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Abstract 

The vascular endothelium contributes to the maintenance of vascular health by regulating 

vascular tone and leukocyte adhesion, amongst others. The vasoregulatory actions of the 

endothelium are mediated through coordinated release of vasodilators such as nitric oxide 

(NO) and prostacyclin, and vasoconstrictors such as endothelin-1 and thromboxane A2. 

Endothelial NO is the principal vasodilator in the vasculature and is produced by 

endothelial nitric oxide synthase (eNOS). Insulin is a vasoactive hormone that exerts its 

vasodilatory effects through eNOS-mediated NO production. Endothelial function is 

impaired in a number of disorders, including insulin resistance, diabetes and 

atherosclerosis, leading to dysregulated vasodilation as well as increased monocyte 

adhesion and plaque formation (atherosclerosis). The underlying molecular mechanisms 

leading to endothelial dysfunction are still in question. 

The work presented in this thesis addressed this question by investigating how insulin 

signalling and eNOS-mediated NO and superoxide production in human vascular 

endothelial cells are affected under experimental hyperinsulinaemia (chapter 3) and 

experimental hyperglycaemia (chapter 4). Atherogenic processes in human aortic 

endothelial cells (HAEC) were investigated by assessing monocyte adhesion under 

experimental hyperinsulinaemia (chapter 3), and by determining the contribution of NO 

and AMP-dependent kinase (AMPK) activity to the regulation of endothelial chemokine 

production (chapter 6). The potential of insulin to modify the subcellular distribution of 

eNOS was investigated in chapter 5.  

Clinical hyperinsulinaemia correlates with attenuated NO-mediated vasodilation, but it is 

not clear how hyperinsulinaemia impairs eNOS-mediated NO production. The present 

study modelled hyperinsulinaemia in HAEC and demonstrated a blunted response of 

hyperinsulinaemic cells to Ca2+-stimulated, but not insulin-stimulated eNOS-mediated NO 

synthesis. To address the underlying mechanisms responsible, the protein expression levels 

of components of the metabolic and mitogenic insulin signalling pathways, and of the 

metabolic energy sensor, AMPK, were quantified. Experimental hyperinsulinaemia 

slightly and non-significantly increased basal and insulin-stimulated eNOSS1177 

phosphorylation in a time-dependent manner, and the levels of eNOST495 increased 

following acute insulin stimulation under these conditions. No marked dysregulation of 

individual insulin signalling pathway components was identified as a potential cause, but 

increased activating AMPKT172 phosphorylation was found to be a potential cause of 
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increased unstimulated eNOSS1177 phosphorylation under experimental hyperinsulinaemia. 

Monocyte adhesion to hyperinsulinaemic HAEC did not differ from control HAEC, 

indicating that experimental hyperinsulinaemia did not act as a proatherogenic factor in the 

present study.  

Overt diabetes was simulated by experimental hyperglycaemia in human umbilical vein 

endothelial cells (HUVEC) and its effect on insulin-stimulated eNOS phosphorylation and 

endothelial superoxide production assessed. Insulin tended to stimulate phosphorylation of 

eNOSS615 and eNOSS1177, and decrease phosphorylation of eNOSS114, eNOST495 and 

eNOSS633 under control conditions. Experimental hyperglycaemia slightly reduced basal 

phosphorylation of Ser633 and significantly reduced insulin-stimulated phosphorylation of 

Ser114, but mildly increased basal Ser615 phosphorylation, indicating some dysregulation 

of eNOS phosphorylation. The upstream components of the  metabolic insulin signalling 

pathway were not impaired in hyperglycaemic conditions. 

The subcellular localisation of eNOS is thought to have implications for its function. This 

study showed tha t eNOS localises to the plasma membrane, the nucleus, the cytoplasm 

and, primarily, the perinuclear area of HAEC. Insulin stimulation did not affect this 

distribution. Phospho-eNOS species were found primarily at the plasma membrane, and 

insulin may modula te the abundance of an intracellular eNOST495 species.  

Previous work in our laboratory on AMPK-mediated reduction of adhesion molecule 

expression has lead to the investigation of AMPK- and NO-mediated regulation of 

chemokine production in the present study. Inhibition of NO synthesis increased the 

production of monocyte chemoattractant protein (MCP)-1 in HAEC. AMPK activity 

downregulated TNFa-stimulated MCP-1 expression, and this was NO-dependent in the 

short-term, but may be NO-independent during prolonged AMPK activation. These data 

implicate NO and AMPK as antiatherogenic mediators in vascular endothelial cells in 

vitro . 

Taken together, the data in this thesis provide further insight into some of the molecular 

mechanisms involved in endothelial function and their response to hyperinsulinaemia, 

hyperglycaemia and proatherogenic stimulation. 
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1.1 The vascular endothelium 

The vascular endothelium is a single cell layer lining the lumen of blood vessels, providing 

a physical barrier between the blood vessel wall and the lumen. It is a key player in the 

maintenance of cardiovascular health. It regulates a number of processes, including the 

maintenance of vascular tone, passage of substances into and out of the bloodstream, 

platelet aggregation, coagulation, fibrinolysis and monocyt e adhesion (Wheatcroft et al., 

2003).  

Vascular tone is regulated by a number of endothelium-derived substances with vasodilator 

or vasoconstrictor function, which act on vascular smooth muscle cells in the underlying 

vascular wall. The principal vasodilators include nitric oxide (NO), prostacyclin and 

endothelium-derived hyperpolarising factor (EDHF), whereas the vasoconstrictors include 

endothelin-1 and thromboxane A2. NO is the main endothelium-derived vasodilator in 

large blood vessels, while EDHF is more important in smaller vessels (Wheatcroft et al., 

2003). The maintenance of a correct balance between these vasoactive molecules is crucial, 

so that vascular tone can be adjusted appropriately to stimuli such as shear stress (passage 

of blood through the blood vessel), exercise, feeding, temperature changes and changes in 

blood volume. 

Endothelial dysfunction can be defined as defective endothelium-dependent vasodilation 

and dysregulated expression of endothelial adhesion molecules and chemokines. 

Endothelial dysfunction is a component of metabolic disorders such as insulin resistance, 

Type II diabetes and the metabolic syndrome, as well as atheros clerosis. The relationship 

with each of these diseases is still under debate, and is discussed in sections 1.4 - 1.6. 
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1.2 Nitric oxide production in the vascular endothelium 

1.2.1 Nitric oxide synthases 

Nitric oxide synthases are enzymes that catalyse the conversion of L-arginine to NO and L-

citrulline , and were first discovered in 1989 (see review by (Alderton et al., 2001)). 

Mammalian nitric oxide synthases (NOS) exist in three isoforms: endothelial (eNOS, or 

NOS III), neuronal (nNOS, or NOS I) and inducible NOS (iNOS, or NOS II) (Andrew & 

Mayer, 1999, Stuehr, 1999). The NOS enzymes are homodimers consisting of an N-

terminal oxygenase domain and a C-terminal reductase domain (see Figure 1-1). The latter 

shares at least 50% homology with the cytochrome P-450 reductase (Stuehr, 1999). These 

NOS dimers form heterotetramers with two molecules of calmodulin (CaM). NOS require 

the cofactors nicotinamide adenine dinucleotide phosphate (NADPH), f lavin 

mononucleotide (FMN), flavin adenine dinucleotide (FAD), haem and tetrahydrobiopterin 

(BH4) for enzymatic activity (Knowles & Moncada, 1994, Andrew & Mayer, 1999, Stuehr, 

1999).  

The haem group plays a crucial role in the dimerisation of all three NOS isoforms (Baek et 

al., 1993, Klatt et al., 1996, List et al., 1997). BH4 is postulated to modulate oxy-haem 

reactivity (Stuehr, 1999) , and it stabilises the conformation and affects the activity of NOS 

(Mayer & Hemmens, 1997, Andrew & Mayer, 1999). Figure 1-2 illustrates the synthesis of 

NO by NOS. Some of the characteristics of each NOS isoform are outlined below. 

 

  
 

Figure 1-1 The domain structures of NOS 

The myristoylation (Myr) and palmitoylation (Palm) sites on eNOS are shown. Diagram adapted 
from (Alderton et al., 2001) 
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1.2.1.1  eNOS 

As the principal source of endothelial NO, eNOS is of major importance to the normal 

functioning of the cardiovascular system. eNOS is activated by hormonal factors, including 

insulin  (Sobrevia et al., 1996, Zeng & Quon, 1996)  and vasopressin (Resta et al. , 1997), as 

well as by mechanical forces such as shear stress generated by blood flow through blood 

vessels (Corson et al. , 1996). Shear stress -mediated eNOS activation in vitro has been 

proposed to be  dependent on the phosphatidylinositol-3 kinase (PI3K)-PKB pathway 

(Dimmeler et al., 1999). Shear stress, exercise and hypoxia not only activate eNOS, but 

also upregulate eNOS transcription (reviewed in (Nathan & Xie, 1994)).  

 
Figure 1-2 Nitric oxide synthesis by NOS 

Electrons (e-) are donated to the reductase domain of eNOS by NADPH and pass through the FAD 
and FMN domains to the haem iron in the oxygenase domain. Here, the electrons interact with BH4 
at the active site to catalyse the conversion of L-arginine and oxygen to L-citrulline and nitr ic 
oxide. This process depends on the binding of Ca2+/CaM to eNOS. Diagram adapted from  
(Alderton et al., 2001) 

 

1.2.1.2  nNOS 

Neuronal NOS (nNOS) (monomer size ~155 kDa) is widely expressed in central and 

peripheral neurones. Compared to eNOS, nNOS possesses an N-terminal extension of 

about 300 amino acid residues that encode a PDZ domain. The PDZ domain permits 

association of nNOS with cytoskeletal/structural proteins such as dystrophin and PSD-95 

that serve to localise nNOS within the cell (reviewed in (Andrew & Mayer, 1999, Stuehr, 

1999). Binding to caveolin -3 inhibits nNOS-mediated NO synthesis (Venema et al., 1997). 
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At low concentrations of L -arginine, nNOS catalyses the production of O2
.-, H2O2 and 

peroxinitrite (ONOO.-) in a so-called uncoupled reaction (Mayer et al., 1991, Heinzel et 

al., 1992, Andrew & Mayer, 1999). These highly reactive oxygen species have damaging 

effects on cellular function that can lead to pathogenic outcomes.  

 

1.2.1.3  iNOS 

The inducible form of NOS, iNOS, is expressed at high levels in macrophages, endothelial 

cells, cardiac myocytes and smooth muscle cells in response to proinflammatory stimuli 

such as cytokines. A few other tissues, such as the lung epithelium, constitutively express 

iNOS (monomeric form: ~130 kDa). The enzyme is thought to play a role in host defence, 

but has also been implicated in inflammatory diseases and may have a negative effect on 

atherosclerotic lesions (Andrew & Mayer, 1999, Stuehr, 1999). By contrast, iNOS activity 

may also be beneficial in that it suppresses allograft atherosclerosis (Shears et al. , 1997, 

Andrew & Mayer, 1999). 

 
 

1.2.2 Nitric oxide production 

Early work showed that aortic rings explanted from rabbits and preconstricted with 

noradrenaline dilated in response to acetylcholine, but this response failed when the rings 

were denuded of the endothelial layer (Furchgott & Zawadzki, 1980). This was the first 

indication that an endothelium-derived factor was responsible for vasodilation (also termed 

vasodilatation or vasorelaxation). This factor was later termed endothelium -derived 

relaxation factor (EDRF). Griffith and co-workers then demonstrated that EDRF is a 

humoral agent whose production can be stimulated by acetylcholine (Griffith et al., 1984) , 

and this humoral agent was later proposed to be nitric oxide (NO) (Ignarro et al., 1987, 

Palmer et al., 1987). Some controversy remains to this day as to the true identity of EDRF. 

Other candidates for EDRF have been suggested, including the nitroxyl ion, which could 

then be oxidised to NO in a reaction with superoxide dismutase (SOD) (Murphy & Sies, 

1991). It is, however, accepted that eNOS is the source of endothelial NO.  

Ca2+-stimulated activation of eNOS and nNOS occurs in response to an intracellular surge 

in calcium levels and involves binding of Ca2+ and CaM. iNOS, by contrast, is essentially 
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calcium-independent, as it binds CaM with high affinity (Andrew & Mayer, 1999, Stuehr, 

1999). Shear-stress- and insulin -stimulated eNOS activation is independent of the 

intracellular Ca2+ concentration (Corson et al., 1996, Fisslthaler et al., 2000, Montagnani et 

al., 2001, Boo et al., 2002). 

Upon binding of CaM to constitutive NOS, the co-factors FMN and FAD, which are bound 

to the NOS reductase domain, accept electrons from NADPH and transfer these to the 

haem iron in the oxygenase domain. This leads to O2 binding, and activation of NOS 

(Stuehr, 1999, Alderton et al., 2001). In the oxygenase domain, the electrons interact with 

the haem iron and BH4 at the active site to catalyse the reaction of O2 with L-arginine to 

produce NO and L-citrulline (see Figure 1-2). This reaction proceeds via the reaction 

intermediate NG-hydroxy-L-arginine (Alderton et al., 2001).  

In the absence of Ca2+/CaM, electron transfer between FAD and FMN is slow, indicating 

that Ca2+ ions are required for efficient eNOS activation (Matsuda & Iyanagi, 1999) . In the 

catalytically active eNOS dimer, electrons pass from the flavin domain of one monomer to 

the haem residue of the other monomer (Siddhanta et al., 1996). This explains the 

necessity for NOS dimerisation for catalytical activity.  

 
 

1.2.3 Other possible products of eNOS 

Under some conditions, eNOS can directly or indirectly catalyse the formation of other 

reactive oxygen species, including nitroxyl (NO-) ions, peroxynitrite (ONOO-), superoxide 

(O2
-) and nitrosothiols. Superoxide is generated when eNOS is uncoupled from NADPH 

oxidation (Vasquez-Vivar et al., 1998, Xia et al., 1998). This process decreases NO 

synthesis. Superoxide can react with NO, leading to formation of both peroxynitrite and 

nitrate (Reiter et al., 2000). Peroxynitrite, in turn, can reduce NO bioavailability further 

through oxidation and uncoupling of eNOS, leading to enhanced O2
- production and 

decreased NO synthesis (Zou et al., 2002). Nitrosothiol can be generated by stimulation of 

eNOS with bradykinin or Ca2+ ionophore in the presence of homocysteine (Upchurch et 

al., 1997). 

It has also been proposed that the nitroxyl ion is the initial reaction product of eNOS, 

which is then oxidised to NO in a reaction with superoxide dismutase (SOD) (Murphy & 
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Sies, 1991) . It is, however, generally accepted that NO is the principal reaction product of 

eNOS.  

 

1.2.4 Nitric oxide-mediated vasodilation 

NO is a free radical (Mayer & Hemmens, 1997) and has an extremely short half-life of 

only 3-6 seconds (Griffith et al., 1984, Ignarro et al., 1987, Moncada & Higgs, 1991, 

Boger et al., 1996). Once produced, NO has several targets, including the enzyme soluble 

guanylate cyclase (sGC), which catalyses the formation of cyclic guanosine 

monophosphate (cGMP), a secondary messenger that relays information to cGMP -

responsive molecules. In the case of NO-mediated vasodilation, the cGMP -targeted 

molecules include two cGMP -dependent protein kinases, PKG I and PKG II (also known 

as cGK-I and -II) (Gewaltig & Kojda, 2002).  

PKG I mediates vasodilation by phosphorylating various molecules involved in smooth 

muscle relaxation, including inositol 1,4,5-triphosphate receptor-associated G kinase  

(IRAG), myosin light chain (MLC) phosphatase, and phospholamban (Gewaltig & Kojda, 

2002). In these cases, phosphorylation ultimately results in decreased intracellular Ca2+ 

levels: IRAG phosphorylation reduces the release of Ca2+ from the sarcoplasmic reticulum 

(Ammendola et al., 2001), phosphorylation-activated MLC phosphatase prevents MLC 

phosphorylation and contraction (Surks  et al., 1999) , and phospholamban phosphorylation 

mediates sarcoendoplasmic reticulum ATPase (SERCA) activation, resulting in the rapid 

sequestration of intracellular Ca2+ (Gewaltig & Kojda, 2002, Rivero-Vilches et al., 2003).  

A further NO-mediated vasodilatory mechanism is the activation of Ca2+-activated K + 

(BKCa) channels by NO through the cGMP-PKG I pathway. Activation of the BKCa 

channels can occur either through direct activation of the BKCa channels by NO (Bolotina  

et al., 1994) or by PKG I-dependent phosphorylation of the channel protein (Alioua et al., 

1998) or of a protein phosphatase (Hall & Armstrong, 2000, Sausbier et al., 2000). BKCa 

channel activation increases the K+ efflux, thus causing membrane hyperpolarisation and 

vasodilation (Gewaltig & Kojda, 2002). 

eNOS-derived NO is vitally important as a vasodilator: Disruption of the eNOS gene in 

mice results in mild hypertension (Huang et al., 1995, Gewaltig & Kojda, 2002); an 

increased blood pressure is also seen in humans when NO synthesis is inhibited 



Christine F. Kohlhaas   Chapter 1, 25 

 

pharmacologically (Stamler et al. , 1994, Gewaltig & Kojda, 2002) . Currently, it is thought 

that at physiological concentrations of NO, vasodilation is mediated via cGMP-PKG I-

dependent mechanisms, while at high levels of NO (either pharmacologically induced or as 

encountered during endotoxic shock) (Thiemermann & Vane, 1990, Rosenberg et al., 

1994), this mechanism is bypassed and the alternative protein kinase A (PKA) pathway is 

activated by cGMP (Pfeifer et al., 1998, Sausbier et al., 2000). 

 

1.2.5 Other roles of nitric oxide 

Besides vasodilation, NO has antiatherogenic roles in the regulation of platelet function, 

monocyte adhesion (Kubes et al., 1991) and smooth muscle cell proliferation (Mayer & 

Hemmens, 1997, Gewaltig & Kojda, 2002). Platelet aggregation is prevented by lowering 

intracellular Ca2+ concentration through activation of phospholamban and SERCA via the 

cGMP-PKG I pathway (reviewed in (Gewaltig & Kojda, 2002)).  

Monocyte adhesion is dependent on the expression of chemokines and adhesion molecules, 

including vascular cell adhesion molecule (VCAM-1), monocyte chemoattractant protein -1 

(MCP-1) and cytokines, on the surface of vascular endothelial cells. Unregulated monocyte 

adhesion contributes to atherogenesis. NO inhibits NF?B expression and activation. NF?B-

dependent VCAM-1 expression is thus inhibited and monocyte adhesion decreased 

(reviewed in (Gewaltig & Kojda, 2002) ). 

Smooth muscle cell proliferation is inhibited in vitro  by NO (Garg & Hassid, 1989) 

through inhibition of O2
--producing enzymes (e.g. NADPH oxidase) (Clancy et al., 1992). 

Proliferation may also be blocked by cGMP-dependent activation of PKA and cGMP-

inhibition of cAMP phosphodiesterase (PDE III). Activated PKA is thought to inhibit the 

mitogenic molecule Raf-1, thus preventing smooth muscle cell proliferation (reviewed in 

(Gewaltig & Kojda, 2002) ). Unregulated vascular smooth muscle cell proliferation is 

proatherogenic in that it can lead to artery thickening, thus increasing the risk of 

hypertension, stroke and infarction. 

The immune system utilises macrophage-produced NO as a cytotoxic attack factor (Mayer 

& Hemmens, 1997) and tumour cytostatic agent (MacMicking et al., 1997, Stuehr, 1999) . 

In severe inflammatory conditions like septic shock, iNOS-catalysed NO synthesis can 

lead to potentially lethal hypotension (Mayer & Hemmens, 1997). NO has furthermore 
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been implicated in learning and memory (long-term potentiation, LTP), since LTP was 

markedly decreased in eNOS knockout mice (Son et al., 1996, Mayer & Hemmens, 1997, 

Wilson et al., 1997). The function of NO in long-term potentiation, together with other 

evidence for NO-controlled gene expression (Zeiher et al., 1995) , point to a role for NO in 

transcriptional regulation.  

 

1.2.6 Regulation of eNOS activity 

Given the vital role of nitric oxide in the vasculature, it is imperative that its production be 

tightly controlled. A number of dis tinct mechanisms regulate eNOS activity, including 

transcriptional control, acylation, phosphorylation, subcellular localisation and association 

with other cellular molecules.  

 

1.2.6.1  Transcriptional control 

The promoter of the eNOS gene contains two positive regulatory domains, PRD I and 

PRDII. The former contains a high-affinity Sp1 transcription factor recognition site, to 

which Sp1 and Sp3 transcription factors bind, while the latter binds Ets-1, Elf-1, YY1, 

Sp1, and MYC-associated zinc finger protein (Karantzoulis -Fegaras et al. , 1999). Trans-

acting factors have also been implicated in the regulation of eNOS transcription (Searles, 

2006). An upstream enhancer sequence needs to interact with the promoter sequence for 

full promoter activity. Erg, AP-2 and Sp1-related factor have been shown to interact with 

the enhancer sequence (Laumonnier et al., 2000, Searles, 2006). Shear stress, exercise and 

hypoxia not only activate eNOS, but also mediate upregulation of eNOS transcription 

(reviewed in (Nathan & Xie, 1994)).  

 

1.2.6.2  Acylation and subcellular localisation 

The eNOS monomer is post-translationally modified by myristoylation and palmitoylation. 

These modifications serve partly to target eNOS to various subcellular locations. eNOS is 

dually acylated by cysteine palmitoylation at cysteines 15 and/or 26, and by N-
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myristoylation on glycine 2 of the bovine eNOS sequence. Myristoylation targets eNOS to 

the plasma membrane and the Golgi complex, while palmitoylation targets it to caveolae 

(Lamas et al., 1992, Busconi & Michel, 1993, Liu & Sessa, 1994, Garcia -Cardena  et al., 

1996b, Liu et al., 1996, Shaul et al., 1996). Palmitoylation-deficient eNOS mutants were 

deficient in NO synthesis, suggesting that palmitoylation positively regulates NO release 

(Liu et al., 1996). 

Palmitoylation specifically targets eNOS to caveolae at the plasma membrane (Liu et al., 

1996). Caveolae are a form of so-called lipid rafts, microdomains devoid of phospholipids 

but rich in cholesterol and glycosphingolipids, as well as the coat protein caveolin -1 

(Brown & London, 1998). It has been suggested that caveolae act as signal transducing 

domains because they are thought to bring transmembrane receptors such as the insulin 

receptor, in close proximity to their downstream targets by virtue of direct interaction of 

these signalling molecules with caveolin-1 (Kimura et al., 2002, Saltiel & Pessin, 2003). 

Likewise, eNOS is known to bind caveolin-1 through its oxygenase and reductase 

domains, thereby being held at plasma membrane caveolae in an inactivating complex 

(Feron et al., 1996, Garcia-Cardena et al., 1996a, Garcia-Cardena et al., 1997, Michel et 

al., 1997, Feron et al. , 1998, Ghosh et al. , 1998). The presence of eNOS at the plasma 

membrane is thought to optimise eNOS activation and nitric oxide release to the 

extracellular environment (Garcia-Cardena et al. , 1996b, Shaul et al., 1996). 

Intracellularly, eNOS is found in the particulate subcellular fraction of bovine aortic 

endothelial cells (Forstermann et al. , 1991, Pollock et al., 1991) and eNOS-transfecetd 

COS-7 cells (Busconi & Michel, 1993). Later studies showed that eNOS is targeted to the 

Golgi body of eNOS-transfected HEK cells (Sessa et al. , 1995). It has been suggested that 

the plasma membrane - and Golgi-pools of eNOS respond differently to agonist-mediated 

activation (Zhang et al., 2006). In the cell line ECV304, exogenous eNOS also localised to 

the plasma membrane and the perinuclear/Golgi area (Sowa et al., 1999). However, the 

endothelial nature of ECV304 cells is controversial, as a recent genetic analysis found 

these cells to be identical to the bladder cancer-derived epithelial cell line T24/83 (Brown 

et al., 2000). Therefore, their use as an endothelial cell model is questionable.  
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1.2.6.3  Phosphorylation 

Human eNOS has several known phosphorylation sites: Ser114, Thr495, Ser615, Ser633 

and Ser1177. Regulation of eNOS activity is thought to involve concerted phosphorylation 

and dephosphorylation of these sites (Michell et al., 2001, Bauer et al., 2003, Mount et al., 

2007). In addition, eNOS can be tyrosine-phosphorylated, which may regulate its 

interaction with caveolin-1 (Garcia -Cardena  et al., 1996a). Tyrosine phosphorylation is 

also postulated to decrease endothelium-dependent vasorelaxation in response to 

acetylcholine (Huang et al., 2002) , suggesting that it inhibits NO synthesis. 

Ser1177 is the best -characterised eNOS phosphorylation site. It is located in the reductase 

domain and is phosphorylated by a number of kinases, including PKA (Michell et al., 

2001), PKB (Dimmeler et al., 1999, Fulton et al. , 1999), AMPK (Fleming & Busse, 2003, 

Morrow  et al., 2003), PKG and CaM-dependent kinase II (CaMKII) (Fleming et al., 2001) 

(reviewed in (Mount et al., 2007)). Phosphorylation of eNOSS1177 increases eNOS activity 

and is required for agonist-mediated NO synthesis (Dimmeler et al., 1999, Fulton et al., 

1999, Michell et al., 2001). Phosphorylation of eNOSS1177 can be triggered by a number of 

factors, including shear stress, insulin, IGF-1, oestrogen, vascular endothelial growth factor 

(VEGF), bradykinin and ATP  (Fleming et al., 1998, Michell et al. , 2001, Bauer et al., 

2003, Mount et al. , 2007). Insulin-stimulation of eNOS increases NO production in HAEC 

~4-fold (Salt et al. , 2003). Ser1177 is located in the CT domain of eNOS, which is situated 

between the two eNOS monomers, thereby blocking the transfer of electrons in an 

autoinhibitory fashion. Phosphorylation of eNOSS1177 has been suggested to induce a 

conformational change that removes this CT domain block and increases eNOS activity 

(Lane & Gross, 2002) . 

Several lines of evidence suggest that eNOST495 phosphorylation negatively regulates nitric 

oxide synthesis, because its dephosphorylation enhances NO production (Chen et al., 1999, 

Fleming et al., 2001, Michell et al., 2001, Greif et al., 2002, Fleming & Busse, 2003, 

Matsubara et al. , 2003). eNOST495 was constitutively phosphorylated in porcine aortic 

endothelial cells (PAEC) in the basal state and was rapidly dephosphorylated upon 

bradykinin stimulation, leading to eNOS activation (Fleming et al. , 2001). In addition, 

PKA has been demonstrated to increase eNOS activation with associated Thr495 

phosphorylation (Michell et al., 2001). Furthermore, insulin stimulated a decrease in 

eNOST495 phosphorylation in HUVEC (Greif et al., 2002, Federici et al., 2004) , and 
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mimicking Thr495 phosphorylation by site-directed mutagenesis decreased eNOS activity 

(Michell et al., 2002). 

The phosphorylation site Thr495 is situated in the CaM-binding domain of eNOS. PKC 

was identified as a candidate for eNOST495 phosphorylation, causing a decrease in eNOS 

activity through altering the binding of CaM (Fleming et al., 2001, Matsubara et al. , 2003). 

Dephosphorylation of eNOSS1177 and eNOST495 is proposed to be mediated by phosphatase 

PP2A and phosphatase PP1, respectively (Michell et al., 2001, Greif et al., 2002). PKC 

activation has been proposed to mediate dephosphorylation of  eNOS at Ser1177 and 

simultaneous phosphorylation at Thr495, thus having an inhibitory effect (Fleming et al. , 

2001). It has been suggested that the coordinated phosphorylation of Ser1177 and Thr495 

is critical in determining agonist-stimulated eNOS activity (Fleming et al., 2001, Fleming 

& Busse, 2003). 

Although the other eNOS phosphorylation sites are less well-characterised, experimental 

evidence has demonstrated that the phosphorylation state of these sites also influences the 

stimulation and kinetics of eNOS activity, and may also modulate its interactions with 

other proteins. These findings highlight the complexity of eNOS regulation and the 

physiological importance of this enzyme. 

Ser114 is located in the oxygenase domain of eNOS. The effect of eNOSS114 

phosphorylation on eNOS activity is controversial. Some groups demonstrated an 

upregulation of eNOS activity with increased eNOSS114 phosphorylation. Shear stress and 

high dens ity lipoprotein were both reported to increase eNOSS114 phosphorylation and 

eNOS activity (Gallis  et al., 1999, Drew et al., 2004). Site-directed mutagenesis of bovine 

eNOS and subsequent transfection into COS-7 cells suggested that mimicking 

phosphorylation at Ser114 increased eNOS activity. Controversially, in the same study, 

both the phosphorylation and dephosphorylation-mimetic  eNOSS114 mutants increased 

stimulated NO release (Bauer et al., 2003). By contrast, another group found that 

mimicking dephosphorylation of eNOSS114 by mutating the serine residue to alanine, 

increased eNOS activity, and that stimulation of eNOS with VEGF dephosphorylated 

Ser114 (Kou et al. , 2002). It has been proposed that eNOSS114 phosphorylation modulates 

Ser1177 phosphorylation and increases the interaction of eNOS with hsp90 and PKB 

(Bauer et al., 2003). 
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The role of the phosphorylation site Ser615 in the FMN binding domain of eNOS is not 

fully understood. eNOSS615 phosphorylation has been reported to increase eNOS activity 

and in our own laboratory, eNOSS615 phosphorylation is associated with insulin-stimulated 

NO release (Michell et al. , 2002, Ritchie et al. , 2007). The eNOS agonists VEGF, 

bradykinin and ATP have been shown to stimulate eNOSS615 phosphorylation, suggesting 

that Ser615 is an activating site (Michell et al. , 2002). Ser615 phosphorylation increased 

the activity of eNOS at lower concentrations of CaM without affecting maximal activity 

(Michell et al., 2002). PKB has been implicated in the phosphorylation of the bovine site 

equivalent to Ser615 in BAEC (Michell et al., 2002). In agreement with this, insulin 

stimulated eNOSS615 phosphorylation and NO release in HAEC (Ritchie  et al., 2007). By 

contrast, studies with eNOS phospho-mutants demonstrated that mimicked Ser615 

phosphorylation slightly downregulated NO release (Bauer et al., 2003). Phosphorylation 

of Ser615 was postulated to be an important modulator of phosphorylation at Ser1177 and 

increased the interaction of eNOS with hsp90 and PKB (Bauer et al., 2003). 

Phosphorylation of Ser633, which is also located in the FMN binding domain of eNOS, 

has been reported to increase eNOS activity. Similar to eNOSS1177, eNOSS633 is 

phosphorylated in response to shear stress, ATP, VEGF and bradykinin (Boo et al., 2002, 

Michell et al., 2002, Bauer et al., 2003). Site -directed mutagenesis of eNOS phospho-sites 

demonstrated that the bovine site Ser635 (equivalent to human Ser633) is an important 

positive regulator of basal and ATP-stimulated NO release (Bauer et al., 2003). Mimicking 

phosphorylation at Ser635 been shown to contribute to eNOS activity in vitro (Michell et 

al., 2002).  

In contrast to eNOSS1177 , eNOSS633 appears to play a role in mediating prolonged, rather 

than acute, eNOS activity, as eNOSS633 phosphorylation occurred more slowly than 

eNOSS1177 phosphorylation(Boo et al., 2002, Bauer et al., 2003). Phosphorylation of 

bovine eNOSS635 does not require a rise in intracellular Ca2+ to stimulate NO synthesis 

(Boo et al., 2003). PKA has been identified as a likely candidate for eNOSS633 

phosphorylation, whereas PKB does not phosphorylate this site (Boo et al., 2002, Michell 

et al., 2002, Boo et al., 2003). 
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1.2.6.4  Interaction of eNOS with other molecules 

eNOS is known to form a complex with the molecular chaperone hsp90 and the activating 

kinase PKB. This complex has been proposed to permit rapid activation of eNOS (Garcia-

Cardena et al., 1998, Fontana  et al., 2002, Takahashi & Mendelsohn, 2003). It has been 

proposed that hsp90 acts as a molecular scaffold by binding to the N-termini of eNOS and 

PKB, bringing these two molecules into close proximity and promoting eNOS activation 

(Fontana et al., 2002). This interaction is thought to be important for VEGF- and insulin-

stimulated activation of eNOS in vitro (Fontana et al., 2002, Takahashi & Mendelsohn, 

2003). 

An eNOS interaction partner called NOSTRIN (eNOS traffic inducer) has been identified 

by yeast-2-hybrid studies. This protein binds to eNOS in vitro  and in vivo. In HUVEC, 

NOSTRIN colocalised with eNOS at the plasma membrane. NOSTRIN is postulated to 

influence the subcellular distribution and activity of eNOS (Zimmermann et al., 2002). 

NOSIP  (eNOS interacting protein) is a further interaction partner of eNOS that has been 

identified by yeast-2-hybrid experiments. NOSIP  is expressed in HUVEC and binds to the 

oxygenase domain of eNOS. It has been shown to mediate translocation of exogenously 

expressed eNOS from the plasma membrane to intracellular locations, thereby inhibiting 

NO synthesis (Dedio et al., 2001). 
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1.3 Insulin signalling 

Insulin is a polypeptide hormone that functions as an important mediator of metabolic and 

mitogenic cellular actions, including glucose, protein and lipid metabolism as well as cell 

growth and differentiation. It is produced from preproinsulin by proteolysis in pancreatic ß 

cells (see Figure 1-3), releasing C-peptide as a byproduct. Insulin secretion is stimulated by 

elevated blood glucose levels (Siddle, 2005).  

In this section, the metabolic and mitogenic insulin signalling pathways and their 

components will be described, along with the downstream effects of insulin signalling.  

  
 

   
 
 

Figure 1-3 Production of insulin from preproinsulin 

Insulin is produced from preproinsulin in the pancreatic ß cells after the N-terminal signal sequence 
and C-peptide have been cleaved by proteolysis. Diagram adapted from 
http://www.kensbiorefs.com/humphy.html 
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1.3.1 The insulin receptor 

The existence of an insulin receptor was first proposed by House and Weidemann in 1970 

(House & Weidemann, 1970) . However, it was not until 1978 that direct evidence for the 

existence of the insulin receptor was obtained by Yip and co-workers (Yip et al., 1978). 

The insulin receptor family belongs to the superfamily of receptor tyrosine kinases (RTKs) 

and contains three homologous, dimeric transmembrane receptors: the insulin receptor 

(IR), the insulin-like growth factor-1 receptor (IGF-1R) and the insulin receptor-related 

receptor (IRR). The RTK superfamily also compr ises the monomeric RTKs epidermal 

growth factor (EGF) receptor (Ebina et al., 1985) , platelet-derived growth factor (PDGF) 

receptor and the vascular endothelial growth factor (VEGF) receptor (Fantl et al., 1993, 

Deller & Yvonne Jones, 2000).  

IR, IGF-1R and IRR share approximately 60% sequence identity (Ullrich et al., 1986, 

Zhang & Roth, 1992). It is known that IR subunits can form hybrids with IGF-1R subunits 

(Moxham et al., 1989, Soos & Siddle, 1989, Treadway et al., 1989) , and possibly with IRR 

subunits. No ligand has yet been identified for the IRR, though its tyrosine kinase domain 

is capable of phosphorylating the same spectrum of substrates as the IR (Zhang & Roth, 

1992); therefore, the significance of these potentially occurring hybrids is unclear. 

 

1.3.1.1  Insulin receptor structure  

The functional insulin receptor is composed of two identical subunits, each being derived 

from a single, polypeptide pro-receptor (Siddle, 2005). Each subunit comprises an N-

terminal extracellular a-subunit and a C -terminal, transmembrane domain-containing ß -

subunit that extends into the cytoplasm and contains the tyrosine kinase (TK) domain 

(Kasuga et al., 1982, Ebina et al., 1985).  

One individual IR subunit is comprised of two ß-helical domains (named L1 and L2) 

flanking a cysteine-rich (CR) domain, three fibronectin type III repeats (Fn0, Fn1 and Fn2; 

of which Fn1 contains the cleavage site between the a- and ß-subunits), a juxtamembrane 

(JM) region, a tyrosine kinase (TK) domain and a CT domain, (see Figure 1-4). This 

domain structure is shared by the IGF-1R (Czech & Massague, 1982, Ullrich et al., 1986). 

The individual IR subunits are disulphide-bonded in a ß-a-a -ß fashion (Czech & 

Massague, 1982) . 
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Figure 1-4 Insulin receptor domain structure  

The dimeric insulin receptor is composed of extracellular a subunits and transmembrane ß subunits 
that contain the tyrosine kinase activity. Figure adapted from (Zhang) 

 

1.3.1.2  Insulin binding to the insulin receptor 

The insulin receptor has a high affinity and specificity for insulin (Siddle, 2005). Either 

one or two molecules of insulin can bind to the IR, in a negatively cooperative fashion, the 

affinity for insulin being determined by the IR dimerisation domain encoded by exon 10 

(Surinya et al., 2002, Siddle, 2005). One hydrophobic and one polar conformational 

surface in the IR have been identified as essential for insulin binding (Ottensmeyer et al. , 

2000, De Meyts & Whittaker, 2002).  

Binding of insulin to the IR induces conformational changes in the receptor, which 

activates the receptor TK domains to reciprocally autophosphorylate tyrosine residues in 

the ß-subunits. Several tyrosine residues in the JM, TK and CT regions can be 

autophosphorylated (Siddle, 2005) , but the tyrosine residues 1158, 1162 and 1163 in the 

regulatory loop of each ß-subunit have been identified as important for the metabolic arm 

of insulin signalling (Ellis et al., 1986, Frattali et al., 1992, Cann & Kohanski, 1997) . In 

the closed, inactive state, this regulatory loop blocks a cleft in the insulin receptor structure 

that contains the active site, but autophosphorylation is thought to cause repositioning of 

the loop to allow IR substrates access to the active site (Hubbard & Till, 2000).  
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Autophosphorylation of an NPEY960 motif in the JM region of the IR is critical for creation 

of a binding site for the phosphotyrosine-binding (PTB) domains of insulin receptor 

substrate-1 and -2 (IRS-1 and -2) and Shc (Src-homology and collagen-like) proteins 

(Gustafson et al., 1995, Wolf et al., 1995); while the substrates APS (Hu et al., 2003) and 

Grb10 (Stein et al., 2003) bind to the phosphorylated tyrosine residues in the activation 

loop via their SH2 domains. Furthermore, autophosphorylation also plays a role in receptor 

internalisation.  

The activated insulin-IR complex is internalised via clathrin-coated vesicles and targeted to 

endosomes, where the acidic pH causes dissociation of insulin from its receptor 

(Carpentier, 1994). Insulin is subsequently degraded by endosomal and/or lysosomal 

proteases (Bondy et al., 1994, Carpentier, 1994, Di Guglielmo et al., 1998). The IR is then 

dephosphorylated (and thus inactivated) by phosphotyrosine phosphatases such as PTP1B 

(Elchebly et al., 1999, Klaman et al. , 2000) and the majority of insulin receptors are 

recycled to the plasma membrane (Carpentier, 1994).  

 

1.3.1.3  Modulation of insulin receptor function 

It has been suggested that insulin signalling may be trans iently but significantly prolonged 

by IR-bound insulin in the endosome compartment, where the IR may have access to 

intracellular substrates (Di Guglielmo et al. , 1998). By contrast, serine/threonine 

phosphorylation of the IR by kinases, including several isoforms of protein kinase C 

(PKC), may downregulate receptor TK activity without affecting its insulin binding ability 

(Bollag et al., 1986, Liu & Roth, 1994, Bossenmaier et al., 1997, Strack et al., 2000). Such 

downregulation of IR TK function has been suggested to be responsible for glucose-

mediated inhibiton of insulin signalling (Berti et al. , 1994, Mosthaf et al., 1995, Pillay et 

al., 1996) and to contribute to obesity-associated insulin resistance (Zhou et al. , 1999). 
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1.3.2 Metabolic actions of insulin 

Upon stimulation by insulin, the insulin receptor phosphorylates several cellular substrates 

via its tyrosine kinase domain and thus initiates a number of intracellular signalling 

pathways. The most well defined pathways are the metabolic phosphatidylinositide 3-

kinase (PI3K)/protein kinase B (PKB) pathway, which stimulates glucose transporter 

trans location to the  plasma membrane, as well as production of NO by eNOS in 

endothelial cells and stimulation of the mitogenic MAPK/ERK pathway.  

As discussed above, activation of the IR by autophosphorylation results in creation of 

substrate binding sites and the subsequent phosphorylation of these substrates by the IR. 

The insulin receptor substrates-1 and -2 (IRS-1 and -2) are major components of both 

metabolic and mitogenic insulin signalling (White, 1998, 2002). They are 180-190 kDa 

proteins (White et al., 1985) that contain tandem pleckstrin homology (PH) (Shaw, 1993, 

Sun et al., 1995) and phosphotyrosine binding (PTB) domains (Sun et al., 1995) and act as 

highly efficient scaffolding proteins in the recruitment of the lipid kinase PI3K (Sun et al., 

1991). With its tandem SH2 domains , PI3K then binds preferentially to the 

phosphotyrosine residues that are arranged in YxxM motifs of IRS-1 and -2 (White, 1998). 

Although there is some functional redundancy between IRS-1 and IRS-2, they also have 

specific roles (Bruning et al. , 1997, White, 2002)  and differ in their tissue-specific 

expression: IRS-1 is more prominent in skeletal muscle and IRS-2 more abundant in the 

liver (Kido et al., 2000). 

PI3K is composed of a p85/55 adaptor subunit and a p110 catalytic subunit, both of which 

exist in multiple isoforms (Shepherd et al., 1998). Phosphorylated IRSs recruit PI3K to the 

plasma membrane, where PI3K catalyses the conversion of its preferred substrate, the 

membrane phospholipid phosphatidyl inositol (4,5)bis -phosphate (PI(4,5)P 2), to 

phosphatidyl inositol (3,4,5)tris-phosphate (PI(3,4,5)P3) (Siddle, 2005). PI(3,4,5)P 3 serves 

to anchor PI3K and the 3-phosphoinositide dependent protein kinase-1 (PDK-1) to the 

plasma membrane (Shepherd et al. , 1998). PI(3,4,5)P3 also has a high affinity for the 57 

kDa protein kinase B (PKB, also known as Akt), which colocalises with PI(3,4,5)P3 at the 

plasma membrane.  

The phosphatase PTEN (Phosphatase-and-tensin-homologue-deleted-on-chromosome-10) 

counteracts PI3K activity by dephosphorylating PI(3,4,5)P3  to PI(4,5)P2, thereby 

negatively regulating PI3K activity (Oudit et al., 2004). PTEN is also involved in the 

inhibition of eNOS activation via insulin signalling pathway components in response to 
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various pathological conditions, including the metabolic syndrome (Shen et al. , 2006a, 

Shen et al., 2006b, Wang et al. , 2006). 

PDK-1 and PDK-2 activate PKB in a PI3K -dependent manner (Burgering & Coffer, 1995, 

Kroner et al., 2000). PKB is phosphorylated by PDK-1 at threonine 308 (Wick et al., 

2000), and by PDK-2 at serine 473 (Kroner et al., 2000). Activated PKB then 

phosphorylates a variety of substrates, including glycogen synthase kinase-3 (GSK-3), 

phosphofructokinase-2 (PFK-2), the proapoptotic BAD proteins and caspase 9 

(Vanhaesebroeck & Alessi, 2000, Lawlor & Alessi, 2001, Vivanco & Sawyers, 2002, 

Whiteman et al. , 2002). This triggers further signalling cascades that, in the case of glucose 

transport, result in the translocation of glucose transporter 4 (GLUT4)-containing vesicles 

to the plasma membrane  of adipocytes and striated muscle , thus enabling glucose transport 

into the cell (Wang et al., 1999, Whiteman et al., 2002).  

Importantly, insulin can dose-dependently stimulate eNOS activity in endothelial cells 

(Aljada & Dandona, 2000) via calcium-independent, PI3K- and PKB-dependent 

phosphorylation at serine 1177 (Zeng & Quon, 1996, Dimmeler et al., 1999, Fulton et al., 

1999, Zeng et al., 2000). This phosphorylation activates eNOS-mediated production of NO 

(see Figure 1-5). Insulin also stimulates the uptake by endothelial cells of the NOS 

substrate L-arginine via the L -arginine transporter y+ (Sobrevia et al., 1996) , thus ensuring 

the substrate supply for increased eNOS-mediated NO production and vasodilation.  
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Figure 1-5 The metabolic insulin signalling pathway and NO production 

Insulin binds to its receptor (IR) and triggers IR autophosphorylation. The IR then phosphorylates 
the IR substrate (IRS), which in turn binds to PI3K and recruits it to the plasma membrane. PKB is 
dually phosphorylated by PDK-1 and PDK-2 in a PI3K-dependent manner. Activated PKB then 
activates eNOS by direct phosphorylation at Ser1177, stimulating NO synthesis. 
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1.3.3 Mitogenic actions of insulin 

Another major signalling pathway triggered by insulin is the extracellular-regulated kinase 

(ERK)/mitogen-activated protein kinase (MAPK) pathway, which regulates the 

transcription of genes required for cell growth and division (Denton & Tavare, 1995, Lazar 

et al., 1995, Azpiazu et al., 1996), as well as the genes for insulin-like-growth-factor -

binding protein 1 (IGFBP-1) and the glucose -6-phosphatase (G6Pase) catalytic subunit 

(O'Brien & Granner, 1996, O'Brien et al. , 2001). The insulin receptor phosphorylates IRSs 

and Shc (Src-homology and collagen-like) proteins (Kovacina & Roth, 1993, Pronk et al., 

1993), both of which are capable of binding the adaptor protein Grb2 (Skolnik et al. , 

1993), which then activates the ERK/MAPK pathway through binding of SOS and 

activation of Ras and Raf (Avruch et al., 1994, Okada  et al., 1998, Siddle, 2005).  

The mitogenic pathway also contributes to regulation of glucose metabolism, as insulin-

mediated inhibition of the expression of phosphoenolpyruvate carboxykinase (PEPCK) and 

G6Pase in the liver leads to suppression of hepatic gluconeogenesis (O'Brien & Granner, 

1996, Patel et al., 2003). Patients with type I and type II diabetes show lack of insulin-

mediated suppression of gluconeogenesis (Basu et al. , 2004), as has also been 

demonstrated in experimental animal models (Barzilai & Rossetti, 1993, Hofmann et al., 

1995). Overexpression of PEPCK in animals causes impaired glucose tolerance and insulin 

resistance (Valera et al., 1994), while elevated G6Pase expression in mice gives rise to a 

state resembling type II diabetes (Trinh et al., 1998).  

 

1.3.4 Other aspects of insulin signalling 

Additional pathways that are modulated by insulin action include the CAP/Cbl/TC10 

pathway, which plays a role in glucose transport (Baumann & Saltiel, 2001, Saltiel & 

Pessin, 2003), and the JAK-STAT pathway, which exerts effects on gene expression (Gual 

et al., 1998, Sawka-Verhelle et al., 2000, Le et al., 2002). Furthermore, an additional 

insulin receptor substrate, IRS-4, is postulated in humans to bind PI3K and Grb2 (Lavan et 

al., 1997a). IRS-3 is found only in rodents and has no functional human orthologue (Lavan 

et al., 1997b, Bjornholm et al., 2002). 
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1.4 Insulin resistance and hyperinsulinaemia 

Insulin resistance can be defined as dysregulated glucose-insulin homeostasis, in which 

peripheral tissues (such as skeletal muscle and adipose tissue) show decreased glucose 

uptake in response to insulin. Obesity and physical inactivity are the environmental factors 

most strongly associated with insulin resistance, but genetic factors also add to 

susceptibility (Chisholm et al., 1997, Wheatcroft et al., 2003).  

Hyperinsulinaemia is commonly described as a compensatory mechanism triggered by 

insulin resistance, rather than the cause of resistance (Ginsberg, 2000). Nevertheless, 

hyperinsulinaemia may also contribute to the maintenance of insulin resistance, since 

experimental hyperinsulinaemia causes insulin resistance in rats (Juan et al., 1999) and 

mice (Marban et al., 1989) , and because insulin sensitivity in obese subjects generally 

improves following weight loss (Reaven, 2005).  

Insulin resistance and hyperinsulinaemia are both independent risk factors for a number of 

pathological disorders, such as cardiovascular disease (Despres et al., 1996, Bokemark et 

al., 2001) , hypertension (Welborn et al., 1966, Ginsberg, 2000), atherosclerosis (Howard et 

al., 1996, Stolar & Chilton, 2003, Wheatcroft et al., 2003), dyslipidaemia (Ginsberg, 

2000), and type II diabetes (Stolar & Chilton, 2003). However, insulin 

resistance/hyperinsulinaemia likely acts in concert with other risk factors in the 

pathogenesis of all of these diseases, as patients with insulin-secreting tumours 

(insulinomas) do not tend to have hypertension (Haffner et al., 1992) or atherosclerosis 

(Leonetti et al., 1993). 

The involvement of hyperinsulinaemia/insulin resistance in the context of endothelial 

dysfunction is discussed below, and some of the mechanisms that have been postulated to 

contribute to the causes and effects of insulin resistance and hyperinsulinaemia are 

described. 

 

1.4.1 Insulin resistance and endothelial dysfunction 

Insulin resistance is strongly linked to endothelial dysfunction, but it is still debated 

whether insulin resistance is a cause or a result of endothelial dysfunction (Wheatcroft et 

al., 2003). The course of pathological events in animal models of insulin resistance 

suggests that insulin resistance may promote endothelial dysfunction (Katakam et al., 
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2001, Mather et al., 2001, Wheatcroft e t al., 2003). However, it has also been postulated 

that peripheral endothelial dysfunction, at the arteriolar and capillary level, is the main 

cause for the development of insulin resistance and its associated metabolic disturbances, 

while central, large vessel endothelial dysfunction promotes atherogenesis without 

significantly affecting metabolism. Thus, insulin resistance may be a marker, rather than a 

causative agent, of peripheral endothelial dysfunction (Pinkney et al., 1997). In keeping 

with this hypothesis, eNOS-knockout mice develop insulin resistance (Shankar et al., 

2000). In humans, pathological and experimental hyperinsulinaemia are linked to impaired 

vasodilation, suggesting that hyperinsulinaemia may be not only a contributor to, but also a 

cause of endothelial dysfunction (Steinberg et al., 1996, Balletshofer et al., 2000, Cleland 

et al., 2000). 

Insulin sensitivity and basal NO production in humans are closely and positively correlated 

(Petrie  et al., 1996). Insulin-resistant patients show defective endothelium-dependent 

vasodilation (Steinberg et al. , 1996, Laine  et al., 1998, Cleland et al., 2000). Furthermore, 

endothelial dysfunction is also evident in first-degree relatives of patients with type II 

diabetes (Balletshofer et al., 2000).  

Many insulin-resistant patients have elevated endothelin-1 levels proportional to the degree 

of hyperinsulinaemia (Mather et al., 2001). A possible cause for this observation is the 

ability of insulin to directly stimulate the production of endothelin-1 in vitro (Yanagisawa 

et al., 1988). At the vascular level, increased endothelin-1 production could further 

aggravate the imbalance between vasodilators and vasoconstrictors, as NO and endothelin-

1 can reciprocally regulate one another at several levels, including the transcriptional level 

(Mather et al. , 2001). Endothelin-1 has been shown to inhibit the PI3K pathway in vascular 

smooth muscle cells (Jiang et al., 1999b). If endothelin-1 also inhibits the endothelial PI3K 

pathway, imbalanced production of NO and endothelin-1 could potentially exacerbate 

impaired vasodilation and endothelial dysfunction. 

 

1.4.2 Insulin resistance and proinflammatory mediators 

Inflammation has been implicated in the pathogenesis of insulin resistance and is also 

strongly linked to endothelial dysfunction (Kubes et al., 1991, Yudkin et al., 1999, Aljada 

et al., 2000, Ziccardi et al., 2002, Wheatcroft et al., 2003, Dandona  et al., 2004). Elevated 

levels of C-reactive protein (CRP), and the proinflammatory adipocytokines tumour 
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necrosis factor a (TNFa) and IL -6 have all been postulated as inflammatory mediators of 

endothelial dysfunction and insulin resistance (Feinstein et al., 1993, Valverde et al., 1998, 

Winkler et al., 1999, Yudkin et al., 1999, Halse et al., 2001, Bastard et al. , 2002, Ritchie et 

al., 2004). It is known that these proinflammatory cytokines trigger a positive feedback 

loop: via phosphorylation of I?B and activation of NF?B, they mediate their own 

transcription, as well as that of cell adhesion molecules (ICAM-1 and VCAM-1), 

monocyte chemoattractant protein -1 (MCP-1) and CRP (Dandona et al., 2002). 

Obese individuals present with elevated adipose-derived TNFa concentrations, and this 

correlates with hyperinsulinaemia and insulin resistance (Winkler et al. , 1999, Yudkin et 

al., 1999, Ritchie et al., 2004). Pharmacological administration of TNFa in humans gives 

rise to insulin resistance, and TNFa knockout mice do not develop obesity-induced insulin 

resistance (reviewed in (Wheatcroft et al. , 2003)). TNFa is known to impair the 

phosphorylation of the insulin receptor by triggering serine phosphorylation of IRS-1, 

which blocks insulin receptor kinase activity (Hotamisligil et al., 1994a, Hotamisligil et 

al., 1994b, Hotamisligil et al., 1996) , thus likely blunting the insulin-stimulated response. 

Furthermore, TNFa enhances PKB dephosphorylation and inactivation in endothelial cells, 

thus potentially triggering pro-apoptotic signalling cascades in these cells (Ritchie et al., 

2004). TNFa also promotes monocyte adhesion through increased expression of adhesion 

molecules (Ritchie et al., 2004). 

Insulin can counter inflammatory stimuli in human aortic endothelial cells in vitro  and in 

human mononuclear cells in vivo via the inhibition of NF?B and the stimulation of I?B 

(Dandona  et al., 2001). Physiological levels of insulin were thus able to suppress 

expression of ICAM-1 and MCP-1 in vitro (Aljada et al. , 2000, Aljada et al. , 2001). 

Consistent with this observation, the insulin-sensitising thiazoledinedione drugs inhibit 

NF?B and thus block TNFa-mediated insulin resistance (Peraldi et al., 1997, Dandona  et 

al., 2002). Furthermore, administration of the anti-inflammatory drug aspirin improves 

insulin sensitivity by inhibiting hepatic gluconeogenesis (Dandona  et al., 2002, Hundal et 

al., 2002). These data provide evidence for an anti-inflammatory effect of insulin at 

physiological concentrations (Dandona  et al., 2002). 
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1.4.3 Endothelial dysfunction and leukocyte adhesion 

Increased leukocyte adhesion to endothelial cells is a feature of endothelial dysfunction. 

This process is proatherogenic, forming a key early event in the formation of 

atherosclerotic plaques. Likewise, transendothelial migration of leukocytes contributes to 

the initiation of atherosclerosis (Okouchi et al., 2002a) and possibly to the rupture of 

atherosclerotic plaques (van der Wal et al., 1994). Transendothelial migration (also known 

as transmigration or diapedesis) is regulated through the expression of endothelial adhesion 

molecules and chemotactic molecules including monocyte chemotactic protein-1 (MCP-1). 

In vitro  studies routinely use leukocyte subtypes such as neutrophils and monocytic cell 

lines to study leukocyte migration behaviour. 

A number of studies have demonstrated that elevated insulin concentrations alter the 

expression of cellular adhesion molecules in endothelial cells. In vitro , insulin was reported 

to upregulate the expression of PECAM-1 and to promote neutrophil transendothelial 

migration in a dose-dependent manner via the MAPK pathway (Okouchi et al. , 2002a). 

Likewise, the MAPK pathway was also implicated in promoting in vitro  neutrophil 

transendothelial migration and elevated expression of intercellular adhesion molecule-1 

(ICAM-1) in human umbilical vein endothelial cells (HUVEC) exposed to 

pathophysiological concentrations of insulin (Okouchi et al., 2002b, Okouchi et al., 2003). 

Conversely, Aljada and co-workers (Aljada et al., 2000) found that experimental 

hyperinsulinaemia decreased the expression of ICAM-1 mRNA and protein in cultured 

human aortic endothelial cells (HAEC) through increased eNOS expression and 

endothelial NO production, thereby acting as an antiatherogenic stimulus. A potential 

explanation for these conflicting findings may be the use of different endothelial cell types 

in these studies.  

Expression levels of vascular cell adhesion molecule-1 (VCAM-1) were reported to be 

upregulated through the MAPK pathway, when HUVEC were treated with 

pathophysiological concentrations of insulin for up to 24 hours (Madonna et al., 2004). 

However, in vivo  data from a study using the euglycaemic hyperinsulinaemic clamp 

demonstrated that short-term hyperinsulinaemia has no adverse effect on the levels of 

circulating soluble ICAM-1, VCAM-1 or E-selectin in healthy males (Jilma et al., 2000). 

In support of this, although plasma concentrations of soluble VCAM-1 are elevated in 

diabetic patients, hyperinsulinaemia did not upregulate VCAM-1 expression in vitro  or 

secretion in vivo (De Mattia et al. , 1999).  
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It is possible that membrane-bound and secreted (soluble) adhesion molecules serve 

different purposes. Adhesion molecules on the surface of endothelial cells anchor 

leukocytes to the endothelium, thus promoting plaque formation. By contrast, secreted 

adhesion molecules may bind to the integrins expressed on the surface of leukocytes, thus 

preventing them from binding to the vascular endothelium and counteracting 

atherogenesis. The precise role of secre ted adhesion molecules requires further 

clarification. Therefore, the overall effect of hyperinsulinaemia on endothelial expression 

and secretion of adhesion molecules and the resulting impact on atherogenesis remain 

unclear. 

Chemokines play a crucial role in the attraction of monocytes to the vascular endothelium. 

Vascular endothelial cells have been shown to secrete a number of chemokines, including 

MCP-1, -2 and -3, MIP-1a and -1ß, MIG, Eotaxin, RANTES, GRO and IP -10 (Pellegrino 

et al., 2005, Simionescu, 2007) . MCP-1 has been implicated in monocyte recruitment to 

the vascular endothelium (Charo & Taubman, 2004, Simionescu, 2007) , but the precise 

roles of endothelial chemokines in atherogenesis are still under investigation. 

 

1.5 Hyperglycaemia 

All tissues in the body use glucose as an energy source, though only the brain and 

erythrocytes have an absolute requirement for glucose. The main target tissues for glucose 

disposal after a meal are muscle, liver and adipose tissue, which store excess glucose as 

glycogen (in liver and muscle) and triglycerides (in adipose ). Muscles store about 90% of 

ingested glucose. Stored glucose is used to meet energy demands of the tissue. The liver is 

the only organ able to release glucose into the circulation in response to decreasing blood 

glucose levels. The liver produces glucose through glycogenolysis and gluconeogenesis.  

Hyperglycaemia is a consequence of dysregulated glucose homeostasis. It is characterised 

by pathologically elevated blood glucose concentrations (fasting >7 mmol/L; post -prandial 

>11.1 mmol/L), and is a defining feature of overt diabetes. In Type I diabetes, insulin-

secreting pancreatic ß  cells are destroyed by an autoimmune response that eventually leads 

to a complete loss of insulin secretion. Hyperglycaemia becomes diagnostic of Type II 

diabetes when secretion of insulin by pancreatic ß cells can no longer meet the demand of 

insulin-resistance for insulin, and undergo cell death as a result. In Type II diabetes, 

residual insulin secretion may remain, but this is insufficient to overcome the tissue’s 
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resistance to insulin. As a consequence of inappropriate or absent insulin secretion, glucose 

is no longer appropriately taken up into target tissues and hepatic gluconeogenesis is not 

inhibited, causing a rise in blood sugar levels (see Figure 1-6). 

 
 

 
 

Figure 1-6 Correlation between insulin sensitivity and the development of Type II 
diabetes 

With progressive loss of insulin sensitivity, endothelial function and the control of blood sugar 
levels worsen and type II diabetes develops. Figure adapted from (Wheatcroft et al., 2003) 

 
 

1.6 Insulin resistance, hyperglycaemia and associated disorders 

Insulin resistance/hyperinsulinaemia and hyperglycaemia are strongly associated with 

several disorders, including obesity, Type II diabetes, atherosclerosis, hypertension and 

cardiovascular disease (for reviews, see (Ginsberg, 2000, Stolar & Chilton, 2003, 

Wheatcroft et al., 2003). It is estimated that about 25% of the adult population in the UK 

and the United States have some degree of insulin resistance, many of whom will go on to 

develop Type II diabetes (Ritchie et al., 2004).  

The metabolic syndrome (also known as insulin-resistance syndrome or syndrome X) is a 

term used for a specific cluster of metabolic disorders that frequently manifest together, 

especially in the obese. These disorders comprise insulin resistance, hyperinsulinaemia, 

hyperglycaemia, central (visceral) obesity, hypertension, dyslipidaemia (especially 

elevated triglyceride and decreased high-density lipoprotein (HDL) cholesterol 
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concentrations), endothelial dysfunction and impaired fibrinolysis (Stolar & Chilton, 

2003).  

 

1.6.1 Obesity 

There is a clear correlation between obesity and the degree of insulin resistance (Steinberg 

et al., 1996, Yudkin et al., 1999, Ritchie  et al. , 2004). Most obese individuals present with 

some degree of insulin resistance (Ritchie  et al., 2004). According to the World Health 

Organisation’s report 2002, a high body mass index accounts for 75% (males) to 83% 

(females) of the total risk for type II diabetes (World Health Organisation, 2002), which is 

itself a common consequence of insulin resistance. Weight loss, even as little as 5-10% of 

the body weight, has significant beneficial effects on insulin sensitivity, vascular 

endothelial function and NO bioavailability (Ziccardi et al. , 2002, Ritchie et al., 2004, 

Reaven, 2005) . Since obesity is characterised by increased adiposity, it is reasonable to 

speculate that the bioactive adipocytokines secreted by adipose tissue are involved in the 

regulation of endothelial function and insulin sensitivity (Ritchie et al., 2004). In fact, 

adiposity has been postulated to cause a state of chronic, low level inflammation due to its 

secretion of proinflammatory molecules, which in turn may induce endothelial dysfunction 

and insulin resistance (Yudkin et al., 1999). 

 

1.6.2 Diabetes mellitus 

Diabetes mellitus has traditionally been classified as either early -onset, hereditary “Type I 

diabetes” or maturity-onset “Type II diabetes”. However, it is becoming increasingly clear 

that not all diagnosed cases of diabetes fit into these broad categories, and the boundaries 

between these two classes are often blurred. Type II diabetes is now increasingly found in 

the young. Conversely, Type I diabetes, which can occur as early as the neonatal stadium 

and traditionally has most commonly been diagnosed before the age of 20, is now 

sometimes diagnosed significantly later in life.  

Type II diabetes (previously called “non-insulin-dependent diabetes mellitus” (NIDDM)) 

is a complex, multisystem disorder characterised by hyperglycaemia and insulin resistance 

(Stolar & Chilton, 2003) . It is primarily associated with obesity and physical inactivity, but 

the disproportionately high incidence in Blacks, Hispanic/Latin Americ ans and American 
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Indians (Stolar & Chilton, 2003) suggests that genetic factors predispose to type II 

diabetes. Type II diabetes accounts for 90-95% of all diabetes cases (Stolar & Chilton, 

2003, Schulze & Hu, 2005). The remaining 5-10% are attributable to insulin-dependent 

(type I) diabetes, an autoimmune disease to which sufferers are genetically predisposed 

(Friday et al., 1999). Type II diabetes develops secondary to insulin resistance and 

hyperinsulinaemia, and, like obesity, has been postulated to be a proinflammatory state 

(Pickup et al., 1997, Dandona  et al., 2002, Wellen & Hotamisligil, 2005).  

Subjects in the prediabetic state present with endothelial dysfunction and insulin resistance, 

but not with hyperglycaemia. The current aetiologic theory is that the pancreatic beta-cells 

secrete more insulin in response to peripheral insulin resistance (thus causing 

hyperinsulinaemia), but the increasing secretory burden accelerates apoptosis of the ß cells; 

insulin secretion declines progressively and is eventually lost. This process brings with it 

dysregulated glucose homeostasis, since glucose is no longer appropriately taken up into 

muscle and adipose tissue. In addition, hepatic gluconeogenesis is no longer suppressed 

(Basu et al., 2004); therefore, hyperglycaemia ensues, which requires therapeutic 

intervention (Stolar & Chilton, 2003). Furthermore, because insulin suppresses lipolysis 

and thereby regulates the plasma concentrations of free fatty acids (FFA) under normal 

physiological conditions, loss of insulin secretion will also affect the levels of plasma free 

fatty acids. Once insulin resistance ensues, plasma FFA concentrations rise. In addition, 

low/absent insulin concentrations are no longer sufficient to suppress hepatic  

gluconeogenesis. This, together with dysregulated postprandial glucose uptake, contributes 

to hyperglycaemia (Reaven, 1988) .  

Type II diabetes is frequently associated with the components of the metabolic syndrome, 

and bears a two-fold increased risk of premature death (Centers for Disease Control and 

Prevention, 2003). Patients with type II diabetes suffer microvascular and macrovascular 

complications. Diabetic microvascular complications are the main cause of nephropathy 

(kidney failure), retinopathy (blindness) and non-traumatic amputatio ns (Schulze & Hu, 

2005). Macrovascular disorders, such as infarction and stroke, are the major cause of death 

in diabetic patients (Centers for Disease Control and Prevention, 2003), accounting for 

75% of all deaths amongst adult type II diabetics (Laakso, 1995, Stolar & Chilton, 2003). 

Overall, Type II diabetes was the sixth most common cause of death in the United States in 

1999 (Stolar & Chilton, 2003). 
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Type II diabetes is highly prevalent, in particular in so-called “westernised” countries, 

where the population tends to eat energy-dense, high-fat, high-sugar diets (Schulze & Hu, 

2005). The global incidence of Types I and II diabetes in adults over 20 years of age was 

estimated to be 171 million cases in the year 2000, and is expected to rise to 366 million 

cases by 2030 (Wild et al., 2004). The World Health Organisation reports that diabetes 

mellitus caused 987,816 deaths worldwide in 2002, which made up approximately 1.7% of 

all deaths in that year (World Health Organisation, 2002). In 2001, there were an estimated 

1.8 million people affected by Type II diabetes in the UK, plus another one million thought 

to have not yet been diagnosed (Diabetes UK, 2001). The public health and economic 

burden of type II diabetes and its associated morbidity and mortality is enormous (Wild et 

al., 2004) , and annually accounts for many years of life spent either with disability or lost 

(World Health Organisation, 2002, Hedner et al. , 2005). 

In the context of hyperglycaemia and diabetes, it has frequently been shown that 

endothelial function and NO bioavailability are impaired ((Calver et al., 1992, McVeigh et 

al., 1992, Hogikyan et al., 1998); reviewed in (De Vriese et al., 2000, Rask-Madsen & 

King, 2007) ), and that this association is independent of the presence of the complicating 

risk factors, obesity and hypertension (Hogikyan et al., 1998). Consequently, patients with 

diabetes have an increased propensity to cardiovascular and microvascular disease and 

associated morbidity and mortality (Stratton et al., 2000, Rahman et al., 2007).  

The degree of insulin resistance predicts the extent of impairment of endothelium-

dependent vasodilation (Ardigo et al., 2006) , and the risk for vascular complications 

strongly correlates with the level of hyperglycaemia in patients (Stratton et al., 2000). 

However, this association is not definite, since two studies suggested that insulin-induced 

vasodilation was similar in the coronary vasculature of healthy and Type I diabetic subjects 

and was not impaired by short-term hyperglycaemia (Smits et al., 1993, Sundell et al., 

2002). It may be that the extent and/or nature of endothelial dysfunction differs in Type I 

and Type II diabetes. 

 

1.6.3 Atherosclerosis 

Hyperinsulinaemia and hyperglycaemia are often associated with oxidative stress and 

endothelial dysfunction, marked by adhesion of inflammatory cells to vascular endothelial 

cells and transendothe lial migration of leukocytes. In the subendothelial space, monocytes 
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transform into foam cells by ingestion of oxidised low-density lipoprotein (LDL) 

cholesterol, and eventually undergo apoptosis, thus forming so-called fatty streaks, while T 

lymphocytes c ontribute to inflammation through the release of cytokines (Stolar & Chilton, 

2003). All of these factors contribute to the formation of atherosclerotic plaques, which, 

once formed, can turn into unstable plaques that rupture, resulting in unstable angina or 

myocardial infarction. This process is called atherogenesis.  

Because insulin resistance-mediated endothelial dysfunction is also characterised by 

increased platelet activation/decreased platelet inhibition, elevated procoagulant 

expression, and impaired fibrinolysis, patients with Type II diabetes are also at increased 

risk of thrombus formation (Carr, 2001, Stolar & Chilton, 2003) , which in turn affects the 

risk for cardiovascular events such as stroke. Figure 1-7 illustrates the parallel progression 

between insulin resistance and atherogenesis. 

 
 

Figure 1-7 The parallel progression between insulin resistance and atherogenesis 

Hyperinsulinaemia promotes endothelial dysfunction, which greatly increases the risk for both type 
II diabetes and atherosclerosis. Figure adapted from (Hsueh & Law, 2003) 

 

1.6.4 Animal models 

A number of animal models have been developed to study various aspects of insulin 

resistance, hyperglycaemia/diabetes, obesity, and endothelial dysfunction. Briefly , these 

animal models include the “Zucker” (fa/fa) rat model for insulin resistance (Kasiske  et al., 

1992), the “non-obese diabetic” (NOD) mouse and BioBreeding (BB) rat models for 

hyperglycaemia/Type I diabetes (Yang & Santamaria, 2006), the diabetic (db/db) mouse 
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model for Type II diabetes and associated disorders (Kobayashi et al., 2000) , the obese 

(ob/ob) mouse model of obesity (Tschöp & Heiman, 2001) , the “insulin receptor 

knockout” (IRKO) mouse (Wheatcroft et al., 2004) and the “vascular endothelial insulin 

receptor knockout” (VENIRKO) mouse (Vicent et al. , 2003) for the study of IR function 

and insulin signalling, and “eNOS knockout” (eNOS-/-) mouse (Huang et al. , 1995) for the 

assessment of eNOS function in vivo .  

In addition, non-genetic models such as streptozotocin-induced diabetes in rats and mice 

(Cameron & Cotter, 1992, Hink et al., 2001, Ho et al., 2001, Kurlawalla -Martinez et al., 

2005, Song et al., 2007, Fukuda  et al., 2008) , and short-term hyperglycaemia  induced by 

intraperitoneal glucose injection (Stalker et al. , 2003) have been used in research.  

 

1.6.5 Oxidative stress in endothelial dysfunction 

Reactive oxygen species (ROS) such as hydrogen peroxide  and O2
- are generated by 

enzymes such as NADPH oxidase and uncoupled eNOS. ROS are detrimental to 

endothelial function because they reduce NO bioavailability and thus interfere with 

vasodilation. Superoxide, for example, can react with NO, leading to formation of both 

peroxynitrite and nitrate (Reiter et al., 2000).  Peroxynitrite in turn can reduce NO 

bioavailability through oxidation and uncoupling of eNOS, leading to enhanced superoxide 

production and decreased NO synthesis (Zou et al., 2002). 

It has been demonstrated that experimental hyperinsulinaemia equivalent to concentrations 

typically encountered in insulin-resistant states, impair s endothelium-dependent 

vasodilation in the large conduit arteries in healthy humans (Arcaro et al., 2002). In the 

study of Arcaro and co-workers (Arcaro et al., 2002), oxidant stress was postulated to be 

the underlying reason for hyperinsulinaemia -induced endothelial dysfunction, since the 

antioxidant vitamin C completely reversed the adverse effects of experimental 

hyperinsulinaemia. It should be noted, though, that this was a study of short-term 

hyperinsulinaemia, and may not be representative of the in vivo state in patients. 

In small coronary arteries from obese Zucker rats, a model of insulin resistance, insulin 

caused the production of superoxide anions that resulted in diminished NO bioavailability 

and increased vasoconstriction (Katakam et al., 2005). Furthermore, when NADPH 

oxidase was inhibited pharmacologically, or when ROS were neutralised by the enzyme 
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superoxide dismutase, insulin’s vasodilatory function was restored in these arteries. 

Interestingly, the coronary arteries of these obese Zucker rats expressed higher levels of 

eNOS, which was speculated to be a compensatory mechanism for the decreased NO 

bioavailability (Katakam et al., 2005).  

Previous work has shown that exposure to high glucose concentrations impaired 

vasodilation in rabbit aorta (Tesfamariam et al., 1990) and increased superoxide anion 

generation in HAEC (Cosentino et al., 1997) and rat aorta (Hink et al., 2001). Oxidative 

stress has been proposed as a physiological mediator of endothelial dysfunction (De Vriese 

et al., 2000, Hink et al., 2001, Srinivasan et al., 2004) , although this link is subject to 

ongoing investigation and debate.  

 

1.7 AMPK 

The AMP-activated protein kinase (AMPK) is an enzyme involved in the regulation of 

energy homeostasis at the cellular and whole body level. AMPK was first discovered in 

1973 on account of two of its enzymatic activities, which were later attributed to the same 

kinase (Beg et al., 1973, Carlson & Kim, 1973, Carling et al. , 1987, Sim & Hardie, 1988) .  

AMPK is a heterotrimeric complex composed of  a catalytic a-subunit, a glycogen-binding 

domain-containing ß-subunit and a ?-subunit, which binds AMP and/or ATP. The N-

terminal domain of the a -subunit contains the kinase domain (see Figure 1-8). AMPK is 

expressed ubiquitously. For each AMPK subunit, several isoforms exist, which exhibit 

different tissue expression patterns (Towler & Hardie, 2007).  

AMPK is phosphorylated on Thr172 by the upstream kinase LKB1, a tumour suppressor 

protein. Phosphorylation and activation of AMPK is triggered by increases in the cellular 

AMP:ATP ratio. Binding of AMP makes AMPK a worse substrate for AMPK 

phosphatases (Towler & Hardie, 2007) , thereby increasing the proportion of 

phosphorylated AMPK. In a limited number of cell types, such as neurones and T cells, 

AMPK can be phosphorylated at Thr172 and activated in a calcium-dependent manner by 

the Ca2+/CaM-dependent protein kinase kinase (CaMKK) (Hawley et al., 2005, Woods et 

al., 2005).  
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1.7.1 Roles of AMPK 

As a regulator of energy homeostasis, AMPK is activated in response to metabolic stress, 

switching off energy-consuming pathways and activating ATP-producing pathways. Its 

main roles include stimulating glycolysis, glucose uptake and fatty acid oxidation, and 

inhibiting the synthesis of glycogen, fatty acids and cholesterol. AMPK also negatively 

regulates transcription and translation, as well as cell growth and proliferation (Towler & 

Hardie, 2007) . 

Importantly, AMPK has been shown to directly activate eNOS in human aortic endothelial 

cells by phosphorylation at Ser1177 in vitro, and increases endothelial NO synthesis in 

cultured HAEC in response to AICAR and VEGF (Morrow et al., 2003, Reihill et al., 

2007). Therefore, AMPK is an attractive target for antidiabetic drugs, as it promotes an 

antiatherogenic phenotype and is involved in the regulation of glucose homeostasis. 

 
 
 

 
 

Figure 1-8 AMPK subunit structure  
AMPK consists of one kinase domain-containing a-subunit, a glycogen binding domain-containing 
ß-subunit and a ?-subunit containing the AMP/ATP binding domains. Splice variants of subunits 
are shown. Figure adapted from (Towler & Hardie, 2007) 
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1.7.2 Regulation of AMPK activation 

AMPK can be regulated by a number of factors, including blood glucose levels, hypoxia, 

adipocytokines, insulin and pharmacological agents (Towler & Hardie, 2007). Activation 

of AMPK in pancreatic ß cells and the liver by low blood glucose levels is dependent on 

the expression of glucokinase in these cells (Salt et al., 1998, da Silva Xavier et al., 2000). 

Glucokinase has a low affinity for glucose, thereby acting as a glucose sensor, so that 

cellular ATP levels fall with decreasing blood glucose levels as a result of decreased 

glycolysis. This in turn raises the AMP:ATP ratio, thus activating AMPK.  

In some cell types, ligands acting on Gq-coupled receptors can activate AMPK, presumably 

through CaMKK-mediated AMPK phosphorylation. Bradykinin has been reported to 

activate recombinant AMPK expressed in Chinese hamster ovary (CHO) cells by a G-

protein coupled mechanism (Kishi et al., 2000) , while thrombin dose- and time-

dependently activates AMPK in HUVEC via a Gq-protein-mediated pathway that is 

independent of the cellular ATP:AMP ratio (Stahmann et al., 2006).  

The so-called adipocytokines (also known as adipokines) leptin and adiponectin are able to 

regulate AMPK activity. Adipocytokines are secreted from adipose cells and have been 

implicated in the regulation of whole body energy homeostasis and inflammation. Leptin 

has been shown to activate AMPK in the muscle of rats, leading to stimulation of fatty acid 

oxidation (Minokoshi et al., 2002). Conversely, leptin inhibit ed AMPK activity in the 

paraventricular region in the hypothalamus of fasted mice, lowering food intake 

(Minokoshi et al., 2004). Adiponectin has a blood glucose-lowering effect, as it stimulates 

glucose uptake and fatty acid oxidation in muscle, and inhibits gluconeogenesis in the liver 

by activating AMPK (Tomas et al., 2002, Yamauchi et al., 2002).  

Insulin inhibited AMPK activity in all hypothalamic areas of fasted mice, thus reducing 

food intake. Furthermore, expression of dominant-negative AMPK in mice led to weight 

loss, whereas constitutively active AMPK expression resulted in increased food intake 

(Minokoshi et al., 2004). These data suggest that modulation of AMPK activity alone can 

affect food intake and weight gain. 

 



Christine F. Kohlhaas   Chapter 1, 54 

 

1.7.3 AMPK and insulin signalling 

In general, the insulin signalling and AMPK pathways have opposite effects. In cardiac 

myocytes, insulin has been reported to inhibit AMPK, yet the two pathways also have 

similar effects on glucose homeostasis, since both pathways promote glucose uptake in 

skeletal muscle and suppress the transcription of enzymes involved in gluconeogenesis in 

the liver (Towler & Hardie, 2007). Like insulin, AMPK stimulates eNOSS1177 

phosphorylation, promoting NO synthesis (Morrow et al., 2003, Reihill et al., 2007). 

 

1.7.4  AMPK as a target for antidiabetic drugs  

The widely prescribed hypoglycaemic drug metformin has been shown to activate AMPK 

in a LKB1-dependent fashion (Zhou et al., 2001, Shaw  et al., 2005), thereby presumably 

inhibiting gluconeogenesis. Similarly, the related drug phenformin, which is no longer 

prescribed, also stimulates AMPK activity in vitro (Hawley et al., 2003). 

Insulin-sensitising drugs such as the thiazoledinediones (TZDs) troglitazone, rosiglitazone 

and pioglitazone, have been widely used in the treatment of Type II diabetes (Chisholm et 

al., 1997, Peraldi et al., 1997, Fujiwara & Horikoshi, 2000, Ritchie  et al., 2004). TZDs 

bind with high affinity to PPAR?, a transcription factor that regulates the expression and 

release of adipocytokines and free fatty acids. TZDs stimulate the release of adiponectin, 

which inhibits gluconeogenesis in the liver by activating AMPK (Tomas et al., 2002, 

Yamauchi et al., 2002).  
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1.8 Summary 

The vascular endothelium is a key player in the maintenance of vascular health and is 

involved in the regulation of vascular tone and leukocyte adhesion. Dysregulated 

endothelial function is associated wit h insulin resistance, diabetes and atherosclerosis. At 

normal physiological concentrations, insulin is an important regulator of endothelial 

function, as it promotes NO-mediated vasodilation and potentially inhibits atherogenic 

processes, but these effects are attenuated or abrogated in hyperinsulinaemic and 

hyperglycaemic states.  

The metabolic energy sensor AMPK is involved in the regulation of energy homeostasis at 

the cellular and whole body level. AMPK is important as a drug target for insulin-

sensitising drugs, as AMPK activity improves glucose homeostasis. Activation of AMPK 

stimulates endothelial NO release, thereby promoting an antiatherogenic phenotype.  

The precise molecular mechanisms underlying endothelial dysfunction are unclear, and 

their clar ification may aid our understanding of vascular endothelial cell function and lead 

to novel therapeutic approaches. 
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2 Materials and Methods 
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2.1 Materials  

 

2.1.1 List of materials and suppliers 

Supplier Materials 

Acros Organics (Geel, Belgium) Glacial acetic acid (nitrogen-flushed) 

NaNO2 

Tetrasodium pyrophosphate (NaPPi)  

 

Becton Dickinson Biosciences (Oxford, 

UK) 

Corning cell culture flasks, 10 cm-diameter cell 

culture dishes and multiwell plates, transwell 

plates for migration assays  

 

Beckman CoulterTM                             

(High Wycombe, UK) 

 

Ultra-C learTM ultracentrifuge tubes 

 

BioSource Europe S.A. (Nivelles, 

Belgium) 

 

Human Chemokine Multiplex Bead 

Immunoassay 

BOC Gases (Manchester, UK) N2, O2 

 

Finnzymes (Espoo, Finland) DyNAmoTM SYBR® Green 2-step RT-PCR kit 
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Fisher Scientific UK Ltd 

(Loughborough, UK) 

Acetone 

D-glucose 

Ethanol 

Glycine 

Microscope slides 

Coverslips (22 mm-diameter and 22 x 22 mm) 

NaOH 

Tris base 

Tricarboxylic acid (TCA) 

 

GE Healthcare UK Ltd (Little  

Chalfont, Buckinghamshire, UK) 

 

ECLTM HRP -linked secondary antibodies 

 

Hopkin & Williams (Chadwell 

Heath,UK) 

NaN 3 

Hycor Biomedical Ltd (Edinburgh, 

UK) 

Glasstic® slides 

 

Inverclyde Biologicals                             

(Bellshill, Lanarkshire, UK) 

Nitrocellulose membrane, 0.45 µm pore size 
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Invitrogen Ltd (Paisley, UK) AlexaFluor488- and AlexaFluor 568-linked 

secondary antibodies 

Dulbecco’s Modified Eagle Medium (DMEM) 

and Roswell Park Memorial Institute (RPMI) 

1640 cell culture media 

Foetal calf serum (EU origin) 

L-glutamine  

Moloney Murine Leukaemia Virus (M-MuLV) 

reverse transcriptase + first strand buffer + DTT 

for RT-PCR 

Penicillin and streptomycin 

Trypsin (0.05% (v/v) in 0.53 mM EDTA•4Na) 

 

Kodak Industrie (Chalon-sur-Saône, 

France) 

 

Kodak MXB film 

Lonza Walkersville Inc. (formerly 

Cambrex Bio Science Walkersville 

Inc.) (Walkersville, MD, USA) 

 

Human aortic endothelial cells (HAEC) 

Endothelial cell basal medium (EBM®-2) + 

supplements 

Melford Laboratories Ltd (Ipswich, 

UK) 

DTT 
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Neuro Probe, Inc., Gaithersburgh, MD, 

USA; via Receptor Technologies Ltd., 

Adderbury, UK 

Polyvinylpyrrolidone (PVP)-free polycarbonate 

track-etch (PCTE) membranes for migration 

assays (2 µm pore size) 

 

New England Biolabs (Hitchin, UK) 

 

Prestained protein marker 

Novo Nordisk (Crawley, UK) Actrapid® human insulin (for acute 

stimulation)  

Porcine insulin (for long-term stimulation) 

 

Premier International Foods Ltd 

(Spalding, UK) 

 

Dried skimmed milk 

Promega (Southampton, UK) Taq DNA polymerase + buffer + molecular 

grade MgCl2 

dATP, dCTP, dGTP, dTTP 

 

PromoCell GmbH (Heidelberg, 

Germany) 

Human aortic endothelial cells 

 

Qiagen (Crawley, UK) RNA extraction kit 



Christine F. Kohlhaas  Chapter 2, 61 

 

 

Sartorius Biotech GmbH (Göttingen, 

Germany) 

Sterile syringe filters (0.2 µm) 

Severn Biotech Ltd (Kidderminster, 

Worcester, UK) 

 

Acrylamide:Bisacrylamide (37.5:1; 30% (w/v) 

Acrylamide) 

Sigma-Aldrich (Steinheim, Germany; 

Seelze, Germany; St Louis, MO, USA), 

including all Riedel-de-Haën chemicals 

Ammonium peroxydisulphate (APS) 

Bromophenol blue 

Bovine serum albumin (BSA)  

Benzamidine 

D-mannitol 

DAPI (4',6-Diamidino-2-phenyindole) 

Deoxycholic acid 

Dimethyl sulphoxide (DMSO)  

EDTA (ethylenediamine tetraacetic acid) 

EGTA (ethylene glycol-bis (ß-amino-

ethylether)-N,N,N’,N’-tetraacetic acid) 

37% (w/v) formaldehyde solution  

Glycerol 

Hexanucleotide primers 
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Isopropanol 

L-NAME (NG-nitro-L-arginine methyl ester) 

Luminol (5-Amino-2,3-dihydro-1,4-

phthalazinedione) 

Methanol 

NADPH (? -Nicotinamide adenine dinucleotide 

2’-phosphate reduced tetrasodium salt hydrate) 

NaF 

NaHCO3 

Na2HPO4 

NaH 2PO4 

NaI (nitrogen-flushed) 

Na4VO3 

NonidetTM P -40 substitute (mixture of 15 

homologues) 

OptiPrep® Density Gradient Medium, 60% 

(w/v) iodixanol (5,5’-[(2-hydroxy-1,3-

propanediyl)-bis(acetylimino)]bis-[N,N’-

bis(2,3-dihydroxypropyl)-2,4,6-triiodo-1,3-

benzenedicarboxamide]) in water     

p-Coumaric acid 

RT-PCR primers 



Christine F. Kohlhaas  Chapter 2, 63 

 

Soy bean trypsin inhibitor (SBTI) 

Sodium dodecyl sulphate (SDS) 

N,N,N',N'-Tetramethylethylenediamine 

(TEMED) 

Triton X-100 (4-(1,1,3,3-

Tetramethylbutyl)phenyl-polyethylene glycol)  

Trypan blue 

Tween-20 (Polyethylene glycol sorbitan 

monolaurate) 

Type IV collagen 

TCS CellWorks (Botolph Claydon, 

UK) 

Human aortic endothelia l cells 

Large vessel endothelial cell basal medium + 

supplements  

 

Thermo Fisher Scientific Inc. 

(Pittsburgh, PA, USA) 

Immu-Mount mounting medium for coverslips 

 

Toronto Research Chemicals (Toronto, 

ON, Canada) 

AICAR (5-aminoimidazole-4-carboxamide-1-

beta-4-ribofuranoside) 

VWR International (Lutterworth, 

Leicestershire, UK),                      

including all BDH chemicals  

Borosilicate coverslips (22 mm diameter) 

CaCl2 solution 

FalconTM 10 cm-diameter cell culture dishes 
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and multiwell plates 

30% (v/v) H 2O2 

HEPES 

KCl 

KH2PO4 

MgCl2 

NaCl 

Na2HPO4 

NaH 2PO4 
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2.1.2 List of specialist equipment and suppliers 

 
 
Supplier Equipment 

Analytix Ltd (Durham, UK) Sievers® Nitric Oxide Analyzer 280 

Exmire microsyringe and needles for NO 

analysis 

 

Beckman CoulterTM (High 

Wycombe, UK) 

J2-21 centrifuge, OptimaTM MAX 

ultracentrifuge, JA-20 rotor 

TLS-55 rotor 

TLA-110 and TLA 110.4 rotors 

 

Becton Dickinson (Franklin Lakes, 

NJ, USA) 

 

FACScan Flow Cytometer 

Biometra biomedizinische 

Analytik GmbH                 

(Göttingen, Germany)  

 

TGradient Thermocycler 

Bio-Rad Laboratories           

(Hemel Hempstead, UK) 

Agarose gel (Mini-Sub/Wide Mini-Sub Cell GT)  

Protein gel casting and Western blotting 

equipment (Mini Protean III)  

Luminex 100TM detection system for Human 
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Chemokine Multiplex Bead Immunoassay 

analysis 

 

Carl Zeiss Ltd (Welwyn Garden 

City, Hertfordshire, UK) 

Axiovert 135 microscope  

LSM Exciter laser scanning microscope 

 

Fisher Scientific UK Ltd 

(Loughborough, UK) 

 

Polycarbonate freezing container 

Herolab (Wiesloch, Germany) 

 

UVT-28 MP UV transilluminator 

Neuro Probe, Inc., Gaithersburgh, 

MD, USA; via Receptor 

Technologies Ltd., Adderbury, UK  

AP48 Boyden chamber 

Optika Microscopes (Ponteranica, 

Italy) 

 

XDS-1B light microscope 

Shimadzu Europa GmbH 

(Duisburg, Germany) 

 

UV-1201 spectrophotometer 

WPA (Cambridge, UK) S2000 spectrophotometer  
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2.1.3 List of antibodies and conditions of use  

 

2.1.3.1  Primary antibodies for Western blotting  

Table 2-1 List of primary Western blotting antibodies and their conditions of use 
All rodent antibodies, as well as the rabbit anti-JNK, the rabbit anti-P-I?Ba Ser32 and anti-
phospho-p44/42 MAPK, are monoclonal; TBST: Tris-buffered saline; Discntd: discontinued; n/a: 
not applicable.  

Epitope Host 

species 

Dilution Diluent (w/v in 

TBST) 

Source  Catalogue 

number 

a-AMPKa1 Sheep 1:1000 1% milk In-house from 

University of 

Dundee (Woods et 

al., 1996) 

n/a 

a-AMPK T172  Rabbit 1:200 5% BSA Cell Signaling 2531 

a-Caveolin-1 Mouse 1:1000 TBST Transduction 

Laboratories 

610058 

a-CAP Rabbit 1:1000 3% milk Upstate  06-994 

a-Cbl Mouse 1:1000 3% milk Upstate  05-440 

a-eNOS Rabbit 1:5000 1% BSA Sigma N-2643 

a-eNOS S1 16 

(Ser114) 

Rabbit 1:1000 5% milk Upstate  07-357 

a-eNOS T495 Rabbit 1:1000 5% milk Upstate  Discntd 
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a-eNOS T495 Rabbit 1:1000 5% BSA Cell Signaling 9574 

a-eNOS S617 

(Ser615) 

Rabbit 1:1000 5% milk Upstate  07-561 

a-eNOS S635 

(Ser633) 

Rabbit 1:1000 5% milk Upstate  07-562 

a-eNOS S1177  Rabbit 1:1000 5% BSA Cell Signaling 9571 

a-GAPDH 

(clone 6C5) 

Mouse 1:1500 5% milk Ambion 4300 

a-I?Ba Rabbit 1:1000 3% milk Upstate  06-494 

a-IKBa Ser32 

(clone 14D4) 

Rabbit 1:1000 5% milk Cell Signaling 2859 

a-IKKß Mouse 1:500 3% milk Upstate  05-535 

a-JNK (56G8) Rabbit 1:1000 5% BSA Cell Signaling 9258 

a-JNK 

T183/Y185 

Rabbit 1:1000 5% BSA Cell Signaling 9251 

a- p44/42 

MAPK  

Rabbit 1:1000 5% BSA Cell Signaling 9102 

a-Na+/K+-

ATPase a 

Mouse 1:4000 3% milk Upstate  05-369 
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a-NF?B p65  Rabbit 1:1000 3% milk Kind gift of Dr T. 

Palmer 

n/a 

a-p38 MAPK  Rabbit 1:1000 5% BSA Cell Signaling 9212 

a-p38 MAPK 

T180/Y182 

Rabbit 1:1000 5% BSA Cell Signaling 9211 

a-PDK-1 Sheep 1:1000 5% milk Upstate  07-047 

a-PI3K-p85 Rabbit 1:1000 3% milk Upstate  06-497 

a-PI3K-p110ß Rabbit 1:1000 3% milk Santa Cruz sc-602 

a-PKBa Sheep 1:1000 3% milk Upstate  07-416 

a-PKB Rabbit 1:1000 5% milk Cell Signaling 9272 

a-PKB T308  Rabbit 1:1000 3% milk Upstate  05-802 

a-PKB S473  Rabbit 1:1000 5% BSA Cell Signaling 9271 

a-PTEN Rabbit  1:1000-

1:2000 

3% milk Upstate  07-016 

a-Rab 4  Rabbit 1:1000 5% milk Abcam ab13252 

a-Rab 11a Rabbit 1:1000 5% milk Zymed 

Laboratories 

71-5300 
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a-Syntaxin 6  Mouse 1:1000 1% BSA Transduction 

Laboratories 

610635 

 

2.1.3.2  Secondary detection agents for Western blotting 

Table 2-2 List of secondary Western blotting detection agents and their conditions of 
use  

n/a: not applicable 

Linked 

molecule 

Epitope  Host 

species 

Dilution Diluent       

(w/v in 

TBST) 

Source  Catalogue 

number 

HRP Mouse IgG Sheep 1:1000-

1:2000 

1% milk GE 

Healthcare 

NA931 

HRP Rabbit IgG Donkey 1:1000-

1:2000 

1% milk GE 

Healthcare 

NA934 

HRP Rat IgG Goat 1:1000-

1:2000 

1% milk GE 

Healthcare 

NA935 

HRP Streptococcus 

sp. Protein G 

n/a 1:1000-

1:2000 

1% milk Sigma P8170 
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2.1.3.3  Primary antibodies for immunocytochemistry 

Table 2-3 List of primary immunocytochemistry antibodies and their conditions of 
use 
PB: permeabilisation buffer 

Epitope  Host 

species 

Dilution Diluent          

(w/v in PB) 

Source  Catalogue 

number 

a-Caveolin -1 Mouse 1:100 3% BSA Transduction 

Laboratories 

610058 

a-eNOS Rabbit 1:100 3% BSA Sigma N-2643 

 

 

2.1.3.4  Secondary antibodies for immunocytochemistry 

Table 2-4 Secondary antibodies for immunocytochemistry and their conditions of use 

 

Linked 

molecule  

Epitope Host 

species 

Dilution Diluent  

(w/v in PB) 

Source  Catalogue 

number 

AlexaFluor488 Rabbit IgG Goat 1:100 3% BSA Invitrogen A11008 

AlexaFluor568 Mouse IgG Goat 1:100 3% BSA Invitrogen A21043 
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2.1.4 Standard solutions 

Unless stated otherwise, all buffers and reagents were made up with distilled water. 

 

Bradford’s Reagent 

35.0 mg/L Coomassie brilliant blue 

  5.0% (v/v) Ethanol 

  5.1% (v/v) Orthophosphoric acid  

Bradford’s Reagent was filtered and stored in the da rk. 

 

 

6X DNA loading buffer 

0.5% (w/v) Bromophenol blue 

15% (w/v) Ficoll 

 

 

Endothelial cell lysis buffer 

  50 mM Tris-HCl pH 7.4 (at 4°C)     

  50 mM NaF              

    1 mM Tetrasodium pyrophosphate (NaPPi)          

    1 mM EDTA              

    1 mM EGTA              

    1% (v/v) Triton X-100 

250 mM Mannitol 

    1 mM DTT 

    1 mM Na3VO4  added on day of use 

 0.1 mM Benzamidine  

 0.1 mM PMSF 

    5 µg/ml SBTI 
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Enhanced chemiluminescence (ECL) detection reagents  

Solution 1 

   0.1 mM Tris -HCl pH 8.5  

450 mg/L Luminol in 2% (v/v) DMSO 

130 mg/L Coumaric acid in 1% (v/v) DMSO  

 

Solution 2 

0.1 mM Tris -HCl  pH 8.5 

1.83 x 10-4 % (v/v) H2O2 

 

 

HEPES-EDTA-Sucrose (HES) buffer 

  20 mM Hepes-NaOH pH 7.4 

    1 mM EDTA 

250 mM sucrose 

    1 mM DTT 

    1 mM Na3VO4 

 0.1 mM Benzamidine  

 0.1 mM PMSF      added on day of use 

    5 µg/ml SBTI 

  50 mM NaF 

    1 mM NaPPi 

 

 

Krebs -Ringer-HEPES (KRH) buffer 

119.0 mM NaCl 

  20.0 mM HEPES-NaOH pH 7.4 

    5.0 mM NaHCO3 

    5.0 mM Glucose  

    4.8 mM KCl 

    2.5 mM CaCl2 

    1.2 mM MgSO 4 

    1.2 mM NaH2PO4  
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    0.1 mM L-Arginine 

Phosphate -buffered saline (PBS) (pH 7.2) 

 85 mM NaCl 

1.7 mM KCl 

   5 mM Na2HPO4 

0.9 mM KH2PO4 

 

 

Ponceau  S Stain 

0.2% (w/v) Ponceau S 

   1% (v/v) Acetic acid 

 

 

SDS-PAGE running buffer 

190 mM Glycine  

  62 mM Tris 

 0.1% (w/v) SDS 

 

 

SDS sample buffer 

200 mM Tris-HCl pH 6.8 

  40% (v/v) Glycerol 

    8% (w/v) SDS 

 0.4% (w/v) Bromophenol blue 

 

The above recipe for 4X SDS sample buffer was used neat, or diluted with distilled water 

to 2X or 1X working concentration as required. DTT was added to a final concentration of 

200 mM before use (i.e. 20% (v/v) from 1 M stock). 
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Tris-buffered saline + Tween-20 (TBST) 

     20 mM Tris -HCl pH 7.5 

137.5 mM NaCl 

0.1% (v/v) Tween-20 

 

 

Transfer buffer 

  25 mM Tris base 

192 mM Glycine  

  20% (v/v) Ethanol 
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2.2 Methods 

2.2.1 Cell culture  

 
2.2.1.1  Revival and culture of cryopreserved HAEC and HUVEC 

Aliquots of cryopreserved (passage 2 or 3, depending on supplier) endothelial cells (EC) 

were rapidly thawed in a 37°C water bath. Cells were then added to complete endothelial 

cell medium pre-equilibrated in a humidified incubator containing 5% (v/v) CO2, 95% 

(v/v) air, at 37°C. The cell suspension was then divided equally between six to ten 25 cm2 

cell culture flasks and incubated at 37°C in a humidified incubator supplemented with 5% 

(v/v) CO2. Cell medium was replaced every 2-3 days with fresh complete medium. For 

experiments, EC were cultured on non-coated Falcon dishes and multiwell plates as 

required. No coating agent was used as FalconTM cell-cultureware, in conjunction with the 

extracellular matrix produced by EC, provided sufficient support for EC adhesion and 

growth.  

 

2.2.1.2  Determination of endothelial cell phenotype of cultured HAEC 

In order to prevent differentiation from the endothelial phenotype of HAEC and HUVEC, 

only EC in passages 4-6 were used for experiments. To assess the maintenance of the 

endothelial phenotype, the presence of the endothelial cell marker CD31 in cultured HAEC 

was ascertained by immunocytochemistry. Dr Ian Montgomery (University of Glasgow) 

carried out these studies. 

For immunocytochemistry, HAEC were grown on coverslips and fixed with methanol for 

10 minutes. After washing, the coverslips were attached to glass slides using vaseline and 

were circled using a Dako PAP pen to form a watertight seal. The cells were rinsed in PBS 

and blocked with 1:30 goat serum in PBS. Anti-CD31 primary antibody (1:40 dilution in 

PBS + 1% (w/v) BSA) was incubated in a humidified chamber on an orbital shaker for 1h. 

After washing in PBS, the coverslips were incubated with biotinylated goat anti-mouse 

IgG (1:20 dilution in PBS + 1% (w/v) BSA) for 30 minutes. After thorough washing in 

PBS, cells were incubated for a further 30 minutes in ExtrAvidin Peroxidase (1:20 dilution 

in PBS + 1% (w/v) BSA). Following washing in PBS, the AEC substrate reagent was 
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prepared and incubated for 5-10 minutes. Coverslips were then rinsed with distilled water, 

stained with haematoxylin for 1 minute and rinsed gently. The coverslips were carefully 

removed from the glass slides and mounted on clean slides using Aquamount mounting 

medium and left to dry overnight. Stained cells were examined using a Zeiss Axiophot 

microscope  and images were captured using a JVC video camera and AverCAP video card 

in a Viglen computer. 

The plasma membrane of CD31-positive cells was rose-red to brownish-red, with weaker 

cytoplasmic staining, and the nucleus was stained pale blue/purple. Cytoplasmic staining is 

a feature of the antibody used. As a negative control, HAEC were stained in the absence of 

primary antibody (see Figure 2-1). 

  

2.2.1.3  Experimental hyperinsulinaemia treatment of HAEC 

For experimental hyperinsulinaemic conditions, HAEC complete medium was 

supplemented with 100 nM of purified porcine insulin (Novo Nordisk), dissolved in 10 

mM HCl and sterilised, for the indicated period of time (24-48h). Insulin was replaced as 

required when the cell culture medium was replaced.  

 

2.2.1.4  Experimental hyperglycaemia treatment of HUVEC 

For experimental hyperglycaemic conditions, complete EC medium, containing 4 mM 

glucose, was supplemented with 21 mM glucose to give a final concentration of 25 mM 

glucose. As an osmotic control, cells were cultured in complete EC medium supplemented 

with 20 mM mannitol and 1 mM glucose, to give a final concentration of 5 mM glucose 

and 25 mM total monosaccharide. EC were cultured under these conditions for 48h.  
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Figure 2-1 HAEC stained with anti-CD31 antibody and haematoxylin  

In order to confirm the endothelial phenotype of HAEC, immunocytochemistry was carried out by 
Dr Ian Montgomery as described in section 2.2.1.2. HAEC positive for the endothelial cell marker 
CD31 show red-stained plasma membrane (see arrows) and weaker  cytoplasmic staining (panel A), 
while unlabelled control cells do not stain (panel B). Cell nuclei appear blue after staining with 
haematoxylin (both panels). 
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2.2.1.5  Passaging of HAEC and HUVEC 

For experiments, only EC in passages 4 to 6 were used. Cells were routinely subdivided 

1/3-1/7 in 75 cm2 tissue culture flasks. For passaging, EC (~80% confluence) were washed 

once in 2-4 ml of basal EC medium and detached with 1-2 ml trypsin (0.05% (v/v) in 

EDTA). Cells were briefly incubated at 37°C until the cells fully detached upon tapping of 

the cell culture flask. Trypsin was neutralised by addition of 1-3 ml of complete EC 

medium. Cells were pooled in a 50 ml centrifuge tube and centrifuged at 146 x g for 5 

minutes. The supernatant was aspirated and the cell pellet resuspended in 5 ml complete 

EC medium prior to dilution into an appropriate volume of complete EC medium. The cell 

suspension was divided between 75 cm2 tissue culture flasks (Corning) and 10 cm-

diameter cell culture dishes and/or multiwell plates (both Falcon), as required. 

 

2.2.1.6  Culturing of U937 and THP-1 pre-monocytic cells 

U937 cells and THP-1 cells were cultured in complete RPMI 1640 medium (supplemented 

with 10% (v/v) foetal calf serum (FCS), 100 U/ml penicillin, 100 µg/ml streptomycin and 2 

mM L-glutamine) and subdivided every 2-3 days by 1/2 to 1/3 dilution with complete 

medium. Cells were incubated at 37°C in a humidified incubator, in an atmosphere of 5% 

(v/v) CO2:95% (v/v) air. U937 and THP-1 cells were generous gifts from Dr W. A. 

Sands/Dr T. Palmer and A. Edkins/Prof W. Cushley, respectively (all University of 

Glasgow). 

 

2.2.1.7  Cryopreservation and revival of U937 pre -monocytic cells 

U937 cells were cryopreserved after centrifugation at 146 x g and resuspension in 90% 

(v/v) FCS, 10% (v/v) DMSO, by overnight incubation in a polycarbonate freezing 

container at -80°C. The following day, cells were transferred to liquid nitrogen storage. To 

revive U937 pre-monocytic cells, cells were removed from liquid nitrogen and rapidly 

thawed in a 37°C water bath. Cells were then added to complete U937 cell medium pre -

equilibrated in a humidified incubator containing 5% (v/v) CO2, 95% (v/v) a ir, at 37°C. 

The cell suspension was then added to a 75 cm2 cell culture flask and incubated at 37°C in 
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a humidified incubator supplemented with 5% (v/v) CO2. Revived pre-monocytes were 

subdivided a few times before use in experiments. 

 

2.2.2 HAEC and HUVEC lysate preparation 

Unless otherwise stated, all treatments were carried out in duplicate for each experiment. 

EC, stimulated as indicated, were serum -starved by aspirating the cell culture medium, 

washing the cells once with 10 ml of fresh, pre-warmed Krebs -Ringer-HEPES (KRH) 

buffer and replacing it with 5 ml/100 mm-petri dish of fresh KRH buffer. Cells were 

incubated for 2-4h at 37°C. Subsets of cells were then acutely stimulated with 1 µM insulin 

for 10 minutes. Thereafter, the buffer was aspirated and dishes were placed on ice. To each 

petri dish, 0.4 ml fresh, ice-cold lysis buffer was added and cells were scraped off using a 

cell lifter. Resulting cell lysates were transferred to pre-cooled 1.5 ml-microcentrifuge 

tubes, vortexed for 10 seconds and centrifuged at maximum speed (17,530 x g) for 3 

minutes in a 4°C bench-top centrifuge. Lysate supernatants were transferred to fresh, pre-

cooled 1.5 ml-microcentrifuge tubes. The protein concentration of each sample was 

determined by spectrophotometric analysis at 595 nm according to the method of Bradford 

(see section 2.2.3) (Bradford, 1976). Samples were stored at -20°C short-term or at -80°C 

long-term. 

 

2.2.3 Protein concentration determination 

Spectrophotometric analysis of EC lysates according to the Bradford method (Bradford, 

1976) was carried out at 595 nm in a spectrophotometer using disposable plastic cuvettes. 

Duplicates of 2 µg, 4 µg and 6 µg BSA were made up to 100 µl with H2O and utilised as 

reference standards. Duplicates of 5 µl from each sample were added to 95 µl distilled 

H2O. To all samples and reference standards, 1 ml Bradford’s reagent was added and 

spectrophotometric analysis performed in a WPA 2000 spectrophotometer (WPA) within 

10 minutes of reagent addition. The mean absorbance for each sample duplicate was 

calculated and the protein concentration determined by comparison to the calculated mean 

A595/µg BSA derived from the linear portion of the BSA reference standard curve.  
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2.2.4 Iodixanol gradient centrifugation 

Iodixanol (5,5’-[(2-hydroxy-1,3-propanediyl)-bis(acetylimino)]bis -[N,N’-bis(2,3-

dihydroxypropyl)-2,4,6-triiodo-1,3-benzenedicarboxamide]) is a density gradient 

compound that forms a continuous gradient upon centrifugation, making it possible to 

collect high yields of cellular organelles at high purity (Graham et al., 1994). For 

subcellular fractionation by iodixanol gradient centrifugation, HAEC were grown in 10 

cm-dishes and serum-starved for 2h in KRH buffer before treatment with 1 µM human 

insulin for 10 minutes or no treatment. Cells were then scraped off the dishes in 0.3-0.4 ml 

of HES buffer and pooled according to treatment group (typically 4 dishes were used per 

treatment). The cells were homogenised with ten passes through a ball-bearing 

homogeniser with a 16 µm-ball. Nuclei were pelleted by spinning the homogenates for 3 

minutes at 5000 rpm (4088 x g). The resulting supernatants were diluted with 60% (w/v) 

iodixanol in HES buffer to a density of 40% (v/v), and 0. 5 ml thereof  placed at the bottom 

of separate centrifuge tubes and overlaid sequentially with 0.5 ml each of 37.5%, 35%, 

32.5%, 30%, 25%, 20% and 10% (w/v) iodixanol in HES buffer. Samples were then 

centrifuged for 3h at 72,000 rpm (216,276 x g), 4°C, in a TLA-100.4 rotor. The resulting 

fractions were collected as eight separate 500 µl aliquots, starting with the least dense 

fraction from the top of the tube. Fractions were precipitated on ice for 30 minutes using 

0.015% (w/v) deoxycholic acid and 11 % (w/v) TCA. Precipitated proteins were pelleted 

by centrifugation at 17,530 x g, 4°C, for 3 minutes. The supernatants were aspirated and 

pellets were resuspended in 50 µl 2X SDS-sample buffer and 20 µl of 2 M Tris base prior 

to Western blot analysis (samples were not heated before loading onto SDS-gels). 

 

2.2.5 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-polyacrylamide gel electrophoresis was carried out according to the method of 

Laemmli (Laemmli, 1970) . Cell lysate samples (see section 2.2.2) were mixed 3:1 with 4X 

SDS-containing sample buffer (SDS-SB) and heated to 95°C in a heating block for 2-5 

minutes. Subcellular fractionation samples (see section 2.2.4) were prepared in 4X SDS-

SB (supernatants) or 1X SDS-SB (pellets) and heated to 95°C as above, or heated to 37°C 

for 5 minutes if high temperature was not required.  

Unless otherwise indicated, SDS-gels for cell lysates routinely consisted of 8% (w/v) 

acrylamide resolving gels overlaid with 5% (w/v) stacking gels; for subcellular 
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fractionations, 10% (w/v) resolving gels with 5% (w/v) stacking gels were used. All gels 

were cast in Mini-Protean III gel casting equipment (Bio-Rad). Gel lanes were loaded with 

equal amounts of protein (3-10 µg). Samples were resolved at 80 V until the samples had 

reached the resolving gel, then the voltage was increased to 180 V and the samples were 

resolved until the dye front had migrated the entire length of the gel. Subcellular 

fractionation (iodixanol gradient) samples were usually resolved at 80-100 V. 

 

2.2.6 Western blotting and immunodetection of proteins 

Protein-containing samples were transferred from SDS-gels onto nitrocellulose membranes 

at 60V for 2h, or at 40 mA overnight, using Mini-Protean II/III equipment (Bio -Rad). 

Membranes were briefly stained with Ponceau to check for equal loading of the gels, and 

blocked for 1h in Tris-buffered saline (TBST) containing 5% (w/v) non-fat dried milk. 

Following brief washing in TBST, the membranes were incubated overnight with primary 

antibody, diluted as shown in Table 2-1. All washes and incubation steps were carried out 

under agitation. After primary antibody probing, membranes were washed three times in 

TBST and incubated for 1h in HRP-linked species-specific secondary antibodies, diluted 

1:1000-1:2000 in TBST containing 1% (w/v) milk (for primary antibodies raised in sheep, 

an HRP-conjugated protein G secondary detection agent was used; see Table 2-2). 

Following three washes with TBST, 2 ml of each of the ECL reagents (produced in-house) 

was added to each nitrocellulose membrane and incubated for 1 minute. 

Chemiluminescence was detected with a Kodak X-Omat using Kodak MXB blue-sensitive 

X-Ray film. In order to assess the genuine phosphorylation levels of a protein, the Western 

blot band intensity of a phosphorylated protein, detected with a site-specific phospho-

antibody, was measured and expressed as a ratio to the corresponding total protein within 

the same sample.  

 

2.2.7 Densitometric quantification of protein bands 

The antibody-detected bands on the developed film were scanned on a Mercury 1200c 

scanner, using Adobe Photoshop software. The intensity of the immunodetected protein 

bands on the film was measured using Scion Image or ImageJ software. Densitometric 

analysis was performed on different exposures of the same band to ensure that 

quantifications were within the linear range. 
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2.2.8 Nitric oxide measurement 

Nitric oxide (NO) released from cells reacts with dissolved oxygen in the cell culture 

medium or buffer to form nitrate and, predominantly, nitrite. NO production by HAEC was 

hence analysed by a nitrite reduction method ( described below) using a Sievers Nitric 

Oxide Analyzer 280 (see Figure 2-2). The NO analyser calculates the amount of NO 

produced by the cells from the amount of nitrite present in the cell culture supernatant 

sample.  

To set up the NO analyser for nitrite reduction, a reducing agent (composed of 5 ml 

nitrogen-flushed glacial acetic acid and 50 mg nitrogen-flushed NaI dissolved in 1.5 ml of 

de-ionised water) was added to the purge vessel and flushed with N 2 gas to purge any 

traces of NO2
- from the vessel. After 30 minutes of purging, the purge vessel was sealed 

with a septum and the reducing agent was refluxed under N2 gas.  

Prior to each experiment, a nitrite standard curve was prepared: From a standard solution 

of 100 mM NaNO2, serial dilutions of 50 µM, 10 µM, 1 µM and 100 nM were prepared 

and injected into the purge vessel using an Exmire microsyringe. Under the nitrite -

reducing conditions used, nitrite present in the standards was reduced to NO as shown in 

Equation 1. The NO produced was then detected by the NO analyser, where it reacted with 

O2 to produce O3, which was detected by chemiluminescence. The chemiluminescence 

signal was converted to an electrical potential and displayed as mV by the NO analy ser. 

The amount of NO produced by duplicates of each nitrite standard was recorded by the 

analyser and used to produce a calibration curve.  

After calculation of the standard curve, cell culture supernatant samples (prepared as 

described in  2.2.8.1) were injected into the purge vessel using an Exmire microsyringe. 

Samples were injected at 1 minute intervals to allow the output curve to return to baseline. 

The output in mV was then related to the amount of nitrite present in the sample using the 

nitrite standard curve prepared on that day. 

 

I- + NO2
- + 2H +   NO + ½I2 + H2O 

 

Equation 1 Production of nitric oxide from nitrite 
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Figure 2-2 The Sievers Nitric Oxide Analyzer 28 
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2.2.8.1  Preparation of cell culture supernatants for NO analysis  

HAEC were grown to near-confluency in 6-well plates and subsequently treated with 100 

nM porcine insulin for 48h or left untreated. The distribution of treatment conditions on the 

culture plates was randomised to avoid artefacts. After 48h, cells were washed once and 

serum-starved in serum-free medium for 2h at 37°C in a humidified incubator containing 

5% (v/v) CO2. Thereafter, cells were washed once in KRH, transferred to a 37°C water 

bath and acclimatised for 20-40 min. Samples (80 µl) of cell culture supernatant were taken 

prior (t = 0) to and 12 min (t = 12) after addition of 1 µM insulin, 3 µM ionomycin 

(positive control) or no treatment, and analysed immediately with a Sievers Nitric Oxide 

Analyzer 280, as described above.  

The calcium ionophore ionomycin is an antibiotic produced by Streptomyces conglobatus 

ATCC 31005, which binds extracellular Ca2+ ions and transports them across the cell 

membrane (Liu & Hermann, 1978). This raises intracellular Ca2+ levels and thus activates 

eNOS in a calcium-dependent manner, leading to NO production. 

The calculated amount of NO obtained for each (t = 12) sample was then corrected for the 

amount of NO lost in the initial (t = 0) sample. The amount of NO produced/min (in nM) 

was calculated from the linear part of a sodium nitrite standard curve prepared prior to 

each assay. Per experiment, all treatments except the ionomycin controls were carried out 

at least in duplicate. 

 

2.2.9 Measurement of superoxide production 

Superoxide production in HUVEC was measured using the lucigenin method. Lucigenin is 

a chemiluminescence-based technique, with lucigenin-amplified chemiluminescence (LC) 

based on the following reactions:  

Reaction 1: O2
·- + LC2+ ?  LC·+ + O2  

Reaction 2:  LC·+ + O2 ?  LCO2 

Reaction 3:  LCO2 ?  2N-methylacridone + h?  
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The luminometer measures the photon of light emitted from the energy rich dioxetan 

molecule (LCO2). 

HUVEC were treated as described in section 2.2.1.4 and lysates were prepared as 

described in section 2.2.2. Lysate (500µL) was added to 1.5 ml of KRH buffer and 

preincubated with 5 µM lucigenin (a kind gift from Dr C.M. Hamilton, BHF/GCRC, 

University of Glasgow) and 100 µM NADPH for six minutes. Single photon counts were 

measured over 3 minutes and the average value calculated over that time period. Counts 

per lysate were calculated by subtracting background ROS values (scintillation tubes 

containing 2 ml of KRH preincubated with lucigenin and NADPH as above), and were 

corrected to 1 µg/µl lysate.  

 

2.2.10  Monocyte adhesion assays 

HAEC were seeded into 24-well cell culture plates. At near -confluency, 10 wells of cells 

per treatment group were stimulated with 10-100 nM insulin for 24-48h as appropriate, or 

left untreated. As a positive control, 4 wells per plate were treated with 10 ng/ml TNFa for 

6h. Thereafter, the cell culture medium was aspirated and HAEC were overlaid with 

1x105/well U937 pre-monocytic cells in basal RPMI medium. The monocytes were 

allowed to attach at 37°C, 5% (v/v) CO2, for 1h. The cell suspension was then aspirated 

and all non-adherent monocytes were washed off by three washing steps with 1 ml/well 

basal DMEM. The cells were fixed with 0.5 ml/well 4% (w/v) paraformaldehyde (PFA), 

5% (w/v) sucrose in PBS, pH 7.2 overnight at 4°C. 

Adherent U937 monocytes were counted at X100 magnification by brightfield microscopy. 

Three separate fields per well of confluent HAEC were counted and the number of total 

U937 cells attached per field of confluent HAEC was expressed as an average of all 

replicates within a treatment group. If HAEC were not confluent, the number of HAEC in 

7 individual fields from seven separate wells was determined. The total number of attached 

monocytes/100 HAEC was then calculated and expressed as an average of all the wells 

within a treatment group. 
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2.2.11  Stimulation of HAEC chemokine production 

Per experiment, all treatments were carried out in duplicate and pooled according to 

treatment. Samples were stored at -80°C after preparation.  

HAEC were grown to ~80% confluency in 6-well plates (Falcon) and stimulated with 2 

mM AICAR for 45 min or 4h with or without co-incubation with 10 ng/ml TNFa for 4h 

and/or 200 µM L-NAME (all diluted in complete endothelial cell medium). All treatments 

were started so that the experiment was concluded at the same time. After this incubation 

period, HAEC were washed three times in serum-free (SF)-RPMI 1640 medium and 

incubated with 0.5 ml/well SF-RPMI for 1h at 37°C, 5% (v/v) CO2. After 1h, the 

conditioned SF-RPMI medium was collected. Controls included i) SF-RPMI medium (with 

and without L-NAME) incubated with untreated HAEC for 1h (basal HAEC control) and 

ii) conditioned medium from HAEC treated with 10 ng/ml TNFa (with and without L-

NAME) (positive control for stimulation of HAEC chemokine production).  

 

2.2.12  Analysis of HAEC chemokine production 

Conditioned medium from stimulated HAEC (see section 2.2.11) was used for chemokine 

analysis with a Multiplex Bead Immunoassay (BioSourceTM 10-Plex system), testing for 

the presence of human chemokines MCP-1, -2, -3, MIP-1a, MIP -1ß, Eotaxin, GRO, 

RANTES, IP-1- and MIG. This assay allows the simultaneous detection of several 

molecules bound specifically to beads coated with relevant antibodies. These beads have 

distinct spectral properties and are linked to fluorophores, which permit the Luminex 

100TM detection system to distinguish between different beads , and thus, different 

antibody-bound molecules, while simultaneously measuring the quantity of associated 

fluorophore.  

The assay was carried out as per manufacturer’s instructions, but antibodies and enzyme 

substrates were used at half the recommended concentration. All steps were carried out at 

room temperature and in the dark. Briefly, 50 µl per sample of conditioned medium was 

added to 50 µl assay diluent and 50 µl incubation buffer, and incubated under shaking with 

primary antibody-coated beads for 2h. After two washes with wash solution, biotinylated 

detector antibody was added for 1h under agitation. Two further washes preceded 

incubation with streptavidin-RPE for 30 minutes. Prior to detection in a Bio-Plex system 

(Bio-Rad), the assay was washed three times with wash solution. Serial dilutions of 
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chemokine standards were included in duplicate in each experiment as a reference, from 

which the chemokine concentrations in each sample were then calculated.  

 

2.2.13  Immunocytochemistry  

HAEC were grown to near-confluency on 22mm glass coverslips in 6-well cell culture 

plates and treated as indicated. Cells were serum-starved in KRH at 37°C for 2-3h and 

treated with 1 µM human insulin as indicated. Cells were washed once in PBS and 

coverslips were placed into fresh 6-well plates. Cells were fixed in 4% (w/v) formaldehyde 

in PBS for 10 minutes, followed (on most occasions) by a 10 minute blocking step in 20 

mM NH4Cl in PBS. Thereafter, all incubations were carried out at room temperature in a 

dark, humidified chambe r. Following a brief wash in PBS, cells were permeabilised in PBS 

containing 0.5% - 1% (v/v) Triton X-100 for 5-10 minutes, washed in permeabilisation 

buffer (PB, PBS + 0.1% Triton X-100) and blocked for 30 min in 10% (v/v) goat serum in 

PB. Cells were washed once in PB before incubation with the primary antibody (anti-

eNOS and/or anti-caveolin -1 antibody, each diluted 1:100 in PB + 3% (w/v) BSA) for 2h. 

Cells were washed three times in PB and incubated with the secondary antibody 

(AlexaFluor 488-linked goat anti-rabbit antibody and/or AlexaFluor 568-linked goat anti-

mouse antibody, each diluted 1:100 in PB + 3% (w/v) BSA) for 1h. Following three 

washes in PBS, cells were stained with DAPI (1:10,000 in PBS) for 5 minutes. After three 

further washes in PBS, the coverslips were mounted onto microscope slides with mounting 

medium and allowed to dry overnight at room temperature in the dark before storage at 

4°C. Negative controls included i) no treatment with primary antibody and ii) treatment 

with primary antibody and irrelevant secondary antibody. 

 

2.2.13.1 Image acquisition and quantification of fluorescence intensity 

Immunolabelled samples were analysed using a Zeiss LSM Exciter laser scanning 

microscope and LSM imaging software. Cells were visualised with a Plan-Apochromat 

X63/1.4 Oil DIC objective and the relevant filter. The pinhole was set to 1 Airy unit, and 

the scan speed was maximal. The detector gain in the fluorescence channel was set such 

that the corresponding negative control sample appeared completely black to eliminate any 

false signals resulting from cell autofluorescence. Images from one visual field were 
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acquired in all relevant channels and subsequently overlaid using LSM imaging software. 

DAPI-staining was visualised with a pseudo-DAPI setting (mercur y light source, FSet49 

beam splitter and NT 80/20 emission filter) at maximal pinhole opening. One to four 

images were taken per sample.  

The fluorescence intensity of individual antibody-labelled cells was quantified with ImageJ 

software. Square or rectangular boxes were drawn neatly around the areas of interest and 

the fluorescence intensity measured. The box size and shape were identical within 

individual cells, but varied between cells. Three measurements from different areas of the 

cytoplasm were taken per cell to obtain an average measurement for cytoplasmic 

fluorescence intensity. Three cells per image, and ten images per treatment group were 

analysed (n = 30 per treatment group). Data for each cell were expressed as fluorescence 

intensity relative to nuclear fluorescence intensity.  

 

2.2.14  Statistical analysis 

The “two-sample Student’s t-test assuming unequal variance” (“Student’s t-test”) or the 

“paired two-sample t-test for means” (“paired t-test”) were used for the statistical analysis 

of data as indicated in the results sections. Statistical significance was defined by a two-

tailed p-value of less than 0.05.  
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3 The Effect of Experimental Hyperinsulinaemia on NO 

Production and Insulin Signalling in Human Vascular 

Endothelial Cells  
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3.1 Introduction 

3.1.1 Background 

Insulin is a vasoactive hormone that stimulates increased blood flow through vasodilation 

(Scherrer et al., 1993); an effect that has subsequently been attributed to insulin -stimulated 

nitric oxide (NO) release (Scherrer et al., 1994). Insulin has been demonstrated to stimulate 

endothelial nitric oxide synthase (eNOS)-mediated NO production in human umbilical vein 

endothelial cells (HUVEC) by signalling through the insulin receptor (Zeng & Quon, 1996, 

Zeng et al., 2000). This process depends on phosphatidylinositol 3-kinase (PI3K) and 

protein kinase B (PKB) (Zeng et al., 2000) to activate eNOS at the activating residue 

Ser1177 (Dimmeler et al., 1999, Fulton et al., 1999) , but is independent of the intracellular 

Ca2+ concentration (Montagnani et al., 2001). In several metabolic disease states, including 

the metabolic syndrome, insulin resistance and Type II diabetes, decreased nitric oxide 

bioavailability is a hallmark of endothelial dysfunction (Rask-Madsen & King, 2007). 

Nitric oxide is known to have vasoprotective properties (Gewaltig & Kojda, 2002, Hsueh 

& Quinones, 2003, Wheatcroft et al. , 2003), and there is evidence that links decreased NO 

bioavailability to endothelial dysfunction and proatherogenic processes (Li et al., 2002, 

Dickhout et al., 2005, Rask-Madsen & King, 2005, Tesauro et al., 2005). Short exposures 

to physiological concentrations of insulin, as experienced under normal physiological 

conditions, are thought to be vasoprotective, maintaining appropriate vasodilation through 

stimulation of NO production, and preventing atherogenesis. By contrast, prolonged 

exposure to pathophysiological insulin concentrations, as encountered during 

hyperinsulinaemia /insulin resistance, are postulated to promote atherogenesis by 

selectively inhibiting NO release and increasing vasoconstrictive responses (Pandolfi et al., 

2005). 

Clinical studies, as well as animal and in vitro experiments, suggest that prolonged 

hyperinsulinaemia leads to dysregulation of vascular endothelial nitric oxide production. 

Patients with insulin resistance and Type II diabetes exhibit a smaller NO-mediated 

vasodilatory response to insulin than healthy subjects, and this decrease is proportional to 

the level of insulin resistance (Steinberg et al., 1996, Balletshofer et al. , 2000, Cleland et 

al., 2000, Ardigo et al., 2006). While many groups reported this decreased vasodilatory 

effect as specific to endothelium-dependent (insulin - or acetylcholine-mediated) 

vasodilation (including (Hogikyan et al., 1998, O'Driscoll et al. , 1999, Cheetham et al., 

2000, Cleland et al., 2000, Arcaro et al., 2002)), others have found that endothelium-
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independent vasodilation mediated by an NO donor such as glyceryl trinitrate (GTN), is 

also impaired (McVeigh et al., 1992).  

Impaired insulin-induced vasodilation can also be demonstrated in experimental animals: 

small coronary arteries from insulin-resistant obese Zucker rats were less responsive to 

insulin than vessels from Zucker lean rats (Fulton et al., 2004b, Katakam et al. , 2005), but 

this effect was obliterated by pretreatment with the reactive oxygen species (ROS) 

scavenger, superoxide dismutase (SOD) (Katakam et al., 2005). By contrast, in vitro  

studies mimicking hyperinsulinaemia showed that unstimulated human coronary artery 

endothelial cells produced ~50% more NO than controls when cultured with 10-100 nM 

insulin for 24h (Ding et al., 2000). Thus, the effect of hyperinsulinaemia in cultured human 

endothelial cells appears to contradict observations in man and obese Zucker rats.  

Together, these data suggest that NO bioavailability is altered in insulin resistance and 

associated hyperinsulinaemia. However, the underlying molecular mechanisms responsible 

for the reduced vasodilation that is characteristic of clinical hyperinsulinaemia have not 

been fully addressed. Several studies have investigated the effect of insulin resistance or 

experimental hyperinsulinaemia on vasodilation, and a few studies have addressed the 

effect of experimental hyperinsulinaemia on cellular/vascular NO-production (Ding et al., 

2000, Pandolfi et al., 2005, Potenza et al., 2005). To date, however, no studies have looked 

at the effect of experimental hyperinsulinaemia on insulin-stimulated NO production and 

insulin signalling at the cellular level. A logical speculation would be that the insulin 

signalling pathway that leads to NO production is impaired by hyperinsulinaemia, thus 

resulting in lower NO bioavailability. This hypothesis has not been thoroughly 

investigated, and previous studies in human vascular endothelial cells have yielded 

contradicting results (Ding et al., 2000). 

3.1.2 Aims of the chapter 

The work presented in this chapter was designed to determine whether experimental 

hyperinsulinaemia blunted NO production by human vascular endothelial cells in response 

to acute stimulation with insulin (section 3.2.2). In addition, the expression and insulin -

responsive phosphorylation levels of the insulin signalling pathway components (PI3K, 

PTEN, PDK-1, PKB, eNOS and p44/42 MAPK) and the cellular energy sensor molecule 

AMPK, which might be involved in any suc h potential dysregulation were investigated 

(section 3.2.3).  
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3.2 Results 

3.2.1 Selection of experimental conditions 

Given that culture of human coronary artery endothelial cells with 10-100 nM insulin for 

24h was sufficient to observe an effect on NO production (Ding et al., 2000) , it was 

reasoned that 48h of culture in 100 nM insulin would be sufficient to see an effect on NO 

production in HAEC. These conditions are referred to as experimental hyperinsulinaemia 

in this text. For reasons of simplification, cells cultured under conditions of experimental 

hyperinsulinaemia are frequently referred to as “hyperinsulinaemic” in this thesis, despite 

not originating from donors who were known to have hyperinsulinaemia. 

Previous experiments in this laboratory have established that the short-term addition of 

insulin at concentrations as low as 5 nM results in eNOS-mediated nitric oxide production 

in human aortic endothelial cells (Salt et al., 2003). Pilot experiments showed that maximal 

stimulation was achieved with an insulin concentration of 1 µM, which caused an 

approximately 50% increase in NO production in HAEC, with concommitant stimulation 

of PKBS473 and eNOSS1177 phosphorylation at the molecular level (Ritchie  et al., 2007). At 

the molecular level, acute stimulation of human umbilical vein endothelial cells with a 

range of insulin concentrations demonstrated that 1 µM insulin resulted in maximal 

stimulation of PKBS473 phosphorylation within 10 minutes (see Figure 3-1). Therefore, in 

all subsequent experiments, recombinant human insulin was used at a final concentration 

of 1 µM for acute (10 min) stimulation.  
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Figure 3-1 Acute stimulation of HUVEC with 1 µM insulin stimulates PKB S473 
phosphorylation. 

HUVEC were serum-starved in Krebs-Ringer-Hepes (KRH) buffer for 2h and stimulated acutely 
with 0 nM – 1 µM insulin. Cell lysates were prepared, and 10 µg of protein/sample were resolved 
by SDS-PAGE and Western blotted. A: Membranes were probed with antibodies as indicated. B: 
The intensity of the resulting immunolabelled protein bands was determined by densitometry. Data 
shown are the results of one experiment.  
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3.2.2 NO production in endothelial cells in response to experimental 

hyperinsulinaemia 

Based on the hypothesis that experimental hyperinsulinaemia would likely disrupt insulin -

stimulated, eNOS-mediated NO production, the production of NO by HAEC grown under 

experimental hyperinsulinaemic conditions was examined in response to an acute insulin 

stimulus. 

To this end, human aortic endothelial cells were cultured under normal or experimental 

hyperinsulinaemic conditions, serum-starved and stimulated acutely with 1 µM insulin to 

mimic a postprandial rise in insulin levels. As a positive control, the calcium ionophore 

ionomycin was used. Cell culture supernatants were analysed on a Sievers Nitric Oxide 

Analyzer 280 as described in section 2.2.8. The results of nine independent experiments 

are summarised in Figure 3-2. 

These experiments showed that acute treatment of HAEC with insulin causes a small but 

significant increase in NO production under control, but not hyperinsulinaemic conditions 

(11±3% (p<0.05) and 17±6% over unstimulated control for normal and hyperinsulinaemic 

cells, respectively). Basal and acutely insulin-stimulated hyperinsulinaemic cells produced 

similar levels of total NO compared to the respective control levels. 

As expected, NO production in control cells was markedly sensitive to stimulation with the 

calcium ionophore ionomycin (49±12% increase, p<0.005 compared to basal control). 

Interestingly, hyperinsulinaemic cells showed a less pronounced increase in NO production 

upon ionomycin treatment (26±13% increase compared to basal control). Furthermore, the 

difference between insulin-stimulated and ionomycin-stimulated NO production was 

smaller in hyperinsulinaemic than control HAEC (9% and 38%, respectively). However, 

only two experiments (with cells from one donor) included ionomycin-treated 

hyperinsulinaemic cells, therefore, statistical analysis of these samples was not possible. 
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Figure 3-2 Experimental hyperinsulinaemia impairs nitric oxide production in 
HAEC.  
HAEC were cultured with 100 nM insulin for 48h (Hyperinsulinaemia) or left untreated. Insulin (1 
µM)- and ionomycin (3 µM)-stimulated NO synthesis over 12 minutes was measured as described 
in section 2.2.8. The data are derived from 9 independent experiments (from 5 different HAEC 
donors), and are presented as the mean percentage of amount of NO produced/min ± SEM, relative 
to the mean of the unstimulated control samples  for each experiment. *p<0.05 for insulin-
stimulated compared to basal control, **p<0.005 for ionomycin-stimulated control compared to 
basal control (Student’s t-test). 
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3.2.3 Protein expression and phosphorylation under experimental 

hyperinsulinaemia 

Current evidence points to a role for NO in vasoprotection and a proatherogenic propensity 

in states of reduced NO bioavailability. There is strong evidence to suggest that disruption 

of the insulin signalling pathway contributes to endothelial dysfunction, as in vitro  data 

from HUVEC carrying a mutant version of IRS-1 (G972R) (Federici et al., 2004) and 

clinical studies w ith G972R heterozygote carriers (Perticone et al. , 2004) show (discussed 

in section 3.3.2).  

While no impairment of insulin-responsive, eNOS-mediated NO synthesis was observed in 

the present study (Figure 3-2), it was investigated whether experimental hyperinsulinaemia 

affected individual components of the metabolic insulin signalling pathway at the 

molecular level. In addition, pilot studies evaluated whether experimental 

hyperinsulinaemia affected the expression and phosphorylation of the mitogen-activated 

protein kinase, p44/42 MAPK (also known as externally-regulated kinase, ERK1/2), a 

component of the mitogenic insulin signalling pathway. This was done in order to 

determine whether hyperinsulinaemia differentially affects the metabolic and mitogenic 

branches of the insulin signalling pathway, as has been suggested by other studies (Jiang et 

al., 1999a, Cusi et al. , 2000, Montagnani et al., 2002, He et al., 2006, Rask-Madsen & 

King, 2007) . 

For these studies, HAEC were cultured under experimental hyperinsulinaemic conditions, 

following which protein expression and phosphorylation levels of key components of the 

metabolic insulin signalling pathway (PI3K, PTEN, PDK -1, PKB and eNOS), the 

mitogenic insulin signalling pathway molecule p44/42 MAPK and cellular energy charge 

(AMPK) were quantified by SDS-PAGE and Western blotting of HAEC lysates. All 

phosphoprotein levels were normalised to the amount of total protein of the same species, 

or to the protein levels of a molecule whose expression was unchanged by experimental 

hyperinsulinaemia. The results of these studies are summarised toward the end of this 

chapter in Table 3-1. 
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3.2.3.1  eNOS and PKB  

The protein levels of total eNOS (Figure 3-3, panel A) showed a small and insignificant 

trend to increase during prolonged experimental hyperinsulinaemia (+14±6% and 

+25±12% in HAEC stimulated with 100 nM insulin for 24h and 48h, respectively, 

compared to untreated control HAEC). PKB protein expression (Figure 3-3, panel B) did 

not change with ongoing experimental hyperinsulinaemia.  

To demonstrate that stimulation with 1 µM insulin did not affect total protein expression 

levels, acute (10 min) stimulation with insulin is indicated on the Western blots in Figure 

3-3. From this figure, it is evident that there is no change in total protein expression levels 

between acutely insulin-treated cells and controls at all three time points tested. Hence, the 

protein expression data from acutely stimulated and untreated cells were collated 

separately for each time point. Consequently, in all subsequent figures, acute insulin 

stimulation is only indicated where protein phosphorylation levels were investigated.  
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Figure 3-3 Experimental hyperinsulinaemia does not alter eNOS or PKB expression.  

HAEC were treated with 100 nM insulin for 24-48h or left untreated. Cells were then serum-
starved for 2h, and subsets of cells were stimulated acutely with insulin for 10 minutes. Cell lysates 
were prepared as described in section 2.2.2, and equal amounts of protein (3-10 µg) were resolved 
on SDS-polyacrylamide gels. After Western transfer, membranes were probed with antigen-
specific antibodies  as indicated. Representative Western blots are shown. Protein expression of 
eNOS (panel A) and PKB (panel B) is unchanged by experimental hyperinsulinaemia. Data 
represent the mean + SEM expression of 5 independent experiments. HAEC were derived from 3 
different individual donors.  
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In order to determine whether eNOS was phosphorylated as expected for functional eNOS 

activity under experimental hyperinsulinaemia, the phosphorylation levels of the two best-

characterised phosphorylation sites of eNOS, Ser1177 (eNOSS1177) and Thr495 (eNOST495) 

were quantified. NO production is proposed to require the coordinated regulation of these 

two phosphosites: Phosphorylation of the activating site Ser1177 is necessary for eNOS 

activity in response to growth factors (Dimmeler et al., 1999, Fulton et al. , 1999, Michell 

et al., 2001) , while experimental evidence suggests that the inhibitory site Thr495 is 

dephosphorylated for effective NO production (Chen et al., 1999, Fleming et al., 2001, 

Greif et al., 2002, Fleming & Busse, 2003, Matsubara et al., 2003). Insulin can cause rapid 

phosphorylation of eNOSS1177 (Kim et al. , 2001) and simultaneous dephosphorylation of 

eNOST495 (Federici et al., 2004). 

As expected, acute stimulation of HAEC with insulin caused an increase over basal in 

eNOSS1177 phosphorylation under all conditions (fold increases over basal control were 

2.3±0. 6  for insulin-stimulated control, 2.4±0.7 for 24h and 3.1±1.6 for 48h of 

experimental hyperinsulinaemia), although this was not statistically significant due to large 

interexperimental variation (Figure 3-4, panel A). There was a small and non-significant 

trend toward increased basal eNOSS1177 phosphorylation with ongoing hyperinsulinaemia  

(fold increases over basal control were 1.2±0.2 for 24h and 1.5±0.4 for 48h). 

The basal phosphorylation level of eNOST495 did not change during prolonged 

hyperinsulinaemia , as is evident from comparison to total eNOS levels (Figure 3-4, panel 

B). Acute insulin did not cause a significant change in eNOST495 phosphorylation at any 

time point tested. However, there was a tendency toward an increased eNOST495/eNOS 

ratio during experimental hyperinsulinaemia (fold-changes compared to corresponding 

unstimulated control were -1.3±0. 5 for control and +1. 2±0. 7for 48h). Again, large 

interexperimental variation was observed, and due to the low repeat number, no statistical 

analysis could be performed.  
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Figure 3-4 Experimental hyperinsulinaemia does not significantly alter 
phosphorylation of eNOS at Ser1177 or Thr495. 

HAEC lysates were subjected to immunoblotting analysis as described (section 2.2.6) to quantify 
the levels of eNOSS1177 (panel A) and eNOST495 (panel B). Representative Western blots are shown. 
A: Data shown are the mean ± SEM expression from 5 independent experiments (3 different 
donors). B: Data are shown as mean ± range expression from 2 independent experiments (2 
donors).  
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In order to determine whether PKB phosphorylation was affected by experimental 

hyperinsulinaemia, the phosphorylation levels of the PKB activating site Ser473 (PKBS473) 

were quantified from the same HAEC lysates that had been used for eNOS quantification. 

PKBS473 phosphorylation was used as an indicator of PKB activity. As illustrated in Figure 

3-5, phosphorylation of PKBS473 was responsive to acute insulin stimulation under all 

conditions tested. However, there was a trend toward decreased insulin-mediated PKBS473 

phosphorylation with ongoing hyperinsulinaemia, although this was not statistically 

significant. This trend was caused by increased basal and decreased insulin-responsive 

phosphorylation of Ser473. The fold increases of stimulated compared to corresponding 

basal phosphorylation were 6.8±4.7 for control, 4.2±2.6 for 24h and 3.4±1.8 for 48h. Due 

to large interexperimental variation, these fold stimulations were not statistically 

significant. 
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Figure 3-5 The insulin-sensitivity of PKBS473 phosphorylation decreases under 
experimental hyperinsulinaemia.  

HAEC lysates from 3 different donors were prepared and analysed as described (sections 2.2.2 and 
2.2.6). Data from 5 independent experiments are shown as mean ± SEM expression relative to 
basal control. Representative Western blots are shown along with densitometric quantif ication of 
the levels of PKBS473/PKB (no statistically significant differences). 
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3.2.3.2  AMPK 

Given that insulin-responsive PKBS473 phosphorylation was not greatly impaired by 

experimental hyperinsulinaemia (Figure 3-5), PKB activity was likely to be normal and 

thus unlikely to negatively affect eNOSS1177 phosphorylation (Figure 3-4). The AMP-

activated kinase AMPK is known to phosphorylate eNOS at Ser1177 (Chen et al. , 1999, 

Fleming & Busse, 2003, Morrow  et al. , 2003). Therefore, the expression levels of AMPK 

and the phosphorylation status of its activating site Thr172 were investigated, to determine 

whether AMPK could be an effector of the slightly increased basal eNOSS1177 

phosphorylation at 24h and 48h of experimental hyperinsulinaemia. The majority of the 

samples used in these experiments were identical to those used for the quantification of 

eNOS and PKB expression.  

Total AMPK expression levels showed a slight and non-significant trend to decline during 

experimental hyperinsulinaemia (fold changes with respect to control were 0.88±0.1 and 

0.90±0.07 for 24h and 48h, respectively; see Figure 3-6, panels A and B). Basal 

phosphorylation of AMPKT172 was increased ~2. 2±1.2-fold after 48h of experimental 

hyperinsulinaemia. Acute stimulation with insulin increased AMPKT172 phosphorylation 

under control conditions and after 24h of experimental hyperinsulinaemia (fold increase 

for stimulated compared to corresponding basal control were 2.7±1.2 for control and 

2.8±1.1 for 24h). However, after 48h of experimental hyperinsulinaemia, basal AMPKT172 

phosphorylation was 2.2±1.2-fold higher than basal control, while insulin-stimulated 

phosphorylation was 3.0-fold lower than insulin-stimulated control, and comparable to 

basal control levels (see Figure 3-6, panels A and C). There was a 2.5-fold reduction in 

insulin-stimulated compared to basal phosphorylation at 48h. Due to variation within 

treatment groups, none of these changes were statistically significant. 
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Figure 3-6 AMPK expression is unchanged, while insulin-stimulated AMPKT172 
phosphorylation is decrease d after 48h of experimental hyperinsulinaemia.  
HAEC lysates were prepared, resolved by SDS-PAGE and subjected to Western blotting as 
described in sections 2.2.2 and 2.2.6. Representative Western blots are shown (panel A). While 
AMPK expression levels were unchanged (panel B), the basal and insulin-stimulated 
AMPKT172/AMPK ratios after 48h of experimental hyperinsulinaemia are inversed with respect to 
control (panel C) (no statistically significant differences). Data shown are the mean ± SEM 
expression of 3 independent experiments with HAEC derived from 2 individual donors.  
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3.2.3.3  PDK-1, PI3K and PTEN  

To further characterise the effect of experimental hyperinsulinaemia on the metabolic 

insulin signalling pathway, the expression levels of the 3-phosphoinositide-dependent 

protein kinase-1 (PDK-1), which phosphorylates PKB, and the regulatory (p85) and 

catalytic (p110ß) subunits of the upstream phosphatidylinositol 3-kinase, PI3K, which is 

required for PDK-1 activity, were quantified. For these experiments, the same HAEC 

lysates that had been used to quantify eNOS and PKB levels were used. The results are 

shown in Figure 3-7, panels A (PDK-1) and B (PI3K-p85 and -p110ß).   

It was also investigated whether the protein levels of the phosphatase PTEN were affected 

by experimental hyperinsulinaemia. PTEN dephosphorylates PI(3,4,5)P 3 to PI(4,5)P2, 

thereby negatively regulating PI3K activity (Oudit et al., 2004). PTEN is also involved in 

the inhibition of eNOS activation via insulin signalling pathway components in response to 

various pathological conditions, including the metabolic syndrome (Shen et al. , 2006a, 

Shen et al., 2006b, Wang et al. , 2006), and therefore represents a potential –  albeit indirect 

– regulator of eNOS phosphorylation in the present system. The majority of the samples 

used for PTEN analysis were identical to those used for the quantification of  eNOS and 

PKB expression levels (see Figure 3-8). 

While PDK-1 expression appeared to be slightly upregulated after 48h of experimental 

hyperinsulinaemia (1.2±0.09-fold; Figure 3-7, panel A), this increase was not statistically 

significant. Quantification of the expression of the PI3K p85 regulatory subunit and the 

p110ß catalytic subunit revealed that neither of these expression levels changed under 

hyperinsulinaemic conditions (Figure 3-7, panel B). The expression of the phosphatase 

PTEN declined over the time course of experimental hyperinsulinaemia, resulting in 

decreased protein levels by 48h (fold changes compared to control were 0.95±0.01 and 

0.82±0.03 for 24h and 48h, respectively) (see Figure 3-8). 

In addition to the above molecules, the expression levels of the insulin receptor substrates 

(IRS)-1 and -2 were investigated. However, these experiments yielded insufficient results 

due to poor antibody recognition of these proteins (data not shown). 
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Figure 3-7 Experimental hyperinsulinaemia does not alter PDK-1 and PI3K levels.  
HAEC lysates were prepared and equal amounts of protein used for SDS-PAGE and Western 
transfer (see sections 2.2.5 and 2.2.6). Representative Western blots are shown. A: PDK-1 
expression levels are not altered by experimental hyperinsulinaemia. Data (mean ± SEM 
expression) are derived from 3 independent experiments with HAEC from 2 individual donors. B: 
PI3K-p85 and –p110ß expression remain unchanged during experimental hyperinsulinaemia. Data 
shown are the mean ± SEM expression of 4 independent experiments (3 individual donors) for the 
PI3K-p85 subunit, or 3 independent experiments (2 individual donors) for the p110ß subunit. 

 



Christine F. Kohlhaas  Chapter 3, 108 

 

 
 
 
 
 
 
 
 
 

 
Figure 3-8 Expression of PTEN shows a trend to decreases during experimental 
hyperinsulinaemia.  
HAEC were treated as above and equal amounts of protein (3-10 µg) subjected to SDS-PAGE and 
Western transfer. Densitometric analysis demonstrated that the amount of PTEN protein declined 
with ongoing experimental hyperinsulinaemia. Data (mean + range expression; no statistical 
analysis possible) from 2 independent experiments with HAEC from one donor are shown along 
with a representative Western blot. 
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3.2.3.4  p44/42 MAPK 

In order to investigate whether experimental hyperinsulinaemia had an effect on the 

mitogenic insulin signalling pathway, the expression and phosphorylation levels of the 

mitogen-activated protein kinase, p44/42 MAPK, were quantified in the same HAEC 

lysates that had been used to quantify the expression levels of the metabolic insulin 

signalling pathway components.  

Panel B in Figure 3-9 shows that the expression of p44/42 MAPK is upregulated 1.2±0. 13-

fold compared to control by 24h of experimental hyperinsulinaemia, but declines to control 

levels by 48h. These changes were not statistically significant. 

The results of these studies are summarised below in Table 3-1. 
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Figure 3-9 Experimental hyperinsulinaemia does not change p44/42 MAPK 
expression. 

HAEC lysates were prepared as above and subjected to immunoblot analysis. A representative 
Western blot is shown.  Expression levels of p44/42 MAPK are unchanged during experimental 
hyperinsulinaemia. Data shown are the mean ± SEM expression of 3 independent experiments with 
HAEC from 3 individual donors.  
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Table 3-1 Experimental hyperinsulinaemia has no marked effect on the expression 
levels of several signalling proteins .  

This table summarises the findings of the present expression and phosphorylation level 
quantification studies  carried out in HAEC.  

Molecule  Effect of experimental hyperinsulinaemia  

eNOS Time-dependent increase of protein expression (1.25-fold at 
48h); not statistically significant 

eNOSS1177/eNOS Insulin-responsive under all conditions; increase in basal 
phosphorylation (1.5-fold) at 48h; not statistically significant 

eNOST495/eNOS Tendency toward inversed insulin-responsive phosphorylation 
(-1.3-fold under control conditions, +1.2-fold at 48h) ; not 
statistically significant 

PKB No change in expression levels 

PKB S473/PKB Insulin-responsive under all conditions tested; trend toward 
decreased insulin -stimulated phosphorylation (6.8-fold under 
control conditions, 3.4-fold after 48h); not statistically 
significant 

AMPK Unchanged expression levels 

AMPKT172/AMPK 2.2-fold increased basal and 3-fold  reduced insulin-stimulated 
phosphorylation at 48h compared to respective controls; no 
statistically significant differences 

PDK-1 Tendency toward increased expression over time (1.2-fold at 
48h); not statistically significant 

PI3K-p85 and -p110ß No change in expression 

PTEN Time-dependent decline (0.8-fold of control at 48h); not 
statistically significant 

p44/42 MAPK 1.2-fold increased expression at 24h (not statistically 
significant), expression back to control levels after 48h 
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3.2.4 Assessment of monocyte adhesion to hyperinsulinaemic HAEC 

The effect of experimental hyperinsulinaemia on monocyte attachment to HAEC was 

investigated. HAEC were incubated in the presence or absence of 10-100 nM insulin for 

24-48h, and subsets were stimulated with 10 ng/ml TNFa for 6h. Thereafter, HAEC were 

washed thoroughly and overlaid with U937 pre -monocytic cells. Monocytes were allowed 

to attach for 1h before unbound U937 cells were washed off and attached U937 cells were 

fixed with paraformaldehyde (see section 2.2.10 for a detailed description).  

Under control and hyperinsulinaemic conditions, few U937 cells attached to HAEC but, as 

expected, TNFa-treatment resulted in marked stimulation of monocyte adhesion, although 

this was not significant due to interexperimental variation. Experimental hyperinsulinaemia 

did not exacerbate TNFa -stimulated monocyte adhesion (see Figure 3-10).  



Christine F. Kohlhaas  Chapter 3, 113 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 3-10 Experimental hyperinsulinaemia does not increase monocyte adhesion. 

HAEC were stimulated with 0-100 nM insulin for the times indicated in the presence or absence of 
TNFa. Monocytes were allowed to attach to HAEC for 1h after which time unbound m onocytes 
were washed off. Attached monocytes were counted microscopically at X100 magn ification. Data 
shown are mean +  SEM attached monocytes per field of HAEC from 3 independent experiments (1 
experiment for TNFa + insulin-treated cells). The means were calculated for each experiment. The 
total number of separate fields counted per treatment group was 540 (control), 270 (insulin, 24h), 
270 (insulin, 48h), 188 (TNFa) and 24 (TNFa + insulin). TNFa-treatment caused a non-significant 
increase in monocyte adhesion.  
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3.3 Discussion 

3.3.1 Nitric oxide production 

The present study shows that insulin stimulated a small but significant increase in  nitric 

oxide production in HAEC under control conditions, as has been demonstrated previously 

in HUVEC (Zeng & Quon, 1996, Zeng et al., 2000). In addition, this study demonstrates 

that insulin stimulated NO production in HAEC under hyperinsulinaemic conditions , but 

this increase was not statistically significant (see Figure 3-2). Under control conditions, 

HAEC were more responsive to the calcium ionophore ionomycin than to insulin. In 

hyperinsulinaemic cells, this response to ionomycin was attenuated, but the small number 

of experiments performed under these conditions limits the significance of these findings.  

The stimulation of NO synthesis by insulin was less than expected in these experiments, 

reaching only ~11% under control conditions. This indicates that the HAEC model 

employed in this study is not particularly insulin-sensitive, and is therefore of limited use 

as a model for experimental hyperinsulinaemia. However, because this small increase was 

consistent, it was statistically significant. In a previous study, a ~35% increase in NO 

release from mouse aorta ex vivo elicited by 1 µM insulin was reported (Hartell et al., 

2005). It is noteworthy though, that Hartell and co-workers used the fluorescent dye DAF-

2, which reacts with intracellular NO but is strongly affected by divalent cation 

concentration in the system and by incident light (Broillet et al., 2001). This experimental 

approach is therefore difficult to control and standardise, and as such is of limited use.  

In the present study, the overall NO levels produced by HAEC were not decreased by 

experimental hyperinsulinaemia. However, the difference between basal and insulin-

stimulated NO production was no longer significant. In the light of the limited insulin-

sensitivity of the HAEC used here, this finding will have to be verified in a more sensitive 

model. The current findings stand in contrast to other studies: In skin fibroblasts from 

insulin-resistant individuals, insulin failed to augment eNOS activity (as measured by the 

conversion of [3H]-L-Arginine to [3H]-L-Citrulline, an indirect marker of NO production), 

whereas activity was increased ~1.7-fold in fibroblasts from insulin-sensitive individuals 

(Pandolfi et al., 2005). Potenza and co-workers reported that experimental rats with 

hyperinsulinaemia (spontaneously hypertensive rats, SHR) showed a 20% smaller 

vasodilation response to insulin than control rats (Potenza et al. , 2005). Likewise, gracilis 

arteries of hyperinsulinaemic obese Zucker rats showed only half the control dilation 

response to acetylcholine in vivo  (Fulton et al., 2004b). Arcaro and co-workers showed that 
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short-term hyperinsulinaemia  abrogated endothelium-dependent vasodilation in femoral 

and brachial conduit arteries of healthy subjects (Arcaro et al., 2002). All of these previous 

reports point to a negative effect of hyperinsulinaemia on nitric oxide synthesis and 

bioavailability, which is not mirrored in the present study. This discrepancy may reflect the 

mixture of tissues used and the length of hyperinsulinaemia studied. 

While limited stimulation of NO production was observed in the experiments presented 

here, it is, of course , possible that NO synthesis was stimulated to a greater extent than 

evident from the measurement of nitrite in these experiments. For example, the levels of 

reactive oxygen species may have been high in the cells used. If this was the case, ROS 

would have reacted with NO. Superoxide, for example, can react with NO, leading to 

formation of both peroxynitrite and nitrate (Reiter et al., 2000).  Peroxynitrite in turn can 

reduce NO bioavailability through oxidation and uncoupling of eNOS, leading to enhanced 

superoxide production and decreased NO synthesis (Zou et al., 2002). It is therefore 

possible that a proportion of the NO produced by the HAEC in this experimental system 

was not detected due to rapid reaction with ROS.  

Duncan and co-workers postulated that endothelial cell superoxide production during mild 

hyperinsulinaemia in older insulin receptor knockout (IRKO) mice may be a mechanism 

underlying early reduction in NO bioavailability (Duncan et al., 2007). Indeed, an earlier 

study by Shinozaki and co-workers had also demonstrated decreased eNOS activity and 

vasorelaxation in the aortae of hyperinsulinaem ic , insulin-resistant fructose-fed rats 

(Shinozaki et al., 1999). Interestingly, not only was endothelium-dependent vasorelaxation 

impaired in these rats, but NO production was decreased in response to the calcium 

ionophore A23187, while superoxide generation was increased. Reduced ionophore-

stimulated NO production in hyperinsulinaemic cells was also seen in the present study 

(Figure 3-2), pointing to a potential mild dysregulation of NO bioavailability in this 

system. It remains to be determined whether this may be due to increased superoxide/ROS 

production.  

With the set-up used in these experiments, the nitric oxide analyser measures nitric oxide 

and its reaction product nitrite, but not nitrate or peroxynitrite. Because any potential 

reaction between ROS/superoxide and NO diminishes the amount of nitrite formed, the 

levels of nitrite formed under these conditions may not be representative of the total 

amount of NO produced. It is therefore conceivable that enhance d NO production is 

masked by elevated nitrate and/or peroxynitrite formation in these cells, if the cells were 
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suffering from oxidative stress. Suitable means for detecting oxidant stress under these 

experimental conditions include the use of lucigenin-based chemiluminescence assays for 

the detection of superoxide (Liochev & Fridovich, 1997) and the use of fluorescein-

phenol-coupling-based assays for the detection of ROS (Heyne et al., 2006). In future 

experiments, oxidative stress of the cells could be controlled by the addition of 

antioxidants such as ascorbic acid to the cell culture medium/buffer (Dr Carol Colton, 

Duke University Medical Centre, personal communication).  
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3.3.2 Protein expression and phosphorylation 

Quantitative analysis of molecular components of the metabolic (eNOS, PKB, PI3K, PDK-

1 and PTEN) and mitotic (p44/42 MAPK) insulin signalling pathways, as well as the 

cellular energy sensor molecule AMPK, revealed that experimental hyperinsulinaemia 

does not markedly alter the expression levels of these molecules within 48h. Similarly, the 

phosphorylation levels of eNOSS1177 , eNOST495, PKBS473 and AMPKT172 were not 

significantly changed during experimental hyperinsulinaemia, although some trends 

toward a less NO-productive environment were observed (see Table 3-1). For instance, the 

degree of insulin-stimulated PKBS473 phosphorylation decreased by ~50% over time with 

ongoing hyperinsulinaemia, and insulin -responsive AMPKT172 phosphorylation was 

decreased 3-fold after 48h of experimental hyperinsulinaemia . In their phosphorylated 

state, both of these molecules promote eNOSS1177 phosphorylation, and can lead to NO 

production. Under the same conditions, acute insulin failed to promote eNOST495 

dephosphorylation, which is thought to enhance NO production. Overall, these findings 

indicate that 48h of experimental hyperinsulinaemia may begin to promote a less insulin-

sensitive phenotype at the molecular level in HAEC. Below, these observations are 

discussed in the light of the current literature.  

The finding of ~1.25-fold increased eNOS protein expression during experimental 

hyperinsulinaemia (Figure 3-3), while not statistically significant in the present study, is in 

line with previous reports of increased eNOS expression (~1.4-fold) in human coronary 

artery endothelial cells cultured with 10 or 100 nM insulin for 24h (Ding et al., 2000). 

Furthermore, Aljada & Dandona reported an insulin dose-dependent increase in eNOS 

expression in HAEC during experimental hyperinsulinaemia (Aljada & Dandona, 2000). 

Two studies with obese Zucker rats, an animal model of hyperinsulinaemia and insulin 

resistance (Chua  et al., 1996) , suggested that eNOS protein expression was increased in 

small coronary arteries (~7.2-fold) (Katakam et al., 2005) and in aorta lysates (Toba  et al., 

2006). Others, however, found that eNOS expression was unaltered in whole aorta lysates 

of obese Zucker rats (Fulton et al., 2004b, Naruse et al., 2006) , and in the hearts of two 

further animal models of insulin resistance, the fructose-fed rat and the ob/ob mouse 

(Fulton et al., 2004b).  

In an animal model of mild hyperinsulinaemia, the heterozygous insulin receptor knockout 

(IRKO) mouse, eNOS protein levels were increased ~5-fold in the aortae of 6 month-old 

mice, while eNOS mRNA levels were comparable to wild-type controls (Duncan et al., 

2007). However, in vascular endothelial cell insulin receptor knockout (VENIRKO) mice, 
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eNOS mRNA levels were reduced by 30-60% in endothelial cells, aorta and heart 

compared to controls. By six months of age, VENIRKO mice had developed mild insulin 

resistance, but remained glucose-tolerant (Vicent et al., 2003). The differences between 

these various models described above emphasise the complexity of physiological systems 

and the ensuing difficulty in defining the mechanisms underlying a model’s responses to 

stimuli such as insulin. 

In the context of vasorelaxation, a decrease in eNOS expression would be predicted to be 

associated with elevated blood pressure due to decreased production of the vasodilator NO. 

Indeed, heterozygous and homozygous eNOS knockout mice show increased blood 

pressure that is attributable to the decrease/loss of eNOS protein expression (Shesely et al., 

1996). By contrast, elevated eNOS protein levels during hyperinsulinaemia do not 

necessarily have to correlate with increased NO levels, but may equally represent a greater 

proportion of uncoupled eNOS. This, in turn, could diminish NO synthesis and enhance 

superoxide generation (Zou et al., 2002), leading to impaired vasodilation. This has been 

demonstrated in IRKO mice, which show increased aortic eNOS protein levels with 

increased endothelial ROS and blunted endothelium-dependent vasodilation (Duncan et 

al., 2007). While vasodilation cannot be assessed in the present system, superoxide levels 

in HAEC can be measured, which would represent an interesting extension to the present 

body of work.  

In the present study, experimental hyperinsulinaemia mildly increased the basal and 

insulin-stimulated phosphorylation of eNOS at Ser1177 (~1.5-fold increase of basal, and 

1.4-fold increase of insulin-stimulated phosphorylation at 48h compared to the 

corresponding controls; see Figure 3-4, panel A). These findings are corroborated by the 

observation that basal eNOSS1177 phosphorylation (as normalised to total eNOS expression) 

was elevated in hyperinsulinaemic obese Zucker rats compared to control rats. However, 

two other animal models of hyperinsulinaemia , the fructose -fed rat and the ob/ob mouse 

showed no difference in the eNOSS1177 /eNOS ratio compared to controls. None of these 

models demonstrated a statistically significant change in the basal eNOST495/eNOS ratio 

(Fulton et al., 2004b). This agrees with the present results, which demonstrate that 

experimental hyperinsulinaemia does not change basal eNOST495 phosphorylation in 

HAEC. 

Studies with IRS-1 G972R polymorphic HUVEC, which have a known insulin signalling 

defect, showed decreased basal and up to 51% reduced insulin-stimulated eNOSS1177 
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phosphorylation compared to wild type HUVEC (Federici et al. , 2004). At the same time, 

basal eNOST495 phosphorylation in these variant HUVEC was upregulated compared to 

control HUVEC. Acute insulin stimulation caused an increase in eNOST495 

phosphorylation above basal, and a 40% increase compared to insulin -stimulated wild type 

cells (Feder ici et al., 2004). Assuming that experimental hyperinsulinaemia impairs insulin 

signalling, the present eNOST495 findings (see Figure 3-4, panel B) agree with the mutant 

HUVEC data reported by Federici and co-workers, in that eNOST495 phosphorylation in 

acutely stimulated hyperinsulinaemic HAEC was greater than in control cells in the present 

study. The present data on eNOSS1177 do not agree with the study by Federici and co-

workers. 

PKB expression (Figure 3-3) and PKB Ser473 phosphorylation (Figure 3-5) were largely 

unchanged in the present experiments, although a trend toward decreased insulin-

responsive Ser473 phosphorylation was observed. These changes in PKB phosphorylation 

are not reflected by decreased insulin-stimulated eNOSS1177 phosphorylation; therefore, 

further studies with PI3K inhibitors such as wortmannin, which prevent PKB 

phosphorylation, are required to verify that PKB is indeed the kinase that phosphorylates 

eNOSS1177 under the present experimental conditions. Toba and co-workers reported that 

PKB and PKBS473 levels were upregulated in the aortae of hyperinsulinaemic rats (Toba et 

al., 2006) , while another group found that insulin failed to stimulate PKBS473 

phosphorylation in vivo (as measured in whole aorta preparations from hyperinsulinaemic 

obese Zucker rats), but caused a 3 ±1-fold rise in control rats (Naruse et al., 2006). G972R 

variant HUVEC showed a smaller PKBS473/PKB ratio under basal and insulin-stimulated 

(40% reduction) conditions than control HUVEC (Federici et al., 2004).  

Phosphorylation of the kinase AMPK at Thr172 was quant ified as an indirect marker of 

AMPK activity. Insulin stimulated AMPKT172 phosphorylation under control conditions 

and after 24h of experimental hyperinsulinaemia, but had no stimulating effect after 48h 

(Figure 3-6). Instead, basal phosphorylation of AMPKT172 was increased to insulin-

stimulated control levels after 48h of experimental hyperinsulinaemia , whereas Thr172 

phosphorylation was decreased after acute insulin treatment. While activated AMPK is a 

mediator of eNOSS1177 phosphorylation (Chen et al., 1999, Morrow  et al., 2003), it has not 

previously been shown to phosphorylate eNOS in response to insulin. However, increased 

basal AMPKT172 phosphorylation may be responsible for the significantly higher basal 

eNOSS1177 phosphorylation observed in the present study, but this will have to be verified 

by the use of inhibitors to AMPK and/or its upstream kinases. 
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This hypothesis is indirectly supported by studies in fibroblasts that stably express human 

insulin receptors, which showed that co-transfection with eNOS and a dominant-negative 

AMPK mutant did not prevent eNOSS1179 (homologous to human eNOSS1177) 

phosphorylation in response to insulin (Chen et al., 2003). Similarly, the findings of 

Morrow and co-workers demonstrated that knockdown of AMPK does not affect insulin-

stimulated eNOSS1177 phosphorylation. This suggests that AMPK does not play a crucial 

role in eNOS phosphorylation in response to insulin in the fibroblast model system, but it 

cannot be excluded that AMPK contributes to the elevated basal eNOSS1177 

phosphorylation levels in HAEC subjected to experimental hyperinsulinaemia.  

PI3K is a critical mediator of cellular insulin signalling and lies upstream of PKB (Franke  

et al., 1995, Zeng et al., 2000). The PI3K p85a subunit has been shown to be a critical 

regulator of insulin sensitivity, using p85a knockout mice (Taniguchi et al., 2006). The 

data presented here illustrate that experimental hyperinsulinaemia did not affect the 

expression levels of the PI3K p85 regulatory and p110ß catalytic subunits (Figure 3-7, 

panel B). By contrast, PI3K mRNA expression was increased in aortae of 

hyperinsulinaemic rats (Toba et al., 2006). However, mRNA levels do not necessarily 

reflect the amount of protein present in a cell, and changes in mRNA expression may be 

translated into altered protein levels at a later time point. In another study, insulin-

stimulated PI3K activity in IRS-1 variant HUVEC was reduced compared to controls 

(Federici et al., 2004). Since PI3K levels were unaffected by experimental 

hyperinsulinaemia in the present study, this demonstrates that dysregulation of insulin 

signalling in HAEC does not occur at the level of PI3K  expression within the time scale 

tested, although any potential effect on PI3K activity remains to be investigated.  

PDK-1 is a downstream effector of PI3K that phosphorylates PKB at the primary 

activating site Thr308 (Alessi et al., 1996, Vanhaesebroeck & Alessi, 2000). PDK-1 

expression levels were modestly increased after 48h of experimental hyperinsulinaemia 

(not statistically significant, see Figure 3-7, panel A). It is therefore possible that elevated 

PDK-1 levels caused greater phosphorylation of PKB at Thr308, thus resulting in greater 

PKB activity despite normal PKBS473 phosphorylation. P hosphorylation of both Thr308 

and Ser473 is necessary for PKB activity, but the sites are independent of one another 

(Alessi et al., 1996). If disparate phosphorylation of PKB were the case here, it could 

account for the rise in eNOSS1177 phosphorylation induced by long-term hyperinsulinaemia 

in these experiments. This speculation calls for further experimental investigation, for 
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example by direct measurement of PKB enzyme activity and quantification of the 

PKBT308/PKB protein ratio under these conditions. 

PTEN expression levels were mildly reduced after 48h of experimental hyperinsulinaemia 

(not statistically significant, see Figure 3-8). To date, no data concerning vascular 

endothelium-specific expression of PTEN under hyperinsulinaemic conditions have been 

reported, but several studies looking at the role of PTEN in muscle and adipose tissue have 

been published. Mice with an adipose tissue -specific deletion of PTEN displayed 

heightened insulin sensitivity and 1.8-fold greater PKBS473 phosphorylation (Kurlawalla-

Martinez et al., 2005). Further, a muscle-specific PTEN deletion protected mice from diet-

induced hyperinsulinaemia, insulin resistance and diabetes (Wijesekara et al., 2005). When 

fed a high-fat diet, these mice had twice the control level of insulin -induced PKBT308 

phosphorylation in soleus, but not extensor digitorum longus muscles. By contrast, on a 

normal diet, these mice showed a reduced insulin -responsive PKBT308/PKB ratio 

(Wijesekara et al., 2005). In line with these findings, hyperinsulinaemic obese Zucker rats 

had raised PTEN mRNA and protein levels in soleus muscle (Lo et al., 2004).  

These and other data document that PTEN is a negative regulator of insulin signalling and 

insulin sensitivity in fat and muscle. If this is the case in vascular endothelial cells, 

decreased PTEN expression would imply increased insulin sensitivity, providing a possible 

explanation for increased basal eNOSS1177 phosphorylation. However, given the  time scale 

of the present study, the modest changes in eNOSS1177 phosphorylation and PTEN 

expression and the lack of effect of experimental hyperinsulinaemia on PKBS473, further 

studies are necessary to determine the effect of reduced PTEN expression in this system. 

The expression and phosphorylation of p44/42 MAPK, a component of the mitogenic 

insulin signalling pathway, was studied. It is well-documented that the metabolic and the 

mitogenic branch of the insulin signalling pathway can be differentially affected in 

hyperinsulinaemia and Type II diabetes  (Jiang et al., 1999a, Cusi et al., 2000, Montagnani 

et al., 2002, He et al. , 2006, Rask-Madsen & King, 2007). A modest (not statistically 

significant) increase of p44/42 MAPK expression was seen after 24h, but not after 48h of 

experimental hyperinsulinaemia (Figure 3-9, panel B). Further studies of the mitogenic 

pathway, including the activity levels of its pathway components, during experimental 

hyperinsulinaemia are required. 
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While the molecular mechanism(s) underlying the changes observed in the present study 

are not clear, alternative mechanisms that have not been investigated may play a role. For 

example, increased basal phosphorylation of eNOSS1177 and upregulated insulin -stimulated 

eNOST495 phosphorylation could be due to reduced dephosphorylation of these sites, rather 

than increased phosphorylation. PKC activation has been proposed to mediate 

dephosphorylation of eNOS at Ser1177 and phosphorylation at Thr495. The phosphatases 

PP1 dephosphorylates Thr495, while PP2A can dephosphorylate both Thr495 and Ser1177 

(Michell et al., 2001, Greif et al., 2002). Moreover, other kinases could be responsible for 

altered eNOS phosphorylation, including PKA (Michell et al., 2001) , PKG and CAMKII 

(Fleming et al., 2001) (reviewed in (Mount et al. , 2007)).  

Given that eNOS activity is thought to be determined by a concerted regulation of several 

phosphosites (Michell et al., 2001, Bauer et al., 2003, Mount et al., 2007) , including 

negative regulation by tyrosine phosphorylation (Garcia-Cardena et a l., 1996a, Huang et 

al., 2002) , it is unclear whether an altered eNOS phosphorylation profile necessarily 

creates a (measurable) change in eNOS activity. Experimental hyperinsulinaemia might 

also affect transcription, myristoylation (Busconi & Michel, 1993, Liu & Sessa, 1994, 

Shaul et al., 1996), palmitoylation (Lamas et al., 1992) and association of eNOS with other 

cellular components, thus potentially further affecting eNOS regulation. As these potential 

modes of regulation were not investigated in the current study and eNOS activity was not 

measured directly, it cannot be concluded that eNOS is dysregulated by experimental 

hyperinsulinaemia.  

The differences between the effects of experimental hyperinsulinaemia observed in the 

present system and published studies highlight the discrepancy between different 

experimental models and the ensuing difficulty in drawing a consensus conclusion. Since 

the in vitro and in vivo  models used in these studies varied, and the conditions of 

hyperinsulinaemia differed, the results document that hyperinsulinaemia has different 

effects in heterologous systems. Overall, the effects of hyperinsulinaemia seem to be 

exacerbated in certain in vivo  models compared to in vitro models. Therefore, for example, 

it cannot be said with certainty that eNOS protein levels are increased in hyperinsulinaemic 

states, although there is strong in vitro evidence in favour of this thought.  

Taking into account the present NO synthesis data and the fact that eNOSS1177 and 

eNOST495 phosphorylation levels were only modestly affected, it is likely that in the 

current experimental setting, hyperinsulinaemia influences the phosphorylation status of 
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eNOS at Ser1177 and Thr495 without significantly affecting eNOS activity and NO 

production. Whether ionomycin -stimulated, calcium-dependent NO production is affected 

by experimental hyperinsulinaemia, requires further investigation that is beyond the scope 

of this work. The changes observed here may suggest tha t hyperinsulinaemic HAEC have a 

subtle insulin signalling impairment, which differs in some aspects to other experimental 

and clinical systems discussed above.  

Overall, the HAEC used in the present study were a weak model for insulin resistance, 

since their response to acute insulin treatment was often small and varied greatly between 

different experiments. This may, in part, reflect the insulin-sensitivity of individual HAEC 

donors, but experimental error may have contributed to this variation. There is little 

evidence that the HAEC used here became insulin resistant after 48h of experimental 

hyperinsulinaemia. The present studies were carried on because initial results indicated 

robust insulin-responsiveness under control conditions along with more substantial 

changes induced by experimental hyperinsulinaemia.  

It is likely that the short time scale of experimental hyperinsulinaemia employed in the 

present study is insufficient to cause substantial alterations in endothelial insulin signalling. 

Potentially, exposure of vascular endothelial cells to longer periods of experimental 

hyperinsulinaemia might exacerbate these changes. Ideally, healthy human vascular 

endothelial cells should therefore be cultured under hyperinsulinaemic conditions for 

several days or even weeks. However, since insulin’s action as a gr owth factor and the 

growth characteristics of these cells in vitro present a challenge to such future studies, 

explanted vascular endothelial cells from patients with established hyperinsulinaemia 

might provide a suitable alternative model system. However, the potential presence of 

other confounding disease factors that might affect insulin signalling makes this model 

impractical. Refined experimental systems and further studies are required to define how 

hyperinsulinaemia affects endothelial function at the molecular level. 
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3.3.3 Monocyte adhesion to HAEC 

This study investigated whether experimental hyperinsulinaemia affected monocyte 

attachment to hyperinsulinaemic HAEC. Experimental hyperinsulinaemia in the present 

study was found not to affect the adhesion of monocytic cells to HAEC cultured with 10 

nM, 50 nM or 100 nM insulin for up to 48h (Figure 3-10). This stands in contrast to the 

hypothesis that hyperinsulinaemia  promotes proinflammatory activation of HAEC, thus 

increasing monoc yte attachment. Given that patients with clinical hyperinsulinaemia are 

thought to experience a state of persistent, low-level inflammation, along with endothelial 

activation (Fernandez-Real & Ricart, 2003), an extension of the present study is necessary 

to investigate the effects of experimental hyperinsulinaemia  on vascular endothelial 

adhesion molecule expression and chemokine production. 

Previously, several studies have reported that experimental hyperinsulinaemia can affect 

the expression of chemokine and adhesion molecule mRNA and protein (Aljada et al., 

2000) (Aljada et al., 2001). This correlated with enhanced leukocyte adhesion and was 

postulated to enhance neutrophil transendothelial migration (Okouchi et al., 2002a). 

Furthermore, incubation of mouse lung endothelial cells with insulin alone (10 nM, 24h) 

did not significantly increase rolling adhesion and arrest of monocytes, but simultaneous 

inhibition of PI3K resulted in significantly enhanced monocyte-endothelial cell 

interactions (Montagnani et al., 2002). By contrast, circulating levels of the soluble 

adhesion molecules ICAM-1, VCAM-1 and E-selectin in the plasma of healthy individuals 

were found not to be elevated after 6 hours of euglycaemic hyperinsulinaemic (3 

mU/kg/min) clamp, suggesting that short-term hyperinsulinaemia does not induce 

endothelial cell adhesion molecule protein expression (Jilma et al. , 2000). 
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4 The Effect of Experimental Hyperglycaemia on 

eNOS and Insulin -Responsive Pathways 
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4.1 Introduction 

4.1.1 Background 

Functional endothelial nitric oxide synthase (eNOS) activity is vital to vascular health, as 

eNOS is involved in vasorelaxation through the production of nitric oxide. As discussed in 

chapter 3, NO can be produced in response to insulin (Zeng & Quon, 1996) and is thought 

to have vasoprotective properties (Gewaltig & Kojda, 2002, Wheatcroft et al., 2003). 

Phosphorylation of eNOS at Ser1177 plays an importa nt part in insulin-stimulated NO 

production, which may involve the concerted regulation of several other phosphorylation 

sites (Michell et al., 2001, Bauer et al., 2003, Mount et al., 2007).  

In the context of hyperglycaemia and diabetes, it has frequently been reported that 

endothelial function and NO bioavailability are impaired ((Calver et al., 1992, McVeigh et 

al., 1992, Hogikyan et al., 1998); reviewed in (De Vriese et al., 2000, Rask-Madsen & 

King, 2007) ), and that this association is independent of the presence of the complicating 

risk factors, obesity and hypertension (Hogikyan et al., 1998). Consequently, patients with 

diabetes have an increased propensity to cardiovascular and microvascular disease and 

associated morbidity and mortality (Stratton et al., 2000, Rahman et al., 2007). The risk for 

vascular complications strongly correlates with the level of hyperglycaemia in patients 

(Stratton et al., 2000).  

Despite the proposed association between hyperglycaemia and endothelial dysfunction, 

two small studies suggested that insulin -induced vasorelaxation was similar in the coronary 

vasculature of healthy and Type I diabetic subjects and was not impaired by short -term 

hyperglycaemia (Smits et al., 1993, Sundell et al., 2002). Taking into account the small 

study populations (11 and 9 patients with diabetes, respectively), and the fact that the 

vasodilation response varies even within the healthy population (Ardigo et al., 2006) , it is 

possible that these studies are not representative. Furthermore, patients with diabetes are 

likely to suffer recurrent and/or prolonged, rather than short-term, periods of 

hyperglycaemia prior to diagnosis. This will increase their risk of suffering vascular 

complications due to endothelial dysfunction (Stratton et al., 2000). Therefore, it is 

important to assess the impact of hyperglycaemia on vascular endothelial cell function to 

inform our understanding of the events that contribute to vascular disease risk. 

Previous work has shown that exposure to high glucose concentrations impaired 

vasodilation in rabbit aorta (Tesfamariam et al., 1990) and increased superoxide anion 
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generation in HAEC (Cosentino et al., 1997) and rat aorta (Hink et al., 2001). Oxidative 

stress has been proposed as a mediator of endothelial dysfunction (De Vriese et al., 2000, 

Hink et al., 2001, Srinivasan et al., 2004) , although this is subject to ongoing debate.  

Experimental hyperglycaemia has been reported to impair the metabolic insulin signalling 

pathway and its individual components (Sobrevia  et al., 1998, Federici et al., 2002, Salt et 

al., 2003). Human umbilical vein endothelial cells (HUVEC) isolated from women with 

gestational diabetes were le ss sensitive to insulin and showed reduced insulin-responsive 

nitric oxide synthesis after culture with 25 mM glucose (Sobrevia et al., 1998). Likewise, 

insulin-stimulated NO production was impaired in human aortic endothelial cells (HAEC) 

following culture in 25 mM glucose for 48h (Salt et al., 2003) , although these conditions 

did not affect the phosphorylation of eNOS at the activating site Ser1177. By contrast, 

insulin-stimulated eNOSS1177 phosphorylation was reduced in human coronary artery 

endothelial cells (HCAEC) cultured with 20 mM glucose, while eNOS glycosylation was 

increased, leading to reduced insulin-responsive eNOS activity (Federici et al., 2002). 

Since the precise causes leading to endothelial dysfunction in hyperglycaemia/diabetes are 

uncertain, the underlying molecular mechanisms need to be further investigated.  
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4.1.2 Aims of the chapter 

Previous studies in this laboratory have indicated that experimental hyperglycaemia 

differentially affects certain aspects of insulin signalling in HAEC. Experimental 

hyperglycaemia was shown to specifically inhibit insulin-stimulated NO synthesis without 

changing eNOS Ser1177 or Thr495 phosphorylation or PKB activity, but it did reduce 

insulin receptor substrate (IRS)-2 expression and PI3K recruitment to IRS-1 and -2 (Salt et 

al., 2003). Furthermore, the insulin-regulated CAP-Cbl pathway was also deregulated by 

experimental hyperglycaemia (Salt et al., 2003) , indicating a negative effect of 

hyperglycaemia on vascular endothelial cell signalling. 

The effect of experimental hyperglycaemia on the eNOS phosphorylation status at sites 

other than Ser1177 and on other insulin -responsive pathways has yet to be fully 

investigated in vascular endothelial cells. Therefore, the work presented in this chapter was 

designed to assess whether the metabolic insulin signalling pathway, and eNOS 

phosphorylation in particular, may be involved in mediating endothelial dysfunction during 

experimental hyperglycaemia (section 4.2.2). Furthermore, the contribution of several 

other insulin-responsive pathways, some of which regulate eNOS function, was 

investigated (section 4.2.3). Superoxide production under hyperglycaemic and 

normoglycaemic conditions was quantified as an indicator of endothelial dysfunction 

(section 4.2.4). 
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4.2 Results 

4.2.1 Selection of experimental conditions 

Previous work in this laboratory has been carried out in HAEC, which are large conduit 

vessel endothelial cells. For the present study, human umbilical vein endothelial cells 

(HUVEC) were chosen as a model system. These are peripheral ve in endothelial cells, 

which may respond differently to stimuli such as glucose and insulin in the blood. 

Furthermore, work carried out during this study demonstrated that HUVEC are more 

robust with respect to insulin responsiveness than HAEC (data not show n). Commercially 

obtained HUVEC possess the advantage that each lot is pooled from 20 individual donors; 

therefore, the variation between different lots of cells is greatly reduced compared to 

single-donor HAEC. This may be part of the reason for the more robust insulin-

responsiveness of HUVEC.  

Experimental hyperglycaemia is a model for overt clinical hyperglycaemia as seen in both 

Type I and Type II diabetes. The glucose concentration (25 mM) chosen for experimental 

hyperglycaemia in these studies corresponds to high pathophysiological plasma glucose 

concentrations seen in the clinic (Ohmura et al., 2005). 

HUVEC were cultured in the presence of 25 mM glucose (“glucose”, G) or 20 mM 

mannitol plus 5 mM glucose (“mannitol”, M), to obtain a total concentration of 25 mM 

monosaccharide as an osmotic control, for 48h. In addition, “standard control” cells (C) 

were cultured in normal vascular endothelial cell medium containing 4 mM glucose alone 

to detect any osmotic effects caused by either glucose or mannitol. As described for 

hyperinsulinaemic HAEC (chapter 3), HUVEC were serum-starved after 48h and subsets 

of cells were stimulated with 1 µM insulin for 10 minutes prior to preparation of whole cell 

lysates. 

In order to assess the effect of experimental hyperglycaemia on the expression of eNOS 

and the phosphorylation levels of its phosphorylation sites Ser114 (eNOSS114), Thr495 

(eNOST495), Ser615 (eNOSS615), Ser633 (eNOSS633) and Ser1177 (eNOSS1177), vascular 

endothelial cell lysates were prepared and protein levels quantified by Western blotting and 

densitometric analysis. The levels of phospho-protein were expressed as a ratio to total 

protein in all cases. 
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All data for these studies have been derived from a pool of four independent experiments 

using one lot of HUVEC; hence, the expression and phosphorylation levels of the 

molecules investigated can be related to one another, as they have been measured in the 

same pool of samples.  

For reasons of simplification, cells cultured under conditions of experimenta l 

hyperglycaemia are frequently referred to as “hyperglycaemic” in the text, despite not 

originating from donors who were known to have hyperglycaemia or diabetes. Likewise, 

cells cultured with mannitol are referred to as “normoglycaemic”. 
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4.2.2 eNOS expression and phosphorylation under experimental 

hyperglycaemia 

4.2.2.1  eNOS 

Previous work in this laboratory has demonstrated that, in HAEC, insulin-responsive 

eNOS phosphorylation at the main insulin -responsive site Ser1177 and at Thr495 is not 

altered by experimental hyperglycaemia (Salt et al. , 2003). Little is known about the effect 

of hyperglycaemia on the three other eNOS phosphorylation sites (Ser114, Ser633 and 

Ser615), or indeed their roles in insulin -responsive signalling. Therefore, in order to 

characterise more fully the effects of acute insulin and experimental hyperglycaemia on 

eNOS expression and phosphorylation at these five main phosphorylation sites, their 

phosphorylation status in HUVEC under normoglycaemic, hyperglycaemic  and standard 

control (4 mM glucose, no mannitol) conditions, in presence or absence of acute 

stimulation with insulin, was measured by Western blotting (see sections 2.2.1.4 and 

4.2.1). 

The data in Figure 4-1 show that total eNOS expression in hyperglycaemic cells is 

unchanged compared to normoglycaemic cells (94±16% of normoglycaemic samples). 

Culturing cells in mannitol for 48h also caused no significant change in eNOS expression 

levels with respect to cells cultured under standard conditions (110±14% of standard 

control (4 mM glucose, no mannitol)). As expected, acute stimulation with insulin had no 

effect on total eNOS expression under any condition tested and is therefore not indicated 

on the Western blot. All subsequent phospho-eNOS levels were expressed as a ratio to the 

unaltered levels of total eNOS. 
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Figure 4-1 eNOS expression is unaffected by experimental hyperglycaemia. 
HUVEC were cultured with 25 mM glucose (G) or 20 mM mannitol plus 5 mM glucose (M) for 
48h. Control (C) cells were cultured with 4 mM glucose. Prior to lysis preparation, cells were 
serum-starved for 2-4h in KRH buffer. Equal amounts of protein (3-10 µg) were resolved by SDS -
PAGE and Western blotted onto nitrocellulose membranes. An eNOS-specific antibody was used 
to detect immunoreactive bands, which were then quantified by densitometric analysis. Data shown 
are the mean + SEM expression of 3 independent experiments (treatments in quadruplicates) with a 
single lot of HUVEC. A representative Western blot is shown. 
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4.2.2.2  eNOSS615 and eNOSS1177 

Phosphorylation of the eNOS sites Ser615 and Ser1177 has been shown to be responsive to 

insulin (Dimmeler et al. , 1999, Fulton et al. , 1999, Ritchie et al. , 2007). Therefore, the 

effect of experimental hyperglycaemia on the insulin-stimulated phosphorylation status of 

these sites was investigated.  

Data from the present study confirm that, under standard control conditions, eNOSS615 and 

eNOSS1177 are phosphorylated after acute (10 min) stimulation with insulin to 1.4±0.3-fold 

and 2.4±0.7-fold of basal levels, respectively (Figure 4-2). While these changes were clear, 

they were not statistically significant due to interexperimental variation. Insulin elicited 

smaller increases in Ser615 and Ser1177 phosphorylation under normoglycaemic 

conditions (1.2±0.4-fold and 1.4±0.3-fold increases compared to unstimulated 

normoglycaemic  cells, respectively; no statistically significant differences). However, 48h 

of experimental hyperglycaemia abrogated insulin-stimulation of eNOSS615 

phosphorylation with respect to normoglycaemic and standard control cells (0.76-fold and 

0.79-fold of stimulated normoglycaemic and standard control levels, respectively). This 

was partly due to increased basal phosphorylation of eNOSS615 under hyperglycaemic 

conditions (see Figure 4-2, panel B).  

There was no difference in basal phosphorylation of eNOSS1177 under experimental 

hyperglycaemia , but insulin-stimulated phosphorylation of eNOSS1177 was reduced to 0.84-

fold of stimulated normoglycaemic  phosphorylation and 0.6-fold of stimulated 

phosphorylation in standard control. The insulin-stimulated increase over unstimulated 

eNOSS1177 phosphorylation was 1.5±0.3-fold in hyperglycaemic  cells. 

In addition to the above results, culturing of HAEC under the same experimental 

conditions as used for HUVEC resulted in loss of insulin -stimulated eNOSS1177 

phosphorylation in normoglycaemic (mannitol-treated) HAEC, while hyperglycaemic 

HAEC showed a 2.5-fold increase over basal in insulin-responsive eNOSS1177 

phosphorylation (data not shown; compare with Figure 4-2, panel C).  
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Figure 4-2 Insulin increases phosphorylation of eNOSS615 and eNOSS1177. 

HUVEC were cultured as described (see section 2.2.1.4) and subsets of cells were stimulated with 
1 µM insulin for 10 min prior to preparation of cell lysates. After SDS-PAGE and Western blotting, 
antibodies were used as indicated and immunoreactive bands quantified with respect to total eNOS. 
Panel A shows representative Western blots. B: eNOSS615/eNOS; C: eNOSS1177/eNOS (*p<0.05 for 
basal compared to insulin-stimulated standard control; paired t-test). Data shown are the mean ± 
SEM expression from 3 independent experiments.  
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4.2.2.3  eNOSS633 

Ser633 is postulated to be another eNOS activating phosphorylation site (Michell et al., 

2002). In this study, acute stimulation with insulin resulted in a reduction of eNOSS633 

phosphorylation levels under standard control conditions to 0.7±0.1-fold of basal levels 

(not statistically significant; see Figure 4-3).  

Basal phosphorylation of eNOSS633 was decreased under experimental hyperglycaemia  to 

0.67±0.05-fold of basal normoglycaemic phosphorylation (not statistically significant). 

Basal phosphorylation in mannitol-treated cells was also reduced to 0.7±0.2-fold with 

respect to standard control, but this change was not statistically significant. The reduction 

in basal hyperglycaemic  phosphorylation was therefore more pronounced with respect to 

standard control (0.5±0.2-fold of basal standard control levels), although this was not 

statistically significant due to interexperimental variation.  

Insulin treatment did not change eNOSS633 phosphorylation levels under normoglycaemic 

or hyperglycaemic conditions  with respect to standard control, although slightly lower 

eNOSS633 levels were measured in insulin-stimulated hyperglycaemic  cells than 

normoglycaemic  cells. 
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Figure 4-3 Experimental hyperglycaemia does not affect eNOSS633 phosphorylation. 

HUVEC were treated as described before (section 2.2.1.4) and lysates were produced for Western 
blotting. Representative Western blots are shown. Data are the mean ± SEM eNOSS633 /eNOS 
expression of 3 independent experiments. Neither Mannitol (M) nor glucose treatment for 48h had 
any statistically significant effect upon eNOSS633 phosphorylation. 
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4.2.2.4  eNOSS114 and eNOST495 

The phosphorylation status of the sites Ser114 and Thr495 was investigated under control, 

normoglycaemic  and hyperglycaemic conditions.  

Basal eNOSS114 phosphorylation levels were comparable under all conditions (Figure 4-4, 

panels A and B). Acute treatment with insulin resulted in a small and not statistically 

significant reduction in eNOSS114 phosphorylation under normoglycaemic  and control 

conditions (to 0.6±1-fold and 0.8±0.2-3old of basal control, respectively). There was no 

statistically significant difference between insulin -responsive phosphorylation in 

normoglycaemic  and standard control cells. Under hyperglycaemic conditions, insulin 

caused a marked but not statistically significant reduction in Ser114 phosphorylation levels 

(0.3±0.1-fold of unstimulated hyperglycaemic cells). This was almost twice the reduction 

seen with normoglycaemic  cells and 2.6-fold that of standard control. 

Unstimulated phosphorylation of eNOST495 was unchanged under all three conditions 

(Figure 4-4, panels A and C). As expected, acute insulin significantly reduced eNOST495 

phosphorylation levels under normoglycaemic conditions (to 0.7±0.04-fold of basal 

normoglycaemic  phosphorylation (p<0.05, paired t-test). The reduction under standard 

control conditions was less pronounced and not statistically significant (0.8±0.07 compared 

to basal control). There was no significant difference between insulin -responsive 

phosphorylation in normoglycaemic and control cells. Hyperglycaemic cells also showed 

strongly decreased phosphorylation of Thr495 after insulin treatment (to 0.6±0.2-fold of 

basal hyperglycaemic  phosphorylation), but due to the spread of data points this was not 

statistically significant.  
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Figure 4-4 Acute insulin tends to reduce Ser114 and Thr495 phosphorylation. 
HUVEC lysates were prepared as described (see section 2.2.2) and equal amounts of protein were 
Western blotted. Representative Western blots are shown in panel A. Data from 3 independent 
experiments are given as mean ± SEM expression for eNOSS114/eNOS in panel B and for 
eNOST495/eNOS in panel C (*p<0.05 for normoglycaemic cells in presence and absence of insulin; 
paired t-test). 
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The phosphorylation status  of the five investigated eNOS phospho-sites is summarised in 

Figure 4-5. Since mannitol reduced the basal phosphorylation of eNOSS633 and diminished 

the insulin-responsive phosphorylation of eNOSS1177 w ith respect to standard control, this 

suggests that high mannitol levels in the cell culture medium may exert an osmotic effect 

on cellular signalling pathways. Therefore, eNOS expression and phosphorylation levels 

are compared to standard control levels, here, to better model the difference between 

hyperglycaemic and normoglycaemic individuals with normal blood osmolarity.  

Panel A of Figure 4-5 shows the effect of experimental hyperglycaemia on basal 

phosphorylation of these sites as compared to unstimulated standard control. Panel B 

illustrates the insulin-stimulated phosphorylation status compared to stimulated control. 

Since the expression levels of total eNOS protein did not change upon acute stimulation 

with insulin, total eNOS levels in hyperglycaemic cells are expressed as the percentage of 

combined (basal + stimulated) control. There was no difference in eNOS expression 

between control and hyperglycaemic cells. 

Basal eNOS phosphorylation at Ser633 was reduced to 50% of control levels in 

hyperglycaemic samples (not statistically significant due to spread of data points), while 

basal eNOSS615 levels were increased 1.9±0. 6-fold (no statistically significant difference). 

No changes in basal phosphorylation were seen at the other phosphorylation sites 

investigated. Significantly, insulin -responsive dephosphorylation of eNOSS114/eNOS in 

hyperglycaemic HUVEC was 2.3-fold greater than in control cells (p<0.05; paired t-test). 

The ratio of insulin-stimulated eNOSS1177/eNOS was also reduced to 72% of control levels 

under experimental hyperglycaemia (not statistically significant). No other statistically 

significant changes were seen in insulin-responsive phosphorylation.
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Figure 4-5 Experimental hyperglycaemia modifies the eNOS phosphorylation profile. 

Lysates were prepared from hyperglycaemic and control HUVEC and subjected to Western 
blotting as described (sections 2.2.2 and 2.2.6). Data are shown as mean + SEM abundance and are 
derived from the same 3 independent experiments for all eNOS species. Given that total eNOS 
expression levels did not change during acute stimulation with insulin, the expression levels of total 
eNOS for both basal and stimulated cells are expressed as % control rather than % basal or % 
stimulated control. Phospho-eNOS species are expressed as a ratio to total eNOS in 
hyperglycaemic cells. A: Basal eNOS phosphorylation in hyperglycaemic compared to control cells  
B: insulin-stimulated eNOS phosphorylation in hyperglycaemic cells compared to stimulated 
controls; *p<0.05 compared to eNOSS114 phosphorylation in insulin-stimulated control cells  (paired 
t-test) 
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4.2.3 The effect of experimental hyperglycaemia on insulin-regulated 

pathways 

Insulin triggers a number of signalling cascades in endothelial cells, which may also 

contribute to the transcriptional and post-translational regulation of eNOS in endothelial 

cells. Previously, work in this laboratory has shown that experimental hyperglycaemia 

disrupts metabolic insulin signalling at the level of IRS-2 expression and PI3K association 

with IRS-1 and -2, and decreases insulin-regulated CAP-Cbl signalling in HAEC (Salt  et 

al., 2003). Therefore, it was decided to investigate more fully the effect of experimental 

hyperglycaemia on the expression and phosphorylation of components of these and other 

insulin-responsive signalling pathways in HUVEC. Pathways studied include the metabolic 

insulin signalling pathway (PI3K -p85, PDK-1, PTEN and PKB), the transcription-

regulating NFκB pathway (NF?B, I?Ba, IKKß and JNK) and the CAP-Cbl pathway. 
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4.2.3.1  The metabolic insulin signalling pathway 

The metabolic insulin signalling pathway is known to play a role in the regulation of eNOS 

phosphorylation in response to insulin (Zeng & Quon, 1996). Hence, the expression of its 

components PKB, PDK-1, PTEN and the regulatory p85 subunit of PI3K (PI3K -p85) were 

quantified, along with PKB phosphorylation, to determine whether there was any 

dysregulation of this pathway that could account for the altered eNOS phosphorylation 

status described above (section 4.2.2). 

As observed for eNOS, there was no effect of acute insulin stimulation on PKB expression 

under any condition tested; hence, insulin -stimulated samples are not indicated on the 

Western blot in Figure 4-6. PKB expression was unaffected by experimental 

hyperglycaemia (97±10% and 96±10% of normoglycaemic and standard control samples, 

respectively).  

Phosphorylation levels of the insulin -responsive PKB activating sites Thr308 and Ser473 

were quantified with respect to total PKB expression (Figure 4-7). Basal and insulin-

responsive phosphorylation levels of PKBT308 were comparable for all three conditions, 

with insulin consistently stimulating Thr308 phosphorylation to 3.3±1.1-fold (control), 

3.7±0.7-fold (mannitol) and 3.5±0.5-fold (glucose) over basal control phosphorylation (no 

statistical analysis possible due to small repeat number; see Figure 4-7, panels A and B).  

By contrast, basal PKBS473 phosphorylation in HUVEC was reduced after 48h of glucose 

treatment (to 0.60±0.08-fold of basal normoglycaemic cells and 0.36±0.08-fold of basal 

standard control cells). Insulin-responsive Ser473 phosphorylation remained comparable 

under all conditions: Insulin stimulated Ser473 phosphorylation 1.4±0.3-fold (control), 

1.8±0.4-fold (mannitol) and 1.7±0.3-fold (glucose) above unstimulated standard control. 

Basal PKBS473 phosphorylation was also reduced under normoglycaemic (0.6±0.06-fold 

compared to standard control conditions) (see Figure 4-7, panels A and C). No statistical 

analysis of these data was possible due to the small repeat number.  

Further to the study in HUVEC, insulin-stimulated phosphorylation of PKBT308 was absent 

and was less pronounced for PKBS473 in normoglycaemic  and hyperglycaemic HAEC 

(~1.2-fold and ~1.3-fold over basal, respectively) compared to HUVEC (data not shown; 

compare with Figure 4-7).  
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Figure 4-6 PKB expression is unaffected by experimental hyperglycaemia.  

HUVEC were treated and lysed as described (sections 2.2.1.4 and 2.2.2) and subjected to Western 
blotting. Densitometric analysis of immunoreactive bands demonstrated that PKB expression does 
not change during experimental hyperglycaemia (G) or mannitol treatment (M) compared to 
control (C). Data shown are the mean + SEM expression of 3 independent experiments. A 
representative Western blot is shown.  
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Figure 4-7 PKB phosphorylation remains insulin -responsive  under experimental 
hyperglycaemia. 

HUVEC lysates were prepared as described (section 2.2.2) and subjected to Western blotting. 
Phospho-specific antibodies were used as indicated on the representative blots in panel A. Data 
shown are the mean ± range abundance of phospho-PKB/PKB derived from 2 independent 
experiments. Panel B: PKB T308/PKB; Panel C: PKB S473/PKB.  C = control, M = mannitol, G = 
glucose 
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The expression levels of the upstream insulin signalling pathway components PI3K-p85, 

PTEN and PDK-1 were quantified and found to be unchanged by experimental 

hyperglycaemia with respect to mannitol treatment and standard control conditions. 

Percentage expression in hyperglycaemic compared to normoglycaemic (mannitol-treated) 

cells was 98±4% for PI3K-p85 (Figure 4-8, panel A), 95±4% for PTEN (Figure 4-8, panel 

B) and 89±12% for PDK-1 (Figure 4-9). All three molecules had comparable expression 

levels in mannitol-treated and standard control cells. 

In addition to the above data, the present study briefly investigated whether experimental 

hyperglycaemia affected the stress-activated p38 MAPK signalling pathway in HUVEC by 

quantifying the expression and insulin-stimulated phosphorylation levels of p38 MAPK. 

Data from one experiment indicated that expression of p38 MAPK in hyperglycaemic cells 

was unchanged compared to normoglycaemic cells. Under normoglycaemic and standard 

control and conditions, insulin treatment caused 1.5-fold and 1.3-fold increases in p38 

MAPK phosphorylation, respectively, but this stimulation was reduced to 1.2-fold in 

hyperglycaemic cells (data not shown). 
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Figure 4-8 PI3K-p85 and PTEN expression are unchanged after experimental 
hyperglycaemia 
Cell lysates from HUVEC, treated as described (section 2.2.1.4), were subjected to Western 
blotting with the antibodies indicated above. Representative blots are shown. Data represent the 
mean +  range expression of 2 independent experiments (all samples in quadruplicates). A: PI3K-
p85; B: PTEN. No statistical analysis could be performed due to the small repeat number . C = 
control, M = mannitol, G = glucose



Christine F. Kohlhaas  Chapter 4, 147 

 

 

 
 
 
 
 
 
 
 

 
 
 

Figure 4-9 PDK-1 expression is unaffected by experimental hyperglycaemia.  

HUVEC lysates were produced as described (section 2.2.2) and Western blotted. Data from one 
experiment (samples in quadruplicates) are shown as mean + range expression along with the 
Western blot. C = control, M = mannitol, G = glucose 
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4.2.3.2  The NF?B pathway 

NF?B is a transcription factor that regulates the expression of genes involved in the innate 

and adaptive immune response, including cell adhesion molecules and inducible nitric 

oxide synthase (iNOS). In its inactive state, NF?B is bound to I?B, which undergoes 

proteosomal degradation upon phosphorylation by the upstream kinase IKK, thus releasing 

NF?B to enter the nucleus and bind to the promoters of target genes (reviewed in (Gilmore, 

2006)). The c-jun N-terminal kinase (JNK) is a member of the mitogen-activated protein 

kinase (MAPK) family and forms part of a stress-activated pathway, which can promote 

the ubiquitination (and thus the degradation) of I?Ba (Ki et al., 2007). Given the proposed 

proinflammatory and proatherogenic status during endothelial dysfunction, it was decided 

to investigate whether the NF?B and JNK pathways were dysregulated by experimental 

hyperglycaemia. Therefore, the expression levels of the molecules NF?B and IKKß, along 

with the expression and phosphorylation levels of JNK and I?Ba, were quantified.  

NF?B levels were comparable between hyperglycaemic and mannitol-treated, 

normoglycaemic  cells in presence (90±19%) and absence ( 99±20%) of insulin (see Figure 

4-10). Under standard control conditions, the abundance of NF?B was slig htly reduced to 

0.8±0.06-fold of basal levels by treatment with acute insulin (not statistically significant).  

Quantification of I?Ba levels showed that they remained stable under all conditions tested, 

with neit her acute insulin nor experimental hyperglycaemia having a statistically 

significant effect (% abundance in hyperglycaemic cells was 71±3% compared to 

unstimulated and 106±34% compared to stimulated normoglycaemic  cells; see Figure 

4-11, panels A and B). There was no significant difference in I?Ba expression between 

normoglycaemic  and standard control cells. 

Basal I?Ba Ser32 phosphorylation levels were similar under all conditions tested, although 

mannitol-treatment reduced basal phosphorylation to 0.6±0.3-fold of unstimulated standard 

control levels (no statistical analysis possible due to low repeat number). Acute insulin 

treatment reduced the ratio of Ser32-phosphorylated I?Ba to 0.4±0.06-fold (mannitol), 

0.7±0.003-fold (glucose) and 0.3±0.08-fold (standard control) of  unstimulated standard 

control phosphorylation (see Figure 4-11, panels A and C).  
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Figure 4-10 NF?B levels are not affected by experimental hyperglycaemia.  

HUVEC lysates were prepared as described (section 2.2.2) and subjected to Western blotting. A 
representative blot is shown along with data from 3 independent experiments expressed as mean ± 
SEM expression. Levels of NF?B were comparable under all conditions tested. C = control, M = 
mannitol, G = glucose 
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Figure 4-11 Hyperglycaemia tends to impair insulin-triggered I?Ba 
dephosphorylation. 

HUVEC lysates were prepared as described (section 2.2.2) and subjected to Western blotting. 
Representative blots are shown in panel A. B: Data are shown as mean ± SEM abundance of 3 
independent experiments. C: Levels of I?BaSer32/I?Ba were reduced by acute insulin treatment 
under control but not experimental hyperglycaemic conditions in 2 independent experiments (mean 
± range abundance). C = control, M = mannitol, G = glucose 
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The expression levels of the upstream kinases IKKß and JNK were investigated for their 

potential dysregulation during experimental hyperglycaemia. There was no difference 

between normoglycaemic and hyperglycaemic  expression of IKKß in the presence or 

absence of insulin. Hyperglycaemic and normoglycaemic IKKß levels in the presence and 

absence of insulin were also comparable to standard control levels in the presence of 

insulin ; however, basal levels were significantly lower in standard control cells than 

hyperglycaemic and normoglycaemic (ma nnitol-treated) cells (0.6-fold lower for standard 

control compared to hyperglycaemic  cells ). Hence, insulin stimulated a rise in IKKß levels 

only under standard control conditions. This increase was abrogated in the presence of 

glucose or mannitol (Figure 4-12). No statistical analysis was performed due to the low 

repeat number of experiments.  

The expression of the 54 kDa isoform of JNK and phospho-JNK were quantified. Levels of 

the 46 kDa isoform of JNK and phosphorylated JNK mirrored that of the 54 kDa isoform 

under all conditions tested (data not shown). Basal expression of the 54 kDa JNK isoform 

in HUVEC was comparable under all conditions tested. Insulin treatment resulted in small 

and comparable decreases in JNK abundance in all cases, which were not statistically 

significant (0.9±0.08 for control, 0.8±0.1 for normoglycaemic  and 0.8±0.08 for 

hyperglycaemic cells compared to levels in absence of insulin; see Figure 4-13, panel B). 

In order to determine whether JNK phosphorylation might be affected during experimental 

hyperglycaemia , the phosphorylation levels of JNK at Thr183 and Tyr185 were quantified, 

serving as an indirect indicator of JNK activity. Acute stimulation with insulin had no 

marked effect on JNK phosphorylation. The ratio of phospho-JNK to total JNK indicated 

that experimental hyperglycaemia  may cause an increase in basal phosphorylation 

(2.7±0.6-fold of basal normoglycaemic  levels and 1.8±0.6-fold compared to basal control; 

Figure 4-13, panel C). No statistical analysis was performed due to the low repeat number 

of experiments.  
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Figure 4-12 IKKß levels are increased after acute insulin treatment under control 
conditions. 

HUVEC lysates were prepared as described (section 2.2.2) and subjected to Western blotting. 
Representative blots are shown. Data are shown as mean ± range abundance of 2 independent 
experiments. Control IKKß levels are increased after insulin stimulation.                                               
C = control, M = mannitol, G = glucose 
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Figure 4-13 Basal JNK phosphorylation tends to  increase under experimental 
hyperglycaemia. 
Representative Western blots of hyperglycaemic and control HUVEC lysates are shown in panel A. 
B: JNK expression was unchanged by experimenta l hyperglycaemia (data shown are the mean ± 
SEM abundance of 3 independent experiments). C: Levels of phosphorylated JNK (54 kDa) are 
expressed as a ratio to total JNK from 2 experiments (mean ± range).                                                                                        
C = control, M = mannitol, G = glucose 
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4.2.3.3  The CAP-Cbl pathway 

The CAP-Cbl pathway is an insulin-stimulated pathway that plays a role in whole -body 

fuel homeostasis by regulating glucose transport (Baumann et al., 2000, Chiang et al., 

2001). Cbl is a proto-oncogene product that interacts w ith the insulin receptor via the 

adaptor protein CAP, and is phosphorylated by the tyrosine kinase action of the insulin 

receptor. Thereafter, the CAP-Cbl complex dissociates from the insulin receptor and binds 

to flotillin in caveolin -enriched lipid rafts , where it is thought to modulate glucose 

transport in adipocytes (Baumann et al., 2000).  

Previous work in this laboratory (Salt et al., 2003) has demonstrated that the expression of 

CAP and Cbl in HAEC was decreased under experimental hyperglycaemia, and that the 

phosphorylation of Cbl was also decreased in response to insulin. Hence, in order to 

investigate whether other insulin-responsive pathways were also dysregulated by 

experimental hyperglycaemia in HUVEC, CAP and Cbl expression was quantified. 

Expression levels of CAP demonstrated large inter-sample variation, and no statistically 

significant differences were found under any condition tested. However , basal levels in 

hyperglycaemic cells were 2.1±1. 8-fold higher than in normoglycaemic cells, while no 

difference in abundance was found between these two treatment groups in the presence of 

insulin. Under standard control conditions, insulin treatment caused an apparent rise in 

CAP abundance to 3±2-fold above basal. This insulin-mediated increase in CAP levels was 

abrogated in normoglycaemic and hyperglycaemic cells, in which the abundance of CAP 

was 0.5±0.6-fold and 0.6±0.07-fold of insulin-treated standard control (Figure 4-14, panel 

A). 

Basal expression of Cbl was comparable under all conditions, and acute insulin had no 

effect on Cbl levels in control or normoglycaemic HUVEC. However, following 

experimental hyperglycaemia, acute insulin treatment resulted in a reduction in Cbl 

abundance to 0.5±0.04-fold of basal levels in normoglycaemic  and standard control cells 

(Figure 4-14, panel B). No statistical analysis was performed due to the low repeat number 

of experiments.  
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Figure 4-14 Cbl, but not CAP expression is modified by experimental 
hyperglycaemia. 

HUVEC lysates were prepared as described (section 2.2.2) and subjected to Western blotting with 
the relevant antibodies as indicated. A: Data shown are the mean ± SEM abundance of CAP from 3 
independent experiments. B: Data shown are the mean ± range abundance of Cbl from 2 
independent experiments. Sample Western blots are shown.                                                                     
C = control, M = mannitol, G = glucose 

 



Christine F. Kohlhaas  Chapter 4, 156 

 

4.2.4 Superoxide production under experimental hyperglycaemia 

To investigate whether experimental hyperglycaemia affected superoxide (O2
-) production 

in HUVEC, superoxide levels were quantified in cells cultured under experimental 

hyperglycaemic or normoglycaemic conditions for 48h. In addition, the compound N G-

nitro-L-arginine methyl ester (L-NAME), which inhibits eNOS-mediated nitric oxide 

production, was used to determine the effect of NO bioavailability on superoxide levels. 

Superoxide levels in hyperglycaemic  and normoglycaemic HUVEC lysates were measured 

by means of a lucigenin-based chemiluminescence assay (see section 2.2.9 for a full 

description).  

Basal superoxide production in hyperglycaemic and normoglycaemic cells was 

comparable. Inhibition of NO production with L-NAME resulted in a ~2.5-fold 

(normoglycaemic cells) and a ~2.2-fold (hyperglycaemic  cells) increase in O2
- generation 

compared to the respective basal levels. As expected, TNFa treatment caused increased O 2
- 

synthesis compared to basal levels in both normoglycaemic and hyperglycaemic  cells 

(~1.6-fold and ~2.6-fold, respectively). Due to the low sample number, statistical analysis 

could not be performed.  
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Figure 4-15 Superoxide levels in HUVEC are increased by eNOS inhibition. 

HUVEC were cultured under experimental hyperglycaemic or normoglycaemic conditions in 
presence or absence of 100 µM L-NAME for 2h. Cells were serum-starved and subsets of cells 
treated with 10 ng/ml TNFa for 2h. Superoxide levels were measured in HUVEC lysates using a 
lucigenin-based chemiluminescence assay (described in section 2.2.9). Data are derived from one 
experiment (duplicates of vehicle and L-NAME samples; singlicates of TNFa samples) and are 
shown as mean ± range superoxide-related fluorescence.  
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4.3 Discussion 

4.3.1 eNOS expression 

The present study shows that experimental hyperglycaemia mildly modulates some aspects 

of insulin signalling in HUVEC. Several previous studies have investigated the effects of 

hyperglycaemia on various aspects of insulin signalling, and here, the present findings will 

be discussed in the light of these studies.  

Exposure to high levels of glucose has been shown to have different effects on eNOS 

expression and phosphorylation, depending on the length of exposure and the model 

system studied. In agreement with this study, no change in eNOS protein expression was 

observed in BAEC and rat aorta exposed to 30 mM glucose for 48h (Du et al., 2001) , in 

HAEC after 48h of culture with 25 mM glucose (Salt et al., 2003), and in HUVEC after 30 

min of exposure to 25 mM glucose (Rojas et al., 2003). Other groups reported a ~25 % 

decrease in eNOS levels in human coronary artery endothelial cells (HCAEC) exposed to 

25 mM glucose for 7 days (Ding et al., 2000), and bovine aortic endothelial cells (BAEC) 

exposed to 22 mM glucose for 2 weeks were shown to express 20-30% less eNOS protein 

(Noyman et al., 2002). Expression of eNOS mRNA in HAEC cultured with 25 mM 

glucose was decreased by 25% and 46% after 3 and 7 days, respectively, while eNOS 

protein expression initially increased by 8% after 4h and then decreased by 64% after 7 

days (Srinivasan et al., 2004). Likewise, mRNA levels were decreased by 60% in diabetic 

(db/db) mouse aortic endothelial cells (MAEC) (Srinivasan et al., 2004). 

Conversely, several other studies demonstrated upregulated eNOS expression levels: 

Cosentino and co-workers reported a 2-fold increase in mRNA and protein levels in HAEC 

cultured with 22.2 mM glucose (Cosentino et al. , 1997). In HUVEC, Lin and co-workers 

showed that eNOS protein expression was elevated after exposure to 33 mM glucose for up 

to 24h, and was maximal after 6h (~2-fold over control) (Lin et al. , 2005), while another 

group reported that eNOS protein levels in HUVEC were elevated after 2-6h of exposure 

to 33 mM glucose (maximal at ~2.5-fold over control), but gradually returned to control 

levels by 48h (Ho et al. , 1999). Quagliaro and co-workers demonstrated a ~2.7-fold 

increase over control in eNOS protein levels in  HUVEC cultured with 20 mM glucose for 

14 days (Quagliaro et al., 2007).  

The discrepancies between these individual results highlight the differences between the 

various tissues used, and suggest that glucose concentration and length of exposure 
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differentially affect the outcome. This is corroborated by findings from the present study, 

in which data obtained with HAEC subjected to the same conditions as described above for 

HUVEC, differed in some aspects from those observed in HUVEC: As previously shown 

in this laboratory (Salt et al., 2003) , experimental hyperglycaemia did not affect insulin-

stimulated eNOSS1177 phosphorylation in HAEC, which, in the present study, was 2.5-fold 

higher than basal (data not shown, compare to the 1.5-fold increase in hyperglycaemic 

HUVEC, Figure 4-2, panel C) and thus comparable to the insulin-stimulated increase 

observed in HUVEC under standard control conditions. Mannitol-treatment abrogated 

insulin-stimulated eNOSS1177 phosphorylation in HAEC (data not shown). Furthermore, 

insulin-stimulated phosphorylation of PKBT308 was absent and was less pronounced for 

PKBS473 in normoglycaemic and hyperglycaemic HAEC (~1.2-fold and ~1.3-fold over 

basal, respectively; data not shown) compared to HUVEC (Figure 4-7), indicating that 

HAEC were less insulin-sensitive than HUVEC under these conditions. These findings 

highlight discrepancies between different cell types used. 

Based on these findings, both high glucose and high mannitol affect different vascular 

endothelial cell types differently, accounting in part for the diversity of published results. It 

is tempting to speculate that the origin of these endothelial cells might affect their response 

to various treatments, such as insulin, glucose and mannitol, in this case. The glucose 

concentrations encountered by different vascular beds  in man are likely to vary, as might 

their insulin-sensitivity. In general, efferent blood vessels, and conduit arteries in 

particular, ought to be more responsive to vasodilatory stimuli than afferent blood vessels 

(veins) and arterioles, where vasodilation may not play such an important role. Also, the 

blood glucose concentration in peripheral veins is likely to be lower than in arteries, given 

that glucose is taken up from the blood into insulin-responsive tissues such as muscle, fat 

and liver. An important exception here is the hepatic portal vein, which drains the small 

intestine and would thus encounter higher blood glucose concentrations. 

However, even with the same experimental model, different groups report varying results, 

as in the case of HUVEC cultured with 33 mM glucose: eNOS protein levels were reported 

to be upregulated only for up to 6h, and downregulated to near-control levels by 24h by 

one group (Ho et al., 1999) , while another found increased protein levels for up to 24h (Lin 

et al., 2005). Similarly, comparable concentrations of glucose (22.2 mM and 25 mM) had 

different effects on HAEC with respect to eNOS mRNA and protein expression: in one 

study, the levels were increased 2-fold (Cosentino et al., 1997), whereas they were 

decreased ~2-fold in another study (Srinivasan et al., 2004). Such findings point out that 
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experimental systems often respond dissimilarly in different hands, owing in part to small 

variations of experimental conduct.  

While no consensus conclusion regarding eNOS expression can be drawn from the studies 

described above, it is tentative to speculate that experimental hyperglycaemia has disparate 

short-term and long-term effects on eNOS expression: In the short-term (2-6h), 

hyperglycaemia appears to upregulate eNOS mRNA and protein expression, while longer-

term hyperglycaemia (24h+) has most frequently been reported to normalise or decrease 

eNOS levels. 
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4.3.2 eNOS phosphorylation 

In order to determine the effect of acute insulin treatment on the eNOS phosphorylation 

sites Ser114, Thr495, Ser615, Ser633 and Ser1177, cells cultured under standard control 

conditions (4 mM glucose, no mannitol) were included in the experimental design. In 

addition, an osmotic control (“normoglycaemic” cells cultured with 5 mM glucose and 20 

mM mannitol) was used to determine the effects of high (25 mM) glucose per se, 

independent of high osmolarity. Therefore, the present experimental design contains an 

inherent quality control by comparing the effects of high mannitol concentrations to 

standard control conditions. The effect of high mannitol on HUVEC is discussed at the end 

of this section. 

As has previously been demonstrated for eNOSS615 (Ritchie  et al., 2007) and eNOSS1177 in 

HAEC (Salt et al., 2003) , acute insulin stimulated the phosphorylation of eNOSS615 and 

eNOSS1177 in HUVEC under standard control conditions in the present study (see Figure 

4-2). Similarly, the insulin-stimulated decrease in eNOST495 phosphorylation previously 

observed in HUVEC (Federici et al., 2004) was also obs erved in the present study (see 

Figure 4-4, panel C). In addition, this study reports the novel findings that acute insulin 

treatment decreased the phosphorylation of eNOSS114 and eNOSS633 in HUVEC under 

standard control conditions (see Figure 4-3 and Figure 4-4, panel B). Most of the insulin-

induced changes were small, and none were statistically significant. 

Based on these results, it is tentative to speculate on the roles of these eNOS 

phosphorylation sites in relation to eNOS activity in HUVEC. Phosphorylation of Ser114, 

Thr495 and Ser633 may inhibit basal eNOS activity, while their dephosphorylation in 

response to insulin may increase eNOS activity. Conversely, low basal phosphorylation 

levels of eNOSS615 and eNOSS1177 may translate into low basal eNOS activity, which is 

increased upon insulin-stimulated phosphorylation of these sites. These findings 

corroborate the activating roles of insulin-stimulated Ser615 and Ser1177 phosphorylation 

that have been reported in vitro (Michell et al. , 2002), in HAEC (Salt et al., 2003, Ritchie  

et al., 2007) and BAEC (Montagnani et al., 2001). Several other groups have demonstrated 

the activating properties of Ser615 and Ser1177 in response to other stimuli (Fleming et 

al., 1998, Michell et al. , 2001, Michell et al., 2002, Bauer et al. , 2003).  

The negative regulatory role of Thr495 phosphorylation on eNOS activity is well 

documented. Dephosphorylation of Thr495 increases eNOS activity and NO production in 
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vitro  as well as in HUVEC and PAEC (Chen et al., 1999, Fleming et al., 2001, Michell et 

al., 2001, Greif et al. , 2002, Fleming & Busse, 2003, Matsubara et al., 2003). This is in 

agreement with the present finding that insulin, a stimulator of eNOS activity, decreased 

eNOST495 phosphorylation. 

Current experimental evidence suggests that the role of eNOSS114 phosphorylation may 

vary according to the nature of the stimulus. Shear stress and high density lipoprotein have 

been shown to increase Ser114 phosphorylation and eNOS activity (Gallis et al., 1999) , 

whereas VEGF stimulation of eNOS activity lead to dephosphorylation of Ser114  and 

mimicry of Ser114 dephosphorylation increased eNOS activity (Kou et al., 2002). Site-

directed mutagenesis of  bovine eNOS and subsequent transfection into COS-7 cells 

suggested that mimicking phosphorylation at Ser114 increased eNOS activity. 

Controversially, in the same study, both the phosphorylation and dephosphorylation 

eNOSS114 mutants increased stimulated NO release (Bauer et al., 2003). The present study 

suggests that insulin dephosphorylates eNOSS114, but the impact on eNOS activity remains 

to be investigated. 

Several lines of evidence suggest that phosphorylation of Ser633 maintains eNOS activity 

after initial eNOS phosphorylation at Ser1177. Similar to eNOSS1177, eNOSS633 is 

phosphorylated by shear stress, ATP, VEGF and bradykinin (Boo et al. , 2002, Michell et 

al., 2002, Bauer et al., 2003). Ser633 phosphorylation has been demonstrated to increase 

NO production in a Ca2+-independent manner (Boo et al., 2003). This stands in contrast to 

the present result, in which insulin stimulated a decrease in eNOSS633 phosphorylation. 

Studies of eNOS phospho-mutants, in which the amino acid residues of these 

phosphorylation sites have been mutated to mimic constitutive phosphorylation (aspartate 

mutants) or dephosphorylation (alanine mutants), have already provided important 

evidence about the role of each of the eNOS phosphorylation sites. A previous study with 

bovine eNOS phospho-mutants transfected into COS-7 cells has suggested that the sites 

equivalent to Ser633 and Ser1177 are important positive regulators of eNOS-mediated NO 

release in response to ATP  (Bauer et al., 2003). In the same study, Ser615 phosphorylation 

slightly downregulated NO release, but was suggested to be important as a modulator of 

phosphorylation at the other eNOS phosphorylation sites and of protein-protein 

interactions (Bauer et al., 2003).  
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Ser114 and Ser615 were postulated to be important positive  modulators of phosphorylation 

at Ser1177 and increased the interaction of eNOS with hsp90 and PKB (Bauer et al., 

2003). Another report suggested that mimicking phosphorylation at the sites equivalent to 

Ser633 and Ser1177 contributed to eNOS activity in vitro , whereas Thr495 

phosphorylation decreased eNOS activity and Ser615 increased the activity of eNOS at 

lower concentrations of calmodulin without affecting maximal activity (Michell et al., 

2002). 

In order to define the clinical relevance of these findings, the proposed roles of individual 

eNOS phosphorylation sites will have to be verified in human vascular endothelial cells, 

and vascular explants, where possible. Their impact on eNOS activity in presence and 

absence of insulin and other stimuli will have to be measured, for example by using L-

arginine conversion assays and NO synthesis assays. Furthermore, it would be of great 

value to extend the present study to determine the effect of hyperglycaemia on eNOS 

activity.  

The effect of experimental hyperglycaemia on the phosphorylation state of eNOS 

phosphorylation sites Ser114, Thr495, Ser615, Ser633 and Ser1177 was investigated in the 

present study. Previous data from this laboratory demonstrated that experimental 

hyperglycaemia in HAEC did not affect eNOST495 or eNOSS1177 phosphorylation (Salt et 

al., 2003). The aim behind the present study was to investigate in HUVEC the 

phosphorylation status of eNOS at all five main phosphorylation sites. Other groups have 

previously studied the phosphorylation and activity levels of eNOS in the context of 

hyperglycaemia. Most available data concern the phosphorylation of the Ser1177 site, 

though a few studies have also investigated other eNOS phosphorylation sites. No 

published studies of prolonged (48h) hyperglycaemia have been carried out in HUVEC, 

though other cell types have been used for modelling 48h+ hyperglycaemia. 

In hyperglycaemic BAEC (48h) and diabetic rat aorta, basal eNOSS1177 phosphorylation 

was decreased by 45% and 50%, respectively, while glycosylation at this site was 

increased 1.85-fold (BAEC) and 2.1-fold (rat aorta), resulting in 32% (BAEC) and 57% 

(rat aorta) decreases in eNOS activity (Du et al., 2001). In a study by Federici and co-

workers, 32P-incorporation by constitutively active PKB into eNOSS1177 

immunoprecipitated from hyperglycaemic  HCAEC was also impaired (46% lower than 

control), while glycosylation of eNOS around the Ser1177 site was 2.9-fold higher than in 

controls (Federici et al., 2002), suggesting that hyperglycaemia induced glycosylation 
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around the Ser1177 site and thus prevented its effective phosphorylation. Similarly, 

insulin-stimulated eNOSS1177 phosphorylation after 72h of experimental hyperglycaemia 

was reduced by 37%, while insulin-stimulated eNOS activity was decreased 27% 

compared to control (Federici et al., 2002). By contrast, Salt and co-workers reported no 

change in basal or insulin-stimulated eNOSS1177 phosphorylation after 48h of experimental 

hyperglycaemia in HAEC (Salt  et al., 2003).  

Studies of short-term experimental hyperglycaemia demonstrated that exposure to 25 mM 

glucose for 30 minutes induced a ~ 2.8-fold increase over control in eNOSS1177 

phosphorylation and increased L-citrulline production by hyperglycaemic HUVEC ~2.2-

fold, indicating greater eNOS activity than in control cells (Rojas et al., 2003). Also in 

HUVEC, Lin and co-workers observed increased phosphorylation levels of eNOS after 2-

6h of high glucose (maximal at 4h with ~4.5-fold elevation), which returned to basal after 

24h (Lin et al., 2005). However, longer-term hyperglycaemia was demonstrated to have 

the opposite effect: Two weeks of experimental hyperglycaemia  decreased eNOS activity 

by 25% in BAEC and abrogated insulin-stimulated eNOS activity (Noyman et al. , 2002). 

Similarly, unstimulated eNOSS1177 phosphorylation 5 weeks post-induction of diabetes was 

decreased by 25% (without a change in total eNOS expression) in partially purified rat 

penile tissue (including vascular endothelium), while glycosylation was increased by 90% 

(Musicki et al., 2005). In their study, shear stress also failed to increase Ser1177 

phosphorylation (Musicki et al. , 2005). 

In the present study, basal eNOSS1177 phosphorylation was unchanged in hyperglycaemic  

HUVEC compared to control cells (Figure 4-5, panel A). However, insulin-stimulated 

Ser1177 phosphorylation was slightly and non-significantly reduced after 48h of 

experimental hyperglycaemia compa red to control cells (Figure 4-2, panel B). The 

observed trend of decreased insulin-responsive eNOSS1177 phosphorylation agrees with 

findings in HCAEC (Federici et al., 2002) and contrasts other reports (Rojas et al., 2003, 

Salt et al., 2003) , but given the variation in duration of experimental hyperglycaemia and 

the different cell types used, this only emphasises the discrepancies between different 

experimental models. 

Two groups have reported no changes to basal eNOST495 phosphorylation in 

hyperglycaemic HAEC (Salt  et al., 2003) and diabetic rat penis (Musicki et al. , 2005), 

which is in line with the present finding that neither basal nor insulin-stimulated eNOST495 

phosphorylation is altered by experimental hyperglycaemia (Figure 4-4, panel C). The 
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study by Musicki and co-workers showed that basal eNOSS615 and eNOSS633 

phosphorylation was not affected by hyperglycaemia in diabetic rats (Musicki et al., 2005). 

This contrasts with the current results, where basal eNOSS615 phosphorylation was 

increased by experimental hyperglycaemia, albeit not to statistical significance (Figure 4-2, 

panel B), and basal eNOSS633 phosphorylation was reduced to 50% of control levels (not 

statistically significant; see Figure 4-3 and Figure 4-5, panel A). Site-directed mutagenesis 

studies have suggested that basal phosphorylation of eNOSS633 is important for eNOS 

activity (Bauer et al., 2003) , which would imply that the trend toward reduced eNOSS633 

phosphorylation observed under experimental hyperglycaemia in the present study might 

reduce eNOS activity. 

No literature has been published regarding the effect of hyperglycaemia on eNOSS114 

phosphorylation. In this study, insulin-stimulated Ser114 phosphorylation was significantly 

reduced compared to stimulated control samples (Figure 4-5, panel B).  

The effect of insulin on eNOS activity has been assumed to be stimulatory, based on the 

observation that insulin treatment increases eNOS-mediated NO production (Scherrer et 

al., 1994, Zeng & Quon, 1996). While phosphorylation of eNOSS1177 is required for 

agonist-mediated NO synthesis (Dimmeler et al. , 1999, Fulton et al., 1999, Michell et al., 

2001), and eNOST495 dephosphorylation is thought to enhance NO generation (Chen et al., 

1999, Fleming et al., 2001, Michell et al., 2001, Greif et al., 2002, Fleming & Busse, 2003, 

Matsubara et al. , 2003), less is known about the roles of the other eNOS phosphorylation 

sites in insulin signalling.  

Based on the insulin-stimulated effect on eNOS phosphorylation sites under standard 

control conditions in the present study, phosphorylation of Ser114, Thr495 and Ser633 

may inhibit eNOS activity in HUVEC, while phosphorylation of Ser615 and Ser1177 most 

likely activates eNOS. During experimental hyperglycaemia, basal eNOSS615 

phosphorylation showed a trend toward upregulated phosphorylation, whereas basal 

eNOSS633 phosphorylation tended to be downregulated with respect to standard control 

(see Figure 4-5, panel A). This suggests experimental hyperglycaemia may promote basal 

eNOS activity. Insulin-stimulated eNOS phosphorylation at Ser114 was significantly 

decreased with respect to standard control, whereas none of the other sites was 

significantly affected (see Figure 4-5, panel B). If Ser114 phosphorylation is indeed a 

negative regulator of eNOS activity in HUVEC, its decreased phosphorylation would 

imply increased eNOS activity during experimental hyperglycaemia.  
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It is important to bear in mind that the phosphorylation status of each of these sites may 

influence that of others. Furthermore, some phosphorylation sites may not be important for 

insulin-stimulated eNOS activity, but rather serve to modulate eNOS interactions with 

other proteins, as has been suggested for Ser615 (Bauer et al., 2003). In order to determine 

the role of each of these phosphorylation sites in insulin-stimulated eNOS activity under 

normal and hyperglycaemic conditions, further investigations are therefore required.  

It is interesting to note that eNOS phosphorylation levels at eNOSS633 and eNOSS1177 

differed in mannitol-cultured (normoglycaemic) HUVEC compared to control cells 

cultured with 4 mM glucose alone. Although culture with 20 mM mannitol and 5 mM 

glucose had been designed as an osmotic control and was expected to have no effect on 

protein expression and phosphorylation, an osmotic effect seems to be precipitated by the 

addition of high levels of mannitol to the cell culture medium. Insulin -responsive 

phosphorylation levels of eNOSS1177 were altered in mannitol-treated cells, the stimulated 

increase being less pronounced than in control cells (see Figure 4-2). Furthermore, basal 

eNOSS633 phosphorylation was also lower in normoglycaemic compared to control cells, 

and insulin-stimulated dephosphorylation was abrogated (Figure 4-3).  

Although neither of these changes was statistically significant with respect to the standard 

control, these findings suggest that mannitol, despite being cell-impermeable and thus not 

metabolised by cells, can interfere with normal insulin signalling. A recent report suggests 

that hyperosmotic mannitol (550 mM) can induce large structural changes in rat brain 

endothelial cells (Bálint et al., 2007) , while previous findings demonstrated that 100 mM 

mannitol can cause apoptosis of endothelial cells (Malek et al., 1998). Although these 

mannitol concentrations are much higher than the concentration used here, it remains to be 

investigated whether high concentrations of mannitol have a biologically significant impact 

on cellular signalling processes.  

Investigating the effect of high mannitol concentrations on cellular function would be a 

relevant study, considering that several groups (Cosentino et al., 1997, Ho et al., 1999, Du 

et al., 2001, Federici et al., 2002, Rojas et al., 2003, Salt et al., 2003, Srinivasan et al., 

2004, Quagliaro et al., 2007) used mannitol as a negative control when studying the effects 

of experimental hyperglycaemia. None of these groups reported any osmotic effects with 

mannitol. Two groups compared cells cultured in normal versus mannitol-supplemented 

medium (Federici et al. , 2002, Srinivasan et al., 2004) , but neither of these groups reported 
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any changes with mannitol compared to control medium regarding the parameters 

measured.  

Inclusion of an osmotic control is important for the study of experimental hyperglycaemia 

in cultured endothelial cells, though some groups (Ding et al. , 2000, Noyman et al., 2002, 

Lin et al., 2005) have failed to include osmotic controls, instead comparing cells cultured 

in high glucose to cells cultured in normal medium with low glucose concentrations alone. 

Such an experimental design makes it impossible to determine whether the effects 

observed with high glucose are genuine or due to osmotic stress. An alternative control for 

experimental hyperglycaemia is the use of equimolar concentrations of non-metabolisable 

L-glucose, although the cost of this compound prevents its routine use for experiments 

such as those presented here. One group (Rojas et al., 2003) used equimolar L-glucose as 

an additional control, and reported no effect. 

The present study also puts into question whether the effects observed under experimental 

hyperglycaemia are actually glucose-specific, or whether they are, at least in part, due to 

osmotic effects. While it is vital to include an osmotic control in experiments investigating 

the effects of experimental hyperglycaemia, ma nnitol does not seem to be a suitable 

choice, since the present study showed that culture of HUVEC with 20 mM mannitol 

mildly affects the phosphorylation of eNOSS633, eNOSS1177 , PKBS473 and I?BaS32 and the 

expression of IKKß (see also section 4.3.3), when compared to cells cultured with 4 mM 

glucose alone. While these osmotic effects may be specific to HUVEC, it is likely that 

other vascular endothelial cells are also affected by this phenomenon. Therefore, the results 

of studies which have used mannitol as an osmotic control without comparing the findings 

to cells cultured under normal osmolarity, must be questioned with respect to their validity.  
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4.3.3 Insulin-regulated pathways 

In order to determine whether some other insulin-responsive pathways were affected by 

experimental hyperglycaemia and are therefore potential candidates for dysregulated eNOS 

function under hyperglycaemic conditions, components of the metabolic insulin signalling 

pathway, the NF?B transcription pathway and the stress-activated JNK and CAP-Cbl 

pathways were assessed for expression and phosphorylation levels.  

PKB, which phosphorylates eNOS at Ser1177, showed no change in expression under any 

condition tested (Figure 4-6), and phosphorylation of its principal activating site Thr308 

was consistently stimulated >3-fold by acute insulin (Figure 4-7, panel B). Likewise, 

insulin-stimulated phosphorylation of the second activating site, Ser473, increased >1.4-

fold over basal under control, normoglycaemic  and hyperglycaemic conditions (Figure 4-7, 

panel C). Despite reduced uns timulated PKBS473 phosphorylation under normoglycaemic  

and hyperglycaemic  conditions, these results indicate that PKB phosphorylation, and thus 

most likely PKB activity, are unaffected by hyperglycaemia  in this experimental system 

and that PKB remains insulin-sensitive. Expression levels of the upstream components 

PI3K-p85, PTEN and PDK-1 were unaltered with respect to control, again suggesting that 

the upstream components of the metabolic insulin signalling pathway in HUVEC are not 

impaired by 48h of experimental hyperglycaemia.  

Previous studies have demonstrated that protein expression of PKBa, PI3K -p85 and -

p110ß, PTEN, PDK -1 and IRS-1 was unchanged in HAEC after 48h of experimental 

hyperglycaemia , while IRS-2 levels were reduced by 30% compared to control (Salt et al., 

2003). Insulin-stimulated PKBa activity was unaffected, which supports the present 

findings, although basal PKB activity was increased 2.4-fold with respect to control (Salt 

et al., 2003). Unstimulated PKB serine phosphorylation in BAEC was unchanged after 2 

weeks of experimental hyperglycaemia  compared to control, but eNOS activity was 

reduced by 25% (Noyman et al., 2002).  

Unlike the present study, one group reported that insulin-dependent PKBS473 

phosphorylation in HCAEC after 72h of experimental hyperglycaemia was 30% lower than 

in control cells (Federici et al., 2002). In the same study, PI3K activity was decreased by 

55%, and PI3K association with IRS-1 and IRS-2 was reduced by 20% and 40%, 

respectively, compared to control cells (Federici et al., 2002). This is mirrored by findings 

that PI3K recruitment to IRS-1 was reduced by 24%, whereas PI3K recruitment to IRS-2, 

which showed a 71% decrease in expression, was abolished under experimental 
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hyperglycaemia (Salt  et al., 2003) , indicating a defect in PI3K and/or IRS function. 

Federici and co-workers also repor ted decreased phosphorylation of the insulin receptor 

(by 50%) and IRS-1 (by 55%), and simultaneous increases in the glycosylation of IRS-1 

(600%), IRS-2 (210%) and PI3K-p85 (200%) (Federici et al. , 2002), again suggesting that 

experimental hyperglycaemia may exert a damaging impact on insulin signalling through 

increased glycosylation of proteins.  

The reduction in basal PKBS473 phosphorylation of ~67%, seen in hyperglycaemic HUVEC 

in the present study, was also reported for penile tissue of diabetic rats, where basal 

PKBS473 phosphorylation levels were decreased by 60% (Musicki et al. , 2005). Shear stress 

induced phosphorylation of PKBS473 to levels comparable to control, indicating normal 

PKB function, but not phosphorylation of eNOSS1177 (Musicki et al., 2005). Varma and co-

workers reported that 40 mM glucose decreased basal PKBT308 phosphorylation by ~50% 

and PKB activity by ~75%, as well as reducing basal tyrosine phosphorylation of PI3K by 

~40%, in HUVEC exposed to experimental hyperglycaemia  for 8 days (Varma et al., 

2005). This contrasts the present finding that basal PKBT308 phosphorylation was unaltered 

by experimental hyperglycaemia.  

Overall, these findings suggest that, depending on the tissue used, defective eNOS 

phosphorylation under hyperglycaemic conditions is unlikely to be caused by impaired 

PKB activity alone. There is some evidence that hyperglycaemia induces changes in PI3K 

activity, which may likely affect eNOS regulation via PKB. Other factors, such as defects 

in other insulin signalling pathway components, or hyperglycaemia -induced glycosylation, 

may also contribute to the alterations in eNOS phosphorylation observed in this and other 

studies.  

Given the unchanged insulin-sensitivity of the metabolic insulin signalling pathway 

components investigated here, other insulin-responsive pathways were assessed for their 

potential dysregulation by experimental hyperglycaemia. Investigation of the NF?B 

pathway revealed that there were no changes in the expression levels of NF?B (Figure 

4-10) and I?Ba (Figure 4-11, panel B) under any condition tested. Phosphorylation of I?Ba 

at Ser32, however, was basally decreased under normoglycaemic and hyperglycaemic 

conditions compared to control, while insulin-induced dephosphorylation of Ser32 seen in 

control samples was mildly impaired under these conditions. The insulin-responsiveness of 

I?Ba dephosphorylation would point to lower NF?B bioavailability, thus potentially 

resulting in a reduction of NF?B-regulated transcription after insulin stimulation. By 
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contrast, a slight decrease in NF?B levels following insulin treatment was observed in the 

present study. However, there was a slight basal increase in NF?B levels after mannitol 

and glucose treatment, possibly as a result of increased basal phosphorylation (and thus 

degradation) of I?Ba under these conditions. 

Conversely, basal levels of the I?Ba-phosphorylating kinase IKKß were slightly and not 

statistically significantly increased under normoglycaemic and hyperglycaemic  conditions 

(Figure 4-12), predicting increased phosphorylation of I?Ba, which was not obser ved in 

the present study. Acute treatment with insulin increased the abundance of IKKß in 

standard control samples, which contradicts the present finding of decreased IκBa S32 levels 

in insulin-stimulated control samples. However, these insulin-induced changes in IKKß 

and I?Ba S32 levels were abolished in normoglycaemic  and hyperglycaemic  samples and 

were not statistically significant. Since IKKß activity was not measured in this study, no 

conclusion about the effect of raised IKKß levels on I?Ba phosphorylation can be drawn.  

Previously, dose-dependent activation of NF?B nuclear translocation by high (25-35 mM), 

but not lower (15 mM) concentrations of glucose has been observed in BAEC (Pieper & 

Riaz ul, 1997) . NF?B activity was increased in nuclear fractions within 1h and was 

maximal at 2-4h, suggesting that alteration of NF?B bioavailability is an early 

hyperglycaemia -induced event that may contribute to endothelial dysfunction and 

atherosclerosis (Pieper & Riaz ul, 1997). Similarly, incubation of BAEC with 30 mM 

glucose increased NF?B activation 1.8-fold (Nishikawa et al. , 2000). These findings would 

have to be validated in HAEC, as the present study did not address NF?B activity, but only 

its expression levels.  

In the present study, acute insulin treatment induced very small decreases in JNK 

expression levels (not statistically significant), but did not change JNK phosphorylation 

levels (Figure 4-13). However, basal JNK phosphorylation was slightly elevated in 

hyperglycaemic cells compared to mannitol-cultured cells (not statistically significant), 

suggesting that high glucose levels may promote JNK phosphorylation in HUVEC. 

Previously, 25 mM glucose was shown to transiently increase JNK1 activity in bovine 

pulmonary artery endothelial cells (BPAEC) (activity being maximally increased (2-fold) 

with respect to control at 24h) (Liu et al., 2000).  

The JNK pathway can be activated by oxidative stress and has been implicated in the 

development of diabetes and atherosclerosis (reviewed in (Kaneto et al., 2007)). Mice 
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lacking JNK are protected from macrophage -mediated pancreatic beta -cell apoptosis and 

subsequent hyperglycaemia, which is likely due to reduced TNFa secretion from 

macrophages (Fukuda  et al., 2008). This suggests that active JNK plays a crucial role in 

promoting cytokine-induced beta-cell destruction and aggravates the prodiabetic profile. 

The present study indicates that in HUVEC, increased hyperglycaemia-mediated JNK 

activation through phosphorylation is a potential prodiabetic candidate mechanism, 

although these results are preliminary and require further confirmation.  

The expression of CAP was largely unchanged under all conditions tested, although large 

inter-sample variation in expression levels prevente d the drawing of any definitive 

conclusions. Cbl expression levels were comparable under all conditions, except for 

insulin-treated hyperglycaemic cells, in which there was a 50% decrease with respect to 

unstimulated control and normoglycaemic cells (not statistically significant; see Figure 

4-14). Previous work in hyperglycaemic  HAEC showed that CAP and Cbl expression was 

reduced to 54% and 60% of control levels, respectively, and that insulin -induced Cbl 

phosphorylation in control cells was abrogated in hyperglycaemic HAEC (Salt et al., 

2003). In mice, knockout of Cbl lead to macrophage activation and contributed to 

peripheral insulin resistance and glucose intolerance (Hirasaka et al., 2007). If Cbl is also 

downregulated by hyperglycaemia in humans, this would exacerbate glucose intolerance.  

It is interesting to note that acute treatment with insulin for 10 minutes seemed to have a 

modulatory, though not statistically significant, effect on the quantities of the molecules 

IKKß, JNK and Cbl, compared to their basal levels. Acute insulin treatment is unlikely to 

affect the actual protein expression levels of molecules within the 10-minute time scale 

tested. More likely, the small changes observed here are due to other factors, such as inter-

sample variation. It is, however, conceivable that insulin may trigger degradation of these 

molecules, or regulatory events other than those investigated here, such as 

phosphorylation, ubiquitination and myristoylation, which may render the molecules in 

question undetectable to the antibodies used here.  

The present study has shown that acute insulin treatment can lead to the rapid 

dephosphorylation of I?Ba, thus potentially decreasing levels of free NF?B and acting as 

an antiatherogenic mediator. However, in the present study, insulin -induced I?Ba 

dephosphorylation in control samples were not mirrored by equally reduced NF?B levels 

in the same samples. Insulin has not previously been reported to cause dephosphorylation 

of I?BaS32, but rather its phosphorylation (Pandey et al., 2002). While the results shown 
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here may be representative of the actual abundance levels of these molecules, a number of 

other factors, including inter-sample variation and the effectiveness of the protease 

inhibitors used during sample preparation, could have influenced these measurements. 

Quantification of further samples, preferably using other pools of HUVEC, would reduce 

inter-sample variation and provide more accurate results for the abundance levels of all 

molecules investigated here.  

Data from one experiment indicated that expression of the stress-activated p38 MAPK in 

hyperglycaemic cells was unchanged compared to normoglycaemic cells, whereas insulin -

stimulated p38 MAPK phosphorylation was reduced by ~24% in hyperglycaemic HUVEC 

(data not shown). Noyman and co-workers showed that experimental hyperglycaemia 

reduced basal p38 MAPK activation in BAEC to 43% of control levels (Noyman et al., 

2002). In a previous report, the basal phosphorylation and activity of p44/42 MAPK, and 

the activity of p38 MAPK were not affected by culture of BPAEC in 25 mM glucose (Liu 

et al., 2000) , indicating that hyperglycaemia does not interfere with the basal activity of 

these mitogenic insulin signalling pathway components. It would be interesting, however, 

to address the effect of experimental hyperglycaemia on insulin-stimulated 

phosphorylation and activity of these and other components more thoroughly.  

As observed for the phosphorylation levels of eNOSS633 and eNOSS1177, culture of HUVEC 

with 20 mM mannitol and 5 mM glucose also affected the basal expression level of IKKß 

and the unstimulated phosphorylation levels of PKBS473 and I?BaS32. While only the 

decrease in basal PKBS473 phosphorylation in normoglycaemic cells was statistically 

significant with respect to unstimulated control, these findings suggest that high 

concentrations of mannitol in the culture medium exert an osmotic effect on HUVEC. 

Further investigations are needed to determine whether this is a robust effect or merely an 

artefact of the experimental procedures. These findings put into question the use of 

equimolar mannitol concentrations as a suitable control for experimental hyperglycaemia, 

and will reduce the potency of any conclusions drawn from such experiments.  

Overall, the effects observed in HUVEC in the present study were small, and large 

interexperimental variation in cellular responsiveness to stimuli resulted in few statistically 

significant changes. Therefore, the significance of the present study is limited. 
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4.3.4 Superoxide production 

Preliminary investigation of superoxide generation by HUVEC revealed that experimental 

hyperglycaemia had no effect on O2
- levels compared to normoglycaemic control (Figure 

4-15). In addition, O2
- levels were higher when co-incubating cells with the eNOS inhibitor 

L-NAME, indicating that functional NO synthesis reduces O2
- levels. This may suggest 

that inhibition of NO production may increase eNOS-mediated superoxide production, or 

that the superoxide produced during uninhibited eNOS activity rapidly reacts with NO to 

form peroxynitrite (Reiter et al., 2000) , thus becoming undetectable by means of the 

lucigenin-based superoxide assay employed here. Greater TNFa -stimulated superoxide 

production in hyperglycaemic HUVEC may suggest that experimental hyperglycaemia  

sensitizes HUVEC to TNFa; however, given that TNFa treatment was carried out in 

singlicate, this thought is highly speculative. 

Several other studies have found that superoxide levels in vascular endothelial cells were 

altered by experimental hyperglycaemia, and were frequently linked to eNOS expression 

or activity levels: Culturing of HAEC with 22.2 mM glucose for 5 days increased eNOS 

mRNA and protein levels 2-fold and O2
- levels 3-fold, while increasing NO levels by only 

1.4-fold, leading to an imbalance between O2
- and NO (Cosentino et al. , 1997). Similarly, 

HUVEC showed a 40% increase in NO production and a 300% rise in O 2
- generation, 

along with elevated eNOS expression, after 2 weeks of experimental hyperglycaemia (20 

mM) (Quagliaro et al., 2007).  

High glucose concentrations (22 mM) abolished insulin-stimulated eNOS activity in 

BAEC, thus impairing the NO synthesis pathway, while simultaneously increasing 

oxidative stress as indirectly measured by 3-fold increased superoxide dismutase (SOD)-1 

expression in hyperglycaemic cells (Noyman et al., 2002). Du and co-workers reported 

decreased eNOS activity (as measured by L-arginine conversion) and O2
- overproduction 

in hyperglycaemic BAEC, although this overproduction was attributed to mitochondrial 

activity (Du et al., 2001) , rather than uncoupled eNOS activity. Another group also showed 

that experimental hyperglycaemia induced mitochondrial superoxide production 

(Nishikawa et al., 2000). 

Experimental hyperglycaemia may also increase oxidative stress by modulating the levels 

of other reactive oxygen species, such as hydrogen peroxide, which was increased in 

HUVEC after 48h with 33 mM glucose (Ho et al., 1999). A correlation between decreased 

eNOS expression, reduced nitrite levels and increased mitochondrial ROS production in 
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hyperglycaemic HAEC after 7 days was postulated by another group (Srinivasan et al., 

2004). Decreased eNOS promoter activity in HAEC was ameliorated by quenching of 

ROS. In addition, inhibition of mitochondrial ROS production normalised eNOS mRNA 

levels in diabetic mice (Srinivasan et al., 2004). By contrast, it has also been suggested that 

ROS can increase eNOS mRNA expression via NF?B (Zhen et al. , 2008).  

The reaction product of NO and O2
-, peroxynitrite, has been suggested to suppress PKB 

activity and induce apoptosis during experimental hyperglycaemia by upregulation of 

PTEN (Song et al. , 2007). Although this and other findings described above stand in 

contrast to the present results of unchanged O2
- , eNOS, PKBT308, PKBS473 and PTEN 

levels, the experimental evidence from the single superoxide assay shown in the present 

study is not sufficient to draw definitive conclusions about superoxide generation under 

experimental hyperglycaemia in HUVEC. Therefore, further experiments are needed to 

elucidate the situation more fully.  

Although insulin -stimulated NO synthesis has not been investigated in the present study, 

previous results in this laboratory demonstrated that 48h of experimental hyperglycaemia  

(25 mM) in HAEC decreased insulin-stimulated NO production by 60% (Salt et al., 2003). 

Given the frequently postulated imbalance between NO and O2
-/ROS production 

(Cosentino et al., 1997, Ho et al., 1999, Noyman et al., 2002, Srinivasan et al., 2004, 

Quagliaro et al., 2007) , and its potential involvement in causing endothelial dysfunction 

and atherogenesis, measurement of NO synthesis by HUVEC - and its relation to 

superoxide/ROS levels - under the experimental hyperglycaemic  conditions employed here 

would be a valuable addition to the present study. 
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5 The Subcellular Localisation of eNOS in Human 

Vascular Endothelial Cells 
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5.1 Introduction 

5.1.1 Background  

The localisation of a molecule within the cell is important to its function. Initially, eNOS 

was found in the particulate subcellular fraction of bovine aortic endothelial cells 

(Forstermann et al., 1991, Pollock et al., 1991) and eNOS-transfecetd COS-7 cells 

(Busconi & Michel, 1993) . Later studies showed that eNOS is targeted to the Golgi body 

of eNOS-transfected HEK cells (Sessa et al., 1995). In the cell line ECV304, exogenous 

eNOS localised to the plasma membrane and the perinuclear/Golgi area (Sowa et al., 

1999), but the endothelial nature of ECV-304 cells is doubtful (Brown et al., 2000). At the 

plasma membrane, eNOS is thought to localise to caveolae, plasma membrane 

microdomains coated with the protein caveolin (Garcia-Cardena et al., 1996a, Garcia -

Cardena et al., 1996b, Shaul et al. , 1996). However, it is unclear whethe r eNOS also 

localises to other cellular compartments.  

Targeting of eNOS to caveolae is determined by dual acylation with the fatty acids 

myristate and palmitate (Liu & Sessa, 1994, Garcia-Cardena et al., 1996b, Shaul et al. , 

1996). Its presence at the plasma membrane is thought to optimise eNOS activation and 

nitric oxide release to the extracellular environment (Garcia-Cardena et al., 1996b, Shaul et 

al., 1996). Based on data from eNOS-transfected COS-7 cells, the plasma membrane - and 

Golgi-associated pools of eNOS are thought to respond differently to activation by PKB 

and calcium-dependent mechanisms (Fulton et al., 2004a). To date, little is known about 

the effect of agonists on the subcellular distribution of eNOS. Furthermore, much of the 

work so far has been carried out in non-endothelial cell lines or cells whose endothelial 

origin is debated. In addition, the subcellular localisation of phospho-eNOS species has not 

been fully investigated.  

 

5.1.2 Aims of the chapter 

So far, it is not known how stimulation with insulin affects the subcellular distribution of 

eNOS within human vascular endothelial cells. Therefore, the aim of this chapter was to 

investigate the effect of acute insulin stimulation on the subcellular localisation of eNOS 

and its distribution within different cellular compartments of human aortic endothelial 

cells.  
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5.2 Results 

5.2.1 Selection of experimental conditions 

Human aortic endothelial cells were used to investigate the subcellular distribution of 

eNOS, since the central macrovascular origin of HAEC makes them a more relevant model 

system than HUVEC for the study of responses to acute insulin stimulation. In addition, no 

previous reports addressing eNOS localisation in HAEC have been published to date.  

HAEC were left untreated or stimulated acutely with 1 µM insulin for 10 minutes prior to 

fixation in 4% (w/v) formaldehyde. An ammonium chloride blocking step was used to 

prevent overfixation of cells. HAEC were permeabilised gently (0.5-1% (v/v) Triton X-

100, 7 min) to avoid detachment of the plasma membrane. For co-labelling experiments, 

cells were co-incubated with anti-eNOS and anti-caveolin-1 antibodies. After washing, 

cells were co-incubated with both secondary antibodies. DAPI dye was used to stain nuclei 

(see section 2.2.13 for a detailed description). 

For subcellular fractionation experiments, iodixanol was chosen because of its ability to 

form a continuous gradient upon centrifugation, which results in good yields of cellular 

organelles at high purity (Graham et al., 1994).  
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5.2.2 Subcellular localisation of eNOS 

In order to investigate the subcellular localisation of eNOS, HAEC were immunolabelled 

with anti-eNOS antibody and stained with DAPI. Subsets of cells were co-labelled with 

anti-caveolin-1 antibody. Confocal microscopy of immunolabelled HAEC showed that 

eNOS is present throughout the cell, including the nucleus (Figure 5-1, panels A, C-E). 

Frequently, prominent eNOS labelling was observed in the perinuclear area (Figure 5-1, 

panel F). eNOS was also found at the plasma membrane, and also colocalised with the 

membrane marker caveolin-1 (Figure 5-1, panels B and E). 

It was investigated whether acute treatment with insulin affected the subcellular 

localisation of eNOS. Subsets of HAEC were stimulated with insulin for 10 minutes prior 

to fixation and immunolabelling. Confocal analysis and subsequent quantification of 

fluorescence intensity in nucleus, perinuclear area and cytoplasm demonstrated that there 

was no difference between insulin -treated and control HAEC (Figure 5-2). The majority of 

eNOS localised to the perinuclear region, where 1.8-fold greater quantities of eNOS were 

detected than in the nuclei of untreated and insulin-stimulated HAEC. The smallest 

proportion of eNOS was seen in the cytoplasm (34% and 32% compared to 100% nuclear 

eNOS content in untreated and insulin-stimulated cells, respectively). Insulin had no 

discernible effect on the subcellular localisation of eNOS in HAEC. Statistical analysis 

could not be performed on this singlicate experiment, but the ranges of eNOS fluorescence 

are indicated in the graph in Figure 5-2, panel C. 
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Figure 5-1 eNOS localises to the plasma membrane and the perinuclear region. 
HAEC were immunolabelled with anti-eNOS (green, panel A) and anti-caveolin-1 (red, panel B) 
antibodies and stained with DAPI (blue, panel D). Confocal images of fluorescence and brightfield 
channels were taken (see sections 2.2.13 and 2.2.13.1). Representative images from two separate 
fields (Panels A-E, panel F) are shown. Membrane localisation of eNOS and co-localisation with 
the membrane-marker caveolin-1 (panel E) and perinuclear localisation of eNOS (panel F) are 
indicated by arrows. To normalise against background fluorescence, separate controls were 
performed in absence of primary antibody and in presence of irrelevant secondary antibody.  
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Figure 5-2 Insulin has no effect on eNOS localisation. 
HAEC were stimulated with 1 µM insulin for 10 min or left untreated before fixation in 4% 
formaldehyde and immunolabelling with anti-eNOS antibody as described in section 2.2.13. 
Representative confocal images of untreated (panel A) and insulin-stimulated (panel B) HAEC are 
shown.  To normalise against background fluorescence, separate controls were performed in 
absence of primary antibody and in presence of irrelevant secondary antibody.  Panel C shows the 
quantification of fluorescence intensity in different cellular regions relative to nuclear fluorescence 
intensity as mean ± range. Per treatment group, 30 individual cells were analysed. For cytoplasmic 
measurements, three separate measurements were taken from the cytoplasm of each cell, covering 
areas of high, medium and low fluorescence intensity, and expressed as a ratio to nuclear 
fluorescence intensity before calculation of the mean.  
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5.2.3 Distribution of eNOS within different cellular compartments 

To obtain a more detailed picture of the subcellular distribution of eNOS, iodixanol 

gradient centrifugation was performed to yield purified cellular organelles. Resulting 

fractions of the gradient were TCA-precipitated prior to Western blot analysis. Antibodies 

against marker proteins for different cellular organelles were used to determine which 

organelles were contained in individual fractions. 

Fractions 1-3 contained the plasma membrane marker Na+/K+-ATPase and the caveolae 

marker caveolin-1. Fractions 4-7 contained markers for Golgi body and late endosomes, 

fractions 5-7 the markers for early endosomes and cytoplasm. As expected, eNOS was 

detected mainly in the plasma membrane fractions and in the denser fractions containing 

endosome, Golgi and cytoplasm markers. Probing of Western blots with phospho-specific 

antibodies against eNOST495, eNOSS615 and eNOSS1177 demonstrated that eNOST495 and 

eNOSS615 localised almost exclusively to the plasma membrane, whereas eNOSS1177 

localised predominantly to plasma membrane and, to a lesser degree, early endosome-

containing fractions. PKB localised to cytoplasmic and Golgi body-containing fractions, 

but was not found at the plasma membrane (Figure 5-3).  

The distribution of marker proteins within fractions from insulin -treated cells differed 

slightly from that of untreated cells. However, in most cases, there was no marked 

difference in the subcellular distribution of eNOS species between insulin-treated and non-

treated cells as judged by co-fractionation with marker proteins. Interestingly, a higher 

molecular weight species, recognised by the anti-eNOST495 and anti-eNOS antibodies, was 

detected in the endosomal/cytoplasmic fractions of unstimulated HAEC. Abundance of this 

species was lower in insulin-treated cells.
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Figure 5-3 eNOS localises to different cellular compartments. 
HAEC were stimulated acutely with 1 µM insulin or left untreated before preparation of cell 
homogenates and centrifugation on an iodixanol gradient (10-40%) (see section 2.2.4 for details). 
After centrifugation, 500 µl fractions were collected from the top of centrifuge tubes and TCA-
precipitated prior to Western blot analysis with specific antibodies as indicated. Antibodies against 
markers of cellular organelles were used to determine the content of each fraction. Two different 
exposures of total eNOS are shown to illustrate the presence of a higher molecular weight eNOS 
species in fractions 4-7 of unstimulated HAEC lysates (see arrow). This species is also detectable 
by anti-eNOST495. Data are shown are representative blots from 2 separate experiments.               
PM = plasma membrane, EE = early endosome, LE = late endosome 
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5.3 Discussion 

In the present study, confocal microscopy analysis of eNOS-immunolabelled HAEC 

showed that eNOS is detectable at the plasma membrane and in the nuclei, perinuclear 

regions and the cytoplasm of HAEC. Proportionally, the greatest eNOS abundance was 

found in the perinuclear region, which most likely corresponds to the Golgi body. eNOS 

abundance in the cytoplasm was low (Figure 5-1). eNOS abundance at the plasma 

membrane was not quantified from confocal images, as the plasma membrane represents 

too small a proportion of the cell in a given plane of a confocal image. 

Previous studies have shown that eNOS localises to the plasma membrane and 

perinuclear/Golgi area in foetal lamb pulmonary artery endothelial cells (Shaul et al., 

1996) and BAEC (Garcia-Cardena  et al., 1996a, Garcia-Cardena  et al., 1996b) , but this is 

the first report to show that eNOS is also detectable in the nuclei of human aortic 

endothelial cells. In line with the present findings, cytosolic and nuclear localisation of 

eNOS was reported for bone marrow-derived mesenchymal stem cells (Klinz et al., 2005).  

A more detailed picture of the distribution of eNOS within the cell was obtained by 

iodixanol gradient fractionation of HAEC homogenates. As expected, eNOS was detected 

primarily in the plasma membrane fractions and in the denser fractions containing 

endosome, Golgi and cytoplasm markers, confirming microscopy data. In order to obtain 

improved resolution and purity of organelles and molecules, the gradient fraction size 

could be reduced, thus providing greater accuracy in determining localisation of different 

cellular components. The protocol employed for iodixanol gradient centrifugation involves 

pelleting of the nuclei prior to gradient centrifugation; hence, eNOS abundance in nuclei 

could not be quantified by this method.   

To date, the distribution of different phospho-eNOS species within human vascular 

endothelial cells has not been fully investigated. The present study showed that eNOST495 

and eNOSS615 localised almost exclusively to the plasma membrane, whereas eNOSS1177 

localised predominantly to the plasma membrane and, to a lesser degree, to early 

endosome-containing fractions (Figure 5-3). In BAEC, eNOSS1179 was shown to localise to 

caveolae and Golgi domains (Fulton et al., 2002) , supporting the present findings. In 

mesenchymal stem cells, eNOSS1177 was found in filamentous perinuclear structures (Klinz 

et al., 2005). eNOSS1177 was also detected in the perinuclear region and, interestingly, the 

nucleoli of rat glioma cells (Klinz et al., 2007). Together, these data suggest that eNOSS1177 

localises to the plasma membrane and the Golgi body in several different cell types. 
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Furthermore, eNOSS114 was heavily enriched in the nucleus of mesenchymal stem cells 

(Klinz et al., 2005). 

As each eNOS phospho-species was detected only once in two separate experiments , it 

needs to be clarified whether these and other phospho-eNOS species are also present in 

other cellular compartments of human vascular endothelial cells. The above data indicate 

that the distribution of eNOS can vary according to its phosphorylation status. While it is 

thought that the phosphorylation status influences the activity and function of eNOS, the 

localisation of eNOS and its phospho-species may play an equally important role in 

regulating its activity. For example, previous experiments with eNOS-targeting mutants in 

BAEC have shown that eNOS-mediated NO production is more effective and more 

responsive to calcium-dependent agonists and the PKB activator angiopoietin when eNOS 

is located at the plasma membrane, rather than the Golgi body, whereas the response of 

both pools of eNOS to insulin was comparable (Zhang et al., 2006). Therefore, it is 

speculative that agonists will promote the presence of active eNOS species (such as 

eNOSS1177) at the plasma membrane.  

Interestingly, a higher molecular weight species was detected with the anti-eNOST495 and 

anti-eNOS antibodies in the endosomal/cytoplasmic fractions of unstimulated HAEC. 

Abundance of this species was lower in insulin -treated cells. If this higher molecular 

weight species is a modified form of eNOST495, this may indicate that i) acute stimulation 

with insulin likely reduces the amount of eNOST495 and/or the higher molecular weight 

species in the cell and ii) eNOST495 may be labelled for degradation, for example by 

ubiquitin-conjugation, and trafficked in endosomes. This lends support to the idea that 

trafficking and cellular localisation of eNOS and its phospho-species may influence its 

activity.  

Other than eNOST495, acute treatment with insulin did not modify the distribution of eNOS 

or phospho-eNOS species, as determined by confocal microscopy and subcellular 

fractionation. In a previous study, stimulation of BAEC with the eNOS-agonist vascular 

endothelial growth factor (VEGF) was found not to affect eNOSS1179 localisation (Fulton et 

al., 2002). As the present subcellular fractionation data were derived from a single 

experiment, these studies need to be repeated in order to clarify the distribution of eNOS 

and its phospho-species within different cellular compartments. It would be interesting to 

map the trafficking of eNOS and its phospho-species within endothelial cells, and to 

investigate their fate following stimulation with insulin and other agonists. 
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Co-localisation of eNOS with caveolin-1, a marker of caveolae in the plasma membrane, 

was demonstrated in the present study. Interaction between eNOS and caveolin -1 has 

previously been reported in bovine aortic endothelial cells (Feron et al. , 1996, Garcia -

Cardena et al., 1996a, Garcia -Cardena et al. , 1997, Feron et al., 1998, Ghosh et al., 1998). 

Tyrosine phosphorylation of eNOS has been suggested to influence its activity, trafficking 

and localisation, as well as its interaction with caveolin-1 in bovine aortic endothelial cells 

(Garcia-Cardena  et al., 1996a). Interaction with caveolin -1 is thought to inactivate eNOS, 

blocking NO synthesis (Garcia-Cardena  et al., 1997). Disruption of this association by 

binding of Ca2+-calmodulin to eNOS is postulated to lead to eNOS activation (Michel et 

al., 1997, Feron et al. , 1998, Ghosh et al. , 1998). Furthermore, Ca2+-mobilising agonists 

regulate the cycle of dissociation and re -association between eNOS and caveolin, which is 

thought to influence NO-dependent signalling in the vascular wall (Feron et al. , 1998). 

Thus, the localisation of eNOS and its molecular interactions play important roles in 

regulating eNOS activity.  

Other studies also support the idea that the localisation of a molecule within the cell has 

crucial implications for its activity and downstream effects. In pancreatic beta-cells, the 

effect of insulin signalling through its two receptor isoforms is thought to be determined by 

specific localisation of the receptor subtypes within the plasma membrane (Uhles et al., 

2003). Importantly, in 3T3L1 adipocytes, the insulin receptor colocalises and directly 

interacts with caveolin (Kimura et al., 2002) . If this association of the insulin receptor and 

caveolin also occurs in vascular endothelial cells, this would bring the receptor close to its 

downstream targets such as eNOS. Rapid recruitment of downstream signalling molecules 

and enzymes is vital for effective signal transduction and appr opriate cellular response to a 

stimulus. 

In the present study, the eNOS-activating kinase PKB localised to cytoplasmic and Golgi 

body-containing fractions, but was not found at the plasma membrane, suggesting that it 

was not associated with eNOS at the pla sma membrane. Previous studies have shown that 

eNOS forms a complex with PKB and the molecular chaperone hsp90 (Garcia-Cardena  et 

al., 1998, Fontana et al., 2002, Takahashi & Mendelsohn, 2003) , enabling rapid activation 

of eNOS. However, the precise location of this complex has not been determined, and thus 

needs to be investigated further. It has also been suggested that association of eNOS with 

different polymerisation states of actin modulates eNOS activity in porcine pulmonary 

artery endothelial cells (Su et al., 2003). To clarify interactions between eNOS and other 
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cellular molecules, including cytoskeletal components , co-immunoprecipitation 

experiments and co-labelling confocal microscopy could be used.  

The cellu lar localisation and association of eNOS with its interaction partners represents a 

sophisticated mechanism for regulation of eNOS activity. More extensive investigations of 

the effect of insulin and other agonists on the localisation and association of eNOS and its 

interaction partners are necessary to clarify the precise nature of these regulatory 

mechanisms. 
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6 The Inhibitory Role of AMPK in Proinflammatory 

Activation of Human Vascular Endothelial Cells 
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6.1 Introduction 

6.1.1 Background 

It has been suggested that patients with diabetes are in a state of chronic low level 

inflammation (Fernandez-Real & Ricart, 2003, Wellen & Hotamisligil, 2005), which 

promotes atherogenesis. In this study, low-level inflammation was mimicked by treatment 

of HAEC with TNFa. During atherogenesis, monocytes attach to vascular endothelial cells 

and eventually migrate through the endothelium in a process called transendothelial 

migration (transmigration) or diapedesis. This process involves the expression of 

chemokines, which attract leukocytes/monocytes to the vascular endothelium.  

The AMP-dependent protein kinase (AMPK) is an energy-sensor which regulates energy 

metabolism. It is a target for the hypoglycaemic drug metformin, which is thought to lower 

blood glucose levels by inhibiting gluconeogenesis (Zhou et al., 2001, Shaw et al., 2005). 

Importantly, in the context of the present study, AMPK can activate eNOS by 

phosphorylating Ser1177, thus increasing NO production in bovine and human aortic 

endothelial cells (Chen et al. , 1999, Morrow et al., 2003). Given the potential 

antiatherogenic properties of NO (Li et al., 2002, Dickhout et al., 2005, Rask-Madsen & 

King, 2005, Tesauro et al. , 2005, Rask-Madsen & King, 2007) , this evidence suggests that 

AMPK is involved not only in glucose homeostasis, but also promotes an antiatherogenic 

phenotype by increasing NO synthesis, which is likely to increase vasodilation and reduce 

the potential of leukocyte-endothelium interactions. 

Previous work carried out by Dr Marie-Ann Ewart in the laboratory has demonstrated that 

AMPK attenuates the TNFa-induced expression of cell surface adhesion molecules in 

human aortic endothelial cells after 4h of stimulation with the  AMPK agonist AICAR, but 

this effect was not observed after short-term (45 min) stimulation of AMPK (see Figure 

6-1). Furthermore, monocyte adhesion to HAEC was downregulated by acute (45 min) 

stimulation of AMPK activity in a nitric oxide-dependent fashion. Prolonged (4h) 

stimulation of AMPK activity was more effective at decreasing monocyte adhesion, but 

this effect was not NO-dependent (see Figure 6-2) (unpublished observations). 

Since these phenomena could not be explained by the effect of AMPK on adhesion 

molecule expression, it was decided to investigate endothelial chemokine production, 

which is a key event in attracting monocytes to the vascular endothelium. It was speculated 
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that acutely, AMPK activity negatively regulates chemokine production, while longer-term 

AMPK activity downregulates adhesion molecule expression in vascular endothelial cells.  

In addition, the impact of AMPK activity and NO bioavailability on monocyte migration 

was investigated, since work by other groups has suggested that AMPK activity can reduce 

migration of monocytic and hepatic stellar cells (Kanellis et al., 2006, Caligiuri et al., 

2008). 

 

6.1.2 Aims of the chapter 

The aim of this chapter was to look at the potential antiatherogenic properties of AMPK 

activity and NO bioavailability. Specifically, the effect of short-term and prolonged AMPK 

activity on NO-mediated regulation of chemokine production in human aortic endothelial 

cells was investigated. Furthermore, the effect of AMPK activity and NO bioavailability on 

monocyte migration was assessed.  
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Figure 6-1 Prolonged but not rapid AMPK activation inhibits TNFa-stimulated cell 
surface expression of adhesion molecules. 

HAEC were infected with adenovirus encoding constitutively active AMPK (AMPK-CA) for 24h 
prior to incubation in the presence or absence of TNFa (10 ng/ml, 6h) and in the presence or 
absence of 2 mM AICAR for the final 45 or 240 min. Cell surface expression of ICAM-1, VCAM-
1 and E-selectin was assessed by flow cytometry. The results shown are from six independent 
experiments performed in triplicate. *p<0.01 relative to TNFa-stimulated value in absence of 
AICAR or AMPK-CA                                                                                                                      
This work was carried out by Dr Marie-Ann Ewart in the laboratory. 

 
 

         
Figure 6-2 The effects of rapid, but not prolonged stimulation of AMPK on U 937 cell 
adhesion are sensitive to L-NAME. 

HAEC were infected with control adenoviruses or AMPK-CA-encoding virus 24h prior to 
incubat ion in the presence or absence of TNFa (10 ng/ml, 6h) after preincubation (30 min) in the 
presence or absence of 1 mM L-NAME.  For the final 45 or 240 min subsets of cells were also 
incubated with 2 mM AICAR. The results of seven independent U-937 cell adhesion assays are 
shown. # p<0.05 relative to value in the absence of L-NAME                                                             
This work was carried out by Dr Marie-Ann Ewart in the laboratory. 
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6.2 Results 

6.2.1 Experimental conditions 

A literature search was performed to determine which chemokines were produced by 

vascular endothelial cells. The range of chemokines secreted by vascular endothelial cells 

included MCP-1, -2 and -3, MIP -1a and -1ß, MIG, Eotaxin, RANTES, GRO and IP-10. 

Therefore, secretion of each of these proteins from stimulated HAEC was assessed using 

an antibody-based chemokine assay.   

HAEC were first stimulated with the AMPK activator, AICAR, for 45 min or 4h with or 

without co-incubation with 10 ng/ml TNFa for 4h and/or the eNOS inhibitor L-NAME. In 

a parallel set of experiments, HAEC were infected with adenovirus encoding for 

constitutively active AMPK (AMPK-CA), dominant-negative AMPK (AMPK-DN), or an 

empty expression cassette. HAEC were then treated with AICAR and/or TNFa and/or the 

eNOS inhibitor L -NAME (see section 2.2.11 for a detailed description). In each case, the 

cell culture medium was aspirated at the end of the treatment period, and replaced with 

fresh, serum-free RPMI (SF-RPMI) after thorough washing, to obtain conditioned medium 

containing secreted chemokines.  It should be noted that under these conditio ns, both 

TNFa and AICAR had been washed away prior to collection of conditioned medium. This 

conditioned medium was used for chemokine analysis (section 6.2.2) and monocyte 

migration assays (section 0). 
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6.2.2 Chemokine production by HAEC 

Previous work in the laboratory has shown that monocyte adhesion to HAEC is decreased 

by acute (45min) AMPK activation, but this was not dependent on cell surface adhesion 

molecule expression (see Figure 6-1and Figure 6-2). Therefore, it was speculated that 

AMPK acutely regulates the secretion of endothelial cell chemokines, thereby influencing 

the attraction of monocytes to endothelial cells. Hence, production of the chemokines 

MCP-1, -2 and -3, MIP-1a and -1ß, MIG, Eotaxin, RANTES, GRO and IP -10 by HAEC 

was assessed using a Human Chemokine Multiplex Bead Immunoassay and a Luminex 

100TM-based detection system ( see section 2.2.12 for details). 

Analysis of chemokine secretion showed that treated and untreated HAEC secrete 

measurable levels of MCP-1, MCP-2, Eotaxin, RANTES and IP-10; however, only MCP-1 

secretion was stimulated by TNFa; hence, only MCP-1 data are illustrated in Figure 6-3. 

Secretion levels of MCP-3, MIP -1a and -1ß, MIG, and GRO were below the detection 

limits of the assay.  

As expected, treatment of HAEC with TNFa for 4h strongly induced production of MCP-1 

to 47.7±5.3-fold above basal (p<0.001; Figure 6-3). Treatment with AICAR alone for 45 

minutes or 4h had no effect on chemokine production. Prolonged stimulation of AMPK 

activity by AICAR (4h) significantly reduced TNFa -induced MCP-1 secretion, both in the 

absence (2.0±0.3-fold, p<0.005) and presence of L-NAME (1.8±0.2, p<0.05; paired t-

tests).  

Incubation of TNFa -treated cells with AICAR for 45 minutes also reduced TNFa-induced 

MCP-1 secretion in the absence of L-NAME (1.9±0.5-fold, p = 0.0653; paired t-test), but 

not in the presence of L-NAME. For all treatments, addition of L-NAME slightly increased 

the secretion of MCP-1, resulting in a 2.6±1.5-fold increase in chemokine production 

under control conditions (p = 0.393). 
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Figure 6-3 MCP-1 production in HAEC is downregulated by AMPK activity.  
Chemokine production by HAEC was assessed using antibody-based technology. HAEC were 
treated with 2 mM AICAR for 45 min (A45) or 4h (A4) in the presence (AT45; AT4) and absence 
of 10 ng/ml TNFa (T, 4h) and/or 200 µM L-NAME (4h) as indicated. Thereafter, cells were 
washed thoroughly and incubated with fresh SF-RPMI for 1h at 37°C. This conditioned medium 
was collected and used for chemokine analysis using BioSourceTM technology. The graph shows 
MCP-1 secretion data from 5 (vehicle) or 4 (+ L-NAME) independent experiments as mean ± 
SEM. TNFa strongly induced MCP-1 secretion ($p<0.001, paired t-test). Treatment with AICAR 
for 4h significantly reduced TNFa-induced MCP-1 secretion (**p<0.005 for AT4 compared to T 
without L-NAME; *p<0.05 for AT4 compared to T with L-NAME; paired t-tests). C = untreated 
control 
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6.3 Discussion 

In the present study, HAEC were found to secrete low levels of the chemokines MCP-1, 

MCP-2, Eotaxin, RANTES and IP -10. Basal MCP-1 secretion was about 5 times higher 

compared to all other chemokines measured. TNFa markedly stimulated the secretion of 

MCP-1 only; hence, only MCP-1 data are included in this thesis. In line with the 

hypothesis, treatment with AICAR for 4h or 45 minutes slightly reduced TNFa -induced 

secretion of MCP-1; this was statistically significant for 4h of AICAR treatment (see 

Figure 6-3). 

As predicted by the hypothesis, inhibition of NO synthesis through L-NAME increased 

TNFa-stimulated secretion of MCP-1 under all conditions (Figure 6-3), indicating that 

negative regulation of MCP-1 production in HAEC is (partially) NO-dependent or at least 

enhanced by NO bioavailability. These data suggest that decreased NO bioavailability 

promotes a proatherogenic endothelial profile. The present findings are corroborated by 

clinical evidence which suggests that patients with hyperinsulinaemia and diabetes, which 

have decreased NO bioavailability, show an increased risk for atherosclerosis (Li et al., 

2002, Dickhout et al. , 2005, Rask-Madsen & King, 2005, Tesauro et al., 2005, Rask-

Madsen & King, 2007).  

The present data suggest that the attenuating effect of AMPK activity on TNFa -stimulated 

MCP-1 production was NO-dependent in the short-term, but not during prolonged AMPK 

activation (Figure 6-3). Acute (45 min) stimulation of AMP K reduced TNFa -stimulated 

MCP-1 secretion in the absence, but not in the presence of L-NAME (results not 

statistically significant due to spread of data points). Prolonged AMPK stimulation (4h) 

significantly decreased TNFa -stimulated MCP -1 secretion in HAEC independently of NO 

synthesis. These findings suggest that acutely, AMPK stimulates eNOS-mediated NO 

production, whereas prolonged AMPK activity reduces chemokine secretion via (an) 

eNOS- and NO-independent pathway(s). The precise nature of this/these pathway(s) 

remains to be investigated.  

Furthermore, the present data indicate that AMPK-mediated downregulation of MCP -1 

secretion occurs before downregulation of cell surface adhesion molecule expression in 

HAEC (see Figure 6-1), but also persists over longer periods of time. These studies need to 

be extended to confirm the time course of events in the regulation of endothelial 

chemokine secretion and adhesion molecule expression. It would also be of interest to 
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study the effect of AMPK activity and NO bioavailability on the secretion of other 

chemokines which have not been measured in the present study.  

Based on the higher levels of secreted MCP-1 and its monocyte chemotactic role , 

conditioned medium from HAEC treated with TNFa should be able to stimulate monocyte 

migration. This speculation will have to be validated by monocyte migration assays using 

conditioned medium from HAEC. 

Previous studies have shown that AMPK activation through AICAR reduces chemokinesis 

and chemotaxis of U937 pre-monocytic cells by ~50% (Kanellis et al., 2006). Work on 

hepatic stellar cells showed that activation of AMPK reduced proliferation, migration and 

MCP-1 secretion, thus reducing the activated phenotype of these cells (Caligiuri et al., 

2008). While these studies were carried out in different cell types, the findings correlate 

with the present study in that AMPK activation through AICAR reduced MCP-1 secretion, 

which would be expected to attenuate monocyte migration.   

Overall, the present findings support an antiatherogenic role for AMPK, as AMPK activity 

can compensate for reduced NO bioavailability and decrease the atherogenic profile of 

HAEC cultured with proinflammatory stimuli. This has already been proposed by other 

groups who found that AMPK may have an anti-inflammatory role in vitro  and in vivo. It 

was postulated that AMPK plays an important role in decreasing inflammation via 

inhibition of NF?B signalling in animal models of experimental autoimmune encephalitis 

(EAE) (Nath et al. , 2005, Prasad et al., 2006). In addition, AICAR-stimulated AMPK 

activity prevented lipopolysaccharide-induced cytokine and iNOS express ion in cultured 

rat astrocytes, microglia and macrophages, and in rats in vivo, by prevention of NF?B 

activation (Giri et al. , 2004). Further studies are required to de fine the molecular 

mechanism underlying the potential AMPK-mediated antiatherogenic effects in the present 

study.  
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7 Discussion 
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The vascular endothelium plays a crucial role in the maintenance of vascular health by 

regulating vascular tone, platelet aggregation, coagulation, fibrinolysis and monocyte 

adhesion, amongst others. Endothelial regulation of vascular tone occurs through the 

coordinated secretion of endothelial vasodilators and vasoconstrictors. The principal 

endothelial vasodilator is NO, which is produced by endothelial nitric oxide synthase. NO 

mediates vasodilation in vivo  and ex vivo, and is thought to have vasoprotective properties 

(Gewaltig & Kojda, 2002, Hsueh & Quinones, 2003, Wheatcroft et al., 2003). In several 

disorders, including insulin resistance, diabetes and atherosclerosis, endothelial function 

can be impaired, which promotes adverse cardiovascular effects such as hypertension, 

cardiac infarction and strokes, as well as microvascular disease. NO bioavailability has 

been shown to be reduced in patients with hyperinsulinaemia and diabetes (reviewed in 

(Rask-Madsen & King, 2007) ). However, the causal relationship between impaired NO 

bioavailability, endothelial dysfunction and disease is still under debate. 

Insulin is a vasoactive hormone that stimulates vasodilation by activating eNOS through 

the insulin signalling pathway (Scherrer et al., 1993, Scherrer et al., 1994, Zeng & Quon, 

1996, Zeng et al., 2000). Hyperinsulinaemia/insulin resistance is closely linked to 

endothelial dysfunction, which in turn is frequently associated with decreased NO 

bioavailability and proatherogenic processes in patients (Li et al., 2002, Dickhout et al., 

2005, Rask-Madsen & King, 2005, Tesauro et al., 2005). Current evidence suggests that 

hyperinsulinaemia impairs eNOS-mediated NO synthesis in vitro and in vivo  (Steinberg et 

al., 1996, Hogikyan et al., 1998, O'Driscoll et al. , 1999, Balletshofer et al., 2000, 

Cheetham et al., 2000, Cleland et al., 2000, Ding et al., 2000, Arcaro et al., 2002, Fulton et 

al., 2004b, Katakam et al. , 2005, Pandolfi et al., 2005, Potenza et al., 2005). However, the 

contribution of hyperinsulinaemia per se to these disorders, and the molecular mechanisms 

respons ible, are poorly characterised. To date, the effect of hyperinsulinaemia on insulin-

stimulated endothelial NO production has not been investigated in endothelial cells or the 

vasculature.  

In chapter 3, the present study therefore addressed how experimental hyperinsulinaemia 

affects eNOS-mediated NO production and the insulin signalling pathway in human aortic 

endothelial cells. Experimental hyperinsulinaemia (100 nM, 48h) in this study was 

designed to model high pathological hyperinsulinaemia in patients with insulin resistance. 

While insulin stimulated NO synthesis to a lesser degree than expected, this increase was 

statistically significant under control but not under experimental hyperinsulinaemic 

conditions, although overall NO production was comparable between the two treatment 
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groups. These findings can be explained by increased basal NO synthesis in 

hyperinsulinaemic cells and interexperimental variation in the insulin -sensitivity of HAEC. 

Ionomycin-responsive NO synthesis was blunted in hyperinsulinaemic HAEC, indicating 

that hyperinsulinaemia  may have a negative effect on Ca2+-dependent NO synthesis. At the 

molecular level, eNOS protein expression in hyperinsulinaemic HAEC remained 

unchanged. Basal and insulin -stimulated eNOSS1177 phosphorylation compared to total 

eNOS tended to increase slightly over time, while eNOST495 phosphorylation in 

hyperinsulinaemic cells showed a tendency toward increased phosphorylation levels 

following acute stimulation with insulin.  

The protein expression levels of insulin signalling pathway components and the eNOS-

activating kinase AMPK were assessed. No changes were found in the expression of PKB, 

PI3K, PDK-1, PTEN or AMPK. PKBS473 phosphorylation remained insulin-sensitive under 

expe rimental hyperinsulinaemia, but the fold-stimulation elicited by insulin was decreased 

by 50% in hyperinsulinaemic cells after 48h (data not statistically significant). Stimulated 

AMPK T172 phosphorylation was decreased and basal phosphorylation was increased after 

48h of experimental hyperinsulinaemia (data not statistically significant). 

Interestingly, acute treatment with insulin markedly increased the phosphorylation of 

AMPK T172, which is a novel and somewhat unexpected finding, given AMPK’s role in 

shutting down energy-consuming pathways. Under physiological conditions, insulin is 

released when glucose levels are high and therefore, energy is readily available. Activation 

of AMPK by phosphorylation would therefore make little sense in the context of energy 

conservation. However, in the context of vasodilation, the metabolic insulin signalling 

pathway and AMPK both act on eNOS to increase NO production, and it would therefore 

make perfect sense for these two components to act in synergy to promote increased 

vasodilation and blood flow in response to nutrient intake. Increased blood flow would 

result in glucose uptake into peripheral target tissues and thus, overall energy conservation. 

Insulin may therefore selectively upregulate the eNOS-activating kinase activity of AMPK, 

without affecting other AMPK-mediated events. Further investigation of this theory would 

be an interesting endeavour.  

Since insulin-stimulated eNOSS1177 and PKBS473 phosphorylation and NO production were 

not significantly impaired in hyperinsulinaemic HAEC, this suggests that the insulin 

signalling pathway is functional after 48h of experimental hyperinsulinaemia . In 

conjunction with the present AMPK data, this also indicates that insulin-stimulated NO 
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production is mediated via the PI3K-PKB pathway, rather than the AMPK pathway, which 

was slightly impaired after 48h of experimental hyperinsulinaemia , but did not show a 

negative effect on NO synthesis. Basal eNOSS1177 phosphorylation may be increased by 

enhanced AMPK activity. These hypotheses need to be confirmed using kinase inhibitors 

and kinase activity assays to study the impact of individual pathway components (in 

particular, PI3K, PKB and AMPK) and their activity levels on eNOS-mediated NO 

production.  

The present study also briefly investigated whether experimental hyperinsulinaemia 

differentially affected the metabolic and mitogenic branches of the insulin signalling 

pathway. Quantification of p44/42 MAPK levels indicated that MAPK levels were 

unchanged under experimental hyperinsulinaemia.  

While these data require further confirmation, it is becoming clear that experimental 

hyperinsulinaemia in HAEC has distinct effects on different components of signalling 

pathways. Experimental hyperinsulinaemia for 48h had no marked effects on endothelial 

NO production in the present study. The present results stand in contrast to several studies 

using different types of tissues, which reported that NO production was impaired in 

hyperinsulinaemic states (Steinberg et al. , 1996, Balletshofer et al., 2000, Cleland et al., 

2000). Therefore, the impact of  the present results on endothelial function has to be 

clarified. In addition, extended periods of experimental hyperinsulinaemia along with 

investigation of other areas of endothelial function, such as angiogenesis, may yield 

valuable clues to the biological impact of hyperinsulinaemia. The small changes observed 

in HAEC under experimental hyperinsulinaemia are illustrated in Figure 7-1. 
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Figure 7-1 The effects of experimental hyperinsulinaemia in HAEC 

Schematic diagram summarising the changes observed under experimental hyperinsulinaemia in 
HAEC. Note that none of the indicated changes were statistically significant. 
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Hyperinsulinaemia is a disease state that precedes hyperglycaemia and overt diabetes. 

Endothelial dysfunction and impairment of the underlying molecular mechanisms is likely 

to progress over time, and may therefore be exacerbated in hyperglycaemia. As with 

hyperinsulinaemia, endothelial function and NO bioavailability can be impaired by 

hyperglycaemia (Calver et al., 1992, McVeigh et al., 1992, Hogikyan et al., 1998, De 

Vriese et al., 2000, Rask-Madsen & King, 2007). In vitro  and in vivo evidence suggests 

that hyperglycaemia dysregulates insulin signalling (Sobrevia  et al., 1998, Federici et al. , 

2002, Salt et al., 2003) and NO-mediated vasodilation (Tesfamariam et al., 1990) and 

increases production of reactive oxygen species (Cosentino et al., 1997, De Vriese et al., 

2000, Hink et al., 2001, Srinivasan et al., 2004). Previous studies on the effect of 

hyperglycaemia on eNOS phosphorylation have yielded conflicting results, and the 

underlying mechanisms regulating eNOS phosphorylation are poorly characterised. In 

addition, the role of the individual eNOS phosphorylation sites is not clear. 

Therefore, chapter 4 presents work on the effect of experimental hyperglycaemia on the 

regulation of eNOS phosphorylation and superoxide production in human umbilical vein 

endothelial cells. Furthermore, the effect of acute insulin treatment on eNOS 

phosphorylation at Ser114, Thr495, Ser615, Ser633 and Ser1177 was investigated in 

HUVEC. Acute insulin moderately stimulated the phosphorylation of eNOSS615 and 

eNOSS1177, and decreased the phosphorylation of eNOSS114 , eNOST495 and eNOSS633 (data 

not statistically significant). Given insulin’s role as an activator of eNOS-mediated NO 

synthesis, these results suggest that Ser114, Thr495 and Ser633 are inhibitory sites, while 

Ser615 and Ser1177 are activating sites of eNOS in insulin-stimulated HUVEC.  

The nature of the stimulus and the tissue type studied may affect the interpretation of the 

roles of eNOS phosphorylation sites. The present findings are in agreement with 

previously published data on Thr495, Ser615 and Ser1177 (Chen et al., 1999, Fleming et 

al., 2001, Michell et al. , 2001, Montagnani et al. , 2001, Greif  et al., 2002, Michell et al., 

2002, Fleming & Busse, 2003, Matsubara et al., 2003, Salt et al., 2003, Ritchie  et al., 

2007). The role of Ser114 is less clear, but it is dephosphorylated in response to the eNOS 

stimulator VEGF (Kou et al. , 2002). Ser633 has been shown to increase eNOS activity and 

was proposed to maintain prolonged activity of eNOS (Boo et al., 2002, Michell et al., 

2002, Bauer et al., 2003), which stands in contrast to the present findings. Further studies 

are needed to clarify the individual contributions of eNOS phosphorylation sites to eNOS 

activity and the effect of various stimuli on eNOS phosphorylation in a variety of vascular 

tissues. 
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To date the effect of hyperglycaemia on eNOS expression and phosphorylation is debated. 

In the present study, total eNOS expression was unaffected by experimental 

hyperglycaemia (25 mM, 48h). Basal phosphorylation of eNOSS633 was reduced (non-

significantly) and insulin-stimulated phosphorylation of eNOSS114 was significantly 

reduced, whereas basal eNOSS615 phosphorylation was increased (non-significantly) 

compared to control cells cultured with 4 mM glucose. Based on the roles of eNOS 

phosphorylation sites proposed above, these data indicate that experimental 

hyperglycaemia may promote eNOS activity. However, given the lack of effect on Ser 

1177 and Thr495, it is unlikely that NO production would be enhanced under these 

conditions. More likely, these changes in phosphorylation modify the interaction of eNOS 

with other molecules such as PKB and hsp90 and the subcellular localisation of eNOS. 

Figure 7-2 summarises the present findings on eNOS phosphorylation.   

The present study also addressed which regulatory pathways may be involved in mediating 

altered eNOS phosphorylation under experimental hyperglycaemia in HUVEC. Published 

evidence on eNOS regulatory pathways is controversial. The present findings showed that 

the metabolic insulin signalling pathway is not impaired by experimental hyperglycaemia 

in HUVEC. Preliminary experiments in the present study suggest that the stress -activated 

JNK pathway and the NF?B pathway were mildly (non-significantly) impaired by 

experimental hyperglycaemia, while the CAP-Cbl pathway was unaffected. The NF?B and 

JNK pathways have been implicated in promoting a proatherogenic profile through their 

involvement in adhesion molecule expression (Gilmore, 2006). Based on the limited effect 

on the NF?B and JNK pathways, the present study gives insufficient evidence to support a 

proatherogenic role for experimental hyperglycaemia in HUVEC. The molecular cause for 

altered eNOS phosphorylation will have to be further assessed, and the biological 

significance investigated. 

Interestingly, the present data also demonstrated that high mannitol (20 mM + 5 mM 

glucose) in HUVEC affects the phosphorylation of eNOSS633, eNOSS1177, PKBS473 and 

I?Ba S32 and the expression of IKKß when compared to cells cultured with 4 mM glucose 

alone. This effect has not been previously reported, and suggests that the use of equimolar 

mannitol as an osmotic control for hyperglycaemia is questionable. This should be kept in 

mind when interpreting data from studies using high mannitol as a control. Further 

investigations are needed to identify the mechanism(s) by which mannitol mediates its 

effects, and to determine whether such effects can also be seen in othe r cell types. 
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Figure 7-2 eNOS phosphorylation in HUVEC 

The diagram summarises the changes in eNOS phosphorylation in HUVEC after acute treatment 
with insulin (top panel) and the changes compared to control after 48h of experimental 
hyperglycaemia (bottom panel). Note that only the effect on eNOSS114 was statistically significant 
under experimental hyperglycaemia (p<0.05). 
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Previous results from our laboratory indicated that endothelial NO pr oduction was 

inhibited during experimental hyperglycaemia in HAEC (Salt et al., 2003). Given the 

potential for eNOS-mediated ROS production, it was investigated whether experimental 

hyperglycaemia increased eNOS-mediated superoxide generation. In the present study, 

endothelial cell superoxide generation was unaffected by experimental hyperglycaemia, 

which contrasts previous findings (Cosentino et al., 1997, De Vriese et al., 2000, Hink et 

al., 2001, Srinivasan et al., 2004). As the present results are preliminary, these studies will 

have to be repeated. In the light of the above findings, the effect of hyperglycaemia on 

superoxide production in vascular endothelial cells ought to be compared to untreated 

control cells and osmotic controls to determine whether mannitol influences superoxide 

generation, perhaps through increased osmotic stress. 

Chapter 5 addressed the question of how acute insulin stimulation affects the subcellular 

distribution of eNOS in HAEC. eNOS has been demonstrated to localise to the plasma 

membrane, caveolae, the Golgi body and nucleoli in various cell types (Garcia-Cardena et 

al., 1996a, Garcia -Cardena  et al., 1996b, Shaul et al., 1996, Klinz et al., 2005), but the 

localisation of endogenous eNOS has not been characterised in human vascula r endothelial 

cells. Since the localisation of eNOS within the cell is thought to have implications for its 

activity and function (Fulton et al., 2004b) , insulin may modify the subcellular distribution 

of eNOS. The subcellular distribution of eNOST495, eNOSS615 and eNOSS1177 was also 

investigated in the present study. 

Confocal microscopy data shown in chapter 5 demonstrated that eNOS localised to the 

plasma membrane, the nucleus and perinuclear region and the cytoplasm. The greatest 

abundance of eNOS was found in the perinuclear region. At the plasma membrane, eNOS 

colocalised with caveolin-1, a marker of caveolae, confirming the previously reported 

interaction between eNOS and caveolin -1 (Feron et al., 1996, Garcia-Cardena et al. , 

1996a, Garcia-Cardena et al., 1997, Feron et al., 1998, Ghosh et al., 1998). In agreement 

with these microscopy data, iodixanol gradient fractionation studies showed that eNOS 

was located principally in the plasma membrane fractions and in the denser fractions 

containing endosome, Golgi and cytoplasm markers. eNOST495 and eNOSS615 localised 

almost exclusively to the plasma membrane, whereas eNOSS1177 localised predominantly 

to the plasma membrane and, to a lesser degree, to early endosome-containing fractions of 

HAEC. These data are in agreement with previous findings by other groups (Fulton et al., 

2002, Klinz et al., 2005, Klinz et al., 2007).  
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Acute (10 min) insulin stimulation did not affect the distribution of eNOS, eNOSS615 or 

eNOSS1177, but reduced the levels of a higher molecular weight species detected with anti-

eNOST495 and anti-eNOS antibodies. Given its detection in endosomal marker-containing 

fractions, this species may represent an ubiquitinated form of eNOST495 destined for 

degradation. Its levels may be reduced by insulin-stimulated reduction of eNOST495 

phosphorylation. This lends support to the theory that extracellular agonists can modulate 

the distribution of molecules within the cell to coordinate their localisation with their 

effectors and targets, thus maximising their effectiveness. The relationship between eNOS 

subcellular localisation and function will have to be investigated further in human vascular 

endothelial cells. 

The proposed antiatherogenic properties of NO bioavailability were investigated in chapter 

6 by assessing the potential of AMPK- and NO mediated inhibition of chemokine 

production in HAEC. AMPK can directly phosphorylate eNOSS1177 and thus stimulate NO 

synthesis in HAEC (Morrow et al., 2003). While AMPK is thought to be involved 

principally in the regulation of energy homeostasis, it may also promote an antiatherogenic 

phenotype by increasing NO synthesis, which is likely to increase vasodilation and reduce 

the potential of leukocyte-endothelium interactions. Previous work in our laboratory has 

indicated that prolonged, but not short-term activation of AMPK attenuates TNFa -induced 

expression of cell surface adhesion molecules in HAEC. However, short-term activation of 

AMPK reduced monocyte adhesion to HAEC in a NO-dependent fashion, whereas this 

same effect was enhanced by prolonged activation of AMPK in a NO-independent manner 

(unpublished observations). Therefore, it was speculated that early AMPK-mediated 

inhibition of monocyte adhesion was mediated through negative regulation of chemokine 

production.  

In the present study, HAEC were found to secrete low concentrations of MCP-2, Eotaxin, 

RANTES and IP -10, and higher concentrations of MCP-1. In line with the hypothesis, 

treatment with AICAR for 4h or 45 minutes slightly reduced TNFa -induced secretion of 

MCP-1. As predicted, inhibition of NO synthesis through the eNOS inhibitor L-NAME 

increased TNFa-stimulated secretion of MCP-1. Decreased NO bioavailability therefore 

promotes a proatherogenic endothelial profile in HAEC. These data are in agreement with 

clinical data that decreased NO bioavailability in patients with hyperinsulinaemia and 

diabetes have an increased risk for atherosclerosis (Li et al., 2002, Dickhout et al., 2005, 

Rask-Madsen & King, 2005, Tesauro et al., 2005, Rask-Madsen & King, 2007) .  
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Furthermore, the present data suggest that the attenuating effect of AMPK activity on 

TNFa-stimulated MCP-1 production was at least partly NO-dependent in the short-term, 

but may beNO-independent during prolonged AMPK activation. It is therefore tentative to 

speculate that acutely, AMPK stimulates eNOS-mediated NO production, whereas 

prolonged AMPK activity reduces chemokine secretion in an eNOS- and NO-independent 

way. In addition, the present data indicate that negative regulation of HAEC chemokine 

production by AMPK occurs before downregulation of adhesion molecule expression, and 

this may contribute to the previously observed AMPK-mediated inhibition of monocyte 

adhesion. These findings, summarised in Figure 7-3, support an antiatherogenic role for 

AMPK, as AMPK activity can compensate for reduced NO bioavailability and decrease 

the atherogenic profile of HAEC cultured with proinflammatory stimuli. This is in 

agreement with results presented in chapter 3, which showed that insulin stimulates 

AMPK T172 phosphorylation and may thus promote an antiatherogenic phenotype in HAEC. 

Further studies are required to define the antiatherogenic potential of AMPK activity and 

its impact on endothelial function in vivo. 

 
 

 
Figure 7-3 The antiatherogenic actions of AMPK  

The diagram summarises present and previous findings from our laboratory regarding the 
antiatherogenic effects of AMPK activity and NO bioavailability.  
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7.1 Conclusions 

The vascular endothelium is a key player in the maintenance of vascular tone and the 

prevention of atherosclerosis. Endothelial dysfunction is characteristic of dis orders 

involving hyperinsulinaemia and/or hyperglycaemia. The present study demonstrated that 

neither experimental hyperinsulinaemia  nor experimental hyperglycaemia significantly 

impaired the metabolic branch of the insulin signalling pathway in human vascular 

endothelial cells, although it provided evidence for mildly dysregulated eNOS 

phosphorylation under experimental hyperglycaemia  in HUVEC. Other regulatory 

pathways were also predominantly unaltered. Superoxide production by HUVEC was not 

affected by experimental hyperglycaemia, but the significance of insulin-stimulated NO 

release by HAEC was lost during experimental hyperinsulinaemia. 

eNOS was shown to localise to the plasma membrane, the nucleus, the perinuclear region 

and the cytoplasm of HAEC. Acute treatment with insulin did not change this distribution 

or that of eNOSS615 and eNOSS1177, but did alter the levels of a higher molecular weight 

species of eNOST495. 

In HAEC, experimental hyperinsulinaemia had no effect on monocyte adhesion. AMPK 

and NO negatively regulated the secretion of MCP-1 in the present study, promoting an 

antiatherogenic profile.   

In summary, this study has shown that 48h of experimental hyperinsulinaemia or 

experimental hyperglycaemia do not markedly alter cellular signalling pathways in human 

vascular endothelial cells and do not predispose to a proatherogenic cellular phenotype . By 

contrast, AMPK activity and NO bioavailability have been implicated in the regulation of 

endothelial chemokine production and mediation of an antia therogenic profile. This study 

has therefore gone some way to elucidate potential molecular mechanisms underlying 

vascular endothelial dysfunction, but further investigations using more robustly insulin -

sensitive cell models are required to gain a clearer understanding of the regulation of 

endothelial function in health and disease.
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