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Abstract 

A one-pot, two step tandem process involving an Overman rearrangement and a ring 

closing metathesis reaction has been utilised for the efficient synthesis of various cyclic 

allylic trichloroacetamides from simple allylic alcohols. Various methods were then 

investigated for the allylic oxidation of a carbocyclic amide using TBHP along with 

different transition metals such as Pd, Se, Mn and Cr. This was required for the synthesis 

of the important building blocks for the construction of structurally diverse antiviral and 

anticancer carbocyclic nucleosides and natural products. 

The oxidation of (1S)-N-(cyclohexenyl)trichloroacetamide was then studied leading to the 

preparation of two diol analogues in excellent stereoselectivity. The cyclohexene 

derivative was also stereoselectively functionalised using Upjohn dihydroxylation 

conditions or by a directed epoxidation/hydrolysis sequence of reactions to generate two 

aminocyclitols, the enantiomer of dihydroconduramine C-1 and dihydroconduramine E-1 

in excellent stereoselectivity. 

 

In addition to this, a one-pot tandem process involving a substrate-directed Overman 

rearrangement and ring closing metathesis reaction was developed for the stereoselective 

synthesis of a functionalised carbocyclic allylic trichloroacetamide. The functionalised 

carbocyclic amide was employed in the successful synthesis of a syn-(4aS,10bS)-

phenanthridone framework using a Pd-catalysed cross-coupling reaction. Stereoselective 

epoxidation and dihydroxylation of the syn-(4aS,10bS)-phenanthridone was then 

investigated leading to the preparation of new analogues of 7-deoxypancratistatin. 

Attempts were also made to use the functionalised carbocyclic amide in the total synthesis 

of the Amaryllidaceae alkaloid (+)-γ-lycorane. 

Further studies were then investigated to expand the scope of the one-pot tandem process 

to include heterocyclic derived substrates. This led to a seven-membered carbocyclic 

amide, which has been modified to create a diastereomeric core of balanol. 
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1 Introduction 

1.1 Cascade/Domino and Tandem Reactions 

Organic chemistry utilises a number of methods for the preparation of an enormous range 

of chemicals e.g. pharmaceuticals, agrochemicals, petrochemicals, natural products and 

many other materials. These diverse synthetic methodologies along with their benefits have 

a substantial impact on the environment in terms of generating toxic waste. Modern 

synthetic organic chemistry demands atom economy, avoidance of hazardous reagents and 

reduction of waste along with excellent regio-, chemo-, diastereo-, and enantioselectivity.
1
 

Over the past decades several new strategies have been applied for the synthesis of 

complex molecules to address the above demands. Tandem reactions are one example of 

those methods and have been reported extensively for the preparation of structurally 

diverse compounds. A variety of different terms such as domino, cascade, concurrent, or 

sequential processes have been used interchangeably to describe such reactions by 

different authors. Some independent efforts have been made to synchronize the 

terminology in this field on the basis of lexis. For example, according to Tietze
2
 a “domino 

reaction is a process involving two or more bond-forming transformations (usually C-C 

bonds) which take place under the same reaction conditions without adding additional 

reagents and catalysts, and in which the subsequent reactions result as a consequence of the 

functionality formed in the previous step.” A similar description came from Nicolaou
3
 for 

the “cascade reaction” and it excludes all such processes in which the reaction conditions 

are altered during the process. Bazan
4
 employed the term “sequential” and Winkler

5
 used 

“tandem” in their reviews, for reactions which involve a combination of transformations 

that may operate independently and often require additional reagents or changes in reaction 

conditions but are carried out in a single reaction vessel without purification between steps. 

So cascade or domino should be used for the description of “uninterrupted simultaneous” 

reactions where as tandem is a more broad and frequent term for reactions which “follow 

one another”. 

The utility of tandem processes is continuously growing because of their distinguished 

intervening steps. These processes allow multiple transformations in one synthetic 

operation, minimising the need of handling and isolating intermediates and improving the 

practical efficiency. Thus, the number of laboratory operations in terms of waste and 

resource management is decreased.
6
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The first tandem reaction appeared in the literature with Robinson’s one-pot synthesis of 

tropinone in 1917 (Scheme 1).
7
 He made use of the Mannich reaction in which a mixture 

of succindialdehyde 1, methylamine, and calcium salt of acetonedicarboxylic acid 2 

combines to give the bridged bicyclic tropinone 4. However, the Mannich reaction itself 

can be quoted as a first tandem reaction, which involves the nucleophilic addition of an 

amine to a carbonyl group followed by dehydration to the Schiff base.  

 

Scheme 1 - Robinson’s total synthesis of tropinone 

There are several classic examples of tandem reactions by various research groups that 

illustrate undeniable benefits of such transformations. Hirsutene 8, which is a fungal 

metabolite and precursor of various antibiotic and antitumor compounds has been 

synthesised by a cascade radical approach.
8
 It demonstrates the viability of the process by 

the formation of two rings via radical cyclisation of readily available precursor 6 in a 

single step (Scheme 2).  

 

Scheme 2 - Cascade radical cyclisation in the total synthesis of (±)-hirsutene 
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Another elegant example of tandem conjugate addition-aldol cyclisation was reported by 

Krische and co-workers that established the role of tandem reactions in synthetic 

chemistry.
9
 It enables the synthesis of penta- and hexa-cyclic rings from aromatic and 

aliphatic mono-enone and mono-ketone precursors. It relies on a highly diastereo- and 

enantioselective catalytic carbometallative aldol cycloreduction. It remarkably generates 

three stereogenic centres in a single reaction and has distinctive advantages over other 

asymmetric addition reactions. This methodology allows the process to be carried out in 

aqueous solvent and at moderate temperature without reducing the enantioselectivity. The 

reaction proceeds via transmetalation of an aryl group from boron to rhodium and then 

enone insertion into an aryl rhodium bond makes a rhodium enolate. A Zimmerman-

Traxler transition state controls the stereoselectivity in the reaction, which on hydrolysis 

transforms the complex into the product 10 (Scheme 3).  

 

Scheme 3 - Diastereo- and enantioselective tandem conjugate addition-aldol cyclization 

1.1.1 The Classification of Tandem Reactions 

The classification of tandem reactions is difficult due to involvement of many distinctive 

steps. However, various authors have differentiated these processes on the basis of 

mechanism of each step.
2-4,10,11

 Nicolaou and co-workers grouped such reactions into five 

sections with the name of nucleophilic, electrophilic, radical mediated, pericyclic, and 

transition metal catalysed processes.
3
 However many others classified tandem reactions 

into cationic, anionic, radical, pericyclic and transition metal induced reactions. According 

to Tietze, combinations of reactions of the same mechanism are called homo-domino 

reactions; whereas sequences of reactions with different mechanisms are called hetero-

domino reactions.
2
 Various types of tandem reactions with their application in natural 

product synthesis have also been reviewed below.  



Introduction  13 

 

1.1.2 Cationic Tandem Reactions 

Cationic tandem reactions are the oldest known tandem reactions. In this type of reaction, a 

carbocation is formed either by elimination or by addition of a proton. This carbocation 

further reacts with a nucleophile to produce a new carbocation. This transformation ends 

with the elimination of a proton or gets trapped with another nucleophile.
10

 Various 

cationic tandem reactions have been developed and have played a great role in the 

development of natural product chemistry. Synthesis of substituted pyrrolidines by 

Overman’s group can be placed under the heading of cationic tandem reactions (Scheme 

4).
12

 This involves the aza-Cope Mannich reaction and this approach solves formidable 

problems in natural product synthesis. In the first asymmetric total synthesis of (–)-

strychnine this approach worked well to construct the pentacyclic strychnan core.
13

  

 

Scheme 4 - Tandem aza-Cope Mannich Reaction 

Lewis acid promoted pinacol-terminated Prins cyclisation is another excellent example of 

the cationic tandem reactions. This reaction builds functionality and stereochemistry in an 

acyclic fragment and helps synthesise various oxacyclic natural products by constructing a 

tetrahydrofuran from a carbonyl carbon of an aldehyde or ketone and an allylic diol 

(Scheme 5).
14

 A large numbers of other cationic tandem reactions in different synthetic 

contexts have been reported with their undeniable benefits.
2,4,11
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Scheme 5 - Asymmetric tandem pinacol-terminated Prins cyclisation 

1.1.3 Anionic Tandem Reactions 

The anionic tandem reactions are the most common type of transformations in the 

literature. In this type of reaction, a carbanion is formed by deprotonation of a CH group. 

Thus, a newly formed carbanion attacks an electrophile to form anion functionality. This 

anion reacts with another electrophile in anionic-anionic fashion to complete the reaction.
11

 

Many anionic–anionic processes involve either a Michael-initiated or -terminated process 

to generate a cyclic structure. In the syntheses of many natural products it is very common 

to use Michael–Michael tandem reactions to generate cyclic systems. Several elegant 

examples of the anionic tandem reaction have been reported in the literature e.g. Robinson 

annulation, double Michael reaction, synthesis of oxygenated derivatives of the diterpene 

alkaloid atisine and the first total synthesis of the naturally occurring enantiomer of 

tylophorine.
15,16

 Synthesis of tricyclo[5.3.1.0]undecane 19 from E-isomer 18 is an efficient 

example of tandem double Michael reactions for the construction of polycyclic systems 

(Scheme 6). Tricyclo[5.3.1.0]undecane 19 is a component of various important 

biologically active compounds e.g. patchouli alcohol 20 and seychellene 21 which have 

been used for the synthesis of taxol and for the treatment of the influenza virus.
17

 The 

intramolecular double Michael reaction of the E-isomer 18 proceeds smoothly at –78 °C by 

the treatment with LHMDS and forms an intermediate, in which two oxygens complex to 

lithium. The resulting enolate reacts with gaseous CH2O to give desired cyclised product 

19 in 83% yield as a single stereoisomer (Scheme 6). 
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Scheme 6 - Anionic tandem reaction for the synthesis of tricycloundecane 19 

1.1.4 Pericyclic Tandem Reactions 

In this type of tandem reactions, cyclic geometry is formed during the transition state and 

the reaction proceeds in a concerted fashion. The processes normally involve 

rearrangement reactions and a combination of different pericyclic reactions (Diels–Alder, 

Claisen, Cope, or electrocyclic reactions) or a combination of pericyclic reactions along 

with cationic and anionic reactions. The enantioselective synthesis of (+)-sterpurene is an 

example of a pericyclic tandem reaction (Scheme 7).
18

 

 

Scheme 7- Asymmetric tandem [2,3]-sigmatropic shift/[4+2] cycloaddition reaction 
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Various anionic pericyclic reactions have been developed by the Tietze group and have 

been used for the synthesis of a range of biologically active natural products such as indole 

alkaloids, dihydrocorynantheine and heterosteroids, such as shown in Scheme 8.
19

 Its 

synthesis involves the combining of enantiomerically pure cyclopentane derivative 25 with 

cyclic 1,3-dioxo compounds 24 through a Knoevenagel condensation. It makes use of 

catalytic amounts of ethylenediammonium diacetate (EDDA) to construct the alkylidene 

compounds 26, which react in situ to make the heterosteroid 27.
20

 

 

Scheme 8 - Synthesis of heterosteroids by tandem Knoevenagel hetero-Diels–Alder reaction 

1.1.5 Radical Tandem Reactions 

The majority of these types of reactions are homo-domino reactions. These reactions take 

place under mild reaction conditions to afford a wide range of functionalities.
10

 Radical 

tandem reactions have been widely explored in organic chemistry for the synthesis of 

various bioactive targets.  

γ-Butyrolactones and β-amino acids have been synthesized using radical addition-

cyclisation reactions (Scheme 9).
21

 The process generates two C
_
C single bonds and two 

stereogenic centers via a free radical-mediated Mannich reaction and provides direct access 

to the target molecule.  
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Scheme 9 - Asymmetric Mannich-type tandem radical addition cyclisation reaction 

Synthesis of the taxane skeleton has been made using a tandem radical macrocyclisation-

radical transannulation strategy. The synthetic design makes use of two conjugated enone 

moieties in substrate 30, which facilitates the tandem cyclisation. It first undergoes a 

radical macrocyclisation with the aid of tributyltin hydride and AIBN to provide 31, and 

then cyclises to 32 and 33 as a 3:1 mixture of two diastereomers of 

tricyclo[9.3.1.0]pentadecanedione respectively (Scheme 10).
22

 

 

Scheme 10 - Tandem radical cyclisation for the synthesis of the taxane skeleton 

1.1.6 Transition Metal Catalysed Tandem Reactions 

Transition metal-catalysed tandem reactions are of great importance in synthetic organic 

chemistry. The discovery of the ability of transition metals to interact with organic 

moieties, to connect inter- or intra-molecularly to alkenes, alkynes, etc. in tandem 

processes was certainly a breakthrough in synthetic chemistry.
3
 A plethora of ingenious 

transformations have been designed to assemble the target molecules using a variety of 

transition metals, especially palladium, ruthenium and rhodium catalysed tandem 
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reactions.
2
 Almost 40 years ago, the first Pd(0)-catalysed vinylation of aryl halides 

appeared in the literature by Mizoroki and Heck but it could not find attention and 

remained unnoticed. In the last decade, this method has been turned into a powerful 

approach.
23

 Amongst the palladium-catalysed carbon-carbon bond forming tandem 

reactions, the utility of Heck reaction for generation of tertiary or quaternary stereocenters 

and multiple-ring systems, even in sterically crowded environments, has been well 

documented.
23,24

 Now the role of Pd catalysed cross-coupling transformations have been 

accepted as a reliable method and the Nobel prize for chemistry in 2010 was awarded to 

Heck along with Suzuki and Negishi.
25

 

Transition metal catalysed tandem processes for the efficient synthesis of desired 

compounds are continuously growing e.g. synthesis of seven membered rings, namely 

[5+2]-cycloaddition between vinylcyclopropenes (VCPs) and -systems using a Diels-

Alder reaction with rhodium complexes have been investigated by Wender and co-workers 

(Scheme 11).
26

 The scope of this reaction has been extended to alkenes, allenes, and even 

intermolecular processes.
27

 

 

Scheme 11 - Rhodium-catalyzed [5+2]-cycloadditions 

This methodology has begun to find application in the total synthesis of natural products. 

For example, Martin and Ashfeld made use of this approach for the enantioselective 

syntheses of tremulenolide A 38 and tremulenediol A 39.
28

 It involved the reaction of 

alkyne 36 and a dimeric rhodium species (10 mol%) under reflux which incited the series 

of events leading to the formation of two new rings and two new stereocenters in a 

complex diastereoselective fashion to yield bicyclic aldehyde 37 in 85% yield (Scheme 

12). Initially Rh(I) coordinates to the alkene–alkyne faces of 36 followed by oxidative 

cyclisation to yield a Rh(III) metallacyclopentene. Subsequent bond rotation about the C4–

C5 bond allows the strain driven cyclopropane cleavage to put together the carbon–

rhodium and carbon–carbon bonds required for concerted ring expansion. It finally 

undergoes reductive elimination to yield bicyclic product 37 (Scheme 12). Use of this 

rhodium(I)-catalysed [5+2]-intramolecular cycloaddition leads to first enantioselective 



Introduction  19 

 

syntheses of the two representative tremulane sesquiterpenes tremulenolide A 38 and and 

tremulenediol A 39. 

 

Scheme 12 - Application to the total syntheses of tremulenolide A 38 and tremulenediol A 39 

Nakai and co-workers were among the first to report palladium-catalysed tandem 

reactions.
29 

For the synthesis of a γ,δ-unsaturated ketone, they made use of a Pd(II)-
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catalysed step to generate the allyl vinyl backbone for the consecutive [3,3]-sigmatropic 

rearrangement (Scheme 13).
 

 

Scheme 13 - Asymmetric domino allylation-Claisen rearrangement reaction 

The Trost group developed an outstanding approach that involves the Pd-mediated 

enediyne 43 cyclisation to construct the fused tricyclic structure 46 (Scheme 14).
30,31

 High 

atom economy and excellent diasteteroselectivity are the signature characteristics of this 

transition metal catalysed tandem process. The reaction proceeds at room temperature and 

furnishes a single diastereoisomer in very good yield. To account for the high 

diastereoselectivity, a novel Diels-Alder cycloaddition of palladadiene 44 was proposed 

with cyclisation guided by minimization of steric interaction between the bulky silyl ether 

and the dienophilic side chain. The initial adduct 45 underwent 1,4-elimination of HPdX to 

afford the tricyclic product 46.  

 

Scheme 14 - Polycycle construction via transition metal catalyzed electrocyclic process 
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1.1.7 Conclusion to Classification of Tandem process 

After the development of the ring opening/ring closing metathesis, cycloaddition, 

photochemical, metal catalysed and sigmatropic rearrangement processes, a wide variety of 

tandem reactions have been recorded in organic synthesis by combination of above and 

other methodologies together.
2
 These synthetic designs construct rapid complexity in a 

molecule in a single flask starting from simple substrates. Its synthetic utility has 

blossomed remarkably into a powerful tool in terms of atom, waste and resource economy 

and shows synergistic interplay of reaction engineering to provide unique frameworks for 

target molecules.  

The increasing number of publications and several reviews on the subject of tandem 

reactions highlight the splendid future of this field.
2-4

 The development of new tandem 

processes by the combination of many distinctive processes such as the Overman 

rearrangement and metathesis steps for the synthesis of bioactive molecule is a vibrant area 

and research in this field continues apace in many research groups.
32

  

1.2 Overman Rearrangement 

The Overman rearrangement is a sub-type of the sigmatropic rearrangement of allylic 

imidates which involves the rearrangement of allylic trichloroacetimidates to allylic 

trichloroacetamides from the readily available allylic alcohol.
33

 The original idea for the 

rearrangement of allylic imidates can be traced back to Mumm and Möller who in 1937 

reported the rearrangement of allylic benzimidate 47 to corresponding benzamide 48 

during investigation of the mechanism of Claisen rearrangement (Scheme 15).
34

 Following 

this result, several research groups reported the rearrangement of allylic imidates. 

However, the reaction was plagued by low yields and harsh conditions and could not find 

widespread use until the Overman modification.
33

 

 

Scheme 15 - The rearrangement of an allylic benzimidate to an allylic benzamide  

The Overman rearrangement is an important variant of the Claisen rearrangement and 

carries enormous potential due to the relative ease with which a wide variety of allylic 
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trichloroacetimidates can be prepared from corresponding alcohols. Transformation of the 

imidate to the amide is a unimolecular process and proceeds via a superafacial, concerted 

[3,3]-sigmatropic rearrangement. It involves the movement of a -bond from one place to 

another in a molecule to form a new -bond having a 3,3-relationship to the original bond 

(Scheme 16). The reaction is irreversible as the formation of the amide functionality is 

exothermic by 15 kcal mol
–1

.
35,36

 Regiospecificity and stereoselectivity are the 

characteristic features of the Overman rearrangement. Moreover, isolated yields for the 

rearrangement reaction are usually high. On hydrolysis, the allylic amines can be easily 

isolated allowing the synthesis of a variety of nitrogen containing compound like amino 

sugars, amino acids, nucleotides, N-heterocycles and natural products.
37

  

 

Scheme 16 - General overview of the Overman rearrangement  

The course of the Overman rearrangement reaction is facilitated either thermally or by 

using a metal catalyst at room temperature which significantly increases the rate of the 

transformation.
38

 The mechanism and scope of both methods have been studied thoroughly 

and are discussed below. 

1.2.1 Thermal Overman Rearrangement 

The thermal Overman rearrangement has broad scope and can be applied to a variety of 

primary, secondary and tertiary allylic alcohols. Mechanistically, the thermal Overman 

rearrangement is a pericyclic, concerted, suprafacial process. The reaction is irreversible, 

which is the result of the significant driving force associated with the formation of the 

amide functionality. It involves the formation of a highly ordered chair-like transition state 

53 which facilitates the transfer of stereochemical information from the substrate to the 

newly formed σ-bond (Scheme 17). Complete transfer of chirality was observed first by 

Yamamoto and co-workers during the rearrangement of allylic trichloroacetimidate 52 of 

(1E,3R)-4-phenyl-3-buten-2-ol to (1R,2E)-trichloroacetamide 54 and supports the chair 

model that forms during the course of the thermal process.
39

 This is the striking feature of 
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the Overman rearrangement and has been ingeniously utilised in a number of synthetic 

strategies,
40,41

 thus making the reaction extremely useful in organic synthesis. 

 

Scheme 17 - Thermal rearrangement of allylic trichloroacetimidates 

Typically, the rearrangement is carried out at elevated temperature in aprotic aromatic 

solvents like toluene or xylene. However in some cases more polar solvents are preferred 

e.g. the rearrangement of dissaccharide trichloroacetimidate 55 in xylene gives only 27% 

yield, whereas the yield increases to 80% when the rearrangement is carried out in DMF. 

DMF is a more polar and basic solvent which enhances the rate of reaction and slows down 

the acid catalysed decomposition of the substrate to improve the yield of the reaction 

(Scheme 18).
42

  

 

Scheme 18 - Effect of solvent over the yield of the Overman rearrangement  

Normally primary allylic trichloroacetimidates rearrange at 140 °C in the range of 4-24 

hours whereas secondary and tertiary allylic trichloroacetimidates proceed at 110 and 80 

°C respectively in comparatively shorter reaction times. Allylic trichloroacetimidates 

derived from double allylic alcohols rearrange at further higher rate and at room 

temperature. Higher reaction rates at lower temperature for increasingly substituted allylic 

trichloroacetimidates are primarily due to stabilisation of positive charge that evolves on 

the oxygen bearing carbon in the transition state. A few representative examples are shown 

in Scheme 19.
43-45
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Scheme 19 - Representative examples of the Overman rearrangement  

Steric and electronic factors play a major role in deciding the fate of the reaction towards 

the rate and yield of the Overman rearrangement, as it is totally substrate dependent e.g. E-

alkenes react more quickly and give higher yields than the Z-alkenes which end up with 

some by-products and lower yields. This is attributed to low stability and higher heat of 

enthalpy of Z-alkenes in comparison to E alkenes.
38

 

During the course of the Overman rearrangement some acid catalysed decomposition 

competes with the rearrangement, thus reducing the yield of the acid sensitive allylic 

trichloroacetamide. In 1998, Isobe and co-workers introduced an important modification in 

the thermal Overman rearrangement to avoid decomposition pathways.
46

 They made use of 

potassium carbonate which dramatically increases the yield of the rearrangement. The 

presence of potassium carbonate (2 mg/mL) in the reaction mixture acts as an acid 

scavenger and traps any acid that may be generated during the thermal rearrangement. 

However it has been noticed, addition of other bases like DBU and n-Bu3N could not 

inhibit acid catalysed decomposition. This simple modification has increased the scope of 

the reaction for previously nonviable rearrangements.  

1.2.2 Metal catalysed Overman Rearrangement  

The Overman rearrangement can also be carried out using metal catalysis. Various metals 

including palladium(0), palladium(II), rhodium(I), mercuric(II) and iridium(I) complexes 

catalyse the rearrangement of allyl imidates to allyl amides. The first report of a metal 

catalysed rearrangement of allylic trichloroacetimidates appeared in 1974 by Overman in 
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which he made use of mercuric trifluoroacetate. Use of mercury as a catalyst considerably 

increases the rate of the reaction to the order of 10
12

 in comparison to the thermal Overman 

rearrangement and allowed the reaction to proceed at room temperature. Later, different 

experiments demonstrated that soluble complexes of PdCl2 are more efficient than the 

mercury catalysed rearrangements in term of yield, low catalyst loading and high reaction 

rate.
38

 Very recently gold(I)-catalysed Overman rearrangement has been reported which 

can proceed in water under mild conditions.
47,48

 More work is required to determine the 

scope of the gold(I) catalysed rearrangement.  

Different research groups have worked extensively to determine the mechanism of the 

metal catalysed allylic rearrangement process.
49-52

 The first account regarding the 

mechanism of the metal catalysed acetate migration in allylic acetates appeared by 

Henry.
53

 Later, a similar explanation came from Overman to elucidate the mercury(II)- 

catalysed rearrangements of allylic carbamate and allylic imidates (Scheme 20). 

 

Scheme 20 - Mechanism of metal catalysed Overman rearrangement 

The mechanism involves a cyclisation induced transition state in which metal 63 activates 

the allylic double bond of imidate 64 and allows the intramolecular nucleophilic attack by 

the imidate nitrogen to the exo face of alkene 65. This leads to a six membered alkyl 

palladium intermediate 66 which readily rearranges to produce the product 67 and 

regenerates catalyst 63 (Scheme 20).
37,53-58

 

Some reports show that during the reaction, the metal bound six-membered cyclic 

carbocation intermediate 69 adopts a chair-like conformation which minimises allylic 

strain by having the bulky metal complex at an equatorial position (Scheme 21). This 

chair-like transition state explains the formation of the new C-N bond towards the same 
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face of alkene where C-O bond breaks. Thus, chirality is transferred from reactant to 

product.
57

 

 

Scheme 21 - Chair-like transition state during metal catalysed Overman rearrangement  

Metal catalysts for the rearrangement of allyl imidates can be classified into two types. 

Type I includes bi-valent complexes e.g. Hg(CF3CO2)2, PdCl2(PhCN)2 and H2[PtCl6]. Such 

complexes give the same product as the thermal process i.e the [3,3]-sigmatropic product. 

Type II involves zero-valent complexes like Pd(PPh3)4 and Pt(PPh3)4 and give mixtures of 

[3,3] and [1,3]-sigmatropic rearrangements (Scheme 22).
59

 

 

Scheme 22 - Rearrangements of allyl imidates by the thermal, type I and type II catalysts  

Palladium(II) appeared as the most effective catalyst for the Overman rearrangement and 

exclusively generates the [3,3]-sigmatropic rearrangement product regioselectivity and 

with excellent stereoselectivity. As in the case of thermal Overman rearrangement, the 

metal catalysed process also proceeds more efficiently for E-alkenes. Pd(II) complexes 

have been used widely for the Overman rearrangement at room temperature with 4-8 mol% 

catalyst loading in aprotic solvents like THF and toluene.
55,60

 Usually Pd(II)-catalysed 

Overman rearrangements work well for primary allylic trichloroacetimidates in 

comparison to secondary allylic trichloroacetimidate rearrangements and the process is 

completed in a few hours at or below room temperature.  
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1.2.3 Enantioselective Overman Rearrangement 

Recently methods have been developed that allow the Overman rearrangement to be 

applied in asymmetric synthesis. Different types of catalyst have been synthesised by 

various research groups and have been reported with variable yields. Overman and co-

workers were pioneers in developing the enantioselective Pd(II) catalyst for the 

rearrangement of allylic imidates.
61

 Initially achiral diamine complexes of [PdCl2(bpy)] 

and [PdCl2(TMEDA)] were tried but these dichlorides could not catalyse any 

rearrangements.  

 

Figure 1 - First enantioselective Overman rearrangement catalysts 

Extensive research by the Overman and Hayashi groups resulted in the form of a series of 

cationic oxazoline and cationic Pd(diamine) chiral catalysts (selected examples are shown 

in Figure 1).
61,62

 These catalysts showed moderate to good yields and poor to moderate 

enatioselectivity (Table 1). However, in most cases Pd-diamine complexes proved 

incompatible. This was mainly due to coordination between the imidate nitrogen and the 

cationic palladium which caused undesired ionisation and elimination products in 

significant amounts.
56

 While these results revealed that an asymmetric Pd complexes could 

effect an Overman rearrangement, further efforts were required.  



Introduction  28 

 

Table 1 - Rearrangement of allylic imidiates catalysed by various catalysts shown in Figure 1 

 

To circumvent ionisation and elimination pathways during the enantioselective allylic 

imidate rearrangements, a neutral catalyst was required to escape from any competing 

elimination reactions due to imidate nitrogen coordination with the cationic Pd. Subsequent 

studies by Overman and others revealed a series of neutral chiral palladacycles catalysts 

(Figure 2).
63,64

 

 

Figure 2 - Neutral chiral and ferrocenyl oxazoline palladacycle catalysts 

Many of them proved efficient catalysts for the [3,3]-sigmatropic rearrangement of allylic 

imidates to allylic amides in terms of yield and enantioselectivity, e.g. rearrangement of 

benzimidates was carried out using ferrocenyl palladacycles 76 without undergoing side 

reaction pathways in excellent yield and moderate enantioselectivity (Table 2). 
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Table 2 - Evaluation of ferrocenyl oxazoline catalysts for the Overman rearrangement 

 

In an attempt to improve the enantioselectivity, Overman and co-workers synthesised 

various ferrocenyl oxazoline (FOP) catalysts. Many of those demonstrated promising 

yields and enantioselectivities, especially 77 which catalysed the rearrangement in 

moderate to excellent yields and enantioselectivities (Table 2). However the catalyst was 

limited in scope to benzimidate substrates and gave higher enantioselectivity for Z-alkenes. 

Further study elucidated much better catalysts e.g. 78 and 79, having broad substrate scope 

along with good yields and enantioselectivity (Scheme 23). However, catalyst 78 still 

showed some drawbacks e.g. limited tolerance for cleavable protecting groups and 

required activation of the catalyst prior to use, employing 4 equivalent of AgOCOCF3. 

Thus, this could not be adopted as a practical route to enantioenriched chiral allylic 

amines.
65,66

 

 

Scheme 23- Rearrangement using ferrocenyl oxazoline catalysts  

Later cobalt oxazoline palladacycles 82 appeared as the catalyst of choice (Figure 3).
67

 

Kang and co-workers used COP for the rearrangement of Z-benzimidates 84 and reported 

excellent yields and enantioselectivities (Scheme 24).
68

 At the same time, Overman and co-

workers used COP for the rearrangement of E-allylic acetimidates 86 and showed 

rearranged products in 80–85% yield and in 92–96% ee. These reactions required 5 mol% 

of catalyst loading, which was further reduced to 2 mol% in certain cases and furnished the 
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product generally around room temperature, whilst maintaining excellent yield and 

enantioselectivity.
69,70

 

 

Scheme 24- COP-Cl catalysed rearrangement of allylic trichloroacetimidates 

Now COP-Cl has emerged as a powerful catalyst for the synthesis of of chiral allylic 

amines from achiral allylic alcohols and has found widespread application in organic 

synthesis. The COP-Cl catalysts 82 and 83, have become popular catalysts and are 

commonly referred to as (S)-(+)-COP-Cl and (R)-(–)COP-Cl respectively (Figure 3).  

 

Figure 3- Commercially available asymmetric COP-Cl catalysts 

1.2.4 Substrate directed Overman Rearrangement  

The substrate directed Overman rearrangement is an important approach to introduce new 

stereogenic centres into a compound without employing a chiral catalyst. It is based upon 

the pre-association of the reacting partners in the proximity of the reaction centre to 

influence the stereochemical outcome of the rearrangement. Such interaction of the 
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reacting partners proceeds through a highly ordered transition state during the course of the 

transformation and elicits the stereoselectivity in the process. In the Overman 

rearrangement, use of an asymmetric centre having a polar functional group in the close 

vicinity of the reaction point directs the metal catalyst towards one face of the double bond 

in preference to other. This leads to a certain level of diastereoselectivity during the 

rearrangement process and excludes any need of chiral reagents to achieve this. The degree 

of diastereoselectivity can be variable as it depends upon the nature of directing group and 

reaction conditions. 

Work by the groups of Bellûs
71

 and Sutherland
72

 have demonstrated the substrate directing 

effect in the Overman rearrangement and showed various aspects of the process. The first 

example appeared in 1993, when Bellûs noticed the significant diastereoselectivity for the 

anti-diastereomer 90 during the palladium(II)-catalysed rearrangement of 89 (Scheme 25).  

 

Scheme 25- The first substrate directed rearrangement 

Excellent anti-diastereoselectivity of this process was attributed to coordination of the 

palladium with the nitrogen atom and alkene during the rearrangement. This then adopts a 

chair-like conformation 91 and directs the catalyst towards the back face of the alkene and 

forcing the nitrogen atom of the trichloroacetimidate to attack from the other face leading 

to the major diastereomer (Scheme 26). 

 

Scheme 26- Coordination of nitrogen atom to Pd(II) directs the rearrangement 

To evaluate the substrate directing effect of different ether functional groups in the 

Overman rearrangement process, a series of the experiments were designed by Sutherland 
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and co-workers.
72

 Initially, the aim was to reveal the utility of the ether functional group as 

a directing group. A number of allylic trichloroacetimidates were prepared carrying 

different ether groups and subjected to the Overman rearrangement using 

bis(acetonitrile)palladium(II) chloride as the rearrangement catalyst. The methoxymethyl 

group appeared as the most efficient ether and allowed effective coordination with the 

metal catalyst and gave the anti-diasteromer as a major product with the ratio of 10:1. 

Bulky and encumbered ether groups plagued the coordination and as a consequence 

showed low diastereoselectivity (Table 3).
73,74

 

Table 3 - Rearrangement of allylic trichloroacetimidate having different ethers 

 

Further work by Sutherland and co-workers demonstrated the role of the oxygen atoms 

during the substrate directed rearrangement and established that presence of the oxygen 

atoms adjacent to alkene as vital for high levels of diasteroselectivity (Table 4).
72

 Results 

from the carefully designed strategy clearly demonstrate that presence of two oxygen 

atoms increases the diastereoselectivity. It is mainly due to enhanced coordination between 

the Pd(II)-metal catalyst and the oxygen atoms of the MOM group. 
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Table 4 - Pd(II)-catalysed rearrangement of the MOM-analogues 

 

It was postulated that the significant anti-diastereoselectivity of this process is due to 

coordination of Pd(II)-catalyst with the oxygen atoms of the MOM group and these direct 

the catalyst selectively to the back face of the alkene and in this way the compound adopts 

a chair-like conformation.
72

 This conformation not only minimises the allylic strain but 

also allows intramolecular attack of the imidate nitrogen from the front face of the alkene, 

thus giving major diastereomer 93a (Scheme 27). Minor diastereomer 93b is likely formed 

via 94b in which the ether group is unable to coordinate to the catalyst and is further away 

from the reaction centre. Thus, the catalyst coordinates directly to the least hindered face of 

the double bond and furnishes the minor diastereomer.  

 

Scheme 27 - Reacting conformation that leads to the major and minor diastereomer 

The scope and limitations of the substrate directed rearrangement was also investigated by 

the Sutherland group.
75

 Initially several MOM protected allylic trichloroacetimidates with 

a variety of side chains were prepared and subjected to a substrate directed Overman 
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rearrangement (Table 5). In most cases the reaction proceeded to the anti-diastereomer as 

the major product. It was noticed that rearrangements of sterically hindered allylic 

trichloroacetimidates proceeded slowly and gave significant amounts of the [1,3]-

rearrangement product while showing good diastereoselectivity (except entry 2 in Table 5, 

which showed no directing effect and give the [1,3]-product). It was attributed to extra 

steric impediments and due to Pd(0) that was formed in the reaction due to a competing β-

elimination process during the slow Pd(II)-catalysed rearrangement of the allylic imidate. 

It has already been established by the work of Ikariya and Bosnich that Pd(II) gives only 

the [3,3]-product whereas Pd(0) furnishes the [1,3]-product.
56,57

 This was further 

confirmed by addition of p-benzoquinone into the reaction mixture which forced the 

formation of the [1,3]-product (Table 5).
76

  

Table 5 - Rearrangement of allylic trichloroacetimidates having different side chains 

 

The Sutherland group have also investigated different metal catalysts for the substrate 

directed Overman rearrangement. A range of metal complexes were employed to catalyse 

the rearrangement. Best results observed were with the use of Pd(II), Pt(II) and Au(I), 

whereas NiCl2 and Cl2Ru(PPh3)3 did not show any catalytic activity. Further work was 

employed to investigate any role of solvent on the origin of directing effect in the 

rearrangement of allylic trichloroacetimidates.
73

 Several solvents were screened and results 

are listed in Table 6. Enhancement of selectivity was observed in the case of non-

coordinating solvents e.g. toluene gave significant diastereoselectivity in the ratio of 15:1, 

whereas coordinating solvents such as the ionic liquid, 1-butyl-3-methylimidazolium 

tetrafluoroborate decreased the diastereoselectivity. These results clearly demonstrate that 
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use of a coordinating solvent disrupts the binding of the catalyst to the MOM ether group 

and diminishes the directing effect while non-coordinating solvents such as toluene 

minimise competition for the coordination leading to a selective process.
75

  

Table 6 - Rearrangement of allylic trichloroacetimidates using various solvents 

 

On the basis of the above discussed results, the substrate directed Overman rearrangement 

can be regarded as an excellent substitute for chiral catalysts for a diastereoselective 

rearrangement. Generally MOM-ether groups switch on the selectivity while non- 

coordinating solvents further enhance the directing effect. Recently, substrate directed 

rearrangements have been reported as excellent methodology to generate 

diastereoselectivity in the synthesis of various natural products.
40,77,78

  

1.3 Applications of Overman rearrangement 

The Overman rearrangement has been central to the synthesis of a broad range of 

biologically active precursors including various amino acids, selective enzyme inhibitors 

and a variety of natural products. Ready access to allylic amines with complete transfer of 

chirality is the signature characteristic of this process. Several dozen applications of the 

Overman rearrangement have been reported and this number is continuously growing.
77,78

  

The first application appeared in the literature by Overman for the synthesis of 1-

azaspiro[5.5]undec-7-en-2-one 98.
79

 Such structures show their presence in a wide range of 

naturally occurring molecules and exhibit a broad range of important pharmacological 

activities.
80

 Overman designed a short and general route for the unsaturated spirolactam 98 

by utilising his developed thermal rearrangement process (Scheme 28). The substrate for 

the Overman rearrangement was synthesised by converting readily available ketone 95 into 
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an alcohol. This alcohol was reacted with sodium hydride followed by trichloroacetonitrile 

to afford allylic trichloroacetimidate 96 and directly rearranged to allylic 

trichloroacetamide 97. The rearranged product was hydrolysed to remove the acetal 

protecting group, which was directly followed by oxidation to afford carboxylic acid. 

Hydrolysis of the trichloroacetyl group with base, followed by removal of water and 

esterification gave the corresponding ester which underwent concomitant cyclisation to 

afford the spirolactam 98. The yield of the amide was low in this synthesis but it illustrated 

the potential of the Overman rearrangement.  

 

Scheme 28 - Overman synthesis of 1-azaspiro[5.5]undec-7-en-2-one 98 

Recently the Sutherland group used the MOM ether directed Overman rearrangement for 

the stereocontrolled synthesis of several biologically active molecules and precursors of 

unnatural amino acids. For example, it has been employed for the synthesis of alkaloid 

natural product (+)--conhydrine 104 and its analogue 105 (Scheme 29).
78

 These are 

biologically active alkaloids and are famous for their antitumor and antiviral properties.
81

 

In this synthesis, the key substrate was prepared from allylic alcohol 99 using DBU and 

trichloroacetonitrile. It was followed by a Pd(II)-catalysed Overman rearrangement to 

generate erythro- and threo- trichloroacetamide in a ratio of 16:1 respectively. In the next 

stage the major diastereomer was further functionalised to give diene 102. Ring closing 

metathesis of 102 followed by hydrogenation, reduction and acid-mediated removal of the 

protecting group yielded target molecule 104 and its pyrrolidine analogue 105. 



Introduction  37 

 

  

Scheme 29 - Synthesis of (+)--conhydrine using a substrate directed rearrangement 

Similar methodology was utilised for a stereoselective synthesis of (+)-monanchorin 111.
40

 

In this approach the allylic trichloroacetimidate 107 was converted to allylic 

trichloroacetamide 108 using a bis(acetonitrile)palladium(II) chloride catalysed Overman 

rearrangement in 84% yield over two steps (Scheme 30). MOM-ether directed Overman 

rearrangement gave two diastereomers in ratio of 12:1. Trace amount of the 1,3-

rearrangement product was also isolated in the reaction mixture. It was avoided by the use 

of p-benzoquinone, which reoxidised Pd(0) to Pd(II) that forms in situ due to competing β-

elimination in the reaction mixture of bulky substituents. The trichloroacetyl group of the 

major diastereomer was replaced with the Cbz-protecting group and cross metathesis was 

employed to couple 2-vinyl-1,3-dioxolane to construct the backbone of (+)-monanchorin. 

Amine 109 was coupled with the readily available guanidine unit to give 110 in 87% yield. 

Here TFA was employed for deprotection of the aldehyde, guanidine and hydroxyl groups 

to generate the natural product 111 in 75% yield.  
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Scheme 30- Synthesis of (+)-monanchorin using a substrate directed rearrangement 

Chida and co-workers reported the use of the suprafacial nature of the Overman 

rearrangement to transfer chirality for the synthesis of enantiomerically pure (–)-agelastatin 

A 120 (Scheme 31).
82

 It is recognised as an antimetastatic agent and also acts as an 

inhibitor of a number of human tumor cell lines.
83,84

 In designing the route for the synthesis 

of this target, the two nitrogen substituted stereocenters were achieved by the Overman 

rearrangement of 112 in a single operation. It was followed by a Mislow-Evans 

rearrangement of an allylic sulfide to create a hydroxyl group on the main core. Ring 

closing metathesis followed by treatment with methanesulfonic anhydride of 117, 

generated the oxazoline 118 in good yield. Further functionalisation of oxazoline 118 

produced the ,β-unsaturated ketone 119. It was then exposed to TEA to induce the aza-

Michael addition followed by cleavage of 2,4-dimethoxybenzyl group with CAN to afford 

(–)-agelastatin A 120. This very elegant synthetic approach by Chida made use of the 

concerted nature of the Overman rearrangement as a powerful tool for the transfer of 

chirality from an allylic alcohol to a newly formed diamino moiety in a complex natural 

product.  
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Scheme 31 - Synthetic strategy toward (–)-Agelastatin A 

Very recently Wang and co-workers disclosed the stereoselective synthesis of a [5.6.7]-

tricyclic ring system 127.
85

 This structure is commonly found in a range of the 

Daphniphyllum subclass Calyciphylline A-type alkaloids, especially those in calyciphylline 

A, daphnihlaucins, daphnilongeranins, and daphniyunnines.
86

 The daphniphyllum class of 

alkaloids are very recently reported natural products and their biological and 

pharmacological properties still need to be clarified. To achieve the synthesis of this 

fascinating target, the Overman rearrangement was devised as a key step in the proposed 

strategy. The substrate for the Overman rearrangement was prepared from commercially 

available (S)-(+)-carvone (Scheme 32). It was easily converted to allylic alcohol 122 and 

then subjected to a standard Overman rearrangement to yield allylic trichloroacetamide 

123. After methanolysis of the resulting allylic trichloroacetamide, the amide nitrogen was 

functionalised with the MOM group. This set the stage for the Mannich condensation with 
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cyclopentanedione to give enone 124. It was further followed by acylation and a [2+2]-

photochemical cycloaddition, which resulted in the Mayo-type diketone structure 125. The 

[5.6.7]-tricyclic core skeleton 127 was completed through Grob-type fragmentation after 

reduction and mesylation of carbonyl ketone 125, to give the target molecule. The chirality 

in 123 developed through Overman rearrangement played a vital role to control the four 

contiguous stereogenic centres on cyclobutane ring 125 during the photochemical 

cycloaddition step. 

 

Scheme 32 - Synthesis of [5.6.7]-tricyclic Core  

1.3.1 Conclusions 

The Overman rearrangement has been established as an effective approach in the total 

synthesis of natural products and in many other interesting molecules. The recent advances 
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in the substrate directed rearrangement and chiral Pd(II)-catalysis to effect asymmetric 

allylic trichloroacetimidate rearrangements has played an enormous role in enhancing the 

scope of the Overman rearrangement. Moreover, a combination of the Overman 

rearrangement with other developed methodologies e.g. ring closing metathesis can be a 

substantial development to assist in the synthesis of even more complex molecules.  
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2 Aims and Objectives 

The prime objective of this PhD research programme is to develop new methodology by 

utilising a one-pot, two-step tandem process involving an Overman rearrangement and a 

ring closing metathesis reaction for the quick and efficient synthesis of various simple and 

substituted cyclic allylic trichloroacetamides from the corresponding allylic alcohols. The 

next stage is to study the oxidations of the resulting carbocyclic amides for the 

stereoselective synthesis of valuable precursors for the construction of structurally diverse 

antiviral and anticancer carbocyclic nucleosides, aminocyclitols and Amaryllidaceae 

alkaloids.  

In all of the studied projects, the basic strategy involves the synthesis of various allylic 

alcohols from commercially available alcohols using a one pot Swern oxidation and 

Horner-Wadsworth-Emmons reaction followed by DIBAL-H reduction. These were then 

to be subjected to a one-pot, two-step tandem process involving an Overman 

rearrangement and a ring closing metathesis reaction for the quick synthesis of cyclic 

allylic trichloroacetamides. Finally, different oxidation techniques such as allylic 

oxidation, epoxidation and dihydroxylation were then to be studied to efficiently provide 

the valuable desired targets. 

In the first part of the research project, allylic alcohol 128 was to be synthesised and be 

subjected to a one-pot, two-step tandem process to synthesise carbocyclic amide 129. 

Resulting carbocyclic amide 129 would then be subjected to allylic oxidation to yield the 

amino substituted carbocyclic ketone 130 (Scheme 33 ).
87

 If this reaction proved to be 

successful, it would provide a highly efficient synthetic route to variable ring sizes of 

valuable carbocyclic ketones.  

 

Scheme 33 - Proposed synthesis of amino substituted cycloketone 130 



Aims and Objectives  43 

 

Following the development of an expeditious route to carbocyclic ketones, our aim was to 

undertake the highly stereoselective synthesis of aminocyclitols such as 

dihydroconduramine E-1 132 and the enantiomer of dihydroconduramine C-1 133. It was 

proposed to make use of a stereoselective variant of the one-pot tandem Overman 

rearrangement and ring closing metathesis step for the asymmetric synthesis of an (S)-N-

(cyclohexenyl)trichloroacetamide 131, and then to explore the stereoselective epoxidation 

and dihydroxylation of this synthetic intermediate for the preparation of 

dihydroconduramines 132 and 133 (Scheme 34). As such, a new method for the synthesis 

of polyhydroxylated aminocyclohexane derivatives would be of significant benefit to 

synthetic chemistry. It would also broaden the scope of the tandem process, allowing it to 

be employed for the synthesis of a wider variety of natural products. 

  

Scheme 34 - Proposed route to polyhydroxylated aminocyclohexanes 

In the second part of this PhD programme, a one-pot tandem process involving a substrate-

directed Overman rearrangement and ring closing metathesis reaction was to developed for 

the stereoselective synthesis of a functionalised carbocyclic allylic trichloroacetamide. The 

plan was to make use of a MOM-ether directed Overman rearrangement and combine it 

with a ring closing metathesis step to construct key synthetic intermediate 135 and utilise it 

in order to synthesise Amaryllidaceae alkaloids such as (+)-γ-lycorane 136 and syn-

(4aS,10bS)-phenanthridone carbon skeleton 137 (Scheme 35). The synthesis of syn-

(4aS,10bS)-phenanthridone carbon skeleton is significant as its stereoselective epoxidation 

and directed dihydroxylation would provide the polyoxygenated phenanthridone 

framework and would lead to the preparation of novel analogues of 7-deoxypancratistatin. 
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They can serve as significant synthetic scaffolds in organic synthesis as similar (+)-7-

deoxypancratistatin exhibited strong activity against human cancerous cell lines.
88

  

 

Scheme 35 - Proposed synthesis of (+)--lycorane and 7-deoxypancratistatin analogues 

In the final part of this research project, further studies were to be carried out to expand the 

scope of the one-pot tandem process to include heterocyclic derived substrates. This would 

provide an attractive route to synthesise a seven-membered carbocyclic amide, which 

would be subjected to epoxidation to access the hexahydroazepine core of balanol (Scheme 

36). Balanol is a PKC-inhibitor of cellular signal transduction pathways.
89-91

 

 

Scheme 36 - Proposed synthesis of the balanol core structure
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3 Results and Discussions 

3.1 Synthesis of Carbocyclic Ketones 

3.1.1 Introduction 

Amino substituted cyclopentenone is the well-known building block of a vast majority of 

important naturally occurring carbocyclic nucleosides.
92

 Various natural carbocyclic 

nucleosides and their analogues occupy a prominent position in famous marketed drugs by 

virtue of their useful antibiotic and antitumor activities. These include AZT (zidovudin), 

known for its antiviral activity against HIV, and acyclovir (zovirax), most commonly used 

as an antiviral drug against Herpex simplex.
93

 Aristeromycin
94

 148 and neplanocin
95

 150 

are naturally occurring carbocyclic nucleosides and are recognised for their broad-

spectrum antiviral and antitumor activities. However, they exert a profound toxic effect on 

the cells and have limited clinical applications. Some well known carbocyclic nucleosides 

are shown in Figure 4. 

 

Figure 4 - Structures of some pharmacologically important carbocyclic nucleosides 

Many synthetic carbocyclic nucleosides have been reported to show similar biological 

activities to the above results. For example carbovir 146 and abacavir 147 have been 

shown to hold considerable activity as an inhibitor of HIV reverse transcriptase.
96
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Significant improvements in HIV-infected patients have been observed when using 

abacavir without significant side effects and thus, it is as an FDA approved drug for HIV 

treatment. However, carbovir had limitations due to its cytotoxicity. Later, several 

synthetic carbocyclic nucleosides were reported including 5′-noraristeromycin
97,98

 149 

which is a desmethylene analogue of aristeromycin 148, which has shown antiviral activity 

without significant cytotoxicity.  

Due to their pharmaceutical importance, a variety of routes have been adopted to 

synthesise carbocyclic nucleosides. Many of these utilise either a retro Diels-Alder reaction 

of a norbornadiene derivative,
99,100

 stereospecific synthesis from sugars,
101

 functional 

group manipulation of natural building blocks or intramolecular Pauson-Khand
102

 reactions 

as the key step. Recently Miller and co-workers
100

 have made use of the Diels-Alder 

reaction of acylnitroso compounds with N-Cbz-protected spirocyclic dienes to afford the 

corresponding spirocyclo adducts. These are useful scaffolds in the synthesis of spiro-

noraristeromycin. More recently, Chattopadhyay and Tripath have reported the synthesis of 

(1S,4S)-4-(benzyloxymethyl)-cyclopenten-2-enol 156a and (1S,4R)-4-(benzyloxymethyl)-

cyclopenten-2-enol 156b starting from (R)-2,3-cyclohexylideneglyceraldehyde 151, which 

are the key precursors for the synthesis of L-(+)- and D-(–)-carbovirs, respectively (Scheme 

37). The key steps of the approach involve Luche allylation of formaldehyde with allylic 

bromide and a RCM reaction to generate the basic precursor of carbovir in good yield.
103

  

 

Scheme 37 - Chattopadhyay approach towards carbocyclic nucleosides 
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3.1.2 Synthesis of an amidocyclohexenone 

During previous years, attention has been focused on the synthesis of carbocyclic 

nucleosides with a pentacyclic ring. However, the development of compounds with 

different ring sizes, particularly with six-membered rings needed to be explored. The 

proposed methodology for the synthesis of carbocyclic ketones as precursors for the 

carbocyclic nucleosides is outlined in Scheme 38. It makes use of a one-pot tandem 

process previously developed in our group, which utilises an Overman rearrangement and 

a ring closing metathesis (RCM) reaction, for a quick and highly efficient synthesis of 5-, 

6-, 7- and 8-membered carbocyclic amides.
104

 The resulting carbocyclic amide would then 

be subjected to allylic oxidation to yield the amino substituted carbocyclic ketone 130. The 

allylic oxidation of carbocyclic amide 129 (Scheme 38) relies on chemistry published by 

Corey and co-workers.
87

 If this reaction proved to be successful, it would provide a highly 

efficient synthetic route to variable ring sizes of carbocyclic ketones. The resulting 

carbocyclic ketones could be reduced to give cyclic amino alcohols or subjected to an 

asymmetric one-pot tandem process using chiral palladium(II)-catalysts for the Overman 

rearrangement to get di-amino substituted chiral building blocks. These could be further 

functionalised for the asymmetric synthesis of structurally diverse antiviral and anticancer 

carbocyclic nucleosides such as aristeromycin 148 and noraristeromycin 150. 

 

Scheme 38- Proposed synthesis of amino substituted cycloketone 130 

The first stage of this project required the synthesis of N-(cyclohexenyl)-

trichloroacetamide 129 which is readily available from the corresponding allylic alcohol 

128. Allylic alcohol 128 was prepared in 2 steps from the commercially available 5-hexene 
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1-ol 157, via a one-pot Swern oxidation and Horner-Wadsworth-Emmons reaction using 

Masamune-Roush conditions.
105

 This was followed by reduction of the ester 158 with 

DIBAL-H to give allylic alcohol 128 in excellent yield (Scheme 39). 

 

Scheme 39 - Synthesis of allylic alcohol 128 

Allylic alcohol 128 was then reacted with trichloroacetonitrile and a catalytic amount of 

1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) to convert it into allylic trichloroacetimidate 

160. It was further subjected to the standard conditions of the one-pot tandem process 

using bis(acetonitrile)palladium(II) chloride to effect the Overman rearrangement. This 

was followed by the addition of Grubbs first generation catalyst to promote the RCM 

reaction which gave cyclic allylic trichloroacetamide 129 in an excellent 90% yield over 

three steps (Scheme 40). 

 

Scheme 40 - Synthesis of carbocyclic amide 129 

3.1.3 Efforts towards allylic oxidation 

After synthesis of hexacyclic allylic trichloroacetamide 129 in multigram quantities, allylic 

oxidation of this substrate to yield the amino substituted carbocyclic ketone 130 was 

attempted. This substrate is the key precursor for the synthesis of a number of natural 

products such as epibatidine.
106

  

Allylic oxidation is a very important reaction in many areas of synthetic chemistry.
87

 A 

large number of procedures have been reported for allylic oxidations, which make use of a 

variety of reagents such as pyridinium dichromate (PDC),
107

 selenium dioxide,
108

 Cr(IV) 
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compounds and various other transition metal complexes.
109

 In the last decade, use of tert-

butyl hydroperoxide (TBHP) along with various transition metal complexes for allylic 

oxidation appeared as an attractive choice. However, there are only a few examples of 

allylic oxidation with compounds of increasing complexity. 

In recent literature, it has been determined that a radical pathway is involved in the allylic 

oxidation by TBHP (Scheme 41).
87

 Various transition metals including Pd(II)-complexes 

are capable of generating the tert-butylperoxy radicals (
t
BuOO·) from tert-butyl 

hydroperoxide either by radical transfer or by homolysis.  

 

Scheme 41 - Radical base activation of cycloalkene using TBHP 

The resulting tert-butylperoxy radical undergoes hydrogen atom abstraction from the 

allylic position of the alkene (hydrocarbon substrate) 161. This position having the lowest 

carbon-hydrogen bond dissociation energy, which allows the formation of the alkylperoxy 

radical 162.
110

 The alkylperoxy radical goes on to form either the the allylic tert-butyl 

peroxyether 163 or hydroperoxide 164. This is followed by either hydrogen atom 

abstraction from another hydrocarbon or undergoes oxidation of Pd(II) to form the enone 

165 products (Scheme 42).
87

 

 

Scheme 42 - Palladium catalysed allylic oxidation using TBHP 
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Initially, allylic oxidation of carbocyclic amide 129 was carried out according to a 

literature procedure published by Yu and Corey, using 5 equivalents of TBHP as an 

oxidant along with a catalytic amount of 10% Pd on carbon and potassium carbonate at 20 

°C in dichloromethane.
111

 Under these conditions, the desired product was not formed even 

after 5 days of stirring, with mainly starting material found in the reaction mixture. The 

reaction was attempted again under reflux conditions, but the same result was obtained. It 

was thought that the failure of this reaction could be attributed to the presence of the 

trichloroacetamide group that can also form radicals. To combat this, the nitrogen was re-

protected with the Boc-protecting group in quantitative yield (Scheme 43). The oxidation 

of the Boc-protected carbocyclic amide was performed again under the same reaction 

conditions as reported above. Although some of the starting material was consumed, the 

rate of the reaction was very poor and could not be improved despite the elevated 

temperatures and extended reaction times tried. This resulted in only a 10% yield of the 

ketone 167 along with unreacted starting material and side products (Scheme 43). To 

increase the rate and yield of the reaction, pre-treatment of Pd on-carbon with tert-butyl 

hydroperoxide in dichloromethane at 24 °C with stirring for 1 h was employed. This was 

followed by addition of Boc protected carbocyclic amide 166 and the reaction was stirred 

for 12 h. It was found that the initial rate of the reaction increased but the reaction did not 

proceed to completion even after an extended reaction time at elevated temperature and 

gave only 6% yield. In the next attempt, the reagents were added in batches, after periods 

of 12 h, for three days keeping the reaction under reflux in dichloromethane. However, the 

yield of the reaction could not be improved (Table 7). Despite investigating various 

conditions and increasing amounts of oxidant, all conditions gave starting material back 

along with only a small amount of ketone and side products. Chromatographic and 

spectroscopic studies revealed the possible structures of the side products in the reaction 

mixture. However, due to the short life span and transitory nature of those undesired 

compounds, they could not be characterised in confidence. 

 

Scheme 43 - Boc protection and allylic oxidation of 129 
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Table 7 - Results for allylic oxidation with various methods 

 

To achieve a better yield and selectivity for the allylic oxidation of Boc protected 

carbocyclic amide 166, oxidation with manganese(III) acetate was also attempted. 

Recently manganese(III) acetate along with tert-butyl hydroperoxide as a co-oxidant, has 

been reported for mild, efficient, regioselective and chemoselective allylic oxidation of 

simple and complex alkenes.
112

 This method works on a similar principle as proposed for 

the palladium catalysed process in the reported literature.
87

 A detailed mechanistic pathway 

for the Mn3O(OAc)9 mediated allylic oxidation is shown below (Scheme 44). 

 

Scheme 44 - The mechanistic pathway for the allylic oxidation using Mn(III) and TBHP 

Mn(III) acetate has a stabilised trinuclear structure and its use along with TBHP gives 

t
BuOOMn3O(OAc)8 as an active species by displacing one acetate ligand by a TBHP 

molecule.
112

 To improve the reaction conditions, use of molecular sieves is recommended 

to remove any traces of moisture, which is known to cause disintegration of 
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manganese(III) acetate. However, in our case, using 10 mol% of Mn3O(OAc)9, 5 

equivalents of TBHP, 4 Å molecular sieves and ethyl acetate as the solvent gave similar 

results to the palladium mediated reactions (Table 7).  

Other classical methods of oxidations were also attempted. In this regard pyridinium 

dichromate and selenium dioxide are important.
108,109

 Selenium dioxide has long been used 

as a favoured reagent for the conversion of allylic methylene to the corresponding ketone. 

Initially, a literature procedure was used as described by Camps, using selenium dioxide in 

ethanol with a catalytic amount of pyridine.
113

 However, these conditions did not give any 

desired oxidised product, instead alcohol derivative 155 was isolated in 2% yield along 

with 48% of unreacted starting material (Scheme 45).  

 

Scheme 45 - Selenium dioxide oxidation using dry Pyridine 

The reaction was again tried using TBHP as a co-oxidant along with selenium dioxide but 

no significant improvement could be noticed. In another attempt, substrate 166 was 

dissolved in dichloromethane and subjected to sonication (as a source of energy instead of 

usual heating) using 5 equivalents of TBHP. Again no difference to the yield of desired 

product was observed. In all cases, only traces of the desired product along with unreacted 

substrate was isolated by flash column chromatography. Allylic oxidation of 166 was also 

attempted with copper(I)-iodide along with TBHP in dichloromethane. Initially, the 

reaction was performed at 25 °C for 48 h, however, only starting material was present. 

Elevation of the temperature to 45 °C for a further 24 h showed that the starting material 

had begun to decompose. The results are summarised in the Table 8. 

Significant difficulties were encountered in the allylic oxidation, however we continued 

our efforts for allylic oxidation. To accomplish the allylic oxidation of substrates 129 and 

166, it was decided to attempt metal free oxidation using TBHP as an oxidant and 

microwave heating as an energy source. This technique is renowned for reducing reaction 

times and increasing yields.
114

 It provides opportunities for some reactions to precede 

which under standard conditions are not feasible. Initially a reaction using 5 equivalents of 
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TBHP in toluene in a microwave reactor was attempted. Unfortunately, only starting 

material was recovered. To increase the heating efficiency of the microwave reaction, solid 

silicon carbide bars were employed which act as passive heating elements (PHE) in the 

reaction tube. Solid silicon carbide is chemically inert and is a microwave absorbing 

material which can transfer thermal energy to the reaction mixture via conduction 

phenomena. However, microwave heating did not have any positive effect on the fate of 

the reaction and gave the same disappointing yield (Table 8, entry 7).  

Table 8 - Results for allylic oxidation with various methods 

 

In all of these approaches towards allylic oxidation from carbocycles 129 or 166 with or 

without metal complexes, problems were faced in terms of both yield and selectivity due to 

the unusual reactivity of the substrates. From the results obtained, it can be concluded that 

above the methods are intolerant for allylic oxidation of a cyclic alkene bearing a 

substituted amide.  

3.1.4 New approach towards the synthesis of an amidocyclohexenone 

To achieve the synthesis of amino substituted carbocyclic ketone 130, another strategy was 

devised that negated the need of allylic oxidation and would install the allylic oxy-

substituent before the introduction of the amide group in the system. 2,3-Dihydrofuran 171 

was the starting point of the new planned route. Compound 171 was hydrolysed with 0.2 

M hydrochloric acid to give cyclic hemiacetal 172 in 92% yield. The resulting cyclic 

hemiacetal 172 exists in equilibrium with the 4-hydroxybutanal 173. This was further 

reacted with vinylmagnesium bromide to give 1-hexene-3,6-diol 174 in 86% yield. Both 
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the primary and secondary alcohols of the resulting diol 174 required protection at this 

stage to avoid interference in subsequent steps. Protection of the primary alcohol was 

carried out using tert-butyldimethylsilyl chloride with the aid of imidazole. Subsequently, 

the MOM ether was successfully introduced using Hünig’s base and bromomethyl methyl 

ether to afford 175 in quantitative yield. Removal of the silyl protecting group was 

accomplished using tetra-n-butylammonium fluoride in quantitative yield. The resulting 

primary alcohol 176 was further subjected to a one-pot Swern oxidation and Horner-

Wadsworth-Emmons reaction under conditions reported by Masamune and Roush,
105

 

which uses triethyl phosphonoacetate, lithium chloride and DBU, to give E-α,β-unsaturated 

ester 177 in 94% yield. The geometry of the resulting alkene could be easily determined 

from the 
1
H NMR spectrum of the product. The 

1
H NMR spectrum showed a 15.7 Hz 

coupling constant for the alkene protons proving that the geometry is trans. Finally 

DIBAL-H reduction of the ester 177 furnished allylic alcohol 178 in 93% yield (Scheme 

46). 

 

Scheme 46 - Synthesis of allylic alcohol 178 

With allylic alcohol 178 in hand, this compound was subjected to the tandem Overman 

rearrangement/RCM process. Initially, the reaction of the allylic alcohol 178 with 

trichloroacetonitrile was performed using DBU at 0 °C. The reaction ran smoothly and 

gave the allylic trichloroacetimidate in 100% yield. Without purification, 

trichloroacetimidate was subjected to an Overman rearrangement with the aid of 

bis(acetonitrile)palladium(II) chloride (10 mol%) to give allylic trichloroacetamide 180 
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(Scheme 47). The rearranged product 180 was then subjected to a RCM reaction using 

Grubb’s 1
st
 generation catalyst. The MOM protected carbocyclic amide 181 was achieved 

in a rather modest yield of 59% in 24 h. This might be due to the greater complexity of 

substrate 178, which leads to a slower process in comparison to the previous rearrangement 

substrate 159, which completes in 12 h and furnished the carbocyclic amide 129 in 

excellent 90% yield (Scheme 40). This tandem process results in the formation of both the 

syn and anti-product showing that at the 6-position the MOM-ether is too far to exert a 

directing effect. 

To make this approach more efficient, an improved process was required. Previously, the 

Sutherland group have shown that toluene can enhance the yield and diastereoselectivity of 

MOM ether-directed Overman rearrangements due to its non-coordinating nature.
75

 The 

reaction was attempted again using toluene as a solvent and to our surprise, the yield of the 

reaction dropped further to 30%. It was found that deprotection of the MOM-group 

competes during the ring closing metathesis and allows competing side reactions to take 

place. In an attempt to increase the overall yield, the tandem process was repeated using 

Grubb’s 2
nd

 generation catalyst and pleasingly, the desired product was obtained in an 

excellent 93% yield over three steps. The Grubb’s 2
nd

 generation catalyst proved a better 

RCM catalyst for the substrate in terms of catalyst loading, reaction time and yield in 

comparison to Grubb’s 1
st.

 generation catalyst (Scheme 47). 

 

Scheme 47 - Overman rearrangement and ring closing metathesis 
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In the next stage, the deprotection of the MOM group of 181 was attempted using 6M 

hydrochloric acid. However, this reaction was found to be low yielding and gave a 

complex mixture of products. To optimise the deprotection of product 181, different 

concentrations of HCl were investigated. Optimal results showed that dilute hydrochloric 

acid (0.5M)f in methanol at 40 °C accomplished the deprotection of the MOM group to 

give alcohol 182 in 72% yield. Treatment of the resulting alcohol 182 with the Dess-

Martin periodinane reagent gave the desired amidocyclohexenone 130 in 83% yield 

(Scheme 48). 

 

Scheme 48 - Synthesis of amidocyclohexenone 130 

3.1.5 Synthesis of an amidocyclopentenone 

As previously mentioned, due to the significant difficulties in allylic oxidation of amino 

carbocyclic amides, the short, quick and high yielding one-pot tandem approach towards 

the synthesis of carbocylic amides of variable ring sizes could not be utilised. To exclude 

the need of an allylic oxidation at the end of the synthesis, an alternative approach was 

adopted. The synthesis of the amino substituted pentacarbocyclic amide 193 commenced 

with the protection of penta-4-ene-1-ol 183 with a silyl ether using tert-butyldimethylsilyl 

chloride in 99% yield. To install the hydroxyl group, the resulting silyl protected pentene 

184 was treated with selenium dioxide in the presence of TBHP. The reaction worked 

smoothly to give a 70% yield of 185. The remaining steps are similar to that mentioned 

before for the synthesis of aminocyclohexenone 130. The synthesis involved the treatment 

of 185 with bromomethyl methyl ether in the presence of Hünig’s base to protect the 

secondary alcohol followed by treatment with TBAF to remove the silyl protecting group 

in an excellent 96% yield. A one-pot Swern oxidation and Horner-Wadsworth-Emmons 

reaction gave E--unsaturated ester 187. Once again the E-geometry of the alkene was 

established through the 
1
H NMR spectrum of the product, which showed a coupling 

constant of 15.7 Hz for the 2-H and 3-H hydrogen atoms. The resulting ester was reduced 



Results and Discussions  57 

 

with DIBAL-H to give the corresponding allylic alcohol 188 in quantitative yield (Scheme 

49). 

 

Scheme 49 - Synthesis of allylic alcohol 188  

The allylic alcohol 188 was then transformed into the allylic trichloroacetimidate 189 by 

reacting with trichloroacetonitrile in the presence of a catalytic amount of DBU. It was 

rearranged using bis(acetonitrile)palladium(II) chloride (10 mol%) to the allylic 

trichloroacetamide 190 and this was followed by ring closing metathesis step with Grubbs 

first generation catalyst. Surprisingly, this process gave only a 25% yield of RCM product 

191 over three steps (Scheme 50).  

 

Scheme 50 - Overman rearrangement and ring closing metathesis 
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To determine the optimal reaction conditions for the development of a tandem process, all 

three steps of the tandem process were investigated carefully and it was found that the 

rearrangement was not going to completion, even after 72 h. During this time, it was 

observed that the allylic trichloroacetimidate 189 had begun to decompose. To improve the 

yield of the reaction, the rearrangement was also carried out under thermal conditions. This 

involves heating of 189 at 135 °C in toluene in the presence of a small amount of 

potassium carbonate (2 mg/mL) in a sealed tube. The use of thermal rearrangement 

conditions led to an appreciably cleaner product in 12 h with a much better yield. The 

rearranged product 175 was then subjected to RCM using Grubbs 2
nd

 generation catalyst 

(12 h under reflux), to provide the desired cyclic allylic trichloroacetamide 191 in 83% 

yield over three steps. This tandem process gave both the syn and anti-product showing 

that at the 5-position the MOM-ether is too far to exert a directing effect. 

Finally, the MOM group was easily deprotected by heating the solution of 191 in methanol 

with 0.5M HCl. Without purification this reaction was followed by a Dess-Martin 

oxidation in dichloromethane to yield amidocyclopentenone 193 in 73% yield over two 

steps (Scheme 51). 

  

Scheme 51 - Synthesis of 4-amidocyclopentenone 193 

3.1.6 Conclusions 

In summary, new methodology was devised for the successful synthesis of 5- and 6- 

membered amido substituted carbocyclic ketones compounds which are important building 

blocks for the synthesis of structurally diverse antiviral and anticancer carbocyclic 

nucleosides and natural products. Initially, various methods were investigated for the 

allylic oxidation of carbocyclic amides formed from a one-pot tandem process. It appeared 

that these carbocylic amides are resistant to allylic oxidation when TBHP along with 

different transition metals such as Pd, Se, Mn and Cr. In addition to this, the employment 

of sonication and microwave techniques also found no success. A new approach was 

devised involving installation of the hydroxyl group before the tandem process. The 
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intermediate from this new route were then subjected to high yielding one-pot tandem 

Overman rearrangements and ring closing metathesis steps to eventually furnish amido 

substituted five and six membered carbocyclic ketones. The resulting carbocyclic amides 

are relatively more complex than have been synthesised previously using this approach and 

in this way, highlights the potential of this methodology for the synthesis of more complex 

target compounds. 



Results and Discussions  60 

 

3.2 Synthesis of Polyhydroxy Aminocyclohexanes 

3.2.1 Aminocyclitols 

Aminocyclitols are cycloalkanes having at least one hydroxyl group on each of three or 

more ring atoms and one free or substituted amino group.
115

 Because of their close 

structural association with sugars, aminocyclitols are also considered as aminocarbasugars. 

Validamine 194 and other structurally related compounds such as conduramines 195 and 

196 constitute a class of significant compounds which display a diverse range of behaviour 

and possess unique characteristics that make them important for various types of synthetic 

applications (Figure 5).
116

 

 

Figure 5 

Various aminocyclitols, natural 194 as well as synthetic 195 and 196 belong to an 

important class of glycosidase inhibitors.
117-119

 Glycosidase inhibitors have been 

established as potential therapeutic agents for the treatment of diabetes,
120

 obesity,
121

 

viruses,
122

 cancer,
123

 and genetic disorders.
124

 The inhibition of glycosidases by a diverse 

range of chemical compounds has been extensively studied and this has led to a new class 

of antibiotics known as aminoglycoside antibiotics. Several aminocyclitols and 

conduramines are aminoglycoside antibiotics which have been revealed to bind with a 

number of RNA sequences as well as with important HIV regulatory domains to disclose 
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the interplay between the hydroxyl substituents and their neighbouring ammonium 

groups.
125

 Acarbose
126

 197 and voglibose
127

 198 are aminocyclitols and are active -

glucosidase inhibitors utilised clinically to lessen postprandial blood glucose levels in 

patients with type II diabetes mellitus. 

Some natural aminocyclitols are secondary metabolites, such as validamycins 202 that 

have been isolated from the fermentation culture of streptomyces hygroscopicus 

limoneus.
128

 Validamycins 202 are composed of one valienamine unit 199, together with 

an additional unit of either validamine 200, valiolamine 201, or hydroxyvalidamine 203 

(Figure 6). Apart from aminocyclitols glycosidase inhibiting and antibiotic activity their 

use as molecular probes for quorum sensing modulation has also been reported.
129

  

 

Figure 6 

In addition, aminocyclitols are not only aspirant for drug discovery but also have paved the 

way for the development of the new potential therapeutic agents. Aminocyclitol 

frameworks have been found to be incorporated into a wide variety of organic compounds. 

These serve as key intermediates in the preparation of azasugars,
130

 aminosugars,
131

 

sphingosines,
132

 lactams, and narcissus alkaloids.
133

  

As a result of their utility and versatility, many fascinating and elegant synthesis of 

racemic and optically pure aminocyclitols and conduramines have been reported. Many 
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approaches make use of natural building blocks as a starting material. For example Shing 

and Wan synthesised valiolamine 201 in 14 steps strating from (–)-quinic acid in an overall 

8.4% yield.
134

 Ogawa and co-workers employed vibo-quercitol for the convenient 

syntheses of valiolamine 201.
135

 Several other synthetic strategies include cycloaddition 

reactions,
136

 radical cyclisations
137

 and rearrangement reactions such as the classical 

Ferrier rearrangement
138

 or the Claisen rearrangement.
139

 

3.2.2 Synthesis of aminocyclitols 

In this project, our aim was to undertake the highly stereoselective synthesis of 

aminocyclitols such as dihydroconduramine E-1 132 and the enantiomer of 

dihydroconduramine C-1 133. It was proposed to make use of a stereoselective variant of 

the recently developed one-pot tandem process Overman rearrangement and ring closing 

metathesis step for the asymmetric synthesis of an (S)-N-(cyclohexenyl)trichloroacetamide 

131, and then to study the stereoselective oxidation of this synthetic intermediate for the 

preparation of polyhydroxylated aminocyclohexane derivatives (Scheme 34). The first 

stage of the project involved the synthesis of the allylic alcohol starting from commercially 

available 5-hexen-1-ol 157 in two steps using a one-pot Swern oxidation and Horner-

Wadsworth-Emmons reaction using Masamune-Roush conditions.
105

 This gave E-,β-

unsaturated ester 158 which was then followed by reduction of the ester functional group 

by two equivalents of DIBAL-H to give allylic alcohol 128 in excellent yield (Scheme 52). 

 

Scheme 52- Synthesis of allylic alcohol 128 

Allylic alcohol 157 was then reacted with trichloroacetonitrile and a catalytic amount of 

DBU to convert it into allylic trichloroacetimidate 160. It was further subjected to the 

standard conditions of the one-pot tandem process using commercially available (S)-COP-

Cl 82 (see Figure 3) to effect the Overman rearrangement. This was followed by the 

addition of Grubbs first generation catalyst to promote ring closing metathesis which 

resulted in allylic trichloroacetamide 131 in an excellent 90% yield over three steps and 
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with 88% enantiomeric excess. The enantiomeric excess of 131 was improved to >99% on 

recrystallisation from a mixture of ethyl acetate and petroleum ether (Scheme 53). 

 

Scheme 53 - Stereoselective one-pot tandem Overman rearrangement and RCM reaction 

After the synthesis of (1S)-1-(2′,2′,2′-trichloromethylcarbonylamino)cyclohexa-2-ene (131) 

in multigram quantities, our subsequent objective was to investigate the stereoselective 

dihydroxylation and epoxidation of 131. Initially, dihydroxylation of the cyclic allylic 

amide was pursued. Transition-metal-catalysed oxidations of alkenes represent a 

distinctive approach for dihydroxylation with defined relative configuration. Several 

reagents are now used as an oxidant such as KMnO4, RuO4 or OsO4. Among these 

reagents, the osmium-catalysed dihydroxylation has gained wide acceptance and has 

emerged as a benchmark in terms of its generality and selectivity. We made use of 

Donohoe’s procedure which is an efficient method for the directed syn-selective 

dihydroxylation of cyclic allylic trichloroacetamides.
140

 It involves the in situ formation of 

a bidentate complex which is prepared by mixing stoichiometric amounts of osmium 

tetroxide and N,N,N′,N′-tetramethylethylenediamine (TMEDA) at –78 °C. Use of TMEDA 

along with OsO4 not only makes the oxidant more electron rich but also more reactive. 

This newly formed bidentate complex then reacts with the substrate to form the osmate 

ester 205 towards the face of the alkene which is influenced by hydrogen bonding between 

the amide and the electron rich oxo-ligands. On hydrolysis, it liberates mainly the syn-

dihydroxylated product. Following this procedure, 131 was subjected to standard 

conditions of the directed dihydroxylation. The reaction proved successful to yield the 1,2-

syn-2,3-syn-isomer 206 in 94% diastereomeric excess. Diastereomeric excess could be 

determined from the 
1
H NMR spectrum of the crude reaction mixture. The desired product 

was then easily isolated from the crude mixture using flash column chromatography to 

give a single stereoisomer in 93% yield (Scheme 54).  
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Scheme 54 - Steroselective dihydroxylation showing formation of osmate ester 

In order to synthesise the 1,2-syn-2,3-anti-isomer 208, a simple two-step strategy was 

adopted. The first step involved the epoxidation of 131 utilising meta-chloroperbenzoic 

acid (m-CPBA) which provided cis-epoxide 207 via a substrate directed intermediate.
141

 

The diastereomeric excess was determined from the 
1
H NMR spectrum of the crude 

reaction mixture and found to be 90%. Separation of the major diastereomers was carried 

out by flash column chromatography giving 207 as a single stereoisomer in 95% yield. 

This was followed by acid mediated hydrolysis to furnish 207 in 75% yield as a single 

stereoisomer. It was fully characterised by detailed COSY and NOE experiments which 

clearly demonstrated the 1,2-syn-2,3-anti relationships of the trichloroacetamide and 

hydroxyl groups (Scheme 55). 

 

Scheme 55 - Stereoselective epoxidation and its cleavage 

In the next step, it was proposed to install three hydroxyl groups to 131. This would allow 

access to aminocyclitols 132 and 133. We intended an approach that entailed 

stereoselective functionalisation of the alkene of 131 to furnish a hydroxyl group at C-2 

and a leaving group at C-3 of the cyclohexane ring. Elimination of the leaving group will 

then yield an alkene which on subsequent stereoselective oxidation should produce the 

conduramine derivatives. 

The synthesis of this fragment commenced with the reaction of 131 with N-

iodosuccinimide in chloroform to afford iodoxazole 210 (Scheme 56). The resulting 

oxazole 210 is sensitive to acid so was purified using an alumina column in 85% yield as a 
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single stereoisomer. As 210 was found to be relatively unstable, it was subsequently 

hydrolysed under acidic conditions which yielded 1,2-syn-2,3-anti-iodoalcohol 211 in 76% 

yield.  

 

Scheme 56 - Stereoselective functionalisation of carbocyclic amide 211 

The relative stereochemistry of 211 was confirmed by X-ray crystallography. The X-ray 

image of the 1,2-syn-2,3-anti-iodoalcohol 211 is shown below (Figure 7). It clearly 

illustrates the 1,2-syn-2,3-anti-relationship of the trichloroacetamide, hydroxyl and iodide 

substitutents, respectively. 

 

Figure 7 - ORTEP representation of X-ray crystal structure of compound 211 

The stereochemistry of 211 suggested that iodination takes place anti to the trichloroamide 

to form iodonium ion 209 (Scheme 56). It is followed by syn-formation of 4,5-dihydro-1,3-
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oxazole ring yielding 210. In suitable acidic medium, hydrolysis takes place at C-2 to 

cleave the 4,5-dihydro-1,3-oxazole ring to furnish 211.  

When investigating the elimination of the iodide to generate the allylic alcohol, 1,2-syn-

2,3-anti-iodoalcohol was treated with sodium hydrogencarbonate and heated under reflux 

overnight. However, none of the desired allylic alcohol 213 was isolated. Changing the 

base to DBU also failed to lead to the formation of any of the product, returning only 

starting material. In another attempt, 131 was again reacted with N-iodosuccinimide to give 

4,5-dihydro-1,3-oxazole 210 (Scheme 57). Without purification, 210 was treated with 

DBU in toluene at 110 °C for 12 h. It resulted in the intermediate 212 which was further 

hydrolysed under acidic conditions to afford the desired allylic alcohol 213 in 60% yield 

over the three steps. 

 

Scheme 57 - Formation of amidocyclohexanol 213  

When this advanced stage of the synthesis was reached, the introduction of the other two 

hydroxyl groups via directed dihydroxylation was investigated. To synthesise the 

stereoisomer of trihydroxy carbocylic amine 133, amidohexanol 213 was subjected to 

dihydroxylation using osmium tetroxide in the presence of TMEDA (Scheme 58). High 

diasteroselectivity was expected due to the enhanced directing effect of amide and 

hydroxyl at adjacent positions. These functional groups are in a position to direct the 

dihydroxylation to form triol 215 as the major diastereomer. However, under these 

conditions, a 3:1 mixture of two diastereomeric triols in 87% yield was isolated.  
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Scheme 58 - Dihydroxylation of 213 

The ratio of the stereosiomers was determined by 
1
H NMR spectroscopy using the crude 

reaction mixture. The major isomer was easily separated by flash column chromatography 

in 53% yield. The exact stereochemisty of this major isomer could not be assigned using 

NMR techniques due to overlapping signals of adjacent hydrogen atoms. However, 

recrystallisation of the major product allowed X-ray structure determination and it 

appeared that that the major diastereomer was 1,2-syn-2,3-anti-3,4-syn isomer 214 (Figure 

8).  

 

Figure 8 - ORTEP representation of X-ray crystal structure of compound 214 

The results illustrate that the reaction takes place from the least hindered site of the 

cyclohexene 213 to generate trichloroacetamide derivative 214. However, a certain level of 

directed dihydroxylation also occurs to afford triol 215, as a minor diastereoisomer. To 

investigate the stereochemical outcome of the Donohoe reaction, the Upjohn reaction was 

employed. The Upjohn reaction is a method for dihydroxylation through a non-directed 

mechanism.
142

 It makes use of a OsO4 in catalytic amounts along with N-

methylmorpholine N-oxide (NMO) as a stoichiometric re-oxidant. As such, the allylic 

alcohol was subjected to standard Upjohn conditions to give triol 214 as a single 

stereoisomer in 56% yield. The outcome from the Upjohn dihydroxylation of 213 provides 

evidence that formation of triol 215 using Donohoe conditions, must take place by a 

directing effect and it is not due to a face selective, non-directed dihydroxylation. In the 
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next step, removal of the trichloroacetyl protecting group of 214 was attempted using 

sodium hydroxide in methanol to access aminocyclitol 133. Purification was carried out by 

ion exchange chromatography to yield dihydroconduramine E-1 133 in 68% yield (Scheme 

59).  

 

Scheme 59 - Synthesis of dihydroconduramine E-1 133 

To access the enantiomer of dihydroconduramine C-1 132, a directed epoxidation of cyclic 

allylic alcohol using m-CPBA was proposed. It works presumably via Henbest’s rule 

which states that an alcohol group directs the epoxidation reaction to generate the cis-

epoxide stereochemistry.
143

 The epoxide would then be subjected to hydrolysis to give the 

dihydroxy product upon treatment with an acidic solution of dioxane. As such, allylic 

alcohol 213 was treated with m-CPBA to yield cis-epoxide in 90% diastereomeric excess 

(Scheme 60). Purification by flash column chromatography gave the major product, the 

syn-diastereomer 216 in 69% yield.  

 

Scheme 60 - Epoxidation of 213 and formation of dihydroconduramine derivative 217 

The stereochemistry of compound 216 was confirmed by NOE studies, which showed a 

positive NOE between hydrogen atoms Hb and Hc (0.8%). This shows that Hc of epoxide 

and Hb of hydroxyl group are on the same face of the ring. Hydrogen Ha of position 1 was 

then irradiated and an enhancement was observed (0.7%) with Hb indicating the syn 

relationship of the adjacent hydrogens, thus confirming that the major diastereomer is 1,2-

syn-2,3-syn-3,4-syn-isomer 216 (Figure 9).  
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In the next step, 216 was subjected to 0.2N H2SO4, to cleave the epoxide which resulted in 

the formation of dihydroconduramine derivative 217 in 87% yield (Scheme 60). The 

stereochemistry of the dihydroconduramine derivative 217 was again confirmed by 

difference NOE experiments. Dihydroconduramine derivative 217 was irradiated at 

stereogenic center Hb to determine the orientation in relation to Hc. It showed a positive 

NOE between hydrogen atoms Hb and Hc (1.3%) which implies they have syn relation to 

each other. In addition, there was no positive enhancement for the proton Hd upon 

irradiation of proton Hc, confirming that the compound 217 is the 1,2-syn-2,3-syn-3,4-anti-

isomer (Figure 9).  

 

Figure 9 - NOE enhancement studies for the polyhydroxylated aminocyclohexane derivatives 

Finally, treatment of 1,2-syn-2,3-syn-3,4-anti-isomer 217 with sodium hydroxide in 

methanol accomplished the hydrolysis of the trichloroacetamide group (Scheme 61). 

Purification was carried out using an ion exchange column which gave the enantiomer of 

dihydroconduramine C-1 132 in 98% yield. 

 

Scheme 61 - Synthesis of the enantiomer of dihydroconduramine C-1 132 

3.2.3 Conclusions 

In conclusion, the stereoselective synthesis of dihydroconduramine E-1 and the enantiomer 

of dihydroconduramine C-1 was achieved using a stereoselective variant of the one-pot 

tandem Overman rearrangement and ring closing metathesis process in excellent yield and 

diastereomeric excess. During the course of the synthesis (1S)-N-(cyclohexenyl) 
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trichloroacetamide was efficiently prepared starting from the commercially available 

alcohol in 75% overall yield in six steps and in excellent enantiomeric excess. Initially 

Donohoe conditions and Henbest’s principle were investigated for the synthesis of syn and 

anti diol derivatives of 131 respectively, in excellent diastereoselectivity. The noteworthy 

successes of a relevant model study provided the foundation for the synthesis of two 

dihydroconduramines. In the first approach, the allylic alcohol 213 was synthesised from 

131 via 4,5-dihydro-1,3-oxazole 210 as a single stereoisomer. Non-directed 

dihydroxylation and directed epoxidation were then employed which resulted in the 

production of the two dihydroconduramines. This operationally simple route is very 

efficient and granted further insight into the stereoselective functionalisation of substituted 

cyclohexenes for the production of related natural products such as pancratistatins and 

other Amaryllidaceae alkaloids (see Section 3.3). 
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3.3 New Routes towards the Synthesis of Amaryllidaceae Alkaloids 

3.3.1 Introduction 

After the development of a one-pot tandem Overman rearrangement/ring closing 

metathesis process for the direct synthesis of cyclic allylic amides, the Sutherland group 

reported various interesting synthetic strategies to exploit its role in natural product 

synthesis.
40,41,77 

Cyclic allylic amides are excellent synthetic intermediates that can be 

easily functionalised using a number of different reactions e.g. dihydroxylation,
140

 

stereoselective epoxidation,
141

 Kharasch addition 
 
and conversion to bicyclic structures.

144
 

Such reactions can build up complexity on the ring framework to generate structures of 

interest. In this project, the aim was to expand the scope of this tandem process and use it 

in combination with a MOM-ether directed Pd(II)-catalysed Overman rearrangement for 

the diastereoselctive synthesis of cyclic allylic amide 135 (Scheme 62).  

 

Scheme 62 - MOM-ether directed tandem Overman rearrangement and RCM reaction 

This reaction pathway involves directed coordination of the Pd(II)-catalyst by the MOM 

ether to the allylic trichloroacetimidate resulting in a diastereoselective rearrangement. The 

product of this tandem process can then be used for the synthesis of various nitrogen 

containing natural products, antibiotics and unnatural amino acids or sugars.
 
Initially, it 

was planned to use the directed rearrangement for the synthesis of some derivatives of the 

Amaryllidaceae alkaloids and screen them for biological activity.  
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The Amaryllidaceae family, consists of around 1100 species each belonging to eighty-five 

different genera and has produced a large number of structurally diverse alkaloids.
145

 The 

galanthane ring system is a common characteristic of most of these compounds and is 

known for wide range of interesting physiological effects including antitumor, antiviral, 

acetylcholinesterase inhibitory, immunostimulatory and antimalarial activities.
146

 Some of 

these alkaloids are of particular interest because of their potential use in clinical therapy. 

Some well-known alkaloids from this family include (+)--lycorane 136, (+)-2-

deoxylycoricidine 221, (+)-7-deoxypancratistatin 222, and (+)-lycoricidine 223 (Figure 

10). 

 

Figure 10 - Amaryllidaceae alkaloids 

3.3.2 Previous syntheses of (+)-γ-lycorane 

The unprecedented structure and potent pharmacological properties of the Amaryllidaceae 

alkaloids has motivated the development of many interesting synthetic strategies.
 
In 

particular, subsequent to the first synthesis of γ-lycorane 136 in 1966, several different 

racemic and enantioselective approaches have been reported.
147-151

 Many of these employ 

Pictet–Spengler,
152

 Bischler–Napieralski cyclisations
153

 or metal catalysed 

alkylation/cyclisations
149

 as a key step for the construction of key parts of the 

Amaryllidaceae alkaloids. Some of the advances employed in the total synthesis of γ-

lycorane 136 are discussed below. 
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The first asymmetric synthesis of (+)-γ-lycorane 136 was disclosed by Mori and co-

workers.
149

 They made use of an asymmetric Pd(0)-catalyst as the key enantioselective 

step for the allylic alkylation coupling of the A and C rings to give benzoate 226. A 

subsequent amination and Pd(0)-catalysed intramolecular Heck reaction was used to finish 

the synthesis of γ-lycorane in 23% yield and 46% ee. Several years later, Ojima and co-

workers
147

 used the same strategy but made use of chiral monodentate phosphoramidite 

ligands and improved the overall yield from 23% to 41% and enantioselectivity further to 

>99% (Scheme 63). 

 

Scheme 63 - Ojima synthesis of (+)--lycorane 

In another approach, Gong and co-workers
154

 described an enantioselective synthesis of γ-

lycorane in 38% overall yield and 98% ee (Scheme 64). They used an asymmetric 

rhodium(II)-catalysed nitroallylation employing an aryl boronic acid 228 and a nitroallyl 

acetate 229 to construct the AC ring fragment 230. This was followed by a conjugate 

addition of the enolate of methyl acetate to give 231. The resulting compound 231 was 

then hydrogenated before performing a modified Pictet-Spengler ring closure reaction to 

construct the BD ring. This furnished (+)-γ-lycorane in an excellent yield after reduction 

with lithium aluminum hydride. 
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Scheme 64 - Gong synthesis of (+)--lycorane 

More recently, Funk and co-workers
155

 reported a concise total synthesis of (±)-γ-lycorane 

136 (Scheme 65). This synthesis involves the pre-functionalisation of commercially 

available Boc-2-pyrrolidinone 232. It was then subjected to a Stille coupling using an 

appropriate vinyl halide to give the trienecarbamate 234 (AD ring) of γ-lycorane. Reflux in 

toluene performed the 6-π-electrocyclic ring closure which provided tetrahydroindole 235. 

The resulting tetrahydroindole was ultimately hydrogenated with the aid of PtO2 in acetic 

acid followed by deprotection of the carbamate. It was then converted to γ-lycorane by 

employing a Pictet–Spengler cyclisation using formalin in a solution of methanol. Once 

again it is an elegant synthesis giving the target molecule in 24% overall yield. 

 

Scheme 65 - Funk synthesis of (±)-γ-lycorane 
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3.3.3 Proposed synthesis of (+)-γ-lycorane  

It is important to mention that in all previous asymmetric syntheses of (+)-γ-lycorane 136, 

chiral catalysis were employed to achieve the key enantioselective steps. In contrast to this, 

our plan was to make use of a MOM-ether directed Overman rearrangement and combine 

it with a ring closing metathesis step to construct key synthetic intermediate 135 (C ring) 

and utilise it in order to synthesise (+)-γ-lycorane 136 and other structurally related 

compounds (Scheme 66). The main advantage of the one-pot tandem MOM-ether directed 

Overman rearrangement/RCM process, is that it will quickly generate a second stereogenic 

center on the resulting cyclic allylic trichloroacetamide from the corresponding allylic 

alcohol 134. The new stereogenic centre in the resulting cyclic allylic trichloroacetamide 

would provide an additional reaction site for further functionalisation. Following this, the 

cyclic allylic amide will be subjected to a Kharasch cyclisation
144,156

 to introduce the D 

ring, which would be subsequently dechlorinated using Raney
®

-Nickel. An alkylation 

reaction would then introduce the piperonyl moiety to put in the left hand aromatic 

fragment (ring A) to give compound 238. It would be followed by a functional group 

interconversion to yield 239. The palladium-mediated cyclisation of 239 is similar to that 

described by Mori and co-workers
147,149

 during their synthesis of (+)-γ-lycorane and would 

allow the synthesis of the all cis-ring system. Finally, hydrogenation of the alkene and 

reduction of the amide would give Amaryllidaceae alkaloid, (+)-γ-lycorane 136.  
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Scheme 66 - Proposed synthesis of (+)--lycorane 

3.3.4 Development of an ether-directed tandem reaction 

The first stage of this synthesis requires the formation of allylic alcohol 134 which would 

act as a substrate for the MOM-ether directed Overman rearrangement and RCM step. The 

synthesis of the corresponding allylic alcohol 134 began with the protection of the 

hydroxyl group of the commercially available glycidol 236 with a tert-butyldimethyl silyl 

group (Scheme 67). The resulting compound 240 was regioselectively ring-opened with 

allyl magnesium bromide in the presence of copper bromide dimethyl sulfide at –78 °C to 

give 241 in 90% yield. In the next step, the secondary alcohol of the resulting (2R)-1-(tert-

butyldimethylsilyloxy)hex-5-en-2-ol (241) was protected with a MOM-group using N,N-

diisopropylethylamine and bromomethyl methyl ether in quantitative yield. It was 

subsequently treated with TBAF to give the primary alcohol 243 again in quantitative 

yield. Primary alcohol 243 was then subjected to a one-pot Swern oxidation and Horner-

Wadsworth-Emmons reaction to give the E-,β-unsaturated ester 244. The E-α,β-

unsaturated ester was further reduced with DIBAL-H to provide allylic alcohol in an 

excellent 86% yield over the 6 steps.  
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Scheme 67 - Synthesis of an allylic alcohol for directed rearrangement 

With the allylic alcohol 134 in hand, it was further subjected to a one-pot tandem Overman 

rearrangement and RCM reaction to give the corresponding cyclic allylic 

trichloroacetamides 135 (Scheme 68). Initially the reaction of the allylic alcohol with 

trichloroacetonitrile was performed using DBU at 0 °C in two hours to form allylic 

trichloroacetimidate 218. The Overman rearrangement was then performed using 

bis(acetonitrile)palladium(II) chloride (10 mol%) followed by the RCM reaction using 

Grubb’s 1st generation catalyst. This resulted in the formation of 135a and 135b, as a 5:1 

ratio of diastereomers in a 45% yield over 3 steps from the allylic alcohol 134 (Scheme 

68).  
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Scheme 68 - Ether-directed tandem Overman rearrangement and RCM reaction 

The diastereomeric ratio of the resulting MOM-protected carbocyclic amides could be 

easily determined from the 
1
H NMR spectrum. The hydrogen atoms for the anti-product 

135b are observed at 3.75 ppm (1-H) and 4.42 ppm (2-H). The desired cyclic product 135a 

showed its stereogenic hydrogen atoms at 4.05 ppm (1-H) and 4.63 ppm (2-H). The 

stereochemistry of the 135a was further established by NOE studies, which showed an 

enhancement of hydrogen Ha (0.68% NOE) upon irradiation of hydrogen Hb, confirming 

the cis-geometry between these adjacent hydrogen atoms (Figure 11).  

 

Figure 11 - NOE enhancement studies for the carbocyclic amide 
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To generate an efficient total synthesis of (+)-γ-lycorane 136 the yield and selectivity of 

the tandem process required improvement. Previously, it has been observed in our research 

group that toluene can enhance the yield and diastereoselectivity of MOM ether-directed 

Overman rearrangements due to its non-coordinating nature.
75

 The reaction was repeated in 

toluene and pleasingly, this modification improved the yield from 45% to 60% and 

increased the diastereoselectivity from 5:1 to 10:1. However, the reaction takes more time 

to complete in comparison to a non-substituted six membered allylic trichloroacetamide 

(Section 3.1.2). The slow rate of the reaction can be attributed to the greater complexity of 

the substrate, which leads to a slower Overman rearrangement and ring closing metathesis 

steps. The more significant anti-diastereoselectivity of this process is due to the 

coordination of the Pd(II) catalyst with the oxygen atoms of the MOM group without 

having to compete with the THF solvent. This directs the catalyst selectively to the back 

face of the alkene and resulting in a diastereoselective rearrangement. This chair-like 

conformation not only minimises the allylic strain but also allows intramolecular attack of 

imidate nitrogen from the front face of the alkene, thus giving the major diastereomer 135a 

(Scheme 68). To improve the yield of RCM step, the reaction was also carried out with 

Grubb’s 2
nd

 generation catalyst but no further improvement was observed and gave 49% of 

the major diastereomer 135a. 

3.3.5 Attempted Synthesis of (+)--lycorane 

Having synthesised the MOM protected carbocyclic amide 135a, it was proposed to 

perform a Kharasch cyclisation on the carbocyclic amide 135a to provide the D-ring of γ-

lycorane. The groups of Snapper and Itoh have reported the development of a ruthenium 

catalysed Kharasch cyclisation of allylic trichloroamides to give the corresponding bicyclic  

ring systems in high yields.
144,156

 In addition, both groups have shown that all the 

substrates used in this process furnished exclusively the cis-ring junction between the 5- 

and 6-membered rings, confirming that our use of the Kharasch cyclisation will yield the 

correct stereochemistry required for the synthesis of (+)-γ-lycorane 136. A Kharasch 

cyclisation is a Ru(II)-catalysed reaction that proceeds via a radical mechanism (Scheme 

69).
156

 During the course of the reaction, ruthenium(II) triggers the sequence of the 

reaction leading to the formation of the bicyclic product. Initially, ruthenium(II) attacks the 

trichloroacetyl group of 131 and abstracts a chlorine atom to form Ru(III)-Cl and supplies 

the radical 245. The carbon radical 245 then attacks the alkene to form the new C-C bond 

of the 5-membered ring and generates the new carbon radical 246. This reaction is then 

terminated by re-introduction of Ru(III)-Cl which introduces a chloride to the face opposite 
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to the new 5-membered ring 246, thus providing the Kharasch product 247 as a single 

diastereomer.
 
 

 

Scheme 69 - Radical mechanism of Kharasch cyclisation 

Previously, in the Sutherland group efforts have been made to do the Kharasch cyclisation 

of 135a employing the Grubbs I catalyst in toluene at 155 °C but this resulted in the 

formation of the tricyclic product 248 and in a poor yield (Scheme 70). 

 

Scheme 70 - Kharasch cyclisation using Grubbs catalyst 

In this project, the MOM protected carbocylic amide 135a was treated with RuCl2(PPh3)3 

catalyst under the conditions reported by Itoh however, this gave a mixture of the Kharasch 

product 237 and tricyclic product 248 in low yields.
138,150

 To improve the yield and 

selectivity of the reaction, when 135a was subjected to higher temperature (155 °C) in 0.1 

M p-xylene in a Schlenk tube, the reaction was completed after 2 h and the desired product 

237 was isolated in 42% yield. However, the formation of a small amount (10%) of 

tricyclic compound 248 could not be avoided. During the course of the reaction, unwanted 

side reactions were deemed likely due to the HCl that is formed due to the decomposition 
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of the staring material or product during the high temperatures of the Kharasch cyclisation. 

To overcome this issue, any acid that was produced during the reaction had to be trapped. 

It was therefore envisioned that adding an acid scavenger would be appropriate to keep the 

reaction selective. Three different additives were tried including DBU, potassium 

carbonate and molecular sieves (4Å). The reaction did not work by utilising DBU and 

returned only starting material 135a, whilst addition of potassium carbonate also did not 

improve the reaction and again yielded a mixture of the two products (135a and 248). 

However the use of 4Å molecular sieves gave only the desired product 237 in a 56% yield. 

The use of powdered 4Å molecular sieves further improved the reaction and increased the 

yield to 75%. Powdered molecular sieves increased the surface area of the sieve and 

therefore trap the acid more efficiently. This inhibits the side reaction and in turn improves 

the yield of the reaction (Scheme 71).  

 

Scheme 71 - Optimised reaction conditions for the Kharasch cyclisation 

The stereochemistry of the resulting compound 237 was established by NOE studies. 

Irradiation of hydrogen Hb showed a positive enhancement to the adjacent hydrogen atoms 

(Ha and Hc) thus, confirming the all cis-geometry between Ha, Hb and Hc (Figure 12). The 

stereochemistry at C-4 was confirmed by irradiation of hydrogen Ha and as expected there 

was no enhancement of hydrogen Hd proving that the chlorine was on the top face of the 

molecule. 

 

Figure 12 - NOE studies confirming cis-ring junction 
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In the next step, the reductive dechlorination of the Kharasch cyclised product 228 was 

accomplished by using procedure described by Barrero and co-workers.
157

 It involved the 

heating of 237 with Raney
®

-Nikel to afford 249. The reaction worked well and gave an 

85% yield for the desired dechlorinated product (Scheme 72). 

 

Scheme 72 - Dechlorination using Raney
®
-Nickel 

The next stage of the synthesis involved incorporation of the piperonyl moiety. This would 

give substrate 238 which would be subsequently oxidised to get ketone 252 (Scheme 66). 

The resulting ketone 252 would be converted into an enol triflate by means of a protocol 

described by Hagiwara.
158

 There is significant literature precedent that enol triflates are 

amenable to palladium catalysed cross coupling reactions under mild conditions and with 

high chemo- and stereoselectivity. It was proposed that as the methylene hydrogens of the 

C ring are more acidic in comparison to that of the D ring then the use of base such as 

LDA would allow the selective enolisation of 252 followed by triflation with triflic 

anhydride to generate 239. Moving towards the desired enol triflate, the dechlorinated 

MOM protected compound 249 was alkylated with the piperonyl bromide 250 to provide 

the A ring of the γ-lycorane. This was conducted under the reaction conditions previously 

reported by Fujioka and co-workers involving reaction of 249 (Scheme 73).
159,160

 The 

reaction worked smoothly and gave the desired compound 238 in an excellent 97% yield. 

Cleavage of the MOM protecting group was performed with 1.5M HCl in methanol at 40 

°C to give the alcohol 251 in 100% yield. This was subsequently oxidised to give 252 with 

the Dess-Martin reagent again in an excellent 95% yield.  
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Scheme 73 - Synthesis of cyclohexanone 252 

Having successfully synthesised the ketone 252, the substrate was treated with LHMDS in 

THF at –78 °C followed by reaction with triflic anhydride. However, neither the desired 

product nor the starting material was identified upon work-up. In another effort, Commins 

reagent was employed instead of triflic anhydride. This resulted in only traces of the 

desired product 239 with mainly recovery of the starting material. This was taken as a good 

sign after the initial failure and so the reaction was repeated with additional equivalents of 

LHMDS and stirred for an extended period of time. The reaction gave a complex mixture 

of products. Moreover 8% of the desired product along with 39% of the starting material 

was also isolated. To deal with the problem, the reaction was also attempted using freshly 

prepared LDA along with DMPU. However, this could not improve the results, giving only 

traces of the desired product along with a considerable amount of unidentifiable by-

products (Table 9).  
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Table 9 - Attempted synthesis of enol triflate 239  

 

To limit the formation of undesired by-product and to achieve high yields of the desired 

triflate 239, it was proposed to re-order the synthetic steps and reduce the amide prior to 

deprotection of the MOM group. This would allow triflate formation selectively and would 

limit the possibility of a second triflate formation. Compound 238 was heated under reflux 

in THF with LiAlH4 to afford 244 in an 85% yield (Scheme 74). Next the MOM group was 

cleaved and the resulting alcohol 254 was subjected to oxidation. Initially, the Dess-Martin 

reagent was employed for the oxidation of the secondary alcohol 254 and the reaction was 

stirred for 4 h. However, only starting material was present in the reaction mixture. The 

reaction was stirred for a further 12 h and it was observed that the starting material had 

begun to decompose. As such, it was decided to try another oxidising agent in order to 

proceed further. In a second attempt, 254 was treated with PDC at room temperature. 

However, this reagent also led to decomposition of the starting material and no desired 

product was formed. The reaction was tried again at 0 °C using only an half equivalent of 

PDC. These conditions also proved unrewarding, failing to give any identifiable oxidised 

product, giving the same result as before even after 10 minutes of stirring. As a final 

option, a Swern oxidation was attempted. Although, the starting material was consumed 

leading to the formation of a number of spots on the TLC plate, none of them could be 

identified as the desired compound.  
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Scheme 74 - New strategy for the synthesis of substrate for triflate formation 

Unfortunately none of these procedures were successful in generating the desired 

compound in high yield for the eventual synthesis of (+)-γ-lycorane. Work in this area was 

discontinued and we turned our intensions to the synthesis of pancratistatin analogues. 

3.3.6 Synthesis of pancratistatin analogues 

Among the numerous members of the Amaryllidaceae family, phenanthridone alkaloids 

such as (+)-2-deoxylycoricidine 221, (+)-7-deoxypancratistatin 222, and (+)-lycoricidine 

213 are the most well known due to their interesting structures and potent biological 

activities (Figure 10, page 71).
88

 Over the years, a number of creative approaches have 

appeared in the literature to synthesise these fascinating targets by several research 

groups.
161-165

 Our interest in 221 and 222 is heightened by its promising activity in several 

anticancer tests against the NCI human tumour cell line panel.
88,166

 These compounds have 

also shown antitumor activities and have appeared as potent therapeutic agents against a 

set of diverse viruses. The mode of action for these compounds is still not known in detail. 

However, various investigations have shown that the activities of such compounds can be 

attributed to the oxygenated cycle and to their tricyclic structure.
167

  

In continuation of our ongoing research program, our aim was to use the mono-substituted 

cyclic allylic amide 135a to undertake a highly stereoselective synthesis of various novel 

pancratistatin analogues and screen them for their biological activities. As such, a new 

strategy for the synthesis of pancratistatin analogues and their related derivatives was 

devised and is outlined below (Scheme 75). 
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Scheme 75 - Proposed route for the synthesis of Pancratistatin analogues 

The synthetic route involved the removal of the trichloroacetyl group under base mediated 

conditions followed by a coupling with a piperonyl moiety 256. The resulting compound 

257 would set the stage for the synthesis of the basic core of the pancratistatin (B ring) 

through the action of the Pd-catalysed cross coupling reaction. At this point, the synthesis 

of many different pancratistain analogues should be straightforward. Removal of the MOM 

protecting group followed by hydrogenation would give the first target 259. In order to 

achieve the synthesis of the other poly-hydroxylated analogues, 137 will be subjected to 

allylic oxidation, directed dihydroxylation and epoxidation to provide various 

pancratistatin analogues. If the allylic oxidation reaction proved to be successful, then 

resulting ketone would be reduced and directed dihydroxylation would furnish the fully 

oxygenated C ring. 

The pancratistatin analogue synthesis commenced with the hydrolysis of the cyclic allylic 

trichloroacetamide 135a. The reaction was carried out by stirring a solution of 135a in a 
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1:1 mixture of methanol and 2.0 N sodium hydroxide to provide the amine in quantitative 

yield (Scheme 77). The A-ring building block of the phenathridone was prepared via the 

bromination of the commercialy available piperanal 262 in glacial acetic acid to give 6-

bromopiperonal 263 as a crystalline solid in 96% yield. The resulting 6-bromopiperonal 

263 was oxidised through the action of potassium permanganate to furnish 6-

bromopiperonylic acid 264 in overall 85% yield (Scheme 76).
168

 

 

Scheme 76 - Synthesis of 6-bromopiperonylic acid 256 

Having the carbocyclic amine and 6-bromopiperonylic acid in hand, we turned our 

attention to coupling them together with the aid of 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDCI). A synthetically useful virtue of EDCI is that it can be employed as a 

carboxyl activating agent for the coupling of primary amines to yield amide bonds. In a 

typical procedure, the solution of amine in acetonitrile was treated with EDCI along with a 

catalytic amount of DMAP followed by acidic work up to give the desired compound 257 

in 79% yield. To make the basic core of pancratistatin 137 and lycoricidine analogues 258, 

two different approaches both involving palladium acetate were investigated (Scheme 77 

and 78). Initially, Ogawa’s
169

 protocol of an intramolecular Heck reaction was attempted to 

give 258. This approach requires the protection of the carbamate nitrogen of 257 with a 

suitable protecting group such as Boc or PMB. The Boc protection of 257 was attempted 

using Boc anhydride, TEA and DMAP in acetonitrile and was stirred at room temperature 

for 24 h. These conditions did not show any sign of reaction. The reaction temperature was 

then increased to 80 °C and stirred overnight but again this reaction failed to lead to the 

generation of the desired Boc protected compound 264 (Scheme 77). After this failure, a p-

methoxybenzyl protecting group was employed. The reaction was attempted in DMF using 

p-methoxybenzyl chloride in the presence of sodium hydride. Again no product was 

formed despite long reaction times at elevated temperatures (80 °C) and returned only 

starting material. Our attempts to protect the carbamate nitrogen of 257 did not prove 

successful. Therefore, compound 257 was subjected to the Ogawa protocol where 

compound 257 is exposed to Pd(OAc)2, Tl(OAc), and 1,2-bis(diphenylphosphino)ethane 

(DIPHOS) in DMF at 140 °C. These conditions again failed to promote the reaction 

towards the desired compound and gave only starting material back.  
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Scheme 77 - Alkylation and cross coupling of carbocyclic amide 135a 

It was decided instead to perform the reaction using conditions previously reported by 

Mori.
149

 Thus, the reaction was attempted using Hünig’s base and triphenylphosphine 

along with Pd(OAc)2 in a solution of DMF and was heated to 100 °C (Scheme 78). 

However, only starting material was present after 24 h of stirring. Some further 

experimentation revealed that the B ring of the phenanthridone forms smoothly in 78% 

yield when the reaction was carried out in a Schlenk tube at 150 °C (Scheme 78). To 

accomplish the synthesis of 137, a combination of Hünig’s base, triphenylphosphine and 

Pd(OAc)2 at 150 °C in a sealed tube was essential. During the course of the reaction, 

triphenylphosphine reduces the Pd(II) to Pd(0). Once formed, Pd(0) activates the sequence 

of events by taking part in an oxidative addition with 257 to give the 16-electron complex 

266 (Scheme 78). In the following step, insertion of alkene into the C-Pd bond generated a 

four-centred transition state 267 in a syn-fashion. Subsequently, a simple bond rotation 

occurs to relieve the torsional strain and allows the syn-relationship between a β-hydrogen 

and the palladium atom. Having a β-hydrogen and the transition metal in a common plane, 

β-hydride elimination takes place to give the phenanthridone skeleton 137. In the final 

step, the palladium(0) is regenerated by a base assisted reductive elimination. It is worth 

mentioning that the use of other phosphine ligands such as DIPHOS and additives such as 

Tl(OAc) in the presence of Pd(OAc)2 did not give the desired cyclisation even in Schlenk 

tube at 150 °C. Moreover, the cross coupling of 247 works only when the reaction is 

carried out in a sealed tube. During the cyclisation, the alkene moves out of conjugation 

and furnishes only the single stereoisomer 137.  
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Scheme 78 - Heck type reaction for the synthesis of Phenanthredone core 137 

The sterochemistry of the 137 was confirmed by difference NOE experiments. The 

compound 137 was irradiated at Hb to determine the orientation in relation to Ha and Hc. It 

showed a positive enhancement between Hb, Ha and Hc which implies they all have a syn-

relationship to each other (Figure 13). 

 

Figure 13 - NOE enhancement studies for the compound 137 

There are some reports which show that using Ogawa’s modified Heck reaction protocol, 

258 can be furnished via anti-elimination instead of the generally observed syn reductive 

elimination of palladium.
170

 In our case no anti-elimination was observed. However 

formation of 137 implies that the β-hydride elimination takes place formally via syn- 

elimination.  
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Having synthesised the phenanthridone skeleton 137, an investigation into further 

functionalisation was proposed. Initially, allylic oxidation was attempted using the Cory 

procedure.
111

 In the first attempt, substrate 137 was exposed to 5 equivalents of TBHP as 

an oxidant along with a catalytic amount of 10% Pd on carbon and potassium carbonate at 

20 °C for 12 h. Under these conditions, the desired product was not detected in the reaction 

mixture. The temperature of the reaction mixture was raised to 45 °C and was stirred for a 

further five days. Once again this proved unrewarding. Previously, we have faced 

considerable difficulties for the allylic oxidation for the much simpler substrate 129. Many 

of the more commonly known oxidation protocols were examined and proved to be futile 

(Section 3.1.3). It was proposed that allylic oxidation might work in this instance as there 

was literature precedent for similar substrates.
171

 Moreover in this substrate, the amide 

functionality is far away from the reaction activation site. However, all attempts were 

again unsuccessful.  

To progress, the synthesis of 268 was achieved by removal of the MOM group of 137 

under acidic conditions. This was followed by treatment with palladium on carbon under 

an atmosphere of hydrogen to achieve hydrogenation in an excellent 88% yield to supply 

target compound 259 (Scheme 79).  

 

Scheme 79 - Attempted allylic oxidation and formation of pancratistatin analogue 259 

In order to achieve the synthesis of pancratistatin analogues 138 and 261, compound 268 

was dihydroxylated using conditions previously employed for the synthesis of 

dihydroconduramines C-1 132 and E-1 133. At first, the phenanthridone skeleton 268 was 
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reacted with osmium tetroxide in the presence of TMEDA at –78 °C, followed by 

treatment with conc. HCl to cleave the osmate ester (Scheme 80). The hydroxylation 

reaction occurred smoothly, producing 139 as a single stereoisomer in 90% yield (Scheme 

81). 

 

Scheme 80 - Dihydroxylation of 268 

The result from this transformation showed that formation of triol 139 occured exclusively 

from the less hindered convex face of the ring, without any directed dihydroxylation of the 

alkene. This can be explained due to the extraordinary steric congestion of the C ring, in 

the phenanthridone skeleton 268. Initially, the stereochemistry of 139 was assigned 

through coupling constants of the cyclohexane ring hydrogens from the 
1
H NMR spectrum 

as well as the acquisition of COSY and NOE spectra. It was further established by X-ray 

crystallography of the resulting compound 139 (Figure 14). 

 

Figure 14 - ORTEP representation of X-ray crystal structure of the compound 139 

To access the pancratistatin analogue 138, the directed epoxidation of cyclic allylic alcohol 

using m-CPBA was employed. The pioneering work of Henbest and Wilson, established 

that cyclic allylic alcohols can be diasteroselectively epoxidised with m-CPBA to furnish 
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the corresponding cis-epoxy alcohol diastereomer. On the basis of this, as well as our own 

results during the synthesis of aminocyclitols (Section 3.2.2), it was proposed that the m-

CPBA is small enough to coordinate to either the C4-hydroxy or C4a amide from the more 

hindered concave face of phenanthridone ring 268 for the directed epoxidation to give 

corresponding cis-epoxy alcohol stereosiomer. The allylic alcohol 268 was subjected to 

standard conditions and stirred overnight. A rather sluggish reaction was observed, 

although the starting material was consumed after 48 h. Gratifyingly, this reaction gave 

cis-epoxy alcohol 138 as a single diastereomer (by 
1
H NMR spectroscopy of the crude 

reaction material). Purification by flash column chromatography afforded the epoxide 138, 

in 75% yield (Scheme 81).  

 

Scheme 81 - Epoxidation of 268 

The stereochemistry of the resulting epoxide was confirmed by NOE studies. The 

stereochemistry of Hb had already been established. On irradiation of Hb, a positive NOE 

between the of position Hb and Hc (0.58%), indicated the syn-relationship, thus confirming 

the preparation of the (1R,2S,4R,4aS,10bS)-stereoisomer 138 (Figure 15). 

 

Figure 15 - NOE enhancement studies for the epoxy alcohol 138 

Finally, 138 was subjected to 0.2N H2SO4 in 1,4-dioxane, to cleave the epoxide (Scheme 

82). Surprisingly, this resulted in a 1:1 mixture of 261a and 261b in only 34% yield even 

after 4 days of stirring at 100 °C. Compound 138 was also treated with sodium benzoate in 
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an attempt to perform a more selective ring opening but again a 1:1 mixture of 261a and 

261b was isolated in only 18% yield. 

 

Scheme 82 - Epoxide ring opening of 138 

3.3.7 Conclusions 

In conclusion a one-pot diastereoselective tandem Overman rearrangement and RCM 

reaction was developed by combining the ether-directed Overman rearrangement and 

RCM. This reaction provides quick access to a diastereoselective synthesis of a 

functionalised chiral cyclic allylic trichloroacetamide in good yield and in high 

diastereoselectivity starting from the corresponding allylic alcohol. The allylic alcohol was 

easily prepared from commercially available starting material, (S)-glycidol in an excellent 

86% yield over 6 steps. Having the cyclic allylic trichloroacetamide in hand, two parallel 

synthetic strategies were devised to furnish the synthesis of (+)-γ-lycorane and various 

novel pancratistatin analogues. The cyclic allylic amide was employed to give the C ring of 

the target compounds. Kharasch cyclisation and alkylation with a piperanoyl moiety 

furnished the A and D ring for the synthesis of (+)--lycorane 136. Significant problems 

were encountered with the final steps of the route and prevented the successful ring closure 

towards the synthesis of (+)-γ-lycorane. However the basic core of pancratistatin was 

successfully prepared using a Pd-catalysed cross coupling reaction. Its further 

functionalisation using allylic oxidation, dihydroxylation and directed epoxidation were 

then explored. Allylic oxidation of 137 was unrewarding, however a directed epoxidation 

and dihydroxylation gave novel pancratistain analogues in excellent yield and 

diastereomeric excess. These results have revealed that the syn-(4aS,10bS)-phenantridone 

skeleton 268 has significant influence on the functionalisation of the alkene where size of 

the reagent and its ability to undergo a directed reaction dictates the face of the attack. 
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3.3.8 Future Work 

After the successful synthesis of the pancratistatin analogues, the ether-directed tandem 

reaction could then be applied for the synthesis of other alkaloids in the Amaryllidaceae 

family. One such compound is (+)-2-deoxylycoricidine 221, which has only previously 

been synthesised in racemic form. Its asymmetric synthesis could also be achieved from 

allylic trichloroacetamide 135a (Scheme 83). Conversion of 135a to the ketone 263, 

followed by dihydroxylation would introduce the syn-diol require for the target compound. 

After protection of the diol, the trichloroacetyl group could be hydrolysed to provide the 

amino ketone 271. This will set the stage to introduce the aromatic component to give 272, 

which will then be converted to the enol triflate using Commins reagent 273 to provide 

274. The resulting compound 274 would then undergo a Heck-type cyclisation which after 

deprotection would provide the first asymmetric synthesis of (+)-2-deoxylycoricidine 221. 

 

Scheme 83 - Proposed synthesis of (+)-2-deoxylycoricidine 221  
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3.4 New Synthesis of Balanol Analogues 

3.4.1 Introduction 

(–)-Balanol 275 is a metabolite of the fungi Verticillium balanoides
172

 and Fusarium 

merismoides
173

 and is a structural isomer of the known antifungal ophiocordin 276 (Figure 

16). Balanol has been shown to be an effective inhibitor of human protein kinase C. The 

protein kinase C (PKC) family is a series of serine/threonine-specific protein kinase 

enzymes that are recognised as controling the function of a variety of cellular signal 

transduction pathways.
89-91

 They are involved in the gene expression, cell proliferation and 

cell growth. The activated PKC has been implicated in the progression of several disease 

processes including, cancer, asthma, inflammation, cardiovascular dysfunctions, diabetic 

complications, HIV infection and central nervous system disorders. 

 

Figure 16 - Balanol 275 and Ophiocordin 276 

As PKC is important for a number of cellular processes, the use of PKC inhibitors has been 

recommended for clinical applications ranging from the treatment of diabetic 

complications to the treatment of cancer.
174

 The isolation and structural revelation of the 

PKC-inhibitory fungal metabolite balanol endowed a new structural motif to the PKC 

inhibitor area. Therefore, it is a critical biological target for the development of 

chemotherapeutic agents. The structure of balanol is comprised of two primary fragments, 

a benzophenone part 277 and a chiral hexahydroazepine core 145 (Scheme 84). In this 

project, our aim was to utilise the one-pot rearrangement and ring closing metathesis 

process combined with subsequent hydroxylation chemistry to facilitate easy access to the 

chiral hexahydroazepine core of balanol 145. We intended to use this chemistry to 

synthesise a number of stereoisomers and various hydroxylated analogues. 
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Scheme 84 - A chiral hexahydroazepine core and a benzophenone fragment 

3.4.2 Proposed synthesis 

As mentioned above, the aim of this research project was to develop a new flexible 

approach for the stereoselective synthesis of the balanol core and its analogues in an 

efficient manner. The strategy under investigation can be considered in three distinct 

stages. The first stage of this programme would be the synthesis of the key substrate 140 as 

a precursor for the tandem process (Scheme 85). The synthesis of 140 would start with 

glycine 278 which would be subjected to a one-pot protection strategy generating both a 

methyl ester and the Boc-protected amine 279. The amine will be alkylated with 4-bromo-

1-butene 280 and the resulting compound 281 would be reduced with DIBAL-H. A one-

pot Swern-HWE reaction would give the ,β-unsaturated ester 283 and this would again be 

reduced with DIBAL-H to supply the key substrate 140 for the tandem process. 

 

Scheme 85 - Synthesis of the the allylic alcohol 140 from glycine 
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In the next stage of the synthesis, the allylic alcohol 140 would then be transformed into 

the corresponding allylic trichloroacetimidate 284 under standard conditions (Scheme 86). 

Initially, to optimise the rearrangement conditions, the allylic trichloroacetimidate would 

be rearranged using bis(acetonitrile)palladium(II) chloride. Later, (R)-COP-Cl 83 would be 

employed to undergo a stereoselective rearrangement and its further treatment with Grubbs 

first generation catalyst would yield the seven-membered carbocyclic amide 141. 

 

Scheme 86 - One-pot tandem Overman rearrangement and RCM 

To generate the (–)-balanol core 145, the allylic trichloroacetamide 141 would be further 

protected with a benzyl moiety (Scheme 87). The doubly protected amide then should 

undergo epoxidation from the least hindered face of the ring according to work carried out 

by O’Brien and co-workers.
141

 Reduction of the epoxide 143 with LiAlH4 would then give 

the desired amino alcohol core 286. In a similar fashion, direct epoxidation should yield 

the syn-epoxide 142 which could be regioselectively ring-opened with LiAlH4 to generate 

the syn-amino alcohol 289. To complete the (–)-balanol core, the trichloroacetamide 286 

will be hydrolysed and the resulting amine 287 will be re-acylated with 4-

benzyloxybenzoyl chloride. Hydrogenation will then remove both benzyl protecting groups 

and finally treatment with TFA will give the (–)-balanol core 145. The syn-stereoisomer 

144 can also easily be accessed by similarly hydrolysing the amide and re-acylating with 4-

benzyloxybenzoyl chloride (Scheme 87). Hydrogenation of the benzyl protecting group 

followed by Boc-deprotection of the amine will yield the other desired stereoisomer 144. 

As well as generating these two targets, there is the potential to prepare a whole range of 
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hydroxylated analogues by epoxidation, dihydroxylation and iodolactamisation of the 

alkene from the tandem process. 

 

Scheme 87 - Proposed synthesis of the balanol core structures 
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3.4.3 Synthesis of allylic alcohols  

The first step in the production of the allylic alcohol 140 involved the synthesis of the Boc-

protected amine 279. This was easily synthesised in quantitative yield by esterification of 

the commercially available glycine 278 with trimethylsilyl chloride followed by treatment 

with Boc anhydride in the presence of TEA.
175

 Attempted alkylation of compound 279 was 

then investigated with 4-bromo-1-butene 280. This reaction was carried out according to a 

literature procedure published by Andino and co-workers,
176

 using sodium hydride in DMF 

at 0 °C. However, application of the literature reaction conditions failed to deliver any of 

the desired alkylated product 281, but led to the decomposition of the starting material. In 

order to avoid decomposition, the reaction was tried again using the milder potassium 

carbonate with acetone as solvent and the reaction heated under reflux. In this case, the 

reaction did not decompose but failed to react returning a significant amount of starting 

material. In another attempt, potassium tert-butoxide was employed to effect the alkylation 

of 279. Once again, the reaction did not prove successful and starting material was found 

to be present in the crude reaction mixture (Scheme 88). 

 

Scheme 88 - Esterification, Boc protection and attempted alkylation 

The failure of the alkylation led to the design of a new strategy for the synthesis of the 

alkylated amine. In this synthesis, the amino alcohol 292 was chosen as a starting point 

instead of glycine and was reacted directly with 4-bromo-1-butene 280. The reaction was 

carried out in the presence of sodium iodide and was stirred at 80 °C to furnish the desired 

compound in an excellent yield. The resulting product 293 was subjected to Boc protection 

and it resulted in the formation of three products giving only a trace amount of the desired 

compound 282 (Scheme 89). 
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Scheme 89 - Boc protection of 292 

In order to prevent the protection of the hydroxyl group of 293 with the Boc anhydride, 

silylation of the hydroxyl group was carried out using TBDPS prior to Boc protection. This 

was followed by treatment with Boc anhydride and then with TBAF to supply 282 in 86% 

yield over three steps. At this juncture, compound 282 was subjected to a one-pot Swern 

oxidation and HWE reaction to give the ,β-unsaturated ester 283 in 94% yield. To 

complete the synthesis of the desired allylic alcohol, reduction of the resulting ester was 

attempted using DIBAL-H (Scheme 90). 

 

Scheme 90 - Synthesis of the allylic alcohol 140 

Previously, DIBAL-H has been shown as a successful reagent for the reduction of ,β-

unsaturated esters to allylic alcohols using 2.2 equivalents. However, this time it did not 

prove to be as efficient and gave only 37% of the desired allylic alcohol along with a 

complex mixture of unidentifiable compounds. A similar problem has been discussed 

previously in the literature and has been successfully avoided by the Moriwake 

modification.
177

 Moriwake and co-workers have shown that trimeric DIBAL-H might 
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coordinate with the amino moiety and alkene leading to 1,4-addition and the formation of 

complex mixture of products via transition state 298 (Figure 17). This can be avoided with 

the application of appropriate Lewis acids such as boron trifluoride diethyl etherate in the 

reaction before the start of reduction. The use of boron trifluoride diethyl etherate 

coordinates with the Boc-protected nitrogen causing the reaction to proceed via the 

hypothetical transition state 299 to promote the desired reduction. As such, this reaction 

was attempted again using these conditions, but no improvement was observed and the 

reaction led to an inseparable mixture of several products, along with the desired 

compound 140 in 41% yield. 

 

Figure 17 - Hypothetical transition states during DIBAL-H reduction of 283 

In order to obtain a high yield of the allylic alcohol 140, it was envisioned that a Wittig 

reaction could be employed subsequent to the Swern oxidation of alcohol 282 instead of 

the HWE reaction. The resulting aldehyde 301 would then be reduced using sodium 

borohydride to provide the allylic alcohol 140. As such the primary alcohol was subjected 

to a Swern oxidation followed by the Wittig reaction to afford 301 (Scheme 91). The NMR 

spectra of the crude reaction mixture showed a mixture of E and Z alkenes in a ratio of 5:1, 

which could not be separated until they were reduced. Reduction of the mixture of E and Z 

alkenes was carried out smoothly using sodium borohydride in a solution of methanol and 

the desired allylic alcohol 140 was separated in 88% yield. This new sequence of reactions 

proved successful and provided the allylic alcohol without adding extra steps to the 

strategy. 
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Scheme 91 - Synthesis of the allylic alcohol using sodium borohydride 

With the allylic alcohol 140 in hand, the Overman rearrangement and RCM steps were 

then investigated. The allylic alcohol 140 was subjected to a standard one-pot tandem 

process as previously described initially using trichloroacetonitrile and DBU (Scheme 92). 

The formation of allylic trichloroacetimidate 284 was accomplished after 3 h. During the 

optimisation of the reaction conditions, it was observed that the allylic trichloroacetimidate 

284 is unstable and decomposed back to the starting material 140 at room temperature. 

Thus, the resulting allylic trichloroacetimidate 284 was quickly rearranged using 

bis(acetonitrile)palladium(II) chloride at 0 °C. The reaction was gradually warmed to room 

temperature and stirred for 24 h to afford the allylic trichloroacetamide 302. Compound 

302 was then subjected to RCM using Grubb’s 1st generation catalyst to furnish the seven 

membered carbocyclic amide 303 in 49% yield over three steps starting from the allylic 

alcohol 140.  

 

Scheme 92 - One-pot tandem Overman rearrangement and RCM 
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In the next stage, compound 303 was subjected to epoxidation utilising the conditions 

employed previously which provided epoxide 304 in modest 51% yield (Scheme 93). As 

per purposed route, compound 304 was then treated with lithium aluminum hydride to 

cleave the epoxide ring. This resulted in 56% yield of the oxo-diaza-azulen 305 along with 

16% unreacted starting material. 

 

Scheme 93 - Formation of epoxide 304 and its treatement with LiAlH4 

3.4.4 Conclusions and Future work 

At this stage, time restrictions unfortunately dictated that further development of this 

synthetic route is not currently possible. However, significant progress towards the 

synthesis of the (–)-balanol core 145 has been made, although problems were encountered 

in the preparation of the allylic alcohol 140 which prevented the successful synthesis of the 

target compound within the timeframe of this PhD project. The advanced stage key 

intermediate 303, a seven membered carbocyclic amide has been synthesised. Further 

investigation into the optimisation of the Overman rearrangement using (R)-COP-Cl, will 

hopefully allow the development of a stereoselective rearrangement and the subsequent 

treatment with Grubbs first generation catalyst will supply seven membered carbocyclic 

amide 141. Following this, relatively straight forward chemistry can be applied to 

synthesise the two desired core structures of balanol 144 and 145 as described in Scheme 

87.
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4 Conclusions 

In the first part of the project, it was planned to develop a fast and efficient method for the 

synthesis of the carbocyclic ketone 130. During the course of the research, new 

methodology was devised for the successful synthesis of 5- and 6-membered amido 

substituted carbocyclic ketones which are important building blocks for the synthesis of 

structurally diverse antiviral and anticancer carbocyclic nucleosides and natural products.  

Initially, various methods were investigated for the allylic oxidation of carbocyclic amides 

formed from a one-pot tandem process. It appeared that these carbocylic amides are 

resistant to allylic oxidation using TBHP along with different transition metals such as Pd, 

Se, Mn and Cr. In addition to this, the employment of sonication and microwave 

techniques also found no success. In order to achieve the target compounds, a new 

approach was devised involving installation of a hydroxyl group in the substrate before the 

tandem process. The intermediates from this new route were then subjected to a high 

yielding one-pot tandem Overman rearrangement and ring closing metathesis step to 

eventually furnish amido substituted five and six membered carbocyclic ketones in overall 

61% and 56% yield from corresponding allylic alcohols respectively. The resulting 

carbocyclic amides are relatively more complex than have been synthesised previously in 

the group using this approach and in this way, highlights the potential of this methodology 

for the synthesis of more complex target compounds. 

Stereoselective synthesis of the enantiomer of dihydroconduramine C-1 132 and 

dihydroconduramine E-1 133 was achieved using a stereoselective variant of the one-pot 

tandem Overman rearrangement and ring closing metathesis process in excellent yield and 

diastereomeric excess. During the course of the synthesis (1S)-N-(cyclohexenyl) 

trichloroacetamide 131 was efficiently prepared starting from the commercially available 

alcohol in 75% overall yield in six steps and in excellent enantiomeric excess. Initially 

Donohoe conditions for dihydroxylation and a two stage epoxidation and hydrolysis 

sequence were investigated for the synthesis of syn and anti diol derivatives of 131 

respectively, in excellent diastereoselectivity. The noteworthy successes of a relevant 

model study provided the foundation for the synthesis of two dihydroconduramines. In the 

first approach, allylic alcohol 213 was synthesised from 131 via 4,5-dihydro-1,3-oxazole 

210 as a single stereoisomer. Non-directed dihydroxylation and directed epoxidation were 

then employed which resulted in the production of the two dihydroconduramines. This 

operationally simple route is very efficient and granted further insight into the 
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stereoselective functionalisation of substituted cyclohexenes for the production of related 

natural products such as pancratistatins and other Amaryllidaceae alkaloids.  

In next part of this PhD programme, the aim was to develop a one-pot diastereoselective 

tandem Overman rearrangement and RCM reaction by combining the MOM-ether-directed 

Overman rearrangement and RCM step. This process provided quick access to a 

functionalised chiral cyclic allylic trichloroacetamide in good yield and in high 

diastereoselectivity starting from the corresponding allylic alcohol 134. The allylic alcohol 

was easily prepared from commercially available starting material, (S)-glycidol in an 

excellent 86% yield over 6 steps. Having the cyclic allylic trichloroacetamide in hand, two 

parallel synthetic strategies were devised to furnish the synthesis of (+)-γ-lycorane and 

various novel pancratistatin analogues. The cyclic allylic amide was employed to give the 

C ring of the target compounds. Kharasch cyclisation and alkylation with a piperanoyl 

moiety furnished the A and D ring for the synthesis of (+)--lycorane 136. Significant 

problems were encountered with the final steps of the route and prevented the successful 

ring closure towards the synthesis of (+)-γ-lycorane. However the basic core of 

pancratistatin was successfully prepared using a Pd-catalysed cross coupling reaction. Its 

further functionalisation using allylic oxidation, stereoselective dihydroxylation and 

directed epoxidation were then explored. Allylic oxidation of 137 was unrewarding, 

however a directed epoxidation and dihydroxylation gave novel pancratistain analogues in 

excellent yield and diastereomeric excess. These results have revealed that the syn-

(4aS,10bS)-phenantridone skeleton 268 has significant influence on the functionalisation of 

the alkene where the size of the reagent and its ability to undergo a directed reaction 

dictates the face of the attack. In summary, use of the one-pot tandem MOM-ether directed 

Overman rearrangement/RCM process quickly generated a second stereogenic center 

within the resulting cyclic allylic trichloroacetamide and excluded the need of a chiral 

catalyst to generate the stereogenic center on the resulting cyclic allylic trichloroacetamide. 

The new stereogenic centre in the resulting cyclic allylic trichloroacetamide would provide 

an additional reaction site for further functionalisation and is the advantage of this 

methodology in comparison to other available approaches. This feature can be further 

exploited by synthesising other related natural products. 

In the final part of this PhD programme, studies were carried out to expand the scope of the 

one-pot tandem process to include heterocyclic derived substrates. This provided an 

attractive route to synthesise a seven-membered aza-carbocyclic amide. At this stage, time 
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restrictions unfortunately dictated that further development of this synthetic route is not 

currently possible. However, significant progress towards the synthesis of the (–)-balanol 

core 145 has been made, although problems were encountered in the preparation of the 

allylic alcohol 140 which prevented the successful synthesis of the target compound within 

the timeframe of this PhD project. The advanced stage key intermediate 141, a seven 

membered aza-carbocyclic amide has been synthesised. Further investigation into the 

optimisation of the Overman rearrangement using (R)-COP-Cl, will hopefully allow the 

development of a stereoselective rearrangement and the subsequent treatment with Grubbs 

catalyst will supply seven membered aza-carbocyclic amide 141. Following this, relatively 

straightforward chemistry can be applied to synthesise the two desired core structures of 

balanol 144 and 145 as described in Scheme 87. 

In summary, this PhD programme provided facile, general and efficient methods for the 

synthesis of various valuable novel building blocks such as carbocyclic ketone (193), 

aminocyclitols (132 and 133) and pancratistatin analogues (137, 138, 139 and 259). These 

novel compounds can be further utilised as important scaffolds within organic and 

medicinal research and can be further explored to determine their full therapeutic potential. 
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5 Experimental 

5.1 General Experimental 

Reactions were carried out in the flame-dried glassware under a positive atmosphere of 

argon. All reagents and starting materials were obtained from commercial sources and used 

as received. Dry solvents were purified using a PureSolv 500 MD solvent purification 

system or tetrahydrofuran and diethyl ether were distilled from sodium and benzophenone, 

whilst dichloromethane was distilled from calcium hydride. All reactions were performed 

under an atmosphere of argon unless otherwise mentioned. Flash column chromatography 

was carried out using Fisher matrix silica 60. Macherey–Nagel aluminium-backed plates 

pre-coated with silica gel 60 (UV254) were used for thin layer chromatography and were 

visualised by staining with KMnO4. 
1
H NMR and 

13
C NMR spectra were recorded on a 

Bruker DPX 400 spectrometer with chemical shift values in ppm relative to TMS (H 0.00 

and C 0.0) or residual chloroform (H 7.28 and C 77.2) as standard. Mass spectra were 

obtained using a JEOL JMS-700 spectrometer. Infrared spectra were recorded using 

Golden Gate apparatus on a JASCO FTIR 410. Melting points were determined on a 

Reichert platform melting point apparatus. Optical rotations were determined as solutions 

irradiating with the sodium D line ( = 589 nm) using an Auto pol V polarimeter. D 

values are given in units 10
–1

 deg cm
2
 g

–1
. Chiral HPLC was performed on a Hewlett 

Packard Agilent 1100 series instrument and were calibrated with the appropriate racemic 

mixture. 

5.2 General Procedures 

General Procedure 1: One pot Swern oxidation-Horner/Wadsworth/Emmons 

reaction. 

Dimethyl sulfoxide (2.5 equiv.) was added to a stirred solution of oxalyl chloride (1.4 

equiv.) in dichloromethane (100 mL) at –78 C. The reaction mixture was stirred for 0.3 h 

before the alcohol (1.0 equiv.) in dichloromethane (50 mL) was slowly added. The mixture 

was stirred for a further 0.3 h before triethylamine (5 equiv.) was added. This reaction 

mixture was stirred for 0.5 h at –78 C and then allowed to warm to room temperature and 

stirred for a further 2 h. Meanwhile, a solution of lithium chloride (1.8 equiv.), triethyl 

phosphonoacetate (1.8 equiv.) and 1,8-diazabicyclo[5,4,0]undec-7-ene (1.8 equiv.) in 

acetonitrile (100 mL) was prepared and stirred for 1.0 h. The Swern solution was 

concentrated in vacuo, then the Horner Wadsworth Emmons solution was added and the 
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reaction mixture was stirred at room temperature overnight. The reaction was quenched by 

the addition of a saturated solution of ammonium chloride (50 mL) and concentrated to 

give an orange residue, which was then extracted with diethyl ether (4 × 75 mL). The 

organic layers were combined, dried (MgSO4) and concentrated to give an orange oil. 

Purification by flash column chromatography using diethyl ether/petroleum ether as eluent 

gave the pure product. 

General Procedure 2: DIBAL-H reduction to allylic alcohol. 

The -unsaturated ester (1.0 equiv.) was dissolved in diethyl ether (100 mL) and cooled 

to –78 C. DIBAL-H (1.0 M in hexane) (2.2 equiv.) was added dropwise and the reaction 

mixture was stirred at –78 C for 3 h, before warming to room temperature. The solution 

was cooled to 0 C and quenched by the addition of a saturated solution of ammonium 

chloride (10 mL) and warmed to room temperature with vigorous stirring over 1 h 

producing a white precipitate. The precipitate was filtered through a pad of Celite


 and 

washed with diethyl ether (400 mL). The filtrate was then dried (MgSO4) and concentrated 

in vacuo. Purification was carried out by flash column chromatography eluting with diethyl 

ether/petroleum ether.  

General procedure 3: MOM protection of secondary alcohol. 

N,N′-Diisopropylethylamine (1.5 equiv.) and bromomethyl methyl ether (1.5 equiv.) were 

added to a solution of the alcohol (1.5 equiv.) in dichloromethane (20 mL). The reaction 

mixture was then heated under reflux for 12 h before being diluted with dichloromethane 

(50 mL) and washed with 2.0 M hydrochloric acid solution (25 mL). The organic layer was 

dried (MgSO4) and concentrated in vacuo. Purification was carried out by flash column 

chromatography using diethyl ether/petroleum ether to give the desired compounds as 

colourless oils. 

General Procedure 4: Synthesis of allylic trichloroacetimidate and subsequent 

tandem Overman rearrangement - ring closing metathesis reaction.  

Allylic alcohol (1 equiv.) was dissolved in dichloromethane (20 mL) and cooled to 0 C. 

1,8-Diazabicyclo[5.4.0]undec-7-ene (0.25 equiv.) was added to the solution followed by 

trichloroacetonitrile (1.5 equiv.). The solution was then warmed to room temperature and 

stirred for 2 h. The reaction mixture was filtered through a short pad of silica gel and 
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washed with diethyl ether (100 mL). The resulting filtrate was then concentrated to give 

the allylic trichloroacetimidate, which was used without further purification. The allylic 

trichloroacetimidate (1 equiv.) was then dissolved in dichloromethane (10 mL). The 

rearrangement catalyst (0.1 equiv., 10 mol%) was added to the solution and the reaction 

mixture was stirred at room temperature for 3 h. Grubb’s catalyst (1
st
 Generation) (0.1 

equiv., 10 mol%) was then added and the reaction mixture was heated under reflux 

overnight. The mixture was cooled to room temperature and then filtered through a short 

pad of Celite


 and washed with diethyl ether (100 mL). Concentration of the filtrate 

followed by flash column chromatography gave the pure cyclic allylic amides as white 

solids. 

5.3 Experimental Procedures 

5.3.1 Synthesis of Carbocyclic Ketones 

Ethyl (2E)-2,7-octadienoate (158).
178

 

 

Reaction was carried out according to general procedure 1, using 5-hexen-1-ol (157) (4.00 

g, 0.04 mol). Flash column chromatography (elution with petroleum ether/diethyl ether, 

10:1) yielded ethyl (2E)-2,7-octadienoate (158) (5.78 g, 86%) as a colourless oil. 

Spectroscopic data is entirely consistent with the literature.
178

 max/cm
–1

 (NaCl) 2933 (CH), 

1721 (CO), 1655 (C=C), 1367, 1267, 1198, 1044; H (400 MHz, CDCl3) 1.28 (3H, t, J 7.1 

Hz, OCH2CH3), 1.52–1.58 (2H, m, 5-H2), 2.06–2.12 (2H, m, 6-H2), 2.18–2.25 (2H, m, 4-

H2), 4.17 (2H, q, J 7.1 Hz, OCH2CH3), 4.96–5.06 (2H, m, 8-H2), 5.73–5.96 (2H, m, 2-H 

and 7-H), 6.95 (1H, dt, J 15.5, 6.9 Hz, 3-H); C (100 MHz, CDCl3) 14.3 (CH3), 27.1 (CH2), 

31.5 (CH2), 33.1 (CH2), 60.2 (CH2), 115.1 (CH2), 121.5 (CH), 138.0 (CH), 149.0 (CH), 

166.7 (C); m/z (CI) 169.1232 (MH
+
. C10H17O2 requires 169.1229), 141 (90%), 123 (75), 95 

(100), 81 (53), 55 (32). 
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(2E)-Oct-2,7-dien-1-ol (128).
178

 

 

Reaction was carried out according to general procedure 2, using ethyl (2E)-2,7-

octadienoate (158) (2.00 g, 11.00 mmol). Flash column chromatography (elution with 

petroleum ether/diethyl ether, 1:4) yielded (2E)-oct-2,7-dien-1-ol (128) (0.68 g, 91%) as a 

colourless oil. Spectroscopic data is entirely consistent with the literature.
178

 max/cm
–1

 

(NaCl) 3346 (OH), 2928 (CH), 1640 (C=C), 1439, 1090, 997, 970; H (400 MHz, CDCl3) 

1.34 (1H, br s, OH), 1.46–1.51 (2H, m, 5-H2), 2.02–2.10 (4H, m, 4-H2 and 6-H2), 4.07 (2H, 

d, J 4.6 Hz, 1-H2), 4.94–4.97 (1H, m, 8-HH), 5.01 (1H, dq, J 17.0, 1.7 Hz, 8-HH), 5.60–

5.73 (2H, m, 2-H and 3-H), 5.80 (1H, ddt, J 17.0, 10.2, 6.7 Hz, 7-H); C (100 MHz, 

CDCl3) 28.3 (CH2), 31.6 (CH2), 33.2 (CH2), 63.7 (CH2), 114.6 (CH2), 129.2 (CH), 133.0 

(CH), 138.6 (CH); m/z (CI) 109.1009 (MH
+
–H2O. C8H13 requires 109.1017), 95 (16%), 81 

(12), 67 (47). 

1-(2’,2’,2’-Trichloromethylcarbonylamino)cyclohex-2-ene (129).
38 

 

Reaction was carried out according general procedure 4 using (2E)-oct-2,7-dien-1-ol (128) 

(0.50 g, 3.97 mmol) by using bis(acetonitrile)palladium(II) chloride (0.10 g, 0.39 mmol) as 

a catalyst for the Overman rearrangement. Purification by flash column chromatography 

(elution with petroleum ether/diethyl ether, 97:3) gave 1-(2′,2′,2′-

trichloromethylcarbonylamino)cyclohex-2-ene (129) (0.83 g, 90% yield over 3 steps) as a 

white solid. Spectroscopic data is entirely consistent with the literature. Mp 85–86 C, lit.
38

 

86–87 C; max/cm
–1

 (NaCl) 3421 (NH), 2941 (CH), 1676 (CO), 1519, 1073, 822; H (400 

MHz, CDCl3) 1.62–1.79 (3H, m, 5-H2 and 6-HH), 1.94–2.03 (1H, m, 6-HH), 2.03–2.16 

(2H, m, 4-H2), 4.42–4.54 (1H, m, 1-H), 5.65 (1H, ddt, J 10.0, 4.0, 2.2 Hz, 2-H), 5.98 (1H, 

dtd, J 10.0, 4.0, 1.9 Hz, 3-H), 6.60 (1H, br s, NH); C (100 MHz, CDCl3) 19.4 (CH2), 24.7 
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(CH2), 28.6 (CH2), 46.9 (CH), 92.7 (C), 125.7 (CH), 132.7 (CH), 161.1 (C); m/z (CI) 

261.0144 (MNH4
+
. C8H14

35
Cl2

37
ClN2O requires 261.0143), 259 (100%), 242 (23), 225 (9), 

206 (21), 81 (10). 

1-(tert-Butoxycarbonylamino)cyclohex-2-ene (166).
179

 

 

1-(2′,2′,2′-Trichloromethylcarbonylamino)cyclohept-2-ene (129) (1.0 g, 4.12 mmol) was 

dissolved in 2 M sodium hydroxide (40 mL) and stirred vigorously for 12 h at room 

temperature. Di-tert-butyl dicarbonate (2.34 g, 10.31 mmol) was added and the solution 

was stirred for 6 h before a further portion of di-tert-butyl dicarbonate (2.34 g, 10.31 

mmol) was added and the reaction mixture stirred for a further 12 h. The reaction mixture 

was then extracted with ethyl acetate (4  30 mL) and the combined organic layers dried 

(MgSO4) and concentrated in vacuo. Flash column chromatography (diethyl 

ether/petroleum ether, 1:9) gave 1-(tert-butoxycarbonylamino)cyclohex-2-ene (166) (0.81 

g, 100% yield) as a white solid. Spectroscopic data is entirely consistent with the literature. 

Mp 38–40 C, lit.
179

 mp 33–35 C; max/cm
–1

 (NaCl) 3334 (NH), 2929 (CH), 1693 (CO), 

1494, 1366, 1216, 1118, 1065; H (400 MHz, CDCl3) 1.45 (9H, s, O
t
Bu), 1.48–1.57 (1H, 

m, 6-HH), 1.58–1.68 (2H, m, 5-H2), 1.82–1.93 (1H, m, 6-HH), 1.94–2.02 (2H, m, 4-H2), 

4.15 (1H, br s, NH), 4.46–4.61 (1H, m, 1-H), 5.57–5.64 (1H, m, 1-H), 5.77–5.84 (1H, m, 

1-H); C (100 MHz, CDCl3) 19.7 (CH2), 24.8 (CH2), 28.5 (3 × CH3), 29.9 (CH2), 45.7 

(CH), 79.2 (C), 128.2 (CH), 130.5 (CH), 155.2 (C); m/z (CI) 198 (MH
+
, 10%), 180 (5), 142 

(100), 107 (3), 81 (10).  
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1-(tert-Butoxycarbonylamino)cyclohex-2-en-4-one (167).
180

 

 

A mixture of 1-(tert-butoxycarbonylamino)cyclohex-2-ene (166) (0.10 g, 0.50 mmol), 10% 

palladium on carbon (0.005 g), dichloromethane (15 mL), tert-butyl hydroperoxide (0.46 

mL, 2.5 mmol, 5.0–6.0 M in decane) and anhydrous potassium carbonate (0.02 g, 0.13 

mmol) was heated under reflux for 5 days. The reaction mixture was filtered through a pad 

of silica which was subsequently washed with dichloromethane 10 mL. After removal of 

solvent under reduced pressure, the crude material was purified by flash column 

chromatography using (diethyl ether/petroleum ether, 1:1) to give 1-(tert-

butoxycarbonylamino)cyclohex-2-en-4-one (167) (0.01 g, 10% yield) as a white solid. 

Spectroscopic data is entirely consistent with the literature. Mp 110–112 C, lit.
180

 mp 

112–113 C; max/cm
–1

 (NaCl) 3351 (NH), 2924 (CH), 1680 (CO), 1519, 1455, 1367, 

1165, 1016; H (400 MHz, CDCl3) 1.47 (9H, s, O
t
Bu), 1.82–1.94 (1H, m, 6-HH), 2.28–

2.37 (1H, m, 6HH), 2.44 (1H, ddd, J 17.0, 12.6, 4.7 Hz, 5-HH), 2.55 (1H, dt, J 17.0, 4.7 

Hz, 5-HH), 4.53 (1H, br s, NH), 4.62–4.71 (1H, m, 1-H), 5.98–6.02 (1H, m, 3-H); 6.83 

(1H, ddd, J 10.0, 2.2, 1.5 Hz, 2H); C (100 MHz, CDCl3) 27.2 (3 × CH3), 29.8 (CH2), 35.7 

(CH2), 46.6 (CH), 79.7 (C), 129.5 (CH), 150.7 (CH), 153.3 (C), 197.5 (C); m/z (CI) 

212.1290 (MH
+
. C11H18NO3 requires 212.1287), 198 (10%), 156 (100), 118 (20), 71 (12). 

(1R*,4S* and 1S*,4S*)-1-(tert-Butoxycarbonylamino)cyclohex-2-en-4-ol (170). 

 

A mixture of 1-(tert-butoxycarbonylamino)cyclohex-2-ene (166) (0.05 g, 0.27 mmol), 

selenium dioxide (0.04 g, 0.39 mmol) and pyridine (0.03 mL, 0.41 mmol) was heated 

under reflux for 4 days. The reaction mixture was filtered through a pad of celite
®
 which 
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was subsequently washed with dichloromethane 15 mL. After removal of solvent under 

reduced pressure, the crude material was purified by flash column chromatography using 

(ethyl acetate/petroleum ether, 1:1) to give (1R*,4S* and 1S*,4S*)-1-(tert-

butoxycarbonylamino)cyclohex-2-en-4-ol (170) (1.1 mg, 2% yield) as a a colourless oil. 

max/cm
–1

 (NaCl) 3330 (NH/OH), 2977 (CH), 1688 (CO), 1491, 1247, 1045; H (400 

MHz, CDCl3) 1.45 (9H, s, O
t
Bu), 1.62–1.73 (1H, m, 6-H), 2.01–2.18 (3H, m, 5-H2 and 6-

HH), 4.04–4.31 (2H, m, 1-H and 4-H), 4.46 (1H, br s, NH), 5.67–5.90 (2H, m, 2-H and 3-

H); C (100 MHz, CDCl3) 28.1 (CH2), 28.4 (3 × CH3), 30.9 (CH2), 64.7 (CH), 66.1 (CH), 

79.6 (C), 131.1 (CH), 132.8 (CH), 155.1 (C); m/z (CI) 214.1444 (MH
+
. C11H20NO3 

requires 214.1443), 196 (10%), 158 (100), 90 (94), 69 (32). 

4-Hydroxytetrahydrofuran (172).
181

 

 

2,3-Dihydrofuran (171) (4.00 g, 0.06 mmol) was added to 0.2 N hydrochloric acid (20 mL) 

with stirring and cooling on an ice bath. After 0.15 h, a homogeneous solution was 

obtained. Stirring was continued at room temperature for 0.45 h. The aqueous phase was 

extracted with dichloromethane (8 × 50 mL). The combined organic phases were washed 

with a saturated solution of sodium hydrogencarbonate and dried (MgSO4). After removal 

of the solvent, a colourless liquid, 4-hydroxytetrahydrofuran (172) (5.25 g, 92%) was 

obtained. Spectroscopic data is entirely consistent with the literature.
181

 max/cm
–1

 (NaCl) 

3462 (OH), 2957 (CH), 1733 (CO), 1458, 1179, 1036; H (400 MHz, CDCl3) 1.81–1.99 

(3H, m, 2-H2 and 3-HH), 2.00–2.12 (1H, m, 3-HH), 3.39 (1H, s, OH), 3.82–4.09 (2H, m, 1-

H2), 5.54 (1H, s, 4-H); C (100 MHz, CDCl3) 23.5 (CH2), 33.2 (CH2), 67.3 (CH2), 98.4 

(CH); m/z (CI) 89 (MH
+
, 36%), 71 (100), 68 (14). 
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5-Hexen-1,4-diol (174).
182

 

 

To a solution of vinylmagnesium bromide (1.0 M in tetrahydrofuran) (22.7 mL, 0.02 

mmol) at –15 C was added a solution of 4-hydroxybutanal (173) (1.00 g, 0.01 mol) in 

tetrahydrofuran (60 mL). After being stirred for 8 h, the reaction was quenched slowly with 

a saturated solution of ammounium chloride (50 mL). The organic layer was separated, and 

the aqueous layer was extracted with diethyl ether (6 × 50 mL). The combined organic 

layer was dried (MgSO4) and the resulting crude oil was purified by flash column 

chromatography (elution with petroleum ether/diethyl ether, 1:9) which gave 5-hexen-1,4-

diol (174) (1.12 g, 86% yield) as colourless oil. Spectroscopic data is entirely consistent 

with the literature.
182

 max/cm
–1

 (NaCl) 3347 (OH), 2943 (CH), 1644 (CH), 1427, 1179, 

1036; H (400 MHz, CDCl3) 1.58–1.74 (4H, m, 2-H2 and 3-H2), 3.01 (1H, br s, OH), 3.13 

(1H, br s, OH), 3.59–3.71 (2H, m, 1-H2), 4.10–4.20 (1H, m, 4-H), 5.10 (1H, d, J 10.4 Hz, 

6-HH), 5.23 (1H, d, J 17.2 Hz, 6-HH), 5.87 (1H, ddd, J 17.2, 10.4, 6.2 Hz, 5-H); C (100 

MHz, CDCl3) 26.3 (CH2), 31.7 (CH2), 60.2 (CH2), 70.3 (CH), 112.1 (CH2) 138.6 (CH); 

m/z (CI) 117 (MH
+
, 75%), 99 (100), 81 (54), 71 (6). 

1-(tert-Butyldimethylsilyloxy)-5-hexen-4-ol.
182 

 

To 5-hexene-1,4-diol (174) (1.22 g, 0.01 mol) in N,N′-dimethylformamide (20 mL) at –15 

C was added imidazole (0.88 g, 0.01 mol) and tert-butyldimethylsilyl chloride (1.66 g, 

0.01 mol). After being stirred for 0.15 h at –15 C, the mixture was gradually warmed to 

room temperature. The reaction mixture was diluted with diethyl ether (50 mL) and water 

(50 mL). The organic layer was separated, and the aqueous layer was extracted with 

diethyl ether (3 × 50 mL). The combined organic layer was dried (MgSO4) and resulting 

crude oil was purified by flash column chromatography on silica gel (elution with 

petroleum ether/ethyl acetate, 1:9) gave 1-(tert-butyldimethylsilyloxy)-5-hexen-4-ol (1.96 



Experimental  115 

 

g, 78% yield) as a colourless oil. Spectroscopic data is entirely consistent with the 

literature.
182 

max/cm
–1

 (NaCl) 3373 (OH), 2954 (CH), 1472, 1255, 835; H (400 MHz, 

CDCl3) 0.01 (6H, s, Si(CH3)2), 0.83 (9H, s, SiC(CH3)3), 1.46–1.66 (4H, m, 2-H2 and 3-H2), 

2.64 (1H, d, J 4.5 Hz, 4-OH), 3.59 (2H, t, J 5.3 Hz, 1-H2), 4.02–4.10 (1H, m, 4-H), 5.02 

(1H, d, J 10.2 Hz, 6-HH), 5.17 (1H, d, J 17.2 Hz, 6-HH), 5.80 (1H, ddd, J 17.2, 10.2, 5.7 

Hz, 5-H); C (100 MHz, CDCl3) –5.3 (2 × CH3), 18.3 (C), 25.9 (3 × CH3), 28.8 (CH2), 34.5 

(CH2), 63.4 (CH2), 72.7 (CH), 114.3 (CH2), 141.2 (CH); m/z (CI) 231 (MH
+
, 100%), 213 

(48), 173 (6), 81 (28). 

1-(tert-Butyldimethylsilyloxy)-4-(methoxymethoxy)hex-5-ene (175). 

 

Reaction was carried out according to general procedure 3, using 1-(tert-

butyldimethylsilyloxy)-5-hexen-4-ol (3.20 g, 0.01 mol). Flash column chromatography 

(petroleum ether/diethyl ether, 20:1) yielded 1-(tert-butyldimethylsilyloxy)-4-

(methoxymethoxy)hex-5-ene (175) (3.80 g, 100%) as a colourless oil. max/cm
–1

 (NaCl) 

2953 (CH), 1642 (C=C), 1472, 1255, 1153, 1037; H (400 MHz, CDCl3) 0.01 (6H, s, 

Si(CH3)2), 0.83 (9H, s, SiC(CH3)3), 1.44–1.66 (4H, m, 2-H2 and 3-H2), 3.32 (3H, s, OCH3), 

3.53–3.63 (2H, m, 1-H2), 3.95 (1H, q, J 6.3 Hz, 4-H), 4.49 (1H, d, J 6.7 Hz, OCHHO), 

4.66 (1H, d, J 6.7 Hz, OCHHO), 5.15 (2H, m, 6-H2), 5.62 (1H, ddd, J 17.1, 10.3, 7.7 Hz, 2-

H); C (100 MHz, CDCl3) –5.3 (2 × CH3), 18.2 (C), 26.4 (3 × CH3), 28.9 (CH2), 31.8 

(CH2), 55.7 (CH3), 63.2 (CH2), 77.7 (CH), 94.1 (CH2), 117.7 (CH2), 138.7 (CH); m/z (CI) 

275.2041 (MH
+
. C14H31O3Si requires 275.2042), 205 (13%), 121 (100), 85 (40). 

4-(Methoxymethoxy)hex-5-en-1-ol (176). 

 

A solution of tetrabutylammonium fluoride (1.0 M in tetrahydrofuran) (16.6 mL, 0.02 mol) 

was added to a solution of 1-(tert-butyldimethylsilyloxy)-4-(methoxymethoxy)hex-5-ene 

(175) (1.48 g, 5.40 mmol) in tetrahydrofuran (40 mL) at 0 C. The reaction was warmed to 

room temperature and stirred overnight. The reaction mixture was then concentrated and 

the resulting residue was re-suspended in diethyl ether (20 mL). The solution was washed 
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with water (30 mL) and the aqueous layer was then extracted with diethyl ether (3 × 30 

mL). The combined organic extracts were dried (MgSO4), concentrated and then purified 

by flash column chromatography (petroleum ether/diethyl ether, 5:2) to give 4-

(methoxymethoxy)hex-5-en-1-ol (176) (2.21 g, 100%) as a colourless oil. max/cm
–1

 

(NaCl) 3423 (OH), 2947 (CH), 1638 (C=C), 1458, 1215; H (400 MHz, CDCl3) 1.62–1.70 

(4H, m, 2-H2 and 3-H2), 1.72 (1H, s, 1-OH), 3.38 (3H, s, OCH3), 3.62–3.73 (2H, m, 1-H2), 

4.04 (1H, q, J 6.9 Hz, 4-H), 4.52 (1H, d, J 6.7 Hz, OCHHO), 4.72 (1H, d, J 6.7 Hz, 

OCHHO), 5.18–5.26 (2H, m, 6-H2), 5.68 (1H, ddd, J 17.1, 10.3, 6.9 Hz, 2-H); C (100 

MHz, CDCl3) 28.6 (CH2), 31.2 (CH2), 55.7 (CH3), 62.6 (CH2), 77.7 (CH), 93.8 (CH2), 

117.6 (CH2), 138.2 (CH) m/z (CI) 161.1178 (MH
+
. C8H17O3 requires 161.1181), 149 

(12%), 129 (88), 99 (100), 81 (24). 

Ethyl (2E)-6-(methoxymethoxy)oct-2,7-dienoate (177). 

 

Reaction was carried out according to general procedure 1, using 4-(methoxymethoxy)hex-

5-en-1-ol (176) (2.20 g, 0.13 mol). Flash column chromatography using (diethyl 

ether/petroleum ether, 2:3) gave the title compound, ethyl (2E)-6-(methoxymethoxy)oct-

2,7-dienoate (177) (2.90 g, 94%) as colourless oil. max/cm
–1

 (NaCl) 2944 (CH), 1709 

(CO), 1654 (C=C), 1466, 1370, 1277, 1149; H (400 MHz, CDCl3) 1.28 (3H, t, J 7.1 Hz, 

OCH2CH3), 1.61–1.82 (2H, m, 4-H2), 2.21–2.39 (2H, m, 5-H2), 3.30 (3H, s, OCH3), 3.94 

(1H, q, J 7.2 Hz, 6-H), 4.11 (2H, q, J 7.1 Hz, OCH2CH3), 4.46 (1H, d, J 6.9 Hz, OCHHO), 

4.63 (1H, d, J 6.9 Hz, OCHHO), 5.12–5.18 (2H, m, 8-H2), 5.55–5.64 (1H, m, 7-H), 5.77 

(1H, dt, J 15.7, 1.6 Hz, 2-H), 6.90 (1H, dt, J 15.7, 6.9 Hz, 3-H); C (100 MHz, CDCl3) 14.2 

(CH3), 28.2 (CH2), 33.8 (CH2), 55.7 (CH3), 60.3 (CH2), 73.9 (CH), 93.8 (CH2), 117.7 

(CH2), 122.0 (CH), 137.6 (CH), 148.8 (CH), 166.7 (C); m/z (CI) 229.1437 (MH
+
. C12H21O4 

requires 229.1440), 197 (36%), 167 (52), 81 (35). 
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(2E)-6-(Methoxymethoxy)oct-2,7-dien-1-ol (178). 

 

The reaction was carried out according to general procedure 2, using ethyl (2E)-6-

(methoxymethoxy)oct-2,7-dienoate (177) (0.66 g, 2.89 mol). Flash column 

chromatography (eluting with petroleum ether/diethyl ether, 1:1) yielded ethyl (2E)-6-

(methoxymethoxy)oct-2,7-dien-1-ol (178) (0.50 g, 93%) as colourless oil. max/cm
–1

 

(NaCl) 3408 (OH), 2937 (CH), 1641 (C=C), 1442, 1373, 1153, 1096, 1036; H (400 MHz, 

CDCl3) 1.48 (1H, s, 1-OH), 1.53–1.63 (1H, m, 4-HH), 1.62–1.77 (1H, m, 4-HH), 2.04–

2.22 (2H, m, 5-H2), 3.79 (3H, s, OCH3), 4.00 (1H, q, J 6.7 Hz, 6-H), 4.10 (2H, d, J 4.0 Hz, 

1-H2), 4.54 (1H, d, J 6.9 Hz, OCHHO), 4.70 (1H, d, J 6.9 Hz, OCHHO), 5.17–5.24 (2H, 

m, 8-H2), 5.61–5.75 (3H, m, 2-H, 3-H and 7-H); C (100 MHz, CDCl3) 28.0 (CH2), 34.7 

(CH2), 55.5 (CH3), 63.7 (CH2), 76.8 (CH), 93.7 (CH2), 117.4 (CH2), 129.4 (CH), 132.4 

(CH), 138.1 (CH); m/z (CI) 169.1224 (M
+
–OH. C10H17O2 requires 169.1229), 137 (100%), 

125 (38), 107 (70). 

(1R*,4S* and 1S*,4S*)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-4-

(methoxymethoxy)cyclohex-2-ene (181). 

 

The reaction was carried out according general procedure 4 using (2E)-6-

(methoxymethoxy)oct-2,7-dien-1-ol (178) (0.06 g, 0.32 mmol) and 

bis(acetonitrile)palladium(II) chloride (0.01 g, 0.03 mmol) as a catalyst for the Overman 

rearrangement. Purification by flash column chromatography (petroleum 

ether/diethylether, 2:1) gave mixture of two diastereomers (1R*,4S* and 1S*,4S*)-1-

(2′,2′,2′-trichloromethylcarbonylamino)-4-(methoxymethoxy)cyclohex-2-ene (181) (0.06 

g, 59% combined yield over 3 steps) as a white solid. NMR spectra showed a 1:1 mixture 

of diastereomers, where most signals of each overlapped. Mp 41–44 
o
C; max/cm

–1
 (NaCl) 
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3326 (NH), 2935 (CH), 1699 (C=C), 1641, 1450, 1153, 1096, 1036; H (400 MHz, CDCl3) 

1.67–2.30 (4H, m, 6-H2 and 5-H2), 3.40 (3H, s, OCH3), 4.08–4.22 (1H, m, 1-H), 4.39–4.58 

(1H, m, 4-H), 4.68–4.77 (2H, m, OCH2O), 5.72–5.84 (1H, m, 3-H), 5.96–6.07 (1H, m, 2-

H), 6.60 (1H, br s, NH); C (100 MHz, CDCl3) 24.8 (CH2), 26.7 (CH2), 47.2 (CH), 55.3 

(CH3), 69.2 (CH), 92.7 (C), 95.9 (CH2), 129.2 (CH), 132.7 (CH), 161.6 (C); m/z (CI) 

323.9935 (MNa
+
. C10H14

35
Cl3NO3Na requires 323.9937), 281 (100%), 279 (70), 240 (28), 

137 (30), 83 (25). 

(1R*,4S* and 1S*,4S*)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-4-

(methoxymethoxy)cyclohex-2-ene (181). 

The reaction was carried out according general procedure 4 using (2E)-6-

(methoxymethoxy)oct-2,7-dien-1-ol (178) (0.10 g, 0.54 mmol) and 

bis(acetonitrile)palladium(II) chloride (0.01 g, 0.05 mmol) as a catalyst for the Overman 

rearrangement. Grubb’s catalyst (2
nd

 Generation) (0.015 g, 0.02 mmol) was then added and 

the reaction mixture was heated under reflux for 12 h. A further quantity of Grubb’s 

catalyst (2
nd

 Generation) (0.015 g, 0.02 mmol) were added and the reaction mixture stirred 

for a further 12 h. Concentration of the filtrate followed by flash column chromatography 

(petroleum ether/diethylether, 2:1) gave (1R*,4S* and 1S*,4S*)-1-(2′,2′,2′-

trichloromethylcarbonylamino)-4-(methoxymethoxy)cyclohex-2-ene (181) (0.14 g, 93% 

combined yield over 3 steps) as a white solid. Spectroscopic data as reported above. 

(1R*,4S* and 1S*,4S*)-1-(2′,2′,2′-Trichloromethylcarbonylamino)cyclohex-2-en-4-ol 

(182). 

 

(1R*,4S* and 1S*,4S*)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-4-(methoxymethoxy) 

cyclohex-2-ene (181) (0.15 g, 0.51 mmol) was dissolved in methanol (5 mL) and 0.5 N 

hydrochloric acid (5 mL) was added to the reaction mixture. The reaction mixture was 

stirred for 24 h at 40 C. The mixture was cooled and neutralised with a saturated solution 

of sodium hydrogencarbonate (10 mL) and then extracted with ethyl acetate (4 × 20 mL). 
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The organic layer was dried (MgSO4) and concentrated in vacuo. Purification by flash 

column chromatography (elution with petroleum ether/ethyl acetate, 10:1) gave (1R*,4S* 

and 1S*,4S*)-1-(2′,2′,2′-trichloromethylcarbonylamino) cyclohex-2-en-4-ol (182) (0.09 g, 

72%) as a white solid. NMR spectra showed a 1:1 mixture of diastereomers, signals for 

only one diastereomer was recorded. Mp 109–111 C; max/cm
–1

 (NaCl) 3420 (OH), 2945 

(CH), 1677 (CO), 1450, 1248, 1073; H (400 MHz, CDCl3) 1.43–1.93 (3H, m, 6-HH, 5-HH 

and 4-OH), 1.96–2.26 (2H, m, 6-HH and 5-HH), 4.14–4.28 (1H, m, 1-H), 4.30–4.57 (1H, 

m, 4-H), 5.62–5.75 (1H, m, 2-H), 5.86–5.98 (1H, m, 3-H), 6.50 (1H, br s, NH); C (100 

MHz, CDCl3) 24.6 (CH2), 28.7 (CH2), 46.9 (CH), 64.3 (CH), 92.5 (C), 128.3 (CH), 134.1 

(CH), 161.4 (C); m/z (CI) 257.9848 (MH
+
. C8H11

35
Cl3NO2 requires 257.9855), 242 (82%), 

206 (33), 137 (8), 81 (21).  

1-(2′,2′,2′-Trichloromethylcarbonylamino)cyclohex-2-en-4-one (130). 

 

(1R*,4S* and 1S*,4S*)-1-(2′,2′,2′-Trichloromethylcarbonylamino)cyclohexa-2-ene-4-ol 

(182) (0.08 g, 0.30 mmol) was dissolved in dichloromethane (20 mL) and cooled to 0 C. 

Tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one (0.21 g, 0.49 mmol) was then 

added to the solution and stirred for 2 h before warming to room temperature. The reaction 

mixture was concentrated in vacuo, and diluted with a 10% sodium sulfite solution (10 

mL) and the organics were extracted with dichloromethane (3 × 20 mL). The combined 

organic layer was dried (MgSO4) and concentrated in vacuo. Purification by flash column 

chromatography (elution with petroleum ether/diethyl ether, 1:5) gave 1-(2′,2′,2′-

trichloromethylcarbonylamino)cyclopent-2-en-4-one (130) (0.06 g, 83%) as a white solid. 

Mp 92–94 C; max/cm
–1

 (NaCl) 3318 (NH), 2950 (CH), 1689 (CO), 1519, 1481, 1249, 

1073; H (400 MHz, CDCl3) 1.95–2.08 (1H, m, 6-HH), 2.31–2.42 (1H, m, 6-HH), 2.43–

2.59 (2H, m 5-H2), 4.73–4.81 (1H, m, 1-H), 6.03 (1H, dd, J 10.2, 2.1 Hz, 3-H), 6.77 (1H, 

dt, J 10.2, 2.1 Hz, 2-H), 7.03 (1H, d, J 7.8 Hz, NH); C (100 MHz, CDCl3) 29.2 (CH2), 

35.9 (CH2), 47.9 (CH), 92.2 (C), 131.1 (CH), 148.4 (CH), 161.7 (C), 197.8 (C); m/z (CI) 

257.9665 (MH
+
. C8H9

35
Cl2

37
ClNO2 requires 257.9670), 222 (78%), 186 (32), 152 (18), 69 

(49). 
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1-(tert-Butyldimethylsilyloxy)pent-4-ene (184).
183 

 

A mixture of pent-4-en-1-ol (183) (4.20 g, 0.05 mol), tert-butyldimethylsilyl chloride 

(11.04 g, 0.07 mol) and imidazole (4.90 g, 0.07 mol) in tetrahydrofuran (150 mL) were 

stirred overnight at room temperature. The reaction mixture was filtered through Celite


, 

washed with diethyl ether (70 mL). The filtrate was concentrated and purified by flash 

column chromatography (elution with petroleum ether/diethyl ether, 20:1) which gave 1-

(tert-butyldimethylsilyloxy)pent-4-ene (184) (9.77 g, 99%) as a colourless oil. 

Spectroscopic data is entirely consistent with the literature.
183

 max/cm
–1

 (Neat) 2931 (CH), 

1465, 1365, 1249, 1059; H (400 MHz, CDCl3) 0.01 (6H, s, Si(CH3)2), 0.84 (9H, s, 

Si(CH3)3), 1.51–1.60 (2H, m, 2-H2), 2.02–2.08 (2H, m, 3-H2), 3.57 (2H, t, J 6.4 Hz, 1-H2), 

4.88–4.99 (2H, m, 5-H2), 5.77 (1H, ddt, J 16.9, 10.2, 6.6 Hz, 4-H); C (100 MHz, CDCl3) –

5.2 (2 × CH3), 18.3 (C), 25.9 (3 × CH3), 30.0 (CH2), 31.9 (CH2), 62.5 (CH2), 114.5 (CH2), 

138.6 (CH); m/z (CI) 201.1674 (MH
+
. C11H25OSi requires 201.1674), 165 (8%), 97 (25), 

81 (60), 69 (96). 

1-(tert-Butyldimethylsilyloxy)pent-4-en-3-ol (185). 

 

To a suspension of selenium dioxide (0.72 g, 6.54 mmol) in dichloromethane (25 mL) was 

added tert-butyl hydroperoxide (5.0–6.0 M in decane) (3.65 mL, 32.70 mmol). The 

mixture was stirred for 1 h. Then, a solution of 1-(tert-butyldimethylsilyloxy)pent-4-ene 

(184) (1.31 g, 6.54 mmol) in dichloromethane (25 mL) was added and stirred for 72 h. The 

mixture was evaporated, diethyl ether (50 mL) and 2.0 M sodium hydroxide (30 mL) were 

added to the evaporated mixture, and the organic phase was separated and aqueous layer 

was extracted with diethyl ether (2 × 50 mL). The combined organic layers were washed 

with 1.0 M hydrochloric acid (20 mL), sodium hydrogencarbonate (20 mL) and then dried 

(MgSO4). After filtration the organic solution was concentrated in vacuo. Flash column 

chromatography (petroleum ether/diethyl ether, 10:1) gave 1-(tert-

butyldimethylsilyloxy)pent-4-en-3-ol (185) (1.40 g, 70%) as a yellow oil. max/cm
–1 

(NaCl) 

3424 (OH), 2929 (CH), 1472, 1256, 1099, 921; H (400 MHz, CDCl3) 0.01 (6H, s, 
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Si(CH3)2), 0.82 (9H, s, Si(CH3)3), 1.59–1.74 (2H, m, 2-H2), 3.30 (1H, br s, 3-OH), 3.70–

3.76 (1H, m, 1-HH), 3.79–3.84 (1H, m, 1-HH), 4.25–4.32 (1H, m, 3-H), 5.04 (1H, d, J 10.4 

Hz, 5-HH), 5.22 (1H, d, J 17.0 Hz, 5-HH), 5.80 (1H, ddd, J 17.0, 10.4, 5.4 Hz, 4-H); C 

(100 MHz, CDCl3) –5.5 (2 × CH3), 18.1 (C), 25.8 (3 × CH3), 31.2 (CH2), 61.9 (CH2), 72.5 

(CH), 114.1 (CH2), 140.5 (CH); m/z (CI) 217 (MH
+
, 98%), 199 (26), 145 (26), 85 (15), 79 

(52). 

1-(tert-Butyldimethylsilyloxy)-3-(methoxymethoxy)pent-4-ene. 

 

Reaction was carried out according to general procedure 3, using 1-(tert-

butyldimethylsilyloxy)pent-4-en-3-ol (185) (2.46 g, 0.01 mol). Flash column 

chromatography (petroleum ether/diethyl ether, 20:1) yielded 1-(tert-

butyldimethylsilyloxy)-3-(methoxymethoxy)pent-4-ene (3.80 g, 100%) as a colourless oil. 

max/cm
–1

 (NaCl) 2954 (CH), 1468 (CH), 1442, 1216, 905; H (400 MHz, CDCl3) 0.04 

(6H, s, Si(CH3)2), 0.89 (9H, s, SiC(CH3)3), 1.65–1.74 (1H, m, 2-HH), 1.78–1.87 (1H, m, 2-

HH), 3.36 (3H, s, OCH3), 3.63–3.76 (2H, m, 1-H2), 4.16 (1H, q, J 7.4 Hz, 3-H), 4.55 (1H, 

d, J 6.6 Hz, OCHHO), 4.7 (1H, d, J 6.6 Hz, OCHHO), 5.15–5.24 (2H, m, 5-H2), 5.64–5.74 

(1H, ddd, J 17.3, 10.2, 7.6 Hz, 4-H); C (100 MHz, CDCl3) –5.3 (2 × CH3), 18.2 (C), 25.9 

(3 × CH3), 38.7 (CH2), 55.3 (CH3), 59.3 (CH2), 74.4 (CH), 93.9 (CH2), 116.9 (CH2), 138.4 

(CH); m/z (CI) 261.1881 (MH
+
. C13H29O3Si requires 261.1886), 229 (65%), 199 (75), 145 

(50), 69 (100). 

3-(Methoxymethoxy)pent-4-en-1-ol (186). 

 

A solution of tetrabutylammonium fluoride (1.0 M in tetrahydrofuran) (12.8 mL, 0.01 mol) 

was added to a solution of 1-(tert-butyldimethylsilyloxy)-3-(methoxymethoxy)pent-4-ene 

(2.79 g, 0.01 mol) in tetrahydrofuran (200 mL) at 0 C. The reaction was warmed to room 

temperature and stirred overnight. The reaction mixture was then concentrated and the 

resulting residue was re-suspended in diethyl ether (40 mL). The solution was washed with 

water (30 mL) and the aqueous layer was then extracted with diethyl ether (3 × 30 mL). 
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The combined organic extracts were dried (MgSO4), concentrated and then purified by 

flash column chromatography (petroleum ether/diethyl ether, 5:2) to give 3-

(methoxymethoxy)pent-4-en-1-ol (186) (1.5 g, 96%) as a colourless oil. max/cm
–1

 (Neat) 

3433 (OH), 2947 (CH), 1419, 1219, 1149; H (400 MHz, CDCl3) 1.69–1.77 (2H, m, 2-H2), 

2.17 (1H, br s, 1-OH), 3.30 (3H, s, OCH3), 3.62–3.77 (2H, m, 1-H2), 4.16 (1H, q, J 6.9 Hz, 

3-H), 4.46 (1H, d, J 6.7 Hz, OCHHO), 4.61 (1H, d, J 6.7 Hz, OCHHO), 5.09–5.19 (2H, m, 

5-H2), 5.63 (1H, ddd, J 17.3, 10.4, 7.5 Hz, 4-H); C (100 MHz, CDCl3) 37.7 (CH2), 55.6 

(CH3), 60.1 (CH2), 76.3 (CH), 94.0 (CH2), 117.4 (CH2), 137.6 (CH); m/z (CI) 147.1022 

(MH
+
. C7H15O3 requires 147.1021), 115 (100%), 85 (38), 69 (44). 

Ethyl (2E)-5-(methoxymethoxy)hept-2,6-dienoate (187). 

 

Reaction was carried out according to general procedure 1, using 3-

(methoxymethoxy)pent-4-en-1-ol (186) (0.80 g, 5.48 mmol). Purification by flash column 

chromatography using (diethyl ether/petroleum ether, 2:3) gave the title compound (187) 

(0.8 g, 69%) as colourless oil. max/cm
–1

 (Neat) 3020 (CH), 1714 (CO), 1464, 1215, 1150; 

H (400 MHz, CDCl3) 1.28 (3H, t, J 7.1 Hz, OCH2CH3), 2.40–2.55 (2H, m, 4-H2), 3.36 

(3H, s, OCH3), 4.12–4.22 (3H, m, 5-H and OCH2CH3), 4.20 (2H, q, J 7.1 Hz, OCH2CH3), 

4.54 (1H, d, J 6.7 Hz, OCHHO), 4.70 (1H, d, J 6.7 Hz, OCHHO), 5.21–5.28, (2H, m, 7-

H2), 5.70 (1H, ddd, J 17.2, 10.4, 7.6 Hz, 6-H), 5.89 (1H, dt, J 15.7, 1.5 Hz, 2-H), 6.96 (1H, 

dt, J 15.7, 7.4 Hz, 3-H); C (100 MHz, CDCl3) 14.3 (CH3), 38.3 (CH2), 55.5 (CH3), 60.2 

(CH2), 75.8 (CH), 93.8 (CH2), 117.9 (CH2), 123.7 (CH), 137.2 (CH), 144.5 (CH), 166.3 

(C); m/z (CI) 215.1286 (MH
+
. C11H19O4 requires 215.1283), 183 (100%), 153 (28), 113 

(28), 85 (78). 

(2E)-5-(Methoxymethoxy)hept-2,6-dien-1-ol (188). 

 

Reaction was carried out according to general procedure 2, using ethyl (2E)-5-

(methoxymethoxy)hept-2,6-dienoate (187) (0.67g, 3.13 mmol). Flash column 

chromatography (eluting with petroleum ether/diethyl ether, 1:1) yielded (2E)-5-
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(methoxymethoxy)hept-2,6-dien-1-ol (188) (0.53 g, 100%) as a colourless oil. max/cm
–1

 

(Neat) 3394 (OH), 2916 (CH), 1427, 1273, 1018; H (400 MHz, CDCl3) 1.26 (1H, t, J 5.9 

Hz, 1-OH), 2.28–2.42 (2H, m, 4-H2), 3.40 (3H, s, OCH3), 4.06 (1H, q, J 6.7 Hz, 5-H), 

4.09–4.13 (2H, m, 1-H2), 4.50 (1H, d, J 6.7 Hz, OCHHO), 4.70 (1H, d, J 6.7 Hz, 

OCHHO), 5.18–5.25 (2H, m, 7-H2), 5.65–5.75 (3H, m, 2-H, 3-H and 6-H); C (100 MHz, 

CDCl3) 38.3 (CH2), 55.4 (CH3), 63.6 (CH2), 76.8 (CH), 93.8 (CH2), 117.4 (CH2), 128.3 

(CH), 131.8 (CH), 137.7 (CH); m/z (CI) 173.1174 (MH
+
. C9H17O3 requires 173.1174), 155 

(100%), 125 (100), 101 (100), 85 (100). 

 (1R*,4S* and 1S*,4S*)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-4-

(methoxymethoxy)cyclopent-2-ene (191). 

 

The reaction was carried out according general procedure 4 using (2E)-5-

(methoxymethoxy)hept-2,6-dien-1-ol (188) (0.11 g, 0.65 mmol) and 

bis(acetonitrile)palladium(II) chloride (0.02 g, 0.07 mmol) as a catalyst for the Overman 

rearrangement. Grubb’s catalyst (2
nd

 Generation) (0.008 g, 0.01 mmol) was then added and 

the reaction mixture was heated under reflux for 12 h. Concentration of the filtrate 

followed by flash column chromatography (petroleum ether/diethylether, 2:1) gave 

(1R*,4S* and 1S*,4S*)-1-(2′,2′,2′-trichloromethylcarbonylamino)-4-(methoxymethoxy) 

cyclopent-2-ene (191) (0.05 g, 25% combined yield over 3 steps) as a colourless oil. NMR 

spectra showed a 1:1 mixture of diastereomers, signals for only one diastereomer was 

recorded. max/cm
–1

 (Neat) 3410 (NH), 2926 (CH), 1693 (CO), 1464, 1365, 1168; H (400 

MHz, CDCl3) 2.00 (1H, ddd, J 14.5, 7.3, 4.1 Hz, 5-HH), 2.40 (1H, ddd, J 14.5, 7.7, 3.2 Hz, 

5-HH), 3.37 (3H, s, OCH3), 4.67 (1H, d, J 6.9 Hz, OCHHO), 4.70 (1H, d, J 6.9 Hz, 

OCHHO), 4.85–4.90 (1H, m, 4-H), 5.08–5.16 (1H, m, 1-H), 5.99 (1H, ddd, J 5.6, 2.1, 1.1 

Hz, 2-H), 6.16 (1H, dt, J 5.6, 1.9 Hz, 3-H), 6.54 (1H, br s, NH); C (100 MHz, CDCl3) 38.8 

(CH2), 55.4 (CH3), 56.7 (CH), 81.3 (CH), 96.1 (CH2), 133.8 (CH2), 136.9 (CH), 161.5 (C); 

m/z (CI) 287.9954 (MH
+
. C9H13

35
Cl3NO3 requires 287.9961), 226 (100%), 192 (78), 158 

(12), 107 (15), 69 (28). 



Experimental  124 

 

(1R*,4S* and 1S*,4S*)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-4-

(methoxymethoxy)cyclopent-2-ene (191). 

(2E)-5-(Methoxymethoxy)hept-2,6-dien-1-ol (188) (0.16 g, 0.93 mmol) was dissolved in 

dichloromethane (30 mL) and cooled to 0 C. 1,8-Diazabicyclo[5.4.0]undec-7-ene (0.19 

mL, 0.93 mmol) was added to the solution followed by trichloroacetonitrile (0.14 mL, 1.39 

mmol). The solution was then warmed to room temperature and stirred for 24 h. The 

reaction mixture was filtered through a short pad of silica gel and washed with diethyl 

ether (100 mL). The resulting filtrate was then concentrated to give the allylic 

trichloroacetimidate, which was used without further purification. The allylic 

trichloroacetimidate was then dissolved in toluene (20 mL) and potassium carbonate (0.20 

g, 0.93 mmol) was added to the solution and the reaction mixture was stirred at 130 
o
C for 

12 h. The reaction mixture was then filtered through Celite


, concentrated and dissolved in 

dichloromethane (30 mL). Grubb’s catalyst (2
nd

 Generation) (0.04 g, 0.05 mmol) was then 

added and the reaction mixture was heated under reflux for 24 h. The mixture was cooled 

to room temperature and then filtered through a short pad of Celite


 and washed with 

diethyl ether (100 mL). Concentration of the filtrate followed by flash column 

chromatography (petroleum ether/diethylether, 2:1) gave (1R*,4S* and 1S*,4S*)-1-

(2′,2′,2′-trichloromethylcarbonylamino)-4-(methoxymethoxy)cyclopenta-2-ene (191) (0.83 

g, 83% combined yield over 3 steps) as a colourless oil. Spectroscopic data as described 

above. 

1-(2′,2′,2′-Trichloromethylcarbonylamino)cyclopent-2-en-4-one (193). 

 

(1R*,4S* and 1S*,4S*)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-4-(methoxymethoxy) 

cyclopent-2-ene (191) (0.05 g, 0.17 mmol) was dissolved in methanol (4 mL) and 0.5 N 

hydrochloric acid (4 mL) was added to the reaction mixture. The reaction mixture was 

stirred for 18 h at 40 °C. The mixture was cooled and neutralised with a saturated solution 

of sodium hydrogencarbonate (5 mL) and then extracted with ethyl acetate (3 × 20 mL). 

The organic layer was dried (MgSO4) and concentrated in vacuo, to give (1R*,4S* and 
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1S*,4S*)-1-(2′,2′,2′-trichloromethylcarbonylamino)cyclopent-2-en-4-ol (192) as a white 

solid. It was dissolved in dichloromethane and cooled to 0 C. 1,1,1-Tris(acetyloxy)-1,1-

dihydro-1,2-benziodoxol-3-(1H)-one (0.09 g, 0.20 mmol) was then added to the solution 

and stirred for 2 h before warming to room temperature. The reaction mixture was 

concentrated and diluted with a 10% sodium sulphite solution (10 mL) and the organic 

layer was extracted with dichloromethane (3 × 15 mL). The combined organic layer was 

dried (MgSO4) and concentrated in vacuo. Purification by flash column chromatography 

(elution with petroleum ether/diethyl ether, 1:5) gave 1-(2′,2′,2′-

trichloromethylcarbonylamino) cyclopent-2-en-4-one (193) (0.03 g, 73% over two steps) 

as a white solid. Mp 141–143 C; max/cm
–1

 (Neat) 3284 (NH), 2929 (CH), 1711 (CO), 

1681 (CO), 1589 (C=C), 1429, 1165; H (400 MHz, CDCl3) 2.28 (1H, dd, J 18.9, 2.6 Hz, 

5-HH), 2.97 (1H, dd, J 18.9, 7.0 Hz, 5-HH), 5.19–5.28 (1H, m, 1-H), 6.39 (1H, dd, J 5.7, 

1.8 Hz, 3-H), 6.93 (1H, br s, NH), 7.60 (1H, dd, J 5.7, 2.5 Hz, 2-H); C (100 MHz, CDCl3) 

41.2 (CH2), 51.6 (CH), 92.4 (C), 136.8 (CH), 159.6 (CH), 161.7 (C), 205.1 (C); m/z 

241.9530 (MH
+
. C7H7

35
Cl3NO2 requires 241.9542), 219 (25%), 149 (27), 95 (20), 58 

(100). 

5.3.2 Synthesis of Polyhydroxylated Aminocyclohexanes 

(1S)-1-(2′,2′,2′)-Trichloromethylcarbonylaminocyclohex-2-ene (131).
38

 

 

The reaction was carried out according general procedure 4 using (2E)-oct-2,7-dien-1-ol 

(128) (0.50 g, 3.97 mmol) by using (S)-COP-Cl (0.59 g, 0.40 mmol) as the rearrangement 

catalyst. Purification by flash column chromatography (elution with petroleum 

ether/diethyl ether, 97:3) gave (1S)-1-(2′,2′,2′-trichloromethylcarbonylamino)cyclohex-2-

ene (131) (0.83 g, 90% yield over 3 steps) as a white solid. 88% ee determined by HPLC 

analysis using CHIRALPAK IB column (0.5% iso-propanol/hexane at 0.75 mL/min), 

retention time: tS= 8.2 min, and tR= 9.2 min. []D
23

 –95.3 (c 2.1, CHCl3). All other 

spectroscopic data as previously reported for 1-(2’,2’,2’-

trichloromethylcarbonylamino)cyclohex-2-ene (129) above. 
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(1S,2S,3R)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2,3-dihydroxycyclohexane 

(206).
140

 

 

(1S)-1-(2′,2′,2′-Trichloromethylcarbonylamino)cyclohex-2-ene (131) (0.06 g, 0.25 mmol) 

was dissolved in dichloromethane (5 mL) at –78 C. Tetramethylethylenediamine (0.04 g, 

0.27 mmol) was added and the reaction mixture stirred for 0.1 h before the addition of 

osmium tetroxide (0.06 g, 0.26 mmol). The dark coloured solution was stirred for 1 h at –

78 C before warming to room temperature and stirred for a further 1 h. The solvent was 

removed in vacuo and the dark coloured solid was redissolved in methanol (5 mL). 

Concentrated hydrochloric acid (5 drops) was added and the reaction mixture stirred for 2 

h. The solvent was removed in vacuo to afford a dark solid. Flash column chromatography 

(elution with petroleum ether/diethyl ether, 1:4) afforded (1S,2S,3R)-1-(2′,2′,2′-

trichloromethylcarbonylamino)-2,3-dihydroxycyclohexane (206) (0.06 g, 93%) as a 

colourless oil. Spectroscopic data is entirely consistent with the literature.
140

 max/cm
–1

 

(NaCl) 3407 (NH/OH), 2942 (CH), 1700 (CO), 1512, 1042, 821; []D
25

 –3.8 (c 1.0, 

CHCl3); H (400 MHz, CDCl3) 1.30–1.43 (1H, m, 5-HH), 1.59–1.80 (5H, m, 4-H2, 5-HH 

and 6-H2), 2.56 (1H, br s, OH), 2.90 (1H, br s, OH), 3.83–3.93 (2H, m, 2-H and 3-H), 

3.95–4.05 (1H, m, 1-H), 7.73 (1H, br s, NH); C (100 MHz, CDCl3) 18.3 (CH2), 26.1 

(CH2), 28.4 (CH2), 52.1 (CH), 70.4 (CH), 70.9 (CH), 92.7 (C), 161.8 (C); m/z (CI) 

275.9960 (MH
+
. C8H13

35
Cl3NO3 requires 275.9961), 242 (35%), 179 (12), 123 (89), 109 

(88), 73 (100). 



Experimental  127 

 

2′,2′,2′-Trichloro-N-[(1S,2S,3R)-oxabicyclo[4.1.0]hept-2-yl]acetamide (207).
141

 

 

(1S)-1-(2′,2′,2′-Trichloromethylcarbonylamino)cyclohex-2-ene (131) (0.24 g, 0.97 mmol) 

was dissolved in dichloromethane (15 mL) along with sodium hydrogencarbonate (0.16 g, 

1.95 mmol). To the stirred suspension was added meta-chloroperoxybenzoic acid (0.34 g, 

1.95 mmol) and stirred at room temperature. The resulting suspension was stirred 

vigorously for 19 h. A 20% aqueous solution of sodium sulfite (10 mL) was added and the 

resulting two-phase mixture was stirred vigorously for 0.25 h. The two layers were 

separated and the aqueous layer was extracted with dichloromethane (2 × 20 mL). The 

combined organic layers were washed with a 20% aqueous solution of sodium sulphite (10 

mL) and a 5% aqueous solution of sodium hydrogencarbonate (2 × 20 mL), dried (Na2SO4) 

and evaporated under reduced pressure. Purification by flash column chromatography 

(elution with petroleum ether/diethyl ether, 2:5) gave 2′,2′,2′-trichloro-N-[(1S,2S,3R)-

oxabicyclo[4.1.0]hept-2-yl]acetamide (207) (0.24 g, 95%) as white solid. Spectroscopic 

data is entirely consistent with the literature.
141 

Mp 75–77 C; max/cm
–1

 (NaCl) 3421 

(NH), 3020 (CH), 1712 (CO), 1363, 1217, 757; []D
25

 –26.8 (c 1.0, CHCl3); H (400 MHz, 

CDCl3) 1.20–1.59 (4H, m, 5-H2 and 6-H2), 1.82–1.20 (2H, m, 4-H2), 3.25 (1H, t, J 3.4 Hz, 

2-H), 3.30 (1H, td, J 3.8, 3.4, Hz 3-H), 4.25–4.32 (1H, m, 1-H), 7.02 (1H, br s, NH); C 

(100 MHz, CDCl3) 17.6 (CH2), 23.1 (CH2), 25.8 (CH2), 47.5 (CH), 53.0 (CH), 54.6 (CH), 

92.7 (C), 161.8 (C); m/z (CI) 257.9852 (MH
+
. C8H11

35
Cl3NO2 requires 257.9855), 224 

(28%), 191 (6), 137 (21), 107 (45), 73 (100). 
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(1S,2S,3S)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2,3-dihydroxycyclohexane 

(208). 

 

2′,2′,2′-Trichloro-N-[(1S,2S,3R)-7-oxabicyclo[4.1.0]hept-2-yl]acetamide (207) (0.04 g, 

0.14 mmol) was added to a 1:1 mixture of 0.2 M sulfuric acid/1,4-dioxane (15 mL) and the 

reaction mixture was stirred at room temperature for 0.75 h. The reaction was then diluted 

with a saturated solution of sodium hydrogencarbonate (10 mL) and extracted with ethyl 

acetate (3 × 20 mL). The organic layers were combined, dried (MgSO4) and concentrated 

in vacuo. Purification by flash column chromatography (elution with petroleum 

ether/diethyl ether, 10:1) gave (1S,2S,3S)-1-(2′,2′,2′-trichloromethylcarbonylamino)-2,3-

dihydroxycyclohexane (208) (0.03 g, 75%) as a colourless oil. max/cm
–1

 (NaCl) 3408 

(OH), 2942 (CH), 1700 (CO), 1512, 821; []D
25

 +9.9 (c 1.0, CHCl3); H (400 MHz, CDCl3) 

1.45–1.55 (2H, m, 4-HH and 5-HH), 1.58–1.77 (2H, m, 5-HH and 6-HH), 1.84–1.95 (2H, 

m, 4-HH and 6-HH), 3.01 (1H, br s, OH), 3.22 (1H, br s, OH), 3.77 (1H, dd, J 6.0, 3.6 Hz, 

2-H), 3.82–3.89 (1H, m, 3-H), 4.15–4.21 (1H, m, 1-H), 7.16 (1H, d, J 7.6 Hz, NH); C (100 

MHz, CDCl3) 18.6 (CH2), 26.3 (CH2), 28.5 (CH2), 51.0 (CH), 70.5 (CH), 72.1 (CH), 92.7 

(C), 162.1 (C); m/z (CI) 275.9959 (MH
+
. C8H13

35
Cl3NO3 requires 275.9961), 242 (59%), 

208 (30), 158 (16), 113 (33), 69 (100). 

(1S,2S,3S)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2-hydroxy-3-iodocyclohexane 

(211). 

 

To a solution of (1S)-1-(2′,2′,2′-trichloromethylcarbonylamino)cyclohex-2-ene (131) (0.29 

g, 1.20 mmol) in chloroform (15 mL), N-iodosuccinimide (0.40 g, 1.81 mmol) was added 

and the mixture stirred for 18 h. The solvent was then removed in vacuo. The resulting 
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residue was dissolved in ethyl acetate (20 mL) and the organic phase washed with water (4 

× 30 mL). The organic layer was then dried (MgSO4) and the solvent removed in vacuo to 

give (3aS,4S,7aS)-4-iodo-2-(trichloromethyl)benzoxazole (210) (0.37 g, 85% yield) as a 

colourless oil which was used without further purification. H (400 MHz, CDCl3) 1.50–

1.69 (2H, m, 5-H2), 1.90–2.23 (4H, m, 4-H2 and 6-H2), 4.17–4.30 (2H, m, 1-H and 3-H), 

5.16 (1H, t, J 7.5 Hz, 2-H). To a solution of (3aS,4S,7aS)-4-iodo-2-

(trichloromethyl)benzoxazole (0.03 g, 0.14 mmol) in methanol (5 mL) was added 2.0 M 

hydrochloric acid (3 mL) and the reaction mixture was stirred at room temperature for 0.75 

h. The reaction mixture was then diluted with a saturated solution of sodium 

hydrogencarbonate (10 mL) and extracted with ethyl acetate (3 × 20 mL). The organic 

layers were combined, dried (MgSO4) and concentrated in vacuo. Purification by flash 

column chromatography (petroleum ether/diethyl ether, 10:1) gave (1S,2S,3S)-1-(2′,2′,2′-

trichloromethylcarbonylamino)-2-hydroxy-3-iodocyclohexane (211) (0.03 g, 76%) as a 

white solid. Mp 103–105 C; max/cm
–1

 (NaCl) 3402 (OH), 2941 (CH), 1695 (CO), 1509, 

1155, 821; []D
25

 +60.8 (c 1.0, CHCl3); H (400 MHz, CDCl3) 1.58–1.66 (1H, m, 6-HH), 

1.68–1.98 (4H, m, 4-H2, 5-HH, 6-HH), 2.08–2.18 (1H, m, 5-HH), 2.32 (1H, br s, OH), 4.13 

(1H, t, J 4.1 Hz, 2-H), 4.41 (1H, q, J 4.1 Hz, 3-H), 4.46–4.54 (1H, m, 1-H), 7.02 (1H, br s, 

NH); C (100 MHz, CDCl3) 21.4 (CH2), 26.2 (CH2), 29.0 (CH2), 32.9 (CH), 49.4 (CH), 

72.8 (CH), 92.7 (C), 161.5 (C); m/z (CI) 387.8958 (MH
+
. C8H12

35
Cl2

37
ClINO2 requires 

387.8950), 352 (32%), 260 (100), 224 (64), 154 (42), 81 (21). 

(1S,2R)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2-hydroxycyclohex-3-ene (213).
 
 

 

To a solution of (1S)-1-(2′,2′,2′-trichloromethylcarbonylamino)cyclohex-2-ene (131) (4.00 

g, 16.5 mmol) in chloroform (100 mL), N-iodosuccinimide (5.52 g, 25.00 mmol) was 

added and the mixture stirred for 18 h. The solvent was then removed in vacuo. The 

resulting residue was dissolved in ethyl acetate (120 mL) and the organic phase washed 

with water (3 × 50 mL), dried (MgSO4) and the solvent removed in vacuo. The residue 

obtained was dissolved in toluene (100 mL) and 1,8-diazabicyclo[5,4,0]undec-7-ene (3.70 

mL, 24.8 mmol) was added. The reaction mixture was heated under reflux for 12 h. The 
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reaction mixture was then cooled and the solvent was removed in vacuo. The resulting 

dark coloured solid was dissolved in methanol (80 mL). 2.0 M Hydrochloric acid (80 mL) 

was added and reaction mixture was stirred at room temperature for 1 h. The reaction 

mixture was then diluted with a saturated solution of sodium hydrogencarbonate (10 mL) 

and extracted with ethyl acetate (3 × 70 mL). The organic layers were combined, dried 

(MgSO4) and concentrated in vacuo. Purification by flash column chromatography (elution 

with petroleum ether/diethyl ether, 1:4) gave (1S,2R)-1-(2′,2′,2′-

trichloromethylcarbonylamino)-2-hydroxycyclohex-3-ene (213) (2.54 g, 60%) as white 

solid. Mp 105–109 C; max/cm
–1

 (NaCl) 3404 (OH), 2940 (CH), 1699 (CO), 1506, 1096, 

909, 822; []D
25

 –71.9 (c 1.0, CHCl3); H (400 MHz, CDCl3) 1.50 (1H, br s, OH), 1.64–

1.75 (1H, m, 6-HH), 1.86–1.94 (1H, m, 6-HH), 2.20–2.26 (2H, m, 5-H2), 3.97 (1H, ddd, J 

11.9, 7.6, 3.6 Hz, 1-H), 4.14–4.21 (1H, m, 2-H), 5.85–5.91 (1H, m, 3-H), 6.00 (1H, dt, J 

9.8, 3.6 Hz, 4-H), 7.36 (1H, br s, NH); C (100 MHz, CDCl3) 22.4 (CH2), 24.8 (CH2), 51.4 

(CH), 64.7 (CH), 92.5 (C), 127.2 (CH), 133.4 (CH), 162.5 (C); m/z (CI) 257.9857 (MH
+
. 

C8H11
35

Cl3NO2 requires 257.9855), 224 (98%), 190 (36), 153 (48), 113 (59), 81 (100). 

(1S,2S,3S,4S)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2,3,4-trihydroxycyclohexane 

(214).
 
 

 

(1S,2R)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2-hydroxycyclohex-3-ene (213) (1.00 

g, 3.89 mmol) was dissolved in dichloromethane (50 mL) at –78 C. 

Tetramethylethylenediamine (0.68 mL, 4.54 mmol) was added and the reaction mixture 

stirred for 0.1 h before the addition of osmium tetroxide (1.00 g 3.90 mmol). The dark 

coloured solution was stirred for 1 h at –78 C before warming to room temperature and 

stirred for 1 h. The solvent was removed in vacuo and the dark coloured solid was 

dissolved in methanol (50 mL). Concentrated hydrochoric acid (1 mL) was added and the 

reaction stirred for 2 h. The solvent was removed in vacuo to afford a dark solid. Flash 

column chromatography (elution with petroleum ether/diethyl ether, 1:4) afforded 

(1S,2S,3S,4S)-1-(2′,2′,2′-trichloromethylcarbonylamino)-2,3,4-trihydroxycyclohexane 

(214) (0.60 g, 53%) as a white solid. Mp 151–153 C; max/cm
–1

 (NaCl) 3360 (OH), 2947 
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(CH), 1653 (CO), 1456, 1420, 1024; []D
25

 –27.6 (c 0.9, MeOH); H (400 MHz, CD3OD) 

1.63–1.83 (4H, m, 5-H2 and 6-H2), 3.83–3.92 (3H, m, 2-H, 3-H and 4-H), 4.10 (1H, ddd, J 

10.6, 4.4, 2.9 Hz, 1-H); C (100 MHz, CDCl3) 24.7 (CH2), 27.4 (CH2), 50.6 (CH), 68.4 

(CH), 72.3 (CH), 74.0 (CH), 93.8 (C), 163.0 (C); m/z (CI) 291.9908 (MH
+
. C8H13

35
Cl3NO4 

requires 291.9910), 258 (100%), 224 (50), 148 (22), 85 (12). 

(1S,2S,3S,4S)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2,3,4-trihydroxycyclohexane 

(214) Upjohn Reaction.
 
 

A solution of (1S,2R)-1-(2′,2′,2′-trichloromethylcarbonylamino)-2-hydroxy-3-cyclohexene 

(213) (1.00 g, 3.89 mmol) in tetrahydrofuran (25 mL), N-methylmorpholine-N-oxide (0.60 

g, 5.10 mmol) and osmium tetraoxide (0.06 g, 0.23 mmol) was added to a stirred solution 

of sodium hydrogencarbonate (0.40 g, 4.76 mmol) in tert-butyl alcohol (15 mL) and water 

(4 mL). The reaction was stirred at room temperature for 24 h and then a 10% sodium 

sulfite solution (20 mL) was added and the reaction mixture was extracted with ethyl 

acetate (3 × 30 mL). The organic layers were combined, dried (MgSO4) and concentrated 

in vacuo. Purification by flash column chromatography (elution with petroleum 

ether/diethyl ether, 1:4) gave (1S,2S,3S,4S,)-1-(2′,2′,2′-trichloromethylcarbonylamino)-

2,3,4-trihydroxycyclohexane 214 (0.63 g, 56%) as a white solid. Spectroscopic data as 

described above. 

(1S,2S,3S,4S)-1-Aminocyclohexane-2,3,4-triol (133).
171

 

 

(1S,2S,3S,4S)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2,3,4-trihydroxycyclohexane 

(214) (0.15 g, 0.52 mmol) was dissolved in methanol (15.0 mL) and 2.0 M sodium 

hydroxide (3.0 mL) was added. The reaction mixture was stirred for 12 h at room 

temperature and then concentrated in vacuo. Purification by ion exchange column 

chromatography (Dowex 50 W), eluting with 0.5 M ammonia solution gave (1S,2S,3S,4S)-

1-aminocyclohexane-2,3,4-triol (133) (0.05 g, 68%) as a white solid. Mp 96–97 C, lit.
171

 

95–97 C; max/cm
–1

 (NaCl) 3326 (NH/OH), 2945 (CH), 1653, 1451, 1411, 1118, 1022; 

[]D
25

+10.8 (c 1.0, MeOH); H (400 MHz, CD3OD) 1.51–1.67 (4H, m, 5-H2 and 6-H2), 



Experimental  132 

 

3.09–3.14 (1H, m, 1-H), 3.73–3.76 (1H, m, 3-H), 3.77–3.83 (2H, m, 2-H and 4-H); C (100 

MHz, CD3OD) 25.8 (CH2), 27.1 (CH2), 49.9 (CH), 68.7 (CH), 72.5 (CH), 73.7 (CH); m/z 

(CI) 148.0971 (MH
+
. C6H14NO3 requires 148.0974), 128 (6%), 112 (7), 85 (13), 79 (42). 

2′,2′,2′-Trichloro-N-[(1S,2S,3S,4R)-2-hydroxyoxabicyclo[4.1.0]hept-2-yl]acetamide 

(216). 

 

(1S,2R)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2-hydroxycyclohex-3-ene (213) (0.07 

g, 0.27 mmol) was dissolved in dichloromethane (10 mL) along with sodium 

hydrogencarbonate (0.05 g, 0.54 mmol). To the stirred suspension was added meta-

chloroperoxybenzoic acid (0.09 g, 0.54 mmol) and stirred at room temperature. The 

resulting suspension was stirred vigorously for 24 h. A 20% solution of sodium sulfite (10 

mL) was added and the resulting two-phase mixture was stirred vigorously for 0.25 h. The 

two layers were separated and the aqueous layer was extracted with dichloromethane (2 × 

20 mL). The combined dichloromethane layers were washed with a 20% solution of 

sodium sulfite (10 mL) and a 5% solution of sodium hydrogencarbonate (2 × 20 mL), dried 

(Na2SO4) and evaporated under reduced pressure to give the crude product. Purification by 

flash column chromatography (elution with petroleum ether/diethyl ether, 2:5) gave 

2’,2’,2’-trichloro-N-[(1S,2S,3S,4R)-2-hydroxyoxabicyclo[4.1.0]hept-2-yl]acetamide (216) 

(0.05 g, 69%) as a white solid. Mp 122–125 C; max/cm
–1

 (NaCl) 3389 (OH), 2951 (CH), 

1705 (CO), 1510, 1223, 1078, 827, 756; []D
25

 –125.3 (c 1.5, CHCl3); H (400 MHz, 

CDCl3) 1.53–1.67 (2H, m, 6-H2), 1.96–2.06 (1H, m, 5-HH), 2.20 (1H, dt, J 15.7, 5.4 Hz, 5-

HH), 2.40 (1H, d, J 9.0 Hz, OH), 3.44–3.48 (2H, m, 3-H and 4-H), 3.83–3.91 (1H, m, 1-

H), 4.14–4.21 (1H, m, 2-H), 7.51 (1H, br d, J 5.3 Hz, NH); C (100 MHz, CDCl3) 20.2 

(CH2), 22.1 (CH2), 50.6 (CH), 54.5 (CH), 55.2 (CH), 64.9 (CH), 92.6 (C), 161.8 (C); m/z 

(CI) 273.9804 (MH
+
. C8H11

35
Cl3NO3 requires 273.9805), 240 (100%), 206 (31), 172 (8), 

156 (9), 137 (14), 121 (17), 71 (25). 
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(1S,2S,3R,4S)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2,3,4-

trihydroxycyclohexane (217). 

 

2′,2′,2′-Trichloro-N-[(1S,2S,3S,4R)-2-hydroxyoxabicyclo[4.1.0]hept-2-yl]acetamide (216) 

(0.03 g, 0.12 mmol) was added to a 1:1 mixture of 0.2 M sulfuric acid/1,4-dioxane (8 mL) 

and the reaction mixture was stirred at room temperature for 8 h. The reaction mixture was 

diluted with a saturated solution of sodium hydrogencarbonate (10 mL) and extracted with 

ethyl acetate (3 × 20 mL). The organic layers were combined, dried (MgSO4) and 

concentrated in vacuo. Purification by flash column chromatography (elution with 

petroleum ether/diethyl ether, 1:10) gave (1S,2S,3R,4S)-1-(2′,2′,2′-

trichloromethylcarbonylamino)-2,3,4-trihydroxycyclohexane (217) (0.03 g, 87%) as a 

white solid. Mp 112–114 C; max/cm
–1

 (NaCl) 3440 (OH), 2946 (CH), 1647 (CO), 1450, 

1411, 1016; []D
24

 +6.4 (c 2.2, MeOH); H (400 MHz, CD3OD) 1.34–1.43 (1H, m, 5-HH), 

1.73–1.80 (2H, m, 6-H2), 1.86–1.95 (1H, m, 5-HH), 3.50–3.54 (1H, m, 3-H), 3.79 (1H, td, 

J 7.8, 4.1 Hz, 4-H), 3.88–3.94 (1H, m, 1-H), 3.95 (1H, t, J 3.0 Hz, 2-H); C (100 MHz, 

CD3OD) 24.5 (CH2), 30.9 (CH2), 54.1 (CH), 70.6 (2 × CH), 76.2 (CH), 94.0 (C), 163.3 

(C); m/z (CI) 291.9904 (MH
+
. C8H13

35
Cl3NO4 requires 291.9910), 258 (19%), 224 (5), 197 

(5), 147 (14), 123 (12), 107 (100). 

(1S,2S,3R,4S)-1-Aminocyclohexane-2,3,4-triol (132) 

 

(1S,2S,3R,4S)-1-(2′,2′,2′-Trichloromethylcarbonylamino)-2,3,4-trihydroxycyclohexane 

(217) (0.15 g, 0.52 mmol) was dissolved in methanol (15 mL) and 2.0 M sodium 

hydroxide (3.0 mL) was added. The reaction mixture was stirred at room temperature for 

12 h and then concentrated in vacuo. Purification by ion exchange column chromatography 
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(Dowex 50 W), eluting with 0.5 M ammonia solution gave (1S,2S,3R,4S)-1-

aminocyclohexane-2,3,4-triol (132) (0.075 g, 98%) as a white solid. Mp 64–66 C; 

max/cm
–1

 (NaCl) 3355 (OH), 3263 (NH), 2957 (CH), 1947, 1669, 1445, 1214, 1016; 

[]D
22

 +23.1 (c 0.9, MeOH); H (400 MHz, CD3OD) 1.11–1.25 (1H, m, 5-HH), 1.46–1.58 

(2H, m, 6-H2), 1.79 (1H, ddt, J 12.4, 8.4, 4.0 Hz, 5-HH), 2.71–2.79 (1H, m, 1-H), 3.18 

(1H, dd, J 8.8, 2.5 Hz, 3-H), 3.53–3.61 (1H, m, 4-H), 3.70 (1H, t, J 2.5 Hz, 2-H); C (100 

MHz, CD3OD) 27.2 (CH2), 30.6 (CH2), 53.0 (CH), 70.4 (CH), 73.9 (CH), 77.2 (CH); m/z 

(CI) 148.0975 (MH
+
. C6H14NO3 requires 148.0974), 137 (5%), 97 (41), 81 (68), 71 (100). 

5.3.3 Studies towards γ-Lycorane and Pancratistatin Analogues 

(2R)-1-(tert-Butyldimethylsilyloxy)-2,3-epoxypropane (240).
184

  

 

A mixture of (S)-glycidol (236) (3.10 g, 0.04 mol), tert-butyldimethylsilyl chloride (9.40 g, 

0.06 mol) and imidazole (4.20 g, 0.06 mol) in tetrahydrofuran (70 mL) were stirred 

overnight at room temperature. A white precipitate was removed by filtration and washed 

with diethyl ether (70 mL). The combined filtrate was concentrated and purified by flash 

column chromatography (elution with petroleum ether/diethyl ether, 10:1) to give (2R)-1-

(tert-butyldimethylsilyloxy)-2,3-epoxypropane (240) (7.70 g, 98%) as a colourless oil. 

Spectroscopic data is entirely consistent with the literature. []D
24

 +2.7 (c 1.0, CHCl3), 

lit.
184

 +2.9 (c 1.0, CHCl3); max/cm
–1

 (Neat) 2930 (CH), 1253, 1161, 983, 835; H (400 

MHz, CDCl3) 0.09 (3H, s, SiCH3), 0.10 (3H, s, SiCH3), 0.92 (9H, s, SiC(CH3)3), 2.66 (1H, 

dd, J 4.6, 2.4 Hz, 1-HH), 2.79 (1H, dd, J 5.2, 4.6 Hz, 1-HH), 3.10–3.14 (1H, m, 2-H), 3.68 

(1H, dd, J 11.8, 4.8 Hz, 3-HH), 3.87 (1H, dd, J 11.8, 3.2 Hz, 3-HH); C (100 MHz, CDCl3) 

–5.4 (2 × CH3), 18.4 (C), 26.0 (3 × CH3), 45.0 (CH2), 52.5 (CH) and 63.9 (CH2); m/z (CI) 

189.1309 (MH
+
. C9H21O2Si requires 189.1311), 145 (35%), 131 (50), 89 (62), 73 (12). 
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(2R)-1-(tert-Butyldimethylsilyloxy)hex-5-en-2-ol (241).
185

  

 

A solution of allyl magnesium bromide (1.0 M in diethyl ether) (100.0 mL, 100.0 mmol) 

was added drop-wise to a solution of copper(I) bromide dimethylsulfide complex (0.69 g, 

3.40 mmol) in tetrahydrofuran (150 mL) at –78 C and the white suspension was stirred for 

0.5 h. (2R)-1-(tert-Butyldimethylsilyloxy)-2,3-epoxypropane (240) (12.70 g, 67.0 mmol) in 

tetrahydrofuran (60 mL) was then added and the reaction mixture was warmed to 0 C and 

stirred for 2 h. The reaction was quenched by the addition of a saturated ammonium 

chloride solution (100 mL) and extracted with ethyl acetate (3 × 100 mL). The organic 

layers were combined, dried (MgSO4) and concentrated in vacuo. Purification by flash 

column chromatography (elution with petroleum ether/diethyl ether, 10:1) gave (2R)-1-

(tert-butyldimethylsilyloxy)hex-5-en-2-ol (241) (13.90 g, 90%) as a colourless oil. 

Spectroscopic data is entirely consistent with the literature.
185

 max/cm
–1

 (Neat) 3460 (OH), 

2929 (CH), 1641 (C=C), 1472, 1252, 1088, 909; []D
24

 –6.7 (c 1.2, CHCl3); H (400 MHz, 

CDCl3) 0.01 (6H, s, Si(CH3)2), 0.82 (9H, s, SiC(CH3)3), 1.35–1.55 (2H, m, 3-H2), 2.00–

2.22 (2H, m, 4-H2), 2.35 (1H, br d, J 3.3 Hz, OH), 3.33 (1H, dd, J 9.9, 7.1 Hz, 1-HH), 

3.53–3.62 (2H, m, 1-HH and 2-H), 4.88–4.92 (1H, m, 6-HH), 4.94–5.00 (1H, m, 6-HH), 

5.76 (1H, ddt, J 17.1, 10.3, 6.6 Hz, 5-H); C (100 MHz, CDCl3) –5.4 (2 × CH3), 18.3 (C), 

25.9 (3 × CH3), 29.8 (CH2), 32.0 (CH2), 67.2 (CH2), 71.2 (CH), 114.8 (CH2), 138.4 (CH); 

m/z (CI) 231.1776 (MH
+
. C12H27O2Si requires 231.1780), 173 (8), 81 (15). 

(2R)-1-(tert-Butyldimethylsilyloxy)-2-(methoxymethoxy)hex-5-ene (242). 

 

The reaction was carried out according to general procedure 3 using (2R)-1-(tert-

butyldimethylsilyloxy)hex-5-en-2-ol (241) (4.00 g, 17.00 mmol). Flash column 

chromatography (elution with petroleum ether/diethyl ether, 20:1) yielded (2R)-1-(tert-

butyldimethylsilyloxy)-2-(methoxymethoxy)hex-5-ene (242) (4.70 g, 100%) as a 

colourless oil. (Found: C, 61.4; H, 11.0. C14H30O3Si requires C, 61.3; H, 11.0%); max/cm
–1

 

(NaCl) 2929 (CH), 1642 (C=C), 1472, 1255, 1110, 1040; []D
24

 +28.8 (c 1.5, CHCl3); H 
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(400 MHz, CDCl3) 0.01 (6H, s, Si(CH3)2), 0.82 (9H, s, SiC(CH3)3), 1.35–1.54 (2H, m, 3-

H2), 2.00–2.21 (2H, m, 4-H2), 3.34 (3H, s, OCH3), 3.50–3.62 (3H, m, 1-H2 and 2-H), 4.60 

(1H, d, J 6.8 Hz, OCHHO), 4.72 (1H, d, J 6.8 Hz, OCHHO), 4.89–4.94 (1H, m, 6-HH), 

4.95–5.01 (1H, m, 6-HH), 5.77 (1H, ddt, J 17.1, 10.3, 6.6 Hz, 5-H); C (100 MHz, CDCl3) 

–5.4 (2 × CH3), 18.3 (C), 25.9 (3 × CH3), 29.6 (CH2), 31.0 (CH2), 55.5 (CH3), 65.7 (CH2), 

77.7 (CH), 96.4 (CH2), 114.6 (CH2), 138.5 (CH); m/z (CI) 243 (M
+
–OCH4, 48%), 231 (8), 

133 (11), 81 (18).  

(2R)-2-(Methoxymethoxy)hex-5-en-1-ol (243). 

 

A solution of tetrabutylammonium fluoride (1M in tetrahydrofuran) (57.10 mL, 57.10 

mmol) was added to a solution of (2R)-1-(tert-butyldimethylsilyloxy)-2-

(methoxymethoxy)hex-5-ene (242) (13.09 g, 47.70 mmol) in tetrahydrofuran (100 mL) at 0 

C. The reaction was warmed to room temperature and stirred overnight. The reaction 

mixture was then concentrated and the resulting residue was re-suspended in diethyl ether 

(50 mL). The solution was washed with water (50 mL) and the aqueous layer was then 

extracted with diethyl ether (3 × 50 mL). The combined organic extracts were dried 

(MgSO4), concentrated and then purified by flash column chromatography (elution with 

petroleum ether/diethyl ether, 5:2) to give (2R)-2-(methoxymethoxy)hex-5-en-1-ol (243) 

(7.63 g, 100%) as a colourless oil. (Found: C, 59.9; H, 10.2. C8H16O3 requires C, 60.0; H, 

10.0%); max/cm
–1

 (NaCl) 3432 (OH), 2947 (CH), 1641 (C=C), 1450, 1212, 1028; []D
24

 –

66.8 (c 0.6, CHCl3); H (400 MHz, CDCl3) 1.49–1.70 (2H, m, 3-H2), 2.07–2.24 (2H, m, 4-

H2), 3.14 (1H, br s, 3.4 Hz, 1-OH), 3.44 (3H, s, OCH3), 3.47–3.64 (3H, m, 1-H2 and 2-H), 

4.69 (1H, d, J 6.9 Hz, OCHHO), 4.75 (1H, d, J 6.9 Hz, OCHHO), 4.96–5.07 (2H, m, 6-

H2), 5.80 (1H, ddt, J 17.1, 10.3, 6.6 Hz, 5-H); C (100 MHz, CDCl3) 29.7 (CH2), 30.8 

(CH2), 55.7 (CH3), 66.7 (CH2), 81.9 (CH), 97.1 (CH2), 115.1 (CH2), 138.0 (CH); m/z (CI) 

161 (MH
+
, 15%), 129 (10), 99 (14), 81 (40), 69 (38).  
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Ethyl (2E,4R)-4-(methoxymethoxy)oct-2,7-dienoate (244). 

 

Reaction was carried out according to general procedure 1, using (2R)-2-

(methoxymethoxy)hex-5-en-1-ol (243) (0.50 g, 3.10 mmol). Flash column chromatography 

(elution with petroleum ether/diethyl ether, 5:1) yielded ethyl (2E,4R)-4-

(methoxymethoxy)oct-2,7-dienoate (244) (0.71 g, 99% yield) as a yellow oil. (Found: C, 

63.2; H, 8.9. C12H20O4 requires C, 63.2; H, 8.8%); max/cm
–1

 (NaCl) 2941 (CH), 1720 

(CO), 1658 (C=C), 1446, 1369, 1269, 1154; []D
24

 +79.2 (c 1.3, CHCl3); H (400 MHz, 

CDCl3) 1.30 (3H, t, J 7.1 Hz, OCH2CH3), 1.59–1.80 (2H, m, 5-H2), 2.09–2.21 (2H, m, 6-

H2), 3.39 (3H, s, OCH3), 4.18–4.25 (3H, m, 4-H and OCH2CH3), 4.59 (1H, d, J 6.9 Hz, 

OCHHO), 4.64 (1H, d, J 6.9 Hz, OCHHO), 4.97–5.08 (2H, m, 8-H2), 5.81 (1H, ddt, J 17.1, 

10.3, 6.6 Hz, 7-H), 5.99 (1H, dd, J 15.7, 1.2 Hz, 2-H), 6.82 (1H, dd, J 15.7, 6.5 Hz, 3-H); 

C (100 MHz, CDCl3) 14.2 (CH3), 29.3 (CH2), 34.0 (CH2), 55.7 (CH3), 60.5 (CH2), 74.6 

(CH), 94.7 (CH2), 115.2 (CH2), 122.1 (CH), 137.7 (CH), 147.6 (CH), 166.2 (C); m/z (CI) 

229 (MH
+
, 35%), 199 (28), 197 (32), 167 (100), 81 (51), 69 (64).  

(2E,4R)-4-(Methoxymethoxy)oct-2,7-dien-1-ol (134). 

 

The reaction was carried out according to general procedure 2, using ethyl (2E,4R)-4-

(methoxymethoxy)oct-2,7-dienoate (244) (1.30 g, 5.70 mmol). Flash column 

chromatography (elution with petroleum ether/diethyl ether, 2:3) yielded, (2E,4R)-4-

(methoxymethoxy)oct-2,7-dien-1-ol (134) (1.05 g, 99% yield) as a colourless oil. (Found: 

C, 64.5; H, 9.7. C10H18O3 requires C, 64.5; H, 9.7%); max/cm
–1

 (NaCl) 3408 (OH), 2937 

(CH), 1641 (C=C), 1442, 1373, 1153, 1096, 1036; []D
24

 +126.8 (c 1.3, CHCl3); H (400 

MHz, CDCl3) 1.54–1.64 (2H, m, 5-HH and OH), 1.68–1.78 (1H, m, 5-HH), 2.06–2.22 

(2H, m, 6-H2), 3.38 (3H, s, OCH3), 4.02–4.09 (1H, m, 4-H), 4.17 (2H, dd, J 5.2, 1.4 Hz, 1-

H2), 4.54 (1H, d, J 6.9 Hz, OCHHO), 4.70 (1H, d, J 6.9 Hz, OCHHO), 4.95–5.06 (2H, m, 

8-H2), 5.58 (1H, ddt, J 15.6, 7.8, 1.4 Hz, 3-H), 5.79–5.87 (2H, m, 2-H and 7-H); C (100 

MHz, CDCl3) 29.6 (CH2), 34.7 (CH2), 55.5 (CH3), 62.9 (CH2), 75.7 (CH), 93.7 (CH2), 
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114.9 (CH2), 131.2 (CH), 132.3 (CH), 138.2 (CH); m/z (CI) 204 (MNH4
+
, 100%), 174 (31), 

142 (29), 125 (14), 58 (16).  

(1R,2S)-1-(Methoxymethoxy)-2-(2′,2′,2′-trichloromethylcarbonylamino)cyclohex-3-

ene (135a) and (1R,2R)-1-(methoxymethoxy)-2-(2′,2′,2′-

trichloromethylcarbonylamino)cyclohex-3-ene (135b).
 

 

The reaction was carried out according general procedure 4 using (2E,4R)-4-

(methoxymethoxy)oct-2,7-dien-1-ol (134) (1.10 g, 3.40 mmol). 

Bis(acetonitrile)palladium(II) chloride (0.09 g, 0.34 mmol) was used to catalyse the 

Overman rearrangement, which was stirred at room temperature overnight before addition 

of Grubbs first generation catalyst (0.28 g, 0.34 mmol). Purification by flash column 

chromatography (elution with petroleum ether/diethyl ether, 7:1) gave (1R,2S)-1-

(methoxymethoxy)-2-(2′,2′,2′-trichloromethylcarbonylamino)cyclohex-3-ene (135a) 

followed by (1R,2R)-1-(methoxymethoxy)-2-(2′,2′,2′-trichloromethylcarbonylamino) 

cyclohex-3-ene (135b), as a yellow oil (0.46 g, 45% combined yield over 3 steps) and in a 

5:1 ratio (135a : 135b). max/cm
–1

 (NaCl) 3421 (NH), 2930 (CH), 1709 (CO), 1654 (C=C), 

1500, 1148, 1102, 1036. Data for (1R,2S)-1-(methoxymethoxy)-2-(2′,2′,2′-

trichloromethylcarbonylamino)cyclohex-3-ene (135a): []D
20

 +79.1 (c 1.9, CHCl3); H 

(400 MHz, CDCl3) 1.73–1.82 (1H, m, 6-HH), 2.00–2.13 (2H, m, 5-HH and 6-HH), 2.17–

2.28 (1H, m, 5-HH), 3.42 (3H, s, OCH3), 4.05 (1H, td, J 5.6, 1.3 Hz, 1-H), 4.60–4.66 (1H, 

m, 2-H), 4.72 (1H, d, J 6.9 Hz, OCHHO), 4.76 (1H, d, J 6.9 Hz, OCHHO), 5.51–5.56 (1H, 

m, 3-H), 5.91–5.97 (1H, m, 4-H), 7.31 (1H, br d, J 7.0 Hz, NH); C (100 MHz, CDCl3) 

20.2 (CH2), 24.2 (CH2), 48.6 (CH), 55.0 (CH3), 70.9 (CH), 91.9 (C), 94.5 (CH2), 123.4 

(CH), 129.9 (CH), 160.7 (C). Data for (1R,2R)-1-(methoxymethoxy)-2-(2′,2′,2′-

trichloromethylcarbonylamino)cyclohex-3-ene (135b): H (400 MHz, CDCl3) 1.75–1.87 

(1H, m, 6-HH), 1.90–1.99 (1H, m, 6-HH), 2.11–2.29 (2H, m, 5-H2), 3.39 (3H, s, OCH3), 

3.71–3.79 (1H, m, 1-H), 4.49–4.56 (1H, m, 2-H), 4.70 (1H, d, J 6.9 Hz, OCHHO), 4.74 

(1H, d, J 6.9 Hz, OCHHO), 5.58–5.62 (1H, m, 3-H), 5.91–5.97 (1H, m, 4-H), 6.78 (1H, br 

d, J 7.1 Hz, NH); C (100 MHz, CDCl3) 23.3 (CH2), 26.0 (CH2), 52.5 (CH), 55.7 (CH3), 
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74.9 (CH), 92.6 (C), 95.3 (CH2), 124.1 (CH), 131.4 (CH), 161.6 (C); m/z (CI) 306.0056 

(MH
+
. C10H15

35
Cl

37
Cl2NO3 requires 306.0062), 268 (100%), 234 (45), 208 (7), 137 (9), 69 

(22). 

(1R,2S)-1-(Methoxymethoxy)-2-(2′,2′,2′-trichloromethylcarbonylamino)cyclohex-3-

ene (135a) and (1R,2R)-1-(methoxymethoxy)-2-(2′,2′,2′-

trichloromethylcarbonylamino)cyclohex-3-ene (135b) using toluene as solvent.
 

The reaction was carried out according general procedure 4 using (2E,4R)-4-

(methoxymethoxy)-oct-2,7-dien-1-ol (134) (0.10 g, 0.54 mmol). 

Bis(acetonitrile)palladium(II) chloride (0.014 g, 0.05 mmol) was used to catalyse the 

Overman rearrangement, which was stirred in toluene (10 mL) initially at 0 C and slowly 

warmed to room temperature over 24 h before addition of Grubbs first generation catalyst 

(0.04 g, 0.05 mmol). Purification by flash column chromatography (elution with petroleum 

ether/diethyl ether, 7:1) gave (1R,2S)-1-(methoxymethoxy)-2-(2′,2′,2′-

trichloromethylcarbonylamino)cyclohex-3-ene (135a) followed by (1R,2R)-1-

(methoxymethoxy)-2-(2’,2’,2’-trichloromethylcarbonylamino)cyclohex-3-ene (135b), as a 

yellow oil (0.11 g, 60% combined yield over 3 steps) and in a 10 : 1 ratio (135a : 135b). 

Spectroscopic data as described above. 

(3aR,4R,7R,7aS)-3,3,4-Trichloro-7-(methoxymethoxy)octahydroindol-2-one (237). 

 

(1R,2S)-1-(Methoxymethoxy)-2-(2′,2′,2′-trichloromethylcarbonylamino)cyclohex-3-ene 

(135a) (0.45 g, 1.49 mmol) was dissolved in p-xylene (10 mL) which was then de-gassed 

for 1h. Powdered molecular sieves (4Å, activated) (0.1 g) and 

dichlorotris(triphenylphosphine)ruthenium(II) (0.07 g, 0.07 mmol) were then added and 

the reaction mixture was heated at 155 C in a sealed tube for 2 h. The reaction mixture 

was then concentrated in vacuo and purified by flash column chromatography (elution with 

petroleum ether/diethyl ether, 1:4) to give (3aR,4R,7R,7aS)-3,3,4-trichloro-7-

(methoxymethoxy)octahydroindol-2-one (237) (0.34 g, 75%) as a brown oil. max/cm
–1

 

(NaCl) 3256 (NH), 2953 (CH), 1741 (CO), 1440, 1036; []D
25

 –60.2 (c 0.5, CHCl3); H 
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(400 MHz, CDCl3) 1.50–1.66 (1H, m, 6-HH), 1.71–1.82 (1H, m, 6-HH), 1.89–1.96 (1H, m, 

5-HH), 2.29–2.36 (1H, m, 5-HH), 3.19 (1H, dd, J 8.6, 5.3 Hz, 3a-H), 3.39 (3H, s, OCH3), 

3.83–3.93 (2H, m, 4-H and 7-H), 4.23–4.27 (1H, m, 7a-H), 4.67 (1H, d, J 6.9 Hz, 

OCHHO), 4.72 (1H, d, J 6.9 Hz, OCHHO), 6.20 (1H, br s, NH); C (100 MHz, CDCl3) 

24.5 (CH2), 32.7 (CH2), 54.0 (CH), 54.7 (CH), 55.0 (CH3), 59.0 (CH), 73.0 (CH), 84.4 (C), 

94.4 (CH2), 167.7 (C); m/z (CI) 302.0115 (MH
+
. C10H15

35
Cl3NO3 requires 302.0118), 268 

(30%), 222 (18), 198 (10), 140 (12). 

(3aR,7R,7aS)-7-(Methoxymethoxy)octahydroindol-2-one (249). 

 

(3aR,4R,7R,7aS)-3,3,4-Trichloro-7-(methoxymethoxy)octahydroindol-2-one (237) (0.05 g, 

0.17 mmol) was dissolved in tetrahydrofuran (10 mL) which was then added to a slurry of 

activated Raney


-Nickel (1.00 g). The reaction was heated under reflux for 24 h and then a 

further portion of Raney


-Nickel was added (1.00 g). The reaction mixture was heated for 

a further 24 h then cooled, diluted with diethyl ether (10 mL) and filtered through a short 

silica plug. The plug was washed with diethyl ether (100 mL), then the washings were 

dried (MgSO4) and concentrated. Purification by flash column chromatography (elution 

with ethyl acetate) gave (3aR,7R,7aS)-7-(methoxymethoxy)octahydroindol-2-one (249) 

(0.03 g, 85%) as a yellow oil. max/cm
–1

 (NaCl) 3423 (NH), 2935 (CH), 1686 (CO), 1448, 

1035; []D
25

 +46.1 (c 0.8, CHCl3); H (400 MHz, CDCl3) 1.18–1.29 (2H, m, 5-H2), 1.41–

1.52 (1H, m, 6-HH), 1.59–1.67 (1H, m, 6-HH), 1.69–1.83 (2H, m, 4-H2), 2.00 (1H, d, J 

16.0, Hz, 3-HH), 2.32–2.41 (1H, m, 3a-H), 2.49 (1H, dd, J 16.0, 6.6 Hz, 3-HH), 3.38 (3H, 

s, OCH3), 3.67 (1H, dt, J 11.5, 4.4 Hz, 7-H), 3.95 (1H, t, J 4.4 Hz, 7a-H), 4.65 (1H, d, J 6.9 

Hz, OCHHO), 4.71 (1H, d, J 6.9 Hz, OCHHO), 5.70 (1H, br s, NH); C (100 MHz, CDCl3) 

21.9 (CH2), 25.8 (CH2), 27.1 (CH2), 35.1 (CH), 39.6 (CH2), 55.6 (CH3), 56.6 (CH), 74.9 

(CH), 94.9 (CH2), 177.9 (C); m/z (CI) 200.1288 (MH
+
. C10H18NO3 requires 200.1287), 168 

(10%), 138 (5), 69 (8). 
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(3aR,7R,7aS)-1-(3,4-Methylenedioxybenzyl)-7-(methoxymethoxy)octahydroindol-2-

one (238). 

 

(3aR,7R,7aS)-7-(Methoxymethoxy)octahydroindol-2-one (249) (0.05 g, 0.25 mmol) was 

dissolved in tetrahydrofuran (2.0 mL) and cooled to 0 C. Sodium hydride (60% in mineral 

oil) (0.012 g, 0.300 mmol) was added and the solution was stirred for 5 minutes before 

piperonyl bromide (0.09 g, 0.45 mmol) in tetrahydrofuran (1.0 mL) was slowly added. 

Sodium iodide (0.07 g, 0.45 mmol) was then added and the reaction was heated to 50 C 

for 2 h. The reaction mixture was cooled and then a saturated solution of ammonium 

chloride (2.0 mL) was added. The solution was extracted with ethyl acetate (3 × 20 mL), 

dried (MgSO4) and concentrated in vacuo. Purification by flash column chromatography 

(elution with ethyl acetate) gave (3aR,7R,7aS)-1-(3,4-methylenedioxybenzyl)-7-

(methoxymethoxy)-octahydroindol-2-one (238) (0.08 g, 97% yield) as a colourless oil. 

max/cm
–1

 (NaCl) 2937 (CH), 1668 (CO), 1488, 1252; []D
25

 –32.1 (c 1.0, CHCl3); H (400 

MHz, CDCl3) 1.15–1.30 (2H, m, 5-H2), 1.42–1.70 (3H, m, 4-H2 and 6-HH), 1.73–1.83 

(1H, m, 6-HH), 2.16 (1H, dd, J 14.6, 7.5 Hz, 3-HH), 2.24–2.34 (1H, m, 3a-H), 2.39 (1H, 

dd, J 14.6, 10.4 Hz, 3-HH), 3.22 (1H, dd, J 6.5, 3.9 Hz, 7-H), 3.27 (3H, s, OCH3), 3.74 

(1H, d, J 14.8 Hz, N-CHH), 3.81–3.85 (1H, m, 7a-H), 4.39 (1H, d, J 7.0 Hz, OCHHO), 

4.54 (1H, d, J 7.0 Hz, OCHHO), 4.94 (1H, d, J 14.8 Hz, N-CHH), 5.85 (2H, s, OCH′2O), 

6.61–6.68 (3H, m, Ph); C (100 MHz, CDCl3) 15.7 (CH2), 25.8 (CH2), 26.9 (CH2), 32.6 

(CH), 36.5 (CH2), 43.8 (CH2), 55.6 (CH3), 56.2 (CH), 72.2 (CH), 95.3 (CH2), 101.0 (CH2), 

108.1 (CH), 108.5 (CH), 121.3 (CH), 131.1 (C), 146.9 (C), 147.9 (C), 176.6 (C); m/z (CI) 

334.1652 (MH
+
. C18H24NO5 requires 334.1654), 302 (7%), 200 (6), 135 (15), 69 (16). 
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(3aR,7R,7aS)-1-(3,4-Methylenedioxybenzyl)-7-hydroxyoctahydroindol-2-one (251). 

 

(3aR,7R,7aS)-1-(3,4-Methylenedioxybenzyl)-7-(methoxymethoxy)octahydroindol-2-one 

(238) (0.20 g, 0.60 mmol) was dissolved in 1:1 mixture of methanol (5.0 mL) and 2.0 M 

hydrochloric acid solution (5.0 mL). The reaction mixture was heated to 35 C and stirred 

for 48 h, then cooled and neutralised with a 6.0 M solution of potassium carbonate (10.0 

mL). The heterogeneous mixture was extracted with ethyl acetate (4 × 50 mL), the organic 

layer was then dried (MgSO4) and concentrated to give (3aR,7R,7aS)-1-(3,4-

methylenedioxybenzyl)-7-hydroxyoctahydroindol-2-one (251) as a white solid (0.17 g, 

100%). Mp 170–172 C; max/cm
–1

 (NaCl) 3370 (OH), 2934 (CH), 1663 (CO), 1489, 1442, 

1243; []D
25

 –22.6 (c 1.4, CHCl3); H (400 MHz, CDCl3) 1.25–1.39 (2H, m, 5-H2), 1.51–

1.61 (1H, m, 4-HH), 1.67–1.87 (3H, m, 4-HH and 6-H2), 1.95 (1H, br s, OH), 2.23 (1H, dd, 

J 15.0, 7.8 Hz, 3-HH), 2.36–2.45 (1H, m, 3a-H), 2.51 (1H, dd, J 15.0, 11.3 Hz, 3-HH), 

3.28 (1H, dd, J 7.0, 3.8 Hz, 7-H), 3.95–4.00 (1H, m, 7a-H), 4.17 (1H, d, J 14.8 Hz, N-

CHH), 4.71 (1H, d, J 14.8 Hz, N-CHH), 5.95 (2H, s, OCH2O), 6.75–6.82 (3H, m, Ph); C 

(100 MHz, CDCl3) 14.6 (CH2), 25.8 (CH2), 29.4 (CH2), 32.4 (CH), 36.4 (CH2), 44.9 

(CH2), 60.1 (CH), 65.8 (CH), 101.1 (CH2), 108.4 (CH), 108.5 (CH), 121.4 (CH), 131.3 

(C), 147.1 (C), 148.1 (C), 176.8 (C); m/z (CI) 290.1391 (MH
+
. C16H20NO4 requires 

290.1392), 289 (12%), 85 (52), 51 (55), 49 (75). 

(3aR,7aS)-1-(3,4-Methylenedioxybenzyl)octahydroindol-2,7-dione (252). 

 

(3aR,7R,7aS)-1-(3,4-Methylenedioxybenzyl)-7-hydroxyoctahydroindol-2-one (0.04 g, 0.14 

mmol) was dissolved in dichloromethane (10 mL) and cooled to 0 C. 1,1,1-

Tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one (0.10 g, 0.23 mmol) was then 

added to the solution and stirred for 2 h before warming to room temperature. The reaction 

mixture was concentrated in vacuo and diluted with a 10% sodium sulphite solution and 



Experimental  143 

 

extracted with dichloromethane (3 × 10 mL). The combined organic layers were dried 

(MgSO4) and concentrated in vacuo. Purification by flash column chromatography (elution 

with diethyl ether/ethyl acetate 1:5) gave (3aR,7aS)-1-(3,4-

methylenedioxybenzyl)octahydroindol-2,7-dione (252) as a white solid (0.038 g, 95%). 

Mp 115–117 C; max/cm
–1

 (Neat) 2983 (CH), 1737 (CO), 1697 (CO), 1491, 1373, 1045; 

[]D
27

 +0.7 (c 1.4, CHCl3); H (400 MHz, CDCl3) 1.54–1.65 (1H, m, 5-HH), 1.69–1.81 

(1H, m, 4-HH), 1.82–1.94 (2H, m, 5-HH and 4-HH), 2.11 (1H, dd, J 16.3, 10.6 Hz, 3-HH) 

2.25 (2H, t, J 6.3 Hz, 6-H2), 2.34 (1H, dd, J 16.3, 8.0 Hz, 3-HH), 2.74–2.78 (1H, m, 3a-H), 

3.70 (1H, d, J 8.8 Hz, 7a-H), 4.01 (1H, d, J 14.7 Hz, N-CHH), 4.99 (1H, d, J 14.7 Hz, N-

CHH), 5.87 (2H, s, OCH2O), 6.57–6.67 (3H, m, Ph); C (100 MHz, CDCl3) 22.3 (CH2), 

26.8 (CH2), 35.4 (CH2), 36.9 (CH), 39.7 (CH2), 45.8 (CH2), 64.5 (CH), 101.1 (CH2), 108.3 

(CH), 108.8 (CH), 121.9 (CH), 130.2 (C), 147.1 (C), 148.0 (C), 173.8 (C), 209.7 (C); m/z 

(CI) 288.1235 (MH
+
. C16H18NO4 requires 288.1235), 207 (4%), 167 (5), 135 (8), 85 (62), 

83 (100), 47 (15). 

(3aR,7aS)-1-(3,4-Methylenedioxybenzyl)-7-(trifluoromethanesulfonate)-3,3a,4,5,7a-

hexahydroindole-2-one (239). 

 

(3aR,7R,7aS)-1-(3,4-Methylenedioxybenzyl)octahydroindol-2,7-dione (252) (0.02 g, 0.07 

mmol) was dissolved in tetrahydrofuran (1 mL) and cooled to –78 C. Lithium 

bis(trimethylsilyl)amide (0.10 mL, 0.10 mmol) was added to the solution and stirred for 1 

h followed by the addition of 2-[N,N′-bis(trifluoromethanesulfonyl)amino]-5-

chloropyridine (0.04 g, 0.10 mmol) in tetrahydrofuran (1 mL) and stirred further for 4 h. 

The reaction was quenched by addition of 10% sodium hydroxide (1 mL) and extracted 

with ethyl acetate (3 × 3 mL). The combined organic layers were dried (MgSO4) and 

concentrated in vacuo. Purification by flash column chromatography (elution with ethyl 

acetate) gave the (3aR,7aS)-1-(3,4-methylenedioxybenzyl)-7-(trifluoromethanesulfonate)-

3,3a,4,5,7a-hexahydroindole-2-one (239) as a white solid (2.4 mg, 8%). Mp 60.5–62.5 C; 

max/cm
–1

 (NaCl) 2931 (CH), 1697 (CO), 1519, 1496, 1419, 1219; []D
24

 +4.4 (c 0.2, 

CHCl3); H (400 MHz, CDCl3) 1.65–1.80 (2H, m, 5-H2), 2.25–2.41 (3H, m, 3-HH and 4-
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H2), 2.48 (1H, dd, J 16.5, 8.2 Hz, 3-HH), 2.64–2.74 (1H, m, 3a-H), 4.05–4.15 (2H, m, 7a-H 

and N-CHH), 5.01 (1H, d, J 15.7 Hz, N-CHH), 5.94 (2H, s, OCH2O), 6.01 (1H, dd, J 4.8, 

3.7 Hz, 6-H), 6.71–6.76 (3H, m, Ph); C (100 MHz, CDCl3) 21.1 (CH2), 22.7 (CH2), 33.5 

(CH), 34.1 (CH2), 45.4 (CH2), 56.2 (CH), 101.1 (CH2), 108.2 (CH), 108.3 (CH), 121.4 

(CH), 122.4 (CH), 130.1 (C), 147.1 (C), 147.9 (C), 153.5 (C), 172.0 (C), 174.2 (C); m/z 

(CI) 420.0732 (MH
+
. C17H17F3NSO6 requires 420.0729), 334 (3%), 285 (45), 270 (45), 219 

(3), 165 (5), 137 (13), 115 (43), 85 (64).  

(3aR,7R,7aS)-1-(3,4-Methylenedioxybenzyl)-7-(methoxymethoxy)octahydroindole 

(253). 

 

Lithium aluminium hydride (0.18 g, 4.68 mmol) was dissolved in tetrahydrofuran (20 mL) 

and cooled to 0 C. (3aR,7R,7aS)-1-(3,4-methylenedioxybenzyl)-7-(methoxymethoxy) 

octahydroindol-2-one (238) (0.31 g, 0.94 mmol) in tetrahydrofuran (5 mL) was added to 

the stirred slurry and heated under reflux for 4 h. The solution was cooled to room 

temperature and quenched by the addition of a saturated solution of sodium sulfate (3 mL) 

with vigorous stirring over 1 h. A 5% sodium hydroxide solution (2 mL) was then added. 

The organic layer was separated, and the aqueous layer was extracted with ethyl acetate (3 

× 10 mL). The combined organic layers were dried (MgSO4) and concentrated in vacuo. 

Purification by flash column chromatography (elution with ethyl acetate) gave 

(3aR,7R,7aS)-1-(3,4-methylenedioxybenzyl)-7-(methoxymethoxy)octahydroindol (253) as 

a colourless oil (0.24 g, 85%). max/cm
–1

 (NaCl) 2931 (CH), 1589 (C=C), 1496, 1249, 

1073; []D
25

 –42.1 (c 0.6, CHCl3); H (400 MHz, CDCl3) 1.15–1.40 (4H, m, 4-H2 and 5-

H2), 1.54–1.62 (1H, m, 6-HH), 1.65–1.75 (2H, m, 3-H2), 1.86 (1H, qd, J 11.8, 3.8 Hz, 6-

HH), 1.93–2.02 (1H, m, 3a-H), 2.14 (1H, ddd, J 14.5, 10.5, 4.2 Hz, 2-HH), 2.83 (1H, t, J 

3.6 Hz, 7a-H), 2.98–3.02 (1H, m, 2-HH), 3.06 (1H, d, J 13.6 Hz, N-CHH), 3.30 (3H, s, 

OCH3), 3.72 (1H, dt, J 11.1, 3.6 Hz, 7-H), 4.48 (1H, d, J 13.6 Hz, N-CHH), 4.59 (1H, d, J 

6.9 Hz, OCHHO), 4.61 (1H, d, J 6.9 Hz, OCHHO), 5.84 (1H, d, J 1.4 Hz, OCH′H′O), 5.85 

(1H, d, J 1.4 Hz, OCH′H′O), 6.62–6.88 (3H, m, Ph); C (100 MHz, CDCl3) 23.8 (CH2), 

26.1 (CH2), 27.8 (CH2), 29.3 (CH2), 40.1 (CH), 52.9 (CH2), 55.3 (CH3), 59.7 (CH2), 65.1 

(CH), 78.8 (CH), 94.7 (CH2), 100.7 (CH2), 107.7 (CH), 109.0 (CH), 120.9 (CH), 135.7 
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(C), 145.8 (C), 147.4 (C); m/z (EI) 319.1787 (M
+
. C18H25NO4 requires 319.1784), 259 

(33%), 216 (45), 135 (100), 46 (24). 

(3aR,7R,7aS)-1-(3,4-Methylenedioxybenzyl)-7-hydroxyoctahydroindole (254). 

 

(3aR,7R,7aS)-1-(3,4-Methylenedioxybenzyl)-7-(methoxymethoxy)octahydroindole (253) 

(0.05 g, 0.15 mmol) was dissolved in methanol (3 mL) and 2.0 M hydrochloric acid 

solution (3 mL). The reaction mixture was heated to 40 C and stirred for 48 h, then cooled 

and neutralised with a 6.0 M solution of potassium carbonate (5 mL). The solution was 

extracted with ethyl acetate (4 × 20 mL), the organic layer was then dried (MgSO4) and 

concentrated to give (3aR,7R,7aS)-1-(3,4-methylenedioxybenzyl)-7-hydroxyoctahydro 

indole (254) as a colourless oil (0.04 g, 100%). max/cm
–1

 (NaCl) 3379 (OH), 2931 (CH), 

1489, 1442, 1243; []D
25

 +2.4 (c 0.5, CHCl3); H (400 MHz, CDCl3) 1.08–1.28 (2H, m, 5-

HH and 6-HH), 1.42–1.53 (1H, m, 4-HH), 1.84–1.93 (4H, m, 3-H2, 4-HH and 5-HH), 

1.84–1.93 (1H, m, 6-HH), 2.05–2.14 (1H, m, 3a-H), 2.27–2.35 (1H, m, 2-HH), 2.58 (1H, 

dd, J 9.3, 4.7 Hz, 7a-H), 2.93–2.99 (1H, m, 2-HH), 3.45–3.48 (1H, m, 7-H), 3.50 (1H, d, J 

12.8 Hz, N-CHH), 3.74 (1H, d, J 12.8 Hz, N-CHH), 5.86 (2H, s, OCH2O), 6.64–6.76 (3H, 

m, Ph); C (100 MHz, CDCl3) 15.2 (CH2), 26.5 (CH2), 28.4 (CH2), 31.3 (CH2), 36.8 (CH), 

53.4 (CH2), 59.3 (CH2), 63.7 (CH), 64.6 (CH), 100.4 (CH2), 107.9 (CH), 109.3 (CH), 

121.9 (CH), 133.2 (C), 146.6 (C), 147.6 (C); m/z (CI) 275.1522 (MH
+
. C16H22NO3 requires 

275.1521), 216 (26%), 135 (74), 82 (100), 46.9 (22). 

(1R,2S)-1-(Methoxymethoxy)-2-aminocyclohex-3-ene. 

 

(1R,2S)-1-(Methoxymethoxy)-2-(2′,2′,2′-trichloromethylcarbonylamino)cyclohex-3-ene 

(135a) (0.53 g, 1.74 mmol) was dissolved in 1:1 mixture of 1.0 M NaOH/methanol (10 

mL) and stirred overnight at room temperature. The reaction mixture was concentrated in 
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vacuo and diluted with ethyl acetate (5 mL). The organic layer was washed with brine 

solution (2 × 10 mL), dried (MgSO4) and concentrated to give (1R,2S)-1-

(methoxymethoxy)-2-aminocyclohex-3-ene (0.26 g, 100%) as a colourless oil. max/cm
–1

 

(NaCl) 3422 (NH), 2934 (CH), 1571, 1457, 1216; []D
24

 +110.8 (c 0.4, CHCl3); H (400 

MHz, CDCl3) 1.50 (2H, br s, NH2), 1.65–1.75 (1H, m, 6-HH), 1.76–1.87 (1H, m, 6-HH), 

2.00–2.22 (2H, m, 5-H2), 3.41 (3H, s, OCH3), 3.41–3.44 (1H, m, 2-H), 3.76 (1H, ddd, J 

9.7, 4.2, 3.1 Hz, 1-H), 4.72 (1H, d, J 7.0 Hz, OCHHO), 4.77 (1H, d, J 7.0 Hz, OCHHO), 

5.65–5.71 (1H, m, 3-H), 5.71–5.77 (1H, m, 4-H); C (100 MHz, CDCl3) 23.4 (CH2), 23.8 

(CH2), 48.9 (CH), 55.5 (CH3), 75.5 (CH), 95.3 (CH2), 128.6 (CH), 129.4 (CH); m/z (CI) 

158.1184 (MH
+
. C8H16NO2 requires 158.1181), 126 (30%), 69 (18). 

6-Bromopiperonal (263).
186

 

 

A solution of bromine (1.90 mL, 36.66 mmol) in acetic acid (5 mL) was added dropwise to 

a stirred solution of piperanal (262) (5.0 g, 36.66 mmol) in acetic acid (10 mL) and stirred 

for 72 h at room temperature. The reaction mixture was then diluted with chloroform (30 

mL) and washed with saturated aqueous sodium carbonate (3 × 40 mL). The organic layers 

were combined, dried (MgSO4) and concentrated in vacuo. Crystallization from methanol 

afforded 6-bromopiperonal (263) (7.29 g, 96%) as white solid. Spectroscopic data is 

entirely consistent with the literature. Mp 125–128 C, lit.
186

 132–135 C; max/cm
–1

 (Neat) 

3060 (CH), 1684 (CO), 1601, 1410, 1345, 1249, 977; H (400 MHz, CDCl3) 6.08 (2H, s, 

OCH2O), 7.06 (1H, s, Ph-H), 7.37 (1H, s, Ph-H′), 10.18 (1H, s, CHO); C (125 MHz, 

CDCl3) 102.7 (CH2), 108.1 (CH), 113.2 (CH), 121.8 (C), 128.1 (C), 148.4 (C), 153.6 (C), 

190.7 (CH); m/z (CI) 229 (MH
+
. 98%), 226 (85), 198 (18), 84 (69), 49 (54).  

6-bromopiperenoic acid (256).
168

 

 

To the vigorously stirred suspension of 6-bromopiperonal (263) (6.0 g, 26.21 mmol) in 

tert-butanol (40 mL) and water (50 mL) at 83 °C was slowly added potassium 
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permanganate (6.22 g, 39.31 mmol) in water (50 mL) over 45 minutes. The brown 

suspension was stirred overnight at 83 °C, and then potassium hydroxide (10% aq, 20 mL) 

was added, raising the pH to 10-11. The brown suspension was then filtered hot, and the 

cooled filtrate was extracted with diethylether (2 × 40 mL). The aqueous layer was then 

acidified with conc. HCl (8 mL) to give a white chalky solid (5.63 g, 88%). Spectroscopic 

data is entirely consistent with the literature. Mp 201–204 C, lit.
168

 199–201 C; max/cm
–1

 

(Neat) 2911 (CH), 1677 (CO), 1455, 1413, 1245; H (400 MHz, CDCl3) 6.07 (2H, s, 

OCH2O), 7.14 (1H, s, Ph-H), 7.49 (1H, s, Ph-H′); C (125 MHz, CDCl3) 104.3 (CH2), 

107.8 (CH), 112.0 (C), 115.2 (CH), 115.5 (C), 128.6 (C), 148.9 (C), 152.6 (C); m/z (CI) 

243 (MH
+
. 62%), 226 (28), 167 (32), 149 (83), 84 (100), 49 (81). 

(1R,2S)-1-(Methoxymethoxy)-2-(3,4-methylenedioxy-6-bromobenzamide)cyclohex-3-

ene (257). 

 

In a stirred solution of (1R,2S)-1-(methoxymethoxy)-2-aminocyclohex-3-ene (0.05 g, 0.35 

mmol) in acetonitrile (5 mL) at 0 C was added 4-dimethylaminopyridine (0.01 g, 

0.07mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (0.08 g, 0.53 mmol). To 

this reaction mixture, 6-bromopiperenoic acid (0.08 g, 0.35 mmol) was added and stirred at 

room temperature overnight. The reaction mixture was concentrated in vacuo. The residue 

was diluted with 1.0 M hydrochloric acid (5 mL) and extracted with ethyl acetate (3 × 20 

mL). Purification by flash column chromatography (elution with petroleum ether/diethyl 

ether, 2:8) gave (1R,2S)-1-(methoxymethoxy)-2-(3,4-methylenedioxy-6-

bromobenzamide)cyclohex-3-ene (257) (0.10 g 79%) as a white solid. Mp 100–102 C; 

max/cm
–1

 (NaCl) 3297 (NH), 2912 (CH), 1649 (CO), 1478, 1239, 1033; []D
24

 +101.2 (c 

1.2, CHCl3); H (400 MHz, CDCl3) 1.73–1.85 (1H, m, 6-HH), 1.97–2.12 (2H, m, 5-HH and 

6-HH), 2.17–2.28 (1H, m, 5-HH), 3.37 (3H, s, OCH3), 4.01–4.07 (1H, m, 1-H), 4.72 (1H, 

d, J 6.5 Hz, OCHHO), 4.76 (1H, d, J 6.5 Hz, OCHHO), 4.81–4.89 (1H, m, 2-H), 5.62–5.66 

(1H, m, 4-H), 5.86–5.92 (1H, m, 3-H), 6.02 (2H, s, OCH2O), 6.50 (1H, d, J 9.1 Hz, NH), 

7.00 (1H, s, Ph), 7.05 (1H, s, Ph); C (100 MHz, CDCl3) 21.5 (CH2), 25.5 (CH2), 47.9 

(CH), 55.8 (CH3), 72.7 (CH), 95.8 (CH2), 102.3 (CH2), 109.5 (CH), 110.7 (C), 113.2 (CH), 
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125.7 (CH), 129.8 (CH), 131.1 (C), 147.4 (C), 149.6 (C), 166.6 (C); m/z 84.0457 (MH
+
. 

C16H19
79

BrNO5 requires 384.0447), 216 (26%), 135 (74), 89 (100), 46.9 (22). 

(4R,4aS,10bS)-3,4,4a,10b-Tetrahydro-4-(methoxymethoxy)-8,9-methylenedioxyl[4,5-

j]phenanthridin-6-one (137). 

 

(1R,2S)-1-(Methoxymethoxy)-2-(3,4-methylenedioxy-6(bromobenzamide)cyclohex-3-ene 

(257) (0.16 g, 0.42 mmol) was dissolved in N,N′-dimethylformamide (12 mL) and 

degassed for 1 h. Triphenylphosphine (0.04 g, 0.18 mmol), palladium(II) acetate, (0.02 g, 

0.08 mmol) and diisopropylethylamine (0.14 mL, 0.84 mmol) were then added and the 

reaction mixture was heated at 155 C in a sealed tube for 48 h. The reaction mixture was 

then concentrated in vacuo and purified by flash column chromatography (elution with 

ethyl acetate) to give (4R,4aS,10bS)-3,4,4a,10b-tetrahydro-4-(methoxymethoxy)-8,9-

methylenedioxyl[4,5-j]phenanthridin-6-one (137) as a white solid (0.09 g, 78%). Mp 140–

142 C; max/cm
–1

 (NaCl) 3397 (NH), 2894 (CH), 1660 (CO), 1460, 1258, 1145; []D
25

 

+136.9 (c 1.5, MeOH); H (400 MHz, CDCl3) 2.24–2.45 (2H, m, 3-H2), 3.40 (3H, s, 

OCH3), 3.50–3.56 (1H, m, 10b-H), 4.03 (1H, ddd, J 9.9, 6.5, 3.0 Hz, 4-H), 4.25 (1H, t, J 

3.0 Hz, 4a-H), 4.72 (1H, d, J 7.0 Hz, OCHHO), 4.74 (1H, d, J 7.0 Hz, OCHHO), 5.27–5.32 

(1H, m, 2-H), 5.63 (1H, ddt, J 10.0, 5.1, 2.6 Hz, 1-H), 5.89 (1H, br s, NH), 6.01 (1H, d, J 

1.3 Hz, OCH′H′O), 6.02 (1H, d, J 1.3 Hz, OCH′H′O), 6.67 (1H, s, 10-H), 7.52 (1H, s, 7-

H); C (100 MHz, CDCl3) 26.9 (CH2), 39.9 (CH), 51.3 (CH), 55.8 (CH3), 72.5 (CH), 95.0 

(CH2), 101.7 (CH2), 107.0 (CH), 108.0 (CH), 122.2 (C), 124.1 (CH), 126.9 (CH), 135.8 

(C), 147.3 (C), 151.3 (C), 165.2 (C); m/z (CI) 304.1181 (MH
+
. C16H18NO5 requires 

304.1185), 262 (18%), 244 (6), 166 (3), 81 (8). 
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(4R,4aS,10bS)-3,4,4a,10b-Tetrahydro-4-hydroxy-8,9-methylenedioxy[4,5-

j]phenanthridin-6-one (268). 

 

(4R,4aS,10bS)-3,4,4a,10b-Tetrahydro-4-(methoxymethoxy)-8,9-methylenedioxyl[4,5-

j]phenanthridin-6-one (137) (0.07 g, 0.22 mmol) was dissolved in 1:1 ratio of methanol 

and 1.6 N hydrochloric acid solution (5.0 mL). The reaction mixture was heated to 40 C 

and stirred for 12 h, then cooled and neutralised with a 6 M solution of potassium 

hydrogencarbonate (5.0 mL). The two layers were separated and the aqueous layer was 

extracted with ethyl acetate (4 × 15 mL). The combined organic layers were then dried 

(MgSO4), concentrated in vacuo and purified by flash column chromatography (elution 

with ethyl acetate) to give (4R,4aS,10bS)-3,4,4a,10b-tetrahydro-4-hydroxy-8,9-

methylenedioxy[4,5-j]phenanthridin-6-one (268) as a colourless oil (0.06 g, 97%). Mp 

237–239 C; max/cm
–1

 (NaCl) 3356 (OH), 2951 (CH), 1651 (CO), 1462, 1246, 1018; 

[]D
28

 +159.0 (c 0.2, MeOH); H (400 MHz, CD3OD) 2.04–2.17 (1H, m, 3-HH), 2.20–2.29 

(1H, m, 3-HH), 3.49–3.56 (1H, m, 10b-H), 3.94–4.03 (2H, m, 4a-H and 4-H), 5.17–5.22 

(1H, m, 2-H), 5.54 (1H, ddt, J 10.1, 5.3, 2.6 Hz, 1-H), 5.92 (1H, d, J 1.0 Hz, OCHHO), 

5.93 (1H, d, J 1.0 Hz, OCHHO), 6.73 (1H, s, 10-H), 7.23 (1H, s, 7-H); C (100 MHz, 

CD3OD) 29.6 (CH2), 40.9 (CH), 54.7 (CH), 68.0 (CH), 103.3 (CH2), 108.0 (CH), 108.4 

(CH), 122.7 (C), 125.3 (CH), 128.0 (CH), 138.4 (C), 148.7 (C), 153.2 (C), 167.7 (C); m/z 

(CI) 260.0924 (MH
+
. C14H14NO4 requires 260.0923), 195 (3%), 113 (3), 81 (12). 
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(4R,4aS,10bS)-1,2,3,4,4a,10b-Hexahydro-4-hydroxy-8,9-methylenedioxy[4,5-

j]phenanthridin-6-one (259). 

 

To a solution of (4R,4aS,10bS)-3,4,4a,10b-tetrahydro-4-hydroxy-8,9-methylenedioxy[4,5-

j]phenanthridin-6-one (268) (0.0027 g, 0.01 mmol) in methanol (5 mL) was added 10% 

palladium on carbon (0.001 g). The reaction mixture was allowed to stir under an 

atmosphere of hydrogen at room temperature for 12 h. The reaction mixture was filtered 

through a short pad of Celite
®

, which was washed with methanol (10 mL) and concentrated 

in vacuo to give (4R,4aS,10bS)-1,2,3,4,4a,10b-hexahydro-4-hydroxy-8,9-

methylenedioxy[4,5-j]phenanthridin-6-one (259) (0.0023 g, 88% yield) as a white solid. 

Mp 179–181 C; max/cm
–1

 (NaCl) 3363 (OH), 2944 (CH), 1646 (CO), 1448, 1410, 1111, 

1021; []D
21

 –37.7 (c 0.2, MeOH); H (400 MHz, CD3OD) 1.20–1.53 (4H, m, 1-HH, 2-H2 

and 3-HH), 1.63–1.73 (2H, m, 1-HH and 3-HH), 2.69 (1H, dt, J 12.1, 4.2 Hz, 10b-H), 3.74 

(1H, dt, J 11.2, 4.2 Hz, 4-H), 3.80 (1H, t, J 4.2 Hz, 4a-H), 5.90 (1H, d, J 1.1 Hz, OCHHO), 

5.92 (1H, d, J 1.1 Hz, OCHHO), 6.68 (1H, s, 10-H), 7.25 (1H, s, 7-H); C (125 MHz, 

CD3OD) 23.8 (CH2), 29.1 (CH2), 29.9 (CH2), 41.1 (CH), 55.9 (CH), 70.4 (CH), 103.2 

(CH2), 108.1 (CH), 108.2 (CH), 122.6 (C), 141.6 (C), 148.5 (C), 152.9 (C), 168.2 (C); m/z 

(CI) 262.1075 (MH
+
. C14H16NO4 requires 262.1079), 244 (12%), 206 (22), 180 (8), 136 

(4), 85 (21), 69 (40). 

(1R,2S,4R,4aS,10bS)-1,2,3,4,4a,10b-Hexahydro-1,2,4-trihydroxy-8,9-

methylenedioxy[4,5-j]phenanthridin-6-one (139). 

 

(4R,4aS,10bS)-3,4,4a,10b-Tetrahydro-4-hydroxy-8,9-methylenedioxy[4,5-j]phenanthridin-

6-one (268) (0.018 g, 0.06 mmol) was dissolved in dichloromethane (4 mL) at –78 C. 
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Tetramethylethylenediamine (9 μL, 0.61 mmol) was added and the reaction mixture stirred 

for 0.1 h before the addition of osmium tetroxide (0.017 g 0.64 mmol). The dark coloured 

solution was stirred for 4 h at –78 C before warming to room temperature and stirred for 1 

h. The solvent was removed in vacuo and the dark coloured solid was dissolved in 

methanol (10 mL). Concentrated hydrochoric acid (5 drops) was added and the reaction 

stirred for 2 h. The solvent was removed in vacuo to afford a dark solid. Flash column 

chromatography (elution with ethyl acetate/methanol, 1:8) afforded (1R,2S,4R,4aS,10bS)-

1,2,3,4,4a,10b-hexahydro-1,2,4-trihydroxy-8,9-methylenedioxy[4,5-j]phenanthridin-6-one 

(139) (0.016 g, 90%) as a white solid. Mp 240 C (decomposition); max/cm
–1

 (NaCl) 3350 

(NH/OH), 2914 (CH), 1643 (CO), 1465, 1253, 1034; []D
24

 –50.9 (c 0.7, MeOH); H (400 

MHz, CD3OD) 1.87 (1H, ddd, J 14.1, 12.2, 3.6 Hz, 3-HH), 2.00–2.07 (1H, m, 3-HH), 2.99 

(1H, dd, J 10.5, 3.6 Hz, 10b-H), 3.51 (1H, dd, J 10.5, 3.6 Hz, 1-H), 3.95 (1H, td, J 3.6, 1.3 

Hz, 4a-H), 4.00 (1H, q, J 3.6 Hz, 2-H), 4.30 (1H, dt, J 12.2, 3.6 Hz, 4-H), 6.01 (1H, d, J 

1.1 Hz, OCHHO), 6.02 (1H, d, J 1.1 Hz, OCHHO), 6.84 (1H, s, 10-H), 7.84 (1H, s, 7-H); 

C (100 MHz, CD3OD) 35.4 (CH2), 41.4 (CH), 56.6 (CH), 65.2 (CH), 70.5 (CH), 72.0 

(CH), 103.2 (CH2), 108.0 (CH), 111.0 (CH), 123.0 (C), 138.9 (C), 148.8 (C), 152.3 (C), 

168.4 (C); m/z (EI) 293.0898 (M
+
. C14H15NO6 requires 293.0899), 207 (8%), 190 (30), 114 

(100), 70 (76), 96 (14), 44 (42). 

(1R,2S,4R,4aS,10bS)-1,2-Oxiraryl-1,2,3,4,4a,10b-hexahydro-4-hydroxy-8,9-

methylenedioxy[4,5-j]phenanthridin-6-one (138). 

 

(4R,4aS,10bS)-3,4,4a,10b-Tetrahydro-4-hydroxy-8,9-methylenedioxy[4,5-j]phenanthridin-

6-one (268) (0.07 g, 0.27 mmol) was dissolved in dichloromethane (10 mL) along with 

sodium hydrogencarbonate (0.05 g, 0.55 mmol). To the stirred suspension was added meta-

chloroperoxybenzoic acid (0.09 g, 0.55 mmol) and stirred at room temperature. The 

resulting suspension was stirred vigorously for 24 h. A 20% solution of sodium sulfite (10 

mL) was added and the resulting two-phase mixture was stirred vigorously for 0.25 h. The 

two layers were separated and the aqueous layer was extracted with dichloromethane (2 × 

20 mL). The combined dichloromethane layers were washed with a 20% solution of 
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sodium sulfite (10 mL) and a 5% solution of sodium hydrogencarbonate (2 × 20 mL), dried 

(Na2SO4) and evaporated under reduced pressure to give the crude product. Purification by 

flash column chromatography (petroleum ether/diethyl ether, 2:5) gave 

(1R,2S,4R,4aS,10bS)-1,2-oxiraryl-1,2,3,4,4a,10b-hexahydro-4-hydroxy-8,9-

methylenedioxy[4,5-j]phenanthridin-6-one (138) (0.057 g, 75%) as a white solid. Mp 160–

162 C; max/cm
–1

 (NaCl) 3350 (OH), 2851 (CH), 1654 (CO), 1466, 1249, 1035; []D
24

 –

61.2 (c 0.2, CHCl3); H (400 MHz, CDCl3) 2.08 (1H, ddd, J 14.6, 10.7, 1.8 Hz, 3-HH), 

2.15 (1H, d, J 4.2 Hz, 4-OH), 2.45 (1H, ddd, J 14.6, 5.6, 1.8 Hz, 3-HH), 2.84 (1H, dd, J 

3.6, 1.1 Hz, 1-H), 3.27–3.33 (2H, m, 2-H and 10b-H), 3.88–3.92 (1H, m, 4a-H) 4.05–4.12 

(1H, m, 4-H), 6.02 (1H, d, J 1.3 Hz, OCHHO), 6.03 (1H, d, J 1.3 Hz, OCHHO), 7.51 (1H, 

br s, NH), 6.82 (1H, s, 10-H), 7.55 (1H, s, 7-H); C (125 MHz, CDCl3) 27.4 (CH2), 39.1 

(CH), 52.2 (CH), 53.4 (CH), 54.4 (CH), 65.3 (CH), 101.9 (CH2), 107.7 (CH), 107.8 (CH), 

122.5 (C), 133.4 (C), 147.9 (C), 151.8 (C), 165.6 (C); m/z (CI) 276.0871 (MH
+
. C14H14NO5 

requires 276.0872), 260 (34%), 206 (6), 113 (5), 85 (33), 69 (48). 

(1S,2S,4R,4aS,10bS)-1,2,3,4,4a,10b-hexahydro-1,2,4-trihydroxy-8,9-

methylenedioxy[4,5-j] phenanthridin-6-one (261a) and (1R,2R,4R,4aS,10bS)-

1,2,3,4,4a,10b-hexahydro-1,2,4-trihydroxy-8,9-methylenedioxy[4,5-j] phenanthridin-

6-one (261b). 

 

(1R,2S,4R,4aS,10bS)-1,2-Oxiraryl-1,2,3,4,4a,10b-hexahydro-4-hydroxy-8,9-

methylenedioxy[4,5-j]phenanthridin-6-one (138) (0.013 g, 0.05 mmol) was added to a 1:1 

mixture of 0.2 M sulfuric acid/1,4-dioxane (4 mL) and the reaction mixture was stirred at 

80 C for 72 h. The reaction mixture was diluted with a saturated solution of sodium 

hydrogencarbonate (5 mL) and extracted with ethyl acetate (7 × 5 mL). The organic layers 

were combined, dried (MgSO4) and concentrated in vacuo. Purification by flash column 

chromatography (dichloromethane/methanol, 10:1) gave 1:1 mixture of diastereomers of 

(1S,2S,4R,4aS,10bS)-1,2,3,4,4a,10b-hexahydro-1,2,4-trihydroxy-8,9-methylenedioxy[4,5-j] 

phenanthridin-6-one (261a) and (1R,2R,4R,4aS,10bS)-1,2,3,4,4a,10b-hexahydro-1,2,4-

trihydroxy-8,9-methylenedioxy[4,5-j] phenanthridin-6-one (261b) (4.7 mg, 34%). Mp 
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160–162 C; max/cm
–1

 (NaCl) 3340, 3306 (NH/OH), 2924 (CH), 1735 (CO), 1462, 1249, 

1076; NMR Signals for both diastereomer were recorded. H (400 MHz, CD3OD) 1.76–

1.88 (2H, m, 3-H2), 2.06–2.16 (2H, m, 3′-H′2), 2.61 (1H, dd, J 10.1, 3.5 Hz, 10b′-H′), 3.15 

(1H, t, J 4.0 Hz, 10b-H), 3.49–3.57 (2H, m, 2-H and 4a-H), 3.61 (1H, t, J 3.5 Hz, 4a′-H′), 

3.93–3.98 (2H, m, 1H and 1′H′), 4.01–4.07 (2H, m, 4-H and 4′-H′), 4.3 (1H, dt, J 12.2, 4.5 

Hz, 2′H′), 6.04 (1H, d, J 1.1 Hz, OCHHO), 6.05 (1H, d, J 1.1 Hz, OCHHO), 6.07 (2H, s, 

OCH′2O), 6.82 (1H, s, Ph), 6.86 (1H, s, Ph′), 7.41 (1H, s, Ph), 7.42 (1H, s, Ph′); C (100 

MHz, CDCl3) 30.9 (CH2), 37.3 (CH2), 39.9 (CH), 49.7 (CH), 54.4 (CH), 57.1 (CH), 65.4 

(CH), 68.0 (CH), 71.2 (CH), 72.9 (CH), 76.1 (CH), 76.2 (CH), 103.1 (CH2), 103.3 (CH2), 

107.9 (CH), 108.3 (CH), 111.3 (CH), 115.7 (CH), 123.2 (C), 126.2 (C), 137.2 (C), 137.7 

(C), 148.5 (C), 149.1 (C), 152.4 (C), 152.9 (C), 168.3 (C), 168.8 (C); m/z (EI) 293.0891 

(M
+
. C14H15NO6 requires 293.0899), 274 (20%), 217 (32), 190 (100), 77 (28). 

5.3.4 Synthesis of Balanol Core 

N-(tert-butoxycarbonyl)glycine methyl ester (279).
175

 

 

A stirred suspension of glycine (278) (0.5 g, 6.67 mmol) in methanol (30 mL) was cooled 

to 0 °C before chlorotrimethylsilane (1.86 mL, 14.67 mmol) was added dropwise. The 

reaction mixture was stirred at 0 °C for 1.5 h and then at room temperature for 24 h before 

being cooled again to 0 °C. Triethylamine (2.04 mL, 14.67 mmol) was added slowly, 

followed by di-tert-butyl dicarbonate (1.59 g, 7.33 mmol). The reaction mixture was stirred 

at room temperature for a further 12 h before being concentrated in vacuo. The residue was 

suspended in diethyl ether (30 mL) and filtered, and the filtrate was concentrated in vacuo 

and purified by flash column chromatography (petroleum ether/diethyl ether, 2:5) to give 

N-(tert-butoxycarbonyl)glycine methyl ester (279) (1.26 g, 100%) as colourless oil. 

Spectroscopic data is entirely consistent with the literature.
175

 max/cm
–1

 (NaCl) 3356 

(NH), 1805 (CO), 1755, 1438, 1369, 1261, 1165; H (400 MHz, CDCl3) 1.53 (9H, s, O
t
Bu), 

3.75 (3H, s, OCH3), 3.92 (2H, d, J 5.5 Hz, 2-H2), 5.02 (1H, br s, 1-NH); C (100 MHz, 

CDCl3) 27.4 (3 × CH3), 28.3 (CH3), 42.3 (CH2), 52.3 (C), 85.2 (C), 146.8 (C); m/z (CI) 

190.1081 (MH
+
. C8H16NO4 requires 190.1079), 178 (8%), 134 (100), 120 (25), 90 (54), 69 

(24). 
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N-(2′-(tert-Butyldiphenylsilyloxy)ethyl)but-3-en-1-amine (296). 

 

Sodium iodide (0.55 g, 3.70 mmol) was added to a solution of 4-bromo-1-butene (280) 

(5.00 g, 37.10 mmol) and ethanol amine (8.85 mL, 185.32 mmol) in methanol (80 mL). 

The reaction mixture was heated under reflux for 2 h, then cooled to room temperature and 

evaporated in vacuo. The residue was partitioned between saturated aqueous ammonium 

chloride solution (20 mL) and ethyl acetate (20 mL). The aqueous layer was basified with 

40% sodium hydroxide and extracted with ethyl acetate (3 × 15 mL). The combined 

organic layers were dried (MgSO4) and concentrated to afford N-(2′-(hydroxy)ethyl)but-3-

en-1-amine (293) (4.26 g, 100% yield) as a colourless oil. This oil was dissolved in 

tetrahydrofuran (200 mL), tert-butyldiphenylsilyl chloride (14.44 mL, 55.56 mmol) and 

imidazole (5.04 g, 74.08 mmol) were added and the reaction mixture was stirred overnight 

at room temperature. A white precipitate was removed by filtration and washed with 

diethyl ether (70 mL). The combined filtrate was concentrated, dried and purified by flash 

column chromatography on silica gel (elution with dichloromethane/ethyl acetate) to give 

N-(2′-(tert-butyldimethylsilyloxy)ethyl)but-3-en-1-amine (296) (9.43 g, 86%) as a 

colourless oil. max/cm
–1

 (Neat) 2931 (CH), 1465, 1080, 825; H (400 MHz, CDCl3) 1.08 

(9H, s, SiC(CH3)3), 2.27–2.34 (2H, m, 2-H2), 2.72 (2H, t, J 6.8 Hz, 1-H2), 2.79 (2H, t, J 5.4 

Hz, 1′-H2), 3.81 (2H, t, J 5.4 Hz, 2′-H2), 5.06–5.18 (2H, m, 4-H2), 5.17 (1H, ddt, J 17.1, 

10.2, 6.8 Hz, 3-H), 7.38–7.48 (6H, m, Ph), 7.68–7.72 (4H, m, Ph); C (100 MHz, CDCl3) 

19.2 (C), 26.8 (3 × CH3), 34.4 (CH2), 48.6 (CH2), 51.5 (CH2), 62.5 (CH2), 116.4 (CH2), 

128.0 (4 × CH), 129.6 (2 × CH), 133.7 (2 × C), 135.6 (4 × CH), 136.5 (CH); m/z (CI) 

354.2254 (MH
+
. C22H32NOSi requires 354.2253), 257 (8%), 193 (5), 137 (7), 113 (28), 85 

(89), 69 (100). 

N-(2′-(tert-Butyldiphenylsilyloxy)ethyl)-N-(tert-butoxycarbonyl)but-3-en-1-amine 

(297). 

 

To a solution of N-(2′-(tert-butyldimethylsilyloxy)ethyl)but-3-en-1-amine (296) (4.0 g, 

11.3 mmol) in dichloromethane (100 mL) at 0 C was added triethylamine (3.31 mL, 23.70 
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mmol), 4-dimethylaminopyridine (0.14 g, 1.30 mmol) and di-tert-butyl dicarbonate (4.93 

g, 22.60 mmol). The reaction was warmed to room temperature and stirred overnight. The 

reaction mixture was washed with brine (2 × 30 mL), dried (MgSO4) and concentrated in 

vacuo. Purification by flash column chromatography (elution with ethyl acetate/diethyl 

ether, 1:10) gave N-(2′-(tert-butyldiphenylsilyloxy)ethyl)-N-(tert-butoxycarbonyl)but-3-en-

1-amine (297) (5.1 g, 100%) as a colourless oil. max/cm
–1

 (Neat) 2931 (CH), 1689 (CO), 

1473, 1111, 825; NMR spectra showed a 1:1 mixture of rotomers, only signals for one 

rotomer is recorded. H (400 MHz, CDCl3) 1.05 (9H, s, SiC(CH3)3), 1.41 (9H, s, C(CH3)3), 

2.20–2.29 (2H, m, 2-H2), 3.25–3.40 (4H, m, 1-H2 and 1′-H2), 3.25–3.39 (2H, m, 2′-H2), 

4.96–5.06 (2H, m, 4-H2), 5.66–5.81 (1H, m, 3-H2), 7.33–7.44 (6H, m, Ph), 7.63–7.67 (4H, 

m, Ph); C (100 MHz, CDCl3) 19.2 (C), 26.8 (3 × CH3), 28.4 (3 × CH3), 32.2 (CH2), 45.6 

(CH2), 49.4 (CH2), 62.5 (CH2), 82.9 (C), 116.4 (CH2), 127.3 (4 × CH), 129.7 (4 × CH), 

133.6 (2 × C), 135.3 (2 × CH), 135.8 (CH), 155.3 (C); m/z (CI) 454.2772 (MH
+
. 

C27H40NO3Si requires 454.2777), 398 (18%), 354 (28), 257 (8), 179 (5), 139 (6), 85 (87), 

69 (100). 

N-(2′-(hydroxy)ethyl)-N-(tert-butoxycarbonyl)but-3-en-1-amine (282). 

 

A solution of tetrabutylammonium fluoride (1.0 M in tetrahydrofuran) (13.60 mL, 13.60 

mmol) was added to a solution of N-(2′-(tert-butyldiphenylsilyloxy)ethyl)-N-(tert-

butoxycarbonyl)but-3-en-1-amine (297) (5.12 g, 11.30 mmol) in tetrahydrofuran (100 mL) 

at 0 C. The reaction was warmed to room temperature and stirred overnight. The reaction 

mixture was then concentrated and the resulting residue was re-suspended in diethyl ether 

(80 mL). The solution was washed with water (40 mL) and the aqueous layer was then 

extracted with diethyl ether (3 × 40 mL). The combined organic extracts were dried 

(MgSO4), concentrated and then purified by flash column chromatography (petroleum 

ether/diethyl ether, 1:5) to give N-(2′-(hydroxy)ethyl)-N-(tert-butoxycarbonyl)but-3-en-1-

amine (282) (2.42 g, 100%) as a colourless oil. max/cm
–1

 (Neat) 3742 (OH), 2978 (CH), 

1743 (CO), 1473, 1157, 910; NMR spectra showed a 1:1 mixture of rotomers, only signals 

for one rotomer is recorded. H (400 MHz, CDCl3) 1.48 (9H, s, C(CH3)3), 2.30 (2H, q, J 

6.8 Hz, 2-H2), 3.25–3.35 (2H, m, 1-H2), 3.40 (2H, t, J 4.8 Hz, 1′-H2), 3.79–3.72 (2H, m, 2′-

H2), 5.03–5.12 (2H, m, 4-H2), 5.71–5.84 (1H, m, 3-H2); C (100 MHz, CDCl3) 28.4 (3 × 

CH3), 33.3 (CH2), 48.5 (CH2), 50.6 (CH2), 62.7 (CH2), 80.2 (C), 116.8 (CH2), 135.2 (CH), 



Experimental  156 

 

155.5 (C); m/z (CI) 216.1603 (MH
+
. C11H22NO3 requires 216.1600), 174 (8%), 160 (100), 

69 (28). 

Ethyl (2′E)-N-(butyl-3-en-1-yl)-N-(tert-butoxycarbonyl)but-2′-enoate (283). 

 

Reaction was carried out according to general procedure 1, using N-(2′-(hydroxy)ethyl)-N-

(tert-butoxycarbonyl)but-3-en-1-amine (282) (2.86 g, 13.30 mmol). Flash column 

chromatography using (diethyl ether/petroleum ether, 2:3) gave the ethyl (2′E)-N-(butyl-3-

en-1-yl)-N-(tert-butoxycarbonyl)but-2′-enoate (283) (2.9 g, 94%) as colourless oil. 

max/cm
–1

 (NaCl) 2978 (CH), 1689 (CO), 1465, 1165, 1149, 910; NMR spectra showed a 

1:1 mixture of rotomers, only signals for one rotomer is recorded. H (400 MHz, CDCl3) 

1.32 (3H, t, J 7.3 Hz, OCH2CH3), 1.49 (9H, s, C(CH3)3), 2.25–2.35 (2H, m, 2-H2), 3.19–

3.36 (2H, m, 1-H2), 3.93–4.06 (2H, m, 1′-H2), 4.23 (2H, q, J 7.3 Hz, OCH2CH3), 5.02–5.14 

(2H, m, 1-H), 5.71–5.80 (1H, m, 3-H), 5.88 (1H, dt, J 15.6, 1.8 Hz, 3′-H), 6.89 (1H, dt, J 

15.6, 4.7 Hz, 2′-H); C (100 MHz, CDCl3) 14.2 (CH3), 28.2 (3 × CH3), 33.1 (CH2), 46.7 

(CH2), 47.7 (CH2), 60.4 (CH2), 80.0 (C), 116.9 (CH2), 121.8 (CH), 135.1 (CH), 144.2 

(CH), 155.1 (C), 166.7 (C); m/z (CI) 284.1862 (MH
+
. C15H26NO4 requires 284.1862), 228 

(94%), 184 (62), 113 (32), 71 (100). 

(2′E)-N-(Butyl-3-en-1-yl)-N-(tert-butoxycarbonyl)but-2′-en-4′-ol (140). 

 

A stirred solution of (2′E)-N-(butyl-3-en-1-yl)-N-(tert-butoxycarbonyl)but-2′-enoate (283) 

(0.25 g, 0.90 mmol) in dichloromethane (30 mL) was cooled to –78 °C before boron 

trifluoride diethyl etherate (0.15 mL, 1.17 mmol) was added dropwise. The mixture was 

stirred at –78 °C for 0.5 h before diisobutylaluminium hydride solution (1.0 M in hexanes, 

2.7 mL, 2.7 mmol) was added dropwise. The reaction mixture was then stirred at –78 °C 

for 3 h before being quenched by the addition of 5.0 M acetic acid solution in 

dichloromethane (10mL). The mixture was poured into 10% aqueous tartaric acid solution 

(10 mL), and the organic layers were extracted using dichloromethane (2 × 20 mL). The 

combined organic phases were washed with a saturated aqueous solution of sodium 
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hydrogen carbonate (15 mL) before being dried (MgSO4), filtered, and concentrated in 

vacuo. The crude product was purified by flash column chromatography (petroleum 

ether/diethyl ether, 2:5) to give (2′E)-N-(butyl-3-en-1-yl)-N-(tert-butoxycarbonyl)but-2′-

en-4′-ol (140) (0.08 g 37%) as a colourless oil. max/cm
–1

 (Neat) 3433 (OH), 2978 (CH), 

1674 (CO), 1473, 1242, 918; H (400 MHz, CDCl3) 1.38 (9H, s, C(CH3)3), 2.18 (2H, q, J 

7.5 Hz, 2-H2), 3.06–3.22 (2H, m, 1-H2), 3.66–3.79 (2H, m, 1′-H2), 4.13 (2H, d, J 4.1 Hz, 

4′-H2), 4.89–5.02 (2H, m, 4-H2), 5.49–5.76 (3H, m, 3-H, 2′-H and 3′-H); C (100 MHz, 

CDCl3) 28.4 (3 × CH3), 32.5 (CH2), 46.2 (CH2), 48.3 (CH2), 63.1 (CH2), 79.5 (C), 116.5 

(CH2), 127.8 (CH), 131.0 (CH), 135.5 (CH), 155.4 (C); m/z (CI) 242.1752 (MH
+
. 

C13H24NO3 requires 242.1756), 200 (8%), 186 (100), 168 (72), 85 (28), 73 (38).  

N-(2′-(Oxoethyl)-N-(tert-butoxycarbonyl)but-3-en-1-amine (300). 

 

Dimethyl sulfoxide (4.20 mL, 59.20 mmol) was added to a stirred solution of oxalyl 

chloride (3.10 mL, 35.50 mmol) in dichloromethane (50 mL) at –78 C. The reaction 

mixture was stirred for 0.3 h before the N-(2′-(hydroxy)ethyl)-N-(tert-butoxycarbonyl)but-

3-en-1-amine (282) (5.10 g, 23.70 mmol) in dichloromethane (25 mL) was slowly added. 

The mixture was stirred for a further 0.3 h before triethylamine (16.50 mL, 118.40 mmol) 

was added. This reaction mixture was stirred for 0.5 h at –78 C and then allowed to warm 

to room temperature and stirred for a further 2 h. The Swern solution was concentrated in 

vacuo, and then purified by flash column chromatography (petroleum ether/diethyl ether, 

2:5) to give N-(2′-(oxoethyl)-N-(tert-butoxycarbonyl)but-3-en-1-amine (300) (4.74 g, 94%) 

as a colourless oil. max/cm
–1

 (Neat) 3020 (CH), 1735 (CO), 1685 (CO), 1423, 1215, 906; 

NMR spectra showed a 1:1 mixture of rotomers, only signals for one rotomer is recorded. 

H (400 MHz, CDCl3) 1.45 (9H, s, C(CH3)3), 2.23–2.33 (2H, m, 2-H2), 3.30 (2H, t, J 7.1 

Hz, 1-H2), 3.80 (2H, br s, 1′-H2), 5.02–5.11 (2H, m, 4-H2), 5.68–5.83 (1H, m, 3-H2), 9.57 

(1H, d, J 4.7 Hz, 2′-H); C (100 MHz, CDCl3) 28.2 (3 × CH3), 32.9 (CH2), 48.2 (CH2), 57.5 

(CH2), 80.6 (C), 117.1 (CH2), 135.0 (CH), 154.9 (C), 199.2 (C); m/z (CI) 214.1440 (MH
+
. 

C11H20NO3 requires 214.1443), 196 (8%), 200 (10), 158 (100), 69 (12). 
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(2′E)-N-(Butyl-3-en-1-yl)-N-(tert-butoxycarbonyl)but-2′-en-4′-al (301). 

 

To a solution of ethyl N-(2′-(oxoethyl)-N-(tert-butoxycarbonyl)but-3-en-1-amine (300) 

(1.6 g, 7.51 mmol) in toluene (80 mL) was added (triphenylphosphoranylidene) 

acetaldehyde (3.42 g, 11.26 mmol) and reaction mixture was heated at 80 C and stirred 

for 24 h. The solution was allowed to cool to room temperature and concentrated in vacuo. 

The crude product was purified with flash column chromatography (petroleum 

ether/diethyl ether, 2:5) to give (2′E)-N-(butyl-3-en-1-yl)-N-(tert-butoxycarbonyl)but-2′-

en-4′-al (301) (1.26 g, 71%) as colourless oil. max/cm
–1

 (Neat) 3016 (CH), 1678 (CO), 

1466, 1215, 918; NMR spectra showed a mixture of E and Z alkenes in a ratio of 5:1, only 

signals for E is recorded. H (400 MHz, CDCl3) 1.51 (9H, s, C(CH3)3), 2.26–2.36 (2H, m, 

2-H2), 3.22–3.38 (2H, m, 1-H2), 4.05–4.19 (2H, m, 1′-H2), 5.05–5.15 (2H, m, 4-H2), 5.71–

5.85 (1H, m, 3-H), 6.17 (1H, ddt, J 15.8, 7.9, 1.6 Hz, 3′-H), 3′-H), 6.72–6.86 (1H, m, 2′-H), 

9.62 (1H, d, J 7.9 Hz, 4’-H); C (100 MHz, CDCl3) 28.2 (3 × CH3), 32.9 (CH2), 46.9 

(CH2), 48.2 (CH2), 80.2 (C), 117.1 (CH2), 125.3 (CH), 129.1 (CH), 132.3 (CH), 153.3 (C), 

193.7 (C); m/z (CI) 240.1595 (MH
+
. C13H22NO3 requires 240.1600), 236 (19%), 184 (100), 

158 (40), 116 (58), 69 (12). 

(2′E)-N-(Butyl-3-en-1-yl)-N-(tert-butoxycarbonyl)but-2′-en-4′-ol (140). 

 

To a solution of (2′E)-N-(butyl-3-en-1-yl)-N-(tert-butoxycarbonyl)but-2′-en-4′-al (301) 

(0.30 g, 1.28 mmol) in methanol (35 mL) at 0 C was added sodium borohydride (0.09 g, 

2.56 mmol) and stirred for 1 h. The reaction mixture was quenched with 1.0 M 

hydrochloric acid (5 mL) and then concentrated in vacuo. The residue was dissolved in 

dichloromethane (20 mL), washed with saturated sodium hydrogencarbonate solution (10 

mL), dried (MgSO4), and then concentrated in vacuo. The crude product was purified by 

flash column chromatography (petroleum ether/diethyl ether, 2:5) to give (2′E)-N-(butyl-3-

en-1-yl)-N-(tert-butoxycarbonyl)but-2′-en-4′-ol (140) (0.26 g 88%) as a colourless oil. 

Spectroscopic data as reported above. 
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1-(tert-Butoxycarbonyl)-3-(2′,2′,2′-trichloromethylamino)azapin-4-ene (303). 

 

The reaction was carried out according general procedure 4 using (2E)-N-(butyl-3-en-1-

yl)-N-(tert-butoxycarbonyl)but-2′-en-4′-ol (140) (0.13 g, 0.54 mmol) and 

bis(acetonitrile)palladium(II) chloride (0.014 g, 0.05 mmol) as a catalyst for Overmann 

rearrangement. Purification by flash column chromatography (petroleum 

ether/diethylether, 2:1) gave (1-(tert-butoxycarbonyl)-3-(2′,2′,2′-trichloromethylamino) 

azapin-4-ene (303) (0.09 g, 49% over three steps) as a white solid. Mp 103–105 C; 

max/cm
–1

 (NaCl) 3330 (NH), 2978 (CH), 1689 (CO), 1419, 1356, 821. NMR spectra 

showed a 1:1 mixture of rotomers, only signals for one rotomer is recorded: H (400 MHz, 

CDCl3) 1.40 (9H, s, C(CH3)3), 2.17–2.42 (2H, m, 6-H2), 3.03–3.16 (1H, m, 7-HH), 3.24 

(1H, d, J 14.1 Hz, 2-HH), 3.72–3.81 (1H, m, 7-HH), 4.05 (1H, d, J 14.1 Hz, 2-HH), 4.43–

4.59 (1H, m, 3-H), 5.53–5.93 (2H, m, 4-H and 5-H), 8.30 (1H, br s, NH); C (100 MHz, 

CDCl3) 27.9 (CH2), 28.4 (3 × CH3), 47.7 (CH2), 48.7 (CH2), 54.4 (CH), 80.8 (C), 92.6 (C), 

128.6 (CH), 129.3 (CH), 157.3 (C), 161.7 (C); m/z (CI) 359.0511 (MH
+
. C13H20

35
Cl2

37
Cl 

N2O3 requires 359.0512), 301 (100%), 267 (34), 257 (18), 163 (8), 85 (13), 69(19). 

2′,2′,2′-Trichloro-N-[(3S*,3aS*,4aR*)-1-aza-4-oxobicyclo[5.1.0]octa-3a-yl]acetamide 

(304). 

 

1-(tert-Butoxycarbonyl)-3-(2′,2′,2′-trichloromethylamino)azapin-4-ene (303) (0.19 g, 0.53 

mmol) was dissolved in dichloromethane (15 mL) and to the stirred suspension was added 

meta-chloroperoxybenzoic acid (0.18 g 1.05 mmol) at room temperature. The resulting 

suspension was stirred vigorously for 19 h. A 20% aqueous solution of sodium sulphite (10 

mL) was added and the resulting two-phase mixture was stirred vigorously for 0.25 h. The 

two layers were separated and the aqueous layer was extracted with dichloromethane (2 × 
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20 mL). The combined organic layers were washed with a 20% aqueous solution of 

sodium sulphite (10 mL) and a 5% aqueous solution of sodium hydrogencarbonate (2 × 20 

mL), dried (MgSO4) and evaporated under reduced pressure. Purification by flash column 

chromatography (elution with petroleum ether/diethyl ether, 2:5) gave 2′,2′,2′-trichloro-N-

[(3S*,3aS*,4aR*)-1-aza-4-oxobicyclo[5.1.0]octa-3a-yl]acetamide (304) (0.10 g, 51%) as 

white solid. Mp 160–162 C; max/cm
–1

 (NaCl) 3293 (NH), 2974 (CH), 1697 (CO), 1518, 

1413, 1165, 821; NMR spectra showed a 1:0.6 mixture of rotomers, only signals for major 

rotomer is recorded. H (400 MHz, CDCl3) 1.50 (9H, s, C(CH3)3), 2.21–2.37 (2H, m, 5-H2), 

2.78–2.93 (1H, m, 2-H2), 3.18–3.33 (2H, m, 6-H2), 3.80–3.92 (2H, m, 3a-H and 4a-H), 

4.58 (1H, td, J 10.8, 4.5 Hz, 3-H), 6.90 (1H, d, J 8.2 Hz, NH); C (100 MHz, CDCl3) 27.3 

(CH2), 28.4 (3 × CH3), 43.1 (CH2), 46.5 (CH2), 50.7 (CH), 55.4 (CH), 58.7 (CH), 80.4 (C), 

92.3 (C), 154.3 (C), 161.4 (C); m/z (CI) 373.0502 (MH
+
. C13H20

35
Cl3N2O4 requires 

373.0489), 319 (100%), 283 (76), 211 (8), 155 (10), 69 (11). 

(3aS*,8aR*)-5-(tert-Butoxycarbonyl)octahydro-1-oxo-3,5-diaza-azulen-2-one (305). 

 

2′,2′,2′-Trichloro-N-[(3S*,3aS*,4aR*)-1-aza-4-oxobicyclo[5.1.0]octa-3a-yl]acetamide 

(304) (0.02 g, 0.05 mmol ) was dissolved in tetrahydrofuran (4 mL) and cooled to 0 C. 

Lithium aluminium hydride (0.005 g, 0.12 mmol) was then added. The stirred slurry was 

heated under refluxed for 12 h. The solution was cooled to room temperature and quenched 

by the addition of a saturated solution of ammonium chloride (2 mL) with vigorous stirring 

over 0.15 h. The organic layer was separated, and the aqueous layer was extracted with 

ethyl acetate (3 × 10 mL). The combined organic layers were dried (MgSO4) and 

concentrated in vacuo. Purification by flash column chromatography (elution with ethyl 

acetate) gave (3aS*,8aR*)-5-(tert-butoxycarbonyl)octahydro-1-oxo-3,5-diaza-azulen-2-one 

(305) (0.008 g, 56%). max/cm
–1

 (NaCl) 3271 (NH), 2960 (CH), 1689 (CO), 1670 (CO), 

1413, 1166, 943; NMR spectra showed a 1:0.8 mixture of rotomers, only signals for major 

rotomer is recorded. H (500 MHz, CDCl3) 1.48 (9H, s, C(CH3)3), 2.10–2.28 (2H, m, 7-

H2), 2.58–2.85 (3H, m, 4-H2 and 8-HH), 3.12–3.29 (2H, m, 6-H2), 3.57–3.89 (2H, m, 8-HH 

and 8a-H), 4.61–4.74 (1H, m, 3a-H), 5.70–5.74 (1H, m, NH); C (125 MHz, CDCl3) 27.7 

(CH2), 28.5 (3 × CH3), 29.6 (CH2), 43.3 (CH2), 47.8 (CH2), 55.5 (CH), 59.5 (CH), 80.6 
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(C), 154.4 (C), 160.3 (C); m/z (CI) 257.1506 (MH
+
. C12H21N2O4 requires 257.1501), 201 

(100%), 157 (62), 113 (12), 69, (24).  
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7 Appendix 

Crystal data and structure refinement for 199 

Identification code  199 

Empirical formula  C8 H11 Cl3 I N O2 

Formula weight  386.43 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 8.06780(10) Å = 90°. 

 b = 16.6957(2) Å = 99.4370(10)°. 

 c = 9.65370(10) Å  = 90°. 

Volume 1282.73(3) Å3 

Z 4 

Density (calculated) 2.001 Mg/m3 

Absorption coefficient 3.102 mm-1 

F(000) 744 

Theta range for data collection 2.14 to 27.47°. 

Index ranges -10<=h<=10, -21<=k<=21, -12<=l<=12 

Reflections collected 11006 

Independent reflections 5835 [R(int) = 0.0335] 

Completeness to theta = 27.47° 99.9 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5835 / 1 / 273 

Goodness-of-fit on F2 0.977 

Final R indices [I>2sigma(I)] R1 = 0.0313, wR2 = 0.0553 

R indices (all data) R1 = 0.0449, wR2 = 0.0585 

Absolute structure parameter -0.042(13) 

Largest diff. peak and hole 0.559 and -0.654 e.Å-3 
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Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

199. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor 

 x y z U(eq) 

I(2) 16111(1) -2034(1) 2653(1) 26(1) 

I(1) 3175(1) 341(1) 1513(1) 34(1) 

Cl(1) 9241(1) -1522(1) -2677(1) 33(1) 

Cl(4) 8508(1) -37(1) 4735(1) 28(1) 

Cl(3) 11926(1) -1731(1) -355(1) 27(1) 

Cl(2) 8984(2) -2752(1) -651(2) 38(1) 

Cl(6) 10675(2) 1316(1) 4515(1) 33(1) 

Cl(5) 10293(2) 694(1) 7245(1) 38(1) 

O(4) 13361(4) 192(2) 6035(3) 34(1) 

O(1) 6024(4) 489(2) -1932(3) 25(1) 

O(3) 11056(3) -2210(2) 3582(3) 26(1) 

N(1) 7884(4) -653(2) -488(4) 19(1) 

O(2) 9216(3) -1335(2) 1384(3) 24(1) 

N(2) 11788(4) -787(2) 4854(4) 22(1) 

C(12) 13876(5) -2537(2) 3322(5) 21(1) 

C(1) 5434(5) 181(3) -717(4) 21(1) 

C(10) 14929(6) -2485(3) 5924(5) 30(1) 

C(7) 8907(5) -1208(3) 116(5) 19(1) 

C(16) 10416(6) 438(3) 5480(4) 25(1) 

C(9) 13567(5) -1853(3) 6100(4) 28(1) 

C(6) 6990(5) -88(3) 301(4) 18(1) 

C(4) 7126(5) 1237(3) 1548(4) 19(1) 

C(2) 4495(5) 846(3) -96(5) 21(1) 

C(5) 8115(5) 613(2) 846(4) 20(1) 

C(14) 13171(5) -1350(3) 4778(4) 20(1) 

C(3) 5626(5) 1524(3) 508(4) 21(1) 

C(15) 12005(5) -87(3) 5491(4) 23(1) 

C(11) 14326(5) -3016(3) 4651(5) 25(1) 

C(13) 12638(5) -1856(3) 3457(4) 22(1) 

C(8) 9722(5) -1771(3) -873(4) 22(1) 
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 Bond lengths [Å] for 199 

I(2)-C(12)  2.181(4) 

I(1)-C(2)  2.191(4) 

Cl(1)-C(8)  1.770(4) 

Cl(4)-C(16)  1.776(5) 

Cl(3)-C(8)  1.768(4) 

Cl(2)-C(8)  1.769(4) 

Cl(6)-C(16)  1.769(5) 

Cl(5)-C(16)  1.775(4) 

O(4)-C(15)  1.225(5) 

O(1)-C(1)  1.432(5) 

O(1)-H(1)  0.8200 

O(3)-C(13)  1.430(5) 

O(3)-H(3)  0.8200 

N(1)-C(7)  1.312(5) 

N(1)-C(6)  1.473(5) 

N(1)-H(1A)  0.8600 

O(2)-C(7)  1.228(5) 

N(2)-C(15)  1.319(6) 

N(2)-C(14)  1.471(5) 

N(2)-H(2)  0.8600 

C(12)-C(11)  1.505(6) 

C(12)-C(13)  1.533(6) 

C(12)-H(12)  0.9800 

C(1)-C(2)  1.521(6) 

C(1)-C(6)  1.529(5) 

C(1)-H(1B)  0.9800 

C(10)-C(11)  1.529(6) 

C(10)-C(9)  1.553(6) 

C(10)-H(10A)  0.9700 

C(10)-H(10B)  0.9700 

C(7)-C(8)  1.559(6) 

C(16)-C(15)  1.551(6) 

C(9)-C(14)  1.517(6) 

C(9)-H(9A)  0.9700 

C(9)-H(9B)  0.9700 

C(6)-C(5)  1.521(6) 

C(6)-H(6)  0.9800 

C(4)-C(3)  1.518(6) 

C(4)-C(5)  1.535(6) 

C(4)-H(4A)  0.9700 

C(4)-H(4B)  0.9700 

C(2)-C(3)  1.511(6) 

C(2)-H(2A)  0.9800 

C(5)-H(5A)  0.9700 

C(5)-H(5B)  0.9700 

C(14)-C(13)  1.531(6) 

C(14)-H(14)  0.9800 

C(3)-H(3A)  0.9700 

C(3)-H(3B)  0.9700 

C(11)-H(11A)  0.9700 

C(11)-H(11B)  0.9700 

C(13)-H(13)  0.9800

Bond angles [°] for 199 

C(1)-O(1)-H(1) 109.5 

C(13)-O(3)-H(3) 109.5 

C(7)-N(1)-C(6) 123.2(3) 

C(7)-N(1)-H(1A) 118.4 

C(6)-N(1)-H(1A) 118.4 

C(15)-N(2)-C(14) 123.1(4) 

C(15)-N(2)-H(2) 118.4 

C(14)-N(2)-H(2) 118.4 

C(11)-C(12)-C(13) 113.0(3) 

C(11)-C(12)-I(2) 111.2(3) 

C(13)-C(12)-I(2) 108.7(3) 

C(11)-C(12)-H(12) 107.9 

C(13)-C(12)-H(12) 107.9 

I(2)-C(12)-H(12) 107.9 

O(1)-C(1)-C(2) 108.3(3) 

O(1)-C(1)-C(6) 106.5(3) 

C(2)-C(1)-C(6) 111.8(3) 

O(1)-C(1)-H(1B) 110.1 

C(2)-C(1)-H(1B) 110.1 

C(6)-C(1)-H(1B) 110.1 

C(11)-C(10)-C(9) 110.1(4) 

C(11)-C(10)-H(10A) 109.6 

C(9)-C(10)-H(10A) 109.6 

C(11)-C(10)-H(10B) 109.6 
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C(9)-C(10)-H(10B) 109.6 

H(10A)-C(10)-H(10B) 108.1 

O(2)-C(7)-N(1) 125.1(4) 

O(2)-C(7)-C(8) 118.0(4) 

N(1)-C(7)-C(8) 116.8(4) 

C(15)-C(16)-Cl(6) 107.6(3) 

C(15)-C(16)-Cl(5) 107.8(3) 

Cl(6)-C(16)-Cl(5) 109.6(2) 

C(15)-C(16)-Cl(4) 114.3(3) 

Cl(6)-C(16)-Cl(4) 109.0(2) 

Cl(5)-C(16)-Cl(4) 108.4(2) 

C(14)-C(9)-C(10) 109.8(3) 

C(14)-C(9)-H(9A) 109.7 

C(10)-C(9)-H(9A) 109.7 

C(14)-C(9)-H(9B) 109.7 

C(10)-C(9)-H(9B) 109.7 

H(9A)-C(9)-H(9B) 108.2 

N(1)-C(6)-C(5) 110.9(3) 

N(1)-C(6)-C(1) 106.0(3) 

C(5)-C(6)-C(1) 112.1(3) 

N(1)-C(6)-H(6) 109.3 

C(5)-C(6)-H(6) 109.3 

C(1)-C(6)-H(6) 109.3 

C(3)-C(4)-C(5) 109.8(3) 

C(3)-C(4)-H(4A) 109.7 

C(5)-C(4)-H(4A) 109.7 

C(3)-C(4)-H(4B) 109.7 

C(5)-C(4)-H(4B) 109.7 

H(4A)-C(4)-H(4B) 108.2 

C(3)-C(2)-C(1) 113.0(3) 

C(3)-C(2)-I(1) 110.3(3) 

C(1)-C(2)-I(1) 109.3(3) 

C(3)-C(2)-H(2A) 108.0 

C(1)-C(2)-H(2A) 108.0 

I(1)-C(2)-H(2A) 108.0 

C(6)-C(5)-C(4) 110.5(3) 

C(6)-C(5)-H(5A) 109.5 

C(4)-C(5)-H(5A) 109.5 

C(6)-C(5)-H(5B) 109.5 

C(4)-C(5)-H(5B) 109.5 

H(5A)-C(5)-H(5B) 108.1 

N(2)-C(14)-C(9) 111.6(3) 

N(2)-C(14)-C(13) 106.4(3) 

C(9)-C(14)-C(13) 112.8(4) 

N(2)-C(14)-H(14) 108.6 

C(9)-C(14)-H(14) 108.6 

C(13)-C(14)-H(14) 108.6 

C(2)-C(3)-C(4) 112.6(3) 

C(2)-C(3)-H(3A) 109.1 

C(4)-C(3)-H(3A) 109.1 

C(2)-C(3)-H(3B) 109.1 

C(4)-C(3)-H(3B) 109.1 

H(3A)-C(3)-H(3B) 107.8 

O(4)-C(15)-N(2) 125.3(4) 

O(4)-C(15)-C(16) 117.8(4) 

N(2)-C(15)-C(16) 116.8(4) 

C(12)-C(11)-C(10) 112.2(4) 

C(12)-C(11)-H(11A) 109.2 

C(10)-C(11)-H(11A) 109.2 

C(12)-C(11)-H(11B) 109.2 

C(10)-C(11)-H(11B) 109.2 

H(11A)-C(11)-H(11B) 107.9 

O(3)-C(13)-C(14) 106.9(3) 

O(3)-C(13)-C(12) 107.7(3) 

C(14)-C(13)-C(12) 112.4(3) 

O(3)-C(13)-H(13) 109.9 

C(14)-C(13)-H(13) 109.9 

C(12)-C(13)-H(13) 109.9 

C(7)-C(8)-Cl(3) 108.0(3) 

C(7)-C(8)-Cl(2) 107.5(3) 

Cl(3)-C(8)-Cl(2) 110.1(2) 

C(7)-C(8)-Cl(1) 114.5(3) 

Cl(3)-C(8)-Cl(1) 108.5(2) 

Cl(2)-C(8)-Cl(1) 108.2(2) 
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Anisotropic displacement parameters (Å2x 103)for 199. The anisotropic displacement factor 

exponent takes the form: -22[ h2a*2U11 + ... + 2 h k a* b* U12] 

 U11 U22 U33 U23 U13 U12 

I(2) 23(1)  30(1) 29(1)  1(1) 12(1)  -1(1) 

I(1) 26(1)  26(1) 55(1)  2(1) 22(1)  1(1) 

Cl(1) 36(1)  42(1) 22(1)  -5(1) 6(1)  9(1) 

Cl(4) 22(1)  32(1) 29(1)  0(1) 3(1)  3(1) 

Cl(3) 16(1)  34(1) 31(1)  -8(1) 7(1)  1(1) 

Cl(2) 33(1)  20(1) 64(1)  -3(1) 22(1)  -5(1) 

Cl(6) 36(1)  27(1) 39(1)  4(1) 8(1)  2(1) 

Cl(5) 43(1)  47(1) 27(1)  -12(1) 14(1)  -2(1) 

O(4) 24(2)  36(2) 37(2)  -12(2) -5(1)  -1(2) 

O(1) 27(2)  32(2) 17(2)  1(2) 2(1)  1(2) 

O(3) 14(1)  32(2) 30(2)  4(2) 3(1)  -1(1) 

N(1) 20(2)  21(2) 17(2)  -1(2) 4(2)  6(2) 

O(2) 22(2)  29(2) 23(2)  4(1) 8(1)  6(1) 

N(2) 16(2)  25(2) 24(2)  -2(2) 3(2)  1(2) 

C(12) 19(2)  17(2) 29(2)  -6(2) 12(2)  -6(2) 

C(1) 18(2)  19(3) 25(2)  -4(2) 5(2)  -3(2) 

C(10) 27(2)  38(3) 22(2)  9(2) -1(2)  5(2) 

C(7) 15(2)  23(2) 22(2)  -1(2) 11(2)  -6(2) 

C(16) 34(2)  22(3) 21(2)  -3(2) 6(2)  1(2) 

C(9) 26(2)  41(3) 18(2)  0(2) 4(2)  4(2) 

C(6) 17(2)  21(2) 19(2)  2(2) 8(2)  3(2) 

C(4) 21(2)  21(2) 16(2)  1(2) 3(2)  1(2) 

C(2) 18(2)  21(2) 25(2)  5(2) 2(2)  3(2) 

C(5) 13(2)  24(2) 21(2)  0(2) 1(2)  4(2) 

C(14) 20(2)  23(2) 18(2)  -1(2) 6(2)  5(2) 

C(3) 21(2)  18(2) 26(2)  0(2) 9(2)  -1(2) 

C(15) 27(2)  25(2) 16(2)  0(2) 4(2)  1(2) 

C(11) 21(2)  23(2) 31(3)  8(2) 7(2)  0(2) 

C(13) 20(2)  24(3) 22(2)  2(2) 6(2)  -2(2) 

C(8) 18(2)  21(2) 26(2)  -2(2) 5(2)  -1(2) 

  



Appendix  175 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 199 

 x  y  z  U(eq) 

H(1) 5334 390 -2634 38 

H(3) 10386 -2129 2859 39 

H(1A) 7728 -617 -1389 23 

H(2) 10790 -920 4466 26 

H(12) 13344 -2900 2583 25 

H(1B) 4685 -276 -977 25 

H(10A) 15961 -2216 5801 35 

H(10B) 15161 -2813 6763 35 

H(9A) 12556 -2121 6279 34 

H(9B) 13968 -1510 6896 34 

H(6) 6637 -368 1096 22 

H(4A) 6744 1001 2358 23 

H(4B) 7848 1687 1867 23 

H(2A) 3651 1064 -848 26 

H(5A) 8557 860 73 23 

H(5B) 9056 421 1520 23 

H(14) 14176 -1044 4664 24 

H(3A) 4982 1899 974 25 

H(3B) 6024 1807 -252 25 

H(11A) 15203 -3396 4536 30 

H(11B) 13350 -3318 4817 30 

H(13) 12517 -1514 2621 26 

_________________________________________________________________________ 
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Crystal data and structure refinement for 202 

Identification code  202 

Empirical formula  C8 H12 Cl3 N O4 

Formula weight  292.54 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C2 

Unit cell dimensions a = 39.705(2) Å = 90°. 

 b = 5.8312(3) Å = 91.296(2)°. 

 c = 20.2162(14) Å  = 90°. 

Volume 4679.4(5) Å3 

Z 16 

Density (calculated) 1.661 Mg/m3 

Absorption coefficient 0.781 mm-1 

F(000) 2400 

Theta range for data collection 3.02 to 27.48°. 

Index ranges -51<=h<=51, -7<=k<=7, -26<=l<=25 

Reflections collected 13482 

Independent reflections 9273 [R(int) = 0.1025] 

Completeness to theta = 27.48° 96.6 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9273 / 1 / 589 

Goodness-of-fit on F2 1.059 

Final R indices [I>2sigma(I)] R1 = 0.0752, wR2 = 0.1056 

R indices (all data) R1 = 0.1714, wR2 = 0.1434 

Absolute structure parameter 0.13(10) 

Largest diff. peak and hole 0.724 and -0.760 e.Å-3 
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Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

202. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor 

 x y z U(eq) 

Cl(1) 2737(1) 82(4) 9740(1) 29(1) 

Cl(2) 2842(1) 4328(4) 9049(1) 30(1) 

Cl(11) 7210(1) 9607(4) 5235(1) 32(1) 

Cl(9) 2103(1) 6870(4) 8519(1) 34(1) 

Cl(4) 2793(1) 5903(4) 7334(1) 30(1) 

Cl(10) 6912(1) 9494(4) 6519(1) 29(1) 

Cl(8) 1783(1) 10893(5) 9067(1) 33(1) 

Cl(5) 2814(1) 1820(4) 6537(1) 33(1) 

Cl(12) 7170(1) 13761(4) 6005(1) 34(1) 

Cl(3) 3036(1) 19(4) 8447(1) 32(1) 

Cl(7) 2115(1) 11156(4) 7815(1) 34(1) 

Cl(6) 3121(1) 6031(5) 6078(1) 36(1) 

O(1) 3456(1) 338(13) 9940(4) 48(2) 

O(9) 1509(2) 8960(12) 7353(3) 30(2) 

O(13) 6561(1) 11377(13) 4885(3) 32(2) 

O(6) 3478(2) 4530(12) 7622(3) 33(2) 

O(10) 813(2) 5922(11) 9143(3) 31(2) 

O(3) 4537(2) 4165(12) 10200(3) 33(2) 

O(12) 194(1) 1680(12) 7940(3) 37(2) 

O(11) 289(2) 6667(12) 7642(3) 38(2) 

N(4) 6402(2) 12753(14) 5881(4) 30(2) 

C(25) 6967(2) 11153(17) 5795(4) 22(2) 

O(4) 4925(1) 5952(14) 9156(3) 37(2) 

O(2) 3903(2) 7405(12) 9286(4) 50(2) 

O(7) 4003(2) 152(12) 5811(3) 38(2) 

N(1) 3572(2) 3239(14) 9234(4) 29(2) 

C(2) 3371(2) 1689(17) 9508(5) 26(2) 

C(1) 3003(2) 1540(14) 9210(4) 19(2) 

C(26) 6615(2) 11781(16) 5469(5) 24(2) 

C(6) 4563(2) 5628(18) 9089(5) 29(2) 

C(18) 1544(2) 8647(17) 7949(5) 24(2) 

C(9) 3042(2) 4320(17) 6775(5) 27(2) 

C(10) 3387(2) 3665(17) 7112(5) 24(2) 

N(3) 1321(2) 7567(14) 8333(4) 32(2) 

C(17) 1871(2) 9375(16) 8322(5) 26(2) 

C(5) 4413(2) 5864(17) 9750(4) 26(2) 

C(3) 3930(2) 3331(17) 9362(5) 26(2) 

C(13) 4276(2) -1789(16) 7354(5) 34(3) 
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C(20) 722(2) 6818(17) 8501(5) 28(2) 

N(2) 3559(2) 2143(17) 6774(5) 48(3) 

C(11) 3907(2) 1469(17) 6934(5) 30(2) 

C(4) 4028(2) 5597(16) 9688(5) 28(2) 

C(27) 6063(2) 13437(18) 5673(5) 33(3) 

C(24) 1093(2) 3887(17) 7927(5) 34(3) 

C(19) 1016(2) 6458(16) 8054(5) 24(2) 

C(15) 4117(2) 1678(17) 6329(5) 30(2) 

C(8) 4106(2) 3013(17) 8713(5) 32(3) 

C(22) 483(2) 3035(16) 8138(5) 29(2) 

C(14) 4478(2) 905(18) 6481(5) 33(2) 

C(21) 408(2) 5564(18) 8236(5) 31(3) 

C(23) 764(2) 2746(16) 7661(5) 33(3) 

C(30) 5444(2) 16011(18) 5850(4) 26(2) 

O(14) 5118(1) 16866(12) 5635(3) 32(2) 

C(31) 5667(4) 16380(30) 5214(10) 20(4) 

O(15) 5551(3) 14830(20) 4696(6) 22(3) 

C(32) 6027(4) 15610(30) 5379(10) 21(4) 

O(16) 6159(3) 17290(30) 5838(7) 32(3) 

C(29) 5456(4) 13740(30) 6090(9) 13(4) 

C(30A) 5444(2) 16011(18) 5850(4) 26(2) 

O(14A) 5118(1) 16866(12) 5635(3) 32(2) 

C(31A) 5713(5) 17040(40) 5504(11) 34(5) 

O(15A) 5653(3) 16620(20) 4798(7) 33(3) 

C(32A) 6068(5) 16200(40) 5681(10) 24(4) 

O(16A) 6113(3) 17050(20) 6358(7) 34(3) 

C(29A) 5449(5) 13270(40) 5783(12) 38(6) 

O(50) 4774(3) -2870(20) 6836(6) 19(3) 

O(50A) 4870(3) -1690(30) 6856(7) 34(4) 

C(12) 3913(2) -990(19) 7206(6) 41(3) 

C(7) 4489(2) 3296(18) 8783(5) 34(3) 

O(8) 4626(2) 2410(12) 6971(3) 40(2) 

C(51) 5810(2) 12810(20) 6184(8) 75(5) 

C(16) 4481(2) -1530(20) 6736(6) 40(3) 
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Bond lengths [Å] for 202 

Cl(1)-C(1)  1.742(9) 

Cl(2)-C(1)  1.774(9) 

Cl(11)-C(25)  1.753(9) 

Cl(9)-C(17)  1.768(9) 

Cl(4)-C(9)  1.777(10) 

Cl(10)-C(25)  1.772(9) 

Cl(8)-C(17)  1.788(10) 

Cl(5)-C(9)  1.776(10) 

Cl(12)-C(25)  1.767(10) 

Cl(3)-C(1)  1.786(9) 

Cl(7)-C(17)  1.765(9) 

Cl(6)-C(9)  1.760(10) 

O(1)-C(2)  1.217(11) 

O(9)-C(18)  1.224(11) 

O(13)-C(26)  1.219(10) 

O(6)-C(10)  1.194(10) 

O(10)-C(20)  1.438(10) 

O(3)-C(5)  1.425(10) 

O(12)-C(22)  1.443(10) 

O(11)-C(21)  1.432(10) 

N(4)-C(26)  1.328(12) 

N(4)-C(27)  1.457(11) 

C(25)-C(26)  1.575(11) 

O(4)-C(6)  1.451(9) 

O(2)-C(4)  1.416(10) 

O(7)-C(15)  1.439(10) 

N(1)-C(2)  1.335(12) 

N(1)-C(3)  1.439(10) 

C(2)-C(1)  1.571(11) 

C(6)-C(5)  1.482(12) 

C(6)-C(7)  1.520(13) 

C(18)-N(3)  1.347(12) 

C(18)-C(17)  1.546(11) 

C(9)-C(10)  1.566(12) 

C(10)-N(2)  1.319(12) 

N(3)-C(19)  1.473(10) 

C(5)-C(4)  1.536(11) 

C(3)-C(8)  1.512(13) 

C(3)-C(4)  1.524(13) 

C(13)-C(16)  1.512(14) 

C(13)-C(12)  1.540(12) 

C(20)-C(19)  1.506(12) 

C(20)-C(21)  1.531(12) 

N(2)-C(11)  1.465(10) 

C(11)-C(15)  1.502(13) 

C(11)-C(12)  1.536(14) 

C(27)-C(32)  1.41(2) 

C(27)-C(51)  1.503(15) 

C(27)-C(32A)  1.61(2) 

C(24)-C(23)  1.550(12) 

C(24)-C(19)  1.552(12) 

C(15)-C(14)  1.528(12) 

C(8)-C(7)  1.532(11) 

C(22)-C(23)  1.501(13) 

C(22)-C(21)  1.518(13) 

C(14)-O(8)  1.439(10) 

C(14)-C(16)  1.509(14) 

C(30)-C(29)  1.410(19) 

C(30)-O(14)  1.444(9) 

C(30)-C(31)  1.59(2) 

C(31)-O(15)  1.45(2) 

C(31)-C(32)  1.53(2) 

C(32)-O(16)  1.44(2) 

C(29)-C(51)  1.514(18) 

C(31A)-O(15A)  1.46(2) 

C(31A)-C(32A)  1.53(3) 

C(32A)-O(16A)  1.46(2) 

C(29A)-C(51)  1.65(2) 

O(50)-C(16)  1.413(13) 

O(50A)-C(16)  1.560(16) 

Bond angles [°] for 202 

C(26)-N(4)-C(27)  122.3(8) 

C(26)-C(25)-Cl(11) 110.1(6) 

C(26)-C(25)-Cl(12) 107.1(7) 

Cl(11)-C(25)-Cl(12) 110.2(5) 

C(26)-C(25)-Cl(10) 110.3(6) 

Cl(11)-C(25)-Cl(10) 109.5(5) 
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Cl(12)-C(25)-Cl(10) 109.6(5) 

C(2)-N(1)-C(3) 123.1(8) 

O(1)-C(2)-N(1) 125.3(8) 

O(1)-C(2)-C(1) 118.7(8) 

N(1)-C(2)-C(1) 115.9(8) 

C(2)-C(1)-Cl(1) 111.2(6) 

C(2)-C(1)-Cl(2) 110.3(6) 

Cl(1)-C(1)-Cl(2) 109.9(5) 

C(2)-C(1)-Cl(3) 105.9(6) 

Cl(1)-C(1)-Cl(3) 110.2(4) 

Cl(2)-C(1)-Cl(3) 109.3(5) 

O(13)-C(26)-N(4) 126.1(9) 

O(13)-C(26)-C(25) 119.7(8) 

N(4)-C(26)-C(25) 114.2(8) 

O(4)-C(6)-C(5) 108.8(7) 

O(4)-C(6)-C(7) 109.7(8) 

C(5)-C(6)-C(7) 111.8(8) 

O(9)-C(18)-N(3) 125.0(8) 

O(9)-C(18)-C(17) 121.1(9) 

N(3)-C(18)-C(17) 113.9(8) 

C(10)-C(9)-Cl(6) 108.5(6) 

C(10)-C(9)-Cl(5) 110.7(7) 

Cl(6)-C(9)-Cl(5) 110.3(5) 

C(10)-C(9)-Cl(4) 110.2(6) 

Cl(6)-C(9)-Cl(4) 109.0(5) 

Cl(5)-C(9)-Cl(4) 108.1(5) 

O(6)-C(10)-N(2) 125.7(8) 

O(6)-C(10)-C(9) 121.0(9) 

N(2)-C(10)-C(9) 113.3(8) 

C(18)-N(3)-C(19) 122.1(8) 

C(18)-C(17)-Cl(7) 110.2(7) 

C(18)-C(17)-Cl(9) 108.1(6) 

Cl(7)-C(17)-Cl(9) 109.0(5) 

C(18)-C(17)-Cl(8) 111.6(6) 

Cl(7)-C(17)-Cl(8) 108.6(5) 

Cl(9)-C(17)-Cl(8) 109.3(5) 

O(3)-C(5)-C(6) 111.7(8) 

O(3)-C(5)-C(4) 108.1(7) 

C(6)-C(5)-C(4) 109.7(7) 

N(1)-C(3)-C(8) 108.3(8) 

N(1)-C(3)-C(4) 110.7(8) 

C(8)-C(3)-C(4) 111.2(8) 

C(16)-C(13)-C(12) 109.2(8) 

O(10)-C(20)-C(19) 107.9(7) 

O(10)-C(20)-C(21) 109.2(7) 

C(19)-C(20)-C(21) 111.0(7) 

C(10)-N(2)-C(11) 124.1(8) 

N(2)-C(11)-C(15) 109.7(8) 

N(2)-C(11)-C(12) 109.7(8) 

C(15)-C(11)-C(12) 111.3(8) 

O(2)-C(4)-C(3) 108.2(7) 

O(2)-C(4)-C(5) 107.9(7) 

C(3)-C(4)-C(5) 111.6(8) 

C(32)-C(27)-N(4) 116.9(11) 

C(32)-C(27)-C(51) 116.6(11) 

N(4)-C(27)-C(51) 111.3(9) 

C(32)-C(27)-C(32A) 26.4(9) 

N(4)-C(27)-C(32A) 105.0(10) 

C(51)-C(27)-C(32A) 104.2(11) 

C(23)-C(24)-C(19) 107.8(7) 

N(3)-C(19)-C(20) 110.5(7) 

N(3)-C(19)-C(24) 108.9(7) 

C(20)-C(19)-C(24) 113.0(8) 

O(7)-C(15)-C(11) 111.7(8) 

O(7)-C(15)-C(14) 104.1(8) 

C(11)-C(15)-C(14) 110.4(8) 

C(3)-C(8)-C(7) 112.6(8) 

O(12)-C(22)-C(23) 111.0(7) 

O(12)-C(22)-C(21) 114.2(8) 

C(23)-C(22)-C(21) 110.1(8) 

O(8)-C(14)-C(16) 109.8(8) 

O(8)-C(14)-C(15) 109.0(8) 

C(16)-C(14)-C(15) 110.2(8) 

O(11)-C(21)-C(22) 112.9(9) 

O(11)-C(21)-C(20) 109.2(8) 

C(22)-C(21)-C(20) 110.4(7) 

C(22)-C(23)-C(24) 111.1(8) 

C(29)-C(30)-O(14) 116.8(9) 

C(29)-C(30)-C(31) 112.8(11) 

O(14)-C(30)-C(31) 102.8(9) 

O(15)-C(31)-C(32) 104.8(15) 

O(15)-C(31)-C(30) 109.1(13) 
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C(32)-C(31)-C(30) 108.6(15) 

C(27)-C(32)-O(16) 107.9(14) 

C(27)-C(32)-C(31) 116.1(15) 

O(16)-C(32)-C(31) 105.6(15) 

C(30)-C(29)-C(51) 113.9(12) 

O(15A)-C(31A)-C(32A) 107.7(17) 

O(16A)-C(32A)-C(31A) 101.6(16) 

O(16A)-C(32A)-C(27) 110.5(14) 

C(31A)-C(32A)-C(27) 107.9(16) 

C(11)-C(12)-C(13) 111.0(8) 

C(6)-C(7)-C(8) 108.4(8) 

C(27)-C(51)-C(29) 117.4(11) 

C(27)-C(51)-C(29A) 102.1(12) 

C(29)-C(51)-C(29A) 24.3(10) 

O(50)-C(16)-C(14) 124.7(10) 

O(50)-C(16)-C(13) 106.4(9) 

C(14)-C(16)-C(13) 112.1(9) 

O(50)-C(16)-O(50A) 30.3(7) 

C(14)-C(16)-O(50A) 96.2(10) 

C(13)-C(16)-O(50A) 114.4(10)

Anisotropic displacement parameters (Å2x 103)for 202. The anisotropic displacement factor 

exponent takes the form: -22[ h2a*2U11 + ... + 2 h k a* b* U12] 

 U11 U22 U33 U23 U13 U12 

Cl(1) 26(1)  29(2) 32(2)  3(1) 6(1)  -3(1) 

Cl(2) 22(1)  28(1) 39(2)  5(1) -1(1)  5(1) 

Cl(11) 25(1)  36(2) 35(2)  -3(1) 2(1)  9(1) 

Cl(9) 26(1)  26(1) 48(2)  5(1) -4(1)  0(1) 

Cl(4) 24(1)  36(2) 29(1)  -5(1) 3(1)  6(1) 

Cl(10) 27(1)  32(2) 29(1)  9(1) 2(1)  4(1) 

Cl(8) 26(1)  41(2) 33(1)  -14(1) 0(1)  -5(1) 

Cl(5) 22(1)  30(2) 47(2)  -7(1) -2(1)  -2(1) 

Cl(12) 30(1)  26(2) 46(2)  -4(1) -2(1)  -8(1) 

Cl(3) 36(1)  33(2) 29(1)  -10(1) 8(1)  -7(1) 

Cl(7) 35(1)  36(2) 31(1)  6(1) -2(1)  -7(1) 

Cl(6) 37(1)  38(2) 32(1)  7(1) 4(1)  4(1) 

O(1) 24(3)  62(6) 60(5)  40(5) 2(3)  6(4) 

O(9) 29(3)  40(5) 20(4)  -9(3) -4(3)  6(3) 

O(13) 24(3)  50(5) 20(4)  -9(4) 2(3)  5(3) 

O(6) 30(3)  39(4) 29(4)  -3(4) -5(3)  2(3) 

O(10) 34(4)  29(4) 29(4)  -6(3) -3(3)  6(3) 

O(3) 29(3)  38(4) 31(4)  7(3) -13(3)  -4(3) 

O(12) 25(3)  47(5) 38(4)  10(4) -5(3)  -10(3) 

O(11) 31(4)  57(5) 26(4)  7(4) -10(3)  -4(4) 

N(4) 19(4)  42(5) 30(5)  -14(4) 3(4)  11(4) 

C(25) 25(4)  30(6) 12(5)  -2(4) -2(4)  1(4) 

O(4) 15(3)  66(5) 28(4)  8(4) 1(3)  -7(3) 

O(2) 39(5)  25(4) 86(7)  15(4) -5(4)  4(3) 

O(7) 31(4)  47(5) 37(4)  -17(4) -7(3)  12(3) 

N(1) 15(4)  31(5) 40(5)  16(4) -9(4)  0(4) 

C(2) 27(5)  26(6) 23(5)  -2(4) 5(4)  8(5) 
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C(1) 23(4)  12(5) 21(5)  -1(4) 3(4)  -10(4) 

C(26) 27(5)  21(5) 25(6)  0(4) 3(4)  -11(4) 

C(6) 17(4)  40(7) 29(6)  13(5) -4(4)  -5(5) 

C(18) 21(5)  22(5) 29(6)  -7(5) -10(4)  6(4) 

C(9) 31(5)  29(6) 19(5)  2(5) -5(4)  -1(5) 

C(10) 17(4)  24(5) 29(6)  -2(5) -5(4)  0(4) 

N(3) 31(5)  34(5) 30(5)  -5(4) -16(4)  -5(4) 

C(17) 25(5)  17(5) 37(6)  3(5) 1(4)  -2(4) 

C(5) 31(5)  29(6) 18(5)  7(4) 0(4)  -1(5) 

C(3) 17(5)  33(6) 28(6)  3(5) -13(4)  -9(4) 

C(13) 51(6)  21(6) 30(6)  0(4) -2(5)  14(5) 

C(20) 19(4)  30(6) 34(6)  -2(5) 1(4)  4(4) 

N(2) 19(4)  77(7) 48(6)  -35(6) -9(4)  18(5) 

C(11) 16(4)  33(6) 40(6)  -10(5) 0(4)  6(4) 

C(4) 12(4)  32(6) 41(6)  11(5) 8(4)  6(4) 

C(27) 35(6)  36(6) 26(6)  -13(5) -19(5)  8(5) 

C(24) 26(5)  35(7) 42(7)  -21(5) 8(5)  1(5) 

C(19) 14(4)  29(6) 28(5)  -9(4) -5(4)  -14(4) 

C(15) 33(5)  31(6) 27(6)  -2(5) -11(4)  -4(5) 

C(8) 39(6)  29(6) 28(6)  4(5) -9(5)  -9(5) 

C(22) 23(5)  37(6) 27(6)  -4(5) -2(4)  -16(4) 

C(14) 24(5)  40(7) 36(6)  -7(5) -4(4)  -8(5) 

C(21) 20(5)  45(7) 29(6)  13(5) -4(4)  1(5) 

C(23) 37(6)  30(6) 31(6)  -10(5) -8(5)  -9(5) 

C(30) 13(4)  46(7) 20(5)  -13(5) 3(4)  13(5) 

O(14) 13(3)  46(5) 36(4)  -4(4) 2(3)  5(3) 

C(30A) 13(4)  46(7) 20(5)  -13(5) 3(4)  13(5) 

O(14A) 13(3)  46(5) 36(4)  -4(4) 2(3)  5(3) 

C(12) 35(6)  47(8) 40(7)  -5(6) 12(5)  -4(6) 

C(7) 16(5)  59(7) 27(6)  -4(5) 5(4)  6(5) 

O(8) 27(4)  59(5) 32(4)  -6(4) -6(3)  -13(3) 

C(51) 12(5)  71(10) 141(14)  53(9) -6(7)  -11(6) 

C(16) 28(5)  56(8) 38(7)  3(6) 4(5)  20(5) 
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Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 202 

 x  y  z  U(eq) 

H(10) 718 6664 9428 46 

H(53) 4736 4411 10287 49 

H(12) 30 2519 7890 55 

H(511) 332 5862 7322 57 

H(44) 6466 12987 6284 36 

H(54A) 5004 6168 8790 55 

H(52) 3771 8185 9497 75 

H(7) 3886 865 5542 58 

H(1) 3483 4231 8967 35 

H(6) 4470 6822 8797 34 

H(43) 1357 7524 8753 38 

H(5) 4466 7388 9928 31 

H(3A) 3994 2071 9660 31 

H(13A) 4375 -875 7709 41 

H(13B) 4276 -3380 7493 41 

H(20) 674 8461 8536 33 

H(42) 3460 1506 6438 58 

H(11) 3998 2505 7275 36 

H(4A) 3930 5691 10128 34 

H(27) 6010 12383 5308 39 

H(24A) 1269 3738 7606 41 

H(24B) 1167 3151 8335 41 

H(19) 962 7181 7627 28 

H(15) 4115 3265 6169 36 

H(8A) 4019 4125 8396 39 

H(8B) 4056 1495 8542 39 

H(22) 564 2436 8566 35 

H(14) 4609 984 6076 40 

H(21) 232 5696 8567 38 

H(23A) 699 3432 7239 40 

H(23B) 804 1125 7588 40 

H(30A) 5531 17025 6201 32 

H(514) 4971 15971 5750 48 

H(31) 5660 17976 5064 25 

H(15A) 5355 15123 4595 33 

H(32) 6159 15659 4975 25 

H(516) 6349 17663 5730 48 

H(29A) 5332 12757 5783 15 

H(29B) 5343 13680 6510 15 
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H(30B) 5474 16389 6320 32 

H(31A) 5705 18700 5579 40 

H(15B) 5761 17543 4582 49 

H(32A) 6237 16824 5385 29 

H(16A) 6240 16189 6565 51 

H(29C) 5456 12772 5326 45 

H(29D) 5261 12551 6000 45 

H(50) 4879 -2929 6491 29 

H(50A) 4964 -1627 6501 51 

H(12A) 3807 -2015 6886 49 

H(12B) 3785 -1055 7609 49 

H(7A) 4582 2092 9062 40 

H(7B) 4590 3190 8352 40 

H(8) 4728 1649 7252 59 

H(51A) 5896 13326 6611 90 

H(51B) 5795 11150 6202 90 

H(16) 4351 -2377 6400 48 

_________________________________________________________________________ 
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Crystal data and structure refinement for 255 

Identification code  255 

Empirical formula  C14 H15 N O6 

Formula weight  293.27 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P 21 21 21 

Unit cell dimensions a = 6.5782(4) Å = 90°. 

 b = 8.7302(5) Å = 90°. 

 c = 21.2398(12) Å  = 90°. 

Volume 1219.78(12) Å3 

Z 4 

Density (calculated) 1.597 Mg/m3 

Absorption coefficient 0.126 mm-1 

F(000) 616 

Crystal size 0.50 x 0.20 x 0.10 mm3 

Theta range for data collection 1.92 to 27.21°. 

Index ranges -8<=h<=8, -10<=k<=11, -26<=l<=27 

Reflections collected 16471 

Independent reflections 1603 [R(int) = 0.0604] 

Completeness to theta = 27.21° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9875 and 0.9396 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1603 / 0 / 211 

Goodness-of-fit on F2 1.083 

Final R indices [I>2sigma(I)] R1 = 0.0334, wR2 = 0.0839 

R indices (all data) R1 = 0.0372, wR2 = 0.0857 

Absolute structure parameter 0.7(12) 

Largest diff. peak and hole 0.319 and -0.171 e.Å-3 
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Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for 

255. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor 

 x y z U(eq) 

O(3) 12915(2) 3030(2) 8313(1) 15(1) 

O(4) 11547(3) 1263(2) 9381(1) 17(1) 

O(6) 5427(2) 325(2) 8932(1) 16(1) 

O(7) 6028(2) 3258(2) 6949(1) 16(1) 

O(10) 11951(3) 1587(2) 5447(1) 20(1) 

O(11) 14478(3) 594(2) 6093(1) 16(1) 

N(1) 6811(3) 1888(2) 7822(1) 14(1) 

C(1) 8088(3) 740(2) 8140(1) 12(1) 

C(2) 10330(3) 1176(2) 8045(1) 11(1) 

C(3) 10808(3) 2668(2) 8411(1) 13(1) 

C(4) 10350(3) 2461(2) 9113(1) 14(1) 

C(5) 8112(4) 2056(3) 9207(1) 15(1) 

C(6) 7552(3) 615(2) 8840(1) 13(1) 

C(7) 7211(3) 2402(2) 7236(1) 13(1) 

C(8) 9185(3) 1900(2) 6958(1) 13(1) 

C(9) 9462(4) 2055(2) 6302(1) 15(1) 

C(10) 11309(3) 1596(2) 6065(1) 15(1) 

C(11) 12824(3) 1017(2) 6451(1) 14(1) 

C(12) 12589(3) 852(2) 7090(1) 13(1) 

C(13) 10724(3) 1312(2) 7346(1) 12(1) 

C(14) 14097(4) 1267(3) 5480(1) 19(1) 
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Bond lengths [Å] for 255 

O(3)-C(3)  1.437(3) 

O(3)-H(3)  0.8400 

O(4)-C(4)  1.427(3) 

O(4)-H(4)  0.8400 

O(6)-C(6)  1.434(3) 

O(6)-H(6)  0.8400 

O(7)-C(7)  1.240(3) 

O(10)-C(10)  1.380(3) 

O(10)-C(14)  1.440(3) 

O(11)-C(11)  1.378(3) 

O(11)-C(14)  1.449(3) 

N(1)-C(7)  1.348(3) 

N(1)-C(1)  1.472(3) 

N(1)-H(1N)  0.92(3) 

C(1)-C(6)  1.531(3) 

C(1)-C(2)  1.537(3) 

C(1)-H(1)  1.0000 

C(2)-C(13)  1.510(3) 

C(2)-C(3)  1.550(3) 

C(2)-H(2)  1.0000 

C(3)-C(4)  1.530(3) 

C(3)-H(3A)  1.0000 

C(4)-C(5)  1.527(3) 

C(4)-H(4A)  1.0000 

C(5)-C(6)  1.526(3) 

C(5)-H(5A)  0.9900 

C(5)-H(5B)  0.9900 

C(6)-H(6A)  1.0000 

C(7)-C(8)  1.492(3) 

C(8)-C(13)  1.403(3) 

C(8)-C(9)  1.412(3) 

C(9)-C(10)  1.374(3) 

C(9)-H(9)  0.9500 

C(10)-C(11)  1.386(3) 

C(11)-C(12)  1.373(3) 

C(12)-C(13)  1.401(3) 

C(12)-H(12)  0.9500 

C(14)-H(14A)  0.9900 

C(14)-H(14B)  0.9900 

Bond angles [°] for 255 

C(3)-O(3)-H(3) 109.5 

C(4)-O(4)-H(4) 109.5 

C(6)-O(6)-H(6) 109.5 

C(10)-O(10)-C(14) 104.74(17) 

C(11)-O(11)-C(14) 104.53(17) 

C(7)-N(1)-C(1) 122.59(18) 

C(7)-N(1)-H(1N) 118.1(19) 

C(1)-N(1)-H(1N) 117.6(19) 

N(1)-C(1)-C(6) 111.25(17) 

N(1)-C(1)-C(2) 108.59(16) 

C(6)-C(1)-C(2) 111.52(17) 

N(1)-C(1)-H(1) 108.5 

C(6)-C(1)-H(1) 108.5 

C(2)-C(1)-H(1) 108.5 

C(13)-C(2)-C(1) 108.28(17) 

C(13)-C(2)-C(3) 113.10(16) 

C(1)-C(2)-C(3) 109.67(17) 

C(13)-C(2)-H(2) 108.6 

C(1)-C(2)-H(2) 108.6 

C(3)-C(2)-H(2) 108.6 

O(3)-C(3)-C(4) 110.96(18) 

O(3)-C(3)-C(2) 107.87(17) 

C(4)-C(3)-C(2) 110.47(16) 

O(3)-C(3)-H(3A) 109.2 

C(4)-C(3)-H(3A) 109.2 

C(2)-C(3)-H(3A) 109.2 

O(4)-C(4)-C(5) 108.05(17) 

O(4)-C(4)-C(3) 111.54(17) 

C(5)-C(4)-C(3) 110.15(17) 

O(4)-C(4)-H(4A) 109.0 

C(5)-C(4)-H(4A) 109.0 

C(3)-C(4)-H(4A) 109.0 

C(6)-C(5)-C(4) 110.89(18) 

C(6)-C(5)-H(5A) 109.5 

C(4)-C(5)-H(5A) 109.5 

C(6)-C(5)-H(5B) 109.5 
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C(4)-C(5)-H(5B) 109.5 

H(5A)-C(5)-H(5B) 108.1 

O(6)-C(6)-C(5) 108.13(18) 

O(6)-C(6)-C(1) 111.69(17) 

C(5)-C(6)-C(1) 112.44(17) 

O(6)-C(6)-H(6A) 108.1 

C(5)-C(6)-H(6A) 108.1 

C(1)-C(6)-H(6A) 108.1 

O(7)-C(7)-N(1) 122.2(2) 

O(7)-C(7)-C(8) 121.9(2) 

N(1)-C(7)-C(8) 115.97(19) 

C(13)-C(8)-C(9) 121.4(2) 

C(13)-C(8)-C(7) 120.15(19) 

C(9)-C(8)-C(7) 118.4(2) 

C(10)-C(9)-C(8) 116.6(2) 

C(10)-C(9)-H(9) 121.7 

C(8)-C(9)-H(9) 121.7 

C(9)-C(10)-O(10) 128.3(2) 

C(9)-C(10)-C(11) 121.7(2) 

O(10)-C(10)-C(11) 109.9(2) 

C(12)-C(11)-O(11) 127.3(2) 

C(12)-C(11)-C(10) 122.8(2) 

O(11)-C(11)-C(10) 109.80(18) 

C(11)-C(12)-C(13) 116.9(2) 

C(11)-C(12)-H(12) 121.5 

C(13)-C(12)-H(12) 121.5 

C(12)-C(13)-C(8) 120.55(19) 

C(12)-C(13)-C(2) 120.62(19) 

C(8)-C(13)-C(2) 118.8(2) 

O(10)-C(14)-O(11) 106.99(17) 

O(10)-C(14)-H(14A) 110.3 

O(11)-C(14)-H(14A) 110.3 

O(10)-C(14)-H(14B) 110.3 

O(11)-C(14)-H(14B) 110.3 

H(14A)-C(14)-H(14B) 108.6

Anisotropic displacement parameters (Å2x 103) for 255. The anisotropic displacement factor 

exponent takes the form: -22[ h2a*2U11 + ... + 2 h k a* b* U12] 

 U11 U22 U33 U23 U13 U12 

O(3) 13(1)  16(1) 18(1)  -3(1) 1(1)  -2(1) 

O(4) 14(1)  22(1) 16(1)  3(1) 1(1)  3(1) 

O(6) 15(1)  18(1) 16(1)  -2(1) 3(1)  -3(1) 

O(7) 15(1)  15(1) 17(1)  1(1) -2(1)  1(1) 

O(10) 20(1)  28(1) 11(1)  1(1) 2(1)  3(1) 

O(11) 16(1)  19(1) 14(1)  0(1) 3(1)  0(1) 

N(1) 11(1)  15(1) 15(1)  0(1) 1(1)  1(1) 

C(1) 12(1)  11(1) 13(1)  1(1) 0(1)  -1(1) 

C(2) 12(1)  12(1) 9(1)  -1(1) -1(1)  1(1) 

C(3) 12(1)  12(1) 13(1)  -1(1) -1(1)  0(1) 

C(4) 15(1)  15(1) 10(1)  -1(1) -1(1)  0(1) 

C(5) 16(1)  16(1) 14(1)  -2(1) 2(1)  2(1) 

C(6) 13(1)  14(1) 12(1)  1(1) 1(1)  0(1) 

C(7) 13(1)  11(1) 15(1)  -3(1) -2(1)  -4(1) 

C(8) 14(1)  10(1) 15(1)  0(1) -1(1)  -2(1) 

C(9) 16(1)  14(1) 16(1)  1(1) -2(1)  0(1) 

C(10) 20(1)  14(1) 11(1)  1(1) -1(1)  -4(1) 

C(11) 13(1)  11(1) 17(1)  -2(1) 2(1)  -2(1) 

C(12) 14(1)  9(1) 15(1)  0(1) -1(1)  -2(1) 
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C(13) 16(1)  9(1) 11(1)  -1(1) -2(1)  -2(1) 

C(14) 21(1)  22(1) 15(1)  1(1) 3(1)  0(1) 

Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 255 

 x  y  z  U(eq) 

H(3) 13206 3839 8506 43(10) 

H(4) 12733 1307 9236 33(9) 

H(6) 5074 -431 8713 37(9) 

H(1) 7846 -278 7938 12(6) 

H(2) 11199 334 8217 17(7) 

H(3A) 9950 3519 8241 10(6) 

H(4A) 10651 3441 9338 14(6) 

H(5A) 7844 1890 9660 14(6) 

H(5B) 7254 2920 9063 23(7) 

H(6A) 8330 -264 9021 14(6) 

H(9) 8426 2457 6038 30(8) 

H(12) 13642 445 7346 10(6) 

H(14A) 14889 2224 5430 40(9) 

H(14B) 14496 547 5142 28(8) 

H(1N) 5540(50) 2080(30) 7988(14) 30(8) 

___________________________________________________________________________ 
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