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Abstract 

Guillain- Barre Syndrome (GBS) is the world's leading cause of neuromuscular paralysis, 

occurring in serologically and pathogenically distinct forms. GBS is believed to have an 

autoimmune basis, where antibodies raised during antecedent infections (eg. 

Campylabaeter jejuni) cross-react with self antigens, exemplifying the process of 

molecular mimicry. These self antigens are gangliosides, which are glycolipid structures 

enriched in peripheral nerve in specific membrane compartments termed lipid rafts. To 

date, successful murine models of anti-GDla and anti-GQI b ganglioside mediated 

neuropathy exist. Clinical evidence supports the involvement of anti-GMl antibodies in 

nerve injury, however generation of anti-GMl antibody mediated neuropathy models 

remains an enigma, and to date the only successful model is based in Japanese rabbits. 

This thesis aims to address the controversies surrounding anti-GMl antibody mediated 

neuropathy by utilising a panel of anti-GMl antibodies of differing specificity, and 

explores how the stereometric interactions of GMl with lipid raft species underpin the 

pathogenic potential of these antibodies. 
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Chapter 1 

1.1 Introduction 

Acute ascending paralytic disorders have been described for centuries, for example 

the clinical descriptions of Guillain Barre like disturbances in the 19th century by 

Auguste Francois Chomel in 1828 and James Wardrop in 1834. 

However, the first modem description of a condition similar to Guillain Barre 

Syndrome (GBS) is credited to Landry in 1859. The report documented a patient with 

paresthesias and subjective weakness, with objective weakness occurring 1 month 

after onset of symptoms and becoming rapidly progressive until death 8 days later 

(Landry 1859). In 1992, Osler reported a case of acute febrile polyneuritis (Osler 

1892) which was similar to GBS, however it was not until development of lumbar 

puncture in the 20th century that such disorders could be better characterised and 

distinguished from other neurological conditions such as poliomyelitis (Ropper 1992). 

Thus, although "Landry's ascending paralysis" is often synonymous with GBS, lack 

of definitive diagnostic data mean the more contemporary findings of Guillain, Barre 

and Strohl give rise to the term "Guillain Barre Syndrome". 

In 1916, Guillain, Barre and Strohl presented comprehensive details of a clinical 

condition seen in 2 acutely ill soldiers with motor weakness, paresthesias and 

muscular pain with subsequent recovery. Examination of the cerebrospinal fluid 

(CSF) revealed increased CSF albumin without pleocytosis, and electrophysiological 

examination revealed preservation of cutaneous reflexes but pathology in the Achilles 

reflex and quadriceps muscle (Guillain et al1916, Pritchard and Hughes 2004). 

Further reports of similar conditions subsequentially emerged (Marie and Chatelin 
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1916), and the term Guillain Barre syndrome was coined in 1927 (Draganesco and 

Claudian 1927) and thus GBS became a defined clinical entity. 

Preceeding descriptions ofGBS include Haymaker and Kernohan's autopsy study of 

50 fatal cases of "Landry Guillain Barre" (Haymaker and Kernohan 1949) and the 

report in 1969 on 19 fatal cases by Asbury, Amason and Adams (Asbury et al 1969). 

However, with the emergence of new descriptions, controversy arose over the 

diagnostic criteria. Thus, in 1976 following a suspected link between an increase in 

GBS cases and the swine influenza vaccine, the National Institute of Neurological and 

Communicative Disorders and Stroke (NINCDS) proposed clear, if restrictive, 

diagnostic criteria for GBS. These criteria were reported in 1978 (NINCDS 1978) 

and were 'fine tuned' further in the 1980s by Asbury (Asbury 1981, Asbury and 

Cornblath 1990); to date these established diagnostic criteria persist, and will be 

outlined briefly. 

1.2 GBS Diagnosis 

Required features for the diagnosis of GBS include progressive motor weakness in 

more than 1 extremity and areflexia. Reflex changes may be preceeded by weakness 

(Asbury and Cornblath 1990) which ascends rostrally to involve the upper extremities 

and cranial nerves (Ropper 1992, Guillain et aI1916). Eventually, muscle wastage 

may be present in up to 50% of patients (Winer et al1988). Associated features which 

are highly suggestive of GBS include an acute neuropathy which reaches a nadir in 4 

weeks (Loffel et al 1977), and notable symmetry of motor weakness. Objective 

sensory loss may occur (Winer et al 1988) tending to affect sensations relying on 

myelinated fibres (such as proprioception and vibration). Cranial nerve envolvement 

is also indicative of GBS: one study revealed facial palsy in 53% of cases (Winer et al 
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1988). At least 2-4 weeks after symptoms cease to progress, recovery begins. 

However, the disease leaves a legacy of paralysis or death in approximately 20% of 

patients, and therapies such as plasma exchange or intravenous immunoglobulin 

therapy serve only to half disease severity (Raphael et al 2001, Visser et al 1999). In 

practice, the diagnostic guidelines of GBS are not without pitfalls. Establishing the 

diagnosis of an acute peripheral neuropathy does not automatically rule out alternative 

causes. Furthermore, it is not always easy to rule out chronic inflammatory 

demyelinating polyradiculoneuropathy (CIDP), in which the onset phase of 4-8 weeks 

(Hughes et a11992, Oh et a12003) may overlap with that of GBS. This is particularly 

true of patients with recurring episodes ofGBS (Odaka et a12003, Mori et aI2002). 

In order to definitively confirm a diagnosis, other investigations are useful and have 

also aided an understanding of the pathological mechanism ofGBS. 

1.2.1 Lumbar Puncture 

This is traditionally performed to examine the CSF. Although no correlation exists 

between CSF protein values and the progression of the disease (Beghi et a11985, 

Loffel et al 1977, Amason and Soliven 1993) it is a useful tool in aiding the initial 

diagnosis of GBS. CSF protein levels are normal at the beginning of illness (Paradiso 

et al 1999) but increase approximately 1 week after symptom onset and reach peak 

levels at the 4 week nadir and onwards (Congia et a11989, Ropper et aI1992). 

However, while lumbar puncture remains a useful diagnostic tool, normal CSF 

protein values may be present in 20% of cases up to 10 weeks after onset of 

symptoms (Beghi et a11985, Congia et aI1989). As the timeframe for therapeutic 

intervention is narrow (1-4 weeks), early diagnostic accuracy is essential and now 

greatly aided by modem advances in neurophysiological testing. 
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1.2.2 Neurophysiological Testing 

Although the clinical criteria outlined in 1978 (NINCDS 1978) document normal 

nerve conduction in 20% of patients, recent advances in electrodiagnostic testing have 

increased the sensitivity and technique of such investigations, with reports of 

electrophysiologic abnormalities in up to 90% of cases (Winer et al 1988, Olney and 

Aminoff 1990, Ropper et a11990, Bradshaw et a11992, Vajsar et aI1992). Such 

techniques have allowed classification of GBS into its distinct clinical subtypes (as 

shall be detailed in forthcoming sections). Abnormal motor and/or sensory nerve 

conduction and late motor responses are typical in GBS, either alone or in 

combination (Oh 1993). 

1.2.2.1 Abnormal Nerve Conduction 

Motor nerve conduction is measured by recording the compound muscle action 

potential (CMAP) produced in a muscle following supramaximal stimulation 

(proximally to give proximal CMAP and distally to give distal CMAP) of a motor 

nerve. Terminal motor latency (TML) represents the duration required to produce 

distal CMAP after distal stimulation, and subtracting this value from time taken to 

achieve proximal CMAP after proximal stimulation yields the motor conduction time. 

From this, overall conduction velocity is determined. A similar protocol is used for 

sensory nerve conduction (Oh 1993). An abnormal CMAP duration indicates that 

lesioned nerve fibres within a given nerve bundle may be affected to different 

degrees, resulting in abnormal temporal dispersion by the consequential asynchronous 

firing of motor units (Comblath et aI199l). If the amplitude of the proximal CMAP is 

significantly lower than the distal, this indicates conduction block. Conduction block 

is a sensitive method of indicating segmental demyelination, a process involving 
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preservation of the axon but degradation of the myelin sheath. Evidence of 

demyelination is present in approximately 60% of GBS patients within 2 weeks of 

illness onset (Olney et a11990, Bradshaw et a11992, Brown and Feasby 1984), but 

successful remyelination means recovery can be rapid. If conduction velocity is 

normal but a striking reduction in CMAP amplitude is noted, this indicates axonal 

degeneration from which recovery is slow and often incomplete (Asbury 1994). 

1.2.2.2 Abnormal Late Motor Responses 

F wave latency is also informative. Following stimulation of a nerve, the stimuli 

travels anterograde to elicit a CMAP, but also travels retrograde to the spinal cord, 

where it then travels back down the nerve to produce a late motor response termed the 

"F wave" (ie. a miniature CMAP). A prolonged F-wave latency (or absent F-wave) is 

indicative of abnormal conduction in the proximal nerve, and in some GBS patients 

may be the only electrophysiological abnormality detected (Kiers et aI1994). As the 

next section shall outline, such advances in the diagnosis of GBS have allowed 

classification of patients into one of the three main subtypes: AIDP, AMAN and 

AMSAN (Hadden et a11998, Ho et aI1995). 

1.3 GBS - A Heterogenous Syndrome 

Initial elecrophysiological observations of GBS were consistent with demyelination, 

and pathological changes typically included inflammatory demyelination of roots and 

nerves (Asbury et a11969, Prineas 1981). Thus, owing to its status as a demyelinating 

condition, classic GBS was believed to be a homogenous syndrome, synonymous 

with acute inflammatory demyelinating polyneuropathy (AIDP). However, improved 
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electrophysiological testing and advancing immunological techniques (Albers et al 

1985) have highlighted anomalies within the seemingly homogenous entity ofGBS. 

1.3.1 AIDP 

This is the most frequent form of GBS encountered in Europe and North America 

(Peterman et a11959, Asbury et aI1969). AIDP patients present with flaccid 

paralysis and areflexia, and upon physical examination display mild sensory loss. 

Macrophage mediated destruction of the myelin sheath results in segmental 

demyelination of the peripheral nerve (Hafer-Macko et aI1996). Myelinating axons 

supplying the extra ocular muscles are spared, with demyelination affecting 

myelinated limb, axial and lower cranial nerves (motor and sensory). Injury is 

predominant in areas lacking a blood nerve barrier, including proximal nerve roots 

and distal intramuscular nerve segments (Olsson 1968). Electrophysiological testing 

can pinpoint the likely site of pathology: absent/delayed F wave latencies or 

prolonged distal motor latencies are respective indicators of proximal or distal 

involvement. Recovery of segmental demyelination can be rapid, as resting Schwann 

cells remyelinate the lesion site (Comb lath et al 1991, Parry and Sumner 1992). 

Axonal injury does not form part ofthe primary injury, although may occur as 

"bystander" injury (Hadden and Hughes 2003). 

1.3.2 AMAN and AMSAN 

In 1985, a pivotal electromyography (EMG) study by Albers (Albers et a11985) 

highlighted a subpopulation of GBS patients with suspected primary axonal 

degeneration. One year later, Feasby noted that in a small group of AIDP patients, 

EMG studies revealed rapid fall in compound motor action potential (CMAP) and 
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sensory nerve conduction potential (SNAP) with no conduction block and normal 

distal latency. This led to the hypothesis of axonal degeneration, a theory later 

confirmed upon autopsy of similar patients (Feasby et aI1993). However, limited 

inferences can be drawn from such a small study sample. Further insight was gained 

in 1991 (McKhann et a11991), where the term "Chinese Paralytic Syndrome" was 

coined to describe a GBS like condition found in rural China. Further investigation of 

these patients (McKhann et aI1993), who presented with acute onset flaccid 

paralysis, revealed normal sensory function, rapidly ascending quadraparesis, 

involvement of lower cranial nerves and respiratory failure. Conduction velocities 

and distal latency were normal, and upon autopsy Wallerian like motor nerve 

degeneration, in the absence of inflammation, was commonly observed. Since this 

study, reports of similar cases have emerged, with the majority being from Chinese 

and Japanese locale. Thus, the GBS subtype "acute motor axonal neuropathy" 

(AMAN) was created. This body of evidence is in agreement with the initial 

observations of Fe as by, with the exception that the latter cases had sensory and motor 

involvement and therefore this condition is classed as "acute motor and sensory 

neuropathy" (AMSAN). 

Further support of primary axonal degeneration was heralded by a long term 

collaborative study between John Hopkins University, University of Pennsylvania and 

the Second Teaching Hospital, Shijiazhuang, China (McKhann et aI1993). Wallerian 

degeneration of peripheral nerves, minimal lymphocytic involvement, no 

inflammation or demyelination and macrophage infiltration between the axolemma 

and the Schwann cell (Griffin et a11995) were the prominent findings. Later studies 

(Griffin et a11996) focussed on the sequale of events preceding the advanced 

pathology often seen at autopsy. Early changes involved the nodes of Ranvier, 
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followed by macrophage migration into the periaxonal space of the paranode, leading 

to separation of the axon and ad-axonal plasmalemma. Wallerian degeneration then 

followed. These findings were similar to AMSAN pathological studies (Griffin et al 

1996), where clearance of myelin debris from fibres undergoing Wallerian 

degeneration (as the primary insult) was characterised by "foamy" macrophages. 

1.3.3MFS 

Regional variants of GBS also exist, which paralyse specific anatomical sites (Ropper 

1994). The most widely recognised and studied variant (Fisher 1956, Chiba et al 

1992, Willison and O'Hanlon 1999), Miller Fisher Syndrome, was first described in 

1956 (Fisher 1956). Clinical signs were believed to reflect GBS, although the 

symptoms of mild ptosis, opthalmoplegia, areflexia and cerebellar type ataxia were 

suggestive of a central lesion. However, EMG and nerve conduction studies lend 

support to its classification as a peripheral neuropathy, as opposed to a central 

syndrome (Guiloff 1977). Respiratory and limb involvement mean cases ofMFS 

often 'overlap' with confluent GBS. 
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1.3.4 GBS subtypes: summary 

Table 1 provides an overview of the GBS subtypes discussed, their associated anti-

ganglioside antibodies and clinical features. 

GBS Subtypes: an overview 

Subtype Acronym 
Associated anti-

Clinical features 
ganglioside antibodies 

Acute inflammatory unknown 
A.utonomic involvement. 

demyelinating AIDP segmental demyelination, 

polyradiculoneuropathy "bystander" axonal injury 

Acute motor and GM1, Axonal subtype: motor and 
sensory axonal AMSAN GM1b, sensory fibres . Affects 
neuropathy GD1a limbs and respiration. 

GM1, 

Acute motor axonal GM1b, .Axonal subtype: motor 

neuropathy AMAN GD1a, fibres only. Affects limbs 

GaINAc-GD 1 a and respi ration. 

Miller Fisher 
Triad of opthalmoplegia, 

MFS GQ1b, ataxia and areflexia. Facia l 
syndrome GT1a and lower cranial nerve 

Invo lvement . 

Table 1. Summary of the main GBS subtypes, common acronyms, associated anti
ganglioside antibodies and clinical features specific to each subtype. 

1.4 GBS - An Immune Mediated Disorder 

The early pathologic findings of GBS cite the presence of a perivenular mononuclear 

cell infiltrate as the pathologic hallmark (Oh 1990). Asbury and co-workers (Asbury 

et al 1969) reported perivenular mononuclear cell infiltration of motor, sensory, 

cranial and autonomic nerves, where the accumulation of inflammatory cells was 

mostly in the vasculature surrounding the endoneurium. Early cells were small and 

medium sized lymphocytes, with more advanced lesions displaying a predominance 

of macrophages, and there was evidence of active phagocytosis of the myelin. 

Electron microscopy (EM) studies of GBS specimens have expanded the original 
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observations of Asbury, by describing two distinct populations of macro phages in 

areas of demyelination (Hughes et al1992, Brechenmacher et al 1987, Carpenter 

1972, Arstila et al 1971, Vallat et al 1994). One population cause focal destruction of 

the myelin, allowing macrophage processes to invade the gaps and strip the innermost 

layers of myelin from the axon. These active macrophages express major 

histocompatability class II antigens (Honavar et al1991, Feasby et al1993, Hartung 

et al 1995) and contain no organelles (Brechenmacher et al 1987). The second type 

of macrophage (the "foamy macrophage") is not active, and contains debris from the 

phagocytosed nerve components (Griffin et alI990). These early findings were 

suggestive of a primary inflammatory and demyelinating attack on the myelin, which 

subsequently led to Wallerian degeneration of the axon as a secondary event. While 

this theory fits with the model of AIDP, it does not explain pathogenesis of AMAN, 

where axonal degeneration is present in the absence of severe demyelination. A 

report by McKhann (McKhann et al1993) detailed a group of patients with acute 

flaccid paralysis, where axons undergoing Wallerian degeneration had macrophages 

located within the endoneurium and the axon itself (McKhann et al1993, 

Brechenmacher et al 1987). 

The observations of demyelination or axonal damage in association with 

inflammatory cell infiltration led to the theory that GBS is an immune mediated 

disorder, and the development of an animal model (EAN) was the next major 

development in elucidating the pathogenesis of the disease. 

1.4.1 EAN 

Experimental autoimmune neuritis (EAN) was devised in 1955 by Waksman and 

Adams (Waksman and Adams 1955) by injecting homogonates of whole peripheral 

nerve into rabbits. It is widely used as a model of human demyelinating GBS, as it 
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recapitulates many of the electrophysiological and immunological traits of the human 

condition (Hartung 1993). It is now known that the peripheral nerve homogenate 

used in the early development ofEAN contains auto antigens responsible for the 

induction of the disease (Astrom and Waksman 1962, Linington et a11986, 

Szymanska et aI1983). In 1979 (Kadlubowski and Hughes 1979), it was reported 

that Lewis rats were susceptible to EAN induced by P2 protein, which comprises 

approximately 5% of the myelin membrane and is thought to be involved in assembly 

and maintenance of peripheral nerve myelin (Whitaker 1981, Khalili-Shirazi et al 

1993). PO protein, specific to peripheral nerve myelin and accounting for 

approximately half of the total protein content (Kaldor and Speed 1984) can induce 

EAN in the Lewis rat to give an effect similar to that of P2 immunisation. 

EAN introduced the possibility that myelin reactive T lymphocytes exist in the natural 

immune repertoire, and upon infection with a structure bearing an epitope similar to a 

myelin protein, immune tolerance is broken and autoimmune attack proceeds to the 

effector phase (myelin destruction). Lymph node cells from animals immunized with 

myelin or P2 protein (Hughes et a11981) were transferred to naIve animals and this 

resulted in development ofEAN; the absence of antibodies to P2 protein in the sera of 

the recipient animals was suggestive of a T cell mediated immune response. 

Furthermore, EAN can be blocked by T-cell suppression or elimination (Brosnan et al 

1987). The role of macro phages is also emphasised by EAN: they have been 

identified by immunocytochemistry in the lesion site (Hartung et aI1988). These 

macrophages also express MHC class II antigens, and may therefore function as 

antigen presenting cells. Antibodies against MHC class II antigens inhibit the 

development ofEAN (Strigard et aI1988), and macrophage depletion (Craggs et al 

1984), Hartung et a11988, Heininger et a11988, Tansey and Brosnan 1982) prevents 
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the clinical and histologic signs ofEAN. Thus, the role of macro phages in EAN 

appears to be critical, either through their role as antigen presenting cells or through 

disruption of their metabolic pathways which mediate inflammation (Hartung et al 

1991). 

While it seems evident that T-cells playa major role in the development ofEAN, a 

potential area of conflict was highlighted when it was shown that plasmapheresis is 

protective against EAN (Amason and Soliven 1993). While this may be partly due to 

the removal of inflammatory mediators, such as cytokines (Exley at al 1994) it would 

be foolish to rule out a possible role of antibodies. For example, in EAN induced by 

inoculation with whole peripheral nerve, disease severity correlates with antibodies 

against PO (Archelos et al1993). Thus it became increasingly evident that the 

humoral immune response may playa role in the pathogenesis ofEAN, perhaps by 

acting synergistically with the T-cell mediated response. 

In 1979, emphasis shifted to the humoral response in GBS when an experimental 

demyelinating neuropathy was induced in rabbits (Saida et al 1979) by sensetization 

with galactocerebroside. This glycolipid has poor immunogenic properties, thus 

requires direct injection into the myelin to elicit an antibody response. However, 

galactocerebroside acts as a hapten, so injection with a carrier protein and complete 

Freund's adjuvant will also induce an antibody response. Using this approach, 

repeated injection of galactocerebrocide resulted in over 50% of rabbits showing 

demyelinating lesions, with typical symptoms including flaccid quadrapareisis, limb 

hypoesthesia and respiratory paralysis - i.e. symptoms comparable to EAN (Saida et 

al1979, Saida et al1981). Upon autopsy, animals displayed no pathology in the 

eNS, and PNS changes included early demyelination around venules, with adjacent 

fibres displaying early vesiculation of the outer sheath which later progressed to a full 
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lesion. Perivenular cuffing of small lymphocytes in early lesions suggests the process 

is antibody, as opposed to cell mediated (Saida et al1981). Furthermore, a 

correlation was noted between the location of lesions and "leaky" areas of the blood 

nerve barrier, indicating a possible route for migration of serum antibodies. 

Deposition of complement component C5b9 has been demonstrated on Schwann cells 

and myelin before the initiation of demyelination (Stoll et al1991), and in-vitro 

studies have shown that deactivation of complement abolished demyelinating activity, 

giving weight to the idea that the pathogenesis is antibody and complement mediated 

(Sumner et al1982). However, while this model seemingly contradicts the major 

findings ofEAN, there are significant overlaps. Rabbits immunized with Freund 

complete adjuvant develop subclinical demyelinating PNS lesions, suggesting that the 

action of a pathogenic antibody in the galactocerebrocide inoculated animals is not the 

sole event, and may in part be aided by an inflammatory response perhaps to further 

enhance dysfunction of the blood nerve barrier (Powell et al1987). On the same 

note, rats treated with cobra venom factor to deplete complement component C3 had 

delayed onset and milder symptoms ofEAN (Feasby et al1987) again hinting at a 

possible synergy between the humoral and inflammatory response. 

Shortly after the thought provoking experiments of Saida, a report emerged of a 

patient with a severe demyelinating neuropathy which was associated with increased 

titres of IgM. It was subsequentially demonstrated that the target of this 

immunoglobulin was the peripheral nerve protein myelin associated glycolipid 

(MAG) (Braun et al1982), and the reactive epitope was shared by two other 

peripheral nerve glycolipids, sulphated glucoronyl paragloboside (SGPG) and sulfate-

3-glucoronyllactosaminyl paragloboside (SGLPG) (Chou et al1986, Ariga et al 

1987). It is therefore reasonable to accept the assumption that there is a direct link 

13 



between the presence of anti-MAG antibodies and neuropathy, as biopsy studies 

revealed marked demyelination often accompanied by axonal degeneration, and 

deposition ofIgM and complement components at the lesion site (Trojaborg et al 

1995, Hays et a11988, Monaco et aI1990). Perhaps the most conclusive evidence 

however, was the demonstration that passive transfer of human IgM anti-MAG 

antibodies to chicks resulted in a successful reproduction of the lesion (Tatum 1993). 

As interest in the pathogenic properties of anti-myelin antibodies began to grow, it 

was soon realised that other potential auto anti gens may exist. The notion that 

gangliosides may also act as auto antigens was raised by Freddo (Freddo et aI1986): 

monoclonal antibodies from a patient with progressive limb weakness and absent 

reflexes had specificity for GMl, GDlb and asialo-GMI gangliosides. Thus the 

association of anti-ganglioside antibodies and para-proteinaemic neuropathies was 

established (Latov 1994), and the implications of these findings became relevant in 

the pathogenesis of GBS when antibodies raised against glycolipid epitopes 

(gangliosides) were identified in association with GBS (Ilyas et aI1988). 

Although emerging evidence of antibody and complement dependent attack on the 

PNS is increasingly accepted, the theory is not consistent with early biopsy studies 

(for example, Asbury et a11969) which placed little emphasis on complement. 

However, more recent pathological studies such as that of Hafer-Macko (Hafer

Macko et al 1996) show activated complement components around the axon, serving 

to further the probability that the disease is largely antibody mediated. 
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1.5 GBS and Anti-Ganglioside Antibodies 

1.5.1 Anti-GMl antibodies. 

In 1986 Freddo and co-workers (Freddo et a11986) described a patient with lower 

motor neuron disease who had anti-GMI serum IgM paraprotein, and it was proposed 

that these antibodies induced pathology by targeting peripheral nerve regions enriched 

in GMl, such as motor nerve terminals, nodes of Ranvier and motor neuron cell 

bodies (Ganser et aI1983). Since this early report, numerous examples of patients 

with motor neuron disease and elevated titres of anti-GMI antibodies have been 

presented (Pestronk et al 1988, Lewis et al 1982, Pestronk 1991, Pestronk et al 1990, 

Lange et a11992, Feldman et a11991, Pestronk et a11989, Salazar-Grueso et a11990, 

Sadiq et a11990, Adams et a11991, Nobile-Orazio et aI1990). Interestingly, the 

presence of anti-GMI antibodies appear to define a clinical subtype of patients with 

motor neuron disease, as those patients with anti-GMI antibodies have lower motor 

neuropathy or conduction block characteristic of AMAN (Pestronk 1991, Sadiq et al 

1990, Lamb and Patten 1991). Evidence of patients developing motor neuropathies 

following parenteral therapy with ganglioside mixtures including GM1 (Yuki et al 

1991, Figueras et a11992, Nobile-Orazio et a11992) lend support to the argument that 

anti-GM1 antibodies are associated with motor neuropathies, a finding which is 

becoming increasingly relevant to the association of anti-GM1 antibodies and AMAN 

pathology. In cases ofGBS, 10-20% of patients have elevated anti-GM1 antibodies 

(Yuki et a11991, Walsh et a11991, Ilyas et a11992, van den Berg et a11992) and 

clinical symptoms of AMAN which include pronounced motor involvement often 

with axonal degeneration, from which recovery is poor. 
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1.5.2 Anti-G D 1 a antibodies 

AMAN is also associated with anti-GDla antibodies, and it has been suggested that 

they are also elevated in AMSAN (Yuki et al1999). Anti-GDla antibodies are likely 

to mediate an attack on the axolemma (Hafer-Macko et al1996) leading to 

electrophysiological disturbance (Kuwabara et al 2002). A successful murine model 

of AMAN has recently been generated using an anti-GDla monoclonal antibody 

(Goodfellow et al2005), lending further support to the involvement of anti-GDla 

antibodies in AMAN. Anti-GDla IgG antibodies are correlated with worse clinical 

outcomes (Yuki et alI993), while anti-GDla antibodies of the IgM isotype are 

thought to peak after the acute phase of AMAN, and may playa role in either 

regeneration or further pathology in the recovery phase of AMAN (Press et al2001). 

1.5.3 Anti-GD 1 b Antibodies 

Anti-GDlb antibodies bind to sensory neurons and dorsal root ganglion cells 

(Kusunoki et al1993), implicating their role in GBS with sensory involvement. 

Although not strictly a GBS subtype, ASAN (acute sensory axonal neuropathy) has 

been linked to anti-GDla antibodies (Pan et al200l), while mono specific anti-GDI b 

IgG antibodies have been linked to GBS associated sensory ataxia (Wicklein et al 

1997). It has been suggested that anti-GD 1 b antibodies can cause cereballar ataxia by 

targeting the granular layer of the cerebellum or sensory fibres of the spinocereballar 

tract (Sugimoto et al2002). 

1.5.4 Anti-GQl b Antibodies 

Anti-GQlb antibodies are present in up to 95% ofMFS patients (Carpo et al1998), 

and are the definitive serological diagnosis ofMFS (Chiba et al1992). Titres of anti-
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GQ1b antibodies correlate with disease severity, peaking upon the most acute phase 

of the disease, and specifically affect the cranial nerves where ganglioside GQ 1 b is 

known to be enriched (Chiba et aI1997). MFS has also been demonstrated in a 

mouse model using an anti-GQ1b antibody (Halstead et aI2004). Taken together, this 

evidence supports the direct role of anti-GQ 1 b antibodies in MFS. 

1.6 Gangliosides 

In the Golgi apparatus, stepwise addition of sugar and sialic acid moieties to a glucose 

ceramide core is catalysed by specific glycosyltransferases and sialytransferases 

(Lloyd and Furukawa 1998, Maccioni et a11999, Riboni et a11997) (Figure 1). The 

resultant molecules (gangliosides), constitute a family of sialic acid containing 

glycoshingolipids (Marks et a11996, Voet and Voet 1995, Svennerholm 1963, 

Svennerholm 1994), which are amphipathic components of vertebrate cell plasma and 

intracellular membranes associated with secretory and endocytotic pathways (Marks 

et a11996, Voet and Voet 1995). Sialic acid is the generic term for N

acetylneuraminic acid (NeuNAc), and is linked to the internal or terminal galactose of 

the oligosaccharide core via a2-3 linkage (Svennerholm 1994, Svennerholm 1956, 

Svennerholm and RaaI1961), forming a carbohydrate moiety. The oligosaccharide 

core is composed of up to 4 sugars with the sequence glucose-galactose-N

acetylgalactosamine-galactose (Ledeen 1985). Ceramide is a fatty acid linked to a 

sphingosine chain, and forms the lipid moiety of the ganglioside. The synthesis of 

gangliosides begins in the endoplasmic reticulum, where the ceramide moiety is 

produced, and in the lumen ofthe Golgi complex specific glycosyltransferases (multi

enzyme complexes in the Golgi membrane) act to build the oligosaccharide moiety 

(Giraudo et a12001, Bieberich et a12002, Giraudo and Maccioni 2003). 
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The ampipathic character of gangliosides is due to the polar nature of their 

components: enveloped within the membrane is the hydrophobic lipid moiety, serving 

as an anchor to the hydrophilic carbohydrate moiety (possible antigenic target) on the 

outer surface. The a, band c ganglioside series are based on the "simple" 

gangliosides GM3, GD3 and GT3, where the stepwise addition of sugars and sialic 

acids form the more complex gangliosides. Figure 1 shows a simple diagram of 

ganglioside synthesis. The c series has been omitted for clarity, as c series 

gangliosides are not included in the experiments within this thesis. 
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Figure 1. Schematic representation of GD3 synthase and GalNAc (GM2) transferase 
enzymes in the ganglioside biosynthesis pathway. ORemoval ofGM2 synthase 
results in expression of simple gangliosides. 8Removal of GD3 synthase results in no 
b series gangliosides and upregulation of the a series. 
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Thin layer chromatography (TLC) allows the separation of gangliosides based upon 

the size of their oligosaccharide core and the number of attached sialic acids. This is 

the basis of their terminology, devised by Svennerholm (Svennerholm 1963, 

Svennerholm 1994) and in agreement with IUPAC-IUB Commission on Biochemical 

Nomenclature, (IUPAC 1977). For simplicity, Svennerholm proposed a code system: 

G refers to ganglio, and the number of sialic acid residues is represented by 

M (mono), D (di-), T (tri-) and Q (quad-). The sequence of migration in TLC is 

represented by Arabic numerals and lower case letters. 

1.6.1 Gangliosides: Neurobiological Function 

Investigating the pathogenesis of anti-ganglioside mediated disease has not only 

important clinical considerations, but is also relevant to furthering the scientific 

understanding of ganglioside function. Oangliosides function as receptors for toxins 

(Willison and Kennedy 1993), meaning it makes evolutionary sense for their 

expression to be minimal yet sufficient to carry out essential physiological function. 

The high expression of gangliosides, particularly in the nervous system, therefore 

indicates they may have crucial biological roles. Indeed, gangliosides are believed to 

have an array of neurobiological functions (Nagai 1995). Exogenous administration 

of gangliosides can enhance neurite outgrowth and recovery from injury (Karpiak 

1984, Tsuji et a11988, Roisen et a11984, Riggot and Matthew 1997). Cholera toxin, 

the natural ligand for OMl, is a known mitogen in the proliferation of Schwann cells 

(Moss and Vaughn 1979), while OMI induces morphological changes (characteristic 

of differentiation) in rat astroglial cells (Facci et aI1988). Furthermore, 

oligodendrocyte progenator cells in culture express different gangliosides during 

different stages in development, suggesting a link between ganglioside expression and 
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developmental regulation (Scbnaar et al1996). The role of gangliosides in 

development may also be linked to their role in regeneration of the adult nervous 

system. For example, in the developing and adult rat nervous system acetylated GD3 

(9-0-acetyl GD3) is expressed in areas of cell migration and neurite outgrowth 

(Mendez-Otero and Ramon-Cueto 1994). In development, acetylated GD3 staining is 

observed in association with an abundance of growth cones on extending axons, 

which upon reaching their target cease to express acetylated GD3. The role of 

acetylated GD3 in development and regeneration is furthered by observations in the 

olfactory system. This is unique from the CNS in that it continues to replenish 

(''turnover'') neurons throughout life, including in response to injury (Graziadei et al 

1979, Farbman et al1990). The expression of acetylated GD3 does not resemble that 

of other systems, in that axons maintain it's expression, suggesting the regenerative 

properties of the olfactory system may be, in part, due to the presence of acetylated 

GD3 (Mendez-Otero 1988, Mendez-Otero and Ramon-Cueto 1994). Furthermore, the 

expression of acetylated GD3 is upregulated in the regenerating sciatic nerve 

(Mendez-Otero and Santiago 2003). Other gangliosides including GDI b, GDla, 

GQlb and GMl, but most notably GTlb, promote neuronal regeneration of the rat 

hypoglossal nerve (Itoh et al2001). The role of gangliosides in regeneration may be 

related to potential neurotropic ability: gangliosides can protect cells from glutamate 

and kainate neurotoxicity (Favaron et al1988). Furthermore, bath application of 

gangliosides modulate synaptic plasticity of in- vitro brain preparations (Egorushkina 

et al1993, Furuse et al1998, Ramirez et al1990, Wieraszko and Seifert 1985). 

The exact function of gangliosides in development and regeneration is currently 

unknown, although it may result from their involvement in transmembrane signalling 

(Hakomori 1990). For example, cholera toxin binding to GMI triggers intracellular 
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signalling and cell proliferation (Bukley et al 1995) while it is proposed that fibroblast 

growth factor 2 (FGF2) interacts with membrane bound GM1 to activate signal 

transduction pathways which complement those of the activated FGF2 receptor 

(Rusnati et aI2002). GM1 is closely associated with the nerve growth factor (NGF) 

receptor TrK, which enhances the cellular response to NGF (Mutoh et aI1995). 

Interestingly, free gangliosides sequester growth factors and thus can inhibit 

proliferation (Rusnati et al 1999), indicating their direct association with the cell 

membrane is integral to their role in modulating the cellular responses. Although 

these observations are not based specifically on neuronal culture conditions, it is not 

unreasonable to apply such findings to the nervous system, where neuronal 

membranes are particularly enriched in gangliosides. 

Mutant mice which lack GM3 synthase (a 2,3-sialyltransferase) are viable, but display 

increased sensitivity to insulin, thought to be as a result of an altered phosphorylation 

ofthe insulin receptor (Yamashita et aI2003). Mice lacking both GM2/GD2 

synthase (~1,4 GaINAc-transferase) and GD3 synthase (a 2,8-sialyltransferase) have 

reduced skin integrity (Inoue et al 2002). 

Mice lacking the gene encoding the glycosyltransferase ~1,4 GalNAc-transferase 

(GM2/GD2 synthase) lack complex gangliosides, and consequently upregulate the 

simple gangliosides GM3 and GD3. These mice (GaINAc-T/.) display only mild 

defects of the nervous system (Takamiya et a11996, Sheikh et aI1999), while 12-16 

week old mice display signs ofaxonopathy, suggesting a role for complex 

gangliosides in myelination and axonal maintenance (Takamiya et aI1996). This 

notion is furthered by the progressive motor deficits observed in 12 month old mice 

(Chiavegatto et aI2000). The observations that gangliosides are integral in 

development, function and maintenance of the nervous system are noteworthy 
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(Ledeen 1985, Lloyd and Furukawa 1998, Nagai 1995), although the underlying 

molecular mechanism is unknown. The role of complex gangliosides and Ca2+ 

interaction may be a plausible route of exploration, as altered Ca2
+ binding properties 

of GalNAc-T /-neurons has been observed, and may explain the pathology of these 

mice (Wu et al2001). Although the role of gangliosides in the human nervous system 

is difficult to study, identification of individuals carrying a mutation leading to a 

defect in the synthesis of GM3 synthase is interesting (Simpson et al2004). 

Individuals bearing the mutation suffer early onset epilepsy, which may correlate with 

the disrupted ganglioside biosynthetic pathway (i.e. lack of complex a and b series 

gangliosides and increased levels of lactosylceramide). Although ethical 

considerations mean genetically modified animals will remain fundamental research 

tools, humans who inherently lack complex gangliosides may in future be able to lend 

valuable insight into the biological role of complex gangliosides, bridging the 

knowledge gap between murine and human studies. 

Existence of gangliosides alongside proteins critical to exocytosis (syntaxin and 

SNAP 25: members ofthe soluble N-ethylmaleimide-sensetive factor attachment 

protein receptor (SNARE) family) indicate that gangliosides also may playa critical 

role in exocytosis (Chamberlain et al2001, Lang et al2001), while the presence of 

gangliosides in both post and pre synaptic membranes suggests a role in synaptic 

transmission (Thomas and Brewer 1990). Bath application of gangliosides (GM1 

and GQ 1 b) to synaptosomes increases K+ evoked neurotransmitter release (Ando et al 

1998, Tanaka et al1997)_ However in vivo, GalNAc-T /-mice display normal ACh 

release at the NMJ under physiological conditions (Bullens et al2002) indicating the 

role of gangliosides may not be critical in normal synaptic function. Interestingly, the 

role of complex gangliosides may be of critical importance in synapse function at low 
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temperatures (Raman et al1998, Bullens et al2002), although this is a finding less 

germaine to mammalian studies. 

1. 7 Autoimmunity 

Horror autotoxicus: the possibility that the body can potentially raise antibodies to 

itself, was first raised as a hypothetical concept by Ehrlich in 1885. However, it was 

much neglected by experimentalists until 1956, when rabbits immunised with rabbit 

thyroid extract developed thyroid autoantibodies. Thus, the belief that "for many 

years only foreign proteins were considered true antigens" (Witebsky et al 1957) was 

challenged by achieving the first experimental model of autoimmunity. Autoimmunity 

arises in the context of an inappropriate immune response mounted against an 

exogenous or endogenous antigen that inadvertently targets an endogenous tissue 

component, thereby causing pathology in the absence of persistent infection. 

1.7.1 Molecular Mimicry 

Up to 75% of GBS cases arise preceeding respiratory or gastrointestinal infection 

(Mishu and Blaser 1993). Antecedant infection by a range of causative agents 

(Hankey 1987, Hart et al1994, Winner and Evans 1993, Boucquey et al1991, Ravi et 

al1994, Merelli et al1992, Dowling and Cook 1981) have been implicated in 

triggering GBS, but evidence of cytomegalovirus and Campylobacter jejuni (C 

jejuni) infection are the most convincing (Winer et al 1988). The first documented 

report of GBS following Cjejuni infection was in 1982 (Rhodes and Tattersfield 

1982), and GBS patients who are serologically positive for C jejuni display mainly 

axonal forms (McKhann et al1993, Blaser et al1991 and tend towards poorer clinical 

outcome (Winer et al1988, Rhodes and Tattersfield 1982, Vriesendorp et al1993, 



Kaldor and Speed 1984). It has been suggested that Cjejuni may sensitise an 

individual by producing a ganglioside binding protein (Rees et al 1995) however 

molecular mimicry is widely suspected to be the main underlying process. 

Cjejuni strains isolated from Japanese GBS patients were serotyped by analysis of 

heat-stable antigens (Penner method) (Hartung et aI1995), and revealed prevalence of 

serotype 0: 19, which is uncommon in general gastroenteritis cases (Fujimoto et al 

1992, Kuroki et aI1993). The outer membrane of gram negative bacteria (such as 

Cjejuni) contain lipopolysaccharides , of which the saccharide moiety may mimic 

host structures: while this may camouflage the pathogen from the host, the molecular 

mimicry may also induce antibodies in the host, which unfortuitously cross react with 

host structures (ie. autoimmunity) (Moran et a11996, Moran 1996). The first host 

structure implicated in GBS related molecular mimicry was GM1 (Yuki et a12004) 

and it has since been shown that homology exists between the core oligosaccharide 

(OS) ofCjejuni 0:19 and the saccharide moiety (Gal(~1-3)GaINAc) ofGM1 and 

GD1a (Yuki et a11993, Aspinall et a11994) (Figure 2). 
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Fig 2. Schematic comparison of GMl presentation in the cell membrane and the GMl 
like oliogsaccharide (LOS) presentation on the outer wall of C jejuni. Diagram 
extracted from Ang et al2004. 

In cases of Miller Fisher Syndrome, antibodies against GQ 1 b in patients sera were 

shown to cross react with GQ 1 b like antigens of the LPS of Cjejuni, isolated from 

these patients (Yuki et all993). Thus it can be hypothesised that the antigenic 

structure of the preceding infection determines the resultant form ofGBS. At present, 

no clear model exists to categorically prove this hypothesis over other possible 

explanations, such as greater immunogenicity of certain Cjejuni strains (as opposed 

to expression of specific surface antigens) or differing immunogenic backgrounds of 

the hosts. However, a putative model of AMAN has been developed by feeding 

Cjejuni isolated from an AMAN patient to chickens, which went on to develop 

symptoms indicative of Wallerian degeneration (Li et al 1996). 

Regardless of how the antiganglioside antibody is induced, its effect may be direct 

(Raphael et al200 1, Visser et aI1999), but evidence exists to support the notion that 

the action of antiganglioside antibodies is complement dependent (Sumner et al 1982, 
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Hays et al 1987, Hays et a11988, Monaco et aI1995). Peripheral nerve biopsies of 

GBS patients have shown deposition of activated complement components in close 

approximation to antibody (Hafer-Macko et a11996, Koski et a11987, Luijten and 

Baart de la Faille-Kuyp 1972, Nyland et aI1981), and in-vitro effects of anti-GQ1b 

antibodies have been shown to be complement dependent (Plomp et aI1999). 

1.8 Complement 

Invading pathogens encounter a first line defence mechanism of approximately 20 

proteins which are enzymatically activated and act in an ordered cascade (reviewed in 

Morgan 2000). Serum protein C3 is activated by the classical, alternative and 

mannose binding pathways (Lyons and Liebowitz 1998), all of which culminate in 

formation of a MAC pore in the cell membrane (summarised in Fig 2). The classical 

pathway is activated by antibody bound pathogens, immune complexes containing 

antigen, and IgM or complement fixing IgG isotopes. The alternative pathway 

(Pillemar et a11955) is activated by C3b on activated pathogens, either as a result of 

the natural "tickover" of C3 or via the "amplification loop", where C3b deposited by 

the classical or mannose binding pathway propagates activation of the alternative 

pathway (reviewed by Muller-Eberhard 1988). It has been suggested that 

complement activation via the classical pathway requires contribution from the 

alternative pathway to induce injury (Girardi et a12003, Haas et aI2002). 

Furthermore, activation of the alternative pathway does not depend on the presence of 

a specific antibody (Trowbridge and Emiling 1997) and may be initiated by foreign 

proteins such as bacteriallipopolysaccharides (Trowbridge and Emiling 1997). The 

mannose binding pathway (Vorup-Jensen et a12000) begins with the binding of 

mannose binding lectin (MBL) to carbohydrate structures, and the resultant complex 
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binds to MBL associated serine proteases (MASPS) which hydrolyse C4 and follow a 

similar route to the classical pathway. 

A number of factors mediate the activation of complement, including human and 

mouse decay accelerating factor (DAF), CD59, complement receptor 1 (CR1) and 

mouse CR1-related gene y (Crry) (Mizuno and Morgan 2004, Morgan and Harris 

2003, Tumberg and Botto 2003). CD59 inhibits MAC formation, and the decay of 

C3/C5 convertases is accelerated by DAF (Harris et al2004, Mizuno and Morgan 

2004, Lukacik et al2004). 

MAC assembly is a result of the terminal sequence of the complement cascade, and 

following the cleavage of C5 to release C5a into solution, and C5b which is 

membrane bound. Following these enzymatic steps, the constituents of the MAC pore 

give rise to a hydrophobic structure, which inserts into the lipid bilayer and completes 

the MAC pore by polymerising C9 (Law and Reid 1995). The polymerisation of C9 

results in a cylindrical pore allowing uncontrolled Ca2
+ influx into the cell (Halstead 

et al2004). This results in calpain induced cytoskeletal degradation (O'Hanlon et al 

2003), while the influx of electrolytes and water (Hesketh et al1971) disturb osmotic 

balance and lead to lysis (B.P. Morgan 1989). The pathway is shown 

diagrammatically in Figure 3: 
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Figure 3, Overview of the main components of the complement cascade, with 
regulatory proteins shown in blue, Activation of the classical, alternative or lectin 
binding pathway converge to ultimately cause deposition of a MAC pore in the cell 
membrane and subsequent lysis. Image extracted from Favoreel et al2003. 

1.9 The Peripheral Nervous System 

This section will outline briefly the modem understanding of the gross anatomy of the 

peripheral nerve, before focussing on the interactions of its individual components 
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and molecular organisation, with specific emphasis on gangliosides. The interaction 

of axonal and glial compartments in peripheral nerve is a potential target of anti

ganglioside antibody mediated disruption, and therefore a more detailed 

understanding of antibody mediated dysfunction of the peripheral nerve may be 

gained by exploring the cellular and molecular mechanisms underlying the process, 

while also addressing the role of gangliosides in the peripheral nervous system. 

1.9.1 Gross Anatomy 

"The medullated nerve fibre, then, consists of an external solid membrane - sheath of 

Schwann - of a tubular cell- Schwann cell- of a fatty sheath, and of an axon" (Cajal 

1928). Although the discoveries of early researchers are now somewhat eclipsed by 

the knowledge gathered from more contemporary investigative techniques, a 

fascinating review charting the milestones of discovery, both past and present, is 

reviewed by Rosenbluth (Rosenbluth 1999). Often, general anatomy texts will assume 

the terms axon, nerve fibre and nerve to be synonymous. However, this is not the 

case, as a single peripheral nerve consists of a collection of nerve fibres bound by 

connective tissue. Each nerve fibre is comprised of an axon and its sheath 

1.9.1.1 Axon 

The axon is a single continuous process which develops as a continuation of 

cytoplasm from the cell body. The cytoplasm of very large axons, such as that of the 

great squid, behave as a viscous fluid, while the axons of mammals is a relatively 

gelatinous cord. Classical histological investigations, such as silver "staining" of the 

axon, revealed that the axoplasm comprised of many thread like processes, named 

neurofibrils, running through its length (Hoerr 2005). More detailed investigations 

29 



using electron microscopy suggested that these were more likely to be artefacts of the 

tissue processing, and that the thread like fibres comprised of two populations: 

neurotubules and neurofilaments. Neurotubules resemble the microtubles found in 

other cell types, and are the route of fast axonal transport taken by membranous 

organelles (Weiss et aI1971). N eurofilaments do not run as continual tracts owing to 

interruptions to the axon diameter at the nodes of Ranvier, and their absolute function 

is unknown. In the PNS there are 3 types of axon fibre: somatic motor, somatic 

sensory and autonomic (Kiernan and Barr 2005). 

1.9.1.2 Internodes 

Internodal segments represent the territory of the axon which a Schwann cell 

ensheaths in a multilameller spiral membrane. The sheath cell wraps the axon in a 

spiralling double layer of plasma membrane to give a layer of compact myelin, 

observed by electron microscopy to display a pattern of alternating electron dense and 

lucent lines (Norton 1977). The outer protein layers ofthe apposed plasma 

membranes become fused, forming the intraperiod line. While it is commonly 

accepted that the intraperiod line is continual with the extracellular space, it should be 

noted that the "line" is in fact 2 lines divided by a narrow gap which communicates 

with the extracellular space (Robertson 1958). The major dense line of compact 

myelin is a consequence of the cytoplasmic component of the Schwann being reduced 

as the spirals become more tightly wrapped. Thus, the inner protein layers of the 

closely apposed membranes fuse. 
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1.9.1.3 Node of Ranvier 

The node of Ranvier, first described in 1875 (Ranvier 1875) is visible as the 'naked' 

segment of axon, or 'gap', between the terminations of internodal myelin lamellae. 

Overlapping extensions, or 'nodal collars' of the two internodes project finger like 

extensions of Schwann cell cytoplasm into the gap, where they are in close proximity 

with the axon (Berthold and Rydmark 1983). The nodal collar diameter increases 

with increasing axon diameter, although the actual diameter of the axon at the nodal 

gap is consistent for all diameters of fibre (Robertson 1959). 

Since the early descriptions and models of the node of Ranvier, such as the 

demonstration of the nodal region using a plasticine model (Robertson 1959), more 

contemporary studies have revealed the node to be a more complex structure 

comprising well organised domains. The detailed 3D model of the node of Ran vier, 

created by Sosinsky (Sosinsky et al 2005) using serial electron tomography (Fig 4), is 

particularly useful in allowing the visualisation of the individual components of the 

node, and appreciating their spatial organisation with respect to one another. 

Fig 4. A:Illustration of the entire nodal structure. Transparent yellow=Schwann cell 
membrane, pink=compact myelin, magenta=paranodalloops, turquoise=axonal 
membrane. Dark blue delineates the nodal axolemma. B and C show sequential 
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removal of the Schwann cell and compact myelin to allow a more detailed view of the 
paranodalloops. D: Axon reconstruction demonstrating location and density of 
sodium channels at the node, magnified in E. Illustration exerted and text modified 
from Sosinsky et al 2005. 

The node of Ranvier is a structure frequently involved in peripheral neuropathies 

(Griffin et a11996, Sima et aI1993), and an insight into these highly organised 

structures may lend to an understanding of disease processes. For example, disruption 

of the highly compartmentalised proteins and ion channels ofthe node may lead to 

disturbance of the normal physiological function of the peripheral nerve. A novel 

form of ankyrin (Kordeli and Bennet 1991), a cytoskeletal protein, is abundant at the 

node (Kordeli et aI1990), while the proteins ezrin, radixin and moesisn are present in 

the microvilli extending into the nodal gap (Gatto et a12003, Scherer et aI2001). 

NrNCAM is co-expresed with neurofascin at the node (Davis et aI1996), while 

several extra-cellular matrix proteins are present (Apostolski et a11994, Rieger et al 

1986, Martini et aI1990). One such protein, dystroglycan, is expressed on the 

Schwann abaxonal membrane and when deleted impairs nerve conduction, possibly 

through a concomitant reduction in nodal sodium channels (Saito et aI2003). The 

stabilisation and formation of the axoglial junction is thought to involve Caspr and 

contactin, both proteins specific to the nodal axoglialjunction (Boyle et aI2001). 

While this overview does not provide an exhaustive list of nodal proteins, it serves to 

highlight how antibody mediated disruption of the membrane could potentially disrupt 

a number of functions reliant on nodal proteins. 

The node of Ranvier has long been established to have an important role in action 

potential generation in myelinated fibres (Chiu et aI1979). During development, K+ 

channels become specifically clustered under juxtanodal compact myelin (Vabnick et 

al 1999, Wang et al 1993), and upon demyelination are exposed leading to a reduction 
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in excitability (Rasaband et al 1998). It is also thought that voltage-independent K+ 

channels are present at the node (Roper and Schwarz 1989). 

The high density of adhesion molecules on the nodal axon is thought to be related to 

the clustering of Na+ channels at the node (Davis et aI1996), which houses an 

abundance of voltage gated N a + channels (Ritchie and Rogart 1977, Ellisman and 

Levinson 1982). The density ofNa+ channels at the node is approximately 25 times 

greater than internodal regions (Shrager 1989), suggesting they play an important role 

in the propagation of the action potential. Thus, it is reasonable to assume that any 

disruption to Na+ channel clusters may have a detrimental effect on function - for 

example, resulting in conduction block. Figure 5 gives a detailed schematic overview 

of the nodal region. 
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Fig 5. Schematic overview of the node of Ranvier showing an overview of the main 
components in each domain. Cyt = cytoplasm and pn = paranodal. Modified from 
Einheber et al 1997. 
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1.9.1.4 Schmidt-Lanterman incisure 

These cleft like structures in the myelin were first described in 1874 and 1877 by 

Schmidt and Lanterman respectively (Lanterman 1877, Schmidt 1874) 

and to date remain a contemporary area of investigation. Although once regarded as 

artefacts (Young 1944), more recent studies using electron microscopy have 

confirmed their presence. A detailed ultrastructural study by Hall and Williams (Hall 

and Williams 1970) reveals that incisures typically show separation of the myelin 

lamellae with the position of the dense line being occupied with Schwann cell 

cytoplasm, which contains microtubules and vesicles. Interestingly, this organisation 

bears a resemblance to developing myelin, before the lamellae are compacted, leading 

to the theory that the incisures may playa role in myelin growth (Celio 1976). 

However, absence of Golgi apparatus and rough endoplasmic reticulum (Hall and, 

Williams 1970) mean they are unlikely to playa role in protein synthesis, thus 

perhaps are more involved in metabolic support for maintenance, or plasticity of the 

myelin. Interestingly, Gould and coworkers (Gould et a11995) show mutant mice 

lacking or underexpressing myelin basic protein (MBP) have an increased density of 

Schmidt-Lanterman incisures when compared to wild type mice. From this, it is 

logical to assume that the increased number of SLI is to compensate the function of 

MBP in axon-Schwann cell communication. During Wallerian degeneration, SLI are 

the foci of myelin segmentation (Webster 1965, Williams and Hall 1971, Ghabriel 

and AlIt 1979), and also represent an important area to study when considering the 

pathology of immune mediated peripheral nerve disorders. For example, intraneural 

injection ofEAN serum has been shown to cause vesiculation of the myelin at the site 

of SLI (Saida et a11978, Saida et al 1979) and sural nerve biopsies of IgM 

paraproteinaemic neuropathy cases have shown widening of the myelin in the region 
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of the SLI (Jacobs and Scadding 1990). As the authors of the latter report discuss 

their findings, they point out that the IgM antibody may be binding to myelin 

associated glycolipid (MAG) or other glycoproteins, including gangliosides. In a 

later study (Schroder and Himmelmann 1992), it was shown that there was a link 

between inflammatory neuropathies and increased accumulation of immunoglobulin 

deposits, inferred from an observed accumulation of granular material in SLI. From 

these studies, it may be reasonable to assume that an anti-ganglioside antibody may 

cause a similar pathology (ie. demyelination); granular immunoglobulin deposits in 

the SLI may perturb the interaction ofaxon-Schwann cell communication, although as 

yet no data exists to support this. 

1.9.1.5 The Neuromuscular Junction 

A motor unit is the interface between a muscle fibre and its innervating motor axon. 

In the muscle, the terminal end of the axon loses its myelin sheath, and branches to 

form the characteristic "pretzel" like structure where the terminal axon branches and 

boutons contact the muscle fibre, shown in Figure 6. 

Peri
synaptic 
Schwann 
cells 

Figure 6. Simplified diagram: gross anatomy of the NMJ. The post-synaptic endplate 
in shown in red, in reference to the use ofTRlTC-BTx, which in this manuscript is 
frequently used to deliniate the endplate by binding to the nAChR on the muscle 
surface. The pre-synaptic axon and PSC overly the BTx positive area of the muscle 
fibre surface. 
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Within the motor nerve ending are active zones, containing an accumulation of 

vesicles. These vesicles contain a "quantum" (5000-10000 molecules) of 

acetylcholine (ACh), which is released across the synaptic cleft and is converted to an 

action potential at the post synaptic site. The synaptic cleft houses the basal lamina, 

which covers the muscle fibre and myelinated nerve fibre, and serves to anchor the 

enzyme acetylcholinesterase (AChE). The post-synaptic membrane consists of 

numerous infoldings with wide longitudinal crests and narrower interfolds. The 

active zones of the pre-synaptic axon correspond to the post-synaptic crests, which 

express a high density of Ach receptors, while the bottom of the folds contain voltage 

gated Na+ channels (Figure 7). a-bungarotoxin (BTx) is commonly as a marker of the 

post-synaptic endplate, as it recognises the ACh receptor (AChR). 
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Figure 7. ultrastructure of the NMJ, modified from Couteaux and Spacek 1988. ax
axon,jil - neurofilament, mit - mitochondrion, glyc - glycogen, syn ves - synaptic 
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vesicles, Schw c. - Schwann cell, dig - terminal digitations of Schwann, subn. fa. -
subneural fold, bas. 1.- basal lamina, act. z. - synaptic active zone. 

When an action potential depolarizes the nerve terminal, voltage-gated calcium 

channels (VGCCs) are opened allowing a small localised influx of calcium that 

activates the soluble N-ethylmaleimide sensitive factor attachment protein receptor 

(SNARE) machinery involved in vesicle fusion. ACh is released by exocytosis into 

the synaptic cleft. Most is broken down by AChE and the breakdown product recycled 

by the nerve terminal. However, release of excess ACh as a "safety factor" (Wood 

and Slater 2001) ensures enough ACh reaches the post synaptic membrane to open the 

nicotinic AChR pore and cause Na+ and K+ influx. This depolarizes the membrane to 

cause an endplate potential (EPP): if of enough magnitude, voltage gated Na+ 

channels will open and generate an action potential resulting in muscle contraction. 

It is widely accepted that there are variations in morphology ofNMJs depending on 

muscle fibre type (Sieck et a11989, Larsson 1991). A study by Prakash et al (Prakash 

et a11996) showed that the morphometric properties of both pre- and post-synaptic 

NMJ s differed depending on the muscle fibre type which they innervated. By 

creating 2D reconstructions ofNMJs, the authors show for the pre-synaptic aspect, 

that type I and IIa fibres had axon terminals with smaller areas and fewer but longer 

branches than type IIx and IIb fibres. 

The NMJ can be viewed as a tripartite synapse, owing to the presence of not only 

post- and pre- synaptic compartments, but also the presence of specialised peri-

synaptic cells which are likely to be integral in maintenance and repair of the NMJ. 

37 



1.9.1.6 The Peri-Synaptic Schwann Cell (PSC) 

In addition to the well characterised pre- and post-synaptic elements of the NMJ, the 

tripartite nature ofthe synapse is largely owed to the presence of the peri-synaptic 

Schwann cell (PSC). Although the pSC expresses several proteins common to 

myelinating Schwann cells, such as PO, MAG and galactocerebroside (Georgiou and 

Charlton 1999), it can be uniquely distinguished by specific markers (Astrow et al 

1998) and does not myelinate the nerve terminal. 

It is widely accepted that the pSC has an active role in synaptic transmission at the 

NMJ (Auld and Robitaille 2003). The specific functional differences of the 

mammalian pSC in comparison to the amphibian indicate that the mammalian pSC 

has become specially tailored to facilitate its role in synaptic modulation (Rochon et 

aI200l), a role which to date is not fully understood. The interaction of the pSC and 

nerve terminal is complex, and damage to the pSC may interfere with the normal 

neurotransmission on which the integrity of the NMJ depends (Auld et aI2003). 

The expression of agrin by the pSC is upregulated upon regeneration of a damaged 

axon, and may be related to the aggregation of AChRs at the regenerating NMJ (Yang 

et aI2001), implicating the pSC in regeneration and repair of the NMJ. The role of 

the pSC in nerve regeneration mean it remains a contemporary and important area of 

investigation. The pSC has successfully been labelled and visualised, for example 

using dyes such as calcein blue (O'Malley et aI1999). Upon re-innervation of a 

damaged NMJ, pSC cell bodies were shown to develop and act as a substrate for 

which the early axon sprout could navigate over. More impressive is the development 

of a transgenic mouse expressing green fluorescent protein (GFP) in the Schwann 

cells and cyan fluorescent protein (CFP) in the motor neuron. This has facilitated 

direct visualisation of the pSC in the living mouse and monitoring of its response 
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following partial denervation of muscle (Kang and Thompson 2002). At denervated 

sites, elongated pSC processes were shown to form, along which the regenerating 

axon then developed. Longer term monitoring revealed several new observations. 

Firstly, the pSC processes often vacated the denervated synaptic site, and such regions 

were not targeted by the regenerating axon. Secondly, the formation of "Schwann cell 

bridges" was observed, highlighting the ability ofthe Schwann processes to grow 

from a denervated site and make contact with another. Based on these observations, 

future research will hopefully unveil some of the key signalling molecules and 

receptors involved in this fascinating response to denervation, and perhaps in the 

distant future new therapeutic advances may result. On the same note, identification 

of the pSC as a disease target associated with anti-disialosyl antibodies and 

neuromuscular paralysis (Halstead et a12004) reinforces the clinical significance of 

the pSc. For example, anti-disialosyl antibodies which selectively ablate the pSC 

provide a useful tool to study the response of the NMJ to loss of the pSC and perhaps 

provide new insight into its function in maintaining and supporting the synapse. 

1.9.1.7 The Para junctional Fibroblast (PJF) 

In addition to the pSC, the tripartite nature of the NMJ relies on the presence of a third 

cell type, likely to be a fibroblast (Fig 8). In comparison to the pSC, the 

parajunctional fibroblast is little understood, yet deserves equal attention as it may be 

as functionally significant as the pSC. 
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Fig 8. The NMJ, comprising the post synaptic endplate, and pre-synaptic axon and 
pSCs is enveloped by the processes of the P JF, as shown in translucent red. 

A recent study suggests that the cell (termed the kranocyte (or helmet cell) as 

described by Court et aI, in process) is located at the majority ofunlesioned NMJs. 

This suggests that upon denervation, the cell may become activated and playa role in 

the recovery of the synapse, as proposed by earlier works which originally observed 

the influx of fibroblast like cells to denervated NMJs (Connor and McMahan 1987). 

Following denervation of muscles these authors determined a marked increase in 

refractivity of areas of the muscle which corresponded to the overall appearance of 

junctional zones. The authors demonstrated that these cells are the products of cell 

division, and distinct from other cell types which undergo mitosis following 

denervation, such as muscle satellite cells. Owing to their morphology, they are 

unlikely to be peri synaptic Schwann cells, and following denervation their 

accumulation resulted in a "diaphanous veil of cell processes" enclosing a region 

"centered around the synaptic site". Immediate, as opposed to delayed, re-innervation 

halted their accumulation, suggesting that absence of the axon maintains the 

population of cells perhaps via a signal originating from the degenerating junctional 

regIOn. This is suggestive that the fibroblasts mediate a role in regeneration. In 
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accordance with the study of Connor and McMahan, Gatchalian et al found 

denervated endplates to be targeted selectively by proliferating interstitial cells which 

displayed the characteristics of fibroblasts (Gatchalian et al1989). These authors 

provide further insight into the possible function of the cells by showing their 

presence is closely correlated with the upregulation of adhesive molecules: N-CAM 

was deposited on the surface of the accumulated cells while tenascin(J1) was 

associated with fibrils in close contact with the fibroblasts. In vitro, fibroblasts from 

denervated muscle were shown to synthesise N-CAM, tenascin(J1), fibronectan and 

M-HSPG (a matrix associated heparin sulfate proteoglycan). The expression of 

tanascin(J1) is likely to be associated with proliferating cells, leading the authors to 

postulate that following denervation, proliferation of the perisynaptic fibroblasts is 

induced resulting in an increase of adhesive molecules which enhances axon 

migration over the perisynaptic connective tissue to the original site of innervation. 

To date, it remains unclear whether peri-synaptic cells, including the parajunctional 

fibroblast, have a lineage distinct from that of their extra-junctional counterparts, or 

whether their proximity to the junctional region affords them the unique ability to 

respond to signals form the NMJ. The expression of the transgene LacZ by cells 

within close proximity to the synaptic region indicates that peri-synaptic cells share a 

pattern of gene expression (Weis et al 1991), and it has also been suggested that the 

accumulating cells associated with the damaged NMJ are not of the fibroblast lineage, 

but are bone marrow derived cells of the monocyte macrophage cell line. Upon 

denervation, it is proposed that the pSC release chemokines which attract an influx of 

bone marrow derived cells to the junctional region: these cells then release growth 

factors which stimulate local cells to produce extracellular matrix molecules to aid the 

regeneration of the axon, as summarised in Figure 9 (Mochizuki et al2005). 
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Fig 9. Sequence of events following denervation and subsequent activation of bone
marrow derived fibroblast like cells to the synaptic region (figure exerted from 
Mochizuki et al 2005). 

However, this model does not address the presence of the existing fibroblasts at the 

uninjured NMJ, as described by Court et al. These seemingly senescent cells may 

become activated upon denervation and release cytokines and growth factors, perhaps 

further aided by the infiltration of the bone marrow derived cells as shown in the 

above model. Future research will hopefully lead to a more detailed understanding of 

this comparatively "novel" cell type, and lend insight into its role at the NMJ in both 

maintenance and repair. 

1.9.2 Gangliosides and the PNS 

Gangliosides account for 1-2% of the total lipid content of non-neuronal cell 

membranes, with a significantly higher abundance (10-20%) in neuronal cell 

membranes (Ledeen 1985). The division of GBS phenotypes and their association 

with specific anti-ganaglioside antibodies is consistent with the fact that 
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gangliosides expression follows a tissue (and species) specific pattern (Yamakawa 

and Nagai 1978). 

1.9.2.1 GMl 

In human motor and sensory nerve, GMI is more enriched in the axonal fraction 

when compared to the myelin fraction, in which ganglioside LMI is the major 

ganglioside (Ogawa-Goto et aI1990). Analysis of the ventral and dorsal roots ofthe 

second lumbar nerve by the same authors (Ogawa-Goto et a11992) demonstrated that 

motor nerve myelin contained significant GMl, while the content for sensory nerve 

was much less (15% and 2% respectively). This is suggestive that the composition of 

GMl in sensory nerve myelin is too low to be antigenic. However, an alternative 

explanation may be that the sensory GMI is presented in a different manner, and may 

thus be inaccessible as a potential target to circulating autoantibodies. This study 

focussed on the ventral and dorsal roots of the lumbar and sacral nerves: there is a 

differential expression of gangliosides along the rostro-caudal axis, for example the 

enrichment of GQ 1 b in the cranial nerves (Chiba et al 1993, Chiba et al 1997), and it 

would be interesting to determine if the GMllevels between motor and sensory 

nerves is perhaps regulated in differential manner along this axis. It would also be 

interesting to determine the significance of GMI in the motor nerve myelin: not all 

components of the myelin membrane are synthesised by Schwann but are derived 

from axonally transported materials (Brunetti et aI1981). It could perhaps be that 

gangliosides are transported from axon to myelin in the PNS. 

GMI has been located at nodes of Ranvier in myelinated peripheral nerve fibres 

(Ganser et al 1983, Corbo et al 1993, Kusunoki et al 1993, Molander et al 1997), but 

these studies did not distinguish whether the Gal(~ 1-3)GaINac moieties were in the 

axon or surrounding structure. To address this issue, Sheikh et al (Sheikh et a11999) 
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investigated the distribution ofGal(~I-3)GalNAc binding sites in mice, humans and 

rats, where it was shown that staining was similar in all species. In teased fibres of 

normal mice CTb stained the nodal gap and paranodal region of Schwann cell, and 

also the Schmidt-Lantermann incisure. Electron microscopy revealed CTb binding to 

nodal axolemma, paranodal and internodal axolemma with no binding to Schwann 

cell basemant membrane overlying the nodal gap. The failure ofthese authors to 

detect GMI in compact myelin seemingly contradicts the chemical studies of Ogawa

Goto (Ogawa-Goto et a1I992. Immunocytochemical (ICC) studies with IgG mouse 

monoclonal antibodies (Gong et a12002) showed no staining of compact myelin of 

rat, mouse or human tissue, indicating that the gangliosides are inaccessible to the 

mAb using the present techniques. A possible explanation for this may be that in the 

context of the living membrane, GMI is sterically hidden in the compact myelin and 

thus failure to detect it via laboratory methods indicates that in-vivo, it is probably 

also inaccessible to circulating antibodies. 

In immunofluorescence studies of tissue from rabbits immunised with 

Gal(~ I-3)GalNAc epitope or GMI, approximately 70% of nodes of Ranvier were 

stained, with immunoreactive IgM or IgG extending from the nodal gap and along the 

edge of par anodal myelin (Thomas 1991). These observations suggest that GMI 

associated with the node of Ranvier (as opposed to compact myelin) is accessible in 

the in-vivo situation, and therefore represents a possible target of anti-GMI 

antibodies, either through GMI itself, or the Gal(~ I-3)GalNAc epitope. 

While the use of monoclonal antibodies has been useful, a more clinically relevant 

approach was introduced by O'Hanlon et al (O'Hanlon et aI1996), who used 

antibodies cloned from neuropathy patients. These authors noted "substantial" 

differences in the binding of each mAb to PNS structures. SmI, a GMI monoclonal 
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antibody stained a population of mouse dorsal root ganglia (DRG) neurons, 

representing the population which were most strongly stained by CTb. In contrast, 

DRG cells which were weakly stained by CTb were stained by Dol (which recognises 

the Gal(Bl-3)GaINAc epitope). In teased fibre preparations, Sm1 was shown to 

weakly label the fibre surface, and bind to exposed areas of compact myelin. 

Paranodal staining was not observed, and Sml did not stain rat sciatic nerves. In both 

cases, Dol was negative. At the mouse NMJ, Sml stained intramuscular nerve 

structures, but none overlying the NMJ, while no Dol staining could be detected. 

This study is important in that it highlights the fine specificities of anti-ganglioside 

antibodies. The subtle differences noted between mice and rats serves to illustrate 

that there may be differences in GM1 expression between species, or it may simply be 

that the presentation of the ganglioside in the membrane is different. It is of particular 

interest to note that the study of O'Hanlon et al was performed on the NIH mouse 

strain. The peri-synaptic Schwarm cell of this mouse has been shown to be resistant 

anti-disialosyl antibody mediated injury compared to Balb/C and C57Bl/6 strains 

(Halstead et a12005) suggesting possible differences in profile or presentation of 

disialosyl gangliosides may exist in certain strains for certain cell types. The CTb and 

Sm1 staining of compact myelin of the NIH mouse is in contrast to the findings of 

other studies (Thomas 1991, Sheikh et al 1999) and thus would be interesting to 

determine if the profile ofGM1 expression in this mouse is also altered. 

Studies of human tissue further support the notion that the presence of GM1 may 

often be "missed" when a monoclonal antibody fails to detect it. A monoclonal anti

GM1 antibody failed to stain human peripheral nerve (Kusinoki et aI1993). Similar 

results were shown in a later study (Kusunoki et aI1997), however following 

neuraminidase treatment to convert GD1b to GM1, the same antibody bound to DRG 
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neurons and paranodal myelin. This suggests that in order for the antibody to bind 

GM1, the GM1 must be densely localised and accessible. There are several possible 

scenarios: firstly, simply increasing the amount of GM1 on the membrane is allowing 

the rnAb to bind, alternatively, GD 1 b is located in a more accessible manner within 

lipid rafts, and thus following neuraminidase treatment the "new" GM1 is also more 

accessible when compared to the native GMl. Of course, a combination of these 

factors may corne into play, with binding to native GM1 enhanced by the new epitope 

created from GDlb. Finally, it is also possible that GDlb may be masking GM1, and 

the removal ofGDlb is facilitating GM1 to be detected by the antibody. 

1.9.2.2 GDlb 

Defining the exact staining profile of GD 1 b is often confounded by the fact that many 

anti-GDlb antibodies recognise the GaIWl-3)GaINAc epitope shared with GMl. 

CTb is commonly used to unequivocally detect GM1, and although tetanus toxin 

(TTx) can be used to localise GD 1 b, it is not an "acid test" as TTx also detects other 

b-series gangliosides including GQ1b and GTlb (Angstrom et aI1994). GDlb has 

been shown to be present in motor and sensory nerve (Ogawa-Goto et a1992) in 

comparable amounts, with a greater proportion in the myelin when compared to the 

axon (Svennerholm 1994) in sensory and motor nerve myelin. Monospecific anti

GDlb antibody stained nerve cells in the human DRG and paranodal myelin of the 

ventral and dorsal roots (Kusunoki et aI1993), with a later study confirming that the 

staining could be abolished with chloroform:methanol and neuraminidase treatment, 

proving the antibody was recognising a specific carbohydrate structure specific to a 

glycolipid (Kusunoki et aI1997). In the same study, a GaIWl-3)GaINAc antibody 

gave the same profile of staining as the GD 1 b antibody indicating the Gal(~ 1-
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3)GalNAc epitope of GD 1 b is more accessible than that of GM1. The binding of 

peanut agglutinin (PNA) in the paranodal myelin (Corbo et a11993) may thus be 

recognising the Gal(pl-3)GalNAc ofGD1b as opposed to GM1, although the results 

ofPNA studies must be interpreted with caution as PNA also recognises this epitope 

on glycoproteins (Apostolski et aI1994). 

A monoclonal anti-GD1b antibody has been shown to give similar staining profiles in 

human, rat and mouse tissue, staining both motor and sensory axons in the spinal 

roots in addition to the abaxonal Schwann cell membrane and node of Ranvier of the 

sciatic nerve (Gong et aI2002). Interestingly, this study also lends support to the 

possibility that anti-GD1 b antibodies selectively injure large sensory neurons 

(Kusunoki et al 1996). The monoclonal antibody specifically stained medium and 

large DRG neurons, with no staining observed in small diameter DRG neurons or 

Remak bundles (Gong et aI2002). Although this does not exclude the presence of 

GD1b in the small diameter neurons (as these were shown to be GT1b positive and 

must therefore synthesise GD 1 b), it highlights the fact that GD 1 b may be displayed 

differently in small neurons and thus is not a potential antibody target. In support of 

this study, the binding of a human antibody which recognises GD 1 band GM1 with 

similar affinity via the Galcp 1-3 ) GalNAc epitope was shown to bind a population of 

DRG neurons which were labelled only weakly by CTb (O'Hanlon et aI1996), 

suggesting the antibody may be recognising GD 1 b in this specific subset of DRG 

neurons. 

1.9.2.3 GDla 

GD 1 a is present in human motor and sensory nerves and has a higher concentration in 

motor than sensory myelin from human roots. In both cases, GD 1 a is most enriched 

47 



in the axonal fraction when compared to the myelin. Differences in the ceramide 

portion of ventral and dorsal GDla have been suggested, as it shows different 

migration patterns in extracts from motor and sensory roots (Ogawa- Goto et aI1990), 

a finding confirmed by TLC, where the mobilities ofGDla from the ventral and 

dorsal roots were distinct from each other (Gong et aI2002). An antibody showing 

high affinity for GD 1 a was shown to bind preferentially to rat and human motor 

nerves, although low level binding to DRG neurons was not ruled out and the 

difference between mouse sensory and motor nerve was less striking (Gong et al 

2002). The same authors show that antibodies reacting GDla and GTla preferentially 

bind unmyelinated fibres, but again display greater binding in motor fibres. In teased 

fibre studies, nodes of Ranvier and abaxonal Schwann cell membranes were stained, 

with no staining in the paranodal region. One factor which may account for the 

differences in staining profiles may be cross reactivity of anti-GD 1 a antibodies with 

GaIWl-3)GaINAc GDla. This is a minor ganglioside expressed in the peripheral 

nerve, and the first description of GalNAc GDla was in 1988 (Ilyas 1988), when a 

human IgM reactive with the Gal(~1-3)GaINAc was shown to bind bovine, human 

and rabbit peripheral nerves. No staining was observed in the myelin, although 

GaIWl-3)GaINAc GDla may be present in amounts which were undetectable to the 

antibody used. Further studies using patient sera have been useful, such as that of de 

Angelis (de Angelis et aI2001). High titre anti-GDla IgG was shown by 

immunofluorescence microscopy to bind to the nodal region of human motor roots but 

not sensory, and serum preadsorbed with GDla failed to bind, proving specificity of 

the antibody for GDla in tissue. However, colocalization using botulinum toxin A 

(BTA, to bind the sialic acid ofGD1a) provided slightly contradictory results, as BTA 

bound nodal and paranodal region of motor and sensory roots. BTA also recognises 
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the sialic acid of other gangliosides such as GTla , so this may explain the 

discrepancies, or as the authors note, the antibody may be recognising N

acetlygalactoseaminyl-GDla and binding may thus be influenced by steric hindrance, 

while the smaller toxin is unaffected. However, it seems more plausible that the 

antibody and toxin are binding different epitopes, as in the double labelling procedure 

one would have expected the toxin to bind preferentially to the ganglioside and 

abolish or significantly decrease the antibody binding. In mouse tissue, a GDla 

specific IgG monoclonal antibody was shown to be exclusive to the axolemma, 

including the distal portion overlying the synaptic gutters of the NMJ with no 

presence on the pSC cell (Goodfellow et aI2005). Although localisation studies were 

done in the GD3s-l
- mouse which overexpresses the a series gangliosides, the overall 

pattern of staining appeared similar compared to WT mice (Goodfellow

unpublished observations) and thus this study is useful for determining the anatomical 

distribution of GD 1 a, but less informative regarding absolute levels of expression. 

The same authors also showed that human anti-GDla AMAN sera displays same 

pathogenisis as the monoclonal antibody, suggesting it is probably binding the same 

target as the monoclonal antibody. 

1.9.2.4 GQI b 

Biochemical analysis has shown that compared to dorsal and ventral roots of the 

human spinal cord, the cranial nerves contain a greater amount of GQ 1 b, with the 

highest expression in the trochear, abducens and oculomotor nerves (Chiba et a11993, 

Chiba et aI1997). The same authors have shown that these nerves have dense location 

of GQ 1 b in the paranodal regions, as inferred from the binding of a monoclonal anti

GQlb antibody (Chiba et aI1993). An immunohistochemical study of the human 
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DRG (using the same monoclonal antibody) displayed immunoreactivity in a minor 

population (10%) of large DRG neurons, with weak binding to other structures, 

including grey matter of the brain stem and spinal cord, and both deep and granular 

layer neurons of the cerebellum (Kusunoki et aI1999). Further details on the 

localisation of GQ 1 b can be obtained using sera from MFS patients, in which 

autoantibodies reactive with disialosyl epitiopes are present. For example, 

fluorescence microscopy studies have shown IgG fractions of MFS sera, shown to be 

reactive with GQ 1 b, specifically label NMJ regions and intramuscular nerve branches 

(Wessig et aI200l). This finding is supportive of the "alpha-latrotoxin" like effect 

seen at the distal motor nerve, a likely result of antibody binding to GQ 1 b (Plomp et 

aI1999), and the immunohistochemical and ultrastructural damage ofthe nerve 

terminal induced by anti-GQlb antibodies (O'Hanlon et a12001, Jacobs et aI2003). 

A monoclonal anti-GQlb antibody cloned from CANOMAD* sera and displaying 

similar specificity to the anti-ganglioside antibodies ofMFS patients was shown to 

bind specific neuronal structures in the rodent PNS (Willison et aI1996). Ex-vivo, 

neurons of the DRG were immunopositive, as were nerve fibre bundles, spinal nerve 

roots and trunks and intramuscular nerve bundles. Sensory neurons were also stained, 

as were motor end plates. In-vivo antibody binding (via passive transfer) revealed a 

similar pattern of staining, suggesting that anti-GQ 1 b antibodies are able to bind both 

DRG and nerve terminals and as a consequence, exert a pathological effect. The 

similar abilities of a monoclonal mouse antibody and MFS sera to exert complement 

mediated damage to the nerve terminal (O'Hanlon et a12001) is indicative that both 

are binding to the same target antigen at the same site. The mouse monoclonal 

antibody, termed CGM3, is an IgM antibody reactive with GQlb, GD3 and GTla 

(Goodyear et aI1999). Application of the antibody to ex-vivo mouse muscle 
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preparations (Halstead et a12004) confirmed, at the level of light microscopy, 

antibody binding to the NMJ with presence of "nuclear shadows", interpreted as 

evidence of pSC membrane labelling. Immuno-electron microscopy by the same 

authors confirmed uniform staining of the presynaptic neuronal and pSC membranes, 

a novel finding which implicates the pSC, in addition to the distal motor nerve, as a 

potential target in MFS owing to a high density of disialosyl gangliosides. 

*CANOMAD: chronic ataxic neuropathy with opthalmoplegia, M-protein, 
agglutination, and disialosyl antibodies). Disialosyl epitopes present on gangliosides 
including GQ 1 b, serve as IgM autoantibody targets. 

1.10 AMAN: Finding the Definitive Animal Model 

While there is increasing acceptance of GBS as an autoimmune disease, confirmation 

that its classification as an autoimmune disease is more than circumstantial relies on 

the fulfilment ofWitebsky's Postulates (Witebsky's Postulates revisited, Rose and 

Bona 1993): 

Witebsky's Postulates: 

Presence of autoantibody or self reactive T-cell, which 

Corresponds to a "self' antigen 

Analogous response must be induced in animal models, which manifest a 

similar disease. 

Following early reports of GM1 immunized rabbits displaying pathology (Nagai et al 

1976), a more successful model of AMAN (fulfilling Whitebskys postulates) has been 

developed. Sensitising rabbits with bovine brain ganglioside mixture (BBG) or GM1 

resuled in elevated anti-GM1 antibody titres corresponding to AMAN like flaccid 

paralysis (Yuki et aI2001). Furthermore, sensitising rabbits with Cjejuni LOS 
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resulted in generation of anti-GM1 antibodies and subsequent Wallerian-like nerve 

fibre degeneration and associated limb weakness was observed (Susuki et al2003). 

This AMAN model proves the molecular mimicry hypothesis, and to date is the most 

successful experimental model on which to gain an insight into the human pathology 

ofAMAN. 

Thus, to date, GM1 has been identified as an autoantigen (Yuki et al2001), its 

expression has been shown on human peripheral nerve (Ogawa-Goto et al1990) and 

antibodies have been raised in experimental animals which go on to develop 

pathology similar to AMAN (Susuki et al2003). However, while the rabbit model 

offers a valuable insight into the immunopathology of AMAN, there are several 

criticisms. For example, the authors describe the phenotype of the animals as severe, 

leaving animals unable to lift their head or body (Fig 10). 

Fig 10. Modified from Yuki et al200l. 14 days after disease onset the rabbit could 
not stand or raise its head. Forelimbs and extremities were weak. 

One would assume that the majority ofaxons from these animals would have IgG 

deposition, with a significant proportion of these axons being damaged. However, 

peroxidase conjugated Protein G staining of the sectioned sciatic nerve showed few 

axons to have abundant IgG deposition, and overall the peroxidase staining appeared 

weak. Similar illustrations were presented in a later paper using the same 

immunisation protocol on a different batch of Japanese White rabbits (Fig 11). 
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Fig 11. Modified from Susuki et al 2003 Peroxidase staining showing IgG deposits on 
axons of immunized rabbits. Arrows show areas of strong staining ofaxons and 
axonal membranes (panel j). 

While the authors state that the rabbit model is a faithful model of human AMAN, 

they do not formally address the relationship between IgG deposition, complement 

activation and fibre damage (Hafer- Macko et aI1996). Demonstration of activated 

complement components along the injured axons would more conclusively prove the 

role of complement in mediating the lesion. Furthermore, the deposition of activated 

complement is likely to infer IgG deposition, so may be a more sensitive method 

(than Protein G staining) for detecting even low levels of IgG binding. 

The authors demonstrate the presence of macrophages in the periaxonal space, where 

myelin is spared and the axon is damaged. However, there is no indication as to 

whether the macrophage activation occurs as a result of complement activation, where 

they are recruited to "mop up" the debris (Stuart and Ezekowitz 2005), or whether 

deposition of IgG opsonises the axon, and macrophages bearing the Fe receptor 

(FcR) are recruited and induce cytotoxicity (van Sorge et al2003) causing axonal 

damage. This alternative scenario would happen in the acute phase of the lesion. 

While it is commonly accepted that the acute lesion is largely complement mediated 

(Hafer- Macko et al 1996), it opens up an interesting question surrounding the role of 

macrophages. If the axon has been opsonised by IgG deposition, does macrophage 

infiltration via the FcR occur? It would also be interesting to investigate the 
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accumulation of other inflammatory cell types during the acute phase, such as 

chemokine responsive neutrophils (Graves and Jiang 1995). 

Illustrations of the sciatic nerves from paralysed animals reveal axonal damage (Fig 

12). 

Fig 12. Modified from Yuki et al2001. c) transverse sciatic nerve section from 
paralysed rabbit showing myelin ovoids (indicating myelin collapse, shown by double 
arrow) in the myelinated fibres. d) arrowheads show regenerating fibres in the 
transversely sectioned anterior root. 

However, only a minority ofaxons appear to be damaged. This does not sufficiently 

explain why the rabbits displayed pronounced paralysis: severe cases of AMAN are 

associated with axonal transection, which was not demonstrated in the paralysed 

rabbits. However, re-examination of the rabbit sciatic nerve may reveal a "sampling 

issue": in other words, sampling more distal sites may have revealed a higher 

proportion of damaged axons, due to the retrograde process of Wallerian 

degeneration. Additional insight may have been gained from analysis of the 

intramuscular nerve bundles, where damaged axons may have been abundant. 

However, without this data, it is not possible to conclude that the muscle wasteage 

seen in these rabbits is due to axonal transection, as would be the case in severe 

human AMAN. It would therefore be useful to investigate other sites such as the 

node of Ranvier (eg. where complement mediated sodium channel destruction may 

occur (Susuki et aI2007)) and subsequentially block action potential conduction, or 
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at the NMJ, where interruption of synaptic transmission, such as that demonstrated in 

anti- GD1a antibody associated AMAN (Goodfellow et a12005) may cause muscle 

fibre degeneration. 

1.10.1 Problems In Elucidating the Pathogenesis of AMAN 

So far, the contemporary model of AMAN does not fully elucidate the 

immunopathogenesis of the condition. For example, there are considerations relating 

to the interaction of antibody and epitope, and also the consequences of this 

interaction: 

1) GM1 may be tightly regulated by complement regulator proteins in lipid rafts, 

so a potentially pathogenic anti-GM1 antibody may not cause a complement 

mediated lesion. However rafts are heterogenous (Pike 2006), and antibody 

interaction with GM1 located in a raft lacking complement regulators may 

lead to activation of the complement cascade and a subsequent lesion. Thus, 

an anti-GM1 antibody may be high affinity and able to bind GMl, but it's 

pathogenic potential is dictated by the constituents of the lipid raft in which 

GM1lies. 

2) Anti-ganglioside antibody causes neuropathy by binding to target (eg. 

axon/Schwann cell/glycosynapse) and disturbing ion flow, leading to 

conduction block (Buchwald et a11998, Weber et aI2000). 

3) Anti-ganglioside antibody binds to target, activates complement and MAC 

formation results in calpain mediated lysis of the target membrane (O'Hanlon 

et aI2003). 
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4) Anti-ganglioside antibody activates complement, and the chemotactic 

properties of complement trigger an inflammatory response (Stuart and 

Ezekowitz 2005), leading to nerve damage 

5) Leukocytes activated by anti -ganglioside antibodies (via interaction of 

antibody and leukocyte immunoglobulin receptor (FcR)) mediate toxicity and 

phagocytosis (van Sorge et a12003) 

6) Antibody is raised against Cjejuni LOS which "mimics" GMI. The resultant 

antibody may not, however, bind to GM1. Instead, it may bind another epitope 

which, to the antibody, is "masquerading" as GMI. In other words, anti

ganglioside antibodies raised against Cjejuni LOS are misnomers. Instead, the 

"anti-oligosaccharide antibodies" are binding a non-GMI epitope via 

"molecular masquarade". 

Thus, development of murine models of AMAN, utilising a number of GM 1 

antibodies with varying affinities and specificities, would afford a robust system on 

which to fully assess the pathology induced by these antibodies, and perhaps resolve 

some of the main possibilities underlying the AMAN pathogenesis 

Aside from the aforementioned effector functions of anti-GMI antibodies, the specific 

interaction of anti-GMI antibodies and GMI is not straightforward. 

AMAN patients' sera is unlikely to contain a homogenous population of anti-GMI 

antibody. Instead, the overall anti-GMI titre may comprise of clonally distinct 

antibodies with different specificities, although all reactive with GMI. This 

complication gives rise to several possible scenarios where antibody may react with: 

*GMI alone (Latov et a1I988, Pestronk 1991) 

*the terminal Gal(~1-3)GalNAc ofGMl, GDlb and asialo-GMI (Pestronk 1991, 

Sadiq et a1I990) 
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*asialo-GMI (Weng et a11992) or GDlb alone (Fishman et a11991) 

*GM1 and GM2 via a common internal epitope (Ilyas et a11988) 

Furthermore, serum may comprise of different combinations of these antibodies, and 

the ability of any given population to mediate the disease process depends on the both 

the concentration and affinity of the antibody. To further complicate, while an anti

GMl antibody may be of high affinity, its ability to induce pathology depends upon 

the antibody-antigen interaction. This is largely influenced by presentation of the 

antigen in the lipid bilayer (Marcus et a11989, Ishii and Watanabe 1992), which 

determines the availability of the epitope to be "seen" and bound by the antibody. 

The latter issue is of particular relevance, as gangliosides are situated within lipid 

rafts, meaning the presentation of the ganglioside may be influenced by the 

constituent proteins of the raft, which may serve to mask the ganglioside or its 

antigenic region. Furthermore, it is possible that there are tissue specific variations in 

ganglioside containing rafts, rendering some tissue more susceptible to anti

ganglioside antibody mediated attack. 

1.11 The Lipid Raft 

Perhaps one of the most intriguing aspects of gangliosides, in particular GM1, is their 

association with cell surface micro domains known as rafts (Simons and Ikonen 1997). 

The recent characterisation of lipid rafts is relatively contemporary, however 

indications of their existence within physiological membranes have long been 

established. For example, anatomical studies in the 1950s describing cholesterol 

molecules forming complexes with phospholipids (Finean 1953) may have been one 

of the earliest indications that rafts exist. Despite this, in the 1970s the popular Singer-
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Nicholson model was accepted as the bone fide description of the lipid bilayer; a 

model which points to a system whereby membrane molecules are randomly 

distributed and free to move within the membrane (Singer and Nicolson 1972). 

However, observations that upon phagocytosis, proteins can be selectively included or 

excluded from the internalised membrane (Oliver et al 1974) contradict the Singer

Nicolson model of random distribution, and provide evidence that proteins can 

segregate. Taken together with the complexes observed in the early 50s, this suggests 

the organisation of proteins and lipids in the membrane is of a complexity beyond that 

of the Singer-Nicolson model. Lipid rafts themselves now represent an increasing area 

of research, opening up the expanding science of "membranomics". 

Lipid rafts can be viewed as small islands or platforms floating in a sea formed by the 

greater membrane. On the exoplasmic side of the bilayer, lipid rafts are composed of 

cholesterol and sphingolipids (Fridriksson et al 1999). Inner leaflet rafts also exist, 

however when comparing the composition of rafts to the non-raft areas of the plasma 

membrane, outer leaflet rafts are more compositionally different than inner, 

suggesting there is a more specific selection procedure for inclusion of species into 

outer leaflet rafts (Pike et al 2005). This finding may be related to the stability of the 

rafts, where cholesterol interacts via van der Waals forces, prefentially with 

sphingolipids (Boggs et al 1987), to induce a "liquid ordered state" of lipids (Ipsen et 

al 1987). The inner leaflet rafts are less stable (Niu and Litman 2002), a fact perhaps 

related to the depletion of sphingolipids in the inner leaflet, and a 6 fold emichment of 

sphingloipids differentiating into the outer leaflet (Edidin 2003). This is suggestive 

that the interaction of cholesterol and phospholipids confers less stability on the raft 

when compared to the interaction of cholesterol and sphingolipids. The stabilising 

effects of cholesterol in the outer leaflet are perhaps counteracted to a degree by 
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presence of polyunsaturated species, allowing maintenance of the liquid ordered state 

(Blom et al2001). Interestingly, transmembrane proteins can interact with both inner 

and outer leaflet rafts, and this may be of functional significance in colocalising 

signalling molecules from each leaflet (Pike et al 2005). 

The liquid ordered phase induced by cholesterol (Ahmed et al 1997), is an 

intermediate phase between fluid liquid crystalline and gel phase (Brown and London 

1998) and thus distinct from the more fluid, "liquid disordered" bulk membrane (Fig 

13), which consists mainly of unsaturated fatty acids (Schroeder et al 1994). The 

"incomplete dissolution" of rafts following cholesterol depletion (Fujita et al 2007) 

suggests that cholesterol is not the sole mediator of raft stability. It has been 

suggested that the cellular cytoskeleton (Fujiwara et al 2002) and glycosphingolipids 

(Sheets et al 1997) contribute to the properties of rafts. 

-_"_ J 

Liquid Ordered 
Gel Phase (10) 

Liquid Disordered 

(I d) 

Fig 13. Modified from Munro 2003. The gel phase has tightly ordered acyl chains 
and is tightly packed (left diagram). This phase is not physiologically relevant owing 
to the low melting point of the gel phase: above the melting point of the gel phase, the 
molecules become liquid disordered (right diagram), which represents the nature of 
the bulk plasma membrane at physiological temperatures. In rafts, presence of 
cholesterol orders the acyl chains of the liquid disordered phase to create a liquid 
ordered phase, which is intermediate between the gel and liquid disordered phases 
(Munro 2003). 

A schematic representation oftheir presence in the membrane is shown in Fig 14. 
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Fig 14. 3D representation (modified from Mayor and Rao 2004) of a portion of the 
membrane bilayer, showing the inclusion of a raft domain within the liquid disordered 
greater membrane. Inset image shows a 2D translation (modified from Dykstra et al 
2003) of this, illustrating the presence and relative scaling of the constituent proteins, 
lipids and cholesterol in the raft domain. 

To summarise, small domains of highly ordered molecules exist within the bilayer, 

and their stability is mediated by the influence of cholesterol. However, while this 

simple statement adequately defines a raft, it does not divulge the complexity of the 

different proteins and lipids in rafts, how they are targeted to rafts, nor the functional 

relevance of their presence. 

Lipid rafts, much like islands, are heterogenous (Schade and Levine 2002, Drobnik et 

al 2002), with each comprising of different proteins and lipids. Furthermore, rafts 

comprise of a specific subset termed cavaeoli (a term which is often, and somewhat 

confusingly, interchanged with "raft"). While cavaeoli share many of the defining 

features of rafts (Rothberg et al 1990), they are defined by presence of the protein 

caveolin (Rothberg et al 1992), a protein which interacts strongly with cholesterol and 

polymerises to form the raft (Murata et al 1995). In the absence of caveolin, lipid 
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rafts can still be isolated, further confirming that lipid rafts and caveoli represent 2 

independent subtypes (Parton and Simons 1995). GPI anchored proteins were 

amongst the first demonstrated to be raft associated (Brown and Rose 1992, Cinek 

and Horejsi 1992), and rafts can be viewed as cellular signalling stations due to their 

10 fold enrichment in signalling molecules (Foster et al 2003). Signalling proteins 

such as acylated Src kinases (Song et al 1997), cytokine receptors (Resh et al 1999), 

growth factor receptors (Waugh et al 1999) and integrins (Baron et al 2003) are all 

enriched in rafts. Proteins involved in exocytosis, such as SNARE proteins, are also 

enriched in rafts (Chamberlain et aI2001), while gangliosides and cerebrosides form 

a significant proportion of raft lipids (Prietti et aI2000). 

One of the most confounding issues surrounding the study of lipid rafts is their 

somewhat elusive nature. The role of rafts in signalling means it is logical for their 

formation to occur rapidly, perhaps in response to certain cues. This is of functional 

significance: the turning of growth cones in response to chemotactic cues is thought to 

be mediated by redistribution of chemotactic receptors into lipid rafts (Guirland et al 

2004). This means rafts are believed to be transient structures, and it has been shown 

that GPI anchored proteins become transiently located within small "transient 

confinement zones", which rely on the glycosphingolipid content of the membrane 

(Sheets et al 1997). Based on such observations, it is accepted that rafts have an 

average lifespan of seconds (Dietrich et a12002) (Fig 15). 
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Fig 15. Small brown kites represent the transient rafts, which can coalesce upon 
certain cues and form a larger functional raft, to which proteins (large pale kites) can 
become targeted to. Modified from Mayor et a12006. 

On a similar note, the transient nature and small size of rafts makes them difficult to 

visualise, and therefore accurately measure. The use of sensitive techniques to study 

such micro-scale clusters predicts that rafts range between 30-200nm in diameter 

(Yuan and Johnston 2001). 

The selection of specific species for inclusion into these nanoscale, transient domains 

indicates that there are criteria for inclusion into the raft. Fatty acylation is one such 

criterion for targeting lipids to rafts (Zacharias et aI2002). Unsaturated acyl chains 

have large cross sectional areas, and hinder the ability of lipids to pack into rafts, 

meaning the presence of a saturated acyl chains is a pre-requisite for packing lipids 

into the liquid ordered phase (Moffett et a12000, Panasiewicz et aI2003) . 

Transmembrane proteins such as hemaglutinin are also raft associated (Lin et al 

1998), and it is believed that their 'packing requirements' depend on palmytolation 

(Melkonian et aI1999). On the contrary, the unpalmytolated protein neuraminidase is 

able to associate with rafts (Barman et al 2000) suggesting there are other possible 

interactions involved (Zhang et aI2000), perhaps related to the length of the 

transmembrane domain (Munro 1995). Aside from the complexities surrounding the 
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formation of lipid rafts, there is increasing evidence that they are recycled in a 

continual pathway from the cell membrane to the Golgi, and back to the cell 

membrane. Intemalisation of raft proteins into recycling endosomes in a clathrin 

independent pathway has been demonstrated for the folate receptor (Nichols et al 

2001) and the GPI anchored protein DAF (Sabharanjak et al2000). However it is 

possible that the recycling of rafts also relies on an, as yet, uncharacterised pathway. 

For example, CD59 and transgenic GPI-GFP are present in 2 major pools: the plasma 

membrane and the Golgi complex, and a continual cycling of these proteins between 

the 2 locations was shown to rely on a clathrin independent endosomal pathway of 

untraced origin (Nichols et al2001). 

Clearly, our knowledge of lipid raft biology is continually expanding, and advances in 

the approaches used to study rafts have been fundamental in their study. The 

dynamics of rafts have been studied using techniques such as single particle tracking 

to follow the path of gold-tagged membrane proteins (Simson and Sheets 1995), 

combined electron and scanning force microscopy to determine the distribution of 

immunogold receptors (Damjanovich et al1995) and trapping with laser optical 

tweezers (Edidin et al1994). A more common method used in the study of rafts is 

fluorescence resonant energy transfer (FRET). FRET was first developed in the 1970s 

in the study of cell surface lectins (Fernandez et al 1976), and is used to determine the 

colocalisation of2 species (for example, fluorescently tagged receptors) iftheir 

association is within approximately 60 angstroms (A). FRET relies on the presence of 

2 fluorophores (a "FRET pair"), one of which is termed a 'donor' and one an 

'acceptor'. The donor is excited at its specific wavelength, and upon absorbing the 

energy, transfers it resonantly (i.e. without energy conversion) to the acceptor 

fluorophore. In tum, the subsequent increase in acceptor fluorescence can be 
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measured. There are several different methods of detecting FRET, and the specific 

technical understanding of each is beyond the scope of this introduction (for review 

see Sekar and Periasamy 2003 and references within). Overall, the technique of FRET 

has inherent failings, and failure to detect FRET between 2 molecules does not 

necessarily exclude the possibility that they are, or can become, raft associated. To 

illustrate this point, Damjanovich (Damjanovich et a11995) failed to detect FRET 

when analysing the clustering ofMHC molecules at the angstrom level. However use 

of transmission electron microscopy and scanning force microscopy revealed 

"macro clustering" of the receptor. Thus, failure to detect FRET should not lead to the 

assumption that a molecule is not raft associated: when one considers that rafts are 

dynamic and transient structures, the observation of such macro clusters is of 

importance. Upon receptor stimulation, the macro clusters may coalesce into more 

tightly packed raft domains to facilitate receptor clustering and signalling, in which 

case the molecules would become transiently confined to lipid rafts. In order to 

identify species with weaker affinities for rafts, membrane species can be cross-linked 

with antibodies leading to a stabilisation of the membrane which causes the "co

patching" of membrane species with similar lipid affinities, which contrasts to the 

remainder of the unpatched membrane species (ie. those with no raft affinity) (Harder 

et aI1998). On a more technical note, when binding fluorescent antibodies to 

antigens of interest, the presence or absence of FRET is influenced by the orientation 

of the fluorophore on the bound antibody, a problem not encountered when detecting 

FRET with fluorescing target proteins. 

Biochemical techniques are also commonly used in the study of rafts, hence the 

common description oflipid rafts as "detergent resistant membranes" (DRMs). Lipid 

rafts are insoluble at 4°C in detergents (such as Triton X-IOO), and the detergent 
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insolubility of raft lipids and GPI anchored proteins may be as a result of saturated 

acyl chain interactions (Schroeder at aI1994). Furthermore, the DRM fraction is of 

light buoyant density and can be floated out on a sucrose gradient. Both the detergent 

insolubility at 4°C and light buoyant density are the hallmark of lipid rafts (Brown 

and Rose 1992). Much like FRET, the isolation ofDRMs has failings. Cellular 

structures other than the membrane (eg. endosomes) also contain proteins and lipids 

which may have affinity for rafts, and during the preparation of the cellular DRMs, 

these may contribute. It is therefore accepted that the DRM does not represent the 

inherent membrane organisation, and presence of a species in a DRM is taken more as 

evidence of its affinity for rafts (Shogomori and Brown 2003). Furthermore, proteins 

may have a "weak but significant raft interaction which is not detectable by the DIG 

criterion" (Harder et aI1998), meaning they are not represented in the DRM (note 

that DIG stands for detergent-insoluble glycolipid-enriched fraction, another acronym 

for lipid raft). 

In this brief overview, the main points and considerations of raft biology and how 

they are studied have been discussed, but to review such highly organised and 

complex structures in full detail would be outwith the scope of this introduction (for 

review see Allen et aI2007). However, one important aspect of raft biology which 

cannot be ignored is their possible involvement in pathological processes. The 

association of GBS associated auto-antibody targets (ie. gangliosides) with rafts is one 

such example. 

1.11.1 Gangliosides and Lipid Rafts. 

The association of gangliosides with lipid rafts confers stability to the lipid raft. The 

specific packing of gangliosides within the membrane relies on complex chemical and 
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structural interactions, and an in-depth review by Sonnino (Sonnino et al 2006) 

provides a detailed depiction ofH-bonding at the lipid-water interface, geometry of 

individual hydrophilic headgroups (determined by the molecular structures of each 

ganglioside species) and as a result of these "physico-chemical" properties, how 

individual gangliosides have differential packing properties and contribute to the 

overall stabilisation of the lipid raft. GMI is particularly enriched in cavaeoli (Parton 

1994), and the overall curvature of the caveolar invagination depends on the number 

of sugars present in the head group of a ganglioside - the larger the headgroup, the 

more pronounced the curvature (Sonnino et a12006) and Fig 16: 

Edges of caveola enriched 
/ of gangliOSides~ 

t 
Inner part of caveola 

enriched of cholesterol 

Fig 16. Exerted from Sonnino et al 2006. Ganglioside concentration at the caveolar 
edges, by nature of their space occupying head groups, lead to curvature of the 
membrane and an invagination. 

The function of gangliosides in rafts extends beyond their role in structural 

maintenance. For example, GMI is closely associated with the nerve growth factor 

(NGF) receptor TrK, and is believed to enhance the autophosphorylation of this 

receptor and thus enhance the response to NGF (Mutoh et aI1995). Increased 

expression of raft associated GMI by human blood monocytes correlates with an 
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increase in their endocytotic ability, and also susceptibility to raft mediated pathogen 

invasion (Moreno-Altamirano et aI2007). While these are examples of endogenous 

gangliosides enhancing signalling functions, it is of interest to note that gangliosides 

can also disrupt such raft mediated signalling events. Gangliosides shed by tumour 

cells inhibit T cell activation (Lu and Sharom 1996), which is a raft mediated process 

relying on antibody induced cross linking of GPI anchored proteins (Lanzavecchia et 

al 1999). This suggests that the shed gangliosides are directly interfering with raft 

mediated signalling events. A possible route of this interference may be related to 

overall disruption of the raft, as addition of exogenous GM1 is capable of displacing 

GPI anchored proteins from rafts (Crespo et aI2002). 

A further function of gangliosides and lipid rafts is endocytosis (Parton and Richards 

2003). This is particularly relevant to the NMJ, which owing to its location outside the 

blood nerve barrier (BNB) allows any endocytosed substance to cross the BNB. In 

the motorneuron, CTb binds to GM1 and the GM1-CTb complex is internalised via a 

clathrin independent pathways (Roux et aI200S). Furthermore, tetanus toxin binding 

(TTx) relies on the presence of the gangliosides GT1b and GD1b (Kitamura et al 

1999) and its uptake into motor neurons (MNs) is dependent on cholesterol and GPI 

anchored proteins (Herreros et a12001) indicating it is raft mediated. Interestingly, 

however unlike the GM1-CTb complex, the TTx-ganglioside complex is not 

internalised: instead the toxin is shunted from GD1a in the raft and into clathrin 

coated pits, where it is internalised (Deinhardt et al 2005), providing novel evidence 

of an endocytotic pathway which relies on the synergy of raft-mediated and clathrin

mediated pathways. Rafts can perhaps therefore be regarded as another dimension of 

the BNB, owing to the functional role of gangliosides in allowing toxin binding and 

internalisation. 
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Although not strictly a "function" of gangliosides, they are important autoantibody 

targets in GBS. Recent advances in the specificity of GBS patients' sera for 

ganglioside complexes as opposed to individual species (Kaida et al2004) strongly 

points towards the notion that this is a raft based phenomenon, where one can 

envisage the close approximation of 2 gangliosides within the raft. On a similar note, 

potentially diverse glycoclusters, such as the "glycosynapse" (reviewed by Hakomori 

2004) may also exist: antibodies to ganglioside complexes ("glycoepitopes") may 

induce neuropathy by altering the function of the glycodomain (Kaida et al2004). If 

such a mechanism does operate, it could yield valuable understanding into the 

pathogenesis of GBS. For example, it has been postulated that myelin-axonal 

communication is facilitated through a glycosynapse containing galactosylceramide 

(GaIC) and its sulphated form galactosy1ceramide-I3-sulfate (SGC) (Boggs et al 

2004). Disruption of such a glycosynapse could result in breakdown of the axon

myelin communication, and subsequent neurodegeneration. Thus, it is not unrealistic 

to assume that GBS associated gangliosides may exist in similar pathways:(eg. GM1 

containing glycosynapses between paranodal myelin and axon) and associated 

neuropathy is a result of autoantibody mediated disruption. 

1.12 Aims of Thesis 

There is a wealth of clinical evidence to suggest a role for anti-GM1 antibodies 

peripheral nerve injury (Ilyas et al1988, Nardelli et al1988, Shy et al1989, Nobile

Orazio et al1990). This has been confirmed in the Japanese rabbit model already 

discussed (Yuki et al2001), although the immunogenicity of this immunisation 

paradigm failed to induce EAN in earlier studies in the Lewis rat (Zielasek et al 

1993), and neurological symptoms in New Zealand strain rabbits (Dasgupta et al 

2004) are not apparent. On a similar note, the results of other studies have yielded 
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conflicting data, with some studies supporting a pathogenic role for anti-GM1 

antibodies (Arasaki et al1993, Takigawa et al1995, Santoro et al1992, Susuki et al 

2003), and others concluding anti-GM1 antibodies have no effect (Harvey et al1995, 

Takigawa et al1995). Owing to the discrepancies in the understanding of anti-GM1 

antibody mediated neuropathy, there is no unifying understanding of the pathogenesis 

induced by anti-GM1 antibodies. 

This thesis generates the broad hypothesis that many of the lacunae which explain 

anti-GM1 mediated pathology are related to the association of gangliosides with lipid 

rafts (Simons and Ikonen 1997), where stereometric interactions with raft species may 

influence their presentation to circulating antibodies and directly influence the ability 

of these antibodies to induce pathology. Furthermore, the unveiling of ganglioside 

complexes within the membrane (Kaida et al2004) supports the rationale that 

ganglioside species are able to cis interact, and the potential masking of epitopes from 

antibodies may underpin the apparent lack of pathogenicity of such antibodies. 

In order to address the enigma of anti-GMI antibodies and neuropathy, the aims of 

this thesis were to: 

*Profile the distribution of GM1 in the peripheral nerve 

*Identify and characterise a suitable murine model on which to base anti-GM1 studies 

*Rationalise the presentation of the GM1 antigen in the membrane based on the 

ability of anti-GM1 antibodies with differing specificities to bind and cause a 

complement mediated lesion. 
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Chapter 2 

Materials and Methods: 

2.1 Commonly Used Solutions 

2.1.1 Reagents, Abbreviations, Suppliers (and Stock Concentrations if required) 

*Texas Red labelled alpha-bungaratoxin (TRITC-BTx), (Molecular Probes, Leiden, 

The Netherlands) (stock concentration lmg/ml) 

*Citifluor antifade (Citifluor, Canterbury, UK) 

*FITC-Goat anti-human C3 (Dako, Ely, UK) 

*Mouse anti-human C5b-9 (Dako, Ely, UK) 

*FITC and TRITC Goat anti-mouse secondary antibodies: IgG2a, IgG2b, IgG3, IgG, 

IgM. (Southern Biotech, Birmingham, USA) (stock concentration lmg/ml) 

*FITC and TRITC Goat anti-human secondary antibodies: IgM, IgG, (Southern 

Biotech, Birmingham, USA) (stock concentration 1 mg/ml) 

* Alexafluor-488 alpha-bungaratoxin (Alx-BTx) (Molecular Probes) (stock 

concentration 1 mg/ml) 

*Cholera-toxin B subunit -FITC (CTb-FITC), (Sigma, Poole, Dorset) (stock 

concentration 1 mg/ml) 

*Cholera-toxin B subunit-TRITC (CTb-TRITC), (List Biological Laboratories, 

Campbell, CA) (stock concentration 1 mg/ml) 

*Ethidium homodimer-l (EthD-l), (Molecular Probes) 

* Aminopropyltriethoxysilane (APES), (Sigma) 

*Vectashield (with DAPI), (Vector Laboratories, Burlington, CA) 

*Tissue-Tek, (Sakura Finetek, Torrance, USA) 
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2.1.2 Recipies 

*Ringer (Stock X10 solution) 

NaCI 
KCI 
NaHC0 3 

NaH2P04 

Glucose 
1M MgCh 

67.79g 
3.35g 
19.32g 
1.19g or (NaH2P04.2H20 1.56g) 
19.82g 
10ml 

Make up to 1000ml with dH20. 

Dilute 1 in 10 to use, bubble with 02 and add 2ml 1 M CaCh per 1000ml 

*PBS (Stock Xl 0 xolution) 

NaCI 80g 
KH2P04 2g 
Na2HP04.12H20 29g 
KCI 2g 

Make up to 1000ml with dH20 . 

Dilute 1 in 10 to use. 

2.2 Ex-Vivo Muscle Nerve Preparations 

2.2.1 Triangularis Sterni (TS) Preparation 

The TS muscle is a thin sheet of muscle fibres (several fibres thick), which lines the 

interior surface of the ribs. The muscle is innervated in segments by the intercostal 

nerves, and has an abundance of easily visualised NMJs (McArdle et aI1981). 

Because of this, and the fact the muscle can be stained and imaged whole mount (ie. 

without sectioning), it is the ideal muscle for illustrative purposes. 

2.2.1.1 TS Dissection 

To expose the TS, mice were killed by a rising concentration of C02 in accordance 

with UK Home Office guidelines. Mice were pinned in the supine position, and the 
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skin reflected to reveal the upper thoracic region. The pectoral muscles and tissue 

overlying the ribcage was cleared, as was the diaphragm. Viscera within the thoracic 

cavity were carefully removed in order to avoid tearing the TS, and the ribcage 

removed. The ribcage was pinned pectoral side up, in a Sylgard (Dow Coming, 

Michigan, USA) lined Petri dish filled with Ringer. Using a dissecting microscope 

with transverse illumination, the TS muscles were exposed by cutting away the 

overlying layers of intercostals muscles. Ribs were carefully cut and peeled off, and 

any overlying tissue debris removed leaving the intact TS. The sternum was then cut 

up the midline to leave 2 TS preparations, each of which retained the support of the 

sternum. Each TS was pinned in a Sylgard lined staining chamber for staining or 

treatment. Staining chambers were prepared by lining a 12 well tissue culture plate 

(BD Biosciences) with Sylgard, and pinning muscles in individual wells. 

2.2.1.2 TS Staining Procedure (2 colour staining) 

Unlesioned Tissue: BTx + CTb or BTx + anti-ganglioside mAb 

TRITC-BTx (2Ilg/ml) was applied with anti-ganglioside mAbs (lOOllg/ml) or CTb 

(2Ilg/ml) in Ringer for 2 hours at 32°C, followed by 30 minutes at 4°C. Tissue was 

rinsed 3X in Ringer and fixed for 20 minutes at RT in 4% PF A (Sigma). Tissue was 

rinsed 3X in PBS, and O.lM glycine/PBS applied for 10 min at RT to quench 

endogenous aldehydes resulting from the fixation, and thus reduce non-specific 

background fluorescence. To detect anti-ganglioside mAbs, subtype specific FITC

conjugated secondary antibodies (3.3Ilg/ml) were applied overnight in PBS at 4°C. TS 

was rinsed 3X in PBS, unpinned and the muscle removed from the sternum and 

bordering tissue. TS was mounted in Citifluor on glass slides, coverslipped and sealed 

with nail polish. 
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Lesioned Tissue: BTx + C3 or BTx + MAC or BTx + IgG 

To illustrate the pathogenic effects of anti-ganglioside mAbs, they were applied as 

described above (with TRITC-BTx), rinsed off 3X in Ringer and 40% NHS applied to 

the preparation for 1 hour at RT. Tissue was rinsed 3X in Ringer. To detect C3 

deposition, FITC-goat anti-human C3 (SO~g/ml) was applied for I.S hrs at 4°C before 

fixation and mounting as detailed above. For MAC detection, tissue was fixed, 

incubated in 0.1 M glycine and mouse anti-human CSb-9 applied overnight at 4°C in 

PBS (363~g/ml), followed by 3X rinses in PBS and detection with FITC anti-mouse 

IgG2a (S~g/ml) overnight at 4°C. To detect anti-ganglioside mAb deposition, fixed 

tissue was incubated in the relevant FITC-anti-mouse secondary (S~g/ml) overnight, 

as already described. 

Imaging 

Dual colour images were acquired with a Zeiss LSM S Pascal microscope (Carl Zeiss, 

Hertforshire, UK), and 3D images generated from z-stacks using the softaware 

package Voxx2 (available from http://www.nephrology.iupui.edulimaging/voxx). 

Multi-Colour Staining (FITC, TRITC and Cy-S) 

*BTx, CTb and either S100, Neurojilament (1217) or Synaptophysin 

Tissue was incubated in TRITC-BTx (2~g/ml) and CTb (2~g/ml) in Ringer for 1 hr 

at 32°C, rinsed 3X in Ringer, fixed for IS min at RT in 4% PFA, rinsed 3X in PBS 

and incubated for 10 min in O.IM glycine for 10 min at RT. S100 (22.S~g/ml, Dako, 

Ely, UK) or Synaptophysin (30.5~g/ml, Affinity BioReagents, Cambridge, UK) or 

1217 (rabbit polyclonal, diluted 1 in 200, Affinity BioReagents, Cambridge, UK) 

were applied to fixed tissue overnight in O.S% Triton in PBS at 40C, rinsed 3X in 

PBS and detected overnight with Cy-S conjugated anti-rabbit IgG (S~g/ml, Southern 
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Biotech, Birmingham, USA). Images were obtained using a BioRad MRC 1024 

Confocal laser scanning microscope (BioRad, Hemel Hempsted, UK). 

Further staining protocols for multi-colour images were developed upon introduction 

of the Zeiss Axio-Imager Z1 microscope (with Apotome optical sectioning). These 

methods do not apply to the results of this thesis, however represented a significant 

input into a study submitted for publication. Details and examples of optimised triple 

colour staining are outlined in Appendix 2. Images were reconstructed by generating 

a maximal intensity projection (MIP) using Axio Vision Release 4.6 software. 

2.2.2 Hemi-Diaphragm Procedure 

Mice (5-10 weeks old, male) were killed by a rising concentration of CO2 in 

accordance with UK Home Office guidelines. Mice were immediately pinned in the 

supine position and the skin reflected from thorax to pubis. A window was cut in the 

thorax to expose the heart and lungs, and each phrenic nerve cleared of connective 

tissue and carefully tied off (as near to the thyroid as possible) with fine thread. The 

liver was exposed by cutting the abdominal peritoneum to the xiphisternum, and the 

diaphragm freed from surrounding viscera by cutting through the ligamentum teres, 

aorta, vena cava and oesophagus while avoiding damage to the diaphragm. The 

muscle nerve preparation was removed by cutting the spine above the diaphragm and 

through the ribs at the back ofthe chest. The preparation, comprising the diaphragm, 

attached ribs and phrenic nerves was pinned carefully in a Sylgard lined petri dish to 

preserve muscle tension. Excess muscle tissue and membranes were cleared, and the 

diaphragm halved up the midline to leave left and right hemi-diaphragms with an 

intact nerve supply. The dorsal most portion of each was removed and immediately 
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snap frozen to give quantitative"baseline" measurements for IgG, NF, C3 and MAC. 

Remaining tissue was used for incubations. From each mouse, one hemi-diaphragm 

was incubated with mAb, while the other was incubated in Ringer under identical 

conditions to serve as a control. 

Anti-ganglioside mAb was diluted in Ringer to a final concentration of 100j..lg/ml 

(unless otherwise stated). Normal human serum was diluted to 40% in Ringer, and 

each were dialysed overnight against Ringer at 4°C. Calculations allowed for at least 

1.5ml of solution to be applied per hemi-diaphragm to ensure adequate coverage. 

* Anti-ganglioside antibody (or Ringer) for 2hrs at 32°C, followed by 30min at 4°C 

and finally, 10min at ambient room temperature. 

*Remove and retain antibody sample. Rinse tissue 3X in Ringer. 

* Add 40% NHS for 1 hour at room temperature and observe tissue under dissecting 

microscope for muscle fibre fibrillations. 

*Rinse 3X in Ringer 

*Remove attached ribs to free diaphragm with phrenic nerve insertion and snap 

freeze. 

2.2.2.1 Hemi-Diaphragm Analysis 

Following the hemi-diaphragm preparations, tissue for immunohistochemical analysis 

was snap frozen and maintained at -70°C until cut onto slides. 

Tissue was mounted onto Tissue-Tek and cut using a cryostat onto APES coated 

slides and left to air dry before being stored at -20°C or processed immediately for 

IHC. Tissue was cut at 8j..lm, with every 5th section at 20j..lm. 
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8/lm sections were processed for IgG/IgM , C3 and MAC staining. For each 

condition, 3 unstained slides were selected (encompassing sections from start, middle 

and end of the cut tissue series) and stained in one staining run with adequate positive 

and negative controls. NMJs were localized using TRITC-BTx, (1.3/lg/ml). All 

reagents were diluted (if required) in PBS. Slides were mounted in Citifluor antifade 

and the coverslip sealed with nail varnish. All other reagents and dilutions were as 

follows: 

C3 

Sections were treated with TRITC -BTx and FITC-Goat anti-human C3 (33/lg/ml) for 

at least 2 hours at 4°C. Slides were rinsed in PBS and mounted. 

IgG/IgM 

Sections were incubated in TRITC -BTx and FITC-Goat anti-mouse IgG2b/IgG3 

(3.3/lg/ml) at 4°C for a minimum of3.5 hours. For human IgM detection, slides were 

incubated overnight in goat anti-human IgM (3.3/lg/ml) and TRITC -BTx (1.3/lg/ml) 

at 4°C. A positive control (if available) was included in the staining run. Slides were 

rinsed in PBS and mounted. 

MAC 

Mouse anti-human C5b-9 (363/lg/ml) and TRITC -BTx was applied to slides for 2 

hours at 4°C. Slides were then rinsed in PBS and FITC-goat anti-mouse IgG2a 

applied at 5/lg/ml for 3.5 hours. For experiments where the anti-ganglioside mAb 

was IgM, MAC could also be detected using a pan-IgG secondary (FITC-goat anti-

mouse IgG, 5/lg/ml). 

76 



2.3 Enzymatic Treatments at the Ex- vivo NMJ 

2.3.1 Neuraminidase (N'ase) from Clostridium perfringens (Sigma, Poole, UK) 

(This enzyme cleaves terminal sialic acid residues from gangliosides; the sialic acid 

residue ofGMI is resistant to the enzyme). 

For TS preparations, N'ase was used at 2 units/ml, diluted in Ringer, and tissue 

incubated for 1.5hrs at 32°C. In the hemi-diaphragm, N'ase was used at 5 units/ml 

under the same conditions. 

2.3.2 Phosphatidylinositol-specific Phospholipase-C (PI-PLC) from Bacillus cereus 

(Sigma, Poole, UK) 

(This enzyme removes GPI anchored proteins from the membrane). 

PI-PLC was used at 3.5 units/ml (diluted in Ringer) for 1.5hrs at 32°C. 

2.4.Topical Staining 

2.4.1 Tissue Harvest 

Mice (5-10 weeks old, male) were killed by a rising concentration of C02 in 

accordance with UK Home Office guidelines. Sciatic nerves or muscles 

(gastrocnemius, soleus, diaphragm, flexor digitorum brevis (FDB)) were dissected 

out, placed in Eppendorfs and snap- frozen on dry ice. Tissue was stored for up to 1 

month at -70°C prior to use. Muscle tissue was mounted onto Tissue-Tek and cut at 

8f.lm using a cryostat (Bright Instruments) onto APES coated slides. Nerves (except 

those for teased fibre preparations) were carefully placed in semi-frozen Tissue- Tek 

in the required orientation and frozen before cryo-sectioning at 15 f.lm. 
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2.4.2 Muscle Tissue Staining: 

2.4.2.1 Immunoglobulin Binding Assay 

Optimal concentrations for primary mAbs were firstly determined by performing a 

dilution series, typically ranging from SJ...lg/ml and increasing to SOJ...lg/ml. The 

optimal staining concentration represented the dilution giving immunoglobulin 

deposition over the endplate at a detectable level in wild type mice, but which was not 

overly saturating if applied to the relevant KO strains (eg. anti a series ganglioside 

mAbs in the a series ganglioside overexpressing GD3s-I
-). Primary mAbs were 

diluted to the required concentration in PBS along with TRITC -BTx (1.3J...lg/ml) and 

applied to the slides for 2.S hours at 4°C. Negative controls were also included by 

incubating one slide per staining run in TxR-BTx and PBS alone. Slides were rinsed 

in cold PBS and secondary antibody (FITCconjugated) applied at 1.3 J...lg/ml in PBS for 

3.Shrs at 4°C. Slides were rinsed again and mounted in Citifluor. 

2.4.2.2 Complement Activation Assay 

Primary mAbs and TRITC-BTx were applied to the tissue as before, rinsed, and 

incubated at 32°C in 4% NHS (diluted in Ringer) for 1hr. Slides were rinsed and 

FITC-Goat anti-human C3 applied at 33J...lg/ml for at least 2 hours at 4°C. Slides were 

rinsed in PBS and mounted. Negative controls were included by either omitting 

addition of primary mAb or substituting 4% human serum for Ringer alone. 
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2.4.3 Nerve Staining 

2.4.3.1 Sectioned Nerve 

Nerves were removed, embedded immediately in semi-frozen Tissue- Tek and 

mounted onto a cryostat chuck for sectioning onto APES coated slides. Cryostat cut 

sections of nerve were immunostained using the same method as muscle tissue. BTx 

was not used and all mAbs were used lOflg/ml. 

2.4.3.2 Teased Fibres 

Sciatic nerves were removed and immediately placed into oxygenated Ringer. For 

teasing, they were cut into sections of 3-4mm and placed onto an APES coated slide 

with a small volume of PBS. Using 2 fine needles, nerves were desheathed by 

removing the epineurium and carefully teasing out the individual fibres with the 

needle, under a dissecting light microscope. Nerves were adhered to the slides by air 

drying for approximately 3 hours. Staining was performed by applying primary 

antibody diluted in PBS to a concentration of 15flg/ml, or CTb at Iflg/ml. After 1.5 

hours at 4°C, slides were carefully rinsed by dipping into PBS, and if required 

secondary antibody (anti-mouse IgG FITC) applied at a dilution of3.3flg/ml in PBS 

for 3 hours at 4°C. Nerves were mounted in Citifluor or Vectashield with DAPI, 

coverslipped and sealed with nail varnish. 

2.5 Fluorescence Analysis at the NMJ 

C3, MAC and Ig deposition were analysed by measuring the intensity of the signal 

overlying the TRITC-BTx area (i.e. the NMJ). In order to do this, the BTx image was 

thresholded to delineate the NMJ, and used to define a region of interest (ROI) which 

was applied to the FITC image. The mean intensity of the FITC signal within this 

ROI was measured. To analyse percent coverage of the NMJ (as done in the topical 
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mAb staining, and for all NF analysis) the TRITC and FITC channels were 

thresholded, and the area of the FITC signal expressed as a percentage of the TRITC-

BTx area. Figure 17 shows a diagram outlining the procedure for measuring FITC 

intensity. 

BT:-; signal. Each ~J defines ROt Raj is copied to the FlTC Channel. 
and FlTC intensity L1l~(ls\lfed . 

Fig 17. Example of the analysis procedure for measuring FITC fluorescence intensity 
(eg. ofC3, Ig or MAC) over the NMJ, as delineated by TRITC-BTx. In the TRITC 
image (black and white), the white areas correspond to the BTx signal (ie. an NMJ). 
One NMJ is selected, and this ROI copied to the FITC channel where the mean 
intensity is measured within the ROI. 

2.6 Antibody Culture 

All tissue culture work was done in a sterile Class II hood using standard sterile 

practice. All incubations were done in a Class II incubator, at 32°C in 95%02, 5% 

Media were prepared several days prior to use, and an aliquot placed in the incubator 

to confirm sterility prior to use. If required, media were warmed to 32°C prior to use. 
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2.6.1 Hybridoma Culture 

Media: 

Growth media = Complete RPMI 1640 media with 20% FCS and 1 % L-glutamine 

Integra media = Complete RPPMI 1640 with 1 % L-glutamine 

Freezing media= 10% dimethyl sulfoxide (DMSO), 90% FCS 

All media and supplements were purchased from Sigma (Poole, UK) unless otherwise 

stated. All culture flasks and sterile containers were purchased from BD Biosciences 

(Oxford, UK). 

2.6.1.1 Thawing of Cell Lines 

Hybridoma cell lines were placed in freezing media and stored in liquid nitrogen until 

required for mAb production. Upon removal from liquid nitrogen, cells were rapidly 

thawed and placed in Falcon T75 sterile flasks (with 35ml growth media). Flasks 

were incubated overnight, then contents removed into sterile 50ml tubes (Falcon) and 

spun at 1000RPM for 5 minutes in a Beckman GS-6R centrifuge to pellet the cells. 

The supernatant (containing DMSO from the freezing medium) was discarded, and 

the pellet resuspended in approximately 2ml of growth media and split between 2 new 

T175 flasks containing 35ml growth media each. 

2.6.1.2 mAb Production 

*Cell Cuture Flasks 

Each hybridoma line displayed different optimal growth conditions, so flasks were 

monitored every 2-3 days to determine the optimal density at which they could be 

maintained and continue to produce antibody. Once this was established, cells were 

spun down as before, and supernatant retained at -20°C until purification. Samples of 

supernatant were regularly run on standard ganglioside enzyme linked 
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immunosorbent assay ((ELISA), section 2.7) to check the cells were continuing to 

produce antibody. The cells were returned to T175 flasks with fresh growth media 

and replaced in the incubator until ready to be split again. It had been observed that 

cells left to become highly confluent do not survive long, but tend to produce more 

antibody. Thus, several flasks were left to become over-confluent, before the 

supernatant was removed and the cells discarded. 

*Integra (Integra Biosciences, Switzerland) 

Integra Celline flasks (Fig 18) were found to be a convenient method of antibody 

production, giving a yield of antibody in excess of that easily achievable in culture 

flasks. Cells are grown in the cell compartment at up to l x107/ml, and the separation 

of the cell and nutrient compartments by a dialysis membrane allows the free 

exchange of nutrients but not secreted antibody. Secreted antibody is retained in the 

cell compartment, and service ports allow regular harvest of secreted product and 

media exchange. 

Norriellt 
Port 

DiaJlysis 
~'embram;e 

.. 
Ol co, I 

Perm""bl " Fi Iter 

Nlotrie" t 
CompaJrtmemt 

Prod:wlcti oml 
Com~rtm;emlt 

Fig 18. Schematic diagram of the Integra flasks used for hybridoma culture. 

Prior to initiating a new Celline, 6 T175 flasks were maintained until approximately 

confluent, and spun down in individual Falcon tubes. Supernatant was retained, while 

pellets were resuspended in growth meduim to give a cell suspension of 5ml, ready 

for inoculation into Celline. 
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Intergra Celline flasks were set up as per manufacturer's instructions. Briefly, 15ml 

of growth medium was added to the cell compartment and 50ml ofIntegra media to 

the nutrient compartment and left for 5 minutes to equilibriate the system. 5ml of cell 

inocculum was then added to the cell compartment and the nutrient compartment 

topped up to a final volume of 1 L. 

Media was exchanged twice weekly (500ml per exchange) and antibody harvested 

once weekly by removing 7.5ml of cell suspension from the cell compartment and 

replacing with 7.5ml growth medium. Once monthly, cells were added to a T75 flask 

and cultured for 1 week to ensure no contamination 

2.6.1.3 Freezing Down 

A 175ml flask was maintained until cells were confluent, and cells spun down as 

before. Supernatant was retained, the pellet resuspended in freezing media, and Iml 

aliquots of the single cell suspension placed into cryovials. Cryovials were then 

rapidly frozen overnight at -70°C before being placed in liquid nitrogen. 

2.6.1.4 Antibody Purification 

DGI and MOG 35 (IgG 2b) cell culture supernatants were purified by protein G 

sepharose chromatography, on HiTrap Protein G affinity columns (Amersham 

Biosciences). DG2 and MOG 1 (IgG3 supernatants) were purified using HiTrap 

Protein A affinity columns (Amersham Biosciences). On application to the column, 

the antibodies bind to the protein and the flow-through material, containing the 

impurities, can be discarded. The bound antibody is then eluted in acidic solution (PH 

2-3). Tissue culture supernatants were defrosted at RT and centrifuged (Sorval 

RC5C) at 10000 RPM for 30 minutes, 4°C. Prior to application to the Protein G or 
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Protein A column, supernatants were adjusted to the composition of the binding 

buffer (O.IM Phosphate Buffer: 0.2M NaH2P042H20 and O.2M Na2HP04,pH 7.4) by 

overnight dialysis against binding buffer at 4°C (binding buffer volume was at least 

10X that of supernatant volume). The supernatant was then filtered using a 0.45)..lm 

membrane bottle top filter (Nalgene Nunc, New York) and stored on ice for the 

duration of the purification. All solutions for application to the column were filtered 

using a 0.45)..lm single use syringe top filter unit (Sartorious Minisart, Germany). 

The column was firstly equilibriated to pH 7.4 by application of 10 column volumes 

of binding buffer. Flow speed was noted by calculating time taken to collect 10 

column volumes, thus allowing the peristaltic pump to be set at a rate of no more than 

1 column volume per minute. Supernatant was then run through the column, and 

flow-through retained. Once the sample was loaded onto the column, it was washed 

with at least 10 column volumes of binding buffer, and 10 fractions collected until the 

absorbance at 280nm (A280nm) was < 0.03 with a binding buffer blank. 10 column 

volumes of filtered elution buffer (O.IM Glycine- HCI, pH2.7 for Protein G columns, 

or O.IM Citric acid, pH 3 for Protein A columns) were loaded and 10 fractions 

collected into bijoux bottles containing the required volume of neutralizing buffer 

(Tris-HCI, pH 9). A280nm were recorded per fraction to ensure IgG peaked on the 

early elute fractions and late fractions contained <0.05 with a blank of neutralised 

elution buffer. The column was washed with 10 volumes of binding buffer followed 

by 5 column volumes of 20% ethanol prior to storage at 4 DC. 

A standard "plus minus" ganglioside ELISA (section 2.7) was performed using 

samples of pre-purified supernatant, the wash fractions, elution fractions and the flow 

through. Anti-ganglioside antibody activity in the flow through indicates the column 

may have become saturated and not all IgG was able to bind. Similarly, IgG in the 
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wash fractions indicates unbound antibody had been removed along with impurities 

from the tissue culture growth supernatant. High A280nm values for the elution 

fractions should correlate with high OD490nm from the ganglioside ELISA, thus 

confirming the protein contained in the sample is functional antibody (Figure 19) 

r-- ------ - -------- ----- ---- -----
OG1 Purification: 00490 (ELISA) VS 

00280 
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Fig 19. Comparison of A280nm (spectrophotometer) and OD490nm (ELISA) 
readings for Wash (W) and Elution (E) fractions. High A280nm readings in the Wash 
fractions 1 and 2 do not give similar ELISA readings, indicating the protein present in 
these fractions is FCS impurities as opposed to antibody. The high A280nm readings 
of the Elution fractions correlates with the ELISA data, indicating functional antibody 
has been eluted. 

Fractions containing purified antibody were pooled and the A280nm recorded. The 

final sample was then desalted using PD 1 0 desalting columns (Amersham 

Biosciences) following manufacturers instructions. The A280nm of the final sample 

recorded (against a blank: of PBS) to ensure no IgG had been retained in the PD 1 0 

column, and to give a final concentration of the sample in mg/ml (A280nml1.43). 

Purified antibody was aliquoted and stored at -70°C. 

2.7 ELISA ("plus minus") 

Immulon 2 microtiter plates (Dynatech, Chantilly, Va.) were designated alternate 

positive and minus rows. Positive wells were coated with 200ng of ganglioside 
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(Sigma) per well, in methanol, while minus rows received lOO1l1 of 100% methanol to 

control for background optical density readings. Plates were left to dry by 

evaporation overnight, and stored at 4°C for at least 1 hour before use. Wells were 

then blocked with 200111 of2% BSA solution (Sigma) diluted in PBS. After at least 1 

hour at 4°C, the block was discarded by flicking the plate and patting dry on tissue. 

100111 of sample was added to respective positive and minus wells and serially diluted 

across the plate in 0.1 % BSA solution. Incubations were left for a minimum of 4 

hours at 4°C, and after discarding the sample, wells were washed 5 times in cold PBS 

and the plate patted dry. 100111 of horseradish-peroxidase (HRP) conjugated 

secondary antibody (Sigma) was added per well: secondary antibodies were diluted in 

0.1 % BSA (0.25Ilg/ml for rabbit-anti mouse IgG, 0.761lg/ml for rabbit-anti human 

IgM) and incubated for a minimum of 1 hour at RT. The plate was then washed 3X in 

cold PBS and developed by adding 100 III of substrate solution (30ml dH20, 16ml 

O.2M Na2HP04, 14ml O.IM C6Hg0 7, 1 OPD tablet and 20111 H202) per well for 20 

minutes in the dark (prior to addition of substrate solution, a drop was added to any 

remaining, unused secondary antibody solution to confirm colour change). The 

reaction was halted using 50111 per well of 4M H2S04 and optical densities read at 

490nm (OD 490nm) using an automated plate reader. 

2.8 PC12 Cell Culture 

2.8.1 Preparation of Flasks and Coverslips 

All solutions were added to flasks in the following volumes: 

T25 = 1.25ml 

T75 = 5ml 

T175= 30ml 
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PBS and dH20 were autoclaved and stored at 4°C to ensure sterility. 

Poly-L-Lysine (PLL, Sigma, Poole UK) coated flasks were prepared by addition of 

PLL diluted to a concentration of 13.3 ).lg/ml in dH20 to tissue culture flasks. PLL 

was left in flasks with loosened lids for 10 minutes, and discarded before rinsing 

flasks in PBS. Excess PBS was pipetted out and flasks incubated overnight at 37°C 

and stored at RT for up to 2 weeks. Sterile Petri dishes (Smm diameter) were also 

coated, using the same method for flasks. Cells were grown overnight in dishes prior 

to treatments followed by F ACS analysis (Section 2.8.6). 

To coat coverslips, PLL solution was prepared as before and 20ml placed in a Petri 

dish. To this, autoclaved 13mm coverslips were added and left overnight at 37°C. 

Curved forceps were then used to remove coverslips to a 24 well tissue culture plate 

(1 per well). Excess PLL was removed by tipping the plate and pipetting off excess 

and allowing the plate to air dry for 10 minutes before a final overnight incubation at 

37°C. 

2.8.2 Cell Maintenance 

Cells' doubling times were approximately 4 days (Walton et aI1988), upon which 

cells were split and subcultured at a third of the initial density. To split the cells, 

growth media (DMEM (Invitrogen, Paisley, UK) plus 7.S.% FCS and 7.S% Horse 

Serum (HS), (both Sigma)) was discarded from the flasks and residual media removed 

by rinsing the cells once in PBS and discarding. PBS containing O.2S% of Trypsin 

(bovine pancreas, Sigma) was added to the flasks and incubated for 2 minutes at 37°C. 

The cell suspension was transferred to SOml Falcon tubes and an equal volume of 

media added to neutralise trypsin activity. Cells were centrifuged at 1000rpm for S 
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minutes, and the media discarded. The pellet was dissociated by gently flicking the 

Falcon, and resuspended in 3ml of fresh growth media. Iml was then added to a fresh 

flask containing 30ml of growth media. 

2.8.3 Seeding Coverslips 

Cells were split as described, and the pellet resuspended in 2ml of media. Cell 

density was determined using a hemocytometer. Taking into account the number of 

coverslips to be coated (500IlI cell suspension/well), cells were diluted in media to an 

average density of 3xl04/ml. Following addition of 500lli to each well, plates were 

incubated overnight at 37°C prior to coverslip removal and staining. 

2.8.4 Cell Staining 

Coverslips were removed from wells using curved forceps, and rinsed twice in PBS 

and blotted on tissue before being placed in staining trays, cell covered surface facing 

upwards. Primary antibody was diluted in PBS (to a final concentration of 12.5 

Ilg/ml) and IOOIlI added to each coverslip. Staining trays were incubated at RT for 30 

minutes, before coverslips were rinsed 3X in PBS and incubated in darkness with 

secondary antibody (anti-mouse IgG) at 3.31lg/ml for 45 minutes, at RT. Coverslips 

were rinsed 3X in PBS and fixed by application of IOOIlI of 4%PFA for 15 min at RT. 

Coverslips were finally rinsed 3X in PBS, blotted and placed face down in 

Vectashield-DAPI and sealed with nail varnish. 

2.8.4.1 Live/Dead Staining 

The "LivelDead Assay" (Molecular Probes Inc, Leiden, The Netherlands) containing 

Calcein Green and EthD-l was used. A mixture ofCalcein green (2IlM/ml) and 

EthD-l (2IlM/ml) diluted in PBS, was applied to cells for 30min (37°C). After 
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staining, coverslips were rinsed 3X in PBS, mounted (unfixed) in PBS and imaged 

immediately. 

2.8.5 Cell Treatments 

For immunofluorescence studies of treated cells using a microscope, cells were 

seeded onto coverslips as already described. For analysis of staining intensities using 

flow cytometry, cells were plated in 5ml PLL coated Petri dishes 24 hours prior to 

enzymatic treatment. 

2.8.5.1 Neuraminidase (N'ase) 

Cells were rinsed in PBS 3X. N'ase was used at 2 units/ml in serum free DMEM). 

Coverslips were incubated in this solution for 1 hour at 37°C, and Petri dishes for 

I.5hrs at 37°C, then rinsed 3X in PBS. 

2.8.5.2 Phosphatidylinositol-Specific Phospholipase C (PI-PLC) 

Cells were rinsed 3X in PBS. PI-PLC was used at 2 units/ml diluted in PBS. Cells 

were incubated for I hr at 37°C. 

2.8.5.3 Exogenous Addition ofGangliosides 

GTIa, GDIb or GDIa were added to the cells at 20J.lg/ml. lOOJ.lI of ganglioside was 

removed from the stock solutions, at Img/ml (Sigma), and dried under a stream of 

nitrogen. 500J.lI dH20 was added to the dried gangliosides, and sonicated for 30min. 

As a "placebo", 500J.lI of dH20 containing no ganglioside was treated under the same 

protocol. Solutions were warmed to 37°C (Facci et a1I984) for I hour and added to 

4500J.lI of warmed SFM and vortexed. Rinsed and pelleted PCI2 cells were 
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resuspended in the solutions and incubated overnight at 37°C in PLL coated Petri 

dishes. 

2.8.5.4 Methyl-fJ -Cyclodextrin (MfJCx) 

Cells were trypsinised, pelleted and resuspended in SOml of serum free media (SFM) 

containing SOmM M~Cx, for 4S minutes at 37°C. Cells were rinsed by pelleting and 

resuspending in PBS. Cholesterol depletion was confirmed by expressing cholesterol 

content of treated and untreated cells as a ratio of cholesterol:protein, using the 

method as described below. 

2.8.5.4.1 Cholesterol Assay 

Pelleted cells (control and M~Cx treated) were freeze/thawed by storing at -80°C for 

20 min to lyse. Pellet was resuspended in 2001-11 of O.IM potassium phosphate buffer 

(0.2M KH2P04, 0.2M K2HP04) containing protease inhibitors (PI) (Roche Applied 

Biosciences) and sonicated on ice for 10 sec with a probe sonicator. 101-11 of the 

sample was removed to fresh Eppendorfs (in duplicate) and stored on ice, while the 

remainder was discarded. Cholesterol standards (Alpha Laboratories, Hampshire, UK) 

of 1,2, S and IOl-1g/ml were prepared in phospahate buffer (including PI as before), 

along with a blank containing only phosphate buffer and PI. To all samples, 21-11 of 

1 % Triton X-I00/20mM sodium cholate (in Phosphate buffer), 2.Sl-1l of9S% EtOH 

and Iml Infinity Reagent (Alpha Laboratories) was added and incubated for 20 min at 

37°C. Samples were spun at 12000rpm to pellet any debris which may interfere with 

optical density readings, the supernatants transferred to cuvettes and read at SOOnm 

after blanking the BioPhotometer (Eppendorf) with the phosphate buffer only sample. 
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2.8.5.4.2 Protein Assay 

Protein estimation was done using the BCA Protein Reagent Assay (Pierce Chemical 

Co., Rockford, IL), following manufacturer's instructions. Standard curves were 

generated using Albumin standard controls (supplied with the kit). Assay was 

performed in a 96 well ELISA plate, and read at 562nm. 

2.8.6 PC 12 FA CS Analysis 

Adherent cells were rinsed 3X in serum free media (SFM) and trypsinised. For cells 

grown in PLL coated Petri dishes, remaining adherent cells were dislodged using a 

cell scraper (BD Biosciences). Cells were then added to 50ml Falcon tubes 

containing 5ml ofFACS buffer (2% FCS in PBS) to neutralise the trypsin, and spun 

at 1500rpm for 5 minutes at RT, to pellet the cells. Media was discarded and the cell 

pellet resuspended in Iml ofFACS buffer. Cells were counted using a 

hemocytometer. Based on the number of sample tubes to be analysed, cells were 

diluted in F ACS buffer to allow for 1 x 105 cellsll 00 I . .tl to be added per tube. Cells were 

initially placed in 1.5ml Eppendorftubes for staining and rinsing steps before final 

transfer to F ACS tubes. 100).!1 of primary antibody, anti-ganglioside mAbs at 10).!g/ml 

or Thy-l at 7.752).!g/ml (CD90, AbCam, Cambridge, UK) diluted in F ACS buffer, 

was then added per tube, triturated using a pipette and incubated on ice for 30 mins. 

CTb-FITC was incubated at l).!g/ml for 1 hr, omitting the secondary detection step 

below. During all incubations, tubes were frequently agitated to ensure cells remained 

suspended in antibody solution. To rinse cells, 1 ml of F ACS buffer was added per 

tube, mixed with a pipette and tubes spun at 1500rpm for 5 min (RT). Supernatant 

was carefully pipetted off, and 100).!1 of secondary antibody (anti-mouse IgG at 
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3.3flg/ml, diluted in FACS buffer) added to each tube and triturated. The samples 

were incubated in darkness for 30 min on ice, and rinsed as before. The pellet was 

finally resuspended in 600fll ofFACS buffer, transferred to FACS tubes and analysed 

using a F ACScan flow cytometer (Becton Dickinson, USA). F ACS settings remained 

constant for each experimental repeat. 

2.8.7 Purification of DRMs from PCl2 

PC12 cells were washed and pelleted in an Eppendorftube by spinning at 1500rpm 

for 5 minutes. Approximately 10 million cells per preparation was used. Cells were 

resuspended in 475fll MES (2-(N-morpholino)ethanesulphonic acid) buffered saline 

(MBS) (25mM MES, 150mM NaCI, pH6.5) plus protease inhibitors (Roche Applied 

Science) and cells retained on ice for all subsequent steps. 25 fll of 10% detergent 

(Triton X-100 (Sigma) or Brij-96 (Sigma)) in MBS was added to the cells to give a 

final concentration of 0.5% detergent, and following a 20 min incubation (on ice, and 

in the cold room at 4°C) the solution was homogenised with 10 strokes of a Dounce 

homogeniser. O.4ml of lysate was mixed with 80% sucrose (in MBS) in a centrifuge 

tube (BD Biosciences) and bubbles removed from the surface. This was overlaid 

successively with 2.2ml of 30% sucrose and approximately l.4ml of 5% sucrose. 

Tubes were spun for 18-24hrs at 50,000rpm (Beckman SW60 rotor). 390fll fractions 

from the top of the gradient (designated fraction 1), through to bottom, designated 

fraction 12 were collected. If a pellet formed at bottom of tube, it was resuspended in 

1ml MBS and collected as fraction 12. Figure 20 shows a schematic diagram of the 

procedure. Following collection of fractions from the gradients, fractions (in labelled 

Eppendorfs) were stored at -20°C or if used in magnetic bead separation experiments, 

stored on ice and used immediately. 
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Fig 20: pictorial representation of the sucrose gradient profile and fraction collection. 

2.8.7.1 Magnetic Bead Separation 

*Indirect Isolation 

A confluent T175 was trypsinised and cells resuspended in PBS. Cells were stained in 

suspension in Eppendorfs, in either MOG 35 or EG 1 at 15~g/ml diluted in PBS. Cells 

were triturated with a pipette every 15 min to avoid settling out of suspension and 

were rinsed by pelleting and resuspending in PBS 3X. 

Raft preparations were set up as above, using the detergent Brij-96. 12 fractions were 

collected, and an equal aliquot of fractions 3, 4 and 5 retained to be electrophoresed 

alongside the non-raft fractions. The remaining fractions 3-5 were pooled and stored 

on ice while anti-mouse IgG coated Dynabeads (Invitrogen) were prepared. 300~l of 

both the EGI and MOG 35 incubated cells was removed and retained in a separate 
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tube (on ice) and designated "starting material", and 300lli used for Dynabead 

incubation. 

Dynabeads were inverted resuspended in the storage container, and lOOll1 removed 

into an Eppendorf. To this, 1ml of PBS was added and the tube placed against a 

magnet while the PBS was removed and discarded. 1ml of fresh PBS was added, and 

the tube removed from the magnet to redistribute the beads. A total of 5 rinses were 

performed in this manner. After the final rinse, the beads were resuspended in lOOll1 

of PBS and divided into 2 Eppendorfs (501l1 each) to be used for either the EG 1 or 

MOG 35 incubated cells. The PBS was removed as before and the 300lli raft samples 

added to the Eppendorfs and gently inverted. Eppendorfs were placed on a 

tiltinglrotating mixer at 4°C for 30 min. Tubes were then placed against a magnet and 

unbound fraction retained and stored on ice. Beads were then rinsed 4X in PBS (as 

before) to remove any non-specifically bound proteins/lipids. Novex loading buffer 

(Invitrogen) was added to the rinsed beads, and the samples boiled for 1 minute to 

release the bound rafts fractions in preparation for gel loading. "Starting material", 

"unbound" and fractions 1-12 were mixed with reducing loading buffer and boiled in 

the same way. 

*Direct Isolation 

Raft fractions were prepared from untreated PC 12 cells, and fractions 1-12 removed. 

Before fractions 3-5 were pooled, aliquots were removed. Remaining fractions 3-5 

were then pooled, and 300lli dedicated to the control incubated beads, and 300lli 

dedicated to the MOG 35 incubated beads. A sample of starting material was also 

retained. Beads were ali quoted and rinsed as before, then resuspended in either MOG 

35 or control antibody (EG 1 or mouse-IgG (Sigma)) at 50llg/ml for 1hr on a 

tilting/rotating mixer at 4°C. Beads were rinsed 5X in PBS, and the raft sample added 
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for 30min at 4°C on a tilting/rotating mixer. The unbound sample was removed, and 

beads rinsed in PBS 5X, and samples prepared as before. 

2.8.7.2 Western Blotting 

Prior to electrophoresis, all samples were reduced by addition of 25mM dithiothreitol 

(DTT, Amersham). 1 O~l of sample was loaded with a Hamilton syringe onto Novex 

16% Tricene gels (1.0mm well, (Invitrogen)) and gels run at 125V for Ihr 45 min. 

Gels were blotted overnight in a transfer cell according to manufacturer's instructions 

(Bio-Rad, Hemel Hempstead UK) onto nitrocellulose membranes (Whatman, 

Schleicher & Schuell, Dassel, Germany). Membranes were washed briefly in PBS-T 

(0.02% Tween-20 (Sigma) in PBS) and incubated in 5% non-fat Marvel (Premier 

International Foods, Lines, UK) in PBS-T for 45 minutes at RT on a rocking platform, 

then drained off. Primary antibody (anti-ganglioside mAb at 20~g/ml, Horseradish 

Peroxidase conjucated CTb (HRP-CTb, Invitrogen) at 0.1 ~g/ml). Raft protein 

markers: anti-Transferrin receptor (Invitrogen), anti-Flotillin (BD Biosciences), anti

SNAP 25 (provided by Dr L. Chamberlain, (Chamberlain et aI2001)) all at lO~g/ml 

were added in PB S-T for 1 hour at R T on the rocker, then drained off and membranes 

washed 5X in PBS-T over 30 min. With the exception of membranes incubated in 

HRP-CTb, membranes were incubated in secondary-HRP conjugated anti-mouse IgG 

antibody (0.38~g/ml, Sigma) in 1 % MarvellPBS-T for 45 min at RT on rocker, 

drained and washed as before. Membranes then developed using ECL (Amersham 

Buckinghamshire, UK), according to manufacturer's instructions. Membranes were 

exposed to film (Kodak, Rochester, NY, USA) under red light and developed using an 

X Omat (Kodak) processor. 
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2.9 Statistical Analysis 

One-way analysis of variance (I-way ANOVA) was used to determine statistical 

significance, with a p value of <0.05 considered significant. Where graphs are 

displayed as "box and whisker plots", I-way ANOVA was not appropriate, owing to 

non-parametric data. Therefore, significance was determined using the non

parametric Mann-Whitney mean ranks test, and again, a p value of <0.05 was 

considered significant. The "box and whisker plots" are not interpreted as standard 

bar graphs. The horizontal line shows the median. The data in the box below the 

median represents one quarter of the data which lies below the median, while the 

upper box represents one quarter of the data which lies above the median. This forms 

the interquartile range. The "whiskers" on either side show the quarter of the data 

which lies above the interquartile range, and the quarter of the data which lies below 

the interquartile range. Outliers have not been shown on the plots, but were included 

in the Mann-Whitney statistical test. 
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Chapter 3 

3.1 Introduction 

The overall aim of this chapter was to focus on the mouse NMJ and systematically 

analyse the expression levels and distribution of GMl. The hypothesis is that the 

GD3s -1- mouse, which has increased levels of GM l, will represent the ideal model on 

which to base both in-vivo and ex-vivo injury paradigms using anti-GMl antibodies. 

However, use of this genetically modified strain is beneficial only if there is a 

significant enhancement in GMllevels when compared to the wild type mouse. 

Furthermore, while the levels of GMl may be increased, confirmation is needed that 

an existing panel of anti-GMl antibodies is able to bind to the upregulated GMl and 

cause a subsequent complement mediated lesion, as already demonstrated for an anti

GDla antibody (Goodfellow et aI2005). It is also important to consider the profile of 

GMl expression: increased levels of expression in the GD3s-l
- mouse should optimise 

the model by increasing the pre-existing antigenic target, but ectopic expression of 

GMl in this mouse would represent a contraindication to its use, as the subsequent 

pathology induced by anti-GMl antibodies may not be physiologically relevant. The 

profile of GMl expression was examined at the NMJ with specific reference to the 

pre-synaptic axon, pSC and PJF (as described in Sections 1.9.1.5 - 1.9.1.7 of Chapter 

1). 

3.2 Results 

3.2.1 Topical CTb staining ofWT and GD3s-l
- diaphragm 

Diaphragm muscle sections from the GD3s-l
- and WT mouse were directly compared 

in a topical staining assay using CTb. CTb is specific for GMl, and the increased 

expression ofGMl by the GD3s-l
- should result in an obvious increase in CTb 
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binding. 

CTb: Intensity at NMJ CTb: Coverage of NMJ 
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Fig 21. Topical staining ofWT and GD3s-l
- tissue with CTb. Astrices indicate 

significant difference when compared to WT tissue (p<O.05). 

As shown in Fig 21, the intensity of CTb in the GD3 s -1- is significantly greater 

(p<O.OOOI) than in the WT mouse. CTb coverage of the NMJ in the GD3s-l - mouse is 

also significantly greater (p<O.OOOI) when compared to the WT. Taken together these 

findings indicate that in the diaphragm, GMI levels are increased at the NMJ, and are 

detected by CTb binding. 

3.2.2 Topical CTb staining in other muscle groups 

Different muscles from the GD3s-l
- mouse and WT were compared directly to 

determine the uniformity of the upreguled GMI expression. As a negative control to 

confirm the specificity ofCTb for GMl, the GalNAc-r/- was included (as it lacks the 

enzyme to synthesise complex gangliosides including GMl). As shown in Fig 22, 

for each GalNAc-r /- muscle group analysed, CTb did not bind confirming its 

specificity for GMI. In the GD3s-l
- , each muscle has a significantly increased level 
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ofGMl when compared to the WT (p<O.OOOl). For the WT muscles, it is apparent 

that the GMI expression in the FDB, gastrocnemius and soleus are comparable, while 

the diaphragm has a lower level of expression. In the GD3s-l - mouse the increase in 

GMI expression is not uniform although expression in the diaphragm remains the 

lowest. It is impossible to comment on the significance of this trend: the aim of the 

study was to analyse GMI expression in each muscle with regard to mouse strain, so 

valid statistical comparisons cannot be made between different muscle groups due to 

separate staining runs. 
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Fig 22. Comparison ofCTb binding in different muscles. Note the use of the 
GaINAc-r /-to act as a negative control. Astrices indicate significant (p<O.05) 
difference when compared to GaINAc-r /-. In all cases, CTb intensity was higher in 
GD3s-l-muscle tissue compared to WT (p<O.05) (indicated by hash symbols). 

3.2.3 Ex-vivo demonstration of increased GMl in the GD3s-l
-

As shown in the topical assays, the GD3s-l-has an increased level ofGMl when 

compared to the WT (p<O.OOOl). In order confirm the results oftopical tissue 

99 



staining to living tissue, ex-vivo TS muscle was stained with CTb and the data was 

quantified (Fig 23) using the same method as for topical staining. 

Fig 23. Ex-vivo TS preparation. CTb at the NMJ. Astrices indicate significant increase 
in intensity (p<0.05) compared to the GalNAc-T /-. GD3s-l-staining is significantly 
higher (p<0.05) compared to the WT (indicated by hash symbols). 

As seen in Fig 23, CTb staining was negative in the GalNAc-T /- mouse, and the 

intensity significantly increased in the GD3s-l- when compared to the WT (p<0.0001). 

3.2.4 GMl Expression profile: Teased Sciatic nerve fibres 

From topical staining data, the specific profile of the GMI upregulation cannot be 

distinguished, and the possibility of ectopic GMI expression by the GD3s-l - mouse 

cannot be ruled out from this data alone. Teased fibres were stained with CTb to 

determine the distribution ofGMl in the peripheral nerve, at sites upstream of the 

NMJ. No obvious difference is detectable by eye indicating the macro-distribution of 

GMI is not altered. Again, staining of the GalNAc-T /- mouse was negative and the 

use ofDAPI confirms the presence of GMI negative fibres by highlighting the 

presence of the Schwann cell nuclei surrounding the axon. Without the use of 

specific markers it is impossible to comment on the exact structures stained, but the 
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intense staining of the area surrounding the node of Ranvier suggests that both the 

node and paranode are CTb positive. There appears to be no staining on the myelin, 

although occasional intense patches of staining along the length of the fibre 

(resembling areas of damage, perhaps due to the teasing process) suggest that the 

underlying axon is exposed and therefore intensely stained, or that GMl within the 

wraps of compact myelin is being exposed to CTb. 

Fig 24. CTb staining of teased sciatic nerve fibres. GalNAc-r /-nerves were not 
stained, and presence of the negative fibres is shown by uptake ofDAPI in the 
myelinating Schwann cells surrounding the axon. In both the GD3s-l - and WT, 
staining is intense at the nodes of Ranvier (fine arrows), and uniform over the length 
of the fibre . Intense patches of staining are likely to be areas of damage (heavy 
arrow). Detailed reconstruction in the bottom panel shows detail of the nodal staining 
in the GD3s-l

- mouse. Scalebar=lOf.!m. 

3.2.5 GMl Expression profile: Ex-Vivo Triangularis Sterni of different mouse 
strains 

The staining profile of CTb was studied in ex-vivo triangularis stemi (TS) muscle 

preparations. Different strains of mice were compared (Fig 25) to get a broad 
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overview of the distribution ofOMl: any differences observed between mouse strains 

may be indicative that not all humans have identical OM1 expression patterns 

Fig 25. CTb staining to reveal OM1 profile in different mouse strains. Single arrow 
highlights CTb positive parajunctional fibroblast (PJF) processes networking between 
adjacent PJFs. Double arrow indicates axonal staining. The NMJ is shown by BTx 
staining, in red. Scalebar=20f.lm 

BALBIe 

Staining is intense and specific for the P JF cell body and associated processes, some 

of which appear to extend to and contact neighbouring P JF cells. Axonal staining is 

difficult to characterise due to the almost complete coverage by the CTb positive PJF. 
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WT 

Compared to the Balb/c, staining of the PJF is less obvious in the cellular processes, 

appearing more sparsely distributed, and is located more on the cell body. There is 

little evidence of pre-synaptic axonal CTb staining. 

NIH Swiss 

Staining of the PJF cell body and network of processes is strong. The profile ofGMl 

distribution appears similar to the Balb/c. 

GD3s-l -

The PJF cell body and proximal processes are intensly stained, with less evidence of 

the web like network of CTb positive processes extending away from the NMJ (as 

seen in the Balb/c and NIH Swiss). Axonal staining over the NMJ is strong, with 

upstream axonal staining indicative that the GD3s-l
- mouse has a high level of GMI on 

the axon when compared to the other strains. 

3.2.6 GD3s-I-: Detailed GMllocalisation in ex-vivo TS 

Detailing the specific location of GMI in a WT mouse is influenced by the inherent 

problem that structures bearing only a small amount of GMI may not be easily 

distinguished, even with the use of CTb. To this end, the GD3s-l
- was advantageous in 

that all GMI bearing structures had enhanced GMI levels. Multi-colour staining 

using CTb with BTx and either S 1 00 (Schwann cell specific marker) or neurofilament 

(axonal marker) and synaptophysin (synaptic vesicle marker) provided confirmation 

of the structure stained by CTb (Fig 26). 
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Fig 26. CTb and S100 staining. Bottom left panel shows the PJF cell body and 
processes stained with FITC-CTb. Upstream of this, the axon is also stained. Bottom 
middle panel shows S 1 00 staining, which is Schwann cell specific. The pSC cell body 
and processes are stained over the NMJ region, and the last myelinating Schwann cell 
of the axon is also stained. The staining profile does not mirror the FITC-CTb 
staining, indicating the Schwann cells are not stained by CTb. Bottom left shows BTx 
to delineate the NMJ. Top panel shows a merged image of each channel, to show the 
complete staining profile. Scalebar=20f.lm 

S 1 00 staining over the NMJ is specific for the arborisations of the pSC, and a pSC 

cell body can be seen. There is no CTb staining on the pSC cell body, and over the 

NMJ the staining profile of the S 1 00 and CTb differs. The CTb staining appears to be 

on the axon underlying the processes of the pSC. As shown in the bottom panel, there 

is strong staining of cell body adjacent to the pSC. This is likely to be the PJF cell 

body, and staining ofthe processes is weak when compared to the cell body. 

Therefore it can be concluded that GMI expression is strongly axonal, and the PJF is 

GMI positive. 
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Lower power images, as shown in Figure 27, display a more general landscape of the 

GM1 distribution. Figure 27a) shows CTb strongly staining the axon directly over the 

NMJ, and also upstream of the NMJ. A strongly decorated plexus of what is likely to 

be parasympathetic fibres wrapping a blood vessel can also be seen, proving the 

expression of GM1 in the GD3s-l- is on other fibre types. Further evidence of this is 

seen in Figure 27b), where neurofilament (121 7) and synaptophysin (SF) specifically 

stain the axon and pre-synaptic vesicles in the terminal portion of the axon. Here, 

GM1 can be seen along the length of the axon, and on a blood vessel and surrounding 

fibres . 

Fig 27. BTx (Bungaratoxin), CTb (Cholera toxin), 121 7 (Neurofilament) and SF 
(synaptophysin) staining. a) Localisation of GM1 . Blood vessels and sympathetic 
fibres are strongly stained (arrow) with CTb-FITC. Also, axons over and adjacent to 
the NMJ (BTx (red)) are stained. b) Blood vessel staining. Axons distinguished with 
neurofilament and synaptophysin staining, shown in blue. CTb staining (green) can be 
seen wrapping the axons. Scalebar=20llm 
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3.2.7 Anti-GMl Antibodies (mAbs) in the Peripheral Nerve 

Having established where the antigen is distributed in the peripheral nerve, the next 

stage of the study was to determine whether anti-GM1 antibodies bind to the target. 

Topical staining was used to determine whether the mAbs bind to diaphragm sections. 

The three anti-GM1 antibodies tested had differing specificities: 

DG 1 oligosaccharide 
epitope. DG 1 relies on 
the sialic acid ofGMl 

DGZ and MOM-l bnd I~ 
the Gal(~1 -3)GaINA~ epitope of / 
GMI and can also bllld GDlb 
by ELISA through the shared 
epitope. 

CER 

f--_ I-CER 

D O o • (Ja1}:Ac 1'elL~~c G?J Gk 
(SiJlk Acid) o 

Fig 28. Schematic diagram showing the oligosaccharide epitopes recognised by DG 1, 
DG2 and MOM-I. Note that while DG2 and MOM-l also bind the Gal(~1 -3)GaINAc 

epitope of GAl, this ganglioside is not relevant to the mouse model as mice lack GAl 
in neural tissue (Seyfried et al 1996). 

While the antibodies are able to bind GM1 via the epitopes shown in Fig 28, this 

gives no information on the strength of the interaction between antibody and antigen. 

The affinity of an antibody-antigen interaction can be determined by competition 

ELISA, by pre-incubating the antibody with various concentrations of antigen and 

assessing its subsequent ability to bind to antigen when coated to ELISA plates. The 

half-maximal binding concentration (half-max) can be calculated from a standard 

ELISA, to give an approximate value of the binding strength of the antibody for the 

antigen. For DG 1 and DG2, these data are known, and their binding strength for GM1 
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epitiopes has been demonstrated by ELISA (Townson et al2007) (Fig 29). The same 

authors demonstrate the affinity of each mAb for GM1 is also similar (using 

BiaCore). 
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Fig 29. Data from Townson et al2007. ELISA data showing DG 1 is mono specific for 
GM1, while DG2 binds, in order of binding strength, GM1, GAl and GDlb by the 
common Gal(~1 -3)GalNAc epitope. The halfmax values for mAbs binding to GM1 
are similar. 
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Fig 30. The binding ofDGl to diaphragm sections. Intensity ofIgG fluorescence at 
the NMJ is increased in GD3s-l

- compared to WT, and IgG area coverage ofNMJ 
indicates the relative increase in IgG deposition relative to the increased expression of 
GM1. Astrices indicate significant increase in GD3s-l - compared to WT (p<0.05). 
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DGl bound to diaphragm sections of the WT mouse, and in the GD3s-l-binding 

intensity and area coverage at the NMJ was significantly greater (p<O.OOOl). This 

result infers that, like CTb, the antibody is recognising the increased levels of GM1 in 

the GD3s-l
- mouse, as depicted by enhanced antibody deposition when compared to 

the WT (Fig 30). 

MOM 1 Binding 

MOM 1: MOM 1 bound strongly to GMl in the WT mouse, and although there was a 

detectable increase in the intensity of binding over the NMJ in the GD3s-l
- when 

compared to the WT, this increase was not statistically significant (p=0.25). 

Similarly, there was no significant increase in the area coverage of the GD3s-l-when 

compared to the control (p=0.21) (Fig 31): 
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Fig 31 : The binding of MOM 1 to diaphragm sections: intensity at NMJ and coverage 
ofNMJ. There is no significant difference in either the intensity of binding at the 
NMJ, or the area oflgG deposition over the NMJ with MOM-1 when comparing the 
WT and GD3s-I- . 
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DG 2 Binding: 

DG2: Intensity at NMJ DG2: Coverage of NMJ 
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Fig 32 The binding of DG2 to diaphragm sections: intensity at NMJ and coverage of 
NMJ. Astrices indicate increase compared to GalNAc-r /-(p<0.05). GD3s-l

- mAb 
intensity and area coverage are significantly increased compared to WT (shown by 
hash symbol). 

DG2 bound over the endplate in the WT and GD3s-i
- , with a significant increase in 

antibody intensity and area coverage of the NMJ in the GD3s-l - mouse compared to 

the WT (p<O.OOOl) (Fig 32). The GalNAc-r /-, used as a negative control, shows no 

antibody deposition over the NMJ, or in any other area of the tissue (such as the 

intramuscular nerve bundles). This indicates that the binding ofDG2 is via the 

GalW 1-3)GaINAc epitope of GM1 as opposed to glycoproteins or any other species 

bearing the Gal(~1 -3)GalNAc epitope. 

3.2.8 Ability of anti-GMI mAbs to activate complement: Topical assay 

Confirmation that the antibodies are able to bind does not directly indicate their 

pathogenic ability. In order to establish suitability in the model system, ie. to induce a 

complement mediated attack on the peripheral nerve, the ability of the antibodies to 
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activate and fix complement was addressed. Diaphragm tissue from the GaINAc-r /-, 

GD3s-l - and WT mouse were compared, and as a negative control, PBS applied as 

opposed to antibody, to rule out any non-specific deposition of activated complement 

components. The disialosyl antibody CGM3 causes a complement mediated 

destruction of the peripheral nerve (O'Hanlon et a1200l) so was applied to tissue as a 

positive control to confirm the viability of the complement source used and the ability 

to detect the activated complement components (Fig 33). CGM3 binds to disialosyl 

gangliosides (eg. GD3 and GQ 1 b), and should only therefore bind in the WT mouse 

(which has GM3 and GQIb) and the GaINAc-r /- (which had GD3). CGM3 will not 

bind in the GD3s-l - . 

Anti-GMllgG Antibodies (DGl and DG2) 
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Fig 33. Ability ofDGI and DG2 IgG antibodies to bind to GMI and activate 
complement. Positive control mAb CGM3 activates complement in the GaINAc-r /-
and WT. Astrices indicate significant difference in C3 deposition at NMJ (p<0.05) 
when compared to PBS control of the same strain. 
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DGl: 

In the GalNAc-r /-and WT, CGM3 incubation led to a strong activation of 

complement, detectable over the endplate. The C3 signal over the endplate in the WT 

was significantly greater than in the GalNAc-r /-(p<O.OOO 1). PBS control treated 

tissue for all strains had no detectable complement activation specifically over the 

NMJ or other area of the tissue. In the WT mouse, DGI and PBS treated tissue had 

no significant difference in C3 intensity over the NMJ (p=O.53). In the GD3s-l
-

diaphragm, DG 1 complement activation was significantly increased when compared 

to PBS treated tissue (p<O.OOOl) and CGM3 treated tissue (p<O.OOOl), and also to 

DGI treated tissue in the WT mouse (p<O.OOOl). These results suggest that the use of 

the GD3s-l
- mouse should be beneficial in causing both an ex-vivo and in-vivo anti

GMI antibody mediated lesion. However, the activation of complement by CGM3 in 

both the GalNAc-r /-and WT was significantly greater than the activation of 

complement by DG 1 in the GD3s-l
- (p<O.OOOl), indicating that the IgG 2b DG 1 is less 

potent in its ability to activate complement than the IgM, CGM3. 

DG2: 

In the GalNAc-r /-and WT, the positive control antibody CGM3 led to a significant 

increase in C3 deposition at the NMJ when compared to PBS treated tissue 

(p<O.OOOl) and to CGM3 treated tissue in the GD3s-I-(p<O.OOOl). The level ofC3 

intensity in the CGM3 treated GalNAc-r /-and WT was similar (p=O.28). In the 

GD3s-l-mouse, the C3 intensity of the CGM3 treated and PBS tissue was similar 

(p=O.86), representing non- specific deposition of C3 which was detectable as 

"background" under the microscope analysis settings. DG2 activation of 

complement was not evident in the GalNAc-r /-tissue, with C3 levels comparable to 
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that of PBS treated tissue (p=O.Ol), indicating DG2 was not binding to any epitopes in 

the GaINAc-r /-tissue. In both the GD3s-l- and WT, the activation of complement was 

significantly increased when compared to PBS treated tissue (p<0.0001). 

Surprisingly, the C3 deposition in the WT mouse was significantly greater than that in 

the GD3s-l-mouse (p<0.0001). C3 deposition resulting from DG2 binding in the 

GD3s-l
- and WT diaphragm is significantly greater than that resulting from CGM3 

binding in the GaIN Ac-r /-and WT (p<0. 0001 in each case), suggesting DG 2 is 

equally able (if not better) at activating complement when directly compared to 

CGM3. 
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Fig 34. Ability of MOM-l to activate complement. CGM3 positive control activates 
complement in the GalNAc-r /-and WT. MOM-l activates complement in the GD3s-l -
and WT. Astrices indicate significant increase in C3 deposition (p<0.05) compared to 
PBS control of the same strain. Hash symbols indicate increased CGM3 mediated C3 
deposition compared to GD3s-I

-, triangles indicate increased MOM-l mediated C3 
deposition compared to GaINAc-r /- and cross indicates increased MOM-l mediated 
C3 deposition compared to WT. 

CGM3 in both the GaINAc-r /-and WT increased the C3 intensity when compared to 

respective PBS treated control tissue (p<0.0001), with CGM3 induced complement 
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activation being similar for both strains (p=0.48). In the GD3s-I
-, CGM3 C3 level was 

not significantly higher than that of the PBS treated tissue (p=O.02). However, it 

remained lower than the MOM 1 induced C3 intensity (p<O.OOOl), suggesting that the 

CGM3 treated tissue C3 levels were due to background. In the WT, CGM3 caused 

significantly greater complement activation than MOM 1 (p<O.OOOl). 

MOM- 1 treated tissue in the GaINAc-T/-was not significantly different in C3 

intensity when compared to PBS treated (p=O.25), in the GD3s-l
- it was higher than 

PBS treated tissue (p<O.OOOl) and also in the WT was higher than PBS treated tissue 

(p=O.03). Comparing the C3 intensity in the GD3s-l
- and WT MOM- 1 treated tissue 

shows the increased C3 levels on the GD3s-l-is significant (p=O.04) (Fig 34). 

3.2.9 Ability of DG 1 and DG2 to bind sulfatide 

DG 1 and DG2 are both able to bind sulfatide in ELISA. It was therefore logical to 

address the assumption that they could also bind it in tissue. Provision of tissue from 

mice either lacking or overexpressing sulfatide was ideal in providing both positive 

and negative control tissue for the topical application of the mAbs. CTb was used to 

block any possible binding to GMI in the nerve sections and 04 antibody was used to 

confirm the presence or absence of sulfatide. 04 antibody is a well characterised 

oligodendrocyte marker, relying on the sulfatide epitope (Pfeiffer et a11993) 

To establish the ability of the mAbs to bind to GMI in the NMJ ofthese mice, DG2 

was selected for topical staining of diaphragm muscle to these mice. 

113 



Nerve Tissue: 

CST 

CTb -DG2 

CGT-/-

"'7 ' .. 
. - -, , 
.; - ~ #}"'" 

~. 

DG2 

CTb -DG2 

PC 

Fig 35. Sulfatide overexpressing (CST) and sulfatide deficient (CGT/') nerves. 
Nerves were sectioned in the transverse plane. Fluorescent FITC images (left panels) 
show mAb binding following PBS or CTb pre-incubation. Phase contrast (PC) 
images show nerve outline. 

As shown in Fig 35, the upper panel for both CGT/-and CST nerves show DG2 

binding (to GMl), and this staining is abolished upon pre-incubation of the tissue with 

unlabelled CTb. In the middle panel, the same can be said for DG 1, although prior to 

the CTb block the DG 1 staining was much weaker than the DG2 (all pictures were 

taken under the same microscope levels). In the CTb blocked tissue, levels were 

comparable to that of negative controls, ie. CTb blocked tissue followed by PBS as 

opposed to mAb, and finally incubated in secondary FITC antibody (not shown). 04 

staining confirms the presence of sulfatide in the CST tissue, with absence of staining 
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in the CGr/-(staining comparable to PBS incubated tissue followed by secondary, not 

shown). 
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Fig 36. Topical staining of the diaphragm from the CST (sulfatide overexpressing) 
and CGr/- (sulfatide null) mice. CTb abolishes DG2 binding, while PBS alone has no 
effect on DG2 binding at the NMJ of each strain. 

DG2 binds over the NMJ in both the CST and CGr/-mouse (p=O.I2). The binding of 

DG2 is specific for GMI , as in both strains of mouse it can be blocked with CTb to 

give a comparable intensity to that of CTb blocked tissue followed by PBS alone then 

secondary antibody (p<O.OOOl) (Fig 36). 

3.2.10 Discussion 

Analysis of antibody or toxin staining intensity and area of coverage of the NMJ (ie. 

area directly overlying the BTx signal) are ideal ways in which to semi-quantify the 

differences in staining observed between different tissue sections, provided all are 

stained together in 1 staining run, and that the microscope detection settings are held 

constant throughout. The image analysis method is also of use when analysing the 

differences in complement deposition. Details of the analysis method are in Materials 

and Methods. 

Ex-vivo staining results with CTb confinn that GMI is over-expressed in the GD3s-l
-

mouse and is present in the WT mouse. Use ofthe GaINAc-r /-proves that CTb-FITC 
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is not binding either non-specifically, or to another ganglioside in the tissue (Blank et 

aI2007). All anti-GM1 antibodies tested are able to bind GM1 in the WT and GD3s-l
-

sectioned tissue. From this data, it can be inferred that the GM1 presentation in the 

tissue is displaying the epitope on which the antibody binding relies. 

The disadvantage of topical staining lies with the poor morphology of the tissue, 

meaning teased nerves and whole mount imaging was required to profile GM1 

distribution. With teased fibre staining, differences in CTb intensity were not 

detectable by eye, suggesting similar levels of GM1. This leads to the hypothesis that 

in the sciatic nerve there may be a rate limiting step in the synthesis ofGM1, such as 

a low expression of the enzyme Gal Transferase ((Tettamanti 2004) and see appendix 

1). Future development of imaging software would allow more formal quantification 

of the CTb levels. For example, the intensity of signal over an axonal marker could be 

used, much in the same way as the NMJ intensity and area analysis. 

Whole mount ex-vivo staining ofTS tissue is an unequivocal way of demonstrating 

GM1 distribution. An important technical point to note is that after fixation with 

aldehydes, molecules are still mobile in the membrane (Chandler 1984, J ost et al 

1973), meaning the binding of multivalent ligands such as CTb can laterally displace 

membrane proteins and lipids. Thus, with staining, primary mAbs and most 

importantly CTb, were applied to the tissue prior to fixation in order to maintain the 

best depiction of their in-situ profile. Whole mount TS staining with CTb in the 

various strains of mice also revealed a surprising variability in the GM1 profile. While 

the axonal presence of GMI was uniform throughout the strains, there was obvious 

variability in GM1 expression by the PJF. Again this could be related to several 

factors, including strain differences in the levels of enzymes required to synthesise 

GMI at this site. Another interesting possibility is based on observations in the 
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olfactory bulb, where the expression of the 04 antigen by olfactory ensheathing cells 

(OECs) is thought to be due to the phagocytosis of 04 positive axonal fragments, and 

not due to the actual synthesis of 04 antigen by the OECs (Wewetzer et aI2005). 

This interpretation could translate to the expression ofGMl by the PJF, where uptake 

of axonal fragments leads to introduction of axonal glycolipids (namely GM1) to the 

PJF, which in turn becomes GM1 immunoreactive. Why such a mechanism would 

display strain specific differences is difficult to reconcile, but GM1 is strongly 

associated with axonal regeneration (Lainetti and Da-Silva 1993), so it may be 

interesting to look at the regenerative properties of the axon in the different mice to 

determine ifthere is a correlation of GM1 expression by the PJF and regenerative 

ability. The PJF staining profiles are reminiscent of the demonstrated anomaly of 

ganglioside expression on the pSC of different mouse strains. The NIH Swiss pSC is 

resistant to anti-disialosyl antibody mediated injury, in contrast to that of the Balb/c 

(Halstead et al 2005), indicating gangliosides are expressed in different profiles, or 

perhaps lie in cryptic domains in certain strains of mouse. 

This chapter demonstrated a lack of GM1 on the pSC. It would be interesting to 

determine if there is a difference in GM1 expression between myelinating and non

myelinating Schwann cells. The use of primary cultured Schwann cells would allow 

alteration of the phenotype from non-myelinating to myelinating (Guenard et al 

1994), which would be a dynamic way of addressing the GM1 expression. PCR 

would be a useful tool in determining the presence of enzymes involved in 

ganglioside biosyntheis (shown in Appendix 1), as these may fluctuate depending on 

phenotype, or under certain culture conditions. For example, addition of inflammatory 

cytokines to simulate axonal stress may result in a non-myelinating pSC to express 

GM1 and aid in axonal regeneration. However, the use ofPCR is limited by the fact 
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that the detection of DNA confirms the presence ofthe biosynthetic enzyme, however 

gives no information on the levels of final product (i.e. ganglioside). For example, 

while there may be an abundance of a specific enzyme, a lack of substrate would 

affect the synthesis of the final product, meaning it is inherently difficult to determine 

at which point in the biosynthetic pathway a synthesis limiting situation occurs. 

IgG from different species (including mouse) is able to react with human C1q 

(Hoftken et al 1978), thus the topical complement assay used was ideal in 

demonstrating that binding by the mAbs to GM1 was functional, owing to their ability 

to initiate the complement cascasde. Activation of complement is an indication that an 

antibody has bound stably to its epitope. Initiation of the cascade occurs upon 

activation of the C1 complex, via the C1q molecule, which comprises 6 globular head 

groups (Law and Reid 1983). For activation, at least 2 C1q head groups must interact 

with a binding site on the Fc region of an antibody: this requires an aggregation of 

IgG molecules (Hughes-Jones et a11983) or the binding of a single pentameric IgM 

molecule to a cluster of antigens to expose the C1q binding sites which are already 

close within the structure ofthe molecule (Poon et aI1985). The binding ofIg to a 

specific epitope induces a conformational change to expose the C 1 q binding site on 

the Fc region of the Ig molecule, which increases the affinity ofthe C1q binding site 

by 10,000 fold (Burton 1985) (with the exception ofIgG4 subclass, which does not 

bind C1q (Garred et aI1989)). Thus, the ability ofthe anti-ganglioside mAbs to 

activate complement indicates that they have bound to their epitope in a stable 

conformation, as opposed to a non-specific or weak attraction. 

Surprisingly, DG2 demonstrated greatest complement activation in the WT mouse, 

which does not seem logical as more antibody was deposited in GD3s-l
- tissue. DG2 

bound better in the WT than DG1, and the low level of binding demonstrated by the 
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latter mAb appeared to be insufficient to activate complement. However, the high IgG 

deposition with DG2 was enough to activate the cascade, and a possible explanation 

for the high C3 detected in the WT when compared to the GD3s-l
- may be that 

sectioning tissue in a freezing cryostat may have altered the spatial relationship 

between GMI and complement regulators, and once initiated the complement cascade 

in the WT mouse was not under control by complement regulator proteins. An 

alternative possibility is that DG2 has aggregated (a feature of IgG3 subtype 

antibodies) (Kaminski et aI1999), and resultant "piggyback" binding ofDG2 to GMI 

in the GD3s-l-gives a high IgG signal, but does not represent functional binding. 
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Chapter 4 

4.1 Introduction 

Chapter 3 demonstrated that anti-GM1 antibodies are able to bind GM1, and the 

increase in antibody deposition in the GD3s-l
- mouse when compared to the WT. This 

establishes the GD3s-l- as the ideal disease model to further characterise these mAbs, 

and other anti-GM1 antibodies. 

The aim ofthe next stage ofthe study was move to more physiologically relevant (ie. 

living) tissue, and ascertain the ability of anti-GM1 antibodies to induce a 

complement mediated lesion. Ex-vivo nerve muscle preparations were used, in this 

case the hemi-diaphragm. The mouse mAbs DG1 and DG2 were used, followed by 

the human antibodies Dol and Sm1 to reinforce the clinical aspect of this work. Sm1 

was cloned from a patient with multifocal motor neuropathy (MMN), while Do 1 was 

cloned from a GBS patient (Paterson et al 1995). Sm1 has a similar specificity to 

DG 1 (i.e. GM1 mono specific ), while Do 1 has a similar binding profile to DG2 (i.e. 

Gal(~1-3)GalNAc epitope dependent). 

4.2 Results 

42.2.1 DG2 Ex-Vivo: GD3s-I -, GalNAc-TI
-, WT 

The first antibody investigated was DG2, the Gal(~1-3)GalNAc dependent anti-GM1 

mAb. 

4.2.1.1 DG2: JgG, C3, MAC, NF 

*IgG intensity (Fig 37 A) 

In the GalNAc-r/-mouse, there was no difference between IgG deposition in Ringer 

and mAb treated tissue (p=0.05), indicating no DG2 had bound. In the WT, the IgG 
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deposition was significantly greater when compared to the Ringer control (p<O.0001), 

and the mAb treated GD3s-l-tissue also displayed greater IgG deposition than its 

Ringer control (p<O.0001). Comparison ofthe IgG deposition in the GD3s-
l
- and WT 

shows the mAb binding in the GD3s-l-is higher (p<O.0001). 

*C3 Intensity (Fig 37B) 

No difference in C3 intensity was detected in the mAb and Ringer control tissue from 

the GaINAc-T/- (p=O.OS). For both the WT and GD3s-l-tissue, mAb treated tissue had 

increased C3 deposition when compared to their respective Ringer control 

(p<O.0001). The C3 intensity in the GD3s-l-was greater than that of the WT (p=O.01). 

*MAC Intensity (Fig 37C) 

MAC deposition was not evident in the mAb treated GaINAc-T /-tissue (p=O.S1 

compared to control). Both the GD3s-l
- and WT had an increase in MAC intensity 

when mAb treated tissue was compared to Ringer treated (p<O.0001), and the GD3s-
l
-

had the greatest MAC deposition at the NMJ compared to the WT (p<O.0001). 

*NF Coverage (Fig 37D) 

Neurofilament coverage of Ringer and mAb treated tissue in the GaINAc-T
/
- was 

different (p=O.01), however the data does not point to NF destruction in the mAb 

treated tissue, as there was an increase in intensity when compared to the control. This 

represents natural biological variability in one GaINAc-T /- mouse preparation. In the 

WT mouse, the mAb treated tissue has less NF over the NMJ compared to its Ringer 

control (p<O.OOOl), and the GD3s-l-had less NF compared to the Ringer control 

(p<O.OOOl). 
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Fig 37. Ex-Vivo effect ofDG2 showing IgG, C3 and MAC intensity over NMJ, and 
NF coverage. In all cases the GD3s-l - rnAb treated tissue was significantly different 
compared to WT rnAb treated tissue (p<O.05). Astrices indicate significant difference 
compared to Ringer control (p<O.05), hash symbols indicate significant difference 
compared to WT and triangles show significance compared to GalNAc-y-I- . 

From the data (Fig 37) it is shown that in both the WT and GD3s-l - diaphragms, DG2 

is able to bind and cause a complement mediated lesion of the NF. Antibody binding, 

complement activation and subsequent axonal injury are greatest in the GD3s-l
-

mouse. 

4.2.1.2 Antibody viability 

As shown in Fig 38, the antibody from each incubation bound with similar affinity to 

a GM1 coated ELISA plate. This confirms that the differences in response from each 

mouse strain was not due to variability in the applied antibody. 
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Fig 38: Retained antibody samples from each hemi-diaphragm incubation. n=3 for 
each strain, and error bars represent SEM. 

4.2.1.3 Ex-vivo antibody binding profile: sectioned tissue 

Fig 39. Immunostaining of20~m sections of diaphragm from GD3s-l
-

and WT diaphragm. A and B: DG2 deposition in GD3s-l
- is strongly axonal, and 

overlies the NMJ. In the WT, intramuscular nerve bundles (arrow) are intensly 
stained, but staining at the NMJ is less obvious compared to the GD3s-I

-. C and D: C3 
deposition is similar in profile to DG2 staining, and most intense in the GD3s-I

-. 
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Following incubation oflive tissue with mAb and NHS, 20llm sections oftissue were 

gathered and anti-mouse IgG or anti-C3 applied to profile mAb and C3 deposition 

overlying the NMJ. Overall staining pattern resembled that seen in Chapter 3, with 

obvious deposition of IgG and C3 over the endplate, and in the intramuscular nerve 

bundles. This indicates the distribution of the GM1 recognised by DG2 is similar to 

that as would have been predicted from the topical data. However the tissue 

morphology did not facilitate enough structural detail to comment on more discrete 

staining profiles (Fig 39). 

4.2.1.4 Ex-vivo antibody binding profile: TS preparation 

A more detailed profile of DG2 staining was examined in a TS prep, which is a 

thinner muscle than the diaphragm particularly useful for viewing staining profiles in 

ex-vivo muscle. 

* GD3s-I
-: 

In the GD3s-l- TS muscle, DG2 bound in a strong neuronal profile, with pre-synaptic 

axonal staining intense over the BTx delineated endplate, and also upstream of the 

NMJ. The PJF cell body and branching processes were also bound strongly by DG2 

forming an umbrella like veil over the entire NMJ (Fig 40). 
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Fig 40. DG2 staining in the GD3s-l-mouse. Arrow shows axonal staining upstream of 
the NMJ, and double arrow shows DG2 deposition on the PJF cell body directly over 
the NMJ. NMJs are stained with BTx (red). Scalebar = 20)lm 

*WT 

In the WT (Fig 41), the PJF staining was evident, although the profile ofDG2 

deposition over the cell body and processes appeared more punctate than in the 

GD3s-I
-. Staining of the axon leading to the NMJ was positive, although the intensity 

of the axonal staining overlying the endplate was notably less intense (sometimes 

absent) than seen on the GD3s-I
-. 
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Fig 41. DG2 staining in the WT mouse. Single arrow indicates the punctate staining 
of the PJF processes, and double arrow shows the DG2 stained axon leading to the 
NMJ. NMJs are stained with BTx (red) . Scalebar = 20)lm 

There was no detectable DG2 binding in the GalNAc-r /-mouse, either at the NMJ or 

in other regions, such as intramuscular nerve bundles or blood vessels (Fig 42). 

Fig 42. DG2 staining in the GalNAc-r /-mouse. DG2 did not bind, as indicated by 
absence ofFITC signal. NMJs are shown by BTx staining (red) . Scalebar = 20)lm 
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*C3 deposition in the GD3s-l
- mouse: 

The ability ofDG2 to bind in the GD3s-l-led to the assumption that it would be able to 

induce a complement mediated lesion. To demonstrate the ability of the mAb to fix 

complement (Fig 43), it was applied to the TS followed by NHS, and the tissue 

stained to determine the profile of C3 deposition (i.e. ex-vivo complement assay-

Materials and Methods). 

Fig 43 : complement activation profile in the GD3s-l
- following incubation in DG2 and 

NHS. C3 is present along the axon, and the halo of C3 around the NMJ (shown with 
BTx (red)) is suggestive ofC3 deposition on the PJF. Scalebar = 20)lm 

*Double labelling: structural characterisation of DG2 Binding 

Following the demonstration of the DG2 antibody and complement deposition, double 

staining techniques were used to identify the key structures susceptible to DG2 

mediated damage. As shown in Fig 44, DG2 binds to the PJF and axon over the NMJ, 

but in a profile distinct from the body and processes of the pSC (stained with S 1 00). 
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Fig 44. Triple staining: S100 (FITC (green)), DG2 (TRITC (orange)) and BTx (Cy-5 
(Pink)). DG2 binds to the NMJ in a veil like profile (orange). This is distinct from the 
profile of S 1 00, which is shown in green and is specific for the myelinating Schwarm 
cells of the axon, and also the pSC, the cell body and processes of which lie directly 
above the NMJ (shown with BTx (Pink)) . Scalebar = 20)lm 

4.2.2 Dol Ex-Vivo 

4.2.2.1 Dol: IgM, C3, MAC, NF 

Following the success ofDG2, a human monoclonal antibody was tested in the ex-

vivo muscle nerve preparations to see if a similar lesion was produced. Do 1 was 

applied to the GD3s-l-and the GalNAc-r /- used as a control to confirm pathology was 

a result of interaction with GMI (Fig 45). 
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*IgM intensity (Fig 45A) 

There was no significant difference in IgM deposition between mAb and Ringer 

treated tissue of either the GD3s-l-or GaINAc-r /-(p=O.52 and p=O.18 respectively). 

*C3 Intensity (Fig 45B) 

C3 deposition in the GD3s-l-mAb treated tissue was significantly increased compared 

to Ringer control (p<O.OOOl), however these levels were only marginally above 

baseline. There was no significant difference between the mAb and Ringer treated 

tissue of the GaINAc-r /-(p=0.1 7). 
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*MAC Intensity (Fig 45C) 

Ringer treated tissue in the GD3s-l-had more MAC deposition than the mAb 

incubated (p<0.0001), indicating endogenous mouse IgG had been detected by the 

secondary antibody to MAC (anti-mouse IgG). It is also possible that there was a low 

level of endogenous MAC present in the tissue. There was no evidence of MAC 

deposition in the mAb treated tissue. In the GalNAc-T/-, Ringer and mAb incubated 

tissue did not differ significantly (p=0.23), indicating the signal represented 

endogenous mouse IgG. 

*NF Coverage (Fig 45D) 

There was no significant difference in NF signal between the Ringer treated and mAb 

treated tissue of the GalNAc-T/-or the GD3s-l
- (p=0.71 and p=0.68 respectively), 

indicative of no axonal lesion. 

Summary: Although there was significant C3 deposition in the GD3s-
l
- mAb treated 

tissue, the level was barely detectable above baseline with the microscope levels 

adjusted for maximal detection. No IgM or MAC was detected and there was no NF 

loss. Taken together, this indicates that Do 1 does not bind the NMJ to cause a NF 

lesion. 
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4.2.2.2 Antibody Viability 

ELISA: Retained Antibody Samples 
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Fig 46. Retained Do 1 samples. 

4.2.2.3 Dol Ex-Vivo (TS) 

The hemi-diaphragm data indicated that Dol was not binding to the epitope, yet the 

retained antibody bound well to GMI on ELISA. To investigate this anomaly, Dol 

was applied to the TS muscle of the GD3s-l
- to localise antibody deposition (Fig 47 a). 

The TS muscle is thinner than the diaphragm, and facilitates better antibody 

accessibility. 
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Fig 47 a), B) Fig 47b) Dol did not bind to the NMJ in the GD3s-l
- TS preparation. 

Fig 47 b) Dol does not activate complement over the NMJ. Scalebar = 20l-lm 

Dol deposition was not detected over the NMJ, or in any other areas of the tissue 

such as the intramuscular nerve bundles and blood vessels. After antibody incubation, 

application of complement and staining for C3 revealed no C3 deposition over the 

endplate. As shown in Fig 47 b), scattered C3 positive cells were present throughout 

the tissue, although not specific for the NMJ. These are likely to be inflammatory 

cells, such as neutrophils, perhaps responding to inflammatory mediators in the 

complement source or chemokines (Kieseier et al 2002) This proves that the failure to 

detect bound mAb is not a failure of secondary antibody approach, as even weak 

levels of the IgM Do 1 would fix complement. 
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4.2.3 Sml Ex-vivo 

4.2.3.1 Ex-Vivo :TS 

Sml, like Dol, is an antibody cloned from human neuropathy sera. It was applied to 

the TS preparation of the GD3s-l-to analyse IgM and C3 deposition over the NMJ (Fig 

48). 

Fig 48. Sml. A) IgM deposition is not detected over the NMJ, and B), SMI does not 
activate complement in the ex-vivo GD3s-l

- TS. Scalebar = 20llm 

Results of the TS preparation were suggestive that SMl, much like Dol , was not 

binding to any area of the tissue, and not activating complement. 

4.2.3.2 IgM, C3, MAC, NF 

A pilot experiment (n= l) was done in the hemi-diaphragm ofthe GD3s-l
- and its 

control, the GalNAc-r /-(Fig 49). 
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O(baseline) to 255 (saturation), and the axes of the graphs have been adjusted for 
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*IgM intensity (Fig 49A) 

For both the GD3s-l-and GalNAc-r /-, there was no significant difference in IgM 

intensity between mAb and Ringer treated tissue (p=O.33, p=0.40 respectively) . 

*C3 Intensity (Fig 49B) 

C3 intensity was below the level of detection, with no deposition in the GD3s-l - or 

GalNAc-r/-mAb treated tissue compared to Ringer control (p=O.79 and p=O.ll 

respectively). 

*MAC Intensity (Fig 49C) 

There was no difference in MAC intensity between mAb and Ringer tissue of the 

GD3s-l
- (p=O.60). Ringer control tissue of the GalNAc-r/-had a greater MAC signal 
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than mAb treated (p=O.03), most likely as a result of background mouse IgG. It is 

important to note that this background signal, although significant, is negligible, as it 

is below 1 unit of fluorescence intensity on a scale of 0 to 255 units. 

*NF Coverage (Fig 49D) 

In the GD3s-I-, there was a significant reduction in NF in mAb treated tissue compared 

to control (p<O.OOOl) with mAb treated tissue showing a reduction compared to 

control. The Ringer treated tissue of the GalNAc-r /-had a significant loss ofNF 

compared to the mAb treated (p<O.OOOl) 

Summary: There was no evidence ofIgM, C3 or MAC in the mAb treated tissue of 

the GD3s-l-mouse. The loss ofNF compared to the Ringer control can be attributed to 

degradation due to damage during manipulation of the diaphragm during the 

incubations and pinning out under tension. This is the most likely observation, as the 

Ringer treated tissue ofthe GalNAc-r/-had a similar NF loss, unlikely to be 

attributable to mAb mediated damage (as an anti-GMI antibody should not bind in a 

mouse with no GMl). 
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4.2.3.3 Antibody Viability 

ELISA: Retained Antibody 
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Fig 50. Sml from each incubation was equally viable. 

4.2.4 DOl 

The results of Dol and Sml show an apparent discrepancy between the ability of the 

mAb to bind to OMI in ELISA, compared to the living membrane. In order to 

address this, another mouse monoclonal antibody was utilised. DO 1 is a mouse 

monoclonal mono specific for OMl, and should therefore bind specifically to OMI in 

tissue, in a similar profile to CTb. DO 1 binding can be detected topically (Chapter 3), 

and should represent the ideal candidate to induce an anti-OMI antibody mediated 

attack on the peripheral nerve. 

4.2.4.1 CTb saturation of OM I: dilution curve 

DO 1 is mono specific for OMI on ELISA, and this was confirmed in tissue sections 

by blocking OMI with CTb, i.e. inhibiting DO 1 binding to confirm its specificity for 

OMI. An adequate amount of CTb was calculated by performing a dilution series in 

the OD3s-I-, WT and OaINAc-r/- (as a control). Using FITC conjugated CTb, 
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increasing doses were applied to the tissue until no difference in intensity over the 

endplate could be detected, indicating saturation. 
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Fig 51. Calculating the saturating dose of CTb (FITC labelled, concentrations as 
indicated, diluted in PBS). Saturation was taken as the point where no significant 
difference (p<O.05) in CTb intensity could be detected between 2 concentrations. 

In the GalNAcr/-, CTb did not bind and only background levels were detected by the 

microscope. At a dilution of 4l-lg/ml, the background was significantly higher than for 

the lower dilutions (p<O.OOOl), however there was no specific localisation in any area 

of the tissue, proving the background levels did not represent specific binding. In the 

WT and GD3s-I
-, a dilution of2l-lg/ml gave a higher signal than ll-lg/ml (p<O.OOOl). 

However, when comparing 2l-lg/ml and 4l-lg/ml no difference in signal intensity was 

evident (p<O.OOOl), indicating that saturation ofGM1 by CTb had occurred at 

2l-lg/ml. Thus the saturating dose of CTb in the GD3s-l
- and WT was established at 

2l-lg/ml (Fig 51). 
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4.2.4.2 CTb inhibition ofGMl 

Unlabelled CTb at the saturating dilution, or PBS alone, was applied to cryostat 

sectioned GD3s-l
- and WT tissue at 4°C for 1.5 hrs. Following 3 rinses in PBS, DG 1 

was applied following the normal protocol, and detected with anti-mouse IgG2b. 
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Fig 52. Application of the saturating dose of CTb and demonstration that it blocks 
DG1 binding. In both the WT and GD3s-I

-, DG1 binding was inhibited by CTb 
(p<O.05) and binding levels diminished to that ofthe negative control (p<O.05). 

In the WT, the binding of DG 1 to tissue pre-incubated in PBS alone was significantly 

higher that that of CTb blocked tissue (p<O.OOOl). For tissue incubated in CTb 

followed by PBS (as opposed to DG1) and secondary antibody, the IgG intensity 

overlying the endplate was higher that that of the CTb inhibited tissue (p=O.Ol), 

proving that any weak signal detected in the CTb blocked and DG 1 incubated tissue 

was due to background. In the GD3s-I
-, DG 1 in control (PBS) incubated tissue bound 

strongly compared to CTb blocked tissue (p<O.OOOl). CTb and DG1 incubated tissue 

had similar background levels to CTb tissue incubated in PBS and then secondary 

(p=O.89) (Fig 52). These data prove that the binding of DG 1 can be inhibited by 

saturating endogenous GM1 with CTb. 
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4.2.4.3 DGI in the ex-vivo hemi-diaphragm 

The next question addressed was whether DG 1 gives a similar biological readout in 

the ex-vivo hemi-diaphragm preparation as DG2 (ie. IgG deposition, complement 

activation and neurofilament loss) (Fig 53). 

A 
10 

mAb Rjugl~r IUAI> H.in~cl' mA b Rin~cr . 
~ ~~ ' 

GD3s ""'- Gali VA c - T ·/- >-VT 

c 140 

*** 1 MAC l 120 

~ 100 

Z 
-; 80 

·f ~ 
B 
1:, 40 

10 

, 
= ==-

mAb Kin):!cr mAb RiJlgcr m Ah R inger 

~ ~ ~ 
GD3s .,/- GaflVA c-T-/- U/T 

B 
100 

.., SO 
:;;: 
Z 

-; 60 

20 

D 10 

So 
::::: 
Q .0 
~ 

~ ~ 

>0 

*** 

mA b R in~cr 

~-
IllAb R in~c r 

~ 
GaflVA c - T-/-

*** 

mAb Ring4:r mAb Rin~c r mAb Ringe r 
~ ~ ~-

GD3s+- GaIlVAc-T-/- >-VT 

Fig 53. DGI hemi-diaphragm preparations. Astrices indicate significance (p<O.05) 
compared to Ringer control. Note: the Intensity signal scale (for IgG, MAC and C3) 
is from 0 (baseline) to 255(saturation), and the axes of the graphs have been adjusted 
for clarity. 

*IgG Intensity (Fig 53A) 

There was no difference in DG 1 deposition between mAb and Ringer treated tissue in 

the WT or GalNAc-r /-(p=O.05, p=O.26 respectively). There was a significant 

increase in IgG in mAb treated tissue of the GD3s·l·compared to Ringer control 

(p<O.OOOl). 
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*C3 Intensity (Fig 53B) 

Only the GD3s-l- mAb treated tissue had a significant increase in C3 compared to 

Ringer control (p<0.0001). mAb and Ringer treated tissue of the WT and GalNAc-r
/
-

had no difference in C3 intensity (p=0.05, p=0.17 respectively). 

*MAC Intensity (Fig 53C) 

Again, only the GD3s-l
- mAb treated tissue had a significant increase in MAC 

intensity compared to Ringer treated tissue (p<0.0001). 

*NF Coverage (Fig 53D) 

The GD3s-l- mAb and Ringer treated tissue had no significant difference in 

percentage coverage of the NMJ by NF (p=0.37). The WT mAb treated and Ringer 

treated tissue were not significantly different (p=0.12). The NF coverage of the mAb 

treated GalNAc-T/- tissue was greater than the Ringer control, which was a 

significant difference (p=0.02). 

Summary: In the GD3s-l
- mAb treated tissue, IgG, MAC and C3 was significantly 

greater than in the Ringer tissue, indicating DG 1 is binding. However, the detection 

settings of the microscope were maximal, and as shown in the graphs, the medians are 

all below 10 arbitary units (on a fluorescence intensity scale of 0 to 255). The lack of 

NF loss proves that DG 1 is not binding to a biologically significant level, and is not 

able to induce a complement mediated lesion in the GD3s-l
- hemi-diaphragm. 
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4.2.4.4 Antibody Viability 

ELISA: Retained Antibody Samples 
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Fig 54. ELISA of retained DG 1 samples 

From the data, it is clear that DG 1 is able to bind GMI on ELISA, but not capable of 

inducing a complement mediated lesion in the murine peripheral nerve. 

4.2.5 Summary 

To summarise, out of 4 anti-GMl antibodies tested in ex-vivo muscle preparations, 

only DG2 was shown to bind and induce a lesion. DG2 relies on the 

GalWl-3)GalNAc epitope ofGMl, and this epitope is also available on the 

ganglioside GDl b. Thus, with specific emphasis on DG2, it was decided to 

investigate the possibility that DG2 may be cross-reacting with the Gal(~1-3)GalNAc 

epitope of GD 1 b. 

4.2.5.1 GDI b in the peripheral nerve: topical staining 

Before the binding ofDG2 to GDI b can be hypothesised, the first point to clarify was 

the presence of GD 1 b in the peripheral nerve. Initially topical staining was done on 

8).lm cryostat sections of diaphragm, using the anti-GD 1 b antibody termed MOG 1. 
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Fig 55. Topical staining ofGD3s-l - ,GalNAc-r /- and WT diaphragm sections with 
MOG 1. Astrices indicate significance (p<O.05) compared to GalNAc-r /-. 

As shown in Figure 55, MOG 1 does not bind in the GalNAc-r /-or GD3s-l -

mouse. The binding intensity and area coverage of the NMJ is significantly greater in 

the WT when compared to the GalNAc-r /-and GD3s-l
- (p<O.OOOl). This data shows 

that in topical sections, GD 1 b in the WT mouse is available to MOG 1, and the lack 

of staining in the GalNAc-r/-and GD3s-l
- (which lack GD1b) proves MOG 1 is 

unlikely to be binding to another epitope. 

4.2.5.2 GDI b in the peripheral nerve: ex-vivo TS 

MOG 1 was applied to the living membrane in the TS preparation to profile the 

antibody distribution. 
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Fig 56. MOG 1 applied at 1 OO~g/ml to the TS muscle in the WT mouse. FITC 
staining represents the MOG 1 profile, and over the NMJ, shown by BTx (red) and 
along the axon, MOG 1 staining is intense and uniform. 

Fig 57. S 1 00 staining (green) shows the pSC body and processes over the NMJ, which 
is stained with BTx (Pink). Myelinating Schwann cells around the axon leading away 
from the NMJ are also stained with SIOO. Cell nuclei of the pSC and myelinating 
Schwann cell are shown with DAPI. MOG 1 staining profile (orange) appears specific 
to the axon and the staining profile does not overlap that of the pSC, indicating MOG 
1 does not bind Schwann cells. 
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As shown in Figs 56 and 57, MOG 1 has a strongly neuronal staining profile, with 

staining of the axon over the NMJ and upstream of the NMJ. No staining of the PJF or 

pSC was apparent. 

The intense staining ofMOG 1 infers high levels ofGD1b expression. However, 

MOG 1 is an IgG3 subtype, and these antibodies are known to aggregate (Kaminski et 

al 1999). Such aggregation can lead to "piggyback" binding (ie. non-specific and non 

functional binding of more than 1 IgG to the epitope). It cannot therefore be ruled out 

in the case ofMOG 1, and such strong staining may be a result of piggyback binding. 

To address this, MOG 1 concentration was adjusted to 25J.lg/ml and applied in the 

same way to a TS preparation 

As shown in Fig 58, the staining profile remained the same, suggesting that the 

intense signal seen with lOOJ.lg/ml is not due to aggregation of the antibody, and thus 

suggests GD 1 b is abundant in the mouse peripheral nerve. 

Fig 58. MOG 1 applied to the TS at 25J.lg/ml in the WT. Staining ofthe axon 
remained intense, ruling out the possibility that at higher concentrations the MOG 1 
intensity is due to homophilic binding. 
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MOG 1 was also applied to the TS of the GD3s-l-as a negative control. No binding 

was detected, again inferring that in live tissue MOG 1 is specific for GD 1 b. In WT 

hemi-diaphragm preparations, MOG 1 is able to induce a significant complement 

mediated lesion, data generated by J. Roxburgh. 

4.2.5.3 CTb inhibition of DG2: topical staining 

In a similar protocol to the DG 1 inhibition, saturating CTb, or PBS, followed by the 

mAbs DG 1, DG2 or MOG 1 was applied to topical diaphragm sections from the 

GD3s-I
-, GaINAc-r /-and WT mice. MAb or secondary antibody alone intensity was 

then analysed. 
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Fig 59 Effect of CTb block on MOG 1 and DG2 intensity at NMJ s of topically stained 
diaphragm sections of GD3s-l

- , GalNAc-r /-and WT mice. Astrices indicate 
significance compared to CTb blocked tissue (p<O.05). 
A) DG 1 (as a positive control) and DG2 binding in CTb incubated tissue was 
inhibited compared to control tissue (p<O.05). DG2 was also inhibited in the WT and 
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did not bind the GalNAc-T/-. B) DG2 was inhibited by CTb. CTb had no significant 
effect on MOG 1 binding intensity compared to control MOG 1 tissue (p>0.05). 

As shown in Fig 59 (top panel), DG2 bound in GD3s-l
- and WT tissue, with increased 

intensity in the GD3s-l - (p<O.OOOl). In both the GD3s-
l
- and WT, pre-incubation of 

the tissue with CTb inhibited binding when compared to PBS pre-incubated tissue 

(p<0.0001 for each strain). To confirm the CTb specificity for GM1, DG1 was 

applied to GD3s-l - tissue and was significantly inhibited by CTb compared to the 

control (p<0.05). 

It is possible that CTb may bind other gangliosides in tissue (Blank et al 2007), an 

important consideration to address especially when using saturating amounts. To 

address this, the effect of CTb on MOG 1 binding was analysed. As shown in Fig 59 

(bottom panel), CTb pre-incubation did not lead to a significant decrease in MOG 1 

binding when compared to PBS pre-incubated control tissue (p=0.08). Again, control 

staining was done, this time using DG2, to confirm the success of the CTb block in 

this staining run. From these experiments it can be concluded that CTb does not 

inhibit the binding ofDG2 by blocking the Gal(~1-3)GalNAc epitope on GM1 and 

GD1b, as CTb pre-incubation ofthe tissue allows MOG 1 to bind. From this, it can 

also be inferred that the binding of CTb to GM1 is not interfering with the ability of 

antibodies to access other epitopes, in this case GD1b. 

4.2.5.4 CTb inhibition of DG2: ex-vivo 

The above topical data was next demonstrated in the living membrane, with Fig 60 

showing illustratively the ability of CTb to block DG 1 binding. Microscope threshold 

levels were reduced to increase the ability to detect any weak DG2 binding. No 

146 



residual DG2 binding could be detected on the axon or PJF, indicating CTb had 

effectively saturated all GMI and abolished DG2 from accessing the epitope. 

b 

Fig 60. Effect of unlabelled CTb on the ability ofDG2 to bind in the living 
membrane. a) unlabelled CTb abolishes the binding ofDG2: note the absence of the 
FITC signal. b) Control (Ringer treated) tissue followed by incubation of DG2 results 
in a strong FITC signal representing strong binding ofDG2 to GMI to the axon and 
PJF. 

4.3 Discussion 

This chapter demonstrates the viability ofthe ex-vivo hemi-diaphragm muscle nerve 

preparation in modelling the pathological changes induced by anti-GMI antibodies. 

Tissue can be kept viable during the duration of the incubations, and tissue 

conveniently cryostat sectioned to look in parallel at IgG deposition, complement 

activation and NF destruction. Furthermore, the use ofNHS is an ideal method of 

"humanising" the system, and relating it to the clinical condition. 

The success ofDG2 in causing complement mediated destruction of the peripheral 

nerve proves that the GD3s-l-mouse optimises the lesion when antibodies are applied 
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to live tissue. Thus, the GD3s-l
- is the ideal mouse in which to design an in-vivo 

model of anti-GM1 mediated neuropathy. 

DG2 binding to GM1 expressed on the axon leads to the deposition of MAC pores, 

and subsequent calpain induced destruction of the NP which leads to paralysis, most 

likely in a manner similar to that of other anti-ganglioside antibodies with a known 

alpha-Iatrotoxin like effect at the NMJ (O'Hanlon et a12001, Goodfellow et aI2005). 

An interesting and somewhat novel feature ofthis antibody is its ability to kill the PJP 

(Goodfellow, unpublished observations). Loss ofNP is likely to be the main feature in 

AMAN, where paralysis is a result of axonal destruction, and it is thus difficult to 

determine how loss of the PJP can contribute to the direct pathology of AMAN. 

Instead, it is attractive to speculate that its loss may hinder recovery and regeneration 

of the axon, where in its normal state it may provide trophic support or guidance to 

regenerating axons. Little is known about this cell type, and while a potential role in 

regeneration is a highly topical subject, the timescale of this thesis does not lend itself 

to a thorough investigation of the cell. Proofthat DG2 is not binding to GD1b via the 

common Gal(~ 1-3)GaINAc epitope confirms that it is binding GM1 on both the axon 

and the PJP. 

It was of interest that GD 1 b could be detected in the peripheral motor nerve, and an 

anti-GDlb antibody could cause a lesion. Anti-GD1b human neuropathies spare the 

motor fibres and are specific for the sensory nerves (Willison and Yuki 2002), and it 

is logical to assume that this is due to absence or low levels of GD 1 b in the motor 

system. Data from this chapter highlights that there is an enrichment ofGD1b in the 

murine peripheral nerve, which is open to antibody mediated attack via anti-GD1 b 

antibodies. This finding suggests there may be a difference in the GD 1 b expression 
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profile between human and mouse nerves, or that in humans, GD 1 b in the motor 

system is cryptically masked from antibodies. 

Having demonstrated the ability of an anti-GM1 antibody (DG2) to bind and cause a 

lesion, it was surprising that 2 antibodies cloned from human neuropathy sera did not 

have an effect. It is, of course, possible that these antibodies were not responsible for 

pathogenesis, but still lies the conundrum that they bind to GM1 strongly by ELISA, 

yet do not bind it when applied to tissue (ex-vivo TS). This phenomenon was 

reproduced by the mouse monoclonal, DG 1. The DG 1 characterisation experiments 

add a new dimension however, as Chapter 3 proves they are able to bind well 

topically (ie. to dead tissue) and on ELISA, but not to live tissue. One possible 

explanation is that certain anti-GM1 antibodies such as DG 1 are internalised and 

cause pathology upstream of the NMJ. For example, in AMAN they may be taken 

into the ventral hom and exert a cytotoxic effect. To test this, the antibodies could be 

injected (passive transfer) to the mouse, and the ventral hom removed to determine if 

the antibody had been internalised (Fabian and Petroff 1987, Fabian 1988). The 

second possibility is that the antibodies are simply not able to bind GM1 in the living 

membrane. This links to the observation that anti-GD1b antibodies are specific for 

human sensory nerves, yet in the mouse GD 1 b is abundant in the motor nerves. As 

mentioned previously, it is also possible that GD 1 b in the human motor nerve cannot 

be bound by human anti-GD1b antibodies, similar to the DG1 and GM1 observation 

in this chapter. 
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Chapter 5 

5.1 Introduction 

The results of chapter 4 demonstrated that the ability of antibodies, such as DG 1, to 

bind their epitope (in this case GM1) on an ELISA plate does not infer that they are 

able to bind it in the living membrane. DG 1 can bind GM1 in topical (ie. dead, 

cryostat cut tissue), but its inability to bind it in living tissue indicates that there are 

differences in the presentation of the epitope. On the same note, DG 1 and DG2 both 

bind well to sulfatide on ELISA (Townson et a12007) yet not in tissue (whether 

cryostat cut or living tissue). It has been suggested that fixation of tissue allows 

antibodies to bind (Quattrini et aI1992). It is an interesting notion that fixations can 

allow an antibody to bind: fixation must somehow disrupt the membrane structure and 

exposing an otherwise unavailable epitope. The sulfatide binding antibody DG2 was 

analysed to determine if it could be induced to bind sulfatide via fixation, and in the 

case ofDG1, to see ifGM1 binding could be established. 

5.2 Results 

5.2.1 Effect of Tissue Fixation on Sulfatide Binding (DGI and DG2) 

Sulfatide over-expressing (CST) and sulfatide deficient (CGr/-) nerves were cut onto 

slides (as described in materials and methods) and various fixation techniques tried 

(based on Quattrini et al 1992), with 3 slides analysed per fixation: 

• Freezing ethanol (EtOH) (-20°C) for 10 minutes 
• EtOH at RT for 10 minutes 
• 4% PFA (RT) for 10 minutes 

Fix was rinsed off 3X in PBS, and the GM1 epitope blocked using unlabelled CTb for 

1.5 hrs at 4°C, then rinsed off in PBS. DG2 was applied for 2 hours at 4°C prior to 

rinsing and application of anti-mouse IgG3 secondary for 3 hours at 4°C. Negative 
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controls were performed by substituting DG2 for PBS, and adding secondary as 

normal. The CGT/- mouse was a negative control: any increase in DG2 binding in 

this mouse indicates DG2 is binding to another epitope (and not sulfatide) after 

fixation. 

CST CGT-/-

Fix Method: 
Freezing EtOH 

CST 

Fix Method: 
4%PFA 

CGT'/-

Fig 61: Effect of tissue fixation on epitope presentation. 04 (top panel) bound to 
sulfatide under both conditions of fixation in the CST nerve. Freezing EtOH and 
4%PF A fixation did not result in DG2 binding to sulfatide. EtOH = ethanol and 
PF A = paraformaldehyde. 

None of the tested fixation methods affected the binding of the anti-sulfatide antibody 

04 (Fig 61), indicating the fixations had not altered the antigenic properties of 

sulfatide to antibody binding. DG2 remained unable to bind sulfatide in the CST 

nerve, where background FITC staining was comparable to that of the negative 

control tissue (PBS followed by anti-mouse IgG3). Fixing the tissue in EtOH at RT 

gave the same result as freezing cold EtOH. The CGT/- tissue remained negative for 

both 04 and DG2 binding throughout, due to no sulfatide expression in this strain. 
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5.2.2 Effect affixation on GMJ availability to DGJ (Pilot study, n=J) 

Whole mount TS was incubated firstly in BTx, then fixed in a variety of ways for 20 

mill: 

*Freezing EtOH 
*Freezing Acetone 
*4% PFA atRT 
*PBS (ie. control unfixed) 

DG 1 was applied (to rinsed tissue) at 4°C for 2 hours and rinsed, followed by 

detection with anti-mouse IgG2b overnight. 

Analysis of the tissue showed 4% PF A and freezing EtOH did not facilitate DG 1 

binding. Acetone treatment resulted in a neuronal, but patchy pattern of DG 1 binding 

over the NMJ, which was not apparent in the PBS incubated (ie.unfixed) tissue 

(p<0.0001) . Omitting addition ofDG1 to acetone fixation prior to incubation in anti-

mouse IgG2b did not result in any staining, ruling out possible non-specific binding of 

the secondary antibody (Fig 62). 
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Fig 62. Effect of acetone treatment on DG 1 binding. n= 1 animal. Graph shows semi
quantitative analysis of DG 1 deposition in acetone treated tissue compared to control. 
Astrices indicate significance compared to control (p<0.000 1). Inset: DG 1 binding 
profile following acetone treatment appears neuronal and over the NMJ. 
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This pilot study demonstrates that agents such as acetone are able to expose epitopes -

possibly resulting from removal of membrane components which may be 'hiding' 

GMl. 

5.2.3 Demonstation of OP 1 anchored proteins masking gangliosides 

Gangliosides reside in lipid rafts, so it was hypothesised that any potential masking 

may be due to another raft component. The first line of investigation was GPI 

anchored proteins, which may act as "umbrellas" in shielding gangliosides. 

Phosphatidylinositol-specific phospholipase C (PI-PLC) is an enzyme commonly used 

to release GPI anchored proteins from the cell surface by cleaving the GPI anchor. 

For example, PI-PLC releases the GPI anchored glycoprotein Thy 1 from the 

membrane (Kukulansky et al 1999), which is abundant in neuronal cells (Campbell et 

aI1981). 

PI-PLC treatment was firstly established in the PC12 cell line: this neuronal cell line 

expresses gangliosides (Walton et aI1988), and is known to have GPI anchored 

proteins such as Thy 1 (Kukulansky et aI1999). Use of a cell line was chosen to 

increase the efficiency of the study: cells were easy to treat, and analysed via F ACS to 

give high sample numbers in a relatively short space of time. To establish the PI-PLC 

protocol at the NMJ for a variety of antibodies would have used a considerable 

quantity of reagents and animals to achieve significant n numbers. 

153 



[ill DGl 60 ~ DG2 60 

~40 

e 

U 
100 10' ItF 100 I(}, 00 io' ·10' 10) 16' 

Fluon:scencc (FL- I channel) Fluorcsc!!IlCC (F L- I channel) 
3.5 80 

~ 3 ~ 70 

~ 2.5 
.~ 60 

= 2 
~ 50 . ~ 40 

Q 

~ 1.5 r-- I-- t 30 
~ ) 

< 1 < 20 

0.5 10 

0 

Con fl.A.C Con fl.A.C 

Treatment Treatment 

[1J MOG35 
60 d) Thy 1 60 

~40 40 
8 

200 10' Ill' 10' I(}, 10' I<P I(}, '00 Ill' Fluorcscl!occ (F L- l chann.:l) 180 FIl10rescence (FL-! ellanne!) 
180 

350 
~ :;'300 .; 140 

.~ 250 ; 120 

~ 100 ~ 200 
E 80 ~ 150 

~ 80 

'0 
<. 100 

20 
50 

a 
Con ,,"R.C C.n ,,"R.C 

Treatment Treatment 

Fig 63. The effect ofPI-PLC on antibody intensity in PC12 cells. Inset are 
representative examples of the FACS histogram plots, with the shaded curve showing 
the fluorescence of the untreated cells and the heavy dark line showing the shift in 
fluorescence for the PI-PLC treated cells. 

DG2, MOG 35 (anti-GDla mAb) and Thy 1 PI-PLC treated cells are all significantly 

different compared to control cells (p<O.05), but no significant difference was 

detected for DG 1 (p>O.05). 

Results are shown in Fig 63. Confirmation that PI-PLC removed a significant 

proportion of GPI anchored proteins is shown by the decrease in antibody binding to 

Thy 1. Further abolition of Thy 1 required increased concentrations or incubations of 

the PI-PLC enzyme, which led to death of the majority of cells. As inferred from the 

ability of DG 1 to bind dead as opposed to live tissue, dead cells would have added an 

unfair variable to the experiment and it would not have been conclusive whether 

differences in mAb binding were due to disrupted membranes as a result of death, or 
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due to specific removal of GPI anchored proteins. Both MOG 35 and DG2 binding 

were increased in PI-PLC treated cells when compared to control, indicating that 

removing GPI anchored proteins from rafts is exposing more ganglioside or allowing 

better antibody accessibility. 

5.2.4 GPI anchored protein removal at the NMJ 

GPI anchored proteins are present at the NMJ, for example the complement regulator 

CD59, as shown in Fig 64. 

CD59 PI-PLC effect on 
CD59 

Fig 64. CD59 staining in the WT TS. Left panel shows the normal profile of CD59 at 
the NMJ. Staining is strongly associated with the NMJ. As seen on the right, pre
treatment of the tissue with PI-PLC abolished CD59 immunostaining, indicating the 
enzyme has cleaved the GPI anchor of CD59 and released it from the neuronal 
membrane. Anti-CD59 mAb was used at 1 :750 in Ringer for 1 hour at 32°C. The 
secondary antibody is anti-mouse IgGI -FITC, used at 1:300. mAb is courtesy of Dr 
BP Morgan, University of Cardiff. 

It is hypothesised that removal of GPI anchored proteins from the NMJ will have a 

similar effect as that demonstrated in the PC12 cell: i.e. GPI anchored protein removal 

may enhance the binding of certain mAbs to gangliosides. 
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A useful point to consider is the "nodal staining" observations of an earlier PhD 

student, John Goodfellow. Mice lacking in complement regulators (the 

DAF1-1
-, CD59a-l

- and CD59a-I-/DAF1-1
-) had differences in nodal staining profiles 

using MOG 35 (unpublished results). The following hypothesis was generated: 

differences in the profile ofMOG 35 staining may be due to the removal of GPI 

anchored proteins, such as DAF1 and CD59a. This would lend weight to the theory 

that gangliosides can be sterically hidden by other membrane components. The 

complement regulator KO mice are ideal candidates to further advance this study at 

the NMJ, as it allows analysis of the removal of specific proteins and the subsequent 

effect on antibody binding at the NMJ. Antibodies were applied to the ex-vivo hemi 

diaphragm preparation, followed by a source of complement, and the differences in 

antibody deposition at the NMJ analysed. Activation of complement leading to MAC 

and NF loss were taken as evidence that the enhanced binding was contributing to a 

pathological lesion. 

5.2.5 MOG 35 binding to mice lacking GPI anchored complement regulators 

Initial experiments were done in complement regulator KO mice with normal 

ganglioside profile to firstly address the effect of the GPI protein removal. In these 

mice it is also more likely that their lipid rafts are normal, as the increased ganglioside 

content of the membrane in the GD3s-l-may have a detrimental effect on the structure 

of the raft (Crespo et aI2002). Experiments were then performed on GD3s-l
- to 

determine whether the combination of GPI anchored protein removal and increased 

ganglioside expression can enhance epitope availability. 
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5.2.5.1 MOG 35 Optimal Concentration 

MOG 35 is a potent antibody in the induction of complement mediated NF loss in the 

GD3s-l
- (Goodfellow et aI2005). A dilution series was performed to establish a 

concentration adequate to produce an effect, but not causing total destruction ofNF, 

as this would render it impossible to distinguish differences between each strain tested 

(refer to Fig 65): 

Low High 
mAb concentration (Fgiml) 

Fig 65: Concentration ofMOG 35 should be adequate to produce a lesion, but at the 
end of the scale where varying severities of lesion are distinguishable. 
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Fig 66. MOG 35 dilution series in GD3s-l
- hemi-diaphragm. n=1. Differing dilutions 

ofmAb were used, and IgG, C3 and MAC intensity over the NMJ analysed. Axonal 
integrity was analysed based on NF coverage of the endplate. 

Analysis of the dilution series tissue compared the IgG, C3 and MAC deposition in 

addition to NF loss, for doubling dilutions of antibody, ranging from 6.25 J.lg/ml to 

100J.lg/ml and including a Ringer control. 3 GD3s-l
- mice in total were used, with 

each mouse providing 2 hemi-diaphragms: a different dilution was tested per hemi-

diaphragm. For each mouse, a portion of diaphragm was immediately removed and 

snap frozen, and tissue analysed to ensure that the baseline levels (ie. endogenous 

levels ofIgG, C3, MAC and NF) from each mouse did not vary and affect the results 

of the dilution series. 
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As shown in each graph, the baseline levels (ie. untreated tissue) were comparable to 

Ringer control tissue (p<O.OOO 1), indicating that the "starting point" of analysis for 

each dilution was equal. 

NF levels were calculated as a percentage of the untreated control. Ringer control 

tissue showed no significant loss ofNF (p<O.OOOl), with all other dilutions showing 

significant NF loss compared to the untreated control (p<O.OOOl). mAb 

concentrations of 50 and 100flg/ml showed a similar level of damage (p=0.1 0). At 

more dilute doses of 12.5 and 6.25flg/ml the lesion was less severe. 6.25flg/ml of 

mAb is the ideal dilution at which to cause a significant but milder lesion when 

compared to all other dilutions except 12.5flg/ml where the lesion is milder than at 

6.25flg/ml. However the NF loss at 12.5flg/ml does not fit the overall linear trend 

(shown in Fig 66), and is possibly due to natural "wobble" which would be eliminated 

with further experimental repeats. 

Based on the NF data, analysis of the IgG, C3 and MAC intensity for 6.25flg/ml was 

compared to the baseline control and 100flg/ml of mAb (where intensity is assumed 

maximal). For IgG, C3 and MAC, at 6.25flg/ml the intensity is higher than that of the 

untreated (and Ringer treated) controls (p<0.0001) and less than that of 100flg/ml 

(p<O.OOOl). 

In summary, 6.25flg/ml is sufficient to cause a lesion, but the mild nature of the lesion 

compared to that induced by the higher concentrations means any enhancement 

caused by the removal of complement regulators should be detectable. 
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5.2.5.2 MOG 35 @ 6. 25pglml: CD59a-l
- IDAFrl

- and WT 
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Fig 67. Graphical overview ofMOG 35 in the CD59a-I-/DAFrl
- and WT. Astrices 

indicate significance compared to Ringer control (p<0.05) and hash symbols indicate 
significance compared to WT. 

IgG Intensity 

Both strains had significantly greater IgG deposition compared to the Ringer control 

(p<0.0001). The CD59a-I-/DAFI-1
- mAb treated tissue had more IgG deposition at the 

NMJ compared to the WT (p<0.0001). 

C3 Intensity 

C3 deposition was increased when compared to Ringer control (p<0.0001) for both 

strains, and again the C3 intensity was greater for the mAb treated tissue of the 

CD59a-I-/DAF1 -1- when compared to the WT (p<0.0001). 
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MAC Intensity 

MAC intensity was significant (p<O.OOOl compared to Ringer control), and again 

MAC was strongest in the mAb treated tissue between the CD59a-1-/DAF1 -1- and WT 

(p<O.OOOl). 

NF Coverage 

No NF lesion was detected in the WT mAb treated tissue: in fact the mAb treated 

tissue had more NF coverage of the NMJ when compared to Ringer treated tissue 

(p<O.OOOl). In the CD59a-1-/DAF1 -1- however, there was a reduction in NF coverage, 

which is significant when compared to the CD59a-1-/DAF1-1
- Ringer treated tissue 

(p<O.OOOl) and also the WT mAb treated tissue (p<O.OOOl). 

Summary 

IgG, C3 and MAC intensity are increased in the CD59a-1-/DAF1-1
-, which also has the 

most apparent NF lesion when compared to the WT. For all incubations, the viability 

of the antibody was comparable (Fig 68). 
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5.2.5.3 MOG 35 @ 6.25j.Jg/ml: CD59a-I
-, DAFrl

- and WT 
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Fig 69. Graphical overview ofMOG 35 in the CD59a-I
-, DAF1 -1- and WT. Astrices 

indicate significnce compared to Ringer control (p<O.05), hash symbol indicates 
significance compared to WT and triangle indicates significance compared to DAFrl

-. 

IgG Intensity 

For all strains, the IgG deposition at the NMJ was greater in the mAb treated hemi-

diaphragm than for the Ringer treated half (p<O.OOOl). Both the CD59a-l- and DAF1-1
-

had greater IgG deposition compared to the WT (p<O.0001), with the CD59a-l
- mAb 

treated tissue having higher IgG intensity than the DAF1-1
- (p<O.0001), although it 

should be noted that the baseline in the CD59a-l- is greater. 
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C3 Intensity 

C3 intensity over the NMJ was increased in mAb treated tissue when compared to 

respective Ringer control tissue for all strains (p<O.OOOl). The DAFr
l
- mAb treated 

tissue had greatest C3 intensity when compared to both the CD59a-
l
- and WT 

(p<O.OOOl), while the CD59a-l
- had less C3 than the WT (p<O.OOOl). 

MAC Intensity 

MAC deposition was significant in the mAb treated tissue of all strains, compared to 

Ringer tissue (p<O.OOOl). MAC in the WT mAb treated tissue was lower compared 

to the DAF1-1- and CD59a-l- mAb treated tissue (p<O.OOOl), with the CD59a-
l
- having 

the most significant MAC deposition in mAb treated tissue compared to the other 

strains (p<O.OOOl). 

NF Coverage 

No statistically significant difference was shown for any strain when comparing the 

Ringer control and mAb treated tissue. 

Summary 

Initially it appears that the CD59a-l
- has greater MOG 35 deposition and MAC 

intensity. However, although levels in the mAb treated tissue are greater than in the 

Ringer tissue, the Ringer control tissue of this mouse is significantly different when 

compared to the Ringer control tissue of the other strains (p<O.OOOl). This indicates 

that this mouse has an endogenous deposition of IgG over the endplate, which are 

detected when analysing MAC and IgG and thus contributing to the intensity. When 

the cut and stained baseline tissue (ie. immediately snap frozen portion of diaphragm) 

from the CD59a-l- was analysed, the IgG intensity and MAC intensity showed similar 

staining to the Ringer treated tissue (p<O.OOOl), confirming that this batch of mice 
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had endogenous IgG deposition over the endplate, a phenomenon which is difficult to 

explain. To eliminate this "background" would have been detrimental to the detection 

of MAC and MOG 35 deposition in the WT mouse. Thus from the experiment the 

only definite conclusion which can be drawn is that IgG, C3 and MAC intensities are 

greater in the DAF1-1
- compared to the WT. It is also difficult to explain why, in the 

presence of MAC, no significant lesion of the NF was detected. The retained 

antibody samples for each incubation were similar (Fig 70). 

ELISA: Retained Antibody Samples 
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Fig 70. Retained antibody samples were equally viable. 

5.2.5.4 MOG 35 @ 6.25J.1glml: GD3s-I -, GD3s-I-ICD59a-I
-, GD3s-I-;DAFrl

-

IgG Intensity 

For each strain, IgG deposition in the Ringer tissue is negligible when compared to 

the mAb treated tissue (p<0.000l). There is a similar IgG intensity in the 

GD3s-I-/CD59a-1-and GD3s-l - mAb treated tissue (p=0.96), with the highest IgG 

intensity in the GD3s-I-/DAF1 -1- when compared to the other strains (p<0.0001). 
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C3 Intensity 

The trend described for IgG intensity is replicated for C3 deposition, with greatest C3 

detected in the GD3s-I-/DAF1-1- mAb treated tissue (p<O.OOOl) compared to the other 

strains. 

MAC Intensity 

Again, for each strain Ringer treated tissue showed no significant staining intensity 

compared to mAb treated tissue (p<O.OOOl). The GD3s-l-ICD59a-l- had lower MAC 

intensity than the GD3s-l- (p<O.OOOl) and GD3s-I-/DAF1-1-(p=O.08), and the GD3s-
l
-

had similar MAC intensity to the GD3s-I-/DAF1-1-(p=O.Ol). 

NF Coverage 

All strains had significant NF loss when compared to the Ringer control treated tissue 

(p<O.OOO 1). 
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Fig 72. Antibody viability by ELISA. 
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5.2.6 DGl: GaINAc-T I
- , GD3s-I

-, GD3s-I-/CD59a-I-/DAFrl
- , WT 

In summary, the above findings suggest that removal of GPI anchored proteins can 

increase antibody deposition at the NMJ. It was hypothesised that GPI anchored 

protein removal would enable the binding of DG 1. To test the hypothesis, DG 1 hemi 

diaphragms from the GD3s-1-/CD59a-1-IDAF1-1
- and GD3s-1- were incubated in DG 1 to 

directly analyse the effect of GPI anchored protein removal. The GalNAc-r /-was 

used as the negative control, and the WT as a baseline control. 
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Ringer control (p<O.05). 
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IgG Intensity 

The GD3 s-I-/CDS9a-I-/DAF 1-1- had a significant increase in DG 1 binding compared to 

Ringer control tissue (p<O.OS). The GD3s-I-, WT and GalNAc-T/-had no significant 

difference between mAb and Ringer treated tissue (p=O.16, p=O.2, p=O.66 

respectively). Comparison of the DG1 intensity in the mAb treated tissue of the 

GD3s-I-/CDS9a-I-/DAF/-and the GD3s-l-shows no difference (p=0.40). 

C3 Intensity 

The GD3s-I-/CDS9a-I-/DAFrl - and GD3s-l-both show a significant increase in C3 

intensity in DG 1 treated tissue compared to Ringer treated tissue (p<O.OOO 1). WT 

mAb treated tissue has a lower C3 intensity than Ringer treated tissue (p<O.OOOl), 

indicating non-specific adherence of activated complement components in the NBS to 

the Ringer tissue. The GalNAc-T /- has no difference between Ringer and mAb treated 

tissue (p=O.78). There is no significant difference between the C3 intensity of the 

mAb treated GD3s-l- and GD3s-I-/CDS9a-I-/DAF1-1
- tissue (p=O.89). 

MAC Intensity 

MAC intensity is significantly increased in mAb treated compared to Ringer treated 

tissue in the WT (p=O.02), GD3s-I-(p<O.OOOl) and GD3s-I-/CDS9a-
I
-/DAFr

l
-

(p<O.OOOl). Ringer treated and mAb treated tissue of the GalNAc-T
/
- shows no 

statistical difference (p=O.Sl). The mAb treated tissue of the GD3s-
l
- and GD3s-

l
-

/CDS9a-I-/DAF 1-/- is not significantly different (p=O.Sl). 

NF Coverage 

The WT mAb treated tissue has no significant alteration in NF coverage over the NMJ 

compared to the control (p<O.OOOl). The GD3s-l
- mAb treated tissue has significantly 
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less (p<0.0001) NF coverage than Ringer control tissue, and the GaINAc-r/- shows a 

significant NF lesion (p=0.02) in rnAb treated tissue compared to the Ringer control. 

Only the GD3s-I-/CD59a-I-/DAF1-1- has no significant difference between the Ringer 

and rnAb treated tissue NF levels (p=0.33). 

Summary: MAC, C3 and IgG levels in both the GD3s-l - and GD3s-I-/CD59a-I-/DAF1-1
-

rnAb treated tissue are not significantly different, indicating the absence of CD59a 

and DAF1 are not enhancing the ability ofDG1 to bind to GMl. Although only the 

GD3s-I-/CD59a-I-/DAF1-1
- displays an increase in IgG intensity in rnAb treated tissue 

compared to Ringer control, the median intensity lies on zero (in other words, 50% of 

the NMJs were negative), indicating binding ofIgG (in the 50% of positive) NMJs is 

just below the threshold of detection and does not represent a biologically relevant 

rnAb deposition. The NF analysis indicates a significant lesion in the GD3s-l
- mouse, 

however the apparent lesion in the GaINAc-r /- (which had no MAC, IgG or C3 

deposition in rnAb treated tissue) indicates the NF of each strain may have been 

damaged during the hemi-diaphragm incubations or due to natural variability in the 

tissue. This could be overcome by increasing the number of experimental repeats. 

5.2.7 Discussion 

DG2 is able to bind sulfatide strongly on ELISA, but not in tissue. The effect of tissue 

fixation in EtOH and PF A have shown to be effective in epitope expo sue (Quattrini et 

al 1992), however this was ineffective in facilitating sulfatide recognition for DG2. It 

is possible that the mAbs which are capable of binding sulfatide on ELISA, but not in 

tissue, are not able to recognise the epitope when in the membrane. This could be a 

direct result of the epitope being shielded (or "masked") by something in the 

membrane, or it could be due to the way sulfatide is orientated in the membrane, 
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whereby its antigenic domain is not freely accessible to the mAbs. The anti-sulfatide 

antibody 04 is able to bind membrane associated sulfatide, indicating it relies on a 

different epitope or presentation than the mAbs in our panel. Overall, from the data 

there is evidence that something is able to interact with sulfatide and inhibit the ability 

ofmAbs to bind, especially in the context of the membrane. 

The notion of epitope shielding was expanded in attempt to explain why DO 1 cannot 

bind OM1 in living membranes. There is evidence that acetone fixation enhances the 

ability of some anti-ganglioside antibodies to bind (Urmacher et aI1989), and as 

shown in the results, treatment of the tissue in acetone resulted in a significant DO 1 

signal over the NMJ. Organic solvents such as acetone can significantly reduce the 

level of membrane associated gangliosides (Schwartz and Futerman 1997) and thus 

DO 1 binding following acetone treatment supports the theory that OM1 is "masked": 

acetone may remove any lipids or proteins masking OM1, but more importantly, 

probably also solubilises a percentage of OM1 and therefore the ability of DO 1 to 

bind is suggestive that binding is not dependent on the OM1 density, but rather the 

availability. However, the possibility that DO 1 may be binding non-specifically 

following acetone treatment cannot be ignored, although it is highly unlikely that 

acetone is able to dissolve glycolipids in a way which results in the creation of more 

OM1like epitopes. This experiment is indirect evidence that OM1 is being masked 

from DO 1, and from this more specific experiments were designed to identify the 

"culprit" . 

The first line of investigation involving removal of OPI anchored proteins led to an 

increased ability ofD02 and MOO 35 to bind. This is evidence that a new population 

of gangliosides have been made available to the mAbs, and provides direct evidence 

of the clustering of gangliosides and OPI anchored proteins. Observations in pe12 
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cells are relevant to the NMJ, due to the existence ofGPI proteins (eg. CD59) at this 

site which are likely to exert a similar raft mediated masking effect. If an antibody is 

able to bind better in the absence of GPI anchored proteins, then the inference is that 

they will result in an enhanced lesion. The hemi-diaphragm data is highly suggestive 

that removal ofGPI anchored DAF1 enhances MOG 35 binding at the NMJ. This 

could be due to direct epitope exposure whereby DAF1 is directly hiding the 

ganglioside, or a knock on effect, where GPI anchored protein removal alters raft 

architecture and molecules which normally associate with gangliosides are "moved" 

and thus expose the ganglioside. However, the correlation between increased 

antibody binding and enhancement of the lesion is difficult to interpret from the 

current data. The increased C3 and MAC levels may be due to the increased levels of 

antibody, or as a result ofthe decreased complement regulation, or a combination of 

the two factors. In order to address this, a KO mouse with normal complement 

regulators but loss of another NMJ associated GPI anchored protein would need to be 

studied. 
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Chapter 6 

6.1 Introduction 

In Chapter 5, the removal of GPI anchored proteins did not facilitate the binding of 

DG 1. However rafts are diverse, and the association of GM1 with other potential 

"masking" structures is addressed in the context of lipid rafts, forming the basis of 

this chapter. 

6.2 Results 

6.2.1 DOl Binding 

The first hypothesis generated was that GM1 (or at least the sialic acid of GM1) can 

be masked by other gangliosides, in this case GD 1 b, GD 1 a and GT1 b which represent 

the most abundant neuronal gangliosides (Willison and Yuki 2002). This would 

explain why DG 1 is unable to "see" GM1 in the living membrane, although it can 

clearly bind GM1 alone. 

The hypothesis was tested by ELISA, to determine the ability of anti-GM1 antibodies 

to bind GM1 in the presence of other gangliosides. DG 1 binding to GM1 alone or 

when mixed in a 1:1 ratio with another ganglioside was tested (Fig 74). All antibody 

binding curves are the mean of 3 repeats, with SEM indicated. 
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Effect of Ganglioside Mixing on DG1 Binding 
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Fig 74. Binding curves showing the OD490nm ofDG 1 binding to GM1 alone, or GM1 
mixed with gangliosides. Neat sample is 50~g/ml. 

Mixing GM1 in a 50:50 ratio is theoretically reducing the amount of GM1 on the 

plate, but GMI :methanol (MeOH) (50:50) did not have lower OD 490nm compared 

to GM1 alone. Thus, it was concluded any alterations in antibody binding due to 

mixing GM1 with gangliosides is not due to reducing the quantity of GM1. 

When comparing DG1 binding to GM1 alone, mixing GM1 50:50 with GDlb or 

GTlb caused a decrease in the binding ofDGl. GDla had a more pronounced 

decrease on the binding, indicating that on the ELISA plate, GDla is the most 

effective ganglioside at obscuring GM1 from DG 1. 

6.2.2 DG2 

The masking effects of gangliosides, as inferred from the DG 1 data above, were 

tested using DG2. The Gal(~1 -3)GalNAc epitope is shared with GDlb, and DG2 

binds GDlb on ELISA, although the binding to GM1 is much stronger (Townson et al 

2007). 
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DG2 bound strongly to GM1 with a weak signal also detected for both GD1 band 

GDla. In order to determine the inhibitory effect of these gangliosides when mixed 

with GM1, the OD490nm values of the mixed wells were adjusted by subtracting the 

values ofDG2 binding to either GDla or GDlb alone, thus giving a more accurate 

comparison of antibody binding to either GM1 alone or GM1 in a mixed well without 

the added interference from weak binding to the other ganglioside species (Fig 75 a, 

75b). 
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Fig 75 a) Comparison ofDG2 binding GM1 alone and DG2 binding GM1 :GDla 
(subtracted value). Neat sample is 50flg/ml. 
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DG2 Binding to GM 1 :GD1 b 
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Fig 75 b) Comparison ofDG2 binding GM1 alone and DG2 binding GM1:GDlb 
(subtracted value). Neat sample is 50)lg/ml. 

As shown in Fig 75b, mixing GM1 :GD1 b appears to have a minor inhibitory effect on 

the binding ofDG2 to GMl. However, mixing of GM1 :GDla (Fig 75a) results in an 

almost complete inhibition ofDG2 binding to GMl. 

6.2.3 CTb 

Before conclusions were drawn from the antibody binding data, it was important to 

account for the possibility that mixing GM1 with other gangliosides may displace 

GM1 and prevent it from binding to the plate. This would mean the inability of 

antibodies to bind GM1 in the presence of GDla may be misinterpreted as a 

"masking" effect which may instead be an artefact of the experimental design. CTb 

binding to GM1 is of much higher affinity than mAbs binding to GMl, as the CTb 

interaction with GMI oligosaccharide is one of the highest affinity protein-

carbohydrate interactions recognised to date (Turnbull et aI2004). Thus any 

alteration of CTb binding to GM1 is a good indicator that GMI has not bound to the 
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plate. It has been suggested that in certain assay conditions, CTb is not specific for 

GM 1 (Kuziemko et al 1996) and thus the first consideration of this experiment was 

therefore to establish which gangliosides CTb binds to by ELISA. 

CTb BINDING TO GANGLIOSIDES 
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Fig 76. Binding curves ofCTb to gangliosides GTlb, GDlb, GDla and GMI. Neat 
sample of CTb is 100ng/ml. 

As shown in Fig 76, by ELISA CTb is not specific for GMl, and bound strongly to 

GDlb and with lower affinity to GDla and GTlb. For all concentrations ofCTb 

tested, CTb binding to gangliosides GDla, GTlb and GDlb gave a similar profile 

(graphs not shown) indicating the specificity of the toxin was not influenced by 

concentration. 
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6.2.3.1 CTb and Mixed Gangliosides 

The high affinity ofCTb for GMI when compared to GDla and GTlb was 

demonstrated in Fig 76, and from this it was hypothesised that in vitro, CTb binding 

to GMI alone or GMI mixed with GDla or GTI b should give comparable OD490nm• 

To account for the binding of CTb to other gangliosides, it was assumed that in a 

mixed well, CTb will preferentially bind GMI over the lower affinity gangliosides 

(GTlb and GDla). 

Therefore, for these gangliosides, the binding of CTb in mixed wells was adjusted by 

subtracting the value ofCTb binding either GTlb or GDla alone (Fig 77 a, Fig 77b) 

and the results depicted graphically. 
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Fig 77 a) Comparison ofCTb binding to GMI alone, or GMl mixed with GDla. Neat 
sample of CTb is 100ng/m!. 
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Fig 77 b) Comparison of CTb binding to GMI alone, or GMI mixed with GTI b. 

Fig 77a) shows that GDla is inhibiting CTb binding to GMl, and this is most obvious 

when CTb is applied to the wells at the starting concentration of lOOng/ml. GTI b has 

minimal inhibition on the binding ofCTb to GMl. Therefore the results of the CTb 

binding experiment do not rule out the possibility that mixing GMI and GDla is 

artefactually interfering with the adsorption of GMI to the plate. 

6.2.4 The Living Membrane 

From the ELISA studies it was not possible to confirm the inhibitory effect ofGDla. 

The next experimental approach was therefore to look directly at the living 

membrane. 

6.2.4.1 PC12 Cells: Removal ofGDla 

Neuraminidase (N'ase) is an enzyme which cleaves sialic acids from gangliosides and 

sialoglycoproteins (Cassidy et aI1965). Because only terminal sialic acids are 
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cleaved, ganglioside OMI is resistant to neuraminidase, and removal of the terminal 

sialic acids from gangliosides such as ODla will effectively transform them into 

OMl, as shown in Fig 78. 

~;:l ~~ ~ ~I ~ i ~ 
I 

CER CER e'ER 

I GQ l b I GD 1 " I GMl I 

Fig 78 . Heavy red lines show the sialic acid linkages which are sensitive to N'ase. 
The linkage of sialic acid to the internal galactose is resistant, meaning all complex 
gangliosides are reduced back to the structure of OM 1 by N'ase, as shown in the 
schematic example. 

Initially, N'ase treatment protocol was optimised using PC12 cells seeded onto 

coverslips, a convenient way of performing a dilution series, varying incubation times 

and viewing the results directly down the microscope. The aim of the experiment was 

to remove ODla enzymatically without killing the cells, which would cause 

morphological alteration of the cell membrane. This would make it impossible to 

determine whether the observed increase in DO 1 staining was due to removal of 

OD 1 a, or due to degradation of the membrane. 

High doses of enzyme, prolonged exposure to the enzyme or dilution of the enzyme in 

PBS resulted in cell death as shown in the "Live/Dead" staining assay in Fig 79. 

Ethiduim homodimer-l (EthD-l) dye is excluded from live cells by the intact plasma 

membrane, but enters damaged membranes and binds to nucleic acids to give an 

intensely positive signal. Ca1cein green is indicative of vital cells as its fluorescence is 

induced by esterase activity of viable cells (Live/Dead Assay, Molecular Probes Inc.) . 
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Fig 79 a) Left panel: cells incubated in PBS alone show no uptake of EthD-l, and are 
Ca1cein green positive. Right panel: incubation of cells in N'ase and PBS leads to 
leaching of the Calcein green and rapid EthD-l uptake. 

N'ase/ Media 

EthD-l 

Fig 79 b) Left panel: cells incubated in serum free media (SFM) alone are Calcein 
green positive with no uptake of the EthD-l dye. Right panel: N' ase treatment of 
cells in SFM does not lead to EthD-l uptake and cells retain a strong Calcein green 
signal. 

As shown, the optimal treatment of the cells was for no longer than 1.5hrs, using 2U 

ofN'ase, in serum free DMEM at 37°C (Materials and Methods). 

6.2.4.2 Neuraminidase: FACS Analysis 

Cells were plated into 5ml tissue culture dishes, treated with enzyme (or control) and 

prepared for F ACS analysis. A pilot study (n= 1) revealed that a 1.5hr treatment of 

cells with 2U/ml resulted in a decrease in MOG 35 intensity with a concomitant 

increase in DG 1 intensity (Fig 80,Fig 81 and Fig 82) 
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Fig 80. F ACS histograms showing the shift in fluorescence of MOG 35 and DG 1, 
before and after N' ase treatment. 
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Fig 81. Effect of Neuraminidase treatment on MOG 35 and DGI mean intensity, as 
determined by F ACS analysis. 
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Fig 82: illustractive example ofN'ase treatment on MOG 35 and DG 1 intensity, as 
quantified by F ACS analysis. PC= phase contrast. 

Establishing that removal of GD 1 a correlates with an increase in the binding of DG 1 

led to the hypothesis that GDla removal was "unmasking" GMI. Thus, reconstituting 

the cell membrane with GD 1 a following enzymatic removal (ie. adding back in 

exogenous GDla) should result in a reduction of the DG 1 signal. To test this 

hypothesis, a 3 day experimental procedure was designed: 

Day 0: 7 dishes of cells (equal numbers) set up and left overnight in incubator. 

Day 1: 5 dishes treated with N' Ase, and 2 with SFM to serve as controls. 

Group a) F ACS analysis performed on one dish of control and one dish of 

treated cells to confirm success of enzymatic treatment. 

Group b) Exogenous ganglioside or placebo added to 3 enzymatically treated 

dishes and incubated overnight (Materials and Methods) along with one dish of 

untreated control cells. 
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Group c) Remaining dish (treated) was returned to serum-rich media to ensure 

"normal" ganglioside metabolism and incubated until day 3, to assess the effect of de-

novo GD 1 a synthesis on DG 1 binding. 

Day 2: F ACS analysis of group b. 

Day 3: F ACS analysis of group c. 

Results: 
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Fig 83 . n=3 repeats, with all staining done in duplicate per experiment. Error bars 
indicate SEM. Baseline control is combined result of untreated cells analysed on Day 
l(in Group a) and a further group of untreated cells analysed on day 2 (in Group b) . Y 
scale represents fluorescence intensity (arbitary units) . 
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Group a) Day 1: As expected, enzyme treatment resulted in a decrease in GD1a as 

shown by a decrease in MOG 35 intensity compared to control (p<O.05). DG 1 

intensity increased in treated cells compared to control (p<O.05), indicating there was 

an increase in accessible GM1. 

Group b) Day 2: N'ase treated cells were reconstituted with GD1a, GT1b or placebo 

(ie. sonicated dH20 added to the media). The resistance of exogenous GT1 b to 

trypsinisation ofthe cells, and its increased detection with MOG 16 (anti-GT1b mAb) 

when compared to control cells (p<O.05) indicates that GT1 b was successfully 

incorporated into the membrane. As predicted from earlier ELISA data, GT1 b had 

negligible effect on DG 1 binding when compared to the N' ase/placebo treated cells 

(p>O.05). 

Insertion of exogenous GD1a to the membrane appeared less successful. Regarding 

MOG 16, there was an obvious increase in fluorescence when GT1 b was added, 

compared to untreated or placebo treated cells (p<O.05). With MOG 35, exogenously 

added GD1a recovered the fluorescence to a level comparable with untreated cells 

(p>O.05). However it is possible that the recovery of fluorescence is due to a 

combination of de-novo GD1a synthesis and exogenous GD1a: it was predicted that 

placebo treated cells would retain a similar MOG 35 intensity to N'ase treated cells, 

however increased MOG 35 intensity in placebo treated cells indicates possible de

novo synthesis ofGD1a. It is not known whether exogenous GD1a inserted into the 

membrane and "out-competed" de-novo GD1a, or whether the GD1a content of the 

reloaded cells was due to de-novo GD1a (perhaps supplemented by the exogenous 

GD1a). However, as the DG1 binding ability did not decrease compared to the N'ase 
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treated cells (p<O.05), the former theory is most likely, and it is probable that 

exogenous GDla did enter the membrane but did not enter lipid rafts. 

Addition of exogenous GTlb did not decrease the binding ofDGl compared to the 

N'ase treated cells (p>O.05), suggesting GTlb does not mask the GMI epitope from 

DG 1. Figure 84 shows a representation of the F ACS histograms showing similar DG 1 

intensity for all 3 conditions (control, exogenous GDla and exogenous GTI b). 

Group c) Day 3: Restoration ofthe GDla levels in the membrane by de-novo 

synthesis also reduced the binding of DG 1 although not fully to the level of untreated 

control cells (p>O.05). Thus, de-novo synthesis ofGDla "re-masked" GMl, although 

incompletely. This further supports the observation that the GDla in the membrane 

of the exogenously reloaded cells was not due to de-novo GD 1 a, as the DG 1 signal 

did not decrease as shown for the decrease with de-novo synthesis. 

100 10' 102 10' 

!L 
DG I Intensity 

(F ITC) 

10" 

Fig 84. FACS histograms. Fluorescence intensity ofDGl did not show an obvious 
shift in the F ACS profile when comparing control cells, cells with exogenous GD 1 a 
and cells with exogenous GTI b. Data illustrated here is shown quantitatively in Fig 
83. 
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6.2.4.3 GMI and GD 1 a: Raft Fraction Analysis 

The failure ofGDla to decrease the binding ofGMlled to the hypothesis that the 

exogenous GDla did not enter lipid rafts, where the interaction of GM1 and GDla is 

likely to occur. Based on detergent insolubility in Triton-Xl 00, and flotation on a 

sucrose gradient (Brown and Rose 1992), lipid raft fractions were prepared from 

untreated PC12 cells, N'ase treated PC12 cells and N'ase treated PC12 cells which 

had been "reloaded" with exogenous GDla. Each fraction was then analysed by gel 

electrophoresis, allowing the presence of gangliosides and proteins in each fraction to 

be compared by Western Blotting. Using this technique, the distribution ofGMl and 

GDla in raft versus non-raft fractions from each treatment were analysed, to 

determine the endogenous GDla profile, and compare it to that of the GDla profile 

after N' ase treatment and subsequent exogenous addition of GD 1 a. 

Exposure times for blots were kept constant to ensure fair comparisons could be made 

regarding intensities, and results are shown in Fig 85a and Fig 85 b (shown together 

overleaf). 

Figure 85a) shows that in untreated cells (top band), GDla is distributed mainly in the 

raft fractions, with evidence also in the more dense membrane components in 

fractions 10, 11 and 12 (which contain dense core vesicles (Saegusa et al2002 )). In 

darker exposures (not shown as this led to over exposure ofthe fractions with 

exogenous GD1a), a faint smear ofGDla was also present in fractions 6-9. In the 

N'ase treated cells (middle band), the GDla content of fractions is dramatically 

decreased compared to the control cells, proving the effect of the N' ase in removing 

GDla. In the cells with exogenous GDla added (bottom band), the ganglioside has 

recovered the MOG 35 signal in the raft fractions to a level comparable to control 

cells. However there is also evidence of more intense GDla in all other fractions. 
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From this data it can be concluded that recovery of GD 1 a is in part due to de-novo 

GDla synthesis (during the 18 hour incubation with the exogenous ganglioside) and 

exogenous GDla, but the exogenous GDla is likely to have inserted into other 

membrane fractions also. 

Figure 8Sb shows the CTb signal for the raft fractions, and it is assumed that CTb is 

specific for GMI in the fractions. Thus the distribution of GMI shows an enrichment 

in the raft fractions 3, 4 and S, but also a detectable signal in non-raft fractions. In 

N'ase treated cells GMI becomes abundant in all fractions. This suggests that not all 

GDla had been detected in Fig 8Sa), or that sialic acids from other glycolipids or 

proteins had contributed to the 'new' GMI in the non-raft fractions. Addition of 

exogenous GDla did not alter the profile ofGMl in the blots. Figs 8Sc and 8Sd 

prove the results obtained above are based on a valid raft preparation, using positive 

and negative controls for raft fractions. The transferrin receptor is not raft associated, 

but enriched in the greater membrane (Hering et a12003, Eckert et aI2003). As 

shown in Fig 8Sc), there is enrichment of the transferrin receptor in non-raft fractions 

for all cell preparations. The structural protein flotillin is enriched in the raft fractions 

(Morrow and Parton 200S) and as shown in Fig 8Sd), in all raft preparations it is 

intense in fractions 3, 4 and S. 
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Fig 85a. Western Blot. Solubilised membrane fractions ofPC12 separated and 
recovered from a sucrose gradient and each fraction electrophoresed. Blot shown was 
probed with MOG 35 showing GDla distribution. Exposure times for each row were 

constant. 
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Fig 85b. Western Blot. As for Fig 85a), but probed with CTb (ie. GMI distribution) 

I 2 3 4 5 6 7 8 9 10 II 12 

~ ... ,....... 

~.'"'" 

Untreated Cells 

N'ase Treated 

N'ase and Exogenous GDla 

Fig 85c. Western Blot - Transferrin receptor (negative control, non raft associated 
protein). Top band represents the 180 kDa dimer with the 90kDa monomer below. 
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Fig 85d. Western Blot - flotillin (positive control, raft associated protein). 48 kDa 

protein. 

6.2.4.2 Summary a/PCl2 Data 

Treatment of PC 12 cells resulted in the binding of DG 1, owing to a population of 

available GMI. It was hypothesised that the re-addition ofGDla to the cells would 

assume the characteristics of endogenous GDla, and interact with GMI to mask it 

from DG 1. This was shown not to be the case. However, after several days in culture, 

N'ase treated PC12 cells without the addition of exogenous GDla were able to 
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express de-novo GD1a and concomitantly reduce the ability ofDG1 to bind. Raft 

fraction analysis displayed that exogenously added GD1a was not specific for raft 

fractions. Taken together these data suggest that the exogenous GD1 did not interact 

with GM1 in a physiologically relevant way, and that de-novo synthesis of GD1a was 

required to interact with GM1. 

6.2.5 Translating the Data to the Mouse NMJ 

Investigating the presentation of GM1 in the membrane of a cultured cell line does not 

fully recapitulate the environment at the NMJ where DG 1 does not bind, even weakly, 

in ex-vivo muscle preparations. The next logical progression in the epitope masking 

study was to move from the cell membrane to the more complex structural 

arrangement of the NMJ, using ex-vivo muscle preparations from the target disease 

model (the GD3s-l-mouse). 

6.2.5.1 Effect ofN'ase on DGl binding at the GD3s-
l
- NMJ 

N'ase was applied to TS preparations, and DG1 binding analysed in direct 

comparison to Ringer control tissue. For each comparison, microscope levels were 

kept constant. 

189 



Fig 86. Effect of N'ase on DG1 binding in the GD3s-l - TS muscle (ex-vivo 
preparation). Negative control tissue (N'ase followed by secondary, showed no non
specific binding of the secondary to the tissue). Scalebar = 20~m 

As shown in Fig 86, DG 1 did not bind to control GD3s-l
- tissue, however a strong IgG 

signal was detected following N' ase treatment. The antibody deposition appeared 

axonal. Fig 87 confirms that the antibody binding was functional, as complement 

activation was detected in a similar profile to the IgG deposition. 

Fig 87. Ability ofDG1 to activate complement in the GD3s-l
- mouse. In N'ase treated 

tissue, C3 deposition is seen over the NMJ with a neuronal profile. Scalebar = 20~m 
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6.2.5.2 Effect ofN'ase on DOl binding at the WT NMJ 

N'ase treatment ofTS was repeated in the WT mouse, to confirm that the observed 

effects in the GD3s-l - are not unique to this genetically modified mouse. 

The staining profile ofDG1 in the N'ase treated tissue was axonal, and over the NMJ, 

although it did not appear to be as intense as shown in the GD3s-l-mouse. DG 1 did 

not bind to the control tissue. 

Fig 88. Effect ofN'ase on DG1 binding in the WT TS muscle (ex-vivo preparation). 
N'ase results in deposition ofDG lover the NMJ. Scalebar = 20j..lm 

6.2.5.3 Effect ofN'ase on Sml binding at the OD3s-i
- NMJ 

The effect ofN'ase in facilitating the binding of human antibodies was addressed, to 

illustrate that the N'ase protocol is effective in allowing both mouse antibodies, and 

those cloned from human neuropathy sera, to bind. 
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Fig 89. Sm1 binding in GD3s-l - TS preparation. Sm1 binds in a neuronal profile after 
N'ase treament, with evidence ofPJF staining. Scalebar = 20)lm 

Fig 89 shows that Sm1 is only binding to the tissue in the GD3s-l
- following 

enzymatic treatment. The antibody deposition appears concentrated over the NMJ 

and the profile looks axonal. However as shown, there is an additional staining blush 

over the endplate which may be evidence of P JF staining. 

6.2.5.4 N 'ase Treated tissue: CTb Inhibition of DGl Binding 

Thus far the data has assumed that DG 1 is binding to GM1 following the N'ase 

treatment. To confirm that the epitope is GM1, the N'ase tissue was incubated in CTb 

prior to DG 1 application. Any binding of DG 1 following saturation of GM 1 indicates 

that DG 1 is binding to a different epitope. Results confirm that application of 

unlabelled CTb to N' ase treated tissue is able to inhibit the binding of DG 1, both over 

the NMJ and in the axon (Fig 90). 
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Fig 90. Effect ofCTb on the ability ofDG1 to bind in N'ase treated GD3s-l
- TS 

preparation. N'ase treatment facilitates DG 1 binding (left). N'ase followed by 
unlabelled CTb quenches GM1 and abolishes DG 1 binding (right panel). Scalebar = 
20)lm 

6.2.5.5 N'ase Removal ofGDla 

The ability ofN'ase to remove GD1a (as shown in PC12 cells) was confirmed at the 

NMJ by incubating both Ringer and N'ase treated tissue in MOG 35. 
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Fig 91. MOG 35 staining in N'ase treated GD3s-l - TS preparation, illustrating 
decreased staining when compared to untreated tissue. Arrow indicates persistence of 
GD1a in discrete areas, where MOG 35 is still able to bind. Scalebar = 20llm 

In agreement with the previously characterised binding profile of this antibody 

(Goodfellow et al2005), MOG 35 binds GD3s-l
- tissue and has a strong axonal 

presence (Fig 91 , left panel). Following treatment ofthe tissue with N'ase, the binding 

ofMOG 35 is abolished, although as shown in Fig 91 (right panel), small but 

infrequent patches of staining remained (Fig 91, arrow), indicating these localised 

areas were not penetrated completely by the enzyme. 

6.2.6 N'ase Treatment in the Ex-Vivo Hemi Diaphragm 

The ability of DG1 to bind specifically to GM1 , and activate complement, following 

N' ase treatment has been established. It is hypothesised that N' ase treatment 

followed by DG 1 application and NHS will cause a complement mediated destruction 

of the motor nerve terminal. 
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6.2.6.1 N 'ase Dilution Series 

Owing to the fact the diaphragm is a thicker muscle that the TS, and to account for 

any possible differences in GD1a levels, a dilution series was performed to determine 

the optimal amount of enzyme needed to decrease GD1a in the diaphragm. 
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Fig 92. Dilution series performed in the GD3s·l . diaphragm to optimise the 
concentration ofN'ase. N=l animal, with a staining run of3 slides from the 
beginning, middle and end ofthe cut series. Untreated tissue revealed no background 
staining. 

As shown in the dilution series (Fig 92), MOG 35 binds strongly to PBS treated tissue 

(ie. 0 units ofN'ase). For all concentrations of enzyme, a decrease in MOG 35 

binding resulted when compared to the PBS control tissue (p<O.OOOl). The most 

significant decrease was at 5 units/ml, meaning this was selected as the optimal 

enzymatic concentration for removing GD1a. 

6.2.6.1 N 'ase and DGl: JgG, C3, MAC, NF. 

Ex-vivo hemi-diaphragm muscle-nerve preparations were incubated in the following: 

*Ringer followed by DG 1 then NHS 

*N' ase followed by DG 1 then NHS 

*N' ase followed by Ringer then NHS 
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Results were as shown in Fig 93: 

IgG 
Compared to DG 1 application alone, N' ase treatment prior to DG 1 leads to a 

significant increase (p<O.OOOl) in IgG deposition over the NMJ. There is no 

difference in IgG intensity between DG 1 alone and N' ase alone treated tissue 

(p=0.49). 

C3 
C3 deposition is significantly increased in N' ase/DG 1 treated tissue compared to DG 1 

alone (p<O.OOOl). There is no difference in C3 intensity between DG1 alone and 

N' ase alone treated tissue (p=O.19). 

MAC 
MAC intensity is greater in N' ase/DG 1 treated tissue compared to DG 1 application 

alone (p<O.OOOl). DG1 alone and N'ase alone led to no significant MAC deposition 

(p=O.74). 

NF 
N'ase application ofthe tissue caused a significant loss ofNF coverage compared to 

DG1 alone treated tissue (p<O.OOOl). Application ofN'aselDG1 also caused a 

significant loss ofNF in comparison to both DG1 alone (p<O.OOOl) and N'ase alone 

(p<O.OOOl). 

Summary: Analysis of the control tissue, whereby N' ase was applied to the tissue and 

DG 1 omitted before the addition ofNHS demonstrates that N' ase treatment alone 

does not lead to C3 or MAC deposition, but causes NF loss. However NF loss in 

N'aselDG 1 treated tissue is significantly greater than in N'ase treated tissue 
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(p<O.OOOl), indicating a significant proportion of this loss is attributable to the 

complement mediated destruction of the NF as a result of DG 1 deposition. 
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Fig 93 . GD3s-l
- hemi-diaphragm ex-vivo preparations. N'ase treatment leads to 

significant mAb, C3 and MAC deposition over the NMJ, and NF loss when compared 
to application of DG 1 alone without prior N' ase treatment. Astrices indicate 
significance (p<O.05) when compared to DG 1 alone treated tissue. 

6.2.6.2. Antibody Viabilty 

E LI S A: R<.:t"lin..:d Antibod y S "1111.pl...: s 

! 1 . 5 

o , 

., In 10 

Fig 94: Retained antibody samples 

f 
± 

., In '1000 ., In 10,000 

197 



6.2.6.3 N'ase and Sm} 

The human antibody Sml was tested in the GD3s-l - hemi-diaphragm to look for 

pathological effect (Fig 95). 
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Fig 95. Sml in the GD3s-l
- hemi-diaphragm. N'ase facilitates IgM deposition and a 

subsequent complement mediated lesion. Astrices indicate significance (p<O.05) 
when compared to tissue treated with Sml alone. 

IgM 
N'ase/Sml treatment of the tissue caused a significant increase in Sm1 (IgM) 

intensity over the NMJ compared to application of Sm 1 alone (p<O.OOO 1). 

C3 
N'ase/Sml treated tissue had more C3 activation over the NMJ than Sml alone 

treated tissue (p<O.OOOl). 

MAC 
There was a greater intensity of MAC in N'ase/Sml treated tissue compared to Sml 

treated tissue (p<O.OOOl). 
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NF 
When compared to Sml alone, NF coverage over the NMJ was significantly reduced 

in N'ase/Sml treated tissue (p<O.OOOl). 

Summary: N' ase allows Sm 1 to bind over the endplate and cause a significant 

complement mediated lesion. Sm 1 does not have this ability when applied to the 

tissue without prior N' ase treatment. 

6.2.6.4 N'ase and Dol 
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Fig 96. Dol in the GD3s-l
- hemi-diaphragm. Dol is only pathogenic following N'ase 

treatment of the tissue. Astrices indicate significance (p<O.05) compared to Dol 
alone. 

IgM 
IgM intensity over the NMJ was significantly increased in N' ase/Do 1 treated tissue 

compared to tissue treated with Dol alone (p<O.OOOI). 
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C3 
Intensity of C3 deposition over the NMJ was significantly greater in N' ase/Do 1 

treated tissue compared to treatment with Dol alone (p<0.0001). 

MAC 

N' ase/Do 1 treated tissue had greater intensity of MAC over the NMJ when compared 

to Dol treatment (p<O.OOOl). 

NF 
There was a significant reduction on NF when comparing N' ase/Do 1 treated tissue to 

Dol alone treated tissue (p<O.OOOl). 

Summary: In a similar scenario to Sml, Dol is only able to bind, activate complement 

and lead to NF loss when the GD3s-l- hemi-diaphragm tissue has been pre-treated with 

N'ase. 

6.2.7 GMI "Unmasked" versus "New" GMI 

One important question to address was whether the DG 1 binding and subsequent 

lesion was due to DG 1 binding to "unmasked" GMl, or simply whether DG 1 was 

binding to the "newly created" GMl, generated from the enzyme treatment. In order 

to ascertain what population of GMI the antibody was binding, an ex-vivo experiment 

was designed based on the hypothesis that application of a saturating dose of CTb 

should bind all native GMl, thus following N'ase treatment, the only GMI available 

will be the "new" GMI created by the enzymatic removal of sialic acid (shown 

schematically in Fig 97). 
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Fig 97. Schematic overview of experimental design. 1. Living membrane with GM1, 
GD1a and GM1 in grey oval represents the GMI which is unavailable to DG1 due to 
masking by GD 1 a. 2. Saturating CTb applied to bind all endogenous GM 1. 3. N' ase 
is applied, and removal of terminal sialic acid from GD 1 a results in creation of "new" 
GM1 (blue ovals) which is CTb free and thus available to mAbs. 

As shown in Fig 98, DG 1 bound strongly to Ringer-N'ase treated tissue, but the 

staining was dramatically reduced when compared to CTb-N'ase treated tissue 

(p<0.0001). For DG2, there was no significant difference in the signal intensity at the 

endplate when comparing Ringer-N'ase and CTb-N'ase treated tissue (p=0.47) (Fig 

98). 
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Fig 98. Effect of a saturating dose of CTb prior to N' ase treatment on the ability of 
DG 1 and DG2 to bind to GMl. Astrices indicate significance (p<0.05) when 
comparing CTb blocked tissue to that without CTb for each antibody. 

The interpretation of this data suggests that the ability of DG 1 to bind following N ' ase 

treatment relies on the presence of native GM1, which is being "unmasked", and the 

pre-saturation of this population with CTb is hindering the binding of DG 1. DG2 

binds to GM1 in the membrane under both treatment conditions (Ringer-N'ase and 

CTb-N'ase), suggesting that in the CTb blocked tissue, there is an abundant 

population of "new" GM1, which is available to DG2 binding. Fig 98a),b) provides 

an illustration of the binding profiles of DG 1 and DG2 respectively. 
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Fig 99 a) Left panel shows DG 1 deposition after N'ase treatment. On the right, 
saturation of the tissue prior to N' ase treatment greatly reduces the ability of DG 1 to 
bind. NMJ shown was chosen as an example as it displayed the strongest DG 1 signal 
after the CTb block, and thus gives the best visualisation of the staining profile, which 
remains neuronal. Scalebar = 20llm 

Fig 99b. As for Fig 99a, but with DG2. DG2 was still able to bind strongly over the 
NMJ after CTb saturation /N' ase treatment, although less intense staining of 
surrounding structures is seen. Scalebar = 20llm 

From the illustrations, it is clear that in the Ringer-N'ase treated tissue (ie. no CTb 

block of GMl), there was more staining of other tissue structures, for example blood 
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vessels. However, as shown by the quantitative analysis (Fig 98), there was no 

significant change in signal intensity over the NMJ. This may be due to the fact that 

GDla is strongly axonal, meaning the conversion ofGDla to GMl by the enzyme is 

being bound by DG2 and the resultant signal is enough to compensate for the 

saturation of native GMl over the endplate. In blood vessels however, there may be 

less GDla and its conversion to GMl is not enough to result in an intense DG2 signal. 

6.2.8 Discussion 

The use of ELISA is a powerful tool in determining antibody specificities for 

particular gangliosides. However the results displayed here indicate the use of ELISA 

to model complex antibody-antigen interactions is not ideal. 

Certain "assumptions" will always cloud the data, for example the interaction of the 

ELISA plate and ganglioside may result in the epitope being presented to the mAb in 

a manner which would not occur in the membrane (Willison 2005). 

On the same note, the interaction of 2 gangliosides on an ELISA plate and 2 

gangliosides in the membrane may differ. On ELISA the gangliosides are brought 

together at a 50:50 ratio and have no other substrate (aside from the ELISA plate) to 

interact with. In the membrane, the presence of proteins and other lipids may 

influence the ganglioside-ganglioside interaction which would thus differ from the 

interaction represented in the ELISA experiment. Furthermore, membranes are fluid 

structures, with the presence of cholesterol facilitating the formation of transient and 

heterogenous lipid rafts which are not represented on a solid phase ELISA. 

By ELISA, DG2 bound weakly to GD 1 b, so in order to determine the value of DG2 

binding to GMl alone in the mixed well, the binding ofDG2 to GDl b alone was 

subtracted from the DG2 value obtained in the GM1:GDlb mixed well. This 
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methodology was also applied to the CTb results. What this has not accounted for, 

however, is the possibility that GM1 may actually have been inhibiting DG2 from 

binding to GDI b, and thus it is difficult to draw definitive conclusions from 

ganglioside mixing studies unless the mAb binds to GM1 alone. Even the use of CTb 

was not ideal, as CTb bound to other gangliosides on solid phase, a finding previously 

described (Kuziemko et al 1996). It is worthwhile also to note that the gangliosides 

used are only of 95% purity, and the addition of methanol to reconstitute means that 

every time a bottle is opened, evaporation occurs and this will eventually affect the 

overall concentration of the actual ganglioside. This is unavoidable within the 

laboratory environment where gangliosides are a common stock and routinely used. 

Thus, owing to the potential pitfalls of ELISA, this study was redesigned to focus on 

the interactions of gangliosides in the living membrane. 

PC12 cells were chosen as these are an already characterised neuronal cell line that 

"provide an excellent model to study complex ganglioside expression" (Walton et al 

1988). Ganglioside expression is maximal in cells grown at high density, although at 

more sparse densities expression decreases but the relative proportions of ganglioside 

species remain unaltered (Walton et aI1988). 

N'ase treatment convincingly reduced the levels ofGD1a and subsequentially 

increased the ability of DG 1 to bind. The addition of exogenous GD 1 a to the cells 

was expected to interact with GM1 and again block the ability ofDG1 to bind, 

however an immediate block ofDG1 binding following GD1a application was not 

observed. Western blot data supports the theory that the exogenous GD1a did not 

specifically enter the raft fraction, as in N'ase treated and GDla reloaded cells, there 

was an increased proportion ofGD1a in the non-raft fractions when compared to the 

normal cells. The exogenous insertion of gangliosides to the bilayer is believed, in 
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certain systems, to disrupt the normal formation of the membrane and rafts. It has 

been shown that the exogenous application of gangliosides to MDCK cells inhibits 

cross linking of raft associated GPI anchored proteins, and increases their solubility 

(Simons et aI1999). It is proposed that the gangliosides disrupt attractive forces 

between such proteins allowing them to "escape" from the raft and presumably 

disorganising the architecture ofthe raft. Exogenous addition of gangliosides may 

also alter the architecture of the cell membrane, for example exogenous GMI is 

thought to alter the dynamic properties of lipid rafts by excluding certain GPI 

anchored proteins (including Thyl), perhaps through competition between GMI and 

the protein for raft occupancy (Crespo et aI2002). Interestingly, the same authors 

show that not all exogenously added GMI becomes associated with detergent 

insoluble microdomains, unlike endogenous GMI. This indicates that exogenously 

added gangliosides may infer different functional properties to the cell membrane. 

Furthermore, GMI has a large polar head group (Sonnino et a12006) thus any 

alterations (eg. induced by N' ase) in the presentation of GM 1 may cause exogenous 

GDla to enter a neighbouring raft due to space limitation within the GMI containing 

raft. 

Using N'ase leads to the removal of sialic acid from gangliosides to increase the 

density of GMI in the membrane. This would imply that, in the experiments within 

this chapter, enzymatic treatment is increasing the amount of GMI and thus DG 1 

binding is dependent on the density of the epitope. As shown by the CTb saturation 

oftissue prior to N'ase treatment (Fig 98), DG 1 binding decreased significantly 

suggesting its ability to bind after N'ase treatment depends on the unmasked 

endogenous GMl. However, it is not possible to discount the notion that the "new" 

GMI is not at a high enough density for DG 1 to bind, and that the binding observed 
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after N'ase treatment relies on a combination of unmasked GMI and "new" GMI to 

create an increased density of GMI for DG 1 to bind. This is difficult to address 

experimentally, but I favour the hypothesis that the increased availability of GMI is 

due at least in part due to the exposure of "unmasked" GMI (Ackerman et a11980) 

based on the following rationale: N' ase treatment of the NMJ results in removal of a 

large proportion ofGDla from the membrane, as inferred from the decreased MOG 

35 staining at the endplate when compared to untreated tissue. In line with the 

decrease in available GDla, it is logical to assume that there is a parallel increase in 

the amount of GMI. Thus, one can use Fig 100 to rationalise what may be happening 

at the NMJ. For example, in the wild type (WT) mouse, it is highly likely that the 

GMI band would increase to a more comparable level to the GD3s-I
-, and a 

concomitant decrease in wild type GD 1 a would be detected. In more simple terms, 

the N'ase treated WT NMJ should theoretically have a similar amount ofGMl as the 

GD3s-l-mouse. Therefore the ability ofDGl to bind in the N'ase treated WT mouse 

is not surprising. However, what is surprising is the inability ofDG 1 to bind to the 

membrane of the GD3s-l-mouse. Comparison of the N'ase treated WT mouse with the 

untreated GD3s-l
- may reveal a similar level of GMl, however the levels of GDla in 

the GD3s-l-mouse are greatly enriched when compared to the N'ase treated WT 

mouse. This observation supports the hypothesis that GDla is cryptically masking 

GMI in the membrane of the GD3s-l-mouse, and potentially also in the WT mouse 

where the GDla removal is "unmasking" GMl. It is also possible that in the GD3s-l
-

mouse, the altered ganglioside profile may have a knock-on effect on the ganglioside 

content and presentation within lipid rafts; while this cannot be ruled out, it again 

supports the notion that while there is "enough" GMI there, it cannot be seen by 

DGl. 
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Fig 100. Modified from Kawai et al 2001 . Comparison of GD3s-l
- and WT 

ganglioside patterns. 

Furthermore, the demonstration that saturation of endogenous GMI with CTb prior to 

N' ase treatment leads to a significant increase in DG2 intensity but not DG 1 intensity 

is evidence that the "new GMI " (created from GD 1 a) is not bound by DG 1. 
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Chapter 7 

7.1 Introduction 

Results of the previous chapters are indicative that the removal ofGDla is allowing GMI 

to become available to DG 1. Gangliosides are raft associated (Brown and London 2000), 

and any such interaction between GM1 and GD1a is likely to occur within the domain of 

a lipid raft. This chapter investigates the spatial relationship between GM1 and GD1a, 

and also addresses the existence of rafts which contain both GD1a and GMl. Two 

approaches were used in this study: firstly, the colocalisation ofGM1 and GD1a by 

microscopic analysis, and secondly, the association ofGM1 and GD1a using biochemical 

techniques. 

7.2 Microscopy 

7.2.1 Fluorescent Staining Profiles ofGMI and GDla: NMJ 

Using MOG 35 and CTb to label GD1a and GM1 respectively, NMJs were stained in 

whole mount ex-vivo TS muscles. Images were rendered using "maximal intensity 

projection" (MIP), which is a flat projected z-stack in which the brightest pixel in each z

axis is displayed. This approach means any overlapping areas of FITC and TRITC 

staining will appear yellow, indicating overlap. As seen in Fig 101, there is considerable 

overlap of GM1 and GD 1 a staining over the endplate, with both gangliosides having a 

strong and overlapping axonal profile. 
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Fig 101: GD3s-l
- ex-vivo TS preparations. CTb-FITC labels GMl, while the distribution 

ofGDla is shown by the binding ofMOG 35 and secondary TRITC detection. On the 
combined image, overlapping areas ofFITC and TRITC appear yellow, indicating 
colocalisation between GDla and GM1. Arrow indicates an area of such colocalisation 
over the NMJ, and along the axon (double arrow). In the combined image, the BTx signal 
(Pink) is shown to specifically define the NMJ. Scalebar = 20~m. 

7.2.2 Fluorescent Staining Profiles ofGMl and GDl a: PCl2 

Because the NMJ is a complex structure, and discrete staining profiles are not easily 

imaged, the antibodies were applied to a more simple system, in this case PC 12 cells. If a 

staining profile appears punctate, this is indicative that the epitope lies within defined 

regions of the membrane, as opposed to being diffusely distributed, and is therefore a 

useful, if indirect indicator of raft association. The appearance of domains with 

overlapping FITC and TRITC is evidence that within these defined regions, there is 

presence of both GM1 and GDla. 
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Fig 102. PC12 cells. MOG 35-TRITC and DG2-FITC labelling ofGDla and GMI 
respectively, using unconjugated primary antibodies detected with sub-type specific 
fluorescent secondary antibodies. Image shows MIP of z-stack, where overlap of FITC 
and TRITC appears yellow. Non specific cross-reactivity between the secondary 
antibodies was ruled out by omission of either primary mAb and application of both 
secondaries. Scalebar = 15 )..lm. 

As shown in Fig 102, the staining profile of both GMI (stained with DG2 and FITC 

conjugated secondary) and GDla (stained with TRITC conjugated secondary) is not 

uniformly distributed over the cell surface, indicating that the gangliosides are located in 

discrete regions of the membrane. From the MIP image, it is apparent from the yellow 

colocalisation that there is overlap ofthe GMI and GDla associated signals. There are 

also areas ofFITC or TRITC staining where no overlap is apparent, indicating GMI and 

GDla association is not obligatory. It is also possible that weak staining of either 

fluorophore was not detected by the microscope and therefore not represented on the 

MIP. 

7.2.3 MOG 35 and DGl Staining: Primary Labelled mAbs 

Following removal of GDla by N'ase, the profile ofDGI staining should indicate 

whether it is binding to raft or non-raft associated GMI . As both DG 1 and MOG 35 are 

IgG2b subtypes, use of a secondary antibody would not distinguish DG 1 and MOG 35 
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staining. The primary labelling of each antibody with different fluorophores overcame 

this problem. DG 1 and MOG 35 were primary labelled using the Zenon® Mouse JgG 

Labeling Kits (Invitrogen, Paisley) following manufacturer's instructions. 

Fig 103. Untreated and N'ase treated PC12 cells. MOG 35 staining is mostly abolished 
upon treatment when compared to control cells. Note the intense DG1 staining in N'ase 
treated cells, except in the patches where MOG 35 staining persists (arrow). Scalebar = 

15J..lm. 

Fig 104. N'ase treated PC12 cells, stained with primary labelled DGl. Note the punctate 
non-uniform staining pattern of the cell surface. Scalebar = 15J..lm. 

As can be seen in Fig 103, N'ase treatment resulted in an obvious removal of the MOG 

35 signal, indicating GD1a levels were reduced, with a concomitant increase in DG 1 
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staining. Fig 104 shows DG 1 staining was non-random, and appeared in discrete patches 

on the membrane, again indicating a raft associated staining profile. 

7.2.4 GMI and GDI a Pixel by Pixel Colocalisation 

Following the observation that GMl and GDla staining is non-uniform, a quantitative 

pixel by pixel analysis was performed on the stained cells in order to determine an 

overlap correlation coefficient (r2) of GMI and GDla. 

Cells were double stained in the following combinations: 

GMl(FITC) 

CTb 

CTb 

DG2 then anti- mouse IgG3 

+ 

+ 
+ 

GDla (TRITC) 

MOG 35 then anti-mouse IgG2b 

MOG 35 primary labelled 

MOG 35 then anti-mouse IgG2b 

In the last group, negative controls were performed by omiting MOG 35 and applying 

both secondaries, then omitting DG2 and applying both secondaries. This confirmed no 

cross reactivity of the secondary antibodies, and that they were subtype specific. Anti

mouse IgG2b was also confirmed not to bind to CTb. 

Fig 105 displays an example of single cell fluorescent images, which were overlaid to 

give the combined colour image. 
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Fig 105. Z- stack reconstruction of images used for correlation analysis. Images were 
gathered using a Zeiss LSM 5 Pascal laser scanning confocal microscope (Carl Zeiss Inc., 
Welwyn Garden City, UK) with a x63 oil-immersion Plan Fluor Apochromat objective 
lens, numerical aperture 1.4. Scalebar = 15)lm 

The colour overlap was determined by selecting a region of zero fluorescence from an 

unstained (ie. background area) in both the FITC and the TRITC channel, and subtracting 

the respective level of background from each channel. Metamorph (version 6.3.3; 

Molecular Devices Corp., Downing, P A) correlation plot software was then used to 

compare the amounts of fluorescence in each pixel of the FITC and TRITC channels, 

where a perfect correlation would yield a coefficient of 1. Fig 106 illustrates this 

procedure for 1 cell. The colocalisation study (resultant data in Figs 105, 106 and 107) 

was done with the help of Dr John Pediani, University of Glasgow. 
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Fig 106. Plane by plane analysis ofFITC and TRITC overlap for MOG 35 (primary 
labelled TRITC) and CTb (primary labelled FITC). Each plane is a 0.3011lm step, 
meaning a depth of approximately 3 microns was analysed per cell to ensure an adequate 
sampling of the cell surface membrane. From the 10 planes, an average was calculated to 
give the correlation coefficient. This was repeated for 3 cells. 

For each staining condition, a near perfect correlation coefficient was obtained, as shown 

in Fig 107. 
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Fig 107. Correlation coefficients for GD1a and GMl. SEM =standard error of the mean 
of 3 cells, with 10 planes per cell analysed as described for Fig X. 

A= CTb FITC, MOG 35 primary labelled TRITC 
B=CTb FITC, MOG 35 then anti-mouse IgG2b 
C=DG2 and MOG 35 then anti-mouse IgG3 FITC and 2b TRITC 
respectively 

This demonstrates that at the pixel level, GM1 and GD1a colocalise. The colocalisation 

obtained by primary labelled mAbs is similar to that ofunconjugated mAbs which were 

detected using secondary fluorescence, which is indicative that the primary labelling is 

not altering the specificity or binding ability of the mAbs. 

7.2.5 GMI and GDla: Uncoupling with mAbs 

GD1a and GM1 colocalisation led to the hypothesis that the binding ofMOG 35 to GD1a 

could be sufficient in altering the spatial relationship between GM1 and GD1a, and allow 

DG 1 to bind to the unmasked GM1. The binding of GM1 in this scenario would indicate 

that there is a close interaction between GM1 and GD1a, which may be beyond that of 

the resolution obtained at the light microscope level. 

As shown in Fig 108, when cells were incubated in primary labelled MOG 35, rinsed, and 

then incubated in primary labelled DG 1, no DG 1 binding could be detected. Assuming 

the primary labelling of the mAbs had not altered the specificity or binding dynamics, it 

can be concluded that antibodies against GD 1 a do not alter the orientation of GD 1 a in the 

membrane to expose GM1 in a way which allows DG1 to bind. Had the experiment 
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allowed DG 1 to bind, this would have been strong evidence that GM1 and GDla are in 

close spatial resolution beyond that of the resolution of the pixel by pixel analysis. 

Fig 108. Pre-incubation of cells with MOG 35 (primary labelled TRITC) gave strong 
binding, however subsequent rinsing and application of DG 1 (primary labelled FITC) did 
not result in any detectable binding. (TL=transmitted light). 

7.2.6 Fluorescence Resonance Energy Transfer (FRET) 

FRET is an established method for detecting clustered species in the membrane (Matko 

and Edidin 1997). The basis of FRET relies on labelling 2 membrane species with a 

different fluorophore, and upon excitation the energy absorbed by one fluorophore is 

transferred (resonantly) to the other. Thus, the 2 fluorophores are termed "Donor" and 

"Acceptor", and the choice of donor and acceptor must equal a functional "FRET pair". 

In other words, the emission spectra of the donor must overlap the absorbance of the 

acceptor, meaning that the acceptor is able to absorb the resonant energy emitted by the 

donor, to increase the acceptor fluorescence (Fig 109). 
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Fig 109. Simplified FRET overview. The FITC donor is excited at 488nm, and resonant 
energy transfers to a TRITC acceptor which lies within 10nm, and the excitation of the 
latter leads to an increase in its fluorescence. An acceptor located further than 10nm 
from the donor is not excited and thus does not get brighter. 

The efficiency of this energy transfer depends crucially upon the distance between the 2 

fluorophores (Garini et aI2005), and for efficient transfer to occur (ie. for FRET to be 

detected) the fluorphores should ideally lie within 100 A (angstroms) (10 nanometers) . 

So, a positive FRET signal infers that the 2 epitopes of interest lie within 100 A. A 

pictorial overview of the FRET theory is shown in Fig 110 . 
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Fig 110. Modified from www.zeiss.co.uk. The overlap between the emission spectra of 
FITC and the absorption (excitation) spectra of TRITC is shown by the hatched area. 
A=FITC excitation, B=FITC emission, C=TRITC excitation, D=TRITC emmision. 
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2 common methods for detecting FRET are Photobleaching FRET and Sequential FRET, 

and these methods were used to optimise a method of detecting FRET for GM1 and 

GD1a. The accepted FRET pair ofFITC and TRITC were chosen for this experiment. It 

should be noted, however, that where primary labelled mAbs were used, the fluorophores 

were either Alexa 488 or Alexa 555. These have been referred to as FITC and TRITC for 

ease of interpretation in this chapter, and do not alter the integrity of the FRET pair. 

5.2.6.1 Photo bleaching FRET 

The acceptor photobleaching method measures the fluorescence of the donor both in the 

presence and photobleaching-induced absence of the acceptor (Kenworthy and Edidin 

1998). By selecting a region of interest (ROI), the excitation of the donor in the presence 

ofthe acceptor can be measured. The acceptor is then photobleached in the ROI, and 

upon excitation of the donor, there should be a notable increase in donor signal intensity 

when compared to its signal when the acceptor was present. By bleaching out the 

acceptor, any emitted energy from the donor is not 'robbed' by the acceptor, and thus the 

donor fluorescence should increase. 
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Fig 111. Pre-bleach: the donor is excited and energy transferred to the acceptor. This 
results in less fluorescence of the donor. Post-bleach: the donor is excited and all energy 
contributes to fluorescence as none is being 'sapped' by the acceptor (which is absent due 
to photobleaching). 

PC12 cells were stained using probes conjugated to fluorescent dyes. GMI was labelled 

with CTb-TRITC (Acceptor), and GDla labelled with MOG 35-FITC (Donor), at 

dilutions of l)lg/ml and 12.5)lg/ml respectively (following routine coverslip staining 

protocol in materials and methods). 

Cells were stained with either: a) acceptor and donor 

b) acceptor only, or 

c) donor only. 

In all cases, the pinhole of the microscope was opened. 

An image was taken from a field of the donor and acceptor stained cells prior to any 

photobleaching, and these images designated "pre-bleach". An ROI was then defined 

within the field, and the region within the ROI was excited continually with the Helium-
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Neon (HeNe) 543nm laser line until fluorescence had reduced to background levels (Fig 

112a). Another image (using the same settings as the first acquisition) was then taken of 

the acceptor and donor, and these images termed "post-bleach". Using Image J, an area 

within the ROI was selected in the donor channel, and the average fluorescence intensity 

of this area measured in the pre and post bleach images. An area outwith the bleached 

ROI was measured in the same way (Fig 112b). 

Pre-bleach Post-bleach 

Fig 112a. ACCEPTOR: CTb (TRlTC) fluorescence ofPC12 cells. Pre-bleach image is 
shown on the left, with the area to be bleached designated by the ROI (yellow box). On 
the right, image of the same field after the ROI has been bleached. The white line depicts 
the selection of 1 area, where intensity pre and post bleach was compared. 

Pre-bleach Post-bleach 

Fig 112b. DONOR: MOG 35 (FITC) fluorescence ofPC12 cells. Pre-bleach image is 
shown on the left, with the ROI copied from the Acceptor channel, which will be 
bleached. Image on the right shows the same field following the bleaching of the 
Acceptor (TRlTC). In a highly successful FRET experiment, the area within the ROI of 
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the donor post-bleach image may be noticeably brighter when compared to the ROI of the 
pre-bleach image. 

The white line depicts the selection of 1 area, where intensity pre and post bleach was 

compared. 

The results are shown in Fig 113: 

Average Donor Intensity 

ROJ area Control area 

Pre-bleach Post-bleach Pre-bleach Post-bleach 

36 34 62 60 

Fig 113. Results shown are from the images in the above figure 112. Intensities are 
averages of 3 areas within the ROI, and 3 areas in the control region (ie. unbleached area 
outside the ROI) . 

From this experiment, it can be concluded that the photobleaching method is not ideal for 

detecting FRET in this system. In the ROI and surrounding (unbleached area) for the 

donor, there was evidence that the overall fluorescence had decreased. This is surprising, 

and indicates that the 543nm laser had caused an overall fading of the sample, and 

potentially negated the ability to detect FRET. Even in the control slides where cells 

were stained only with the donor, continual excitation with the 543nm laser line resulted 

in fading of the FITC signal. The HeNe 543nm laser of the microscope is not powerful 

enough to bleach the TRITC signal in under 30 minutes, and such prolonged exposure to 

high intensity light may explain why the overall fluorescence of the sample was 

compromised. On the same note, the lengthy bleaching duration meant when bleaching 

was complete, the sample had drifted considerably and the results of the experiment 
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relied on the correct realignment of the images manually using Image-J. Several attempts 

were made to rectify the problematic bleaching duration, such as mounting the cells in 

PBS (as opposed to an anti-fade mountant) to enhance the fluorophore bleaching, and 

reducing the intensity of the TRITC by applying a more dilute amount of CTb. However, 

none of these methods proved successful. Owing to the inherent problems with this 

technique, which could not be overcome with the current facilities, another FRET method 

was tested. 

7.2.6.2 Sequential FRET 

Sequential FRET relies on the theory that when the donor is excited at its specific 

wavelength, there will be a concomitant increase in the emission (fluorescence intensity) 

of the acceptor, as it is receiving energy from the laser excited donor (Gordon et al1998). 

Cells were labelled with CTb-FITC and MOG 35-TRITC and during image acquisition, 

the excitation levels were kept the same for the 488nm and 543nm lasers, and the detector 

settings for FITC and TRITC also kept the same. 

The donor was excited using the FITC 488nm laser line, and detected between 505 and 

530nm using the FITC detector, to prove that the settings are exciting FITC. The acceptor 

was then excited using the argon TRITC 543nm laser line, and detected on the TRITC 

detector between 560 and 615nm to ensure detectable presence of the acceptor. A third 

image was then gathered in the "FRET channel", where the FITC was excited using the 

488nm laser line, but emission detected in the emission range of the TRITC (560-

615nm). Thus, any evidence of fluorescence in the "FRET channel" is not due to the 
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TRITC being excited by the 543nm laser, but as a result of excitation from the transferred 

energy fron the excited donor. As shown in Fig 114, a strong FRET signal was detected 

in the FRET channel. 

Fig 114. Top left image shows Donor (D) excited by its own wavelength (488nm). Top 
right shows acceptor (A) excited by its own wavelength (543nm). Bottom panel is the 
FRET image (F) showing fluorescence ofthe acceptor (which emits at 560-615nm) as a 
result of donor excitation (488nm). Excitation (Ex) and Emission (Em) wavelengths are 
in nanometers. 

However, the integrity of this positive FRET signal was confounded by observations 

using the negative control. When samples were labelled using acceptor alone (ie. TRITC 

CTb), and the same sequential FRET procedure carried out, a strong "positive" FRET 

signal was detected (Fig 115). 
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Fig 115. Acceptor only labelled cells. Top left shows absence of donor (D). Top right 
shows acceptor (A) excited by its own wavelength (543nm). Bottom panel is the FRET 
image (F) showing fluorescence of the acceptor (which emits at 560-615nm) as a result of 
donor excitation (488nm). Absence of the donor implies the signal is not due to FRET. 
Excitation (Ex) and Emission (Em) wavelengths are in nanometers. 

The average fluorescence of the bleedthrough in the FRET channel of the negative 

control was subtracted from the average fluorescence of the FRET channel in the 

acceptor and donor labelled cells. A negative value was obtained indicating that none of 

the detected fluorescence in the FRET channel of the acceptor and donor labelled cells 

was due to FRET, and that it was all a result of bleed through. 

The excitation of the acceptor cannot be from the donor (which is absent), so it is likely 

that the 488nm laser is exciting the TRITe (as shown in Fig 116). 
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Fig 116. Modified from zeiss.co.uk. 488nm wavelength excites TRITC by 15% as 
shown by the blue line.458nm wavelength excites TRITC by less than 5%, as shown by 
the red line. a=FITC excitation, b=FITC emission, c=TRITC excitation, d=TRITC 
emISSIOn. 

To overcome this problem, FITC excitation was attempted using the 458nm wavelength, 

which only marginally overlaps the lower end of the TRITC excitation spectrum (Fig 

116). As shown in Fig 11 7, this alteration adequately excited the FITC, and the resultant 

FRET signal was negative. 
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Fig 117. Top left shows donor (D) can be successfully excited with the 458nm 
wavelength. Top right shows acceptor (A) excited by its own wavelength (543nm). 
Bottom panel is the FRET image (F) showing fluorescence of the acceptor (detected 
between 560-615nm) as a result of donor excitation at 458nm. Absence of detectable 
FRET signal is shown in the bottom panel (F). 

Both the 488nm and 458nm excitation protocols were repeated using other labelling 

conditions, such as labelling 2 different raft markers (Thyl and GMI) or applying both 

FITC and TRITC CTb simultaneously, as the dual-colour labelling of a single raft 

associated molecule was considered an ideal positive control. A convincing FRET signal 

was not achieved. 
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7.3 Biochemistry 

5.3.1 Cholesterol Depletion 

Lipid raft integrity was disrupted using the cholesterol sequestering agent Methyl-~ -

cyc10dextrin (Lang et al 2001) (Materials and Methods). This experiment was designed 

to test the hypothesis that upon physical dissolution of the raft, GMI would no longer be 

cryptically hidden due to the dispersal of the raft associated proteins and lipids. Cells 

were analysed by flow cytometry and the fluorescence intensities ofMOG 35, DG 1 and 

CTb compared for treated and untreated cells. 

Following treatment ofthe cells, cholesterol depletion was assayed using Infinity 

Cholesterol Reagent (Materials and Methods) and protein estimation was done using the 

BCA Protein Reagent Assay (Pierce Chemical Co., Rockford, IL,). Cholesterol was 

expressed as micrograms per milligram of protein for treated and control samples. 

On average, cholesterol content of the control cells was 0.78)lg of cholesterol per 

microgram of protein, and was reduced to 0.49)lg of cholesterol per microgram of protein 

in treated cells (37% reduction from control cell levels ). As shown in Fig 118, the F ACS 

histograms do not show an increase in DG 1 fluorescence in cholesterol depleted cells 

when compared to control. 
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Fig 118. F ACS histogram. Cholesterol depleted cells (M~Cx treated) do not show an 
increase in DO 1 fluorescence intensity compared to untreated cells. 

Semi-quantification of the effect of cholesterol depletion is shown in Fig 119, where the 

fluorescence intensity of DO 1 and CTb decreased, although this was not significant 

compared to controls (p>O.05). MOO 35 decreases significantly in M~Cx treated cells 

when compared to control cells with normal cholesterol levels (p<O.05). 
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Fig 119. Effect of cholesterol depletion on the binding of DO 1, CTb and MOO 35, as 
shown by fluorescence intensity. 
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7.3.2 Raft Isolation and characterisation 

To test the hypothesis that GM1 and GD1a are contained within the same lipid raft, the 

lipid raft component of the cell membrane was isolated based on its detergent insolubility 

and light buoyant density (Brown and Rose 1992) when compared to the non-raft 

constituents of the membrane. 

Evidence that GM1 and GD1a exist within the raft fraction is not enough to suggest they 

are contained within the same raft, as the isolated raft fraction comprises the entire pool 

of heterogenous rafts. Thus, individual rafts were isolated on the basis of GD1a content, 

and this GD 1 a positive subset were probed for the presence of GM1. 

2 methods were tested for the isolation of the GD1a positive rafts, direct isolation and 

indirect isolation. (A detailed protocol for the raft isolation is in Materials and Methods). 

Rafts were prepared using the detergent Brij-96. 

a) Indirect Isolation 

Live cells were incubated in either MOG 35 (anti-GD1a) or EG1 (anti-GD3, GQ1b mAb, 

IgG), the latter as a control anti-ganglioside mAb which does not bind to PC12 cells. 

Raft fractions were then prepared and a sample retained as "starting material". Remaining 

rafts were incubated with anti-mouse IgG coated magnetic Dynabeads (Invitrogen). After 

incubation, the beads were applied to a magnet and the unbound raft fraction was 

removed and retained. Beads were resuspended and rinsed, before being boiled in SDS 

loading buffer to release the "bound" raft fractions from the beads, in order to analysed 

by electrophoresis on pre-cast gels. Gels were run for each set of beads to compare the 
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starting material, bound fraction and unbound fraction, where the bound fraction of the 

MOG 35 coated beads would be expected to have an enrichment ofGD1a when 

compared to the unbound fraction. 

BOITllD : GDla containing rafts bound to beads 
(via MOG 35 & anti -mouse IgG interaction) Key 

MOG 35 + raft 

~ A .. nti -mouse IgG coated bead 

~ 
~ 
~ MOG 35 negatiye raft 

"V~BOU~: rafts wim no 1vl0 G 35 binding not capmred. 
/ ,,,"ssume these are GD ]a ll egative. 

Fig 120. Schematic representation ofthe raft isolation procedure. Anti-mouse IgG coated 
beads are mixed with a heterogenous population of rafts. MOG 35 incubation of cells 
prior to preparation of raft fractions means MOG 35 will be associated with GD1a 
positive rafts. The anti-mouse IgG coated beads bind the MOG 35 and thus isolate the 
GD1a containing rafts. Rafts that did not bind(owing to no MOG 35 binding) are likely 
not to contain GD 1 a, do not bind to the beads and can be removed as the unbound 
fraction. 

The retained starting material, unbound fraction and bound fraction from each condition 

were electrophoresed to ensure the bound fraction was GD1a positive, and to ensure no 

non-specific binding had occurred. In the EG 1 incubated cells, no evidence was detected 
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of bound GDla or GM1 positive raft samples, indicting that the GDla positive rafts 

isolated from the MOG 35 positive isolated cells was due to a specific interaction of 

MOG 35 (bound to raft GD1a) and the anti-mouse IgG coated bead. Both the heavy and 

light chain ofMOG 35 were detected, evidence ofthe antibody binding to GDla. 

Isolated GDla positive rafts were also positive for GM1 and flotillin. However they did 

not contain SNAP 25, another common raft protein (Chamberlain et a1200l) indicating 

the isolated GD 1 a positive rafts had retained their individual identity and had not 

coalesced with SNAP 25 containing rafts (Fig 121). 
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Fig 121. On the left, raft fractions ofEGI (control mAb) incubated cells were mixed with 
anti-mouse IgG coated beads. Starting material (SM) and unbound material (UB) 
contained GM1, GD1a, SNAP 25 and flotillin. There was no evidence of antibody 
binding (no heavy (HC) or light chain (LC) detected) in the bound sample (B), and none 
of the sample bound to the beads, even after concentration of the sample to amplify any 
weak signal (Bc). On the right, raft fractions from MOG 35 incubated cells. Heavy and 
light chain ofMOG 35 shows the mAb bound to raft GD1a in the live membrane, and the 
beads have isolated GD1a positive rafts which also have GM1 and flotillin. Note: this 
experiment was performed twice, with consistent results. 

Confirmation that the raft fractionation procedure did not result in any contamination 

from the non-raft plasma membrane was obtained by running each membrane fraction on 
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a gel, and probing for proteins known to be either raft enriched (positive controls) or raft 

excluded (negative controls) (Fig 122) 

Fraction: 

1 2 3 4 5 6 7 8 9 10 II 12 
4SkD" _ 

Florilli n 

TfR 

S:"-JAP 25 

6kDa _ 
GM! 

6kDa _ 
GDla 

Fig 122. Flotillin is enriched in the raft fractions (Morrow and Parton 2005), while SNAP 
25 is also in raft fractions. The transferrin receptor is not associated with the raft fractions 
(Herinig et a12003 , Eckert et aI2003). Note: in rafts prepared using Triton X-100, SNAP 
25 is in all fractions, but enriched in the raft fractions (Chamberlain et aI2001). From 
the above results with Brij-96, SNAP 25 is strongly associated with fractions 3, 4 and 5 
but not clearly enriched. GM1 and GDla are present in raft and non raft fractions . 

b) Direct Isolation 

Anti-mouse IgG coated magnetic Dynabeads (Invitrogen) were incubated with MOG 35 

or as a control, anti-mouse IgG (Sigma), and each set of beads mixed with a sample of 

the raft fraction from normal, untreated PC 12 cells (a sample of the raft fraction was 

retained as "starting material"). Following incubation, the beads were applied to a 

magnet and the unbound rafts removed and retained. Beads were boiled as before, and 

the samples electrophoresed. 

As the results show (Fig 123), the MOG 35 coated beads successfully isolated a subset of 

lipid rafts in which both GDla and GM1 could be identified. However, the anti-mouse 
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IgG beads also isolated a proportion of rafts, which were positive for GD1a and GM1. 

The observation that the "random" anti-mouse IgG had isolated rafts is suggestive that 

there is non-specific binding of the raft fractions to the coated beads. It is therefore 

entirely possible that the rafts isolated by MOG 35 were not all GD1a positive, but were a 

random subset, some of which contained GD 1 a. 
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Fig 123. Isolation of GD1a positive rafts. For both sets of coated beads, starting material 
(SM) was GD1a positive, with GD1a also detected in the unbound fraction (UB). The 
bound fraction (B) contained a weak signal for GD1a, and upon concentration of this 
sample (B x10) the signal was intensified, proving presence ofGD1a. Thus, both sets of 
beads had isolated raft fractions which were GD1a and GM1 positive. In the top line, 
presence of the antibody heavy chain in bound fractions proves the rafts were isolated 
based on interaction with the antibody. 

7.4 Discussion 

7.4.1 Microscopy 

The colocalisation ofGD1b and GM1 using MIP and pixel by pixel colocalisation studies 

is limited by the resolution ofthe light microscope (approximately 250nm, Hao and 

Maxfield 2001). To put this into perspective, if2 widely spaced objects are observed 

from 100 miles away, then they may appear colocalised. The strongly positive results of 

the pixel-by-pixel colocalisation do, however, indicate that the advancement of the study 

using more refined techniques is worthwhile. 
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The technical problems encountered while trying to establish a successful method of 

detecting FRET demonstrated that the technique was unsuitable for generating reliable 

results. Availability of a microscope with a more powerful 543 He-Ne laser may have 

led to more success with the photobleaching method. However even using an ideal set up, 

the use of FRET to determine the colocalisation of2 species is not always successful 

(Kenworthy and Edidin 1998). 

Furthermore, the high intensity light during the bleaching can alter the characteristics of 

the FRET pair, for example their emission intensity (Sinnecker at a12005) or wavelength 

may change (Ando et al 2002). This means the study design is of critical importance, 

with the effect of bleaching on donor only and acceptor only labelled cells being analysed 

to identify any such alterations which would invalidate the result of a possible FRET 

signal in the acceptor and donor labeled samples. 

Results of sequential FRET show that exciting FITC with the 458nm laserline did not 

cause a detectable FRET signal. Although this wavelength was shown to excite the 

donor, the resultant energy increase (when compared to the ideal 488nm wavelength) 

may have been inadequate to provide sufficient energy to excite the acceptor to a 

detectable level. Ideally, maximal FRET intensities are achieved using a FRET pair 

which have a maximal spectral overlap (Berney and Danuser 2003). Obviously (and as 

shown with the 488nm excitation) this will mean the wavelength to excite the donor will 

also excite the acceptor. A series of complex indices can correct for the resultant 

'crosstalk' and subtract any potential acceptor excitation from the true FRET signal to 

give a reliable result (Gordon et a11998, Xia and Liu 2001). For the purpose ofthis 

experiment, a simple subraction of the bleedthrough in the FRET channel obtained in 
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donor only labelled cells from the signal detected in the FRET channel of the donor and 

acceptor labelled cells gave a negative value. This was taken as a good indication that 

even a weak FRET signal had not been detected above the level of the bleedthrough. Had 

the results given a more promising outcome, the technique could have been further 

optimised. For example, altering the donor:acceptor ratio may have resulted in generation 

of a better FRET signal (Kenworthy and Edidin1998). However owing to the complexity 

of generating reliable results using FRET indices, of which there is no universally 

accepted standard, and the timeframe available to this study, further investment oftime 

and resources was not considered appropriate. 

Even with optimal conditions in place, the ability to detect FRET is confounded by 

technical issues. One of the most relevant to this study is the use of fluorescently labelled 

antibodies and CTb in detecting gangliosides. The binding of antibody to ganglioside 

may occur in an orientation in which the fluorescent molecules are outwith the FRET 

distance of 100 A , and the inability to detect FRET would falsely imply that the 2 

gangliosides were outwith 100A. The reverse scenario is also applicable, whereby the 

gangliosides may lie outwith 100 A, but the binding of the fluorescent probes leads to the 

fluorescent labels being within 100 A. The Y - shaped IgG molecule has a height of 

approximately 140 A (14.5nm) (Silverton et aI1977), therefore the orientation of the 

fluorescently labelled MOG 35 could theoretically be 140 A away from the CTb 

fluorescent tag, even if the gangliosides GD1a and GM1 are directly interacting (Fig 124) 
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Fig 124. Scenario A: the 2 gangliosides are within 10nm, however the orientation of the 
probes leads to the donor and acceptor fluorophores lying outwith 10nm. Scenarion B: 
the gangliosides are not within 10nm of each other, but the donor and acceptor 
fluorophores are within the FRET efficiency range. 

Furthennore, gangliosides are relatively tiny when compared to mAbs (approx 6 kDa and 

65 kDa respectively). If GM1 and GD1a are tightly colocalised, the binding of CTb and 

MOG 35 may not be possible: the probes may be "large relative to the size of the 

microdomain, preventing simultaneous binding of probes to adjacent raft components" 

(Kenworthy et aZ2000). On a similar note, in regions where GM1 and GM3 co-cluster, 

the intensty of the GM1 clustering is more discrete and intense when observed alone (ie. 

when GM1 alone was probed for). This indicates that in the co-labelling, anti GM1 and 

GM3 antibodies are binding overlapping epitopes and thus there is an element of steric 

hinderance interfering with their ability to access their respective epitopes (Fjita et al 

2007). IfGM1 and GD1a are tightly integrated, then once CTb has bound to GM1 , MOG 

35 binding to the associated GD1a may be hindered, and instead the mAb may bind 

GD1a in another region outwith the effective FRET range. Thus, no FRET would be 

detected due to epitope labelling problems. One way to address this would be to primary 
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label the ganglioside, but this may interfere with the spatial dynamics of the raft 

(Asuncion-Punzalan et a11998) and remove the biological relevance of the system. 

Thus, biochemical techniques were utilised to study the interaction of the 2 gangliosides. 

7.4.2 Biochemistry 

Depletion of cellular cholesterol is known to perturb the integrity of lipid rafts (Lang et al 

2001). By removing a significant proportion of cholesterol from the membrane, the liquid 

ordered state of the membrane is no longer under the mediation of cholesterol and thus 

becomes more liquid disordered, a state more in agreement with the Singer-Nicholson 

model in allowing random arrangement of the proteins and lipids (Singer and Nicholson 

1972). Based on the observation that when the raft is disrupted, MOG 35, DG 1 and CTb 

binding is decreased, it is concluded that the ganglioside epitopes become randomly 

associated in a way which increases their crypticity. For example, GM1 and GD1a may 

become hidden by proteins which are non raft associated, they may interact in a different 

spatial dynamic with raft proteins which have been released upon cholesterol depletion, 

or the gangliosides may not be physically hidden by another species, but instead may flip 

into an orientation whereby their antigenic site is buried in the bilayer. Furthermore, 

there is evidence that not all rafts are sensitive to methyl-~-cyclodextrin dependent 

cholesterol depletion, as treatment of lurkat cells released a variety of raft proteins, but 

flotillin remained in the detergent resistant domains (Rajendran et aI2003). 

A possible explanation for the differences in susceptibility of rafts to dissociation is the 

stabilisation of rafts by the cellular cytoskeleton (Fujiwara et al 2002). Thus, this support 

means upon cholesterol depletion there is incomplete dissolution of the raft (Fujita et al 

2007) meaning cis-interactions between raft species are not disturbed. In this instance, the 
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GMlIGDla complex would remain intact and the complex, as opposed to the individual 

gangliosides, would become orientated in one of the ways already described. From the 

results of this experiment, the cis-interaction of GMI and GDla remains hypothetical, 

and therefore further biochemical experiments were designed, based on detergent 

insolubility of lipid rafts as a tool to isolate them from the plasma membrane, as 

demonstrated in this chapter. There is evidence that during the isolation of the detergent 

resistant fraction, mixing of individual rafts can occur, a failure of the commonly used 

detergent Triton-XIOO (Madore et aI1999). Extraction of rafts with Triton-Xl 00 is 

believed to form lipid raft domains ranging from 15-20flm, which is suggestive that 

Triton-XIOO leads to the association of smaller domains which existed prior to the 

detergent treatment (Giocondi et aI2000). However, Brij-96 was used in a similar 

application as applied in this chapter, and it was concluded that Brij-96 "fractionated the 

neuronal membrane such that the membrane of many individual rafts remained relatively 

intact and separate throughout all purification steps" (Brugger et al 2005). Taken together 

with the finding that GDla positive rafts do not contain SNAP 25, this is highly 

suggestive that the colocalisation ofGMI and GDla is not due to the coalescence of 

separate populations of rafts, and that individual GDla containing rafts have been 

isolated. 

The Dynabead isolation approach using antibodies bound to the whole cell represents the 

ideal system in which to analyse the ganglioside content of lipid rafts. In a model raft 

system, such as supported bilayers (Dietrich et a12001) it may be possible to identify co

localisation of 2 gangliosides, but such static scenarios do not convincingly depict the 

situation in the living membrane, either of the PCl2 cell or NMJ. For example, the 
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membrane associated cytoskeleton may playa role in regulating raft size and lateral 

position (Yu et aI1973, Jacobson and Dietrich 1999), so the cellular regulation of raft 

size and shape (Brown and London 1998) may mean "man made" rafts do not give the 

best representation of the in-vivo and thus clinically relevant scenario where anti

ganglioside antibodies bind the raft associated gangliosides. Coating the beads in 

antibody (ie direct isolation) was tested to eliminate the possibility that membrane bound 

MOG 35 may become bound to the raft associated ganglioside in such an orientation that 

the anti-mouse IgG cannot bind well and readily isolate it, and thus the direct isolation 

may result in an amplification of the bound rafts when compared to the previous indirect 

isolation. However the impracticality of this direct approach lies in the difficulty of 

finding an adequate negative control to compare to the anti-mouse IgG MOG 35 bound 

beads. A non-specific mouse IgG is theoretically an ideal control, however the fact that it 

bound to something in the raft fraction is suggestive that preparation of the isolated rafts 

had potentially exposed new epitopes which would not normally be seen. This theory is 

possible, as the mAb EG1 does not bind the PC12 cell, but when initially used as the 

control (before the anti-mouse IgG) it also bound to an epitope in the raft fraction, which 

indicates GD3 had been exposed during the raft preparation. 

From the Western blots, the intensity of the GD1a band in the raft unbound fractions is 

strong: it was predicted that the procedure would isolate a higher proportion of rafts and 

lead to a more obvious depletion of the unbound fraction when compared to the starting 

material. The first possibility is that not enough MOG 35 was added to saturate the 

GD1a present on the cell surface, although this is unlikely because at this concentration, 

preparation of cells for immunofluorescence or F ACS analysis gives an intense 

240 



fluorescent signal. The second, and perhaps more likely explanation is that MOG 35 is 

not able to see all GD 1 a contained in the membrane of the cell. This notion links to the 

observation that GMI is invisible to DG 1, and suggests that certain populations of GDla 

may exist in domains where they are cryptically shielded. Overall, the isolation ofGDla 

positive rafts which also contain GM! is evidence that both gangliosides exist within the 

same raft when extracted using Brij-96. 
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Chapter 8 

8.1 Introduction 

The binding ability of anti-GM1 mono specific antibody DG 1 depends on the 

presentation ofGMl in the membrane, and in the GD3s-l
- mouse relies, at least, on its 

cis interaction ofGMl and GDla. DG1 was raised against the GM1 mimicking 

oligosaccharide (as described in Townson et al2007 and references therein) isolated 

from C jejuni and introduced to a mouse lacking gangliosides (to overcome immune 

tolerance). Thus, DG 1 is specific for the GM1 mimicking oligosaccharide, but the 

antibody does not react with the ganglioside GM1 in mouse nervous tissue. In order to 

assess the significance of this, the ability of DG 1 to bind to the GM1 mimicking 

oligosaccharide on the surface of intact Cjejuni was investigated. It was of interest to 

determine ifDGl would bind to the GMllike oligosaccharide on live bacteria, or 

whether, akin to the live versus dead binding observed in earlier chapters, DG 1 would 

only bind dead bacteria, where the membrane dynamics may alter the presentation of 

the oligosaccharide epitopes. 

8.2 Live and Heat Inactivated C.jejuni 

Cjejuni strain 0:3 has no GM1 or GDla mimicking oligosaccharide structures, and 

was included as a negative control, while strain 0:19 has GM1 and GDla like 

oligo saccharides (Bowes et a12002) and was used to determine the ability ofDG 1 to 

bind to the GMllike oligosaccharide in the presence of the GDla like 

oligosaccharide. All bacteria and culture support was kindly provided by Mr J 

Guthrie (Department of Bacteriology, Southern General Hospital). 
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Bacteria of each strain were maintained in suspension in sterile PBS: half of each was 

removed and incubated at 60°C for 1 hour to heat inactivate (ie. kill) the bacteria, 

while the remainder was survived by maintaining at room temperature. Bacteria 

were pelleted and stained following the FACS staining protocol used for PC12 cells, 

as described in Materials and Methods. In deviation from this protocol, PBS was used 

instead ofFACS buffer and bacteria were rinsed by pelleting at 13,OOOrpm for 3 

minutes. Primary antibodies were used at 20)lg/ml, and CTb-FITC (l)lg/ml). 

Secondary antibodies (anti-mouse IgG-FITC) were used at 3.3)lg/ml. In order to 

confirm heat inactivation had killed the bacteria, a sample was plated onto Skirrow 

(Skirrow 1977) agar medium (E & 0 Laboratories, Bonnybridge, UK) and maintained 

under microaerophilic (5% 02, 10% C02, and 85% N2) conditions along with a live 

sample (positive control). After 2 days at 42°C, colony formation from the live 

samples but not the heat inactivated was confirmed. 

DG 1, MOG 35 and CTb did not bind to strain 0:3, either live or dead. Both 

antibodies and CTb bound to strain 0:19, and as shown in the FACS histograms in 

Fig 125, the binding ofMOG 35 and DG1 was greatly enhanced in heat inactivated 

strain 0: 19. The CTb binding intensity remained similar when comparing live and 

heat inactivated strain 0: 19. 
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Fig 125 . F ACS histograms comparing the shift in fluorescence intensity when 
comparing DG1, MOG 35 and CTb binding to live and heat inactivated strain 0:19 
bacteria. Background fluorescence intensity is represented by the shaded curve, 
showing the negligible fluorescence of CTb binding strain 0:3. 

8.3 Live and Dead C.jejuni: UV and PF A inactivation 

The heat inactivation of Cjejuni led to an increased ability of both mAbs to bind to 

the ganglioside like oligo saccharides. Heating of proteins leads to denaturation and it 

is therefore possible that the effect of heat on the oligosaccharide has altered the 

epitope and caused the increased antibody binding. Thus, different methods were 

used to kill the bacteria, and their effect on the binding of CTb and mAbs was again 

compared to live bacteria. 

8.3.1 Bacterial Inactivation Methods: 

* PFA Fixation. Bacteria were suspended in Eppendorfs containing 4% PFA for 25 

minutes at room temperature, and rinsed by pelleting (13,000 rpm) and resuspending 

in PBS 3X. 

244 



* UV Irradiation. Bacteria were diluted in PBS and a thin film applied to the base of 

Petri dishes. These were placed (minus lids) in a UV crosslinker (XL- lOOO UV 

Crosslinker, Spectronics Corp) for 30 minutes. 

As already described, samples of live and dead bacteria were cultured to ensure 

efficiency of the treatment. 

As a negative control, the ability of CTb to bind live, PF A fixed or UV irradiated 

strain 0 :3 was analysed. No binding was detected, as shown in the F ACs histograms 

in Fig 126. 
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Fig 126. FACS histograms showing CTb fluorescence for live, PFA fixed and UV 
irradiated strain 0:3 Cjejuni. 

Fig 127 shows the FACS histograms of MOG 35 and DG 1, with inset panels 

showing representative forward-scatter (FSc) and side-scatter (SSe) profiles. The gate 

position was set based on the live bacteria, and remained constant throughout the 

experiment to ensure that comparisons were drawn between morphologically similar 
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bacteria and any aggregations or fragmentation caused by the methods used to 

inactivate the bacteria did not bias the results. As can be seen in the fluorescence 

histograms (Fig 127), MOG 35 and DG 1 fluorescence intensities remain comparable 

for all conditions. 
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Fig 127. Flow cytometry histograms ofDGl and MOG 35 fluorescence in live and 
dead Cjejuni 0: 19. Inset panels show forward scatter (FSc) and side scatter (SSc) 
profiles. 

Semi-quantification of this data is shown graphically in Fig 128, and from this it can 

be concluded that there is negligible difference between the binding of DG 1, CTb and 

MOG 35 to bacteria which are live, UV irradiated or PF A fixed. Consistent with the 

results of section 8.2, the mAbs and CTb are able to bind the live bacteria. Statistical 

analysis was not appropriate: although all samples were analysed in duplicate, each 

experiment was performed once as a pilot study. 
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Figure 128. Fluorescence intensity ofDG1, MOG 35 and CTb binding oflive, PFA 
fixed and UV irradiated bacteria, as determined by flow cytometry. 

8.4 Discussion 

MOG 35 and CTb binding to Cjejuni 0:19, but not the negative control Cjejuni 0:3, 

show that GD1a and GM1 like oligo saccharides can reliably be detected in strain 

0:19. DG1 is also able to bind the GM1like epitope on strain 0:19. From the 

results, it is shown that heat inactivation of the Cjejuni 0 :19 greatly enhances the 

binding ofMOG 35 and DG1, but this is not the case upon inactivation by UV 

exposure or PF A fixation. It can be concluded from this data that heating the 

oligosaccharide may be altering its conformation or presentation on the surface of the 

bacteria, and enhancing the ability of the antibodies to bind. CTb binding was not 

affected, perhaps implying that the CTb fluoresecence on live bacteria was maximal 

and thus no enhancement was detectable. It is surprising that the intensity of DG 1 

binding to the GMI like oligosaccharide was greater than that of CTb. GMI has a 

cross sectional diameter of less than lnm, meaning the epitope is much smaller than 

pentameric CTb, and thus the surface density of GMI is likely to be higher than that 
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of CTb (Wang et al 2001). The DG 1 intensity implies that the antibody is smaller than 

CTb, meaning more DG 1 is able to bind and result in a fluorescent signal which is 

more representative of the amount of epitope. The treatment of bacteria with UV 

irradiation caused a population of bacteria which appeared larger and more granular, 

as depicted by the population in the top right quadrant ofthe FSc and SSc plots (Fig 

103). These bacteria are likely to be aggregates, or perhaps bacteria which have 

swelled owing to loss of function of the osmotic pumps induced by the inactivation. 

Only bacteria which were believed to be intact were included in analysis to ensure a 

fair comparison with live bacteria. 

In summary, MOG 35, DG 1 and CTb are able to bind both live and dead Cjejuni 

0:19, as determined by flow cytometry. This implies that the GM1 and GD1a 

mimicking oligo saccharides present on the surface of the bacteria do not cis-interact 

in a way which shields GM1 from DG 1. This data highlights a fundamental 

difference from the presentation of ganglioside GM1 in neural membranes, where 

earlier chapters describe the potential cis- interaction of GD 1 a and GM 1, leading to 

masking of GM1 from DG 1. This data introduces the concept that DG 1 like 

antibodies can opsonise potentially harmful pathogens bearing self-mimicking 

epitopes, but do so in a way which does induce an autoimmune reaction against the 

epitope expressed by self-tissue. 
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Chapter 9 

9.1 Introduction 

The ability ofDGl to bind to ganglioside GM1 when not in complex, as shown in the 

preceding chapters, is particularly novel in the evolving concept of GBS, where there 

is a growing emphasis on antibodies that can only bind to gangliosides when in 

complex. 

Kaida and co-workers (Kaida et aZ2004) pioneered the discovery ofthe GBS 

associated ganglioside complex hypothesis when they performed TLC 

immunostaining on a crude fraction of ganglioside from bovine brain using sera from 

a GBS patient. They noted that on the TLC overlay, a positive band was evident just 

below GDla on the TLC overlay. Potentially this could have been a hithero 

undiscovered ganglioside, however the sera was also shown to react with a 

GD1aJGDl b complex, but not with the individual gangliosides (Fig 129). This study 

represents a milestone in the study of GBS antibodies, and is the first description of a 

GBS associated antibody which only reacts to ganglioside complexes as opposed to 

the individual species. The result was confirmed on ELISA, where the sera only 

bound to the gangliosides when coated to the plate as a mixture. Similar results were 

obtained for GDla-GM1, GM1-GTlb and GD1b-GTlb complexes. This 

phenomenon has also been demonstrated for antibodies associated with MFS (Kaida 

et aZ2006). 

Evidence that such a serum is able to bind in the living membrane would prove that 

the phenomenon observed by Kaida and co-workers is relevant to the biological 

membrane (as opposed to solid phase assay), and would support the hypothesis 

generated in this thesis: GM1 and GDla are able to cis-interact. 
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Fig 129. TLC studies, modified from Kaida et a12004. Left TLC (blue outline) 
shows the position of the gangliosides in each lane. On the right (red outline), the 
position of the antibody binding. Binding in the crude ganglioside mixture lies just 
below the position of GD 1 a, and the arrowhead shows binding in the GD 1 a+GD 1 b 
lane, in a position overlapping the tail and head end of GD1a and GD1 b respectively. 
This represents the area where the gangliosides were incompletely separated by the 
TLC. 

9.2 Ability of Anti-GMlIGDla complex Sera to Bind Living Tissue 

Close to the completion of my PhD studies, I was fortunate to be provided with 4 

aliquots of sera reactive to the GD 1 a-GM 1 complex by Dr. S. Kusunoki (Kinki 

University School of Medicine, Japan). This allowed a pilot study to be undertaken, 

in which I investigated the ability of the sera to bind under physiological conditions. 

Less than 1ml of each sample was provided, and with such a small sample size the 

experimental approach was limited. I first decided to use a minimal amount of sera 

and characterize the binding ability of the anti-GMlIGD1a complex antibodies in the 

ex-vivo peripheral nerve of the GD3s-I
-, which has upregulated expression of 

gangliosides GM1 and GDla, and no b series gangliosides. The GaINAc-r /-, which 

has no complex gangliosides, was used to confirm the antibody was specifically 

binding to the GMlIGDla ganglioside complex. 

The sera (diluted 50:50 with Ringer) was applied to the ex-vivo GD3s-l
- TS 

preparation and in parallel, the GaINAc-r /-, following the same protocol as described 
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in Materials and Methods for antibody incubations in the TS preparation. As a 

control, NHS was applied to a parallel GD3s-l
- preparation at the same ratio. 

Following incubation of anti-GD 1 a/GM1 complex sera or control sera, NHS was 

added as an additional source of complement to determine the pathogenic potential of 

the anti-complex antibodies. 

9.2.1 Preliminary Results 

Only one of the samples bound to GMlIGD1a complex and was able to activate the 

complement cascade. The preliminary results shown in Fig 130a show illustrations of 

the positive sera specifically binding the GD3s-l
- nerve terminal and endplate, 

suggesting it is binding to the GM1-GD1a complex. As shown in Fig l30b, control 

sera did not bind to a detectable level. None ofthe sera bound to the GalNAc-rI-

C data not shown) indicating there was no cross-reactivity or non-specific binding to 

other epitopes, such as glycoproteins. 
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Anti-GD laJGMl complex Serum Control Serum 
III 

Fig 130a. Anti-GDlaJGMl complex sera applied to the ex-vivo GD3s-l - TS 
preparation, followed by NHS. IgG and C3 deposition were detected over the 
endplate and distal nerves, as shown on the left group of images. On the right, control 
serum gave no IgG or C3 deposition. Scalebar = 20llm. 
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Anti-GDla/GMl complex Serum 

Fig 130b. As for Fig 131a), but showing MAC deposition and NF staining. MAC can 
be detected most strongly along the axon in the anti-complex treated preparation. NF 
appears normal over the endplate, and evidence of slight granulation is apparent 
upstream of the NMJ, where the complement deposition is strongest. Control treated 
muscles show no MAC deposition and NF is normal. Scalebar = 20jlm. 

9.3 Discussion 

Although it is difficult to draw conclusions from such a limited study, the observation 

that a GBS associated antibody against the GMI /GDla complexes is able to bind in 

the living membrane is perhaps one of the first illustrative examples that this antibody 

is specifically binding to the axon and is able to activate the complement cascade. No 

abnormalities were detected to the neurofilament ofthe axon. This observation is 

suggestive that the antibody is not causing an axonal lesion. However, it is my 

intention to send the remaining volume of the illustrated serum to our collaborators (J. 

Plomp, Leiden University, The Netherlands), where it will be applied to hemi-
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diaphragm preparations (following the incubation protocol in Materials and Methods, 

but using a "strip-twitch" assay and thus a small volume of sera (Jacobs et aI2002), 

and electophysiological traces will be recorded. Any electrophysiological 

abnormalities induced by the serum will confirm that it is at least capable of inducing 

conduction block, perhaps severe enough to manifest as paralysis in the patient. 

Treated tissue from the Netherlands will be snap frozen following electrophysiology, 

and sent back to me, allowing it to be sectioned for quantification of antibody, C3 and 

MAC deposition (as done routinely for hemi-diaphragm analysis, protocols in 

Materials and Methods). NF analysis, however, may not be possible owing to the 

damage of the phrenic nerve during the assay procedure. The sera which was found 

to be unable to bind the nerve terminal will also be investigated in this manner; failure 

to detect antibody binding and complement activation does not rule out the possibility 

that even a very low level of antibody binding can cause altered nerve function. If 

electrophysiological abnormalities are detected, patients with GBS mediated by anti

complex antibodies (which behave similar to the provided samples) would be 

expected to recover rapidly as the axon is not damaged. 

It would also be beneficial to test the ability of such sera to bind in WT mice, which 

have a normal ganglioside profile. Ability of the sera to bind in these mice would be 

more relevant to the human situation, as it would strongly suggest that in the 

peripheral nerve, and in the presence of other ganglioside species (a scenario not 

accounted for in the GD3s-I
-), GMl and GDla are able to cis-interact and thus 

represent a viable epitope to antibodies. Furthermore, provision of more sera samples 

would allow these to be screened, and more positive results such as that illustrated in 

this chapter would confirm that antibodies against ganglioside complexes are an 
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important future area of research, and should perhaps also be routinely screened for in 

GBS patients. 
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Chapter 10 

10.1 Discussion 

The identification of GBS associated antibodies which are able to bind to epitopes 

presented on solid phase ELISA, but not in the living membrane, introduces a 

plethora of possibilities regarding the likely pathogenic mechanisms of such 

antibodies. This thesis demonstrated the concepts of epitope recognition using 2 in

house mouse anti-ganglioside antibodies (DG 1 and DG2) which were produced by 

colleagues (as described in Townson et al2007 a), and references therein). Both 

antibodies were raised in the GalNAc-r /- mouse against GMI-like epitopes: DG 1 

was raised against GMllike LOS isolated from Cjejuni strain 0:19, and DG2 was 

raised against GMI ganglioside containing liposomes. One of the most fundamental 

points which should be highlighted is that both DG 1 and DG2 have similar heavy and 

light chain sequences, are structurally similar, and have similar binding affinities for 

GMI (Townson et aI2007). In other words, comparing DG 1 and DG2 is not like 

comparing "chalk and cheese", and the inability ofDGl to recognise GMI in the 

living membrane suggests that the explanation relies on the availability of the epitope 

in the bilayer. On a similar note, both antibodies show strong binding to sulfatide by 

ELISA, yet neither were shown to bind it in tissue. The dichotomy in antibody 

binding abilities between ELISA bound epitopes and membrane bound epitopes 

underpins the emerging importance of "membranomics", whereby the pathogenicity 

of antibodies depends on the interactions of membrane proteins and lipids which 

regulate the availability of epitopes to antibodies. Crypticity of glycolipids is not a 

novel phenomenon, based on the inability of antigloboside antibodies to bind 

globoside in erythrocytes (Hakomori et a11968) and more specific studies showing 

anti-ganglioside antibody binding to a given species is dependent on the coexpression 
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of other gangliosides in the membrane of melanoma cells (Lloyd et al 1992). The 

findings demonstrated in this thesis relate the phenomenon of crypticity directly to 

GBS, by demonstrating that the pathogenic potential of GBS-associated antibodies 

relies on the ganglioside presentation on the peripheral nerve. The crypticity of 

gangliosides is likely to be influenced largely by their presence in lipid rafts, which 

are transient structures in the living membrane (Dietrich et aI2002). The structure of 

the living membrane relies on energy (Morowitz 1968), and the existence of 

membrane proteins and lipids in their minimum energy states dictates their 

conformation. Thus, removal of energy from the membrane (for example, upon cell 

death) will deplete energy and may lead to conformational changes within rafts, as 

inferred from the ability ofDG 1 to bind only in dead tissue. The differential ability of 

antibodies to bind in tissue leads to many conceptual scenarios which may serve to 

enhance understanding of the pathogenesis of anti-glycolipid antibody mediated 

neuropathies and their treatment. 

10.2 Molecular Masquarade: The Sulfatide System 

The specificity of the mAbs DGI and DG2 for sulfatide in addition to GM1 

introduces the possibility of a new paradigm in autoimmunity, for which I have 

coined the term "molecular masquerade". 

Sulfatide is a raft associated molecule, and is the sulfated derivative of GaIC, both of 

which are synthesized by Schwann cells of the PNS (Taylor et aI2002). Sulfatide is a 

major surface determinant of myelin (Dupouey et aI1979), with an important role in 

its stability and function (Coetzee et aI1996.). Thus, any antibody mediated attack on 

sulfatide could lead to demyelination. Indeed, antibodies directed against sulfatide 

are implicated in demyelinating neuropathies, for example, antibodies to sulfatide 
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have been detected in the sera of Multiple Sclerosis (MS) patients (Ryberg 1978) and 

GBS patients (Willison and Veitch 1994, Ilyas et a11991, Van den Berg 1993). 

The observation that antibodies specifically raised to a ganglioside structure are able 

to recognize sulfatide introduces the concept of molecular masquerade as a novel 

concept of autoimmunity. In other words, an antibody is raised against epitope "a" 

(i.e. the ganglioside like structure), but in tissue unwittingly reacts with an "imposter" 

epitope (i.e. sulfatide) to cause pathology. This hypothesis can be rejected by the 

observation that the mAbs which bind sulfatide on ELISA are not able to bind it in 

tissue, even in mice engineered to overexpress sulfatide, or following attempted 

epitope retrieval using EtOH or PF A, which have proven successful for other 

investigators (Quattrini et aI1992). There is much controversy surrounding the 

significance of anti-sulfatide antibodies in neuropathy. Because they are part of the 

natural immune repertoire, there is no consensus regarding the titre at which they are 

considered pathogenic, an issue further clouded by their different affinities, 

specificities and non-linearity in methods of detection (Terryberry et aI2005). Thus, 

the presence of anti-sulfatide antibodies in normal controls is an apparently benign 

situation as they do not react with PNS associated sulfatide, a scenario which is 

similar to the ability of DG 1 and DG2 to bind sulfatide on ELISA but not in tissue. It 

would be of great interest to use these mAbs to determine the biological relevance of 

these anti-sulfatide antibodies. Sulfatide can be presented by CD1a cells to T-cells, 

leading to the activation of self-reactive T -cells (Shamshiev et aI2002). If anti

sulfatide antibodies which do not bind PNS myelin are able to recognize sulfatide 

when presented in this manner by CD 1 a cells, it is possible that by binding to the 

sulfatide they are able to interfere with the CD1a and T-cell receptor (TCR) 

interaction and limit the response of autoreactive T -cells. 
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What can be concluded from the observation that DG 1 and DG2 can only bind 

sulfatide when it is coated to an ELISA plate is that sulfatide, when in the biological 

membrane of the PNS, is masked. It was surprising that use of tissue from a sulfatide 

over-expressing (CST) mouse and experimental conditions to enhance epitope 

exposure (such as cryosectioning and EtOH treatment) did not result in antibody 

binding. However, failure to expose sulfatide may be in part due to the size of the 

molecule, which is smaller than gangliosides. Taking this into consideration, it is 

highly likely that GPI anchored proteins and other gangliosides within the membrane 

lead to a deep cryptic domain from which sulfatide is not easily exposed and available 

as an epitope to the antibodies. 

10.3 Anti-GMI Antibodies: Pathogenesis Relies on Epitope Availability 

The demonstration that WT and GD3s-l
- mice have an abundance of ganglioside GM1 

in their PNS (which is greatly enhanced in the latter strain) demonstrates that this site 

is vulnerable to attack by anti-GM1 antibodies. The ganglioside profile of the 

peripheral nerve was firstly demonstrated using CTb, which has one of the highest 

recognized protein-carbohydrate interactions (Schon and Freire 1989) and thus is 

reliable in demonstrating the distribution of GM1 throughout the tissue. The strong 

interaction ofCTb for GM1 is due to the interaction of the pentameric toxin with 5 

GM1 species, which increases the avidity from micromolar to nanomolar (Lauer et al 

2002). The inability ofthe mAb DG 1 to bind in living tissue in contrast to the success 

ofDG2 binding shows that GM1 can be cryptic to certain ligands, in a manner which 

may vary between certain rafts or tissue types (such as the sensory motor system, 

which is spared in anti-GM1 antibody associated AMAN (Kaji and Kimura 1999)). 

Thus, the profiling of GM1 in the peripheral nerve relies critically on a ligand which 
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is likely to reveal all GM 1, without failing to bind a proportion which may be masked. 

Again, this requirement is likely to be met by CTb, where the bivalent interaction of 

CTb and the GMI oligosaccharide has been resolved to the Angsrom level and 

likened to a "two fingered grip" (Merritt et al1994, Merritt et al1998), enhanced by 

hydrogen bonding. Such a specific "grip", coupled with the high avidity, suggests 

CTb is highly likely to bind to GMI regardless of the presentation of the epitope in 

the tissue. The results ofDG2 show that anti-GMI antibodies which rely on the 

Gal(~1-3)GaINAc epitope ofGMI are able to bind to GMI in the mouse peripheral 

nerve, activate the complement cascade and cause calpain mediated destruction ofthe 

neurofilament via deposition of a MAC pore in the membrane (a similar mechanism 

to existing anti-ganglioside antibody mediated neuropathy models (Halstead et al 

2004, Goodfellow et al200S». Gal(~1-3)GaINAc is a common epitope shared by 

GMI and GDlb, meaning it is theoretically possible for DG2 to bind Gal(~l-

3)GaINAc ofGDlb (in a WT mouse), or indeed the Gal(~1-3)GaINAc epitope on 

glycoproteins. Demonstration that CTb can inhibit DG2 binding to WT tissue, but 

have no inhibitory effect on a specific anti-GDlb mAb has twofold implications: 

firstly, it demonstrates that CTb is specific for GMI in the tissue, and that DG2 is 

specifically binding the Gal(~1-3)GaINAc epitope ofGMl. Demonstration that the 

GaINAc-r /-mouse has no DG2 binding confirms that DG2 is unlikely to be binding 

to Gal(~1-3)GaINAc in other structures, such as glycoproteins. The ability ofDG2 to 

induce a lesion in both the WT and GD3s-l
- is highly suggestive that it is binding the 

majority ofPNS associated GMI, however it is possible that DG2 is binding an 

adequate population of GMI to induce a lesion, but there may be underlying 

populations of GMI which it does not bind. This possibility is difficult to address 

experimentally: DG2 gave a strong binding signal over the endplate on the WT and 
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GD3s-l
- mouse indicating a saturating level of binding at the resolution ofthe light 

microscope. In order to define the microdistribution of DG2 binding, it would be 

interesting to compare the binding profile ofDG2 and CTb at higher resolution 

(perhaps by electron microscopy using immunogold labeled ligands (Halstead et al 

2004)) and to include an analysis of different tissue types and regions in such a study. 

Of particular interest would be a comparison of sensory and motor fibres, where it 

may be postulated that in sensory fibres, a significant proportion of GMI is 

cryptically unavailable to DG2. This would fit with the observation that DG2 cannot 

bind GDlb via the common Gal(~1-3)GalNAc epitope, which implies that steric 

masking ofGal(~1-3)GalNAc is possible in a way which successfully restricts DG2. 

Any DG2 binding to available (i.e. non-cryptic) GMI in sensory tissue may not be 

enough to manifest as a clinically defined lesion, perhaps due to not enough mAb 

binding, or due to mAb binding in rafts where GMI is under more strict complement 

regulation and thus progression of the lesion is halted. 

DGl, the mono specific anti-GMI mAb was not able to bind GMI in the live 

membrane of either the WT or GD3s-l
- mice. This was surprising, as a mono specific 

anti-GMI antibody was predicted to have an identical binding profile to CTb. The 

observation that DG 1 cannot "see" GMI proves that all GMI detected by CTb is 

likely to be cryptic to DG I-like antibodies, a statement underlined by the inability of 

Sml and Dol (antibodies cloned from patient sera) to bind the mouse peripheral 

nerve. Analysis of AMAN patient sera may reveal a high titre of an anti-GMI 

antibody, which binds strongly to GMI when presented on ELISA. However, akin to 

the DG 1 scenario, this does not confirm that the antibody is able to bind GMI in 

tissue and thus is not a reliable measure of pathogenicity. 
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The heterogenicity of lipid rafts mean that there may be several raft associated 

proteins and lipids which can interact with GM1. There may be region or tissue 

specific differences regarding the composition of lipid rafts, which may partly explain 

why GM1 is cryptic to anti-GM1 antibodies in sensory fibres but not motor. 

Treatment of cells with neuraminidase to deliberately increase GM1 content leads to 

significantly greater anti-ganglioside antibody induced cytotoxicity compared to cells 

with exogenously added GM1, taken as evidence that the exogenously added GM1 

may partition into a '''lysis-resistant' membrane subdomain" (Zhang et aI2004). 

Conceptually, this can be related to the in-vivo situation in the nervous system: if 

different cell types and tissues have similar gangliosides, but these are partitioned into 

cell-type specific 'sub-domains', the implication is that not all cells may be equally 

susceptible to injury by anti-ganglioside antibodies. This finding may help clarify the 

susceptibility of the motor fibres in AMAN. However, what defines a true lysis 

resistant subdomain? For example, in the case ofDG1, all native GM1 is in lysis 

resistant sub domains due to the fact that steric hindrance of GM1 from DG 1 is enough 

to render GM1lysis resistant. However in the presence of an antibody which is able 

to bind (eg. DG2), GM1 is likely to be accessible in domains rendered "inaccessible" 

by DG 1. Thus, the pathogenic potential of a ganglioside critically depends on the 

specificity and affinity ofthe anti-ganglioside antibody. Furthermore, gangliosides 

are associated with lipid rafts, which are heterogenous (Schade and Levine 2002, 

Drobnik et al 2002) and thus likely to comprise of different protein species. This is 

relevant in the context of antibody induced complement activation. For example, an 

anti-GM1 antibody may bind, but the raft in which GM1 is situated may be under 

tight complement regulation. Thus, the antibody is unlikely to induce a complement 

mediated degradation of the peripheral nerve, but other, perhaps more subtle effects 
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may result. For example, the ability of anti-GMl antibodies to cause conduction block 

could be due to the anti-GMl antibody binding to GMl in a raft enriched in 

complement regulators (which do not mask the GMl from the antibody), and the 

binding alone may be enough to perturb function without causing actual cytolytic 

damage. This fits accordingly with the clinical course of anti-GMl antibody 

mediated neuropathy, especially in cases where patients recover quickly (McKahnn et 

all993, Ho et all997). In such cases, complement activation and subsequent 

demyelination would not lend itself to a rapid reversal of symptoms, and furthermore, 

it has been shown that there is not necessarily a worsening of electrophysiological 

symptoms in conjunction with progressively worsening demyelination, suggesting 

conduction block is due to a "local anaesthetic" effect of antibodies at the node of 

Ranvier (Sumner et all982). Such a "local anaesthetic" effect can theoretically be 

illustrated by the conduction block induced by tetrodotoxin or saxitoxin, where 

electrophysiological readings return to normal within 5 days (Long et all990). There 

is evidence of similar recovery times in anti-GMl antibody positive patients 

(Kuwabara et all998), and it can be proposed that the binding of an anti-GMl 

antibody to a GMl population under tight complement regulation may hinder the 

onset of demyelination, but allow the process of saltatory conduction to be impaired. 

F or example, the disruption of sodium channels, known to cluster at the node of 

Ranvier (Shrager et all989), a situation which is also likely to be raft associated, may 

account for the observed conduction abnormalities. 

It is also likely that GMl exists in non-raft areas ofthe plasma membrane, as 

demonstrated from the ability of CTb to stain both raft and non-raft fractions of the 

plasma membrane in Chapter 7. This suggests that DG 1 should bind to cells via non

raft associated GMl. However, the raft fractionation and Western blot data does not 

263 



quantify the relative amount of raft and non-raft GM1, and it is hypothesised that the 

GM1 in the non-raft areas of membrane is not of sufficient density to allow DG 1 to 

bind. Alternatively, this non-raft GM1 may also be presented in an unfavourable way 

- for example the sialic acid ofGM1 (on which DG1 binding relies) may be 

embedded in the bilayer of the membrane. However, the observation that gangliosides 

can exist both in and out of lipid rafts is interesting, and likely to be of significance 

owing to a similar scenario in the human intestine, which may yield clues into the 

selective pathology induced by anti-ganglioside antibodies in the nervous system. In 

human intestinal cells GD1a is not in rafts, whereas GM1 is (Fujinaga et aI2003). 

GD 1 a specific toxin (E. coli heat labile toxin type II, (L TIIb )) is unable to intoxicate 

intestinal cells due to the fact that intestinal GD1a is not in rafts, and it is concluded 

that only raft associated GD1a is able to internalise the toxin into the retrograde 

pathway which facilitates toxic action (Fujinaga et aI2003). Translating this to the 

nervous system, it is possible non-raft associated GM1 and raft associated GM1 are 

able to process bound antibodies in different ways. It has long been accepted that IgG 

antibodies are amenable to retrograde transport (Fabian 1990), and in the context of 

the current scenario, antibodies may bind to non-raft associated GM1 and remain 

associated with GM1 at the cell surface long enough to activate complement, whereas 

antibodies which bind raft GM1 are internalised and unable to activate complement. 

Of course, the reverse scenario may also be true. On a similar note, a specific anti

GD3 antibody (R24) binds GD3 at the cell surface of cultured ganglioside expressing 

cells, and the complex is endocytosed before being transported back to the plasma 

membrane (Iglesias-Bartolome et aI2006). What is most interesting is that R24 

antibody, upon being recycled back to the membrane, was subsequentially detected in 

the cell culture medium. This suggests that in-vivo, an antibody-ganglioside complex 
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could be internalized, recycled back to the membrane and the anti-ganglioside 

antibody effectively ejected from the cell back into the extracellular compartment. It 

would be interesting to determine if the released antibody retained its ability to bind 

and activate complement. If not, the process of ej ecting a non-functional antibody 

could be an efficient means of limiting pathogenesis, perhaps explaining the lack of 

anti-GM1 antibody mediated neuropathy in the sensory fibres. 

As can be seen, there are various possibilities regarding antibody specificity, raft 

association, complement regulation based on raft constituents and the possibility of 

antibody internalization. This means that anti-GM1 antibody induced neuropathy 

represents an intertwined and probably incompletely characterized set of mechanisms 

which are perhaps impossible to resolve. However, one of the first steps in 

rationalizing the capricious nature of the GM1 epitope is to address what potential 

lipid raft associated structures could mask it. Before engaging in such discussion, it is 

worthwhile noting Fig 131, which depicts a bilayer containing GM1 and several 

leucocyte associated proteins. The most important point to glean from this diagram is 

that it is drawn to scale, and thus highlights to the reader that the overall membrane 

glycocalyx (which will include GPI anchored proteins) is central to the crypticity of 

gangliosides, which are a fraction of the size of the surrounding membrane proteins. 

Thus, in addition to the cis-interactions of gangliosides, there is a large influence of 

the glycocalyx in the availability of ganglioside epitopes. 
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Fig 131. Exerted and modified from Barclay et aI, 1997. The protein, ganglioside and 
immunoglobulin molecules are drawn to size and shape, with the height of the 
molecule from the cell surface also to scale. The most important feature of the 
diagram is the relative size of the ganglioside GM1 compared to the surrounding 
membrane proteins, meaning the membrane glycocalyx can be viewed as a canopy 
over the ganglioside and thus represents an important consideration in ganglioside 
crypticity. Also note the size ofthe ganglioside in comparison to the immunoglobulin 
molecule. Although sulfatide is not included in the diagram, it would be smaller the 
ganglioside. 

10.4 GMI and cis-interactions 

Based on the binding characteristics of DG 1 (i.e. the ability to bind dead tissue but not 

live) indicates that the crypticity of the ganglioside in live tissue is dependent on the 

inherent structure and fluidity ofthe living membrane. In Chapter 5 it was shown that 

removal ofGPI anchored proteins from PC12 cells enhances the binding ability of 

DG2 and MOG 35 (anti-GM1 and anti-GD1amAbs respectively). The association of 

GPI anchored proteins with lipid rafts (Sheets et aI 1997), and their ability to restrict 

DG2 and MOG 35, is taken as evidence that gangliosides cluster within lipid rafts. 

Thus, in the living membrane, the lipid raft is likely to be the critical component in the 

masking of GMl. 

The mAbs DG2 and MOG 35 were shown to bind to normal PC12 cells. If it is 

assumed that at least a proportion of this binding was to raft associated gangliosides, 
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then the observation that removal of GPI anchored proteins, such as Thy-I, can 

enhance their binding is indicative that in addition to the population of GM1 which 

was "non-cryptic", a new and previously cryptic population of GM1 and GD1a had 

been revealed. This provides evidence that lipid rafts are heterogenous and the 

masking of gangliosides relies on the constitution of the individual raft. What can 

also be gleaned from this experiment is that GPI anchored proteins are able to shield 

the Gal(~ 1-3)GaINAc epitope from DG2, but their removal does not allow DG 1 to 

bind and therefore the sialic acid on which it relies must be masked by another raft 

associated species. The hypothesis that GM1 is masked from DG1 by GD1a was 

based on the observations in the GD3s-l
- mouse. With an abundance ofGM1, it is 

unlikely that the inability ofDG1 to bind is due to the density of the epitope. 

However, the overexpression of GD 1 a and a lack of all b series gangliosides promote 

GD1a as the ganglioside which is most likely to interact with GM1 in the peripheral 

nerve. 

The interaction of GM1 with other gangliosides and the subsequent effect on mAb 

binding was initially addressed using ELISA. Gangliosides GD1b and GT1b were 

each able to inhibit the ability ofDG1 to bind GM1, but the inhibition was most 

significant with GD 1 a, which is in support of the initial hypothesis. The use of solid 

phase binding by ELISA provided a useful pilot study to specifically focus on the 

effects of individual gangliosides on masking GMl. However, interaction of a 

ganglioside with a plastic plate may interfere with the presentation of the glycolipid. 

When GM1, sulfatide or galactocerebroside are immunospotted on a TLC plate, they 

can be bound by the HIV glycoprotein gp 120, however this binding is abolished when 

the glycolipids are presented on an ELISA plate or nitrocellulose membrane 

(McAlamey et aI1994). This indicates the lipid immobilization on the ELISA plate 
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alters the presentation of the headgroup, probably as a result of electrostatic 

interactions between the glycolipid and the plastic plate. With this in mind, the 

gangioside masking study was shifted to the interaction ofGM1 and GD1a in the 

membrane. Treatment ofthe GD3s-l
- and WT mouse with N'ase, to cleave the sialic 

acid from GD 1 a, resulted in the ability of DG 1, Sm 1 and Do 1 antibodies to bind. In 

the GD3s-I
-, each proved successful in causing a complement mediated destruction of 

the peripheral nerve. The N'ase treatment ofGD1a effectively causes it to become 

GM1, however as shown in Chapter 6 (Fig 98), blocking the cryptic GM1 with CTb, 

and testing the ability ofDG1 to bind the "new" GM1 resulted in a weak signal, hence 

the strong DG 1 signal in the N'ase treated tissue is largely due to it binding the 

"unmasked" GM1 (and to a much lesser extent some of the "new" GM1). This 

implies that the gangliosides GM1 and GD1a are able to cis-interact in such a way as 

to allow GD1a to mask the sialic acid of GMl. The inability of cholesterol depletion 

to disperse the complex, and the demonstration that binding of an anti -GD 1 a mAb to 

GD 1 a cannot alter the dynamics of the complex and allow DG 1 to bind lead to the 

conclusion that the interaction of the 2 ganglioside species is strong. 

As shown in Fig 132, ganglioside headgroups are able to interact with several ligands, 

including other glycosphingolipids. This alludes to the trans carbohydrate

carbohydrate interactions, for example, involved in processes such as cell recognition 

and adhesion between 2 interfacing cells (Kojima and Hakomori 1991). 
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Fig 132. Modified from Hakomori 2001. The schematic diagram represents an 
example of a glycosphingolipid, which is held in the membrane in the minimal energy 
conformation. As shown, the carbohydrate portion (orange) is able to interact with 
antibodies, toxins, lectins, and most notably, other glycosphingolipids. The close 
interaction of 2 such carbohydrate headgoups could lead to the masking of epitopes 
on one species, or the creation of a complex which is targeted by anti-complex 
antibodies ("neo-epitope"). 

If glycosphingolipids can interact in such a "head on" (i.e. trans) fashion, then it is not 

unreasonable to assume that within the bilayer, ifthey are held in a suitable 

orientation, that they can also cis-interact. Indeed, and in agreement with the results 

of Chapter 7, it has been shown that cholesterol sequestering agents do not disrupt 

ganglioside clusters (in this case GD3) (Iwabuchi et aI1998). This indicates that 

ganglisodies are able to cluster in micro domains in a manner which does not 

necessarily depend on cholesterol, and is perhaps an intrinsic property of the 

interacting ganglioside species. This clustering ability may be due to the fact that 

glycosphingolipids contain hydroxyl groups which can act as hydrogen bond donors, 

and via this interaction are able to form side by side interactions in the micro domain 

(Hakomori 200 l). However, the clustering ability alone does not provide evidence 

that the actual headgroups are able to closely cis-interact in a way which results in the 

masking of certain epitopes, such as the masking ofthe GMI sialic acid by GDla. 

One important consideration is that gangliosides in aggregate require a surrounding 
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area to host their oligosaccharide chain and its associated hydration water, meaning 

more complex headgroups such as GM1 and GD1a will have larger space 

requirements in the membrane (Sonnino et al 2006). However, in considering the 

small gangliosides (6kDa) and large mAbs (65kDa) (and again refer to Fig 131), the 

binding of the antibody to the gangliosides can be likened to "an elephant picking up 

a peanut". So, in appreciating the spatial dynamics of the antibody binding to the 

epitope, the presence of water surrounding the two neighbouring ganglioside 

headgroups is perhaps negligible, and there is sufficient side-side head group 

interaction to mask the sialic acid of GM1 from the antibody DG 1. Furthermore, 

water may enhance the interaction between ganglioside monomers (Brocca et al 

1998), and increasing the amount of ganglioside species within a micro domain may 

decrease the lateral mobility of the individual head group oligosaccharides, possibly 

due to intramolecular interactions between the headgorups (Sharom and Grant 1977). 

Figure 133 shows a simple schematic diagram of the possible interaction ofGM1 and 

GD1a. 

JDG::? 

- G M1 alone-

JOG::? 

Fig 133 . Above the line: GM1 alone can be bound by both DG2 and DGl. DG2 binds 
the Gal(~1 -3)GaINAc epitope, while DG1 binds the Gal(~1-3)GaINAc epitope and 
the sialic acid of GM1 . The epitopes are shown by the shaded ovals. Below the line is 
a schematic representation of the possible interaction between GM1 and GD1a. As 
shown, DG2 is still able to bind the Gal(~1 -3)GaINAc epitope, but the sialic acid of 
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GMI is hidden by GDla, meaning DG 1 is unable to bind. The position of the 
gangliosides is likely to be dictated by lateral mobility in the oligosaccharide head 
group which projects from the membrane. In addition to this, it is also worthwhile 
noting that variations in the length of the ceramide portion may influence the extent to 
which the headgroup sits above the membrane, and this may contribute to the ability 
of one ganglioside to "mask" another. 

In summary, what can be concluded is that a set of anti-GMI antibodies have been 

identified which are unable to bind GMI when in complex with GDla, and rely on the 

presentation of GMI alone in the membrane. Although not explored in the context of 

the living membrane, it is feasible that other ganglioside species may exert a similar 

cryptic masking effect on GMI. 

10.5 Ganglioside Complexes- Increasing Clinical Significance 

While the studies of Kaida et ai, as described in Chapter 9, show that antibodies to 

complexes exist in sera, the results of chapter 9 show that out of 4 samples, only one 

was able to bind to the target complex in the biological membrane. The screening of 

the sera (by Kaida and co-workers) was initially performed using paradigms which 

may not represent the epitope presentation in the biological membrane (i.e. TLC and 

ELISA as opposed to the phospholipid bilayer). This suggests that solid phase assays 

do not always faithfully represent the epitopes formed by interacting gangliosides, and 

it may be of more value to estimate the pathogenic potential of such antibodies by 

screening patient sera against cholesterol and ganglioside containing liposomes or 

model bilayers (which are more representative ofthe biological membrane). 

It would be interesting to determine the effect ofPI-PLC removal ofGPI anchored 

proteins on the binding ability of the anti-complex antibodies. An increased ability to 

bind would suggest that the entire neoepitope (comprising the 2 gangliosides) can sit 

in a lipid raft and be masked by a GPI anchored protein. It would also be of interest 
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to repeat the experimental design of Chapter 8, and test the ability of the anti-complex 

antibodies to bind to both live and dead C.jejuni. C.jejuni strain 0: 19 was bound by 

DG1, taken as evidence that the ganglioside mimicking LOS do not cis-interact, and it 

would thus be predicted that the sera samples containing antibodies reactive to the 

GMlIGD1a complex would not be able to bind strain 0:19. 

The ability of 2 gangliosides to interact and form a new glycoepitope raises the 

possibility that the interacting gangliosides undergo a conformational change, which 

supports the idea that certain antibodies to the individual species are no longer able to 

bind (Kaida et aI2004). For example, a new glycoepitope formed by the interaction 

of GD 1 a and GM1 would be most likely to result in a conformation in which the 

GalWl-3)GalNAc ofGM1 is available (as DG2 can bind), but the sialic acid (on 

which DG1 relies) is masked by the GD1a molecule. As MOG 35, the anti-GD1a 

mAb can bind well in tissue, it is likely that the orientation of GD 1 a does not lead to 

any part ofthe molecule becoming cryptic. The preference of antibodies for clusters 

of ganglioside is possibly for functional reasons. This idea is based on the 

homophilic binding observed for antibodies such as anti-GD3 antibody R24, which 

binds to itself or similar antibodies resulting in an increased avidity for GD3 

(Chapman et a11990, Dippold et a11980, Puke1 et aI1982). Carbohydrate-protein 

interactions are weak (in the micromolar range), compared to the nanomolar range of 

protein-protein interaction (Weis 1997, Wilson and Stanfield 1995, Thomas et al 

2002), so binding of antibody (which is not capable ofhomophilic binding) to an 

epitope comprising two cis-interacting carbohydrate head groups may improve the 

strength of the interaction. 

Another issue is the specificity of the anti-complex antibody. While it is hypothesized 

that the antibody is binding the "complex", this may not be the case. For example, a 
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patient may have a high titre of circulating anti-GDla antibody, which does not bind 

GDla alone in tissue, or on ELISA. However, when GDla is in complex with GMl, 

a conformational change may alter the presentation of GD 1 a (perhaps by rotating the 

molecule in a certain manner, or inducing a curvature) and this allows the anti-GDla 

antibody to bind. Thus, an alternative hypothesis is proposed for the binding of anti

complex antibodies. Anti-ganglioside antibodies are only able to bind to their target 

ganglioside when this is complexed with another species. In a similar system, as 

shown by the results presented within this thesis, the reverse scenario is also likely, 

where antibodies which are unable to bind gangliosides in complex exist. 

It is likely that many GBS patients have these complex antibodies, but the traditional 

screening of sera against a panel of purified single species of gangliosides (Willison 

2005) means that while the patients' sera may appear negative for anti-ganglioside 

antibodies, this may be because it is only able to react with complexes. Thus the 

discovery of ganglioside complexes may mean an evaluation of existing theories 

regarding serological and pathological relationships in GBS, where single species 

anti-ganglioside antibodies are focused on (Willison 2005). 

10.6 Significance ofDG1-like Antibodies in Health and Disease 

In Health: Antibody Function 

DG 1 like antibodies which exist in the normal repertoire of healthy individuals are 

unlikely to be pathogenic. This is essentially owing to their inability to bind GMI 

when the membrane is in its normal, physiological state. Only in situations which 

perturb the membrane and expose GMI are DG 1 like antibodies likely to become 

pathogenic, as will be discussed below. However, if the immune repertoire comprises 

of anti-GMI antibodies that are not normally able to bind GMl, then what is the 
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purpose of having these antibodies? The observation that DG 1 can bind to Cjejuni 

may partly explain this anomaly. Upon infection with Cjejuni, the molecular 

mimicry hypothesis states the immune response will raise antibodies to the 

ganglioside like structures on the bacterial surface, and instead of opsonising the 

bacteria, the antibodies unfortuitously bind to nerve associated gangliosides such as 

GM1 (Yuki et al2004). This results in an immune response to self. IfDG 1 like 

antibodies were already present, then Cjejuni is likely to be immediately opsonised 

by these antibodies, meaning potentially self reactive antibodies would not be raised 

against the bacteria and lead to autoimmune nerve damage. DG 1 would not bind to 

nerve associated GM1, and thus Cjejuni would be opsonised in a way in which nerve 

damage via molecular mimicry is impeded. Cjejuni strain 0: 19, which is strongly 

associated with AMAN, has both GM1 and GD1a like oligo saccharides on its coat 

(Yuki et al1993, Aspinall et al1994). The presentation of these epitopes clearly 

differs from the presentation of the gangliosides in the nerve membrane, where it is 

hypothesised that GM1 is masked by GD 1 a. This masking of self GM1 inhibits DG 1 

binding and is thus a highly significant feature in protecting the body from potential 

autoimmune attack. The cis-interaction of membrane associated GM1 and GD1a is 

unlikely to be replicated on the surface of Cjejuni strain 0: 19, based on DG 1 binding 

ability. This may be explained by the lipid A region of the molecule, which anchors 

the molecule to the surface. In bacterial ganglioside mimics, the lipid A portion 

comprises of 4 chains, as opposed to the double chain of the ceramide which anchors 

a ganglisoide in the nerve membrane (Fig 134). 
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Fig 134. Modified from Yu et a12006. The hatched red box shows the difference in 
structure of the anchoring lipid A and cerami de portions. 

As shown in Fig 134, the oligosaccharide headgroups of the bacterial ganglioside 

mimics may be anchored outwith a distance by which they can physically interact, a 

statement which is likely to apply at least to Cjejuni strain 0: 19. The ability of nerve 

associated gangliosides to interact both with other gangliosides and GPI anchored 

proteins makes evolutionary sense. Firstly, it prevents nerve damage via molecular 

mimicry, and secondly, gangliosides are targeted by bacterial toxins (Willison and 

Kennedy 1993) meaning it is logical for them to be shielded. 

GBS: The Initial Lesion 

Like DG1, the human antibodies Sm1 and Dol were unable to bind to GM1 when in 

complex, and required the removal of GD 1 a by N' ase. These human antibodies were 

cloned on the basis that they were of a high anti-GM1 titre in patients with acute 

neuropathy (Paterson et al 1995). From the observation that their epitope (GM 1) is 

masked by GD1a in the living membrane, and therefore they cannot bind, the natural 

assumption is that these antibodies had no role in the patients' pathogenesis and were 

effectively "innocent". This theory may be overly simplistic. While, in the healthy 

membrane they would be inhibited from binding, there are a number of scenarios 
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which may arise to initiate irregularities in the membrane and lead to a situation 

where the antibodies can "see" GMl and become pathogenic, as shall be discussed. 

Possible and novel insights into ganglioside expression and presentation by certain 

cells or tissues may be gained by looking at parallel example, such as the olfactory 

system. Olfactory ensheathing cells (OECs) are functionally similar to the Schwarm 

cell of the PNS (Wewetzer et al 2002), and thus playa role in axonal support. It is 

believed that the expression of the glycolipid 04 by OECs is not due to actual 

synthesis of the glycolipid by the cell, but as a result of phagocytosing 04 positive 

axonal fragments (Wewetzer et aI200S). This theory can form the basis of a similar 

model in the PNS, involving anti-ganglioside antibodies. Ifthe axon is damaged by a 

DG2-like anti-GMl, or anti-GDla antibody, the Schwarm cells may phagocytose the 

axonal fragments and subsequentially express gangliosides, including GMI. In this 

scenario, the newly acquired GMI may be presented in a favourable way to DG I-like 

antibodies, and thus the lesion would progress to a second phase attack and further 

damage, in this case secondary demyelination. 

Chapter 3 shows that the node of Ranvier has GMI immunoreactivity, but the 

internodal regions of the Schwarm membrane and also the pSC do not appear to have 

GMI. It is not easy to rationalise how or why the Schwarm cell would limit and 

localise GMl to these paranodal regions. The explanation may follow the theme of 

acquired gangliosides, whereby gangliosides may be shed (perhaps in exosomes) or 

flick from the axon into the Schwarm cell at the paranodal region. DG 1 was not able 

to bind this paranodal GMI, but it remains possible that it is displayed in a domain 

which makes it available to circulating anti-GMI antibodies of other specificities. 

Such a mechanism may also occur in other tissues, and effectively sensitise them to 

anti-GMI antibody mediated attack. If the "acquired" gangliosides are expressed in 
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different domains to those synthesised by the particular cell, then this may also partly 

explain the heterogenicity amongst lipid rafts, and also the observation that GMI is in 

rafts but also non-raft areas of the membrane. 

The clinical course of AMAN can be viewed as a two prong attack, as the initial 

lesion may begin as a purely axonal injury, but progress to a secondary attack on the 

myelin (Hadden and Hughes 2003). Again, DG I-like antibodies may playa role in 

this two stage process. If the initial disruption to the axon is initiated by either an 

anti-GMI antibody (of a specificity which can bind axonal GMl) or perhaps an anti

GDla antibody, the subsequent disruption may lead to a knock on disturbance of the 

myelin. Regardless of the cause, the structural disruption alone may be adequate in 

unmasking GMI and allowing DGl-like antibodies to bind, thus initiating a second 

phase to the lesion. Interestingly, this disease model may be of relevance to other 

nerve disorders, such as multiple sclerosis (MS), where anti-ganglioside antibodies 

may playa role in axonal damage following the initial primary demyelinating lesion 

of MS. Fig 135 summarises the disease model in schematic form (Sadatipour et al 

1998). 
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Fig 135 A. In the unlesioned peripheral nerve (shown in green), OMl is not available 
to DO I -like antibodies. However, upon a primary lesion, cryptic OMl is exposed and 
DO 1 like antibodies can bind to induce the secondary phase of the lesion. The 
primary lesion could be an attack mediated against another ganglioside (e.g. 
ODla,(Ooodfellow et aI2005)) or the result of another disease process (e.g. multiple 

sclerosis (Sadatipour et all998)). B. Following exposure ofOMl , DOl-like 
antibodies are able to bind and cause an anti-OMI antibody mediated attack, to 
worsen the initial lesion. C. This secondary attack leads to anti-ganglioside mediated 
destruction of the peripheral nerve, and AMAN like pathology (eg. paralysis). 

GBS: Recovery 

The action of the sialidase N' ase was shown to enhance the binding of DO 1 by 

exposing OMI upon removal ofODla. A parallel system may exist in-vivo, based on 

recent reports of plasma-membrane ganglioside sialidase activity in cultured 

hippocampal neurons (Rodriguez et aI200l). In this paradigm, the growth cone of 

the neurons has enhanced activity of this sialidase, probably to enhance the local 

levels of OMl, where its interaction with the TrK receptor (Duchemin et al 1998) 

would enhance growth of the axon tip. Assuming the neurons express OMI and 
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GDIa in their undifferentiated state, a hypothesis can be generated, based on the ex

vivo observations with N'ase. Upon differentiation of the neurons, the expanding 

growth cones would have increased PMGS activity in direct correlation with a region 

specific decrease in GDIa and an increase in GMl. In such a differentiated cell, the 

soma would thus have the intrinsic expression ofGMI and GDIa, but in the growth 

cones there would only be GMI. If the "unmasking" hypothesis explored in this 

thesis hold true in this situation, then binding ofDGI to the PMGS rich growth cones 

would be possible, but the cell body would remain resistant to DG I, as the GMI is not 

unmasked from GDIa by the PMGS. Relating this to the regeneration of the 

peripheral nerve in AMAN raises important considerations. Upon regeneration of the 

axon, PMGS activity would lead to an exposure of GMI on the regenerating axon, 

which would be vulnerable to attack by DG I-like antibodies. The initial AMAN 

pathology may have been initiated by a different antibody, however only in the 

recovery phase would DG I-like antibodies become pathogenic. In order to validate 

this hypothesis, it would be interesting to perform some simple experiments on the 

hippocampal neurons. It can be predicted that the membrane of the cell body in the 

differentiating cells would be positive for MOG 35 (against GDIa), and also show 

CTb immunoreactivity against GMI. DG I would not be expected to stain the cell 

body owing to the masking effect ofGDla. In the growth cone, areas ofPMGS 

activity should directly colocalise with decreased MOG 35 staining and also with 

DGI immunoreactivity (Fig 136). Indeed, samples ofDGI and MOG 35 were sent to 

Dr Rodriguez (Catholic University of Leuven and Flanders Interuniversitary Institute 

for Biotechnology Belgium) to address the above questions in PMGS expressing 

hippocampal neurons (Rodriguez et af2001). However, experiments were not 

overseen by myself, and illustrative data sent to me was from an non-optimal 
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protocol; from this preliminary approach it was not able to reach a conclusion and this 

is an experiment which will be pursued. 
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Fig 136. Schematic representation of hypothesis: cell body expresses GDla and GMl, 
and DG 1 cannot bind. Elongating axon has PMGS activity. Lack ofMOG 35 binding 
proves PMGS is removing GDla, and in these regions DGI can bind. 

The experimental approach described would conclusively prove that the removal of 

GD 1 a was facilitating the binding of DG 1. But, this data alone does not entirely 

support the masking hypothesis, as binding may be due to an increased density from 

the conversion ofGDla to GMI. 

However, the results of the DG 1 studies in the GD3s-l
- mouse are strongly suggestive 

that the phenomenon is due to masking, and taken together these data are strongly 

suggestive that this is the case in the differentiating axon. Proof that application of 

DG 1 to the differentiating neurons can lead to antibody binding to the axon and 

subsequent inhibition of outgrowth would increase the feasibility of this system in the 

inhibition of regeneration of the peripheral nerve following AMAN. Specific delivery 

of sialidase to experimental PNS lesions in the rat is able to enhance axon outgrowth, 

thought to be as a result of increasing GMI in the regenerating axons (Yang et al 

2006). Furthermore, the authors of this study propose that sialidase activity acts to 

prevent the inhibition of regeneration by removal of complex gangliosides and thus 

280 



inability of myelin associated glycoprotein (MAG) to inhibit the outgrowth. MAG is 

an inhibitory protein which accumulates at injury sites in the nervous system and 

inhibits neurite outgrowth by binding complex gangliosides such as GTla and GDla 

(Vyas et aI2002). Thus, in AMAN, the regeneration of the peripheral nerve would be 

severely compromised in the presence of an antibody which specifically targets the 

GMI expressed in the regenerating areas, but the situation is not entirely pessimistic 

owing to the continued inhibition of MAG. However, a recent study has 

demonstrated that passive transfer of anti-GDla antibodies leads to IgG binding and 

clustering ofGDla in regenerating axons, which inhibit regeneration in a MAG 

independent process (Lehmann et al 2007). This suggests that anti-ganglioside 

antibodies can cluster gangliosides to inhibit regeneration. Thus, ability of DG 1 like 

antibodies to bind sialidase rich growth cones could have catastrophic consequences 

to the regenerating nerve. Firstly, they could initiate a complement mediated attack, 

secondly, antibody binding to GMI could induce functional impairment of GMI-TrK 

interaction, and thirdly, the clustering of GMI by the antibodies could lead to 

inhibition of regeneration in a similar way to the anti-GDla antibody example 

(Lehmann et al 2007). 

These scenarios may explain the incomplete recovery demonstrated by some AMAN 

patients (Gregson et al 1991), and lead to the possibility of modified treatment 

regimens, such as prolonging the period of antibody clearance (Willison and Yuki 

2002) to allow the axons to fully regenerated and assume the "normal" ganglioside 

profile as opposed the PMGS induced profile. 
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10.7 Future Work 

Following the successful isolation of rafts containing both GMI and GDla, it would 

be worthwhile pursuing the detection of FRET between the species. The initial 

attempt to detect FRET was perhaps hindered greatly by the size ofthe antibodies and 

CTb compared to the small gangliosides. CTb and MOG 35 may have been too large 

to bind simultaneously to GDla and GMI in complex, or the location ofthe 

fluorescent conjugates on the probes may have led to them becoming too widely 

spaced to undergo FRET (as described in Chapter 7). A novel approach to the 

detection of FRET using antibodies may be to use smaller antibodies, such as that of 

the camel. Camel antibodies, unlike mouse and human antibodies, are more simple in 

structure as they lack light chains and consist only of the Y -shaped heavy chain 

(Hamers-Casteman et al 1993). This means they may be more amenable to binding 

gangliosides when in complex. The use ofGMl and GDla specific antibodies of this 

strucure could be a very useful tool in the study of ganglioside interactions, with 

relevance not only to FRET, but also studies at the electron microscope level. The 

introduction of such an approach in the near future is unlikely, although continuing 

advances in antibody engineering mean it may become feasible. 

Within this thesis, the study of antibody binding to complexes began by analysing 

antibody binding to ganglioside complexes coated to ELISA plates, and next 

progressed into the biological membrane. The ex-vivo study was possible due to the 

availability of a mouse which expresses only GMI and GDla, meaning the ideal 

biologically relevant model was available. However studies of other ganglioside 

complexes, such as GD 1 a and GD 1 b would require a different approach. In this case, 

it would be of interest to use cholesterol containing liposomes or model membranes to 
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determine the effect of ganglioside complexes on antibody binding. In such studies, 

the ability to vary the amount of cholesterol, and the ratios of gangliosides, may yield 

some insights into how ganglioside complexes form and are maintained within the 

membrane. More specific analysis of the antibody binding affinities could also be 

calculated, perhaps using the Biacore system and ganglioside containing liposomes 

(Erb et al 2000, Boffey et al 2005) to determine the affinity of (monovalent) antibody 

binding to ganglioside complexes. 

The antibodies Do 1 and Sm 1 were cloned from human neuropathy sera on the basis 

that they were high titre, and bound well to GMI on ELISA. However, in the mouse 

ex-vivo muscle nerve preparations, they did not bind to GMI and were not 

pathogenic. This implies the patients may have had other antibodies, perhaps to 

ganglioside complexes, which were missed during routine screening. Although a 

daunting task, it would therefore interesting to re-screen GBS patient sera against 

single gangliosides and complex gangliosides, using cholesterol containing liposomes 

which bear more resemblance to the biological membrane than does an ELISA plate. 

This may yield an entirely new population of patients whose pathogenesis is mediated 

by antibody attack on ganglioside complexes, and lead to re-classification of the 

traditional clinical-serological relationships. On a similar note, during the production 

of the mouse monoclonal antibodies, when mice were inoculated with ganglioside 

mimicking oligo saccharides or ganglioside containing liposomes, sera were screened 

against single ganglioside species. This means the focus of research with mouse 

monoclonals has been on those which react with single ganglioside species. Sera 

which contained antibodies to complexes would have inadvertently been classed as 

negative and discarded. With our current understanding, it may be possible to identify 
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mouse antibodies which are reactive with complexes, which would be valuable tools 

for future research. 

Aside from the aetiology of anti-complex antibodies, one of the most puzzling issues 

is how the antibodies to ganglioside complexes exist. It has already been 

demonstrated that DG1 cannot bind to GM1 when complexed with GD1a in the nerve 

membrane, but can bind to the GM1 oligosaccharide on Cjejuni in the presence of a 

GD1a like oligosaccharide. From this, it is unlikely that bacterial GD1a and GM1 

like structures interact in a way which mimics the structure of the complex in the 

membrane. In other strains of Cjejuni, however, the presentation of the 

oligosaccharides may not resemble that of Cjejuni strain 0:19. For example, the ratio 

or overall density ofGM1 and GD1a like structures may differ, leading to an 

increased ability to interact. It is likely that certain strains of Cjejuni do bear 

oligo saccharides which give rise to anti-complex antibodies (Kuijf et aI2007), and 

this may be explained by genetic polymorphisms of Cjejuni, which influence the 

presentaion and strucure ofthe oligosaccharide (Godschalk et aI2004). This may be 

an evolutionary response of the bacteria to overcome opsonisation by antibodies 

which rely on singly presented epitopes, such as DG 1. It is also hypothetically 

possible that the presentation of the oligo saccharides on certain Cjejuni strains could 

be altered post infection, an assumption based on the ability of trypanosomes to alter 

their sialic acid profiles. Trypanosomes are unable to synthesise sialic acid, and 

recently a form has been identified which can regulate the amount of sialic acid on its 

surface by modulating the expression of two different trans-sialidase enzymes, which 

transfer sialic acids from glycoconjugates present in host tissues to the trypanosome 

(Montagna et aI2006). If the sialic acids were removed from host gangliosides, this 

would lead to a new ganglioside profile in the tissue of the host, in addition to 
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modifying the surface coat of the trypanosome. Removal of the sialic acid from 

GD 1 a would result in the binding of DG I-like antibodies. Such a mechanism has not 

been demonstrated for C.jejuni infection, however it is feasible that sialidases present 

in the mucosal epithelia of the enteric tract may act on the sialylated epitopes of 

C.jejuni to change their structure and lead to the generation of antibodies with varying 

specificities. It would be of great interest to define the molecular structures of the 

epitopes present on Cjejuni isolated from individual patients and expand the current 

understanding of how anti-complex antibodies arise. 

10.8 Conclusion 

There is growing interest in the significance of GBS associated antibodies which are 

only able to bind ganglioside complexes, and the findings with DG 1, Sm 1 and Do 1 

add a new dimension to this by demonstrating existence of antibodies which are 

inhibited from binding by their target ganglioside being in a complex. Taken 

together, this points to the notion that the micro arrangement of gangliosides in the 

membrane (which is likely to be raft associated) is important in determining the 

pathogenic potential of antibodies in GBS. 

With specific regard to AMAN, the microheterogenicity of anti-GMI antibodies 

underpins pathogenic potential, as demonstrated by DG 1 and DG2, and the 

"membranomic" basis for these differences is largely due to cis-interacting 

gangliosides and to a lesser extent, the masking of epitopes by GPI anchored proteins. 

In addition to expanding the understanding of AMAN pathology, the observations in 

this thesis highlight the importance of epitope presentation in the context of antibody 

and sera screening, where the reliance on solid phase ELISA may hinder the 

discovery of antibodies to biologically determined complexes. 
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Appendix 1 

A1.1 Introduction 

Throughout this thesis, several transgenic mice have been used. This appendix 

provides a brief overview into the ganglioside profile of these mice. A diagram of the 

ganglioside biosynthetic pathway has already been shown in Chapter 1, and this is 

elaborated in Fig 13 7 to include the relevant enzymes involved in each step, and to 

include the synthesis of sulfatide. From this diagram, the relevant portions have been 

exerted and used to highlight the ganglioside profile of the transgenic strains where 

relevant. 
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Fig 137. Simplified overview of the sulfatide and ganglioside biosynthesis pathways, 
with specific emphasis on the a and b series gangliosides (starting with GM3 and 
GD3 respectively). Diagram based on the review by Tettamanti 2004 
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A1.2 Ganglioside Lacking and Upregulating Mice 

GD3s-/- This strain was obtained from Dr. K. Furukawa (Nagoya University, Japan, 

Okada et aI2002). As shown in Fig 138, this mouse only synthesises a series 

gangliosides, due to lack ofthe enzyme GD3 Synthase (Sat I). As GM3 is the 

substrate for this enzyme, the increased levels of GM3 mean the excess is utilised for 

a series, leading to an increased synthesis of the a series when compared to the WT 

mouse. 
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Fig 138. Diagram highlighting the ganglioside expression profile of the GD3s-l
-

mouse. 

GaINAcT1
- . This mouse was also obtained from Dr. K. Furukawa (Takamiya et al 

1996). The GalNAcr/- expresses only GM3, GD3 and GT3, meaning it has no 

complex gangliosides. This makes the GalNAcr/- an ideal negative control for mAbs 
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to complex gangliosides. For example, positive binding in the GaINAcT/- of a mAb 

which relies on the Gal(~1 -3)GalNAc epitope suggests the mAb is binding the epitope 

on a glycoprotein, and this non-ganglioside associated binding should be accounted 

for in WT and GD3s-l - mice. 
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Fig 139. Diagram emphasising the ganglioside biosynthesis of the GaINAcT/- mouse. 

A1.3 Complement Regulator KO Mice: 

CD59a-/-: This mouse lacks the GPI anchored complement regulator protein CD59a, 

and has no known alteration in ganglioside expression. This strain was obtained from 

Dr BP Morgan (Cardiff University, Wales). 
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DAFrl
-: The DAF1-1

- mouse does not express the GPI anchored complement 

regulator DAF1, and has no known alteration on ganglioside expression. This mouse 

was obtained from Dr Feng Lin, Case Western Reserve University, Ohio, USA. 

CD59a-I-;DAFrl
-: This double KO mouse was obtained by crossbreeding 

homozygous DAF1-1
- and CD59a-l

- parents, until doubly homozygous KO progeny 

were produced and maintained as a true breeding colony. 

AI.4 "Triple KO" Mice 

GD3-1-/DAFrl-;CD59a-I
-. These mice have the same ganglioside repertoire as the 

GD3s-l
- mouse, but also lack the complement regulator proteins DAF1 and CD59a. 

The GD3-1-/DAF1-1-/CD59a-l
- mice were derived by crossbreeding the GD3s-I-/DAF1-1

-

mice with CD 59a-I-/DAF 1-1- mice. The breeding program used was the same as 

outlined for generating the double KO (CD59a-I-/DAF1-1
-) already described, as both 

parent mice lack the DAF1 gene. 

A1.5 Wild Type. 

WT : WT mice have an unaltered ganglioside profile and are assumed normal. WT 

mice are C57BLl6 or C57BLl6-CBA background (Table 2). 
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Mouse Phenotype Background 
True 
breeding? 

Lacks b series gangliosides. 
C57BU6-CBA GD3s-l - Increased levels of a series YES 

gangliosides (eg GD1a, GM1). 

GaINAc-F Lacks complex gangliosides. C57BU6-CBA NO 

CD59a-l- Lacks CD59a complement regulator. C57BU6 YES 

DAF1-/- Lacks DAF1 complement regulator. C57BU6 YES 

CD59a-/-/DAF1';- Lacks CD59a and DAF1 complement 
C57BU6 YES regulators. 

Lacks b series gangliosides, and 
GD3s-/-/CD59a';-/DAF+ complement regulators CD59a and D.A.F1. 

Over-expresses a series gangliosides. 
C57BU6 YES 

Table 2_ Overview of commonly used KO mice, listing the abbreviation, phenotype 
and whether the strain is true breeding_ Note that the GaINAc-r /-is not true breeding, 
as the males are sterile. Mice are all backcrossed onto the listed background, which is 
the strain which should be used for WT comparisons. 

A1.6 Sulfatide Deficient and Accumulating Mice: 

Tissue from these strains was provided by Dr Matthias Eckhardt, University of Bonn, 

Germany. 

Sulfatide Accumulating 
Arylsulfatase A-deficientIPLP-CST transgenic mice. Referred to in text as CST mice. 

These mice over-express cerebroside sulfotransferase (CST), an enzyme located on 

the Golgi membrane and responsible for the sulfation of galactocerebroside, to form 

sulfatide. In addition to the increased conversion of galactocerebroside to sulfatide, 

sulfatide degradation is interrupted by the deficiency of Arylsulfase A, the specific 

enzyme involved in the catabolism of sulfatide. Together, these factors contribute to 

an accumulation of sulfatide in these mice. 
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Fig 140. Sulfatide synthesis in the Arylsulfatase A-deficientIPLP-CST transgenic 
mice. 

Sulfatide Deficient: 
UDP-galactose:ceramide galactosyltransferase knock out (CGT1

-) mice. 

These mice lack UDP:galactose ceramide galactosyltransferase (Coetzee et al 1996), 

an enzyme located on the membrane of the ER and which functions to galactosylate 

cerami de. Thus, the lack of galactocerebroside means there is no substrate available 

for sulfation by CST, and the sulfatide biosynthetic pathway cannot continue. 

However, as cerami de is not entering the sulfatide synthesis pathway (due to a lack of 

CGT), this leaves an excess of ceramide which could theoretically enter the 

ganglioside biosynthetic pathway and lead to altered ganglioside expression. 
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Appendix 2 

A2.1 Introduction 

This chapter contains detailed staining protocols which were developed during my 

PhD. However, they were not applied to the main body of work included in this 

thesis, and it was therefore not appropriate to include them amongst the routine 

techniques detailed in Materials and Methods. However, optimisation of these 

techniques was a significant achievement, and I therefore considered it worthwhile to 

include details of the staining protocols and images as an Appendix. 

My aim was to develop a method of multi-colour staining which could be used to 

illustrate damage to the NMJ, induced by CGM3 (an anti-GD3, GQ1b and GTlb 

mouse IgM), and also the protective effects of Eculizumab, a C5 inhibitor. 

CGM3 is an anti-disialosyl antibody which causes a complement mediated lesion to 

the NF and pSC in the mouse diaphragm (Halstead et aI2004). This effect was 

confirmed for the TS muscle. Lesion progression was monitored by dissecting out TS 

muscles from YFP mice, (which express YFP under the control of neuron-specific 

elements from the thy] gene (Feng et aI2000)) and imaging "real time". Muscles 

were pinned into Sylgard lined Petri-dishes, incubated in CGM3 (50~g/ml), and an 

initial picture taken showing the intact axon, as inferred by the normal YFP profile. 

After the addition of 40% NHS, further images were acquired. As seen in Fig 142, the 

profile of GFP becomes distorted, with evidence of axonal destruction over the NMJ 

and lysis of the pSC. This proves the rapid, complement mediated effects of CGM3 

when applied to an ex-vivo TS preparation. These images were generated in 

collaboration with Dr R Ribchester, University of Edinburgh. 
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Timepoint 

Pre
NHS 

20 min 
Post-NHS 

30 min 
Post-NHS 

High Power (x60) Low Power (x20) 

Fig 142. Real time images showing the complement mediated lesion induce by the 
mAb CGM3 in the ex-vivo TS preparation. 

A2.2 Ex-vivo Protocols 

TS muscles were dissected out and pinned into Sylgard lined wells as described in 

Materials and Methods section 2.2.1.1. Muscles were incubated in CGM3 (50J..lg/ml) 

plus BTx-Cy-5 (2J..lg/ml) followed by 40% NHS, with or without Eculizumab, as 

detailed in Halstead et al2007 (manuscript currently in preparation). After incubation 

and 3X rinses in Ringer, the following staining protocols were developed: 

A.2.2.1 MAC and C3 

Tissue was incubated in anti-human C5-9b (363J..lg/ml) along with anti-C3 -FITC (50 

J..lg/ml) for 2 hours at RT. Following 3X rinses in Ringer, tissue was fixed in 4% PFA 

for 20 min at RT, rinsed in PBS and incubated in O.IM glycine (in PBS) for 10 min at 
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RT. Overnight, a further incubation in anti-human C5-9b (concentration as before) 

was done, and after rinsing, anti-mouse IgG-TRITC applied (5 llg/ml in PBS) for at 

least 8 hours at 4°C. Tissue was rinsed 3X in PBS and mounted as before. 

Fig 143 a) . CGM3 + NHS and isotype control. MAC, C3 and BTx staining. 

Fig 143 b). CGM3 + NHS and Eculizumab. MAC, C3 and BTx staining. 
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A2.2.2 MAC and EthD-l 

Following 40% NBS, tissue was rinsed 3X in PBS and EthD-l (2 !!M/ml) and anti

human C5-9b (363 !!g/ml) applied for 1 hour at RT, in Ringer. Tissue was rinsed 3X 

in Ringer and fixed as before. Anti-human C5-9b was applied overnight and detected 

as before. 

Fig 144 a) CGM3 + NBS and isotype control. MAC, EthD-l and BTx staining. 

Fig 144 b) CGM3 + NBS and Eculizumab. MAC, EthD-l and BTx staining. 
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A2.2.3 MAC and Neurofilament 

Tissue was rinsed 3X in Ringer after 40% NHS, fixed in 2% PFA for 15 min at RT, 

rinsed in PBS and treated with O.IM glycine for 10 min at RT. 0.5% Triton in PBS 

was added at RT for 1 hour to permeabilise the tissue, and anti-NF (anti

neurofilament 150 kD polyclonal antibody, Chemicon, diluted at 1 in 150) plus anti

human C5-9b (363/lg/ml) applied overnight in 0.5% TritonlPBS at 4°C. Following 

3X rinses in PBS, anti-rabbit IgG-FITC and anti-mouse-IgG-TRITC (5 /lg/ml) applied 

for at least 8 hours at 4°C to detect NF and MAC respectively. 

Fig 145 a) CGM3 + NHS and isotype control. MAC, NF and BTx staining. 
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Fig 145 b) CGM3 + NHS and Eculizumab. MAC, NF and BTx staining. 

A2.2.4 MAC and S100 

Tissue was rinsed 3X in Ringer, fixed for 15 min in 2% PF A, rinsed in PBS and 

incubated for 10 min in O.lM glycine. Anti-S100 (Dako) was diluted 22.5 ~g/ml in 

0.5% Triton in PBS, and to this solution anti-human C5-9b was added at 363 ~g/ml. 

Tissue was incubated overnight at 4°C, rinsed 3X in PBS and anti-mouse IgG-TRITC 

and anti-rabbit IgG-FITC applied at 5 ~g/ml in PBS for at least 8 hours (4°C) to detect 

MAC and S 1 00 respectively. 
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Fig 146 a) CGM3 + NHS and isotype control. MAC, S 1 00 and BTx staining. 

Fig 146b) CGM3 + NHS and Eculizumab. MAC, S 1 00 and BTx staining. 

A2.2.S S 1 00 and Ethidium 

Following 3X rinses in Ringer, EthD-l was applied for 1 hour as before. Tissue was 

rinsed 3X in Ringer, fixed for 15 min in 2% PF A, rinsed in PBS and incubated for 10 

min in O.1M glycine. Anti-Sl00 was diluted 22.5 llg/ml in 0.5% Triton in PBS and 
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applied overnight at 4°C. Tissue was rinsed 3X in PBS and anti-rabbit IgG-FITC 

applied (5 ~g/ml) for at least 8 hours at 4°C. 

Fig 147 a) CGM3 + NHS and isotype control. EthD-I, S 1 00 and BTx staining. 

Fig 147 b) CGM3 + NHS and Eculizumab. EthD-I, SIOO and BTx staining. 
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A2.3 In-Vivo Protocol 

Proof of the viability of Eculizumab in-vivo was also determined, as outlined in 

Halstead et al2007. To this end, the above staining procedures were repeated on TS 

muscles freshly dissected from the experimental animals (in-vivo passive transfers 

carried out by Dr S. Halstead, as detailed in Halstead et al2007). Successful 

replication of the staining is shown, and the efficacy of Eculizumab in-vivo thus 

confirmed. 

A.2.3.1 MAC and C3 

Fig 148 a). CGM3 + NHS and isotype control administered in-vivo . MAC, C3 and 
BTx staining. 
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Fig 148 b). CGM3 + NHS and Eculizumab administered in-vivo. MAC, C3 and BTx 
staining. 

A2.3.3 MAC and NF 

Fig 149 a). CGM3 + NHS and isotype control administered in-vivo. MAC, NF and 
BTx staining. 
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Fig 149 b). CGM3 + NHS and Eculizumab administered in-vivo. MAC, NF and BTx 
staining. 
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Appendix 3 

A3.1 Introduction 

Throughout this thesis, a number of anti-ganglioside mAbs have been referred to. Table 3 

provides an overview the antibodies used, and is intended for use as an "at a glance" 

reference guide. It should be noted that sulfatide binding properties are specifically based 

on the abiltiy of the purified antibody to bind sulfatide (as it is thought there may be 

sulfatide binding epitopes in the tissue culture supernatant, which interfere with their 

ability, in the unpurified state, to bind sulfatide by ELISA). All documented mAb 

binding properties documented in Table 3 were generated by Ms Dawn Nichol, Southern 

General Hospital. 

Strength of binding to the listed gangliosides is denoted by the symbols "(+)" and "(-)", 

which define the reactivity of the mAb for the ganglioside (or sulfatide) based on the 

OD490nm by ELISA. The key to the symbols is as follows: 

(-): OD ::;0.1 

(+): OD >0.1, ::;0.5 

(+ +): OD >0.5, ::;1.0 

(+ + +): OD > 1.0, ::;1.5 

(+ + + +): OD >1.5 
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mAb name Isotype 
Ganglioside Sulfatide 

Binding Binding 

EG1 
GT1a(++), GQ1b(++), 

+++ IgG3 G03(++) 

DG1 IgG2b GM1(++++) + 

IgG3 
GM1 (++++), GA 1 (+++) , 

DG2 GD1b(+) +++ 

MOG 16 IgG3 
GD1a(+), G01b(+++), -
GT1 b(+++) 

MOG35 IgG2b GD1a(++++) + 

CGM3 Igf\ll GT1a(++), GQ1b(+++), 
++ G03(++) 

MOM-1 
GM1(++++), GA1(++++) , 

I 
IgG3 G01b(++) -

I 

Table 3. Overview of the ganglioside species bound by the named mAbs. Ability to bind 
sulfatide was determined using the purified mAbs. Key to symbols: (-): OD :so. 1 , (+): 
OD >0.1, :SO.S, (+ +): OD >O.S , :S1.0, (+ + +): OD > 1.0, :S1.S, (+ + + +): OD > 1.S. 
All data were obtained by ELISA, courtesy of Ms Dawn Nichol, Southern General 
Hospital. 
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Antiganglioside antibodies form an important component of 
the innate and adaptive B cell repertoire, where they provide 
antimicrobial activity through binding encapsulated bacte
rial glycans. In an aberrant role, they target peripheral nerve 
gangliosides to induce autoimmune nerve injury. An impor
tant characteristic of antiganglioside antibodies is their abil
ity to selectively recognize highly defined glycan structures. 
Since sialylated and sulfated glycans often share lectin recog
nition patterns, we here explored the possibility that certain 
antiganglioside antibodies might also bind 3-0-sulfo-~-D
galactosylceramide (sulfatide), an abundant constituent of 
plasma and peripheral nerve myelin, that could thereby in
fluence any immunoregulatory or autoimmune properties. 
Out of 25 antiganglioside antibodies screened in solid phase 
assays, 20 also bound sulfatide (10-5 to 10-6 M range) in 
addition to their favored ganglioside glycan epitope ( ....... 10-7 

M range). Solution inhibition studies demonstrated com
petition between ganglioside and sulfatide, indicating close 
proximity or sharing of the antigen binding variable region 
domain. Sulfatide and 3-0-sulfo-~-D-galactose were unique 
in having this property amongst a wide range of sulfated 
glycans screened, including 4- and 6-0-sulfo-~-D-galactose 
analogues. Antiganglioside antibody binding to 3-0-sulfo-~
D-galactose was highly dependent upon the spatial presenta
tion of the ligand, being completely inhibited by conjugation 
to protein or polyacrylamide (PAA) matrices. Binding was 
also absent when sulfatide was incorporated into plasma 
membranes, including myelin, under conditions in which 
antibody binding to ganglioside was retained. These data 
demonstrate that sulfatide binding is a common property 
of antiganglioside antibodies that may provide functional 
insights into, and consequences for this component of the 
innate immune repertoire. 

Keywords: antibody/ganglioside/neuropathy /sulfatide 

1 To whom correspondence should be addressed: Tel: +44-141-330-8388; 
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Introduction 

Sulfated glycolipids frequently act as ligands for a diverse range 
of human and microbial glycan binding proteins including CD1 
restricted T cell receptors (De Libero and Mori 2005), se
lectins (Aruffo et al. 1991), chemokines (Sandhoff et al. 2005), 
laminins (Talts et al. 1999), and toxins (Rousset et al. 1998; 
Wang et al. 2006). In particular, a wide range of studies have 
shown that immunglobulins react with sulfatide (3-0-sulfo-~
D-galactosylceramide) in both normal and disease states (Fred
man et al. 1991; Avila et al. 1993; Dabby et al. 2000; Ilyas et 
al. 2003; Lopate et al. 2005) and many sulfatide-binding antis
era and monoclonal antibodies (mAbs) have been isolated and 
studied (Hakomori 1974; Fredman et al. 1988; Kirschning et al. 
1997; Wang et al. 2006). 

Sulfatides are widely distributed throughout mammalian tis
sues, including serum, and are particularly prevalent in both 
neuronal and myelin membranes within the nervous system 
(Ishizuka 1997). As such, they have long been considered poten
tial targets for autoimmune neurological disease pathogenesis. 
This cause and effect relationship has been studied in many 
model systems without a clear consensus, at least in part due 
to the likely diversity of the different antisulfatide antibodies 
studied. Nevertheless, it seems clear that antisulfatide antibod
ies are able to induce pathophysiological changes in the ner
vous system under certain experimental conditions (Petratos and 
Gonzales 2000; Rosenbluth and Moon 2003; Rosenbluth et al. 
2003; Kanter et al. 2006; Wang et al. 2006). 

One intriguing feature of certain classes of sulfatide-reactive 
antibodies is that in addition to binding sulfatide, they may more 
promiscuously bind other structurally similar (Eurelings et al. 
200l) or even dissimilar ligands (Aotsuka et al. 1992). Con
versely, antibodies raised against, and apparently specific for, 
a particular class of antigens may also bind sulfatide (Merten 
et al. 2003). Certain proteins, notably C-type lectins that bind 
sialyl oligosaccharides also bind sulfated structures (Galustian 
et al. 1997, 2004), both of which present a negative charge, and 
sulfation can strongly influence the binding oflectins, including 
siglecs, to their sialyl-glycans (Campanero-Rhodes et al. 2006). 
Since gangliosides are also sialylated, we have here analyzed 
the sulfated glycan binding properties of human and mouse 
antiganglioside antibodies to determine whether any dual speci
ficity exists that may potentially contribute to their functional 
or pathophysiological properties. 

Results 

Binding of antiganglioside antibodies to sulfatide 
Twenty mouse and five human antiganglioside mAbs with di
verse specificities for neuropathy-associated ganglioside tar
gets including GM1, GD1a, GD1b, GD3, and GQ1b were .as
sessed in ELISA for binding to sulfatide. At a concentratIOn 
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Sulfatide binding of antiganglioside antibodies 

Table I. Binding specificities of a panel of antiganglioside mAbs, showing the relative strength of binding to sulfatide 

Species MAb Subclass Specificity Sulfatide binding 

Mouse CGGI IgG2b GD3(++) ++ 
DGI IgG2b GMI(+++) ++ 
DG2 IgG3 GMI(+++),GAI(+++),GDlb(++) ++ 
EGI IgG3 GQI b( ++++ ),GD3( ++++) +++ 
EG3 IgGl GQlb(++) 
MOG3 IgG3 GDlb(+++) 
MOGI6 IgG3 GTlb(+++).GDla(++).GDlb(+) + 
MOG30 IgG3 GQlb(++) 
MOG32 IgG2b GDla(+++),GTlb(+++).GDlb(+).GMI(+) + 
MOG34 IgG2b GDla(+++).GTlb(++).GQlb(+).GDlb(+) +++ 
MOG35 IgG2b GDla(+++) ++ 
R24 IgG3 GD3( ++++ ).GQ I b( +++) ++ 
TBG3 IgG3 GDla(++++).GTlb(++++) ++ 
CGM2 IgM GD3(+++) +++ 
CGM3 IgM GQ I b( +++ ).GD3( ++) ++ 
EM! IgM GD3( ++++ ).GQ! b( ++++ ),GTI b( +++ ).GD 1 b( +++) ++ 
EM4 IgM GDla(++++).GQ!b(+++).GD3(++) + 
EM9 IgM GDla(+++).GTlb(++).GQlb(+) + 
MOMI IgM GMI(++++).GAl(++++).GDlb(++) 
MOM3 IgM GM!(++++).GDlb(++++).GAI(++) ++ 

Human BR IgM GMI(++) ++ 
DOl IgM GMl(++).GAl(++).GD!b(+) + 
HAl IgM GD3(+++).GQlb(++).GTlb(++) 
SMI IgM GMI(++) + 
WOl IgM GMl(+++).GAl(+++).GDlb(++) + 

- = OD49Onm < 0.1; + = O.l::s: 0.5; ++ = 0.5::s: 1; +++ =! ::s: 1.5; ++++ = > 1.5. 

of 10 I-1g/mL, 20/25 mAbs bound sulfatide in ELISA (Table 
I). No correlation was observed between the ganglioside bind
ing profile of a mAb and its ability or inability to also bind 
sulfatide. Binding profiles for six mouse mAbs - 3 IgGs and 
3 IgMs - representative of different ganglioside specificities 
(TBG3, GDla; EG!, GD3/GQlb; DG2, GMI; EM4, GDla; 
EMI, GQlb/GD3; MOM3, GMI/GDlb) and human anti-GMI 
mAbs (SMI, BRI, WOl) were also assessed by titration anal
yses (Figure I and 2) and exhibited the sigmoid shaped curves 
typically seen for antibody-antigen interactions. In order to de
termine and compare the affinities of the mAb-sulfatide inter
action with the mAb-ganglioside interaction, surface plasmon 
resonance was conducted using Fab fragments derived from the 
three representative mouse IgG mAbs, TBG3, EGI, and DG2, 
and the data are shown in Figure 3. The KDs for TBG3 and 
GDla (9.5 x 10-7 M) (Boffey et aL 2005) and DG2 and GAl 
(3 x 10-7 M) (Townson et al. 2007) have been previously re
ported. Whereas affinities for the preferred ganglioside were in 
the 10-7 M range for these three antibodies, affinities for sul
fatide were on average I to 2 log lower - in the 10-5 to 10-6 M 
range. 

Dependence of antibody binding on the sulfate and its position 
in the galactose ring 
We next determined whether the antibody-sulfatide interaction 
depended upon the presence of sulfate, and its position in the 
galactose ring. Firstly, we established that galactocerebroside 
did not bind these antiganglioside antibodies (data shown for 
mAbs DG2, EMI, and BRI - Figure 4B, D and F, lane 2). 
Secondly, we observed that cleavage of the sulfate from 3-
O-sulfo-~-D-galactosylceramide by mild acid hydrolysis abol
ished binding, shown here by thin layer chromatography (TLC) 

overlay (Figure 4B, D and F, lanes 3, 4) and also by ELISA 
(Figure 4C, E and G). Thirdly, we determined the requirement 
for the sulfate to be positioned at the third carbon of the galactose 
ring by comparing the binding of DG2 to 3-sulfated galactose 
and to galactose with substitutions in the 4 and 6 positions. 
In solution inhibition studies, 3-sulfated galactose (in the form 
of ozonolyzed 3-0-sulfo-~-D-galactosylceramide, (sulph-OS)) 
was an effective inhibitor of solid phase mAb-sulfatide inter
action, whereas D-Galactose-4-0-sulfate (Gal-4-sulfate) and D
Galactose-6-0-sulfate (Gal-6-sulfate) had no inhibitory activity 
(Figure 5, top panels). These data thus demonstrate both depen
dence of antibody binding on the sulfate and its location on the 
third carbon, as is found on sulfatide. 

Occupancy of overlapping antigen-binding sites for 
ganglioside and sulfatide 
The binding studies described above did not address whether 
sulfatide and ganglioside occupy the same position in the 
antigen-combining site or whether they bind to separate and 
distinct regions of the antibody molecule. To address this, we 
conducted solution inhibition studies to identify any competi
tion for binding sites between ganglioside and sulfatide. Either 
ganglioside (GMI, GDla, and GD3 for DG2, TBG3, and EG!, 
respectively) or sulfatide were immobilized, and the competing 
oligosaccharides introduced in solution. All antibodies were 
inhibited from binding solid phase ganglioside by the pres
ence of solution phase sulfatide, and vice-versa, indicating that 
the antigen binding sites were competitively overlapping. Ef
fective inhibition was thus observed irrespective of whether 
ganglioside or sulfatide were in the solid or solution phases 
(Figure 5). 
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Fig. 1. ELISA titration curves of murine mAbs of different ganglioside specificities binding to their ganglioside and GAl antigens and sulfatide. IgGs: (Al TBG3. 
(B) EGI, (C) DG2. IgMs: (D) EM4. (E) EMI. (F) MOM3. 

Binding of antiganglioside mAbs to sulfated oligosaccharide 
conjugates 
In order to investigate whether sulfatide recognition of these 
antiganglioside mAbs was specific for 3-sulfated galactose, 
or was actually a more promiscuous interaction with a range 
of sulfated oligosaccharides, we examined binding by ELISA 
of a selection of mAbs (CGG1, DG1, DG2, EG1, TBG3, 
MOG35, DO 1, and BRl) to a panel of sulfated oligosaccharide
polyacrylamide (PAA) conjugates (Supplementary data, Table 
S). The only antibody-ligand pairing was DG2 and Gal~l-
3GaINAc~ (T~~), which is the terminal disaccharide of GM1, 
GAl, and GD1b. The other anti-GM1 mAbs require sialic acid 
for binding, except for DO 1. The lack of binding of DO 1 to T ~~ 
may be due to the more complex binding interactions of IgMs 
in comparison with IgGs. No binding was observed to any of 
the sulfated structures, including 3-0-Su-Gal~. It was therefore, 
not possible to establish the recognition patterns of the mAbs, 
as it appeared that the epitope may not have been presented on 
PAA in a way that could be recognized. Similarly, we observed 
that presentation ofthe epitope on bovine serum albumin (BSA) 
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was also critical, as none of the sulfatide-binding mAbs were 
able to significantly bind 3-0-Su-Gal~-BSA (data not shown). 
Alternatively, this also raised the question as to whether the lipid 
component of sulfatide was necessary for binding. 

Interaction of antiganglioside antibodies with sulfatide lacking 
one or both acyl chains 
To examine in more detail the requirement for the lipid com
ponent of sulfatide for binding of these mAbs to the 3-0-
Su-Gal~ epitope, solution inhibition ELISAs were performed 
with sulph-OS, which lacks one acyl chain, and enzymatically 
cleaved sulfatide (ceramide glycanase treated 3-0-sulfo-~-D
galactosylceramide (sulph-CG)), which has both acyl chains 
removed. Binding of DG2 to solid phase GM1 and sulfatide 
was measured after mixing with the soluble sulfatide variants. 
DG2 interacted with both sulph-OS and sulph-CG, inhibiting 
binding to GM1 and sulfatide (Figure 6). Although not es
sential for binding, inhibition was greater when one of the 
acyl chains was present. This was most striking with GM1 
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binding - 100% inhibition at 1 mM compared with 45% for 
sulph-CG. 

Binding of antiganglioside antibodies to sulfatide in biological 
membranes 
The binding of mAbs to sulfatide liposomes observed during 
the Biacore affinity measurements showed that antiganglioside 
mAbs are able to bind sulfatide effectively when incorporated 
into a membrane environment as well as when immobilized in 
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pure form on ELISA polystyrene plates. We then determined 
whether antiganglioside mAbs were able to bind sulfatide in a 
more biologically relevant neural membrane environment. To 
achieve this, PC12 cells that do not naturally contain su1fatide 
(at least in the clone used for this study) were incubated with 
sulfatide, which become incorporated into the plasma mem
brane, and then GMl epitopes on the cells were blocked by 
incubating with cholera toxin B subunit (CTB). The cells were 
then assessed for antiganglioside mAb binding by immunoflu
orescence microscopy and by FACS. The widely used mouse 
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on TLC and orcinol stained (A) TLC antibody overlays are also shown. 
alongside the corresponding ELISA binding curves: OG2 (B and C), EM 1 
(D and E). and BRI (F and G). Error bars indicate SEM. Each of the mAbs 
binds sulfatide. but not GalCer or desulfated sulfatide. 

IgM mAb, 04, which binds sulfatide in cells and tissues, was 
used as the indicator of membrane-associated sulfatide binding. 
EG3, which did not bind sulfatide in ELISA or Biacore, was used 
as a negative control mAb. PCI2 cells incubated with sulfatide 
became primed to bind 04 (Figure 7, top panels, and Figure 8C), 
thereby demonstrating effective sulfatide incorporation into the 
plasma membrane. For antiganglioside antibody binding, PCI2 
cells remained negative or unchanged from baseline (Figure 7, 
lower panels, and Figure 8). 

To address whether sulfatide-binding antiganglioside mAbs 
are able to bind sulfatide in peripheral nerve membranes, 
frozen sections from cerebroside sulfotransferase overexpress
ing, sulfatide accumulating (CSThigh) and sulfatide deficient 
mice (CGT-I- ) were assessed for binding of 04, and the anti
ganglioside mAb, DG2, that binds both GMI and sulfatide. As 
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expected, 04 did not bind sulfatide deficient nerve, but bound 
sulfatide overexpressing nerve strongly (Figure 9, top panels). 
DG2 bound both sulfatide deficient and sulfatide overexpress
ing nerve strongly and equally well, by virtue of binding GMI 
ganglioside (Figure 9, middle panels). When binding of DG2 
to GMI was blocked by preincubation of sections with CTB, 
DG2 binding was abolished in both sulfatide deficient and sul
fatide overexpressing nerve sections (Figure 9, lower panels), 
indicating that DG2 cannot bind sulfatide in sulfatide rich nerve 
membranes. 04 staining intensity was unaffected by CTB prein
cubation, indicating that CTB is not masking sulfatide in nerve 
sections (not shown). 

Discussion 

These data demonstrate that a high proportion of both mouse 
and human antiganglioside antibodies used in this study are 
also able to bind sulfatide, independent of their specificity for 
the very highly defined glycan epitopes on the gangliosides or 
bacterial lipooligosaccharides against which they were raised 
and cloned. Thus antiganglioside antibodies that are specific for 
terminal Gal(~1-3)GaINAc disaccharides (e.g., DG2), terminal 
Neu5Ac(ct2-3)Gal(~1-3)GaINAc trisaccharides (e.g., TBG3) or 
internal Neu5Ac(ct2-8)Neu5Ac epitopes (e.g., EGl) may also 
bind 3-0-sulfo-~-o-galactosylceramide (i.e., sulfatide). The 
promiscuous binding of this class of anti glycan antibodies to 
sulfatide is therefore, not due to a general inability to discrim
inate between different glycan structures, as the ganglioside 
specificity is very discrete, and the sulfatide binding is entirely 
dependent on the sulfate being in the 3-position of the galac
tose. The antibodies may, however, be binding ganglioside and 
sulfatide at the same binding site, or at least at binding sites in 
close proximity, as binding to one ligand could inhibit binding 
to the other. Sulfatide binding is also not a universal feature 
of antiganglioside antibodies, since some antibodies of similar 
specificity to those identified above only bind sulfatide weakly 
or not at all, despite binding well to their ganglio-series glycan 
structure. We have previously shown that some antiganglioside 
antibodies are polyreactive, as defined by binding actin, thy
roglobulin, tubulin or DNA (Boffey et al. 2004); however, this 
does not correlate closely with the ability to also bind sulfatide. 
For example, EG 1 binds sulfatide strongly, but showed no bind
ing to the above polyreactive antigens. By reviewing previously 
published mAb sequencing data, we have also examined the 
variable region gene usage of sulfatide binding antiganglioside 
antibodies in comparison with those that do not bind sulfatide 
and did not observe any distinctive patterns (data not shown). 

It appears as though the interaction of these antiganglio
side mAbs with sulfatide depends on the scaffold to which the 
monosaccharide is attached. Although the lipid moiety is not 
essential for binding, as mAbs interact well with sulph-CG that 
lacks this component, the presentation of the monosaccharide 
epitope in solid phase is important. This element of complexity 
is demonstrated by the lack of binding of the mAbs to 3-0-Su
Gal~ presented on both PAA and BSA. 

In general, the binding to sulfatide is at least a log lower affin
ity than binding to the dominant ganglioside glycan epitope, as 
assessed by both the affinity determinations in liposomal mem
branes using Biacore and the half-maximal binding data derived 
from ELISA. Nevertheless, this does not indicate insignificance 
of the sulfatide binding properties of these antibodies, since 
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at appropriate concentrations of sulfatide presented in the ap
propriate format (in micelles or a simple liposome membrane 
environment), interaction with sulfatide is observed. 

The immunofluorescence evidence suggests that at least for 
the antiganglioside mAbs studied here, binding to sulfatide in 
normally organized myelin and neural membranes may be in
significant, and thus direct pathogenic effects of these antibody
sulfatide interactions are unlikely. Other antisulfatide antibod
ies, such as 04, that bind sulfatide in neural membranes may 
have the capability to drive direct pathogenic effects. However, 
there are other potentially important immunological, physio
logical or pathological actions for antibody-sulfatide interac
tions. Sulfatide is present in human plasma at a concentration 
of 0.6--0.7 nmol/mL and this concentration may vary in disease 
states (Buschard et al. 2005). In plasma, sulfatide may have an
tiatherosclerotic and anticoagulant activity (Kyogashima 2004) 
and it is possible that antisulfatide antibody might engage free 
or protein- bound circulating sulfatide and thereby modulate 
its biological effects. Antisulfatide antibodies may be able to 
bind the sulfatide saccharide presented by CDI molecules and 
thereby modulate CDl-restricted sulfatide specific T cell in
teractions. Similarly, ganglioside and sulfatide binding B cell 
receptors may sense circulating sulfatide and thereby modulate 
B cell activation. 

Apart from their association with disease states, many normal 
individuals have significant titres of "antisulfatide" antibodies. 

There is clearly considerable diversity amongst antisulfatide an
tibodies in terms of binding properties and functional effects, as 
demonstrated for modulation of insulin metabolism (Buschard 
et al. 2005). It is clear from this and other studies that these 
antibodies may have other more significant carbohydrate anti
gen recognition domains than sulfatide binding. Conversely, 
sulfatide reactivity could be viewed as a more general property 
of a wide range of carbohydrate binding antibodies and this 
characteristic may comprise a significant proportion of the in
nate antibody repertoire. The functional consequences of this 
are currently unknown. This study also demonstrates that iden
tifying sulfatide reactivity in polyclonal sera, or in mAbs using 
solid phase assays, says little about sulfatide binding capacity in 
biological membranes. It also acts in a cautionary way to remind 
us that having identified sulfatide as a ligand for an antibody, 
this may represent one of the many possible ligands that could 
confound interpretation of subsequent studies unless it is iden
tified. The advent of glycoarray screening would be one way 
through which such multiple ligand interactions could be easily 
identified. 

Materials and methods 

Purification and characterization of antiganglioside mAbs 
Murine anti ganglioside mAbs were cloned following immu
nization of HeN or GalNAc transferase knockout mice with 
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treated, to cleave both acyl chains of the lipid. was performed by soluble 
inhibition ELISA. DG2 bound less well. in solution. with its sulfated galactose 
epitope when both acyl chains were removed. Error bars indicate SEM. 

04 

DG l 

Fig. 7. Binding of mAbs to PCI2 cells fo llowing incubation with exogenous 
sulfatide was measured using fluorescence microscopy with a FITC labeled 
anti-mouse IgG antibody. Cells incubated with 04 and DG I mAbs, both 
before and after sulfatide incubation. are shown above. Any GM I binding was 
blocked by CTB. 
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incorporation imo the membrane. was analyzed by flow cytomerry. No 
increase in binding of DG I (A) and DG2 (B) to sulfatide-treated PC 12s was 
observed. Binding of the antisulfatide mAb 04 (C), however, was clearly 
increased when sulfatide was incorporated into the membranes. A negative 
comrol sulfatide nonbinding mAb EG3 (D) was also analyzed. GMI binding 
was blocked by CTB. 

Campylabaeter jejuni lipooligosaccharides or gangliosides in 
adjuvant as previously described (Goodyear et al. 1999; Bowes 
et al. 2002; Boffey et al. 2004, 2005). The anti-GD3 mAb, R24 
(that also binds GQlb) was obtained from American Type Cul
ture Collection (Manassas, VA) (Dippold et al. 1980). Human 
mAbs were cloned from peripheral blood mononuclear cells 
isolated from patients with Guillian-Barre syndrome (DO I), 
multifocal motor neuropathy (WOI, BRI, and SMI) (Willison 
et al. 1994; Paterson et al. 1995; Goodyear et al. 1999) or ataxic 
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CSThigh 

Fig. 9. Binding ofmAbs DG2 and 04 to tissue from mice with upregulated (CSThigh) and down-regulated (CGT-I- ) sulfatide levels. 04 binding was greatly 
increased in the CSThigh tissue in comparison with CGT-I- . whereas DG2 bound equally well to both. Blocking GM I availability with cholera toxin virtually 
negated DG2 binding to both CSThigh and CGT-I-. suggesting that DG2 is unable to bind sulfatide (and GA I and GD I b) in the tissue. despite the evidence of 
recognition from other binding assays. 

neuropathy (HAl) (Willison et al. 1996). Murine IgGs were pu
rified from tissue culture supernatants using HiTrap Protein A 
(IgG3) or Protein G (rgG1, IgG2b) affinity columns (Amersham 
Pharmacia Biotech, Buckinghamshire, UK). Human IgMs were 
purified by gel filtration using a Sepharose 6B column (Amer
sham Pharmacia Biotech). 

Immunoassays and affinity determinations 
Reactivity of mAbs with glycolipids was assessed by a standard 
ELISA using Immulon 2 microtitre plates (Dynatech Labora
tories, Sussex, UK) coated with 200 ng of glycolipid per well 
and assays conducted at 4c C (Willison et al. 1999). Affinity 
analysis was performed on Fab fragments using surface plas
mon resonance (Biacore 2000, Biacore AB, Uppsala, Sweden) 
as previously reported (Boffey et al. 2005). Briefly, ganglioside
or sulfatide-containing liposomes (0.2 mg/mL in phosphate 
buffered saline [PBS]) were prepared from 1,2-dimyristoyl-rac
glycero-3-phosphocholine (Calbiochem, Nottingham, UK) and 
ganglioside/sulfatide (Sigma, Poole, Dorset, UK) in a (w/w) ra
tio of 100: I, and resized to 50 nm. Approximately 5000 response 
units (RU) of liposomes were immobilized on an Ll pioneer 
sensor chip (Biacore AB) by injection at 2 j.LL/min. Fab frag
ments of Protein A/G purified mAbs were prepared by papain 
digestion (ImmunoPure Fab Preparation Kit, Pierce, Northum
berland, UK) The liposome layer was regenerated with 100 mM 
NaOH. Measurements were carried out in PBS at 25°C. Kinetic 
analyses were performed using the BIA evaluation 3.1 package 
(Biacore AB). 

Binding of antiganglioside mAb to desulfated sulfa tide 
The sulfate group of sulfatide was hydrolyzed using mild acid. 
Briefly,S mL of 50 mM HCI in methanol was incubated with 
5 mg lyophilized sulfatide (Sigma) for 16 h at room temper
ature. Following this, 15 mL chloroform, 2.5 mL methanol, 
and 5.5 mL 0.2% Na2C03 were added and the solution soni
cated and centrifuged for 5 min at 1000 rpm. The upper phase 
was removed and the lower phase, containing the desulfated 
sulfatide, was washed with chloroform:methanol:KCI (3:48:47 
v/v) and then chloroform:methanol:distilled H20 (3:48:47 v/v). 
The extent of desulfation was assessed by TLC on silica gel high 
performance TLC plates (Merck, Nottingham, UK) with chlo
roform:methanol (2: 1 v/v) running solvent and orcinol stain
ing. Binding of murine IgG (DG2), IgM (EMI), and human 
IgM (BRl) mAbs to desulfated sulfatide and other glycolipids 
was assessed by TLC overlay as previously described (Willi
son et al. 1994). The glycolipids were separated by TLC, as 
above, and the plate blocked overnight with 2% (w/v) BSA. 
MAb, diluted to 10 j.Lg/mL in 1% (w/v) BSA in PBS, was 
then applied to the plate and incubated for I h. Binding was 
detected using horse radish peroxidase (HRP)-conjugated anti
mouse IgG or IgM antibody (Sigma) or anti-human IgM anti
body (DakoCytomation, Glostrup, Denmark), and developed 
using Super Signal West Pico enhanced chemiluminescence 
(Pierce). 

Natural and synthetic oligosaccharides 
Gangliosides, sulfatides, and the oligosaccharide of GD3 (disia
lyllactose, DSL) were purchased from Sigma. Gal-4-sulfate and 
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Gal-6-sulfate were from Dextra Laboratories (Reading, UK). 
The oligosaccharide of GMI (EGMI-0S) was produced in 
Escherichia coli (Antoine et al. 2003; Townson et al. 2007). 
GDla oligosaccharide (GDla-OS) and sulph-OS were prepared 
by ozonolysis of GD 1 a and sulfatide respectively, which cleaves 
one ofthe acyl chains of ceramide and renders the oligosaccha
rides soluble. Briefty, GD I a and sulfatide were dissolved to 
1 mg/mL in methanol and cooled in a dry ice/ethanol bath. 
Ozone was generated from oxygen using a bench top generator 
(Model OL80W, Ozone Services, Burton, BC, Canada). Ozone 
application time was optimized at 17 min by TLC monitoring 
of cleaved and uncleaved products. Ozone was then dispersed 
by passing oxygen through the sample, and dimethylsulfoxide 
(SOO ILL) added, stirred for 30 min on dry ice, then 90 min at 
room temperature. After drying under a stream of nitrogen, the 
cleaved long chain aldehyde was separated by adding 10 mL 
n-hexane, sonicating for S min and then centrifuging at 1400 
rpm for 10 min. The n-hexane was then drawn off and the 
oligosaccharides dried under nitrogen. 

Sulph-CG was prepared by enzymatic cleavage of both acyl 
chains by ceramide glycanase (Calbiochem). Sulfatide (S mg) 
was dissolved by sonication in 40 mL SO mM sodium acetate, 
pH S.O, containing 1 mg/mL sodium cholate, and then S U of 
ceramide glycanase added and incubated, shaking for 64 h at 
37°C. The sulph-CG was purified from the digestion mixture 
using Oasis HLB cartridges (Waters Ltd, Milford, MA) and 
then lyophilized. Purity was assessed by TLC. 

Oligosaccharide inhibition ELISA 
Inhibition of mAbs binding to solid phase gangliosides and sul
fatide by their soluble counterparts was investigated by inhibi
tion ELISA. MAbs were diluted in 0.1 % (w/v) BSA in PBS and 
used at concentrations equivalent to half maximal binding, as 
determined by titration in ELISA. Stock solutions of oligosac
charides were prepared in distilled water to S-1 0 mg/mL and fur
ther diluted in 0.1 % (w/v) BSA in PBS. Equal volumes of mAb 
and oligosaccharide were mixed prior to application to a stan
dard ganglioside ELISA (SO ILL/well). Percentage inhibition 
was calculated by comparison to the binding of mAb/antisera 
alone (100%). All assays were performed in duplicate and re
peated at least three times. 

Binding of mAbs to a panel of sulfated oligosaccharide 
conjugates 
Binding by ELISA of a selection of the mAbs in Table to a 
panel of sulfated oligosaccharide-PAA conjugates (Supplemen
tary data, Table S) was measured. The ELISA protocol was opti
mized for oligosaccharide-PAA conjugates, rather than gangJio
sides, and consequently was slightly different from the ELISAs 
described above. ELISA 96-well plates (NUNC Maxisorp, Den
mark) were coated with sugar-PAA conjugates (Lectinity Hold
ing, Inc, Moscow, Russia) 10 ILg/mL in O.OS M Na-carbonate 
buffer, pH 9.6, for 1 h at 37°C. Plates were then blocked with 
3% BSA in PBS (w/v) for 2 h at 4°C and washed three times 
with PBS containing 0.1 % Tween-20 (washing buffer). MAbs 
were diluted to SO ILg/mL in 0.3% BSA/pBS and 100 ILL added 
per well. The plates were then incubated for 2 h at 4°C. Plates 
were washed three times with washing buffer and incubated 
with anti-mouse Ig-HRP (Sigma) (1:1000 in 0.3% BSA/PBS) 
or anti-human Ig-HRP for 2 h at 4°C. After washing, the plates 
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were developed as for the ganglioside ELISAs described above. 
Binding of DG2 to 3-0-Su-Gal~-BSA was also tested, follow
ing the ganglioside ELISA protocol, but coating with 10 ILg/mL 
PBS overnight at 4°C and then washing prior to blocking. 

Analysis of antiganglioside mAb binding to sulfatide in cell 
membranes 
PCl2 cells were cultured in POlY-L-lysine (Sigma) coated tissue 
culture flasks with DMEM containing 7.S% foetal calf serum 
(FCS) and 7.S% horse serum (Sigma). After harvesting, the 
cells were coated onto coverslips overnight at 37°C (1.S x 104 

cells/coverslip). Sulfatide was reconstituted in a small volume 
of distilled H20 by incubating at 37°C for 1 h with frequent vor
texing and sonication. Serum-free DMEM was added to give a 
sulfatide concentration of 20 ILg/mL. To allow sulfatide to in
sert into PCl2 cell plasma membranes, coverslips were rinsed 
in serum-free DMEM and then incubated at 37°C for 18 h in 
serum-free DMEM with or without sulfatide. Coverslips were 
then washed in serum-free DMEM, and any GMI on the cell sur
face was blocked by incubating with CTB (Sigma) (4 ILg/mL 
in serum-free DMEM) for 1 h at 4°C. After washing, as be
fore, antiganglioside mAb (DG 1, DG2 or EG3) or antisulfatide 
positive control mAb 04 were diluted in serum-free DMEM 
(10 ILg/mL) and added for 1 h at room temperature. All fur
ther washing steps and dilutions were performed in DMEM 
containing 7.S% FCS and 7.S% horse serum. After washing, 
FITC-labeled goat anti-mouse IgG (for DG 1, DG2, and EG3) 
or IgM (for 04) (Southern Biotech, Birmingham, AL) diluted 
1/300 (v/v) was added for 1 h, in the dark, at room temperature. 
Coverslips were then washed and fixed in methanol for 30 min at 
-20°C. Coverslips were mounted with vectashield containing 
DAPI (Vector Laboratories, Peterborough, UK). To check for 
nonspecific secondary antibody binding, sulfatide treated and 
untreated cells were stained as above, but without mAb. 

Flow cytometry was performed on PC12 cells grown 
overnight in poly-L-lysine coated tissue culture dishes with 
DMEM containing 7.S% FCS and 7.S% horse serum. After 
washing with chilled, sterile PBS, sulfatide was added, recon
stituted in serum-free medium as described above, and the cells 
incubated at 37°C for 18 h. All washes and dilutions were per
formed in PBS containing 2% FCS and all incubations were for 
1 h at 4°C. Sulfatide-treated or untreated cells were harvested 
and aliquots of 1 x 105 cells incubated with CTB (4 ILg/mL). 
The cells were then washed and incubated with antiganglioside 
mAb or antisulfatide control mAb (10 ILg/mL), followed by 
FITC-labeled goat anti-mouse IgG or IgM. Binding was ana
lyzed using a FACScan (Becton Dickinson, Oxford, UK). Only 
very low levels of nonspecific secondary antibody binding were 
observed, and these were subtracted. 

Analysis of antiganglioside mAb binding to sulfatide 
in peripheral nerve sections 
Sciatic nerves were removed from sulfatide accumulating 
and cerebroside sulfotransferase (CST) overexpressing (Aryl
sulfatase A-deficient/pLP-CST transgenic mice, 7 months) 
(H Ramakrishnan et aI., in preparation) and sulfatide defi
cient (UDP-galactose:ceramide galactosyltransferase knock-out 
mouse (CGT-I-), 3 weeks) mice (Coetzee et al. 1996), em
bedded immediately in semi-frozen OCT Embedding Matrix 
(CellPath, Hemel Hempstead, UK) and mounted onto a cryostat 



chuck. Nerves were cryosectioned at 15 I-Lm in the trans
verse plane onto L-lysine-coated (Sigma) glass slides. Sec
tions were stained unfixed or fixed in ice-cold methanol or 
4% paraformaldehyde. Slides were incubated with DG2 or 04 
(10 I-Lg/mL PBS) for I h at 4°C, followed by three rinses in PBS 
and incubation at 4°C for 2 h in FITC conjugated anti-mouse 
IgG and IgM, respectively (1/300 (v/v) PBS). In order to block 
DG2 binding to GMl, the nerves were pretreated with CTB 
(4I-Lg/mL PBS) for 1 h at 4°C, before rinsing and application of 
DG2. Substitution of primary antibody with PBS confirmed that 
in both control and CTB treated sections, there was no nonspe
cific binding of the secondary antibody. Nerves were mounted in 
Citifiuor (Citifiuor, Canterbury, UK) for imaging under identical 
settings with a Zeiss (Oberkochen, Germany) Pascal confocal 
microscope. 

Supplemeutary data 

Supplementary data for this article is available online at 
www.glycob.oxfordjoumals.org. 
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