
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Donaldson, Robin (2012) Modelling and analysis of structure in cellular
signalling systems. PhD thesis

http://theses.gla.ac.uk/3571/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/3571/

Modelling and Analysis of Structure in

Cellular Signalling Systems

Robin Donaldson

Submitted in fulfilment of the requirements for the Degree of

Doctor of Philosophy

School of Computing Science

College of Science and Engineering

University of Glasgow

August 2012

i

Abstract

Cellular signalling is an important area of study in biology. Signalling pathways are well-known

abstractions that explain the mechanisms whereby cells respond to signals. Collections of path-

ways form signalling networks, and interactions between pathways in a network, known as cross-

talk, enables further complex signalling behaviours. Increasingly, computational modelling and

analysis is required to handle the complexity of such systems.

While there are several computational modelling approaches for signalling pathways, none

make cross-talk explicit. We present a modular modelling framework for pathways and their

cross-talk. Networks are formed by composing pathways: different cross-talks result from dif-

ferent synchronisations of reactions between, and overlaps of, the pathways. We formalise five

types of cross-talk and give approaches to reason about possible cross-talks in a network.

The complementary problem is how to handle unstructured signalling networks, i.e. networks

with no explicit notion of pathways or cross-talk. We present an approach to better understand

unstructured signalling networks by modelling them as a set of signal flows through the network.

We introduce the Reaction Minimal Paths (RMP) algorithm that computes the set of signal flows

in a model. To the best of our knowledge, current algorithms cannot guarantee both correctness

and completeness of the set of signal flows in a model. The RMP algorithm is the first.

Finally, the RMP algorithm suffers from the well-known state space explosion problem. We

use suitable partial order reduction algorithms to improve the efficiency of this algorithm.

Contents

1 Introduction 1

2 Biological background 6

2.1 Biological principles and graphical notation . 6

2.2 Systems biology . 10

2.3 Cellular signalling . 10

2.4 Signalling pathways . 11

2.5 Cross-talk . 14

2.6 Summary . 17

3 Computational background 18

3.1 Continuous time Markov chains . 18

3.2 Model checking . 21

3.2.1 Temporal logics . 21

3.3 Petri nets . 23

3.4 Dynamic behaviour of Petri nets . 25

3.5 Steady-state behaviour of Petri nets . 29

3.6 Summary . 32

4 Related work 33

4.1 Biological models . 33

4.2 Types of biological models . 34

4.2.1 Mathematical models . 34

4.2.2 Computational models . 35

4.2.3 Qualitative vs. quantitative models . 36

4.3 Dynamic analysis . 36

ii

CONTENTS iii

4.3.1 Simulation-based analysis . 36

4.3.2 Model checking . 37

4.4 Steady-state approaches . 37

4.4.1 Application to metabolic systems . 37

4.4.2 Application to cellular signalling systems 37

4.5 Modelling and analysis of signalling pathway cross-talk 38

4.6 Cross-talk in non-biological systems . 39

4.7 Summary . 40

5 Modelling signalling pathway cross-talk 42

5.1 Motivation . 43

5.2 The PRISM modelling language . 43

5.3 PRISM language extensions . 46

5.4 Modelling a pathway . 47

5.5 Modelling a network of independent pathways 49

5.6 Auxiliary reactions . 51

5.7 Categorisation of cross-talk . 53

5.7.1 Motivation for types . 54

5.7.2 Functions on modules . 55

5.7.3 Cross-talk types . 57

5.7.4 Categorisation is well-defined . 61

5.7.5 Examples of cross-talk . 62

5.8 Cross-talk generation – Generate() . 65

5.8.1 Higher order networks . 65

5.9 Detecting cross-talk . 66

5.10 Characterising cross-talk . 68

5.11 Case study: TGF-β, WNT and MAPK pathways 69

5.11.1 Biological background . 69

5.11.2 Modelling the pathways . 70

5.11.3 Analysis of cross-talk . 71

5.12 Discussion . 73

5.13 Summary . 75

CONTENTS iv

6 Modelling unstructured signalling networks as signal flows 77

6.1 Motivation . 78

6.2 Signal flows . 78

6.3 Demonstration of the steady-state approach using T invariant analysis 79

6.3.1 Place traps . 81

6.3.2 Consumption conflicts . 82

6.3.3 Protein degradations . 83

6.3.4 Alternative T invariant approach . 84

6.3.5 Computational complexity . 84

6.3.6 Conclusion . 85

6.4 Overview of current dynamic techniques . 85

6.4.1 The LoLA model checker . 85

6.4.2 The SPIN model checker . 86

6.4.3 Stories . 87

6.5 A new dynamic technique: the Reaction Minimal Paths algorithm 87

6.5.1 Algorithm . 88

6.5.2 Examples . 91

6.6 Pathway Logic . 94

6.7 Results . 97

6.7.1 Pathway Logic models . 98

6.7.2 Essential transitions . 99

6.7.3 Used places . 99

6.7.4 Knockouts . 100

6.7.5 Multi-signal cellular responses . 100

6.7.6 Analysis of ERKs and RelA activation 100

6.8 Clustering reaction minimal paths . 101

6.9 Discussion . 102

6.10 Summary . 102

7 Extension to large unstructured signalling networks 104

7.1 Motivation . 105

7.2 Stubborn sets . 105

7.2.1 Definitions . 105

7.2.2 Reduced state space search . 107

CONTENTS v

7.2.3 The RMP using stubborn sets algorithm 110

7.2.4 The Hide Edges algorithm . 113

7.2.5 Pathway Logic results . 119

7.2.6 Alternative stubborn sets algorithm . 120

7.2.7 Discussion . 121

7.3 Dependence sets . 123

7.3.1 Biological motivation . 123

7.3.2 Definitions . 124

7.3.3 Reduced state space search . 125

7.3.4 Dependence sets propositions/theorems 127

7.3.5 The RMP using dependence sets algorithm 131

7.3.6 Pathway Logic results . 133

7.3.7 Discussion . 134

7.4 Summary . 134

8 Future work 136

9 Conclusion 139

Appendix A Multisets 141

Appendix B Breadth- vs. depth-first search 142

Appendix C PRISM model of pathway cross-talk 143

Appendix D Relevant subnet algorithm 145

Appendix E Pathway Logic model diagrams 146

Appendix F Signal flow cluster diagrams 148

CONTENTS vi

Acknowledgements

First I wish to thank my supervisor, Muffy Calder, and my (unofficial) co-supervisor, Carolyn Tal-

cott. Both excellent scientists have taught me so much, while allowing me the academic freedom

that made this process so enjoyable. Thanks for everything.

I wish to thank my thesis examiners, Rainer Breitling and Stephen Gilmore, for their time in

reading this thesis. Their suggestions greatly enhanced this thesis.

I wish to thank David Gilbert and Monika Heiner for introducing me to the research area of

Computational Biology.

Declaration

This thesis is submitted in accordance with the rules for the degree of Doctor of Philosophy at the

University of Glasgow. None of the material contained herein has been submitted for any other

degree. The material contained herein is the work of myself unless stated otherwise.

Below is a list of my publications. The work in Chapter 5 has been published in [A, C] and

the work in Chapter 6 has been published in [B].

Robin Donaldson

[A] R. Donaldson and M. Calder (2012). Modular modelling of signalling pathways and their

cross-talk. Theoretical Computer Science (TCS).

[B] R. Donaldson, C. Talcott, M. Knapp and M. Calder (2010). Understanding Signalling

Networks as Collections of Signal Transduction Pathways. ACM (Proc. of 8th International

Computational Methods in Systems Biology) pp. 86–95.

[C] R. Donaldson and M. Calder (2010). Modelling and Analysis of Biochemical Signalling

Pathway Cross-talk. EPTCS (Proc. of 3rd Workshop From Biology To Concurrency and

back) 19, pp. 40–54.

[D] R. Breitling, R. Donaldson, D. Gilbert and M. Heiner (2010). Biomodel Engineering –

From Structure to Behavior. Position paper in Trans. on Computational Systems Biology

XII, Springer Lecture Notes in Bioinformatics 5945, pp. 1–12.

CONTENTS vii

[E] D. Gilbert, R. Breitling, M. Heiner and R. Donaldson (2009). An introduction to BioModel

Engineering, illustrated for signal transduction pathways. 9th International Workshop on

Membrane Computing. Lecture Notes in Computer Science 5391, pp. 13-28.

[F] R. Donaldson and D. Gilbert (2008). A Model Checking Approach to the Parameter Esti-

mation of Biochemical Pathways. Lecture Notes in Computer Science (Proc. of 6th interna-

tional Computational Methods in Systems Biology) 5307 pp. 269-287.

[G] R. Donaldson and D. Gilbert (2008). A Monte Carlo Model Checker for Probabilistic LTL

with Numerical Constraints. Technical Report TR-2008-282 at the Dept. of Computer

Science at University of Glasgow.

[H] M. Heiner, R. Donaldson and D. Gilbert (2008). Petri Nets for Systems Biology. In “Sym-

bolic Systems Biology: Theory and Methods,” edited by Sriram Iyengar. Jones and Bartlett

publishers.

[I] M. Heiner, D. Gilbert, and R. Donaldson (2008). Petri Nets for Systems and Synthetic Bi-

ology. In Formal Methods for Computational Systems Biology. Lecture Notes in Computer

Science 5016, pp. 215-264.

Chapter 1

Introduction

Systems biology Systems biology [68, 108] is fast emerging as the new approach to understand

the complex behaviour of biological systems by analysing the interaction of numerous components

of the system simultaneously. The success of systems biology is made possible by advances in both

high-throughput laboratory techniques [5] and computational modelling and analysis [84]. Typical

areas of study in systems biology include metabolic networks [39], gene regulation networks [73]

and cellular signalling [8], which is the focus of this thesis.

Cellular signalling Cellular signalling is the mechanism by which cells communicate with other

cells and detect and respond to the environment [29]. Signalling is initiated by a ligand (signal

molecule)1 binding to a receptor (typically on the cell membrane), and thus the presence of the

ligand is detected. This initiates a series of biochemical reactions within the cell resulting in a

cellular response. The network of biochemical reactions that generate cellular responses to ligands

is called a signalling network. The steps involved in a cell detecting and responding to a signal are

shown in Figure 1.1.

Signalling pathway and cross-talk abstraction The current study of cellular signalling is largely

based on an abstraction of signalling networks to signalling pathways and cross-talk. A signalling

pathway is the biochemical reactions that generate the cellular response for one type of signal.

Biologists have organised signalling networks into a number of well-known signalling pathways.

The interaction between two or more signalling pathways is called cross-talk. Biologists handle

the complexity involved in studying cellular signalling by only considering signalling pathways in

isolation or a small number of signalling pathways with cross-talk.

1signalling can also be initiated without a ligand (e.g. photons, biochemical stress, changes in temperature) though
this is not covered in this thesis

1

CHAPTER 1. INTRODUCTION 2

Cell	
 membrane	

1.	
 Ligand	
 and	
 receptor	
 bind	

Nucleus	

Environment	

2.	
 Series	
 of	
 reac5ons	

3.	
 Cellular	
 response	

Cytoplasm	

R	

L	

Figure 1.1: An example of the steps involved in a cell detecting and responding to a signal (ligand).
The receptor and ligand bind, initiating a series of reactions within the cell, resulting in the cellular
response. There are variations on this example, e.g. signalling can be initiated in the cytoplasm.

Computational modelling and analysis Computational modelling and analysis plays an impor-

tant role in the study of cellular signalling. A model of a signalling network can be used to generate

hypotheses of the mechanism behind certain diseases. For example, cancer can be caused by a mu-

tation in a signalling network causing uncontrolled growth in the number of cells in response to

a signal [54]. Applying suitable analysis techniques to a signalling network model, targets for

therapeutic intervention can be identified, aiding the drug discovery process.

Models of cellular signalling are either unicellular or multicellular. Unicellular models are

concerned only with the signalling mechanism within one cell, whereas multicellular models also

consider the communication and interaction between different cells. This thesis considers unicel-

lular models.

Problem: signalling pathway cross-talk There are a wide range of modelling paradigms in the

literature. Early models of signalling pathways were written using flat systems of equations [8].

More recently, modelling languages have been used to describe signalling pathways [10]. These

languages provide an abstraction from the implementation detail (such as the mathematical equa-

tions). Several modelling languages have a modular approach in which they describe systems in

terms of their components and the interaction between components. For example, process alge-

bras [12] have been used to model signalling pathways, with molecules as a processes and reac-

tions as communication between processes. However, no modelling language has made explicit,

CHAPTER 1. INTRODUCTION 3

or permits reasoning about, pathway cross-talk.

Problem: unstructured signalling networks The complementary problem is how to under-

stand unstructured models of signalling networks, i.e. models with no explicit notion of pathways

or cross-talk. A particularly interesting example is Pathway Logic [102]. At the core of Pathway

Logic is a knowledge base of known biochemical reactions. Models are generated automatically

from the knowledge base by defining the initial conditions for a cell of interest (i.e. the proteins,

ligands, receptors that are present). These models are typically larger and more complex than

models that are manually built. However, they can be harder to understand and analyse due to

their size, complexity and lack of structure.

Thesis contributions In this thesis we give solutions to both problems.

First, we describe a new framework for modelling and analysing signalling networks formally.

The framework is based on generic biological modules that have programmable interfaces defining

how they can be connected. A signalling pathway is built by connecting modules, and a signalling

network is built from a set of pathways with optional cross-talk. Within this work we have de-

veloped a formal definition of cross-talk, including a novel categorisation based on the use of

process algebraic operators. The resulting models of signalling networks are analysed by model

checking temporal properties. Cross-talk can be detected and characterised, and the effect of the

cross-talk measured, by different temporal properties. Formally defining cross-talk permits us to

express different instances of cross-talk. We give an algorithm to enumerate all possible instances

of cross-talk between a set of pathways, thus generating different network hypotheses that can

be tested against data. We apply this framework to a prominent case study: the network of the

TGF-β/BMP, WNT and MAPK pathways and their cross-talk. This part of the thesis is illustrated

schematically in Figure 1.2.

P1	
 P2	
 P3	
 Signalling	
 Network	

	
 (Pathway1	
 |[cross-­‐talk]|	
 Pathway2)	
 	
 	
 |[cross-­‐talk]|	
 Pathway3	

Cross-­‐talk	
 Cross-­‐talk	

Figure 1.2: Modelling signalling pathways and cross-talk to create a signalling network.

CHAPTER 1. INTRODUCTION 4

Second, we give an approach to model unstructured signalling network models as a set of

signal flows. A signal flow is a series of biochemical reactions from a set of inputs (e.g. ligands)

to a set of outputs (e.g. activated proteins). We find that current techniques are unsuitable to

compute the set of signal flows in a network; we introduce a new algorithm based on exploring the

state space (all possible behaviours) of a model. The algorithm is applied to signalling network

models generated from the Pathway Logic knowledge base. We also define techniques to handle

large unstructured signalling networks, in particular, more efficient versions of the signal flows

algorithm using partial order reduction [69]. We apply the approach to analyse a larger, more

complex version of the signalling network model generated from the Pathway Logic knowledge

base. This part of the thesis is illustrated schematically in Figure 1.3.

Unstructured	

Signalling	
 Network	

Signal	
 Flows	

+	
 +	
 …	
 +	

Inputs	

Ouputs	

f1	
 f2	
 fn	

Figure 1.3: Modelling unstructured signalling networks as a set of signal flows.

In developing the solution to the first problem (signalling pathway cross-talk), we use con-

tinuous time Markov chains defined with an extension of the PRISM modelling language [71].

In the solution to the second problem (unstructured signalling networks), we use Petri nets [88].

However, both solutions provide generic techniques and the choice of underlying model is not

important.

This thesis is concerned with qualitative models, with reactions rates and stoichiometry 1, and

strictly presence or absence of biochemical entities. There may be limitations because of this, for

example we are not able to express dimerisation, A + A− > 2A. We use qualitative models because

quantitative models are often difficult to create, especially due to the difficulty in measuring the

rates of biochemical reactions. Future work would be to extend this work to quantitative models.

Our methods and approaches are applicable to man-made abstractions of cellular signalling

systems (i.e. models), rather than directly to the systems themselves. As one would expect, there

is likely significant detail lost in dealing only with the abstractions of the systems.

CHAPTER 1. INTRODUCTION 5

Thesis statement The role of computational modelling and analysis in systems biology is now

well-established. Modelling paradigms range from systems of equations to modelling languages.

However, no current modelling paradigm deals with structural information such as pathway cross-

talk. Furthermore, approaches to understand unstructured signalling networks are lacking. We

propose two modelling and analysis approaches to handle these important, but different, problems.

A signalling network can be modelled in a structured manner with pathways as entities and cross-

talk as interactions between these entities. Unstructured signalling networks can be modelled as a

set of signal flows. We demonstrate the utility of each approach by answering biological questions

in prominent case studies.

Organisation of this thesis This thesis is organised as follows. Chapter 2 gives the biological

background and Chapter 3 gives the computational background required for this thesis. Chapter 4

reviews the related computational work on cellular signalling. Chapter 5 describes the modelling

framework for signalling pathway cross-talk and gives results of the application to a prominent

case study. Chapter 6 describes the modelling approach to understand unstructured signalling

networks as a set of signal flows and gives results of the application to Pathway Logic. Chapter

7 describes an approach to understand large unstructured signalling networks and gives results of

the application to the Pathway Logic. Chapter 8 gives directions for future work and Chapter 9

concludes this thesis.

Chapter 2

Biological background

In this chapter we introduce the required biological background for this thesis.

In Section 2.1 we give basic biological principles and related graphical notation. Section 2.2

gives an overview of the research area of systems biology. In Section 2.3 we introduce cellular

signalling, an important area of study in systems biology. Cellular signalling is studied using an

abstraction to signalling pathways and cross-talk. In Section 2.4 and Section 2.5 we explore further

the concepts of signalling pathways and cross-talk respectively.

2.1 Biological principles and graphical notation

In this section we explain the basic biological principles used in this thesis and where appropriate

we give the related graphical notation.

Protein A protein is a chain of amino acids folded into a 3-dimensional structure. Most proteins

have a specific biological function that is affected by its structure. A protein is represented by an

oval with the name of the protein inside. A protein that is initially present is shaded grey.

X	
 Protein	
 X	
 Ini&al	
 Protein	

Reactions A reaction1 turns a set of molecules (called substrates) into another set of molecules

(called products). We distinguish five types of reactions.

• Production: a protein is created.
1we consider only protein-based reactions

6

2.1 Biological principles and graphical notation 7

• Degradation: a protein is broken down and recycled by a cell.

• Transformation: a protein changes state or moves location.

• Complexation: two or more proteins bind to form a complex.

• Decomplexation: a complex breaks up into its constituent proteins.

A reaction is represented by a solid line with an arrow. The type of reaction is given by the

arity of the arc (e.g. an arc with arity N → 1 is a complexation reaction). X/Y denotes a complex

of X and Y .

Reaction Example Arity

Production ∅	
 X	
 0→ 1

Degradation X	
 ∅	
 1→ 0

Transformation X	
 Y	
 1→ 1

Complexation

X	

Y	

X/Y	
 N → 1

Decomplexation
X	

Y	

X/Y	
 1→ N

Enzyme An enzyme is a protein that increases the rate of a reaction (the enzyme catalyses the

reaction). The substrate binds to the enzyme’s active site which lowers the energy required for

the reaction. An enzyme is represented by a dashed arrow from the enzyme to the reaction (this

is called an enzymatic arc). There is sometimes more than one enzyme for a reaction. We use

the following abstraction. If the text “OR” is between the enzymatic arcs then, if any enzyme is

present, the rate of the reaction increases. Otherwise, the text “AND” is between the arcs and all

enzymes are required to be present.

Inhibitor An inhibitor is a protein that decreases the rate of a reaction by binding to and blocking

the enzyme’s active site. An inhibitor is represented by a solid line with a blunt end from the

inhibitor to the reaction (this is called an inhibitory arc).

2.1 Biological principles and graphical notation 8

X	

E	

Y	
 X	

E1	

Y	

E2	

OR	

X	

E1	

Y	

E2	

AND	

X	

I	

Y	

Active protein A protein can be active, meaning that a particular function has been enabled.

A group of atoms can be added to a particular site on a protein that changes the structure, and

therefore the function, of the protein. Phosphorylation is the addition of a phosphate group to a

protein that is common in cellular signalling. Dephosphorylation is the removal of a phosphate

group from a protein. Typically, but not always, phosphorylation activates a protein and dephos-

phorylation deactivates a protein. In this thesis we often only distinguish between inactive and

active proteins rather than the various mechanisms by which a protein changes state. An active

protein is decorated with ∗.

X	
 Ac%ve	
 Protein	
 *	

Gene A gene is a segment of genomic DNA that can be expressed to create a specific protein

(this process is called gene expression). A gene is represented by an oval with “Gene” followed by

the name of the gene inside. Gene expression is represented by an arrow from a gene to a protein

with the same name as the gene.

Transcription factor A transcription factor is a protein that regulates (controls the rate of) gene

expression. A transcription factor has an enzymatic or inhibitory arc to a gene expression reac-

tion, either up-regulating or down-regulating gene expression respectively. Like other proteins,

transcription factors may need to be activated to enable their function.

Ligand A ligand is a biochemical signal, of which there are many types.

Receptor A receptor is a molecule that binds to a ligand.

2.1 Biological principles and graphical notation 9

Gene	
 X	
 X	

Ligand-receptor binding Ligand-receptor binding is represented as a complexation reaction of

the ligand and receptor, represented as proteins, forming a complex where the receptor protein is

said to have been activated.

If the process of ligand-receptor binding is not of importance to the diagram, ligand-receptor

binding can be represented in an alternative manner. A receptor is represented by a rectangle with

a concave edge with the ligand, represented as a circle, next to it. The names of the receptor and

ligand are either inside or beside the receptor or ligand respectively.

L	

R	
 *	

R	

R	

L	

Cellular locations Of the several locations in a typical cell, we refer mainly to four locations.

• Environment: the space outside the cell, containing the ligands.

• Cell membrane: the space between the environment and the inside of the cell, typically

containing the receptors.

• Cytoplasm: the space inside the cell (excluding the nucleus) and where many of the protein

reactions occur.

• Nucleus: the space inside the cell that contains the genes.

Translocation is the movement of a molecule between locations, e.g. a transcription factor

gets activated in the cytoplasm and then translocates to the nucleus to regulate gene expression.

Translocation is represented by a reaction from a protein in one location to the same protein in a

different location.

Biochemical species A biochemical species is a type of molecule in a biochemical system, e.g.

protein X, active protein Y or receptor Z.

2.2 Systems biology 10

Cell	
 membrane	

Nucleus	

Environment	

Cytoplasm	

Gene	
 A	
 A	

TF	
 TF	
 *	

X	
 X	
 *	

R	

L	

2.2 Systems biology

Systems biology [68, 108] is fast emerging as the new approach to understand the complex be-

haviour of biological systems by analysing the interaction of numerous components of the sys-

tem simultaneously. The success of systems biology is made possible by advances both in high-

throughput laboratory techniques [5] and computational modelling and analysis [84].

There are several areas of study in systems biology, including:

• Cellular metabolism (e.g. [39]), the network of reactions that consume and produce bio-

chemical species which are essential to maintain life.

• Genetic regulation (e.g. [73]), the network of interactions between proteins and segments of

DNA/RNA that control the rate of gene expression.

• Cellular signalling (e.g. [8]), the network of reactions that govern how a cell responds to

signals.

In this thesis we focus on cellular signalling.

2.3 Cellular signalling

Cellular signalling is the mechanism by which cells communicate with other cells and detect and

respond to the environment. A cell detects a ligand by the ligand binding to one of the cell’s

receptors. This initiates a series of reactions within the cell, eventually causing a cellular response

2.4 Signalling pathways 11

to the ligand. Typical cellular responses include proliferation (increase in the number of cells),

apoptosis (cell death) and cellular differentiation (changing cell type).

The cellular responses are governed by a large, complex network of reactions called a sig-

nalling network. Biologists study signalling networks by measuring the change in concentration

of several biochemical species in a cell (typically proteins and their activated form) after being

treated with a ligand, to infer the reactions that cause the cellular response. For example, in [5]

a high-throughput technique is used to analyse 518 protein interactions under various signalling

conditions to infer the reactions that cause the cellular response. By repeating these experiments

while inhibiting proteins that are thought to be important in generating the cellular response, bi-

ologists can validate their hypotheses. These hypotheses are often communicated using informal

diagrams that we call biological cartoons. A biological cartoon depicting a signalling network is

shown in Figure 2.1.

Because signalling networks are large and complex, the study of cellular signalling is often

based on an abstraction to signalling pathways and cross-talk. We summarise the basic concepts

of a signalling network, signalling pathways and cross-talk below.

• Signalling network: a large, complex network of biochemical reactions that generate

cellular responses to ligands.

• Signalling pathway: the biochemical reactions that generate the cellular response for one

type of signal.

• Cross-talk: the interaction between two or more signalling pathways.

We now explore the concepts of signalling pathways and cross-talk further.

2.4 Signalling pathways

A signalling pathway2 is an abstraction used by biologists. We focus on the most common usage

of the term signalling pathway, the biochemical reactions that generate the cellular response for

one type of signal. There are a number of well-known signalling pathways, e.g. the Egf and Ngf

pathways [8], the Interferon pathway [89] and the Integrin pathway [98].

The basic outline of a pathway is as follows. A ligand is detected by binding to one of the

cell’s receptors. A receptor is typically located on the cell membrane. Some receptors (called

intracellular receptors) exist within the cytoplasm and detect ligands that have passed through the
2often shortened to pathway

2.4 Signalling pathways 12

Figure 2.1: A biological cartoon of a signalling network. Figure reproduced from [75].

2.4 Signalling pathways 13

cell membrane [65]. Ligand-receptor binding initiates a series of reactions within the cell. These

reactions are often enzyme-driven complexation, decomplexation, phosphorylation or dephospho-

rylation reactions, and cause a change in the activity of proteins and ultimately transcription fac-

tors. The activity of the transcription factors affects the rate of gene expression and causes the

cellular response. An example basic pathway is shown in Figure 2.2.

Protein activation reactions are sometimes arranged in a signalling cascade in which an active

protein is the enzyme for the activation reaction of another type of protein, and so on. The number

of activation reactions involved in the cascade is the number of stages, hence a 3-stage cascade

is the activation of protein X, that is an enzyme for the activation of protein Y, that is an enzyme

for the activation of protein Z. The effect of the signalling cascade is to amplify the response to a

small amount of signal. An example of a 3-stage cascade is shown in Figure 2.2.

Gene	
 A	
 A	

TF	
 TF	
 *	

X	
 X	
 *	

R	

L	

Gene	
 A	
 A	

TF	
 TF	
 *	

X	
 X	
 *	

Y	
 Y	
 *	

Z	
 Z	
 *	

R	

L	

Figure 2.2: (left) a basic signalling pathway. (right) a signalling pathway including a 3-stage
cascade.

The reactions that comprise a pathway were first thought to be a linear chain of reactions.

However, more recently, detailed understanding of these pathways shows that they are nonlinear

[104]. The reactions can diverge and the products of the reactions can catalyse or inhibit other

reactions, perhaps forming a feedback or feedforward loop. This is illustrated further in Figure

2.3.

Signal flow [36] (also called signal propagation [20] or signal transduction [49]) is a term used

by biologists for the reactions starting from the cell detecting a ligand and ending in a change in

some output(s), e.g. protein activation, transcription factor activation or gene expression. The rate

of signal flow is some measure of how fast these reactions are.

We note that signalling pathways are a human abstraction. Although there is a well-known set

2.5 Cross-talk 14

a) Linear

Ligand

Receptor

Response

b) Divergent

Ligand

Receptor

Response Response

c) Network

Ligand

Receptor

Response Response Response

Figure 2.3: Signalling pathways were first thought to be a) linear, then b) divergent, and now c)
nonlinear. Note that c) contains an inhibitory feedback loop in which the product of one reaction
inhibits the receptor. Figure reproduced from [104].

of pathways, there is a lack of rigorous definitions of what constitutes a single pathway—it is an

inexact process to define the boundaries between pathways. There are several signalling pathways

in the signalling network cartoon in Figure 2.1, including the Egf, Tnf and Wnt pathways. The

exact boundaries between these pathways are unclear.

The term signalling pathway is used in two other ways that we call protein- and response-

centric pathways.

Protein-centric pathways There are several signalling pathways whose focus is explaining

the activity of a protein. For example, the NF-κB pathway [34] and the MAPK/Erk pathway

[92] contain the signalling reactions that affect the activity of the NF-κB and MAPK/Erk proteins

respectively.

Response-centric pathways There are several signalling pathways whose focus is explaining

a cellular response. For example, apoptosis pathway [22] contains the signalling reactions that

affect the apoptosis response.

These pathways attempt to explain the activity of a protein or a cellular response rather than

the cellular response to a single type of ligand. These pathways are more likely to overlap and

the ligands that affect the protein/response are often different depending on the biologist and data.

Therefore, they are not a basic unit of study in cellular signalling and we do not focus on these

pathways in this thesis.

2.5 Cross-talk

The term cross-talk was first applied to electronic circuits to describe a signal in one circuit having

an undesired effect on another circuit [18]. Cross-talk in this setting is a design flaw: the electronic

2.5 Cross-talk 15

circuit has been specified and built, and has resulted in an undesired interaction between signals

called “signal interference.”

In biology, cross-talk is an interaction between two or more signalling pathways in a cell

[98]. An example of cross-talk is given in Figure 2.4. Cross-talk can sometimes result in signal

interference, such as the oncogenic positive feedback loop formed by cross-talk in [67]. Most

often, however, cross-talk is the normal interaction between pathways.

X	
 X	
 *	
 Y	
 Y	
 *	

Z	
 Z	
 *	

OR	

Gene	
 A	
 A	

TF	
 TF	
 *	

R1	

L1	

R2	

L2	

Figure 2.4: An example of cross-talk: both pathways can activate protein Z.

We now give several examples of cross-talk. The Integrin pathway can increase the rate of sig-

nal flow through growth factor pathways [98]. There is cross-talk between the signalling pathways

in [67]; however, the effect is delayed because the protein involved has first to be expressed from

the gene. Growth factor pathways can enhance the expression of estrogen receptors and also ac-

tivate the receptor in absence of the estrogen ligand [65]. Several pathways can affect the activity

of a transcription factor, e.g. the activity of the NF-κB transcription factor is controlled by several

pathways [32].

Cross-talk accounts for many of the complex dynamics exhibited by cellular signalling, some

of which are as follows.

• Multi-signal responses: cross-talk allows certain cellular responses to be decided by sev-

eral signals, e.g. apoptosis is decided by both pro- and anti-apoptotic signals [63].

• Signal multi-response: cross-talk allows certain signals to produce multiple responses by

interacting with other pathways, e.g. [17, 101].

• Signalling history: cross-talk allows certain cellular responses to be dependent on the

2.5 Cross-talk 16

signalling history of the cell, e.g. [64].

• Protein reuse: cross-talk allows different pathways to propagate their signal through one

or more of the same proteins, e.g. [76].

The process of discovering cross-talk between two pathways involves measuring the cellular

response to the two ligands independently and then in combination. There is cross-talk if the

cellular response to the combination of ligands is fundamentally unpredictable from the responses

to other combinations.

Note that the term cross-talk is sometimes applied to two cells interacting using ligands [38].

This is often considered a misnomer within the biological community—the interaction is between

two cells and therefore is more suited to the term (intercellular) communication. On the other hand,

communication within the same cell using ligands, called (intracellular) communication [99], can

more reasonably be termed cross-talk. Cross-talk can also be applied to pathways other than

signalling pathways, such as the interaction between regulatory and metabolic pathways [72];

however, this use is much less common.

Signal

Response

Cross-talk

a b c d

B

BB

BA A A AMA

Figure 2.5: Three types of cross-talk. a) components of A and B interact, b) components of A are
enzymatic or transcriptional targets of B, and c) pathways compete for the key molecule M. Figure
reproduced from [50].

Given the variety of cross-talk scenarios outlined above, it is surprising that there is little

discussion of types of cross-talk. To our knowledge there are only two papers that discuss cross-

talk types, three types are given in [50] (shown in Figure 2.5) and four types are alluded to in [81],

but are not made specific. There is no universal categorisation.

2.6 Summary 17

2.6 Summary

In this chapter we introduced the biological background for this thesis. In Section 2.1 we gave

basic biological principles and related graphical notation. Section 2.2 gave an overview of the

research area of systems biology and Section 2.3 introduced cellular signalling, an important area

of study within systems biology. In Section 2.4 and Section 2.5 we explored the concepts of

signalling pathways and cross-talk respectively. An important finding was that cross-talk is a rather

informal notion and there is a lack of rigorous definitions of what constitutes a single signalling

pathway.

In the next chapter we give the fundamental computational concepts we will employ in this

thesis.

Chapter 3

Computational background

In this chapter we introduce the fundamental computational concepts used in this thesis.

In Section 3.1 we define continuous time Markov chains and show how they can be be used

to model an example biological system. Section 3.2 gives an overview of temporal logic prop-

erties and model checking, which we will use to verify properties of Markov chains. In Section

3.3 we define Petri nets and show how they can be used to model the same example biological

system. Section 3.4 and Section 3.5 describe the dynamic and steady-state behaviour of Petri nets

respectively.

3.1 Continuous time Markov chains

We largely follow the continuous time Markov chain notation of Kwiatkowska et al. [70].

Definition 1 (CTMC). A continuous time Markov chain (CTMC) is a tuple (S , s0,R, L) where

• S is a finite set of states

• s0 is the initial state

• R : S × S → R≥0 is the rate matrix, and

• L : S → 2AP is a labelling of states with a finite set of atomic propositions AP that are true.

There is said to be a transition t from s to s′, written s →t s′, if R(s, s′) > 0. The rate of the

transition is R(s, s′). If there is more than one transition from a state s then there is a race between

the transitions. The probability that a transition from s to s′ completes within t time units is drawn

from the probability distribution 1− e−R(s,s′) · t. S is the set of states that can be reached by zero or

more transitions from the initial state.

18

3.1 Continuous time Markov chains 19

We can build a CTMC that represents the behaviour of a biological system as follows. The

discrete set of states in a CTMC represent the possible configurations of a system, in this case each

biochemical species is mapped to a value that represents the level of the species in the state. In

the following we use reactions with stoichiometry 1 only. A transition between states represents a

reaction that is possible, the difference in the level of each species between the states is governed

by the reaction. The continuous time value in the CTMC denotes the time at which each reaction

occurs.

In a CTMC with levels [25] the amount of each biochemical species is characterised by a

concentration range that is discretised uniformly into N levels where N ≥ 1. Hence, if we choose

N = 3 then a species X can have four values X = 0, X = 1, X = 2 and X = 3. We could also

choose N = 1, therefore a species is considered present (X = 1) or absent (X = 0).

A CTMC with levels is given diagrammatically as follows. Each state is represented by an

ellipse, the initial state indicated by an ellipse with a thick line. The amount of each biochemical

species in the state is shown inside the ellipse. If N > 1 then we explicitly give the amount of each

species, e.g. X = 2, otherwise we give only the species that are present, e.g. X. Each transition is

a directed arc from one state to another, labelled with the rate of the transition.

Example 1 Modelling a biological system as a CTMC with levels.

Consider the biological system depicted in Figure 3.1.

A	

G	

X	

B	

F	

Y	

OR	

Figure 3.1: A biological system in which protein B or protein Y can enable protein F turning into
protein G.

We model the biological system using a CTMC with levels (S , s0,R, L) with N = 1 as follows.

There are 7 states in this model, S = {s0, s1, s2, s3, s4, s5, s6}.

We now compute the labelling L of the states in S . Because N = 1 we label the states with

only the species that are present. The species that are present in the initial state s0 are indicated by

the shaded ellipses in Figure 3.1. The initial state is labelled as follows.

3.1 Continuous time Markov chains 20

s0 → {A, X, F}

The labelling of subsequent states is found following transitions from the initial state. From

the initial state the transition that turns A into B reaches a new state s1. Then, from this state the

transition that turns X into Y reaches a new state s4. And so on.

s1 → {B, X, F}

s2 → {A,Y, F}

s3 → {B, X,G}

s4 → {B,Y, F}

s5 → {A,Y,G}

s6 → {B,Y,G}

The rate matrix of the transitions between states is as follows. For simplicity we assume unit

reaction rates, hence each reaction has a rate of either 1 (possible) or 0 (impossible).

R =



s0 s1 s2 s3 s4 s5 s6

s0 0 1 1 0 0 0 0

s1 0 0 0 1 1 0 0

s2 0 0 0 0 1 1 0

s3 0 0 0 0 0 0 1

s4 0 0 0 0 0 0 1

s5 0 0 0 0 0 0 1

s6 0 0 0 0 0 0 0


The CMTC with levels model of the biological system is shown in Figure 3.2.

1	

1	

1	

1	
 1	
 1	

1	

A	
 X	
 F	

B	
 X	
 G	

B	
 X	
 F	
 A	
 Y	
 F	

A	
 Y	
 G	
 B	
 Y	
 F	

B	
 Y	
 G	

1	
 1	

Figure 3.2: The CMTC with levels model of the biological system from Figure 3.1.

The PRISM modelling language [70, 71] is a state-based modelling language based on the

3.2 Model checking 21

Reactive Modules formalism [1]. The language can be used to define CTMCs with levels. We use

the PRISM modelling language in Chapter 5.

3.2 Model checking

A model checker is a programme that takes as input a discrete state model and a property and

returns whether, or the probability that, the model satisfies the property.

Explicit state model checking [27] checks properties against a model by searching, from the

initial state s0, the states S that can be reached. However, as the number of components in a

model grows, the number of states in S can grow exponentially. Explicit state model checking can

quickly become infeasible for non-trivial models. Two different approaches are used to overcome

this limitation.

• Partial order reduction: reduces the size of the state space by considering a subset of the

different orders in which concurrent transitions can execute [69].

• Symbolic model checking: instead of enumerating the full state space, symbolic model

checking considers large numbers of states at a single step by representing sets of states as

formulae [9], e.g. A > 0 is the set of states in which the value of A is greater than 0.

The background of partial order reduction is covered in more detail in Section 3.4 where we

explore state space searching in the context of Petri nets.

3.2.1 Temporal logics

A model checker checks properties expressed in a temporal logic. We refer to safety properties

(“bad” properties that are to be avoided) and liveness properties (“good” properties that capture

required functionality). We give a brief overview of two temporal logics: Computational Tree

Logic and Continuous Stochastic Logic. The latter is a quantitative extension of the former with

probabilities and timing.

Computational Tree Logic Computational Tree Logic (CTL) [27] is a qualitative logic. Prop-

erties expressed in CTL can be used to reason about whether a behaviour is possible, impossible

or inevitable.

An Atomic Proposition (AP) is a formula in propositional logic that can be evaluated to a

boolean value for a state in a Markov chain. An AP may compare combinations of variables in a

3.2 Model checking 22

Path quantifiers:
Universal A all paths from the state
Existential E at least one path from the state
Temporal operators:
Next X φ φ holds in the next state
Until φ1 U φ2 φ1 holds in every state before φ2

Finally F φ φ holds in some future state
Globally G φ φ holds in every state

Table 3.1: The definition of the path quantifiers and temporal operators.

Markov chain and constant values, using equalities and inequalities =, <, ≤, etc. The arithmetic

operations +, −, ∗ and / may be applied to any combination of variables and constant values.

Given variables X, Y and Z, examples of APs are: (X = 1), (X > 0) and (2 ∗ X > Y + Z).

A path through a CTMC is a (possibly infinite) sequence of states s0, s1, . . . such that s0 →t1

s1 →t2 s2 → . . . where si−1 →ti si denotes the transition from si−1 to si by transition ti. A path is

not necessarily from the initial state of a model.

A CTL formula φ is defined as follows:

φ ::= AP | ¬ φ | φ∧φ | φ∨φ | A X φ | E X φ | A φ U φ | E φ U φ | A F φ | E F φ | A G φ | E G φ

where ¬, ∧ and ∨ denote “not,” “and” and “or” respectively. The definitions of the path

quantifiers A and E, and temporal operators X, U, F and G are given in Table 3.1.

We also use the non-standard filter construct φ { ψ } as implemented by PRISM. A filter allows

a property φ to be checked from a state other than the initial state of the Markov chain, in this case

a state that satisfies ψ where ψ ::= AP | ¬ ψ | ψ ∧ ψ | ψ ∨ ψ.

Continuous Stochastic Logic Continuous Stochastic Logic (CSL) [4] is the quantitative exten-

sion of CTL with probabilities and continuous time. Properties expressed in CSL can be used to

reason about the time at which events occur and the probability of a behaviour.

In CSL the path quantifiers A and E are replaced with the probability operator P./x where

x ∈ [0..1] and ./∈ {>,≥, <,≤}. The quantifier A is equivalent to P≥1 and E is equivalent to P>0.

The probability of a formula can be returned in the PRISM model checker using P=?.

Temporal operators can have a time bound thus F≤10 φ expresses φ must become true within

10 time units.

Example 2 Temporal logic properties.

The following temporal logic properties are true in the CTMC with levels from Example 1.

• Property: “it is possible that at all times either X or Y are present”

3.3 Petri nets 23

CSL: P>0 [G (X = 1 ∨ Y = 1)]

CTL: E [G (X = 1 ∨ Y = 1)]

• Property: “it is not possible that G is never present”

CSL: P≤0 [¬ F (G = 1)]

CTL: ¬E [¬ F (G = 1)]

• Property: “it is inevitable that G will become present”

CSL: P≥1 [F (G = 1)]

CTL: A [F (G = 1)]

• Property: “it is possible that G is present within 1.5 time units”

CSL: P>0 [F≤1.5 (G = 1)]

CTL: no CTL equivalent

• Query: “what is the probability that B is present before Y?”

CSL: P=? [F (B = 1 ∧ Y = 0)]

CTL: no CTL equivalent

The PRISM model checker [70, 71] is a popular tool that can check CTL and CSL properties

against PRISM models. We employ the PRISM model checker to check properties of CTMCs

with levels in Chapter 5.

3.3 Petri nets

We largely follow the Petri net notation of Heiner et al. [55].

Definition 2 (Petri net). A Petri net, or net for short, is a tupleM = (T, P, f ,m0). P is a finite set

of places and T is a finite set of transitions such that P ∩ T = ∅. f is the set of (nonnegatively)

weighted directed arcs between places and transitions, f : ((P× T)∪ (T × P))→ N. m is a state1,

an assignment of places to a number of tokens m : P → N, where m0 is the initial state. The

number of tokens on a place p ∈ P in a state m is m(p).

The set of pre- and post-places of a transition t is •t = {p ∈ P | f (p, t) > 0} and t• = {p ∈

P | f (t, p) > 0} respectively. Likewise the set of pre- and post-transitions of a place p is •p = {t ∈

T | f (t, p) > 0} and p• = {t ∈ T | f (p, t) > 0} respectively.
1the Petri net community use the term marking, however to be consistent with other chapters, we use the term state

3.3 Petri nets 24

We can represent a biological system using a Petri net as follows. Biochemical species are

places and reactions are transitions. Reactions change the number of tokens on a set of places (the

amount of a set of biochemical species). An enzyme in a Petri net is a place that is both a pre- and

post-place of a transition.

It is possible to express that multiple tokens are consumed/produced from a place in a transition

using an arc with a weight > 1, however in this thesis we only consider arcs with weight 0 or 1.

A Petri net is represented graphically by circles (places), rectangles (transitions), arcs with

arrows (directed arcs), and dots or numbers within places (tokens). We use the shortcut of a

dashed directed arc from the enzyme to the transition instead of an arc directed in both directions

(a bidirectional arc)—we call this an enzymatic edge or enzymatic arc.

In standard Petri net notation there is no explicit notion of inhibition, i.e there are no inhibitory

arcs between a place and transition. Inhibitors are modelled by including the exact mechanism

that causes inhibition, e.g. the inhibitor and protein bind to form an inactive complex.

We show how the Petri net notation differs from biological notation by reproducing the bio-

logical system from Figure 3.1 as a Petri net in Figure 3.3.

A

Y

X

F G

r3

r1 r2

r4

B

Figure 3.3: A Petri net model of the biological system from Figure 3.1.

Pathway Logic [103] is a framework for modelling biological systems. At the heart of Path-

way Logic is a “knowledge base” of biochemical reactions from which Petri net models can be

generated. We explore the analysis of Petri net models from Pathway Logic further in Chapter 6.

3.4 Dynamic behaviour of Petri nets 25

3.4 Dynamic behaviour of Petri nets

The dynamic behaviour of a Petri net is defined by the firing of transitions in T . A transition t is

enabled in a state m, written m →t, if ∀p ∈ •t . m(p) ≥ f (p, t). If a transition t is not enabled then

it is disabled, written m9t. A transition t that is enabled in m may fire to produce a new state m′,

written m→t m′ where ∀p ∈ P . m′(p) = m(p) − f (p, t) + f (t, p).

Definition 3 (Execution). An execution from m reaching m′, written R ` m → m′, is a sequence

of transitions R = t1, . . . , tn where m →t1 m1 . . . →tn m′. We also use the shorthand notation

m→t1, ..., tn m′ for the execution of a sequence of transitions.

Definition 4 (Reachable state). A reachable state in a Petri net is the initial state m0 or a state m′

that is reachable by an execution from the initial state, R ` m0 → m′.

Note, the following definition uses multisets which are defined in Appendix A.

Definition 5 (Path). A path R from m reaching m′, written R ` m{ m′, is a multiset representation

of an execution R such that R ` m→ m′.

To reiterate, an execution R is a sequence of transitions whereas a path R is a multiset of

transitions. This distinction will be important later.

From some state m, an execution R of R is an ordering of the transitions in R such that R `

m→ m′.

The analysis of the dynamic behaviour of a Petri net is concerned with computing and studying

(at least some of) the executions of a system. The dynamic behaviour of cellular signalling models

is important because biologists are interested in the transient changes within the cell that lead to

the response.

We give an example of the dynamic behaviour of a Petri net in Figure 3.4.

An important concept concerning the dynamic behaviour of a Petri net is the state space.

Definition 6 (State space). The state space of a Petri net (T, P, f ,m0) is the set of reachable states,

i.e. the states that can be reached by any execution from m0.

A Petri net is k-bounded (has a finite set of reachable states) if there is some k ≥ 0 such that

no place in the net can have more than k tokens. If the Petri net is k-bounded then the state space

is finite and can be given diagrammatically.

The state space is given diagrammatically in a similar manner to a CTMC. Each reachable

state is represented by an ellipse, the initial state is indicated by an ellipse with a thick line. The

3.4 Dynamic behaviour of Petri nets 26

(1)	
 (2)	

(3)	
 (4)	

A

Y

X

F G

B

r3

r1 r2

r4

A

Y

X

F G

B

r3

r1 r2

r4

A

Y

X

F G

B

r3

r1 r2

r4

A

Y

X

F G

B

r3

r1 r2

r4

Figure 3.4: An execution of the Petri net from Figure 3.1. This execution is the sequence R =

r1, r3, r2 and the path R = {r1, r2, r3}.

3.4 Dynamic behaviour of Petri nets 27

number of tokens on each place is shown inside the ellipse. If the net is k-bounded where k = 1

then we give only the places that have a token, e.g. X, otherwise we explicitly give the number

of tokens on each place, e.g. X = 2. There is an arc labelled t between a pair of reachable states

(m1,m2) if m1 →t m2.

The state space can be searched using breadth-first search (BFS) or depth-first search (DFS).

An overview of the difference between BFS and DFS is given in Appendix B. In this thesis we are

interested in BFS for reasons that will become clear in Chapter 6.

Definition 7 (State space search). The state space of a Petri netM = (T, P, f ,m0) can be searched

with BFS or DFS using either algorithm below. This is called the full state space search because

all states are searched.

Breadth-first search

The set of seen states S = ∅

Add initial state m0 to the queue Q
while Q is not empty do

Remove state m from the front of Q
Fire all enabled transitions in state m to
produce states M = {m1, . . . , mn}

Add M \ S to the back of Q
Add M to S

end while

Depth-first search

Add initial state m0 to the stack S
while S is not empty do

Remove state m from the top of S
Fire all enabled transitions in state m to
produce states M = {m1, . . . , mn}

Add M \ S to the top of S
end while

Example 3 Example of a (BFS) state space search.

We show how the state space of the Petri net in Figure 3.3 is searched with BFS from the initial

state AXF (i.e. places A, X and F are marked).

The algorithm searches the state space as follows.

Queue: AXF

Seen states: {AXF}

AXF - Transitions r1 and r2 can be fired producing two states, BXF and AYF respectively.

Queue: BXF, AYF

Seen states: {AXF, BXF, AYF}

BXF - Transitions r2 and r3 can be fired producing two states, BYF and BXG respectively.

3.4 Dynamic behaviour of Petri nets 28

Queue: AYF, BXG, BYF

Seen states: {AXF, BXF, AYF, BXG, BYF}

AYF - Transitions r1 and r4 can be fired producing two states, BYF and AYG respectively. State

BYF has already been seen, so it is not added to the queue.

Queue: BXG, BYF, AYG

Seen states: {AXF, BXF, AYF, BXG, BYF, AYG}

BXG - Transition r2 can be fired producing state BYG.

Queue: BYF, AYG, BYG

Seen states: {AXF, BXF, AYF, BXG, BYF, AYG, BYG}

BYF - Transitions r3 and r4 can be fired producing the same state BYG. State BYG has already

been seen, so it is not added to the queue.

Queue: AYG, BYG

Seen states: {AXF, BXF, AYF, BXG, BYF, AYG, BYG}

AYG - Transition r1 can be fired producing the state BYG. State BYG has already been seen,

so it is not added to the queue.

Queue: BYG

Seen states: {AXF, BXF, AYF, BXG, BYF, AYG, BYG}

BYG - No enabled transitions and the queue is empty, therefore the search terminates.

Queue: empty

Seen states: {AXF, BXF, AYF, BXG, BYF, AYG, BYG}

The state space that was searched is given in Figure 3.5.

As the number of components in the Petri net grows, the size of the state space can grow

exponentially. To combat this growth, we can employ a reduced state space search using a suitable

partial order reduction algorithm. Partial order reduction [69] removes many of the states that are

produced when firing different orders of a set of concurrent transitions. In other words, a set of

transitions may be fired in many orders but to answer some questions, only a subset of these orders

3.5 Steady-state behaviour of Petri nets 29

r1	

r1	

r2	

r2	
 r3	
 r4	

r3	
 r4	

A	
 X	
 F	

B	
 X	
 G	

B	
 X	
 F	
 A	
 Y	
 F	

A	
 Y	
 G	
 B	
 Y	
 F	

B	
 Y	
 G	

r2	
 r1	

Figure 3.5: The searched state space of the Petri net in Figure 3.3.

need to be explored. Different partial order reduction algorithms guarantee different properties of

the reduced state space search, from preserving deadlock states (states with no enabled transitions)

to verifying a CTL∗-X (CTL∗ without the Next operator) property.

Definition 8 (Reduced state space search). The reduced state space of a Petri netM = (T, P, f ,m0)

can be searched with BFS or DFS by firing a subset of the enabled transitions at each state. The

subset is chosen using a suitable partial order reduction algorithm.

There are three classes of partial order reduction algorithms: stubborn sets [69], persistent

sets [46] and ample sets [87]. We explore reduced state space search algorithms in Chapter 7.

3.5 Steady-state behaviour of Petri nets

A Petri net exhibits steady-state behaviour when an equilibrium is reached despite ongoing pro-

cesses that attempt to change the system. A simple example to illustrate steady-state behaviour is

that of a bathtub with an inflow of water from the tap and an outflow of water from the drain. The

bathtub is initially empty, but given suitable rates of inflow and outflow, the volume of water in the

bathtub after some time will be constant—a steady-state will be reached.

Place and transition invariants formalise the steady-state behaviour of Petri nets.

Definition 9 (Incidence matrix). The incidence matrix (also called the stoichiometric matrix) of

a Petri net (T, P, f ,m0) is a matrix C : P × T → Z, indexed by P and T , such that C(p, t) =

f (t, p) − f (p, t). Hence, C(p, t) is the change in the number of tokens on p by firing t.

Definition 10 (P invariant). A P invariant is a place vector x : P → Z such that x is a nontrivial

nonnegative integer solution of x · C = 0. The weighted sum of the tokens on the places in a P

invariant is constant while firing any sequence of transitions (i.e. the places are mass conserving).

3.5 Steady-state behaviour of Petri nets 30

Definition 11 (T invariant). A T invariant is a transition vector y : T → Z such that y is a nontrivial

nonnegative integer solution of C · y = 0. Given some state (not necessarily reachable), the

sequential firing of the transitions in a T invariant reproduces the state (i.e. cyclic behaviour). For

a T invariant y, there is an execution R (an ordering of the transitions in y) such that R ` m → m

for some m.

We treat P and T invariants more conveniently as multisets rather than vectors. For example,

the T invariant t1 → 1, t2 → 2, t3 → 1 is treated as the multiset {t1, 2 ∗ t2, t3}.

The support of an invariant x is the set of nodes corresponding to the nonzero entries of x,

written supp(x). An invariant x is minimal if there is no invariant z such that supp(z) ⊂ supp(x)

and the greatest common divisor of all nonzero entries of x is 1.

The minimal P invariants and T invariants in a Petri net are computed by enumerating all

minimal nontrivial nonnegative integer solutions of x · C = 0 and C · y = 0 respectively. In the

following text we consider only minimal invariants and often omit the word minimal.

A Petri net is guaranteed to be k-bounded if all places belong to at least one minimal P invariant

(i.e. all places are mass conserving).

We now give an example of P and T invariants.

Example 4 Example of P and T invariants.

We compute the set of P and T invariants in the Petri net in Figure 3.6. Notice that the Petri

net contains no tokens—this is because P and T invariants are independent of the state.

p1

p6

p2 p4

p3

p5

t1 t4

t2
t3

Figure 3.6: A toy Petri net used to illustrate P and T invariants.

3.5 Steady-state behaviour of Petri nets 31

P invariants: T invariants:

{p1, p2} {t1, t2, t3, t4}

{p2, p3, p4, p6}

{p4, p5}
The P invariants are multisets of places such that the weighted sum of the tokens on the places

is always the same regardless of which transitions are fired, e.g. the sum of the tokens on p1 and

p2 is always the same. The T invariant is a multiset of transitions such that firing the transitions in

some order reaches the same state, e.g. from any state, firing transitions t1, t2, t3 and t4 reaches

the same state.

Flux Balance Analysis (FBA) [83] is a form of steady-state analysis that is commonly applied

to metabolic systems.2 Given an m × r incidence matrix C of a Petri net, FBA is concerned

with analysing solutions V to C · V = 0 where V is a r × 1 vector of real-value flux levels.

Solutions V are constrained such that for at least one element vi in V , vi ≥ 0. vi ≥ 0 says that

transition (reaction) i can consume substrates and produce products, but cannot produce substrates

and consume products.

There is a constant flow in metabolic systems. Any metabolite that is not produced from other

metabolites has a metabolic uptake reaction (a reaction that can produce an unlimited number of

tokens for that metabolite). Similarly, any metabolite that does not turn into another metabolite

has a metabolic secretion reaction (a reaction that can consume an unlimited number of tokens).

FBA requires two transformations to the metabolic network model in order to produce correct

results.

1. Transitions arranged in a cycle in a metabolic network cause problems for FBA, leading to

unrealisable or non-robust solutions. Two possible solutions would be to either selectively

break the cycles (by hand) or to introduce an additional objective function in the FBA, i.e.

to minimise the total flux through the system given that the primary objective is optimised

already. In the latter case, all futile cycles would be guaranteed to carry zero flux in the

optimal flux distribution

2. A reaction that both produces and consumes a metabolite must be replaced by a pair of

reactions.

Finite descriptions of the solution space of C · V = 0 are important for analysis [85]. An

example is the set of elementary modes, M = {V1, ...,Vk}, which are the real-value counterpart to
2Although FBA is a generic technique, in this chapter we give it in the context of Petri nets.

3.6 Summary 32

minimal T invariants (which are integer solutions of the same equation). The set of elementary

modes M has the following properties. Any solution V is a positive linear combination of vectors

in M. Each Vi ∈ M is a maximally zero solution (the same minimality condition for minimal T

invariants). Finally, every maximally zero solution is in M.

We use T invariant analysis of Petri nets in Chapter 6.

3.6 Summary

In this chapter we introduced the two fundamental computational concepts for this thesis. The

first paradigm was continuous time Markov chains in Section 3.1 and in Section 3.2 we discussed

model checking of these models. The second paradigm was Petri nets in Section 3.3. In Section

3.4 and Section 3.5 we described the dynamic and steady-state behaviour of Petri nets respectively

and introduced the concepts of P and T invariants.

In the next chapter we review how computational techniques have been applied to model and

analyse biological systems.

Chapter 4

Related work

In this chapter we review the application of various computational techniques to model and analyse

biological systems.

We start in Section 4.1 with an overview of how models of biological systems are created. In

Section 4.2 we give two important, broad categories of models, mathematical and computational

models, and another important distinction, qualitative vs. quantitative models. Next we explore

the analysis of biological models, with dynamic analysis in Section 4.3 and with steady-state

analysis in Section 4.4. Finally, we review the application of modelling and analysis techniques to

biological cross-talk in Section 4.5 and to non-biological cross-talk in Section 4.6.

4.1 Biological models

The role and importance of computational modelling in systems biology is now well-established.

The complexity of biological systems, as well as the volume of experimental data generated to

capture this complexity, means that models are crucial. Models are used to generate new insight

into biological systems, answering questions such as how they work, why they do not work and

what is the response to system perturbations such as drugs.

Examples of how models are created are given in [23] and [84]. Models of biological systems

comprise two main parts, the structure and the parameters. The structure is the set of reactions

and the parameters are the values used in the reactions such as initial concentrations and reaction

rates.

The structure of a model of a biological system can be inferred by measuring how the con-

centration of certain biochemical species changes over time. An intuitive toy example is that of

three proteins, X, Y and Z. If we observe that the concentration of protein X is decreasing and

33

4.2 Types of biological models 34

protein Y is increasing over time, we could infer a reaction where protein X turns in to protein Y.

If the removal (or inhibition) of protein Z stops this observation, we could infer that protein Z is

an enzyme for this reaction.

The parameters of a model of a biological system are usually very difficult to obtain. Initial

concentration values can be found by measurements of the amount of protein in a sample of cells,

e.g. using western blotting [84]. However, accurate methods to measure the rate of reactions are

rare. Often reaction rates are guesses from a range of “reasonable” values and known relationships

between reactions, e.g. “reaction X happens 10 times faster than reaction Y.”

4.2 Types of biological models

We follow Fisher and Henzinger [40] and distinguish two types of biological models, mathematical

and computational models. Also important to the work in this thesis is the distinction between

qualitative and quantitative models.

4.2.1 Mathematical models

Mathematical models are the most common approach to modelling biological systems. Mathemat-

ical models are solved to produce the behaviour of the system.

Ordinary differential equation (ODE) models [43,84] are the most popular modelling technique

for biological systems. In an ODE model, each species is represented by a single differential equa-

tion. The system of ODEs are solved, producing the concentration of each biochemical species

in the model at various time points. The computational complexity is lower compared with many

other techniques, however the output is only the average behaviour of the system.

Models such as ODE models are called deterministic models because the output of the model

is the same upon successive runs. Models that take stochastic effects (e.g. from low molecule num-

bers and gene expression) into account are called stochastic models—there is a range of outputs

of these models, depending on the stochastic effects.

The Chemical Langevin Equation (CLE) is a set of stochastic differential equations, one for

each biochemical species in the system [58]. The solution of the CLE gives a real value concen-

tration for each species at time t.

The Chemical Master Equation (CME) is a set of ODEs, one for each possible state of the

system. The solution of the CME gives the probability distribution of the states at a particular

time t. Solving the CME is usually too computationally intensive. The Stochastic Simulation

4.2 Types of biological models 35

Algorithm [45] (also called Gillespie’s algorithm) is often used to produce single simulations from

the CME.

Markov processes are models that hold the Markov property that the probability distribution

of a future state depends only on the current state. Markov processes include Markov decision

processes, discrete time Markov chains and, of particular importance to this thesis, continuous time

Markov chains (CTMCs). CTMCs have been used to model biological systems in [25], amongst

others.

Finally, Boolean networks have been used to model biological systems, especially gene regu-

latory networks [3].

As pointed out by [40], mathematical models are restricted to mathematical analysis e.g. sim-

ulation [23], sensitivity analysis of the parameters [77] and steady-state behaviour analysis [84].

The main problem with mathematical models are that they do not have well-defined notions of

structure, modularity and composition. There is also no formal graphical representation of these

models and no automatic way to go from equations to diagrammatic representations.

4.2.2 Computational models

Computational models have origins in the design and verification of hardware and software sys-

tems where correctness is especially important, for example embedded systems or aeronautic soft-

ware. Computational models use a modelling language to describe the system and are executed to

mimic the system.

Computational models of biological system have become increasingly popular in recent years.

We now explore the application of computational modelling paradigms to biological systems.

Process algebras were first used to model biological systems in [93] using π-calculus [79].

Each molecule in the system is modelled as a process and reactions are modelled as communica-

tion between processes. Later, beta binders [91] were used to model biological systems with an

enriched syntax.

Performance Evaluation Process Algebra (PEPA) [59] is a process algebra that has enjoyed

considerable success in modelling biological systems. For example, PEPA is used to model the

RKIP influence on the ERK signalling pathway in [10]. Later, a process algebra called Bio-

PEPA [25] was created which includes higher level constructs specifically for modelling biological

systems. Applications of Bio-PEPA include modelling the cAMP/PKA/MAPK pathway [26], the

Gp130/JAK/STAT pathway [48] and the NF-κB pathway [24].

While the PRISM modelling language (discussed in the previous chapter) is not strictly a

4.3 Dynamic analysis 36

process algebra, it shares some of the same features such as modularity, composition and the use

of process algebraic operators for communication between subsystems. The PRISM modelling

language with underlying semantics of a CTMC has been used to model the RKIP inhibited ERK

pathway in both [11] and [15].

Petri nets have been used to model a number of biological systems in [43, 44, 55–57].

Finally, rule-based models have been used to model biological systems in [37, 60].

Of particular importance to this thesis is computational modelling approaches that have well-

defined notions of structure, modularity and composition. In Chapter 5 we introduce a modular

modelling approach for signalling pathway cross-talk using the PRISM modelling language.

4.2.3 Qualitative vs. quantitative models

Another important aspect of biological models is the distinction between qualitative and quantita-

tive models.

Qualitative models focus only on the structure of a biological system, i.e. the reactions in the

system. The rationale for this approach is often that the parameter values are difficult to obtain

or estimate. Qualitative models can optionally include an initial state to allow simulation, state

space analysis and model checking. Examples of qualitative models are Boolean networks [3,51].

The Toll-like receptor map [82] (essentially a comprehensive, formal diagram) is also a qualitative

model, but it has no initial state, so analyses are limited.

Quantitative models extend qualitative models with detailed parameter values permitting rich

behavioural analysis and comparison to laboratory data, e.g. [23].

4.3 Dynamic analysis

We review two types of dynamic analysis: simulation-based analysis and model checking.

4.3.1 Simulation-based analysis

Simulation-based analysis involves analysing the output of a model in the form of simulation runs,

e.g. a time-series of protein concentration values. Applications include comparing the output of

a model with laboratory data to drive the model construction process [23] and the analysis of the

transient behaviour of proteins [8].

4.4 Steady-state approaches 37

4.3.2 Model checking

Model checking is also considered to be dynamic analysis. In [44] model checking is used to

analyse qualitative, continuous and stochastic Petri nets models of the MAPK pathway. Similarly,

in [16] model checking is use to analyse models of the cell cycle with boolean, concentration

and population semantics. Model checking of PEPA and PRISM models of the RKIP inhibited

ERK pathway using CSL is the topic of [11]. Finally, recent work has used temporal logic to

describe the desired behaviour of a biochemical system in the parameter estimation of biological

models [35, 95].

4.4 Steady-state approaches

Steady-state approaches have traditionally been used to analyse models of metabolic systems.

There is constant flow through metabolic systems because there is constant uptake and excretion

of metabolites, whereas cellular signalling systems respond to transient incoming signals dynami-

cally and should not operate in a steady state. We review the application of steady-state techniques

to metabolic systems and recent applications to cellular signalling systems.

4.4.1 Application to metabolic systems

Metabolic systems are usually analysed using steady-state analysis because there is constant con-

sumption and production of metabolites. FBA and elementary modes have been used for analysis

of metabolic systems including [85, 97]:

• Prediction of minimal sets of nutrients required for a cell to produce a metabolite of interest.

• Finding unused reactions that can point to gaps in the model.

• Finding correlated reactions, i.e. reactions that are always “on” or “off” together.

The application of steady-state techniques to metabolic systems is sound, due to the constant

flow in such systems.

4.4.2 Application to cellular signalling systems

Steady-state analysis of cellular signalling systems is much less common because signalling ini-

tiates transient changes within the cell. Despite this, steady-state analysis has been applied to

cellular signalling systems resulting in useful analysis results.

4.5 Modelling and analysis of signalling pathway cross-talk 38

FBA has been used to modularise the Toll-like receptor signalling network into “distinct in-

put/output signalling (DIOS) pathways” [74]—DIOS pathways are the same as signal flows1. The

network was decomposed into 10 DIOS pathways and resulted in the identification of novel inhi-

bition targets.

T invariants were used to analyse the Pheromone response pathway in yeast [47]. Clustering of

T invariants revealed functional modules that allowed better understanding of the pathway. Finally,

T invariant analysis of the apoptosis network in [57] discovered that some T invariants describe

basic signal flows and some describe cross-talk between signal flows.

We discuss in Chapter 6 how the steady-state analysis of cellular signalling models can produce

incorrect results and introduce a sound alternative based on dynamic analysis.

Note that the PRISM model checker can be used for “steady-state analysis.” For example, in

[15] the probability distribution of the concentration of a protein in the “steady-state” is calculated

using the PRISM model checker. Rather than analysing the incidence (stoichiometric) matrix, the

stationary distribution of the Markov chain is computed. This analysis can be more accurately

described as analysis of the model’s behaviour in the long run.

4.5 Modelling and analysis of signalling pathway cross-talk

There are a limited number of applications of computational techniques to study signalling path-

way cross-talk.

There are several mathematical models of specific pathways that include an aspect of cross-

talk. Ordinary differential equation models have been used to model the cross-talk between the

MAPK and AKT pathways [53], the MAPK and PKC pathways [101], and the hyperosmolar and

the pheromone MAPK pathways [76].

The analysis depends on the pathways involved. In [76] the motivation for modelling is to

answer how the pathways maintain signal specificity, given shared common proteins. Two models

are proposed, one that contains mutual inhibition between pathways to limit signal bleed-through

and one that contains scaffold proteins. In [101] the goal is to investigate whether cross-talk has

an effect on bistability, namely whether the signal switches from transient to sustained activation

as a consequence of varying the duration of the signal. Cross-talk is expressed implicitly in math-

ematical models, i.e. it is part of the system of equations, with no explicit reference to pathways

or interactions between pathways. Therefore, there is no direct way to reason about cross-talk,

1recall that signal flow was informally defined on page 13

4.6 Cross-talk in non-biological systems 39

especially to detect or classify the cross-talk.

Computational models are also employed. For example, Petri nets are used to model apoptosis

decision-making in the Fas-induced and mitochondrial DNA damage pathways, and this includes

the Bid controlled cross-talk between them [57]. In [41] there is a discrete, state-based model of

the multiple modes of intercellular “cross-talk” between the EGFR and LIN-12/Notch signalling

pathways, developed in the language of Reactive Modules. Model checking is used to check

the validity of the model and to generate new biological insights. But, intercellular “cross-talk”

is considered a misnomer within parts of the life science community—it is often called cellular

communication. This work bears little relation to the intracellular cross-talk that is of interest in

this thesis.

In general, it is difficult to draw any generic methods or techniques from these specific models.

We are aware of only one paper [30] that addresses a more generic concept of pathway and

cross-talk. Models in [30] are defined using the rewrite rules of the κ calculus; the notion of a

“story” corresponds to a pathway and an “influence map” defines how rules can inhibit each other.

Superposition of an influence map with a pathway suggests ways in which a story’s ending can be

delayed or prevented (i.e. delay or prevent pathway output)—this can be interpreted as detecting

cross-talk. The pathways of [30] are minimal executions to an output (equivalent to signal flows),

and thus cannot be compared directly with the established signalling pathways that we consider.

Nonetheless, we note that superposition (via renaming and synchronisation) is also fundamental

to the work in Chapter 5.

4.6 Cross-talk in non-biological systems

The analysis of cross-talk between signalling pathways bears similarities to cross-talk in other

systems (although it is often not called cross-talk in these contexts).

We have already learned that cross-talk was first applied to describe signal interference be-

tween electronic circuits [18]. Software systems that are developed independently and commu-

nicate on a shared medium may exhibit unusual behaviour that needs to be both detected and

resolved, e.g. distributed systems, web services or e-mail [52]. The recent increase of mobile

systems and multimedia services that operate on the internet further this problem [6], exacerbated

by the commercial sensitivity that often inhibits openness about system/service architecture [14].

Related fields have a common theme: they comprise distinct elements of a system that are

developed independently, then composed.

4.7 Summary 40

Feature interaction in telecommunication systems A well-studied area of research is feature

interaction in telecommunication systems [13]. The feature interaction problem can be described

as the following three components.

Basic service: the basic functionality of the telecommunication system, e.g. place/answer

calls, busy in call.

Feature: a component of functionality additional to the basic service that users subscribe to,

typically added incrementally, e.g. Call Waiting.

Feature interaction: two or more features added to a system causing a behavioural modifi-

cation of the feature or basic service, possibly harmful to the user experience.

Consider a telecommunication system with two features, Answer Call (AC) and Call Waiting

(CW). CW sounds a call waiting tone to the user being called upon receiving a second call. AC

diverts the user that is calling to an answering service upon the called user being busy. If user A

subscribes to both AC and CW, then the behaviour of the system when user A is in a call to user B

and receives a second call from user C is undetermined.

We suggest that feature interaction is similar to cross-talk between signalling pathways, though

there are some important differences that we highlight below.

Features in telecom. systems Signalling pathways

Development Developed independently Evolved in a tightly coupled manner

Specification Engineered from specification Hypothesised specification

Interference Bad user experience Disease

Goal Detect & resolve interference Explore potential interactions

There are three broad categories of analysis approaches; software engineering (avoiding inter-

ference) [42], formal methods (analysing models of a system) [13], and online analysis (analysing

real systems) [94]. The importance of formal methods in this field provides support for our ap-

proach to analysing cross-talk in Chapter 5.

4.7 Summary

We have reviewed the application of various computational techniques to model and analyse bi-

ological systems. In Section 4.1 we gave an overview of how models are built. In Section 4.2

we reviewed two types of models, mathematical and computational models, and another impor-

tant distinction, qualitative vs. quantitative models. We found that mathematical models do not

4.7 Summary 41

have well-defined notions of structure, modularity and composition. We also found that quali-

tative models are sometimes used in place of quantitative models because the parameter values,

especially reaction rates, are hard to obtain. Next we covered the analysis of biological models,

with dynamic analysis in Section 4.3 and steady-state analysis in Section 4.4. Steady-state ap-

proaches are well-suited to metabolic systems, but not to cellular signalling—because of transient

flow—though some successful applications exist. We reviewed work on modelling and analysis

of cross-talk in Section 4.5 and found that there is a focus on mathematical models, which have

no explicit notion of cross-talk. Finally, in Section 4.6 we looked at modelling and analysis of

cross-talk in non-biological systems, especially telecommunication systems. We found that the

use of formal methods has been particularly successful in this area.

In the next chapter we tackle the problem of modelling signalling pathway cross-talk in a

rigorous, modular fashion.

Chapter 5

Modelling signalling pathway cross-talk

In this chapter we introduce a formal framework for pathway and network modelling that allows

us to explain, categorise, and detect cross-talk in a systematic way.

We start by outlining the basic modelling framework for signalling pathways and networks.

The framework is based on composing generic pathway modules written in the PRISM modelling

language. In Section 5.1 we give the motivation for the framework. In Section 5.2 we explain

how the PRISM modelling language can be used to model CTMCs with levels. In Section 5.3 we

extend the PRISM modelling language with the abstractions required to model generic pathway

modules. In Section 5.4 we introduce our modular modelling approach and show how we can build

a pathway by composing generic pathway modules. In Section 5.5 we show how, in a similar way,

we can compose pathways to build a signalling network, in this case the pathways are composed

independently.

Next, we show how the modelling framework can be used to model cross-talk in a formal

and rigorous way. Cross-talk is expressed by different synchronisations of reactions between,

and overlaps of, pathways written in the PRISM modelling language—using this approach, we

can formally define, and reason about, cross-talk. In Section 5.6 we discuss auxiliary reactions

which are added to a pathway to allow additional, optional pathway behaviours. In Section 5.7 we

give the main contributions of this chapter: a categorisation and formalisation of cross-talk and a

modelling approach for cross-talk, using the auxiliary reactions from Section 5.6. In Section 5.8

we introduce an algorithm to enumerate all instances of cross-talk between two pathways.

We then give preliminary results on how to analyse a model that does not contain a explicit

notion of cross-talk: in Section 5.9 and Section 5.10 we show how to detect and characterise cross-

talk respectively. In Section 5.11 we demonstrate our framework with a case study of the TGF-β,

WNT and MAPK pathways.

42

5.1 Motivation 43

Finally, in Section 5.12 we discuss our modelling assumptions and possible extensions of the

framework.

Background material We assume the following background material: continuous time Markov

chains (Section 3.1) and model checking (Section 3.2).

5.1 Motivation

Signalling pathways1 are well-known abstractions that explain the mechanisms whereby cells re-

spond to signals. They comprise biochemical reactions that transfer information from a receptor

to a target such as the nucleus or mitochondria. Several computational modelling paradigms from

computer science have been extended and applied to signalling pathways in recent years, for ex-

ample, rewrite rules [30], Petri nets [55] and process algebras [10,15,19,33,105]. However, there

has been less focus on collections of pathways that form networks, and very little on the interac-

tions between pathways, known in the life sciences as cross-talk. Cross-talk accounts for many

useful behaviours, for example, producing a variety of responses to a single signal, and reuse of

proteins between pathways. Cross-talk is an essential aspect of network behaviour, yet there are

no known computational models of pathways with cross-talk.

5.2 The PRISM modelling language

The PRISM modelling language [70,71] is a state-based modelling language based on the Reactive

Modules formalism [1]. We focus on using the language to build continuous time Markov chains

(CTMCs).

We adopt a reagent-centric approach [12] to modelling in which each of the reagents in a

reaction is mapped to a process, whose variation reflects increase or decrease in amount of the

reagent, through production or consumption. The processes can model individuals (molecules) or

populations (concentrations of biochemical species); we assume the latter here, and an underlying

semantics of CTMCs with levels [25].

A CTMC with levels model is defined using the PRISM modelling language as follows. A

PRISM model contains one or more modules.
1we refer simply to pathways henceforth

5.2 The PRISM modelling language 44

States A model can contain global variables and each module can contain local variables. Each

state in a CTMC is labelled with an assignment of values to the variables—the initial state is la-

belled with an assignment of the initial values to the variables. The definition of an integer variable

has the following syntax.

name : [min_val .. max_val] init val;

Transitions Each module can have a number of commands that represent the transitions in the

CTMC. The definition of a command has the following syntax.

[label] guard -> rate:update_statement;

A guard is a Boolean expression, often used to check the values of one or more variables in

a state. Commands are only executable in a state where their guard is true. If there is more

than one executable command in the current state then each executable command executes with a

probability that is proportional to the rate. An update statement is an assignment of new values to

the variables in the model, hence the update statement X′ = X + 1 increments the value of X by 1.

Executing a command reaches the state as governed by the update statement. The time at which

the command executes is drawn from the probability distribution 1− e−rate · t where rate is the rate

of the command. Commands can be labelled so that they can be synchronised, renamed or hidden.

Synchronisation, renaming and hiding A PRISM model can contain a system equation in

which modules can be composed concurrently, synchronising (multiway) on the commands whose

labels occur in the synchronisation set. For example, given modules M1 and M2, and set of labels

L, M1 |[L]| M2 denotes the concurrent composition of M1 and M2, synchronising on all labels in

L. If the label set is omitted, M1 || M2, then M1 synchronises with M2 on the intersection of labels

occurring in M1 and M2. Conversely, M1 ||| M2 synchronises M1 with M2 on no labels (indepen-

dent). If M1 and M2 synchronise on a label l then the command l in M1 and l in M2 execute at the

same time and only after both guards become true. The rate at which synchronised commands ex-

ecute is the product of the rates of the individual commands. Labels can be renamed, denoted thus

M1 {old label ← new label}, and hidden, denoted thus M \ {label1, . . . , labeln}. Hidden labels

are not available for synchronisation. A system equation is given within the system . . . endsystem

construct. If a system equation is not given then all modules are composed using the || operator.

Example 5 Comparison of two PRISM models.

Two PRISM models of a reaction called r1, the complexation of X and Y forming Z, are given

5.2 The PRISM modelling language 45

below. The model on the left has a single module with a command that represents reaction r1. The

model on the right has three modules that are composed in parallel, causing the three commands to

be synchronised to create reaction r1. Both models create the same underlying CTMC with levels.

Model 1 Model 2

module example

X : [0..1] init 1;

Y : [0..1] init 1;

Z : [0..1] init 0;

[r1] X = 1 & Y = 1 & Z = 0 ->

1:(X’ = 0) & (Y’ = 0) & (Z’ = 1);

endmodule

module module1

X : [0..1] init 1;

[r1] X = 1 -> 1:(X’ = 0);

endmodule

module module2

Y : [0..1] init 1;

[r1] Y = 1 -> 1:(Y’ = 0);

endmodule

module module3

Z : [0..1] init 0;

[r1] Z = 0 -> 1:(Z’ = 1);

endmodule

system

module1 || module2 || module3

endsystem

Example 6 A PRISM model containing each type of biochemical reaction.

A PRISM model that contains each type of biochemical reaction (production, degradation,

transformation, complexation and decomplexation) and the related CTMC with levels is given

below. The arcs in the CTMC diagram are labelled with both the rate and label of the command

that causes the transition.
module example

X : [0..1] init 1;

Y : [0..1] init 1;

Z : [0..1] init 0;

[prod] X = 0 -> 1:(X’ = 1);

[deg] X = 1 -> 1:(X’ = 0);

[trans] X = 0 & Y = 1 ->

1:(X’ = 1) & (Y’ = 0);

[comp] X = 1 & Y = 1 & Z = 0 ->

1:(X’ = 0) & (Y’ = 0) & (Z’ = 1);

[decomp] X = 0 & Y = 0 & Z = 1 ->

1:(X’ = 1) & (Y’ = 1) & (Z’ = 0);

endmodule

1	
 X	

Y	

comp	

decomp	

Z	

Y	

deg	

prod	

1	

X	
 trans	

1	

1	

1	

5.3 PRISM language extensions 46

5.3 PRISM language extensions

The PRISM modelling language does not include all the abstractions required for the generic

pathway modules given in the next section. We therefore introduce two extensions to make the

language more convenient for modelling—they do not add any expressive power to the language.

We express pathways by composing generic pathway modules, and networks by composing

pathways. Variable sharing between modules/pathways provides a convenient way to express

overlapping pathways, e.g. cross-talk in which pathways share the same protein. Synchronisation

within modules provides a convenient way to build larger reactions by synchronising smaller re-

actions in a module, e.g. we could synchronise the reaction for the degradation of protein X with

the reaction for the production of protein Y to create the reaction X → Y .

Variable sharing To implement variable sharing between modules, we cannot use PRISM global

variables because they cannot be updated within a labelled transition. So, we use PRISM local vari-

ables and introduce new syntax as follows: M1 |[L, V]| M2, where V = {(v1,w1), . . . , (vn,wn)}.

(vi,wi) is called a variable sharing where vi (local to M1) and wi (local to M2) are shared. We im-

plement a variable sharing (vi,wi) in PRISM by a pre-processing step in which we substitute wi for

vi. For each command r in M1, we remove all references to vi from r and define a new command r

in M22, substituting wi for vi; we then synchronise M1 and M2 over r.3 We assume that the PRISM

modules have the same number of levels N for all variables, so the ranges of the shared variables

are the same. The initial value of the shared variable is max(init(vi), init(wi)) where init(var) is the

initial value of the variable var. Because we can now share variables between two modules, we

extend the hide operator to hide local variables so that they are unavailable for sharing. Hence we

can hide labels and variables in a module thus M \ {label1, . . . , labeln, var1, . . . , varn}.

Synchronisation within modules Synchronisation within modules is currently not implemented

in PRISM. Suppose we have two labels r1 and r2 in module M1, then renaming one by the other

will not force a synchronisation, i.e. M1 {r2 ← r1} will create two r1 labels in M1, and a non-

deterministic choice between the labels. So, we give an alternative semantics for renaming when

the labels are in the same module. With the new semantics, our example M1 {r2 ← r1} means r1

and r2 are synchronised within a module, which we implement by pre-processing (to form a single

transition r1 that is the conjunction of the transitions for r1 and r2).

2we have taken care to avoid naming conflicts in our examples; however, in general this may be problematic
3Modules that share a variable are still independent; the shared variable is local to one module and access to this

variable is only through local labelled commands.

5.4 Modelling a pathway 47

5.4 Modelling a pathway

We define a generic pathway module to be a behavioural pattern within a pathway. For exam-

ple, commonly occurring pathway modules are: Receptor, 3-stage Cascade and Gene Expression

(shown in Figure 5.1).

The Receptor module has three species (L for ligand, R for receptor and R∗ for active receptor)

and two reactions (r1 and r2). The 3-stage Cascade module has 3 species (proteins X, Y and Z)

and 4 reactions (r3, r4, r5 and r6). The Gene Expression module has 2 species (Gene and Protein)

and one reaction (r7). While Gene is not strictly a biochemical species, for modelling purposes

we treat it as a species. We use shading to indicate species with initial concentrations (the species

present in the initial state).

3-­‐stage	
 Cascade	
 Receptor	

Gene	
 Expression	

*	

r1	

r2	

*	

*	

*	

r3	

r6	
 Gene	
 Protein	
 r7	

R	

R	
 L	
 X	
 X	

Y	

Z	

Y	

Z	

r4	

r5	

Figure 5.1: Three generic pathway modules: Receptor, 3-stage Cascade and Gene Expression.

Note that r2 and r6 are not reactions in their own right—they do not update the state of the

model. r2 and r6 are the enzymatic activities of R∗ and Z∗ respectively.

We represent the three generic pathway modules as PRISM modules with N = 1 below.4

module Receptor

R : [0..1] init 1; L : [0..1] init 1; R* : [0..1] init 0;

[r1] R = 1 & L = 1 & R* = 0 -> 1:(R’ = 0) & (L’ = 0) & (R*’ = 1);

[r2] R* = 1 -> 1:true;

endmodule

module 3StageCascade

X : [0..1] init 1; X* : [0..1] init 0;

Y : [0..1] init 1; Y* : [0..1] init 0;

Z : [0..1] init 1; Z* : [0..1] init 0;

4PRISM reserves certain names such as X and does not allow names with the ∗ symbol—strictly we use names such
as XInactive instead of X and XActive instead of X∗.

5.4 Modelling a pathway 48

[r3] X = 1 & X* = 0 -> 1:(X’ = 0) & (X*’ = 1);

[r4] Y = 1 & Y* = 0 & X* = 1 -> 1:(Y’ = 0) & (Y*’ = 1);

[r5] Z = 1 & Z* = 0 & Y* = 1 -> 1:(Z’ = 0) & (Z*’ = 1);

[r6] Z* = 1 -> 1:true;

endmodule

module GeneExpression

Gene : [0..1] init 1; Protein : [0..1] init 0;

[r7] Gene = 1 & Protein = 0 -> 1:(Gene’ = 0) & (Protein’ = 1);

endmodule

We treat these modules as generic, that is, we instantiate them (strictly, duplicate and rename

in PRISM) for multiple occurrences. We adopt the following convention. For generic module M,

Mi denotes an instance of M with every variable and reaction renamed by an indexed form. For

example, variable v becomes v1 in module M1.

We can compose modules synchronising over sets of labels as follows. Synchronising reaction

a in module A with b in module B is achieved by renaming a to b and synchronising the modules

over b, i.e. A {a← b} |[b]| B. In this chapter we use the term label and reaction synonymously.

A pathway is a parallel composition of instances of generic modules, renaming reactions to

coordinate synchronisation within the pathway.

Definition 12 (Pathway). Let G be a set of generic pathway modules. A pathway P has the form

(X1 f1 |[L1]| . . . |[Ln−1]| Xn fn) \ H where X1 . . . Xn are instances of modules in G, f1 . . . fn are

sets of renamings, L1 . . . Ln−1 are labels (reactions) and H is a set of hidings.

Definition 13 (Renaming pathway reactions). The reactions in a pathway P can be renamed cre-

ating a new pathway P′ = P {renamings} where renamings is a set of renamings.

As an example, consider pathway Pathway1 comprising instances of the Receptor, 3-stage

Cascade and Gene Expression modules:

Pathway1 = (Receptor1 {r21 ← r31}

|[r31]|

3StageCascade1 {r61 ← r71}

|[r71]|

GeneExpression1)

\ {r11, r31, r41, r51,R1, L1,R∗1,Gene1, Protein1}

Receptor1 and 3StageCascade1 modules synchronise on r21 and r31, and 3StageCascade1 and

GeneExpression1 synchronise on r61 and r71 (strictly, we rename r21 to r31 and synchronise

the modules on r31, and similarly for r61 and r71). Because of these synchronisations, the active

5.5 Modelling a network of independent pathways 49

receptor catalyses the activation of protein X and active protein Z catalyses the expression of Gene.

Reactions r11, r31, r41 and r51 and variables R1, L1, R∗1, Gene1 and Protein1 are hidden using the

\ operator.

Reactions and (local) variables are considered to be external or internal. Reactions that are not

external are internal.

Definition 14 (External reactions and variables). For a pathway P, the set of external reactions,

extr(P), is the set of reactions, modulo renamings, that have not been hidden and the set of external

variables, extv(P), is the set of (local) variables that have not been hidden. External reactions are

available for synchronisation and external variables are available for sharing.

Hence, extr(Pathway1) = {r71} and extv(Pathway1) = {X1,Y1,Z1, X∗1,Y
∗
1 ,Z

∗
1}.

As a further example we define pathway Pathway2:

Pathway2 = (Receptor2 {r22 ← r32}

|[r32]|

3StageCascade2 {r62 ← r72}

|[r72]|

GeneExpression2)

\ {r12, r32, r42, r52,R2, L2,R∗2,Gene2, Protein2}

With extr(Pathway2) = {r72} and extv(Pathway2) = {X2,Y2,Z2, X∗2,Y
∗
2 ,Z

∗
2}.

Pathways Pathway1 and Pathway2 are shown graphically in Figure 5.2.

We now consider networks of pathways.

5.5 Modelling a network of independent pathways

Here we give the general definition of a network, and then consider the special case of networks

of independent pathways. Later we consider networks with cross-talk.

A network is a parallel composition of pathways, with optional synchronisation of external

reactions and sharing of variables between pathways.

Definition 15 (Network). A network is a composition of two pathways of the form P1 {renamings1}

|[E ∪ U, V]| P2 {renamings2} where |[E ∪ U, V]| defines the interaction between P1 and P2.

renamings1 and renamings2 are optional sets of renamings of reactions. E is the intersection of

the sets of external reactions, modulo renamings, in P1 and P2, E = extr(P1 {renamings1}) ∩

extr(P2 {renamings2}) and U ⊆ extr(P1 {renamings1}) ∪ extr(P2 {renamings2}). V is a set of

variable sharings between P1 and P2.

5.5 Modelling a network of independent pathways 50

*	

r11	

R1	

R1	
 L1	

Gene1	
 Protein1	
 r71	

*	

*	

*	

r31	

X1	
 X1	

Y1	

Z1	

Y1	

Z1	

r41	

r51	

*	

r12	

R2	

R2	
 L2	

Gene2	
 Protein2	
 r72	

*	

*	

*	

r32	

X2	
 X2	

Y2	

Z2	

Y2	

Z2	

r42	

r52	

P1	
 P2	

Figure 5.2: The two pathways Pathway1 and Pathway2 each comprise three instances of the
generic pathway modules Receptor, 3-stage Cascade and Gene Expression. External reactions
and variables are denoted by black lines, internal reactions and variables by grey lines and species
that are present in the initial state by shaded ellipses.

Note, P1, P2, renamings1, renamings2, U and V determine the network. At this stage in the

chapter, U is unimportant. U becomes important in the next section when we include auxiliary

reactions to our pathways—U is then the auxiliary reactions (which are a subset of the external

reactions) that are unused.

Now consider the special case of a network of independent pathways.

Definition 16 (Independent pathways). A network of two pathways P1 {renamings1} |[E ∪ U, V]|

P2 {renamings2} is independent if there is no synchronisation of reactions and sharing of variables

between the pathways, hence E = ∅ and V = ∅.

We can compose our two example pathways independently as follows.

Pathway1 |[E ∪ U, V]| Pathway2

where E = V = U = ∅.

We now turn our attention to the case where there is synchronisation of reactions or sharing

of variables between the pathways, i.e. there is cross-talk. However, before doing so we introduce

the concept of auxiliary reactions, and ultimately how they result in the set of unused reactions U.

5.6 Auxiliary reactions 51

5.6 Auxiliary reactions

Auxiliary reactions are additional basic reactions and modifiers that can be used to express inter-

actions between pathways.

Definition 17 (Auxiliary reactions). There are four types of auxiliary reactions for a species X as

given in Figure 5.3.

Produc'on	

∅	
 Degrada'on	

∅	
 X	

X	

Reac'ons	
 Modifiers	

Catalysis	

Inhibi3on	

X	

X	

Figure 5.3: The four types of auxiliary reactions.

Production and degradation reactions are the two basic reactions for any species. All other

reactions can be defined by synchronising production and degradation reactions. For example, we

can express the formation of Z from X and Y by synchronising the degradation of X and Y with

the production of Z.

Catalysis and inhibition are modifiers: they change the precondition of reactions (in PRISM).

Catalysis and inhibition auxiliary reactions must synchronise with a reaction to make (biological)

sense.

For any species we can add any number of any type of auxiliary reactions.

Definition 18 (PRISM implementation of auxiliary reactions). For any species X in a module any

of the 4 types of auxiliary reactions can be added as follows.

[prod] X = 0 -> 1:(X’ = 1);

[deg] X = 1 -> 1:(X’ = 0);

[cat] X = 1 -> 1:true;

[inhib] X = 0 -> 1:true;

Note, although we have not defined an explicit syntax for adding auxiliary reactions, we as-

sume that for any given pathway P we can augment it with a given set of auxiliary reactions

aux(P). For a pathway P there is an infinite number of augmentations of auxiliary reactions.

Definition 19 (Pathway auxiliary reactions). For a given pathway P, the set of auxiliary reactions

is aux(P) and we extend extr(P) to include aux(P), i.e. all auxiliary reactions are external.

5.6 Auxiliary reactions 52

*	

r11	

R1	

R1	
 L1	

a31	

∅	

a11	

∅	

∅	
 a21	

∅	
 Gene1	
 Protein1	
 r71	
 a81	

*	

*	

*	

r31	

X1	
 X1	

Y1	

Z1	

Y1	

Z1	

r41	

r51	

a41	

a71	

∅	
 a61	
 a51	

∅	

*	

r12	

R2	

R2	
 L2	

a32	

∅	

a12	

∅	

∅	
 a22	

∅	
 Gene2	
 Protein2	
 r72	
 a82	

*	

*	

*	

r32	

X2	
 X2	

Y2	

Z2	

Y2	

Z2	

r42	

r52	

a42	

a72	

∅	
 a62	
 a52	

∅	

P1	
 P2	

Figure 5.4: The two pathways Pathway1 and Pathway2 with added auxiliary reactions.

We add to our two example pathways some auxiliary reactions, the motivation for our choice

of external reactions will be given in the next section.

We adopt the following convention. In Pathway j we label auxiliary reaction i as ai j (or ai j in

PRISM).

In the Receptor module in Pathway j we add:

[a1_j] R = 1 -> 1:(R’ = 0);

[a2_j] R* = 0 -> 1:(R*’ = 1);

[a3_j] L = 0 -> 1:(L’ = 1);

In the 3-stage Cascade module in Pathway j we add:

[a4_j] X* = 1 -> 1:true;

[a5_j] Y = 1 -> 1:(Y’ = 0);

[a6_j] Y* = 0 -> 1:(Y*’ = 1);

[a7_j] Z* = 0 -> 1:true;

In the Gene Expression module in Pathway j we add:

5.7 Categorisation of cross-talk 53

[a8_j] Protein = 1 -> 1:(Protein’ = 0);

The pathways with added auxiliary reactions are shown graphically in Figure 5.4 and the

PRISM model is given in Appendix C.

Auxiliary reactions are an integral part of our approach to modelling cross-talk. We model

cross-talk by different combinations of synchronisation of external reactions (which includes the

auxiliary reactions) and sharing of variables.

Definition 20 (Cross-talk). Given a network of two pathways P1 {renamings1}

|[E ∪ U, V]| P2 {renamings2}, there is cross-talk if there is at least one reaction e ∈ E or

one variable sharing v ∈ V. The number of cross-talks is |E| + |V |.

We now introduce the concept of unused reactions U with the aid of the following functions.

Definition 21 (The “mapped” functions). Given a network of two pathways P1 {renamings1}

|[E ∪ U, V]| P2 {renamings2}, for any e ∈ E, we define the function mapped(e) = {xi | xi ←

e} ∪ {ui | ui ← e} where renamings1 = {x1 ← y1, . . . , xn ← yn} and renamings2 = {u1 ←

v1, . . . , un ← vn}. We also define mapped(E) =
⋃

e∈E mapped(e). In other words, mapped(e) is

the set of reactions involved in one synchronisation e between the pathways and mapped(E) is the

set of reactions involved in any synchronisation e ∈ E between the pathways.

The unused reactions U are the auxiliary reactions that are not used for synchronisation be-

tween two pathways, and so U = (aux(P1)∪ aux(P2)) \mapped(E). Note that since each reaction

in U occurs in only one pathway, they cannot synchronise and their corresponding transitions

never execute. This will be explored in detail in the next section, where we turn our attention to a

network of two pathways in which there is cross-talk.

5.7 Categorisation of cross-talk

We model cross-talk by expressing instances of different types of cross-talk between pathways

Although there is some discussion of types of cross-talk [50,81], there is no universal categori-

sation in the literature. In this section we propose that there are five types of cross-talk: substrate

availability, signal flow, receptor function, gene expression and intracellular communication. We

note that four of the five types are alluded to in [81] but are not made specific.

We give the motivation for the five types using indicative examples from the literature. We

define several functions that are used in the formalisation. We then formalise the types and prove

5.7 Categorisation of cross-talk 54

that the types are distinct. Finally, we give examples of each type of cross-talk using our example

pathways Pathway1 and Pathway2.

5.7.1 Motivation for types

In this section we give evidence of each of the five types. While there is no proof that there are

no other types of cross-talk, we have found no examples after performing an exhaustive literature

search and discussing this with domain experts.

Substrate availability cross-talk In [76] there are two pathways that compete for the activation

of the MAPK cascade. The pathways share the MAPKKK protein STE11 and have homologous

MAPKK and MAPK proteins.

Signal flow cross-talk In [98] there is signal flow cross-talk between the MAPK and Integrin

signalling pathways. Activation of the Integrin pathway enhances signalling through the MAPK

pathway by increased rate of activation of key proteins in the pathway.

Receptor function cross-talk In [65] other signalling pathways can activate the Estrogen recep-

tor in the absence of the Estrogen ligand.

Gene expression cross-talk In [32] two pathways contain cross-talk within the nucleus. One

pathway contains a transcription factor GR that resides outside the nucleus. Upon signalling, GR

relocates to the nucleus and inhibits the transcription factor NF-κB that is activated by another

pathway.

Intracellular communication cross-talk In [50] the TGF-β and WNT pathways reciprocally

regulate the production of their ligands. There is some contention in the literature as to whether

this is genuine cross-talk: the interaction is less direct than other types of cross-talk and involves

(temporally) long processes such as gene expression and ligand excretion.

We now turn to formalising the 5 types, but before doing so, we define several useful functions

on the generic modules.

5.7 Categorisation of cross-talk 55

5.7.2 Functions on modules

For the convenience of the reader, we repeat the three modules (with auxiliary reactions) below.

Recall that r2 and r6 are not reactions in their own right because they do not update the state of the

system.

module Receptor

R : [0..1] init 1; L : [0..1] init 1; R* : [0..1] init 0;

[r1] R = 1 & L = 1 & R* = 0 -> 1:(R’ = 0) & (L’ = 0) & (R*’ = 1);

[r2] R* = 1 -> 1:true;

[a1_j] R = 1 -> 1:(R’ = 0);

[a2_j] R* = 0 -> 1:(R*’ = 1);

[a3_j] L = 0 -> 1:(L’ = 1);

endmodule

module 3StageCascade

X : [0..1] init 1; X* : [0..1] init 0;

Y : [0..1] init 1; Y* : [0..1] init 0;

Z : [0..1] init 1; Z* : [0..1] init 0;

[r3] X = 1 & X* = 0 -> 1:(X’ = 0) & (X*’ = 1);

[r4] Y = 1 & Y* = 0 & X* = 1 -> 1:(Y’ = 0) & (Y*’ = 1);

[r5] Z = 1 & Z* = 0 & Y* = 1 -> 1:(Z’ = 0) & (Z*’ = 1);

[r6] Z* = 1 -> 1:true;

[a4_j] X* = 1 -> 1:true;

[a5_j] Y = 1 -> 1:(Y’ = 0);

[a6_j] Y* = 0 -> 1:(Y*’ = 1);

[a7_j] Z* = 0 -> 1:true;

endmodule

module GeneExpression

Gene : [0..1] init 1; Protein : [0..1] init 0;

[r7] Gene = 1 & Protein = 0 -> 1:(Gene’ = 0) & (Protein’ = 1);

[a8_j] Protein = 1 -> 1:(Protein’ = 0);

endmodule

We now define several functions that operate on modules, of type f unc : Module→ {Labels}.

all – all reactions

all(Receptor) = {a1, a2, a3, r1}

all(3StageCascade) = {a4, a5, a6, a7, r3, r4, r5}

all(GeneExpression) = {a8, r7}

trans – all transformation reactions

trans(Receptor) = {a1, a2, a3, r1}

trans(3StageCascade) = {a5, a6, r3, r4, r5}

5.7 Categorisation of cross-talk 56

trans(GeneExpression) = {a8, r7}

mod – all modifiers

mod(Receptor) = ∅

mod(3StageCascade) = {a4, a7}

mod(GeneExpression) = ∅

Note that ∀x . all(x) = trans(x) ∪ mod(x).

catalysis – all catalysis reactions

catalysis(Receptor) = ∅

catalysis(3StageCascade) = {a4}

catalysis(GeneExpression) = ∅

inhib – all inhibition reactions

inhib(Receptor) = ∅

inhib(3StageCascade) = {a7}

inhib(GeneExpression) = ∅

prod – all production reactions

prod(Receptor) = {a2, a3}

prod(3StageCascade) = {a6}

prod(GeneExpression) = ∅

deg – all degradation reactions

deg(Receptor) = {a1}

deg(3StageCascade) = {a5}

deg(GeneExpression) = {a8}

receptor deg – all degradation of (inactive) receptor reactions

receptor deg(Receptor) = {a1}

receptor deg(3StageCascade) = ∅

receptor deg(GeneExpression) = ∅

5.7 Categorisation of cross-talk 57

receptor act – all ligand-receptor binding reactions

receptor act(Receptor) = {r1}

receptor act(3StageCascade) = ∅

receptor act(GeneExpression) = ∅

active receptor prod – all production of active receptor reactions

active receptor prod(Receptor) = {a2}

active receptor prod(3StageCascade) = ∅

active receptor prod(GeneExpression) = ∅

ligand prod – all production of ligand reactions

ligand prod(Receptor) = {a3}

ligand prod(3StageCascade) = ∅

ligand prod(GeneExpression) = ∅

gene expression – all gene expression reactions

gene expression(Receptor) = ∅

gene expression(3StageCascade) = ∅

gene expression(GeneExpression) = {r7}

5.7.3 Cross-talk types

We now formalise the 5 types of cross-talk: substrate availability, signal flow, receptor function,

gene expression and intracellular communication, in terms of the three modules introduced so far.

Extending the formalisation to include extra modules that behave in a similar way is trivial.

Given a network of the form P1 {renamings1} |[E ∪ U, V]| P2 {renamings2}, a cross-talk is

either an e ∈ E or a v ∈ V .

A cross-talk v ∈ V is always substrate availability cross-talk.

A cross-talk e ∈ E is categorised according to the rules below. Rules are either necessary

rules or biological constraints. Biological constraints prevent infeasible cross-talk due to, for

example, different cellular locations or different species types. These constraints concern which

reactions can be synchronised between two pathways, thus a constraint always concerns members

5.7 Categorisation of cross-talk 58

of mapped(e).

We use the notation Module Type ∈ Pi to mean a module in Pi of type Module Type and

x ∈ Pi to mean a reaction x defined in Pi. The operator ∃!x . f (x) means one and only one x such

that f (x) holds and is defined by ∃x . (f (x) ∧ ∀y . (f (y)→ y = x))

Finally, we note by the definition of E in a network the following properties hold.

• ∀e ∈ E . ∀x ∈ mapped(e) . (x ∈ P1 ∨ x ∈ P2)

• ∀e ∈ E . ∃x ∈ mapped(e) . (x ∈ P1)

• ∀e ∈ E . ∃x ∈ mapped(e) . (x ∈ P2)

Signal flow cross-talk e is signal flow cross-talk if and only if the rules in Case 1 or Case 2 hold.

Case 1: P1 affects a transformation reaction in P2 or vice-versa.

Rules

∃x ∈ mapped(e) . ∃3StageCascade ∈ (P1 ∪ P2) . x ∈ trans(3StageCascade)

Biological constraints

∀x ∈ mapped(e) . ∀Receptor ∈ (P1 ∪ P2) . x < trans(Receptor)

∀x ∈ mapped(e) . ∀GeneExpression ∈ (P1 ∪ P2) . x < all(GeneExpression)

Case 2: P1 produces a protein in P2 or vice-versa, or else P2 catalyses P1’s production of a

protein, or vice-versa, or P2 inhibits P1 from producing a protein, or vice-versa.

Rules

∃!x ∈ mapped(e) . ∃GeneExpression ∈ (P1 ∪ P2) . x ∈ deg(GeneExpression)

∃!x ∈ mapped(e) . ∃3StageCascade ∈ (P1 ∪ P2) . x ∈ prod(3StageCascade)

Biological constraints

∀x ∈ mapped(e) . ∀Receptor ∈ (P1 ∪ P2) . x < all(Receptor)

∀x ∈ mapped(e) . ∀3StageCascade ∈ (P1 ∪ P2) . x ∈ trans(3StageCascade)

→ x ∈ prod(3StageCascade)

∀x ∈ mapped(e) . ∀GeneExpression ∈ (P1 ∪ P2) . x ∈ all(GeneExpression)

→ x ∈ deg(GeneExpression)

Receptor function cross-talk e is receptor function cross-talk if and only if the rules in Case 1,

Case 2 or Case 3 hold.

5.7 Categorisation of cross-talk 59

Case 1: P1 catalyses P2’s receptor degradation, or vice-versa, with possible modifiers from

3-stage Cascades.

Rules

∃!x ∈ mapped(e) . ∃Receptor ∈ Pi . x ∈ receptor deg(Receptor)

∃x ∈ mapped(e) . ∃3StageCascade ∈ P j . x ∈ catalysis(3StageCascade)

where i , j

Biological constraints

∀x ∈ mapped(e) . ∀GeneExpression ∈ (P1 ∪ P2) . x < all(GeneExpression)

∀x ∈ mapped(e) . ∀3StageCascade ∈ (P1 ∪ P2) . x < trans(3StageCascade)

∀x ∈ mapped(e) . ∀Receptor ∈ (P1 ∪ P2) . x ∈ all(Receptor)

→ x ∈ receptor deg(Receptor)

Case 2: The activation of P1’s receptor is inhibited by P2, or vice-versa, with possible extra

modifiers from 3-stage Cascades.

Rules

∃!x ∈ mapped(e) . ∃Receptor ∈ Pi . x ∈ receptor act(Receptor)

∃x ∈ mapped(e) . ∃3StageCascade ∈ P j . x ∈ inhib(3StageCascade)

where i , j

Biological constraints

∀x ∈ mapped(e) . ∀GeneExpression ∈ (P1 ∪ P2) . x < all(GeneExpression)

∀x ∈ mapped(e) . ∀3StageCascade ∈ (P1 ∪ P2) . x < trans(3StageCascade)

∀x ∈ mapped(e) . ∀Receptor ∈ (P1 ∪ P2) . x ∈ all(Receptor)

→ x ∈ receptor act(Receptor)

Case 3: P1’s receptor is activated without the need for a ligand and this is catalysed by P2, or

vice-versa, with possible extra modifiers from 3-stage Cascades.

5.7 Categorisation of cross-talk 60

Rules

∃!x ∈ mapped(e) . ∃Receptor ∈ Pi . x ∈ receptor deg(Receptor)

∃!x ∈ mapped(e) . ∃Receptor ∈ Pi . x ∈ active receptor prod(Receptor)

∃x ∈ mapped(e) . ∃3StageCascade ∈ P j . x ∈ catalysis(3StageCascade)

where i , j

Biological constraints

∀x ∈ mapped(e) . ∀3StageCascade ∈ (P1 ∪ P2) . x < trans(3StageCascade)

∀x ∈ mapped(e) . ∀GeneExpression ∈ (P1 ∪ P2) . x < all(GeneExpression)

∀x ∈ mapped(e) . ∀Receptor ∈ (P1 ∪ P2) . x ∈ all(Receptor)

→ (x ∈ receptor deg(Receptor) ∨ x ∈ active receptor prod(Receptor))

Gene expression cross-talk The rate of P1’s gene expression reaction is modified by a species

in a 3-stage Cascade module in P2 or vice-versa.

Rules

∃!x ∈ mapped(e) . ∃GeneExpression ∈ (P1 ∪ P2) .

x ∈ gene expression(GeneExpression)

∃x ∈ mapped(e) . ∃3StageCascade ∈ (P1 ∪ P2) . x ∈ mod(3StageCascade)

Biological constraints

∀x ∈ mapped(e) . ∀Receptor ∈ (P1 ∪ P2) . x < all(Receptor)

∀x ∈ mapped(e) . ∀3StageCascade ∈ (P1 ∪ P2) . x < trans(3StageCascade)

∀x ∈ mapped(e) . ∀GeneExpression ∈ (P1 ∪ P2) . x ∈ all(GeneExpression)

→ x ∈ gene expression(GeneExpression)

Intracellular Communication cross-talk A protein is released from P1 that is the ligand for

P2, or vice-versa, with possible extra modifiers from 3-stage Cascades.

5.7 Categorisation of cross-talk 61

Rules

(∃!x ∈ mapped(e) . ∃GeneExpression ∈ Pi . x ∈ deg(GeneExpression))∨

(∃!x ∈ mapped(e) . ∃3StageCascade ∈ Pi . x ∈ deg(3StageCascade))

∃x ∈ mapped(e) . ∃Receptor ∈ P j . x ∈ ligand prod(Receptor)

where i , j

Biological constraints

∀x ∈ mapped(e) . ∀GeneExpression ∈ (P1 ∪ P2) . x ∈ all(GeneExpression)

→ x ∈ deg(GeneExpression)

∀x ∈ mapped(e) . ∀3StageCascade ∈ (P1 ∪ P2) . x ∈ trans(3StageCascade)

→ x ∈ deg(3StageCascade)

∀x ∈ mapped(e) . ∀Receptor ∈ (P1 ∪ P2) . x ∈ all(Receptor)

→ x ∈ ligand prod(Receptor)

5.7.4 Categorisation is well-defined

We prove below that the categorisation is well-defined.

Theorem 1 (Well-defined categorisation). The cross-talk categorisation is well-defined, i.e. any

cross-talk that has been categorised has only one type.

Proof. Trivially, any cross-talk v is of type substrate availability cross-talk.

We now in-turn assume a cross-talk e of each type and give a witness, a label that must/must

not be part of the cross-talk, that prevents it from being another type of cross-talk.

Suppose e has been categorised as signal flow cross-talk. In both cases of signal flow cross-

talk, no transformation reactions from a Receptor module are allowed in mapped(e), hence if

x ∈ {a1, a2, a3, r1} then x < mapped(e).

A receptor function cross-talk must have a label from receptor deg(Receptor) (Case 1 and

Case 3) or a label from receptor act(Receptor) (Case 2). Therefore, a1 ∈ mapped(e) ∨ r1 ∈

mapped(e).

The witness to e, a signal flow cross-talk, not being a receptor function cross-talk is a1 <

mapped(e) and r1 < mapped(e).

Assuming e is each type of cross-talk in turn, we list below the witnesses that prove e can have

no other type.

5.7 Categorisation of cross-talk 62

e is signal flow cross-talk Witness

cannot be receptor function ∀x ∈ {a1, r1} . x < mapped(e)

cannot be gene expression r7 < mapped(e)

cannot be intracellular communication a3 < mapped(e)

e is receptor function cross-talk Witness

cannot be signal flow ∀x ∈ {a5, a6, r3, r4, r5} . x < mapped(e)

cannot be gene expression r7 < mapped(e)

cannot be intracellular communication a3 < mapped(e)

e is gene expression cross-talk Witness

cannot be signal flow ∀x ∈ {a5, a6, r3, r4, r5} . x < mapped(e)

cannot be receptor function ∀x ∈ {a1, r1} . x < mapped(e)

cannot be intracellular communication a3 < mapped(e)

e is intracellular communication cross-talk Witness

cannot be signal flow a3 ∈ mapped(e)

cannot be receptor function ∀x ∈ {a1, r1} . x < mapped(e)

cannot be gene expression r7 < mapped(e)
�

5.7.5 Examples of cross-talk

Given two pathways, we can generate all instances of cross-talk (comprising up to k synchronisa-

tions) that our formalisation allows using the Generate(P1, P2, k) algorithm given in Section 5.8;

it depends upon k, the maximum number of synchronisations on a reaction.

Applying Generate(Pathway1, Pathway2, 3) and quantifying over all possible renamings and

synchronisations, yields 757 candidate examples of cross-talk (that do not necessarily satisfy the

biological constraints) and 175 actual examples of cross-talk. The latter are categorised as fol-

lows: 36 substrate availability, 65 signal flow, 18 receptor function, 28 gene expression, and 28

intracellular communication cross-talks. Below, we give an example of each type.

Substrate availability cross-talk The pathways compete for activation of protein X, hence the

pathways share variables X1 and X2.

5.7 Categorisation of cross-talk 63

Pathway1 |[E ∪ U, V]| Pathway2

where U = aux(Pathway1) ∪ aux(Pathway2), E = ∅ and V = {(X1, X2)}. This example is

shown in Figure 5.5a.

Signal flow cross-talk An alternative reaction to activate Y1 through the X∗2 enzyme. Synchro-

nise a51 (the degradation of Y1) with a61 (the production of Y∗1) and with a42 (the enzymatic

activity of X∗2)5.

Pathway1 {a51 ← rnew, a61 ← rnew} |[E ∪ U, V]| Pathway2 {a42 ← rnew}

where U = (aux(Pathway1) ∪ aux(Pathway2)) \ {a51, a61, a42}, E = {rnew} and V = ∅. This

example is shown in Figure 5.5b.

Receptor function cross-talk An alternative reaction to activate receptor R2 by the enzyme X∗1.

Synchronise a12 (the degradation of receptor R2) with a22 (the production of the active receptor

R∗2) and with a41 (the enzymatic activity of X∗1).

Pathway1 {a41 ← rnew} |[E ∪ U, V]| Pathway2 {a12 ← rnew, a22 ← rnew}

where U = (aux(Pathway1) ∪ aux(Pathway2)) \ {a41, a12, a22}, E = {rnew} and V = ∅. This

example is shown in Figure 5.5c.

Gene expression cross-talk Inhibit the expression of Gene1 by the Z∗2 protein. Synchronise a72

(the inhibiting activity of Z∗2) with r71 (the expression of Gene1).

Pathway1 {r71 ← rnew} |[E ∪ U, V]| Pathway2 {a72 ← rnew}

where U = (aux(Pathway1) ∪ aux(Pathway2)) \ {a72, r71}, E = {rnew} and V = ∅. This

example is shown in Figure 5.5d.

Intracellular communication cross-talk The output of expressing Gene1 is the ligand for

Pathway2. Synchronise a81 (the degradation of Protein1) with a32 (the production of the ligand

L2).

Pathway1 {a81 ← rnew} |[E ∪ U, V]| Pathway2 {a32 ← rnew}

where U = (aux(Pathway1) ∪ aux(Pathway2)) \ {a81, a32}, E = {rnew} and V = ∅. This

example is shown in Figure 5.5e.

5notice that this synchronisation includes a synchronisation within a module

5.7 Categorisation of cross-talk 64

*	

Gene1	
 Protein1	

*	

*	

X	

X1	

Y1	

Z1	
 Z1	

Y1	

*	

*	

*	

X2	

Y2	

Z2	
 Z2	

Y2	

Gene2	
 Protein2	

*	

R1	
 L1	

R1	
 *	

R2	
 L2	

R2	

a)	
 	
 Substrate	
 Availability	

*	

Gene1	
 Protein1	

*	

*	

X1	
 X1	

Y1	

Z1	
 Z1	

Y1	

*	

*	

*	

X2	
 X2	

Y2	

Z2	
 Z2	

Y2	

Gene2	
 Protein2	

*	

R1	
 L1	

R1	
 *	

R2	
 L2	

R2	

b)	
 	
 Signal	
 Flow	

*	

Gene1	
 Protein1	

*	

*	

X1	
 X1	

Y1	

Z1	
 Z1	

Y1	

*	

*	

*	

X2	
 X2	

Y2	

Z2	
 Z2	

Y2	

Gene2	
 Protein2	

*	

R1	
 L1	

R1	
 *	

R2	
 L2	

R2	

c)	
 	
 Receptor	
 Func7on	

*	

Gene1	
 Protein1	

*	

*	

X1	
 X1	

Y1	

Z1	
 Z1	

Y1	

*	

*	

*	

X2	
 X2	

Y2	

Z2	
 Z2	

Y2	

Gene2	
 Protein2	

*	

R1	
 L1	

R1	
 *	

R2	
 L2	

R2	

d)	
 	
 Gene	
 Expression	

*	

Gene1	
 Protein1	

*	

*	

X1	
 X1	

Y1	

Z1	
 Z1	

Y1	

*	

*	

*	

X2	
 X2	

Y2	

Z2	
 Z2	

Y2	

Gene2	
 Protein2	

*	

R1	
 L1	

R1	
 *	

R2	
 L2	

R2	

e)	
 	
 Intracellular	
 Communica:on	

Figure 5.5: An example of each of the five types of cross-talk. a) two pathways compete for a
protein. b) a pathway up-regulates signal flow through another pathway. c) a pathway activates
the receptor of another pathway in the absence of a ligand. d) two pathways have conflicting
transcriptional responses. e) a pathway releases a ligand for another pathway.

5.8 Cross-talk generation – Generate() 65

5.8 Cross-talk generation – Generate()

We now give the algorithm Generate(P1, P2, k) to generate all possible instances of cross-talk

between two pathways P1 and P2. First, we consider substrate availability cross-talk and then, all

other types of cross-talk.

To generate every substrate availability cross-talk we share between pathways every pair of

(external) variables.

for variable v ∈ extv(P1) do
for variable w ∈ extv(P2) do

P1 {renamings1} |[E ∪ U, V]| Pathway2 {renamings2} where U = aux(P1) ∪ aux(P2),
E = ∅, renamings1 = ∅, renamings2 = ∅ and V = {(v,w)}

end for
end for

To generate every cross-talk of all other types we create all possible candidate cross-talks by

synchronising up to k (external) reactions.

for i ≥ 1, j ≥ 1 such that i + j ≤ k do
for X = choose i reactions from extr(P1) do

for Y = choose j reactions from extr(P2) do
if X ∪ Y contains only modifiers then skip else
P1 {renamings1} |[E ∪ U, V]| P2 {renamings2} where renamings1 such that ∀x ∈
X . x← rnew, renamings2 such that ∀y ∈ Y . y← rnew, E = {rnew} and
U = (aux(P1 {renamings1}) ∪ aux(P2 {renamings2})) \ mapped(rnew),

end for
end for

end for

We then filter the candidate cross-talks according to the categorisation—those cross-talks that

are not categorised are removed.

5.8.1 Higher order networks

We have defined how to model networks of two pathways. Higher order networks can be modelled

by composing a network with a single pathway, hence:

Network2 = Pathway1 |[E1 ∪ U1, V1]| Pathway2

Network3 = Network2 |[E2 ∪ U2, V2]| Pathway3

. . .

Networki = Networki−1 |[Ei−1 ∪ Ui−1, Vi−1]| Pathwayi

However, to the best of our knowledge all cross-talk are between pairs of pathways. Our

definition of a network allows a single cross-talk in which three or more pathways participate,

5.9 Detecting cross-talk 66

however we have found no biological examples of such an interaction have been reported.

This concludes modelling cross-talk. We now change focus to analysing models of cross-talk

using logical properties.

5.9 Detecting cross-talk

So far we have discussed the main contribution of this chapter, how to model cross-talk in a

rigorous way by looking at the form of the model description, e.g. the synchronisations between

PRISM modules. We now give preliminary results on the complementary problem, how to analyse

at the model level (i.e. at the level of the CTMC rather than the form of the model description6).

We aim to both detect and characterise cross-talk. We first tackle detecting cross-talk in these

models.

This section makes use of the two pathways Pathway1 and Pathway2 introduced in Section

5.4 and the five example cross-talk models of Section 5.7.5.

The presence of cross-talk can be detected by checking a set of temporal logic properties as

follows.

We choose CSL because we need a quantitative logic—it is a change in the probability of a

formula being true that allows us to detect the presence of a cross-talk. The probabilities are used

to measure the number of paths that satisfy a property. For example, in the signal flow cross-talk

example (compared to the independent pathways model) there is a greater number of paths to the

expression of Protein1. There are other ways to detect cross-talk, however we use model checking

of CSL properties as it is relatively straightforward and familiar to a large part of the community.

Given pathways Pathway1 and Pathway2 that conclude with gene expression (Protein1 and

Protein2 being produced respectively), we detect cross-talk by comparing the probabilities of the

following three CSL formulae with the probability of the formulae in the independent pathways

model. Namely, we compare probabilities for the five example cross-talk models of Section 5.7.5

with Pathway1 {renamings1} |[E ∪ U, V]| Pathway2 {renamings2} where E = V = ∅. In each

case, cross-talk is indicated by a change of probability of at least one formula.

Competitive Signal Flow (Pathway1 before Pathway2): probability of signal flow through

Pathway1 before Pathway2

6for example, we define CTMCs in PRISM using the PRISM language whereas in a tool like Matlab, we would
define them with equations

5.9 Detecting cross-talk 67

ψ1 ψ2 ψ3

Substrate Availability Example = ↓ ↓

Signal Flow Example ↑ ↑ =

Receptor Function Example ↓ = ↑

Gene Expression Example ↓ ↓ =

Intracellular Communication Example = = =

Table 5.1: The change in probability for each of the 5 cross-talk models compared with the inde-
pendent pathways model for the three CSL properties.

ψ1 = P=? [F (Protein1 = 1 ∧ Protein2 = 0)]

Independent Signal Flow (Pathway1): probability of signal flow through Pathway1 within a

time bound (3 time units)

ψ2 = P=? [F≤3 (Protein1 = 1)]

Independent Signal Flow (Pathway2): probability of signal flow through Pathway2 within a

time bound (3 time units)

ψ3 = P=? [F≤3 (Protein2 = 1)]

The change in probability for each of the 5 cross-talk models, as compared to the independent

pathways model, is given in Table 5.1. ↑ denotes an increase, ↓ denotes a decrease and = denotes

no change in probability. Results were obtained using the PRISM model checker (run times are

negligible).

Notice that there is no change in probability for the intracellular communication cross-talk

model. In our qualitative model of this cross-talk, one pathway produces a ligand for another

pathway only after the original ligand molecule has been consumed in a reaction. This means that

the cross-talk has no effect on the rate of the activation reactions in either pathway. In a model with

a greater level of quantitative detail, as discussed in Section 5.12, this cross-talk would change the

rate of the activation reactions. This result is not unexpected as we have already identified that

intracellular communication cross-talk is a source of contention in the life sciences.

We now move on to characterising cross-talk in models in which there is no model description.

5.10 Characterising cross-talk 68

5.10 Characterising cross-talk

The type of cross-talk can be characterised at the model level using different temporal logic prop-

erties.

We choose CTL because we only need a qualitative logic—it is a difference in the structure

of the Markov chain rather than the transition rates that allows us to distinguish between types of

cross-talks. We define 5 CTL properties, each of which characterises a type of cross-talk. The

properties are simple liveness or safety properties.

As before, the activation of a pathway is reflected by the expression of Protein.

Substrate availability example It is not possible to activate X in both pathways (i.e. the path-

ways compete for a limited protein).

A [G ¬ (X∗1 = 1 ∧ X∗2 = 1)]

Signal flow example It is possible to activate Pathway1 without activating receptor R1.

E [F (R∗1 = 0 ∧ Protein1 = 1)]

Receptor function example It is possible to activate the receptor R2 without using the ligand

L2.7

E [F (R∗1 = 0 ∧ R∗2 = 1 ∧ L2 = 1)]

Gene expression example It is not possible to activate Pathway1 if the signal has already passed

through Pathway2.

A [G ¬ (Protein1 = 1) {Y∗1 = 1 ∧ Z∗1 = 0 ∧ Protein∗2 = 1}]

Intracellular communication example It is possible to use and replenish ligand L2.

E [(L2 = 1) U ((L2 = 0) ∧ E [(L2 = 0) U (L2 = 1))]]

We now demonstrate our approach on a prominent case study of the cross-talk between the

TGF-β, WNT and MAPK pathways.

7We include R∗1 = 0 because signalling in Pathway1 in the intracellular communication model can produce L2.

5.11 Case study: TGF-β, WNT and MAPK pathways 69

5.11 Case study: TGF-β, WNT and MAPK pathways

We apply our approach to a prominent biological case study of the cross-talk between the TGF-β,

WNT and MAPK pathways. Details are taken from [50]. We use the approach to classify the

cross-talk in the model and to understand the effects of the cross-talk on the TGF-β pathway. We

note that the effects of cross-talk are not discussed in [50].

5.11.1 Biological background

Transforming Growth Factor β (TGF-β) is a family of cytokines (ligands used for cellular com-

munication) including the TGF-β and Bone Morphogenic Protein (BMP) ligands. The TGF-β

pathway controls many biological functions including cellular proliferation, differentiation and

apoptosis, and immune function [50]. The study of this pathway is also crucial in understanding

many diseases, especially the study of tumour invasion and metastasis.

Cross-talk is a “perennial theme” in the study of the TGF-β pathway [2]. It has been known

for some time to play a large role in the complexity of the pathway response. A recent review

paper [50] explains developments in this field, especially using the diagrams in Figure 5.6. We

review the cross-talk between the TGF-β and two other pathways below.

Smad4

Smad4

Smad3

R-Smad

R-Smad

R-Smad

Nucleus

MAPK

MAPKK

MAPKKK

Akt

Cytoplasm

TGF-!/BMP

RTK

TF

PI3K

Ras

R-Smad

R-Smad

Smad4

Smad7

R-Smad
Smad4

Cytoplasm

TGF-!/BMP

Wnt

CKl!

"-catenin

Axin

GSK3

Co-factor

Lef

Nucleus

DvI

Figure 5.6: Two biological cartoons outlining the cross-talk between the TGF-β and MAPK (left)
and TGF-β and WNT (right) pathways. Figure reproduced from [50].

TGF-β pathway The TGF-β pathway contains many signal transducers called Smads. The ac-

tivated ligand-receptor complex phosphorylates a subset of Smads called R-Smads (Receptor reg-

ulated Smads). Activated R-Smads bind to Smad4, translocate to the nucleus and regulate gene

expression by binding directly to the DNA. The Smad7 protein can deactivate the receptor, how-

5.11 Case study: TGF-β, WNT and MAPK pathways 70

ever Smad7 can be degraded by Axin (from the WNT pathway). MAPK proteins (from the MAPK

pathway) inactivates R-Smads and degrades Smad4.

WNT pathway The effect of the WNT pathway is controlled by the state of the β-Catenin pro-

tein, which can translocate to the nucleus and cause gene expression. The Axin scaffold proteins

combine two other proteins GSK3 and CKIα, then degrades β-Catenin. Active Smad7 is also im-

plied in β-Catenin degradation. However, β-Catenin degradation is inhibited by WNT signalling,

through the activation of Dvl, causing Axin down-regulation and β-Catenin stabilisation.

MAPK pathway Receptor tyrosine kinases, a class of receptors, stimulate both the activation

of MAPK proteins and the AKT protein through the activation of a protein called Ras. The active

MAPK proteins and AKT both enhance the expression of genes in the nucleus. Note that the in-

clusion of the PI3K and AKT proteins indicates an implicit cross-talk as these proteins are integral

parts of the PI3K and AKT pathways respectively.

5.11.2 Modelling the pathways

To apply our modelling approach we need to expand our set of modules to Receptor, Protein Ac-

tivation, 2-stage Cascade, 3-stage Cascade, Translocation, Protein Binding and Gene Expression.

This is a natural extension of our approach.

Because there are extra modules, there may be new instances of cross-talks that our formalisa-

tion does not capture.

The TGF-β, WNT and MAPK pathways and their cross-talk are shown in Figure 5.7.

We define the following three pathways (for brevity, we omit the synchronisation sets and

renamings).

MAPK = (Receptor {. . .} |[. . .]| ProteinActivation {. . .} |[. . .]| 3StageCascade {. . .} |[. . .]|

2StageCascade {. . .} |[. . .]| Translocation {. . .} |[. . .]| Translocation)

TGFB = (Receptor {. . .} |[. . .]| ProteinActivation {. . .} |[. . .]| ProteinActivation {. . .} |[. . .]|

ProteinBinding {. . .} |[. . .]| Translocation {. . .} |[. . .]| GeneExpression {. . .} |[. . .]|

GeneExpression)

WNT = (Receptor {. . .} |[. . .]| ProteinActivation {. . .} |[. . .]| Translocation {. . .} |[. . .]|

GeneExpression)

The following auxiliary reactions are added. In the MAPK pathway we add catalysis auxiliary

reactions to the MAPK∗, AKT∗ and TF∗ species. In the TGF-β pathway we add degradation

5.11 Case study: TGF-β, WNT and MAPK pathways 71

auxiliary reactions to the Smad4 and Smad7 species. In the WNT pathway we add catalysis

auxiliary reactions to the Axin and β-Catenin∗ species.

We then consider four networks,

TGFB,

TGFB |[. . .]| MAPK,

TGFB |[. . .]| WNT and

(TGFB |[. . .]| MAPK) |[. . .]| WNT (referred to as the full network).

*	

R2	
 L2	

R2	

*	

R1	
 L1	

R1	
 *	

R3	
 L3	

R3	

Ras	
 Ras	

MAPKKK	

PI3K	

PI3K	

AKT	

AKT	

AKT	

MAPKKK	

MAPKK	
 MAPKK	

MAPK	
 MAPK	

TF	

TF	

*	

*	

*	

*	

*	

*	

*	

*	

Inac3ve	
 R1	

Smad7	

R-­‐Smads	

Smad7	

R-­‐Smads	

Inac3ve	

R-­‐Smads	

Smad4	

Smad4/	

R-­‐Smads	

∅	

*	

*	

*	

Smad4/	

R-­‐Smads	

*	

∅	

Dvl	

Dvl	
 *	

Axin	

∅	

OR	

∅	

B-­‐Catenin	
 *	

B-­‐Catenin	
 *	

Genes	
 Proteins	
 Gene	
 L3	
 Gene	
 L1	
 L3	
 L1	

OR	

MAPK	
 TGF-­‐β	
 WNT	

Figure 5.7: Our model of the cross-talk between the TGF-β, WNT and MAPK pathways.

5.11.3 Analysis of cross-talk

We detect the presence of 9 cross-talks in the full network using the approach outlined in Section

5.10—no new cross-talks are identified compared with the literature. We then characterise each

cross-talk using the approach outlined in Section 5.9 as follows.

We measure the output of the TGF-β pathway by the activity of the expression of Proteins (a

set of proteins in the TGF-β pathway). We use the following CSL properties to compare the effects

of cross-talk: ψ1, the eventual expression of Proteins, and ψ2, the time-dependent expression of

Proteins (within 5 time units).

5.11 Case study: TGF-β, WNT and MAPK pathways 72

ψ1 = P=? [F (Proteins = 1)]

ψ2 = P=? [F≤5 (Proteins = 1)]

We follow with a detailed analysis of each of the four networks.

Independent network In the independent network, TGFB, the activation of the TGF-β pathway

leads to the expression of Proteins within 5 time units, ψ2, with probability 0.47 and to the eventual

expression of Proteins, ψ1, with probability < 1 due to the inactivation of the receptor.

TGF-β and MAPK cross-talk In the TGF-β and MAPK network, TGFB |[. . .]| MAPK, there

are two types of cross-talk.

Signal flow: MAPK∗ proteins slow signal flow through the TGF-β pathway by deactivating the

R-Smads and degrading Smad4.

Gene expression: the TF∗ and AKT∗ proteins upregulate gene expression in the TGF-β pathway.

The inclusion of cross-talk with the MAPK pathway can both provide alternative gene expression

reactions and block signal flow through the TGF-β pathway, overall causing the probability of the

expression of Proteins within 5 time units, ψ2, to increase to 0.73. The probability of the eventual

expression of Proteins, ψ1, is 1 because there is an uninterrupted route to express proteins through

the MAPK pathway.

TGF-β and WNT cross-talk In the TGF-β and MAPK network, TGFB |[. . .]| WNT , there are

three types of cross-talk.

Signal flow: the Smad7∗ protein degrades β-Catenin and the Axin protein degrades Smad7.

Gene expression: the β-Catenin protein upregulates gene expression in the TGF-β pathway.

Intracellular communication: the WNT pathway can cause the production of a ligand for the TGF-

β pathway, and vice-versa.

The inclusion of cross-talk with the WNT pathway can both provide an alternative gene expression

reaction and inhibit Smad7 which can inactivate the receptor for the TGF-β pathway. Overall this

causes the probability of the expression of Proteins within 5 time units, ψ2, to increase to 0.76.

The probability of the eventual expression of Proteins, ψ1, is < 1 due to the degradation of the

β-Catenin protein.

TGF-β, WNT and MAPK cross-talk The TGF-β, WNT and MAPK network, (TGFB |[. . .]|

MAPK) |[. . .]| WNT , is the union of the two cross-talk scenarios above. The effect of both WNT

and MAPK cross-talk on the TGF-β pathway is additive—the probability of ψ2 rises to 0.88, com-

5.12 Discussion 73

pared with the single cross-talks of WNT and MAPK with probability 0.76 and 0.73 respectively.

The inclusion of the MAPK cross-talk provides an uninterrupted route to express proteins and

hence the probability of ψ1 is 1.

We remark that we have categorised the complicated cross-talk in which Axin degrades Smad7

unambiguously as signal flow. Whereas, in [50] there is a suggestion that the cross-talk is receptor

function because Axin degrades the receptor (via Smad7, an intermediate). Our approach does not

classify this cross-talk as receptor function cross-talk.

5.12 Discussion

Reversible reactions We discuss two simplifications of the biochemistry that are used in our

models. The first simplification is that we only consider irreversible reactions, e.g. the activation

reaction X → X∗. If our models were to include deactivation reactions, e.g. X∗ → X, then the

temporal logic properties would need to be strengthened. For example, the property characterising

signal flow cross-talk expresses that at some point in time R1 is inactive and Protein1 is expressed.

If the activation of R1 is a reversible reaction then this property is too weak. The property could

be satisfied if R1 becomes active, Protein1 is expressed and then R1 becomes inactive. Thus, the

correct property with reversible reactions is:

E [(R∗1 = 0) U (R∗1 = 0 ∧ Protein1 = 1)].

The enzyme-substrate complex The second simplification is that enzyme driven reactions are

modelled without the intermediate complex of the enzyme bound to the substrate. This is a com-

mon abstraction used in models of biological systems. The activation of a protein X with an

enzyme E is modelled as X → X∗ if E = 1. We could include the enzyme-substrate complex by

modelling the reaction as X + E → X/E → X∗ + E. This would have an effect on our analysis.

Consider the signal flow cross-talk example where X∗2 is also an enzyme for the activation of Y1.

If we included the enzyme-substrate complex then Y1 and X∗2 would bind forming Y1/X∗2. This

would slow the signal flow through pathway P2 because enzyme X∗2 would be bound to Y1 for a

period of time and hence it would be unavailable to activate proteins in pathway P2.

Cross-talk formalisation Our cross-talk formalisation depends on the set of modules being con-

sidered. One reason for this is that the modules act as a proxy for the cellular location. For ex-

ample, in the definition for Gene Expression cross-talk, we disallow reactions from the Receptor

5.12 Discussion 74

module because gene expression occurs in the nucleus which is ‘far’ from the receptor. Future

work will be to introduce a formalisation that is not so strongly tied to current set of modules. We

expect to need, at the very least, a mapping from the set of modules to the location of the modules.

Cross-talk generation and pathway generation Our method to generate all cross-talk models

from a set of pathways (Section 5.8) can also be applied to generate all pathway models from a

set of modules. However, to generate a pathway from a set of modules we need to ensure that all

modules are connected, and sometimes connected together in a specific manner. Therefore, we

require a constraint to our method: a set of reactions in each module that must synchronise with at

least one reaction in another module.

Quantitative detail Recall the distinction between qualitative and quantitative models from Sec-

tion 4.2.3. We have applied our approach to qualitative models, which have a low level of quantita-

tive detail. As such, the probability values resulting from CSL model checking can only be used to

compare the models with each other. Applying our approach to quantitative models would allow

further interpretation of our analysis results. For example, the properties concerning the proba-

bility of time-dependent gene expression between cross-talk models would become a meaningful

assessment of the strength of the cross-talk. However, this is left as future work.

Model-checking runtimes The state spaces for all the models presented here are small, of the

order of 102. Runtimes for checking properties are therefore trivial.

Feature interaction One inspiration for the approach to pathway cross-talk presented here is

work on using temporal logics to detect and characterise feature interaction in telecommunication

networks [14]. A common problem is lack of universal definition of pathway/feature. In [90] the

feature construct is introduced; the feature has an implementation δ and requirements φ, such that

successful integration into base system P would be P + δ |= φ8. This parallels our approach of

checking properties of different compositions of pathways (pathways with different instances of

cross-talk).

Finally, we note that in telecommunications, 3-way feature interactions (a interaction between

three features, that does not occur between only two features) are very rare: most detection al-

gorithms depend on a pairwise analysis. This again parallels our approach in which we have not

found an example of a single instance of cross-talk involving three pathways.

8the |= symbol expresses that the system on the left-hand side satisfies the property on the right-hand side

5.13 Summary 75

Cross-talk categorisation An interesting question that also plagues the feature interaction com-

munity is what is a feature and a feature interaction? This is analogous to what is a pathway and

a cross-talk, which begs the question, is our cross-talk categorisation complete? We believe this is

future work for the biological, rather than the formal computer science, community.

The Molecular Nose project This work has been developed as part of the Molecular Nose

project [80] that aims to develop new in vivo sensor technologies for analysing and interpreting

signalling networks. The term “molecular nose” refers to sensor technology “sniffing out” path-

ways within a cell. Long term, we aim to generate hypotheses about the structure of pathways and

networks, comparing those in normal cells with those in diseased cells.

5.13 Summary

In this chapter we have defined a framework for modular modelling of pathways and their cross-

talk, based on generic modules and composition with synchronisation, variable sharing, and reac-

tion renaming.

In Section 5.1 we gave the motivation for the framework. In Section 5.2 we explained how to

build CTMCs with levels using the PRISM modelling language. In Section 5.3 we gave extensions

to the PRISM modelling language required to model generic pathway modules that we used as the

basis for our modelling approach. In Section 5.4 we introduced the modular modelling approach

and showed how it can be used to build a pathway by composing generic pathway modules. In

Section 5.5 we showed how, in a similar way, we can compose pathways to build a signalling

network, in this case the pathways were composed independently. In Section 5.6 we introduced

a new concept called auxiliary reactions, which were used when expressing cross-talk in the next

section. Section 5.7 was the main contribution of this chapter, a formalisation and modelling ap-

proach for cross-talk based on synchronising reactions (including auxiliary reactions) and sharing

variables between pathways. We defined five types of cross-talk and proved that they are well-

defined. Although we could not prove completeness, we have not found an instance of cross-talk

that did not belong to one of the five categories. In Section 5.8 we introduced an algorithm to

enumerate all instances of cross-talk between two pathways. We applied this algorithm to two ex-

ample pathways and were able to categorise each biologically meaningful instance of cross-talk.

We then gave preliminary results on how to analyse models that do not contain a explicit notion of

cross-talk. In Section 5.9 we showed how to detect cross-talk using CSL properties and in Section

5.10 we showed how to characterise each type of cross-talk using CTL properties. In Section 5.11

5.13 Summary 76

we demonstrated our framework with a case study of the TGF-β, WNT and MAPK pathways. In

the case study we were able to detect, categorise and analyse the effect of the different instances

of cross-talk in the network. Finally, in Section 5.12 we discussed our modelling assumptions and

possible extensions of the framework.

We now turn our attention in the next chapter to the complementary problem, how to analyse

models of signalling networks in which there is no structure.

Supplemental material An open-source Java application that implements the algorithm in Sec-

tion 5.8 as well as the models used in this chapter can be found at

www.dcs.gla.ac.uk/∼radonald/tcs2012/.

Chapter 6

Modelling unstructured signalling

networks as signal flows

In this chapter we turn to the problem of how to analyse signalling network models in which there

is no structure, i.e. there exists no explicit notion of signalling pathway and cross-talk.

In Section 6.1 we give the motivation for this chapter. In Section 6.2 we define signal flow

in a signalling network. In Section 6.3 and Section 6.4 we explore the steady-state approach and

current dynamic techniques (respectively) used to compute the set of signal flows in a signalling

network model. In Section 6.5 we introduce a new algorithm called the Reaction Minimal Paths

(RMP) algorithm to compute the set of signal flows in a model. In Section 6.6 we introduce the

Pathway Logic modelling framework. In Section 6.7 we apply the RMP algorithm to signalling

network models from the Pathway Logic modelling framework. We show how the set of signal

flows and various network metrics computed using the RMP algorithm can be used to better un-

derstand the models. In Section 6.8 we show how signal flows can be clustered to reveal structure

within signalling network models. In Section 6.9 we discuss the computational complexity and

scalability of the RMP algorithm.

Background material We assume the following background material: Petri nets (Section 3.3),

the dynamic behaviour of Petri nets (Section 3.4), and the steady-state behaviour of Petri nets

(Section 3.5). Of particular importance are multisets (Appendix A), paths (Definition 5 on page

25) and state space searches (Definition 7 on page 27).

77

6.1 Motivation 78

6.1 Motivation

In the previous chapter we introduced a framework for modelling signalling networks in a struc-

tured manner with an explicit notion of signalling pathway and cross-talk. We now turn our atten-

tion to the complementary problem, what do we do when a model does not have such structure?

We call these models unstructured models. A particularly interesting modelling framework is

Pathway Logic [103]. In Pathway Logic, models are automatically generated from a “knowledge

base” of reactions—these models are unstructured and typically large, complex and difficult to

understand.

Recall that a signal flow is the reactions starting from the cell detecting one or more ligands

and ending in a change in some output of interest, e.g. gene expression, protein activation or a

cellular response. Unstructured networks can be better understood by modelling them as a set of

signal flows. To the best of our knowledge, no current technique for computing the set of signal

flows in a model can guarantee both completeness and correctness, i.e. in some cases signal flows

are missing or incorrect.

6.2 Signal flows

Signal flow in cellular signalling is a well-established concept in both the biological [36, 62, 66]

and computational communities [30,57,83]. In the biological community signal flow is also called

signal propagation [20] or signal transduction [49]. We now define signal flow.

Definition 22 (Signal flow). A signal flow s is a multiset of reactions that when fired from the

initial state of a Petri net m0 produce a set of outputs X, and all the reactions in the multiset are

required to produce X—hence, the multiset is minimal. Usually the output is some measure of

signalling pathway activity, e.g. gene expression, protein activation or a cellular response.

We illustrate the term signal flow with the example below.

Example 7 Example of signal flow.

Consider the signalling pathway given in biological notation in Figure 6.1. One measure of

signalling pathway activity is the expression of protein A. There are two signal flows to this output,

one that uses reaction r2, {r1, r2, r4, r5}, and one that uses reaction r3, {r1, r3, r4, r5}.

Given a Petri netM and a set of outputs X, an algorithm SIG(M, X) computes the set of signal

flows in a model if it returns a set S of signal flows that produce X.

6.3 Demonstration of the steady-state approach using T invariant analysis 79

X	
 X	

R	

L	

Gene	
 A	
 A	

TF	
 TF	
 *	

Z	
 Z	
 Y	
 Y	

OR	

r1	

r2	
 r3	

r4	

r5	

Figure 6.1: A signalling pathway ending with the expression of protein A. Each reaction is named
so that it can be referenced in the signal flows.

Definition 23 (Completeness). An algorithm SIG(M, X) that returns a set of signal flows S is

complete if for all possible signal flows s that produce X, s ∈ S .

Definition 24 (Correctness). An algorithm SIG(M, X) that returns a set of signal flows S is correct

if ∀s ∈ S , s is a signal flow that produces X.

Algorithms that compute the set of signal flows in a model either analyse the steady-state

behaviour or the dynamic behaviour. We now explore the shortcomings of current techniques,

starting with the steady-state approach.

6.3 Demonstration of the steady-state approach using T invariant

analysis

We demonstrate the shortcomings of the steady-state using T invariant analysis but we could

equally use FBA, for example. We show that in the steady-state approach, completeness and

correctness do not hold for models that contain certain network structures. We have found three

network network structure patterns that cause the steady-state approach to produce incorrect re-

sults.

To compute T invariants that correspond to signal flows we first apply transformations to the

Petri net. The purpose of these transformations is to force each T invariant to repeat the empty state

(all places have no tokens) for example by introducing source and sink transitions. If a T invariant

repeats the empty state then the T invariant contain all transitions to produce and consume the

species required for the signal flow it represents—no species are assumed present.

6.3 Demonstration of the steady-state approach using T invariant analysis 80

We follow the approach taken by [56,74] and apply the following three transformations (illus-

trated in Figure 6.2)

(1) T invariant analysis is not concerned with the initial state of a Petri net, only the net structure.

To structurally encode the initial state, any place that is initially marked is given a source

transition that can generate an infinite number of tokens on the place.

(2) To allow the possibility of repeating the empty state, places that are never consumed in a

transition are given a sink transition that can consume an infinite number of tokens on the

place.

(3) Again, to allow the possibility of repeating the empty state, places that are both pre- and

post-places of a transition are changed to be only pre-places of the transition. Hence all

bidirectional arcs are changed to unidirectional arcs from the place to the transition. In

biological terms this means that all enzymes are consumed in the transitions.

C

A B G

C

A B G

(3)

(1)

(1) (2)

Figure 6.2: A Petri net before (left) and after (right) applying the transformations required to
compute signal flows. Labels (1), (2) and (3) denote the transformation applied to the net. Recall
that the dashed directed arc from place C to the transition represents a bidirectional arc and hence
C is both a pre- and post-place of the transition in the Petri net on the left.

These transformations allow us to use T invariant analysis to compute signal flows in a model.

The signal flows are computed to outputs (places with sinks): if we wish to designate a place as

an output that was not given a sink through transformation (2), we can explicitly add a sink to this

place.

An example of how T invariants relate to signal flows is shown in Figure 6.3.

In some cases the steady-state approach (such as T invariant analysis) computes signal flows

very efficiently (discussed further in Section 6.3.5). However, steady-state analysis is not well-

suited as both completeness and correctness are not guaranteed for all models. We have found

three network structure patterns that cause incorrect results. We describe the patterns (place traps,

consumption conflicts and protein degradations) below. It is also nontrivial to decide whether

completeness or correctness will hold for a given model.

6.3 Demonstration of the steady-state approach using T invariant analysis 81

(1)	
 (2)	

(4)	
 (3)	

(6)	
 (5)	

C

A B Gr4r3

r2

r1 r5

C

A B Gr4r3

r2

r1 r5

C

A B Gr4r3

r2

r1 r5

C

A B Gr4r3

r2

r1 r5

C

A B Gr4r3

r2

r1 r5

C

A B Gr4r3

r2

r1 r5

Figure 6.3: The signal flow from {A,C} to {G} is represented by the T invariant {r1, r2, r3, r4, r5}
as shown in steps (1) to (6) above. Notice that this T invariant repeats the empty state.

6.3.1 Place traps

A place trap is a set of places that once marked cannot become unmarked [55]. A set of places

Q ⊆ P is a place trap if Q• ⊆ •Q (every transition that subtracts tokens from the place trap also puts

tokens into the place set). Place traps are found in many models of biological systems, for example

protein phosphorylation, protein ubiquitination and enzymes often involve place traps [106].

A model that contains a place trap cannot repeat an empty state because once the place trap

is marked, it cannot become unmarked. Because of this, there can be no T invariant that places a

token onto the place trap. However, a T invariant can include a place trap by repeating a state that

is empty for all places except at least one place in the place trap—it assumes one of the species is

present. This is an example where transformation (1), structurally encoding the initial state, is not

followed.

Consider the problem of computing the signal flows from {A,C} to {G} in the Petri net in Figure

6.4. The Petri net has a single T invariant that starts with the place trap {B,D}. The T invariant

repeats a state that is empty for all places except B. The T invariant is not an execution because it

is not realisable—there is no possible execution of the T invariant.

6.3 Demonstration of the steady-state approach using T invariant analysis 82

B

DC

A

G

Figure 6.4: A Petri net containing a place trap on {B, D}. The single T invariant and all related
places are highlighted in grey.

We note that the place trap in Figure 6.4 could be caused by an enzymatic reaction where B

is the enzyme, C is the substrate, D is the enzyme-substrate complex and G is the product. The

enzyme and enzyme-substrate complex is the place trap in this case.

Enzymes are often abstracted such that the enzyme-substrate complex is not modelled explic-

itly and hence we have a dashed arc from an enzyme to a transition. The enzyme is a place trap

(with a single place) if there are no unidirectional outgoing arcs from the place. Transformation

(3) removes place traps with a single place, however this can cause extra consumption conflicts as

described below. Place traps with multiple places can be handled similarly by removing (by hand)

an arc that will break the trap, as performed in [74]. However, we wish to avoid manual alteration

of models for obvious reasons.

Steady-state analysis of models with place traps is likely to cause incorrect results.

6.3.2 Consumption conflicts

Consider the problem of computing the signal flows from {A,D} to {G} in the Petri net in Figure

6.5. There is no state that can be repeated by a T invariant. The production of E and F is coupled

because E and F are produced by the same transition (perhaps a decomplexation or protein cleavage

reaction). The number of tokens produced on E and F is always the same, however there is a

difference in the number of transitions from E and F, 2 and 1 respectively. These transitions are

required to produce a token on place G. We call this problem a consumption conflict—there is no

true steady-state. Producing a token on G will always leave one more token on F than E, therefore

it is never possible to repeat any state.

Note that arcs x, y and z in Figure 6.5 can be either unidirectional or bidirectional arcs (E and/or

F can be an enzyme) because transformation (3) will convert all bidirectional arcs to unidirectional

arcs. Hence, transformation (3) can cause extra consumption conflicts in a model.

Steady-state analysis of models with consumption conflicts is likely to cause incomplete re-

sults.

6.3 Demonstration of the steady-state approach using T invariant analysis 83

A B C G

E F

D

zyx

Figure 6.5: A Petri net containing a consumption conflict between places E and F. There are no T
invariants in this Petri net because of the conflict.

6.3.3 Protein degradations

Consider the problem of computing the signal flows from {A, B} to {G} in the Petri net in Figure

6.6. The minimal sequence of transitions to produce G will leave a token on D. The token on D

must be consumed because the empty state must be repeated. An extra two transitions must fire

to consume the token on D, hence the T invariant contains extra transitions that are not part of the

signal flow from {A, B} to {G}. We call this problem a protein degradation.

A

G

C D

F

E

B

Figure 6.6: A Petri net with the single T invariant and all related places highlighted in grey. The
T invariant does not correspond to a signal flow from A to G because transitions are included that
are not required.

Steady-state analysis may produce incorrect results because all proteins must be degraded,

therefore including extra transitions in the signal flows.

To summarise, the three network structure patterns above illustrate types of models where

steady-state analysis is inappropriate to compute signal flows. We now discuss an alternative

approach to T invariant analysis.

6.3 Demonstration of the steady-state approach using T invariant analysis 84

6.3.4 Alternative T invariant approach

In this section we investigate how the transformations might be altered to permit computing signal

flows by T invariant analysis in more circumstances. An intuitive alternative approach is to use

a different set of transformations in which we change transformation (3), the consumption of

enzymes, to:

(3’) All places that are both pre- and post-places •t∩ t• of a transition t are given a sink transition

that can consume an infinite number of tokens on the place.

Rather than consume the enzyme in the transition, we allow the enzyme to be consumed by a

sink transition (as in Figure 6.7). This removes consumption conflicts caused by transformation

(3). However this is not a complete fix because not all consumption conflicts are caused by trans-

formation (3). Also, unrelated transitions may be included due to protein degradations, and place

traps with multiple places may exist.

C

A B G

(3')

(1)

(1) (2)

Figure 6.7: An alternative set of transformations applied to the Petri net from Figure 6.2. Note the
sink transition added by transformation (3’).

If the model contains no bidirectional arcs, there will be the same T invariants as before oth-

erwise there will be a larger number of smaller T invariants. In this case we must compose T in-

variants to find signal flows, however composing T invariants is a nontrivial task (discussed briefly

in [44]). Also note that composing T invariants to find signal flows is similar to the initial prob-

lem, composing transitions to find signal flows. The alternative approach is therefore not suitable.

There may be other alternative approach (different sets of transformations) however we believe we

have given strong evidence that the steady-state approach is inappropriate for computing signal

flows in a signalling network.

6.3.5 Computational complexity

Before concluding this section, we comment on the computational complexity of the steady-state

approach, again using T invariant analysis as the example. T invariants are computed by enumer-

ating solutions to a linear algebra equation of the incidence matrix being in steady-state. There

6.4 Overview of current dynamic techniques 85

are two approaches to enumerating the solutions: constraint programming [100] and an elimina-

tion algorithm such as Fourier-Motzkin elimination [21]. The complexity of these algorithms is

exponential in the worst case, however the complexity in a given Petri net is difficult to charac-

terise [100]. Note that transformation (3), consuming the enzyme, has the effect of increasing the

complexity of the algorithm. Each time the enzyme is consumed it must be produced by firing at

least one more transition.

6.3.6 Conclusion

The steady-state approach answers different questions than the dynamic approach. They are com-

plementary methods to study models. The steady-state approach is concerned with “flows/firing

rates” that maintain a given state whereas the dynamic approach is concerned with changing state

and how information (local state change) propagates through a network, to control other processes.

We have shown in this section how the steady-state approach can be used to compute the set of

signal flows in a signalling network. However, we have also demonstrated that completeness and

correctness are not guaranteed. We have demonstrated this approach using T invariants, but the

shortcomings are experienced when using any steady-state technique.

6.4 Overview of current dynamic techniques

Dynamic techniques have been applied to compute the set of signal flows in models of cellular

signalling systems. Current dynamic techniques can guarantee correctness however, to the best

of our knowledge, no current technique also guarantees completeness. We discuss the LoLA and

SPIN model checkers and stories below.

6.4.1 The LoLA model checker

The Pathway Logic Assistant (PLA) [103] allows the user to generate a single signal flow to a set

of goal places. An individual signal flow is computed using the model checker within the LoLA

(Low Level Analyzer) Petri net analysis tool [96] as described below.

Given a property φ, an state m is an error state if it violates φ. An error trace is a sequence of

transitions t1, . . . , tn from the initial state m0 to an error state such that m0 →t1 m1 . . . →tn mn

where mn is an error state and no states in m1, . . . , mn−1 are error states. To compute error traces

that are sequences of transitions to mark a set of goal places G = {g1, . . . , gv}, we use a temporal

logic property that asserts that the places in G cannot be marked. In LTL the property is:

6.4 Overview of current dynamic techniques 86

φ = ¬ F (g1 ≥ 1 ∧ . . . ∧ gv ≥ 1)

An error state for φ is a state m where m(g1) ≥ 1 ∧ . . . ∧ m(gv) ≥ 1.

LoLA, using stubborn set reduction [69], can efficiently answer reachability queries such as φ.

If φ is false, i.e. it is possible to mark the places in G, then LoLA will return an error trace for φ.

The error trace is not guaranteed to be minimal. Transitions in the error trace that are not required

to reach the goals are removed automatically using the relevant subnet algorithm (Appendix D),

however there is no proof of correctness. Enforcing the minimality property on the traces using the

relevant subnet algorithm is discussed further in Section 7.2.3 where it is shown to be insufficient

in some models. LoLA returns only one error trace for each property φ—subsequent traces can be

found by manually removing transitions in from the network, however there can be no guarantee

that all traces are generated. Clearly this technique is insufficient for generating all signal flows in

a model because correctness does not always hold and completeness is not guaranteed.

6.4.2 The SPIN model checker

The SPIN model checker [61] can return all state error traces in a model for a property φ. A state

error trace is a sequence of states m0 → m1 . . . → mn where mn is an error state and no state in

m0, . . . , mn−1 is an error state, and for each pair of states mi−1 and mi, there exists at least one

ti such that mi−1 →ti mi. Note that only the sequence of states are given in the SPIN output, and

not the transitions. We map a state error trace to the set of error traces that can generate it. SPIN

permits breadth-first search of the state space, which produces minimal length error traces. One

may expect minimal length error traces to equate to signal flows, however this is not the case.

Consider the Petri net in Example 8 on page 91. The error states in the model are BXG, AYG

and BYG. The minimal length error traces are as follows. Trace (r1, r3) for state BXG. Trace

(r2, r4) for state AYG. Traces (r1, r2, r3) and (r1, r2, r4) for state BYG. Because minimal length

error traces are produced for all error states, there is no guarantee that all transitions are required to

mark the set of goal places. Error traces (r1, r2, r3) and (r1, r2, r4) contain a redundant transition

r2 and r1 respectively.

Furthermore, consider the Petri net in Example 9 on page 91. There is one error state labelled G

and the minimal length error trace is (r1). Because only the minimal length error trace is returned

for each error state, the algorithm misses an error trace to state G that is a signal flow, (r2, r3).

In general, minimal length error traces do not equate to signal flows.

6.5 A new dynamic technique: the Reaction Minimal Paths algorithm 87

6.4.3 Stories

Stories [30] in a rule-based language capture the events that are required to reach an event of

interest. Stories are equivalent to signal flows. A story is a sequence of events that; starting from

the initial state, reaches an event of interest called the observable; consists only of events that are

required to reach the observable; and, contains no event subsequence that has the same property.

The authors however do not discuss in detail the method used to compute stories. Stories are

generated from paths through the state space (stochastic simulations) [31]. The “story sampler”

converts a stochastic simulation into a story—however, no proof of correctness of the story sampler

is given. To compute subsequent stories, more stochastic simulations are required, but with this

process there can be no guarantee that all stories are generated. Only by exploring the state space,

rather than paths through the state space in isolation, can we be guaranteed to find all stories.

6.5 A new dynamic technique: the Reaction Minimal Paths algo-

rithm

In this section we introduce the major contribution of this chapter, the Reaction Minimal Paths

(RMP) algorithm. This algorithm is a dynamic technique to computing the set of signal flows in

a model, and is the first to guarantee both completeness and correctness. The algorithm works by

exploring the state space of a model and computing reaction minimal paths. We are interested in

reaction minimal paths that produce the goal from the initial state of a model without using certain

places (avoid). We now give the formal definition of a reaction minimal path.

An avoid set A is a set of places A ⊆ P to be avoided. A transition t satisfies the avoid

constraint, written t |= A, if the transition does not have a pre- or post-place in the avoid set,

(•t ∪ t•) ∩ A = ∅. A path R from m to m′ satisfies the avoid constraint, written R `A m { m′, if

∀t ∈ R . t |= A.

A goal set G is a set of places G ⊆ P that we wish to have marked. A state m satisfies the goal

constraint, written m |= G, if ∀g ∈ G . m(g) ≥ 1. States that satisfy the goal constraint are shown

graphically as an oval with a dashed line. A path R from m to m′ satisfies the goal constraint,

written R `G m{ m′, if m′ |= G.

Definition 25 (Goal/avoid path). A goal/avoid path is a path from the initial state in a model

satisfying both the goal and the avoid constraints, written R `GA m0 { m′. Clearly no path can

have a place as both a goal and an avoid. Thus we require that the sets of goals and avoids are

disjoint, G ∩ A = ∅.

6.5 A new dynamic technique: the Reaction Minimal Paths algorithm 88

Definition 26 (Reaction minimal path). Given a goal set G and avoid set A, a goal/avoid path

R `GA m0 { m is called a reaction minimal path (RMP) if there is no goal/avoid path R′ `GA m0 {

m′ that is a proper submultiset, R′ ⊂ R.

An RMP is a signal flow because it marks a set of outputs and all transitions in the RMP are

required to mark the set of outputs.

Below, Theorem 2 shows that the multiset semantics used in paths is sufficient to describe

executions. In the algorithm that follows, we are not concerned with the order the transitions fired

in to reach a state.

Theorem 2 (Relationship between executions and paths). All executions R of a path1 R starting

at m reach the same final state.

Proof. An execution R of R starting at m reaches m′ where ∀p ∈ P . m′(p) = m(p) +
∑

t∈R f (t, p)−∑
t∈R f (p, t). m′ is independent of the order of transitions in R because

∑
t∈R f (t, p) and

∑
t∈R f (p, t)

are independent of the order of the transitions in R. Because each R of R is an ordering of tran-

sitions, and the state reached by R is independent of the order of the transitions, all R of R reach

m′. �

6.5.1 Algorithm

We present an algorithm for computing all reaction minimal paths in a k-bounded Petri netM =

(T, P, f ,m0).

The set of reaction minimal paths from m0 reaching G without using A can be found by gener-

ating (state, path) tuples. The tuples are generated in stages following a breadth-first search of the

state space such that Stage(n) contains tuples (m,R) where |R| = n and R ` m0 { m.

Note that two (or more) distinct executions R and R′ may equate to the same path R. Therefore

we may encounter the tuple (m,R) multiple times by following different executions of the same

path. We ignore duplicate tuples as these represent different orderings of the same multiset of

transitions.

Definition 27 (Goal/avoid subsumption). A tuple (m,R) is subsumed to a goal set G by (m′,R′) if

R′ is a proper submultiset of R, R′ ⊂ R, and m′ = m or m′ |= G.

Definition 28 (Goal/avoid stages). Suppose we have a goal set G and avoid set A. Stage(0) con-

tains one tuple, the initial state and the empty path (m0, ∅). Stage(n) for n ≥ 1 contains all tuples

1recall that an execution of a path was informally defined on Page 25

6.5 A new dynamic technique: the Reaction Minimal Paths algorithm 89

(m,R) with R ` m0 { m and |R| = n such that (m,R) is not subsumed by a member of Stage(j) for

j < n. This ensures that all paths that satisfy the goal and avoid constraint are reaction minimal

paths.

We use a breadth-first search because checking whether (m,R) in Stage(n) is subsumed by

some (m′,R′) requires checking (m′,R′) in Stage(j), j < n. Hence, R′ ⊂ R requires |R′| < |R|.

The algorithm to compute all reaction minimal paths to G avoiding A in a k-bounded Petri net

M is RMP(M,G, A) as follows.

Pre-processs: To make all paths satisfy the avoid constraint, we remove any transition that
has a pre- or post-place in the avoid set: T ∗ = {t ∈ T | (•t ∪ t•) ∩ A = ∅}.

Stage 0:
Stage(0) = {(m0, ∅)}
Paths = ∅

Stage n: Given Stage(n-1)
Stage(n) = ∅

for (m,R) ∈ Stage(n-1) do
if m |= G then

Add R to Paths
else

for ti ∈ T ∗ such that m→ti m′ do
R′ = Add(R, ti)
Add (m′,R′) to Stage(n) if it is not subsumed by a tuple in Stage(j) for some j < n

end for
end if

end for
if Stage(n) == ∅ then

Return Paths
end if

Theorem 3 (Termination). For any k-bounded Petri net there exists an n ≥ 1 such that Stage(n) is

empty.

Proof. The set of possible states in a k-bounded Petri net is finite. The set of paths to each state

such that there is no proper submultiset that reaches the same state is finite because the set of

transitions is finite. Therefore, the set of (state, path) tuples is finite and hence there must be some

n such that Stage(n) is empty. �

Theorem 4 (Completeness). For a given G and A if there exists a reaction minimal path R `GA

m0 { m then (m,R) is in Stage(n) where n = |R|.

Proof. Definition 28 ensures that all paths found in the stages that satisfy the goal and avoid

constraints are reaction minimal paths. The set of stages contains all states except those reachable

6.5 A new dynamic technique: the Reaction Minimal Paths algorithm 90

only from a goal/avoid path that is not a reaction minimal path. Therefore if there exists a reaction

minimal path R `GA m0 { m then (m,R) is in Stage(n) where n = |R|. �

Theorem 5 (Correctness). For any k-bounded Petri net, all reaction minimal paths to a goal set

avoiding an avoid set are found by generating the set of stages.

Proof. Multiset semantics are sufficient to describe an execution (Theorem 2). The set of stages is

finite for any k-bounded Petri net (Theorem 3). If there exists a reaction minimal path then it is in

some Stage(n) (Theorem 4). Therefore, all reaction minimal paths to a goal set avoiding an avoid

set are found by generating the set of stages. �

Algorithm correctness In the algorithm above, paths are multisets, stages are generated as per

Definition 28 and the set of stages is finite for any k-bounded Petri net. Therefore, Theorem 5

holds for this algorithm.

Relevant subnet optimisation To optimise the computation we can apply the relevant subnet

algorithm with respect to G and A, Subnet(T,m0,G, A). This function removes any transition

that has a pre- or post-place in the avoid set or does not contribute to reaching the goal set. This

algorithm was introduced in [103] where it is shown that the resulting network contains all reaction

minimal paths for a given G and A. The algorithm to compute the relevant subnet is given in

Appendix D.

Computational complexity The computational complexity of the algorithm is the number of

(state, path) tuples. In the worst case of no reaction minimal paths, the number of tuples generated

is at least the number of states in the state space and possibly greater than the number of states if

multiple paths reach the same state.

Approximation An unbounded Petri net is a Petri net where there does not exist a k such that all

places have at most k tokens in any reachable state. An unbounded Petri net has an infinite set of

reachable states and therefore the algorithm in the previous section may not terminate. To obtain

approximate results for unbounded Petri nets (or Petri nets with very large state spaces), we can

compute the set of reaction minimal paths with an upper bound on the number of stages used, n.

Hence the algorithm will terminate after Stage(n) and the paths will have a maximum cardinality

(length) of n. Note that this is the same approach taken by bounded model checking.

6.5 A new dynamic technique: the Reaction Minimal Paths algorithm 91

6.5.2 Examples

Below we give five examples to illustrate different scenarios that the RMP algorithm may en-

counter.

Example 8 Simple example.

A

Y

X

F G

r3

r1 r2

r4

B

r1	

r1	

r2	

r2	
 r3	
 r4	

r3	
 r4	

A	
 X	
 F	

B	
 X	
 G	

B	
 X	
 F	
 A	
 Y	
 F	

A	
 Y	
 G	
 B	
 Y	
 F	

B	
 Y	
 G	

r2	
 r1	

Figure 6.8: An example Petri net (left) and related state space (right). States that satisfy the goal
constraint are indicated by a dashed line.

Consider the Petri net in Figure 6.8 with a goal set {G} and avoid set ∅. The algorithm produces

the 3 stages below.

Stage 0: (AXF, ∅)

Stage 1: (BXF, {r1}) (AYF, {r2})

Stage 2: (BXG, {r1, r3}) (BYF, {r1, r2}) (AYG, {r2, r4})

The set of reaction minimal paths is: {{r1, r3}, {r2, r4}}

Stage 3 is empty because all (state, path) tuples are subsumed by some tuple in a previous

stage. (BYG, {r1, r2, r3}) is subsumed by (BXG, {r1, r3}) because BXG satisfies the goal con-

straint. Likewise, (BYG, {r1, r2, r4}) is subsumed by (AYG, {r2, r4}) because AYG satisfies the

goal constraint.

Example 9 Difference between minimal length and reaction minimal paths.

Consider the Petri net in Figure 6.9 with a goal set {G} and avoid set ∅. The algorithm produces

the 3 stages below.

Stage 0: (A, ∅)

Stage 1: (G, {r1}) (B, {r2})

Stage 2: (G, {r2, r3})

The set of reaction minimal paths is: {{r1}, {r2, r3}}

6.5 A new dynamic technique: the Reaction Minimal Paths algorithm 92

A

G

B

r2

r1

r3

A	

B	
 G	

r1	
 r2	

r3	

Figure 6.9: An example Petri net (left) and related state space (right). States that satisfy the goal
constraint are indicated by a dashed line. Notice that there is one minimal length path, {r1}, and
two reaction minimal paths, {r1} and {r2, r3}.

Although {r2, r3} is a longer path to state G than {r1}, it is distinct and all transitions are

required to reach G, therefore it is reaction minimal.

Example 10 Rationale for multiset semantics.

A A1

B B1 C C1

G

r2 r3

r1

r4

r2	

r3	

A1	

B1	

C	

r1	

r3	

A	

B1	

C	

A1	

B	

C	

A	

B	

C1	

A1	

B	

C1	

r1	
 r2	

A	

B1	

C1	

A	

B	

C	

r1	

r1	

r4	

A1	

B1	

C1	

A	

G	

r4	

r1	

A1	

G	

Figure 6.10: An example Petri net (top) and related state space (bottom). States that satisfy the
goal constraint are indicated by a dashed line.

Consider the Petri net in Figure 6.10 with a goal set {G} and avoid set ∅. The algorithm

produces the 7 stages below.

Stage 0: (A B C, ∅)

Stage 1: (A1 B C, {r1})

6.5 A new dynamic technique: the Reaction Minimal Paths algorithm 93

Stage 2: (A B1 C, {r1, r2}) (A B C1, {r1, r3})

Stage 3: (A1 B1 C, {2 ∗ r1, r2}) (A1 B C1, {2 ∗ r1, r3})

Stage 4: (A B1 C1, {2 ∗ r1, r2, r3})

Stage 5: (A1 B1 C1, {3 ∗ r1, r2, r3}) (A G, {2 ∗ r1, r2, r3, r4})

Stage 6: (A1 G, {3 ∗ r1, r2, r3, r4})

The set of reaction minimal paths is: {{2 ∗ r1, r2, r3, r4}}

Even though this is a 1-bounded Petri net, the transition r1 must fire more than once to reach

{G}. This is the rationale for using multiset (rather than set) representations of executions even in

models with only presence/absence of biochemical species.

Example 11 Demonstration of termination.

X

Y G

r2 r1

r3

r1	
 r2	

X	

Y	
 G	

r3	

Figure 6.11: An example Petri net (left) and related state space (right). States that satisfy the goal
constraint are indicated by a dashed line.

Consider the Petri net of a loop in Figure 6.11 with a goal set {G} and avoid set ∅. The algorithm

produces the 3 stages below.

Stage 0: (X, ∅)

Stage 1: (Y, {r1})

Stage 2: (G, {r1, r3})

The set of reaction minimal paths is: {{r1, r3}}

The algorithm terminates even with a loop because the tuple (X, {r1, r2}) is subsumed by (X, ∅)

in Stage 0, therefore the exploration of the loop stops.

Example 12 Comparison to T invariants.

Consider the Petri net in Figure 6.12. Transition r3 requires both X and Y to be marked however

it is only possible to mark one of X or Y . In this case the RMP algorithm will terminate after

exploring all (state, path) tuples, returning an empty set of reaction minimal paths.

6.6 Pathway Logic 94

W

r2 r1

r3

X

Z G

Y

Figure 6.12: An example 1-bounded Petri net with a transition r3 that is always disabled.

T invariant analysis will find a signal flow in this model because there are source transitions

for the initially marked places. Places W and Z will be given source transitions, say rW and rZ,

such that an infinite number of tokens can be generated for each place. This approach will find

a signal flow to {G}, {2 ∗ rW, rZ, r1, r2, r3}. The application of T invariant analysis is well-suited

in this case because signal flows involve a flow of many molecules rather than restricted to single

molecules.

6.6 Pathway Logic

Pathway Logic (PL) [103] is a framework for modelling biological systems based on rewriting

logic [28, 78]. The Pathway Logic framework can be thought of as comprising three components:

curation, knowledge base and models.

Curation Experimental data about the cellular signalling response to a variety of stimuli is cu-

rated from results reported in biological papers. Curation is a lengthy, manual process and as such

it is not possible to provide consistent, detailed coverage of all systems involved in signalling. For

example, there has been more curation on the reactions initiated by Egf stimulation than those

initiated by Ngf stimulation because the curator, with limited resources, has deemed Egf more

interesting.

A cell line is a type of cell that is used for biological research, e.g. the PC12 cell line is from

a tumour in a rat adrenal gland. A sample of a cell line is produced by growing the cells under

controlled conditions. Crucially, a sample of a cell line can be traced back to a single source,

therefore experiments on different samples of the same cell line are comparable, even between

labs in different locations. Data in the Pathway Logic project is curated from any cell line.

6.6 Pathway Logic 95

The experimental data that is curated is stored as datums, a formal representation of biological

results.

Knowledge base From these datums reactions are manually written as rewrite rules; the datums

form the evidence for each reaction.

Rewrite rules are of the form current state→ new state where current state and new state are

constraints on the states that the rule applies to and reaches respectively. If a biochemical species

is in the current state then it is required for the rewrite rule to execute. If a biochemical species is

in the new state then it is present in the state that is reached when the rewrite rule executes. If a

biochemical species is in the current state and new state then it is required but unchanged in the

reaction, hence it is an enzyme.

The knowledge base is a database of reactions written as rewrite rules.

At the time of writing there are two versions of the knowledge base in use, version 5 and

version 6 (also written kb v5 and kb v6 respectively). Version 6 extends version 5 with further

curation, however version 5 still stands as a useful knowledge base.

Model Executable Petri nets are automatically constructed using the knowledge base.

An initial state (the biochemical species that are initially present) is specified by the user. The

forward collection algorithm (part of the relevant subnet algorithm in Appendix D) is used to

collect all rewrite rules (reactions) in the knowledge base that can fire from any reachable state.2

The rewrite rules then become the transitions, and the biochemical species that are referenced

by the rules are the places. There is an arc from a place to a transition if the species is in the

current state of the rewrite rule, and there is an arc from a transition to a place if the species is in

the new state of the rewrite rule. Enzymes are in both the current state and new state of the rule,

so the enzyme place has a directed arc from and to the transition. Recall that we use the shortcut

of a dashed arc from the place to the transition for enzymes. For any species in the initial state, the

corresponding place is marked.

The rewrite rules used in Pathway Logic express only presence of biochemical species. Be-

cause the rules have been written such that there is never more than one “copy” of each biochemical

species, the resulting Petri nets are guaranteed to be 1-bounded.

To illustrate the difference in size between version 5 and version 6 of the knowledge base, we

build a model of a cell with the initial state containing all ligands in the knowledge base. In version

2Checking whether a reaction can fire is approximated, therefore a superset of the reactions that can fire is generated.

6.6 Pathway Logic 96

5 the result is a model with 8 ligands, 353 biochemical species and 235 reactions and in version 6

the result is a model with 11 ligands, 664 biochemical species and 542 reactions.

The curation step involves writing reactions using datums from any cell line. Some reactions

may occur only in cancerous cell lines, whereas other reactions may be critical in all cell types in an

organism. Pathway Logic models contain all reactions from the knowledge base (that are fireable

from the initial state) and so they are an over approximation of the behaviour of any particular cell.

This is a particularly interesting feature of Pathway Logic because, for the first time, experimental

results from many cell lines are brought together to build an executable model.

The Pathway Logic framework is also interesting because the approach to building models is

more automated than the more common, manual approach. The manual approach to building mod-

els uses experimental data to build a biological cartoon of the whole signalling pathway/network.

The cartoon is then transformed into an executable model. This process can be error prone espe-

cially with complex models such as signalling networks.

Pathway Logic on the other hand builds individual reactions in isolation, depositing them into

a knowledge base from which models are automatically constructed. The curator has only to focus

on one reaction at a time rather than the whole model in the manual approach. This allows larger

and more complex models to be built, however these models can be more difficult to understand.

Unlike the signalling network models that are created manually in the previous chapter, Pathway

Logic models have no notion of pathway or cross-talk—they are unstructured.

Example 13 Example of the Pathway Logic framework.

Consider the example of a 3-stage cascade that is initiated in response to a ligand L.

Curation Suppose we have curated the following set of datums. We give the datums in a short-

hand form as we wish to focus on the modelling approach rather than the details of curation and

experimental data.

0. With no ligands, proteins X, Y and Z are inactive.

1. Given ligand L, protein X is active.

2. Given ligand L, protein Y is active.

3. Given ligand L, protein Z is active.

4. Given ligand L and protein X knocked-out, protein Y is inactive.

6.7 Results 97

5. Given ligand L and protein X knocked-out, protein Z is inactive.

6. Given ligand L and protein Y knocked-out, protein Z is inactive.

Knowledge base Reactions are built from the datums as follows. There is clearly a reaction that

causes Y to become active (comparing datums 0 and 2). The biochemical species that must be

present in order for Y to become active are L (datums 2) and X (datum 4). We create a reaction for

the activation of Y with L and X as enzymes

A knowledge base (below) is built containing the following reactions built using datums

0 . . . 6.

Reaction name Rewrite rule Evidence (datums)

r1 (X L)⇒ (XActive L) 0, 1

r2 (Y L XActive)⇒ 0, 2, 4

(YActive L XActive)

r3 (Z L XActive YActive)⇒ 0, 3, 5, 6

(ZActive L XActive YActive)

Model Given the initial state with X, Y , Z and L, a Petri net model of the 3-stage cascade is

automatically constructed from the knowledge base. This model is given in Figure 6.13

L

X
XActive

Y
YActive

Z
ZActive

r3

r2

r1

Figure 6.13: The Petri net model of the 3-stage cascade that was automatically constructed from
the knowledge base.

6.7 Results

We have used the RMP algorithm to compute the reaction minimal paths (signal flows) in two Petri

net models generated from the Pathway Logic knowledge base of cellular signalling response. The

6.7 Results 98

models are the signalling events for the activation of ERKs and the activation of RelA. We have

also used the reaction minimal paths to compute four metrics for characterising network behaviour.

We show how the reaction minimal paths and metrics allow us to better understand the Pathway

Logic models.

6.7.1 Pathway Logic models

Recall from Section 6.6 that at the time of writing there are two versions of the Pathway Logic

knowledge base in use: version 5 and version 6. We apply the RMP algorithm to version 5 of

the knowledge base; in the next chapter we show how we can adapt the RMP algorithm to be

applicable to the more computationally intensive version 6.

We generate a model from version 5 of the Pathway Logic knowledge base with 11 ligands

in the initial state. From this model we have generated the relevant subnets (Appendix D) for the

activation of two proteins of interest, ERKs and RelA, and analyse the set of reaction minimal

paths, summarised in Table 6.1.

Diagrams of the Pathway Logic models are given in Appendix E.

For the ERK activation model the initial event is Egf (Epidermal Growth Factor) binding to

its receptor, EgfR, and the goal is activation of ERK1 and ERK2 (ERKs) in the EgfR complex

(EgfRC), therefore G = {Erks–act–EgfRC}. We first generated the relevant subnet for G using

the Pathway Logic Assistant. The relevant subnet for this goal contains none of the problematic

network structures discussed in Section 6.3, and in this case, the set of T invariants corresponds

exactly to the set of signal flows activating ERKs. A further Petri net transformation was required

for the algorithm to compute the set of T invariants to terminate. It is interesting to note that T

invariant analysis had a significantly shorter execution time (less than 1s) compared with the RMP

algorithm.

For the RelA activation model there are two potential stimuli IL1 (Interleukin 1) and Tnf

(Tumor Necrosis Factor) and the goal is activation of RelA in the nucleus, therefore G = {Rela–

act–Nuc}. The relevant subnet for this goal contains several place traps due to the ubiquitina-

tion reactions, for example the E2 ubiquitin ligase Traf5 causes phosphorylated Irak1 to become

ubiquitinated. The standard set of transformations required for T invariant analysis results in con-

sumption conflicts, and therefore no T invariants are found. We have also applied the alternative

T invariant approach outlined in Section 6.3.4. This resulted in a large number of small T invari-

ants which did not fully cover the relevant subnet, hence there is no possibility to connect the T

invariants to find signal flows. Clearly the T invariant approach is insufficient for this model.

6.7 Results 99

Erks–act–EgfRC kb v5 Rela–act–Nuc kb v5
Places 54 92
Transitions 38 57
Reachable State 149,014 95,096
Number of tuples 618,861 171,237
Number of stages 24 34
Runtime 50s 9s
Reaction Minimal Paths 144 39
T Invariants 144 0

Table 6.1: The result of the RMP algorithm for G = {Erks–act–EgfRC} and G = {Rela–act–
Nuc} contrasted with T invariant analysis. Number of tuples is the number of (state, path) tuples.
Runtime is on a workstation with a 2.53GHz dual core processor with 4GB of memory.

We now proceed with an analysis of what reaction minimal paths tell us about these mod-

els. We compute four metrics for characterising network behaviour: essential transitions, used

places, knockouts and multi-signal cellular responses. In the following we assume a Petri net

M = (T, P, f ,m0), a set of goals G and a set of avoids A. Note that we parameterise our metrics by

[M,G, A]. Let RMP be the set of reaction minimal paths computed using RMP(M,G, A).

6.7.2 Essential transitions

A transition t is essential, written ess[M,G, A](t), if there is no goal/avoid path R from m0 using

only transitions in (T − t). We can compute the set of essential transitions using the set of reaction

minimal paths RMP as follows.

ess[M,G, A] = {t | ∀R ∈ RMP . t ∈ R}

More generally, a set of transitions T ′ is essential, ess[M,G, A](T ′), if every path satisfying G

and A contains a member of T ′, and no proper subset of T ′ has this property. This can be checked

using the set of reaction minimal paths for G and A as follows.

ess[M,G, A](T ′)⇐

(∀R ∈ RMP . ∃t ∈ T ′ . t ∈ R) ∧

(∀T ′′ ⊂ T ′ . ∃R ∈ RMP . (T ′′ ∩ R = ∅))

6.7.3 Used places

A path R `GA m0 { m′ uses a place p, uses[M,G, A](R, p), if there is no path R′′ `GA m0 { m′

where R′′ ⊆ R′ and R′ is the result of removing from R any transition t with p as a pre-place,

p ∩ •t , ∅. This holds if ∃R ∈ RMP . ∃t ∈ R . p∩ •t , ∅. The reduction to reaction minimal paths

6.7 Results 100

is valid because if uses[M,G, A](R, p) then uses[M,G, A](R′, p) for every reaction minimal path

R′ ⊆ R. Furthermore, if R is reaction minimal then uses[M,G, A](R, p) if ∃t ∈ R . (p ∩ •t , ∅).

The set of all used places in a path R is:

uses[M,G, A](R) = {p ∈ P | uses[M,G, A](R, p)}.

6.7.4 Knockouts

A place p is a (single) knockout for G and A, written KO[M,G, A](p), if there is no path R `GA

m0 { m using only transitions that do not use p, hence only transitions in {t ∈ T | p ∩ •t = ∅}. To

check if p is a knockout, we need only check that all reaction minimal paths use p:

KO[M,G, A](p)⇐ ∀R ∈ RMP . uses[M,G, A](R, p).

More generally, P′ ⊆ P is a knockout set, KO[M,G, A](P′), if every path R `GA m0 { m uses

some element of P′ and there is no proper subset of P′ with this property. This can be checked

using RMP as follows.

KO[M,G, A](P′)⇐

(∀R ∈ RMP . ∃p ∈ P′ . uses[M,G, A](R, p)) ∧

(∀P′′ ⊂ P′ . ∃R ∈ RMP . ∀p ∈ P′′ . ¬uses[M,G, A](R, p))

6.7.5 Multi-signal cellular responses

Often a cellular response requires more than one signal to be present. Activation of effector cells

of the immune system is one example. Thus it is interesting to ask, are there paths reaching G

from m0 that require more than one stimulus?

Let S ⊆ P be the places considered stimuli. Then R uses more than one stimulus if S ∩

uses[M,G, A](R) has more than one element. Again, this can be checked using only the paths in

RMP.

6.7.6 Analysis of ERKs and RelA activation

As seen in Table 6.1 the relevant subnet for the activation of ERKs has many more reaction minimal

paths than the subnet for activation of RelA. This can be partly explained by the choice of enzymes

at several points in the network which leads to a combinatorial number of paths. This also partly

6.8 Clustering reaction minimal paths 101

explains why the computation for ERKs involved exploring over four times as many (state, path)

tuples than reachable states, whereas the computation for RelA involved less than two times.

From Table 6.2 we see that the RelA relevant subnet has no essential transitions while the

ERKs relevant subnet has several. An explanation for this is that RelA has two possible stimuli

whereas ERKs only has one stimulus. Conversely, the RelA relevant subnet has considerably more

essential transition pairs than the ERKs relevant subnet. The essential transition pairs for RelA are

formed by taking one transition downstream from the Tnf stimulus and one transition downstream

from the IL1 stimulus. Finally, there are more single knockouts for ERKs than RelA, and more

double knockouts for RelA than ERKs.

Erks–act–EgfRC kb v5 Rela–act–Nuc kb v5
Signals 1 2
Essential Transitions 8 0
Essential Transition Pairs 11 183
Used Places 53 84
Single Knockouts 26 9
Double Knockouts 20 674

Table 6.2: The results of computing essential transitions, used places and knockouts for G =

{Erks–act–EgfRC} and G = {Rela–act–Nuc}.

The enumeration of essential transition and knockout sets has “discovered” a difference in the

structure of the two subnets. For example the RelA subnet is composed of two “uber flows,” one

for each stimulus, while the ERKs subnet is one signal flow with many local variations.

6.8 Clustering reaction minimal paths

The set of reaction minimal paths can be clustered as follows.

We use a well-known clustering technique called hierarchical clustering. Given a set of reac-

tion minimal paths, Paths, each path Ri ∈ Paths is assigned a cluster Ci. The two clusters with

minimum distance between them are merged. The distance between two clusters Ci and C j is

calculated using the equation max({d(Ri,R j) | Ri ∈ Ci,R j ∈ C j}). We use the following simple

metric to compute the distance between two paths, d(Ri,R j) = max(|Ri|, |R j|) − |Ri ∩ R j|.

The results of clustering reaction minimal paths help us understand the underlying structure of

signalling network models.

We have clustered the 39 reaction minimal paths for the Rela–act–Nuc kb v5 model. The

resulting dendrogram is shown in Figure F.1 in Appendix F. The dendrogram shows that there are

three main clusters: one for Tnf-stimulated signal flows, one for IL1-stimulated signal flows and

6.9 Discussion 102

one for Tnf&IL1-stimulated signal flows.

We have clustered the 144 reaction minimal paths for the Erks–act–EgfRC kb v5 model. The

resulting dendrogram is shown in Figure F.2 in Appendix F. The dendrogram shows that there are

two main clusters. There is only one stimulus in this model, EGF. The clusters indicate that there

are two main “routes” of signal flow through the EGF signalling pathway.

6.9 Discussion

The RMP algorithm searches the state space of a model and therefore suffers from the state space

explosion problem [86]. Both the time and space complexity of the algorithm can be exponential in

the number of components in the model. The analysis of the ERKs activation model from Section

6.7.1 searched over 600,000 tuples. With 4GB of memory, a maximum of around 3 million tuples

can be searched in a model with the same number of places. Clearly this approach does not scale

sufficiently for larger models.

We have applied this algorithm to models from version 6 of the Pathway Logic knowledge

base and found that, for some models, the set of reaction minimal paths was uncomputable. This

motivates our next chapter which deals with large unstructured signalling networks.

6.10 Summary

In this chapter we gave an approach to analysing unstructured signalling network models.

In Section 6.1 we gave the motivation for this chapter. In Section 6.2 we defined signal flows

and the completeness and correctness properties of algorithms to compute signal flows. In Sec-

tion 6.3 and Section 6.4 we reviewed the steady-state approach and current dynamic techniques

(respectively) to compute signal flows in a signalling network model. We found that, to the best of

our knowledge, no current technique guarantees both completeness and correctness. In Section 6.5

we introduced a new algorithm called the Reaction Minimal Paths (RMP) algorithm to compute

the set of signal flows in a model. This algorithm guarantees both completeness and correctness.

In Section 6.6 we introduced the Pathway Logic modelling framework, which we used to build

unstructured signalling network models from the knowledge base of reactions. In Section 6.7 we

applied the RMP algorithm to the Pathway Logic models. We computed the set of signal flows

and a set of network metrics, each of which provided a better understanding of the models. In

Section 6.8 we showed how clustering the set of reaction minimal paths reveals structure within

the models. In Section 6.9 we discussed the computational complexity and scalability of the RMP

6.10 Summary 103

algorithm and found that it does not scale well for large models.

We now extend this approach to large unstructured signalling network models.

Supplemental material An open-source Java application that computes all reaction minimal

paths in Pathway Logic models as well as the models used in this chapter can be found at

www.dcs.gla.ac.uk/∼radonald/cmsb2010/. The Pathway Logic Assistant, knowledge bases and

documentation can be found at pl.csl.sri.com.

Chapter 7

Extension to large unstructured

signalling networks

In this chapter we extend the approach from the previous chapter to be applicable to large unstruc-

tured signalling networks.

In Section 7.1 we give the motivation for this chapter. In Section 7.2 we adapt the Reaction

Minimal Paths (RMP) algorithm from the previous chapter to search the reduced state space using

two versions of stubborn sets partial order reduction. We prove the algorithms correct, i.e. that

they find all reaction minimal paths. We also introduce the Hide Edges algorithm that simplifies

certain models. We apply the algorithms to a set of signalling network models from the Pathway

Logic framework, including models previously uncomputable using the (original) RMP algorithm.

In Section 7.3 we introduce a partial order reduction algorithm that is simpler than stubborn sets

called dependence sets. We adapt the RMP algorithm to search the reduced state space using

dependence sets partial order reduction. We again prove the algorithm correct and apply it to the

same set of signalling network models.

Background material We assume the following background material: Petri nets (Section 3.3),

the dynamic behaviour of Petri nets (Section 3.4), the RMP algorithm (Section 6.5.1), and Pathway

Logic (Section 6.6). Of particular importance are multisets (Appendix A), paths (Definition 5 on

page 25) and state space searches (Definition 7 on page 27).

104

7.1 Motivation 105

7.1 Motivation

Although the the longest runtime of the RMP algorithm with version 5 of the Pathway Logic

knowledge base was only 50s, it is clear this algorithm does not scale well. For example, one

model required searching over 600,000 tuples. With 4GB of memory, a maximum of around 3

million tuples can be searched in a model with the same number of places. Given that the state

space can be exponential in the number of components (the state space explosion problem [86]),

a small increase in model complexity could result in state spaces that are infeasible for the RMP

algorithm.

This observation was confirmed when applying the RMP algorithm to models from version

6 of the Pathway Logic knowledge base. The set of reaction minimal paths in some models was

uncomputable.

7.2 Stubborn sets

Stubborn sets [69] are a class of partial order reduction algorithms. We start with some definitions

related to stubborn sets and a discussion of an important problem called the ignoring problem. We

then give a reduced state space search algorithm using stubborn sets. We adapt the RMP algorithm

to search the reduced state space using stubborn sets—we refer to this as the RMP using stubborn

sets algorithm. We prove the algorithm correct, i.e. that it finds all reaction minimal paths. We

also introduce an algorithm called the Hide Edges algorithm and prove it correct. The Hide Edges

algorithm simplifies certain models and thus may improve the effect of partial order reduction. We

give results of using the RMP using stubborn sets and Hide Edges algorithms on a set of Pathway

Logic models. We repeat the analyses with an alternative RMP using stubborn sets algorithm.

Finally, we discuss the results of these algorithms.

7.2.1 Definitions

We use stub(m) ⊆ T to denote a stubborn set of transitions in a state m. The reduced state

space search fires at each state m only the enabled transitions in a single stubborn set in m, {t ∈

stub(m) | m→t}, instead of all enabled transitions in the state.

Two desirable properties of stubborn sets are Properties D1 and D2.

Property D1. If t ∈ stub(m), t1, . . . , tn < stub(m), m →t1, ..., tn mn and mn →t m′n, then there

exists an m′ such that m→t m′ and m′ →t1, ..., tn m′n.

7.2 Stubborn sets 106

Property D2. If m has an enabled transition, then there is at least one transition tk ∈ stub(m) such

that if t1, . . . , tn < stub(m) and m→t1, ..., tn mn, then m→tk . Any such tk is called a key transition

of stub(m).

Definition 29 (D1-D2 stubborn set). A set stub(m) ⊆ T is a D1-D2 stubborn set if Properties D1

and D2 hold.

In the remainder of this chapter, we consider only D1-D2 stubborn sets.

The reduced state space search of some models suffers from the ignoring problem. The ig-

noring problem is where one or more enabled transitions never fire, hence they are ignored. This

problem affects some signalling network models, such as the example in Figure 7.1.

A

B

r1 r2

C

D

r3
r1	

A	
 C	

B	
 C	

r2	

B	
 D	

A	
 D	

r1	
 r2	

r3	

r3	

State	
 space	
 Reduced	
 state	
 space	

r1	

A	
 C	

B	
 C	

r2	

Figure 7.1: A Petri net model (left), the state space (centre) and a possible reduced state space
(right). The reduced state space exhibits the ignoring problem, with transition r3 being ignored.
This model can be found in biology—transitions r1 and r3 may be activation reactions and r2 may
be a deactivation reaction.

A reduced state space search algorithm that satisfies Property S does not suffer from the ignor-

ing problem.

Property S. For all states m of the reduced state space and every transition t ∈ T such that m→t,

there is a sequence of transitions t1, . . . , tn where m = m0 →t1, ..., tn mn, t ∈ stub(mn) and ti is a

key transition of stub(mi−1). Hence, if a transition is enabled in a state then it is enabled in some

future state reachable by firing transitions in stubborn sets.

Given a reduced state space search in which there is a finite number of states (i.e. the search

terminates) and that satisfies Property S, then for all states m of the reduced state space and all

transitions t such that m→t, t will either fire in m or in some future state.

A reduced state space search using D1-D2 stubborn sets reaches all terminal states [69]. A

reduced state space search that satisfies Property S does not suffer from the ignoring problem [69]

and Theorem 6 below holds [69].

Definition 30 (Representative path). Given two paths F and R, R is a representative of F if R ⊇ F,

i.e. R contains the path F.

7.2 Stubborn sets 107

Theorem 6 (Representative paths (stubborn sets)). Assuming a finite state space, for any path F

in the full state space search there exists a path in the reduced state space search R such that R is

a representative of F (Definition 30), i.e. R ⊇ F.

We now give a reduced state space search algorithm using stubborn sets.

7.2.2 Reduced state space search

We first define an algorithm that computes stubborn sets in a state. A D1-D2 stubborn set in a state

m, stub(m), can be computed as follows.

Initialise: pick an enabled transition in m and add it to stub(m)
Recurse: apply rules (1) and (2) to newly added transitions in stub(m)

(1) if m→t then the add (•t)• to stub(m)
(2) if m9 t then select a p where p ∈ •t ∧ m(p) < f (p, t), add •p to stub(m)

Rule (1) ensures that no transition outside of stub(m) can disable an enabled transition in

stub(m), by adding all post-transitions of the pre-places of the transition to stub(m). Therefore all

enabled transitions in stub(m) are key transitions. Rule (2) ensures that no transition outside of

stub(m) can enable a disabled transition in stub(m) by selecting a place that causes the transition

to be disabled and adding all pre-transitions of the place to stub(m).

Note that often some transitions in stub(m) are disabled in m.

At each state m we fire a subset of the enabled transitions, the enabled transitions in a single

stubborn set stub(m). We use the heuristic of choosing stub(m) with the fewest enabled transitions

in m. The intuition is that this will produce the fewest unseen states and thus the reduced state

space is likely to be as small as possible, though this is not always the case. To find a stubborn set

with the fewest enabled transitions, we enumerate all stubborn sets by picking a different enabled

transition in the initialise step. If we create a stubborn set of size 1, then we use this stubborn set.

In this chapter we consider only breadth-first search (BFS) because we later adapt the RMP

algorithm to follow the reduced state space search using stubborn sets, which requires BFS.

A (BFS) reduced state space search algorithm using stubborn sets is given below.

The set of seen states S = ∅

Add initial state m0 to the queue Q
while Q is not empty do

Remove state m from the front of the queue Q
Fire the enabled transitions in stub(m) to produce states M = {m1, . . . , mn}

Add M \ S to the back of the queue Q
Add M to S

end while

7.2 Stubborn sets 108

We now alter the reduced state space search algorithm to satisfy Property S, therefore avoiding

the ignoring problem. The most efficient approach to satisfy Property S involves analysing the

terminal strongly connected components in the state space search [69]. However, this approach is

only applicable using depth-first search. We require a solution that is applicable using BFS.

The approach used by the SPIN model checker to overcome the ignoring problem using BFS

is as follows [7]. For a state m and stubborn set stub(m), if there does not exists a t ∈ stub(m) such

that m→t m′ where m′ is an unseen state, then fire all enabled transitions in m, {t ∈ T |m→t}. This

is a less effective solution than the solutions applicable when using a DFS because the criterion to

identify the ignoring problem is not as specific. In some cases, no unseen states are produced by

firing the transitions in a stubborn set, but the ignoring problem is not encountered.

We follow the SPIN approach to satisfy Property S. We add a condition that for a stubborn set

stub(m) in state m, it must hold that ∃t ∈ stub(m) . m →t m′ and m′ is an unseen state. If no such

stubborn set can be found then we take a step according to the full state space search, i.e. we fire

all enabled transitions in the current state, and then resume the reduced state space search.

A (BFS) reduced state space search algorithm using stubborn sets that satisfies Property S is

given below.

Add initial state m0 to the queue Q
while Q is not empty do

Remove state m from the front of the queue Q
Let stub(m) be the stubborn set in m with the fewest enabled transitions such that ∃t ∈
stub(m) . m→t m′ and m′ is an unseen state.
if stub(m) exists then

Fire the enabled transitions in stub(m) to produce states m1, . . . , mn

else
Fire all enabled transitions {t ∈ T | m→t} to produce states m1, . . . , mn

end if
Add any unseen states in m1, . . . , mn to the back of the queue Q

end while

Example 14 Example of a (BFS) reduced state space search using stubborn sets.

We show how to perform a reduced state space search using stubborn sets of the Petri net in

Figure 7.2. We follow a BFS search from the initial state, AXF (i.e. places A, X and F are marked).

The reduced state space search using stubborn sets is as follows.

Queue: AXF

Seen states: {AXF}

7.2 Stubborn sets 109

A

Y

X

F G

r3

r1 r2

r4

B

Figure 7.2: An example Petri net used to illustrate the reduced state space search using stubborn
sets. Recall that the dashed directed arc from B to r3 is an enzymatic arc defined on Page 24.

AXF - Pick a random enabled transition, r1. stub(AXF) = {r1}. Transition r1 is fired produc-

ing state BXF.

Queue: BXF

Seen states: {AXF, BXF}

BXF - Pick a random enabled transition, r3. The pre-places of r3 are B and F. Add r3 and

r4, the post-transitions of B and F, to stub(BXF). A place that causes r4 to be disabled in

BXF is Y , therefore add all transitions that put a token onto Y , in this case r2, to stub(BXF).

stub(BXF) = {r2, r3, r4}. Transitions r2 and r3 are fired producing states BYF and BXG respec-

tively.

Queue: BYF, BXG

Seen states: {AXF, BXF, BYF, BXG}

BYF - Pick a random enabled transition, r3. The pre-places of r3 are F and Y . Add r3 and

r4, the post-transitions of F and Y , to stub(BYF). stub(BYF) = {r3, r4}. Transitions r3 and r4 are

fired producing the same state, BYG.

Queue: BXG, BYG

Seen states: {AXF, BXF, BYF, BXG, BYG}

BXG - Pick a random enabled transition, r2. stub(BXG) = {r2}. Transition r2 is fired producing

7.2 Stubborn sets 110

state BYG. The state BYG has already been seen.

Queue: BYG

Seen states: {AXF, BXF, BYF, BXG, BYG}

BYG - No enabled transitions and the queue is empty, therefore the search terminates.

Queue: empty

Seen states: {AXF, BXF, BYF, BXG, BYG}

The reduced state space that was searched above is given in Figure 7.3.

r1	

r2	
 r3	

r3	
 r4	

A	
 X	
 F	

B	
 X	
 G	

B	
 X	
 F	

B	
 Y	
 F	

B	
 Y	
 G	

r2	

Figure 7.3: The reduced state space search of the Petri net in Figure 7.2.

7.2.3 The RMP using stubborn sets algorithm

We now introduce the RMP using stubborn sets algorithm, ssRMP(M,G, A). The algorithm is an

adaption of the (original) RMP algorithm to follow a reduced state space search using stubborn

sets. Recall that reaction minimal paths are paths through the state space to a goal set without

using an avoid set. In this section we introduce the algorithm and prove correctness, i.e. that the

algorithm finds all reaction minimal paths. Finally, we demonstrate the algorithm with an example.

Algorithm The RMP using stubborn sets algorithm for a k-bounded Petri netM = (T, P, f ,m0)

is ssRMP(M,G, A) as follows.

Pre-processs: To make all paths satisfy the avoid constraint, we remove any transition that

has a pre- or post-place in the avoid set: T ∗ = {t ∈ T | (•t ∪ t•) ∩ A = ∅}.

Stubborn sets: Compute the set of stubborn sets using T ∗ in a state m as per the algorithm in

Section 7.2.2.

The algorithm for computing stages assuming a pre-processed network works as follows.

Recall from Definition 27 on page 88 that a tuple (m,R) is subsumed by another tuple (m′,R′)

if R ⊇ R′, and m = m′ or m′ |= G.

7.2 Stubborn sets 111

Stage 0:
Stage(0) = {(m0, ∅)}
Paths = ∅

Stage n: Given Stage(n-1)
Stage(n)= ∅
for (m,R) ∈ Stage(n-1) do

if m |= G then
Add process(R) to Paths

else
Let stub(m) be the stubborn set in m with the fewest enabled transitions such that ∃t ∈
stub(m) . m→t m′ and (m′, Add(R, t)) is not subsumed.
if stub(m) exists then

trans = {t ∈ stub(m) | m→t}

else
trans = {t ∈ T ∗ | m→t}

end if
for t ∈ trans such that m→t m′ do

R′ = Add(R, t)
Add (m′,R′) to Stage(n) if it is not subsumed by a tuple in Stage(j) for some j < n

end for
end if

end for
if Stage(n) == ∅ then

Return Paths
end if

Enforcing the reaction minimal property Theorem 6 guarantees that for each reaction minimal

path in the full state space search there exists a representative path in the reduced state space

search. Therefore the paths in Paths are representative paths—the reaction minimal property is

not guaranteed. Representative paths require further processing to guarantee the reaction minimal

property because they are possibly an extension of reaction minimal paths.

The approach taken by the Pathway Logic Assistant [103] is to generate a single goal/avoid

path using LoLA as outlined in Section 6.4.1. The reaction minimal property is enforced on the

path using the relevant subnet algorithm (Appendix D). However, there is no proof of correct-

ness given. We have found a counter example—the reaction minimal property is not enforced

on the goal/avoid path in Figure 7.4 using the relevant subnet algorithm. Only by using the

RMP(M,G, A) algorithm can the reaction minimal property of a path be guaranteed.

For each representative path, we apply the reaction minimal path algorithm from Section 6.5.1

using only transitions from the path, i.e. taking the representative path as a subnet of the net. This

turns the representative path into a reaction minimal path.

process(R) =RMP((T ′, P, f ,m0),G, A) where T ′ = {t | t ∈ R}

7.2 Stubborn sets 112

A C

B D

Gr2

r1

r3

Figure 7.4: A goal/avoid path with G = {G} and A = ∅. The reaction minimal property cannot
be enforced on this path using the relevant subnet algorithm. The transition r3 is not required to
reach {G} and will not be removed from the path using the relevant subnet algorithm.

Note that for each representative path, there is only one reaction minimal path. This is because

transitions that represent a choice between two or more reaction minimal paths are included in the

same stubborn set (rule (1) in the stubborn set algorithm). Therefore the transitions form different

paths through the reduced state space. A similar argument holds for dependence sets later in this

chapter.

Theorem 7 (The RMP using stubborn sets algorithm is correct). The RMP using stubborn sets

algorithm is correct, i.e. it produces all reaction minimal paths.

Proof. We know by Theorem 6 that for each reaction minimal path in the full state space search,

there exists a representative path in the reduced state space search. We convert the representative

paths into reaction minimal paths using the RMP algorithm which is correct (Theorem 5 on page

90), therefore this algorithm is correct. �

Example 15 Example of the RMP using stubborn sets algorithm.

Consider the Petri net in Figure 7.2 with a goal set {G} and avoid set ∅. We compute the set

of reaction minimal paths with the RMP using stubborn sets algorithm. The algorithm produces

3 stages as follows. The explanation of how the stubborn sets are computed is given in Example 14.

Stage 0: (AXF, ∅)

From state AXF, stub(AXF) = {r1} and transition r1 is fired producing state BXF.

Stage 1: (BXF, {r1})

From state BXF, stub(BXF) = {r2, r3, r4} and transitions r2 and r3 are fired producing states BYF

and BXG respectively.

Stage 2: (BXG, {r1, r3}) (BYF, {r1, r2})

From state BXG, no transitions are fired because the goal constraint is satisfied.

7.2 Stubborn sets 113

From state BYF, stub(BYF) = {r3, r4} and transitions r3 and r4 are fired producing the same state,

BYG.

Stage 3: (BYG, {r1, r2, r4}) From state BYG, no more enabled transitions.

The set of representative paths is: {{r1, r3}, {r1, r2, r4}}

The set of reaction minimal paths is: {{r1, r3}, {r2, r4}}

7.2.4 The Hide Edges algorithm

We introduce an algorithm called the Hide Edges algorithm that simplifies certain models, espe-

cially Pathway Logic models. The simplification process removes edges in a Petri net that do not

affect the behaviour of the net (i.e. the state space). This algorithm makes Petri nets easier to

understand visually and may also enhance the effect of partial order reduction.

We start with the biological justification for the algorithm, then give the algorithm and an

example, and finally prove the algorithm correct.

Motivation Models in Pathway Logic are built from the Pathway Logic knowledge base as out-

lined in Section 6.6. Datums, generated from laboratory experiments, are used to construct single

reactions in the knowledge base. Given an initial state (the proteins, ligands, etc. that are initially

present), a model is automatically built by collecting all reactions in the knowledge base that can

fire.

To explain the motivation of this algorithm, we continue with Example 13 from Page 96.

Recall the set of curated datums.

0. With no ligands, proteins X, Y and Z are inactive.

1. Given ligand L, protein X is active.

2. Given ligand L, protein Y is active.

3. Given ligand L, protein Z is active.

4. Given ligand L and protein X knocked-out, protein Y is inactive.

5. Given ligand L and protein X knocked-out, protein Z is inactive.

6. Given ligand L and protein Y knocked-out, protein Z is inactive.

7.2 Stubborn sets 114

Three reactions are generated from this set of datums: the activation of X, Y and Z. The

enzymes for each reaction are clear from the results of the datums. The enzyme for the activation

of X is L (datum 1). The enzymes for the activation of Z are L, X and Y (datums 3, 5 and 6). The

result is a model as shown in Figure 7.5.

L

X
XActive

Y
YActive

Z
ZActive

c

ba

Figure 7.5: The model built using the Pathway Logic approach from datums 0 . . . 6.

The enzymatic edges a, b and c in the model are not required. Edges a and b are redundant

because XActive is an enzyme for the activation of Y and Z respectively. In other words, if XActive

is present then we can guarantee that L is also present and therefore the enzymatic edge from L

to the reaction is redundant. Likewise, edge c is redundant because YActive is an enzyme for the

activation of Z—XActive is present if YActive is present.

Edge c is a result of datum 6. With X knocked-out, Z is not activated so we assume that X is

an enzyme for the activation of Z. Only when the full model is uncovered do we see that when

X is knocked-out, Y cannot become activated which in-turn cannot activate Z. The enzymatic

interaction between X and Z may simply be a product of X being required for the activation of Y

which is required for the activation of Z. Without checking whether X and Z physically interact,

we do not know which model is biologically consistent.

We hide these edges to produce a logically equivalent model that is simpler to reason about.

The model with the edges hidden is shown in Figure 7.6.

Algorithm We now introduce the Hide Edges algorithm, HideEdges(M), that removes edges in

a Petri netM that do not affect the behaviour of the Petri net, such as edges a, b and c in Figure

7.5.

The algorithm labels each place in a Petri net with the set of enzymes that can be guaranteed

present if the place is marked. If pre-place p of transition t is labelled with an enzyme e, then any

enzymatic edge between e and t can be safely removed.

7.2 Stubborn sets 115

L

X
XActive

Y
YActive

Z
ZActive

Figure 7.6: The model built using the Pathway Logic approach from datums 0 . . . 6 after applying
the Hide Edges algorithm.

The HideEdges(M) algorithm is in three steps below: seed, propagate and hide.

Seed step Label each place with the set of enzymes that can be guaranteed present by firing a

single transition that puts tokens on the place.

for each place p in the initial state do
Label p with ∅

end for
for each place p not in the initial state do

for each transition t that can mark p do
l = the enzymes for t that are never consumed by any transition

end for
Label p with the intersection of all such l

end for

Propagate step Propagate the intersection of the labels on the transitions that can mark a place

to the place (strictly, add the intersection of the labels to the label on the place). The labels on

a transition is the union of the labels on the pre-places of the transition. Apply propagation until

convergence, i.e. the set of labels do not change.

for each place p not initially marked do
for each transition t that can mark p do

l = the union of the set of labels on the pre-places of t
end for
Add to the labels on p the intersection of all such l

end for
Repeat until convergence, i.e. the set of labels do not change

Hide step Remove the enzymatic edges of weight 1 that do not affect the behaviour of the net as

indicated by the enzyme being in the label on the transition. The labels on a transition is the union

7.2 Stubborn sets 116

of the labels on the pre-places of the transition.

for each transition t do
l = the union of the set of labels on the pre-places of t
Remove any enzymatic edge of weight 1 from enzyme e to t if e is in l

end for

Example 16 Example of the Hide Edges algorithm.

We apply the Hide Edges algorithm to the Petri net in Figure 7.7.

X XActive1 XActive2

Enzyme1

Enzyme2

t3

t1

t2

XActive3t4

Figure 7.7: The original Petri net before applying the Hide Edges algorithm.

The application of the Hide Edges algorithm follows Figure 7.8.

The seed step labels XActive3 with {Enzyme1, Enzyme2} because t4 is the only transition that

can produce XActive3 and it has Enzyme1 and Enzyme2 as enzymes. XActive1 is labelled with

{Enzyme1} because Enzyme1 is an enzyme for both transitions t1 and t2 that produce XActive1.

The label on XActive1 does not include Enzyme2 because Enzyme2 is only an enzyme for t2 and

therefore cannot be guaranteed present if Xactive1 is marked.

In the propagate step, propagation is applied twice. In the first propagation, enzyme1 is prop-

agated to (strictly, added to the label on) XActive2 because enzyme1 is in the label of XActive1

which is a pre-place for the only transition t3 that produces Xactive2. In the second propagation,

no labels are changed and therefore propagation converges.

The hide step removed the enzymatic edge between Enzyme1 and t4 because a pre-place of t4,

XActive2 has a label that contains Enzyme1. This is the only enzymatic edge that is removed.

We prove the algorithm is correct for any Petri net (note, 1-safeness is not required). In the

following proof we use the shorthand notation of p ∈ m for m(p) > 0, i.e. p is marked in m.

Theorem 8 (Termination). For any Petri net, the algorithm will always terminate.

7.2 Stubborn sets 117

X XActive1 XActive2

Enzyme1

Enzyme2

t3

t1

t2

XActive3t4

{Enzyme1} Ø	

Ø	

Ø	

Ø	
 {Enzyme1, Enzyme2}

Post-seed step

X XActive1 XActive2

Enzyme1

Enzyme2

t3

t1

t2

XActive3t4

Ø	

Ø	

Ø	

{Enzyme1} {Enzyme1} {Enzyme1, Enzyme2}

Post-propagate step

X XActive1 XActive2

Enzyme1

Enzyme2

XActive3t3

t1

t2

t4

Ø	

Ø	

Ø	

{Enzyme1} {Enzyme1} {Enzyme1, Enzyme2}

Post-hide step

Figure 7.8: The application of the Hide Edges algorithm to the Petri net from Figure 7.8. The Petri
net returned by the algorithm is shown in the “post-hide step.”

7.2 Stubborn sets 118

Proof. The seed and hide steps iterate over places and transitions which are both finite, therefore

these steps terminate. Propagation iterates over places and transitions which are both finite, there-

fore propagation will terminate. However, propagation is repeated until convergence, i.e. until the

labels do not change. Propagation only adds to labels, which are sets of places. Convergence will

be reached, and thus the propagation step is finite and will terminate, because in the extreme there

will be no more places to add to the labels (there is a finite number of places). Therefore because

all three steps terminate, the algorithm always will terminate. �

Theorem 9 (Labelling correctness). Given a Petri net, a place p and associated labelling l after

zero or more propagations, ∀e ∈ l, in any reachable state if p is marked then e is guaranteed to be

marked, i.e. the labelling is correct.

Proof. We prove this theorem by a proof by induction over the number of propagations.

Base case

The base case is 0 propagations, therefore only the seed step has been applied. If p ∈ m0 then l = ∅

so the theorem is true. Otherwise, p is marked at some future state and we reason about all possible

sequences of transitions t0, . . . , tk such that m0 →t0, ..., tk−1 mk →tk mk+1, p < m0 ∧ . . . ∧ p < mk

and p ∈ mk+1. l is the intersection of the enzymes for any transition that can produce p. Therefore

e is an enzyme for tk and because mk →tk then e ∈ mk. The enzymes in l are never consumed,

therefore if e ∈ mk then e ∈ m j for j ≥ k. Because e ∈ m j for j ≥ k and p is first marked in mk+1,

whenever p is marked, e is guaranteed to be marked.

Therefore the theorem holds for the seed step.

Inductive step

Suppose the theorem holds after n propagations, we prove that the theorem holds after n + 1

propagations. If p ∈ m0 then no e is added to l so the theorem is true. Otherwise, p is marked at

some future state and we reason about all possible sequences of transitions t0, . . . , tk such that

m0 →t0, ..., tk−1 mk →tk mk+1, p < m0 ∧ . . . ∧ p < mk and p ∈ mk+1. In the n + 1th propagation,

we only add e to l if e is in the label of at least one pre-place of any transition that can produce p.

Therefore e must be in a label on a pre-place p of tk and because mk →tk and we assume the nth

propagation is correct, then e ∈ mk. The enzymes in l are never consumed, therefore if e ∈ mk then

e ∈ m j for j ≥ k. Because e ∈ m j for j ≥ k and p is first marked in mk+1, whenever p is marked, e

is guaranteed to be marked.

Therefore the theorem holds after n + 1 propagations and by induction the theorem is correct.

�

7.2 Stubborn sets 119

Theorem 10 (Hiding correctness). The state space of a Petri net is not changed by hiding the

edges using the hide step based on a labelling satisfying Theorem 9.

Proof. We prove this theorem by a proof by induction over the number of transitions fired.

Base case

Trivially, with no transitions fired, m0 is unaffected by hiding edges.

Therefore the theorem holds with no transitions fired.

Inductive step

Suppose the theorem holds after firing n transitions, we prove that the theorem holds after firing

n + 1 transitions. We reason about all possible sequences of n + 1 transitions t0, . . . , tn such

that m0 →t0, ..., tn−1 mn →tn mn+1. hidden(tn) is the transition tn with enzymatic edges of weight 1

removed between tn and enzyme e if e is in the label of at least one pre-place p of tn.1 Suppose

hidden(tn) can fire in mn then because of Theorem 9, e ∈ mn. Therefore tn can fire in mn because

all e ∈ mn as above. Trivially if tn can fire, then hidden(tn) can fire because hidden(tn) has fewer

enzymes. Finally, because removing the enzymatic edge between e and tn does not affect the

resultant state, mn+1 is the same. Therefore the set of possible mn+1’s is unchanged by hiding

edges.

Therefore the theorem holds after firing n + 1 transitions and by induction the theorem is correct.

�

Theorems 8, 9 and 10 together prove the algorithm is correct and always terminates.

7.2.5 Pathway Logic results

We compare the performance of the RMP using stubborn sets algorithm with the (original) RMP

algorithm. We also show how pre-processing with the Hide Edges algorithm affects reduction.

We compute the set of reaction minimal paths for both the ERK activation and RelA activation

models generated from version 5 of the Pathway Logic knowledge base (kb v5), as per Section 6.7.

We extend the comparison of the algorithms to models generated from version 6 of the knowledge

base (kb v6)—these models are significantly larger and more complex than their counterparts from

version 5.

The results of the algorithms are given in Table 7.1.

Comparing the RMP using stubborn sets algorithm with the (original) RMP algorithm shows

that the reduction is either trivial or non-existent. In both ERKs activation models there is no
1Note, we only remove enzymatic edges of weight 1—we cannot remove enzymatic edges of weight > 1 because

the labelling only guarantees that a place is marked, not how many tokens are on it.

7.2 Stubborn sets 120

RMP ssRMP ssRMP & HideEdges
Erks–act–EgfRC kb v5 Tuples: 618,861 Tuples: 618,861 Tuples: 437,484
(144 paths) Runtime: 50s Runtime: 333s Runtime: 68s
Rela–act–Nuc kb v5 Tuples: 171,237 Tuples: 162,818 Tuples: 161,806
(39 paths) Runtime: 9s Runtime: 102s Runtime: 39s
Erks–act–EgfRC kb v6 Tuples: 1,358,465 Tuples: 1,358,465 Tuples: 970,354
(160 paths) Runtime: 207s Runtime: 987s Runtime: 244s
Rela–act–Nuc kb v6

Not computable Not computable Not computable
(??? paths)

Table 7.1: The performance of the RMP using the stubborn sets algorithm, and the Hide Edges
algorithm, for four Pathway Logic models. Tuples is the number of (state, path) tuples. Runtime
is on a workstation with a 2.53GHz dual core processor with 4GB of memory. Not computable
means no results were obtained within 24 hours.

reduction. This is because all transitions have a shared enzyme—the active EGF receptor. This

causes any stubborn set computed in any state to be populated with all transitions in the model,

therefore for any m, stub(m) = T . There is some reduction in the RelA activation model from

version 5 of the knowledge base because there are two receptors, i.e. not all transitions have a

shared enzyme.

Pre-processing with the Hide Edges algorithm allows more significant reduction. The Hide

Edges algorithm removes many of the connections between transitions, causing stub(m) to have

fewer transitions in general. The reduction in the state space of the ERKs activation models is

greater than the reduction in the RelA activation model—approximately 25% of the states are

removed compared with 5% of the states respectively. This reflects the structure of these models;

the ERKs models contain many sequences of transitions which are more amenable to partial order

reduction, whereas RelA is a more interconnected network of reactions.

Note that the runtime is much higher in the RMP using stubborn sets algorithm. Computing a

stubborn set at each state is computationally expensive compared with creating the next state. In

all cases, partial order reduction increased the execution time of the RMP algorithm.

Finally, even with pre-processing with Hide Edges, the set of reaction minimal paths in the

RelA activation model from version 6 of the knowledge base is not computable.

7.2.6 Alternative stubborn sets algorithm

After personal correspondence with Prof. Valmari [107], we were made aware of an alternative

stubborn sets algorithm that is in general more efficient in terms of state space reduction. The algo-

rithm differs in the stub(m) function defined in Section 7.2.2. The following step in the algorithm:

(1) if m→t then add (•t)• to stub(m)

7.2 Stubborn sets 121

is changed to:

(1′) if m→t then add t′ to stub(m) if ∃p . (min(W(t, p),W(t′, p)) < min(W(p, t),W(p, t′)))

where W(t, p) and W(p, t) is the weight of the arc from t to p and from p to t respectively.

Given that the Petri nets in Pathway Logic have arcs of weight 1, we can reduce this step to a

boolean equation with propositions on the presence of arcs.

(1′′) if m→t then add t′ to stub(m) if ∃p . (¬(t → p ∧ t′ → p)) ∧ (p→ t ∧ p→ t′))

where t → p and p→ t is the presence of an arc from t to p and from p to t respectively.

The RMP using alternative stubborn sets algorithm ssRMP’(M,G, A) is the RMP using stub-

born sets algorithm using rule (1′′) instead of rule (1).

We repeat the analyses from Section 7.2.5 with the RMP using alternative stubborn sets algo-

rithm. The results of the algorithms are given in Table 7.2.

RMP ssRMP’ ssRMP’ & HideEdges
Erks–act–EgfRC kb v5 Tuples: 618,861 Tuples: 1,258 Tuples: 1,258
(144 paths) Runtime: 50s Runtime: 2s Runtime: 2s
Rela–act–Nuc kb v5 Tuples: 171,237 Tuples: 2,145 Tuples: 1,969
(39 paths) Runtime: 9s Runtime: 3s Runtime: 2s
Erks–act–EgfRC kb v6 Tuples: 1,358,465 Tuples: 1,463 Tuples: 1,463
(160 paths) Runtime: 207s Runtime: 3s Runtime: 3s
Rela–act–Nuc kb v6

Not computable
Tuples: 252,728 Tuples: 247,938

(156 paths) Runtime: 343s Runtime: 317s

Table 7.2: The performance of the RMP using alternative stubborn sets algorithm, and the Hide
Edges algorithm, for four Pathway Logic models. Tuples is the number of (state, path) tuples.
Runtime is on a workstation with a 2.53GHz dual core processor with 4GB of memory. Not
computable means no results were obtained within 24 hours.

In all cases, the RMP using alternative stubborn sets algorithm performs well compared to

the (original) RMP algorithm. The memory requirements for the Erks–act–EgfRC kb v6 model

is three orders of magnitude less and the runtime is two orders of magnitude less. Pre-processing

with Hide Edges provides a small but noticeable improvement in reduction. The RelA activation

model from version 6 of the knowledge base was previously uncomputable—with the RMP using

alternative stubborn sets algorithm, results are returned after around 6 minutes. This is a significant

improvement in performance.

7.2.7 Discussion

Models of biochemical systems typically contain sequences of independent reactions that propa-

gate signal through the cell. Partial order reduction works particularly well for such sequences.

7.2 Stubborn sets 122

The size of the state space for a model of N sequences of M independent transitions is NM+1. Ap-

plying partial order reduction algorithm, the transitions are fired in a linear sequence, resulting in

(N ∗M)+1 states. Consider the model in Figure 7.9 comprising two independent sequences of two

transitions. The state space has 22+1 = 8 states whereas the reduced state space has (2 ∗ 2) + 1 = 5

states.

P Q

X

r1

r3

r2 R

Y r4 Z

Figure 7.9: A model of two independent sequences of two transitions.

Suppose now that the model of two independent sequences of two transitions has a shared

enzyme E for all transitions, as shown in Figure 7.10. This is common in Pathway Logic models.

A stubborn set for any state in this model is created as follows. A seed transition is chosen, t,

where the pre-places of t include the place E. The transitions that have E as a pre-place are added

to the stubborn set, which is all transitions in the model. Therefore, stub(m) = T for any state

m, resulting in no reduction in the size of the state space. This example explains why using the

(original) stubborn sets algorithm gives no reduction in the ERKs activation models. The Hide

Edges algorithm removes some of the connections between transitions, thus enhancing the effect

of partial order reduction, shown in Figure 7.10.

P Q

X

R

Y Z

E

r1

r3

r2

r4

P Q

X

R

Y Z

E

r1

r3

r2

r4

Figure 7.10: (left) a model of two sequences of independent transitions with a common enzyme.
(right) the same model after applying the Hide Edges algorithm.

The RMP using alternative stubborn sets algorithm does not suffer from the above problem.

The results from this algorithm are encouraging. A previously uncomputable model is now com-

putable after around 6 minutes. The Hide Edges algorithm also provides a small but noticeable

improvement in reduction in the alternative stubborn sets algorithm.

The stubborn sets algorithms are however unintuitive and their relationship to biological struc-

ture in the models is not obvious. This is especially true because the stubborn sets change depend-

ing on the current state of the model.

7.3 Dependence sets 123

We now investigate a purely structural (i.e. state independent) partial order reduction algorithm

called dependence sets that relates well to biological concepts.

7.3 Dependence sets

In this section we introduce an algorithm called dependence sets, which is a partial order reduction

algorithm within the persistent sets class [46]. We start with the biological motivation for depen-

dence sets—dependence sets formalise important biological concepts. We give some definitions

of dependence sets and a reduced state space search algorithm using dependence sets. We adapt

the RMP algorithm to search the reduced state space using dependence sets—we refer to this as

the RMP using dependence sets algorithm. We prove the algorithm correct, i.e. that it finds all

reaction minimal paths. We give results of using the RMP using dependence sets algorithm on a

set of Pathway Logic models. Finally, we discuss these results and compare them to the results of

using the RMP using stubborn sets algorithm.

7.3.1 Biological motivation

Two important observations about signalling networks models are as follows.

1. There are often many reactions that are independent steps in the signal propagation, e.g.

protein activation, translocation or composition/decomposition.

2. Some reactions represent a choice in the network, e.g. reactions that activate a protein in

different ways or reactions that vary only in the choice of enzyme.

These observations can be formalised using the dependency between transitions. Two transi-

tions are dependent if firing one transition can disable the other transition. This is illustrated in

Figure 7.11.

p1

p2 t1

t2p3

p1

t1

t2

p2

p

t1

t2

Dependent	
 Dependent	
 Independent	

Figure 7.11: (left) t1 and t2 are dependent because they both consume place p. (centre) t1 and
t2 are dependent because t2 consumes place p1 which is an enzyme for t1. (right) t1 and t2 are
independent because the only place they share is an enzyme for both transitions.

7.3 Dependence sets 124

Finally, we show in Figure 7.12 how dependency can be used to partition the transitions in

a signalling network model. The transitions are partitioned into “dependence sets” (formalised

later). Dependence sets of size 1 are independent steps in the signal propagation.

C

B

A X

Y

Z

Protein

Protein-Active

t2

t1 t3

t4

t5 t6

Figure 7.12: The transitions in this Petri net can be partitioned into dependence sets. Transitions
t1, t2, t3 and t4 are each in dependence sets of size 1, i.e. they are independent steps in the signal
propagation. Transitions t5 and t6 are in the same dependence set because these transitions can
disable each other.

7.3.2 Definitions

We now define transition dependency.

Definition 31 (Transition dependency). Two transitions t1 and t2 are dependent if firing t1 can dis-

able t2 or vice-versa. Hence, dependent(t1, t2) = ((consumed(t1) ∩ •t2) ∪ (•t1 ∩ consumed(t2)) ,

∅) where consumed(t) = •t − t• (the set of places that are consumed by firing t). If two transitions

are not dependent, ¬dependent(t1, t2), they are independent.

Note that we define dependency by analysing the Petri net structure, i.e. dependency is com-

puted independently from the current state. This is an over approximation because two transitions

could be labelled dependent when the set of reachable states in the Petri net never allows the tran-

sitions to disable each other, for example Figure 7.13. We use this over approximation because

it is simple to understand and removes the need to recompute the dependence sets at each state.

Furthermore, dependence in standard Petri nets is rather simple to compute because there is no

explicit inhibition—a transition cannot be disabled by the presence of a token on a place.

7.3 Dependence sets 125

p1

p4

p2
p3

p5

t1 t2

Figure 7.13: Transitions t1 and t2 are dependent, but in no reachable state can either disable the
other. Note that place p2 has two tokens, therefore this Petri net is not in the class of models we
consider in this thesis.

Definition 32 (Dependence set). A set of transitions D is a dependence set with |D| ≥ 1 and if

|D| > 1 then ∀t ∈ D . ∃t′ ∈ (D − t) . dependent(t, t′).

Definition 33 (Dependence partition of a Petri net). A dependence partition is a set of dependence

sets {D1, . . . , Dn}. A Petri net M = (T, P, f ,m0) has a dependence partition of maximal size,

found by computing the transitive closure of dependent(t, t′) over T .

In what follows we assume dependence sets are of maximum size with respect to the given

Petri net.

We now give a reduced state space search algorithm using dependence sets.

7.3.3 Reduced state space search

We first define an algorithm that computes the dependence partition of a Petri net M. Recall

that our definition of dependency is purely structural, therefore the dependence sets need to be

computed only once.

Initialise: {D1 = {t1}, . . . , Dn = {tn}} where ti ∈ T and n = |T |
for each Di,D j and j > i do

if ∃t ∈ Di . ∃t′ ∈ D j . dependent(t, t′) then
merge(Di,D j)

end if
end for

At each state m we fire a subset of the enabled transitions, a single dependence set Di that

satisfies the following two conditions.

• All transitions in the dependence set must be enabled, ∀t ∈ Di.m→t.

• To overcome the ignoring problem (as per stubborn sets in Section 7.2.2), there must exist

a transition in the dependence set which, when fired from m, reaches an unseen state, i.e.

∃t ∈ Di . m→t m′ and m′ is unseen.

7.3 Dependence sets 126

If a dependence set Di cannot be found satisfying these conditions, we take a step according to

the full state space search, i.e. we fire all enabled transitions in the current state, and then resume

the reduced state space search.

We use the heuristic of choosing the Di that satisfies these conditions that is of smallest size.

The intuition is that this will produce the fewest number of unseen states and thus the reduced state

space is likely to be as small as possible, though this is not always the case.

Again, we consider only BFS because we later adapt the RMP algorithm to follow the reduced

state space search using dependence sets, which requires BFS.

A (BFS) reduced state space search algorithm using dependence sets is given below.

The set of seen states S = ∅

Add initial state m0 to the queue Q
while Q is not empty do

Remove state m from the front of the queue Q
Let Di = smallest dependence set such that ∀t ∈ Di . m →t and ∃t ∈ Di . m →t m′ and m′ is
an unseen state.
if Di exists then

Fire the transitions in Di to produce states M = {m1, . . . , mn}

else
Fire the transitions in {t ∈ T | m→t} to produce states M = {m1, . . . , mn}

end if
Add M \ S to the back of the queue Q
Add M to S

end while

Example 17 Example of a (BFS) reduced state space search using dependence sets.

We show how to perform a reduced state space search using dependence sets of the Petri net

in Figure 7.14. We follow a BFS search from the initial state, AXF (i.e. places A, X and F are

marked).

The reduced state space search using dependence sets is as follows.

The dependence sets in this model are D1 = {r1}, D2 = {r2} and D3 = {r3, r4}.

Queue: AXF

Seen states: {AXF}

AXF - Pick D1 = {r1} because it is the smallest dependence set such that all transitions are

enabled. Transition r1 is fired producing state BXF.

Queue: BXF

7.3 Dependence sets 127

A

Y

X

F G

r3

r1 r2

r4

B

Figure 7.14: An example Petri net used to illustrate the reduced state space search using depen-
dence sets.

Seen states: {AXF, BXF}

BXF - Pick D2 = {r2} because it is the smallest dependence set such that all transitions are en-

abled. Transition r2 is fired producing state BYF.

Queue: BYF

Seen states: {AXF, BXF, BYF}

BYF - Pick D3 = {r3, r4} because it is the smallest dependence set such that all transitions are

enabled. Transitions r3 and r4 are fired producing the same state, BYG.

Queue: BYG

Seen states: {AXF, BXF, BYF, BYG}

BYG - No enabled transitions and the queue is empty, therefore the search terminates.

Queue: empty

Seen states: {AXF, BXF, BYF, BYG}

The reduced state space that was searched above is given in Figure 7.15.

7.3.4 Dependence sets propositions/theorems

We now prove two propositions and one theorem for the reduced state space generated by depen-

dence sets.

We first introduce some short-hand notation for firing sets of transitions and firing transitions

7.3 Dependence sets 128

r1	

r2	

r3	
 r4	

A	
 X	
 F	

B	
 X	
 F	

B	
 Y	
 F	

B	
 Y	
 G	

Figure 7.15: The reduced state space search of the Petri net in Figure 7.14.

from sets of states.

We can fire a set of transitions from a single state.

m→D M2 denotes ∀t ∈ D . m→t m′ where M2 = {m′ | m→t m′, t ∈ D}

We can fire a transition from a set of states.

M1 →t M2 denotes ∀m ∈ M1 . m→t m′ where M2 = {m′ | m→t m′}

M1 {t M2 denotes ∃m ∈ M1 . m→t m′ where M2 = {m′ | m→t m′}

We can fire a set of transitions from a set of states.

M1 →D M2 denotes ∀m ∈ M1 . m→D M′2 where M2 =
⋃

M′2

M1 {D M2 denotes ∃m ∈ M1 . m→D M′2 where M2 =
⋃

M′2

Proposition 1 (Enabledness preserving property of dependence sets). Consider two dependence

sets D1 and D2 and a third transition t < (D1 ∪ D2). Consider further a state m where m →D1 ,

m→D2 and m9t. We can fire m→D1 M1 →D2 M3 or we can fire m→D2 M2 →D1 M3, as shown

in Figure 7.16. Suppose M2 {t, then it must follow that M3 {t, i.e. by considering either order

of firing the dependence sets, we do not lose the ability to fire t.

Proof. If t is enabled in some state in M2 (M2 {t) then t must be enabled in some state in M3

(M3 {t) because ∀t′ ∈ D1 . ¬dependent(t, t′), hence t′ cannot disable t.

�

Proposition 2 (An enabled transition will fire now or in the future). Assuming a finite state space,

at each state in the reduced state space search m, if m→t then t it either fires from m or some state

reachable from m in the search, m→t1, ..., tn m′.

Proof. We prove this proposition by a proof by induction over the number of transitions fired from

7.3 Dependence sets 129

m	

M1	
 M2	

M3	

D1	

D1	

D2	

D2	

t	

M4	

M5	

D1	

t	

Figure 7.16: By following the branch m →D1 M1 →D2 M3 we do not miss the opportunity to fire
transition t.

m.

Base case

Suppose no transitions have fired. At m0 a dependence set D is chosen such that ∀t′ ∈ D . m0 →t′

and ∃t′ ∈ D . m0 →t′ m′ and m′ is an unseen state. If there is no such D, then all enabled

transition are fired and hence t fires from m0. Otherwise, either t ∈ D therefore t fires from m0,

or else m0 →D M1 →t because ∀t′ ∈ D . ¬dependent(t, t′). ∀m′ ∈ M1 the number of unexplored

state from m′ is less than the number of unexplored states from m0, therefore at m′ or some state

reachable from m′ we will pick a D with t ∈ D or we will fire all enabled transitions and thus t will

fire in a state reachable from m0.

Therefore the proposition holds for m0.

Inductive step

Suppose the proposition holds after firing n transitions, m→t1 m1 . . . mn−1 →tn mn, we prove that

the proposition holds after firing n + 1 transitions. At mn a dependence set D is chosen such that

∀t′ ∈ D . mn →t′ and ∃t′ ∈ D . mn →t′ m′ and m′ is an unseen state. If there is no such D, then

all enabled transition are fired and hence t fires from mn. Otherwise, either t ∈ D therefore t fires

from mn, or else mn →D Mn+1 →t because ∀t′ ∈ D . ¬dependent(t, t′). ∀m′ ∈ Mn+1 the number

of unexplored states from m′ is less than the number of unexplored states from mn, therefore at m′

or some state reachable from m′ we will pick a D with t ∈ D or we will fire all enabled transitions

and thus t will fire in a state reachable from mn.

Therefore the proposition holds after firing n+1 transitions and by induction the proposition holds.

�

7.3 Dependence sets 130

Theorem 11 (Representative paths (dependence sets)). Assuming a finite state space, for any path

F in the full state space search there exists a path in the reduced state space search R such that R

is a representative of F (Definition 30 on page 106), i.e. R ⊇ F.

Proof. We prove this theorem by a proof by induction over the depth i of the reduced state space

search. Ri denotes a path where |Ri| = i. At each depth we prove that there exists a path Ri

where the transitions that are in F but not in Ri, Yi = F \ Ri, can fire in some order from mi, i.e.

Yi ` mi { m′i .

Base case

In the base case of depth 0 through the reduced state space search, R0 ` m0 { m0 and Y0 = F can

fire in some order from m0 because F can fire in some order from m0 in the full state space.

Inductive step

Suppose at depth n in the reduced state space search there exists a path Rn such that Rn ` m0 { mn

and Yn = F \ Rn can fire in some order from mn. We prove that if Yn , ∅ then there exists a path

Rn+1 in the reduced state space with Rn+1 ⊃ Rn such that Rn+1 ` m0 { mn+1 and Yn+1 = F \ Rn+1

can fire in some order from mn+1. One of the following three cases must happen:

• A dependence set D is chosen where D ∩ Yn = ∅. Trivially ∀t ∈ D . mn →t mn+1,

Rn+1 = Rn ∪ t and Yn+1 can fire from mn+1, because ∀t ∈ D . ∀t′ ∈ Yn.¬dependent(t, t′).

• A dependence set D is chosen where D ∩ Yn , ∅. We know there is an ordering of Yn that

can fire from mn. Let t be the transition in D∩ Yn that fires first in an ordering of Yn that can

fire from mn. Because t is independent of all transitions that fire before t in the ordering of

Yn, t can fire from mn and Yn+1 can fire from mn+1.

• There is no dependence set D such that ∀t ∈ D . m →t and ∃t ∈ D . m →t m′ and m′ is an

unseen state. Therefore, all enabled transitions in the Petri net fire from mn and because Yn

can fire in some order from mn, we are guaranteed to fire a transition t such that Rn+1 = Rn ∪ t

and Yn+1 can fire in some order from mn+1.

Concluding remark

Consider a state mi where Yi , ∅ can fire in some order from mi. There is a state m j with j ≥ i

reachable from mi where Y j can fire in some order and a transition t ∈ Y j will fire, because there

will be no more transitions outside of Y j reaching an unseen state (i.e. there is a finite number of

unseen sates and at some point we will have exhausted them). Repeating this argument, we will

reach a state mk where Yk = ∅ and there is a path Rk ` m0 { mk such that Rk ⊇ F. �

7.3 Dependence sets 131

7.3.5 The RMP using dependence sets algorithm

We now introduce the RMP using dependence sets algorithm, dsRMP(M,G, A). The algorithm

is an adaption of the (original) RMP algorithm to follow a reduced state space search using de-

pendence sets. Recall that reaction minimal paths are paths through the state space to a goal set

without using an avoid set. In this section we introduce the algorithm and prove correctness, i.e.

that the algorithm finds all reaction minimal paths. Finally, we demonstrate the algorithm with an

example.

Algorithm The RMP using dependence sets algorithm for a k-bounded Petri netM = (T, P, f ,m0)

is dsRMP(M,G, A) as follows.

Pre-processs: To make all paths satisfy the avoid constraint, we remove any transition that

has a pre- or post-place in the avoid set: T ∗ = {t ∈ T | (•t ∪ t•) ∩ A = ∅}.

Dependence sets: Compute the set of dependence sets using T ∗ as per the algorithm in Section

7.3.3.

The algorithm for computing stages assuming a pre-processed network works as follows.

Recall from Definition 27 on page 88 that a tuple (m,R) is subsumed by another tuple (m′,R′)

if R ⊇ R′, and m = m′ or m′ |= G.

Stage 0:
Stage(0) = {(m0, ∅)}
Paths = ∅

Stage n: Given Stage(n-1)
Stage(n) = ∅

for (m,R) ∈ Stage(n-1) do
if m |= G then

Add process(R) to Paths
else

Let Di = smallest dependence set such that ∀t ∈ Di . m →t and ∃t ∈ Di . m →t m′ and
(m′, Add(R, t)) is not subsumed.
if Di exists then

trans = Di

else
trans = {t ∈ T ∗ | m→t}

end if
for t ∈ trans and m→t m′ do

R′ = Add(R, t)
Add (m′,R′) to Stage(n) if it is not subsumed by a tuple in Stage(j) for some j < n

end for
end if

end for
if Stage(n) == ∅ then

7.3 Dependence sets 132

Return Paths
end if

Enforcing the reaction minimal property Theorem 11 guarantees that for each reaction mini-

mal path in the full state space search there exists a representative path in the reduced state space

search. Therefore the paths in Paths are representative paths—the reaction minimal property is

not guaranteed. Representative paths require further processing to guarantee the reaction minimal

property because they are possibly an extension of reaction minimal paths. We enforce the reac-

tion minimal property using the approach outlined in Section 7.2.3. For each representative path,

we apply the reaction minimal path algorithm from Section 6.5.1 using only transitions from the

path. This turns the representative path into a reaction minimal path.

process(R) =RMP((T ′, P, f ,m0),G, A) where T ′ = {t | t ∈ R}

Theorem 12 (The RMP using dependence sets algorithm is correct). The RMP using dependence

sets algorithm is correct, i.e. it produces all reaction minimal paths.

Proof. We know by Theorem 11 that for each reaction minimal path in the full state space search,

there exists a representative path in the reduced state space search. We convert the representative

paths into reaction minimal paths using the RMP algorithm which is correct (Theorem 5 on page

90), therefore this algorithm is correct. �

Example 18 Example of the RMP using dependence sets algorithm.

Consider the Petri net in Figure 7.14 with a goal set {G} and avoid set ∅. We compute the set of

reaction minimal paths with the RMP using dependence sets algorithm. The algorithm produces 3

stages as follows. The explanation of how the dependence sets are computed is given in Example

17.

The dependence sets in this model are D1 = {r1}, D2 = {r2} and D3 = {r3, r4}.

Stage 0: (AXF, ∅)

From state AXF, pick D1 = {r1}. Transition r1 is fired producing state BXF.

Stage 1: (BXF, {r1})

From state BXF, pick D2 = {r2}. Transition r2 is fired producing state BYF.

7.3 Dependence sets 133

RMP
RMP using

dependence sets
Erks–act–EgfRC PL v5 Tuples: 618,861 Tuples: 1,258
(144 paths) Runtime: 50s Runtime: <1s
Rela–act–Nuc PL v5 Tuples: 171,237 Tuples: 3,416
(39 paths) Runtime: 9s Runtime: 2s
Erks–act–EgfRC PL v6 Tuples: 1,358,465 Tuples: 1,471
(160 paths) Runtime: 207s Runtime: <1s
Rela–act–Nuc PL v6

Not computable
Tuples: 401,178

(156 paths) Runtime: 419s

Table 7.3: The performance of the RMP using dependence sets algorithm for four Pathway Logic
models. Tuples is the number of (state, path) tuples. Runtime is on a workstation with a 2.53GHz
dual core processor with 4GB of memory. Not computable means no results were obtained within
24 hours.

Stage 2: (BYF, {r1, r2})

From state BYF, pick D3 = {r3, r4}. Transitions r3 and r4 are fired producing the same state, BYG.

Stage 3: (BYG, {r1, r2, r3}) (BYG, {r1, r2, r4})

From state BYG, no more enabled transitions.

The set of representative paths is: {{r1, r2, r3}, {r1, r2, r4}}

The set of reaction minimal paths is: {{r1, r3}, {r2, r4}}

7.3.6 Pathway Logic results

We repeat the analysis from Section 7.2.5 and compare the performance of the RMP using de-

pendence sets algorithm with the (original) RMP algorithm. The results of the new algorithm are

given in Table 7.3.

In all cases the RMP using dependence sets algorithm performs well compared to the (origi-

nal) RMP algorithm. Pre-processing with the Hide Edges algorithm does not affect performance,

therefore we have omitted these results. The Rela activation model from version 6 of the knowl-

edge base is now computable (as with the RMP using alternative stubborn sets algorithm in Section

7.2.6).

We now compare the results using the RMP using dependence sets algorithm with results using

the RMP using alternative stubborn sets algorithm. While the state space reduction of stubborn

sets is better in three of the four Pathway Logic models, the runtime of dependence sets is shorter

in three of the four models. This reflects the simple and purely structural definition of dependency.

7.4 Summary 134

However, with the Rela model, the RMP using stubborn sets algorithm performs slightly better

with a runtime of 317 seconds compared with 419 seconds. More significantly, the RMP using

stubborn sets algorithm explores roughly half the number of tuples compared with the RMP using

dependence sets algorithm.

7.3.7 Discussion

The state state space reduction using stubborn sets is better compared to dependence sets in three

of the four Pathway Logic models. However, the runtime using dependence sets is shorter in

three of the four Pathway Logic models. As discussed, our definition of dependency is an over

approximation. It is possible that a definition of dependency that takes into account the set of

reachable states would result in better reduction—however, this would be at the cost of runtime

because the dependence partition would be recomputed at each state.

Another benefit from using dependence sets is that, because they are purely structural, they

can be used to identify subnets in a model that cause the state space to become infeasible. These

subnets can be fed back to the model design/curator in hopes of simplifying the model or using

appropriate abstraction, thus generating a computationally tractable model. For example, the Petri

net in Figure 7.17 could be a subnet in a model and would harm the performance of partial order

reduction using dependence sets.

t1 t2

t3 t4

Figure 7.17: An example problematic subnet for dependence sets. Transitions t3 and t4 comprise
a dependence set. Because t3 and t4 cannot both be enabled in the same reachable state, when
either t3 or t4 fires, all transitions in the Petri net must fire.

7.4 Summary

In this chapter we extended the approach to understanding unstructured signalling networks to be

applicable to large networks.

7.4 Summary 135

In Section 7.1 we gave the motivation for this chapter. In Section 7.2 we adapted the RMP al-

gorithm to use two versions of stubborn sets partial order reduction. We introduced the RMP using

stubborn sets and the RMP using alternative stubborn sets algorithms. We also introduced the Hide

Edges algorithm which simplifies certain models. Even applying the Hide Edges algorithm, the

RMP using stubborn sets algorithm was not significantly faster than the (original) RMP algorithm.

The RMP using alternative stubborn sets algorithm performed well compared with the (original)

RMP algorithm; the memory requirements for one model was three orders of magnitude less and

the runtime was two orders of magnitude less. Furthermore, for a previously uncomputable model,

results were returned after around 6 minutes. In Section 7.3 we introduced (the state independent)

dependence sets partial order reduction. We adapted the RMP algorithm to use dependence sets

partial partial order reduction, calling this algorithm the RMP using dependence sets algorithm.

The performance of this algorithm compared well to the RMP using alternative stubborn sets al-

gorithm. In three of four models the memory requirements of alternative stubborn sets is smaller,

however in three of four models, the runtime of dependence sets is shorter. This reflects the simple

nature of dependence sets.

In the next chapter we give future directions of this research.

Supplemental material An open-source Java application that computes all reaction minimal

paths in Pathway Logic models (using the various partial order reduction algorithms) as well as

the models used in this chapter can be found at www.dcs.gla.ac.uk/∼radonald/por2012/. The

Pathway Logic Assistant, knowledge bases and documentation can be found at pl.csl.sri.com.

Chapter 8

Future work

In this chapter we suggest some future directions of the work in this thesis.

Application to quantitative models Recall the distinction between qualitative and quantitative

models from Section 4.2.3.

The modelling framework for cross-talk can, in principle, be applied to quantitative models.

Because the underlying semantics of the framework is a CTMC with levels, all species in the

model must have a consistent number of levels. Reaction rates can be included using the rates

of the transitions in the Markov chain. As a result of using quantitative models, model checking

can be used to measure the quantitative effect of cross-talk (e.g. the effect on rate of signal flow

through the cell). There may be interesting ways to detect or characterise cross-talk using the rate

of reactions.

We believe that the RMP algorithm can also, in principle, be applied to quantitative models.

Currently the goal and avoid constraints reason about marked vs. unmarked places. These con-

straints can be extended to reason about the number of tokens on a place, e.g. the goal constraint

(X ≥ 2 ∗ Y) states that the number of tokens on X is at least double the number of tokens on Y .

There may be interesting ways to categorise or reason about the set of signal flows using the rate

of the reactions in the flows.

Specific drug targets We can use the approaches in this thesis to identify drug targets that con-

trol cellular signalling behaviour. Because we model cross-talk explicitly, we can measure any

target’s effect on unrelated pathways. One would expect that more specific targets (i.e. less effect

on other pathways) would make better drug targets.

136

CHAPTER 8. FUTURE WORK 137

Formally represented biological data In Pathway Logic each reaction has a set of formally

represented biological data, used as evidence for the reaction. No current analysis methods for

cellular signalling models take advantage of such data. We believe that there is much to be gained

by reasoning about this data, for example we could infer reactions from this data, generate evidence

for algorithmic results and choose targets that are backed up with biological evidence.

Disease data We can use approaches in this thesis to generate hypothesis about cross-talk or

signal flows that explain disease data. Most current models attempt to explain disease data using

a single signalling pathway. Cross-talk between pathways, or signal flows in a network, could

provide new hypotheses. The availability of high(er)-throughput protein measurements is a current

limitation.

The Molecular Nose project data We have generated a hypotheses using the Pathway Logic

framework and the RMP algorithm. We have created a model of the reactions from the Egf and

IL1 ligands downstream to the activation of a set of transcription factors from the Pathway Logic

knowledge base. The set of signal flows through the network was computed using the RMP algo-

rithm. The signal flows from the Egf ligand turn on “immediate early genes” whereas the signal

flows from the IL1 ligand turn on “late response” genes. From the literature we know that the Ngf

ligand has two receptors in the well-studied PC12 cell line: the NgfR receptor which is similar to

the IL receptor and the TrkA receptor which is similar to the Egf receptor. We have generated the

following hypothesis, illustrated further in Figure 8.1.

Hypothesis: between 0 – 60 minutes, the response of Ngf looks like Egf, and after 60 minutes

the response of Ngf looks like IL1.

Egf	
 IL1	

TFs	

Ngf	

early	
 late	

Figure 8.1: The Egf and IL1 ligands have an early and late response respectively. The Ngf ligand
attaches to two receptors, one Egf-like and one IL1-like.

CHAPTER 8. FUTURE WORK 138

The Molecular Nose sensor is used to measure (“sniff out”) the activity of transcription factors

in a sample of cells. Currently the sensor can measure the activity of around 50 transcription

factors. We can measure the transcription factor response to the following ligands: Egf, IL1, (the

combination of) Egf&IL1, and Ngf. Comparing the transcription response of Egf to Ngf at early

time points and IL1 to Ngf at late time points would validate/invalidate the above hypothesis.

Finally, we can use this data to make models of the cross-talk between the Egf and IL1 pathways

using the cross-talk modelling framework in this thesis.

Work has begun on experiments to prove/disprove the above hypothesis.

Chapter 9

Conclusion

This thesis is concerned with modelling and analysis of cellular signalling, which is an important

area of study in systems biology. Cellular signalling is often studied using the abstraction to

signalling pathways and cross-talk; however, both terms remain rather informal.

Our first contribution (Chapter 5) is a modular modelling framework for pathways and their

cross-talk. This is the first modelling framework that has an explicit notion of cross-talk, expressed

using different synchronisations of reactions between, and overlaps of, pathways. We gave a

categorisation and formalisation of cross-talk and a modelling approach for cross-talk. We also

gave model checking techniques to detect, characterise, and measure the effect of, cross-talk in

a model. We demonstrated the framework using a prominent case study: the cross-talk between

the TGF-β, WNT and MAPK pathways. The framework can be used to generate all pathway or

network hypotheses given a suitable formalisation of permissible compositions. Our long term

aim is to generate hypotheses to inform both systems and synthetic biology.

Our second contribution (Chapter 6) tackles the problem of unstructured signalling networks,

i.e. networks with no explicit notion of pathways or cross-talk. We showed how signalling net-

works can be broken down into a set of signal flows, essentially a (minimal) multiset of reactions

that work together to produce some output of interest. Current techniques to compute the set of

signal flows are largely based on steady-state analysis. We have argued that steady-state analysis

is appropriate for metabolic systems, but not cellular signalling systems which are concerned with

transient flow of information through the cell. We reviewed current algorithms and showed them

to be insufficient, either not guaranteeing completeness (generating all signal flows) or correctness

(some signal flows can be incorrect). We then introduced the Reaction Minimal Paths (RMP) al-

gorithm, the first algorithm to guarantee both correctness and completeness, and prove it correct.

Then, we showed how to better understand signalling network models using the set of signal flows,

139

CHAPTER 9. CONCLUSION 140

demonstrating this using Pathway Logic models. Finally, we showed how the set of signal flows

can be used to compute several network metrics, and how clustering of signal flows can uncover

structure within the network.

Our final contribution (Chapter 7) was to employ partial order reduction algorithms to improve

the efficiency of the RMP algorithm. We started with two versions of the stubborn sets partial or-

der reduction algorithm and then introduced the dependence sets algorithm. These algorithms

have different computational complexities depending on the model being analysed. We also in-

troduced the Hide Edges algorithm which simplifies certain categories of models, making them

more amenable to reduction. An important result was that a previously incomputable model is

now computable using partial order reduction.

Appendix A

Multisets

Definition 34 (Multiset). A multiset is a pair (A, f) where A is the underlying set of elements and

f : A→ N+ is the (positive) multiplicity of each element in A. The multiplicity of a ∈ A is f (a).

Given a multiset M = (A, f):

• The elements of M are written { f (a1) ∗ a1, . . . , f (an) ∗ an} where n = |A| and if f (a) = 1

then f (a)∗ is omitted.

• The cardinality of M, written |M|, is
∑

a∈A f (a).

• An element a belongs to M, written a ∈ M, if a ∈ A.

• An element a is added to M, written Add(M, a), returning M′ = (A′, f ′) where A′ = A∪ {a},

∀b ∈ (A − {a}) . f ′(b) = f (b) and if a ∈ A then f ′(a) = f (a) + 1 else f ′(a) = 1.

Given two multisets M1 = (A1, f1) and M2 = (A2, f2):

• M1 and M2 are equivalent, written M1 = M2, if A1 = A2 and ∀a ∈ A1 . f1(a) = f2(a).

• M1 is a submultiset of M2, written M1 ⊆ M2, if ∀a ∈ A1 . (a ∈ A2 ∧ f1(a) ≤ f2(a)).

• M1 is a (proper) submultiset of M2, written M1 ⊂ M2, if M1 , M2 and M1 ⊆ M2.

• M1 ∩ M2 is the intersection of two multisets returning (A′, f ′) where A′ = (A1 ∩ A2) and

∀a ∈ A′ . f ′(a) = min(f1(a), f2(a)).

141

Appendix B

Breadth- vs. depth-first search

Breadth- and depth-first search are algorithms are used to explore the nodes in a graph—they differ

in the order in which the nodes are explored.

Breadth-first search Starting at the initial node, each child is visited (in order from left-to-right).

Then the children’s children are visited, and so on, until all nodes have been explored. Hence, the

nodes are visited in order of their depth from the initial node.

Depth-first search Starting at the initial node, the left-most unexplored child is visited, then

that child’s left-most unexplored child, and so on, until we reach a node with no more unexplored

children. Then, the algorithm resumes from the nearest ancestor with unexplored children. Hence,

the nodes are visited in order of their branches, from left-to-right, starting at the initial node.

A	
 X	
 F	

B	
 X	
 G	

B	
 X	
 F	
 A	
 Y	
 F	

A	
 Y	
 G	
 B	
 Y	
 F	

B	
 Y	
 G	

1	

2	

4	

3	

5	
 6	

7	

Breadth-­‐first	
 search	

A	
 X	
 F	

B	
 X	
 G	

B	
 X	
 F	
 A	
 Y	
 F	

A	
 Y	
 G	
 B	
 Y	
 F	

B	
 Y	
 G	

1	

2	

3	

6	

5	
 7	

4	

Depth-­‐first	
 search	

Figure B.1: The state space from Example 3 on page 27 explored using breadth- (left) and depth-
first search (right). Numbers 1 . . . 7 indicate the order in which the states are visited.

142

Appendix C

PRISM model of pathway cross-talk

The PRISM model of the example pathways and cross-talk from Sections 5.4 to 5.7 is given below.

Note that we use the non-standard pathway ... endpathway construct. This allows us to define

the system equations for our two example pathways, pathway1 and pathway2.

ctmc

module P1_Receptor

R1 : [0..1] init 1; L1 : [0..1] init 1; R1Active : [0..1] init 0;

[r1_1] R1 = 1 & L1 = 1 & R1Active = 0 -> 1:(R1’ = 0) & (L1’ = 0) & (R1Active’ = 1);

[r2_1] R1Active = 1 -> 1:true;

[aux1_1] R1 = 1 -> 1:(R1’ = 0);

[aux2_1] R1Active = 0 -> 1:(R1Active’ = 1);

[aux3_1] L1 = 0 -> 1:(L1’ = 1);

endmodule

module P1_Cascade3

X1Inactive : [0..1] init 1; X1Active : [0..1] init 0;

Y1Inactive : [0..1] init 1; Y1Active : [0..1] init 0;

Z1Inactive : [0..1] init 1; Z1Active : [0..1] init 0;

[r3_1] X1Inactive = 1 & X1Active = 0 -> 1:(X1Inactive’ = 0) & (X1Active’ = 1);

[r4_1] Y1Inactive = 1 & Y1Active = 0 & X1Active = 1 ->

1:(Y1Inactive’ = 0) & (Y1Active’ = 1);

[r5_1] Z1Inactive = 1 & Z1Active = 0 & Y1Active = 1 ->

1:(Z1Inactive’ = 0) & (Z1Active’ = 1);

[r6_1] Z1Active = 1 -> 1:true;

143

APPENDIX C. PRISM MODEL OF PATHWAY CROSS-TALK 144

[aux4_1] X1Active = 1 -> 1:true;

[aux5_1] Y1Inactive = 1 -> 1:(Y1Inactive’ = 0);

[aux6_1] Y1Active = 0 -> 1:(Y1Active’ = 1);

[aux7_1] Z1Active = 0 -> 1:true;

endmodule

module P1_GeneExpression

Gene1 : [0..1] init 1; Protein1 : [0..1] init 0;

[r7_1] Gene1 = 1 & Protein1 = 0 -> 1:(Gene1’ = 0) & (Protein1’ = 1);

[aux8_1] Protein1 = 1 -> 1:(Protein1’ = 0);

endmodule

module P2_Receptor = P1_Receptor

[R1 = R2, L1 = L2, R1Active = R2Active, r1_1 = r1_2, r2_1 = r2_2, aux1_1 = aux1_2,

aux2_1 = aux2_2, aux3_1 = aux3_2]

endmodule

module P2_Cascade3 = P1_Cascade3

[X1Inactive = X2Inactive, X1Active = X2Active, Y1Inactive = Y2Inactive,

Y1Active = Y2Active, Z1Inactive = Z2Inactive, Z1Active = Z2Active, r3_1 = r3_2,

r4_1 = r4_2, r5_1 = r5_2, r6_1 = r6_2, aux4_1 = aux4_2, aux5_1 = aux5_2,

aux6_1 = aux6_2, aux7_1 = aux7_2]

endmodule

module P2_GeneExpression = P1_GeneExpression

[Gene1 = Gene2, Protein1 = Protein2, r7_1 = r7_2, aux8_1 = aux8_2]

endmodule

pathway

((P1_Receptor {r2_1 <- r3_1} |[r3_1]| P1_Cascade3) {r6_1 <- r7_1} |[r7_1]|

P1_GeneExpression) / {r1_1, r3_1, r4_1, r5_1, R1, L1, R1Active, Gene1, Protein1}

endpathway

pathway

((P2_Receptor {r2_2 <- r3_2} |[r3_2]| P2_Cascade3) {r6_2 <- r7_2} |[r7_2]|

P2_GeneExpression) / {r1_2, r3_2, r4_2, r5_2, R2, L2, R2Active, Gene2, Protein2}

endpathway

Appendix D

Relevant subnet algorithm

The relevant subnet algorithm Subnet(T,m0,G, A) for a k-bounded Petri net with respect to G and

A is a three step process as follows. Note that out(t) = t• − •t.

Remove avoids Remove all transitions in T containing a pre- or post-place in A.

T ′ = {t ∈ T | (•t ∪ t•) ∩ A = ∅}

Backward collection The backward collection T relative to G is a collection of all transitions

that can put a token on a place in G or on a pre-place of a transition that, through a sequence of

transitions, can put a token on G.

T ′ =
⋃

j∈N T j where

G0 = G G j+1 = G j ∪ (
⋃

t∈T j
•t)

T j = {t ∈ T | (out(t) ∩G j) , ∅}
There is a j such that G j+1 = G j since T is finite, hence the collection terminates.

Forward collection The forward collection of T relative to m0 is a collection of all transitions

that can fire from the initial state m0.

T ′ =
⋃

j∈N T j I =
⋃

j∈N I j

I0 = {p ∈ P | m0(p) ≥ 1} I j+1 =
⋃

t∈T j t•

T j = {t ∈ T | •t ⊆ I j}

There is a n such that In = I j for some n > j since T is finite, hence the collection terminates.

145

Appendix E

Pathway Logic model diagrams

Below are the Pathway Logic model diagrams for the activation of ERKs (kb v5) and the activation

of RelA (kb v5).

Figure E.1: The Pathway Logic model diagram for the activation of ERKs (kb v5).

146

APPENDIX E. PATHWAY LOGIC MODEL DIAGRAMS 147

Figure E.2: The Pathway Logic model diagram for the activation of RelA (kb v5).

Appendix F

Signal flow cluster diagrams

Below are the cluster diagrams for the paths in the activation of RelA (kb v5) and the activation of

ERKs (kb v5) models.

36
39
37
38
34
35
19
22
32
33
28
29
30
31
20
21
23
24
27
25
26

1
2
7

16
14
15
12
13

8
9

10
11
17
18

3
4
5
6

Figure F.1: The dendrogram from clustering the 39 paths in the activation of RelA (kb v5) model.

148

APPENDIX F. SIGNAL FLOW CLUSTER DIAGRAMS 149

9
7
8

12
10
11
22
23
19
21
20
24
40
41
37
39
38
42
28
29
25
27
26
30
46
47
43
45
44
48

3
1
2
6
4
5

16
17
13
15
14
18
34
35
31
33
32
36
78
77
76
74
75
50
68
73
72
71
69
70
67
66
65
63
64
49
57
62
61
60
58
59

112
113
109
111
110
114
142
143
139
141
140
144
106
107
103
105
104
108
136
137
133
135
134
138
100
101

97
99
98

102
130
131
127
129
128
132

94
95
91
93
92
96

124
125
121
123
122
126

54
55
51
53
52
56
82
83
79
81
80
84
88
89
85
87
86
90

118
119
115
117
116
120

Figure F.2: The dendrogram from clustering the 144 paths in the activation of ERKs (kb v5) model.

Bibliography

[1] R. Alur and T. Henzinger. Reactive modules. Formal Methods in System Design, 15(1):7–

48, 1999.

[2] M. Anzano, A. Roberts, C. Meyers, A. Komoriya, L. Lamb, J. Smith, and M. Sporn. Com-

munication: Synergistic Interaction of Two Classes of Transforming Growth Factors from

Murine Sarcoma Cells . Cancer Research, 42(11):4776–4778, 1982.

[3] F. Ay, F. Xu, and T. Kahveci. Scalable Steady State Analysis of Boolean Biological Regu-

latory Networks. PLoS ONE, 4(12):e7992, 2009.

[4] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying Continuous-Time Markov

Chains. In Rajeev Alur and Thomas A. Henzinger, editors, Computer Aided Verification,

volume 1102, pages 269–276. Springer-Verlag, 1996.

[5] M. Barrios-Rodiles, K. Brown, B. Ozdamar, R. Bose, Z. Liu, R. Donovan, F. Shinjo, Y. Liu,

J. Dembowy, I. Taylor, et al. High-throughput mapping of a dynamic signaling network in

mammalian cells. Science, 307(5715):1621–1625, 2005.

[6] L. Blair and J. Pang. Feature Interactions – Life Beyond Traditional Telephony. In M. Calder

and E. Magill, editors, Feature Interactions in Telecommunications and Software Systems

VI, pages 83–93. IOS Press (Amsterdam), 2000.

[7] D. Bosnacki and G. J. Holzmann. Improving Spin’s Partial-Order Reduction for Breadth-

First Search. In SPIN, volume 3639 of Lecture Notes in Computer Science, pages 91–105.

Springer-Verlag, 2005.

[8] F. Brightman and D. Fell. Differential feedback regulation of the MAPK cascade under-

lies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Letters,

482(3):169–174, 2000.

150

BIBLIOGRAPHY 151

[9] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 1020

states and beyond. Information and Computation, 98(2):142–170, 1992.

[10] M. Calder, S. Gilmore, and J. Hillston. Modelling the influence of RKIP on the ERK sig-

nalling pathway using the stochastic process algebra PEPA. Transactions on Computational

Systems Biology VII, 4230:1–23, 2006.

[11] M. Calder, S. Gilmore, J. Hillston, and V. Vyshemirsky. Formal methods for biochemical

signalling pathways. In P. Boca, J. P. Bowen, and J. Siddiqi, editors, Formal Methods: State

of the Art and New Directions, pages 185–215. Springer, 2009.

[12] M. Calder and J. Hillston. Process algebra modelling styles for biomolecular processes.

Transactions on Computational Systems Biology XI, 5750:1–25, 2009.

[13] M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature Interaction: A Critical

Review and Considered Forecast. Computer Networks, 41(1):115–141, 2003.

[14] M. Calder and A. Miller. Feature interaction detection by pairwise analysis of LTL proper-

ties – A case study. Formal Methods in System Design, 28(3):213–261, 2006.

[15] M. Calder, V. Vyshemirsky, R. Orton, and D. Gilbert. Analysis of Signalling Pathways

using Continuous Time Markov Chains. Transactions on Computational Systems Biology

VI, 4220:44–67, 2006.

[16] L. Calzone, N. Chabrier-Rivier, F. Fages, and S. Soliman. Machine learning biochemical

networks from temporal logic properties. Transactions on Computational Systems Biology,

4220:68–94, 2006.

[17] A. Carracedo and P. Pandolfi. The PTEN–PI3K pathway: of feedbacks and cross-talks.

Oncogene, 27(41):5527–5541, 2008.

[18] I. Catt. Crosstalk (Noise) in Digital Systems. Electronic Computers, IEEE Transactions on,

EC-16(6):743–763, 1967.

[19] N. Chabrier-Rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter. Modeling and

Querying Biomolecular Interaction Networks. Theoretical Computer Science, 325(1):25–

44, 2004.

[20] S. Chapman and A. Asthagiri. Quantitative effect of scaffold abundance on signal propaga-

tion. Molecular Systems Biology, 5(1), 2009.

BIBLIOGRAPHY 152

[21] Charlie Website. Charlie – Petri Net Analyser. http://www-dssz.informatik.

tu-cottbus.de/software/charlie.html.

[22] L. Chen, G. Qi-Wei, M. Nakata, H. Matsuno, and S. Miyano. Modelling and simulation

of signal transductions in an apoptosis pathway by using timed Petri nets. Journal of Bio-

sciences, 32(1):113–127, 2007.

[23] K. Cho, S. Shin, H. Kim, O. Wolkenhauer, B. Mcferran, and W. Kolch. Mathematical

modeling of the influence of RKIP on the ERK signaling pathway. In C. Priami, edi-

tor, Computational Methods in Systems Biology (CSMB03), volume 2602, pages 127–141.

Springer-Verlag, 2003.

[24] F. Ciocchetta, A. Degasperi, J. K. Heath, and J. Hillston. Modelling and Analysis of the NF-

κB Pathway in Bio-PEPA. Transactions on Computational Systems Biology XII, 5945:229–

262, 2010.

[25] F. Ciocchetta, A. Degasperi, J. Hillston, and M. Calder. Some Investigations Concerning

the CTMC and the ODE Model Derived From Bio-PEPA. Electronic Notes in Theoretical

Computer Science, 229(1):145–163, 2009.

[26] F. Ciocchetta, A. Duguid, and M. L. Guerriero. A compartmental model of the

cAMP/PKA/MAPK pathway in Bio-PEPA. In G. Ciobanu, editor, MeCBIC, volume 11,

pages 71–90, 2009.

[27] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press 1999, third printing,

2001.

[28] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. All

About Maude: A High-Performance Logical Framework. Springer-Verlag, 2007.

[29] G. Cooper and R. Hausman. The Cell, A Molecular Approach, 5th Edition. Sinauer Asso-

ciates Inc, 2009.

[30] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based Modelling of Cellular

Signalling. In Proceedings of CONCUR’07, Lecture Notes In Computer Science, volume

4703, pages 17–41, 2007.

[31] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based modelling and model

perturbation. Transactions on Computational Systems Biology XI, pages 116–137, 2009.

BIBLIOGRAPHY 153

[32] K. De Bosscher, W. Vanden Berghe, and G. Haegeman. Cross-talk between nuclear recep-

tors and nuclear factor κb. Oncogene, 25(51):6868–6886, 2006.

[33] P. Degano, D. Prandi, C. Priami, and P. Quaglia. Beta-binders for Biological Quantitative

Experiments. Electronic Notes in Theoretical Computer Science, 164(3):101–117, 2006.

[34] E. Dejardin. The alternative NF-κB pathway from biochemistry to biology: pitfalls and

promises for future drug development. Biochemical Pharmacology, 72(9):1161–1179,

2006.

[35] R. Donaldson and D. Gilbert. A model checking approach to the parameter estimation of

biochemical pathways. In M. Heiner and A. M. Uhrmacher, editors, CMSB, volume 5307

of Lecture Notes in Computer Science, pages 269–287. Springer-Verlag, 2008.

[36] A. Dutt, S. Canevascini, E. Froehli-Hoier, and A. Hajnal. EGF signal propagation during C.

elegans vulval development mediated by ROM-1 Rhomboid. PLoS Biology, 2:1799–1814,

2004.

[37] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and K. Sonmez. Pathway logic:

Symbolic analysis of biological signaling. Proceedings of the Pacific Symposium on Bio-

computing, 400–412, 2002.

[38] N. Fernandez, A. Lozier, C. Flament, P. Ricciardi-Castagnoli, D. Bellet, M. Suter, M. Per-

ricaudet, T. Tursz, E. Maraskovsky, and L. Zitvogel. Dendritic cells directly trigger NK

cell functions: Cross-talk relevant in innate anti-tumor immune responses in vivo. Nature

Medicine, 5:405–411, 1999.

[39] O. Fiehn. Metabolic networks of cucurbita maxima phloem. Phytochemistry, 62(6):875–

886, 2003.

[40] J. Fisher and T. A. Henzinger. Executable cell biology. Nature Biotechnology, 25:1239–

1249, 2007.

[41] J. Fisher, N. Piterman, A. Hajnal, and T. A. Henzinger. Predictive Modeling of Signaling

Crosstalk during C. elegans Vulval Development. PLoS Computational Biology, 3(5):92+,

2007.

[42] P. Georgatsos, T. Nauta, and H. Velthuijsen. Role of service management in service interac-

tion handling in an in environment. In P. Dini, R. Boutaba, and L. Logrippo, editors, FIW,

pages 213–225. IOS Press, 1997.

BIBLIOGRAPHY 154

[43] D. Gilbert and M. Heiner. From Petri Nets to Differential Equations – An Integrative Ap-

proach for Biochemical Network Analysis. In ICATPN, pages 181–200, 2006.

[44] D. Gilbert, M. Heiner, and S. Lehrack. A unifying framework for modelling and analysing

biochemical pathways using Petri nets. In Proceedings of CMSB 2007, pages 200–216.

Lecture Notes in Computer Science 4695, Springer, 2007.

[45] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of

Physical Chemistry, 81(25):2340–2361, 1977.

[46] P. Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and P. Wolper. Partial-order methods

for the verification of concurrent systems: an approach to the state-explosion problem,

volume 1032. Springer-Verlag, 1996.

[47] E. Grafahrend-Belau, F. Schreiber, M. Heiner, A. Sackmann, B. H. Junker, S. Grunwald,

A. Speer, K. Winder, and I. Koch. Modularization of biochemical networks based on clas-

sification of Petri net T-invariants. BMC Bioinformatics, 9, 2008.

[48] M. Guerriero. Qualitative and quantitative analysis of a bio-pepa model of the gp130/jak/stat

signalling pathway. Transactions on Computational Systems Biology XI, pages 90–115,

2009.

[49] J. Gunawardena. Signals and Systems: Towards a Systems Biology of Signal Transduction.

Proceedings of the IEEE, 96(8):1386 – 1397, 2008.

[50] X. Guo and X. Wang. Signaling cross-talk between TGF-β/BMP and other pathways. Cell

Research, 19:71–88, 2009.

[51] S. Guptaa, S. S. Bishta, R. Kukretia, S. Jainb, and S. K. Brahmacharia. Boolean network

analysis of a neurotransmitter signaling pathway. Journal of Theoretical Biology, 244:463–

469, 2007.

[52] R. J. Hall. Feature Interactions in Electronic Mail. In M. Calder and E. Magill, editors,

Feature Interactions in Telecommunications and Software Systems VI, pages 67–82. IOS

Press (Amsterdam), 2000.

[53] M. Hatakeyama, S. Kimura, T. Naka, T. Kawasaki, N. Yumoto, M. Ichikawa, J. Kim,

K. Saito, M. Saeki, M. Shirouzu, S. Yokoyama, and A. Konagaya. A computational

model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways

in heregulin-induced ErbB signalling. Biochemical Journal, 373 Pt. 2:451–463, 2003.

BIBLIOGRAPHY 155

[54] H. Hatzikirou, D. Basanta, M. Simon, K. Schaller, and A. Deutsch. ‘Go or Grow’: the key

to the emergence of invasion in tumour progression? Mathematical Medicine and Biology,

2010.

[55] M. Heiner, D. Gilbert, and R. Donaldson. Petri Nets in Systems and Synthetic Biology. In

Schools on Formal Methods (SFM), pages 215–264. Springer Lecture Notes in Computer

Science 5016, 2008.

[56] M. Heiner and I. Koch. Petri net based model validation in systems biology. In ICATPN,

216–237, 2004.

[57] M. Heiner, I. Koch, and J. Will. Model validation of biological pathways using Petri nets–

demonstrated for apoptosis. Journal BioSystems, 75:15–28, 2004.

[58] D. J. Higham. Modeling and Simulating Chemical Reactions. SIAM Rev., 50(2):347–368,

2008.

[59] J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis, Cambridge

University, 1996.

[60] W. S. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Posner, M. Hucka, and W. Fontana. Rules

for modeling signal-transduction systems. Science STKE, 344, July 2006.

[61] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-

Wesley Professional, 2003.

[62] D. Hong and S. Man. Signal propagation in small-world biological networks with weak

noise. Journal of Theoretical Biology, 262(2):370–380, 2010.

[63] M. Jarpe, C. Widmann, C. Knall, T. Schlesinger, S. Gibson, T. Yujiri, G. Fanger, E. Gelfand,

and G. Johnson. Anti-apoptotic versus pro-apoptotic signal transduction: checkpoints and

stop signs along the road to death. Oncogene, 17(11):1475–1482, 1998.

[64] M. R. Junttila, S. Li, and J. Westermarck. Phosphatase-mediated crosstalk between MAPK

signaling pathways in the regulation of cell survival. FASEB Journal, 22:954–965, 2008.

[65] B. Katzenellenbogen. Estrogen receptors: bioactivities and interactions with cell signaling

pathways. Biol. Reprod., 54:287–293, 1996.

BIBLIOGRAPHY 156

[66] U. Kaupp, J. Solzin, E. Hildebrand, J. Brown, A. Helbig, V. Hagen, M. Beyermann, F. Pam-

paloni, and I. Weyand. The signal flow and motor response controling chemotaxis of sea

urchin sperm. Nature Cell Biology, 5(2):109–117, 2003.

[67] D. Kim, O. Rath, W. Kolch, K. H. Cho, and and. A hidden oncogenic positive feedback

loop caused by crosstalk between wnt and erk pathways. Oncogene, 2007.

[68] H. Kitano. Systems biology: a brief overview. Science, 295(5560):1662–1664, 2002.

[69] L. M. Kristensen, K. Schmidt, and A. Valmari. Question-guided stubborn set methods for

state properties. Formal Methods in System Design, 29(3):215–251, 2006.

[70] M. Kwiatkowska. Model Checking for Probability and Time: From Theory to Practice. In

Proceedings of 18th Annual IEEE Symposium on Logic in Computer Science (LICS’03),

pages 351–360. IEEE Computer Society Press, 2003.

[71] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic Symbolic Model

Checker. In Computer Performance Evaluation / TOOLS, pages 200–204, 2002.

[72] M. Kyung, K. Hyun, S. Park, and S. Yoo. Crosstalk between Metabolic and Regulatory

Pathways. Genome Informatics, 14:372–373, 2003.

[73] T. Lee, N. Rinaldi, F. Robert, D. Odom, Z. Bar-Joseph, G. Gerber, N. Hannett, C. Harbison,

C. Thompson, I. Simon, et al. Transcriptional Regulatory Networks in Saccharomyces

cerevisiae. Science, 298(5594):799–804, 2002.

[74] F. Li, I. Thiele, N. Jamshidi, and B. Palsson. Identification of Potential Pathway Mediation

Targets in Toll-like Receptor Signaling. PLoS Computational Biology, 5(2):e1000292+,

2009.

[75] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell. Molecular

Cell Biology. New York : W. H. Freeman and Co., 2003.

[76] M. McClean, A. Mody, J. R. Broach, and S. Ramanathan. Cross-talk and decision making

in MAP kinase pathways. Nature Genetics, 2007.

[77] I. Merelli, D. Pescini, E. Mosca, P. Cazzaniga, C. Maj, G. Mauri, and L. Milanesi. Grid

computing for sensitivity analysis of stochastic biological models. In V. Malyshkin, editor,

PaCT, volume 6873 of Lecture Notes in Computer Science, pages 62–73. Springer-Verlag,

2011.

BIBLIOGRAPHY 157

[78] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical

Computer Science, 96(1):73–155, 1992.

[79] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University

Press, 1st edition, 1999.

[80] Molecular Nose Website. The Molecular Nose Project. http://www.molecularnose.

org.

[81] NIH. “Insulin Signaling And Receptor Cross-Talk” Program Announcement PA-07-058.

November 20, 2006.

[82] K. Oda and H. Kitano. A comprehensive map of the toll-like receptor signaling network.

Molecular Systems Biology, 2, 2006.

[83] J. Orth, I. Thiele, and B. Palsson. What is flux balance analysis? Nature Biotechnology,

28(3):245–248, 2010.

[84] R. Orton, O. Sturm, V. Vyshemirsky, M. Calder, D. Gilbert, and W. Kolch. Computational

modelling of the receptor tyrosine kinase activated MAPK pathway. Biochemical Journal,

392(2):249–261, 2005.

[85] J. Papin, N. Price, S. Wiback, D. Fell, and B. Palsson. Metabolic pathways in the post-

genome era. Trends in Biochemical Sciences, 28(5):250–258, 2003.

[86] R. Pelánek. In Fighting State Space Explosion: Review and Evaluation. Formal Methods

for Industrial Critical Systems, 37–52. Springer-Verlag, Berlin, Heidelberg, 2009.

[87] D. Peled. All from One, One for All: on Model Checking Using Representatives. In

Proceedings of the 5th International Conference on Computer Aided Verification, CAV ’93,

pages 409–423. Springer-Verlag, 1993.

[88] C. Petri. Communication with Automata (in German). Schriften des Instituts für Instru-

mentelle Mathematik, Bonn, 1962.

[89] L. C. Platanias and E. N. Fish. Signaling pathways activated by interferons. Experimental

Hematology, 27(11):1583–1592, 1999.

[90] M. Plath and M. Ryan. The feature construct for SMV: Semantics. In M. Calder and

E. Magill, editors, Feature Interactions in Telecommunications and Software Systems VI,

pages 129–144. IOS Press (Amsterdam), 2000.

BIBLIOGRAPHY 158

[91] C. Priami and P. Quaglia. Beta Binders for Biological Interactions. In Computational

Methods in Systems Biology, pages 20–33. 2005.

[92] G. Querrec, V. Rodin, J. Abgrall, S. Kerdelo, and J. Tisseau. Uses of multiagents systems

for simulation of mapk pathway. In Proceedings of the Third IEEE Symposium on Bioin-

formatics and Bioengineering, pages 421–425, 2003.

[93] A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of biochemical

processes using the pi-calculus process algebra. In R. Altman, A. Dunker, L. Hunter, and

T. Klein, editors, Pacific Symposium on Biocomputing, Volume 6, pages 459–470, Singa-

pore, 2001.

[94] S. Reiff. Identifying Resolution Choices for an Online Feature Manager. In M. Calder and

E. Magill, editors, Feature Interactions in Telecommunications and Software Systems VI,

pages 113–128. IOS Press (Amsterdam), 2000.

[95] A. Rizk, G. Batt, F. Fages, and S. Soliman. On a Continuous Degree of Satisfaction of Tem-

poral Logic Formulae with Applications to Systems Biology. In CMSB ’08: Proceedings

of the 6th International Conference on Computational Methods in Systems Biology, pages

251–268. Springer-Verlag, 2008.

[96] K. Schmidt. LoLA: A Low Level Analyser. In M. Nielsen and D. Simpson, editors, Ap-

plication and Theory of Petri Nets, 21st International Conference (ICATPN 2000), volume

1825 of Lecture Notes in Computer Science, pages 465–474. Springer-Verlag, 2000.

[97] S. Schuster, T. Dandekar, and D. A. Fell. Detection of elementary flux modes in biochemical

networks: a promising tool for pathway analysis and metabolic engineering. Trends in

Biotechnology, 17(2):53–60, 1999.

[98] M. Schwartz and M. Ginsberg. Networks and crosstalk: integrin signalling spreads. Nature

Cell Biology, 4(4):65–68, 2002.

[99] S. Shvartsman, M. Hagan, A. Yacoub, P. Dent, H. Wiley, and D. Lauffenburger. Autocrine

loops with positive feedback enable context-dependent cell signaling. American Journal of

Physiology – Cell Physiology, 282(3), 2002.

[100] S. Soliman. Finding minimal P/T-invariants as a CSP, May 2008.

[101] S. Sreenath, R. Soebiyanto, M. Mesarovic, and O. Wolkenhauer. Coordination of crosstalk

between MAPK-PKC pathways: an exploratory study. IET Systems Biology, 1:33–40, 2007.

BIBLIOGRAPHY 159

[102] C. Talcott. Symbolic modeling of signal transduction in Pathway Logic. In WSC ’06: Pro-

ceedings of the 38th conference on Winter simulation, pages 1656–1665. Winter Simulation

Conference, 2006.

[103] C. Talcott and D. Dill. Multiple representations of biological processes. Transactions on

Computational Systems Biology, 2006.

[104] C. M. Taniguchi, B. Emanuelli, and R. C. Kahn. Critical nodes in signalling pathways:

insights into insulin action. Nature Reviews Molecular Cell Biology, 7(2):85–96, 2006.

[105] O. Tymchyshyn and M. Kwiatkowska. Combining intra- and inter-cellular dynamics to

investigate intestinal homeostasis. In Proceedings of Formal Methods in Systems Biology

(FMSB’08), volume 5054 of Lecture Notes in Computer Science. Springer-Verlag, 2008.

[106] J. J. Tyson. Modeling the cell division cycle: cdc2 and cyclin interactions. Proceedings

of the National Academy of Sciences of the United States of America, 88(16):7328–7332,

1991.

[107] A. Valmari. Private correspondence, 2010-2011.

[108] O. Wolkenhauer. Systems Biology: the Reincarnation of Systems Theory Applied in Biol-

ogy? Briefings in Bioinformatics, 2:258–270, 2001.

