is a singular value of
A4

P=P M P . with multiplicity n.
~ zB F 2 FI
v
Proof: Let Hq'be the Hankel operator with symbol
§ = BF and by the Theorem 2.3.6 T = UBH‘FP; , where Ug=BR
and

*
| UBH Pol=urtT |ls_f>.

v e

Choosing F, to be the form of (22)

and let

Fo
&f ="z T Tz
then from Theorem 2.3%.8 P is a singular value of H*,

" 4

of multiplicity n. In view of the relation of the Sarason

operator and the A-A-K operator

for some

Letting

then

Y =B F
Y ~;oN
P & QO and some inner matrix B ¢ O
A/ men’ A H‘mxm'
F P
O
F+ BFp = B¢ = Blz~ + <)
Fy @
0 F
= B+ <.

Thus setting'g-to be zB which is inner

and

Remark:

Arsene's

BRH~. = P M P = T
~ gE 7B sz‘zl ~
=0 LC,n=1p .

h T l Iﬂl 6

This one step extension is different from

1-PC1D [5) and is much earier to handle computationally.
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2.4 One step extension matrices

Let F ¢ RHg;n and let B ¢ RHg;m be an inner matrix.

The generalized Sarason operator is
T = PoM P, : H° , @B HS., —> H°_. © BH?
B'F e ¢ Hnx1 ©f Hnx Anx1 © BHpx1 -

Let ||Tll=? s then by Theorem 2.3%.9, there always exists

FO & men such that if E = I + BFO, B = 2B, p- zF then'o

a4

is a singular value of T = P MFPQ with multiplicity n.
In view of the relation between a Hankel operator and the
Sarason operator such an FO can be obtained in terms of a

Sarason-type formula.

Let Pz’ PzB be the orthogonal projections from Hﬁxl
onto Hr?lxl & zngl, Hrixl &) zBHr‘?lxl, respectively. Then we

have the following simple lemma,

Lemma 2.4.1 PZB = PB + BPzMﬁ .
: 2 2
Proof: Pick f € mel O ZBmel’ then PzBf = 0,

It is not hard to varify that Hlixl © zBHéxl can be decomposed
into H2 .1 © Bmel and B(H® ¢ . O zHS c 1) (see Lemma 4.1.2),

i.e.
2 2 2 2 2 2

Hpx1 © 2BHp,q = (mele Bmel) © B(mel C Zmel)
and

f = fl + f2 .
where

¢ H BH a f, 2 2

t xle mxl =~ an € B(H, , ©zH _.).

Then

(PB + BP M~)(f) Py f. + BP Mﬁf .

1
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Let

f2 = Bg for some g ¢ Hr?ucl © zHéxl,
then

BPZMﬁBg = BPZg = Bg = f2 .
Hence

. > >
P of = (PB + BPZMg)(f) for £ € H__q © zBH__4.

On the other hand, for f € ZBHixl’ f € BHSXI and so P,f = 0.

Let f = zBg, g € Hixl;
then

B

BPZMEZBg = BPZzg = 0,

Therefore

PzBf = (PB + BPZMg)(f), for £ € ZBHixl N

The proof is complete.

By a simple calculation, the one step extension Sarason

operator T and T have the following relation
r~7

*

MF+BFOPZP

Ef PzB

*
= (PB + BPZMﬁ)(F + BFO)PZ?

¥ ¥
T + BPZMgFPZP+ BPZFOPZP. (23)

Let

-y
1

and let

*
Z

- ~ *
Tl - BPZMBFP + BP ZFOPZ

.
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2 2 - el 2
Lemma 2.4.2 Let uy € H 4 OF H _, be a maximising

vector for T. Then

| T 4=N0T 1 if and only if h(ug)+Fyuy(0) = 0

and

F

I T od ezl

Proof: If NP l=( THL then | T IdL" £y T, so we have
o~/ ~ O
to show h(uo) + FouO(O) = 0, Suppose h(uo) + FouO(O) x O,

then Tluo ¥ 0., Since

2

2 2 +||Tlu )

Ty =4 T

o d

S0

“E f >uTu . This is contradiction.

Conversely, if h(ug,) + FOuO(O) = 0, then Tyuy = O,

and

2

2 = || T n2||uo|| )

2
I E‘uo I~ = I Tuy il
thus

} Tug, I = ¥T Hhugn,

By hypothesis |L£r|u6'l'é‘lT"’ this implies | 2 I ¢ u T,

But T 8 € WT4. Therefore W T =W T A,

~ ~

The proof is complete.

In fact, we also require F to be a singular value of

T with multiplicity n. This means that § Th = ,ng|u4.u -
N e O

and the nullity of P? -‘2320 is not less than n-1l, where

= : 2_m¥% 2 _m*
To=1 us. Let us denote the nullity of ?-2020 by'p’(P 2020)
In order to characterize the required F, a well known result

on the factorization 1s used.
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Lemma 2.4.% Let K, G, H be Hilbert spaces, and

AEé L(K, G), Be L(K, H). Then
A*A £ B*B if and only if there exists a contraction

X¢& L(H, G) (I X8 £ 1) such that A = XB,

Proof': see Lemma 2.1 of [ll].
. A m
Lemma 2.4.4 Let Q € L(uo ), X € L(uo , C ). Then

J(Q (1-XX)Q) » J(1-X X).

Proof:

V(Q (1-X"X)Q) ®/(Q) + dim(Ker(1-X X)n Range Q)
L *
= dim uy - dim Range Q + J(1-X X)
*
+ dim Range Q - dim(ker(1l-X X)V Range Q)

> J(1-X X).

Theorem 2.4.5 Let U, be a maximising vector for T.

M

Then P is a singular value of T with multiplicity n, and

I 2! =T Y =‘0, if and only if FO 3 men satisfies
(1) h(uy) + Fou,(0) = O, (24)
(2) there exists X € I&udr, Cm) such that || X i= 1,
V(Q*(l-X*X)Q) > n-1 and hy + Fotpy = XQ (25)

where

h=h|-'- £ = L and T.=T/]_ <
O uo’ O Euo 0 Un

Q*Q = 92 - T;TO , where Q ¢ L(u(;' ) o

Proof: () 1s a singular value of T with multiplicity n
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and lITll=eifand only ifITll=F, llTlu-Ln'--P and
Y ~ o~ 0

2 * . 2 *
if and only if ¢ - TaT~ > 0 and Y(° - TaT.) 2 n-1
y @ T o0 7 ne yle = Ltozo/ = BTt

2 * : : A
p - PN > 0 is equivalent to

2

(hy + FOEO)* (hO + Fofo)é o~ - TSTO. (26 )

Let Q € L(u) ) be such that Q Q = Pz - 7,7, . Then by

Lemma 2.4.3, (26) holds if and only if there exists
A .

X € L(uo , €™), 0 XU =1 such that hy, + Fo&y = XQ.

Moreover,

Y (p° = ToT0) = VI P2 - 79Ty =(hg + Fo€g) (hg + Foq))
=/(QQ - QX XQ)
=V (Q (1-X %)Q)
y /(1 - X X),

Therefore, combine Lemma 2.4.2 and the above to complete

the proof.

Observe from (24) and (2%) that X satisfies a finite

number of relations of the type Xxi = y.3

if g € ug' and g(0) = 0, then

(XQ)(g) = (hy + FyE)(g) (27)
= hy(g) + Foa(0)
= ho(g),
L §

and if g € u, and g(0) = uO(O), then

(XQ)(g) = (hy + Fy€)(g) (28)

ho(g) + Fouy(0) = h(g - uo).
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Indeed, if X ¢ L(uy , €") such that \ Xu= 1, J(1-X X) 2 n-1

and satisfies (26)&(27), then we can construct F, such that
(24) and (25) are satisfied. In other words, f is a singular

value of T with multiplicity n and & 2 il =p. Before we prove

\

our main theorem, we need two simple results.

Lemma 2.4.6 -‘ ¢(g) @ g € ug' }g c® if and only if Up

is a constant, where u, € Hﬁxl - §0%.

1
Proof: I1f {ﬁ(g) : g € uo} is properly contained in C",
then there exists a € c® such that a £ O and
i

alé¢(g), for all g ¢ Uy

Let g(z) = a 3 then a 1¢(g), so (a, g(0)) , =0, 1.e.
C
1 * dz _
mi E(Z) g(z) 7 0,

. : 1l .
this implies a € uj , thus a = ku,, i.e. .?‘...(Z) = kuo(z),

therefore, uo(z) = -%—- is a constant function.
Conversely, if uy is a constant function, then uO(z)auO(O).

Let g & u;, then g L Uys SO
1 * g(2) 4, -
m§u0<2> 7z 4z = 0
C

l.€.
u,(0)"g(0) = 0 .

This means uO(O) 4 {é(g) s g € ug} so that

) s(g) : g ¢ u, 1§ .

Lemma 2.4.7 et X ¢ L(ug . ¢")., Then

J(1 -XX) =/ - XX ).



Proof: Define a mapping j: Ker(l-X#X)-————ékKer(l-XX*)

by
j(f) = Xf.

Then the Lemma is proved if j is bijective. First, let
us show the injectivety; if f « Ker(1-X X) and Xf = O,
%
then X Xf = f = 0., Surjectivity, let g € Ker(l-XX*), then
*
there exists X g ¢ Ker(l—X&X) such that j(X*g)=g, for
*
(1-XX )g = 0, then

»*

. .3
i(Xg)=XXg=g,

and
(1-XX)Xg=Xg-X3XXg
= X*g - X*g = 0 ,
Theorem 2.4.8 Let X € L(uéL . Gm), I Xll= 1 and J(l-X*X)é-n-l
and

XQ(g) = h(g) if g € uj , g(0) = 0, (27)

XQ(g) = h(g-u,) 1if g ¢ uo"'. g(0) = u,(0). (28)

Then there exists FO € men such that

h(uo) + FOuO(O) =0 ,
and

hy + Fpé€y = XQ

Furthermore, if F = F + BF,, B = zB, E= z(?, then P is a

iy

*
singular value of T = PZBMFPG with multiplicity at least n.
HN

Proof: We consider two cases.

Case 1. When u, is not a constant function, then by
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Lemma 2.4.6 - {é(g) : geug } = C".

Define

Fo(e(g)) = (XQ - n)(g), g €uy ., (29)

F, is well defined, for if &(g) = 0 = g(0), then (XQ-h)(g)=0.
Therefore hO+FOEO = XQ. Since {ﬁ(g) : g € u6-3r= Cn, we

can pick up g & uj such that g(0) = u,(0), then by (28)

and the definition of FO’ we have

Fo(uo(o)) = Fo(g(o)) = Fo(E(g))

(XQ-h)(g)

= XQ(g) - h(g)

- h(uo)

l.Co

h(ug) + Fy(uy(0)) = 0 .

Therefore F, satisfies (24) and (25).

Case 2 , When U ils a constant function, then

uy(0) Lig(e) : g € uy §.

Define

Fol€(g)) = (XQ - h) (g) g€ uy

(30)
and Fy(uy(0)) = - h(u,).

This is well defined on €%, and satisfies (24) and (25).
From Theorem 2.4.5 and the above it follows that f‘is a

singular value of one step extension Sarason operator

T = P, pM with multiplicity at least n.

f e

3*
F+BFOPZP

The proof is complete.



CHAPTER THREE

AN ORTHOGONAL DIRECT DECOMPOSITION

OF

P 2
mel'c>BHhxl

Introduction:

In Chapter two we have already set up the theoretical
part of the generalized Sarason operator T = P MF%B acting
2

nxl C—)? anl to mel o' Bmel' The matrix computation

of the operator T is rather technical. There are several

from H

problems that need to be solved:

(1). Finding a suitable direct decomposition of
Hr121xl e BI—Ifml in such a way that the Gram matrix of this
decomposition can be calculated easily. 1In this chapter,
we will give a full description of a decomposition which
generalizes Young's algorithm [4]). Theorems 3.2.2, 3.3.1
and 3.3%.2 are the main results.

(2). Forming the projection Ppe This problem can be
solved but the technical details are laborious. The 1idea

comes from the fact that Hrixl ) Bngl is contained in

g2 2 . *
Ho w1 eFmel’ hence T can be written as T -=T|‘PFMFPF, where

P MFP[B is the generalized Sarason operator acting on melemexl
whlch is the direct sums of m copies of H GF H2. Hence the
calculation of P MFP? can be effected applying Young's
algorithm to every entry F, and this does yield an efficient
method. Therefore finding a computational formula for'E'is

extremely important to us, and it is fortunate that there

is a formula which is neat and simple, depending on a
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recursive relation. This subject comprises the main part

of the next chapter.

Contents:

3.l An operational calculus.

3¢l The standard decomposition of Hr%xl e BHxixl'

3¢9 The Gram matrix of the decomposition.
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2.1 An operational calculus
Let @Hm be the set of all polynomial functions in D
and let
Space

P>~ be the, of all mxn matrices with elements in PH™ .
Let. N and E be in ®H’ ; a matrix M in said to be a

common left divisor of N and E iff there exist N'and E,
in(PHg;n such that N = MN1and B = ME; both N and E are
said to be right multiples of M; a matrix L ¢ ®H  is

said to be a greatest common left divisor (gcld) of N and E iff

(1) it is a common left divisor of N and. E, and

(2) it is a right multiple of every common left divisor

of N and K.
When gcld I is unimodular (i.e. detL = 1), then N and E are
said to be left Ccoprime e define similarly a greatest common
right divisor (gecrd) and right coprime. Consider ¢(z) in

00 : -
RH .me If we write ¢ (z) as a matrix polynomial fraction

¢ (z) = N_(z)D_(2)™"

D (2) 7 Ny (2),

then there can be many right and left matrix fraction
descriptions(MFDs) of (z); an MFD y(z) = l\I(:a)D(z)"’1 will be
said to be irreducible if N(z) and D(z) are coprime. Irre-
ducible MFD of Y(z) are not unique, because if N(z)D(z)-1 is
irreducible so is N(Z)W(Z)(D(Z)W(Z))-l for any unimodular

W(z). Suppose that we have an irreducible right MFD:

P (z) = N(z)D(z)™,
then the poles of Y(z) are, by definition, the roots of
detD(z) = O, and the zeros of ¥(z) are the roots of detN(z)=0.

It is well known [37] that for any mxm rational matrix

J(z) having all its poles outside the unit disc there



47

exists a left factorization:
0
P(2) = @, (z) Yy (2) ,
and also a right factorization

w(z) = P (2) ) (2) ,

where LPE(Z), \.P}O(z), LP;(Z) and L{’go (z) are in RH;?{m,

and they have the following properties:

(1) LPE, L,Dg are inner matrices and thelr zeros are the zeros
of P(z) located inside D3

(2) LP%?,LPg) are maximal phase, i.e. none of their 2zeros

and poles are inside 9 D.

We will show in the next section that maximal phase factors
play no role in our problem. A detailed algorithm for
obtaining an irredicible MFD one can find in [43][31] (21].

2

Let c"®H denote the space of mxl column vector

functions on D with entries belonging to H2. Cm®H2 is a

Banach space with respect to the norm

_ . 2 \%

|
e eH

where fj denotes the (j,1l) entry of f.

Suppose f € C"8H®, f = (fy,f,,... , £ )" , where
OO0 .
f. & H2 and f.(z) = >, ag'] z%, Then
3 3 =4 1
2 L 2
| £y = | £
Iem@HQ ;;Z=i y Il H2
. 3 SR "t (e19)F. (e19)ae
i=1 2T J J
0
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= _1_3 Eafj(ele) fﬁ(ele)de
0 =!

1 2T
~X trace(f(ele)f(ele)*de

2W 0
2T
: 2 2
_ 1 16 _
= ZWS I £(e™) U, = b £,
0 ¢
Oo _ )
Thus if g(z) = :Z.aizl, where a. = ai(1 ,ai(2),... .,aim))T,
A=0
2 -
then geHy 4 and I £ me 2 = g, | 1, ract cBeH? and

H§x1 are isometrically isomorphic. The isomorphism can be

characterized as following

o2

2all) gl

A=0

00
- ! = z aizi o (2)
E A=O
& .
Z_éa&m) 1

We will use this isomorphism ¢ throughout the thesis without

mentioning afterward. 4e,82z) |i=1,2,..,m 3=0,1,..., } is

2

the standard basis for ¢"on , Where ei@zJ denotes mx1 column

vector with values zY at i-th coordinate and O elesewhere, we
O 1

consider this basis ordered as following e1@z y €482 7,04,
e1ezm, ...... ,eZGzo,e2®z1,.......... Therefore the isomorphismn
¢ can also be characterized as follws
iy o _
L gei B z¢Y) zY 8 e; (3)

Roughly speaking ¢ is a permutation of the basis.
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When Tc:L(H2), then RH® contains functions which are
analytic on some neighborhood of the spectrum of T, ¢(T).
Let U be an open subset of C whose boundary C consists of
a finite number of rectifiable Jordan curves. Suppose
U 26(T), ¢ e RE®, then UUC is contained in the domain
of analyticity of ¢ . The operator PY(T) is defined by
the equation

P (1) = 5= ® @(2)(zI-17) dz . (4)
<

The integral exists as a limit of Riemann sums in the norm
of L(H?). This operational calculus can be generalized
directly to any ¥ ¢ RHg;n, which is analytic on & neigh-

borhood U of the spectrum of T, F(z) = [Fij(z)] nxn 25 follows:

F(T) = [Fij('T)] e

where |
i -1
Fij(T) = 5 Fij(z)(zI-T) dz
C
or equivalently,
F(T) = 557D F(2)8(2I-1)"'dz,  (5)
C

Dy the definition of (5) we have some immediate results which

will be useful in the sequel,

Lemma 3.1.1 Let F € RHg;n, T GI(HQ) and let F be analytic

on some neighborhood U of the spectrum of T. Then

F (1) = [RM(D)] "

Proof: Let C be the boundary of U consisting of a finite

number of rectifiable Jordan curves.
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lF(T)]* ["'L éF(z)@(zI-T)qdz] *

2T
C

L §[F(z)]*@(§1-m*)'1a§

T §F (Z)S(ZI-T )~ 145

= F(T )r

F
where C is counterclockwise.

Lemma 3.1.2. Let F,G ¢RHD , T¢ L(H°) and let F,G be

analytic on some neighborhood U of the spectrum of T. Then

(F-G)o= F(T)-G(T).
Proof: Let F(T) beevaluatedby an integral around
a suitable curve C,. As for G(T), let it beevaluateddy
an integral around a curve 02 which lies entirely in the

interior of 01.

O« u — g

F(T)G(T) = [ 1}—§F(z)®(zl-'_{')-1dz] [2“" G(u)@(uI-T)_1du]

Ca

= (2“'1)-2 § §F(Z)G(u)@(zI-T)-1(uI-T)_1dzdu
c. VC,

(21\'1)_2 E% F(z)G(u)@ — [(zI-T) 1-(uI T) 1]dzdu

(27i)~° § F(z)@(zI-T)'1(§ G(u)@(—-—")du)dz -
C, C

2

(2Wi) 2§ §F(z)®(-—-—)dz) G(u)®(ul-7) au
Ca
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(211‘1)-2 ﬁ ( §F(z)® 1 dz)G(u)®(ul-T7) 14u
C, ¢,

(2wi)~2(2mi) <§ P(u)G(1)8(uI-1)" 'du

Co

.;L, F(u)G(u)®(uI-T)" 'du

QTL Cz
= (F-G)(T).

In the above calculation, we have used the functional equations
of the resolvent and the classical fact that an integral of
the form §C( M-F )_1d°< 1s 2T1 ife lies within C and O if

(3 lies outside C. The proof is complete.

For BG:RH there exists aije-Rmem such that

B(z)+ adjB(z) = adjB(z)-B(z) = (detB)(z) I = (3 (z)Im,
where ? is a scalar analytic function. It is easy to show
that if B is 1inner, then(;I, adjB are also inner [27].
therefore, it follows from Lemma 3.1. 2, for any Te*L(H )
and B is analytic on some neighborhood U of the spectrum

of T, that

B(T) - adjB(T) = ( E&I)(T) = Im ® {*(T) = $(T),

where IC E(T) denotes the diagonal operator on C 6H2

with entries Q(T), and T = I,m ©@T. In particular, when

N

B is unimodular, then B(T) is invertible.

Lemma3’3.1.3. Let W ¢ RHri)xm be unimodular, T € L(H‘?) and

let W be analytic on some neighborhood U of the spectrum

of T. Then W(T) is invertible.

Proof: Let W be unimodular, then detW(z) = 1, and

adjw(T).

w(z)~! = adjw(z)/detw(z) , by Lemma 3.1.2, W(T)™



52
The followling ¢ is the isomprphism from cg@HQ to H$x1

defined in (2) above.

@
Theorem 3.1.4 Let (pE€ Rmem , Let S be the backward

2

shift operator on H- and M_ be a multiplication operator

Then
(1) c (S )L © = M, -
(2). If ¢ is inner, then . LF*(S)(P(S*)L* = IHr?uﬂ :

(3). If (is inner, then Range(IH[?m_l -L(P(S*) (,0*(8) ¢
* *
= Ker ¢ ¢ (S)c .

(4). If ¢is inner, then Ker « (.F(S)L = H§x1 e L'PHT%X“ N

Proof: (1) Apply both sides to the orthonormal base
{ngei . j=0,1,---,i=1,2,---.,m}

i

L (P(S*)(ei@zj)

= L (Jzﬁ_ ?th(u)@(ul-s*)-1du)(eiezj)

(L(s ) ™) (zj@ei)

/ (-;—ﬁ_ §Jctp(u)ei@(u1-:s*)'1 zjdu)
J

e ?:P(u)ei@ 2 qu )

= ¢ (P(z)e;829) = p(z)c (e;827)

= Lp(z)(zjeei) = M (zj@ei) .
J
Z

Uu-2

1

and the integral is taken counter-

. 4
where (ul-S ) 1, o
clockwise round the curve C EBD ]

(2). If Y% is inner, then
. ‘-P*(S)(P(ST)L s L <,o*(S) L <P(S*)1, .
_ [L‘KS*)L*] *[LCF(S*)L*]

M M =M, =1I,2

PP P tmxy



(3). Let h ¢ Range(I 2 -,P(S )¢ (S).) ;

mx 1
then

h = (Ig2 - (S )ep (S)e )8
mx 1

2
for some femel’ and

L £ (S)c h

= (L@ (8)d -,0(8)

* ¥*
This implies h € Ker (#(S)c .

)f = O,

(cp(S) - L (8)eS )p (8))f

* 3 * %
Conversely, if h &€ Ker ¢ #2(S)c , then (_cp(S)(_ h = O,

thus . x .
¢ P(S )p (S)¢ h = 0O,

therefore

h=nh-,.¢(5 ) (S), h

mxl
The proof of (3) is complete.
(4) follows that

* *
Ker,« (S),

Ker (¢ ¢( S* )L* )*
A

* 2
Ker M? = ((PHle)

2 2
= Hpv1 @PHpxp

3,2 The Standard decomposition of Hﬁxl

© BHr2nx1
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Let B &R}{’?&m. The Smith-McMillan form [6] of B(z) is

given by B(Z) = A(Z)M(z)C(Z)r

where

(1). A(z),C(z) are unimodular polynomial matrices.

(2). M(z) has the form
el(z) ez(z)

v, (z) ' ’LPQ(Z)’

M(z) = diag(

for some positive integer t, and

(12 -¢¢(S )¢ (S)e )h ¢ Range(I-cXS ) (S) )
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(a) ei(z) and ’lPi(z), i=1,2,...,%t are monic
coprime polynomials;
(b) e;(z) |e, 1(2), 1=1,2,...,t-1;
(c) ’wi(z)lfwi_l(z), i=2,3,.00,t , and‘Wi(z) is
the least common multiple of all the denominators

of the entries of B(z).

Clearly the polynomials ei(z) and’wi(z) are uniquely determined

by B(z). We can factor M(z) as follows:
M(z) = Wy(2) " E (2)

= B,(2)¥.(2)7" .

where

Wo(z)
EE(Z)

diagfwl(z),‘Wz(z),...,’V%(z), 1,1,¢00,1),

diag(el(z)’ 32(2)9-"’ et(z), 0,0,...,0).

There are similar expressions forqpr(z) and Er(z).

Let us define

Dg(2) =\Py(2)a(2)™", N,(2) = Ey(2)c(z),

Since, for i=l, 2,....,%, ei(z) andqyi(z) are coprime, it
follows that’qhﬂz) and Eg¢(z) are coprime matrices. The
same holds for DE(Z) and Nﬁﬁz) because A(z) and C(z) are

unimodular. For. the right coprime polynomial factorization,

we consider

D.(2z) = C(z) ", (2) , N.(z) = A(2)E,(2).

From (6)(7) it follows that the finite poles of B(z )

are the zeros of the polynomialﬂyj(z) in its McMillan form

(6). Similarly, the zeros of e;(z) are the zeros of B(z)s

Therefore B(z) has an irreducible right MFD

B(z) = Nr(Z)Dr(Z)_l . (8)
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Moreover, 1f I\T(Z)D(z)_1 1s another irreducible right MFD,

then there exists a unimodular U such that D(z) =Df(z)U(z),
N(z) = Nr(z)U(z). This property can be easily proved by
the fact [ 21)that N(z) and D(z) are right coprime if and
only if there are polynomial matrices X(z) and Y(z) such
that X(z)N(z) + Y(z)D(z) = I . In other words, the irre-

ducible MFDs are unique up to multiple by unimodular matrices.

Theorem 5.2.1 Let B & RHg;m be an inner matrix. Suppose

we have an irreducible right MFD

B(z) = N(z) D(z) ',

Then
2, . * * * *
H +©OBH ., = Ker¢ B (S)¢ = XKere N (S)e .
Proof: The theorem is proved if D*(S) is 1nvertible.

Let the Smith-McMillan form of B(z) be

B(z) = N.(2)D.(2)7 "= a(2)E.(2)[c(2) W (2)] ~
as in the form (6)(8) above .
By the uniqeness of the irreducible MFD,
D (2) =D_(2z) U(z)
for some .unimodular matrix U(z) and detDr(z) = detD(z).
This shows that the zeros of D(z) are the zeros of Dr(z).
Since B is an inner matrix, all the poles of B(z) are
outside the unit circle. From Lemma3.1.3 C(S)-Ly%(S)=Dr(S)
ig invertible, and
B (z) =[N(2)D(2)71] 7 =D (2)"N (=) ,

SO
B (S) = D (S) 'N(S) .

It follows that

* %
Ker ¢ B (S)e” = KereN (8)e .
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Remark: D(z) is called maximal phase, and this function

plays no role in our problem. N(z) is called the numerator

of B(z).

Tlet B € RHgim be an inner matrix with irreducible MFD

B(z) = N(z) D(z)" "
where N(z) is a regular polynomial matrix of degree k, i.e.

K
N(z) = By + B4Z +eveevoe+ By 2o , with det B, 0 . (9)

Such an inner matrix we will call r-inner matrix . It is

* ¥*
not hard to show that Ker B (S)¢ = Ker ;N*(S)L* i1s the

space of all vector valued sequences x = (xo,x1,. ceees) € !, r%x1+
satisfying the recurrence relation
v} ¥ * +*
BoX, + ByX, 4 +eeececeee+ B _ux .\ o + B x . =0 (10)

for r = 0,1,25c0cccee o

¥ %*
Clearly Ker 2B (8)¢ is invariant under the backward shift

operator S, that 1is
N
¥ ¥* ¥ ¥
S( Kery; B (S)e ) € Ker¢B (S)e .
IN

It is helpful to have a more explicit decription of

iﬂ o) Bng.l in terms of the coefficilients

* *
KerZB (S8)¢ = H
of the numerator of B(z), and this is quite important to

the problem of decomposition of Hr121x1 © BHl_‘?]x1 o

Theorem 3%3.2.2 Let B € RHg;m be an r-inner matrix. Then

H2 1 © BH;fm1 1s the subspace of H2

mx mx 4 consisting of all rational

functions of the form

k-1
AP S m
N(Z) ( %____O TJ(Z) xj ) ’ xjé C y (11)
whereﬁ . . . 1k . .
N(z) = B, + B _42 +veeeee+ B 20 = 2 N(1/ Z)
_ »* 3 jt-l
Tj(z)_ B.kz + Bl'(tz toeeeesee + B*Zk-1 .

J-rl
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* * o5 i
Proof: Let X € Ker ¢ B (S)¢ and X(z) = Z xiz

By (10) {x }‘1 o Satisfies the recurrence relation

B* B* %
Oxr + 1xr+l +e00e ot kar+k = 0

for r = 0,1,2,

Then by a matrix calculation it is easy to verify

) * j+1 k
B, _ _ 32 X(z) = Bk—a nZ° + Bk-jxlz tooot Bk L XgagZ tee
and
(Z}'.{ . j)X(Z) RZ. (B* 29 % +B z’j+lx + +B. L 2%x
J=0 k-3 j=0 *=J° 70 k-] L7 7k=3" Tk=j]
Now let
A K
N(z) = E‘Bk-jz

j=0

S * j+l ¥ k-1
Tj(z) = B, z° + B _2 +eeeset B,
j=0,l’2’illlli i-e-

A k"l
N(z)X(z) = jZ'O Tj(z)xj.

AL 21
By the hypothesis that B is r-inner matrix, N(z) ~ is in mem

This can be proved as follows : Letcil, 2,....ﬁ¥8 be the zeros

detNr(z) = det(A(z)Er(z)) = detE (z), As in (7),

it follows that each ej(z) can be written as a product of

of detN(z)

linear factors

: £30
ej(z) = El(z-dﬁ) e

By assumption, IO(P.K 1l and N(z) is regular matrix of degree

k with dettBk #+ 0. Thus

2 -
% kg
and
det(z dlag(el(—%—)*, eZC—%— *,... ooy emc—%-)*))
- K.
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A(z) is unimodular, so is A(—%—), and

defﬁ(z) det(sz(—%—)*)

Il

det(zkElt—%—)fA(—%—)*)

k 1 (% 9%
det (2 E, (=) )det(——)

=E
-

This means that all the zeros in det N(z) are outside the

unit disc, and 'N(z) -1 will be in HZ® Therefore X(2) can

mxm*
be written in the following form:

X(z)

A _1 k
N(z) ~( % Tj(z)xj)
§=0

. 2aili(z) " z 1, (2)x,)

detN(z)

_ (EQM T (z))x

j =0 detN(z)

This completes the proof.

Remark : When m=1 one can see [4][35][§6J[46]_

From the observation (11) we have a direct decomposition

2 2 . .
of H- , @ BH ,, and each summand can be identified with ¢,

2 2
Indeed, let G._.j be the subspace of mel © Bmel defined

Xj+l=' ® '=Xk-l



59

and let

_Zj s O — Gj

be defined by
(T x)(2) = xz9 + 0(z5)x (13)

xé&l,zéD.
I+ follows from Theorem 3%.2.2 that

Cij)(Z) ='ﬁ(2)'1T,j(Z)x_ (14)

This map is well defined, linear and 1-1 onto. Let us show
injectivity; the remainder can be seen easily. If '?sx =0,

i.e. (‘ij)(z) = 0 for all z€ D, by definition

(N(z)"'1,(2))x = O,

or equivalently

*

K-1
412 )x= O

( B;Zj*+.Bkt1Zj+1 +ecesst+ B

and det B;-a det Bk ¥ O imples x =0 ,

By means of the invertible mapping'?j we can therefore

.- 5 and this decomposes H§x1 & BHEDH into

J
direct decomposition G, @Gy  ®ee-.. ® G _4

identify € with G

{?j(ei): j= 0y1yeeesk=1, i = 1,2,...,m} is a basis for

2 2
H 4O BH _, , where ?'j(ei) denotes the i th column of the

matrix function ﬁ(z)-1Tj(z), i.e.
T,(e;)(2) =L W(2) M1 (2)] ey

We consider this basis ordered as'76(91), 2b(e2),....” Tb(em),

-(1(91)’ 7;(62)!'--‘--, Tl(em),.............- ’ and will

: : 2 2
call this the standard basis for me1 Q, Bme1 « These

symbols will be used throughout the thesis without further

mention.
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The matrix of the restriction of the backward shift

2 2 :
,§B °f,§ to me1 o Bme1 with respect to the standard

: : . *
b351s.[?5(ei)} , is the companion matrix Cg* of N (z):

FOr j = 1,2,.0.9k=1, 2€D , x€C"

Sp( T4(x)(2)) = 55 ( N(2)™'1,(2) x)

Since for j 2 1, Tj(O) =0, so for j 2 1

Sp( T4(x)(2)) = o (N(2)7'2(2)x )

A _ * 3 * _J+1
N(2)7TT (DB Been ™ et PRgen® g

&

= N(Z)-1(B T +B, 123 + . +B;zk'1-3; k=1)x
=(N(2)7'1,_,(2) - N(2)7'B}z"") x
= T, (x)(2) - N(2)" "Bz (B, Bx)

T_x)(=) - T_,(B, Bix)Nz), (15)

while
Sp( Tolx)(2))

S (ﬁ(z)'1To(z)X)

(8(2)"'1o(2) - §(0)'14(0))x

x ~1 %

( N(z)"'1,(z) - B, B, ) x

ki
Z
= -
&
- L N(2) N (2y(2) - N(2))x
N (2)7( -3*5 k‘1)x |

= N(z)™" B 21 (-B}By x)

-1
= -zk_1('B BO x)(z) . (16)



61
Putting (15)(16) together we have the following result.

Theorem %3.2.3% Let B € RHg;mbe an r-inner matrix,j§B

be the restriction of the backward shift operator S on

Vi 2 : :
x4 © BHm_}E‘I' The block matrix of SB with respect to the

standard basis {‘(j(ei) P 3 o= 0,1,2,00,k=1,1= 1,2,3,..,m}

H

»*
is the companion matrix C N* of N , where

¥* ¥* %
N"(Z) - BO + B:z RN s Bka

0, , I ,0 0
0, , O I ?

Cp* = E ; ; . (17)
0, - -~-- N

L% gt B, B
""'Bk BO’-k 1,---.----’-1{ k""1

Remark: When m=n=1, there are three different bases for
p 2 : .. /
me1 G Bme1 which were.given by Young and Ptak in [4] [35]

and the matrices °f,§B with respect to these bases were

also discussed there.

3.3 The Gram matrix of the decomposition

. 1l 2 2 : . .
Pp ¢ Hooq — Hpgq © BH_ .4 1s the orthogonal projection

operator; then P; : Héx.l S BHl?m1 —_— H§x1 is the natural

injection and PBP; is the identity operator on ng.‘ O BHI?].X‘l’

. * : . : 2
while PBPB is the Hermitian projection operator on me1

which maps each function onto its projection on Hrix1 © BH§x1.

%
Now by Theorem 3.1.4: B(S ). * is the operator on H§x1 of
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multiplication by the inner matrix B, and is an isometry,

* ¥, *
so that ¢B (S)B(S )¢ 1is the identity operator. Hence

* . * % _ _
. B(S )B (S)¢ is the orthogonal projection operator on

, and so Ing
1
orthogonal projection on

i
*. % * *
[Range .B(S )¢ ] = Ker ¢ B (S)¢°

* % . * *
the range LB(S*)L -¢B(S )B (S)¢e 1is the

g‘:ﬁ
0
4

Thus

PLPp = Ig2 - ¢ B (8) B (S)e ", (18)

Let ¢"@CX denote the direct sum of k copies of CV.
Define a mapping K : H2 —> Cm@Ck

~ mx 1
by
= y
K( EEO X ;2 ) = ( XgsXqpeeeeayXy_4)  (19)
Thenzg* is the natural injection of Cmﬁck into H$x1 and
*
KK* is the identity operator on Cmﬁck, and K K is the
Ns v N Ny
Hermitian orthogonal projection operator on ng1 with range
Ker Sk. When m=1 we write K instead of K. Let
N N
. k 2 2
% : Ker§ — me1eBme1

be the linear mapping defined by

k=1y,

P (X-+X12 +eoootXy 42 7%(xo)(z)+.....+ £§1(xk_1)(z)‘(20

The property (11)(14) of the standard basis can then be written

- ¥*
VR 45 (21)
Hence we have
-1
¥ - - 3
(v )y t= y 1y
= KP: P.k¥
~" B "Ba ¥ . % * *
=K (I -¢B(S)B*(8)¢ )5

= KK* - KLB(S*)B*(S) L*K*
N N N N
%* %* %* ¥*

NS
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* * _ ¥ ¥ ¥ _ X
= Igmgek - [XeB(8)e X' ] [KeB(S)e K1,

Now use the integral

formula for B (S) and the fact that

.-.I.{r ¢ 1s the mxm diagonal operator with values K : H2-—-—) Ck,

l.e.
K ¢
£\
We find
K.B (S) ¢ K
~/ o
*

Kk
can infer (22) that

I m@ K,

C

= (I,meK)( 24-“_1 B*(z)@(zI-s)"1dz)(Icm@K*)
c

B (2)8K(zI-8)" X" az
c

B%(z)@(ZI-KSK%)'1 dz .
C

1
2mi

1

oM (22)

Making suitable choices of curve C , we

(p ) )= Igmgk - B (s ) B (s,)

% %
= I mgnk - B(S )B (S, ),

(23)

It is easy to calculate that, with respect to the natural

basis in H°, {29: j=0,1,2,....k-1 } of Ker S*, S_ has matrix

s 1y Oyeennnn

Theorem 3%.3%.1

let Y be the operator from Ker S

by((20). Then
%* -
(p7p )]

where *
S =KSK ®

K

O O
O’ O’ 1"'.....’0
' ' |
| I

1

* & ¢ & ’

,0 kxk »

Let B € RHg;m be an r-inner matrix and

k
N

onto HS ., @ BH. ., defined

Igngck - B(S,)B (S,) (24) ,
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As a matter of fact U*V 1s the Gram matrix of

the standard basis {"%(ei) |5 =0,1,2,...,k=1, i=1,2,..,n}

The Gram matrix of {Tj(ei)} is the operator

k k

E(To, ?1,--1---’ ?k_1) . Cm®C — Cmac

»

with block matrix whose (i,j) entry, say Eij , is the

operator on ¢™ defined by

G.. : ¢% ——> o
~ L1J

or write the operator in matrix form:

'Cg?o, N
8(7gs Tyreees @ y) = 71* o =---- Ty (k-1
I -
*’ l-l'
CGe-1lo, ... -1 C g1

This definition indeed generalizeS the Gram matrix. In
, . s 2 2
particular, according to the decomposition of me1 &' BHm_x1

the Gram matrix can be expressed by B.

Theorem %.%.2. Let B € RHgkm be an r-inner matrix,

m, ~K Y 2
and let Y be the operator from C'@C™ onto Hov1 © BH 4

defined by (20). Let E be the Gram matrix of {'Cj(ei)}.

Then %
G= y Vv .
”~g
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Proof: Let Pj be the j-th coordinate projection from
CmQCk onto ¢m; then

k=1
’/ =j§' TJ PJ;
and
e (ST S TR )
= P .
V‘) ;]=0—[‘-J d R=OT£ 4
k-1 k-1
= Z PJ'(J)( Rz 7,5, )
- 22T
y 9 J Jd 2 £

* _* _
It is easy to see that.Pi'?i_l'zj_le is exactlyM(%i:j .

%
Therefore G = y J .

~

Remark : When m=n=1, one can see [44][45].
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CHAPTER FOUR

COMPUTATION OF PROJECTIONS

Introduction:

All the notation of Chapter two and Chapter three 1is

retained. In this chapter we study the relation between

2 2 2 2 : :
two spaces mel G Bmel and mel G—)Fmel. Since ﬁ is a

gcalar inner function in H2, the space Hr?ucl e‘BHslxl can be

indentified with the direct sum of m copies of H2e FH2, i.e.

Ho 1 ©pHo,q = (H° @pH7)8C™. In view of this important

property the generallzed Sarason operator T = P MF%! can be
formulated as TT FP , where T is the orthogonal projection

from mel ep mel to mel o Bmel' This is the key idea in

our matrix computation of the operator T. In this way T

can be calculated very efficiently. With respect to our

> > 2 >
Hyx1 ©f Hypyy 8nd Hppq © BH 4, T is

expressible by a block matrix in terms of the coefficients of

decompositions of

the numerator of B(z). Theorem 4.2.1 is the main theoremn.

Contents:

4.1 The direct decomposition of ngl eEH]ixl

4.2 Computation of projections
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, L 2 2
4.1 The direct decomposition of H .9 ePmel

Let B be an inner matrix in R The determinant

xm°®

of B,F, 1s a scalar inner function in Hu). An inner matrix

and its determinant are related in the following way

2 2
B Hny1 & BHpyg
It follows that
> >t
(BHhxl) 3 (€mel) .
In view of Theorem 3.2.2, this means

2 i
Hxl © BHT?lxl = Hr?lxl S PHrixl (1)

or
Ker LB*(S)L* ¢ Ker ¢ g(S)I (.*

where ¢ is the lsomorphism Ifrom c™H° onto Hﬁxl' Let Kg,

% * * *
]E(F denote KersB (S)¢c and Ker . 8 (S)I. .

Then

4.

K KB<3'KB‘H K

P

3

Kp ® (2B(S ). ) Ker ¢ ad; B (S), (2)

In order to show the identity (2) we need the following

simple lemma.

Lemma 4.1.1 Let B ¢ RHg;m be an inner matrix and let

adj B(z) denote the adjugate of B(z). Then

¢ (Range B(S )n Ker(adj B (S).B (S)))e
= ([ B(S*)g_*) Ker ¢ adj B*(S)L* >

¥*
Proof: Let h & (¢B(S )e') Ker cadj B (S)e

then . %
h = (ZB(S )(- )(f) ’

where
¥* *
f ¢ Ker ¢adj B (S8)¢, i.e cadj B (S)c £ =0,
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and

(adj B (8)< )(¢B (S)e h)

(adj B (S), (B (S)C¢B(S )C £

,adj B (S)B (S)B(S ) £

Ladj B (S) £

O .

This 1mplies h € Ker ¢ adj B*(S)L* and h € Range.LB(S*)L*.
The other hand is trivial.

Since

d
KB N K(j = Range(/_B*(S)L*)*/\ Ker ¢ (3*(3)1 (_*

%
= (Range ¢ B(S*)L)n Ker ¢ adj B*(S).B*(S)L*,

We: have by lemma 4,.,1.1

A *
KB N K =4LB(S*)L.(Ker cad) B*(S)L*)-

¢

Thus
Ko = Kp ® B(H- | © adj BHS ;)

In fact we have the following result. The proof is similar

t.D Lemma 4-1-]-!

Lemma 4.1.2 Let B ¢RH) = be an inner matrix, and let

B, and 32 be 1nner matrices such that

Then
2 2
fmx1 © BHTﬂXl - (Iﬁxl O Blﬂﬁxl) ® Bl(Hrixl S B2H§1xl)-

@D .
Let B € Hy , P® @ inner matrix with an irreducible right MFD

B(2) = N(z)p(z)~L (3)



with N(z) a regular polynomial matrix of degree Kk,

say

N(z) = BO + Blz +eeoe+B zk

(2 s with det B, £ 0., (4)

Then the determinant. of B(z) is

B (2) = det B(z) = $ 24 | (5)

under the hypothesis that N(z) is regular with degree Kk,

B is a rational function in Hq) with the numerator bN of

degree Kkm;

bN(z) = bo + blz +eooe +bkmzkm ] (6)

and

Ker s (I 8 g(S))L*

2 2
mel GF mel C

Ker ¢ (Ic ®bN(S) )L

2 2 2 m
= H ) ©byH ;= (H® © bH)eC™ (7)

%*
when m=1, Ker L(IémeN(S))L = Ker bN(S).

From Theorem 3.2.2 or from (4] [35) [36] it follows that

A -}
H2 © bNH2 is the space of all bN(z)w(z) where w(z) is a

o§ ceqvee
polynomial less than km, and

A -
bN(Z) = 4 bN( - km +bkm_lZ +...-bOZ i

Now lef
f.
J(Z)

i
c-l
=
~
N
~—
!
i
~~
o’
o=
=
N
CJ
ot

j — 0,1,2’ L -km-l.

It. looks more natural if we write (9) in power series form:

£,(2) = 29+ O(2"™). (10)

. Y j .3 j+1 T+ km-1 :
Since b, 2% + b, ;2 teooot 3;ﬁ can be written
] Km A
Z bN(z) + 2 by(z)k(z)
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for some k in H2. Thus if we define Fj to be the subspace

2 2
oL Hpy1 6{3 mx1 ¢

Fj=<fj®e |112,.....m> (11)

where ¢ »enotes the linear span. Then let

T, ¢ O — P,

be defined by
T (x) = £5(2)x = (£,8x)(z), (12)

0 éj‘:: km-l-

Therefore, there are km summands in the decomposition of

2 2 .
H 1 9(3 Hy1? Fo@ PP .ce..®F  _,, and each summand

can be identified with Cm, {f:’@ei: Jj=0,1,2, ¢4 ,km=-1, i=l,2,..,m}
: : 2 2 _

is a bgsm for H__, C—)F H _q» where fj.@ei = 0‘j(ei). We

consider this basis ordered as fo®el, flgel""’fkm-lgel’

fO®e2’ flﬁez,..., fkm—lGeZ"""’ and will call this the
standard basis for Hl’?l)tl eFHxixl' These symbols will be used

throughout the thesis without further mention. From the

observation of the basis of mel GEmel, H‘m.xl GP mel is

the direct sum of m copies of H° @P H2’ i.e. mel FH2

mxl
(H eeH )8C™, and if we let PP be the orthogonal

projection of mel onto mel @(3 Hxixl’ then PF = P@Im, mxm

diagonal matrix operator with entry P, P is the orthogonal
*
projection of H2 to H &) (3H Let 1 @P = ¢ (Pelm)(__

Certainly, mel C-T-)EH 1 is invariant under S. The restriction

of S to mel G)F mxl 1s denoted by S F

h\;:: Hr%xle(;Hr%xl ’

As we have seen in the previous chapter, Theorem 3,2.2 the

matrix of S with respect to {ijei} is

oo



T1

Im @ C %

by s (13)
where Cb* ls the companion matrix of the polynomial bN*’
N
and Im is the mxm identity matrix.
* 3 Y = Km
bN(z) - bO + blz +Illl +bkmz »
in other words,
O 1 O.ccee 0
O O Leooao 0
C.* =
Oy Ot veennnennnn. 1
-1 -1

kmbO’II.IIII.i- bkm km-l kakm 9

Im ® Cb* is the tensor product of two matrices.
N

Let G be the Gram matrix of {fj : j=0,l,2,...,km-1} :
then the Gram matrix G, of {f,@e,;: §=0,1,2,...,km-1, i= 1,2,..um}
is

GP = Im®G . (14)

There is a remarkable, simple result in Young [4]; it is a

1

formula for the inverse G — of the Gram matrix of

{£y: §=0,1,2,...kn-1}, to wit

671 = 1-Q7 ¢
where
Qs Qureecvnnenenney Qo
0y Qupevunen. q
1 -
Q = Km=2 (15)
0, 0 juuuvnn Q,
and -
0y = =0
1= T, -

llll-b

Q; = (b3 1Dy 5419 P 140900 k-1 -1/ Pkm

2 <3i%kn.
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4,2 Computation of projections

Let W be the orthogonal projection from Hr%xl GFHrixl

into HI?IX]. &) BHr%xl' Then

3 " EPE ' (16)
The generalized Sarason operator T = PBMFPg acting from
2
nxl GPanl fox1 © BHﬂlxl can be written
as M
R (17)
l1.€. *
' P, M_P
2 > P F e

Hx1 @y — Hn21xl Of Hr?lxl

KL

'a'd

T
2 2
mel © Bmel
oh * 2 2 2 2
e operator PF MFPP acts from Hp.y e? Ayl 0 Hpxa eF Tnx1
¥ K_* %* ¥ K W
Fp PPL F(S )¢ Pe = (PPLF (S)e PF) ,

*P* = L (I 8P)F (S)(I 8P ).

andPM

.LF (S)c P

i

¢ (I 8P)5zr O F (2)8(21-8) *az(I 8P ),

C

211'1

The adjoint of ¢ F (8)¢

2 2 is the compression
mel @(3 mel

¢F(ST)IT to Ky ePHrixl -
Therefore

P MFPP P ¢ F(S )1.*P*fr = 4 F(S*)L* (18)

f
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Nith Tespect to the basis {£,0e; |3 = 0,1,2,...,kn-1,

1 = l,2,...,m} , the matrix of P MFR; can be calculated
by applying Young's algorithm to every entry of F.
Therefore forming the matrix of the orthogonal projection
E’with respect to 325(ei) : Jj= 0,1.2,40.,k=-1, 1 = l,2,...m}
and {fj®ei : J = 0,1,2,.0.km=-1, 1 = 1,2,...m] is the
vital step to us.

The main idea comes from the fact that Hr?xxl e BHrixl
is contained in HI?]X]. e@Hﬁxl. Firstly, we are going to
show that given any x ¢& Cm, ?5(}:) is in ngl ) Bﬁéxl, and
therefore in Hr2nx1 @P Hrﬁxl’ which can be expressed in
terms of {JE(XJ : J = 0,1,25e000, km-l}'. It needs a

laborious calculation.

Since

bN(z)Im = det N(z) = N(z)eadj N(z) = adj N(z)*N(z)

degree by(z) = km, thus the degree of adj N(z) is km-k.

Let

adj N(z) = CO+Clz+.....+Ckm_kzkm-k .
thus

A * * ~K - -

adj N(z) = Cp__ +Cp i _1Z+e... 407250 K Lagiz 7K,

Moreover,
A - A - = A
T, (x)(2) = N(z) lTj(z)x = N(z)"tadj N(z)adj N(z)T,(2)x

(ad) N(2)N(2)) " (ad5 N(z)74(2)x)

%N(z)-l(adj'ﬁ(z)Tj(z)x) (19)



(bo+blz+...+b K

km

K
(BO+Blz+"'+Bkz )(CO+Clz+"'+Ckm-kZ

JI_ = N(z).adj N(z) =

m

km-k)

km- K
(CO+Clz+...+Ckm_kz i k)(BO+Blz+...+Bkz )

74

adj N(z)eN(2z)

(20)

By comparing the coefficients of both sides of (20) we get

the following relations:

km=k+1

- ol eEEy wiy e AR R

01

km-1

km

B, O.. 0

Bl liBO%

? S

' : N

\\h

Bl .1 By_oe-- B,

Co © Cx

Cl C2 Ck+1
Q |

ckm-2k’ °t ckm-k
By By By
By Bs By O
B, B, O 0
B, 0 O 0

Ckm-2k+1, .
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1G(xj(z) can be written as follows

A -l
“(j(x)(Z)=N(Z)Tj(Z)x

=%N(z)-l(adj ﬁ(Z)Tj(Z)X)

=GN(Z)_1((C;m_k+0:m_k_lz+...+C;zkm-k)(B:zj+...+Bf 2571))x

j+1
5GN(Z)_l(C;m_kB;Zj+(C:m_kB:_1+C:m_k_lB;)zj+1+ ......
+......+CSB§+1zkm'l)x
ES e T ST Ot NI e
o R S
+[Ekm-k+j-llm-(C:m-k-lB;+C;m-kB;—l)]zk+1

- _(n ktJ
+[_bkm—klm (Ckm-k J j+ckm-k-3+lBJ 1 "+Ckm- BO]

+IIIIII'III

T ¥ % 1 km-1
[ J+1 m (C J+02BJ_1+...+Cj+lBO)]z }x

A -1,7 J ,d+1 = km-1

(Z)-l [( km k j k)+(ckm-k-lBj+c Km=-K -; l)Zk+l > o

km-l]x

+ (C B.+C.B. c )
* ¢ ¢ & @ 2 & @ + lJ+2J l+...+J loz

=0 () (2403 (789 ) (2)4e v vrogy 1 (83))) (2)

km=1 (21)

for j=0,1,2,...k-1, where

MEPINCIN

for some A£J) S mem’ r=kK,k+l,...km=-1.
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Then

(J)

o (v (3) (J)

g v
)+ k+l(yk+l)+'”+ km-l(ykm-l) (2)

A(j)zk+g A(j)zk+l+ +b A(j)zkm-l

A -1,~-
- bN(Z) (bkm K km-1"k e TYk+17k

" (j) k+1 - (j) km=1
+bkmAk+1Z +eest+D A 2

+o, ald) ka—l) X

km*l]

(22)

kKm km=-1
= b (2)7" (5, a0k s ald)sg ald) ) gk+1
+(Ekm—2A£j)+Bkm-1A£i{+EkmA§i%f )2+
Feeeoosnanne
+(Ekm_jA£j)+Ekm_j+1A£2%+....+BkmA££§)zk+j
Foooos ceeens
o ) e AN s,
From (21) and (22) we have the following relations.
Let
6(()j) - C;m-kB;
513 - Crmek-13*Ckm-kB3 -1
'Séj) - C;m-k-rB;+C:m-k-r+lB;-l+'"+C;m-kB;-r
0 £ r £ kmek-1,

(23)
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Then
SR CWACED
S (3) - _
177 = (o g ad + Dad)
S (- _ :
gJ) - (bkm-ZAﬁa) T bkm-l £+{ bkmAﬁag) (24)
S i.]) B -(Ekm-rAlga) %km-r+l l(c-?-]). ¥ -BkmA}(cig)

where 0£€ r 4km-k-1.

Let us define the sequence {oli | 1 =0,1,2,0000. ,km-k-l}

by the following relations,

_ 7 =1

dO B bkm

oy = (b 1)

Xo = ( 0 km-2 t:,‘l‘l:)kln--l) (25)
_ % ¥ o SR

°(r N c"O(""’(O"":’lecm-r"'‘DL.L":"km-rwl'F """" + r-lbkm-l)

Where r = 0,1,.--.km—k—1-

Now combining the formulas (24) and (25), this gives us

>
F am
cC_i.
o’

I

e . (s .
K (B 1) 857 =, 8 §9)

A}({i])_ — ( "km l) (bkm-]_A( ) 6(3))

(_Bkm-l) (:Bkm-l c"0 8;;()3 )+ Sij ))

) dO(dOEkm-l)S(()j) + %o BJ(.j)
=ol, 3834 ot 33



and

SO

where r=0,1,..

(i) _
Aksr =

A

(3)

K+r

18

n = = (3)
c:"O(mObkm—]:'“"'(lbkm-J:'+l"' *e .+°I(C-lbkm-1)5 O

+ O(O(O:Bkm-la o :f:*i]).

+d06§3)
ot §{Ivet 8 (hi vt 330t 3 ()

. km-k-1. j= 0,1,.....k-1. By (23)

A(j) - X (C* B*

K+

r* km=-k j?

.3 * %* ¥*
+00,_1 (Cy o -1B5+Cym-xBy-1’

+

+°%(C;m-k-rB§+C;m-k-r+lB;—l+'""+C;m_kB;_r)
(%O Fo1Cemokc=1*** ** **%Cimeoicor )25

*+ o('1:'--lcilﬂimi---]t{ +""'be0;m-k-r+lzB;-l

From these observations we have

Let

¥1

km-k-1 T C&O (km—k)x(km-k)

-1y 5 ali),g (3),y.. .45 aLd)
(_bkm ) (bkm-fAk +bkm—r+IAk+l+""+bkm-IAk+r

)



*

Ckm-k O - - 0
\\ﬂ'a
C* N % 0
km-k-1 “km-k e 8
| . — ,
C = ; \ 1
~ ¥ C*
ckm—2k+l""'“' T km-k
3 * *
Ckm-2k Ckm-2k+1 Ckm-k-l
* :
¥ * | ¥
°1 Co s &
Then
wO\\HO O ---—--0
Wy W, Q ----- - ?
. NN !
?. |
W=tC =W, 0=} w 7 W, - - Wo
"k Yk-1 -- - Wy
Yem-k-1 - ------—- "km-2k
where
+*
Yo = ot 0Ckm-k
* C*
W1 =% 0C%m-k-1**1%kn-k
T % * *
_ ot X
wr - Q‘OCkm—k—I‘-i- lckm-k"‘r“l-'.. o ¢ & 8 0o » o+ I‘Ckm—k

I

O,l, ¢ o -km""k"'l-

B B

O l--
S %
E= |7 P
N ' y
o :
0 O

Define E by

kxk

O %

IIIIIII.‘B

19

(km-k)xk

(km""k )Xk 9
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and it is easy to see that (r,j+l) entry in W.E is

B B B
WpB #Wy 1By _q+eeeetwy 1B,
X % & C . )B.
= 0%m-k-r* 1%m-k-z+1**** ** rlkm-k j+""
¥ v . 3
+'..Illll+(d00km-k)Bj-r
A (3)
- Ak+r ’

where r=0,1,...km=k=-1.,

In summary, the calculation of the injection is contained

in the following theorem.

Theorem 4.2.1 Let J be the natural injection of

2 2 2 2 :
HO . © BHp ., into H 4 eFmel' The matrix [JJof J with
respect to the standard bases {Ga(ei) : J=0,1,2,...,k=1,

i=1,2,...,m |, {fj®ei t 5 =20,1,2,..0,km=1, i=1,2,c00,m |

ig a block matrix

]ﬁl C)
‘Im‘
LJ]= O (26)
I kxk
ff c A (nmk-k )x(km-k) .

X, C and E are block Toeplitz matrices given by
~Ar A7 Av

A 0 0. - -0

oI (27)

B4
km-k-1°°*********2X0 | (km-k)x(km-k)
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and
_ 3 =1
c‘(O - bkm
= X 1 ¥ 1
X = X (0P mart X P mopyter e o * 0 -1Pkm-1
Ir = 1’2, ¢ o0 -km—k—l,
%
Ckm-k O ----e- 0
, ~
c=|c ™ o
o= km=2k+1 ~°° 7 “km-k (28)
* *
“km-2k " “km-k-1
|
¥% ¥
A I “k (km-k )xk
¥* ¥ %
Bo By = e By 1
O \B* >* L B*
o B1 k-2
b = : : \T\m ; (29)
hd 1 - ‘.‘ ) '
. N
O O QO i BO kKxk
Corollary 4.2.2 Let T be the orthogonal projection

~y
from Hr?lxl 9(3 Hrixl into Hr?lxl 0 BHrfml' The matrix [li'] of lT
with respect to the standard bases { fj®ei: j=0,1,2,...km=-1,
i — l’2’lllm}’ {a-j(ei) . j - 0’1’2’---1{-1, 1 = 1,2,-..111}

is a block matrix

['Ll'l = Ggl [J]*G€ , (30)

Gp and Grp are the Gram matrices of ‘[o-j(ei)l and {fj®ei} '

res-pectively.
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Proof: Let J be the natural injection of Hrznxl S, BHrznxl

¥
into HS ep HC ., then J° is the orthogonal projection
2 2 2 Z
of mel G—)F mel onto mel ), BHruxl' From the above

constructive proof, the matrix of J with respect to

‘»G-j(e'i)} and {fj@ei} is a block matrix

[J]=

X C E
~;

N e

Choose matrices [QB] ’ [QF] such that {QB] [QB]* 2 Ggl -
-1

[Q@][:QF]* = GP 5 be the operators on

H‘rﬁxl €, BHnchl and Hr?lxl GF Hrixl’ respectively, such that the
matrices of QB’ QF with respect to «[ O‘j(ei)}, {ijei] are
[Qpl and 1Qg). By 1.3 (2) {QB(O‘j(ei))} and {QF(fj@ei)}
are orthonormal bases of Hrixl c BHrixl and ngl C-)F ngl,
the matrix of [J] with respect to QQB(UZ].(ei))f and

, and let QB’ Q

-1
(Q) 7" 1) Lep1.

*
Thus the matrix of J with respect to these bases is
1

[QB]*[J]*lQF]* ,, and therefore the matrix of W with
respect to {O‘J.(ei)} and {fj®ei} is

-1
(7= 1ep) L) 19T Q)" (g7

-1 *
- o3t 9%, .

f

The proof is complete.
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CHAPTER FIVE

IMPLEMENTATION AND COMMENTS

Introduction:

In this chapter we shall present our algorithm for
the matrix valued Nevanlinna-Pick problem and compare it
with other algorithms. The final computational version
of the generalized Sarason operator is given in Theorem
5.5.1. We will comment only on a few of the significant
procedures in the algorithm. Since the computation of
the corresponding matrix of the Sarason operator 1is rather
complicated, a higher level programming language is required.
AIGOL 68 (25] was chosen not only because of its elegant,
mathematical style but also because of its powerful operators
and flexible structure. The standard ALGOL &8 NAG or
FORTRAN NAG library provides routines for some of our
procedures. Two simple numerical eﬁémples accompany this

theoretical work and are given in the final chapter.

Contents:

e l The matrix form of the generalized Sarason operator.

52 Details of algorithm

5¢3 Other algorithms

54 Conclusion

ey e
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5l The matrix form of the generalized Sarason operator

For the sake of concrete computation, it is helpful
to have a restatement of the solution of the [MFN-P]
problem in terms of matrices rather than operators. The

main results of our theory are theorems 2.2.5, 2.2.7,

2.%3.9, %3.3%.2 and 4.2.1.

Theorem 5.1.1 Let F ¢ mir‘fgm and let B & RHl?&m be an

inner matrix with an irreducible MFD, B(z)r-vN(z)D(z)""1 with

numerator N(z) of degree k and N(z)=BO+Blz+....+Bkzk with

det B X0, and let p(z)=det N(z). Let {-zj(ei) | 3=0,1,2, ...
...k=1, i=1,2,...m}, {fj@ei | 3=0,1,2,...kn-1, i=1,2,....nJ

ﬂ ~ l 2
from (3-14) (4-12) be the standard bases of H . ©BH _,

andHﬁxle)Pﬂgxl, and let [J] be the matrix of the injection

2

mx 1 o @Hf]xl with respect to the

2 2 :
from mel © Bmel into H

standard bases. Le't...S‘9 have matrix CP* with respect to

{fj}ﬁfal- Let Ggp, Gp be the Gram matrices of {15(61)} and
{fj@ei}, and let [UB],[UP] be mkxmk, nmkxnmk matrices
such that
* -1 ¥* -1
[Ug1[Ug) = G5°» [Up) [Up)" = G5~
Then

(1) The infimum M of || GIl, over all G € ng;n such
00 . .
that G € F+Bmen 1s given by

M = Sq

where 872 872852 ++... are the singular values of the matrix

A = [Up] [T (G [0l (1)

There exists F, € men from (2-22) such that if ﬁ"ZP . £=ZB

and‘§=F+BFO, them M 1s a singular value of the one step
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extension matrix
~
’é = [UB]*[‘Q- ]*F(CE*)[UET (2)

with multiplicity n, where [U;], [U£] , [J ] and Cﬁ* are defined

the same way as the above corresponding B, F andf .

(2) One extremal function G for which this infimum is

attained is given by

-1
G- - [VO’ Vl,.--, vn_l][uO! ul""’ un_ll (3)

where

Vr =2'7§E]).+ml(z (e ))s =E 2 1+(J-1)(k+l)mf @ej

i‘zi(ej)} and {£i®ej] are the standard bases of Hr%xl o zBHéxl

2 2
and anl e ZEanl'

and

[UPJ XI‘ = (5 ér)’igrﬁ)r “"él(].;l){+n-l)

(U ] AI (7(1'),,7&1')’..)17(]?) )

mk+m=-1

¥*
1s a right eigenvector of A A

I A AP

for r=0,1,2,...n-1, and x

2
corresponding to the eigenvalue’§}0=M2)

2 2

Proof: Let Q

be the operator on H whose matrix

?; @(—*H
with respect toifj} is [_U , Y+ By 1.3 (1)(2), { Q.- fj } is

an orthonormal basis of H° eF H°. The matrix of S with

¥

respect to this basls 1is
[ U ‘]-lc *[U ’Jo
& p” B
Since {Q fJ@e... }13 an orthonormal basis of H <1 (—){l mel'

the matmx of F(S,) with respect to {Q,/fi0e; } is

¢ pd
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-1 %
and
CF* = cp , [UP] = Im@[UP.].

thus
i - |

% T L ¥_, m %
F(Lugl G Uy} ) = [UpT F(GI(Up 1,
Let Qy be the operator on H . © BHS , whose matrix with
respect to'{aj(ei)}-is [UBJ, {QB(Ga(ei))} is an orthonormal

basis of Hrixl e, BHrzn.xl’ and the matrix LJ ] of the orthogonal
injection J with respect to .i QB(O'j(ei))} and !Qp’fjeei} is

-1
[UP] (7] (o, 1,

Therefore the matrix A of the generalized Sarason operator

T = PBM?%: with respect to-{QP;fj@ei}-and {QB(Ga(ei))} is

-\ -
A = [UB]*[J]*[UP]* [U?] *F(CFT)[UP]* |

= [Ug) W F(G)LY, Y,

£ F

*
and the matrix of A A 1is

~1., T\ * ¥__ #_, M *
LUy 377R(C,) LI U LUR) LI) " R(G LY,

Let * »
D=LJl (U100 LT,

then
* 1o ATy ¥ mp T * !
AA =101 "F(Cp) DF(CP )LUF ]

2

Thus M-, which by theorem 2.2.5 is

I 3 F(S) )4

b

is the largest eigenvalue of the latter matrix:

e

M® = supJ A& R : det(AI-A A)=0 }

= sup{x € R : det()LLUP] [Uf] *-F(C[?)*DF(C%‘))"O}.
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2

M~ is equal to the largest generalized eigenvalueiko of

the problem. Moreover, if Xy € cim -{O}

and

()bcp'l-F(cg’ )*DF(C;‘))XO =0,
then

(A" LU@]“"IF(Cf ) DF(CT)[ f‘ l)[UF]*Xo =0,
and hence [UP]*XO is an eigenvertor of A*A which implies
that;[UP]*xO 1s a maximiging vector for A. Hence if

L U(sl*xo = Gordpaeees dpy)
and

fj@ei = €54(i-1)km,

,
‘f -ee- - » .
Q? jooi gj+(1-l)km,

kmn-1 .
then 3 éjgj is a maximising vector for the generalized

2%
Sarason operator: 'J?=PBMFPF (Theorem 2.2.7). If we write

‘:UF] - [Uij]kmka ‘

then
kmn-1 /
j§ 2 ng = JZaij(ZrUrJg )
= j§ éJUrJgr

i
"
ml
-
P4
-
3
e
-
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Let

= (35) Bys So0eey Sy 1)
then

uy = éo(fo®e1)+61(fl®el)+. . o im—l(fkm-lGel)

teoesose @em)

oot gkmn-l(fkm-l
is a maximising vector for T.

Let Ua(ei) = then Tu, is given by

bi+mj’
~1

* * T *
LUzl LJ) ]»:‘(c(s )[U‘,] LU

=LUB]*[JJ*F(CE)XO

¥*
]xo

F

hence

. _ %_, .
Tu, i%:([UB] [ J] F(CP)XO)jQBbj

* * T
zJS (Lug] LU LIT F(Cy)xp) ;b

p
P
JZ (65713 I'F(Cg )xq) jb

37,

VO ’

where

651 ) R(CR)x,

va’ﬁ&"";vkm-l)'

By the above method we can calculate the maximising vector

Uq and Tuo. It follows from Theorem 2.2.7 that there exists

0=Tu0.

equation is not enough to solve for the rational function G.

G ¢ F+ BHo such that [[Gi_ =1l T |land Gu But this

However, by Theorem 2.3.9, there exists FO & thn such that
the one step extension Sarason operator T = P MF?E has
~

singular value M with multiplicity n, where B = 2B, F = F+BFO.
N

'

By the same procedure as above, the matrix A of T can be
N, N

formed. Corresponding to the first n singulaxr values ofﬁ&,
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there are n linearly independent maximising vectors Ungs Uq

Upeeeol 9 such that [uo(z),..., un_l(z)] is nonsingular
for every z ¢ D. By using Theorem 2.2.7 there exist

00 Q0
G € E + BH CF + Bmen such that

T ~ mxn
\ §|a=uigu.= W T W
and
E(uo,...., un-l] =[2u0, Tujsecess Sun].
Therefore
G(z) =( Tuy(z),..., Eun(z)]lfuo(z),..., un_l(z)]_l
z ¢D .

5 e 2 Details of algorithms

Here we give the main detalils of the algorithms developed
in Chapter two, three and four. We shall explain how the
generalized Sarason operator and the interpolating function

of minimal norm can be computed numerically with the aid of

the following five main steps.
: 2 2 2 - .
Step 1: Find bases for H 1 D BH ., and Hﬁxl O f Hﬁxl :

Perform the irreducible MFD on B(z)=N(z)D(z)'l;

write down the determinant of N(z); say F(Z);

2 2 2 2 .
choose standard bases for anl & Banl and H e(f H™, 1in

terms of tne coefficients of N(z) and e(z) from

(3-14) (4-12);

form the inverse of the Gram matrices GB and G. for

¢

these bases;
perform Choleski decomposition L42) to yield two upper

tri lar matrices (U ]* d{u * h that (U1LU ]%---G"'l
riangular ma L B an F] suc a gitigl =Gg
1

LUP‘] [UF] =G(;' .
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Comments: To obtain the irreducible MFD, one can

use Gaussian elimination. We follow the algorithm in
31, P192]. However, we feel such irreducible MFD can
be avoided. Details of this are studied in the next
section. Procedures " gbinverse", "g2inverse " and
"fO3ahb" in the ALGOL68 NAG library are provided for
these calculations. Since Hr"ixl e[zHéxl =/ Cm®(H2e(4H2),
we only need to calculate the Gram matrix for the

basis 1in H%BPHZ. One can take advantage of this to

reduce storage requirements.

step 2: TForm F(CY):

Write down the matrix C , of SF with respect to the
basis 1n H2 GF H2 from (4-9);
evaluate the matrix F(C**)=F(CT), where F ¢ RHg;n.

¢

Comments: We observed that C i1s the companion

matrix of B, and F(Cg)=[Fij(%T)]m. There is a

remarkable way to calculate Fij(Cg) which can be

reduced to finding gij(d;)’ where gij is a polynomial

with degree less than m; the degree of@ . This is an
important feature 1in Young's algorithm. The idea is

to find a polynomial such that f IFij-gij. This

gij
can be done by using the Euclidean algorithm to find

a polynomial sij such that

D. .S =z I(mOde )

1741
so that
where
N. .
F. . = ——ti
1) D..
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For detains see [4, $ 4- ). Procedures "invertmodp",

"multpolymodp", "shiftmodp" and "fuofcompanion™" are
designed for the above calculations. In order to remove
the highest term of a polynomial with negligibly small
coefficients, we introduce a procedure "adjustdegree™"

in the Euclidean algorithm.

3: Form the matrix of the generalized Sarason operator:

Form the matrix of the orthogonal injection -  [J ]

from (4-26) with respect to the bases in step 1;

form A=tUBl*LJJ*F(c§

singular value of A.

* o
)[UF] L and calculate the largest

Comments: wWe use a procedure "proj" for calculating

the matrix of the injection operator. One simple but
important operator contained in "proj" is the isomorphism

(. between Héxl and Gm®H2. In other words, we need to

pay attention to the order of the bases. Procedures
"permutationrow” and "“permutationcolumn" are designed
for this. Since the matrices [UB]* and [U{J* are upper
triangular, we can use procedures "ua" and "auinverse"
using back substitution to form the matrix A. The most
straightforward method of calculating the largest
singular value of A is to compute the eigenvalues of
A*A(or AA*) using “folaxf" from NAG library. However,
a more stable way to do this is by a singular value
decomposition of A using a standard routine "fo2waf"
which is only available for a real matrix., But by

means 0f Householder transformations and the QR decon-
position one can reduce the singular value problem for

a complex matrix to the corresponding problem for a

real bidiagonal matrix. This technique has also been
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used in the scalar method. In the case m=1l, then

to step 5 directly.

Ste : Find the one step extension matrices

Calculate a one step extension matrix F, from (2-22) or

Theorem 2.4.8;

form the new i1nner matrix B = 2B, £= ze and E = F+BF

or

0°
find the full singular value decomposition of

A = (UB]*[:I]*E(CT)LUF]*-I.

{

N -ﬂ

Comments: From Theorem 2.4.6, the one step extension

FO can be determined by finding X. Let XO be the matrix

4
of X with respect to some bases of U, and C%. It follows

that (2-27) and (2-28) give us a finite number of relations

of the type Xomi n; with m, . linearly independent, and

SO XO gatisfies
XOM = N

By the QR decomposition M can be decomposed into the

product of a unitary matrix Um and an upper triangular
matrix Rm; since Myy Mpyeses are linearbindependent, Rm
has nonzero diagonal. By back substitution XOUm can be

written in the following form:

X,U =[A|B)

m
where A is an mx(nk-n) known matrix and B is an mx(n-1)
unknown matrix. Therefore the remain ing problem is

to determine B in such a way that | X = 1 andl)(l—X*X)én-l
Since Il X 14 1, 1-AA"-BB" » 0 or BB & 1 - AA'. Let us
apply a cholesky decomposition to l-AA*; we have

*

1 - AA" = IL
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and let
n-1
1l
1 O n-1
B =L
= LU
C) B
T
O
then

Y(1-AA"-BB") = V(L(1-UUZ)L") & n-1,
F, can be constructed from (2-29) or (2-30).

From the construction of FO it follows thatih A\ is

the largest singular value of A and has multiplicity n.
The n Schmidt pairs Of.é corr;;ponding to YAy will be
calculted. Therefore, n linearly independent maximising
vectors uo(z), ul(z),... un_l(z) in Hr21x1 o Zerzlxl can

be constructed with respect to the basis of Hixfa'zFHﬁxl
and [uy(z),..., u _4(2)] is nonsingular for every z ¢D.

Consequently, the corresponding Tuo(z),Tul(z),.....,

Tu, ,(2z) can also be constructed. Procedures

"onestepext", "combinkerb", "combinel", "ubstartmat",

abetastarmat”" and "matrixvector”" are provided for

the step 4 calculations.

Step 5: Calculate and check an extremal function

Form the extremal function
G(z) = [Tuo(z),... Tun_l(z)][;uo(z),... u _l(z)]“l :

check G(z).

Comments: There are three main properties that can

be used to check this result. Firstly, [uo(z),...un_l(z)]

is nonsingular for 2z ¢D, and Uy C Haj, so the denominators

of uj must have no zeros inside the unit circle. We
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use Cohn's algorithm (8] to find the numbers of 2zeros
of a given polynomial. Secondly, we have that

G & E" + Eﬁrﬁcn < F + Bl—]f;m i.e. for every z € D,
G(z)=F(z)+B(z)g(z) for some g ¢ Hg;n' For example, if
B(t)= O then G(=)=F(ot), (x€ D). We write a procedure
"evaluemnratn" to check G. Thirdly, by Theorem 2.2.7

sup IlG(z)Ha)=ILA|l=||A t, G(z) has constant modulus
zedD ™~

on the unit circle, we also write a procedure
"checksmnratn® that calculates 1 G(z)ll| at six points
on the unit circle; we expect the result to be constant

and equal to|l All.

5e3 Other algorithms

To derive the Nevanlinna-Type algorithm of Ph. Delsarte,

Y. Genin and Y. Kamp (9] from our result is rather easy.

Let us take the inner matrix B to be a scalar matrix with
entry a Blaschke product having simple distinct zeros at

0&,042,...,0(1_1; in other words

B(Z) = blb2--ill bn(Z)In,

Z=cx{ .
Where bj(Z) - T:?%n- Then iajgei . j=l’2’--nn’ l=1,2’n--n}
basis of Ho. . @ BH°.. = €™®(H? © b,b b_H?), where
iS a a I].Xl nxl 1 2:-.- n )

1
aj(z) = l-ajz

. Since the inner matrix B is scalar, the
generalized Sarason operator can therefore act from

n 2 2 m 2 2
C ®(H e blbz""an ) to G ®(H @ blllllan )- i-e-

cPo(H2 © byb b_H?)

£
-
),
A
bﬂ:
4
._l
Il

2...'

‘ 2 2
4|
C9(H" © by......b HY),

-
0,
td

=1

o

)
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The orthogonal projection from < o, € to HS O B 2
H'm:ﬂ{l e H‘mxl mel mel
is an identity operator. Let us consider the basis ordered
as follows aleel, a1®e2, coesy alﬁen, . 8‘2@91’ c oo .,a2@en,
csessse The compressed shift operator S' with respect to
{ajﬂeig is a diagonal block matrix D=diag{allln,at21n,. . .%Inlg

The Gram matrices G(; ’ GB for these bases are
[ Ty ] @In y» L rij'.l 8L

1

1_a -di :

respectively, and iy = (aj,ai) = J

Let } & RHx?xn’ by step 1 and step % in 5.2, there exists
: * -1 * =]
matrices LUy, LU} such that [Ug] [UB] = Gg, [U_F” L%] =G

. ;

* o ,_% *
and A = [ Ug) &(D )LU€] . The corresponding eigenvalue
problem from (5-4) is

()LI—AA* )x = O
or
(AI-(U51 8D, T

This implies

(AI-[Uz) &(D )e

UP]'1§(D*)*[ Ugl )x = 0.

; E(D*)*[UB])X = 0

Thus

[A[UB]*-:L[UB]-I' i(D*)G'P §(D*)* ]EUB]X = 0,

AGg- §(D)G, (D) ) uglx = 0,

P

Therefore the problem reduces to the following

A -F(%)F,)
- f [ UBI x = 0 ,
l-“‘idj nxn
( ) nyp 1S the matrix that the Nevanlinna-Type algorithm

is concerned about.
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There are two disadvantages of this algorithm: we need

to solve the equation of B(z)=0, and we also require to
know the distinct simple zeros of B(z)=0. A numerical
instability can occur in solving the equation B(z)=0 and
also in the case ofc¢i's being very close to each other.
The method of Kung is based on the A-A-K one step

extension theory. He solves the corresponding interpolation

problems in terms of "the minimal basis" and "algebraic
Riccati equation". In view of the relation of the A-A-K
operator and the generalized Sarason operator, which we
studied in Chapter two, one can see that the one step
extension matrix from (2-22) is exactly the same in both

theories. In terms of our notation, Kung shows that the one

step extension matrix can be obtained as follows:
. *
Iet F, B &€ RH’ ~and B be inner.. Let ¢(z)=[B(z)] F(z)
= g%%%, where a(z) is the least common multiple of the

denominators of Y(z). And N(z) is a matrix polynomial. Let

: ) v v -
dis(F, BH ) = sg =0l 1, and let a(Z)--zna(%). N(z)=2" lN(%),
where n is the degree of a(z). Then the singular vectors of
the one step extension Hankel operator F} are the solutions

N/

x(z) of the following equations

a(z)I;, -N(z). , 888 (z)I_, O (10)

x(z) = 0,
o , sga(z)Im, :ﬁ*(z) : '5*(Z)Im

| Yo 1
Where W= —= + ==Y, 55 € M.

If we write
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xq1(2) X1,(2)

»

x21(z) ' x22(z)
x(z) =
xz1(2) | X5,(2)
x4l(z) , x¢2(z) ’
where xij(z) is a mxm matrix polynomial, then one step

extension matrix F, is a  solution of the algebralCRiccati

equation
xll(O),- x12(0) I -
- 0. 1
[Im’ FO] Xn1(0) = x,~(0) Fr
21 ’ 22 O

The extremal function such that the norm attained is given

by

- "1
G(Z) = -“—2{“)[11(z)-x12(Z)FS"x21(Z)'x22(Z)F31 g (12)

There are two difficulties in Kung's method:

Firstly, to obtain the accurate Hankel normlﬂzfﬂ, we require
a lengthy computation, and this certainly creates a rounding
error in the solution space of (10). Secondly, to calculate
the co-analytic part of [xll(z)-xlz(z)Fa[le(z)-x22(z)Fg ]-'
in (12), one has to compute the poles of the above rational

function. This can cause numerical instability. Numerical

tests of the two algorithms will be carried out in subse-

quent work.

5.4 Conclusion

On close inspection of our algorithm, we can make the

following two conjectures.
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Firstl is the irreducible MFD on the inner matrix B necessary?
We factorize B{z) into an irreducible MFD, N(Z)D(Z)-l,

then Ker:nB*(S)L* = Kery N*(S)a*, and we can decompose

Ker , N*(S) L.* into G5 ® Gl@. o ® G _4s for some Kk, such

that Gj can be identified with Cm, l.€

YG(X)(Z) = ﬁ(z)-lTj(z)x & jS;Hixl

for every x € c”.

However, it may be possible to avoid using irreducible
MFD on B(z). We are lead to this conjecture by the follow-
ing observations.

Consider B(z) to be the Potapov Blaschke product of

degree n; )
® ' n b, (2)1 0
B(z) = 1 V., P wj ,
j=1 ¢ 0 I
q
Z=0ol .
where b.(2) = —i, |0‘3|< 1 .
J 1=, 2
J
Let "
- n
h(z) = 52;(1-“32) = h0+h12+....+hnz ’
and let

' !
B(z) N'\z) . 1 (BO + Biz +..t ann)

'
Assume det Bn * 0, and let

F(Z)

|
0,
4
d.
o
F
N
|
o
o
il
>
-y
N
z
i
-
v

then

l

Ker¢:N'*(S)L% is the subspace of L ] consisting of all

functions of the form

'ﬁfz)'l( Zn-l Tj(z)x ), for Xy € c*,
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where

1 ¥* 3 *
_ J n-1

2

Let GJ be the subspace of L vl

defined by

Q0 11 2
{Zn--m Xn® eI‘ruxllj'[O""'xl Seee® Xya1 T Xy

j=0,l’2’ e -n-l-

Then
¥ ¥* ' ' ' 2
Ker: B (S)e = (6p @G @ ... @G,_7)N H__4
i.e.

2 2 ey K

This suggest us that there exist some x ¢ c”

such that
T, (x)(2) = N'"H(2) (2)x € 6 CHE, .

| |
Let b(z)=det N (z), and let Kp = Kerc N (8).", then

nxl eean]_ = KF . Therefore, the generalized Sarason operator
T = Pg MFPF can be modified as

T = TFBJP P F

»*
P. M.P
2 2 g F EE 2 2
anl ee anl ' }qul @P anl

£
T g

K ~———> KB,

~ ¢

Wwhere j. 1is the orthogonal projection from Iflxl e‘a HE

P

* * _
into Ker ¢ b (S)¢ , andTl'B ls the orthogonal projection
from K? to KB. The matrix form of TI'B with respect to the

decompositions of Ker Lb*(S)L* and Ker ¢ N'*(S)z,* can be
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obtained in the same way as in Chapter four. The matrix

L s 2 p
of Jg with respect to the decompositions of anl @F H .1

and K? is
I
n
® I
Il* Il 2
Ch
where
0 1 O,---------O
C* - O 0 1,----.----0
h - -y
_Eg _ hn-l
- § © © 0 0 5 0 0 0 s 000 00 J—
hn hn | B

Secondl is the one step extension operator T absolutel

necessary ?

When we form the extremal function with minimal norm,
we use the one step extension method to get enough maximising
vectors. But this increases the storage requirement.

However, Young proposed a very promising method to deal with

this problem, the mathematical proof of which is presently

being, examined.

Let

L= PBMFP;  Hopl ©f Hoxl — Hoxy O B,

let

2 2
X0 = Hpya ep%xl’

e
2 2
xi - ( uo’ ul' e e 000y un-l> n an1 eP an1

where u; is the maximising vector of

L ]

i=0,l,2, ¢ o0 ,n-l-
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Let 1| Ti" = t,, and

Tu t.w..

i T “i%i

OO

. , ¢ _
Then there is a function G€¢ T + BHImxn such that .|| G "a> T

is given by

¥*
G‘ =[u0, u1 9 ¢ o 00 -,U.n_1] [towo’t1w1 9 ¢ 00 -,tn_1wn_1] ®
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CHAPTER SIX

NUMERICAL EXAMPLES

To illustrate the foregoing results let us see how
the algorithm performs in calculating the matrix of a

generalized Sarason operator and in finding a minimising

function.
Example 1, Consider n=1, m=2, F(z) = 1-0.2z = 11 ]
(1+2i)+32 f21(z)

l-o. BZ

and the Potapov Blaschke product B(z) from (2-7) as

10 L[ 11 0 1
Vi=Wi=Vo=|o 1|» Wo= 7| -1 1| V3= Ws=Vy=Wy=| 1 o 2nd

7, w= &

bi(z) = 1-&;_2 . ldil«’-l. i.e.
([ (z-etg)(2-%,) (z-0f ) (z—,)
o) . (1-d1z)(l-32z) ’ (l-éiz)(l—aéz) 1 'blbz,blbz
{2 (z-j)(z-d4) (z-0%5) (2=t ) {2 | -bsb,,bsb,

(l-déz)(l-q4z) ’ (l-égz)(l-aﬁz)

irpeducible MFD of Bfz) is N(z)D(z)~ %, whexnre

N(z) = = [ ©-15 ©0.15], 1 |-0.8 -0.8] s+ L 1 1],2
2 |-0.24 0.24] d2 | 1 -1 ] d2 |-

Q(z) - 0.036 - 0.342z + 1.192z° - 1.82z° + z° .
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N _l 1-0182+011522 O —1
N(z) — = 5

O l-Z+0-24Z
A p 2 2
p(z) = 1-1.82+1.192°-0.3422°+0.0362° .

2 2

The standard basis for H2xl &, BHle is

1-0.82 ' 142
Z 2
ve (e )(Z) - ___}__ 1-—0.82+0.152 ) -%(e )(Z) - __]_; 1-0.82+0.152
01 {2 e 02
1-0,82z ]l =2
l-z+0.24z2 l-z+0.24z2
— -7
2 S AN o oae 2
1&(61)(2) - _l. 1-0-82+01152 "7i(e2)(z):=_f£ :1-0182+O-152
2 , J2 .
1-2+0.242° 1-2+0.242°
and the standard basis for HS of HC is
1-1I8Z+1I1922-0I34222 2-11822+1-1923
£,(z) = 2=1:8241.192 20.3428 ¢ (5) » 2=1.82 21199
P(Z) F(z)
2 3 3
£,(z) = 2228 £,(z) = =2— -
P(z) P(Z)
On applying Choleski decomposition to Ggl and %;l , We have
* -1 * -1
[.UB][UB] B GB ’ 12 ® LU(; ][Ufl = G? ’
where.
0.9994 0.0100 -0.0234 0.0105
. 9, 0.9601 0.1978 -0.1085
U =
‘ P] 0 0 0.6797 0.5885

0 O 0 0.2425 )
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0.9887 0 0.10%2 0
M 0 0.9708 - O- - 0.1879
[:UB] =
0 0 0.7103 0
0 0 0 0.5740 |,
otep 2 The matrix F(CT) equals P(CT),
where
(1.9994-0.000441)+(1.4055+1.00391i )z
+(0.2616+0.18691)z°+(0.0818+0.05841 )z-
P(z) =
(0.9943+1.9990i )+(3.3529+0.60961i)2
+(0.8159+0.1483%1)2°%+(0.5321+0.09671 )z
Step 3 The matrix of the generalized Sarason operator

A is a 4x4 matrix.

2.1004+0.0869i, 0.0744-0.0857i, -0.3040-0,0871i,-0.1719-0.0%82i

1.1511+2.0410i, -0.0993+0.31941i -0.5704-0.26181,-0.4715-0.30361
A=

1.1761+0.8401i, 2.4099+0.66461i, 1.8168+0.4110i, 0.7355+0.15421

2.6267+0.47761i, 3.1079+1.6521i, 2.6873+1.7077i, 1.5905+1.08791

and |l A ||= 6.8303 (=f). The left singular vector of A is

[ 0.1304-0.0357i, 0.0870+0.1576i, 0.4879-0.0590i, 0.8413 ],

Step 5 A maximising vector for the adjoint of the

¥*
generalized Sarason operator T 1is

1-0.82+O.1522
vo(z) =
0.1508+0.083%21 )+(0.4749-0.09951 )2

go.051§-0.13§112+g0.1111+o.074912zl

1-2+0.242°
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and

uy(z) = ==Tv,(z) = (3.4558-0.90601i)+(-2.5321-0.19421 )z

0

+(0.181640.63751 )2+ (0.1015-0.15421 )z°.

The extremal function(unique, since we are dealing with F
of type 2x1) G(z) is

(6.0155-1.64461i)+(5.9659+0.83261i)z b

+(~10.5376+0.41721)2%+(2.8755-0.19491)z>
(3.4558-0.90601)+(-2.5321-0.19421i )z
+(0.1816+0.63751)2%+(0.1015-0.15421 )z

G, (2)
G-(Z) = =
Gyp(2)
(3.9378+7.13821i)+(16.2045-11.46721)z
+(~14.8931+5.67604)2°+(2.9032-0.86351 )z
(3.4558-0.90601i)+(-2.5321-0,19421i )z
+(0.1816+0.63751 )2%+(0.1015-0.15421 )z
= vo(z)uo(z):1
Step 6. Checks of the result.
gll(z)
Since G(z) = F(z)+B(z)g(z), for some g(z) = :
321(2)

[Fll(z)+bl(z)b2(z)gll(Z)+bl(z)b2(Z)gzl(z)'
G(z) =

ol ) - o o ) o o(
Therefore Gll( 2) = Fll( 2) and G21( 4) le( 4) »

[Fll(dz)} [2.77%0.5551]
le(olm) 3.415+2.4391

[ ot
Gy1(%5)

Goy (%41,
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T w Ll .
Let 6 = 0O, ;%—3*237, 23—,'iéL,'23-, and Zg = cos® + 1isin®b,

which is on the unit circle. Then “G(zo)ll= 6.830% =p.

Constancy is observed up to 13 decimal places.

The Cohn algorithm shows that the denominator of G(z)

has no zeros in the unit circle. Therefore G is in Hg;l.

Example 2. Consider m=n=2. The simplest candidate for
2 2

this case is F(z) = z 3z and B(z) = —._:_L_—[ 22 7‘2 ]

Zz 242 N2 (-2 2°]°
The purpose of this simple example is to show how to use
the one step extension method to form an extremal function

with minimal norm.

The norm of the Sarason operator T =PBMFP* is 3%3.9681 (=f).
[

From step 4, one extension matrix FO is

2-6595 -1-0865 ®

From step 5, form the new rational functions; F = F+BF, and

‘§r= zB; then the singular values of the one step extension

Sarason 0peratorsrg are:

3.9681, 3%.9681, 3.9681, 1.0429, 0.1228.

Two linearly independent maximising vectors are

~0.0260+0.21112+0.8037z2

volz) = 2
-0.0260+0.3563%2-0.42562 .

-0.2533-0.32092+0.36472°

-0.25%%+0.23902+0,76062
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and.
-Oi 7478"'1 ® 13662
»*
T v (Z) = = Du (Z)
° ‘0-2899+3-6776Z+0.534722 () 0™
2.2283+0.51582
*
Tvy(z) = = pu,(2),
L -2.8207-0.16002+l-59l4z2 (> 1

An extremal function with minimal norm is

G(z) = [vpy(2), vy(2)1[ uy(2), ul(z)]-l

z-6.061922+§.§64SZ3+8.7616Z4, 32-12.142422-4.380823
1-4.04022-1.61892%40.55642°  1-4.04022-1.61892%+0.55642>

7-1.3808z=13.14242" , 2-7.08052-8.3645z°-4.38082°
1-4.04022-1.61892°+0.55642z°  1-4.04022-1.61892°+40.55642>

Since G(z) € F(z)+B(z)Hg;m, and B(0)=0, so

3(0) = F(0) = [0 0]
O 21°

Let € = O, —1-65-, gg—, 2{—, -4%'-—, -5%-, and Zg = cos® +isinb,
which is on the unit circle. Then [l G(zg) || = 3.9681.

Constancy is observed up to 12 decimal places.

E’has multiplicity 322. This indicates that G(z) is not in
its lowest terms. By using the Cohn algorithm the numerator
and denominator of every entry of G(z) have one zero inside
the unit circle. By using "“co2adb" from ALGOL 68 NAG, the

linear term is 2z-0.2283%.



T

2o

6.

108
REFERENCES

V.M. Adamjan, D.V. Arov and M.G. Krein, Infinite

Hankel matrices and generalized Carétheodory -

4
Fejer end Riesz problems, Functional Analysis

Appl., 2(1968), 1-18.

, Analytic
properties of Schmidt pairs for a Hankel operator
and the generalized Schur-Takagi problem, Math.
USSR Sbornik, 15(1971), 31-73.

, JInfinite

Hankel block matrices and related extension problem,
Akad Nauk Armenia SSR Isvestia Math., 6(1971):;
AMS translation (2) 111(1978), 133-156.
A.C., Allison and N.J. Young, Numerical solution of
the Nevanlinna-Pick problemn, Numerische
Mathematik » to appear.

Gr. Arsene, Z. Ceausescu and C. Foias, On intertwining

dilations VIII,. J. Operator Theory 4(1980),55-91.
g, Barnett, Matrices in control theory, Van Nostrand,
London 1971.

K. Clancey and I. Gohberg,ractorization..ofmatrix functions

and singular integral operatqrs, Birkhauser Verlag
1981.
A. Cohn, ﬁber die Anzahl der Wurzeln einer algebraischen
Gleichung in einem Kreise, Math. 2.,14(1922),110-148.
Ph. Delsarte, Y. Genin and Y. Kamp, The Nevanlinna-

Pick problem for matrix-valued functions, SIAM

Jo Appl. Math-’ 36(1979)’ 47-61-



10,

11,

12,

15

14.

15.

16,

18.

19.

20.

21.

109
2 On the role of the
Nevanlinna-Pick problem in circuit and system theory,
Circuit Theory and Application, 9(1981), 177-187.
R.G. Douglas, P.S. Muhly and C.M., Pearcy, Lifting
commuting operators, Michigan Math. J., 15(1968),
585-395.

, Banach algebra techniques in operator

theory, Academic Press, London, 1972.

H, Dym and I. Gohberg, Extensionsof matrix valued
functions and block matrices, Indiana University
Math., J., 31(1982), 733-765.

I. Gohberg and S.Goldberg, Basic operator theory,
Birhauser, 1981.

A.R. Gourlay and G.A. Waston, Computational methods
for matrix eigenproblems, John Wiley and sons, 1973,

M.H. Gutkneckt and L.M. Trefethen, Recursive digital
filter design by the Caratheodory-Fejer method,
Numer. Anal. Proj. Manuscript NA-30-01, 1980,1-17.

H. Helson, Invariant subspaces, Academic Press,

New York, 1964.

J.W. Helton, The distance of a function to H® in
the Poincare metric: electrical power transfer,
J. Punctional Analysis, %8(1980), 273-314.

, Non-Euclidean functional analysis and

electronics, Amer. Math. Soc., 7(1982), 1-64.

K. Hoffman, Banach spaces of analytic functions,

New Jersey: Prentice Hall, 1962.

P, Kailath, Linear systems, New Jersey: Prentice Hall, 1980



22 .

25,

24 .

25

26,

271«

28.

30.

31.

32

2%,

24 .

110

S. Kung, Optimal Hankel norm model reductions: scalar

systems, Proc. 1980 Joint Automat. Contr. Conf.,

San Francisco, CA.

S. Kung and D.W. Lin, Optimal Hankel norm model
reductions: multivariable systems, IEEE Trans.
Automat. Contr., 26(1981), 832-852,

A.I. Malcev, PFoundations of linear algebra, San Francisco:
W.H. Freeman.

A.D. McGettrick, AILGOL &8, a first and second course,
Cambridge University Press, Cambridge 1978,

B. Sz-Nagy and C. Foias, Dilatationdes commutants
d'operateurs, C.R. Acad. Sc. Paris, 266(1968), 493-495.

, Haryrmonic analysis of operators

on Hilbert space, Amsterdam-Budapest, 1970.

Z. Nehari, On bounded bilinear forms, Ann. of Math.,

65(1957), 153-162.
R. Nevanlinna, Uber beschrankte analytische Funktionen,

Ann. Acad. Sci. Fenn., 32(1929), 1-75.

L.B. Page,
Trans. Amer. Math. Soc., 150(1970), 529-539,

Bounded and compact vectorial Hankel operators.

R.V. Patel and N. Munro, Multivariable system theory

and design, Pergamon Press, Oxford, 1981.
G. Pick, Uber die Beschrankungen analytischer Funktionen,
Welche durch vorgegebener IFunktionenswerte bewirkt

werden, Math. Ann., 77(1916), 7-23.
V.P. Potapov, The multiplicative structure of J-
contractive matrix functions, AMS Translation 13
(1960), 131-243.

S.C. Power, Hankel operators on Hilbert space, Bull.

London Math. Soc., 12(1980), 422-442.



55.

3T

38.

39.

40,

41.

42 .

43.

44.

45.

111
V. Ptak and N.J. Young, Functions of operators and the
spectral radius, Linear Algebra and its Applications,
29(1980), 357-392.
V. Pték, An equation of Lyapunov tyﬁe, Linear Algebra
and its Applications, 39(1981),73-82.

V. Ptak and N.J. Young, 4ero location by Hermitian forms:

The singular case, Linear Algebra and its Applications
43(1982), 181-196.
E.A. Robinson, Multichannel time series with digital
computer programs, San Francisco, CA; Holden-Day 1987.

M. Saito and D.C. Youla, Interpolation with positive

real functions, J. Franklin Inst., 284(1967), 77-108.
D. Sarason, Generalized interpolation in Hai Trans,
Amer. Math. Soc., 127(1967), 179-203,
, Punction theory on the unit circle, Notes
for lectures at a conference at Virginia Polytechnic
and State University, June 1978,

G.W. Stewart, Introduction to matrix -computations,

1975.
A minimal algorithm for

New York and London: Academic Press,
S.H. Wang and E.J. Davison,
the design of linear multivariable systems, IEEE

Trans. Automat. Contr., 18(1973), 220-225,
N.J. Young, Formulae for the solution of Lyapunov
matrix equations, Int. J. Contr., 31(1981), 159-179.
, The solution of Lyapunov's equation by
a geometric method, Proc. Roy. Soc. Edinburgh
86(1980), 347-354.

s The singular value decomposition of an

infinite Hankel matrix, Linear Algebra and its

Applications, to appear.

. ENS ¥y 7
VitRSITY



112

47, J.L. Walsh, Interpolation and approximation by rational

functions in the complex domain, AMS Colloquium

Publications, Vol 20, 1956.




