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Abstract 
 

Human cytomegalovirus (HCMV) is a human pathogen that can cause severe 

disease in immunocompromised or immunosupressed individuals and also in 

newborns infected in utero.  Transcription of the viral genome occurs by a process 

in which three classes of HCMV genes, immediate early, early and late are 

expressed in a regulated temporal cascade.  The HCMV protein pp71, encoded by 

gene UL82, is located in the tegument of the HCMV virion and is delivered to cells 

immediately upon infection.  This protein has been identified as a transactivator of 

viral immediate early gene expression.  It also stimulates expression from a 

number of heterologous promoters by a mechanism that is not promoter sequence 

specific.  Protein pp71 has multiple properties; it can increase the infectivity of 

transfected viral DNA, modulate the cell cycle and interact with the retinoblastoma 

family of proteins.  Within the cell nucleus, pp71 co-localises with the cellular 

proteins PML and hDaxx at sub-cellular structures named nuclear domain 10 

(ND10).  The interaction of pp71 with hDaxx is believed to promote the 

degradation of hDaxx, resulting in relief of repression at the HCMV major 

immediate early promoter.  Protein pp71 has also been reported to have the 

unusual property of mediating long-term expression of reporter genes cloned into 

a herpes simplex virus type 1 (HSV-1) vector.  This study describes a comparison 

of pp71 with the non-human UL82 homologues from simian CMV, baboon CMV, 

rhesus CMV and chimpanzee CMV, named S82, B82, RH82 and Ch82, 

respectively. 

  

Plasmids expressing all of the UL82 homologues as enhanced yellow fluorescent 

protein (EYFP) or myc-tagged proteins were constructed and analysed for 

expression by transfection into HFFF2 cells.  The EYFP-tagged UL82 homologues 

all directed β−gal expression in short-term assays, while only pp71 directed both 

short-term and long-term gene expression.  Only myc-tagged pp71 was observed 

to direct gene expression in both the short-term and long-term assays.  

 

The EYFP-tagged proteins and myc-tagged pp71 and Ch82 were cloned into a 

mutated HSV-1 vector to produce recombinant viruses.  Functional assays in 

human glioblastoma (U373) cells confirmed that all of the EYFP-tagged and 

myc-tagged non-human UL82 homologues were able to direct short-term 
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expression but only EYFP- and myc-tagged pp71 directed long-term gene 

expression, confirming results obtained in transfection assays.   

 

In agreement with previous reports, pp71 was shown to promote the resumption of 

gene expression from quiescent HSV-1 genomes.  Comparison of the pp71 and 

Ch82 homologues indicated that pp71 is unique in its ability to do so.  No 

reactivation was observed in cells infected with an HSV-1 recombinant that 

expressed EYFP-tagged Ch82. 

 

In order to establish the region of pp71 responsible for mediating long-term gene 

expression six plasmids encoding EYFP-tagged hybrid proteins were constructed.  

The C-terminus, N-terminus and mid-regions of pp71 were substituted for the 

equivalent Ch82 regions using homologous restriction sites in both coding 

sequences.  All EYFP-tagged hybrids mediated short-term gene expression, while 

only one protein, with the mid region of pp71 inserted between the C- and N-

terminal regions of the Ch82 homologue, appeared to stimulate long-term gene 

expression.  However, levels of expression were significantly lower than that 

achieved by pp71.  A HSV-1 recombinant expressing the hybrid protein was used 

to confirm results from transfection assays, suggesting that the mid-region of pp71 

may be involved in mediating its long-term properties.  Given the significantly 

lower degree of gene expression directed by the hybrid protein in short-term 

assays it was concluded that alterations to pp71 may result in structural changes 

that prevent normal function of the protein. 

 

Immunofluorescence studies revealed further differences between the non-human 

UL82 homologues and pp71.  In confirmation of previously published findings, in 

the majority of HFFF2 cells infected with a HSV-1 recombinant expressing 

EYFP-tagged pp71, this protein localised to discrete punctate ND10 foci at all 

times tested.  In cells infected with a HSV-1 recombinant expressing S82 a pattern 

distinct from that of pp71 was observed.  S82 exhibited a punctate/diffuse pattern 

of fluorescence, which became increasingly diffuse at later times post-infection.  

The remaining non-human UL82 homologues, despite localising to the discrete 

punctate foci characteristic of pp71 at early times post-infection, all showed 

nuclear distribution patterns akin to that of S82 at later times, in cells infected with 

the HSV-1 recombinants expressing EYFP-tagged Ch82, B82 and Rh82.  All non-

human UL82 homologues, like pp71, co-localised with the endogenous cellular 
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proteins hDaxx and PML at the times tested.  Interestingly, however, at later times 

post-infection, the S82 protein appeared to disperse hDaxx throughout the 

nucleus, a feature that was not observed with the remaining UL82 homologues.  

Examination of the hybrid protein observed to stimulate long-term gene expression 

revealed that, like pp71, it localised to discrete punctate foci, and co-localised with 

both PML and hDaxx at all times post-infection.  In contrast to other published 

studies, it was not possible to demonstrate pp71-mediated hDaxx degradation, by 

either pp71 or the non-human UL82 homologues. 

 

The work presented in this thesis confirms the previous observation that pp71 

directs long-term gene expression, reactivates quiescent genomes and 

co-localises in the nucleus with hDaxx and PML.  It also characterises the non-

human UL82 homologues of pp71.  This study shows that, while each non human 

UL82 homologue shares some characteristics with pp71, subtle functional 

differences exist between these proteins.   
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Abbreviations used in this study 

 
AP    assembly protein 

APS    ammonium persulphate 

BCMV    baboon cytomegalovirus 

BDGF    Bio-Gene Finder 

bp    base pair 

β-gal    β-galactosidase 

BSA    bovine serum albumin 

C    carboxy (-terminal end of protein) 

CCMV    chimpanzee cytomegalovirus 

CENP-C   centromere protein C 

CIP    calf intestinal phosphatase 

CLTs    cytomegalovirus latency-specific transcripts 

CTCF    CCCTC-binding factor 

DC    dendritic cells 

dH20    distilled water 

DID    Daxx interaction domain 

DMEM   Dulbeccos modified Eagles medium 

DMSO   dimethylsulphoxide 

DNA    deoxyribonucleic acid 

E    Early 

EBV    Epstein-Barr virus 

EC    endothelial cells 

E.coli    Escherichia coli 

ECL    enhanced chemiluminescence 

EDTA    ethylenediaminetetra-acetic acid 

EGFR    epidermal growth factor receptor 

ER    endoplasmic reticulum 

EYFP    enhanced yellow fluorescent protein 

FCS    foetal calf serum 

GAG    glycosaminoglycan 

GMPs    granulocyte macrophage precursors 

GST    glutathione S-transferase 

HCF    host cellular factor 

HCMV    human cytomegalovirus 
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HDAC    histone deacetylase 

HFFF    human foetal foreskin fibroblasts 

HHV-6   human herpesvirus type 6 

HHV-7   human herpesvirus type 7 

HIV    human immunodeficiency virus 

HMBA    hexamethylbisacrylamide 

HP1    histone deacetylase 1 

hr    hours 

HRP    horse radish peroxidase 

HSV-1    herpes simplex virus type 1 

HSV-2    herpes simplex virus type 2 

HVEM    herpes virus entry mediator 

ICP    infected cell protein 

IE    immediate early 

Ig    immunoglobulin 

ITE    immediate transcript environment 

KHSV    Kaposi’s sarcoma-associated herpesvirus 

L    Late 

LAT    latency associated transcript 

LTR    long-terminal repeat 

LSM    laser scanning microscope 

mcBP    minor capsid binding protein 

MCMV   murine cytomegalovirus 

MCP    major capsid protein 

mcP    minor capsid protein 

MCS    multiple cloning site 

MHC    major histocompatibility complex 

MIEP    major immediate early promoter 

min    minutes 

MOI    multiplicity of infection 

mRNA    messenger RNA 

MUP    4-methylumbelliferyl phosphate 

N    amino (-terminal of protein) 

NBCS    newborn calf serum 

ND10    nuclear domain 10 

NLS    nuclear localisation signal 
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NPC    nuclear pore complex 

NP40    Nonidet p40 

NT2D1   teratocarcinoma cells 

ORF    open reading frame 

orilyt    origin of lytic replication 

PAGE    polyacrylamide gel electrophoresis 

PBS    phosphate buffered saline 

PBST    phosphate buffered saline+Tween 20 

PCR    polymerise chain reaction 

pfu    plaque forming unit 

PML    promyelocytic leukaemia 

Rb    retinoblastoma protein 

RhCMV   rhesus cytomegalovirus 

rpm    revolutions per minute 

RL    long inverted repeat region 

RS    short inverted repeat region 

SCMV    simian cytomegalovirus 

SCP    small capsid protein 

SEAP    secreted alkaline phosphatase 

ShRNA   short hairpin RNA 

SiRNA   small inhibitory RNA 

SIM    SUMO-interaction motif 

SIV    simian immunodeficiency virus 

SUMO-1   small ubiquitin-like modifier 

TAP    transporter associated with antigen presentation 

TBP    TATA-binding protein 

TEMED   N’-N’-N’-N’-tetramethylethylethylenediamine 

TF    transcription factor 

THP1    myelomonocytic cells 

TK    thymidine kinase 

Tris    tris (hydroxymethyl) aminomethane 

ts    temperature sensitive 

TSA    trichostatin A 

Tween 20   polyoxyethylene-sobitanmonolaurate 

UL    unique long region 

US    unique short region 
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USP7    ubiquitin specific protease 

UV    ultra-violet 

v/v    volume/volume 

VZV    varicella-zoster virus 

w/v    weight/volume 

X-gal    5’bromo-4-chloro-3-indoyl-β-D-galactosidase 

YFP    yellow fluorescent protein 
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1. Introduction to herpesviruses 
 
1.1. Herpesviridae classification 
 

Herpesviruses constitute a large group of viruses classified as the family 

Herpesviridae, containing over 120 members (Roizman, 2001).  Herpesviruses 

differ widely in their pathogenic potential, but following primary infection can 

remain latent within the host.  The Herpesviridae fall into three sub-families, 

Alphaherpesvirinae, Betaherpesvirinae and Gammaherpesvirinae.  Classification 

of these sub-families is based on their biological characteristics such as the length 

of the viral replication cycle, host cell range, cytopathology and the disease 

resulting from productive infection (Roizman & Baines, 1991, Roizman, 2001). 

 

1.1.1. Alphaherpesvirinae 
 
Viruses in the sub-family Alphaherpesvirinae typically exhibit variable host range in 

vitro, a rapid reproductive cycle, and the capacity to establish latent infection within 

sensory ganglia.  They are further divided into two genera; the Simplexviruses and 

Varicelloviruses.  The Simplexviruses include herpes simplex virus type 1 (HSV-1), 

which typically infects mucosal tissue of the mouth resulting in cold sores, and 

herpes simplex virus type 2 (HSV-2), which infects genital mucosal epithelia 

causing genital lesions.  The Varicelloviruses include varicella-zoster virus (VZV), 

which causes chickenpox during primary infection (Roizman, 2001). 

 

1.1.2. Betaherpesvirinae 
 
Viruses within the sub-family Betaherpesvirinae demonstrate a restricted host 

range and slow growth in cell culture models (Mocarski, 2001).  Latency is 

established in lymphoreticular cells, and secretory glands (Sinclair & Sissons, 

2006).  This sub-family is further divided into three genera; the Cytomegaloviruses, 

Roseloviruses and Muromegaloviruses.  Infection with human cytomegalovirus 

(HCMV) of the Cytomegalovirus genera poses a significant risk to 

immunocompromised individuals resulting in diseases such as retinitis and 

pneumonitis (Mocarski, 2001). HHV-6 and HHV-7 are both are both members of 

the Roselovirus genus of the Betaherpesvirinae.  HHV-6 is associated with febrile 

disease in children and has been implicated in the aetiology of chronic fatigue 

syndrome and multiple sclerosis (Ablashi et al., 2000).  HHV-7 has been 
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associated with post-transplant disease in immunosupressed organ recipients.  It 

has been reported that gastric mucosal cells are the site at which latent HHV-7 

DNA is found (Gonelli et al., 2001).  The murine cytomegalovirus (MCMV) of the 

Muromegalovirus genra is utilised as a model for both productive and persistent 

HCMV infection (Keil et al., 1984). 

 

1.1.3. Gammaherpesvirinae 
 
These viruses have variable host cell range, and duration of replication (Roizman, 

2001).  Members of this family replicate in lymphoblastoid cells some types of 

epithelioid and fibroblastic cells, and establish latency in either T or B lymphocytes 

(Roizman, 2001).  Gammaherpesviruses are further divided into two genera; 

Lymphocryptoviruses (EBV) and Rhadinoviruses (HHV-8).  HHV-8 is also known 

as Karposi’s sarcoma-associated herpesvirus (KSHV), and infection can result in 

Karposi’s sarcoma, primary effusion lymphoma or muliticentric Castleman’s 

disease in immunosupressed patients (Roizman, 2001).  

 

1.2. HSV biology 
 
The herpes simplex viruses consist of two serotypes, HSV-1 and HSV-2, and were 

the first of the human herpesviruses to be discovered.  Due to their ease of growth 

in culture both are amongst the most intensely investigated (Roizman, 2001).  

HSV-1 has a complex lytic life cycle (Roizman, 2001) and is able to establish life 

long latency in sensory neurons.  This strategy secures the long-term survival of 

the virus as it is able to evade the host immune system during latent infection 

(Efstathiou & Preston, 2005). 

 

1.2.1. HSV-1 virion and genome structure 
 
As with other herpesviruses, the HSV-1 virion consists of four distinct components; 

the DNA core (contained within the capsid), capsid, tegument, and envelope 

(Adamson et al., 2006, Roizman, 2001).  The HSV-1 capsid is icosohedral in 

shape with a diameter of 1,250 Ǻ (Saad et al., 1999).  Capsids are considered to 

exist in three forms, B-capsids, which contain scaffolding proteins, C-capsids, 

which contain viral DNA, and A-capsids that are empty capsids (Rixon, 1993).  

Capsids are composed of 162 capsomeres, which can be divided into three types: 
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150 hexons, 11 pentons and one portal.  The hexons form the faces and edges of 

the capsid and the pentons form eleven of the twelve vertices.  Triplexes of UL18 

and UL38 hold the capsomeres together (Garner, 2003, Newcomb et al., 2005, 

Newcomb et al., 2006, Newcomb et al., 2003).  A linear double stranded DNA 

genome of 152 kb is packaged into the capsids.  It has been reported that the 

packaged DNA appears to exist in a liquid crystalline state, similar to that 

suggested for the double stranded DNA bacteriophages λ and T4 (Booy et al., 

1991, Rixon, 1993). The capsid is surrounded by a tegument layer that contains at 

least 15 viral proteins including the HSV-1 immediate early (IE) proteins 

(McLauchlan & Rixon, 1992, Rixon et al., 1992).  The outer surface of the virion is 

a tri-laminar viral lipid envelope with a diameter of 170-200 nm, containing 

embedded viral glycoproteins, which are seen as spikes under an electron 

microscope (Mettenleiter, 2002).  A schematic representation of a herpes virion is 

presented in figure 1.1 

. 

The initial sequence of the HSV-1 genome, strain 17, was finally determined in 

1988 by McGeoch et al. when the complete DNA sequence of the long unique 

region of HSV-1 was obtained (McGeoch et al., 1988).  Prior to this the complete 

sequence of the unique short region (US) (McGeoch et al., 1985), and the 

complete sequence of the short inverted repeat region (RS) (Davison & Wilkie, 

1981, Murchie & McGeoch, 1982) were published.  The complete sequence of the 

long inverted repeat (RL) region was later published by Perry and McGeoch in 

1988 (Perry & McGeoch, 1988), thus the complete sequence of HSV-1 was 

believed to contain 152260 residues in each strand with a base composition of 

68% G+C (McGeoch et al., 1988).  The sequence of HSV-1 was later updated and 

currently stands at 152261 base pairs (bp) (Dolan et al., 1998).  The HSV-1 

genome therefore consists of the UL and US regions that are in turn flanked by 

inverted repeat sequences RL and RS.  HSV-1 genes are distributed throughout 

the genome on both DNA strands; genes located within the inverted repeats are 

present in two copies (Weir, 2001).  Three of the IE genes are located near the 

termini of the RL and RS regions of the genome.  The IE genes encoding ICP0 and 

ICP4, are contained within the inverted repeats RL and RS, and therefore occur 

twice within the genome.  The early (E) and late (L) genes are found throughout 

the unique regions (Roizman, 2001).  Figure 1.2 shows the genome arrangement 

of HSV-1. 

 



Capsid

Tegument

DNA Core

Envelope

Figure 1.1  Cartoon illustrating the structure of a herpes virion 

Schematic representation of the structure of an HSV-1 virion. It shows 
the double-stranded DNA core enclosed within the icosahedral capsid, 
surrounded by a proteinaceous tegument and enclosed within a 
lipoprotein membrane. 
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Figure 1.2 Genome arrangement of HSV-1

The genome has two unique regions, each of which is flanked by an inverted repeat.  The repeat regions IRL/TRL and 
IRS/TRS, flanking UL and US respectively. An additional repeat element the ‘a’ sequence, is found at both genomic 
termini and at the junction between the internal repeats (IRL and IRS).  Both the UL and US segments show a high 
frequency of inversion. 

Adapted from Davison and McGeoch (1995).
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1.3. HSV infection 
 

The prevalence of both HSV-1 and HSV-2 infections varies markedly by country, 

region within country and population sub-group.  The percentage of adults infected 

with HSV-1 is thought to be 60-90% in non-high risk groups, a rise from 40% at 15 

years old (Smith & Robinson, 2002).  Infection occurs when HSV is excreted from 

infected individuals to seronegative individuals via intimate personal contact.  

Infection occurs at mucosal surfaces or abraded skin (Whitley, 2001).  The most 

common consequence of HSV-1 infection is cold sores, however severe infection 

with HSV-1 can result in stromal keratitis (infection of the cornea) and it is also the 

most common causative agent of viral encephalitis and, more rarely of 

meningoencephalitis (Whitley, 2001), while HSV-2 infection is the main cause of 

genital herpes (Roizman, 2001).  Following infection HSV-1 can enter two modes 

of infection: lytic or latent (Efstathiou & Preston, 2005). 

 

1.4. Lytic infection 
 

1.4.1. Viral attachment and penetration into the cell 
 
HSV-1 host cell entry is mediated by glycoproteins B (gB), gC, gD, gH, gJ, gK, gL, 

gM, and gN which are components of the viral envelope (Spear, 2004).  Only gB, 

gD, gH, and gL are believed to be essential for cell fusion and entry (Spear, 2004).  

The virus initially binds to glycosaminoglycan (GAG) heparan sulphate on the host 

cell surface via gB and gC (Herold et al., 1994).  Fusion of the viral envelope with 

the cell membrane is triggered by gD interaction with one of three cellular 

receptors: herpes virus entry mediator (HVEM), nectin-1 or nectin-2 (Spear, 2002). 

 

1.4.2. Virion transport and genome insertion to the nucleus 
 

Following internalisation the majority of tegument proteins dissociate from the 

capsids.  However, tegument proteins that remain associated with the HSV-1 

capsid are thought to assist in microtubule dependent transport, as is the case for 

pseudorabies virus (Granzow et al., 2005).  The HSV-1 nucleocapsid is 

transported to the nuclear pore complex (NPC) via the microtubule network and 

the cellular motor dynein (Dohner et al., 2002). 
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Translocation of HSV-1 DNA into the nucleus occurs following capsid docking at 

the NPC, a process mediated by the one or more of the tegument proteins. The 

empty capsid remains in the cytoplasm (Ojala et al., 2000, Roizman, 2001).  

Shanin et al. (2006) suggested that the HSV-1 genome translocates through the 

nuclear pore in a condensed rod like structure.  For this to occur the NPC is 

thought to dilate to allow entry (Shahin et al., 2006).  Following entry of the 

genome into the nucleus it is thought to circularise (Roizman, 2001). 

 

1.4.3. HSV-1 viral IE proteins 
 
HSV-1 gene expression involves a sequential cascade of three sets of genes, IE, 

E and L, which are classified according to their time of expression during 

replication (Roizman, 2001).  The IE genes are the first genes expressed, these 

are: ICP4, ICP27, ICP0, ICP22 and ICP47 (Efstathiou & Preston, 2005).  

Expression of the IE genes is stimulated by binding of a tripartite complex, 

composed of the tegument protein VP16, and two cellular proteins Oct-1 and host 

cellular factor (HCF), to DNA elements containing the TAATGARAT sequence 

(where R is a purine) upstream of each of the IE gene promoters (Nicholl & 

Preston, 1996, Preston et al., 1988).  Each component of the complex plays a 

specific role in the activation of IE gene expression (Weir, 2001).  Transcriptional 

activation is a function of the acidic carboxy-terminus of VP16; studies have shown 

that this acidic domain can be tethered to DNA binding domains to activate 

transcription.  Thus the target for VP16 activation is a component of the basal 

transcription machinery of the cell (Flint & Shenk, 1997). Oct-1 provides binding 

specificity, while HCF stabilises the tripartite complex and acts a nuclear import 

factor for VP16 (LaBoissiere & O'Hare, 2000).   

 

Of the five IE gene products only four play a role in regulating viral gene 

expression (Weir, 2001).  ICP0, ICP4, ICP22 and ICP27 are all involved in 

controlling gene expression, while ICP47 interferes with antigen presentation (York 

& Rock, 1996).  A schematic over-view of HSV-1 viral gene expression is 

presented in figure 1.3.  Below is a brief review of the HSV-1 IE proteins. 

 
 
 
 



ICP0

IE Early Late

VP16 + Oct-1 + HCF

ICP27

ICP4

+ve-ve

Figure 1.3. Schematic view of the sequence of viral gene expression during HSV-1 infection.

A scheme of viral gene expression in HSV-1 infection.  VP16 activates IE gene expression upon forming a 
complex with Oct-1 and HCF.  The subsequent production of ICP4 and ICP0 activates expression of Early 
and Late viral genes.  Diagram adapted from Everett (2000).
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1.4.3.1. ICP4 
 
ICP4 has negative and positive effects upon transcription of viral genes and is 

composed of a number of discrete functional domains involved in transactivation, 

repression, dimerization, nuclear localisation and DNA binding (Gu et al., 1995).  

ICP4 acts as a transactivator of E and L gene expression (Weir, 2001) by 

promoting transcription by facilitating the formation of pre-initiation complexes 

through the recruitment of transcription factor (TF) IID (Grondin & DeLuca, 2000).  

It was also shown that ICP4 requires TFIIA to initiate transcription of the E genes 

(Zabierowski & DeLuca, 2004)  

 

ICP4 is able to repress its own expression by negatively regulating the ICP4 

promoter (Kuddus & DeLuca, 2007).  Repression is thought to require direct 

binding of ICP4 to specific DNA binding sites near the transcription start site.  

Specific ICP4 interactions with general transcription factors including the TATA-

binding protein (TBP) and TFIIB are involved in repression (Kuddus et al., 1995).  

Co-transfection experiments also showed that ICP4 acts to repress the latency 

associated promoter (LAP) by binding to the region spanning the LAP cap site 

sequences.  Deletion of LAP cap site sequences effectively abolished ICP4 

mediated repression (Batchelor et al., 1994). 

 

More recent studies suggest ICP4 is important for circularisation of the HSV-1 

genome, an event that may occur at a site where replication compartments later 

develop (Su et al., 2006). 

 

1.4.3.2. ICP22 
 

ICP22 is not required for virus replication in many cell systems. However, in 

certain rodent cell lines and primary human cells ICP22 is essential for efficient 

viral replication, expression of ICP0 and of a subset of viral L genes (Weir, 2001).  

It has been suggested that the primary role of ICP22 in lytic replication is to alter 

the expression, activity or post-translational modification of cellular proteins in 

order to provide a suitable environment for the expression of L genes (Orlando et 

al., 2006).  Orlando et al. (2006) demonstrated that an ICP22-null virus (22/n199), 

produced virions that were of abnormal composition.  Morphologically they 

contained reduced amounts of the L proteins, Us11 and gC, but increased 
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amounts of ICP0 and ICP4, suggesting that ICP22 affects virion composition 

(Orlando et al., 2006).  

 

1.4.3.3. ICP27 
 
ICP27 is required for the switch between E and L viral gene expression, and for 

efficient DNA replication (Sacks et al., 1985). It has been shown to shuttle 

between the nucleus and the cytoplasm, suggesting a role for it in the nuclear 

export of viral transcripts and is also able to bind to intronless mRNAs (Sandri-

Goldin, 1998).  Koffa et al. (2001) proposed that ICP27 mediates viral mRNA 

transport by recruiting a TAP/NXF1 complex via an interaction with REF proteins 

(Koffa et al., 2001).  This allows the otherwise inefficiently exported viral mRNAs to 

access the TAP-mediated export pathway.  Studies have also shown that ICP27 

associates with polyribosomes and its C-terminus is involved in the stimulation of 

translation (Larralde et al., 2006).  ICP27 is able to interact with the C-terminus of 

RNA polymerase II (used by HSV-1 for viral gene transcription) to facilitate the 

recruitment of this cellular polymerase to sites of viral transcription (Dai-Ju et al., 

2006). 

 

1.4.3.4. ICP47 
 
The HSV-1 IE protein ICP47 is able to block the major histocompatibility complex 

(MHC) class I antigen presentation pathway by binding to the transporter 

associated with antigen presentation (TAP), thus blocking the supply of peptide for 

the correct assembly and trafficking of MHC class I molecules (York et al., 1994).  

As a consequence antigenic presentation is turned off and infected cells are 

hidden from the immune system, suggesting a role for ICP47 in the persistence of 

HSV-1 infection (York & Rock, 1996).  Recent studies in vivo showed that an 

ICP47-defective virus (ΔICP47, F strain) was less able to invade organs of adult 

female mice than the wild-type virus employed in the study, indicating that ICP47 

influences immune evasion (Burgos et al., 2006).  This group also demonstrated 

that the neuroinvasiveness of the ΔICP47 virus was recovered in TAP-deficient 

mice suggesting the TAP-ICP47 interaction is specific to neural tissues.  Thus 

ICP47 appears to be essential for immune evasion, playing a role in infection while 

TAP production is regulated during viral challenge (Burgos et al., 2006). 
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1.4.3.5. ICP0 
 
ICP0 is considered to be a promiscuous transactivator as it activates transcription 

from HSV-1 (Cai & Schaffer, 1992, Chen & Silverstein, 1992) and heterologous 

promoter elements independently of a single cis-acting element (Everett et al., 

1991). 

 

The functional domains of ICP0 have been established via mutational analysis.  

These include a RING finger domain located near the N-terminus (Everett, 1988).  

Many functions of ICP0 are dependent on its RING finger domain (Everett, 2000, 

Harris et al., 1989).  ICP0 interacts with and can promote the degradation of 

various cellular proteins including the nuclear domain 10 (ND10) components 

(described in section 1.5.3.7), PML (Everett et al., 1998a), Sp100 (Parkinson & 

Everett, 2000), CENP-C (Everett et al., 1999a) and CENP-A (Lomonte et al., 

2001).  As ICP0 induces the accumulation of and co-localises with conjugated 

ubiquitin it is considered to be a part of the ubiquitin proteasome pathway and can 

act as a ubiquitin ligase (Boutell & Everett, 2003, Boutell et al., 2002).  Boutell et 

al. (2002) demonstrated that full length ICP0 and its isolated RING finger domain 

possess E3 ubiquitin ligase activity in vitro.  Furthermore, deletion of the RING 

finger domain resulted in an inactive protein  

 

1.4.3.6. ICP0 and USP7 
 

The 135 KDa protein, named ubiquitin-specific protease 7 (USP7) is a member of 

a family of proteins that cleave ubiquitinylated cellular proteins.  It interacts with 

ICP0 residues 594-633 (Everett et al., 1997, Meredith et al., 1995, Meredith et al., 

1994).  Studies have shown that ICP0 is able to induce its own ubquitination in 

vitro, however, this is abolished when ICP0 binds to USP7 (Canning et al., 2004).  

More recent studies have shown reciprocal activity between ICP0 and USP7, 

suggesting that rather than ICP0 mediating degradation of USP7 at low multiplicity 

infections, USP7 stabilises ICP0 during the initial stages of HSV-1 infection 

(Boutell et al., 2005). 
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1.4.3.7. ICP0 and PML 
 

ND10 domains are punctate nuclear structures (Ascoli & Maul, 1991), the major 

constituent of which is PML (Maul et al., 2000).  In HSV-1 infection one of the early 

events is the association of the HSV-1 genome with ND10 domains (Everett & 

Murray, 2005).  Various studies have linked ICP0 to the disruption of ND10 

domains (Everett et al., 1998a, Everett & Maul, 1994, Maul & Everett, 1994) in a 

process that is dependent on its RING finger.  Everett et al. (1998b) proposed 

during HSV-1 infection, ICP0 induces the loss of the high-molecular weight 

isoforms of PML, and the loss of these proteins is dependent on an active 

proteasome-dependent degradation pathway (Everett et al., 1998a).  In 2003, 

using a transfection based approach and a family of deletion and point mutations, 

Boutell et al. demonstrated that sequences in the C-terminus and the lysine 

residue at position 160 of PML were necessary for ICP0-induced degradation of 

ND10 domains (Boutell et al., 2003).  Initial infection with an ICP0-null virus 

showed the major ND10 components (PML, Sp100, and hDaxx) accumulating in 

replication compartments with ICP4 (Everett et al., 2004b).  Everett and Murray 

(2005) showed that associated ND10-like complexes are formed in these 

replication compartments when ND10 proteins are deposited to create new 

aggregates in association with viral complexes, rather than by migration of pre-

existing intact ND10 structures.  Therefore ND10 constituent proteins migrate to 

the viral genome where ICP0 induced disruption and degradation takes place 

(Everett & Murray, 2005). More recently work using an siRNA approach was 

carried out where cells were depleted of PML and infected with HSV-1 ICP0-null 

virus.  It was observed that depletion of PML increased the plaque forming and 

gene expression efficiencies of the ICP0-null HSV-1 mutants.  This suggests that 

PML may contribute to a repressive mechanism that targets HSV-1 genomes and 

is countered by the activities of ICP0 (Everett et al., 2006).  

 

1.4.3.8. ICP0 and ICP4 
 

Both ICP0 and ICP4 have been shown to be present in the tegument of purified 

virions (Yao & Courtney, 1989), suggesting that upon entry of newly infected cells, 

these proteins function in synergy to activate viral gene expression (Yao & 

Schaffer, 1994).  Using far-western blotting analysis and glutathione S-

tranasferase (GST)-ICP0 affinity chromatography Yao and Schaffer (1994) 
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showed ICP0 to be capable of interacting directly and specifically with itself and 

ICP4.  GST-ICP0 fusion protein affinity chromatography showed ICP4 to interact 

preferentially with the C-terminal amino acid residues 395-775 of ICP0.  Further 

deletion analysis suggested amino acids 617-775 of ICP0 may represent the major 

domain for physical interaction of ICP4 and ICP0 (Yao & Schaffer, 1994). 

 

1.4.3.9. ICP0-null viruses 
 

In order to asses the biological activities of ICP0, an ICP0-null virus, dl1403, was 

constructed (Stow & Stow, 1986).  HSV-1 viruses mutated for ICP0 are viable, but 

they exhibit a multiplicity and cell cycle-dependent defect in the onset of viral 

infection (Sacks & Schaffer, 1987, Yao & Schaffer, 1995).  Cell type is also a 

complicating factor when working with ICP0-null viruses.  This mutant virus has 

been shown to replicate to normal levels in the permissive osteosarcoma cell line 

U20S (Yao & Schaffer, 1995).  In Vero (African green monkey) and BHK (baby 

hamster kidney), replication efficiency is reduced, while replication efficiency in 

human fibroblast cell lines is extremely poor (Everett et al., 2004a, Hancock et al., 

2006, Stow & Stow, 1986).  Hancock et al. (2006) suggested gene expression is 

inhibited via a multi-step anti-viral gene silencing pathway and that VP16 and ICP0 

act as inhibitors of separate steps in this pathway.  This gene silencing pathway 

may be inactive in U2OS cells, accounting for the ability of these cells to 

complement defects in these viral functions. 

 

Upon infecting non-permissive cell lines with ICP0-null viruses, at a low MOI, 

either quiescence or stalled infection is observed.  Stalled infection displays one of 

three possible phenotypes; stalled with an incomplete set of expressed IE genes, 

stalled at the IE stage, or stalled with the expression of some E genes (Everett et 

al., 2004a).  However, this inhibition of infection can be overcome at a high MOI, 

whereby infection proceeds normally even in the absence of ICP0 (Everett et al., 

2004a, Stow & Stow, 1986). 

 

1.4.4. Viral transcription and translation  
 

The E genes are expressed after the IE genes.  Transcription of this set of genes 

requires functional ICP4 (Watson & Clements, 1980) but not viral DNA synthesis 

(Roizman, 2001).  The E genes include UL29, encoding ICP8 and UL23 encoding 
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thymidine kinase.  UL29 is expressed shortly after the onset of the synthesis of the 

IE proteins, while UL23 is expressed with more significant delay following IE 

protein expression (Huszar & Bacchetti, 1981, Roizman, 2001). 

 

The final class of genes to be expressed are the L genes, the expression of which 

begins with the initiation of DNA replication (Weir, 2001), which can be divided into 

two individual classes leaky-late and true-late genes (Roizman, 2001).  The 

true-late genes (for example, UL38), require DNA replication for significant levels 

of protein expression, while leaky-late genes (for example, UL19) can be 

expressed in the absence of DNA replication (Roizman, 2001).  The L genes 

encode for structural proteins of the virion including scaffolding proteins. 

 

1.4.5. Capsid assembly, DNA replication, packaging and virion maturation 
 

HSV DNA replication takes place in the nucleus of infected cells (Becker et al., 

1968).  The herpes simplex virus genome contains both cis- and trans-acting 

elements which are important in viral DNA replication (Wu et al., 1988).  Three cis-

acting replication origins are thought to exist, consisting of two distinct but related 

DNA sequences, oriL of which there is one copy in the viral genome and oriS of 

which there are two copies (Spaete & Frenkel, 1982, Stow, 1982, Stow & 

McMonagle, 1983, Weller et al., 1983).  Studies have shown that plasmid DNAs 

containing either oriL or oriS are replicated when they are introduced into 

HSV-infected cells (Spaete & Frenkel, 1982, Stow, 1982, Stow & McMonagle, 

1983, Weller et al, 1983), suggesting that oriL and oriS are sites at which viral DNA 

synthesis is initiated (Wu et al., 1988).  Challberg (1986) showed that five cloned 

restriction fragments of HSV-1 DNA together can supply all of the trans-acting 

functions needed for the replication of plasmids containing oriL or oriS when 

co-transfected into Vero cells (Challberg, 1986).  Using this approach in 

conjunction with data from large scale sequence analysis of the HSV-1 genome 

Wu et al. (1988) identified seven HSV genes which are necessary for transient 

replication of plasmids containing either oriL or oriS, As shown previously, two of 

these genes encode the viral DNA polymerase (UL30) and single-stranded DNA-

binding protein (UL29)`.  Wu et al. (1988) propose that the seven genes essential 

for plasmid replication comprise a set of genes whose products are directly 

involved in viral DNA synthesis. 
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It has been suggested that replication is a two-stage process.  Initial theta 

replication is followed by rolling circle replication to generate, head to tail 

concatemers of double stranded viral DNA (Boehmer & Lehman, 1997).  After 

replication viral DNA is incorporated into preformed capsids (Stow, 2001).   

 

Capsids containing DNA leave the nucleus by a budding event at the inner nuclear 

membrane, a process involving UL34 and UL31.  This results in the formation of 

enveloped virions in the perinuclear space.  The primary envelope fuses with the 

outer part of the nuclear membrane releasing the nucleocapsids into the 

cytoplasm.  The final stages of envelopment, including acquisition of tegument and 

envelope glycoproteins, occurs by budding into Golgi derived vesicles.  Mature 

virions are released following fusion of the vesicle membrane with the membrane 

compartment of the cell (Mettenleiter, 2004).   

 

Another model proposes multiple routes of egress for HSV-1, including budding of 

the capsids at the inner nuclear membrane into the perinuclear space where the 

tegument and a thick viral envelope are acquired.  Virions travel via intraluminal 

transportation into the Golgi cisternae, where one or more of the virions are 

packaged into transport vacuoles.  Alternatively, capsids may gain direct access to 

the cytoplasm via impaired nuclear pores.  Cytoplasmic capsids may bud at the 

outer nuclear membrane, at membranes of the endoplasmic reticulum (ER), or at 

Golgi cisternae (Leuzinger et al., 2005). 

 

1.5. Latent infection 
 

A specific feature of all herpesviruses is their ability to establish life-long latency 

within their hosts (Efstathiou & Preston, 2005).  Latency occurs due to a failure of 

the virus to initiate productive lytic infection as all the lytic genes are switched off 

(Preston, 2000).  During HSV-1 infection, primary replication at oral mucosa 

results in the virus accessing sensory nerve terminals.  The virions are then 

transported to neuronal cell bodies by retrograde axonal transport to trigeminal 

ganglia.   The genome is maintained as a nucleosomal circular episome during 

latency (Efstathiou & Preston, 2005, Preston, 2000).   

 

Latency is established when the viral genome is delivered to the nucleus but IE 

gene expression is not activated.  IE gene activation fails if the three proteins 

(VP16, HCF, and Oct-1) involved in stimulating transcription do not interact 
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(Efstathiou & Preston, 2005).  Kristie et al. (1999) attributed the failure of IE gene 

expression to occur because VP16 does not reach the neuronal nucleus in 

sufficient amounts to mediate IE gene expression.  Other work suggests that HCF 

sequesters VP16 at the cytoplasm of sensory neurons thus restricting IE 

transcription (Kristie et al., 1999).  It has also been proposed that a number of 

proteins related to Oct-1 fail to complex with VP16 thus acting as repressors of IE 

gene expression (Efstathiou & Preston, 2005). 

 

During latency the expression of all IE genes is known to be switched off (Preston, 

2000).  However, this is not the only defining feature of latency as a set of viral 

transcripts known as the latency associated transcripts (LATs) accumulate 

(Margolis et al., 1992, Preston, 2000).  Two major LAT products are produced 

from a 8.3 Kb polyadenylated transcript, a 2 Kb intron which is spliced and a 1.5 

Kb product (Farrell et al., 1991, Margolis et al., 1992).  These are located to the 

neuronal nucleus, and are transcribed anti-sense to and partially complementary 

to the ICP0 coding sequences (Preston, 2000).  In 1988 Javier et al. demonstrated 

that a virus that was unable to express LAT could still establish latency in mice 

and was also able to be reactivated (Javier et al., 1988).  This was confirmed by 

Steiner et al. (1989) who used a HSV-1 LAT deletion virus to infect mice.  They 

showed that in explanted trigeminal ganglia, that LATs were not required for the 

maintenance of latency (Steiner et al., 1989).  More recent studies have created a 

mouse transgenic for the LAT 5’ exon and 2 Kb intron.  When these mice were 

infected with HSV-1, no difference in lytic replication or in the establishment and 

maintenance of latency was observed when compared to non-transgenic mice.  

This suggests that LATs have no effect on these functions when supplied in trans 

(Gussow et al., 2006).   

 

A number of studies have suggested that the LATS are effective at blocking virus 

induced apoptosis both in vitro and in the trigeminal ganglia of acutely infected 

rabbits (Inman et al., 2001, Perng et al., 2000).  Ahmed et al. (2002) propose that 

the region of the LAT that includes the 2 Kb intron exhibits an antiapoptotic 

function.  In cells transfected with a construct expressing the 2 Kb LAT as well as 

several LAT deletion constructs it was observed that the 5’ region of the 2 Kb LAT 

intron and the exon 1 region of the LAT were vital for protection from apoptosis 

(Ahmed et al., 2002).  It is possible that the proposed ability of the LATs to prevent 

HSV-1 induced apoptosis may be important in preventing the virus from causing 
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extensive neuronal damage and subsequent neuronal disorders (Perng et al., 

2000). 

 

HSV-1 latency is associated with chromatin modification and remodelling as the 

latent genomes are known to persist as circular episomes associated with histones 

(Deshmane & Fraser, 1989).  Further work using cultured sensory neurones 

showed that the ICP0 promoter was activated by the histone deacetylase inhibitor 

trichostatin A (TSA), indicating that the latent genomes respond to changes in the 

acetylation state of histones (Arthur et al., 2001).   

 

Studies have shown that during latency, the lytic regions of the virus exist in a 

hypoacetylated (transcriptionally non-permissive) state, while the LAT promoter 

and 5’ exon/enhancer remain hyperacetylated (transcriptionally permissive) (Kubat 

et al., 2004).  Amelio et al. (2006a) used latently infected dorsal root ganglia to 

assess relative levels of LAT and histone H3 acetylation of the LAT locus and 

ICP0 promoter at early time post-explant.  The increase in levels of acetylation at 

the ICP0 promoter after deacetylation of the LAT enhancer suggested that 

chromatin remodelling at both the LAT locus and the ICP0 promoter may be 

directly linked during reactivation.  Therefore the LAT could function to recruit a 

novel histone-modifying complex, which establishes and maintains active 

expression of the LAT during latency (Amelio et al., 2006a).  Amelio et al. (2006b) 

identified a 1.5 kb region containing a CTCF (CCCTC-binding factor) motif in the 

LAT region.  This motif was found to exhibit enhancer blocking and silencing 

activites by binding to motifs on the latent genome and insulating the LAT 

enhancer, thus suggesting that the CTCF motif may facilitate the formation of 

distinct chromatin boundaries during HSV-1 latency (Amelio et al., 2006b). 

 

1.5.1. Reactivation from latency 
 

Reactivation of a latent virus can be caused by a number of factors including 

immune suppression, emotional and physical stress and exposure to UV light 

(Wysocka & Herr, 2003).  Given that during latency the viral genome is associated 

with non-acetylated histones, it would appear that the virus must act to overcome 

this repressive effect exerted by histones to overcome latency.  Thus reactivation 

would employ a mechanism of IE gene activation that can be initiated in the 

absence of VP16 (Efstathiou & Preston, 2005).   
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In vivo reactivation studies have previously shown various stressful stimuli can 

lead to reactivation from latency (Wang et al., 2005).  This induces changes in the 

physiological state of sensory neurons that contain the latent viral genome 

(Sawtell & Thompson, 2004).  Latent HSV-1 in mouse ganglia was shown to be 

reactivated upon infection of dissociated ganglia with adenoviruses expressing 

VP16, ICP0 or ICP4 (Halford et al., 2001).  These findings indicate that in the 

absence of ICP0, adenovirus directed expression of VP16 or ICP4 initiates 

reactivation in neurone based systems, possibly by exerting a general effect on 

the genome or by stimulating ICP0 production from the quiescent or latent 

genome.  However Halford et al. (2001) showed that reactivation by ICP0-null 

mutants is considerably less efficient than that observed with wild type viruses 

upon explantation of ganglia suggesting reactivation can occur in the absence of 

ICP0. 

 

Recent studies using wild type, revertant, ICP0-null or ICP0-mutant viruses have 

demonstrated that upon hyperthermic stress in mouse models, ICP0-defective 

viruses did not produce infectious virus, however, they did express ‘lytic-phase 

viral proteins’ at levels that were as easily detectable as in reactivating neurones 

infected with wild-type and revertant viruses. This suggested that ICP0 is not 

required for the initiation of reactivation, but instead is needed to activate 

productive infection once reactivation has been initiated (Thompson & Sawtell, 

2006). 

 

1.5.2. Reactivation of quiescent genomes 
 

Work by Harris and Preston (1991), Preston and Nicholl (1997) and Samaniego et 

al. (1998) showed that after infection with mutants defective for IE proteins the 

virus establishes a quiescent state, during which promoters which would be active 

in the context of the cellular genome become repressed when placed in the 

context of the virus (Preston, 2000, Preston & Nicholl, 1997).   

 

ICP0 was initially believed to be the HSV-1 protein involved in reactivation of 

quiescent viruses following studies carried out by Russell et al. (1987) whereby 

quiescent virus was observed to resume replication following super-infection of 

cultures with HSV-1, HSV-2 or HCMV (Russell et al., 1987).  However it was 

observed that the mutant virus dl1403 (deficient for ICP0) was unable to reactivate 
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HSV-2, thus suggesting a requirement for ICP0 in the reactivation of quiescent 

HSV (Preston, 2007).  This was further confirmed when it was found that the 

mutant virus dl1403 could be retained in a quiescent state in human fibroblasts, 

and super-infection of these cultures with wild-type HSV-1 resulted in reactivation 

(Stow & Stow, 1989).  Therefore, it is possible that ICP0 can influence the balance 

between lytic and latent infection in cultured cells. 

 

A further observation by Preston (2007) suggested quiescent HSV-1 genomes are 

reactivated by super-infection with the ICP0-null virus (dl1403) under appropriate 

conditions.  Human fibroblasts were infected with in1374 (HSV-1 recombinant 

mutated for VP16, ICP0 and ICP4) to establish quiescent infection.  When 

super-infected with dl1403 at various MOIs and stained with X-gal most plaques 

observed were β-gal positive at the lowest MOI.  To eliminate effects of DNA 

replication, quiescent infected cells were super-infected with in1330 (HSV-1 

recombinant deleted for ICP0 and a temperature sensitive mutation in ICP4) or 

dl1403 and maintained at 32oC or 38.5oC.  β-gal expression was activated at 32oC, 

but only dl1403 was active at 38.5oC therefore dl1403 is dependent on functional 

ICP4 but not on DNA replication.  It is possible that genomes retain different levels 

of silence and upon super-infection some are more susceptible to trans acting 

factors from dl1403, thus reactivation of some quiescent genomes is observed, 

and therefore highlights similarities between quiescence in fibroblasts and latency 

in neurons (Preston, 2007). 

 

1.6. HCMV Biology 
 

1.6.1. The HCMV genome 
 

The HCMV genome is the largest within the herpesvirus family, consisting of a 

linear double stranded DNA molecule of 235646 bp with a G+C content of 

approximately 56%.  It is organised into two segments, designated UL and US, 

which are in turn flanked on one side by terminal repeated sequences (TRL and 

TRS) and on the other by internal repeats (IRL and IRS) yielding the overall gene 

configuration of TRL-UL-IRL-IRS-US-TRS (Chee et al., 1990, Mocarski, 2001).  

 

The HCMV strain AD169 genome sequence, published in 1990, predicted 208 

ORFs, 14 of which are duplicated within the TRL/IRL repeats (Chee et al., 1990).  
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However in 1997 Dargan et al. (1997) identified a novel 929 bp sequence in 

HCMV strain AD169 representing the upstream portion of the gene UL42 and an 

adjacent downstream portion of gene UL43.  As the novel 929 bp sequence was 

observed to be present in most isolates of AD169, the revised sequence of AD169 

was proposed to have a total genome length of 230283 bp (Dargan et al., 1997).  

AD169 is extensively used as a laboratory strain as, not only is the sequence 

available but it also replicates more efficiently than clinical isolates (Cha et al., 

1996).  However, it differs from clinical isolates in terms of genomic structure and 

biology (Prichard et al., 2001).  For example AD169 lacks 19 ORFs that are 

present in clinical isolates and it fails to replicate in endothelial cells, which are 

permissive for replication of some clinical isolates (Murphy et al., 2003b).  

Comparisons of AD169 with data from other strains showed it to be a multiple 

mutant, containing frame shifts in three genes RL5A, RL13, and UL131A (Davison 

et al., 2003b). 

 

Early work by Chee et al. (1990) established that the HCMV genome sequence 

(AD169) stood at 229354 bp.  As laboratory strains have undergone deletions and 

re-arrangments during adaptation to growth in cell culture and since HCMV has 

not yet been sequenced directly from genetic material a full picture of the gene 

content of wild type HCMV is not available (Davison et al., 2003a).  In order to 

improve interpretation, the HCMV sequence was compared with a close genetic 

relative, as most of the essential protein coding regions are conserved during 

evolution.  The Chimpanzee CMV (ChCMV) genome was sequenced (the closest 

known relative of HCMV) and used to reassess the gene layout of HCMV.  Of the 

189 unique genes originally proposed in AD169 by Chee et al. (1990), 108 

remained unchanged as a result of subsequent reinterpretations, 46 genes were 

discounted as being unlikely to encode proteins and five new AD169 genes 

(UL15A, UL21A, UL128, UL131A and US34A) were identified.  Further 

comparison of the ChCMV genome with the HCMV Toledo strain confirmed that 

the AD169 sequence was correct.  However, the additional region at the right end 

of UL in Toledo (containing 19 genes absent from AD169) was found not to be co-

loinear with the corresponding part of the ChCMV genome (Davison et al., 2003a).  

Thus derivation of the ChCMV sequence showed both HCMV AD169 and ChCMV 

genomes to be co-linear, each possessing a few genes lacking in the other. The 

40 core genes inherited from the common ancestor of the Alpha-, Beta- and 

Gammaherpesvirinae were found to be located in the central region, with most 
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non-core genes located nearer the genome termini.  Genes nearer the genome 

termini generally exhibited higher levels of sequence divergence reminiscent of the 

two sub-species of HHV-6.  Davison et al. (2003) concluded that ChCMV encodes 

165 genes each present as single copies, while AD169 contains 145 genes, with 

four of these genes present in two copies in the RL elements.  Therefore, 

assuming that the wild type HCMV genome approximates to the AD169 genome 

plus a rearrangement of the additional genes at the right end of UL in Toledo a 

complement of 164-167 genes was inferred (Davison et al., 2003a).   

 

The coding potential of the HCMV AD169 genome was also re-evaluated by 

Murphy et al. in 2003 using a Bio-Gene Finder (BDGF) algorithm.  The gene-finder 

algorithm was used to assess the potential of an ORF to encode a protein based 

on matches to a database of amino acid patterns derived from a large collection of 

proteins.  The algorithm was used to score HCMV ORFs with the potential to 

encode polypeptides greater than 50 amino acids in length.  The genomes of 

chimpanzee, rhesus and murine cytomegalovirus were also analysed using BDGF 

to search for orthologues of predicted HCMV ORFs as a further test for 

functionality.  The analysis by Murphy et al. (2003) discounted 37 ORFs predicted 

by Chee et al. (1990), and further predicted 12 novel protein coding ORFs, 

predicting that the HCMV genome contains approximately 192 unique ORFs with 

the potential to encode a protein (Murphy et al., 2003a). 

 

The genetic content of the HCMV genome was further investigated by sequencing 

the 235645 bp genome of a low passage strain Merlin.  Comparative analyses with 

the genome of AD169 indicated that the strain Merlin accurately reflected the wild 

type complement of 165 genes (Dolan et al., 2004).  This study by Dolan et al. 

(2004) however, discounted the 12 novel protein coding ORFs predicted by 

Murphy et al. (2003) as only modest levels of discrimination were thought to be 

achieved using the BDGF, even for recognised genes. Therefore, without 

additional data it was considered premature to include these ORFs in the gene 

layout. 

 

The HCMV genome is densely packed with ORFs, but contains very few 

polyadenylation signals.  Thus, many spliced and non-spliced HCMV genes share 

polyadenylation signals, leading to the generation of 3’ co-terminal groups within 

specific regions of HCMV DNA, (Smuda et al., 1997).  Further analysis revealed 
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ORFs such as UL146/UL147A (Lurain et al., 2006), UL122/UL123 and UL37 

overlap (Adair et al., 2003, Awasthi et al., 2004). 

 

1.6.2. HCMV capsid 
 

Three types of HCMV capsids are produced: A capsids which are the products of 

abortive DNA packaging and lack the viral genome, B capsids which are 

precursors of fully mature particles, containing scaffolding proteins but again lack 

the DNA genome, and C capsids which are mature capsids containing the full 

length viral genome (Gibson et al., 1996). 

 

The study of HCMV capsids has focused on the B capsid, which is the pre-formed 

capsid prior to DNA encapsidation, tegument formation and envelopment.  It 

consists of proteins found in the capsid within the intact virus particle including an 

internal assembly protein (Chen et al., 1999).  The HCMV capsid consists of four 

structural components: the major capsid protein (MCP), the minor capsid protein 

(mcP), the minor capsid binding protein (mCBP) and the small capsid proteins 

(SCP) (Borst et al., 2001).  HCMV SCP is considered to be the homologue of 

HSV-1 VP26 and, similar to its HSV-1 counterpart, it is found located the tips of 

hexameric capsomers (Borst et al., 2001, Gibson et al., 1996).   

 

HCMV B capsids are larger in diameter than HSV-1 capsids (130 nm and 125 nm 

respectively), allowing the HCMV B capsid to accommodate a DNA molecule that 

is 60% larger than the HSV-1 genome (Butcher et al., 1998).  These differences in 

capsid size can be attributed to spacing and relative tilt of HCMV triplex proteins 

and the size of the scaffold core (Butcher et al., 1998).  Electron-cryomicroscopy 

was used to image full and empty HSV-1 and HCMV capsids.  Measurements 

obtained from images showed that the HCMV genome is packaged at a higher 

density, than the HSV-1 genome, with an inter-layer spacing of 23 Å compared to 

26 Å of HSV-1 (Bhella et al., 2000). 
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1.7. HCMV pathogenesis 
 

1.7.1. HCMV prevalence and disease 
 

HCMV is thought to be acquired at an early age.  In developed countries 

seroprevalence is thought to be around 30-70%.  However, in developing 

countries, the prevalence exceeds 90% in certain socioeconomic groups and 

homosexual men (Gandhi & Khanna, 2004).  The virus is transmitted via a number 

of routes that include sexual contact, saliva, placental transfer, breast-feeding, 

blood transfusion, solid organ transfer or haemopoietic stem cell transfer (Pass, 

2001). 

 

Infection with HCMV during pregnancy often results in severe consequences.  

Statistics show primary infection during gestation poses a 30-40% risk of clinical 

disease (Fisher et al., 2000). The risk to the infant is greatest if infection occurs 

during the first trimester of pregnancy (Gandhi & Khanna, 2004).  The infant can 

be infected via viral transmission through the placenta, during delivery from 

cervical secretions, blood or from the mother by breast milk (Fisher et al., 2000).  

 

Approximately 15% of women with primary HCMV infection during the early stages 

of pregnancy abort spontaneously (Griffiths & Baboonian, 1984).  It is the 

placenta, not the foetus that shows evidence of infection, suggesting the placenta 

is infected before the embryo or the foetus (Mostoufi-zadeh et al., 1984).  Recent 

studies by Fisher et al. (2000) used culture models of trophoblast populations from 

the maternal-foetal interface to observe HCMV infection of human placental cells 

in vitro.  They observed the placenta to be an ineffective barrier to HCMV 

transmission, with cytotrophoblasts becoming infected in several locations.  These 

locations suggest specific routes by which the virus reaches the foetus in utero.  

Currently no vaccine is available for HCMV infected infants, however, some 

studies have shown that administration of intravenous human immunoglobulin to a 

pregnant mother with a primary HCMV infection, could potentially protect the 

foetus (Malm & Engman, 2007). 

 

Ten to seventeen percent of infants with asymptomatic infection develop hearing 

defects or neurodevelopmental sequelae.  Furthermore 5-10% of congenitally 

infected neonates present with irreversible CNS involvement in the form of 

microecephaly, encephalitis, seizures, upper motor neuron disorders or 
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psychomotor retardation (Boppana et al., 1992).  Infected newborn babies can 

also show other clinical features such as jaundice, petechiae and hepatitis, all of 

which tend to resolve without treatment.  However long-term studies have 

indicated that 80% of affected infants display serious life long neurological 

abnormalities with severe life threatening organ dysfunction and death in 10-20% 

of patients (Gandhi & Khanna, 2004). 

 

As HCMV can establish latent infections it is thought the foetus can in some cases 

become infected after reactivation of maternal infection.  In this case, less severe 

clinical disease is observed in the offspring (Gandhi & Khanna, 2004).   

 

Initial infection with HCMV results in a primary immune response, with subsequent 

establishment of long-term immunity preventing viral replication after reactivation 

from latency.  However long-term immunosupression can lead to uncontrolled 

replication of the virus in the host and can result in serious disease (Gandhi & 

Khanna, 2004).  In cases of solid organ transfer such as kidney transplantation, 

HCMV is the single most frequent infectious complication observed (Sagedal et 

al., 2005), with the risk of infection being heightened because the patient is 

immunosuppressed.  Those most at risk are serologically negative patients who 

receive organs from serologically positive donors.  Limited organ availability 

means matching seronegative donors and recipients is not always possible 

(Gandhi & Khanna, 2004).  HCMV associated disease in 

transplant/immunosupressed patients manifests itself in the transplanted organ 

(i.e. hepatitis arises in liver transplant patients, pancreatitis arises in pancreas 

transplant patients).  However, disease can spread rapidly leading to a host of 

other symptoms including pneumonitis, enteritis, retinitis and CNS involvement 

(Sagedal et al., 2005). 

 

One method of preventing HCMV disease is pre-emptive anti-HCMV therapy.  An 

antiviral agent is introduced at the first signs of HCMV antigenaemia (detection of 

HCMV pp65 antigen in leukocytes), positive HCMV PCR, or positive HCMV 

viraemia in the blood.  When compared with prophylaxis this method means fewer 

patients are exposed to anviral agents, resulting in less drug resistance (Sagedal 

et al., 2005).   
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1.7.2. HCMV latency and reactivation 
 

As mentioned previously latency and reactivation are the defining characteristics 

of herpesviruses and HCMV is no exception.  It is able to effectively establish 

lifelong persistence within the host following initial usually asymptomatic infection, 

by persisting in specific sites in the host.  However the viral genome retains the 

ability to reactivate in response to specific stimuli (Sinclair & Sissons, 2006). 

 

The presence of HCMV DNA in the peripheral blood leukocytes of healthy, HCMV 

seropositive individuals was only discovered by the technological advances of 

PCR (Stanier et al., 1992, Taylor-Wiedeman et al., 1991).  It was established that 

peripheral blood monocytes are the major site of carriage of HCMV DNA in healthy 

individuals by using sorted peripheral blood monocytes (Larsson et al., 1998, 

Smith et al., 2004, Taylor-Wiedeman et al., 1991).  Other studies have shown that 

HCMV DNA could be detected in CD34+ bone marrow progenitors (Mendelson et 

al., 1996).  Although CD34+ cells give rise to B cells, T cells and 

polymorphonuclear leukocytes (PMNLs) as well as monocytes no evidence of 

HCMV has been detected in the PMNL, T-cell or B-cell fractions of peripheral 

blood, in normal healthy carriers (Taylor-Wiedeman et al., 1991).  How the HCMV 

genome is maintained selectively in only particular sub-sets of cells arising from 

common CD34+ stem cells carrying viral DNA is as yet not understood (Sinclair & 

Sissons, 2006).  Various studies have determined that in monocytic cells and their 

precursors, it appears that HCMV is carried in a true latent state, with little or no 

accompanying viral IE gene expression (Mendelson et al., 1996, Taylor-Wiedeman 

et al., 1994).   

 

Various latent model systems have been set up to try to identify HCMV latent viral 

transcripts.  Early work by Kondo et al. (1996) used infected granulocyte- 

macrophage precursors (GMPs) derived from foetal liver cells to identify HCMV 

transcripts expressed in the absence of virus production, termed cytomegalovirus 

latency-specific transcripts (CLTs).  The CLTs were found to include novel spliced 

and unspliced RNA transcripts that mapped to both strands of the HCMV major IE 

region (Kondo et al., 1996).  Some of these transcripts and antibodies to CLT 

ORFs were detected in healthy seropositive individuals, but many transcripts were 

also detected in infected cells in culture (Kondo et al., 1996), thus the true role of 

these transcripts remains to be established.  Goodrum et al. (2002) identified 

multiple viral RNAs associated with the carriage of the virus in the absence of 
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production of infectious virions; many, if not all which were also detected in 

productive infection.  However, it was not determined whether any of these 

transcripts were detected in mononuclear cells of normal, healthy carriers 

(Goodrum et al., 2002).  Studies based on transcripts identified by Goodrum et al. 

(2002) identified viral RNA from monocytes of healthy seropositive carriers (Bego 

et al., 2005).  These RNA transcripts were observed to be antisense to the UL81-

82 region of the viral genome.  As these RNA transcripts were partially antisense 

to the viral UL82 gene, encoding pp71 a transcriptional transactivator of the MIEP, 

it has been suggested this transcript (or its protein product) maybe involved in 

restricting IE gene expression in order to maintain latency (Bego et al., 2005).  

 

It is generally considered that myeloid cells are an important site of true latency in 

vivo.  However, the possibility remains that in healthy carriers other sites of latency 

may occur, this is mainly due to a number of cell types becoming rapidly infected 

upon clinical reactivation (Sinclair & Sissons, 2006).  It was suggested that 

endothelial cells (ECs) may be a reservoir of latent virus as CD34+ bone marrow 

derived cells may give rise to ECs (Jarvis & Nelson, 2002, Quirici et al., 2001).  

This however, was disputed by Reeves et al. (2005), as latent HCMV genomes 

were not detected in ECs of healthy seropostive individuals, despite HCMV DNA 

being readily detected in monocytes at the same time.  It is therefore possible that 

HCMV may persist in certain cells types, at a low level of productive infection 

(Sinclair & Sissons, 2006). 

 

After establishing latency within its host, sporadic reactivation events can occur, 

that are generally controlled by cell-mediated immunosurveillance.  However when 

reactivation occurs in immnocompromised or immunosuppressed individuals 

replication of the virus becomes uncontrolled leading to morbidity and mortality 

(Sinclair & Sissons, 2006).  As with the other herpesviruses (EBV and HSV-1), 

reactivation from latency is dependent upon expression of viral IE genes which 

determine commitment of the virus to lytic infection (Sinclair & Sissons, 2006). 

 

Myeloid cells appear to be classical sites of viral latency, in peripheral blood of 

healthy individuals carrying viral DNA no appreciable levels of infectious virus or 

lytic gene expression is observed (Mendelson et al., 1996, Taylor-Wiedeman et 

al., 1994).  It is believed that the undifferentiated nature of these cells is important 

in maintaining latency of HCMV genomes (Reeves et al., 2005a).  However, once 



Tanya Chaudry 2008  Chapter 1 40

myeloid cells differentiate to macrophages and dendritic cells (DC) a fundamental 

change in their ability to support IE gene expression occurs (Taylor-Wiedeman et 

al., 1994).  Differentiation of these myeloid cells, generated from healthy 

seropositive carriers, reactivated HCMV and suggested that latency and 

reactivation in these cells maybe controlled by chromatin remodelling of the MIEP 

to regulate lytic gene expression (Reeves et al., 2005a).  Chromatin-mediated 

regulation of transcription is achieved by a number of post-translational 

modifications of histone N-terminal tails (Berger, 2002).  Histone acetylation 

causes chromatin to adopt an open structure allowing access of DNA-binding 

factors to the DNA template resulting in an increase in gene expression.  The 

recruitment of various silencing proteins e.g. heterochromatin protein 1 (HP1) or 

the deacetylation or methylation of histones causes a closed, transcriptionally 

silenced chromatin state preventing viral gene expression (Kouzarides, 2002). 

 

Reeves et al. (2005b) showed that in CD34+ cells, the viral MIEP is associated 

with the HP-1 protein and not acetylated histones, consistent with CD34+ cells 

being non-permissive for HCMV IE gene expression.  In contrast, differentiation of 

infected CD34+ cells to mature CD34+-derived DCs, ultimately resulted in 

reactivation of infectious virus.  This was observed to be preceded by chromatin 

remodelling of the MIEP such that it was associated with acetylated histones.  

Thus repression of the HCMV lytic gene expression after infection of CD34+ cells 

correlates with the recruitment of repressive chromatin markers (HP1) to the MIEP 

promoter. The exact mechanism, however, remains unclear (Reeves et al., 

2005b). 

 

Murphy et al. (2002) showed using transformed human cell lines, teratocarcinoma 

cells (NT2D1) and the myelomonocytic (THP1) cells, that when undifferentiated 

(non-permissive for HCMV IE gene expression), repression of the MIEP in these 

cells was associated with a closed chromatin conformation.  However, when 

differentiation of these cells was induced with retinoic acid or phorbol esters to 

allow them to become permissive for HCMV IE gene expression acetylated 

histones were associated with the MIEP, consistent with transcriptional activation 

at the MIEP.  Recent studies have shown that cellular transcription factor, Ets-2 

repressor factor, (ERF) physically interacts with HDAC1 to mediate the repression 

of the MIEP in undifferentiated non-permissive cells.  This suggests that the 

changes in chromatin structure around the MIEP, observed by Murphy et al. 
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(2002) upon differentiation of cells from a non-permissive to permissive phenotype 

(Murphy et al., 2002) may be due to differential recruitment of chromatin 

remodellers such as HDAC1 by factors such as ERF (Wright et al., 2005).   

 

1.8. HCMV Lytic infection 
 

1.8.1. Attachment and penetration 
 
The first event in HCMV infection is attachment to and penetration of the host cell 

membrane.  During this process, glycoproteins on the viral envelope play an 

important role in adsorption and penetration of the virus into the cell (Cirone et al., 

1994, Yurochko et al., 1997).  The initial association of the virion with the cell 

membrane is followed by binding of viral glycoproteins to specific receptors 

(Navarro et al., 1993).   

 

Three major glycoprotein complexes of the virus have been identified, the gCI, 

gCII, and gCIII.  The gCI complex, which is composed of homodimeric molecules 

of gB, is a highly conserved herpesvirus glycoprotein, linked by disulphide bonds.  

This homodimeric complex can promote virion penetration into cells and promote 

transmission of infection from cell-to-cell (Bold et al., 1996, Compton et al., 1992, 

Navarro et al., 1993). The gCII complex is composed of glycoproteins gM and gN 

(Li et al., 1997), linked by non-covalent and disulphide bonds (Mach et al., 2000).  

The physical interaction between the two glycoproteins is presumed to be 

necessary for the correct post-translational modification and transport of the 

complex through the exocytic pathway (Mach et al., 2000).  Deletion of the 

carboxy-terminal of gN resulted in a replication incompetent virus.  However, when 

compared to wild-type virus it was found that complex formation of mutant gN with 

gM and transport of the complex to the viral assembly compartment seemed to be 

unaltered (Mach et al., 2007).  Mach et al. (2007) suggest that gN may be involved 

in the secondary envelopment of the HCMV virion as disruption of the 

carboxy-terminus of gN resulted in a decrease in secondary envelopment of 

HCMV capsids. 

 

The gCIII complex was initially thought to consist of two glycoproteins with 

average molecular masses of 145 and 86 kDa.  These were thought to be 

differentially modified forms of gH (Bogner et al., 1992, Gretch et al., 1988).  It was 
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later established that the gH homologue of HSV-1 required a second protein, gL, 

for intracellular transportation, and correct folding of gH.  Thus, the gL homologue 

of HCMV was identified (Spaete et al., 1993).  Spaete et al. (1993) showed gH and 

gL of HCMV complexed by forming disulphide bonds, suggesting the gCIII 

complex consisted of an oligomeric form of gH and gL.  Later work identified a 

third member of this complex, gO (Huber & Compton, 1997, Huber & Compton, 

1998, Li et al., 1997).  The tripartite gH-gL-gO complex assembled in two steps 

with gH and gL associating by disulphide bonding to form the gH-gL complex, 

followed by subsequent association of gO.  This forms a precursor pgCIII complex 

that is processed to the mature gCIII complex in a post-endoplasmic reticulum 

compartment (Huber & Compton, 1999).  In addition a gO deletion mutant virus 

was impaired for viral growth and cell-to-cell spread, suggesting a role for gO in 

the fusion and entry process (Hobom et al., 2000).   

 

Following interaction with gB and heparan sulphate binding, the gB homodimer is 

believed to interact with the epidermal growth factor receptor (EGFR) inducing an 

intracellular signalling cascade (Wang et al., 2003).  Activation of EGFR initiates 

receptor homodimerization/hetero-oligomerization, leading to autophosphorylation 

at specific tyrosine residues, receptor internalization and the induction of 

associated intracellular signalling (Schlessinger, 2000, Ullrich & Schlessinger, 

1990).  Following release of the capsid into the cytoplasm some of the tegument 

components are lost.  Transport of the capsid is thought to occur when viral 

tegument proteins interact with the host machinery involved in cellular transport 

systems (Sodeik, 2000). Studies have demonstrated a close association of the 

HCMV capsid with the microtubule network in fibroblasts infected with HCMV. 

(Towne strain).  Disruption of the microtubule network with the microtubule 

depolymerising drugs nocodazole and colchicine resulted in capsids being unable 

to move to close proximity to the nucleus.  This suggested that HCMV capsids 

associate with the microtubule network to facilitate their own movement to the 

nucleus prior to the onset of IE gene expression and that this association is 

required to start efficient gene expressin (Ogawa-Goto et al., 2003). 

 

1.8.2. IE gene expression 
 
The expression of HCMV genes is temporally regulated.  The first genes to be 

expressed are the IE genes.  This is followed by expression of the E and L genes 
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(Chambers et al., 1999).  At least 1 hr post-infection, four genomic regions, UL36-

38, TRS1-IRS1, MIE and US3 begin producing IE transcripts (Mocarski, 2001).  

The majority of gene expression immediately after viral entry arises from a single 

locus, known as the major immediate early (MIE) locus, comprising the IE1/IE2 

(alternatively spliced UL122 and UL123 genes).  This generates proteins that are 

synthesised by alternative mRNA splicing, the two most important products of 

which are IE1/IE72 and IE2/IE86 (Mocarski, 2001).  Both IE1 and IE2 share 85 

amino-terminal amino acids that correspond to MIE exons 2 and 3 but have 

distinct carboxy-terminal parts encoded by exons 4 and 5 (IE1 and IE2 

respectively) (Marchini et al., 2001).  Regulation of HCMV gene expression by the 

IE proteins is presented in figure 1.4. 

 

1.8.2.1. IE1 
 

IE1 is able to augment transcription from a number of viral and cellular promoters, 

including the HCMV MIEP, various HCMV E promoters and the SV40 early 

promoter (Castillo & Kowalik, 2002, Mocarski, 2001).  Studies using IE1-null 

viruses have shown that at high input multiplicities the viruses are able to replicate 

efficiently.  However, at low MOI the absence of IE1 causes a block in HCMV E 

gene expression (Gawn & Greaves, 2002, Greaves & Mocarski, 1998).  This 

defect of IE1 mutant viruses at low MOI is attributed to a failure/delay in the 

accumulation of E gene products.  Examination of levels of IE2 protein in cells 

infected with these viruses showed it was comparable to levels in wild-type virus 

but the intranuclear localisation pattern was altered (Ahn & Hayward, 2000, 

Greaves & Mocarski, 1998). 

 

The IE1 gene product behaves similarly to ICP0 by associating with and disrupting 

ND10 structures.  IE1 accumulates at ND10 domains, disassembling their 

structure and allowing IE2 to gather juxtaposed to ND10 in a region where HCMV 

can initiate transcription (Ishov et al., 2002).  Subsequently PML, Sp100, SUMO 

and IE1 are all displaced from ND10s into the cytoplasm (Ahn et al., 1998, Ahn & 

Hayward, 1997, Korioth et al., 1996, Mocarski, 2001).  Ahn et al. (1998) proposed 

that a direct interaction of IE1 and the N-terminal RING finger domain of PML 

leads to the displacement of both PML and IE1 from ND10 domains into the 

nucleus. 
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Figure 1.4  Regulation of HCMV gene expression during productive infection

Productive infection with HCMV results in a regulated cascade of viral gene expression designated IE, E and L.  
Expression of the major IE gene products, IE1 and IE2 is a result of differential splicing of the same primary transcript.  
IE1 is compromised of exons 2, 3, and 4 and IE2 of exons 2, 3, and 5. IE1 and IE2 act synergistically to activate viral E 
and L gene expression.  IE2 can negatively auto-regulate its own promoter by binding to the cis-repression signal (CRS).

Figure adapted from Sinclair and Sissons (2006).
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IE1 is also post-translationally modified by covalent conjugation of SUMO-1 

(Spengler et al., 2002).  Mutant viruses deficient for SUMOylation of IE1 have 

shown that the SUMO modification of IE1 is necessary for efficient HCMV 

replication (Nevels et al., 2004a).  Mutational analysis revealed the acidic 

C-terminal region of IE1 is dispensable, while the central hydrophobic region is 

required for binding to and deSUMOylation of PML.  Mutant forms of IE1 that failed 

to bind to or deSUMOylate PML were also unable to target to or disrupt ND10s.  

This indicated that the disruption of ND10 domains by IE1 was linked to the 

deSUMOylation of PML (Lee et al., 2004) 

 

An additional activity of IE1 is its ability to bind to cellular chromatin, which is 

dependent upon sequences within the acidic C-terminus (Wilkinson et al., 1998).  

Recently it has been proposed that IE1 can promote viral transcription by 

antagonising histone deacetylation (Nevels et al., 2004b).  Nevels et al. (2004b) 

showed that IE1 and HDAC3 could be co-immunoprecipitated from extracts of 

transfected and virus infected cells, suggesting IE1 may interact with HDAC3 to 

inhibit its activity. 

 

1.8.2.2. IE2 
 
IE2 is able to control the switch between IE, E, and L gene expression during 

productive infection (Mocarski, 2001).  The IE2 gene product regulates 

homologous/heterologous viral and cellular promoters in the absence of IE1, or 

more efficiently in the presence of IE1 (Kim et al., 1999, Mocarski, 2001).  Like 

IE1, IE2 localises to or adjacent to ND10 domains however, it is unable to disrupt 

them.  When acting in conjunction IE1 and IE2 cause efficient viral gene 

expression and DNA replication (Ahn & Hayward, 2000).   

 

IE2 is a repressor of its own MIEP via direct DNA binding to the MIE cis-repression 

signal (CRS) near the 5’ cap site in transient-co-transfection assays (Liu et al., 

1991, Pizzorno & Hayward, 1990).  Recent studies have shown that 

autorepression by IE2 at late times of infection correlates with changes in 

chromatin structure around the MIEP.  IE2 can interact with HDAC1 and histone 

methyltransferases in vitro and in vivo, resulting in an increase in autorepression 

of the MIEP (Reeves et al., 2006). 
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IE2 (like IE1) is affected by SUMO-1; however, IE2 has both covalent conjugation 

and a direct protein-protein interaction with SUMO-1, SUMO-2, SUMO-3 and a 

SUMO-conjugating enzyme Ubc9 (Ahn et al., 2001).  Two lysine residues were 

identified as the major alternative SUMO-1 attachment sites and it was established 

that the SUMOylation of IE2 is required for its transactivation function.  The SUMO 

modification of IE2 is enhanced via an interaction with a protein inhibitor of STAT 

(PIAS1), which can act as an E3 ligase for IE2 (Lee et al., 2003).   

 

Sommer et al. (1994) showed that IE2 interacts with a hypo-phosphorylated form 

of Rb (Sommer et al., 1994).  They suggested this interaction takes place via two 

separate binding domains and IE2 can regulate gene expression through the 

formation of multimeric protein complexes (Hagemeier et al., 1994).  Further 

studies showed that, not only does IE2 bind to Rb, but this complex also acts to 

relieve the IE2 repression of the MIEP (Choi et al., 1995).   

 

1.8.2.3. Role of HCMV E and L genes 
 
The classification of E and L genes is dependent on both their timing of expression 

and their sensitivity to inhibitors of viral DNA synthesis.  Both E and L genes are 

thought to be activated by targeting the TATA box, initiator elements and upstream 

promoter elements located within 100-200 bp of transcription start sites by IE gene 

products (Mocarski, 2001).  The timing of expression of these viral genes is 

modulated by transcriptional and post-transcriptional controls dictating the 

appearance of proteins and sensitivity of viral replication to the physiological 

control of the host cell. This influences events such as the activation of host cell 

protein degradation machinery and the accumulation of E and L gene products 

during infection (Mocarski, 2001).  Most E and L genes have a polycistronic 

structure correlating with the few polyadenylation signals within the viral genome.  

Most of the 3’ co-terminal families of transcripts are generated from a series of 

promoters each controlling a separate gene (Mocarski, 2001).  

 

E genes have a promoter structure, consisting of an upstream region, spanning a 

100-200 bp sequence containing a cis-acting regulatory element for transactivating 

viral and cellular promoters.  Two E transcripts of 1.2 Kb and 2.7 Kb represent 

approximately 20%-40% of total viral transcription during early times of infection 

(Mocarski, 2001).  E genes tend to code for non-structural proteins required for 
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DNA replication, packaging and maturation of virus particles (Chambers et al., 

1999, Mocarski, 2001). 

 

Investigations into L gene expression have been limited, thus little is known about 

these genes.  Two types of transcripts known as the leaky late or true late genes 

are produced, the regulation of each being markedly different (Mocarski, 2001).  

The true late genes, for example, encoding pp28, have a very basic promoter 

structure in that they lack upstream cis-regulatory elements, thus true late gene 

expression is dependent on the replication of viral genomic DNA (Depto & 

Stenberg, 1992).  The L genes are essentially expressed after the onset of viral 

DNA replication and their products are responsible for virion assembly and 

morphogenesis (Chambers et al., 1999). 

 

1.8.3. HCMV DNA replication and packaging 
 
HCMV contains a single lytic origin of replication, ori-Lyt, (Hamzeh et al., 1990) 

which is located near the centre of the UL region upstream of the DNA binding 

protein ppUL57 ORF (Masse et al., 1992).  The HCMV ori-Lyt is composed of a 

core that spans 1548 nucleotides, and contains two essential regions (I and II) 

(Anders et al., 1992, Masse et al., 1992).  Both regions are a site of active 

transcription and are complex in nature, consisting of a pyrimidine-rich region, 

several transcription factor binding sites, and direct and inverted repeat sequences 

(Anders et al., 1992, Huang et al., 1996, Masse et al., 1992).  In human fibroblasts 

ori-Lyt dependent DNA replication requires core replication machinery and the 

gene products of IE2, and UL36-38 (Reid et al., 2003, Sarisky & Hayward, 1996).  

However while Sarisky and Hayward (1996) perceived that UL84 was essential for 

ori-Lyt activity, Reid et al. (2003) found UL84 to be dispensable in their transient 

transfection assays.  However, Reid et al. (2003) found UL84 inhibited both 

transactivation of E genes by IE2 and enhanced its activity as a negative 

autoregulator.  This suggested that the balance between levels of IE2 and UL84 

may have a significant effect on viral DNA replication (Reid et al., 2003).  Recent 

studies however, have shown UL84 interacts with IE2 to activate the ori-Lyt 

promoter to initiate DNA replication, however, the precise mechanisms of this 

process remain unknown (Xu et al., 2004).   
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The majority of research regarding capsid assembly has been derived from 

studies of HSV-1 (see section 1.4.5).  In the case of HCMV it is generally accepted 

that capsid assembly occurs in the nucleus of infected cells (Sanchez et al., 

2000a).  The virally encoded DNA polymerase produces large-head-to tail 

concatemers, which are cleaved into genomic-length pieces before being 

packaged into capsids.  Genomes are packaged into capsids through a portal 

coded by UL104 that acts a dock for the terminase enzyme (Dittmer & Bogner, 

2005, Nixon & McVoy, 2002).  The driving force behind this process is the 

ATP-ase activity of the terminase enzyme, which pushes DNA into the capsid 

(Hwang & Bogner, 2002).  Recently several putative functional domains in pUL89, 

such as the pUL89 zinc finger (pUL89-ZF), DNA cutting sites and portal binding 

sites, were identified as being involved in DNA cleavage and packaging (Champier 

et al., 2007). 

 

1.8.4. HCMV capsid transport 
 

The size of HCMV capsids prevents their transport into the cytoplasm through the 

NPC, therefore nuclear egress requires the penetration of nuclear membranes and 

the nuclear lamina.  This occurs through an envelopment/de-envelopment process 

similar to that observed in HSV-1.  Following release into the cytoplasm, the 

HCMV capsid acquires the majority of its tegument proteins (including UL25, UL32 

and UL99 which are excluded from the nuclei during productive infection), which 

aggregate at the cytoplasmic surface of the membrane (Sanchez et al., 2000b).  

Of particular importance is UL32, which encodes the tegument protein pp150 that 

accumulates in a cytoplasmic inclusion adjacent to the nucleus at late times during 

infection.  Use of a UL32 deletion mutant has shown that pp150 is critical for virion 

maturation in the cytoplasmic compartment and for virion egress at the final stages 

of envelopment (AuCoin et al., 2006).  The capsids are enveloped at Golgi 

apparatus-derived cisternae by a wrapping process and released by fusion with 

the plasma membrane (Buser et al., 2007, Homman-Loudiyi et al., 2003).  

However given that several models of capsid assembly have been proposed for 

HSV-1 this might also be the case for HCMV. 
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1.9. The HCMV MIEP 
 
The MIE regulatory region controls transcription of the IE1 and IE2 genes through 

both positive and negative cis-acting elements.  The area upstream of the HCMV 

MIEP is divided into three regions: the modulator, the unique region and the 

enhancer.  Deletion of the modulator region has no detectable effect on viral 

replication (Meier & Stinski, 1997).  The unique region contains multiple protein 

binding sites however, deletion analysis of the unique region showed it has no 

effect on transcription from the MIEP (Lundquist et al., 1999). 

 

The boundaries of the enhancer regions span –65 to –550 bp, with respect to the 

transcription start site at position +1 of the MIEP.  It can be further divided into a 

distal and proximal enhancer and many of the cis-acting elements are found in the 

enhancer region (Isomura & Stinski, 2003).   

 

The enhancer region is extremely complex and contains a strong transcriptional 

enhancer made up of an array of 17, 18, 19 and 21 bp repeat elements (Boshart et 

al., 1985, Ghazal et al., 1987).  Activity of the MIE enhancer is dependent on an 

interaction of various cellular and viral proteins with the cis-acting elements in a 

number of transfection, in vitro or transgenic animal studies (Meier & Stinski, 1996, 

Meier & Stinski, 1997).  The enhancer’s activity can be stimulated by cellular 

transcription factors including Sp1, NF-κB, ATF, ELK1, AP1 and serum response 

factor (SRF) (Ghazal et al., 1992, Ghazal et al., 1987, Ghazal et al., 1988).  These 

transcription factors bind to the different repeat elements located throughout the 

enhancer, and many of them bind to multiple sites (Meier & Stinski, 1997).  The 

cellular CREB/ATF proteins bind to the TTGACGTCAA sequence which forms the 

core of the 19 bp repeat element, five of which are located in the enhancer region.  

The Sp1 and NF-κB transcription factors bind to 21 bp and 18 bp repeat elements 

respectively.  Three copies of the 21 bp elements and four copies of the 18 bp 

elements have been found in the enhancer region (Cherrington & Mocarski, 1989, 

Liu & Stinski, 1992). 

 

Studies have shown that the distal enhancer is necessary for efficient IE gene 

expression and viral replication at low MOIs (Meier & Pruessner, 2000).  Various 

viral proteins including pp71 can also stimulate enhancer activity in the presence 

of one or more ATF sites within the region (Liu & Stinski, 1992) (The actions of 

pp71 are discussed in detail in a later section). 
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In contrast to the positive regulatory effects of the MIE enhancer region, its 

function can also be repressed by a transcription factor YY1.  When YY1 binds to 

a 21 bp repeat element in the HCMV MIEP-regulatory region in un-differentiated 

non-permissive cells, it mediates a repressive effect on HCMV IE gene expression 

and may be a mechanism by which viral latency is maintained (Liu et al., 1994). 

 

Although expression of the MIEP can be modulated by various cellular factors, its 

role in viral infection remains unclear.  Murphy et al. (2002) demonstrated a role 

for HDAC in suppressing the MIEP.  It has already been suggested that HDACs 

play a role in controlling HSV-1 latency, (Arthur et al., 2001) therefore the 

recruitment of chromatin silencing factors to the MIEP may be involved in 

repressing gene expression during HCMV latency.  This HDAC-mediated 

repression of HCMV appears to occur within the MIEP in the region encompassing 

the modulator and 21 bp repeat elements of the enhancer region.  Upon 

differentiation of cells, the histones surrounding the promoter are thought to 

become acetylated thus viral transcription and, in turn, productive HCMV infection 

occurs.  In non-permissive cells the presence of high levels of HDACs causes 

inhibition of HCMV infection due to deacetylation of histones surrounding the 

MIEP, and recruitment of HP1 causes silencing of the promoter (Murphy et al., 

2002). 

 

1.10. HCMV pp71 protein 
 

1.10.1. The UL82 gene 
 

The two most abundant proteins in the HCMV tegument are pp65 (a lower matrix 

protein), encoded by the UL83 gene, and pp71 (an upper matrix protein), encoded 

by the UL82 gene.  Transcript analysis of both genes show that a bicistronic 4 kb 

mRNA, encoding both pp71 and pp65 ORFs, is produced at both early and late 

times of infection (Nowak et al., 1984, Ruger et al., 1987).  Work by Ruger et al. 

(1987) suggested that the 4 kb mRNA is formed through the splicing of a 39 

nucleotide intron.  It codes for pp65, the most abundant tegument protein, but 

contains all the information for pp71.  The protein pp71 is itself encoded for by a 

rare, unspliced 1.9 kb mRNA.  The two mRNAs are 3‘ co-terminal and employ a 

single polyadenylation signal (Ruger et al., 1987). 
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Studies show that two specific mRNAs (1.9 kb and 4 kb), coding for pp71 and 

pp65, can be detected at 5 hr post-infection (Hensel et al., 1996, Ruger et al., 

1987).  Both transcripts exhibit a biphasic pattern of expression during a single 

round of HCMV infection, peaking at 12 hr, and 72 hr post-infection.  The biphasic 

pattern of pp71 expression suggests a bifunctional role for this protein in the 

nucleus: firstly during the IE and E phases as a transactivator of gene expression, 

and secondly in progeny maturation during the late phase of viral replication 

(Hensel et al., 1996).  An overview of the HCMV genome and the two pp71 

transcripts is presented in figure 1.5. 

 

1.10.2. Functional properties of pp71 
 

HCMV pp71 was first realised to be of importance when the HCMV virion was 

found to contain a structural component, homologous to HSV-1 VP16, able to 

transactivate transcription from the MIEP (Spaete & Mocarski, 1985, Stinski & 

Roehr, 1985).  Co-transfection assays showed that pp71 was able to stimulate 

transcription from HCMV, SCMV and MCMV MIEPs and also SV40 promoters (Liu 

& Stinski, 1992).  Promoter responsiveness to pp71 was associated with a number 

of 19 bp repeat elements containing ATF binding sequences in the MIEPs 

investigated.  Mutations at the ATF site within these 19 bp repeat element 

abolished responsiveness of promoters to pp71 in co-transfection assays (Liu & 

Stinski, 1992).   

 

In later work, infection with HSV-1 recombinant viruses expressing pp71 showed 

that pp71 could transactivate the HCMV MIEP in the absence of de novo protein 

synthesis.  It was also demonstrated that recombinant HSV-1 viruses expressing 

pp71 showed that this tegument protein could transactivate a number of promoters 

in tissue culture cells including the already established HCMV MIEP, SCMV MIEP, 

the HSV-1 ICP4 and ICP0 promoters and the adenovirus VAI promoter (Homer et 

al., 1999, Marshall et al., 2002).  Some of these data disagree with that put 

forward by Liu and Stinski (1992), in that pp71 transactivated promoters that did 

not contain consensus ATF motifs including the HSV-1 ICP4 and adenovirus VAI 

promoters (Homer et al., 1999). 

 

The protein pp71 can enhance the infectivity of viral DNA and accelerate the 

infectious cycle (Baldick et al., 1997).  Alone, viral HCMV DNA has low intrinsic 



TR S

a

HCMV 
genome

TR L IR L IR S
U L U S

a aa

4 kb mRNA

1.9 kb mRNA

pp71 (UL82) pp65 (UL83)
3’ 5’

polyA
site

ATGTGAATGTAG

Figure 1.5 Schematic representation of the HCMV genome
A scheme of the HCMV genome showing the location of the UL82 and UL83 genes encoding the upper matrix 
(pp71) and lower matrix (pp65) proteins. Translation initiation, and translation termination signals are 
indicated.  The 3’ end of the transcription unit is designated by polyA. The direction of transcription is indicated 
by an arrow. Both the 4 kb and 1.9 kb transcripts are shown.
Diagram adapted from Liu and Stinski (1992).
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infectivity, however when co-transfected with a plasmid expressing pp71, a 30 to 

80-fold increase in infectivity was observed due to increased expression levels of 

the IE1 and IE2 proteins.  When plasmids expressing the IE proteins IE1 and IE2 

were co-transfected into cells with HCMV viral DNA the increase in production of 

infectious virions was not as great as observed after transfection of plasmids 

expressing pp71.  Also co-expression of plasmids expressing IE1, IE2 and pp71 

only modestly increased DNA infectivity beyond that seen with pp71 alone (Baldick 

et al., 1997).  This group concluded that pp71 and the IE proteins have different 

roles during early times after infection, and that it is possible that pp71 

transactivates other IE genes which have important functions early in infection. 

 

Further work by Bresnahan and Shenk. (2000) was in agreement with that of 

Baldick et al. (1997) in that pp71 acts to increase the infectivity of viral DNA and 

activates the MIEP to allow expression of IE1 and IE2 proteins.  They also 

demonstrated that pp71 facilitates mRNA accumulation from other IE genes 

including UL37exon1, UL38, UL106-109 and UL115-UL119 by constructing a 

HCMV mutant which lacks a substantial portion of the pp71 coding region.  This 

mutant, named ADsubUL82, is derived from the AD169 strain of HCMV and has 

nucleotides 117648-119185 deleted.   

 

ADsubUL82 displays a multiplicity dependent growth phenotype whereby at a low 

MOI its replication is restricted.  At higher MOIs, replication is restored to nearly 

that of wild-type virus.  A decrease in viral DNA accumulation in cells infected with 

ADsubUL82 was observed compared with DNA levels in wild-type infected cells, 

suggesting that pp71 functions before or during viral DNA synthesis.  DNA array 

analysis was used to investigate mRNA accumulation in cells infected with 

ADsubUL82.  A deficiency was observed at early times of infection (8 hr), thus 

confirming that the defect associated with ADsubUL82 occurs early in the 

replication cycle (Bresnahan & Shenk, 2000).  Gene array and northern blot 

analyses were also used to confirm previous work showing that virion-associated 

pp71 facilitates the activation of IE genes.  Expression of a number of IE genes 

(IE1, IE2 UL37 and UL38) were significantly decreased in cells infected with 

ADsubUL82 compared to wild-type HCMV (Bresnahan & Shenk, 2000).  
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1.10.3. Interaction of pp71 with cellular proteins 
 

1.10.3.1. Rb Tumour suppressor proteins and pp71 
 

Various studies have shown that HCMV is able to alter cell cycle regulation, 

possibly as means to suit its own needs by causing arrest at the G1/S phase of the 

cell cycle (Dittmer & Mocarski, 1997, Kalejta & Shenk, 2003b).  Infection of 

quiescent cells with HCMV forces re-entry into the cell cycle, a process that is 

modulated by pp71 (Kalejta et al., 2003a).  Kalejta et al. (2003a) illustrated that 

pp71 stimulated cell cycle progression through the G1 phase into S phase by 

binding to and degrading hypophosphorylated forms of the Retinoblastoma (Rb) 

family of tumour suppressor proteins p107, p130 and p105 (Kalejta et al., 2003a).  

The oncoproteins of the DNA tumour viruses adenovirus E1A, SV40 T antigen and 

papillomavirus E7 show a degree of similarity with pp71, as they are also able to 

interact with Rb family members to stimulate cell cycle progression.  These 

proteins share a similar motif (LXCXE, or LXCXD in the case of pp71) that 

mediates binding in the pocket domains of the Rb family members.  As in the case 

of E1A a single point mutation in the conserved C residue of the LXCXD motif of 

pp71 resulted in its inability to degrade Rb proteins.  Other than this motif, 

however, the general mechanisms and effects of cell cycle stimulation differ 

significantly between pp71 and the DNA tumour virus oncoproteins despite the 

sequence and functional homologies (Kalejta et al., 2003a). 

 

The ubiquitin-proteasome pathway is the main intracellular machinery involved in 

eliminating unfolded proteins and destroying regulatory proteins involved in cellular 

processes (Glickman & Ciechanover, 2002).  Substrates are usually targeted to 

the 26S proteasome by polyubiquitination on internal lysine residues.  The 

polyubiquitin chains mediate the binding of targeted proteins to the proteasome 

and assist in their unfolding but are removed from the substrate before 

proteasomal degradation takes place (Glickman & Ciechanover, 2002).  Therefore 

the actual substrate for proteasomal degradation is a partially denatured, 

non-ubiquitinated protein, indicating that if a protein is delivered to the proteasome 

in a denatured or partially unfolded state, ubiquitination may not be essential for its 

degradation (Kalejta & Shenk, 2003c). Work by Kalejta and Shenk (2003c) 

provided a mechanism whereby pp71 degrades the Rb proteins.  It was shown 

that, in the absence of pp71, the degradation of Rb p130 occurred via a 
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ubiquitin-dependent pathway, whilst in its presence, p130 was degraded 

independently of ubiquitin.  Also, in the presence of a proteasome inhibitor, pp71 

mediated degradation of p130 was prevented.  These experiments established 

that the pp71-mediated degradation of the hypophosphorylated Rb family proteins 

is via a proteasome-dependent, ubiquitin-independent pathway that then 

stimulates quiescent cells to re-enter the cell cycle and progress to the S phase 

(Kalejta & Shenk, 2003c). 

 

Having established that pp71 can stimulate progression of the cell cycle by 

inducing the proteasome-dependent, ubiquitin-independent degradation of the Rb 

family of proteins (Kalejta et al., 2003a, Kalejta & Shenk, 2003c), this group went 

on to show that pp71 accelerates progression through the G1 phase of the cell 

cycle via a mechanism that is independent of its ability to target Rb proteins 

(Kalejta & Shenk, 2003b).  Studies by Kalejta (2003b) demonstrated that the major 

component of G1 acceleration caused by pp71 is not due to Rb degradation.  A 

pp71 mutant that failed to degrade Rb family members retained the ability to 

accelerate movement through the G1 phase.  This suggested that the acceleration 

could be due to the ability of pp71 to degrade another unidentified cell cycle 

regulatory protein, its ability to regulate transcription or due to a currently unknown 

function of pp71 (Kalejta & Shenk, 2003b). 

 

1.10.3.2. hDaxx, PML and pp71 
 

ND10s are spherical structures of approximately 0.3-1.0 μm in diameter.  They are 

present in virtually all cell types and each cell nucleus usually contains between 5 

and 20 of these punctate sub-structures.  They consist of a central core 

surrounded by an electron dense capsule and are defined by the presence of PML 

(Dyck et al., 1994).  ND10 domains are thought to behave as nuclear depots for 

the homeostatic maintenance and release of proteins and are altered in size and 

number in response to the cell cycle e.g. during mitosis (Everett et al., 1999b) and 

S-phase (Dellaire et al., 2006).   

 

The human PML locus is 35 Kbp in length and consists of nine exons.  PML gene 

transcripts undergo alternative splicing to produce multiple mRNAs that encode for 

13 different PML isoforms (Fagioli et al., 1992, Ruggero et al., 2000).  PML is 

known to be the major protein of ND10 domains and is essential for recruiting 
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other cellular proteins associated with ND10 such as hDaxx, Sp100 and SUMO-1 

(Everett et al., 2006).  Other proteins associated with ND10s are p53 (Fogal et al., 

2000), BRCA1, (French et al., 2006), USP7 (Everett et al., 1997) and ATRX (Ishov 

et al., 2004).  ND10s have been associated with a number of processes including 

transcriptional regulation, genome stability response to viral infection, apoptosis 

and are also considered as nuclear depots (Bernardi & Pandolfi, 2003, Negorev & 

Maul, 2001).  

 

It is known that PML is covalently modified by SUMO-1, and it is this SUMOylation 

that is vital for targeting polypeptides to specific cellular compartments, and is 

required by PML for the formation of ND10 domains (Ishov et al., 1999).  A recent 

model for ND10 formation proposed the RING finger of PML to be essential for 

both self-SUMOylation and ND10 formation.  Furthermore, its SUMO binding motif 

independently can interact with nearby SUMOylated PML molecules and allow the 

formation of a PML network.  Together with other SUMOylated proteins e.g. 

hDaxx, these networks may eventually form higher order structures, i.e. ND10 

domains (Shen et al., 2006).  In the case of hDaxx, a SUMO-interacting motif 

(SIM) has been identified which is thought to be crucial for recruiting hDaxx to 

ND10 domains.  It is thought that the SIM acts in trans to repress several 

SUMO-modified transcription factors (Lin et al., 2006). 

 

The hDaxx protein was first identified as a protein able to bind to the death domain 

of FAS in the cytoplasm and to mediate signal transduction pathways, which lead 

to apoptosis (Chang et al., 1999, Yang et al., 1997).  hDaxx is also known to 

interact with at least eighteen other cellular proteins leading to functional 

consequences ranging from activation of transcription to apoptosis (Salomoni & 

Khelifi, 2006). 

 

The cellular protein hDaxx is presumed to be involved in the repression of 

transcription due to its interaction with HDAC molecules.  This interaction causes 

chromatin to be condensed into a state that is unfavourable for transcription (Li et 

al., 2000b). More recently, immunoprecipitation and co-fractionation studies have 

shown that both HDAC and hDaxx are associated with histones and interact with 

Dek, a chromatin associated protein (Hollenbach et al., 2002).  Moreover, 

Woodhall et al. (2006) have suggested that hDaxx, localising at ND10 domains, is 
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able to repress transcription of incoming HCMV genomes through the recruitment 

of HDACs for chromatin remodelling at the viral MIEP (Woodhall et al., 2006). 

 

Using confocal microscopy the HCMV tegument protein pp71 has been 

demonstrated to localise directly at the nucleus in a punctate pattern in transient 

transfection assays.  This led to the tentative idea that pp71 co-localises at specific 

locations within the nucleus involved in transcription (Hensel et al., 1996).  Work 

by Hofmann et al. (2002) determined that the central glutamine rich region of 

hDaxx spanning amino acids 409-501 was a strong binding region for pp71.  As it 

was not possible to narrow down a putative hDaxx binding site within pp71 by 

deletion analysis internal domains were identified using sequence analysis.  Two 

putative hDaxx interaction domains (DIDs) were mapped to amino acids 206-213 

(DID I) and 324-331 (DID II) of pp71, which exhibited sequence similarity to the 

DID within centromere protein C (CENP-C).  Transfection experiments using a 

vector expressing pp71 fused to a green fluorescent protein (GFP), showed pp71 

co-localising with the ND10 proteins PML and Sp100 in nuclear speckles, 

correlating with that observed by Hensel et al. (1996).  Upon deletion of these 

binding domains the pp71-hDaxx interaction was blocked, preventing pp71 

localisation to ND10s and resulting in the inability of pp71 to transactivate the 

MIEP in transient transfection assays.  This suggested that pp71 was recruited to 

ND10 domains via binding to hDaxx, a process essential for the efficient onset of 

IE gene expression (Hofmann et al., 2002).  This observation was confirmed by 

Ishov et al. (2002) who showed that, during HCMV infection, pp71 accumulates at 

ND10s prior to the production of IE proteins.  It is the interaction of pp71 and 

hDaxx, mediated by the interaction of the C-terminus of hDaxx with SUMO 

modified PML, which trafficks pp71 to ND10s (Ishov et al., 2002).  This was 

confirmed by the observation that pp71 failed to accumulate at ND10s in hDaxx 

deficient cells and PML deficient cells.  In the PML deficient cells pp71 was 

distributed throughout the nucleus in a diffuse pattern.   

 

In 2005, Cantrell and Bresnahan showed that the pp71-hDaxx interaction 

regulated efficient HCMV replication.  Viral mutants deleted for pp71 or DIDs 

within pp71 were seriously attenuated for replication at low MOI, but this was 

overcome at higher MOI.  Both mutant viruses showed a significant decrease in 

the abundance of IE1 and IE2 and also a delay in their expression compared to 

wild-type virus, suggesting that the pp71-hDaxx interaction is an essential 
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requirement for efficient gene expression and viral replication.  It was also noted 

that the pp71-hDaxx interaction was involved in enhancing the infectivity of viral 

DNA, as co-transfection of plasmids expressing pp71-hDaxx binding mutants and 

viral DNA failed to enhance plaque production (Cantrell & Bresnahan, 2005). 

 

More recent studies have proposed that that the pp71-hDaxx interaction may act 

to relieve repression of the genome and stimulate IE gene expression (Cantrell & 

Bresnahan, 2006, Preston & Nicholl, 2006, Saffert & Kalejta, 2006).  Work by 

Saffert and Kalejta. (2006) initially proposed that the mechanism by which pp71 

activates the MIEP is by inducing the degradation of hDaxx to permit viral gene 

expression.  Their work showed that pp71 alone is necessary for hDaxx 

degradation in HCMV-infected cells and that HCMV IE gene expression can be 

rescued in the presence of hDaxx by inhibiting HDACs.  A model was proposed in 

which the viral MIEP is silenced by hDaxx through the recruitment of HDAC, a 

process that is reversed when pp71 degrades hDaxx.  Work by Preston and 

Nicholl. (2006) also showed a role for hDaxx in HCMV IE gene expression.  In 

hDaxx depleted cells there was no effect upon wild-type HCMV IE gene 

expression or MIEP activity in the presence of pp71, suggesting that the 

pp71-hDaxx interaction does not have a positive effect on IE transcription.  

However, in the absence of pp71, an increase in the activity of the MIEP was 

observed in hDaxx depleted cells following infection with ADsubUL82 indicating an 

involvement of hDaxx in the repression of the MIEP activity.  This work was in 

agreement with that of Cantrell and Bresnahan (2006).  Using HCMV permissive 

cell lines (U373) that were depleted for hDaxx expression (using shRNA) it was 

shown that wild-type virus replication was increased.  Furthermore, the pp71 

deletion mutant-associated defects in viral replication and IE gene expression 

were abolished in these knock down cells.  In cell lines over-expressing hDaxx, 

wild-type virus replication and IE gene expression were inhibited in a 

multiplicity-dependent manner.  These findings suggest that hDaxx acts as a 

repressor during HCMV infection and that pp71 is responsible for relieving this 

repression (Cantrell & Bresnahan, 2006). 

 

It has been suggested that the mechanism by which pp71 facilitates the 

degradation of hDaxx is via a proteasome-dependent, ubiquitin-independent 

pathway (Hwang & Kalejta, 2007).  Using a mouse ts20 cell line (containing a 

temperature sensitive E1 ubiquitin activating enzyme) transduced with a 
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recombinant adenovirus expressing pp71, Hwang and Kaljeta (2007) showed that 

at both the permissive temperature (35oC) and non-permissive temperature (39oC) 

the steady state level of endogenous hDaxx protein was decreased.  This 

indicated that the pp71-meadiated degradation of hDaxx occurs through a 

ubiquitin-independent mechanism.  Mouse ts20 cells were infected with either 

wild-type HCMV or ADsubUL82 to establish if this mechanism was true for HCMV 

tegument-delivered protein.  It was observed that wild-type HCMV induced the 

degradation of endogenous hDaxx, while the ADsubUL82 virus did not (Hwang & 

Kalejta, 2007).  The proteasomal aspect of this degradation process was 

established when HCMV-infected ts20 cells treated with the proteasome inhibitor 

lactacystin, showed stabilisation of hDaxx (Hwang & Kalejta, 2007).  Therefore 

pp71 is presumed to promote the degradation of hDaxx in a 

proteasome-dependent, ubiquitin-independent manner, in a way similar to pp71 

degradation of the Rb family (see section 1.10.3.1). 

 

It is possible that hDaxx acts as a control of HCMV latency by exerting a 

repressive effect upon the MIEP to induce a repressed chromatin structure, and 

prevent expression of the IE genes, unless neutralised by pp71.  This repressed 

chromatin state (whereby there is an association of HP1 and a lack of acetylated 

histones at the MIEP) is similar to that observed at the MIEP in naturally latently 

infected and incompletely differentiated CD34+ cells (Saffert & Kalejta, 2007).  

Saffert and Kalejta. (2007) proposed that hDaxx is essential in establishing 

quiescent HCMV infections, as loss of hDaxx causes initiation of the lytic cycle.  

They showed that in undifferentiated cells, viral IE gene expression needs to be 

silenced to establish latency and prevent abortive infection.  Thus this silencing of 

the genome serves to establish lifelong latent infection (Saffert & Kalejta, 2007).  

However, this has recently been disputed by Groves et al. (2007) who showed that 

down-regulation of hDaxx using siRNA in undifferentiated NT2D1 cells did not 

cause changes in the chromatin structure around the viral MIEP.  Productive 

infection and IE gene expression were only observed in differentiated cells 

(Groves & Sinclair, 2007). 

 

1.10.4. The interaction of pp71 with other tegument proteins 
 

The UL35 open reading frame has been identified as an early-late gene, which is 

transcribed into two co-terminal transcripts, directing the synthesis of two 
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phoshorylated protein products ppUL35 and ppUL35A (Liu & Biegalke, 2002).  

PpUL35A localises to the nucleus, and it has been reported that it inhibits 

activation of the MIEP by pp71 (Liu & Biegalke, 2002).  The interaction between 

pp71 and both forms of ppUL35 was identified by yeast two-hybrid screening, with 

a specific interaction of pp71 and ppUL35 confirmed by co-immunoprecipitation of 

both proteins from transfected and infected cells (Schierling et al., 2004).  

Co-localisation of these tegument proteins in human fibroblast cells was 

demonstrated by immunofluorescence.  Alone, ppUL35 appeared as diffuse 

nuclear staining, however in the presence of pp71, discrete punctate foci were 

observed.  The proteins co-localised with ND10 domains, leading to the 

suggestion that pp71 recruits both hDaxx and ppUL35 for efficient initiation of the 

viral replication cycle. Transient luciferase experiments showed strong co-

operative activation of the HCMV MIEP by pp71 and ppUL35, whereas each 

protein alone showed a weak stimulation only (Schierling et al., 2004). 

 

1.10.5. pp71 and the immune system 
 

As discussed in section 1.8 HCMV infects a large proportion of individuals across 

the world.  As HCMV infection can cause serious disease, development of a 

vaccine is vital.  In order to develop a HCMV subunit vaccine, proteins which 

induce protective immune responses in humans were identified by studying the T 

cell proliferative response to five HCMV proteins: IE1, IE2, pp71, gpUL18 and gB 

(He et al., 1995).  In the majority of individuals tested, gB was one of the most 

commonly recognised proteins of the five tested, followed by IE2.  Both IE1 and 

gpUL18 were less frequently recognised.  In the case of pp71, 10 out of 23 

seropositive patients responded, indicating that pp71 may play a role in the 

immune response to HCMV in some individuals. Therefore in order to develop a 

feasible vaccine a combination of proteins would have to be used as different 

seropositive individuals responded to different proteins (He et al., 1995). 

 

The tegument protein pp71 was found to be able to stimulate the activation of the 

US11 promoter (Chau et al., 1999).  The HCMV US11 gene is already known to 

be non-essential for replication in tissue culture and plays an essential role in 

HCMV pathogenesis (Chau et al., 1999).  The product of US11, a glycoprotein 

found in the ER, causes the destruction of the MHC class I proteins, resulting in 

down regulation of their cell surface expression (Wiertz et al., 1996). Studies by 
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Chau et al. (1999) revealed two sequence elements (a CREB and an ATF site) 

within the promoter of US11 which are important for activation by IE proteins, the 

ATF site being especially critical for US11 promoter activation.  The tegument 

protein pp71 is already known to bind to ATF sites within the MIEP of HCMV (Liu 

& Stinski, 1992), but as discussed previously pp71 is also able to transactivate 

promoters that do not contain this motif (Homer et al., 1999).  It was observed by 

Chau et al. (1999) that in combination with viral IE proteins, pp71 could 

up-regulate the US11 promoter in transient assays and this up-regulation required 

both CREB and ATF sites to be intact.  US11 promoter mutants inactivated for 

both of these sites were used to show that mutating CREB alone reduced mRNA 

levels to 25% of that observed with the wild-type promoter.  Inactivation of ATF 

alone reduced US11 mRNA levels to 6% of that of the wild-type promoter.  When 

both CREB and ATF elements were mutated, US11 gene expression was almost 

undetectable; indicating that both sites co-operate to regulate the US11 promoter 

in HCMV infected cells (Chau et al., 1999).  

 

More recently a novel function for pp71 has been suggest in relation to the MHC 

class I antigen presentation pathway.  Work by Trgovcich et al. (2006) showed 

pp71 to be capable of interfering with cell surface expression of MHC class I 

complexes.  Ectopic expression of pp71 in human glioblastoma cells caused a 

dose-dependent decrease in the accumulation of cell surface MHC class I 

complexes.  It was established that pp71 delayed transport of MHC class I 

complexes from the ER to cis Golgi apparatus, but did not interfere with 

accumulation of either MHC class I heavy chain transcript or protein.  In cells 

silenced for pp71 and infected with a recombinant adenovirus mutated for the 

unique short region MHC class I evasion genes, an increase in the accumulation 

of cell surface MHC class I complexes was observed.  It was proposed that pp71 

can, at late times of infection, interfere with the transport and cell surface 

expression of MHC class I complexes (Trgovcich et al., 2006). 

 

1.10.6. HSV-1 recombinant viruses impaired for IE gene expression 

 
The study of pp71 at the MRC Virology Unit has previously relied on the use of 

HSV-1 recombinant viruses rather than plasmids to express the protein and as 

reporters to measure its activity (Preston & Nicholl, 2005).  The basic HSV-1 

mutant used in these studies was termed in1312 and this virus is impaired for 



Tanya Chaudry 2008  Chapter 1 60

transcriptional activity of VP16 and the IE proteins ICP0 and ICP4.  A 12 bp 

insertion mutation in the HSV-1 UL48 gene rendered VP16 incapable of 

transactivating IE gene expression (Ace et al., 1988).  The mutated VP16 was 

incorporated into HSV-1 to produce a mutant in1814, and all subsequent 

recombinant HSV-1 vectors were derived from this virus (Ace et al., 1989).  Harris 

and Preston. (1991) found that the virus in1814 exhibited a multiplicity dependent 

phenotype.  At high MOIs lytic replication levels were equivalent to those of wild 

type HSV-1, however, at low MOI in1814 replicated poorly.  This defect could be 

complemented by the addition of VP16 prior to infection or ICP0 post-infection, 

demonstrating that the in1814 replication block was due to low levels of IE 

proteins.  It was also observed that in cells infected with in1814, the viral genomes 

was retained in a non-linear form and that these quiescent genomes were 

unresponsive to VP16 but remained responsive to ICP0.  It was concluded that the 

in1814 genome established quiescent infections in vitro that resembled latent wild 

type HSV-1 genomes in vivo in some respects (Harris & Preston, 1991). 

 

The virus in1814 was modified by homologous recombination to replace the ICP0 

promoter with the LTR of Moloney murine leukaemia virus to yeid in1820 

(Jamieson et al., 1995, Preston & Nicholl, 1997).  The LTR is inactive under IE 

conditions therefore in1820 lacks functional VP16 and ICP0.   Upon infection it can 

establish quiescent infection, which is reactivated by the addition of ICP0.  In1820 

was then further modified to produce the virus in1820K through homologous 

recombination of viral DNA with a plasmid containing a temperature sensitive 

mutation in ICP4. This mutant (in1820K) failed to produce virus at temperatures 

greater than 31oC (Preston et al., 1997).  It was also determined that transgenes, 

such as the E.coli lacZ gene and the neomycin phosphotransferase gene could be 

inserted into the in1820K genome under the control of a variety of promoters 

including the HCMV MIEP, and that short-term expression of the transgene was 

observed (Preston et al., 1997, Preston & Nicholl, 1997).  Expression of the 

transgenes, driven by the HCMV MIEP in particular, was repressed considerably 

at 24 hr post-infection, indicating that repression of gene expression observed in 

in1814 derivatives is not confined specifically to the HSV-1 IE genes (Preston & 

Nicholl, 1997). 

 

In 1998 Preston et al. inserted a mutation into the ICP0 coding sequence by 

deleting the RING finger, substituting this mutation for the previous ICP0 promoter 
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mutation in in1820.  This resulted in the virus in1312 (Preston et al., 1998), the 

parental genome used to create the various recombinant viruses used in the study 

of pp71.  Derivatives of this virus may have the E.coli lacZ gene inserted into 

either the TK locus or the UL43 locus of this genome or they may be employed as 

expression vectors. 

 

Recombinant viruses such as in1312 are particularly useful as they can be 

retained in a quiescent state following infection of cultured cells.  Due to the 

mutations rendering the critical HSV-1 transcription factors inactive, the absence 

of IE gene expression ensures that the infected cells survive infection, but do not 

support lytic infection (Preston & Nicholl, 2005).  The input viral genomes are 

responsive to transcription factors immediately after infection, however, a few 

hours post-infection they become repressed i.e. quiescent.  In this quiescent state 

the viral genomes are transcriptionally inactive and retained in a non-linear 

configuration (Preston & Nicholl, 2005).  This quiescent state established by the 

HSV-1 recombinant viruses is believed to resemble the latent state attained by 

wild type HSV-1 in some repects (Preston, 2000).  The quiescent genome is 

believed to be stably repressed, but gene expression can be provoked by the 

addition of ICP0 (Hobbs et al., 2001, Preston et al., 1997, Samaniego et al., 1998) 

as ICP0 can disrupt the chromatin structure into which the quiescent genome is 

packaged. 

 

1.10.7. pp71 directs long-term gene expression 
 

The HSV-1 recombinant virus in1312 was used to construct the recombinant virus 

in1324 which was in1312 with the coding sequence of pp71 inserted into the TK 

locus of the in1312 genome.  Homer et al. (1999) showed that infecting human 

fibroblasts with in1324 stimulated short-term gene expression from the HCMV 

MIEP promoter.  A novel property of pp71 was observed whereby it was able to 

stimulate gene expression from the HCMV MIEP, cloned into the in1324 genome, 

over extended periods in cell culture (Preston & Nicholl, 2005).  Using the HSV-1 

recombinant in1360 (derived from inserting HCMV IE-lacZ into the UL43 locus of 

in1324) to infect human foetal foreskin fibroblast cells (HFFF2), a biphasic pattern 

of β-gal expression was observed.  At early times of infection, β-gal positive cells 

were observed which were indicative of short-term gene expression.  β-gal positive 

cells indicative of longer term gene expression were not observed until 5-7 days 
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post-infection, possibly because the HCMV MIEP was not fully activated at early 

times of gene expression.  In cells that did not respond to short-term gene 

expression the virus, in1360, initially became quiescent but was slowly turned on 

by pp71.  Low level expression of pp71 unblocked the remainder of the genome, 

increasing expression of pp71 itself along with HSV-1 IE proteins (Preston & 

Nicholl, 2005).  These observations suggest that there may be two populations of 

cells present; one immediately subject to active virus infection and the second 

where the virus becomes quiescent.  This second population of cells does not 

support short-term gene expression but as the MIEP is slowly turned on by low 

levels of pp71, the remainder of the genome is unblocked and the IE proteins, and 

pp71, are expressed. 

 

1.11. A comparison of pp71 with the HSV-1 proteins VP16 and ICP0 
 

Much work has been carried out in order to determine if pp71 has any functional 

analogy with the proteins found in the tegument of HSV-1.  To date pp71 has been 

compared in function to the protein VP16 and the IE protein ICP0. 

 

1.11.1. pp71 and VP16 
 

The HSV-1 tegument protein VP16 activates IE transcription by forming a complex 

with the cellular proteins Oct-1 and HCF at the TAATGARAT sequence.  The 

HCMV tegument protein pp71 activates expression from the MIEP in transfection 

asays by targeting ATF or AP-1 recognition sites in the 19 bp repeated units of the 

promoter (Liu & Stinski, 1992).  It is the most likely candidate for a functional 

counterpart of VP16.   

 

Using a HSV-1 recombinant in1324 that expresses pp71 Homer et al. (1999) 

showed that pp71 is the virion component of HCMV that effects activation of a 

variety of promoters.  Removal of the pp71 ORF from in1324 abolished this 

activity, demonstrating that pp71 is able to act alone.  Unlike VP16, pp71 

dependent promoter activation is not sequence specific (Homer et al., 1999).  

Furthermore despite their similar roles, the broader specificity exhibited by pp71 

may imply that HCMV differs from HSV-1 in its requirements for a virion 

transactivator.  During HSV-1 infection VP16 is essential for the early increase in 

IE gene expression that allows the IE proteins to maintain transcription of the viral 
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genome.  It also ensures that sufficient levels of ICP0 accumulate to prevent the 

HSV-1 genome from becoming quiescent.  Homer et al. (1999) suggest that pp71 

is important for the efficient expression of IE loci other than those controlled by the 

MIEP, themselves lacking potent promoters.  In addition, it may function to 

maintain the accessibility of the genome to other transcription factors.   

 

1.11.2. pp71 and ICP0 
 

The HCMV tegument protein pp71 exhibits broad promoter specificity and can 

activate a variety of promoters, including the HCMV MIEP, SCMV MIEP, the 

HSV-1 ICP0 and HSV-1 ICP4 promoters (Homer et al., 1999, Marshall et al., 

2002).  ICP0 is also considered to be a promiscuous transactivator, in as much as 

it activates transcription from HSV-1 and heterologous promoter elements 

independently of a single cis-acting element (Everett et al., 1991).  Marshall et al. 

(2002) showed that the expression of pp71 partially complements the replication of 

an HSV-1 ICP0 null mutant indicating that there exists a degree of functional 

interchangeability between these proteins.  

 

Both ICP0- and pp71-null viruses have been produced in order to better examine 

the biological activities of the proteins.  It has been demonstrated that at low MOIs, 

in human fibroblasts, infection with HSV-1 ICP0-null viruses can result in 

quiescence of the genome (Stow & Stow, 1989).  Absence of ICP0 also leads to 

stalled infection with an incomplete set of expressed IE genes, stalling at the IE 

stage of infection or stalling with the expression of some E proteins but no DNA 

replication (Everett et al., 2004a).  Human fibroblasts infected with a MOI of 10 of 

both ICP0-null and wild-type viruses show little difference in levels of productive 

infection. However, human fibroblasts infected with the same viruses at a lower 

MOI of 1 shows little progress into productive infection in cells infected with the 

ICP0-null virus (Everett et al., 2004a).   

 

The HCMV mutant virus deficient for pp71, ADsubUL82, also displays a multiplicity 

dependent phenotype in human fibroblasts.  The growth of this mutant, like that of 

the ICP0-null virus, is restricted at low MOIs.  However this defect, like that of the 

ICP0-null virus, is overcome at higher MOIs whereby ADsubUL82 replicates to 

wild-type levels.  Again the absence of pp71 means that infection is stalled, as 

ADsubUL82 is unable to effectively activate IE genes (Bresnahan & Shenk, 2000),  
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As discussed in section 1.5.1, ICP0 is known to facilitate viral replication and 

reactivation from latency.  When HSV-1 gene expression is repressed in human 

fibroblasts in the absence of viral IE gene expression, ICP0 is required to 

reactivate gene expression from quiescence (Harris et al., 1989, Zhu et al., 1990).  

It has been reported that ICP0 may counteract repression by stimulating the 

degradation of various cellular proteins via a ubiquitin-proteasome pathway 

(Everett et al., 1998a, Everett et al., 1997).  HCMV pp71 has also been reported to 

reactivate viral expression from quiescent genomes (Preston & Nicholl, 2005), 

however the kinetics of reactivation were considerably slower than that of ICP0.  

Moreover, pp71 was observed to be less effective than ICP0 in reactivating 

quiescent genomes (Preston & Nicholl, 2005). 

 

ICP0 and pp71 both localise to ND10 domains following infection.  However, how 

they get there and what they do at these sites differs.  The initiation of gene 

expression due to localisation of ICP0 and degradation of PML at ND10 domains 

is well documented (Boutell et al., 2003, Everett & Maul, 1994, Everett et al., 

1998b, Everett et al., 2006).  Everett and Murray (2005) showed, using live cell 

microscopy that it is not ICP0 that localises to ND10 components, but it is ND10 

domains that are recruited to viral genomes at the periphery of nuclei.  Here ICP0 

targets the disruption of ND10 domains and the degradation of PML. 

 

Marshall et al. (2002) and Hensel et al. (1996) showed that pp71 localises to ND10 

domains but, unlike ICP0, does not induce their disruption.  Also, IE gene 

expression is not initiated by the degradation of PML.  Instead, pp71 participates in 

the degradation of hDaxx in order to relieve IE gene repression (Cantrell & 

Bresnahan, 2006, Preston & Nicholl, 2006, Saffert & Kalejta, 2006). 

 

ICP0 and pp71 differ in sequence and structure.  Analysis of the HCMV pp71 

sequence using ‘Scanprosite’ showed that no homologous sequence motifs such 

as the ICP0 consensus RING finger motif were present in HCMV pp71; however, 

both proteins contain a bipartite nuclear localisation signal (NLS).  The crystal 

structure of pp71 has not been solved and searches of structural databases using 

the amino acid sequence have shown that there are no structural homologues to 

pp71, apart from the functional cytomegalovirus homologues of pp71 described 

previously, which show up to 60% amino acid sequence homology (Jane 

Sutherland personal communication). 
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1.12. Simian Cytomegalovirus Biology 
 

1.12.1. SCMV genome 
 
The simian cytomegalovirus (SCMV) is also known as CMV strain Colburn.  It is 

composed of a linear, double stranded DNA molecule of 220 kbp (Gibson, 1981).  

Like the other herpesviruses, it is replicated and packaged into an icosohedral 

capsid in the nucleus of infected cells, and is surrounded by an envelope. 

 

Various sequence elements and proteins encoded by SCMV have been described.  

These include IE94 (Jeang et al., 1982), an upstream regulatory region which 

directs the expression of IE94 (Jeang et al., 1987), an assembly protein and the 

oriLyt (Anders & Punturieri, 1991, Jeang et al., 1987, Robson & Gibson, 1989).  A 

nuclear DNA binding protein, structural proteins of the mature virus particle, three 

intracellular capsid forms (Gibson, 1981) and a basic phosphoprotein (BPP) 

(Baxter & Gibson, 2001) have also been identified 

 

1.12.2. SCMV lytic infection 
 

1.12.2.1. Attachment and penetration 
 

The little which is known about the lytic cycle of SCMV has been derived by 

extrapolation from the study of HCMV.  Glycoproteins gB and gH are conserved in 

all herpesviruses and are known to be involved in viral attachment and penetration 

of the virion into the host cell (Bold et al., 1996).  It is assumed that these 

glycoproteins play the same role in SCMV attachment and penetration.  Following 

entry into the cell the genome is probably transported to the nucleus by a 

microtubule network system, in a similar manner to HCMV (Ogawa-Goto et al., 

2003). 

 

1.12.2.2. IE gene expression 
 
The HCMV tegument protein pp71 transactivates the MIEP to stimulate production 

of IE proteins, which in turn transactivate the E and L genes to stimulate lytic 

replication.  Sequence comparison of HCMV and SCMV revealed a structural 
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protein named S82, which is functionally homologus to HCMV pp71 as it 

stimulates IE gene expression (Nicholson, 2004).  S82 also co-localises with 

hDaxx and PML at ND10 domains, possibly exerting its effect on the SCMV MIEP 

in a similar manner to HCMV pp71. 

 

As mentioned previously, the IE1 gene of SCMV, IE94, and its associated 

upstream promoter-regulatory region have been characterised (Jeang et al., 

1987). Studies have shown that this promoter-regulatory region consists of two 

distinct domains.  Two NF1 binding sites have been identified within this region, 

the functional significance of which is not yet known (Jeang et al., 1987). 

 

1.12.2.3. E and L gene expression 
 
Little information is available regarding expression of the SCMV E and L genes.  It 

is assumed that E and L gene expression occurs in a similar manner to that of 

HCMV. 

 

1.12.3. Capsid assembly and DNA packaging 
 

In herpesvirus virion assembly, various kinds of capsids have been identified, 

these include A capsids, C capsids, and B capsids.  Using cryoelectron 

microscopy and image reconstruction, B-capsids recovered from SCMV-infected 

cells have been investigated (Trus et al., 1999).  It was observed that these 

capsids contain an inner shell composed mainly of the assembly protein (Ap) in its 

mature, proteolytically processed form.  An interaction between capsid and 

tegument was observed, as the B capsid revealed two sites of tegument 

attachment (Trus et al., 1999). 

 

Capsid assembly of all herpesviruses is a closely conserved process whereby a 

procapsid is assembled requiring the involvement of several proteins.  In HCMV 

these are the MCP, mc-BP, and pAP homologues all of which have been identified 

in SCMV (Gibson, 1981).  The pAP protein is modulated by proteolytic cleavage, 

which is essential for capsid maturation and production of infectious virus. It is also 

modulated by phosphorylation.  Plafker et al. (Plafker et al., 1999) established that 

the SCMV pAP could be phosphorylated on two adjacent serine residues on a 

casein kinase II (CKII) consensus sequence.  Later studies identified two more 
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sites, Thr231 and Ser235, the phosphorylation of which resulted in conformational 

changes in the pAP.  Inhibition of phosphorylation at these sites was found to alter 

the interaction of pAP with itself and with the MCP.  This indicates that 

phosphorylation of this protein has a functional significance in the capsid assembly 

of herpesviruses (Casaday et al., 2004). 

 

1.12.4. Virion maturation and egress 
 
As with HCMV, tegumentation of SCMV capsids occurs in the cytoplasm of 

infected cells (Trus et al., 1999).  It is likely that the egress of these SCMV virions 

proceeds via a similar pathway to that of HCMV. 

 

1.13. Rhesus Cytomegalovirus biology 
 

1.13.1. RhCMV genome 
 
The complete genome sequence of rhesus cytomegalovirus (RhCMV) has been 

determined using the shotgun approach (Hansen et al., 2003).  Sequence analysis 

showed a significant degree of homology with the HCMV genome. 

 

As with other herpesviruses the RhCMV has a long, double-stranded unique 

sequence within its genome.  It was found to be 221,459 bp in length, 7895 bp 

shorter than the HCMV genome, with a G+C content of 49% evenly distributed 

throughout the genome.  No large internal or terminal repeats were found in the 

RhCMV genome.  Of the 230 ORFs, 138 ORFs dispersed throughout the genome 

were found to encode proteins homologous to HCMV proteins.  RhCMV was also 

found to encode almost all classified HCMV gene families, including RL11, UL25, 

UL82, US1, US2/6, US12 and US22 (Hansen et al., 2003). 

 

RhCMV encodes enzymes homologous to those of HCMV that are required for 

nucleotide metabolism, replication and repair.  This includes uracil-DNA 

glycosylase, ribonucleotide reductase, and dUTPase all of which have very high 

homologies to their HCMV counterparts (Hansen et al., 2003). 

 

HCMV UL82 family members consist of the upper and lower matrix proteins pp71 

and pp65.  RhCMV homologues to these proteins are Rh110 (pp71) and 
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Rh111/Rh112 (pp65).  The RhCMV pp71 protein has 39% identity with HCMV 

pp71, while the two pp65 copies of RhCMV have 32% (Rh111) and 35% (Rh112) 

identity with the HCMV protein (Hansen et al., 2003).  In HCMV, pp65 illicits 

protective immune responses in humans and represents an important vaccination 

target (Yue et al., 2006).  The RhCMV homologue (Rh112) was characterised by 

Yue et al. (2006) and analysed for its ability to induce host immune responses.  

Rh112 is expressed at L times of infection and localises to the nucleus following 

expression. It elicits both humoral and cellular immune responses.   

 

1.13.2. RhCMV lytic infection 
 

1.13.2.1. Attachment and penetration 
 

The gB of RhCMV was identified and characterised by Kravitz et al. (1997) and 

Kropff and Mach (Kropff & Mach, 1997).  This RhCMV gene had extensive 

homology to gB of HCMV (75% similarity and 60% identity), with many structural, 

modifying and processing signals being maintained (Kravitz et al., 1997).  The 

RhCMV gB protein was also found to be proteolytically processed similarly to 

HCMV gB.  Therefore, gB is an important component of the viral envelope and is 

involved in virus attachment, penetration and viral spread.  RhCMV cross-reacted 

and cross-neutralised with various HCMV gB-specific monoclonal antibodies, 

which revealed homologous immunogenic epitopes between the two molecules 

(Kravitz et al., 1997).  RhCMV infection in rhesus macaques could provide a model 

in which to study HCMV pathogenesis and immune surveillance of 

cytomegaloviruses. 

 

Sequencing of the RhCMV genome identified 21 further glycoproteins, as well as 

gB, encoding homologues to gH, gL, gM, gN and gO of HCMV (Hansen et al., 

2003). 

 

1.13.2.2. RhCMV IE gene expression 
 

The IE region of RhCMV was cloned and sequenced by Barry et al. (1996) and 

was found to span 9.2 kb.  Within this region, ORFs corresponding to the IE1 and 

IE2 genes were identified (Barry et al., 1996).  The predicted IE1 protein was 
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found to share 29% identity with HCMV IE1, while the predicted IE2 protein shared 

48% identity with HCMV IE2. 

 

1.13.2.3. RhCMV E and L gene expression 
 

Little information is available regarding expression of the RhCMV E and L genes.  

It is assumed that E and L gene expression occurs in a similar manner to HCMV. 

 

1.13.2.4. Capsid assembly and DNA packaging 
 

Capsid assembly proteins are conserved amongst the betaherpesviruses.  

RhCMV encodes homologues to the MCP, a mc-BP of HCMV.  Also present in 

RhCMV is a UL80 homologue thought to be involved in assembly and packaging 

(Hansen et al., 2003).   

 

1.13.3. RhCMV prevalence and disease 
 
RhCMV was first identified as an incidental infection of rhesus macaques and is 

now known to be ubiquitous in captive rhesus macaques (Kalter & Heberling, 

1990).  The majority of RhCMV infections, like HCMV infections, are subclinical.  

Healthy individuals shed virus in their urine, saliva, semen, cervical secretions and 

breast milk. 

 

As with humans, rhesus macaques are susceptible to infection with simian 

immunodeficiency virus (SIV).  Various studies using SIV-infected rhesus 

macaques have shown that disseminated cytomegalovirus disease is fairly similar 

to that observed in HIV-infected humans (Baskin, 1987).  Symptoms include 

orchitis, encephalitis and respiratory tract disease. 

 

1.14. BCMV biology 
 

Baboons are known to harbour viruses which are closely related to EBV, HHV6 

and VZV (Blewett et al., 2001).  An alphaherpesvirus called herpesvirus papio 2 

(HPV2), bearing significant similarity to human HSV was discovered in a colony of 

captive baboons (Jenson et al., 2000).  Recently CMV-like viruses were isolated 
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from three sub-species of baboon, all of which were found to be closely related to 

both HCMV and RhCMV (Blewett et al., 2001). 

 

The baboon CMV-like viruses had similar characteristics to other CMVs, including 

slow growth in fibroblast cell cultures, and production of virions with similar size 

and morphology to HCMV (Blewett et al., 2001).  Phylogenetic analysis and 

predicted protein sequences of the gB gene confirmed baboon cytomegalovirus 

(BCMV) to be a member of the cytomegalovirus group, closely related to both 

HCMV and RhCMV.  More detailed analysis via ELISA and western blotting 

showed that BCMV shared greater homology with RhCMV than HCMV (Blewett et 

al., 2001).  gB genes have been isolated from various strains of BCMV, which 

were isolated from three sub-species of cynocephalus baboons (olive, yellow and 

chacma) (Ross et al., 2005).  However, similarities between the gB coding 

sequences were too similar to differentiate by PCR assay.  This similarity may be 

due to a range overlap between two central African baboon subspecies allowing 

transfer of BCMV strains between populations (Ross et al., 2005). 

 

Baboons are perceived to be a possible species for xenogeneic organ donors as 

they are relatively easy to breed in captivity and their organ size is appropriate for 

humans (Blewett et al., 2000).  However baboon to human transplants have been 

restricted due to possible cross-species transfer of baboon viruses to 

xenotransplant patients.  BCMV was isolated from the peripheral blood of the 

recipient of a baboon liver transplant four weeks post-transplantation (Michaels et 

al., 2001).  Furthermore, it has been observed that BCMV was reactivated 

(detected as an increase in BCMV DNA copy numbers by PCR) in baboon 

recipients.  The pattern of reactivation observed was similar to that of HCMV in 

human transplant patients (Mueller & Fishman, 2004). 

 

1.15. ChCMV biology 
 

Chimpanzee cytomegalovirus (ChCMV) is the closest known relative to HCMV.  It 

is thought that the two viruses evolved with their hosts, with a divergence date of 

approximately 5-6 million years ago.  Sequencing of ChCMV revealed a 241,087 

bp genome, with UL, US, RL, and RS components, and a G+C content of 67.7%.  

The greatest degree of sequence similarity was observed in the central part of the 

UL region with similarity decreasing towards the genome termini.  ChCMV was 

found to lack counterparts of HCMV UL1 (a member of the RL11 glycoprotein 
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family), UL111A (which encodes an interleukin-10 homologue in HCMV), and UL3.  

ChCMV was also found to contain a number of genes absent in HCMV AD169 and 

Toledo strains, including: UL146A (encodes a α-chemokine in HCMV), UL155, 

UL156, and UL157 (Davison et al., 2003a). 

 

The Toledo strain of HCMV produces the functional viral chemokine vCXCL-1 

(UL46), which has been implicated in HCMV virulence.  A similar gene, 

vCXCL-1chcmv, was identified in ChCMV.  It was found that vCXCL-1chcmv had 

similar activation potentials, chemotactic and signalling properties to its HCMV 

counterpart and could provide a model for assessing the role of vCXCL-1 in CMV 

pathogenesis (Miller-Kittrell et al., 2007).   
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1.16. Project aims 
 

Previous work comparing HCMV and SCMV pp71 proteins, by cloning and 

sequencing, had shown that these two homologues can locate to ND10 domains 

and play an active role in transactivating gene expression.  However, only HCMV 

pp71 was able to direct long-term gene expression (Nicholson, 2004).  

Homologues of pp71 obtained from other CMV viruses including RhCMV, BCMV 

and ChCMV had been sequenced but not yet studied.  Close examination of the 

predicted amino acid sequences showed a significant degree of homology 

between the UL82 proteins, especially in the middle region where a large degree 

of similarity is seen.  Therefore the pp71 homologues were expected to behave in 

a similar manner to HCMV pp71.   

 

This study aimed to: 

 

1. Investigate the activation of gene expression by comparing the non-human 

homologues to HCMV pp71 using transfection assays and HSV-1 vectors.  

To determine how the pp71 homologues behave in short-term and long-term 

gene expression assays.  

 

2. Map the region of HCMV pp71 involved in long-term gene expression. 

 

 

3. Further characterise the non-human homologues by comparing the 

intracellular localisation of these proteins with that of HCMV pp71. 
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2. Materials  
 
2.1. Chemicals 
 
All chemicals were of analytical grade, and unless otherwise stated, purchased 

from VWR Ltd, Sigma Aldrich Company Ltd. UK, or Invitrogen. 

 

2.1.1. Eukaryotic cells and tissue culture 
 
Culture media 
 
D5+5  
Dulbecco’s modified Eagle’s medium containing 1 mM sodium pyruvate and 2 mM 

L-glutamine, supplemented with 5% newborn calf serum (NBCS), 5% foetal calf 

serum (FCS), 100 U/ml penicillin, 100 μg/ml streptomycin and 1% non-essential 

amino acids (NEAA). 

 

DF2  
Dulbecco’s modified Eagle’s medium containing 1 mM sodium pyruvate and 2 mM 

L-glutamine, supplemented with 2% FCS, 100 U/ml penicillin, 100 μg/ml 

streptomycin and 1% NEAA. 

 

ETC10  

BHK-21 medium supplemented with 10% NBCS, 100 U/ml penicillin, 100 μg/ml 

streptomycin, 7% tryptose phospate broth and 2 mM L-glutamine. 

 

RPMI  
RPMI 1640 medium containing 25 mM HEPES buffer, supplemented with 10% 

FCS, 1% NEAA, 100 U/ml penicillin, 100 μg/ml streptomycin and 2 mM 

L-glutamine. 

 

 Tissue culture solutions 
 
PBSA: 170 mM NaCl, 3.4 mM KCl, 1.8 mM KH2PO4, pH 7.5. 
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Trypsin: 0.25% trypsin in Tris saline pH 7.7 (140 mM NaCl, 0.7 mM Na2HPO4, 5.6 

mM D-glucose, 24.8 mM Tris). 

 

Versene: 0.6 mM EDTA with 0.002% phenol red in PBSA. 

 

Tryptose Phosphate Broth: 29.5 g/L tryptose phosphate (Becton Dickinson). 

 

Eukaryotic cells 

Name Description Source Growth 
Medium 

HFFF2 Human foetal foreskin 

fibroblasts 

Provided by C.M. Preston D5+5 

U2OS  Human osteosarcoma 

cells 

Provided by C.M. Preston D5+5 

 

BHK Baby hamster kidney 

fibroblasts 

Provided by J.Mitchell ETC10 

U373 Human glioblastoma Provided by C.M. Preston D5+5 

 

Table 2.1. Showing cells used and their sources 
 

2.1.2. Primary Antibodies 
Antibody Target IF/WB* Source 
Anti-hDaxx 
(mouse 
monoclonal) 

 
Endogenous 
hDaxx 

 
 
IF 

 
Courtesy of 
G.Maul 

Anti-PML A-20 
(goat polyclonal) 

Endogenous PML IF Santa Cruz 

Anti-GFP 
(rabbit polyclonal) 

 
EYFP-tag 

 
WB 

 
AbCam 

Anti-myc 
(mouse 
monoclonal) 

 
myc-tag 

 
WB 

 
Santa Cruz 

Anti-Actin 
(mouse 
monoclonal) 

 
Actin 

 
WB 

 
Sigma Aldrich UK 

Anti-hDaxx 
(rabbit polyclonal) 

Endogenous 
hDaxx 

WB Sigma Aldrich UK 

 

Table 2.2. Primary antibodies used, their targets and their source 
*Abbreviations: IF=immunofluorescence, WB=western blotting 
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2.1.3. Secondary Antibodies 
Antibody IF/WB* Source 
Anti-mouse IgG-Cy5 
conjugate 

 
IF 

Amersham Biosciences 
UK Ltd 

Alexa 647-chicken anti-
goat 

 
IF 

 
Invitrogen 

Anti-rabbit IgG-HRP 
conjugated 

 
WB 

 
Sigma Aldrich UK 

Anti-mouse IgG-HRP 
conjugated 

 
WB 

 
Sigma Aldrich UK 

 

Table2.3. Secondary antibodies used and their source 
*Abbreviations: IF=immunofluorescence, WB=western blotting 
 

2.1.4. Plasmids  
 

Plasmid Description Source 
 
pEYFP-C1 

EYFP expression vector containing a multiple cloning 
site (MCS) allowing inserts to be fused to the EYFP 
terminus driven by the HCMV MIEP 

 
CM.Preston 

 
pEYFPpp71 

EYFP fused to the N-terminus of the HCMV pp71 ORF 
driven by the HCMV MIEP 

 
C.M.Preston

 
pEYFPS82 

EYFP fused to the N terminus of the SCMV S82 ORF 
driven by the HCMV MIEP 

 
C.M.Preston

 
pEYFPB82 

EYFP fused to the N terminus of the BCMV B82 ORF 
driven by the HCMV MIEP 

 
C.M.Preston

 
pEYFPCh82 

EYFP fused to the N terminus of the ChCMV Ch82 
ORF driven by the HCMV MIEP 

 
M.J.Nicholl 

 
pEYFPRh82 

EYFP fused to the N terminus of the RhCMV Rh82 
ORF driven by the HCMV MIEP 

 
T. Chaudry 

pmycpp71 c-myc tag fused to N-terminus of HCMV pp71 driven 
by the HCMV MIEP  

C.M.Preston

pmycS82 c-myc tag fused to N-terminus of SCMV S82 driven by 
the HCMV MIEP 

M.J.Nicholl 

pmycB82 c-myc tag fused to N-terminus of BCMV B82 driven by 
the HCMV MIEP 

M.J.Nicholl 

pmycRh82 c-myc tag fused to N-terminus of RhCMV Rh82 driven 
by the HCMV MIEP 

M.J.Nicholl 

pmycCh82 c-myc tag fused to N-terminus of ChCMV Ch82 driven 
by the HCMV MIEP 

C.M.Preston

 
pCP1082 

HCMV MIEP controlling E.coli lacZ gene in HSV-1 
thymidine kinase locus 

 
C.M.Preston

 

Table 2.4. Plasmids used and their acknowledged sources 
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2.1.5. Viruses 
 

Virus Promoter Transgene locus 
in1382 HCMV MIEP (-750 to +7) E.coli lacZ (TK locus) 
in1374 HCMV MIEP (-750 to +7) E.coli lacZ (UL43) locus 
 
in1310 

 
HCMV MIEP (-750 to +7) 

HCMV EYFPpp71 (TK locus), E.coli lacZ 
(UL43 locus) 

 
in0150 

 
HCMV MIEP (-750 to +7) 

SCMV EYFPS82 (TK locus), E.coli lacZ (UL43 
locus) 

 
in0146 

 
HCMV MIEP (-750 to +7) 

ChCMV EYFPCh82 (TK locus), E.coli lacZ 
(UL43 locus) 

 
in0144 

 
HCMV MIEP (-750 to +7) 

RhCMV EYFPRh82 (TK locus), E.coli lacZ 
(UL43 locus) 

 
in0145 

 
HCMV MIEP (-750 to +7) 

BCMV EYFPB82 (TK locus), E.coli lacZ (UL43 
locus) 

 
in0149 

 
HCMV MIEP (-750 to +7) 

ChCMV mycCh82 (TK locus), E.coli lacZ 
(UL43 locus) 

 
in0151 

 
HCMV MIEP (-750 to +7) 

HCMV mycpp71 (TK locus), E.coli lacZ (UL43 
locus) 

 
in0156 

 
HCMV MIEP (-750 to +7) 

EYFPTC6 (TK locus), E.coli lacZ (UL43 locus) 

 
in1318 

 
HCMV MIEP (-750 to +7) 

Secreted alkaline phosphatase (SEAP) (TK 
locus)  

 
Table 2.5. Viruses used in this study 

All mutant HSV-1 recombinant viruses were derived from the HSV-1 virus in1312 

(see introduction section 1.10.6).  All HSV-1 recombinant viruses used in this 

study are impaired for the transcriptional stimulating activity of VP16 and 

additionally, the IE proteins ICP0 and ICP4 are rendered non-functional by 

deletion and temperature sensitive mutations respectively. 

 

2.1.6. Restriction endonucleases 
All restriction endonucleases were purchased from New England Biolabs Ltd (UK) 

or Roche Diagnostics Ltd (UK) and were supplied with the appropriate reaction 

buffers. 

 

2.1.7. Miscellaneous enzymes 
T4 DNA ligase and calf intestinal phosphatase (CIP) were obtained from New 

England Biolabs.  Klenow DNA Polymerase was purchased from Roche 

Diagnostics Ltd.  All enzymes were supplied with the appropriate reaction buffers. 
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2.1.8. Composition of commonly used solutions and buffers 
 

2.1.8.1. Bacterial cell culture 
L-Broth: 10 mg/ml tryptone peptone (Becton Dickinson), 5 mg/ml yeast extract 

(Becton Dickinson), 10 mg/ml NaCl pH 7.5. 

 

L-Broth agar: L-broth plus 15 mg/ml agar (Becton Dickinson). 

 

2.1.8.2. DNA manipulation 
 

2.1.8.2a. Small scale DNA preparation 
Resuspension buffer p1: 50 mM Tris.HCl, 10 mM EDTA, 100 μg/ml RNase A pH 

8.0. 

 

Lysis buffer p2: 200 mM NaOH, 1% SDS. 

 
Neutralisation buffer N3: 3.0 M potassium acetate pH 5.5. 

 

Wash buffer 1 PB: Qiagen proprietary information. 

 

Wash buffer 2 PE: Qiagen proprietary information. 

 

Elution buffer EB: 10 mM Tris.HCl, pH 8.5. 

 

2.1.8.2b. Large Scale DNA preparation 
Resuspension buffer: 50 mM Tris.HCl, pH 8.0, 10 mM EDTA, 100 μg/ml RNase 

A. 

Cell lysis buffer: 200 mM NaOH, 1% SDS. 

 

Neutralisation buffer: 3.0 M potassium acetate pH 5.5. 

 

Filter wash buffer: 1 M potassium acetate pH 5.0. 

 

Equilibration buffer: 750 mM NaCl, 50 mM MOPS, pH 7.0, 15% isopropanol, 

0.15% Triton X-100. 
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Column wash buffer: 1.0 M NaCl, 50mM MOPS, pH 7.0, 15% v/v isopropanol. 

 

Elution buffer I: 1.25 M NaCl, 50 mM MOPS, pH 7.0, 15% v/v isopropanol. 

 

Elution buffer II: 1.6 M NaCl, 50 mM MOPS, pH 7.0, 15% v/v isopropanol. 

 

TE buffer: 10 mM Tris.HCl pH 8.0, 1 mM EDTA. 

 

2.1.8.3. STET preparations 
STET: 8% sucrose, 5% Triton-X 100, 500 mM EDTA, 500 mM Tris.HCl pH 8.0 

 

2.1.8.4. SDS polyacrylamide gel electrophoresis and western blotting 
Running gel buffer: 52 mM Tris.HCl, 53 mM glycine, 1% SDS, pH 6.8. 

 

Transfer Buffer: 25 mM Tris.HCl, 192 mM glycine, 20% methanol, pH 8.3 

. 

SDS gel loading buffer: 50 mM Tris.HCl, pH 6.8, 100 mM DTT, 2% SDS, 10% 

glycerol, 0.1% bromophenol blue. 

 

PBSA+TWEEN: PBSA+1% TWEEN 20 (Calbiochem). 

 

2.1.8.5. DNA electrophoresis  
TBE (10X): 1.25 M Tris, 27mM EDTA, 0.4 M boric acid.  

 

Ficoll loading buffer: 10% Ficoll, 5XTBE, 0.1% bromophenol blue. 

 

2.1.8.6. β-Galactosidase assays 
β-Gal reaction mix (histochemical): 5 mM K4Fe(CN)6, 5 mM K3Fe(CN)6, 2 mM 

MgCl2, 0.01% NP40, 1 mg/ml 5-Bromo-4-Chloro-3-Indolyl-β-D-galactoside (X-gal) 

(Melford) in PBSA. 

 

Carmalum Stain: 5 g Carmine red, 5 ml glacial acetic acid 120 ml dH2O, 5 g 

aluminium potassium sulphate, 80 ml dH2O, 1 crystal thymol. 
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2.1.8.7. SEAP assay 
SEAP 2x buffer: 2 M diethanolamine, 1 M MgCl2, 1 M homoarginine, 12 mM 

pNitrophenyl phosphate.  

 

2.1.8.8. Immunofluorescence reagents 
Fix buffer: 5% Formaldehyde, 2% sucrose in PBSA 

 

Permeabilisation buffer:0.5% NP40, 2% sucrose, in PBSA 

 

2.1.9. Commercial kits and other reagents 

2.1.9.1. DNA Handling 
QIAEXII Extraction kit  Qiagen 

Endofree plasmid Maxi kit Qiagen 

1KB DNA ladder  NEB 

Klenow Buffer 10 X  66 mM Tris.HCl, 0.5 M NaCl, 66 mM MgCl2, pH 7.5. 

Rainbow Marker  GE Healthcare 

AF1 mounting fluid  Citiflour  
Aquamount fluid   VWR Ltd 

 

2.1.9.2. Transfection reagents 
NucleofectorTM Solution   Amaxa Biosystems 

 

2.1.9.3. Transformation reagents  
E.Coli DH5α chemically competent cells  Invitrogen Life Technologies 
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2.2. Methods 
 

2.2.1. DNA manipulation techniques 
 

2.2.1.1. Restriction endonuclease digestion 
 
DNA was digested in a final volume of 10-20 μl, in buffer reaction conditions 

according to manufacturer’s guidelines.  The number of units of enzyme added per 

reaction was dependent on the quantity of DNA present.  Typically 10 units of 

enzyme were used per 5 μg of DNA.  Restriction enzyme digests were incubated, 

unless otherwise stated, at 37oC for 1-3 hr. 

 

2.2.1.2. Removal of phosphate groups from DNA 5’ ends 
 
1 unit of CIP was added to restriction endonuclease digests to remove phosphate 

groups from 5’ ends of DNA fragments to prevent vector re-ligation. 

 

2.2.1.3. Generation of blunt ended linear DNA fragments 
 
DNA fragments generated by digestion with the appropriate restriction enzyme 

were blunt ended using fill in reactions containing 2 units Klenow DNA 

polymerase, 100 μg/μl BSA, 5 mM DTT, 100 μM dATP, 100 μM dTTP, 100 μM 

dGTP, 100 μM dCTP, 1xKlenow buffer.  Reactions (20 μl) were incubated at 37oC 

for 1 hr.   

 

2.2.1.4. Separation of DNA fragments by agarose gel electrophoresis 
 
DNA fragments were separated and identified using 50-100 ml gels containing 

1%-1.2% agarose.  The DNA samples were analysed by gel electrophoresis with 

50-100 ml 1xTBE and 1μg/ml ethidium bromide at 50 V.  DNA was visualised by 

UV transillumination and photographed using a camera with Polaroid 667 film. 
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2.2.1.5. Isolation of DNA fragments from agarose gels 
 
Long wave UV transillumination was used to visualise DNA fragments to be 

isolated and purified.  Appropriate DNA fragments were excised using a sterile 

scalpel.  DNA was extracted using a QIAquick gel extraction kit (QIAGEN).  

Purified fragments were checked on 1% agarose gels.  

 

2.2.1.6. Phenol/Chloroform extractions  
 
DNA eluted using the QIAquick method was phenol/chloroform extracted to give 

more concentrated preparations.  The final volume of DNA solutions was brought 

up to 50 μl by the addition of dH2O. An equal volume of phenol/chloroform (1:1) 

was added and the mixture vortexed prior to centrifugation at 13000 rpm (MSE 

microfuge) for 2 min.  The resulting upper aqueous phase was transferred to a 

fresh microfuge tube and an equal volume of chloroform was added.  The mixture 

was vortexed briefly and centrifuged again at 13000 rpm (MSE microfuge) for 2 

min.  For ethanol precipitations 2.5 volumes of 100% ethanol, 0.3 M sodium 

acetate and 5 mM EDTA was added to the aqueous phase and incubated at  

-20oC for 2 hr.  For isopropanol precipitations an equal volume of isopropanol was 

added to the aqueous phase with 0.3 M sodium acetate and 5 mM EDTA.  The 

mixture was left to precipitate at room temperature for 1 hr and spun down at 

13000 rpm (MSE microfuge) for 5 min.  The resulting pellet was washed with 0.5 

ml 100% ethanol, and air dried and resuspended in an appropriate volume of 

dH2O.  

 

2.2.1.7. Ligation of compatible DNA fragments 
 
Vector and insert were digested with the appropriate restriction endonuclease and 

purified by phenol/chloroform extraction, as described above.  DNA was analysed 

by gel electrophoresis and purified using a gel extraction kit (QIAGEN).  The 

purified DNA fragments were ligated using a variety of vector-insert ratios 

depending on the size of vector and insert.  Final reaction volumes of 10 μl 

containing 1xT4 DNA ligase buffer and 10 units T4 ligase were used per ligation 

mixture.  Reactions were ligated for 4-12 hr at 16oC.  Ligated DNA was stored at 

-20oC.  
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2.2.1.8. Transformation of DNA into competent bacteria 
 
Approximately 1-5 μl ligation mix with 25-50 μl of E-coli DH5α bacterial cells was 

incubated on ice for 20 min.  The transformation mix was heat shocked at 37oC for 

30 sec and followed by a further 2 min incubation on ice.  500 μl of pre-warmed 

L-broth was added to the transformed cells and the mixture placed in an orbital 

shaker (200 rpm) at 37oC for 1 hr. 150 μl of the transformed cells was plated onto 

L-broth agar plates containing 50 μg/ml of the appropriate antibiotic to allow 

selection of the transformants.  The plates were incubated overnight at 37oC to 

allow the growth of single colonies.  

 

 2.2.1.9. Small scale DNA preparation 
 
Starter cultures were generated by inoculating 1 ml L-broth containing the 

appropriate antibiotic with a single bacterial colony.  This was placed in an orbital 

shaker at 200 rpm overnight at 37oC.  Plasmid DNA was extracted from pellets 

using a QIAGEN Mini-prep kit according to manufacturer’s guidelines, as follows: 

Starter cultures were centrifuged at 3000 rpm in a bench top centrifuge for 30 min 

at 4oC with the resulting supernatant being discarded.  The bacterial pellet was 

resuspended in 4 ml buffer P1 and the cells lysed by the addition of 4 ml buffer P2, 

and incubated at room temperature for 5 min.  4 ml buffer P3 was added to the 

mixture and the tube inverted 4-6 times and incubated on ice for 15 min.  The 

supernatant was applied to a QIAGEN tip, previously equilibrated with 4 ml buffer 

QBT, and allowed to enter the resin.  The column was washed with buffer QC. 

DNA was eluted using 5 ml buffer QF and precipitated by adding 3.5 ml room 

temperature isopropanol to the eluted DNA and centrifuged at 11000 rpm (Sorvall 

SS-34) for 30 min at 4oC.  The DNA pellet was washed with 2 ml 70% room 

temperature ethanol and centrifuged at 11000 rpm (Sorvall SS-34) for 10 min at 

4oC.  The supernatant was decanted and the DNA pellet air dried and 

resuspended in 300 μl of 10 mM Tris.HCl pH 8.5. 

 

2.2.1.10. STET preparations 
 

Bacterial colonies were picked from selective plates and inoculated in 2 ml L-broth 

containing the appropriate selective antibodies and incubated overnight at 37oC in 

an orbital shaker (200 rpm).  The following day 1.5 ml of the culture was 
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transferred into a 1.5 ml eppendorf tube and centrifuged for 2 min at 6000 rpm 

(MSE microfuge).  The medium was removed and the bacteria were resuspended 

in 100 μl STET plus 5 μl 10 mg/ml lysozyme, and the mixture was vortexed.  The 

eppendorf tubes were transferred to a boiling water bath for 1 min and then 

centrifuged for 10 min at 13000 rpm (MSE microfuge).  The resulting supernatant 

was transferred to a new eppendorf tube containing 400 μl 0.3 M sodium acetate 

pH 7 and 0.5 ml isopropanol and vortexed.  The mix was centrifuged at 13000 rpm 

(MSE microfuge) for 5 min and the resulting supernatant discarded and the pellet 

air dried and resuspended in 33 μl of dH2O. 

 

2.2.1.11. Large Scale DNA preparation 
 

100 μl of starter culture containing the required DNA plasmid was used to 

inoculate 200 ml of L-broth, containing 50 μg/ml of the appropriate antibiotic, and 

shaken overnight at 200 rpm in an orbital shaker at 37oC.  Cultures were 

centrifuged at 3000 rpm for 30 min at 4oC (Sorvall RT60000B) and the resulting 

supernatant discarded.  Plasmid DNA was extracted according to manufacturers 

guidelines using a Qiagen Maxi-prep kit as follows.  The bacterial pellets were 

resuspended in 10 ml buffer P1 and lysed with 10 ml buffer P2.  Lysis was stopped 

by the addition of buffer P3.  The lysate was filtered through a QIA filter cartridge.  

2.5 ml buffer ER was added to filtered lysate mix and incubated on ice for 30 min.  

The filtered lysate was transferred to an equilibrated QIAGEN-tip 500 to allow DNA 

to bind to the resin and the column was washed twice with 30 ml buffer QC.  DNA 

was eluted using buffer QN and precipitated by adding 10.5 ml room temperature 

isopropanol to the DNA and centrifuged at 11000 rpm in a Sorvall SS-34 rotor for 

30 min at 4oC.  The DNA pellet was washed with 5 ml endotoxin free 70% ethanol 

and centrifuged at 11000 rpm (Sorvall SS-34 rotor) for 10 min at 4oC.  The 

supernatant was discarded and the DNA pellet air dried and re-dissolved in 350 μl 

buffer TE and transferred to a fresh microfuge tube. 

 

2.2.1.12. Nucleofection of adherent cells 
 
Transfection of adherent cells was carried out using a NucleofectorTM (Amaxa). 

HFFF2 cell monolayers maintained in 175 cm2 tissue culture flasks were 

trypsinised and resuspended in RPMI growth medium. Cell density was 

determined (2x105 - 2x107 cells/ml) and cells were centrifuged at 1000 rpm using a 
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RTH-250 rotor for 10 min at 20oC.  The supernatant was discarded and the cell 

pellet resuspended in room temperature NucleofectorTM Solution R to a final 

concentration of 2x105 - 2x107 cells/100 μl.  Each 100 μl of cell suspension was 

mixed with 5 μg of the required DNA, transferred to a cuvette and placed in the 

NucleofectorTM at the appropriate program and transfected.  500 μl pre-warmed 

RPMI medium was added to the transfected cells prior to samples being seeded 

into 24 well plates and incubated at 37oC overnight. 

 

2.2.1.13. Virus infection of mammalian cells  
 

24 well plates seeded with 1.5x105 cells, 13 mm coverslips seeded with 8x104 

cells or 35 mm plates seeded with 1x106 cells (unless otherwise stated) in 1 ml (24 

well plate) or 2 ml (35 mm plates and 13 mm coverslips) D5+5 medium were 

incubated overnight at 37oC.  The growth medium was removed, the following day 

and cells were infected with the appropriate virus in a volume of either 100 μl (24 

well plate) or 200 μl (35 mm plates and 13 mm coverslips) and incubated at 37oC 

with plates being rocked gently every 10 min for 1 hr.  Following incubation either 

1 ml (24 well plate) or 2 ml (35 mm plates and 13 mm coverslips) of fresh medium 

was added to the cell monolayers and the incubation continued at 38.5oC.  For 

longer incubation periods cell culture medium was changed every 2 days. 

 

2.2.2. Protein manipulation techniques 
 

2.2.2.1. Preparation of cell lysates 
 
Culture medium was removed from cell monolayers grown in 24 well tissue culture 

plates and the monolayers were washed with 1 ml PBSA. 40 μl 1xSDS gel loading 

buffer was added to each cell monolayer. The resulting lysates were scraped into 

1.5 ml microfuge tubes and stored at -20oC. 

 

2.2.2.2. SDS polyacrylamide gel electrophoresis of proteins 
 

Cell lysates were boiled for 10 min at 100oC to ensure complete denaturation of 

the proteins to be resolved by electrophoresis.  SDS-PAGE was carried out using 

Bio-Rad mini Protean II apparatus.  Resolving gels containing 4.17 ml distilled 
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water, 2.5 ml resolving gel buffer, 3.33 ml 30% acrylamide, 80 μl 10% ammonium 

per sulphate, 8 μl TEMED were overlaid with ethanol.  Following polymerisation 

the ethanol was rinsed off before overlaying with the stacking gel containing 1 ml 

distilled water, 0.6 ml stacking gel buffer, 0.4 ml acrylamide, 20 μl 10% ammonium 

per sulphate and 3 μl TEMED.  Samples were analysed by gel electrophoresis at 

150 V in running gel buffer till the dye front reached the bottom of the gel.  Prior to 

blotting the gel was removed from electrophoresis apparatus. 

 

2.2.2.3. Western blot analysis of denatured proteins 
 

SDS-PAGE gels were transferred to nitrocellulose membranes by the assembly of 

a blotting sandwich, the components of which were pre-soaked in transfer buffer 

and assembled as follows: The gel was placed on a 9.5 cm x 8.0 cm piece of 

Whatman No.1 filter paper and overlayed with nitrocellulose membrane cut to 8.5 

cm x 7.0 cm and a second piece of Whatman No.1 filter paper, cut as before, 

placed on top and air bubbles expelled.  The assembled sandwich was placed in a 

Bio-Rad mini-transblot apparatus and the proteins electroblotted at 250 mA for 2-4 

hr at 4oC.  The membrane was blocked in 25 ml PBSA+TWEEN and 5% dried milk 

for 1 hr at room temperature.  The membrane was washed 3 times in 100 ml 

PBSA+TWEEN for 5 min and incubated with primary antibody at the appropriate 

dilution in 20 ml PBSA+TWEEN and 5% dried milk for 4-12 hours at 4oC.  The 

membrane was washed 3 times in 100 ml PBSA+TWEEN for 5 min. The blot was 

incubated for 1 hr at room temperature in secondary antibodies which were diluted 

to appropriate concentrations in 20 ml PBSA+TWEEN and 2% dried milk.  The 

membrane was washed 3 times in 100 ml PBSA+TWEEN for 5 min and proteins 

were detected using ECL reagents (Amersham).  A 2 ml mixture of ECL western 

blotting reagents was applied to the drained membrane for 1 min after which the 

membrane was placed between 2 sheets of Melinex hazy 23-micron film and 

exposed to Kodak X-omat S film. 
 

2.2.2.4. Histochemical staining for β-glactosidase in tissue culture 
monolayers 
 
Cell culture medium was removed from cell monolayers, grown in 24 well plates.  

Each cell monolayer was fixed with 1 ml 1% glutaraldehyde in a fume cupboard.  

The fix solution was removed after 45 min incubation at room temperature and the 
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cell monolayers washed with 2 ml PBSA.  1 ml of β-gal reaction mixture was 

added to the cell monolayers and the plates incubated at 37oC for 2-4 hr until blue 

cells became visible under a low power light microscope.  The cell monolayers 

were washed with 2 ml dH2O and positive blue cells counted. 

 

2.2.2.5. Carmalum staining 
 
Cell monolayers to be retained for digital imaging were washed with dH2O to 

remove the β-gal reaction mixture.  Prior to monolayers drying out, 1 ml of 

Carmalum stain was added and monolayers were incubated at 4oC for 4-5 days.  

Following staining the dye was removed and the plates were washed with dH2O, 

dried and stored until required. 

 

2.2.2.6. Digital imaging of β-gal positive cells 
 

Digital images of β-gal positive cells were obtained by mounting a clean coverslip 

of the appropriate size over the stained monolayers using aquamount fluid.  

Images were taken using a Nikon TS100 microscope and a SPOT INSIGHT 

camera and software. 

 

2.2.2.7. Secreted Alkaline Phosphatase (SEAP) assays  
 
Analysis of SEAP was carried out by infecting cell monolayers with a HSV-1 

recombinant virus expressing SEAP at 38.5oC.  150 μl of growth medium was 

harvested and samples were incubated at 65oC to destroy endogenous alkaline 

phosphatase and allowed to cool to room temperature.  25 μl of sample was 

transferred to a fresh 1.5 ml microfuge tube and the remaining samples stored at 

-20oC.  To each sample 25 μl of assay buffer, containing 25 μl 2xSEAP buffer and 

1 μl 4-methylumbelliferyl phosphate (MUP) was added.  Reactions were vortexed 

and incubated in the dark for 1 hr at room temperature. The reaction was stopped 

by placing samples on ice and fluorescence measured when 25 μl of each reaction 

was added to 2 ml dH2O in a cuvette in a HSI DNA fluorometer. 
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2.2.3. Virus propagation techniques 
 
2.2.3.1. Preparation of recombinant HSV-stocks 
 
Recombinant HSV-1 stocks were propagated in BHK-21 cells grown at 37oC in 

tissue culture roller bottles to approximately 90% confluency.  The cells were 

inoculated with 0.2 ml of seed stock in 100 ml ETC10 medium containing 3 mM 

HMBA.  The cells were incubated at 31oC until CPE was observed.  The cell 

suspension was transferred to a Sorvall goose necked bottle and centrifuged at 

5,000 rpm in a Sorvall SLA-1500 GSA rotor for 10 min at 4oC.  The supernatant 

was transferred to a fresh goose necked bottle and centrifuged at 12,000 rpm for 2 

hr in a Sorvall SL-1500 GSA rotor.  The resulting cell pellets were resuspended in 

4.5 ml ETC10 medium and sonicated in a bath sonicator to disaggregate the virus.  

The suspension was dispensed into 1.5 ml microfuge tubes and stored at –70oC. 

 

2.2.3.2. Titration of recombinant HSV-1 stocks 
 
Recombinant HSV-1 stocks were titrated on U2OS cell monolayers grown in 35 

mm dishes to 90-100% confluency.  Cell monolayers were infected with 200 μl 

serial dilutions of the viruses, with titrations being produced in duplicate.  After a 1 

hr incubation at 37oC the cells were overlaid with fresh D5+5 medium containing 3 

mM hexamethylbisacetamide (HMBA) and 2% human serum.  The cells were 

incubated at 31oC till plaques were observed.  Upon observation of plaques 

medium was removed and the monolayers fixed with 1 ml 1% glutaraldehyde for 

45 min.  The fix solution was removed and the cells washed with 2 ml PBSA.  1 ml 

β-gal reaction mixture was added to the monolayers and incubation continued at 

37oC for 2-3 hours until blue plaques could be observed.  The β-gal reaction mix 

was washed off prior to counting plaques. 

 

2.2.4. Cell culture techniques 
 

2.2.4.1. Serial passage of eukaryotic cells 
 
Eukaryotic cells were maintained in 175 cm2 tissue culture flasks (NUNC) in 50 ml 

of the appropriate growth medium.  For serial passage the growth medium was 

removed and cell monolayers washed with 10 ml versene, which was 
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subsequently poured off.  10 ml versene containing 2 ml trypsin was washed over 

the cells and all but 5 ml removed.  Gentle agitation was applied to the flask for 5 

min, allowing the cell monolayer to detach.  10 ml of appropriate fresh growth 

medium was added to the cell suspension and seeded into tissue culture flasks 

containing 40 ml fresh growth medium. HFFF2 cells were typically split at a ratio of 

1:4, while both U373 cells and U2OS cells were split at a ratio of 1:3. 

 

2.2.4.2. Seeding of eukaryotic cells into tissue culture dishes 
 
Eukaryotic cell monolayers maintained in 175 cm2 tissue culture flasks were 

trypsinised and re-suspended in appropriate growth medium as described above.  

Cells were seeded, into 24 well plates or 35 mm plates. 

 

2.2.5. Microscopy techniques 
 

2.2.5.1. Immunofluorescence 
 
Cells were grown on sterile 13 mm diameter coverslips in 24 well tissue culture 

plates to approximately 75% confluency. After incubation with virus or DNA 

plasmid, culture medium was removed and monolayers washed twice with PBSA. 

Monolayers were fixed with 0.5 ml fixing solution, at room temperature, for 10 min.  

After fixation cells were washed 3 times with PBSA+1% FCS and permeabilised 
with 0.5 ml permeabilisation buffer for 5 min at room temperature. Following 

removal of permeabilisation buffer cells were washed 3 times with PBSA+1% FCS.  

20 μl of the appropriate primary antibody dilutions, in PBSA+1% FCS, were 

applied to each coverslip and incubated at room temperature for 1 hr. Coverslips 

were washed 3 times with PBSA+1% FCS and 20 μl of the appropriate secondary 

antibody, diluted in PBSA+1% FCS was applied to the coverslips. After incubation 

in the dark for 30 min at room temperature, coverslips were washed 3 times with 

PBSA+1% FCS, once with dH2O and air-dried.  The coverslips were mounted onto 

glass microscope slides using 5 μl Citifluor, the edges sealed with clear nail 

varnish and stored at 4oC. 
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2.2.5.2. Confocal microscopy 
 
Immunolabelled cells and those expressing EYFP conjugates were examined 

using a Zeiss LSM 510 confocal microscope attached to a computer with the 

appropriate LSM software.  Images were exported and saved. 
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the UL82 homologues 
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3. Part I 
 

3 1. Introduction 
 

The HCMV tegument protein pp71 is important for transactivating IE gene 

expression and initiating lytic replication.  This protein has also been shown to 

stimulate transcription from IE promoters in HSV-1 genomes.  Studies showed that 

pp71 stimulates expression of genes under the control of the HCMV MIEP in 

short-term assays (Homer et al., 1999, Liu & Stinski, 1992, Marshall et al., 2000).  

Preston and Nicholl (2005) showed, using various reporter based assays, that 

pp71 could direct long-term gene expression (see Introduction section 1.10.7 for 

details).   

 

In the study described here a HSV-1 mutant, in1382, which contains the lacZ gene 

inserted in the TK locus under the control of the MIEP was employed.  This virus 

was impaired for transcriptional activity due to mutations at VP16, ICP0, a 

temperature sensitive mutation at ICP4 therefore was unable to enter lytic 

replication, due to the absence of IE proteins.  In the presence of pp71 quiescence 

was overcome, as pp71 allowed continued expression from the HCMV IE 

promoter cloned into the genome. In the study presented here a comparison of 

pp71 with UL82 homologues from Simian CMV (S82), Baboon CMV (B82), 

Rhesus CMV (Rh82), and Chimpanzee CMV (Ch82) was carried out to establish if 

pp71 was unique in its ability to stimulate long-term gene expression. 

 

3.1 1. Sequence analysis of the UL82 homologues 
 
Amino acid sequences of pp71 (Chee et al., 1990, Dargan et al., 1997, Davison et 

al., 2003a), and its homologues S82 (Nicholson, 2004), B82 (Accession number 

AF324835), Rh82 (Hansen et al., 2003) and Ch82 (Davison et al., 2003a) were 

analysed using Vector NTI (Vector NTI suite 9.0) in order to determine their 

degrees of homology. The analysis of the primate CMV UL82 amino acid 

sequences in figure 3.1 shows a large number of conserved regions between all 

five homologues, indicating a significant degree of homology.  A more detailed 

sequence analysis of the homologues, carried out by Nicholson (2004), led to the 

construction of a phylogenetic tree showing the relative evolutionary distances of 

the proteins from one another (Nicholson, 2004) (figure 3.2).  The tree shows that 



                 1                                               50 
      B82    (1) ----MDRP-QEEREPRPSTSRPLSLSATFERLSCQVMRVISTQNT-TLEA 
     Ch82    (1) MSRSPS-PGEGPSAAGGPGGAPGDNGSTFGRMHCQVLRLVTNHDS-SLEP 
     pp71    (1) MSQASSSPGEGPSSEAAAISEAEAASGSFGRLHCQVLRLITNVEGGSLEA 
     Rh82    (1) ----MDRPPEEEEEPRPSTSRALAPAATFERLTCQILRLVCTQHS-PLDV 
      S82    (1) ----MDRPPEEEEEPRPSTSRAAAPAATFDRLTCHVLRMITTQST-TMET 
Consensus    (1)     MDRP EEE EPRPSTSRA A AATFERLTCQVLRLITTQ S SLE  
                 51                                             100 
      B82   (45) DAVKVVNWHTHVQVANPAVICAFQESTCTRDALQLTDISIKGRSSSTLRD 
     Ch82   (49) DRLKILDLRTSVEVSRTSVLCLFQENKSQHDTVDLTDLNVKGHCAVGERD 
     pp71   (51) GRLRLLDLRTNIEVSRPSVLCCFQENKSPHDTVDLTDLNIKGRCVVGEQD 
     Rh82   (46) DAVQTMNWHTSVEVANRAVICAFQEMKSSRDALQLTDLNLKGHCSSTFRD 
      S82   (46) NAVKVIDWHANIQVANPAVICTFQEVKSPRDPLQLTDLNLKGRCSSTLRD 
Consensus   (51) DAVKVLDWHT VEVANPAVIC FQE KS RD LQLTDLNIKGRCSST RD 
                 101                                            150 
      B82   (95) QLRTDVGNYANKRLKSGT--HTKSMLVFALPLLRVPVTGIHLFRG--KAK 
     Ch82   (99) QLKADLINYSQRRMSPGS-STPISVLAFGLPLERVPVSGIHLFQAHPRGD 
     pp71  (101) RLLVDLNNFGPRRLTPGSENNTVSVLAFALPLDRVPVSGLHLFQSQRRGG 
     Rh82   (96) SLRTDACNYANRRLSPGS--QTSAMLVFALPIVRVPVTGIHLFRG--RGN 
      S82   (96) SLRTDVCNFSDTRLRSGS--NTMSVLVFALPLVRVPVTGIHLFRG--RAQ 
Consensus  (101)  LRTDL NYANRRLSPGS  NTISVLVFALPLVRVPVTGIHLFRG  RG  
                 151                                            200 
      B82  (141) NENRPLKANARATIRRCQYMWKVKLNLDKIIWNRRRDPNIEGGQFFTTDF 
     Ch82  (148) EENRL-RTEARVDIRRTAYHWGVRTTVSPR-WRRKVDRSLEAEQIFTTEF 
     pp71  (151) EENRP-RMEARAIIRRTAHHWAVRLTVTPN-WRRRTDSSLEAGQIFVSQF 
     Rh82  (142) SQNRPPRANARTTIRRAQYTWTVKVNVSAITWTRKRDQYVEGGYTFATDF 
      S82  (142) SENRPPRANARVTIRRAQYMWTVKVNLAGINWSRRRDSHTEGGQFFTSDF 
Consensus  (151)  ENRP RANAR TIRR QY W VKLNVS I W RRRD  LEGGQ FTTDF 
                 201                                            250 
      B82  (191) IFSTELIPLTVVDAMDQLACSDGYTHVQKAETVGSENLVRVFLINLSHHP 
     Ch82  (196) IFRAGAIPLRLVDAVELLSCSDRNTYIHKAETDARGQWVNVHLQHETLHP 
     pp71  (199) AFRAGAIPLTLVDALEQLACSDPNTYIHKTETDERGQWIMLFLHHDSPHP 
     Rh82  (192) TFLTGLIPLTLVDAIDQLACSNGDTYVQKVETIGEENLILVSLIHFSLHP 
      S82  (192) TFATDLMPLTVVDAMDQLACSDADTYIQKAETVGEQNLIRVYIIHLSGHP 
Consensus  (201)  F TGLIPLTLVDAMDQLACSDG TYIQKAETVG  NLI VFLIH S HP 
                 251                                            300 



      B82  (241) PQELFLQLSVYSHRAEVMCRHNPEPFFQRHSDNGFIVKNTKGVTIP-AHH 
     Ch82  (246) PPSVFLHFSLYTHGAEVVLRHNPYPHLTRHGDNGFTLHAPRGFTLSRLHR 
     pp71  (249) PTSVFLHFSVYTHRAEVVARHNPYPHLRRLPDNGFQLLIPKSFTLTRIHP 
     Rh82  (242) PTEVFLQLSVYAHRAEVMWRHNPNPFFERHSENGFLVKCPLHVTIP-AHQ 
      S82  (242) PAEMFLQMSVYSHRAEVICRHNPAPFFERHAENGFLVRNPHTVNIP-AHH 
Consensus  (251) P EVFLQLSVYSHRAEVM RHNP PFF RHSDNGFLVK PK VTIP AH  
                 301                                            350 
      B82  (290) THVAHFNNAFETQNTCSFLFFPVDIPGLSIECGPLQNRMKITIKMQNLTK 
     Ch82  (296) EYIVQVQNAFETNNTHDVIFFPADIPGVSMEAGPLPDRVRITIRLTWTGE 
     pp71  (299) EYIVQIQNAFETNQTHDTIFFPENIPGVSIEAGPLPDRVRITLRVTLTGD 
     Rh82  (291) TYVVQFNNALETQDTCYAVFFPLELPGISMDAGPLPNRMKITINVQNLTA 
      S82  (291) THVAHFNNAIETQGTCHLLFFPIDIPGLSIEAGPLTSRMKITLKIQNLTQ 
Consensus  (301) TYVVQFNNAFETQNTC  IFFPIDIPGLSIEAGPLP RMKITIKVQNLT  
                 351                                            400 
      B82  (340) TEISVSFMQTIGLIHFFPRGTLYTMPNKTLTSACSQIRLRAGLCPRESIA 
     Ch82  (346) NSVRIEHMQILGTIHLFKRGVLNLLPGKTEKIKRPQIQLRAGLFPRRAVM 
     pp71  (349) QAVHLEHRQPLGRIHFFRRGFWTLTPGKPDKIKRPQVQLRAGLFPRSNVM 
     Rh82  (341) NAITLAHMQMLGFIHLFRRGSVGVLPNKTETPRCSQIRLRAGLFPRDSIL 
      S82  (341) TAITVNYMQMLGFIHFFPRGSLATMPNRTQTPRCSQTRLRAGLFPRDVIM 
Consensus  (351) NAITL HMQMLG IHFFRRGSL LLPNKTET KCSQIRLRAGLFPRDSIM 
                 401                                            450 
      B82  (390) RG-ISQFAEQ--------HSSSSE---DEDDELPGTTPPIVTEAIFNPFQ 
     Ch82  (396) RGEVSEFRPQSPGELPLEGEEEEEE---EEERSSTPTPPALSESVFAAFE 
     pp71  (399) RGAVSEFLPQSPGLPPTEEEEEEEEEDDEDDLSSTPTPTPLSEAMFAGFE 
     Rh82  (391) RG-ISEFAQQP-------NNSSSSE--DEEEEGPPITPPIITEAIFDPFQ 
      S82  (391) RGVISQFVEQ--------NSSSSEE--EEEDEPVPLTPPILTEAIFAPFQ 
Consensus  (401) RG ISEF  Q          SSSEE  DEEDE    TPPILTEAIFAPFQ 
                 451                                            500 
      B82  (428) SENESTSDEDDER----------KKRGGRPATPHIS-DQLSPTSMLLTLP 
     Ch82  (443) -ESSEEEESDTEEG--------LSRALALTGRRRPRRGADEGEDLMLVIP 
     pp71  (449) -EASGDEDSDTQAG--------LSPALILTGQRR---RSGNNGALTLVIP 
     Rh82  (431) SEDSSDEDDEPQTTMDRLRREAHKAKREGTAAPVTHRERLPKTAMLLVVP 
      S82  (431) SENDSTSDEDEEEPTTSARLRAEARARREAGQPPVP-ERPPPTVQLLSLP 
Consensus  (451) SE SSDEDED E           SRA   TG P    E    TALLLVIP 
                 501                                            550 
      B82  (467) CWNMYMHLENLMPITASVEDNAVKNTSYLKSEMDGDICTAADIDVAYQTL 



     Ch82  (484) SWNVFVNIDNLVPLTGSVEQAALKPTSYLRSEMQGDVRTAADFTSNLQPV 
     pp71  (487) SWHVFASLDDLVPLTVSVQHAALRPTSYLRSDMDGDVRTAADISSTLRSV 
     Rh82  (481) SWNMYIHPDLLMPLTARIAEEAVKNTSYLRSELDGDICTACRPQ------ 
      S82  (480) CWNMYIHTDLLLPITARIEDTAVKATSYLRSELEGDICTAADLQSTFQEL 
Consensus  (501) SWNMYIHLD LMPLTASVED AVK TSYLRSEMDGDICTAADI S  Q L 
                 551                   575 
      B82  (517) LAPFPL---------SHRSPSRPRI 
     Ch82  (534) PVPRPSPMSLPSTSGTAASRSRPRI 
     pp71  (537) PAPRPSPISTASTSSTPRSR--PRI 
     Rh82  (525) -----------------NHPSRP-- 
      S82  (530) MAPLPA---------RRSPTARPRI 
Consensus  (551)  AP PS         T  S SRPRI 
 
 
Figure 3.1. Conservation of UL82 amino acids in homologue primate CMV sequences 
Amino acid sequences from primate CMV sequences were aligned using the Vector NTI program (suite 9.0).  Coloured 
boxes show degrees of similarity of the amino acids between the sequences.  The yellow boxes indicate 100% amino acid 
conservation between all sequences.  The blue boxes show 100% amino acid homology between certain sequences, while 
green boxes highlight amino acids, similar to each other in structure and charge.  Areas left unhighlighted show amino acids 
with no similarity to each other.  
 



 

Chimp
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Rhesus

Baboon
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Figure 3.2. Phylogenetic analysis of UL82 homologues 
Phylogenetic tree showing evolutionary relatedness between primate UL82
homologues and HCMV pp71.  HCMV pp71 and Ch82 proteins appear to be
evolutionarily distinct from S82, which shows greater homology to B82 and Rh82.
The tree was constructed by the alignment of sequences using ClustalW using a
multipurpose multiple peptide program, which employs the Blosum62 matrix
(Nicholson, 2004). 
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the pp71 and Ch82 proteins form a distinct group due to a greater degree of 

homology between their sequences (Davison et al., 2003a), while the S82 protein 

exhibits a greater degree of sequence homology with the B82 protein in a group 

separate from the Rh82 protein (Nicholson, 2004).   

 

Studies with an HSV-1 recombinant expressing YFP-tagged S82 under the control 

of the HCMV MIEP showed S82 to be a transactivator of short-term gene 

expression.  However the S82 protein was unable to direct long-term gene 

expression (Nicholson, 2004). The study described here investigated whether the 

Ch82, B82 and Rh82 homologues behaved like pp71 or S82 in terms of long-term 

gene expression. 

 

3.1.2. EYFP-tagged UL82 homologues as transactivators of gene expression 
 
The role of pp71 as a transactivator of short-term gene expression is well known 

(Homer et al., 1999, Liu & Stinski, 1992, Marshall et al., 2002).  Work by 

Nicholson. (2004) showed that the S82 protein also stimulated short-term gene 

expression from the HCMV MIEP (Nicholson, 2004).  To determine if the 

non-human UL82 homologues (B82, Rh82, and Ch82) also transactivated short-

term gene expression, plasmids pEYFPpp71, pEYFPS82, pEYFPB82, 

pEYFPRh82, pEYFPCh82 and pEYFP-C1 all under the control of the HCMV MIEP 

were transfected into HFFF2 cells using the NucleofectorTM system (Amaxa).  The 

transfected cells were cultivated in 24 well plates overnight at 37oC.  To 

investigate the activities of the homologues, transfected cells were infected with 

3x105 pfu, 1x105 pfu or 3x104 pfu of the HSV-1 recombinant virus in1382 and 

maintained at 38.5oC.  This HSV-1 mutant is inactive for VP16 and the IE proteins 

ICP0 and ICP4, but contains lacZ under control of the HCMV MIEP (Preston et al., 

1998).  This virus is unable to progress past the IE stage of infection so can be 

used to assess the activity of the UL82 homologues by observing expression of 

the reporter gene.  At 24 hr post-infection cell monolayers were stained with X-gal 

and the numbers of β-gal positive cells counted. Figure 3.3 shows the average 

numbers of β-gal positive cells at 24 hr post-infection from three individual 

experiments, the raw data for which are presented in table 3.1.  Cultures 

transfected with each of the plasmids expressing a UL82 homologue gave more 

β-gal positive cells than those transfected with the control vector, pEYFP-C1, 

when subsequently infected with 3x105 pfu, or 1x105 pfu of in1382.  At the highest 



 
 
 

Experiment 1 
 
 

Experiment 2 Experiment 3 

 
Plasmid 

Titre 
(pfu) 

24 
hours 

10 
days 

24 
hours 

10 
days 

24 
hours 

10 
days 

 3x105 18 0 59 0 45 0 
pEYFP-C1 1x105 11 0 14 0 0 0 
 3x104 4 0 0 0 0 0 
        
 3x105 74 300 262 379 66 121 
pEYFPpp71 1x105 3 62 24 78 2 35 
 3x104 0 0 1 9 1 14 
        
 3x105 102 9 205 0 33 0 
pEYFPS82 1x105 12 6 41 0 0 0 
 3x104 0 0 1 0 0 0 
        
 3x105 79 8 115 0 52 0 
pEYFPB82 1x105 9 1 33 0 0 0 
 3x104 2 0 2 0 0 0 
        
 3x105 46 19 134 0 46 0 
pEYFPRh82 1x104 8 2 11 0 1 0 
 3x104 3 0 1 0 0 0 
        
 3x105 81 4 159 0 54 0 
pEYFPCh82 1x105 4 0 21 0 1 0 
 3x104 2 0 1 0 0 0 
 
 

Table 3.1. Stimulation of β-gal expression by the EYFP-tagged UL82
homologues at 24 hr and 10 days post-infection 
HFFF2 monolayers were transfected with plasmids expressing EYFP-tagged UL82
homologues, and infected with in1382 at 24 hr post-transfection. After a further 24 hr
or 10 days, monolayers were stained with X-gal and β-gal positive cells were
counted. 
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Figure 3.3. Stimulation of β−gal expression by EYFP-tagged UL82
homologues at 24 hr post-infection 
HFFF2 monolayers were transfected with plasmids expressing the EYFP-tagged
UL82 homologues, and infected with various amounts of in1382 at 24 hr
post-transfection. After a further 24 hr monolayers were stained with X-gal and
β−gal positive cells were counted.  
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value of 3x105 pfu, in cultures transfected with the non-human UL82 homologues 

numbers of β-gal positive cells were greater than the control pEYFPC1.  However, 

cultures transfected with plasmids expressing the non-human homologues all 

produced fewer β-gal positive cells than those transfected with pEYFPpp71.  A 

similar pattern was observed from the numbers of β-gal positive cells in cultures 

infected with 1x105 pfu of virus.  

 

At 10 days post-infection cell monolayers were stained with X-gal and β-gal 

expression was analysed.  Figure 3.4 shows the average numbers of β-gal 

positive cells at 10 days post-infection.  At the highest value of 3x105 pfu, the 

number of positive cells in cultures transfected with pEYFPpp71 increased in 

comparison to that at 24 hr.  Cultures transfected with plasmids expressing the 

non-human homologues all showed a decrease in numbers of β-gal positive cells 

at 10 days post-infection compared to that observed at 24 hr.   

 

Due to the large degree of variability in numbers of β-gal positive cells between 

individual transfection experiments, (table 3.1), it was not possible to carry out 

statistical analysis.  Further experiments are needed to determine if the numbers 

are due to the alternative behaviour of these proteins or a result of experimental 

variability.  However, the transfection experiments did indicate that that all the 

EYFP-tagged UL82 homologues were functional in the short-term while only 

pEYFPpp71 appeared to stimulate long-term gene expression.  This was further 

confirmed using western analysis. 

 

Lysates of HFFF2 cells transfected with plasmids pEYFP-C1, pEYFPpp71, 

pEYFPCh82, pEYFPS82, pEYFPB82, or pEYFPRh82 were analysed by gel 

electrophoresis, transferred onto nitrocellulose membranes and probed with an 

anti-GFP antibody to detect EYFP-tagged proteins.  Figure 3.5 shows levels of 

UL82 proteins present at 24 hr post-infection.  Plasmids pEYFPpp71, 

pEYFPCh82, pEYFPS82 and pEYFPB82 all expressed similar levels of protein at 

24 hr post-transfection. However lysates transfected with pEYFPRh82 expressed 

lower levels of protein in comparison to those transfected with the other 

homologues. At 4 days post-transfection extracts from cells transfected with the 

plasmids expressing the non-human UL82 homologues continued to express 

similar levels of protein in comparison to lysates transfected with pEYFPpp71.  At 

10 days post-transfection, protein expression of the non-human UL82 homologues 
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Figure 3.4. Stimulation of β−gal expression by EYFP-tagged UL82
homologues at 24 hr and 10 days post-infection 
HFFF2 monolayers were transfected with plasmids expressing EYFP-tagged
UL82 homologues, and infected with 3x105 pfu in1382 at 24 hr post-transfection.
After a further 24 hr or 10 days, monolayers were stained with X-gal and β-gal
positive cells counted.  
 



 

EYFP pp71 S82 B82 Rh82 Ch82

24 hr post-
transfection

EYFP pp71 S82 B82 Rh82 Ch82

10 days post-
transfection

EYFP pp71 S82 B82 Rh82 Ch82

4 days post-
transfection

EYFP pp71 S82 B82 Rh82 Ch82

24 hr post-
transfection

EYFP pp71 S82 B82 Rh82 Ch82

10 days post-
transfection

EYFP pp71 S82 B82 Rh82 Ch82

4 days post-
transfection

Figure 3.5. Expression of EYFP-tagged UL82 homologues 24 hr, 4 days, and
10 days post-transfection. 
HFFF2 monolayers were transfected with plasmids expressing the EYFP-tagged
UL82 homologues.  Cell lysates were harvested at either 24 hr, 4 days or 10 days
post-transfection and electrophoresed via SDS PAGE.  EYFP-tagged UL82
homologues were detected using an anti-GFP primary antibody, and an anti-rabbit
HRP-conjugated secondary antibody.  
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was not detectable.  In cultures transfected with pEYFPpp71 an increase in levels 

of pp71 expression was observed indicating that only pEYFPpp71 was able to 

maintain self transcription.   

 

Therefore transfection assays showed all five non-human UL82 homologues to be 

functional and able to stimulate gene expression from the HCMV MIEP in short-

term assays but only pp71 to be able to simulate long-term gene expression. 

 

3.1.3. Myc-tagged UL82 homologues as transactivators of gene expression 
 
In order to confirm that the EYFP tag did not affect the properties of the UL82 

homologues, each homologue was fused to a myc tag at its N-terminus.  The 

myc-tagged plasmids expressing pp71 and the non-human UL82 homologues 

were used to analyse if myc-tagged pp71, like EYFP-tagged pp71, was unique in 

stimulating LT gene expression. 

 

Plasmids pEYFP-C1 (control), pmyc-pp71, pmyc-S82, pmyc-B82, pmyc-Rh82 or 

pmyc-Ch82 were transfected into HFFF2 cells using the NucleofectorTM system, 

and monolayers were incubated at 37oC.  At 24 hr post-transfection cell 

monolayers were infected with 3x105 pfu, 1x105 pfu, or 3x104 pfu of in1382 and 

incubated at 38.5oC.  Following incubation at either 24 hr or 10 days cell 

monolayers were stained with X-gal and β-gal positive cells were counted.  Figure 

3.6 shows the average numbers of positive cells.  The data presented here show 

that only pmyc-pp71 was able to stimulate short-term gene expression from the 

HCMV MIEP.  The plasmids pmyc-Ch82, pmyc-S82, pmyc-B82 and pmyc-Rh82 

did not direct β-gal expression above the levels of the control (pEYFP-C1).   

 

At 10 days post-infection in cultures transfected with pmyc-pp71 and infected with 

3x105 pfu of in1382, the numbers of β-gal positive cells, increased at 10 days 

compared to numbers of β-gal positive cells seen at 24 hr post-infection, thus 

pmycpp71 was able to direct long-term gene expression.  At 10 days 

post-transfection in cultures transfected with the myc-tagged non-human UL82 

homologues no β-gal expression was detected.  However as numbers of positive 

cells in cultures transfected with the myc-tagged non-human UL82 homologues 

did not exceed that of the control it is not possible to say that the non-human 

homologues are unable to direct long-term gene expression, as they did not 
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Figure 3.6. Stimulation of β−gal expression by the myc-UL82
homologues at 24 hr and 10 days post-infection 
HFFF2 monolayers were transfected with plasmids expressing myc-tagged
UL82 homologues, and infected with 3x105 pfu of in1382 at 24 hr
post-transfection. After a further 24 hr or 10 days, monolayers were stained
with X-gal and β-gal positive cells were counted. 
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stimulate short-term gene expression.  Protein expression of the myc-tagged UL82 

homologues was analysed at 24 hr and 10 days post-transfection to confirm the 

data obtained from β-gal analysis. 

 

Cell lysates transfected with pEYFP-C1 (control), pmyc-pp71, pmyc-Ch82, 

pmyc-S82, pmyc-B82 or pmyc-Rh82 were harvested at either 24 hr or 10 days 

post-transfection, electophoresed by SDS PAGE and transferred onto 

nitrocellulose membranes. The myc-tagged proteins were detected using an 

anti-myc antibody (9E10).  Figure 3.7 shows levels of protein present in lysates of 

cells transfected with plasmids expressing all five myc-tagged UL82 homologues.  

In lysates of cells transfected with pmyc-pp71 a greater amount of protein was 

expressed compared to that in lysates of cells transfected with the plasmids 

pmyc-Ch82, pmyc-S82, pmyc-B82 and pmyc-Rh82 indicating that all the myc-

tagged homologues were able to show protein expression in the short-term.  The 

differences in levels of protein expression between the myc-tagged UL82 

homologues observed in figure 3.7 maybe be due to different expression effiencies 

of pp71 compared to the non-human homologues.  All myc-tagged plamids were 

under the control of the HCMV MIEP, thus it is possible that pp71 is able to drive 

expression better from its own promoter than the non-human homologues when 

fused to the myc-tag.  However, this is only one explanation as these differences 

may be due to transfection discrepancies. 

 

At 10 days post-transfection protein was only detected in lysates transfected with 

pmyc-pp71, indicating that pp71 was the only protein able to maintain 

transcription, and thus that pmyc-pp71 is unique in directing long-term gene 

expression. 

 

Intial data from transfection experiments showed that while the EYFP-tagged 

UL82 homologues were all functional in the short-term, only EYFP-tagged pp71 

stimulated long-term gene expression.  Upon fusing the UL82 homologes to a 

myc-tag the data obtained was controversial.  β-gal assays showed only 

myc-tagged pp71 was functional in both short-term and long-term assays.  

Numbers of β-gal positive cells observed in cultures transfected with the 

myc-tagged UL82 non-human homologues were lower than numbers of β-gal 

positive cells observed in cultures transfected with the control plasmid.  However 



  

pp71 S82 B82 Ch82Rh82 EYFP10 days post-
transfection

EYFPpp71 Ch82S82 B82 Rh82
24 hr post-
transfection

myc-tagged protein

myc-tagged protein

pp71 S82 B82 Ch82Rh82 EYFP10 days post-
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myc-tagged protein

Figure 3.7.Expression of myc-tagged pp71 homologues 24 hr and 10 days
post-transfection. 
HFFF2 monolayers were transfected with plasmids expressing the myc-tagged
homologues. Cell lysates were harvested either 24 hr or 10 days
post-transfection and subjected to SDS PAGE.  The myc-tagged UL82 proteins
were detected using an anti-myc (9E10) primary antibody, and an anti-mouse
HRP conjugated secondary antibody. 
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all myc-tagged UL82 homologues showed protein expression in the short-term, 

albeit at lower levels than lysates transfected with myc-tagged pp71. 

 

In order to confirm results obtained from transfection assays, and to establish if the 

myc-tagged UL82 non-human homologues do behave differently from the EYFP-

tagged non-human homologues the UL82 homologues were recombined into the 

HSV-1 genome. 
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3. Part II 
 
3.2. Introduction 
 
HCMV pp71 has been shown to have a number of effects on gene expression 

including the ability to maintain reporter gene expression from in1312-derived 

recombinants for extended periods in cell culture (Preston & Nicholl, 2005).  

 

Plasmid transfection assays have demonstrated that EYFP-pp71, along with its 

homologues EYFPS82, EYFPB82, EYFPRh82, and EYFPCh82, can stimulate 

gene expression controlled by the HCMV MIEP in short-term assays.  However 

only EYFPpp71 was able to mediate gene expression in long-term assays.  To 

eliminate the disadvantages of the NucleofectorTM system, and to confirm the 

results obtained from the transfection assays, all plasmids of interest were 

recombined into a HSV-1 virus named in1312. 

 

In1312 is a HSV-1 multiple mutant, which is defective for the functions of the three 

major HSV-1 transcription activators (VP16, ICPO and a temperature sensitive 

mutation in ICP4) at 38.5oC. The mutant is unable to progress past the IE stage of 

infection, and in HFFF2 and U373 cells the in1312 genome becomes repressed 

within 24 hr, resulting in ‘quiescent’ infection. Insertions (under the control of the 

HCMV MIEP) at the non-essential thymidine kinase (TK) or UL43 loci of in1312 

(see materials and methods section 2.1.5 for further details) yields mutants that 

express reporter genes in tissue culture cells. The in1312-based virus in1374, 

which has lacZ inserted in the UL43 locus was used as a vector to express pp71 

and its non-human homologues after insertion at the TK locus.  Using a HSV-1 

recombinant virus system expressing the proteins of interest allowed pp71 and its 

non-human UL82 homologues to be examined in an environment similar to that of 

HCMV wild-type, unlike the transfection based system where only a single protein 

in a plasmid vector could be examined. 

 

3.2.1. Infection with the in1312 recombinants expressing the EYFP-tagged 
UL82 homologues stimulates short-term gene expression 
 
Expression vectors were constructed by inserting each EYFP-tagged UL82 

homologue into the plasmid pCP1802.  This plasmid contains a cassette 

comprising the HCMV MIEP, a multiple cloning site and an SV40 terminator in the 
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TK locus.  The TK locus allows construction of HSV-1 vectors by recombination of 

the cassette into HSV-1 DNA.  The in1312 UL82 recombinant viruses were 

constructed by recombining the pCP1802 derived plasmids containing the coding 

regions of each of the EYFP homologues, into the TK locus of a HSV-1 mutant, 

in1374 (in1374 is derived from the mutant in1312, with the lacZ coding region 

controlled by the HCMV MIEP inserted in the UL43 locus).  See Appendix 1 for 

further details). 

 

To establish that the EYFP-tagged UL82 homologues expressed by the in1312 

recombinants were functional and able to stimulate short-term gene expression, 

1.5x105 U373 cells were infected with 5x105 pfu (MOI 3.3) of in1310 (which 

expresses EYFPpp71), in0150 (EYFPS82), in0146 (EYFPCh82), in0144 

(EYFPRh82), in0145 (EYFPB82), in1374 (negative control), or mock-infected.  An 

overview of the experimental plan is presented in figure 3.8.   

 

Infected cells were incubated at 38.5oC, at 24 hr post-infection, cell monolayers 

were fixed and stained with X-gal reaction mix and expression of β-gal assessed 

by observation.  The results in figure 3.9 show cells infected with the in1312 

recombinant viruses expressing the EYFP-tagged UL82 homologues.  All five of 

the recombinant viruses showed β-gal expression at levels above those of the 

negative control, in1374, implying that each homologue acts on the HCMV MIEP 

to drive short-term gene expression to a similar extent.  This confirms the results 

from the plasmid transfection assays, which showed that all the UL82 homologues 

were able to drive short-term gene expression. 

 

The protein levels of the UL82 homologues expressed by in1312 recombinants in 

lysates of U373 cells were investigated by SDS PAGE and western blot analysis, 

using a polyclonal anti-GFP antibody.  As shown in figure 3.10, no protein was 

recognised by the anti-GFP antibody in lysates of cells infected with in1374 

however, the results show that levels of protein produced by each of the in1312 

recombinant viruses expressing the non-human UL82 homologues were 

somewhat lower than that produced by in1310.  Nonetheless, the results confirm, 

as found in the transfection assays, that all five UL82 homologues are able to 

stimulate short-term gene expression.   

 



U373 cell lines

Infected with in1312 recombinants expressing 
EYFP/myc-tagged UL82 homologues
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Figure 3.8.

Overview of the experimental plan employed  in short term analysis of 
the EYFP/myc-tagged UL82 homologues.
p.i (post-infection)
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Figure 3.9. β-gal expression of the in1312 recombinants expressing the
EYFP-tagged UL82 homologues at 24 hr post-infection 
U373 cell monolayers were mock-infected or infected with 5x105 pfu (MOI 3.3) of
the in1312 recombinants expressing the UL82 homologues and incubated at
38.5oC.  At 24 hr post-infection cell monolayers were stained with X-gal. 
 
The in1310 virus expresses EYFPpp71, in0146 expresses EYFPCh82, in0150 
expresses EYFPS82, in0145 expresses EYFPB82, in0144 expresses EYFPRh82, 
and in1374 was used as a negative control. 
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Figure 3.10. Expression of the EYFP-tagged UL82 homologues at 24 hr
post-infection 
U373 cell monolayers were cultivated in 24 well plates. Cells were either
mock-infected or infected with 5x105 pfu (MOI 3.3) of the in1312 recombinants
expressing the UL82 homologues and incubated 38.5oC.  In1374 was used as a
negative control.  At 24 hr post-infection cell lysates were harvested and were
subjected to SDS PAGE. EYFP-tagged UL82 proteins were detected using an
anti-GFP primary antibody and an anti-rabbit HRP conjugated secondary
antibody.  Blots were stripped and reprobed with an anti-actin primary antibody
and an anti-mouse HRP-conjugated secondary antibody, to act as a loading
control. 



Tanya Chaudry 2008  Chapter 3 98

As levels of β-gal expression were in infection experiments were analysed by 

observation an experiment was developed to quantify levels of the promoter 

activity during the short-term assays.  A dual infection system was used, the 

results of which could be measured quantitatively.  In this experiment U373 cells 

cultured in 24 well plates were infected with in1312 recombinants expressing the 

UL82 homologues and co-infected with in1318.  The HSV-1 recombinant virus 

in1318, which encodes secreted alkaline phosphatase (SEAP) under the control of 

the HCMV MIEP, was used because this protein is secreted into the culture 

medium and synthesis of this protein can therefore be measured by simply 

assaying the growth medium for SEAP at various time points without having to 

create cell lysates or stain cultures for the presence of β-gal. 

 

Figure 3.11 shows the average number of arbitrary units of fluorescence from two 

experiments.  The results from figure 3.11 show that cells mock-infected or 

infected with in1374 virus alone produced relatively low amounts of SEAP.  Cells 

infected with the in1312 recombinants expressing the EYFP-tagged UL82 

homologues showed SEAP synthesis was stimulated.  However levels of SEAP 

synthesis stimulated by in1310 were lower than those observed for viruses 

expressing the non-human UL82 homologues.  The lower levels of SEAP 

synthesis stimulated by in1310 in this study is surprising as in previous 

transfection and infection experiments pp71 appeared to stimulate levels of 

expression greater than or equivalent to the EYFP-tagged UL82 non-human 

homologues.  It is possible that the lower levels of SEAP synthesis in this 

experiment could be attributed to experimental artifacts such as cell viability.  

Further experiments would have to be carried out to obtain a larger range of data 

to establish if this is the case or if in this method of analysis pp71 is less efficient in 

the short-term. 

 

3.2.2. Analysis of long-term gene expression 
 
Studies by Preston and Nicholl (2005) showed that, as HFFF2 cells could be 

maintained at 38.5oC in medium containing 2% serum for two weeks with no 

serious deterioration in cell viability, viral gene expression of pp71 could be 

investigated at later times post-infection.  Preliminary experiments suggested that 

β-gal could be detected for many days in cell monolayers co-infected with in1324, 

(HCMV pp71 inserted into the TK locus, with mutations to VP16, ICP0 and a 



 

0

50

100

150

200

250

300

350

400

450

Mock in1310 in0146 in0150 in0145 in0144 in1374

in 1312 recombinants expressing EYFP-tagged UL82 
homologues

A
rb

itr
ar

y 
un

its
 o

f  
flu

or
es

ce
nc

e

Figure 3.11. Activation of expression by infection with in1312
recombinants expressing the EYFP-tagged UL82 homologues in trans 
U373 cell monolayers were infected with 5x105 pfu (MOI 3.3) of the in1312
recombinants expressing the UL82 homologues and incubated at 38.5oC for 2
hr.  Cell monolayers were infected with 5x105 pfu in1318 and incubation was
continued at 38.5oC.  At 24 hr post-infection samples of medium were analysed
for SEAP activity. 
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temperature sensitive mutation to ICP4) and the reporter virus in1382 (containing 

the lacZ coding sequences in the TK locus controlled by the HCMV MIEP 

promoter).  Contiuned β-gal expression was not observed with in1382 alone, 

suggesting that pp71 expressed by in1324 exerted an effect at late times post 

infection (Preston & Nicholl, 2005). 

 

Previous transfection based assays in the study presented here showed that 

EYFP-tagged pp71 was the only homologue able to direct long-term gene 

expression.  To confirm that pp71 was unique in its ability to do so, and also to 

confirm results from the transfection assays and work by Preston and Nicholl. 

(2005), in1312 recombinants expressing the EYFP-tagged UL82 homologues 

were used to investigate the effects of the UL82 homologues at late times post-

infection.   

 

Three sets of HFFF2 monolayers consisting of 1x106 cells on 35 mm plates were 

each infected with 3x106 pfu (MOI 3) of in1310 (expressing EYFPpp71), in0150 

(EYFPS82), in0146 (EYFPCh82), in0144 (EYFPB82), in0145 (EYFPRh82), in1374 

(negative control) or mock-infected.  Following infection, D5+5 medium was 

replaced with DF2 medium and incubation continued at 38.5oC for 10 days, with 

medium changes every 2 days.  At 9 days post-infection one set of infected 

HFFF2 cells was super-infected with 3x106 pfu of tsK, a HSV-1 mutant that 

produces ICP0, and the cells were incubated for a further 24 hr at 38.5oC.  A 

second set of infected cells was overlaid with DF2 medium containing 2% human 

serum at 9 days post-infection and downshifted to the permissive temperature of 

31oC for a further 5 days.  The third set of infected HFFF2 cells remained 

untreated at 38.5oC for 10 days. An overview of the experimental plan is presented 

in figure 3.12. 

 

At day 10 post-infection cell monolayers super-infected with tsK and those left 

untreated were stained with X-gal.  β-gal expression at 10 days post-infection 

showed that only the recombinant virus expressing pp71 was able to maintain 

gene expression.  β-gal expression was not observed in those monolayers 

infected with viruses that express the non-human UL82 homologues (Figure 

3.13a).  This was further confirmed by the results from the downshift experiment 

(figure 3.13b) where infected monolayers were stained with X-gal 14 days 

post-infection.  Downshift of the cells to a permissive temperature of 31oC allowed 



Figure 3.12.

Overview of the experimental plan employed  in long term analysis of 
the EYFP/myc-tagged UL82 homologues.
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Figure 3.13a β-gal expression directed by the in1312 recombinants
expressing the EYFP-tagged UL82 homologues at 10 days post-infection. 
HFFF2 cell monolayers were infected with 3x106 pfu (MOI 3) of the in1312
recombinants expressing the UL82 homologues, and incubated at 38.5oC.
In1374 was used as a negative control.  At 10 days post-infection cell
monolayers were stained with X-gal. 
 
The in1310 virus expresses EYFPpp71, in0146 expresses EYFPCh82, in0150 
expresses EYFPS82, in0145 expresses EYFPB82, in0144 expresses 
EYFPRh82, and in1374 was used as a negative control. 
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Figure 3.13b. Response of the in1312 recombinants expressing EYFP-tagged
UL82 homologues to temperature downshift 
HFFF2 monolayers were infected with 3x106 pfu (MOI 3) of the in1312
recombinants expressing the UL82 homologues and incubated at 38.5oC.  At 9
days post-infection cell monolayers were overlayed with medium containing 2%
human serum, and downshifted to 31oC.  At 14 days post-infection cell monolayers
were stained with X-gal. 
 
The in1310 virus expresses EYFPpp71, in0146 expresses EYFPCh82, in0150 
expresses EYFPS82, in0145 expresses EYFPB82, in0144 expresses EYFPRh82, 
and in1374 was used as a negative control. 
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expression of ICP4 and consequently replication of the viruses if they remained 

potentially replication competent.  Plaques were observed only in those 

monolayers infected with in1310.  Figure 3.13c shows monolayers super-infected 

with tsK and stained with X-gal at 10 days post-infection.  As VP16 and ICP0 are 

both functional in the super-infecting virus,tsK, the superinfection allows ICP0 to 

reactivate the quiescent genomes by driving expression from the lacZ gene. β-gal 

expression at 10 days post-infection showed that all genomes were present at 

functionally comparable levels.  Therefore at 10 days post-infection there 

remained a significant number of cells retaining the genomes of the viruses 

expressing the non-human UL82 homologues despite the HCMV MIEP lacZ 

cassette remaining inactive. 

 

At 9 days post-infection samples of cells were subcultured into 24 well plates and 

incubated overnight at 38.5oC.  Lysates were harvested, analysed by gel 

electrophoresis and transferred onto nitrocellulose membrane before western 

blotting, using an anti-GFP antibody.  Figure 3.14 shows that at 10 days 

post-infection EYFPpp71 was the only homologue detectable.  Stripping and re-

probing blots for actin demonstrated that protein loading was equivalent. 

 

3.2.3. Myc-tagged UL82 homologues expressed by in1312 based 
recombinants are functional 24 hr post-infection 
 
Data from transfection experiments using myc-tagged UL82 homologues gave 

inconclusive results as only myc-tagged pp71 appeared to be able to direct β-gal 

expression in both short-term and long-term assays (section 3.1.3).  However, all 

five homologues were able to stimulate protein expression in the short-term while 

only myc-tagged pp71 stimulated protein expression in long-term assays.  To 

eliminate transfection discrepencies and in order to determine if myc-tagged pp71 

and its non-human homologue myc-tagged Ch82 behave as the EYFP-tagged 

homologues HSV-1 recombinants expressing myc-tagged pp71 or myc-tagged 

Ch82 were constructed.  The HSV-1 recombinants expressing myc-tagged pp71 

and myc-tagged Ch82 were constructed by homologous recombination of each 

into in1312, as described for the production of viruses expressing EYFP-tagged 

proteins (section 3.2.1). 
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Figure 3.13c. Response of the in1312 recombinants expressing the EYFP-
tagged UL82 homologues to super-infection with tsK. 
HFFF2 monolayers were infected with 3x106 pfu (MOI 3) of the in1312
recombinants expressing the UL82 homologues and incubated at 38.5oC.  In1374
was used as a negative control.  At 9 days post-infection cell monolayers were
super-infected with 3x106 pfu of tsK and incubated at 38.5oC for a further 24 hr.  At
10 days post-infection cell monolayers were stained with X-gal. 
 
The in1310 virus expresses EYFPpp71, in0146 expresses EYFPCh82, in0150 
expresses EYFPS82, in0145 expresses EYFPB82, in0144 expresses EYFPRh82, 
and in1374 was used as a negative control. 
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Figure 3.14. Expression of the EYFP-tagged UL82 homologues at 10 days
post-infection 
HFFF2 cell monolyers cultivated in 35 mm plates were either mock-infected or
infected with 3x106 pfu (MOI 3) of the in1312 recombinants expressing the UL82
homologues and incubated at 38.5oC.  At 10 days post-infection cell lysates were
harvested, and subjected to SDS PAGE. EYFP-tagged protein was detected using
an anti-GFP primary antibody and an anti-rabbit HRP conjugated secondary
antibody.  Blots were stripped and reprobed with an anti-actin primary antibody and
an anti-mouse HRP-conjugated secondary antibody to act as a control for loading.  
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To assess whether the myc-pp71 and myc-Ch82 proteins expressed by the in1312 

recombinants were functional each virus was tested in short-term assays (an 

overview of the experimental plan is presented in figure 3.8).  U373 cells seeded 

at 1.5x105 cells per 13 mm well were infected with 5x105 (MOI 3.3) of in0151 

(expressing myc-pp71), in0149 (myc-Ch82), in1374 (negative control), or were 

mock-infected and incubated at 38.5oC.  At 24 hr post-infection cell monolayers 

were fixed and stained with X-gal reaction mix and β-gal expression was assessed 

by observation.  Figure 3.15 shows that both in0151 and in0149 produced levels of 

β-gal above those seen in cultures infected with the parent virus in1374.  This 

implies that the myc-tagged homologues expressed by the in1312 recombinants 

were functional in the short-term. 

 

The protein levels in U373 cells infected with the in1312 recombinants expressing 

myc-pp71 or myc-Ch82 homologues were investigated by SDS PAGE and 

western blot analysis, using an anti-myc antibody (9E10).  Figure 3.16 shows that 

extracts of cells infected with in0151 and in0149 contained equivalent amounts of 

myc-tagged protein.  Therefore when fused to the myc tag both pp71 and Ch82 

stimulated gene expression.   

 

To quantify the levels of expression directed by the homologues, confluent U373 

cell monolayers were infected with 5x105 pfu of each in1312 recombinant virus 

expressing the UL82 homologues and were co-infected with in1318.  At 24 hr 

post-infection samples of growth medium were harvested and assayed for the 

amount of SEAP present. Figure 3.17 shows that samples harvested from 

monolayers mock-infected or infected with in1374 contained relatively low 

quantities of SEAP.  In cell monolayers infected with in0151 and in0149 similar 

levels of SEAP were observed at levels greater than those infected with the 

negative control. 

 

3.2.4. Only myc-pp71 directs long-term gene expression 
 
In order to establish whether the myc-pp71 or myc-Ch82 proteins were able to 

direct long-term gene expression, three individual sets of HFFF2 cell monolayers 

were seeded in 35 mm plates each containing 1x106 cells.  Cells were 

mock-infected, or infected with 3x106 pfu of in0151 (myc-pp71), in0149 

(myc-Ch82), in1374 (negative control).  Following infection, D5+5 medium was 
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Figure 3.15. β-gal expression directed by the in1312 recombinants expressing
the myc-tagged UL82 homologues at 24 hr post-infection 
U373 cell monolayers were mock-infected or infected with 5x105 pfu (MOI 3.3) of the
in1312 recombinants expressing the UL82 homologues and incubated at 38.5oC.  At
24 hr post-infection cell monolayers were stained with X-gal. 
 
In0151 (expressing myc-pp71), in0149 (expressing myc-Ch82) in1374 (negative 
control). 
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Figure 3.16. Expression of the myc-tagged UL82 homologues at 24 hr
post-infection. 
U373 cell monolyers were mock-infected or infected with 5x105 pfu (MOI 3.3) of the
in1312 recombinants expressing the myc-tagged UL82 homologues and incubated
at 38.5oC. At 24 hr post-infection cell lysates were harvested and analysed by SDS
PAGE.  The myc-tagged proteins were detected using an anti-myc (9E10) primary
antibody and an anti-mouse HRP-conjugated secondary antibody.  Blots were
stripped and reprobed with an anti-actin antibody and an anti-mouse HRP-
conjugated secondary antibody, to act as a loading control. 
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Figure 3.17. Activation of expression by infection with in1312 recombinants
expressing the myc-tagged UL82 homologue in trans  
U373 cell monolayers were infected with 5x105 pfu (MOI 3.3) of the in1312
recombinants expressing myc-tagged pp71 or Ch82 and incubated at 38.5oC for 2
hr.  The cell monolayers were super-infected with 5x105 pfu of in1318 and
incubation was continued at 38.5oC.  At 24 hr post-infection samples of medium
were analysed for alkaline phosphatase activity. 
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replaced with DF2 medium and infected monolayers were incubated at 38.5oC for 

10 days with medium changes every two days.  At 9 days post-infection one set of 

infected HFFF2 cells was super-infected with 3x106 pfu of tsK, and incubated for a 

further 24 hr at 38.5oC.  A second set of infected cells was overlaid with DF2 

medium containing 2% human serum at 9 days post-infection and downshifted to 

the permissive temperature of 31oC for a further 5 days.  The third set of infected 

cells remained untreated at 38.5oC for 10 days (an overview of the experimental 

plan is presented in figure 3.12). 

 

At day 10 post-infection cell monolayers super-infected with tsK, and those which 

were left untreated, were stained with X-gal.  Analysis of β-gal expression at 10 

days post-infection showed that only in0151 was able to maintain gene 

expression.  β-gal expression was not observed in those monolayers infected with 

in0149 (Figure 3.18a).  This was further confirmed by staining infected cells which 

were downshifted to the permissive temperature of 31oC (figure 3.18b), in which 

infected monolayers were stained with X-gal 14 days post-infection.  Plaques were 

observed only in those monolayers infected with in0151.  Figure 3.18c shows 

monolayers super-infected with tsK and stained with X-gal at 10 days post-

infection.  As VP16 and ICP0 are both functional in tsK, the super-infection allows 

ICP0 to reactivate the quiescent genomes by driving expression from the lacZ 

gene. β-gal expression at 10 days post-infection showed that all genomes were 

present at functionally comparable levels.   

 

In order to monitor protein expression of myc-tagged proteins at later times of 

infection, cell lysates infected with in0151, in0149, in1374 or mock-infected were 

harvested and subjected to SDS PAGE. Protein was transferred to a nitrocellulose 

membrane prior to being probed with an anti-myc antibody (9E10).  Figure 3.19 

shows that in0151 was the only recombinant virus to produce protein.  No protein 

was detected in lysates of cells infected with in0149.  Equivalent levels of a protein 

assumed to be endogenous c-myc were also observed. 
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Figure: 3.18a β-gal expression directed by the in1312 recombinants
expressing the myc-tagged UL82 homologues at 10 days
post-infection. 
HFFF2 cell monolayers were infected with 3x106 pfu (MOI 3) of the in1312
recombinants expressing the myc-tagged UL82 homologues and incubated
at 38.5oC.  In1374 was used as a negative control.  At 10 days post-infection
cell monolayers were stained with X-gal. 
 
In1310 (expressing EYFPpp71), in0149 (expressing EYFPCh82) in1374 
(negative control). 
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Figure 3.18b. Response of the in1312 recombinants expressing myc-tagged
UL82 homologues to temperature downshift. 
HFFF2 monolayers were infected with 3x106 pfu (MOI 3) of the in1312
recombinants expressing the myc-tagged UL82 homologues and incubated at
38.5oC.  At 9 days post-infection cell monolayers were overlayed with medium
containing 2% human serum and downshifted to 31oC.  At 14 days post-infection
cell monolayers were stained with X-gal.  
 
In1310 (expressing EYFPpp71), in0149 (expressing EYFPCh82) in1374 (negative 
control). 
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Figure 3.18c. Response of the in1312 recombinants expressing
myc-tagged UL82 homologues to super-infection with tsK. 
HFFF2 monolayers were infected with 3x106 pfu (MOI 3) of the in1312
recombinants expressing the myc-tagged UL82 homologues and incubated at
38.5oC.  In1374 was used as a negative control.  At 9 days post-infection cell
monolayers were super-infected with 3x106 pfu tsK and incubated at 38.5oC for
a further 24 hr.  At 10 days post-infection cell monolayers were stained with
X-gal.  
 
In1310 (expressing EYFPpp71), in0149 (expressing EYFPCh82) in1374 
(negative control). 
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Figure 3.19. Expression of the myc-tagged UL82 homologues 10 days
post-infection 
HFFF2 cell monolayers cultivated in 35 mm plates were either mock-infected
or infected with 3x106 pfu (MOI 3) of the in1312 recombinants expressing the
myc-tagged UL82 homologues and incubated at 38.5oC.  At 10 days post-
infection cell lysates were harvested and analysed by SDS PAGE.  Lysates of
cells infected with in1312 recombinants expressing myc-tagged UL82 proteins
were detected using an anti-myc (9E10) primary antibody and an anti-mouse
secondary antibody.   
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3. Part III 
 

3.3. Introduction 
 
The tegument protein pp71 has been shown to have the unique property of 

stimulating gene expression for a prolonged period of time.  The protein pp71 has 

also been shown to act in trans on quiescent genomes to reactivate gene 

expression (Preston & Nicholl, 2005) in a manner similar to that of ICP0.  The 

in1312 recombinant viruses expressing EYFP-tagged Ch82 or pp71 were used to 

determine whether Ch82 exhibited the same property as pp71 in terms of being 

able to reactivate a quiescent virus. 

 

3.3.1. Reactivation Assay 
 
In order to quantitatively assay the activity of both pp71 and Ch82 homologues, 

HFFF2 cells seeded at 1x106 cells in 35mm plates were infected with 3x106 pfu 

(MOI 3) of in1318 at 38.5oC.  At 10 days post-infection cells were subcultured into 

24 well plates and super-infected with in1310 (expressing EYFPpp71) or in0146 

(EYFPCh82) and incubated at 38.5oC.  The levels of SEAP in the growth medium 

were measured each day over a further 10 days.  Figure 3.20 shows that there 

was no detectable SEAP in the growth medium of mock-infected cells.  Cells 

infected with in0146 produced relatively low levels of SEAP which peaked at three 

days post-infection and then declined to levels similar to those observed in 

mock-infected cells.  Cell monolayers super-infected with in1310 showed levels of 

SEAP in the growth medium gradually increasing from days one and two post-

infection to peaking at day six post-infection. This represented a 6 fold increase in 

levels of SEAP stimulated by EYFPpp71 compared to EYFPCh82 at three days 

post-infection.  The level of SEAP found in the growth medium of cells infected 

with in1310 dipped slightly at day seven and remained constant until day 10 when 

the experiment was terminated.  Levels of SEAP remained constant from days 7-

10 due to SEAP continuing to be synthesised.  These results indicate that pp71 is 

able to act in trans to reactivate expression from a quiescent virus whereas Ch82 

does not possess this property.  

 

As each of the super-infecting viruses contained the lacZ gene, cell monolayers 

were stained with X-gal at 24 hr post-super-infection to show that the recombinant 
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Figure 3.20. Reactivation of SEAP expression by in1312 recombinants
expressing EYFPpp71 and EYFPCh82 in trans 
HFFF2 monolayers were infected with 3x106 pfu of in1318, and incubated at 38.5oC.
At 10 days post-infection cell monolayers were trypsinised, replated and super-
infected with in1312 recombinants expressing either pp71 or Ch82 and incubated at
38.5oC.  Samples of medium harvested at days 1-10 were analysed for alkaline
phosphatase activity. 
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viruses used, (in1310 and in0146), expressed proteins that were functional in the 

short-term.  Figure 3.21 shows that in mock-infected cell monolayers no β-gal 

positive cells were detected.  In monolayers infected with the in1312 recombinant 

viruses expressing pp71 or Ch82 homologues showed, as expected, significant 

numbers of β-gal positive cells indicating that both homologues are functional at 

24 hr post-super-infection.  However by 10 days post-super-infection β-gal positive 

cells were detected in cell monolayers infected with in1310 but not in those 

infected with in0146 (data not shown).  

 

HFFF2 lysates of cells super-infected with in1310 and in0146 were analysed by 

SDS PAGE and EYFP-tagged proteins were detected using an anti-GFP antibody.  

Figure 3.20 shows that at 24 hr post-super-infection, equivalent levels of pp71 and 

Ch82 protein were expressed.  However at 10 days post-super-infection, no 

protein product was not detected in lysates of cells that were mock-infected or 

infected with the Ch82 homologue.  Figure 3.22 shows only the EYFPpp71 band 

was observed indicating only pp71 is capable of directing its own transcription. 

 

Thus pp71 is not only able to stimulate long-term gene expression from its own 

promoter but is also able to reactivate quiescent genomes whereas Ch82 does not 

possess this property. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

in1310Mock

in0146

Figure 3.21 Activity of the in1312 recombinants expressing EYFP-tagged
pp71 or Ch82. 
HFFF2 monolayers were infected with 3x106 pfu of in1318 and incubated at
38.5oC.  At 10 days post-infection cell monolayers were trypsinised, replated and
super-infected with the in1312 recombinants expressing either pp71 or Ch82 and
incubated at 38.5oC.  Cell monolayers were stained with X-gal 24 hr
post-super-infection. 
 
The in1310 virus expresses EYFPpp71, in0146 expresses EYFPCh82,  and 
in1374 was used as a negative control. 
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Figure 3.22. Western analysis of the in1312 recombinants expressing EYFP-
tagged pp71 or Ch82 homologues at 24 hr and 10 days post-super-infection
HFFF2 monolayers were infected with 3x106 pfu of in1318 and incubated at
38.5oC.  At 10 days post-infection the cell monolayers were trypsinised, replated
and super-infected with the in1312 recombinants expressing either pp71 or Ch82
and incubated at 38.5oC.  At 24 hr or 10 days post super-infection cell lysates
were harvested and samples analysed via SDS PAGE.  The EYFP-tagged in1312
recombinants were detected using an anti-GFP primary antibody and an anti-
rabbit HRP conjugated secondary antibody.  Blots were stripped and reprobed
with an anti-actin primary antibody and an anti-mouse HRP-conjugated secondary
antibody to control for loading. 
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3.4 Discussion 
 
The first part of this study compares the transactivation efficiency of HCMV pp71 

with the non-human UL82 homologues.  To do this, a system was employed, 

where plasmids expressing EYFP- or myc-tagged homologues were transfected 

into HFFF2 cells.   

 

Transfection assays were carried out using the NucleofectorTM system (Amaxa), 

which employs electroporation to introduce the DNA into HFFF2 cell monolayers.  

This method of transfection is more efficient in this cell type than other transfection 

systems e.g. Lipofectamine (Invitrogen).  Cells transfected with EYFP-tagged 

plasmids were observed to fluoresce green allowing transfection levels to be 

ascertained visually using a UV microscope at 24 hr post-transfection.  

Satisfactory levels of transfection were classed as 60-70% of transfected cells 

fluorescing at 24 hr post-transfection.  Transfected cells were infected with 

replication impaired HSV-1 recombinant reporter viruses expressing β-gal driven 

by the HCMV MIEP. 

 

Data obtained from plasmid transfection assays showed that at the highest values 

of in1382 used (3x105 pfu and 1x105 pfu), all of the plasmids expressing 

EYFP-tagged non-human homologues stimulated gene expression from the 

HCMV MIEP at levels above the control (pEYFP-C1).  None however stimulated 

gene expression to the same degree as pp71.  Data from long-term experiments 

showed that only pEYFPpp71 was able to direct gene expression over a period of 

10 days post-infection.  Activity of the non-human UL82 homologues appeared to 

be switched off after short times of infection, as confirmed by both western blotting 

and β-gal analysis.  The raw data for EYFP-tagged plasmid transfections showed 

variations in the numbers of β-gal positive cells in individual experiments, although 

trends in the overall data remained unaltered.  The variations in numbers could be 

attributed to transfection discrepancies.  This was again seen in transfection 

experiments where myc-tagged UL82 homologues were transfected into HFFF2 

cells.  The myc-tagged non-human homologues failed to show numbers of β-gal 

positive cells above levels of the control (pEYFP-C1), only pmyc-pp71 was able to 

direct β-gal expression in short-term experiments.  However protein corresponding 

to all the myc-tagged homologues was detected by western analysis in the short-

term.  Since the myc-tagged non-human UL82 homologues did not direct β−gal 
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expression in short-term experiments, it was uncertain whether they were able to 

direct long-term gene expression.  The low levels of β-gal positive cells detected in 

this assay may be attributed to a low efficiency of transfection as the Nucleofection 

system does not allow control of how much DNA enters each cell.  Consequently 

the low levels of expression observed in some assays could be a result of under 

loading cells with the plasmid of interest. 

 

To eliminate the disadvantages of the NucleofectorTM system, and to confirm the 

results obtained from the transfection assays, all plasmids of interest were 

recombined into HSV-1 viruses (impaired for VP16, ICP0 and ICP4 activity to 

attain quiescence) and used to infect either U373 or HFFF2 cells.  Using a 

recombinant virus system expressing the protein of interest allowed the protein to 

be examined in an environment akin to that of HCMV wild type, unlike the 

transfection based system where only the single protein in a plasmid vector could 

be examined.  All short-term infection assays showed that the in1312 recombinant 

viruses expressing the EYFP-tagged non-human UL82 homologues were able to 

stimulate reporter gene expression at levels above that of the negative control.  A 

similar result was obtained from assays using U373 cells infected with myc-tagged 

pp71 and Ch82, suggesting that myc-tagged Ch82 like, myc-tagged pp71 was 

functional in short-term assays eliminating discrepancies in the data observed in 

the transfection assays (section 3.1.1).  Therefore, changing the EYFP-tag to a 

myc-tag did not affect functionality of the homologues in short-term β-gal assays.  

The differences in levels of protein expression observed from myc-tagged 

transfection assays was also eliminated in infection experiments, where similar 

levels of protein were expressed by myc-tagged pp71 and myc-tagged Ch82.  The 

different levels of protein expression observed in transfection experiments (section 

3.1.1) were unlikely to be due to different expression efficiencies as suggested 

previously, and more likely caused by experimental artefacts. 

 

Long-term infection experiments carried out in HFFF2 cells, using the in1312 

recombinant viruses expressing the EYFP-tagged UL82 homologues or 

myc-tagged homologues, showed only pp71 continued to drive gene expression, 

as full viral replication was only observed in down shift experiments where the 

medium of infected cells was replaced with fresh medium containing 2% human 

serum and downshifted to the permissive temperature of 31oC.   
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Data from both transfection and infection experiments presented here showed that 

pp71 is not only able to stimulate long-term gene expression, confirming work by 

Preston and Nicholl (2005), but is unique in its ability to do so.  Long-term gene 

expression by the non-human UL82 homologues was not detected.  The most 

surprising result observed from this study was that the Ch82 homologue was able 

to stimulate only short-term gene expression.  Given that it shares a significant 

degree of homology with pp71, it was initially hypothesised that it would be likely to 

behave in a similar manner, however this was not observed to be the case.  It was 

found to stimulate short-term gene expression only, therefore behaving like the 

S82 homologue that had previously been shown to stimulate short-term gene 

expression and not long-term (Nicholson, 2004). 

 

Results from SEAP assays showed that upon super-infecting quiescent genomes 

with in1310 and in0146, only pp71 was able provoke resumption of gene 

expression.  Cells that were super-infected with in0146 (expressing EYFPCh82) 

produced low levels of SEAP, peaking at three day post-super-infection then 

declining to levels similar to those observed in mock-infected cells.  In cell 

monolayers super-infected with in1310, an increase in levels of SEAP were 

observed, peaking at 6 days post-super-infection to become steady for the 

remainder of the experiment.  This data confirmed work by Preston and Nicholl 

(2005) that pp71 is able to act in trans to reactivate quiescent genomes, however, 

the data presented in this study shows that pp71 appears to be unique amongst 

the UL82 homologues in its ability to do so.  It also provides further evidence that 

this protein has similar functions to HSV-1 ICP0 (see final discussion for further 

details). 
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4. Part I 
 

4.1. Introduction 
 
The transfection and infection experiments described in chapter 3 showed that 

pp71 is unique among the UL82 homologues in its ability to stimulate long-term 

gene expression.  Surprisingly, despite its amino acid homology with pp71, the 

Ch82 homologue was unable to direct gene expression at later times after 

transfection or infection.  Given the significant degree of homology between the 

pp71 and Ch82 proteins, it was possible to construct six hybrid proteins in order to 

map the region of pp71 that mediates this unusual property of long-term gene 

expression. 

 

4.1.1. Construction of plasmids that express EYFP-tagged hybrids 
 

Analysis of the pp71 and Ch82 amino acid sequences (figure 4.1) shows residues 

conserved between the homologues.  A 65% homology between the sequences 

was calculated. The only functional difference observed was the inability of the 

Ch82 homologue to stimulate long-term gene expression.  A closer examination of 

the amino acid sequences showed conserved regions to be spread throughout the 

protein, with the greatest degree of homology occurring in the middle.  Analysis of 

the DNA sequences of both pp71 and Ch82  (figure 4.2) showed a conserved BglII 

site and BssHII site in both sequences (figure 4.3).  Using these conserved sites 

plasmids expressing six individual hybrids were constructed by exchanging the 

C-terminal, N-terminal and the middle regions between the homologues.  Figure 

4.3 shows the nucleotide sequence and amino acid sequences around the BssHII 

and BglII sites in pEYFPpp71 and pEYFPCh82.  These homologous sites were 

utilised to construct plasmids expressing the hybrids without altering the 

immediate coding sequences of pEYFPpp71 and pEYFPCh82.  Figure 4.4 shows 

maps of the plasmids that express the hybrids.  These plasmids were used to 

determine the features of pp71 that mediate long-term gene expression.   

 

Plasmid pEYFPTC1 was constructed by exchanging the C-terminal end of pp71 

with that of the Ch82 protein.  Plasmids pEYFPpp71 and pEYFPCh82 were 

digested with the restriction endonucleases SpeI and BssHII.  Reaction mixtures 

were analysed by gel electrophoresis and the 550 bp fragment containing the C-

terminus of pp71 was ligated to the large fragment of pEYFPCh82 and 



                 1                                               50 
     Ch82    (1) MSRSPS-PGEGPSAAGGPGGAPGDNGSTFGRMHCQVLRLVTNHDS-SLEP 
     pp71    (1) MSQASSSPGEGPSSEAAAISEAEAASGSFGRLHCQVLRLITNVEGGSLEA 
Consensus    (1) MS A S PGEGPSA AA          SFGRLHCQVLRLITN D  SLE  
                 51                                             100 
     Ch82   (49) DRLKILDLRTSVEVSRTSVLCLFQENKSQHDTVDLTDLNVKGHCAVGERD 
     pp71   (51) GRLRLLDLRTNIEVSRPSVLCCFQENKSPHDTVDLTDLNIKGRCVVGEQD 
Consensus   (51)  RLKILDLRT IEVSR SVLC FQENKS HDTVDLTDLNIKG C VGE D 
                 101                                            150 
     Ch82   (99) QLKADLINYSQRRMSPGS-STPISVLAFGLPLERVPVSGIHLFQAHPRGD 
     pp71  (101) RLLVDLNNFGPRRLTPGSENNTVSVLAFALPLDRVPVSGLHLFQSQRRGG 
Consensus  (101)  L  DL NF  RRLSPGS    ISVLAFALPLDRVPVSGIHLFQA  RG  
                 151                                            200 
     Ch82  (148) EENRLRTEARVDIRRTAYHWGVRTTVSPRWRRKVDRSLEAEQIFTTEFIF 
     pp71  (151) EENRPRMEARAIIRRTAHHWAVRLTVTPNWRRRTDSSLEAGQIFVSQFAF 
Consensus  (151) EENR R EAR  IRRTAHHWAVR TVSP WRRK D SLEA QIF S F F 
                 201                                            250 
     Ch82  (198) RAGAIPLRLVDAVELLSCSDRNTYIHKAETDARGQWVNVHLQHETLHPPP 
     pp71  (201) RAGAIPLTLVDALEQLACSDPNTYIHKTETDERGQWIMLFLHHDSPHPPT 
Consensus  (201) RAGAIPL LVDALE LACSD NTYIHK ETD RGQWI L L HDS HPP  
                 251                                            300 
     Ch82  (248) SVFLHFSLYTHGAEVVLRHNPYPHLTRHGDNGFTLHAPRGFTLSRLHREY 
     pp71  (251) SVFLHFSVYTHRAEVVARHNPYPHLRRLPDNGFQLLIPKSFTLTRIHPEY 
Consensus  (251) SVFLHFSLYTH AEVV RHNPYPHL R  DNGF L  PK FTLSRIH EY 
                 301                                            350 
     Ch82  (298) IVQVQNAFETNNTHDVIFFPADIPGVSMEAGPLPDRVRITIRLTWTGENS 
     pp71  (301) IVQIQNAFETNQTHDTIFFPENIPGVSIEAGPLPDRVRITLRVTLTGDQA 
Consensus  (301) IVQIQNAFETNNTHD IFFP  IPGVSIEAGPLPDRVRITIRLT TGDNA 
                 351                                            400 
     Ch82  (348) VRIEHMQILGTIHLFKRGVLNLLPGKTEKIKRPQIQLRAGLFPRRAVMRG 
     pp71  (351) VHLEHRQPLGRIHFFRRGFWTLTPGKPDKIKRPQVQLRAGLFPRSNVMRG 
Consensus  (351) V IEH Q LG IH FKRG   L PGK DKIKRPQIQLRAGLFPR  VMRG 
                 401                                            450 
     Ch82  (398) EVSEFRPQSPGELPLEGEEEEEE---EEERSSTPTPPALSESVFAAFEES 
     pp71  (401) AVSEFLPQSPGLPPTEEEEEEEEEDDEDDLSSTPTPTPLSEAMFAGFEEA 
Consensus  (401)  VSEF PQSPG  P E EEEEEE   EDD SSTPTP  LSEAMFAAFEEA 



                 451                                            500 
     Ch82  (445) SEEEESDTEEGLSRALALTGRRRPRRGADEGEDLMLVIPSWNVFVNIDNL 
     pp71  (451) SGDEDSDTQAGLSPALILTGQRR---RSGNNGALTLVIPSWHVFASLDDL 
Consensus  (451) S DEDSDT  GLS AL LTG RR    A     L LVIPSW VF  ID L 
                 501                                            550 
     Ch82  (495) VPLTGSVEQAALKPTSYLRSEMQGDVRTAADFTSNLQPVPVPRPSPMSLP 
     pp71  (498) VPLTVSVQHAALRPTSYLRSDMDGDVRTAADISSTLRSVPAPRPSPISTA 
Consensus  (501) VPLT SV  AALKPTSYLRSDM GDVRTAAD SS L  VP PRPSPIS   
                 551        564 
     Ch82  (545) STSGTAASRSRPRI 
     pp71  (548) STSSTPRSR--PRI 
Consensus  (551) STS T  SR  PRI 
 
 

Figure 4.1 Conservation of amino acid sequences between pp71 and Ch82 homologues. 
 
Amino acid sequences from pp71 and Ch82 were aligned using the Vector NTI program (suite 9.0).  Coloured boxes show 
degrees of similarity of the amino acids between sequences.  The yellow boxes indicate 100% amino acid conservation 
between all sequences.  Green boxes highlight amino acids similar to each other in structure and charge.  Areas left 
unhighlighted show amino acids with no similarity to each other.  
 
 



Figure 4.2. Schematic representation of the pEYFPpp71 and pEYFPCh82 plasmids

Maps showing the restriction sites used in constructing the EYFPpp71/EYFPCh82 plasmids.  Conserved BssHII and BglII 
sites are marked in red.  The 5’ XhoI and BglII sites in EYFPCh82 plasmid overlapped (sequence marked in purple), this 
was taken into account when constructing the plasmids expressing the EYFPpp71/EYFPCh82 hybrids.  Diagrams not to 
scale.
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SpeIBssHIIBglII

XmaI
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SacI BssHII

BssHII

5’ 3’

pEYFPpp71
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SpeIBssHIIBglII

SacIBamHIXhoI
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3’5’

pEYFPCh82 AGATCTCGAG

BamHI



a

Nucleotide sequence gca ggg cag atc ttt

b

Figure 4.3  Schematic representation of the BglII and BssHII restriction 
sites in homologous regions of the pp71 and Ch82 nucleotide 
sequences.

The homologous restriction sites marked were used in constructing the 
pEYFPpp71/pEYFPCh82 plasmids.
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Q L R A G

Nucleotide sequence

Amino acid sequence pp71
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transformed into competent E.coli.  24 hr later colonies were picked and amplified 

to make small scale DNA preparations.  The plasmid DNA was screened by 

digestion with the restriction endonuclease SacI and BssHII to cut out the C-

terminus fragment.   

 

Plasmids pEYFPTC2 and pEYFPTC3 were created by exchanging the N-terminal 

ends of pEYFPpp71 and pEYFPCh82.  In the case of pEYFPCh82 the XhoI and 

BglII sites overlapped (see figure 4.2).  In order to release the N-terminal region 

the plasmid was digested first with XhoI, to linearise the plasmid.  A second digest 

with BglII was carried out to isolate the region of interest.  The plasmid 

pEYFPpp71 was digested with XhoI and BglII to separate the N-terminal region 

from the rest of the plasmid.  As there was no overlapping XhoI/BglII site there 

was no need to linearise the plasmid initially.  The fragment representing the 

N-terminus of pEYFPCh82 was ligated to the large pEYFPpp71 fragment while the 

isolated fragment containing the N-terminal of pp71 was ligated to the large 

pEYFPCh82 fragment.  Small scale DNA preparations were screened for the 

correct insertions by digestion with restriction endonucleases SacI and BamHI. 

 

To create plasmid pEYFPTC4, the C-terminal of Ch82 was transferred to pp71 via 

three way cloning.  Plasmid pEYFPCh82 was digested with the restriction 

endonucleases SpeI and BssHII to release the 550 bp C-terminus region, while 

pEYFPpp71 was digested with XmaI and SpeI to release the large pEYFPpp71 

fragment or with XmaI and BssHII to release a 190 bp fragment.  The fragments 

were isolated, purified and the Ch82 550 bp C-terminus ligated to the isolated 

pEYFPpp71 190 bp and large fragments.  Small scale DNA preparations were 

made and plasmid DNA was screened using the restriction endonucleases SpeI 

and BssHII.   

 

The two remaining plasmids pEYFPTC5 and pEYFPTC6 were created by 

exchanging the middle coding regions of each homologue, again using three way 

cloning.  Plasmid pEYFPTC5 was constructed by digesting pEYFPpp71 DNA with 

XhoI and BglII to release a 600 bp fragment, or with XhoI and BssHII to release 

the large fragment.  pEYFPCh82 plasmid DNA was digested with the restriction 

endonucleases BssHII and BglII to release a 585 bp fragment containing the 

middle coding region of Ch82.  Fragments were isolated, purified and the 585 bp 

pEYFPCh82 fragment was ligated to both isolated pEYFPpp71 fragments.  Small 
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scale DNA preparations were screened using XmaI and XhoI restriction 

endonucleases.   

 

Plasmid pEYFPTC6 was constructed by digesting pEYFPpp71 with BssHII and 

BglII releasing 583 bp and 450 bp fragments.  The pEYFPCh82 plasmid was 

digested with XhoI and BglII to release a 600 bp fragment or digested with XhoI 

and BssHII to isolate the large pEYFPCh82 fragment.  The large Ch82 fragment 

and the 600 bp fragment were ligated to the pp71 583 bp fragment.  Plasmid DNA 

was prepared and screened for by digestion with restriction endonucleases XmaI 

and BssHII to check for correct insertions. 

 

A schematic representation of the six resulting plasmids is presented in figure 4.4.  

The hybrid proteins specified by pEYFPTC1 to 6 are named TC1 to TC6 

respectively.  

 

4.1.2. EYFPpp71/EYFPCh82 hybrids as transactivators of gene expression 
 
The role of pp71 as a transactivator of short-term gene expression has been 

described previously (see chapter 3 for further details).  To investigate functionality 

of the EYFPpp71/EYFPCh82 hybrid proteins constructed, plasmids pEYFPTC1, 

pEYFPTC2, pEYFPTC3, pEYFPTC4, pEYFPTC5, pEYFPTC6 were transfected 

into HFFF2 monolayers using a NucleofectorTM.  Plasmids pEYFP-C1, 

pEYFPpp71 and pEYFPCh82 were used as controls as EYFPpp71 has previously 

been shown to stimulate long-term gene expression while EYFPCh82 did not.  The 

transfected cells were incubated overnight at 37oC.  Fluoresence levels of cells 

transfected with the EYFP-tagged plasmids were ascertained visually using a UV 

microscope at 24 hr post-infection.  Satisfactory levels of fluorescence were 

classed as 60-70% of cells fluorescing.  

 

To investigate the activities of the hybrids, the transfected cells were infected with 

3x105 pfu, 1x105 pfu or 3x104 pfu of in1382 (a HSV-1 recombinant impaired for 

transcriptional activity, expressing β-gal driven by the HCMV MIEP) and incubated 

at 38.5oC for a further 24 hr.  Following infection the cell monolayers were stained 

with X-gal reaction mix and the β-gal positive cells were counted.  Figure 4.5 

shows the average numbers of β-gal positive cells counted from two individual 

experiments, the raw data for which are presented in table 4.1.  The results 
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Figure 4.4 Schematic representation of the pEYFPpp71/pEYFPCh82 hybrids

Plasmid maps of the EYFPpp71/EYFPCh82 hybrids.  Six hybrids were constructed by 
exchanging the C-terminal. N-terminal and middle regions off pp71 with those of Ch82.  
Plasmid maps show the MIEP, EYFP-tag and the SV40 terminator.



Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Plasmid Titre 24 
hours

10 
days 

24 
hours

10 
days 

24 
hours 

10 
days 

24 
hours

10 
days 

 3x105 24 0 17 2 19 9 17 0 
pEYFP-C1 1x105 6 0 13 0 6 0 22 0 
 3x104 0 0 0 0 0 0 0 0 
          
 3x105 39 93 243 976 118 183 76 608 
pEYFPpp71 1x105 3 4 102 336 101 101 24 380 
 3x104 0 0 0 18 0 0 0 14 
          
 3x105 54 0 146 12 
pEYFPCh82 1x105 2 0 102 0 
 3x104 0 0 3 0 
      
 3x105 37 0 171 8 
pEYFPTC1   

1x105
 
15 

 
0 

 
49 

 
2 

 3x104 0 0 0 0 
      
 3x105 27 0 161 5 
pEYFPTC2   

1x105
 
7 

 
0 

 
51 

 
2 

 3x104 0 0 0 0 
      
 3x105 58 0 153 11 
pEYFPTC3   

1x105
 
6 

 
0 

 
51 

 
0 

 3x104 0 0 0 0 
      
 3x105 164 41 174 57 
pEYFPTC4   

1x105
 
41 

 
6 

 
51 

 
0 

 3x104 0 0 0 0 
      
 3x105 47 0 151 0 
pEYFPTC5   

1x105
 
0 

 
0 

 
0 

 
0 

 3x104 0 0 0 0 
      
 3x105 82 108 27 0 102 102 44 69 
pEYFPTC6   

1x105
 
4 

 
0 

 
2 

 
0 

 
41 

 
20 

 
2 

 
5 

 3x104 0 0 0 0 0 0 0 0 
          

 
Table 4.1. Stimulation of β-gal expression directed by the
pEYFPpp71/pEYFPCh82 hybrids at 24 hr and 10 days post-transfection. 
HFFF2 monolayers were transfected with plasmids expressing the required
EYFP-tagged UL82 homologues or EYFPpp71/EYFPCh82 hybrids and
infected with virus in1382 at 24 hr post-transfection. After a further 24 hr or 10
days, monolayers were stained with X-gal and β-gal positive cells were
counted. 
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Figure 4.5. Expression directed by the EYFPpp71/EYFPCh82 hybrids at 24 hr
post-transfection 
HFFF2 monolayers were transfected with plasmids expressing EYFP-tagged UL82
homologues or EYFPpp71/EYFPCh82 hybrids, and infected with various amounts
of in1382 at 24 hr post-transfection. After a further 24 hr, monolayers were stained
with X-gal and β-gal positive cells were counted. 
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presented in figure 4.5 show that cultures transfected with each of the plasmids 

expressing a EYFPpp71/EYFPCh82 hybrid gave more β-gal positive cells than 

those transfected with the control vector pEYFP-C1, when subsequently infected 

with 3x105 pfu or 1x105 pfu of in1382.  Cells transfected with plasmids pEYFPTC1, 

pEYFPTC2, or pEYFPTC3 all showed similar numbers of β-gal positive cells, 

when infected with 3x105 pfu or at 1x105 pfu of virus, to each other and to cultures 

transfected with pEYFPCh82 but fewer β-gal positive cells than cultures 

transfected with pEYFPpp71. However pEYFPTC5 only directed β-gal expression 

in cells infected with 3x105 pfu of in1382, no β-gal positive cells were observed 

when transfected cells were infected with 1x105 pfu or 3x104 pfu of in1382.  Levels 

of expression directed by this plasmid at 3x105 pfu were similar to those directed 

by pEYFPCh82.  Cultures transfected with pEYFPTC4 showed a greater number 

of β-gal positive cells than those transfected with plasmids pEYFPCh82 or 

pEYFPpp71 when infected with 3x105 pfu of in1382.  Figure 4.5 shows that the 

lowest levels of β-gal expression were directed by the plasmid pEYFPTC6.  When 

infecting cells with 3x105 pfu or 1x105 pfu of in1382 fewer β-gal positive cells were 

observed than after transfection with pEFYPpp71, pEYFPCh82 or the other 

pEYFPpp71/pEYFPCh82 plasmids.  However all of the plasmids expressing the 

EYFPpp71/EYFPCh82 hybrids were able to direct levels of β-gal expression 

above the control (pEYFP-C1), indicating that the hybrid proteins expressed by the 

plasmids were functional and able to stimulate short-term gene expression in a 

similar manner to that of pp71. 

 

At 10 days post-infection cell monolayers were stained with X-gal reaction mix and 

β-gal positive cells were counted.  Figure 4.6 shows the average numbers of b-gal 

positive cells at 10 days post-infection in transfected cultures infected with 3x105 

pfu of in1382.  An increase in the number of β-gal positive cells was observed in 

cultures transfected with pEYFPpp71, compared to that observed at 24 hr post-

infection.  Cultures transfected with pEYFPCh82 showed, as expected, a decrease 

in the numbers of β-gal cells observed at 10 days post-infection. A similar result 

was observed in cultures transfected with plasmids pEYFPTC1, pEYFPTC2, 

pEYFPTC3, pEYFPTC4 or pEYFPTC5, all of which directed low levels, or no, 

β-gal expression at 10 days post-infection.  Cultures transfected with plasmid 

pEYFPTC6, however, showed levels of β-gal expression at 10 days that were 
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Figure 4.6. β-gal expression directed by EYFPpp71/EYFPCh82 hybrids at 24
hr and 10 days post-infection. 
HFFF2 monolayers were transfected with plasmids expressing EYFP-tagged
UL82 homologues or hybrids, and infected with 3x105 pfu of in1382 at 24 hr
post-transfection. After a further 24 hr or 10 days, monolayers were stained with
X-gal and β-gal positive cells were counted.  
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similar to those observed at 24 hr post-infection.  Numbers of β-gal positive cells 

were however, lower than those observed in cultures transfected with pEYFPpp71.   

 

This result was reflected in the individual experiments as presented in table 4.1.  

Experiment one showed an increase in the number of β-gal positive cells at day 10 

compared to 24 hr, while experiment two showed no β-gal positive cells at 10 days 

post-infection in cultures transfected with pEYFPTC6.  Further investigation into 

the functionality of plasmid pEYFPTC6 showed that in two out of four experiments, 

the number of β-gal positive cells counted either stayed constant or increased at 

10 days post-infection (table 4.1).  Due to the large degree of variability in 

numbers of b-gal positive cells between individual transfection experiments, it was 

not possible to carry out statistical analysis on the numbers.  Therefore all that 

could be confirmed from these experiments was that all of the hybrids were 

functional in short-term assays.  However, in the context of long-term gene 

expression, plasmids pEYFPTC1, pEYFPTC2, pEYFPTC3, pEYFPTC4, and 

pEYFPTC5 all resembled  the pEYFPCh82 homologue as they were unable to 

direct long-term gene expression.  The only exception was pEYFPTC6, which 

contained the middle coding sequence of pp71.  At 10 days post-infection 

conflicting results were observed which made it impossible to determine whether 

pEYFPTC6 was able to drive long-term gene expression, however it was clear that 

some activity was present. 

 

Lysates of HFFF2 cells transfected with the plasmids pEYFP-C1, pEYFPpp71, 

pEYFPCh82, pEYFPTC1, pEYFPTC2, pEYFPTC3, pEYFPTC4, pEYFPTC5, or 

pEYFPTC6 were analysed by gel electrophoresis and transferred onto 

nitrocellulose membranes.  The EYFP tagged proteins were detected using an 

anti-GFP antibody.  Figure 4.7 shows levels of protein present in lysates of 

transfected cells at 24 hr post-transfection.  Blot i shows that plasmids pEYFPTC1 

and pEYFPTC3 directed similar levels of protein expression compared to that in 

lysates of cells transfected with pEYFPpp71, while plasmid pEYFPTC2 expressed 

levels of protein similar to that observed in lysates of cells transfected with 

pEYFPCh82.  Blot ii shows that in lysates of cells transfected with both 

pEYFPpp71 and pEYFPCh82 low levels of protein were expressed, at equivalent 

levels to that observed in lysates of cells transfected with pEYFPTC5.  In lysates 

of cells transfected with pEYFPTC6 very low levels of protein were detected.  



 
 
 
 

igure 4.7. Analysis of protein expression directed by the 
EYFPpp71/pEYFPCh82 plasmids at 24 hr and 10-days post-transfection. 

71, 
EYFPCh82 or the pEYFPpp71/pEYFPCh82 hybrids. Cell lysates were harvested 
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HFFF2 monolayers were transfected with plasmids expressing pEYFPpp
p
at either 24 hr or 10 days post-transfection and EYFP-tagged proteins were 
subjected to SDS PAGE.  The EYFP-tagged proteins were detected using an anti-
GFP primary antibody and an anti-rabbit HRP conjugated secondary antibody.   
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However plasmid pEYFPTC4 expressed protein at levels greater than for 

pEYFPpp71. 

 

Blots iii and iv show protein expression of pEYFPpp71 and pEYFPCh82 and 

EYFPpp71/EYFPCh82 hybrids at 10 days post-transfection. Both blots showed 

increased levels of protein expression in lysates of cells transfected with 

pEYFPpp71, while no protein was detected in lysates of cells transfected with 

pEYFPCh82, indicating that protein expression was switched off.  No protein was 

detected in lysates of cells transfected with pEYFPTC1, pEYFPTC2, pEYFPTC4, 

pEYFPTC5 and pEYFPTC6, however in lysates of cells transfected with 

pEYFPTC3 protein expression was similar to that after transfection of pEYFPpp71.  

The western blot in figure 4.7 shows contrasting results to those in figure 4.5 in 

that pEYFPTC3 was able to continue producing protein after 10 days post-

infection but did not direct β-gal expression at 10 days.  Surpsingly, given the 

results of the β-gal assays, no protein was detected in cells transfected with 

pEYFPTC6 at 10 days post-infection. 

 

Data from transfection assays showed that it was possible to construct hybrid 

proteins using particular regions of the pp71 and Ch82 proteins which were 

functional in short-term assays.  However in long-term assays, while it was again 

confirmed that pp71 could stimulate long-term gene expression, conflicting results 

were obtained from the plasmid pEYFPTC6.  It appeared that this hybrid was 

unable to stimulate protein synthesis at late times post-infection, while the 

numbers of β-gal positive cells gave conflicting results as to whether this hybrid 

was able to direct long-term gene expression or not.  To establish the true 

behaviour of this protein, TC6 was recombined into a HSV-1 recombinant virus 

(in1312). 
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4. Part II 
 
4.2. Introduction 
 
Plasmid transfection assays using EYFP-tagged pp71/Ch82 hybrids showed all of 

the hybrids to be functional because they stimulated short-term gene expression.  

However in terms of long-term gene expression, plasmid pEYFPTC6 (mid region 

of pp71 cloned into the Ch82 homologue) produced conflicting results.  Expression 

assays showed that pEYFPTC6 might direct long-term gene expression, while 

western analysis showed protein expression to be at a considerably lower level 

than that of pp71 at 24 hr post-transfection with no detectable protein expressed 

by pEYFPTC6 at 10 days post-transfection.  In order to determine if this hybrid 

was able to direct long-term gene expression and to elimimate the problem of 

variability in numbers incurred from transfection assays, the HSV-1 in1312 

recombinant, in0156, was constructed. This recombinant virus was analogous to 

in1310 but contained the DNA sequence encoding EYFPTC6 in place of the 

EYFPpp71 coding region and β-gal inserted into the non-essential UL43 locus 

under the control of the MIEP. The HSV-1 recombinat virus, in0156, again 

contained mutations at of VP16, ICP0 and a temperature sensitive mutation in 

ICP4 ensuring the virus became quiescent shortly after infection.  The DNA 

sequences encoding EYFPTC6 was recombined into the HSV-1 recombinant 

using a method similar to that described in section 3.2.1. 

 

4.2.1. Infection with the in1312 recombinant in0156 stimulates short-
term gene expression 
 
The in1312 recombinant virus expressing EYFPTC6, in0156, was first analysed for 

short-term gene expression. 1.5x105 U373 cells were seeded in a 24 well plate 

and infected, with 5x105 pfu (MOI 3.3) of in1310 (expressing EYFPpp71), in0146 

(EYFPCh82), in0156 (EYFPTC6), in1374 (negative control) or mock-infected and 

incubated at 38.5oC.  At 24 hr post-infection cell monolayers were stained with 

X-gal reaction mix and β-gal positive cells were observed.  Figure 4.8 shows that, 

in U373 monolayers infected with in1310 or in0146, equivalent numbers of β-gal 

expressing cells were detected at levels above those of in1374.  U373 cells 

infected with in0156 showed numbers of β-gal expressing cells that were similar 

to, or slightly higher than, those in in1310 or in0146 infected cultures. 



 

in1374

in1310 in0146

in0156

mock

in1374

in1310 in0146

in0156

mock

Figure 4.8. β-gal expression directed by in1312 recombinants expressing
EYFP-tagged UL82 homologues or hybrid EYFPTC6 at 24 hr post-infection
U373 cell monolayers were mock-infected or infected with 5x105 pfu (MOI 3.3)
of the in1312 recombinants expressing either the UL82 homologues or
EYFPTC6 and incubated at 38.5oC.  In1374, a virus lacking the ORF of the
UL82 homologues was used as a control.  At 24 hr post-infection cell
monolayers were stained with X-gal. 
 
The in1310 virus expresses EYFPpp71, in0146 expresses EYFPCh82, in0156 
expresses EYFPTC6 and in1374 was used as a negative control. 
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U373 cells were mock-infected or infected with 5x105 pfu of in1310, in0146, 

in0156 or in1374 and lysates were analysed SDS PAGE and transferred onto a 

nitrocellulose membrane. Protein expression was detected using an anti-GFP 

antibody.  Figure 4.9 shows that lysates from cells infected with in1310 and in0146 

produced equivalent amounts of protein at 24 hr post-infection while lysates from 

cells infected with in0156, contained lower levels of protein compared to those in 

lysates from cells infected with in1310 or in0146.  As expected no EYFP-tagged 

protein was observed in lysates from mock-infected or cells infected with in1374.  

Mock-infected and infected cell lysates were analysed by SDS PAGE again and 

blots were probed with an anti-actin antibody and an anti-mouse secondary 

antibody, to control for loading. 

 

In order to quantify expression levels, U373 cells infected with 5x105 pfu of in1310, 

in0146, and in0156 in1374 or mock-infected were super-infected with in1318 

(expressing SEAP under the control of the MIEP) and incubated at 38.5oC for 24 

hr.  Following infection, samples of the growth medium were harvested and 

endogenous alkaline phosphatase was eliminated by heating samples to 65oC 

prior to assaying for the amount of SEAP.  Figure 4.10 shows the average number 

of arbitrary units of fluorescence from two experiments.  The results show that 

samples of growth medium harvested from mock or in1374 infected monolayers 

exhibited low levels of alkaline phosphatase activity.  Cell monolayers infected with 

in1310 and in0156 showed similar levels of alkaline phosphatase activity.  

However, medium harvested from cells infected with in0146 appeared to release 

levels of alkaline phosphatase activityto higher levels than cells infected with 

in1310 and in0156. 

 

4.2.2. Analysis of long-term gene expression 
 
Data from transfection assays (presented in section 4.1.2) showed that of all the 

six EYFPpp71/EYFPCh82 hybrids constructed for this study only one showed any 

indication of stimulating long-term gene expression.  However, variability in the 

numbers of β-gal positive cells was observed between individual experiments.  To 

overcome this and to establish if the hybrid EYFPTC6 had any role in long-term 

gene expression, the HSV-1 recombinant virus in0156 was used to investigate the 

ability of this hybrid protein to direct β-gal expression at late times post infection. 
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Figure 4.9. Expression of the EYFP-tagged UL82 homologues or TC6 at 24 hr post-

onolayers were mock-infected or infected with 5x10  pfu (MOI 3.3) of the
infection. 
U373 cell m 5

in1312 recombinants expressing either the UL82 homologues or TC6 and incubated at
38.5oC. At 24 hr post infection cell lysates were harvested, and subjected to SDS PAGE.
Proteins were transferred to a nitrocellulose membrane and were probed with an anti-
GFP primary antibody and an anti-rabbit HRP conjugated secondary antibody.  Lysates
were subjected to SDS PAGE again and probed with an anti-actin antibody and an anti-
mouse HRP-conjugated secondary antibody, to act as a loading control. 
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Figure 4.10. Activity of the in1312 recombinants expressing either the UL82
homologues or EYFPTC6 in trans 
U373 monolayers were infected with 5x105 pfu (MOI 3.3) of the in1312
recombinants expressing either the UL82 homologues or EYFPTC6 and
incubated at 38.5oC for 2 hr.  The cell monolayers were super-infected with 5x105

pfu of in1318 and incubation was continued at 38.5oC.  At 24 hr post-infection
samples of medium were analysed for alkaline phosphatase activity. 
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Three sets of HFFF2 cells were seeded at 1x106 cells per 35 mm dish. Confluent 

cell monolayers were either mock-infected or infected with 3x106 pfu (MOI 3) of 

in1310 (expressing EYFPpp71), in0146 (EYFPCh82), in0156 (EYFPTC6) or 

in1374 and incubated in DF2 medium at 38.5oC for 10 days with medium changes 

every two days. At 9 days post-infection one set of HFFF2 cells was super-

infected with 3x106 pfu of tsK and incubation was continued for a further 24 hr at 

38.5oC.  The growth medium on one set of cells was replaced with fresh medium 

supplemented with 2% human serum and the cultures were downshifted to 31oC 

for a further 5 days.  One set of cells remained untreated at 38.5oC. At 10 days 

post-infection cell monolayers super-infected with tsK, and those left untreated, 

were fixed and stained with X-gal.  Cells that were downshifted to the permissive 

temperature of 31oC were stained at 14 days post-infection.   

 

Figure 4.11a shows that untreated cell monolayers that were mock-infected or 

infected with in1374 exhibited no β-gal expression.  Monolayers infected with 

in0146 showed no β-gal expression while those infected with in1310 expressed, 

as expected, significant levels of β-gal.  Monolayers infected with in0156 still 

showed some β-gal expression, as some positive cells were observed at 10 days 

post-infection.  The levels of expression observed however were significantly lower 

than those seen in monolayers infected with in1310.  These results were 

confirmed by the downshift assay where figure 4.11b shows no β-gal expression in 

cell monolayers infected with in1374, in0146 or mock-infected.  In HFFF2 

monolayers infected with in1310, large plaques could be observed indicating that 

the virus was able to replicate at its permissive temperature.  Cell monolayers 

infected with in0156 also showed a number of plaques, indicating that, by moving 

the cultures to 31oC the virus retained some replicative properties.  However the 

numbers of plaques observed in this case were significantly fewer and the plaques 

were smaller in size than those seen in cells infected with in1310.  Figure 4.11c 

shows cell monolayers super-infected with tsK at day 9 post-infection. Functional 

ICP0 expressed by the tsK virus allowed quiescent genomes to reactivate.  β-gal 

expression at 10 days post-infection showed that viral genomes were present in all 

of the cell monolayers at functionally comparable levels. 

 

At 9 days post-infection a proportion of untreated cells was subcultured into 24 

well plates and incubated at 38.5oC for a further 24 hr.  At 10 days post-infection 

lysates were harvested, analysed by gel electrophoresis and subjected to SDS 
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Figure 4.11a. β-gal expression directed by the in1312 recombinants
expressing the EYFP-tagged UL82 homologues or TC6 at 10 days post-
infection. 
HFFF2 cell monolayers were infected with 3x106 pfu (MOI 3) of the in1312
recombinants expressing either the UL82 homologues or TC6 and incubated
at 38.5oC.  In1374, a virus lacking the ORF of the UL82 homologues was used
as a control.  At 10 days post-infection cell monolayers were stained with X-
gal. 
 
The in1310 virus expresses EYFPpp71, in0146 expresses EYFPCh82, in0156 
expresses EYFPTC6 and in1374 was used as a negative control. 
 



 

in1310 in0146

in0156 in1374

mock in1310 in0146

in0156 in1374

mock

Figure 4.11b. Response of the in1312 recombinants expressing the UL82
homologues or TC6 to temperature downshift. 
HFFF2 monolayers were infected with 3x106 pfu (MOI 3) of the in1312
recombinants expressing either the UL82 homologues or TC6 and incubated at
38.5oC. In1374, a virus lacking the ORF of the UL82 homologues was used as a
control. At 9 days post-infection cell monolayers were overlayed with medium
containing 2% human serum and downshifted to 31oC. At 14 days post-infection
cell monolayers were stained with X-gal.  
 
The in1310 virus expresses EYFPpp71, in0146 expresses EYFPCh82, in0156 
expresses EYFPTC6 and in1374 was used as a negative control. 
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Figure 4.11c. Response of the in1312 recombinants expressing the UL82
homologues or TC6 to super-infection with tsK. 
HFFF2 monolayers were infected with 3x106 pfu (MOI 3) of the in1312
recombinants expressing either the UL82 homologues or TC6 and incubated at
38.5oC.  in1374, a virus lacking the ORF of the UL82 homologues was used as a
control.  At 9 days post-infection cell monolayers were super-infected with tsK and
incubated at 38.5oC for a further 24 hr. At 10 days post-infection cell monolayers
were stained with X-gal.  
 
The in1310 virus expresses EYFPpp71, in0146 expresses EYFPCh82, in0156 
expresses EYFPTC6 and in1374 was used as a negative control. 
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PAGE.  Protein expression was detected using an anti-GFP antibody.  Figure 4.12 

shows at 10 days post-infection, as shown previously in figure 4.7, pp71 protein 

could be detected whereas in lysates of cells infected with in0146, no protein was 

detected.  Furthermore no protein was detected in lysates of cells infected with 

in0156 suggesting reduced production of the protein at late times of infection.   

 

Data from the infection assays presented here show again that pp71 is able to 

stimulate long-term gene expression.  Interestingly however, cells infected with 

in0156 still exhibited some β-gal activity at 10 days post-infection.  Levels of β-gal 

expression observed appeared to be lower than observed in cells infected with 

in1310.  Therefore EYFPTC6 seems to retain some of the properties involved in 

long-term gene expression of pp71. 
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Figure 4.12. Expression of the EYFP-tagged UL82 homologues or TC6 at
10 days post-infection. 
HFFF2 cell monolayers were either mock-infected or infected with 3x106 pfu
(MOI 3) of the in1312 recombinants expressing the UL82 homologues or TC6
and incubated at 38.5oC. At 10 days post-infection cell lysates were harvested,
subjected to SDS PAGE and proteins transferred onto a nitrocellulose
membrane.  EYFP-tagged proteins expressed by the in1312 recombinants were
detected using an anti-GFP primary antibody and an anti-rabbit HRP conjugated
secondary antibody. Blots were stripped and reprobed with an anti-actin primary
antibody and an anti-mouse HRP-conjugated secondary antibody to act as a
control for loading.  Proteins were detected using ECL prior to exposure to
autoradiographic film. 
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4.3. DIscussion 
 
Having established that pp71 is unique in its ability to stimulate long-term gene 

expression, the second part of this study aimed to investigate the region of pp71 

involved in this.  Due to the significant degree of homology between the pp71 and 

Ch82 homologues, hybrid proteins were constructed in order to closely examine 

the effects on gene expression of their C-termini, N-termini and mid-regions. 

 

Initial experiments using plasmid based transfection assays showed all six hybrids 

were functional in short-term assays, as numbers of β-gal positive cells were 

observed at levels above the control.  These results were also reflected in the 

western analysis whereby all six hybrids stimulated protein expression.  In the 

long-term expression studies pEYFPpp71 continued to direct β-gal expression at 

10 days post-infection.  No activity was observed in cells transfected with 

pEYFPCh82 or the majority of pEYFPpp71/pEYFPCh82 hybrids, the only 

exception being cells transfected with pEYFPTC6.  There was no difference in the 

average numbers of β-gal positive cells at 10 days post-transfection compared to 

24 hr post-transfection although there were variabilites in numbers within individual 

experiments.  With regards to western analysis no protein was detectable at 10 

days post-transfection.  From this it was concluded that some activity may have 

been retained, however the degree of activity was lower than that observed with 

pEYFPpp71. 

 

Variability in numbers of β-gal positive cells was also observed with the remaining 

hybrids and was attributed to transfection discrepencies.  However, the variability 

in numbers between experiments meant that statistical analysis could not be 

performed. 

 

To eliminate the problem of variable numbers of β-gal positive cells observed in 

the transfection assays, a HSV-1 recombinant virus (in0156) was constructed 

containing the DNA cassette encoding EYFPTC6.  All three assays employed in 

the short-term studies showed that in0156 was able to stimulate levels of reporter 

gene expression above the negative control, confirming results from the 

transfection assays that this hybrid, like the pp71 protein, was functional in the 

short-term.   
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Results from long-term assays in HFFF2 cells showed that at 10 days 

post-infection, cell monolayers infected with in0156, contained β-gal positive 

plaques when the infected cells were downshifted to the permissive temperature of 

31oC.  However, numbers of β-gal positive plaques observed were fewer and 

smaller in size than those observed in cell monolayers infected with in1310 (no 

β-gal expression was observed in cells infected with in0146).  This suggests that 

the hybrid TC6 protein retains a degree of functionality that can be attributed to the 

middle region of pp71.  Results from this part of the study showed that it is 

possible to exchange regions of the DNA coding sequences of the pp71 and Ch82 

homologues, while retaining functionality. 

 

In infection assays EYFPTC6 appeared to direct a lower degree of gene 

expression compared to pp71 at 10 days post-infection.  This could be attributed 

to the region of pp71 that was inserted into the Ch82 homologue.  The middle 

region of pp71 appears to be the most highly ordered region of the protein (figure 

4.13), with less order observed at the C- and N-termini.  Incidentally, the other 

non-human UL82 homologues show a very similar pattern to pp71 in the RONN 

structural analysis program (figure 4.13).  Some of the most important features of 

pp71 are found in the central third of this protein including the DIDs (Hofmann et 

al., 2002) and the LASCD (Kalejta & Shenk, 2003c) motif.  It is possible that some 

part of this region of pp71 may contribute to the continued expression seen in 

cultures infected with in0156 at 10 days post-infection.  The 

EYFPpp71/EYFPCh82 hybrid proteins were constructed so as not to destroy the 

immediate coding sequence of the proteins, however, it is possible that while the 

coding sequences were not altered, the folding of the protein was affected.  Small 

changes to the more ordered mid-section of pp71 could alter its structure and may 

affect its ability to direct long-term gene expression. Hofmann et al. (2002) 

suggested that internal deletion of the putative DIDs may cause an alteration in the 

3D protein structure of pp71, causing a loss of interaction between pp71 and 

hDaxx.  Davison and Stow (2005) also suggested that alterations to this region of 

the protein could result in gross structural changes to the protein.  Therefore it is 

possible that the minor alterations to pp71 protein in the construction of the 

EYFPpp71/EYFPCh82 hybrid proteins may have affected the ability of this protein 

to drive long-term gene expression.  To gain a better understanding of how the 

folding and structure of pp71 affects its ability to drive long tem gene expression, 

the structures of both pp71 and Ch82 would have to be solved.  
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Regions of disorder: 1-33, 55-60, 105-118, 139-162, 176-176, 214-217, 271-281, 
398-473, 507-518, 526-558

Regions of disorder: 1-26, 84-102, 136-154, 174-186, 287-292, 360-378, 393-476, 525-545

pp71

Regions of disorder: 1-25, 115-121, 139-163, 218-220, 333-338, 376-388, 404-470, 
515-559



Rh82

B82

Regions of disorder: 1-24, 83-107, 138-146, 390-457, 522-532

Region of disorder: 1-22, 84-90, 95-104, 106-107, 134-156, 394-473, 523-530

Figure 4.13 Showing the regions of disorder in the UL82 proteins.  

The graphs show that the greatest degree of order within these proteins is 
conserved within their middle regions, while the most significant disorder is 
observed at the C- and N- termini.  All analysis was carried out using RONN 
software. 

Yang et al. 2005
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5. Part I 
 
5.1. Introduction 
 
A large number of proteins, including PML, hDaxx, SUMO, and Sp100 are 

associated with ND10 structures.  The protein hDaxx has been reported to be 

involved in various cellular processes including embryo development, apoptosis 

and transcription regulation (Salomoni & Khelifi, 2006).  It has also been shown to 

co-localise with pp71 in the nucleus of transfected cells (Hofmann et al., 2002), 

and studies have shown that pp71 co-localises with PML at ND10 domains via an 

interaction with hDaxx (Hofmann et al., 2002, Ishov et al., 2002). 

 

In the study described here the four non-human UL82 homologues (Ch82, S82, 

B82, and Rh82) were further characterised by comparing them to their human 

counterpart pp71, by examining the nuclear distribution patterns of the 

homologues and their abilities to co-localise with either hDaxx or PML. 

 

Initial experiments to examine the nuclear distribution patterns of the UL82 

homologues were carried out at 7 hr and 24 hr post-infection.  Data obtained at 

these times of infection showed that the non-human homologues (Ch82, B82 and 

Rh82) behaved more like the S82 homologue than pp71.  In the majority of cells 

infected with in1310, at 7 hr post-infection EYFP-tagged pp71 localised to discrete 

punctate foci whereas at 24 hr a number of infected cells showed pp71 

accumulating as large aggregates in the nucleus (data not shown).  At 7 hr 

post-infection in cells infected with in0150, EYFP-tagged S82 predominantly 

exhibited a diffuse pattern of fluorescence, while in some infected cells S82 was 

observed in punctate foci superimposed on a diffuse background.  In HFFF2 cells 

infected with the in1312 recombinants expressing EYFP-tagged Ch82, B82 or 

Rh82, in the majority of cells all three non-human homologues exhibited a 

punctate/diffuse pattern of fluorescence.  Few infected cells showed these 

homologues localising to discrete punctate foci at 7 hr post-infection.  Again at 24 

hr post-infection in some infected cells the non-human homologue proteins 

accumulated in large masses (data not shown).  Therefore in order to establish 

whether the non-human homologues localised to discrete punctate foci, like pp71, 

before forming the patterns of fluorescence observed at 7 hr and 24 hr post-

infection, experiments were carried at the earlier time points of 3 hr and 5 hr as 

well as 7 hr post-infection. 
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5.1.1. Distribution patterns of EYFPUL82 homologues at 3 hr post-infection 
 

To obtain comparisons between the nuclear distribution patterns of pp71 and the 

non-human homologues, 8x104 HFFF2 cells, cultivated on 13 mm coverslips in 

D5+5 medium, were infected with 5x105 pfu of in1310 (expressing EYFPpp71), 

in0146 (EYFPCh82), in0150 (EYFPS82), in0145 (EYFPB82), or in0144 

(EYFPRh82).  At 3 hr post-infection cells were fixed and mounted onto microscope 

slides.  Nuclear distribution patterns of each of the homologues were identified and 

tabulated (table 5.1).  Figure 5.1 shows the various patterns of fluorescence 

observed.  Figure 5.1a shows a typical pattern of discrete punctate foci, usually 

associated with pp71.  Infected cells displaying foci that became larger were 

termed punctate/diffuse (figure 5.1b).  The diffuse pattern of fluorescence was 

characterised by signal throughout the nucleus as presented in figure 5.1c. 

 

Table 5.2 shows that in 95% of the cells infected with in0146 the Ch82 homologue 

localised to discrete punctate foci, while in the remaining 5% Ch82 exhibited a 

punctate/diffuse pattern of fluorescence.  Cells infected with in0145 and in0144 

showed a slightly different distribution to that in cells infected with in1310 and 

in0146.  Upon infection with in0145 and in0144, the B82 and Rh82 proteins 

localised primarily to discrete punctate foci (figure 5.2).  However table 5.2 shows 

that despite the dominant nuclear pattern of discrete punctate foci, a greater 

percentage of cells showed these proteins in a punctate/diffuse pattern of 

fluorescence.  Cells infected with in0150 showed a different distribution pattern.  

The majority of infected cells (84%) examined contained S82 in a diffuse pattern of 

fluorescence, while in some cells punctate/diffuse patterns of fluorescence were 

observed. 

 

At 3 hr post-infection the UL82 homologues exhibited varied distribution patterns 

ranging from the well-documented discrete punctate foci to increasingly diffuse 

patterns of fluorescence. 

 

5.1.2. Distribution patterns of the EYFPUL82 homologues 5 hr post-infection 
 

HFFF2 cell monolayers (8x104 cells) infected with 5x105 pfu of the in1312 

recombinant viruses expressing EYFP-tagged UL82 homologues were fixed at 5 

hr post-infection.  Nuclear distribution patterns exhibited by each homologue were 



Patterns of 
Distribution 

3 hr 
post-infection 

5 hr 
post-infection 

7 hr 
post-infection 

Number of 
punctate foci 

 
95 

 
939 

 
730 

 
in1310 
(pp71) Number of 

punctate/diffuse 
patterns of 
fluorescence 

 
 
5 

 
 
42 

 
 
167 

    
Number of 
punctate foci 

 
124 

 
45 

 
24 

 
in0146 
(Ch82) Number of 

punctate/diffuse 
patterns of 
fluorescence 

 
 
7 

 
 
39 

 
 
95 

    
Number of 
punctate foci 

 
0 

 
0 

 
0 

Number of 
punctate/diffuse 
patterns of 
fluorescence 

 
 
27 

 
 
13 

 
 
37 

 
in0150 
(S82) 

Number of diffuse 
patterns of 
fluorescence 

 
 
149 

 
 
84 

 
 
78 

    
Number of 
punctate foci 

 
31 

 
42 

 
3 

 
in0145 
(B82) Number of 

punctate/diffuse 
patterns of 
fluorescence 

 
 
58 

 
 
35 

 
 
54 

    
Number of 
punctate foci 

 
163 

 
44 

 
8 

 
in0144 
(Rh82) Number of 

punctate/diffuse 
patterns of 
fluorescence 

 
 
46 

 
 
17 

 
 
67 

 
 Table 5.1. Nuclear distribution patterns of the EYFPUL82 homologues at 3 hr, 5 hr and 7

hr post-infection. 
HFFF2 cells were infected with 5x105 pfu of the in1312 recombinant viruses expressing the
EYFP-tagged UL82 homologues.  Cell monolayers were fixed at 3 hr, 5 hr and 7 hr post-infection
and the various patterns of fluorescence were examined and categorised as presented in figure
5.1.  Cells expressing the different patterns of fluorescence were counted, in a range of fields,
and the results tabulated. 



Patterns of 
Distribution 

3 hr 
post-infection 

5 hr 
post-infection 

7 hr 
post-infection 

Percentage of 
punctate foci 

 
95 

 
95 

 
81 

 
in1310 
(pp71) Percentage of 

punctate/diffuse 
patterns of 
fluorescence 

 
 
5 

 
 
5 

 
 
19 

    
Percentage of 
punctate foci 

 
95 

 
54 

 
20 

 
in0146 
(Ch82) Number of 

punctate/diffuse 
patterns of 
fluorescence 

 
 
5 

 
 
46 

 
 
80 

    
Percentage of 
punctate foci 

 
0 

 
0 

 
0 

Percentage of 
punctate/diffuse 
patterns of 
fluorescence 

 
 
16 

 
 
13 

 
 
12 

 
 
 
in0150 
(S82) 

Percentage of 
diffuse patterns of 
fluorescence 

 
 
84 

 
 
87 

 
 
88 

    
Percentage of 
punctate foci 

 
65 

 
55 

 
5 

 
in0145 
(B82) Percentage of 

punctate/diffuse 
patterns of 
fluorescence 

 
 
35 

 
 
45 

 
 
95 

    
Percentage of 
punctate foci 

 
78 

 
72 

 
11 

 
in0144 
(Rh82) Percentage of 

punctate/diffuse 
patterns of 
fluorescence 

 
 
22 

 
 
28 

 
 
89 

 
Table 5.2. Nuclear distribution patterns of the EYFPUL82 homologues at 3 hr, 5 hr 
and 7 hr post-infection. 
HFFF2 cells were infected with 5x105 pfu of the in1312 recombinant viruses expressing 
the EYFP-tagged UL82 homologues.  Cell monolayers were fixed at 3 hr, 5 hr and 7 hr 
post-infection and patterns of fluorescence were examined using a confocal microscope. 
 
 



Punctate foci Punctate/diffuse 
pattern of 
fluorescence

Diffuse pattern of 
fluorescence

Figure 5.1 Patterns of fluorescence exhibited by the EYFPUL82 
homologues

HFFF2 monolayers infected were infected with 5x105 pfu of the in1312 
recombinants expressing the EYFP-tagged UL82 homologues, and 
incubated at 38.5oC. Cell monolayers were fixed and permeabilised and 
images were captured on a confocal microscope.  Images were selected 
specifically to illustrate the different patterns of fluorescence observed 
throughout this study .
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Figure. 5.2 Nuclear distribution of the EYFPUL82 homologues at 3 hr, 5 hr and 7 hr 
post-infection.

HFFF2 monolayers infected were mock-infected or infected with 5x105 pfu of the in1312 
recombinants expressing the EYFP-tagged UL82 homologues, and incubated at 38.5oC.  
At 3 hr, 5 hr, or 7 hr post-infection cell monolayers were fixed and permeabilised. Images 
were captured on a confocal microscope and the magnification of each image was 
optimised to fit the area of the cell(s) in the field.
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counted and tabulated (table 5.1 and 5.2).  At 5 hr post-infection cell monolayers 

infected with in1310 showed no change from the distribution pattern observed at 3 

hr post-infection (figure 5.2).  Again pp71 localised to discrete punctate foci in the 

nucleus (95%) however, in some infected cells pp71 exhibited a punctate/diffuse 

pattern of fluorescence (5%) (table 5.2). 

 

HFFF2 cells infected with in0146 showed a change in distribution patterns at 5 hr  

In HFFF2 cells infected with in0146 a change in distribution patterns at 5 hr was 

observed compared to that at 3 hr post-infection (figure 5.2).  At 5 hr 

post-infection, 54% of infected cells showed the Ch82 protein localising to discrete 

punctate foci, while an increasing proportion of infected cells (46%) showed Ch82 

exhibiting a more punctate/diffuse pattern of fluorescence (tables 5.1 and 5.2).  

Therefore, at 5 hr post-infection, despite the nuclear localisation pattern of the 

Ch82 homologue continuing to show similarities to that of pp71, a change in the 

degree of similarity was observed.  Cell monolayers infected with in0145 and 

in0144 showed little change in patterns of distribution at 5 hr compared to 3 hr.  

The majority of infected cells showed both B82 and Rh82 proteins localising as 

discrete punctate foci, however the number of cells exhibiting punctate/diffuse 

patterns of fluorescence increased (tables 5.1 and 5.2).  When HFFF2 cells were 

infected with in0150, no significant change in nuclear distribution patterns was 

observed when compared to 3 hr post-infection.  Tables 5.1 and 5.2 show that in 

cells infected with in0150, S82 exhibited a more diffuse pattern of fluorescence, 

and again no punctate foci were observed (figure 5.2).  The nuclear distribution 

pattern of S82 continued to differ from that of pp71. 

 

5.1.3. Distribution patterns of the EYFPUL82 homologues at 7 hr 
post-infection 
 
HFFF2 cells (8x104 cells) infected with 5x105 pfu of the in1312 recombinants 

expressing the EYFP-tagged UL82 homologues were fixed and mounted onto 

microscope slides.  Nuclear distribution patterns were counted and tabulated 

(table 5.1 and 5.2). Cell monolayers infected with in1310 showed a change in the 

nuclear distribution pattern.  Tables 5.1 and 5.2 show that in the majority of cells 

infected with in1310, pp71 continued to localise to discrete puncate foci in the 

nucleus as observed at 3 hr and 5 hr post-infection.  However a greater number of 
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infected cells showed pp71 exhibiting a more punctate/diffuse pattern of 

fluorescence (figure 5.2). 

 

In HFFF2 cells infected with in0146 a change in the distribution pattern at 7 hr 

post-infection compared to that at 3 hr and 5 hr post-infection was observed.  The 

majority of infected cells showed Ch82 exhibiting a more punctate/diffuse pattern 

of fluorescence (80%), while fewer infected cells (20%) retained the discrete 

punctate foci exhibited at 3 hr and 5 hr post-infection (table 5.2).  This was also 

found to be the case in those cell monolayers infected with in0145 and in0144.  A 

greater number of infected cells showed both B82 and Rh82 proteins exhibiting a 

more punctate/diffuse pattern of fluorescence at 7 hr post-infection compared to 

that observed at 3 hr and 5 hr post-infection, as presented in tables 5.1 and 5.2, 

and in figure 5.2.  Cell monolayers infected with in0150 showed little change in 

distribution patterns.  The majority of infected cells (88%) showed S82 exhibiting a 

more diffuse pattern of fluorescence observed at earlier time points (tables 5.1 and 

5.2).  However, in a few infected cells S82 exhibited a punctate/diffuse pattern of 

fluorescence, as seen in figure 5.2.  At later times of infection the Ch82, B82 and 

Rh82 homologues began to show a divergence from the discrete punctate foci 

exhibited by pp71.   

 

This part of the study indicated that the majority of the non-human homologues 

(B82, Rh82 and Ch82) all displayed similar attributes to pp71 at 3 and 5 hr 

post-infection by localising to punctate foci.  Unlike pp71, the S82 homologue 

exhibited a punctate/diffuse pattern of fluorescence at 3 hr post-infection which 

became increasingly diffuse throughout the time period examined.  No discrete 

punctate foci were observed in any cells infected with in0150 at any time 

post-infection.  However, while pp71 predominantly localised to discrete punctate 

foci at 7 hr post-infection the B82, Rh82 and Ch82 homologues began to diverge 

away from the pattern exhibited by pp71 to localise to the punctate/diffuse pattern 

of fluorescence associated with the S82 homologue. These distinct changes in 

patterns of fluorescence exhibited by the non-human UL82 homologues were 

hypothesised to affect their ability to co-localise with the cellular proteins hDaxx 

and PML. 
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5. Part II 
 

5.2. Introduction 

 
Various studies have shown that pp71 co-localises with PML (Marshall et al., 

2002) and also with the cellular protein hDaxx (Hofmann et al., 2002, Ishov et al., 

2002).  To investigate whether the non-human UL82 homologues also localised 

with these cellular proteins, initial experiments were carried out at 7 hr and 24 hr 

post-infection.  It was observed that the Ch82, B82 and Rh82 homologues co-

localised with hDaxx and PML at these times.  However in those cells where S82 

exhibitied a diffuse pattern of fluorescence, hDaxx was seen to be dispersed from 

the larger more intense foci associated with this distribution pattern (data not 

shown).  Experiments were carried out at the earlier times of 3 hr and 5 hr post-

infection to establish whether the Ch82, B82 and Rh82 homologues co-localised 

with hDaxx and PML when their distribution patterns were more like those 

associated with pp71.  Experiments at these time points also served to establish if 

the S82 homologue caused hDaxx to be dispersed at earlier times after infection 

or if this property was associated with later times of infection. 

 

5.2.1. The EYFPUL82 homologues co-localise with the cellular proteins 
hDaxx and PML at 3 hr 5 hr and 7hr post-infection. 
 

HFFF2 cells, seeded at 8x104 cells, were infected with the in1312 recombinant 

viruses expressing the EYFP-tagged UL82 homologues.  At 3 hr post-infection cell 

monolayers were fixed and stained with an anti-PML A-20 antibody or an 

anti-hDaxx antibody and their appropriate secondary antibodies. 

 

Cell monolayers infected with in1310 showed co-localisation of pp71 with hDaxx at 

the punctate foci observed at the three time points under investigation (figure 

5.3a).  Further staining showed that pp71 also co-localised with PML in these 

punctate foci (figure 5.3b).  These results were in agreement with the reports by 

other groups that pp71 co-localises with hDaxx and PML at ND10 domains 

(Hofmann et al., 2002, Ishov et al., 2002).  As time progressed, pp71 displayed a 

punctate/diffuse pattern of fluorescence in an increasing number of infected cells 

while maintaining discrete punctate foci in the majority of infected cells. 

 



hDaxx MergeEYFPpp71

hDaxx Merge

hDaxx
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EYFPpp71 Merge

3hr
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Figure 5.3a. EYFPpp71 co-localises with hDaxx at 3 hr, 5 hr and 7 hr 
post-infection.

HFFF2 monolayers were  infected with 5x105 pfu of in1310 (expressing 
EYFPpp71), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection 
cell monolayers were fixed and permeabilised.  Cells were stained with anti-
hDaxx primary antibody and subsequently with secondary antibody (anti-
mouse Cy5-conjugated).  Images were generated on a confocal microscope 
and the magnification of each image was optimised to fit the area of the 
cell(s) in the field of view.
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Figure 5.3b. EYFPpp71 co-localises with PML at 3 hr, 5 hr and 7 hr post-
infection.

HFFF2 monolayers were infected with 5x105 pfu of in1310 expressing 
EYFPpp71), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection 
cell monolayers were fixed and permeabilised.  Cells were stained with 
primary antibody anti-PML  A-20 for 1 hr followed by incubation with 
secondary antibody (Alexa 647-chicken anti-goat) for 1 hr.  Images were 
captured on a confocal microscope and the magnification of each image was 
optimised to fit the area of the cell in the field of view.

EYFPpp71

EYFPpp71
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Cell monolayers infected with in0146 exhibited a distribution pattern analogous to 

that of pp71 at 3 hr post-infection.  The Ch82 homologue localised to discrete 

punctate foci, which in turn co-localised with both hDaxx and PML.  The pattern if 

fuorescence became more punctate/diffuse at 5 hr post-infection and by 7hr post-

infection, the majority of infected cells displayed this pattern.  Co-localisation with 

hDaxx and PML persisted at both these times of infection (figure 5.4a and 5.4b). 

 

Unlike pp71, the S82 homologue expressed from virus in0150 exhibited a 

punctate/diffuse or diffuse pattern of fluorescence at 3 hr post-infection (figure 

5.2).  However despite these distinct distribution patterns, foci co-localised with 

both hDaxx (figure 5.5a) and PML (figure 5.5b). Through 5 hr post-infection until 

7hr post-infection an increasingly diffuse pattern of fluorescence was observed in 

most infected cell nuclei.  While some co-localisation with PML was retained, 

hDaxx appeared to be dispersed throughout the nucleus (figure 5.5a and figure 

5.5b).   

 

In cells infected with in0145 (figure 5.6a and 5.6b) and in0144 (figure 5.7a an 5.7b) 

both homologues displayed the typical punctate foci associated with pp71, and 

again co-localised with hDaxx and PML at 3 hr post-infection.  The pattern of 

fuorescence exhibited by both these homologues became more punctate/diffuse at 

5 hr post-infection and by 7hr post-infection, the majority of infected cells displayed 

this pattern.  Co-localisation with hDaxx and PML persisted at both these times of 

infection (figure 5.4a and 5.4b). 

 

Data at all three times post-infection post-infection showed that the Ch82, B82 and 

Rh82 homologues appeared to be most like pp71 in terms of nuclear distribution 

patterns and in their ability to co-localise with hDaxx and PML at ND10 domains.  

The S82 homologue, though unlike pp71 in terms of nuclear distribution patterns, 

still behaved in a similar way to pp71 by co-localising with PML.  However, as the 

patterns of fluorescence became increasingly diffuse, hDaxx was observed to be 

dispersed from the nucleus, suggesting that the changes in patterns of 

fluorescence may affect the ability of the homologues to co-localise with hDaxx.  

Further experiments with the B82, Rh82 and Ch82 homologues at later times 

would need to be carried out to establish if they also exhibit diffuse patterns of 

fluorescence and, like S82, disperse hDaxx. 
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Figure 5.4a. EYFPCh82 co-localises with hDaxx at 3 hr, 5 hr and 7 hr 
post-infection.

HFFF2 monolayers were  infected with 5x105 pfu of in0146 (expressing 
EYFPCh82), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection 
cell monolayers were fixed and permeablised.  Cells were stained with anti-
hDaxx primary antibody and subsequently with secondary antibody (anti-
mouse Cy5-conjugated).  Images were generated on a confocal microscope 
and the magnification of each image was optimised to fit the area of the 
cell(s) in the field of view.
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Figure 5.4b. EYFPCh82 co-localises with PML at 3 hr, 5 hr and 7 hr post-
infection.

HFFF2 monolayers were infected with 5x105 pfu of in0146 (expressing 
EYFPCh82), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection 
cell monolayers were fixed and permeabilised.  Cells were stained with 
primary antibody anti-PML  A-20 for 1 hr followed by incubation with 
secondary antibody (Alexa 647-chicken anti-goat) for 1 hr.  Images were 
captured on a confocal microscope and the magnification of each image was 
optimised to fit the area of the cell in the field of view.
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Figure 5.5a. EYFPS82 and hDaxx at  3 hr, 5 hr and 7 hr post-infection.

HFFF2 monolayers were  infected with 5x105 pfu of in0150 (expressing 
EYFPS82), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection 
cell monolayers were fixed and permeabilised.  Cells were stained with anti-
Daxx primary antibody and subsequently with secondary antibody (anti-
mouse Cy5-conjugated).  Images were generated on a confocal microscope 
and the magnification of each image was optimised to fit the area of the 
cell(s) in the field of view.  (7 hr image courtesy of Dr. Chris Preston).
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Figure 5.5b. EYFPS82 co-localises with PML at 3 hr, 5 hr and 7 hr post-
infection.

HFFF2 monolayers were infected with 5x105 pfu of in0150 (expressing 
EYFPS82), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection cell 
monolayers were fixed and permeabilised.  Cells were stained with primary 
antibody anti-PML  A-20 for 1 hr followed by incubation with secondary 
antibody (Alexa 647-chicken anti-goat) for 1 hr.  Images were captured on a 
confocal microscope and the magnification of each image was optimised to fit 
the area of the cell in the field of view.
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Figure 5.6a. EYFPB82 co-localises with hDaxx at 3 hr, 5 hr and 7 hr 
post-infection.

HFFF2 monolayers were  infected with 5x105 pfu of in0145 (expressing 
EYFPB82), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection 
cell monolayers were fixed and permeabilised.  Cells were stained with anti-
hDaxx primary antibody and subsequently with secondary antibody (anti-
mouse Cy5-conjugated).  Images were generated on a confocal microscope 
and the magnification of each image was optimised to fit the area of the 
cell(s) in the field of view.
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Figure 5.6b. EYFPB82 co-localises with PML at 3 hr, 5 hr and 7 hr post-
infection.

HFFF2 monolayers were infected with 5x105 pfu of in0145 (expressing 
EYFPB82), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection cell 
monolayers were fixed and permeabilised.  Cells were stained with primary 
antibody anti-PML  A-20 for 1 hr followed by incubation with secondary 
antibody (Alexa 647-chicken anti-goat) for 1 hr.  Images were captured on a 
confocal microscope and the magnification of each image was optimised to fit 
the area of the cell in the field of view.
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Figure 5.7a. EYFPRh82 co-localises with hDaxx at 3 hr, 5 hr and 7 hr 
post-infection.

HFFF2 monolayers were  infected with 5x105 pfu of in0144 (expressing 
EYFPRh82), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection 
cell monolayers were fixed and permeabilised.  Cells were stained with anti-
hDaxx primary antibody and subsequently with secondary antibody (anti-
mouse Cy5-conjugated).  Images were generated on a confocal microscope 
and the magnification of each image was optimised to fit the area of the 
cell(s) in the field of view.
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Figure 5.7b. EYFPRh82 co-localises with PML at 3 hr, 5 hr and 7 hr post-
infection.

HFFF2 monolayers were infected with 5x105 pfu of in0144 (expressing 
EFYPRh82), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection 
cell monolayers were fixed and permeabilised.  Cells were stained with 
primary antibody anti-PML  A-20 for 1 hr followed by incubation with 
secondary antibody (Alexa 647-chicken anti-goat) for 1 hr.  Images were 
captured on a confocal microscope and the magnification of each image was 
optimised to fit the area of the cell in the field of view.
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5. Part III 
 
5.3. Introduction 
 
In chapter 4 the hybrid protein EYFPTC6 (mid region of pp71 cloned into Ch82) 

was constructed and later recombined into a HSV-1 in1312 recombinant virus 

named in0156.  This hybrid was shown to retain some activity at 10 days 

post-infection however levels of activity appeared to be lower than that observed 

with pp71.  The properties of this protein were further examined by observing its 

nuclear distribution patterns and co-localisation with the cellular proteins hDaxx 

and PML to establish if this hybrid behaved more like pp71 or Ch82. 

 

5.3.1 Hybrid TC6 co-localises with the cellular proteins hDaxx and PML at 3 
hr post-infection. 
 

HFFF2 cells (8x104) were infected with 5x105 pfu of in1310 (expressing 

EYFPpp71), in0146 (EYFPCh82) or in0156 (EYFPTC6).  At 3 hr post-infection cell 

monolayers were fixed and stained with primary antibodies anti-PML A-20 or anti-

hDaxx and their appropriate secondary antibodies. 

 

Figure 5.1 shows that in cell monolayers infected with in1310, pp71 localised to 

discrete punctate foci.  When cell monolayers were stained with an anti-hDaxx 

antibody (figure 5.3a), pp71 localised with hDaxx in these discrete punctate foci.  

When stained with an anti-PML antibody, co-localisation of pp71 with PML was 

also observed (figure 5.3b).  Cell monolayers infected with in0146 showed the 

Ch82 protein also localised to discrete punctate foci (figure 5.2).  And, as 

expected, co-localisation with both hDaxx and PML was observed.  These results 

were in agreement with those described previously (figure 5.4a and 5.4b).  In cell 

monolayers infected with in0156, the same distribution pattern as both pp71 and 

Ch82 homologues was observed at 3 hr post-infection (figure 5.8a, panel a.)  The 

hybrid protein TC6 also localised to discrete punctate foci in the nucleus.  Figure 

5.8a shows the discrete punctate foci of hybrid TC6 co-localising with hDaxx.  

Co-localisation was also observed in infected cells stained with anti-PML A20 

antibody (figure 5.8b). 
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Figure 5.8a. EYFPTC6 co-localises with hDaxx at 3 hr, 5 hr and 7 hr 
post-infection.

HFFF2 monolayers were  infected with 5x105 pfu of in0156 (expressing 
EYFPTC6), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection cell 
monolayers were fixed and permeabilised.  Cells were stained with anti-
hDaxx primary antibody and subsequently with secondary antibody (anti-
mouse Cy5-conjugated).  Images were generated on a confocal microscope 
and the magnification of each image was optimised to fit the area of the 
cell(s) in the field of view.
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Figure 5.8b. EYFPTC6 co-localises with PML at 3 hr, 5 hr and 7 hr post-
infection.

HFFF2 monolayers were infected with 5x105 pfu of in0156 (expressing 
EYFPTC6), and incubated at 38.5oC.  At 3 hr, 5 hr and 7 hr post-infection cell 
monolayers were fixed and permeabilised.  Cells were stained with  primary 
antibody anti-PML  A-20 for 1hr followed by incubation with secondary 
antibody (Alexa 647-chicken anti-goat) for 1 hr.  Images were captured on a 
confocal microscope and the magnification of each image was optimised to fit 
the area of the cell in the field of view.
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5.3.2. Hybrid TC6 co-localises with the cellular proteins hDaxx and PML at 5 
hr post-infection. 
 
HFFF2 cells (8x104) were infected with 5x105 pfu of in1310 (expressing 

EYFPpp71), in0146 (EYFPCh82), or in0156 (EYFPTC6).  At 5 hr post-infection 

cell monolayers were fixed and stained with either anti-hDaxx or anti-PML 

antibodies and their appropriate secondary antibodies. 

 

Cell monolayers infected with in1310 showed the same nuclear distribution 

patterns as observed at 3 hr post-infection whereby pp71 localised to discrete 

punctate foci in the nucleus (figure 5.2).  When stained with antibodies raised 

against both hDaxx and PML, pp71 was found to co-localise with both cellular 

proteins (figure 5.3a and 5.3b).  In cell monolayers infected with in0146 a change 

in the nuclear distribution pattern of cells was observed.  An increasing number of 

cells infected with in0146 showed Ch82 exhibited a punctate/diffuse pattern of 

fluorescence (figure 5.2).  However, as expected, both hDaxx and PML were seen 

to co-localise with these foci as presented in figures 5.4a and 5.4b.  Surprisingly, 

cells infected with in0156 showed no change in nuclear distribution patterns at 5 hr 

compared to that at 3 hr.  In all cells observed, hybrid TC6 localised to discrete 

punctate foci associated with pp71 (figure 5.8a, panel b).  When cell monolayers 

were stained with antibodies raised against hDaxx and PML the punctate foci of 

TC6 were found to co-localise with both cellular proteins (figure 5.8a and 5.8b).   

 

5.3.3. Hybrid TC6 co-localises with the cellular proteins hDaxx and PML at 7 
hr post-infection. 
 
HFFF2 cells (8x104) were infected with 5x105 pfu of in1310 (expressing 

EYFPpp71), in0146 (EYFPCh82) or in0156 (EYFPTC6).  At 7 hr post-infection cell 

monolayers were fixed and stained with anti-hDaxx and anti-PML antibodies and 

their appropriate secondary antibodies.  In the majority of cells infected with 

in1310, pp71 localised to discrete punctate foci, however some infected cells 

showed pp71 exhibiting a punctate/diffuse pattern of fluorescence (figure 5.2).  

When infected monolayers were stained with anti-hDaxx and anti-PML antibodies, 

all foci were seen to co-localise with both cellular proteins (figure 5.3a and 5.3b).  

As shown previously, as late as 7 hr post-infection pp71 co-localised with hDaxx 

and PML at ND10 domains.  In cell monolayers infected with in0146, in the 

majority of cells Ch82 exhibited a punctate/diffuse pattern of fluorescence (figure 



Tanya Chaudry 2008  Chapter 5 128

5.2), but continued to localise with both hDaxx and PML (figure 5.4a and 5.4b).  

Surprisingly, in cell monolayers infected with in0156, the nuclear distribution 

pattern continued to resemble that of pp71 (figure 5.8a, panel c), with hybrid TC6 

localised to discrete punctate foci.  When cell monolayers were stained with 

antibodies raised against hDaxx or PML, these punctate foci co-localised with both 

hDaxx and PML (figure 5.8a and 5.8b).  Therefore, at 7 hr post-infection, hybrid 

TC6 behaved in a manner similar to that of pp71 in terms of both nuclear 

distribution and co-localisation with hDaxx and ND10 domains. 

 

In previous experiments the difference in nuclear distribution patterns of pp71 and 

Ch82 were based on counting fluorescence patterns in cell nuclei.  In the case of 

hybrid TC6, due to low levels of infection with in0156 very few infected cells were 

observed at each time post-infection.  At each time point hybrid TC6 localised to 

discrete punctate foci, mimicking the pattern of pp71.  However it remains a 

possibility that the nuclear distribution pattern of hybrid F may become more like 

that of Ch82 at 5 hr and 7 hr post-infection.  In order to investigate this further 

higher levels of infection with in0156 would need to be obtained in order to 

observe a greater number of infected cells. 
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5. Part IV 
 
5.4. Introduction 
 
In various cell types the cellular protein hDaxx has been shown to bind to the 

transcription factors Ets-1 and Pax-3, thus exerting a repressive effect on the 

respective target genes (Hofmann et al., 2002, Li et al., 2000b).  The repressive 

effect of hDaxx on IE gene expression is thought to occur via the action of a HDAC 

(Li et al., 2000a).  Work by Saffert and Kalejta (2006) has shown that pp71 may 

act to mediate the proteasomal degradation of hDaxx in order to relieve its 

repressive effect and activate viral IE gene expression in infected cells.  Preston 

and Nicholl (2006) also reported that the interaction of pp71 with hDaxx is 

important in relieving repression of IE gene expression and permitting the efficient 

initiation of productive replication. 

 

As pp71 was recently reported to be sufficient to promote the degradation of 

hDaxx in the absence of every other HCMV protein (Saffert & Kalejta, 2006), (see 

section 1.10.3.2 for further details), work was carried out to establish if the 

non-human homologues also promote the degradation of hDaxx. 

 

5.4.1. Infection with the in1312 recombinants expressing EYFP-tagged 
homologues does not result in the degradation of hDaxx. 
 
In order to determine whether the EYFP-tagged UL82 homologues were able to 

promote the degradation of hDaxx, 1.5x105 U373 cells were infected with 5x105 

pfu of the in1312 recombinant viruses expressing the EYFP-tagged UL82 

homologues or HCMV AD169 (positive control).  Following incubation at 38.5oC 

lysates were harvested at 7 hr and 24 hr post-infection for analysis by SDS PAGE, 

or cell monolayers were stained with X-gal in order to determine levels of infection. 

 

Figure 5.9 shows a western blot of cell lysates harvested at 7 hr post-infection.  

The protein hDaxx was detected using an anti-hDaxx primary antibody and an 

HRP-conjugated anti-rabbit secondary antibody.  Similar levels of hDaxx were 

observed in all lysates, including those from cells mock-infected or infected with 

the negative control (in1374).  Figure 5.10 shows cell monolayers infected with the 

in1312 recombinant viruses expressing EYFP-tagged UL82 homologues stained 

with X-gal at 7 hr post-infection.  All five viruses expressing EYFP-tagged UL82 
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Figure 5.9. Western blot analysis of lysates of cells infected with in1312
recombinants expressing UL82 homologues at 7 hr post infection. 
U373 cell monolayers were infected with 5x105 pfu (MOI 3.3) of the in1312
recombinants expressing the UL82 homologues or HCMV AD169 (control) and
incubated 38.5oC.  At 7 hr post-infection cell lysates were harvested and
analysed by SDS PAGE.  hDaxx was probed for using an anti-Daxx primary
antibody and an anti-rabbit HRP conjugated secondary antibody.  Blots were
stripped and reprobed with an anti-actin primary antibody and an anti-mouse
HRP conjugated secondary antibody, to control for loading. 
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in0150 in0145 in0144

in1310mock in0146

in0150 in0145 in0144

in1374in1374
 

Figure 5.10. β-gal expression directed by the in1312 recombinants expressing
the EYFP-tagged UL82 homologues at 7 hr post-infection 
U373 cell monolayers were mock-infected or infected with 5x105 pfu (MOI 3.3) of the 
in1312 recombinants expressing the EYFP-tagged UL82 homologues and incubated at 
38.5oC.  At 7 hr post-infection cell monolayers were stained with X-gal and images 
were obtained. 
 
The in1310 virus expresses EYFPpp71, in0146 expresses EYFPCh82, in0150 
expresses EYFPS82, in0145 expresses EYFPB82, in0144 expresses EYFPRh82, and 
in1374 was used as a negative control. 
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homologues showed β-gal positive cells at levels above the negative control, 

implying that each homologue acts on the HCMV MIEP, to drive short-term gene 

expression to a similar extent.   

 

Lysates of cell monolayers, infected with the in1312 recombinant viruses 

expressing EYFP-tagged UL82 homologues and harvested at 24 hr post-infection, 

were analysed by SDS PAGE.  Figure 5.11 shows a western blot containing all 

lysates probed with an anti-hDaxx primary antibody, and a HRP-conjugated 

anti-rabbit secondary antibody.  At 24 hr post-infection no significant changes in 

the levels of hDaxx expression were observed in cell lysates compared to 7 hr 

post-infection.  As expected, there was no change in the levels of hDaxx 

expression in lysates of cells infected with in1374 (negative control) or 

mock-infected.  X-gal staining showed that monolayers were infected to similar 

levels as presented in figure 5.12, ensuring lysates harvested at 24 hr 

post-infection were also infected at equivalent levels.  Therefore no major change 

in levels of hDaxx was observed in lysates of cells infected with in1312 

recombinants expressing EYFP-tagged UL82 homologues or HCMV, and in these 

experiments none of the UL82 homologues detectably promoted the degradation 

of hDaxx. 
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Figure 5.11. Western blot analysis of lysates of cells infected with in1312
recombinants expressing UL82 homologues 24 hr post-infection. 
U373 cell monolayers were infected with 5x105 pfu (MOI 3.3) of the in1312
recombinants expressing the UL82 homologues or HCMV AD169 (control) and
incubated 38.5oC.  At 24 hr post-infection cell lysates were harvested and
analysed by SDS PAGE.  The protein hDaxx was probed for using an anti-Daxx
primary antibody and an anti-rabbit HRP conjugated secondary antibody.
Lysates were subjected to SDS PAGE again and probed with an anti-actin
antibody and an anti-mouse HRP-conjugated secondary antibody, to act as a
loading control. 
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5.5. Discussion 
 
The study presented here has confirmed that pp71 is able to stimulate both short-

term and long-term gene expression from the HCMV MIEP.  Earlier work by 

Marshall et al. (2002) suggested that pp71 is a non-sequence-specific activator of 

gene expression, and could thus be compared to the HSV-1 IE protein ICP0. It is 

well known that ICP0 is a RING-finger ubiquitin E3 ligase protein that is able to 

induce the proteasome-dependent degradation of PML (Boutell & Everett, 2003, 

Everett et al., 1999a, Everett & Maul, 1994).  The ICP0 induced degradation of 

PML at ND10 domains is a vital stage in the expression of HSV-1 early and late 

genes. 

 

The HCMV protein pp71 is known to accumulate at ND10 domains, prior to the 

production of IE proteins, by co-localisation with hDaxx (Hofmann et al., 2002, 

Ishov et al., 2002).  It is the interaction of pp71 with hDaxx, mediated by the 

interaction of the C-terminus of hDaxx with SUMO modified PML which trafficks 

pp71 to ND10 domains (Hofmann et al., 2002, Ishov et al., 2002).  The data 

presented in the final part of this study aimed to characterise the UL82 

homologues in terms of their nuclear distribution patterns and their interactions 

with the cellular proteins hDaxx and PML.   

 

In tissue culture, cells infected with the viruses in1310, in0146, in0150, in0145, 

and in0144 exhibited significant differences in terms of nuclear distribution 

patterns.  The pp71 protein localised predominantly to discrete punctate foci up to 

7 hr post-infection.  The work presented in this study agrees with previous work 

that pp71 does indeed localise to discrete punctate foci.   

 

At 3hr post-infection Ch82, B82, and Rh82 all appeared to localise to discrete 

punctate foci.  However at 5 hr post-infection, a greater number of infected cells 

showed these proteins in a punctate/diffuse pattern of fluorescence and by 7 hr 

post-infection in the majority of cells infected with in0146, in0145 and in0144 the 

Ch82, B82 and Rh82 proteins exhibited a punctate/diffuse pattern of fluorescence.  

The S82 protein was markedly different from the outset, as it exhibited a 

punctate/diffuse diffuse pattern of fluorescence at 3 hr post-infection. At both 5 hr 

and 7 hr post-infection, the majority of infected cells exhibited a diffuse pattern of 

fluorescence.  This indicated that at later times of infection, the attributes of the 
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non-human homologues diverge from those of pp71 to become increasingly like 

S82.   

 

The distribution pattern exhibited by the EYFP-tagged hybrid protein TC6 was also 

investigated when cells were infected with in0156.  At 3 hr, 5 hr and 7 hr 

post-infection, hybrid TC6 was observed to localise to discrete punctate foci similar 

to foci to which pp71 localises.  However due to the low levels of initial infection, 

very few infected cells were observed and the possibility remains that the nuclear 

distribution pattern exhibited by hybrid TC6 could become more like the Ch82 

homologue at later times of infection.  Further experimental work is needed to 

confirm that data. 

 

HFFF2 cell monolayers infected with the in1312 recombinant viruses expressing 

the EYFP-tagged UL82 homologues or hybrid TC6 were stained for endogenous 

PML and hDaxx at 3 hr, 5 hr and 7 hr post-infection.  The HCMV protein pp71 was 

observed to co-localise with hDaxx and PML at all times post-infection, in 

agreement with other studies (Hofmann et al., 2002, Ishov et al., 2002).  

Interestingly, the Ch82, B82 and Rh82 homologues were observed to co-localise 

with ND10 domains and interact with hDaxx at all time points investigated.  It was 

observed that the various nuclear distribution patterns did little to alter the 

localisation of the homologues with these cellular proteins.   

 

However in the case of S82 at 5 hr and 7 hr post-infection, few foci were observed 

to co-localise with hDaxx.  In cells infected with in0150 cells, where a diffuse 

pattern of fluoresence was observed, hDaxx appeared to be dispersed.  Data 

presented here show that at 7 hr post-infection S82 appears to disperse hDaxx 

from within the nucleus.  It is possible that the S82 protein may have a lower 

binding affinity for hDaxx at 7 hr post-infection compared to the other UL82 

homologues.  As this study shows no evidence of protein-protein interactions 

between S82 and hDaxx further experimental work would have to be carried out to 

establish if this is indeed the case.  Also further studies would need to be carried 

out at later times post-infection to establish if the B82, Rh82 and Ch82 

homologues also exhibit diffuse patterns of fluoresence and they also disperse 

hDaxx.  Hybrid TC6 was also observed to interact with hDaxx and was able 

co-localise at ND10 domains at all times post-infection.  Thus, indicating that this 
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hybrid protein possibly retains some of the attibutes of pp71 and Ch82 which allow 

them to co-localise with hDaxx and PML. 

 

This study has not only confirmed the co-localisation of pp71 and S82 with PML 

and hDaxx at ND10 domains (Hofmann et al., 2002, Ishov et al., 2002, Nicholson, 

2004), it has also demonstrated that the remaining non-human homologues are 

also able to co-localise with these cellular proteins at ND10 domains. 

 

It has been suggested that hDaxx acts as a transcriptional repressor by interacting 

with HDAC molecules, Dek and various transcription factors such as Pax1 or 

ETS1 (Hollenbach et al., 2002, Li et al., 2000a).  Histone deacetylase activity 

occurs at sites of transcription where hDaxx facilitates the deacetylation of histone 

tails.  The histone tails then bind to DNA, blocking access to the transcriptional 

machinery and causing repression of transcription.  Dek has been reported to 

associate with chromatin, altering its condensed state and resulting in the 

repression of gene expression, as transcription factors are unable to access the 

DNA (Hollenbach et al., 2002, Kappes et al., 2001, Woodhall et al., 2006).  Recent 

studies have proposed that pp71 acts to degrade hDaxx and relieve histone 

deacetylation.  The histones associated with the MIEP during infection can then be 

acetylated (Cantrell & Bresnahan, 2006, Preston & Nicholl, 2006, Saffert & Kalejta, 

2006).  The mechanism whereby pp71 degrades hDaxx is believed to be by a 

proteasome-dependent ubiquitin independent pathway (Hwang & Kalejta, 2007).   

 

Earlier in this study it was established that the non-human UL82 homologues act 

on the MIEP to drive short-term gene expression.  As all the non-human 

homologues were observed to co-localise with hDaxx and PML, at ND10 domains, 

like pp71, it was hypothesised that the non-human homologues may also degrade 

hDaxx to relieve repression at the MIEP promoter during infection.   

 

Cells infected with the in1312 recombinant viruses expressing the EYFP-tagged 

UL82 homologues were probed for hDaxx at 7 hr and 24 hr post-infection by 

western analysis.  Infected cell monolayers were also stained with X-gal to ensure 

similar levels of infection were obtained.  Data from this study showed that at both 

7 hr and 24 hr post-infection, no significant changes in levels of hDaxx were 

observed in lysates infected with in0146, in0150, in0144, in0145.  Surprisingly, 

proteasomal degradation of hDaxx was not detected in lysates infected with 
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in1310 (expressing EYFPpp71) or in lysates infected with HCMV at either 7 hr or 

24 hr post-infection.  The data presented in this study showed that neither pp71 

nor the non-human homologues appear to be directly involved in promoting the 

degradation of hDaxx. 

 

Since there is considerable evidence to support the hypothesis that pp71 

stimulates the proteasomal degradation of hDaxx (Cantrell & Bresnahan, 2006, 

Preston & Nicholl, 2006, Saffert & Kalejta, 2006, Saffert & Kalejta, 2007), it  is 

possible that the lack of proteasomal degradation of hDaxx by pp71 in this study 

could be due to experimental differences.  The proteasomal degradation of hDaxx 

by pp71 appears to be cell-type specific, and dependent on specific experimental 

conditions.  Work by Saffert and Kalejta (2006) showed that pp71-induced hDaxx 

degradation in human foreskin fibroblast cells (HFFs) inoculated with virus at 4oC 

for a 1 hr incubation period, followed by a 5 min shift to 37oC where the virus 

inoculum was removed and the medium replaced.  In studies described here, 

U373 cells were utilised and all infections were carried out at only 38.5oC.  These 

differences may account for the lack of detectable proteasomal degradation, 

especially in the case of HCMV.  Further work is required to establish if these 

differences in experimental conditions affect the pp71-induced degradation of 

hDaxx and if the homologues, like pp71, also induce proteasomal degradation of 

hDaxx.  Work by Tavali et al. (2008) has recently shown that hDaxx is degraded 

by pp71 as early as 3 hr post-infection, but levels of hDaxx become stabilised by 

12 hour post-infection to complement hDaxx levels observed in mock-infected 

cells.   

 

All experiments carried out in this study employed HSV-1 recombinant viruses, 

thus it still remains unknown how the non-human UL82 homologues behave in 

vivo.  Confocal microscopy studies have shown that S82 appears to disperse 

hDaxx at 7 hr post-infection; it is possible that at later times the other non-human 

homologues may not degrade hDaxx but instead disperse it to allow the onset of 

transcription.  Therefore the non-human homologues may act by a different 

mechanism to eradicate hDaxx in order to relieve repression.  It is also possible 

that in vivo the non-human UL82 homologues may employ a different repression 

mechanism or that they may need to degrade other cellular proteins in order to 

relieve repression at the MIEP to activate transcription. 



 

Chapter 6 
 
Final Discussion 
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6.Final Discussion 
 
6.1. Introduction 
 

HCMV pp71 has been established as a transactivator of gene expression, capable 

of acting on heterologous promoters (Homer et al., 1999, Liu & Stinski, 1992).  It 

fulfils several functions as a tegument protein of HCMV and is conserved in 

chimpanzee (Ch82), simian (S82), baboon (B82), and rhesus (Rh82) CMV 

isolates.  The aims of this study have been to characterise some of the attributes 

of B82, Ch82, Rh82 and S82 with regard to HCMV pp71.  The focus of the work 

described here has been (a) to determine how the pp71 non-human UL82 

homologues behave in terms of activation of short-term and long-term gene 

expression, (b) to map the region of pp71 involved in long-term gene expression 

and (c) to further characterise the non-human UL82 homologues by studying the 

intracellular localisation of these proteins. 

 

6.1.1. UL82 homologues; short-term and long-term expression analyses 
 

The first part of this study aimed to investigate the ability of the non-human UL82 

homologues to direct short-term and long-term gene expression.  Previous work 

by Nicholson (2004) and Preston and Nichol (2005) showed that pp71 was able to 

direct both short-term and long-term gene expression, while its non-human 

counter-part, S82, was only able to direct short-term gene expression. 

 

To investigate if B82, Rh82 and Ch82 behaved like pp71 or S82, transfection 

assays were employed.  Data from these experiments showed that pp71 appeared 

to be unique in its ability to stimulate long-term gene expression.  Results from 

transfection experiments were confirmed by infection assays.  The UL82 

homologues were recombined into the HSV-1 genome, which was impaired for the 

transcriptional activity of VP16 and ICP0 and had a temperature sensitive mutation 

in ICP4.  Each recombinant virus expressing the UL82 homologues had β-gal 

inserted into the non-essential UL43 locus under the control of the HCMV MIEP.  

The results from the infection assays confirmed those obtained previously from 

transfection assays whereby all the UL82 homologues were functional in the short-

term.  Only HCMV pp71 was observed to direct long-term gene expression. 
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6.1.2. The UL82 homologues and long-term gene expression 
 

Preston and Nicholl (2005) suggested that when cells are infected with the HSV-1 

recombinant viruses expressing EYFP-tagged pp71 (in1310), the quiescent state 

of the genome is incomplete.  Low levels of gene expression, including pp71, 

continue thereby allowing pp71 to act on the MIEP which results in the eventual 

unblocking of the genome, leading to long-term gene expression.  The non-human 

UL82 homologues (S82, B82, Rh82 and Ch82) were all found to be unable to 

stimulate long-term gene expression, and only short-term activation was observed.  

This may suggest that the quiescent state of the HSV-1 recombinant viruses 

expressing the non-human UL82 homologues is more complete than that of 

in1310.  β-gal positive cells were observed at 24 hr post-infection, representing the 

population of infected cells that respond to short-term gene expression.  At 10 

days post-infection no β-gal positive plaques were observed in cells subjected to a 

temperature downshift i.e. at a temperature permissive for replication.  The 

expression of the non-human UL82 homologues appears to be shut off, and there 

is no evidence of continued low level expression of these homologues to unblock 

the remainder of the genome.  Evidence for this can be observed when infected 

cells are super-infected with tsK, unmasking the genomes that are still present in 

the cells but have become quiescent after short-term expression.  Therefore the 

non-human UL82 homologues may lack the positive feedback mechanism thought 

to be associated with pp71.  These data indicate that, like pp71, all the non-human 

UL82 homologues are able to stimulate short-term gene expression, possibly for 

the rapid initiation of the viral transcription program, but, unlike pp71, allow the 

genome to be completely shut off preventing long-term expression in these 

systems. 

 

Alternatively, it is possible that short-term and long-term gene expression directed 

by the UL82 homologues is linked to differing chromatin structures in both 

situations.  The intial short-term gene expression directed by all the non-human 

homologues investigated maybe indicative of an open chromatin formation around 

the HCMV MIEP, allowing the UL82 homologues to act on the HCMV MIEP to 

drive β-gal expression.  It maybe the case that, at late times post-infection, the 

HCMV MIEP beomes repressed  through the recruitment of HDACs resulting in a 

closed chromatin conformation.  Therefore, in cells infected with the in1312 

recombinant viruses expressing the non-human UL82 homologues, a state similar 



Tanya Chaudry 2008  Chapter 6 137

to latency is achieved at later times post-infection as the non-human UL82 

homologues are unable to relieve repression at the HCMV MIEP, and thus are 

unable to direct long-term gene expression.  In cells infected with in1310 pp71 

may act to relieve histone deactylation allowing access for other transcription 

factors to give long-term gene expression. 

 

Further work would needed to establish the state of chromatin around at the MIEP 

at early and late times post-infection 

 

6.1.3. Effects of the UL82 homologues on genome quiescence 
 

Preston and Nichol (2005) showed that pp71 could act in trans to reactivate 

quiescent genomes.  In this study, SEAP assays were carried out to investigate if 

the non-human homologue, Ch82, like pp71 could reactivate quiescent genomes.  

Results from the SEAP assays showed that upon super-infecting quiescent 

genomes with in1310 and in0146, only pp71 was able to provoke resumption of 

gene expression.  This confirmed work by Preston and Nichol (2005) and showed 

that pp71 appears to be unique in its ability to stimulate reactivation of quiescent 

genomes. 

 

As pp71 has been demonstrated to be able to reactivate quiescent genomes, this 

protein can be considered to have some similar functions to HSV-1 ICP0.  Various 

studies have shown that ICP0 is able to reactivate quiescent genomes (Harris & 

Preston, 1991, Preston & Nicholl, 1997, Russell et al., 1987, Samaniego et al., 

1998, Stow & Stow, 1989), however the rate at which pp71 can induce reactivation 

of a quiescent genome is slower than that of ICP0 (Preston & Nicholl, 2005).  

Reactivation by pp71 is believed to be less effective than ICP0 as only small 

amounts of ICP0 are required to reverse the quiescent state (Hobbs et al., 2001, 

Preston & Nicholl, 2005).  It has been suggested that ICP0 may counteract 

repression by stimulating the degradation of a number of cellular proteins via the 

ubiquitin proteasome pathway through the binding of its RING finger domain to 

USP7 (Boutell et al., 2002).  The protein pp71 lacks a RING finger domain, 

however, despite this, it can mediate proteasomal degradation of the Rb family of 

proteins which may result in pp71 stimulating quiescent cells back into the cell 

cycle (Kalejta & Shenk, 2003c).  Thus pp71, like ICP0, may utilise a proteasomal 

pathway to degrade cellular proteins and relieve repression, in this case of 
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quiescent cells.  Previous studies have shown that quiescent HSV-1 can be 

reactivated upon super-infection with HCMV (Russell & Preston, 1986, Stow & 

Stow, 1989) suggesting that HCMV gene products act as a substitute for the 

absence of ICP0.  It is possible that pp71 may have some effect upon this, as to 

date no additional HCMV gene products have been identified as playing a role in 

reactivation.   

 

6.1.4. Promoter analysis of the UL82 homologues 
 
The ability of pp71 to mediate long-term gene expression may be linked to the 

promoter stimulating activity of this protein.  Consequently, long-term gene 

expression may be directed by the non-human UL82 homologues but only when 

they are controlled by their own MIEP promoters.  The HCMV MIEP enhancer 

contains a number of interaction sites to which transcription factors can bind, to 

activate the MIEP.  These sites include three copies of a 21 bp repeat element and 

four copies of an 18 bp repeat element.  It also contains five copies of a 19 bp 

repeat element (CCCCATTGACGTCAATGGG) to which the cellular transcription 

factors ATF/CREB are known to bind.  Various studies have shown that pp71-

induced MIEP stimulation requires the presence of the ATF/CREB binding site 

within the enhancer region (Cherrington & Mocarski, 1989, Liu & Stinski, 1992).  

Deletion of the 19 bp repeat element containing the consensus ATF/CREB binding 

motif abolished responsiveness of the promoter to pp71 in co-transfection assays 

(Liu & Stinski, 1992).   

 

Sequence analysis of the ChCMV MIEP enhancer region (data not shown) 

showed conserved 19 bp, 18 bp, 21 bp and 17 bp repeat elements.  Four copies of 

the 19 bp repeat elements were found, one of which was a perfect match to the 19 

bp sequence in HCMV, two sequences contained two nucleotide mismatches the 

first at residues 704-747 (GCCCATTGACGTCAATGGT) and the second at 

residues 729-747 (TTCCATTGACGTCAATGGG).  The third sequence at residues 

809-829 had three mismatches (CCCTATTGACGTCAATGAC).  However, as the 

consensus sequence (TTGACGTCAA) to which the ATF/CREB proteins bind 

remains unaltered it seems unlikely that the mismatches would have any 

significant effect on activation.  Indeed, variations also exist within the 19 bp 

repeat in the HCMV MIEP.  Two copies of the 18 bp repeat sequence were found 

containing two and three mismatches.  Two copies of the 21 bp repeat elements 
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were also found, one of which was a perfect match to that in HCMV while the other 

contained two mismatches.  Only one copy of the 17 bp repeat element was found 

conserved within the ChCMV sequence and contained one mismatched 

nucleotide. 

 

The 19 bp nucleotide repeat sequence is also believed to be highly conserved 

within the SCMV MIEP enhancer region, while the 18 and a 16 bp element are 

only marginally conserved (Thomsen et al., 1984).  The 19 bp repeat element is 

also conserved in RhCMV (data not shown).  Thus as these repeat elements 

appear to be conserved within both ChCMV, SCMV and RhCMV MIEPs, it is 

highly likely that they are also conserved within the BCMV MIEP.  It is possible 

that the non-human UL82 homologues, like pp71, activate the ATF/CREB 

sequences at the 19bp repeat elements in the HCMV MIEP because they are 

conserved throughout their own promoters, resulting in short-term gene 

expression.  This could provide an explanation as to why the non-human 

homologues were equally or more active than pp71 during short-term assays. The 

target promoter in all experiments was the HCMV MIEP, thus all the homologues 

were able to act on the conserved ATF/CREB sequences at the 19 bp repeat 

elements to drive short-term gene expression.  It is possible that during long-term 

gene expression pp71 acts on a different part of the promoter, possibly by binding 

to cellular factors which attach to other repeat elements.  Furthermore, this mode 

of action may also be the case for the non-human UL82 homologues acting on 

their own promoters. 

 

6.1.5. The LXCXD motif  
 
The LACSD motif within pp71 was found to induce the degradation of the Rb 

tumour suppressor protein family through a proteasome-dependent ubiquitin-

independent mechanism (Kalejta & Shenk, 2003c).  This motif was conserved in 

the S82 protein at residues 209-213 and in the B82 protein at residues 209-213.  

Within the Ch82 protein this motif is found as LSCSD at residues 212-216, while in 

Rh82 the motif appears as LACSN at residues 209-213 (figure 6.1a).  However 

work by Preston and Nicholl (2005) eliminated the theory that the LACSD motif in 

pp71 played a role in directing long-term gene expression.  Mutation of the central 

cysteine to glycine abolished the effect of pp71 on the degradation of the 

unphosphorylated Rb gene products but did not alter the ability of pp71 to mediate 
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Figure 6.1 Conservation of UL82 functional domains in 
homologous non-human CMV sequences

A: Conservation of the LASCD domain. B: Conservation of the 
DIDs.  For all domains, residues conserved across all sequences 
are shown in red.
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long-term activity of the promoter (Preston & Nicholl, 2005).  As changes to the 

LACSD motif in pp71 did not result in changes to long-term gene expression, it is 

unlikely that the conserved motifs within the non-human UL82 homologues are of 

any importance with regards to long-term gene expression.  However, it is not 

known if the conserved motifs within non-human UL82 homologues promote the 

degradation of the Rb proteins, or if the amino acid substitutions to the motifs in 

the Ch82 and Rh82 proteins have any significance. 

 

6.2. The significance of the DIDs in the UL82 homologues 
 

Sequencing of pp71 and the non-human UL82 homologues has revealed certain 

similarities and differences.  Hensel et al. (1996) showed that pp71 has a bi-partite 

nuclear localisation signal (NLS), however this region is not conserved in the non-

human homologues (Nicholson, 2004).  As the Ch82, S82, B82 and Rh82 proteins 

are all targeted to the nucleus it seems unlikely that the proposed NLS in pp71 has 

any significant role in targeting this protein to the nuclei of cells.  Hofmann et al. 

(2002) identified two putative DIDs (DID I at residues 206-213; DID II at residues 

324-331).  Deletion of either of these domains resulted in the pp71-hDaxx 

interaction being abolished.  Point mutations of these motifs failed to identify the 

amino acid residues essential for hDaxx binding.  As these DIDs are found within 

the most ordered region of pp71, deletion of these domains or mutations to 

individual residues may result in the disruption of the structure of pp71, resulting 

the inability of the protein to bind to hDaxx. 

 

Sequence analysis of the non-human homologues has revealed that that these 

DIDs are well conserved within the protein sequences of all the non-human 

homologues, with the greatest degree of conservation occurring in DID II (figure 

6.1b) (Nicholson, 2004).  It is possible that these conserved DIDs within the 

non-human UL82 homologue sequences are involved in the hDaxx interactions 

observed in this study. 

 

The role of the proposed pp71 DIDs in interactions with hDaxx (Hofmann et al., 

2002) is borne out by the observed pattern of co-localisation of hybrid F with both 

hDaxx and PML.  This indicated that this protein not only co-localises with hDaxx 

but also is trafficked to PML at ND10 domains.  This hybrid protein is likely to 

co-localise with hDaxx and PML as the DIDs in pp71 have remained intact, despite 

the change to the structure of pp71.  This suggests that as long as this highly 
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ordered region of pp71 remains undisrupted it is still able to retain a certain degree 

of functionality in terms of localising to hDaxx and PML at ND10 domains.  In order 

to establish that the DIDs conserved in the Ch82 homologue are indeed functional, 

comparative experiments would have to be carried out using hybrid E which 

contains the middle region of Ch82 flanked by the N- and C- terminal regions of 

pp71. 

 

6.3. Conclusions 
 
This study has sought to characterise the non-human UL82 homologues of pp71 

in terms of their effects on gene expression, intracellular localisation and 

interactions with the cellular proteins hDaxx and PML.  Each UL82 homologue was 

shown to act in a similar way to pp71 with the exception that pp71 remains unique 

in its ability to direct long-term gene expression and reactivate quiescent 

genomes.  Moreover, the non-human UL82 homologues exhibited slightly different 

intracellular distribution patterns to pp71 over the time period examined.  Also 

hDaxx and PML interactions of the S82 homologue were different compared to 

that of pp71.  This work, in combination with further analysis of structure, 

sequence motifs and cellular interactions, will help to progress the continued 

elucidation of pp71 function. 

 

6.4. Future work 
 

• Sequence analysis of the UL82 homologues has shown regions of highly 

conserved motifs including the DIDs and the LASCD motifs.  Further study 

is needed to establish if the conserved DIDs in the non-human UL82 

homologues are important in hDaxx interactions.  Further work is also 

required to establish if the conserved LASCD motifs in the non-human 

UL82 homologues cause proteasome-dependent ubiquitin-independent 

degradation of the Rb tumour protein families. 

 

• Further analysis of pp71 and the proteasomal degradation of hDaxx is 

required to establish if pp71 alone degrades hDaxx or if any other cellular 

interactions occur. 

 

• Further analysis of the non-human UL82 homologues is needed to establish 

if they degrade or disperse hDaxx to relieve transcriptional repression. 
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• Elucidation of the 3D structure of pp71 would be helpful investigate protein 

folding, and to establish how deletions or changes to the structure of pp71 

affect its other properties. 

 



 

References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Tanya Chaudry 2008   143

References 
 
Ablashi, D. V., Eastman, H. B., Owen, C. B., Roman, M. M., Friedman, J., 

Zabriskie, J. B., Peterson, D. L., Pearson, G. R. & Whitman, J. E. (2000). 
Frequent HHV-6 reactivation in multiple sclerosis (MS) and chronic fatigue 
syndrome (CFS) patients. J Clin Virol 16, 179-91. 

Ace, C. I., Dalrymple, M. A., Ramsay, F. H., Preston, V. G. & Preston, C. M. 
(1988). Mutational analysis of the herpes simplex virus type 1 trans-
inducing factor Vmw65. J Gen Virol 69, 2595-605. 

Ace, C. I., McKee, T. A., Ryan, J. M., Cameron, J. M. & Preston, C. M. (1989). 
Construction and characterization of a herpes simplex virus type 1 mutant 
unable to transinduce immediate-early gene expression. J Virol 63, 2260-9. 

Adair, R., Liebisch, G. W. & Colberg-Poley, A. M. (2003). Complex alternative 
processing of human cytomegalovirus UL37 pre-mRNA. J Gen Virol 84, 
3353-8. 

Adamson, W. E., McNab, D., Preston, V. G. & Rixon, F. J. (2006). Mutational 
analysis of the herpes simplex virus triplex protein VP19C. J Virol 80, 1537-
48. 

Ahmed, M., Lock, M., Miller, C. G. & Fraser, N. W. (2002). Regions of the herpes 
simplex virus type 1 latency-associated transcript that protect cells from 
apoptosis in vitro and protect neuronal cells in vivo. J Virol 76, 717-29. 

Ahn, J. H., Brignole, E. J., 3rd & Hayward, G. S. (1998). Disruption of PML 
subnuclear domains by the acidic IE1 protein of human cytomegalovirus is 
mediated through interaction with PML and may modulate a RING finger-
dependent cryptic transactivator function of PML. Mol Cell Biol 18, 4899-
913. 

Ahn, J. H. & Hayward, G. S. (1997). The major immediate-early proteins IE1 and 
IE2 of human cytomegalovirus colocalize with and disrupt PML-associated 
nuclear bodies at very early times in infected permissive cells. J Virol 71, 
4599-613. 

Ahn, J. H. & Hayward, G. S. (2000). Disruption of PML-associated nuclear bodies 
by IE1 correlates with efficient early stages of viral gene expression and 
DNA replication in human cytomegalovirus infection. Virology 274, 39-55. 

Ahn, J. H., Xu, Y., Jang, W. J., Matunis, M. J. & Hayward, G. S. (2001). Evaluation 
of interactions of human cytomegalovirus immediate-early IE2 regulatory 
protein with small ubiquitin-like modifiers and their conjugation enzyme 
Ubc9. J Virol 75, 3859-72. 

Amelio, A. L., Giordani, N. V., Kubat, N. J., O'Neil J, E. & Bloom, D. C. (2006a). 
Deacetylation of the herpes simplex virus type 1 latency-associated 
transcript (LAT) enhancer and a decrease in LAT abundance precede an 
increase in ICP0 transcriptional permissiveness at early times postexplant. 
J Virol 80, 2063-8. 

Amelio, A. L., McAnany, P. K. & Bloom, D. C. (2006b). A chromatin insulator-like 
element in the herpes simplex virus type 1 latency-associated transcript 
region binds CCCTC-binding factor and displays enhancer-blocking and 
silencing activities. J Virol 80, 2358-68. 

Anders, D. G., Kacica, M. A., Pari, G. & Punturieri, S. M. (1992). Boundaries and 
structure of human cytomegalovirus oriLyt, a complex origin for lytic-phase 
DNA replication. J Virol 66, 3373-84. 

Anders, D. G. & Punturieri, S. M. (1991). Multicomponent origin of cytomegalovirus 
lytic-phase DNA replication. J Virol 65, 931-7. 

Arthur, J. L., Scarpini, C. G., Connor, V., Lachmann, R. H., Tolkovsky, A. M. & 
Efstathiou, S. (2001). Herpes simplex virus type 1 promoter activity during 



Tanya Chaudry 2008   144

latency establishment, maintenance, and reactivation in primary dorsal root 
neurons in vitro. J Virol 75, 3885-95. 

Ascoli, C. A. & Maul, G. G. (1991). Identification of a novel nuclear domain. J Cell 
Biol 112, 785-95. 

AuCoin, D. P., Smith, G. B., Meiering, C. D. & Mocarski, E. S. (2006). 
Betaherpesvirus-conserved cytomegalovirus tegument protein ppUL32 
(pp150) controls cytoplasmic events during virion maturation. J Virol 80, 
8199-210. 

Awasthi, S., Isler, J. A. & Alwine, J. C. (2004). Analysis of splice variants of the 
immediate-early 1 region of human cytomegalovirus. J Virol 78, 8191-200. 

Baldick, C. J., Jr., Marchini, A., Patterson, C. E. & Shenk, T. (1997). Human 
cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity 
of viral DNA and accelerates the infectious cycle. J Virol 71, 4400-8. 

Barry, P. A., Alcendor, D. J., Power, M. D., Kerr, H. & Luciw, P. A. (1996). 
Nucleotide sequence and molecular analysis of the rhesus cytomegalovirus 
immediate-early gene and the UL121-117 open reading frames. Virology 
215, 61-72. 

Baskin, G. B. (1987). Disseminated cytomegalovirus infection in immunodeficient 
rhesus monkeys. Am J Pathol 129, 345-52. 

Batchelor, A. H., Wilcox, K. W. & O'Hare, P. (1994). Binding and repression of the 
latency-associated promoter of herpes simplex virus by the immediate early 
175K protein. J Gen Virol 75, 753-67. 

Baxter, M. K. & Gibson, W. (2001). Cytomegalovirus basic phosphoprotein 
(pUL32) binds to capsids in vitro through its amino one-third. J Virol 75, 
6865-73. 

Becker, Y., Dym, H. & Sarov, I. (1968). Herpes simplex virus DNA. Virology 36, 
184-92. 

Bego, M., Maciejewski, J., Khaiboullina, S., Pari, G. & St Jeor, S. (2005). 
Characterization of an antisense transcript spanning the UL81-82 locus of 
human cytomegalovirus. J Virol 79, 11022-34. 

Berger, S. L. (2002). Histone modifications in transcriptional regulation. Curr Opin 
Genet Dev 12, 142-8. 

Bernardi, R. & Pandolfi, P. P. (2003). Role of PML and the PML-nuclear body in 
the control of programmed cell death. Oncogene 22, 9048-57. 

Bhella, D., Rixon, F. J. & Dargan, D. J. (2000). Cryomicroscopy of human 
cytomegalovirus virions reveals more densely packed genomic DNA than in 
herpes simplex virus type 1. J Mol Biol 295, 155-61. 

Blewett, E. L., Black, D. H., Lerche, N. W., White, G. & Eberle, R. (2000). Simian 
foamy virus infections in a baboon breeding colony. Virology 278, 183-93. 

Blewett, E. L., White, G., Saliki, J. T. & Eberle, R. (2001). Isolation and 
characterization of an endogenous cytomegalovirus (BaCMV) from 
baboons. Arch Virol 146, 1723-38. 

Boehmer, P. E. & Lehman, I. R. (1997). Herpes simplex virus DNA replication. 
Annu Rev Biochem 66, 347-84. 

Bogner, E., Reschke, M., Reis, B., Reis, E., Britt, W. & Radsak, K. (1992). 
Recognition of compartmentalized intracellular analogs of glycoprotein H of 
human cytomegalovirus. Arch Virol 126, 67-80. 

Bold, S., Ohlin, M., Garten, W. & Radsak, K. (1996). Structural domains involved 
in human cytomegalovirus glycoprotein B-mediated cell-cell fusion. J Gen 
Virol 77, 2297-302. 

Booy, F. P., Newcomb, W. W., Trus, B. L., Brown, J. C., Baker, T. S. & Steven, A. 
C. (1991). Liquid-crystalline, phage-like packing of encapsidated DNA in 
herpes simplex virus. Cell 64, 1007-15. 



Tanya Chaudry 2008   145

Boppana, S. B., Pass, R. F., Britt, W. J., Stagno, S. & Alford, C. A. (1992). 
Symptomatic congenital cytomegalovirus infection: neonatal morbidity and 
mortality. Pediatr Infect Dis J 11, 93-9. 

Borst, E. M., Mathys, S., Wagner, M., Muranyi, W. & Messerle, M. (2001). Genetic 
evidence of an essential role for cytomegalovirus small capsid protein in 
viral growth. J Virol 75, 1450-8. 

Boshart, M., Weber, F., Jahn, G., Dorsch-Hasler, K., Fleckenstein, B. & Schaffner, 
W. (1985). A very strong enhancer is located upstream of an immediate 
early gene of human cytomegalovirus. Cell 41, 521-30. 

Boutell, C., Canning, M., Orr, A. & Everett, R. D. (2005). Reciprocal activities 
between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 
ligase, and ubiquitin-specific protease USP7. J Virol 79, 12342-54. 

Boutell, C. & Everett, R. D. (2003). The herpes simplex virus type 1 (HSV-1) 
regulatory protein ICP0 interacts with and Ubiquitinates p53. J Biol Chem 
278, 36596-602. 

Boutell, C., Orr, A. & Everett, R. D. (2003). PML residue lysine 160 is required for 
the degradation of PML induced by herpes simplex virus type 1 regulatory 
protein ICP0. J Virol 77, 8686-94. 

Boutell, C., Sadis, S. & Everett, R. D. (2002). Herpes simplex virus type 1 
immediate-early protein ICP0 and is isolated RING finger domain act as 
ubiquitin E3 ligases in vitro. J Virol 76, 841-50. 

Bresnahan, W. A. & Shenk, T. E. (2000). UL82 virion protein activates expression 
of immediate early viral genes in human cytomegalovirus-infected cells. 
Proc Natl Acad Sci U S A 97, 14506-11. 

Burgos, J. S., Serrano-Saiz, E., Sastre, I. & Valdivieso, F. (2006). ICP47 mediates 
viral neuroinvasiveness by induction of TAP protein following intravenous 
inoculation of herpes simplex virus type 1 in mice. J Neurovirol 12, 420-7. 

Buser, C., Walther, P., Mertens, T. & Michel, D. (2007). Cytomegalovirus primary 
envelopment occurs at large infoldings of the inner nuclear membrane. J 
Virol 81, 3042-8. 

Butcher, S. J., Aitken, J., Mitchell, J., Gowen, B. & Dargan, D. J. (1998). Structure 
of the human cytomegalovirus B capsid by electron cryomicroscopy and 
image reconstruction. J Struct Biol 124, 70-6. 

Cai, W. & Schaffer, P. A. (1992). Herpes simplex virus type 1 ICP0 regulates 
expression of immediate-early, early, and late genes in productively 
infected cells. J Virol 66, 2904-15. 

Canning, M., Boutell, C., Parkinson, J. & Everett, R. D. (2004). A RING finger 
ubiquitin ligase is protected from autocatalyzed ubiquitination and 
degradation by binding to ubiquitin-specific protease USP7. J Biol Chem 
279, 38160-8. 

Cantrell, S. R. & Bresnahan, W. A. (2005). Interaction between the human 
cytomegalovirus UL82 gene product (pp71) and hDaxx regulates 
immediate-early gene expression and viral replication. J Virol 79, 7792-802. 

Cantrell, S. R. & Bresnahan, W. A. (2006). Human cytomegalovirus (HCMV) UL82 
gene product (pp71) relieves hDaxx-mediated repression of HCMV 
replication. J Virol 80, 6188-91. 

Casaday, R. J., Bailey, J. R., Kalb, S. R., Brignole, E. J., Loveland, A. N., Cotter, 
R. J. & Gibson, W. (2004). Assembly protein precursor (pUL80.5 homolog) 
of simian cytomegalovirus is phosphorylated at a glycogen synthase kinase 
3 site and its downstream "priming" site: phosphorylation affects 
interactions of protein with itself and with major capsid protein. J Virol 78, 
13501-11. 

Castillo, J. P. & Kowalik, T. F. (2002). Human cytomegalovirus immediate early 
proteins and cell growth control. Gene 290, 19-34. 



Tanya Chaudry 2008   146

Cha, T. A., Tom, E., Kemble, G. W., Duke, G. M., Mocarski, E. S. & Spaete, R. R. 
(1996). Human cytomegalovirus clinical isolates carry at least 19 genes not 
found in laboratory strains. J Virol 70, 78-83. 

Challberg, M. D. (1986). A method for identifying the viral genes required for 
herpesvirus DNA replication. Proc Natl Acad Sci U S A 83, 9094-8. 

Chambers, J., Angulo, A., Amaratunga, D., Guo, H., Jiang, Y., Wan, J. S., Bittner, 
A., Frueh, K., Jackson, M. R., Peterson, P. A., Erlander, M. G. & Ghazal, P. 
(1999). DNA microarrays of the complex human cytomegalovirus genome: 
profiling kinetic class with drug sensitivity of viral gene expression. J Virol 
73, 5757-66. 

Champier, G., Hantz, S., Couvreux, A., Stuppfler, S., Mazeron, M. C., Bouaziz, S., 
Denis, F. & Alain, S. (2007). New functional domains of human 
cytomegalovirus pUL89 predicted by sequence analysis and three-
dimensional modelling of the catalytic site DEXDc. Antivir Ther 12, 217-32. 

Chang, H. Y., Yang, X. & Baltimore, D. (1999). Dissecting Fas signaling with an 
altered-specificity death-domain mutant: requirement of FADD binding for 
apoptosis but not Jun N-terminal kinase activation. Proc Natl Acad Sci U S 
A 96, 1252-6. 

Chau, N. H., Vanson, C. D. & Kerry, J. A. (1999). Transcriptional regulation of the 
human cytomegalovirus US11 early gene. J Virol 73, 863-70. 

Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, 
T., Hutchison, C. A., 3rd, Kouzarides, T., Martignetti, J. A. & et al. (1990). 
Analysis of the protein-coding content of the sequence of human 
cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154, 125-69. 

Chen, D. H., Jiang, H., Lee, M., Liu, F. & Zhou, Z. H. (1999). Three-dimensional 
visualization of tegument/capsid interactions in the intact human 
cytomegalovirus. Virology 260, 10-6. 

Chen, J. & Silverstein, S. (1992). Herpes simplex viruses with mutations in the 
gene encoding ICP0 are defective in gene expression. J Virol 66, 2916-27. 

Cherrington, J. M. & Mocarski, E. S. (1989). Human cytomegalovirus ie1 
transactivates the alpha promoter-enhancer via an 18-base-pair repeat 
element. J Virol 63, 1435-40. 

Choi, K. S., Kim, S. J. & Kim, S. (1995). The retinoblastoma gene product 
negatively regulates transcriptional activation mediated by the human 
cytomegalovirus IE2 protein. Virology 208, 450-6. 

Cirone, M., Campadelli-Fiume, G., Foa-Tomasi, L., Torrisi, M. R. & Faggioni, A. 
(1994). Human herpesvirus 6 envelope glycoproteins B and H-L complex 
are undetectable on the plasma membrane of infected lymphocytes. AIDS 
Res Hum Retroviruses 10, 175-9. 

Compton, T., Nepomuceno, R. R. & Nowlin, D. M. (1992). Human cytomegalovirus 
penetrates host cells by pH-independent fusion at the cell surface. Virology 
191, 387-95. 

Dai-Ju, J. Q., Li, L., Johnson, L. A. & Sandri-Goldin, R. M. (2006). ICP27 interacts 
with the C-terminal domain of RNA polymerase II and facilitates its 
recruitment to herpes simplex virus 1 transcription sites, where it undergoes 
proteasomal degradation during infection. J Virol 80, 3567-81. 

Dargan, D. J., Jamieson, F. E., MacLean, J., Dolan, A., Addison, C. & McGeoch, 
D. J. (1997). The published DNA sequence of human cytomegalovirus 
strain AD169 lacks 929 base pairs affecting genes UL42 and UL43. J Virol 
71, 9833-6. 

Davison, A. J., Akter, P., Cunningham, C., Dolan, A., Addison, C., Dargan, D. J., 
Hassan-Walker, A. F., Emery, V. C., Griffiths, P. D. & Wilkinson, G. W. 
(2003b). Homology between the human cytomegalovirus RL11 gene family 
and human adenovirus E3 genes. J Gen Virol 84, 657-63. 



Tanya Chaudry 2008   147

Davison, A. J., Dolan, A., Akter, P., Addison, C., Dargan, D. J., Alcendor, D. J., 
McGeoch, D. J. & Hayward, G. S. (2003a). The human cytomegalovirus 
genome revisited: comparison with the chimpanzee cytomegalovirus 
genome. J Gen Virol 84, 17-28. 

Davison, A. J. & Wilkie, N. M. (1981). Nucleotide sequences of the joint between 
the L and S segments of herpes simplex virus types 1 and 2. J Gen Virol 
55, 315-31. 

Dellaire, G., Ching, R. W., Dehghani, H., Ren, Y. & Bazett-Jones, D. P. (2006). 
The number of PML nuclear bodies increases in early S phase by a fission 
mechanism. J Cell Sci 119, 1026-33. 

Depto, A. S. & Stenberg, R. M. (1992). Functional analysis of the true late human 
cytomegalovirus pp28 upstream promoter: cis-acting elements and viral 
trans-acting proteins necessary for promoter activation. J Virol 66, 3241-6. 

Deshmane, S. L. & Fraser, N. W. (1989). During latency, herpes simplex virus type 
1 DNA is associated with nucleosomes in a chromatin structure. J Virol 63, 
943-7. 

Dittmer, A. & Bogner, E. (2005). Analysis of the quaternary structure of the 
putative HCMV portal protein PUL104. Biochemistry 44, 759-65. 

Dittmer, D. & Mocarski, E. S. (1997). Human cytomegalovirus infection inhibits 
G1/S transition. J Virol 71, 1629-34. 

Dohner, K., Wolfstein, A., Prank, U., Echeverri, C., Dujardin, D., Vallee, R. & 
Sodeik, B. (2002). Function of dynein and dynactin in herpes simplex virus 
capsid transport. Mol Biol Cell 13, 2795-809. 

Dolan, A., Cunningham, C., Hector, R. D., Hassan-Walker, A. F., Lee, L., Addison, 
C., Dargan, D. J., McGeoch, D. J., Gatherer, D., Emery, V. C., Griffiths, P. 
D., Sinzger, C., McSharry, B. P., Wilkinson, G. W. & Davison, A. J. (2004). 
Genetic content of wild-type human cytomegalovirus. J Gen Virol 85, 1301-
12. 

Dolan, A., Jamieson, F. E., Cunningham, C., Barnett, B. C. & McGeoch, D. J. 
(1998). The genome sequence of herpes simplex virus type 2. J Virol 72, 
2010-21. 

Dyck, J. A., Maul, G. G., Miller, W. H., Jr., Chen, J. D., Kakizuka, A. & Evans, R. 
M. (1994). A novel macromolecular structure is a target of the 
promyelocyte-retinoic acid receptor oncoprotein. Cell 76, 333-43. 

Efstathiou, S. & Preston, C. M. (2005). Towards an understanding of the molecular 
basis of herpes simplex virus latency. Virus Res 111, 108-19. 

Everett, R. D. (1988). Analysis of the functional domains of herpes simplex virus 
type 1 immediate-early polypeptide Vmw110. J Mol Biol 202, 87-96. 

Everett, R. D. (2000). ICP0, a regulator of herpes simplex virus during lytic and 
latent infection. Bioessays 22, 761-70. 

Everett, R. D., Boutell, C. & Orr, A. (2004a). Phenotype of a herpes simplex virus 
type 1 mutant that fails to express immediate-early regulatory protein ICP0. 
J Virol 78, 1763-74. 

Everett, R. D., Earnshaw, W. C., Findlay, J. & Lomonte, P. (1999a). Specific 
destruction of kinetochore protein CENP-C and disruption of cell division by 
herpes simplex virus immediate-early protein Vmw110. Embo J 18, 1526-
38. 

Everett, R. D., Freemont, P., Saitoh, H., Dasso, M., Orr, A., Kathoria, M. & 
Parkinson, J. (1998a). The disruption of ND10 during herpes simplex virus 
infection correlates with the Vmw110- and proteasome-dependent loss of 
several PML isoforms. J Virol 72, 6581-91. 

Everett, R. D., Lomonte, P., Sternsdorf, T., van Driel, R. & Orr, A. (1999b). Cell 
cycle regulation of PML modification and ND10 composition. J Cell Sci 112, 
4581-8. 



Tanya Chaudry 2008   148

Everett, R. D. & Maul, G. G. (1994). HSV-1 IE protein Vmw110 causes 
redistribution of PML. Embo J 13, 5062-9. 

Everett, R. D., Meredith, M. & Orr, A. (1998b). The ability of herpes simplex virus 
type 1 immediate-early protein Vmw110 to bind to a ubiquitin-specific 
protease contributes to its roles in the activation of gene expression and 
stimulation of virus replication. J Virol 73, 417-26. 

Everett, R. D., Meredith, M., Orr, A., Cross, A., Kathoria, M. & Parkinson, J. 
(1997). A novel ubiquitin-specific protease is dynamically associated with 
the PML nuclear domain and binds to a herpesvirus regulatory protein. 
Embo J 16, 1519-30. 

Everett, R. D. & Murray, J. (2005). ND10 components relocate to sites associated 
with herpes simplex virus type 1 nucleoprotein complexes during virus 
infection. J Virol 79, 5078-89. 

Everett, R. D., Orr, A. & Elliott, M. (1991). High level expression and purification of 
herpes simplex virus type 1 immediate early polypeptide Vmw110. Nucleic 
Acids Res 19, 6155-61. 

Everett, R. D., Rechter, S., Papior, P., Tavalai, N., Stamminger, T. & Orr, A. 
(2006). PML contributes to a cellular mechanism of repression of herpes 
simplex virus type 1 infection that is inactivated by ICP0. J Virol 80, 7995-
8005. 

Everett, R. D., Sourvinos, G., Leiper, C., Clements, J. B. & Orr, A. (2004b). 
Formation of nuclear foci of the herpes simplex virus type 1 regulatory 
protein ICP4 at early times of infection: localization, dynamics, recruitment 
of ICP27, and evidence for the de novo induction of ND10-like complexes. J 
Virol 78, 1903-17. 

Fagioli, M., Alcalay, M., Pandolfi, P. P., Venturini, L., Mencarelli, A., Simeone, A., 
Acampora, D., Grignani, F. & Pelicci, P. G. (1992). Alternative splicing of 
PML transcripts predicts coexpression of several carboxy-terminally 
different protein isoforms. Oncogene 7, 1083-91. 

Farrell, M. J., Dobson, A. T. & Feldman, L. T. (1991). Herpes simplex virus 
latency-associated transcript is a stable intron. Proc Natl Acad Sci U S A 
88, 790-4. 

Fisher, S., Genbacev, O., Maidji, E. & Pereira, L. (2000). Human cytomegalovirus 
infection of placental cytotrophoblasts in vitro and in utero: implications for 
transmission and pathogenesis. J Virol 74, 6808-20. 

Flint, J. & Shenk, T. (1997). Viral transactivating proteins. Annu Rev Genet 31, 
177-212. 

Fogal, V., Gostissa, M., Sandy, P., Zacchi, P., Sternsdorf, T., Jensen, K., Pandolfi, 
P. P., Will, H., Schneider, C. & Del Sal, G. (2000). Regulation of p53 activity 
in nuclear bodies by a specific PML isoform. Embo J 19, 6185-95. 

French, J. D., Dunn, J., Smart, C. E., Manning, N. & Brown, M. A. (2006). 
Disruption of BRCA1 function results in telomere lengthening and increased 
anaphase bridge formation in immortalized cell lines. Genes Chromosomes 
Cancer 45, 277-89. 

Gandhi, M. K. & Khanna, R. (2004). Human cytomegalovirus: clinical aspects, 
immune regulation, and emerging treatments. Lancet Infect Dis 4, 725-38. 

Garner, J. A. (2003). Herpes simplex virion entry into and intracellular transport 
within mammalian cells. Adv Drug Deliv Rev 55, 1497-513. 

Gawn, J. M. & Greaves, R. F. (2002). Absence of IE1 p72 protein function during 
low-multiplicity infection by human cytomegalovirus results in a broad block 
to viral delayed-early gene expression. J Virol 76, 4441-55. 

Ghazal, P., DeMattei, C., Giulietti, E., Kliewer, S. A., Umesono, K. & Evans, R. M. 
(1992). Retinoic acid receptors initiate induction of the cytomegalovirus 
enhancer in embryonal cells. Proc Natl Acad Sci U S A 89, 7630-4. 



Tanya Chaudry 2008   149

Ghazal, P., Lubon, H., Fleckenstein, B. & Hennighausen, L. (1987). Binding of 
transcription factors and creation of a large nucleoprotein complex on the 
human cytomegalovirus enhancer. Proc Natl Acad Sci U S A 84, 3658-62. 

Ghazal, P., Lubon, H. & Hennighausen, L. (1988). Specific interactions between 
transcription factors and the promoter-regulatory region of the human 
cytomegalovirus major immediate-early gene. J Virol 62, 1076-9. 

Gibson, W. (1981). Structural and nonstructural proteins of strain Colburn 
cytomegalovirus. Virology 111, 516-37. 

Gibson, W., Clopper, K. S., Britt, W. J. & Baxter, M. K. (1996). Human 
cytomegalovirus (HCMV) smallest capsid protein identified as product of 
short open reading frame located between HCMV UL48 and UL49. J Virol 
70, 5680-3. 

Glickman, M. H. & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic 
pathway: destruction for the sake of construction. Physiol Rev 82, 373-428. 

Gonelli, A., Boccia, S., Boni, M., Pozzoli, A., Rizzo, C., Querzoli, P., Cassai, E. & 
Di Luca, D. (2001). Human herpesvirus 7 is latent in gastric mucosa. J Med 
Virol 63, 277-83. 

Goodrum, F. D., Jordan, C. T., High, K. & Shenk, T. (2002). Human 
cytomegalovirus gene expression during infection of primary hematopoietic 
progenitor cells: a model for latency. Proc Natl Acad Sci U S A 99, 16255-
60. 

Granzow, H., Klupp, B. G. & Mettenleiter, T. C. (2005). Entry of pseudorabies 
virus: an immunogold-labeling study. J Virol 79, 3200-5. 

Greaves, R. F. & Mocarski, E. S. (1998). Defective growth correlates with reduced 
accumulation of a viral DNA replication protein after low-multiplicity infection 
by a human cytomegalovirus ie1 mutant. J Virol 72, 366-79. 

Gretch, D. R., Kari, B., Rasmussen, L., Gehrz, R. C. & Stinski, M. F. (1988). 
Identification and characterization of three distinct families of glycoprotein 
complexes in the envelopes of human cytomegalovirus. J Virol 62, 875-81. 

Griffiths, P. D. & Baboonian, C. (1984). A prospective study of primary 
cytomegalovirus infection during pregnancy: final report. Br J Obstet 
Gynaecol 91, 307-15. 

Grondin, B. & DeLuca, N. (2000). Herpes simplex virus type 1 ICP4 promotes 
transcription preinitiation complex formation by enhancing the binding of 
TFIID to DNA. J Virol 74, 11504-10. 

Groves, I. J. & Sinclair, J. H. (2007). Knockdown of hDaxx in normally non-
permissive undifferentiated cells does not permit human cytomegalovirus 
immediate-early gene expression. J Gen Virol 88, 2935-40. 

Gu, B., Kuddus, R. & DeLuca, N. A. (1995). Repression of activator-mediated 
transcription by herpes simplex virus ICP4 via a mechanism involving 
interactions with the basal transcription factors TATA-binding protein and 
TFIIB. Mol Cell Biol 15, 3618-26. 

Gussow, A. M., Giordani, N. V., Tran, R. K., Imai, Y., Kwiatkowski, D. L., Rall, G. 
F., Margolis, T. P. & Bloom, D. C. (2006). Tissue-specific splicing of the 
herpes simplex virus type 1 latency-associated transcript (LAT) intron in 
LAT transgenic mice. J Virol 80, 9414-23. 

Hagemeier, C., Caswell, R., Hayhurst, G., Sinclair, J. & Kouzarides, T. (1994). 
Functional interaction between the HCMV IE2 transactivator and the 
retinoblastoma protein. Embo J 13, 2897-903. 

Halford, W. P., Kemp, C. D., Isler, J. A., Davido, D. J. & Schaffer, P. A. (2001). 
ICP0, ICP4, or VP16 expressed from adenovirus vectors induces 
reactivation of latent herpes simplex virus type 1 in primary cultures of 
latently infected trigeminal ganglion cells. J Virol 75, 6143-53. 



Tanya Chaudry 2008   150

Hamzeh, F. M., Lietman, P. S., Gibson, W. & Hayward, G. S. (1990). Identification 
of the lytic origin of DNA replication in human cytomegalovirus by a novel 
approach utilizing ganciclovir-induced chain termination. J Virol 64, 6184-
95. 

Hancock, M. H., Corcoran, J. A. & Smiley, J. R. (2006). Herpes simplex virus 
regulatory proteins VP16 and ICP0 counteract an innate intranuclear barrier 
to viral gene expression. Virology 352, 237-52. 

Hansen, S. G., Strelow, L. I., Franchi, D. C., Anders, D. G. & Wong, S. W. (2003). 
Complete sequence and genomic analysis of rhesus cytomegalovirus. J 
Virol 77, 6620-36. 

Harris, R. A., Everett, R. D., Zhu, X. X., Silverstein, S. & Preston, C. M. (1989). 
Herpes simplex virus type 1 immediate-early protein Vmw110 reactivates 
latent herpes simplex virus type 2 in an in vitro latency system. J Virol 63, 
3513-5. 

Harris, R. A. & Preston, C. M. (1991). Establishment of latency in vitro by the 
herpes simplex virus type 1 mutant in1814. J Gen Virol 72, 907-13. 

He, H., Rinaldo, C. R., Jr. & Morel, P. A. (1995). T cell proliferative responses to 
five human cytomegalovirus proteins in healthy seropositive individuals: 
implications for vaccine development. J Gen Virol 76, 1603-10. 

Hensel, G. M., Meyer, H. H., Buchmann, I., Pommerehne, D., Schmolke, S., 
Plachter, B., Radsak, K. & Kern, H. F. (1996). Intracellular localization and 
expression of the human cytomegalovirus matrix phosphoprotein pp71 
(ppUL82): evidence for its translocation into the nucleus. J Gen Virol 77, 
3087-97. 

Herold, B. C., Visalli, R. J., Susmarski, N., Brandt, C. R. & Spear, P. G. (1994). 
Glycoprotein C-independent binding of herpes simplex virus to cells 
requires cell surface heparan sulphate and glycoprotein B. J Gen Virol 75, 
1211-22. 

Hobbs, W. E., Brough, D. E., Kovesdi, I. & DeLuca, N. A. (2001). Efficient 
activation of viral genomes by levels of herpes simplex virus ICP0 
insufficient to affect cellular gene expression or cell survival. J Virol 75, 
3391-403. 

Hobom, U., Brune, W., Messerle, M., Hahn, G. & Koszinowski, U. H. (2000). Fast 
screening procedures for random transposon libraries of cloned herpesvirus 
genomes: mutational analysis of human cytomegalovirus envelope 
glycoprotein genes. J Virol 74, 7720-9. 

Hofmann, H., Sindre, H. & Stamminger, T. (2002). Functional interaction between 
the pp71 protein of human cytomegalovirus and the PML-interacting protein 
human Daxx. J Virol 76, 5769-83. 

Hollenbach, A. D., McPherson, C. J., Mientjes, E. J., Iyengar, R. & Grosveld, G. 
(2002). Daxx and histone deacetylase II associate with chromatin through 
an interaction with core histones and the chromatin-associated protein Dek. 
J Cell Sci 115, 3319-30. 

Homer, E. G., Rinaldi, A., Nicholl, M. J. & Preston, C. M. (1999). Activation of 
herpesvirus gene expression by the human cytomegalovirus protein pp71. J 
Virol 73, 8512-8. 

Homman-Loudiyi, M., Hultenby, K., Britt, W. & Soderberg-Naucler, C. (2003). 
Envelopment of human cytomegalovirus occurs by budding into Golgi-
derived vacuole compartments positive for gB, Rab 3, trans-golgi network 
46, and mannosidase II. J Virol 77, 3191-203. 

Huang, L., Zhu, Y. & Anders, D. G. (1996). The variable 3' ends of a human 
cytomegalovirus oriLyt transcript (SRT) overlap an essential, conserved 
replicator element. J Virol 70, 5272-81. 



Tanya Chaudry 2008   151

Huber, M. T. & Compton, T. (1997). Characterization of a novel third member of 
the human cytomegalovirus glycoprotein H-glycoprotein L complex. J Virol 
71, 5391-8. 

Huber, M. T. & Compton, T. (1998). The human cytomegalovirus UL74 gene 
encodes the third component of the glycoprotein H-glycoprotein L-
containing envelope complex. J Virol 72, 8191-7. 

Huber, M. T. & Compton, T. (1999). Intracellular formation and processing of the 
heterotrimeric gH-gL-gO (gCIII) glycoprotein envelope complex of human 
cytomegalovirus. J Virol 73, 3886-92. 

Huszar, D. & Bacchetti, S. (1981). Partial purification and characterization of the 
ribonucleotide reductase induced by herpes simplex virus infection of 
mammalian cells. J Virol 37, 580-8. 

Hwang, J. & Kalejta, R. F. (2007). Proteasome-dependent, ubiquitin-independent 
degradation of Daxx by the viral pp71 protein in human cytomegalovirus-
infected cells. Virology 367, 334-8. 

Hwang, J. S. & Bogner, E. (2002). ATPase activity of the terminase subunit pUL56 
of human cytomegalovirus. J Biol Chem 277, 6943-8. 

Inman, M., Perng, G. C., Henderson, G., Ghiasi, H., Nesburn, A. B., Wechsler, S. 
L. & Jones, C. (2001). Region of herpes simplex virus type 1 latency-
associated transcript sufficient for wild-type spontaneous reactivation 
promotes cell survival in tissue culture. J Virol 75, 3636-46. 

Ishov, A. M., Sotnikov, A. G., Negorev, D., Vladimirova, O. V., Neff, N., Kamitani, 
T., Yeh, E. T., Strauss, J. F., 3rd & Maul, G. G. (1999). PML is critical for 
ND10 formation and recruits the PML-interacting protein daxx to this 
nuclear structure when modified by SUMO-1. J Cell Biol 147, 221-34. 

Ishov, A. M., Vladimirova, O. V. & Maul, G. G. (2002). Daxx-mediated 
accumulation of human cytomegalovirus tegument protein pp71 at ND10 
facilitates initiation of viral infection at these nuclear domains. J Virol 76, 
7705-12. 

Ishov, A. M., Vladimirova, O. V. & Maul, G. G. (2004). Heterochromatin and ND10 
are cell-cycle regulated and phosphorylation-dependent alternate nuclear 
sites of the transcription repressor Daxx and SWI/SNF protein ATRX. J Cell 
Sci 117, 3807-20. 

Isomura, H. & Stinski, M. F. (2003). The human cytomegalovirus major immediate-
early enhancer determines the efficiency of immediate-early gene 
transcription and viral replication in permissive cells at low multiplicity of 
infection. J Virol 77, 3602-14. 

Jamieson, D. R., Robinson, L. H., Daksis, J. I., Nicholl, M. J. & Preston, C. M. 
(1995). Quiescent viral genomes in human fibroblasts after infection with 
herpes simplex virus type 1 Vmw65 mutants. J Gen Virol 76, 1417-31. 

Jarvis, M. A. & Nelson, J. A. (2002). Mechanisms of human cytomegalovirus 
persistence and latency. Front Biosci 7, d1575-82. 

Javier, R. T., Stevens, J. G., Dissette, V. B. & Wagner, E. K. (1988). A herpes 
simplex virus transcript abundant in latently infected neurons is dispensable 
for establishment of the latent state. Virology 166, 254-7. 

Jeang, K. T., Chin, G. & Hayward, G. S. (1982). Characterization of 
cytomegalovirus immediate-early genes. I. Nonpermissive rodent cells 
overproduce the IE94K protein form CMV (Colburn). Virology 121, 393-403. 

Jeang, K. T., Rawlins, D. R., Rosenfeld, P. J., Shero, J. H., Kelly, T. J. & Hayward, 
G. S. (1987). Multiple tandemly repeated binding sites for cellular nuclear 
factor 1 that surround the major immediate-early promoters of simian and 
human cytomegalovirus. J Virol 61, 1559-70. 

Jenson, H. B., Ench, Y., Gao, S. J., Rice, K., Carey, D., Kennedy, R. C., Arrand, J. 
R. & Mackett, M. (2000). Epidemiology of herpesvirus papio infection in a 



Tanya Chaudry 2008   152

large captive baboon colony: similarities to Epstein-Barr virus infection in 
humans. J Infect Dis 181, 1462-6. 

Kalejta, R. F., Bechtel, J. T. & Shenk, T. (2003a). Human cytomegalovirus pp71 
stimulates cell cycle progression by inducing the proteasome-dependent 
degradation of the retinoblastoma family of tumor suppressors. Mol Cell Biol 
23, 1885-95. 

Kalejta, R. F. & Shenk, T. (2003b). The human cytomegalovirus UL82 gene 
product (pp71) accelerates progression through the G1 phase of the cell 
cycle. J Virol 77, 3451-9. 

Kalejta, R. F. & Shenk, T. (2003c). Proteasome-dependent, ubiquitin-independent 
degradation of the Rb family of tumor suppressors by the human 
cytomegalovirus pp71 protein. Proc Natl Acad Sci U S A 100, 3263-8. 

Kalter, S. S. & Heberling, R. L. (1990). Primate viral diseases in perspective. J 
Med Primatol 19, 519-35. 

Kappes, F., Burger, K., Baack, M., Fackelmayer, F. O. & Gruss, C. (2001). 
Subcellular localization of the human proto-oncogene protein DEK. J Biol 
Chem 276, 26317-23. 

Keil, G. M., Ebeling-Keil, A. & Koszinowski, U. H. (1984). Temporal regulation of 
murine cytomegalovirus transcription and mapping of viral RNA synthesized 
at immediate early times after infection. J Virol 50, 784-95. 

Kim, S., Yu, S. S., Lee, I. S., Ohno, S., Yim, J. & Kang, H. S. (1999). Human 
cytomegalovirus IE1 protein activates AP-1 through a cellular protein 
kinase(s). J Gen Virol 80, 961-9. 

Koffa, M. D., Clements, J. B., Izaurralde, E., Wadd, S., Wilson, S. A., Mattaj, I. W. 
& Kuersten, S. (2001). Herpes simplex virus ICP27 protein provides viral 
mRNAs with access to the cellular mRNA export pathway. Embo J 20, 
5769-78. 

Kondo, K., Xu, J. & Mocarski, E. S. (1996). Human cytomegalovirus latent gene 
expression in granulocyte-macrophage progenitors in culture and in 
seropositive individuals. Proc Natl Acad Sci U S A 93, 11137-42. 

Korioth, F., Maul, G. G., Plachter, B., Stamminger, T. & Frey, J. (1996). The 
nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene 
product IE1. Exp Cell Res 229, 155-8. 

Kouzarides, T. (2002). Histone methylation in transcriptional control. Curr Opin 
Genet Dev 12, 198-209. 

Kravitz, R. H., Sciabica, K. S., Cho, K., Luciw, P. A. & Barry, P. A. (1997). Cloning 
and characterization of rhesus cytomegalovirus glycoprotein B. J Gen Virol 
78 ( Pt 8), 2009-13. 

Kristie, T. M., Vogel, J. L. & Sears, A. E. (1999). Nuclear localization of the C1 
factor (host cell factor) in sensory neurons correlates with reactivation of 
herpes simplex virus from latency. Proc Natl Acad Sci U S A 96, 1229-33. 

Kropff, B. & Mach, M. (1997). Identification of the gene coding for rhesus 
cytomegalovirus glycoprotein B and immunological analysis of the protein. J 
Gen Virol 78, 1999-2007. 

Kubat, N. J., Tran, R. K., McAnany, P. & Bloom, D. C. (2004). Specific histone tail 
modification and not DNA methylation is a determinant of herpes simplex 
virus type 1 latent gene expression. J Virol 78, 1139-49. 

Kuddus, R., Gu, B. & DeLuca, N. A. (1995). Relationship between TATA-binding 
protein and herpes simplex virus type 1 ICP4 DNA-binding sites in complex 
formation and repression of transcription. J Virol 69, 5568-75. 

Kuddus, R. H. & DeLuca, N. A. (2007). DNA-dependent oligomerization of herpes 
simplex virus type 1 regulatory protein ICP4. J Virol 81, 9230-7. 

LaBoissiere, S. & O'Hare, P. (2000). Analysis of HCF, the cellular cofactor of 
VP16, in herpes simplex virus-infected cells. J Virol 74, 99-109. 



Tanya Chaudry 2008   153

Larralde, O., Smith, R. W., Wilkie, G. S., Malik, P., Gray, N. K. & Clements, J. B. 
(2006). Direct stimulation of translation by the multifunctional herpesvirus 
ICP27 protein. J Virol 80, 1588-91. 

Larsson, S., Soderberg-Naucler, C., Wang, F. Z. & Moller, E. (1998). 
Cytomegalovirus DNA can be detected in peripheral blood mononuclear 
cells from all seropositive and most seronegative healthy blood donors over 
time. Transfusion 38, 271-8. 

Lee, H. R., Kim, D. J., Lee, J. M., Choi, C. Y., Ahn, B. Y., Hayward, G. S. & Ahn, J. 
H. (2004). Ability of the human cytomegalovirus IE1 protein to modulate 
sumoylation of PML correlates with its functional activities in transcriptional 
regulation and infectivity in cultured fibroblast cells. J Virol 78, 6527-42. 

Lee, J. M., Kang, H. J., Lee, H. R., Choi, C. Y., Jang, W. J. & Ahn, J. H. (2003). 
PIAS1 enhances SUMO-1 modification and the transactivation activity of 
the major immediate-early IE2 protein of human cytomegalovirus. FEBS 
Lett 555, 322-8. 

Leuzinger, H., Ziegler, U., Schraner, E. M., Fraefel, C., Glauser, D. L., Heid, I., 
Ackermann, M., Mueller, M. & Wild, P. (2005). Herpes simplex virus 1 
envelopment follows two diverse pathways. J Virol 79, 13047-59. 

Li, H., Leo, C., Zhu, J., Wu, X., O'Neil, J., Park, E. J. & Chen, J. D. (2000a). 
Sequestration and inhibition of Daxx-mediated transcriptional repression by 
PML. Mol Cell Biol 20, 1784-96. 

Li, L., Nelson, J. A. & Britt, W. J. (1997). Glycoprotein H-related complexes of 
human cytomegalovirus: identification of a third protein in the gCIII complex. 
J Virol 71, 3090-7. 

Li, R., Pei, H., Watson, D. K. & Papas, T. S. (2000b). EAP1/Daxx interacts with 
ETS1 and represses transcriptional activation of ETS1 target genes. 
Oncogene 19, 745-53. 

Lin, D. Y., Huang, Y. S., Jeng, J. C., Kuo, H. Y., Chang, C. C., Chao, T. T., Ho, C. 
C., Chen, Y. C., Lin, T. P., Fang, H. I., Hung, C. C., Suen, C. S., Hwang, M. 
J., Chang, K. S., Maul, G. G. & Shih, H. M. (2006). Role of SUMO-
interacting motif in Daxx SUMO modification, subnuclear localization, and 
repression of sumoylated transcription factors. Mol Cell 24, 341-54. 

Liu, B., Hermiston, T. W. & Stinski, M. F. (1991). A cis-acting element in the major 
immediate-early (IE) promoter of human cytomegalovirus is required for 
negative regulation by IE2. J Virol 65, 897-903. 

Liu, B. & Stinski, M. F. (1992). Human cytomegalovirus contains a tegument 
protein that enhances transcription from promoters with upstream ATF and 
AP-1 cis-acting elements. J Virol 66, 4434-44. 

Liu, R., Baillie, J., Sissons, J. G. & Sinclair, J. H. (1994). The transcription factor 
YY1 binds to negative regulatory elements in the human cytomegalovirus 
major immediate early enhancer/promoter and mediates repression in non-
permissive cells. Nucleic Acids Res 22, 2453-9. 

Liu, Y. & Biegalke, B. J. (2002). The human cytomegalovirus UL35 gene encodes 
two proteins with different functions. J Virol 76, 2460-8. 

Lomonte, P., Sullivan, K. F. & Everett, R. D. (2001). Degradation of nucleosome-
associated centromeric histone H3-like protein CENP-A induced by herpes 
simplex virus type 1 protein ICP0. J Biol Chem 276, 5829-35. 

Lundquist, C. A., Meier, J. L. & Stinski, M. F. (1999). A strong negative 
transcriptional regulatory region between the human cytomegalovirus 
UL127 gene and the major immediate-early enhancer. J Virol 73, 9039-52. 

Lurain, N. S., Fox, A. M., Lichy, H. M., Bhorade, S. M., Ware, C. F., Huang, D. D., 
Kwan, S. P., Garrity, E. R. & Chou, S. (2006). Analysis of the human 
cytomegalovirus genomic region from UL146 through UL147A reveals 



Tanya Chaudry 2008   154

sequence hypervariability, genotypic stability, and overlapping transcripts. 
Virol J 3, 4. 

Mach, M., Kropff, B., Dal Monte, P. & Britt, W. (2000). Complex formation by 
human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J Virol 
74, 11881-92. 

Mach, M., Osinski, K., Kropff, B., Schloetzer-Schrehardt, U., Krzyzaniak, M. & 
Britt, W. (2007). The carboxy-terminal domain of glycoprotein N of human 
cytomegalovirus is required for virion morphogenesis. J Virol 81, 5212-24. 

Malm, G. & Engman, M. L. (2007). Congenital cytomegalovirus infections. Semin 
Fetal Neonatal Med 12, 154-9. 

Marchini, A., Liu, H. & Zhu, H. (2001). Human cytomegalovirus with IE-2 (UL122) 
deleted fails to express early lytic genes. J Virol 75, 1870-8. 

Margolis, T. P., Sedarati, F., Dobson, A. T., Feldman, L. T. & Stevens, J. G. 
(1992). Pathways of viral gene expression during acute neuronal infection 
with HSV-1. Virology 189, 150-60. 

Marshall, K. R., Lachmann, R. H., Efstathiou, S., Rinaldi, A. & Preston, C. M. 
(2000). Long-term transgene expression in mice infected with a herpes 
simplex virus type 1 mutant severely impaired for immediate-early gene 
expression. J Virol 74, 956-64. 

Marshall, K. R., Rowley, K. V., Rinaldi, A., Nicholson, I. P., Ishov, A. M., Maul, G. 
G. & Preston, C. M. (2002). Activity and intracellular localization of the 
human cytomegalovirus protein pp71. J Gen Virol 83, 1601-12. 

Masse, M. J., Karlin, S., Schachtel, G. A. & Mocarski, E. S. (1992). Human 
cytomegalovirus origin of DNA replication (oriLyt) resides within a highly 
complex repetitive region. Proc Natl Acad Sci U S A 89, 5246-50. 

Maul, G. G. & Everett, R. D. (1994). The nuclear location of PML, a cellular 
member of the C3HC4 zinc-binding domain protein family, is rearranged 
during herpes simplex virus infection by the C3HC4 viral protein ICP0. J 
Gen Virol 75, 1223-33. 

Maul, G. G., Negorev, D., Bell, P. & Ishov, A. M. (2000). Review: properties and 
assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol 129, 
278-87. 

McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., 
McNab, D., Perry, L. J., Scott, J. E. & Taylor, P. (1988). The complete DNA 
sequence of the long unique region in the genome of herpes simplex virus 
type 1. J Gen Virol 69, 1531-74. 

McGeoch, D. J., Dolan, A., Donald, S. & Rixon, F. J. (1985). Sequence 
determination and genetic content of the short unique region in the genome 
of herpes simplex virus type 1. J Mol Biol 181, 1-13. 

McLauchlan, J. & Rixon, F. J. (1992). Characterization of enveloped tegument 
structures (L particles) produced by alphaherpesviruses: integrity of the 
tegument does not depend on the presence of capsid or envelope. J Gen 
Virol 73, 269-76. 

Meier, J. L. & Pruessner, J. A. (2000). The human cytomegalovirus major 
immediate-early distal enhancer region is required for efficient viral 
replication and immediate-early gene expression. J Virol 74, 1602-13. 

Meier, J. L. & Stinski, M. F. (1996). Regulation of human cytomegalovirus 
immediate-early gene expression. Intervirology 39, 331-42. 

Meier, J. L. & Stinski, M. F. (1997). Effect of a modulator deletion on transcription 
of the human cytomegalovirus major immediate-early genes in infected 
undifferentiated and differentiated cells. J Virol 71, 1246-55. 

Mendelson, M., Monard, S., Sissons, P. & Sinclair, J. (1996). Detection of 
endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J 
Gen Virol 77, 3099-102. 



Tanya Chaudry 2008   155

Meredith, M., Orr, A., Elliott, M. & Everett, R. (1995). Separation of sequence 
requirements for HSV-1 Vmw110 multimerisation and interaction with a 
135-kDa cellular protein. Virology 209, 174-87. 

Meredith, M., Orr, A. & Everett, R. (1994). Herpes simplex virus type 1 immediate-
early protein Vmw110 binds strongly and specifically to a 135-kDa cellular 
protein. Virology 200, 457-69. 

Mettenleiter, T. C. (2002). Herpesvirus assembly and egress. J Virol 76, 1537-47. 
Mettenleiter, T. C. (2004). Budding events in herpesvirus morphogenesis. Virus 

Res 106, 167-80. 
Michaels, M. G., Jenkins, F. J., St George, K., Nalesnik, M. A., Starzl, T. E. & 

Rinaldo, C. R., Jr. (2001). Detection of infectious baboon cytomegalovirus 
after baboon-to-human liver xenotransplantation. J Virol 75, 2825-8. 

Miller-Kittrell, M., Sai, J., Penfold, M., Richmond, A. & Sparer, T. E. (2007). 
Functional characterization of chimpanzee cytomegalovirus chemokine, 
vCXCL-1(CCMV). Virology 364, 454-65. 

Mocarski, E. S., and Courcelle C.T (2001). Cytomegaloviruses and their 
replication". In Fields Virology, 4th edn, pp. 2447-91. Fields Virology, 4th 
edn. Edited by Knipe.D.M Lippincott-Williams & Wilkins Publishers.  
Philadelphia. 

Mostoufi-zadeh, M., Driscoll, S. G., Biano, S. A. & Kundsin, R. B. (1984). Placental 
evidence of cytomegalovirus infection of the fetus and neonate. Arch Pathol 
Lab Med 108, 403-6. 

Mueller, N. J. & Fishman, J. A. (2004). Herpesvirus infections in 
xenotransplantation: pathogenesis and approaches. Xenotransplantation 
11, 486-90. 

Murchie, M. J. & McGeoch, D. J. (1982). DNA sequence analysis of an immediate-
early gene region of the herpes simplex virus type 1 genome (map 
coordinates 0.950 to 0.978). J Gen Virol 62, 1-15. 

Murphy, E., Rigoutsos, I., Shibuya, T. & Shenk, T. E. (2003a). Reevaluation of 
human cytomegalovirus coding potential. Proc Natl Acad Sci U S A 100, 
13585-90. 

Murphy, E., Yu, D., Grimwood, J., Schmutz, J., Dickson, M., Jarvis, M. A., Hahn, 
G., Nelson, J. A., Myers, R. M. & Shenk, T. E. (2003b). Coding potential of 
laboratory and clinical strains of human cytomegalovirus. Proc Natl Acad 
Sci U S A 100, 14976-81. 

Murphy, J. C., Fischle, W., Verdin, E. & Sinclair, J. H. (2002). Control of 
cytomegalovirus lytic gene expression by histone acetylation. Embo J 21, 
1112-20. 

Navarro, D., Paz, P., Tugizov, S., Topp, K., La Vail, J. & Pereira, L. (1993). 
Glycoprotein B of human cytomegalovirus promotes virion penetration into 
cells, transmission of infection from cell to cell, and fusion of infected cells. 
Virology 197, 143-58. 

Negorev, D. & Maul, G. G. (2001). Cellular proteins localized at and interacting 
within ND10/PML nuclear bodies/PODs suggest functions of a nuclear 
depot. Oncogene 20, 7234-42. 

Nevels, M., Brune, W. & Shenk, T. (2004a). SUMOylation of the human 
cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-
kilodalton IE2 protein and promotes viral replication. J Virol 78, 7803-12. 

Nevels, M., Paulus, C. & Shenk, T. (2004b). Human cytomegalovirus immediate-
early 1 protein facilitates viral replication by antagonizing histone 
deacetylation. Proc Natl Acad Sci U S A 101, 17234-9. 

Newcomb, W. W., Homa, F. L. & Brown, J. C. (2005). Involvement of the portal at 
an early step in herpes simplex virus capsid assembly. J Virol 79, 10540-6. 



Tanya Chaudry 2008   156

Newcomb, W. W., Homa, F. L. & Brown, J. C. (2006). Herpes simplex virus capsid 
structure: DNA packaging protein UL25 is located on the external surface of 
the capsid near the vertices. J Virol 80, 6286-94. 

Newcomb, W. W., Thomsen, D. R., Homa, F. L. & Brown, J. C. (2003). Assembly 
of the herpes simplex virus capsid: identification of soluble scaffold-portal 
complexes and their role in formation of portal-containing capsids. J Virol 
77, 9862-71. 

Nicholl, M. J. & Preston, C. M. (1996). Inhibition of herpes simplex virus type 1 
immediate-early gene expression by alpha interferon is not VP16 specific. J 
Virol 70, 6336-9. 

Nicholson, I. P. (2004). Characterisation of two homologues of the human 
cytomegalovirus transactivating protein pp71. In MRC Virology Unit. 
Glasgow: University of Glasgow. 

Nixon, D. E. & McVoy, M. A. (2002). Terminally repeated sequences on a 
herpesvirus genome are deleted following circularization but are 
reconstituted by duplication during cleavage and packaging of concatemeric 
DNA. J Virol 76, 2009-13. 

Nowak, B., Sullivan, C., Sarnow, P., Thomas, R., Bricout, F., Nicolas, J. C., 
Fleckenstein, B. & Levine, A. J. (1984). Characterization of monoclonal 
antibodies and polyclonal immune sera directed against human 
cytomegalovirus virion proteins. Virology 132, 325-38. 

Ogawa-Goto, K., Tanaka, K., Gibson, W., Moriishi, E., Miura, Y., Kurata, T., Irie, S. 
& Sata, T. (2003). Microtubule network facilitates nuclear targeting of 
human cytomegalovirus capsid. J Virol 77, 8541-7. 

Ojala, P. M., Sodeik, B., Ebersold, M. W., Kutay, U. & Helenius, A. (2000). Herpes 
simplex virus type 1 entry into host cells: reconstitution of capsid binding 
and uncoating at the nuclear pore complex in vitro. Mol Cell Biol 20, 4922-
31. 

Orlando, J. S., Balliet, J. W., Kushnir, A. S., Astor, T. L., Kosz-Vnenchak, M., Rice, 
S. A., Knipe, D. M. & Schaffer, P. A. (2006). ICP22 is required for wild-type 
composition and infectivity of herpes simplex virus type 1 virions. J Virol 80, 
9381-90. 

Parkinson, J. & Everett, R. D. (2000). Alphaherpesvirus proteins related to herpes 
simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74, 
10006-17. 

Pass, R. F. (2001). "Cytomegaloviruses". In Fields Virology, 4th edn edn, pp. 
2675-2706. Edited by a. P. M. H. D. M. Knipe: Philadelphia: Lippincott-
Williams & Wilkins Publishers. 

Perng, G. C., Jones, C., Ciacci-Zanella, J., Stone, M., Henderson, G., Yukht, A., 
Slanina, S. M., Hofman, F. M., Ghiasi, H., Nesburn, A. B. & Wechsler, S. L. 
(2000). Virus-induced neuronal apoptosis blocked by the herpes simplex 
virus latency-associated transcript. Science 287, 1500-3. 

Perry, L. J. & McGeoch, D. J. (1988). The DNA sequences of the long repeat 
region and adjoining parts of the long unique region in the genome of 
herpes simplex virus type 1. J Gen Virol 69, 2831-46. 

Pizzorno, M. C. & Hayward, G. S. (1990). The IE2 gene products of human 
cytomegalovirus specifically down-regulate expression from the major 
immediate-early promoter through a target sequence located near the cap 
site. J Virol 64, 6154-65. 

Plafker, S. M., Woods, A. S. & Gibson, W. (1999). Phosphorylation of simian 
cytomegalovirus assembly protein precursor (pAPNG.5) and proteinase 
precursor (pAPNG1): multiple attachment sites identified, including two 
adjacent serines in a casein kinase II consensus sequence. J Virol 73, 
9053-62. 



Tanya Chaudry 2008   157

Preston, C. M. (2000). Repression of viral transcription during herpes simplex virus 
latency. J Gen Virol 81, 1-19. 

Preston, C. M. (2007). Reactivation of expression from quiescent herpes simplex 
virus type 1 genomes in the absence of immediate-early protein ICP0. J 
Virol 81, 11781-9. 

Preston, C. M., Frame, M. C. & Campbell, M. E. (1988). A complex formed 
between cell components and an HSV structural polypeptide binds to a viral 
immediate early gene regulatory DNA sequence. Cell 52, 425-34. 

Preston, C. M., Mabbs, R. & Nicholl, M. J. (1997). Construction and 
characterization of herpes simplex virus type 1 mutants with conditional 
defects in immediate early gene expression. Virology 229, 228-39. 

Preston, C. M. & Nicholl, M. J. (1997). Repression of gene expression upon 
infection of cells with herpes simplex virus type 1 mutants impaired for 
immediate-early protein synthesis. J Virol 71, 7807-13. 

Preston, C. M. & Nicholl, M. J. (2005). Human cytomegalovirus tegument protein 
pp71 directs long-term gene expression from quiescent herpes simplex 
virus genomes. J Virol 79, 525-35. 

Preston, C. M. & Nicholl, M. J. (2006). Role of the cellular protein hDaxx in human 
cytomegalovirus immediate-early gene expression. J Gen Virol 87, 1113-
21. 

Preston, C. M., Rinaldi, A. & Nicholl, M. J. (1998). Herpes simplex virus type 1 
immediate early gene expression is stimulated by inhibition of protein 
synthesis. J Gen Virol 79, 117-24. 

Prichard, M. N., Penfold, M. E., Duke, G. M., Spaete, R. R. & Kemble, G. W. 
(2001). A review of genetic differences between limited and extensively 
passaged human cytomegalovirus strains. Rev Med Virol 11, 191-200. 

Quirici, N., Soligo, D., Caneva, L., Servida, F., Bossolasco, P. & Deliliers, G. L. 
(2001). Differentiation and expansion of endothelial cells from human bone 
marrow CD133(+) cells. Br J Haematol 115, 186-94. 

Reeves, M., Murphy, J., Greaves, R., Fairley, J., Brehm, A. & Sinclair, J. (2006). 
Autorepression of the human cytomegalovirus major immediate-early 
promoter/enhancer at late times of infection is mediated by the recruitment 
of chromatin remodeling enzymes by IE86. J Virol 80, 9998-10009. 

Reeves, M. B., Lehner, P. J., Sissons, J. G. & Sinclair, J. H. (2005a). An in vitro 
model for the regulation of human cytomegalovirus latency and reactivation 
in dendritic cells by chromatin remodelling. J Gen Virol 86, 2949-54. 

Reeves, M. B., MacAry, P. A., Lehner, P. J., Sissons, J. G. & Sinclair, J. H. 
(2005b). Latency, chromatin remodeling, and reactivation of human 
cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci 
U S A 102, 4140-5. 

Reid, G. G., Ellsmore, V. & Stow, N. D. (2003). An analysis of the requirements for 
human cytomegalovirus oriLyt-dependent DNA synthesis in the presence of 
the herpes simplex virus type 1 replication fork proteins. Virology 308, 303-
16. 

Rixon, F. J. (1993). Structure and assembly of herpesviruses. Seminars in 
VIROLOGY 4, 135-144. 

Rixon, F. J., Addison, C. & McLauchlan, J. (1992). Assembly of enveloped 
tegument structures (L particles) can occur independently of virion 
maturation in herpes simplex virus type 1-infected cells. J Gen Virol 73, 
277-84. 

Robson, L. & Gibson, W. (1989). Primate cytomegalovirus assembly protein: 
genome location and nucleotide sequence. J Virol 63, 669-76. 

Roizman, B. & Baines, J. (1991). The diversity and unity of Herpesviridae. Comp 
Immunol Microbiol Infect Dis 14, 63-79. 



Tanya Chaudry 2008   158

Roizman, B. Knipe. D. M. (2001). Herpes simplex viruses and their replication. In 
Fields Virology, 4th edn, pp. 2399-2459. Edited by Knipe.D.M Lippincott-
Williams & Wilkins Publishers.  Philadelphia: 

Ross, T. G., Rogers, R. P., Elfrink, N., Bray, N. & Blewett, E. L. (2005). Detection 
of baboon cytomegalovirus (BaCMV) by PCR using primers directed 
against the glycoprotein B gene. J Virol Methods 125, 119-24. 

Ruger, B., Klages, S., Walla, B., Albrecht, J., Fleckenstein, B., Tomlinson, P. & 
Barrell, B. (1987). Primary structure and transcription of the genes coding 
for the two virion phosphoproteins pp65 and pp71 of human 
cytomegalovirus. J Virol 61, 446-53. 

Ruggero, D., Wang, Z. G. & Pandolfi, P. P. (2000). The puzzling multiple lives of 
PML and its role in the genesis of cancer. Bioessays 22, 827-35. 

Russell, J. & Preston, C. M. (1986). An in vitro latency system for herpes simplex 
virus type 2. J Gen Virol 67, 397-403. 

Russell, J., Stow, N. D., Stow, E. C. & Preston, C. M. (1987). Herpes simplex virus 
genes involved in latency in vitro. J Gen Virol 68, 3009-18. 

Saad, A., Zhou, Z. H., Jakana, J., Chiu, W. & Rixon, F. J. (1999). Roles of triplex 
and scaffolding proteins in herpes simplex virus type 1 capsid formation 
suggested by structures of recombinant particles. J Virol 73, 6821-30. 

Sacks, W. R., Greene, C. C., Aschman, D. P. & Schaffer, P. A. (1985). Herpes 
simplex virus type 1 ICP27 is an essential regulatory protein. J Virol 55, 
796-805. 

Sacks, W. R. & Schaffer, P. A. (1987). Deletion mutants in the gene encoding the 
herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired 
growth in cell culture. J Virol 61, 829-39. 

Saffert, R. T. & Kalejta, R. F. (2006). Inactivating a cellular intrinsic immune 
defense mediated by Daxx is the mechanism through which the human 
cytomegalovirus pp71 protein stimulates viral immediate-early gene 
expression. J Virol 80, 3863-71. 

Saffert, R. T. & Kalejta, R. F. (2007). Human cytomegalovirus gene expression is 
silenced by Daxx-mediated intrinsic immune defense in model latent 
infections established in vitro. J Virol 81, 9109-20. 

Sagedal, S., Hartmann, A. & Rollag, H. (2005). The impact of early 
cytomegalovirus infection and disease in renal transplant recipients. Clin 
Microbiol Infect 11, 518-30. 

Salomoni, P. & Khelifi, A. F. (2006). Daxx: death or survival protein? Trends Cell 
Biol 16, 97-104. 

Samaniego, L. A., Neiderhiser, L. & DeLuca, N. A. (1998). Persistence and 
expression of the herpes simplex virus genome in the absence of 
immediate-early proteins. J Virol 72, 3307-20. 

Sanchez, V., Greis, K. D., Sztul, E. & Britt, W. J. (2000a). Accumulation of virion 
tegument and envelope proteins in a stable cytoplasmic compartment 
during human cytomegalovirus replication: characterization of a potential 
site of virus assembly. J Virol 74, 975-86. 

Sanchez, V., Sztul, E. & Britt, W. J. (2000b). Human cytomegalovirus pp28 (UL99) 
localizes to a cytoplasmic compartment which overlaps the endoplasmic 
reticulum-golgi-intermediate compartment. J Virol 74, 3842-51. 

Sandri-Goldin, R. M. (1998). ICP27 mediates HSV RNA export by shuttling 
through a leucine-rich nuclear export signal and binding viral intronless 
RNAs through an RGG motif. Genes Dev 12, 868-79. 

Sarisky, R. T. & Hayward, G. S. (1996). Evidence that the UL84 gene product of 
human cytomegalovirus is essential for promoting oriLyt-dependent DNA 
replication and formation of replication compartments in cotransfection 
assays. J Virol 70, 7398-413. 



Tanya Chaudry 2008   159

Sawtell, N. M. & Thompson, R. L. (2004). Comparison of herpes simplex virus 
reactivation in ganglia in vivo and in explants demonstrates quantitative and 
qualitative differences. J Virol 78, 7784-94. 

Schierling, K., Stamminger, T., Mertens, T. & Winkler, M. (2004). Human 
cytomegalovirus tegument proteins ppUL82 (pp71) and ppUL35 interact 
and cooperatively activate the major immediate-early enhancer. J Virol 78, 
9512-23. 

Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103, 211-
25. 

Shahin, V., Hafezi, W., Oberleithner, H., Ludwig, Y., Windoffer, B., Schillers, H. & 
Kuhn, J. E. (2006). The genome of HSV-1 translocates through the nuclear 
pore as a condensed rod-like structure. J Cell Sci 119, 23-30. 

Shen, T. H., Lin, H. K., Scaglioni, P. P., Yung, T. M. & Pandolfi, P. P. (2006). The 
mechanisms of PML-nuclear body formation. Mol Cell 24, 331-9. 

Sinclair, J. & Sissons, P. (2006). Latency and reactivation of human 
cytomegalovirus. J Gen Virol 87, 1763-79. 

Smith, J. S. & Robinson, N. J. (2002). Age-specific prevalence of infection with 
herpes simplex virus types 2 and 1: a global review. J Infect Dis 186, S3-28. 

Smith, M. S., Bentz, G. L., Alexander, J. S. & Yurochko, A. D. (2004). Human 
cytomegalovirus induces monocyte differentiation and migration as a 
strategy for dissemination and persistence. J Virol 78, 4444-53. 

Smuda, C., Bogner, E. & Radsak, K. (1997). The human cytomegalovirus 
glycoprotein B gene (ORF UL55) is expressed early in the infectious cycle. 
J Gen Virol 78, 1981-92. 

Sodeik, B. (2000). Mechanisms of viral transport in the cytoplasm. Trends 
Microbiol 8, 465-72. 

Sommer, M. H., Scully, A. L. & Spector, D. H. (1994). Transactivation by the 
human cytomegalovirus IE2 86-kilodalton protein requires a domain that 
binds to both the TATA box-binding protein and the retinoblastoma protein. 
J Virol 68, 6223-31. 

Spaete, R. R. & Frenkel, N. (1982). The herpes simplex virus amplicon: a new 
eucaryotic defective-virus cloning-amplifying vector. Cell 30, 295-304. 

Spaete, R. R. & Mocarski, E. S. (1985). Regulation of cytomegalovirus gene 
expression: alpha and beta promoters are trans activated by viral functions 
in permissive human fibroblasts. J Virol 56, 135-43. 

Spaete, R. R., Perot, K., Scott, P. I., Nelson, J. A., Stinski, M. F. & Pachl, C. 
(1993). Coexpression of truncated human cytomegalovirus gH with the 
UL115 gene product or the truncated human fibroblast growth factor 
receptor results in transport of gH to the cell surface. Virology 193, 853-61. 

Spear, P. G. (2002). Viral interactions with receptors in cell junctions and effects 
on junctional stability. Dev Cell 3, 462-4. 

Spear, P. G. (2004). Herpes simplex virus: receptors and ligands for cell entry. 
Cell Microbiol 6, 401-10. 

Spengler, M. L., Kurapatwinski, K., Black, A. R. & Azizkhan-Clifford, J. (2002). 
SUMO-1 modification of human cytomegalovirus IE1/IE72. J Virol 76, 2990-
6. 

Stanier, P., Kitchen, A. D., Taylor, D. L. & Tyms, A. S. (1992). Detection of human 
cytomegalovirus in peripheral mononuclear cells and urine samples using 
PCR. Mol Cell Probes 6, 51-8. 

Steiner, I., Spivack, J. G., Lirette, R. P., Brown, S. M., MacLean, A. R., Subak-
Sharpe, J. H. & Fraser, N. W. (1989). Herpes simplex virus type 1 latency-
associated transcripts are evidently not essential for latent infection. Embo 
J 8, 505-11. 



Tanya Chaudry 2008   160

Stinski, M. F. & Roehr, T. J. (1985). Activation of the major immediate early gene 
of human cytomegalovirus by cis-acting elements in the promoter-
regulatory sequence and by virus-specific trans-acting components. J Virol 
55, 431-41. 

Stow, E. C. & Stow, N. D. (1989). Complementation of a herpes simplex virus type 
1 Vmw110 deletion mutant by human cytomegalovirus. J Gen Virol 70, 695-
704. 

Stow, N. D. (1982). Localization of an origin of DNA replication within the TRS/IRS 
repeated region of the herpes simplex virus type 1 genome. Embo J 1, 863-
7. 

Stow, N. D. (2001). Packaging of genomic and amplicon DNA by the herpes 
simplex virus type 1 UL25-null mutant KUL25NS. J Virol 75, 10755-65. 

Stow, N. D. & McMonagle, E. C. (1983). Characterization of the TRS/IRS origin of 
DNA replication of herpes simplex virus type 1. Virology 130, 427-38. 

Stow, N. D. & Stow, E. C. (1986). Isolation and characterization of a herpes 
simplex virus type 1 mutant containing a deletion within the gene encoding 
the immediate early polypeptide Vmw110. J Gen Virol 67, 2571-85. 

Su, Y. H., Zhang, X., Wang, X., Fraser, N. W. & Block, T. M. (2006). Evidence that 
the immediate-early gene product ICP4 is necessary for the genome of the 
herpes simplex virus type 1 ICP4 deletion mutant strain d120 to circularize 
in infected cells. J Virol 80, 11589-97. 

Taylor-Wiedeman, J., Sissons, J. G., Borysiewicz, L. K. & Sinclair, J. H. (1991). 
Monocytes are a major site of persistence of human cytomegalovirus in 
peripheral blood mononuclear cells. J Gen Virol 72, 2059-64. 

Taylor-Wiedeman, J., Sissons, P. & Sinclair, J. (1994). Induction of endogenous 
human cytomegalovirus gene expression after differentiation of monocytes 
from healthy carriers. J Virol 68, 1597-604. 

Thompson, R. L. & Sawtell, N. M. (2006). Evidence that the herpes simplex virus 
type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol 
80, 10919-30. 

Thomsen, D. R., Stenberg, R. M., Goins, W. F. & Stinski, M. F. (1984). Promoter-
regulatory region of the major immediate early gene of human 
cytomegalovirus. Proc Natl Acad Sci U S A 81, 659-63. 

Trgovcich, J., Cebulla, C., Zimmerman, P. & Sedmak, D. D. (2006). Human 
cytomegalovirus protein pp71 disrupts major histocompatibility complex 
class I cell surface expression. J Virol 80, 951-63. 

Trus, B. L., Gibson, W., Cheng, N. & Steven, A. C. (1999). Capsid structure of 
simian cytomegalovirus from cryoelectron microscopy: evidence for 
tegument attachment sites. J Virol 73, 2181-92. 

Ullrich, A. & Schlessinger, J. (1990). Signal transduction by receptors with tyrosine 
kinase activity. Cell 61, 203-12. 

Wang, K., Lau, T. Y., Morales, M., Mont, E. K. & Straus, S. E. (2005). Laser-
capture microdissection: refining estimates of the quantity and distribution 
of latent herpes simplex virus 1 and varicella-zoster virus DNA in human 
trigeminal Ganglia at the single-cell level. J Virol 79, 14079-87. 

Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N. & Huang, E. S. (2003). 
Epidermal growth factor receptor is a cellular receptor for human 
cytomegalovirus. Nature 424, 456-61. 

Watson, R. J. & Clements, J. B. (1980). A herpes simplex virus type 1 function 
continuously required for early and late virus RNA synthesis. Nature 285, 
329-30. 

Weir, J. P. (2001). Regulation of herpes simplex virus gene expression. Gene 271, 
117-30. 



Tanya Chaudry 2008   161

Weller, S. K., Lee, K. J., Sabourin, D. J. & Schaffer, P. A. (1983). Genetic analysis 
of temperature-sensitive mutants which define the gene for the major 
herpes simplex virus type 1 DNA-binding protein. J Virol 45, 354-66. 

Whitley, R. J. (2001). Herpes simplex viruses. In Fields Virology. Edited by K. D. 
M. H. P. M. Fields B. N. Philadelphia: Lippincott-Raven. 

Wiertz, E. J., Jones, T. R., Sun, L., Bogyo, M., Geuze, H. J. & Ploegh, H. L. 
(1996). The human cytomegalovirus US11 gene product dislocates MHC 
class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 
769-79. 

Wilkinson, G. W., Kelly, C., Sinclair, J. H. & Rickards, C. (1998). Disruption of 
PML-associated nuclear bodies mediated by the human cytomegalovirus 
major immediate early gene product. J Gen Virol 79 ( Pt 5), 1233-45. 

Woodhall, D. L., Groves, I. J., Reeves, M. B., Wilkinson, G. & Sinclair, J. H. 
(2006). Human Daxx-mediated Repression of Human Cytomegalovirus 
Gene Expression Correlates with a Repressive Chromatin Structure around 
the Major Immediate Early Promoter. J Biol Chem 281, 37652-60. 

Wright, E., Bain, M., Teague, L., Murphy, J. & Sinclair, J. (2005). Ets-2 repressor 
factor recruits histone deacetylase to silence human cytomegalovirus 
immediate-early gene expression in non-permissive cells. J Gen Virol 86, 
535-44. 

Wu, C. A., Nelson, N. J., McGeoch, D. J. & Challberg, M. D. (1988). Identification 
of herpes simplex virus type 1 genes required for origin-dependent DNA 
synthesis. J Virol 62, 435-43. 

Wysocka, J. & Herr, W. (2003). The herpes simplex virus VP16-induced complex: 
the makings of a regulatory switch. Trends Biochem Sci 28, 294-304. 

Xu, Y., Cei, S. A., Rodriguez Huete, A., Colletti, K. S. & Pari, G. S. (2004). Human 
cytomegalovirus DNA replication requires transcriptional activation via an 
IE2- and UL84-responsive bidirectional promoter element within oriLyt. J 
Virol 78, 11664-77. 

Yang, X., Khosravi-Far, R., Chang, H. Y. & Baltimore, D. (1997). Daxx, a novel 
Fas-binding protein that activates JNK and apoptosis. Cell 89, 1067-76. 

Yao, F. & Courtney, R. J. (1989). A major transcriptional regulatory protein (ICP4) 
of herpes simplex virus type 1 is associated with purified virions. J Virol 63, 
3338-44. 

Yao, F. & Schaffer, P. A. (1994). Physical interaction between the herpes simplex 
virus type 1 immediate-early regulatory proteins ICP0 and ICP4. J Virol 68, 
8158-68. 

Yao, F. & Schaffer, P. A. (1995). An activity specified by the osteosarcoma line 
U2OS can substitute functionally for ICP0, a major regulatory protein of 
herpes simplex virus type 1. J Virol 69, 6249-58. 

York, I. A. & Rock, K. L. (1996). Antigen processing and presentation by the class I 
major histocompatibility complex. Annu Rev Immunol 14, 369-96. 

York, I. A., Roop, C., Andrews, D. W., Riddell, S. R., Graham, F. L. & Johnson, D. 
C. (1994). A cytosolic herpes simplex virus protein inhibits antigen 
presentation to CD8+ T lymphocytes. Cell 77, 525-35. 

Yue, Y., Kaur, A., Zhou, S. S. & Barry, P. A. (2006). Characterization and 
immunological analysis of the rhesus cytomegalovirus homologue (Rh112) 
of the human cytomegalovirus UL83 lower matrix phosphoprotein (pp65). J 
Gen Virol 87, 777-87. 

Yurochko, A. D., Hwang, E. S., Rasmussen, L., Keay, S., Pereira, L. & Huang, E. 
S. (1997). The human cytomegalovirus UL55 (gB) and UL75 (gH) 
glycoprotein ligands initiate the rapid activation of Sp1 and NF-kappaB 
during infection. J Virol 71, 5051-9. 



Tanya Chaudry 2008   162

Zabierowski, S. & DeLuca, N. A. (2004). Differential cellular requirements for 
activation of herpes simplex virus type 1 early (tk) and late (gC) promoters 
by ICP4. J Virol 78, 6162-70. 

Zhu, X. X., Chen, J. X., Young, C. S. & Silverstein, S. (1990). Reactivation of latent 
herpes simplex virus by adenovirus recombinants encoding mutant IE-0 
gene products. J Virol 64, 4489-98. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Appendices 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Tanya Chaudry 2008   163

Appendices 
 
Appendix A: Recombinant Viruses 
 
EYP-tagged HSV-1 recombinant viruses 
 

Virus Transgene locus Mutations to HSV-
1 recombinats 

in1374 
Negative control 

E.coli lacZ inserted in to the 
UL43 locus 

VP16, ICP0. ICP4  

in1310 
HCMV EYFPpp71 inserted into 
the TK locus 

E.coli lacZ inserted in to the 
UL43 locus 

VP16, ICP0. ICP4 

in0150 
SCMV EYFPS82 inserted into the 
TK locus 

E.coli lacZ inserted in to the 
UL43 locus  

VP16, ICP0. ICP4 

in0146 
ChCMV EYFPCh82 inserted into 
the TK locus 

E.coli lacZ inserted in to the 
UL43 locus 

VP16, ICP0. ICP4 

in0144 
RhCMV EYFPRh82 inserted into 
the TK locus 

E.coli lacZ inserted in to the 
UL43 locus 

VP16, ICP0. ICP4 

in0145 
BCMV EYFPB82 inserted into the 
TK locus 

E.coli lacZ inserted in to the 
UL43 locus 

VP16, ICP0. ICP4 

 
myc-tagged HSV-1 recombinant viruses 
 

Virus Transgene locus Mutations to HSV-
1 recombinats 

in0149 
ChCMV82 mycCh82 inserted into 
the TK locus 

E.coli lacZ inserted in to the 
UL43 locus 

VP16, ICP0. ICP4 

in0151 
HCMV mycpp71 inserted into the 
TK locus 

E.coli lacZ inserted in to the 
UL43 locus 

VP16, ICP0. ICP4 

 
Other HSV-1 recombinant viruses used in this study 
 

Virus Transgene locus Mutations to HSV-
1 recombinats 

in1382 E.coli lacZ inserted in to 
the TK locus 

 
VP16, ICP0. ICP4 

in0156 
EYFPTC6 inserted into the TK 
locus 

E.coli lacZ inserted in to 
the UL43 locus 

 
VP16, ICP0. ICP4 

in1318 
Secreted alkaline phospatase 
(SEAP) inserted into the TK 
locus 

  
VP16, ICP0. ICP4 
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All HSV-1 recombinant viruses used in this study were impaired for the 

transcriptional stimulating activity of VP16 the IE proteins ICP0 and ICP4 were 

rendered non-functional by deletion and temperature sensitive mutations 

respectively. 

 



RING  
deleted

ICP0

VP16

(in1814)

ICP4 
(tsK)

ICP4 
(tsK)

HSV-1 multiple mutant in1312

A multiple mutant inactive for the functions of the three major HSV-1 transcription activators 

VP16, ICP0 and ICP4 at 38.5o but contains lacZ under the control of the HCMV MIEP. 



In1312 based recombinant expressing the EYFP/myc-tagged UL82 homologues or EYFP-tagged 
hybrid protein TC6

Thymidine kinase 
locus

MIEP
SV40 
Term

pp71

Ch82

S82

B82

Rh82

Hybrid TC6

HSV-1 HSV-1

lacZ

UL43 locus

The in1312 HSV-1 multiple mutant was used to construct the negative control in1374, which has lacZ inserted into the 
UL43 locus. In1374 was used as a vector to express the Ul82 homologues or hybrid protein TC6 by insertion of the 
appropriate DNA cassette into the TK locus.  All the HSV-1 recombinant viruses lack VP16, ICP0 and ICP4 function at 
38.50



In1382

Thymidine 
kinase locus

HSV-1 HSV-1

MIEP SV40 
Term

E.coli lacZ

Thymidine 
kinase locus

HSV-1 HSV-1

MIEP SV40 
Term

SEAP

In1318

In1382 was constructed by inserting the E.coli lacZ reporter gene into the TK locus, in1318 was constructed by inserting 
the gene expressing SEAP into the TK locus.  Each HSV-1 mutant virus was impaired for the transcriptional activity of 
VP16, ICP0 and contained a temperature sensitive mutation at ICP4 rendering the viruses inactive at 38.50

Other HSV-1 in1312 based recombinant viruses used in this study



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B 
Genome organisation of the HCMV Strain Merlin 
Coloured arrows indicate protein-coding regions and the name of each gene is 

indicated below. 

The Merlin image was kindly provided by Dr. Andrew Davison 
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