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Abstract 

We begin in Chapter 1 by considering the original framework in which most work in stable homotopy 

theory has taken place, namely the stable homotopy category. We introduce the idea of structured 

ring and module spectra with the definition of ring spectra and their modules. We then proceed by 

considering the category of S-modules As constructed in [19]. The symmetric monoidal category 

structure of As allows us to discuss the notions of S-algebras and their modules, leading to modules 

over an S-algebra R. In Section 2.5 we use results of Strickland [43] to prove a result relating to 

the products on ko/w as a ko-module. 

A survey of results on nuclear and minimal atomic complexes from [5] and [23] is given in the 

context of As in Chapter 3. We give an account of basic results for topological Andre-Quillen 

homology (HAQ) of commutative S-algebras in Chapter 4. In Section 4.2 we are able to set up 

a framework on HAQ for cell commutative S-algebras which allows us to extend results reported 

in Chapter 3 to the case of commutative S-algebras in Chapter 5. In particular, we consider the 

notion of a core of commutative S-algebras. We give examples of non-cores of MU, MSU, MO and 

MSO in Chapter 6. We construct commutative MU-algebra MU //X2 in Chapter 7 and consider 

various calculations associated to this construction. 
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Introduction 

Our research into nuclear, minimal and minimal atomic commutative S-algebras was motivated by 

results on cores of complexes (spaces and spectra) by Hu, Kriz and May in [23] and by a later paper 

on minimal atomic complexes by Baker and May [5]. Hu, Kriz and May [23] note that their work 

on complexes could equally well have taken place in the category of S-modules .As that has been 

constructed by Elmendorf, Kriz, Mandell and May in [19]. It is in this context that we present, in 

Chapter 3, known results on minimal atomic and nuclear spectra contained in [23] and [5]. 

The category .As has an associative, commutative and unital smash product and a derived 

category ~s that is equivalent to the stable homotopy category hY. This symmetric monoidal 

structure of .As allows us in Section 2.3 to define an S-algebra and a commutative S-algebra which 

are versions of the earlier notions of Aoo and Eoo ring spectra. We discuss hY, also described as 

the derived homotopy category, in Chapter 1 where we draw a parallel between this and the derived 

category of an abelian category discussed in Section 1.3. The theory of model categories (Section 

1.4) allows us to obtain hY from the category of spectra Y. 

Associated to an S-algebra R, we have the category.AR of R-modules and the derived category 

~R of R-modules. In Section 2.5 we work in ~R and follow results by Strickland given in [43]. 

Strickland constructs R-modules R/x for x E 7rn R and considers when these constructions inherit 

an associative and commutative product structure from R. We consider a particular example, 

namely R = ko. As 7r * (ko) is not concentrated in even degrees, this example does not satisfy the 

hypothesis used by Strickland. The main result of the section is given in Proposition 2.15. 

It seems entirely appropriate to ask whether results of [23] and [5] that exist for S-modules also 

hold for S-algebras and commutative S-algebras. Hu, Kriz and May [23] begin work on this theory 

by constructing a core of a commutative S-algebra which in turn leads to the definition of a nuclear 

commutative S-algebra. We present this construction and the definition of a nuclear commutatiye 
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S-algebra in Chapter 5. 

Hu, Kriz and May prove In [23, Proposition 1.5] (stated in Theorem 3.13) that a nuclear 

complex is atomic. The proof uses an argument based on a skeletal filtration of a nuclear complex 

and involves a commutative diagram of ordinary homology long exact sequences. This argument 

suggests that in order to prove that a nuclear commutative S-algebra is atomic we must employ a 

suitable homology theory for commutative S-algebras. 

Such a homology theory was founded by Basterra [6] and is called topological Andre-Quillen 

homology. We give an account of some basic results on topological Andre-Quillen homology (HAQ) 

for CW commutative S-algebras in Chapter 4. This discussion includes the development of argu­

ments based on skeletal filtrations and results in an isomorphism analogous to the classical Hurewicz 

theorem. 

In Theorem 5.5 we are able to show that every nuclear commutative S-algebra is an atomic 

commutative S-algebra. This result was conjectured by Hu, Kriz and May in [23, Conjecture 

2.9]. The proof mirrors that of [23, Proposition 1.5], but utilizes the topological Andre-Quillen 

homology machinery for cell S-algebras set up in Section 4.2 in place of ordinary homology. In 

particular we apply the associated HAQ long exact sequence for cell commutative S-algebras. The 

proof of [23, Proposition 1.5] makes use of the Hurewicz theorem to reduce the problem to a 

chase of a diagram of homotopy groups and application of the nuclear condition for S-modules. 

The proof of Theorem 5.5 also requires the application of the nuclear condition for commutative 

S-algebras. However, in place of the Hurewicz theorem we use the isomorphism 7rn+l~Kn ----+ 

HAQn+l(Xn+dXn) referred to above and given in diagram 4.16. 

Proposition 5.6 characterizes minimal atomic commutative S-algebras in terms of nuclear com­

mutative S-algebras. The result follows by considering a core f : X ----+ Y of minimal atomic 

commutative S-algebra Y. 

Baker and May in [5, Proposition 2.5] show that every core of a nuclear complex is an equiva­

lence. The proof of Theorem 5.5 strongly suggests that the same result will hold for commutative 

S-algebras (Conjecture 5.7). We are able to present a detailed account of how the proof of this re­

sult might work and the completion of the proof hinges upon proving that an epimorphism between 

the homotopy groups of two cofibres is in fact an isomorphism. 

If we assume that Conjecture 5.7 holds we are able to show that a nuclear commutative S-
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algebra is a minimal atomic commutative S-algebra (Conjecture 5.8). This is the commutative 

S-algebra analogue of [5, Theorem 2.6] which was originally conjectured by Hu, Kriz and r--Iay in 

[23, Conjecture 1.12] and is stated in terms of S-modules in Proposition 3.14. This result would 

give us a strengthening of Theorem 5.5 with Conjecture 5.7 playing a key role in the proof. 

Supposing Conjecture 5.8, we can make the interesting observation given in Conjecture 5.10, 

which again compares the characterization of a commutative S-algebra with that of its underlying 

S-module. 

The notion of minimality was introduced by Baker and May in [5], where they proved in 

[5, Theorem 3.3] that every complex is equivalent to a minimal one. In Section 5.3 we give a suitable 

definition of a minimal commutative S-algebra. We prove the analogous result to [5, Theorem 3.3] 

for commutative S-algebras in Theorem 5.12. We also show in Theorem 5.14 that a commutative 

S-algebra R is nuclear if and only if it is minimal and has no mod p detectable homotopy. This 

result explains the relevance of minimality to the theory of nuclear and minimal atomic S-algebras 

and is in fact the analogous result to that for complexes given in [5, Theorem 3.4], which is stated 

for S-modules in Theorem 3.19. The proof requires a commutative diagram involving a modp HAQ 

long exact sequence. The diagram is obtained in Chapter 4. 

We prove in Proposition 5.9 that for any core g : Q ----+ R of S-algebras, we have cores of 

S-modules f : X ----+ R and ~ : X ----+ Q such that f = g 0 ~. This result leads us to consider 

examples of non-cores for commutative S-algebras MU, MSU, MO and MSO (cobordism Thorn 

spectra) in Chapter 6. Our results rely on the action of the Dyer-Lashof algebra on the homology 

of the commutative S-algebras under consideration and are based on formulae of Kochman [24]. 

In Chapter 7 we concern ourselves with the Thorn spectrum MU, considered as a commutative 

S-algebra. We begin by constructing a commutative MU-algebra, denoted MU//X2 via a pushout 

construction involving homotopy element X2 E 7r4(MU). This construction can be thought of 

as the R-algebra analogue to the construction of R-module R/x in Section 2.5. In Section 7.1.1 

we calculate 7r*(MU //X2) via a Kiinneth spectral sequence which gives us an introduction to the 

techniques that could be employed to further investigate MU//X2. It seems reasonable to expect 

that we could use the theory of topological Andre-Quillen homology (HAQ) for CW commutative 

S-algebras (Chapter 4) to calculate HAQk(MU //X2/ S) via HAQ long exact sequences. We consider 

this approach in Section 7.1.2 and note that this may require the calculation of H*(ku). To obtain 
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H*(ku) we need to consider the Hurewicz homomorphism h : 7r*(MU) ---+ H*(MU) and its image. 

In Section 7.2 we again consider the action of the Dyer-Lashof algebra on H*(MU). We carry out 

preliminary calculations with the aim of establishing a full description of H*(MU) in terms of the 

allowable Dyer-Lashof operations on homotopy element X2. 

4 



Chapter 1 

Spectra and the Stable Homotopy 

Category 

In this chapter we explore the fundamental ideas on which the following chapters are based. We 

begin with a brief explanation of the term stable homotopy theory as a branch of algebraic topology. 

We discuss the framework in which, until recently, most work in stable homotopy theory has taken 

place, namely the stable homotopy category. This category was first introduced by Boardman [10] 

and was developed further by Adams [2]. 

For reasons we shall see later, topologists generally work with rings and modules in the stable 

homotopy category and with products and actions defined only up to homotopy. The resulting 

objects are known as ring spectra and are discussed in Section 2.1. 

1.1 Stable Homotopy 

Stable homotopy theory is a branch of algebraic topology which is concerned with invariants that 

are stable under suspension. Stable homotopy theory began around 1937 with the Freudenthal 

Suspension Theorem. In the simplest of terms this theorem states that homotopy groups are 

invariant under suspension (under some dimension limitations). In order to further explore stable 

homotopy theory we require several basic definitions accompanied by some explanation. 

For based spaces (X, xo) and (Y, Yo), the analogue of the cartesian product is the smash product 
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X /\ Y, defined to be the quotient space 

X /\ Y = X x Y/(X x {Yo} u {xo} x Y). 

The suspension of a based topological space (X, xo), denoted ~X, is defined to be the smash 

product X /\ Sl. If we view Sl as 1/81, then we can consider the suspension of X, ~X as the 

double cone over X with the interval over the basepoint Xo collapsed. Sometimes this construction 

is called the reduced suspension to distinguish it from the unreduced construction, where the line 

{xo} x I, through the basepoint of X is not collapsed to a point. The suspension of the n-sphere 

sn for n > 0 is homeomorphic to the (n + 1 )-sphere sn+ 1 . 

The most basic invariants in algebraic topology are the homotopy groups. The nth homotopy 

group 7fn(X) of a topological space X is given by the homotopy classes of based maps from the 

n-sphere sn to X, denoted [sn, X], for n > o. We think of two maps being homotopic if one can 

be continuously deformed into the other. 

For a based topological space X, we can define the suspension homomorphism ~ as follows; we 

take f : sq ----+ X as a representation of an element of 7fq(X) and let 

We give the following theorem known as the Freudenthal Suspension Theorem, the proof of 

which can be found in [35]. 

Theorem 1.1. Let X be a (n - 1) -connected, based topological space, where n > 1. Then ~ 

7f q (X) ----+ 7f q+ 1 (~X) is a bijection if q < 2n - 1 and a surjection if q = 2n - l. 

By taking X in the above theorem to be the n-sphere sn, we can consider the homotopy groups 

of spheres 7f n+r (sn) and the suspension homomorphism 

~ : 7fn+r(sn) ----+ 7fn+r+1(~sn+1). 

We have that this homomorphism is an isomorphism for n > r + 1 and so 7f n+r (sn) stabilizes as n 

becomes large. 

The homotopy groups 7fn+r (sn), n > r + 1 are called the stable homotopy groups of spheres, 

written as 7f~. 

Homology and cohomology groups are also invariant under suspension and provide a tool for 

solving stable problems. We can even go as far as to say that generalized homology and cohomology 

form part of stable homotopy theory. 
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1.2 Spectra 

Before defining what we mean by the term spectrum, we should, as the name suggests, introduce 

the notion of a prespectrum. Once we have explored the concept of a prespectrum~ the ideas of 

homotopy and spectra, particularly CW spectra, become much more transparent. 

Definition 1.2. A prespectrum is a sequence of based topological spaces {En: n > O} and based 

continuous maps 'EEn --+ En+l, or equivalently En --+ OEn+1 . 

For a space X with a basepoint Xo, the loop space of X, OX, is the space of all continuous 

basepoint preserving maps (Sl, *) --+ (X, xo), with the compact-open topology. As a basepoint 

for OX, we take the function Wo, constant at Xo. 

Definition 1.3. The suspension prespectrum of any based space X is denoted {'En X}, the required 

maps 'E('En X) --+ 'En+1 X are the evident identifications. 

Example 1.4. The sphere prespectrum (or O-sphere prespectrum) is the suspension prespectrum 

of So. That is, the sphere prespectrum is a sequence of spaces with the nth term sn for n > 0 

(we take a point for negative dimension), and so, we get the sphere prespectrum by suspending the 

(n - 1)-sphere at each step n. 

Example 1.5. We denote the Eilenberg-Mac Lane prespectrum by {K(n, n), n > 1}. The spaces 

K(n, n) are Eilenberg-Mac Lane spaces associated to abelian groups n. Eilenberg-Mac Lane spaces 

have the homotopy types of CW complexes and are constructed such that 

nq(K( n, n)) = { : 
q=n 

q f= n. 

Prespectra are stable objects that have associated homotopy, homology and cohomology groups. 

We aim to arrive at a good category of stable objects, analagous to the category of based spaces that 

has all the constructions we would expect from based spaces. These include suspensions, co fibre 

sequences and smash products. The objects of such a good category are known as spectra. There 

is a way of constructing a spectrum from a prespectrum without changing its homotopy, homology 

or cohomology groups. We use a spectrijication functor which is the left adjoint L : fYJ -----t Y to 

the forgetful functor l : Y --+ fYJ from the category of spectra to the category of prespectra. \Ye 
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give the definition of a spectrum below and it is clear that if we drop the requirement that the 

maps are homeomorphisms than we get the notion of a prespectrum. The idea of a spectrum was 

first introduced by Lima [31] in 1958 and utilized by Adams [2]. The particular definition given 

below was presented by Lewis, May and Steinberger [30] in 1986 and replaced earlier definitions of 

spectra by a notion of greater generality. 

Definition 1.6. A spectrum E is a prespectrum such that the adjoints (j : En --> nEn+1 of the 

structure maps (T : 2:.En ----+ En+l are homeomorphisms. A map f : T ----+ T' of prespectra is a 

sequence of maps fn : Tn ----+ T~ such that (T~ 0 2:.fn = fn+l 0 (Tn for all n. A map f : E ----+ E' of 

spectra is a map between E and E' regarded as prespectra. 

So, a map of spectra is a sequence of based continuous maps fn : Tn ----+ T~ which are strictly 

compatible with the structure maps, we have the following commuting diagram for each n. 

The suspension spectrum of based space X is given by 

We define the sphere or O-sphere spectrum to be S = L.oo SO and we define sphere spectra for 

integers n by sn = L.oo sn. 
The smash product T 1\ X of a prespectrum T with a space X is defined space-wise, that is, 

(T 1\ X)n = Tn 1\ X. For a spectrum E, E 1\ X is given by applying the functor L to the prespectrum 

level construction. 

A homotopy in the category of spectra is a map E 1\ 1+ ----+ E' and we let [E, E'] denote the 

set of homotopy classes of maps between spectra E and E'. 

Homotopy groups of spectra are given by 

A cofibration of spectra is a map i : E ----+ E' that satisfies the homotopy extension property 

(HEP). This means that if h 0 io : E ----+ F is a restriction of a map f : E' ----+ F then it extends 

to a homotopy h : E' 1\ 1+ ----+ F of f. We have h making the following diagram commute. 
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io 
E ----~> E 1\ 1+ 

~ 
i F iAid 

y~ 
E' ----~> E' 1\ 1+ 

io 

A fibration of spectra is a map p : E ---+ E' that satisfies the covering homotopy property 

(CHP). This means that a homotopy h : F 1\ 1+ ---+ E' of a projection po f where f : F ---+ E, is 

covered by a homotopy It : F 1\ 1+ ---+ E of f. We have It making the following diagram commute. 

F f» E 

~l Ylp 
FI\I+~E' 

h 

The notion of a spectrum is very natural if we begin with something called a cohomology theory. 

Essentially, a cohomology theory can be represented by a spectrum. This is a simple statement 

of Brown's represent ability theorem [13] and to explain this in more detail we need to introduce a 

large class of spaces called CW complexes. 

A CW complex is built up from standard building blocks called cells. Each n-cell is homeo­

morphic to the open n-dimensional disc or ball en. A CW complex is a space which is the union 

of an expanding sequence of closed subspaces 

XO C Xl C X2 C··· . 

XO is a discrete set of points and xn is called the n-skeleton of X and is obtained by attaching 

n-cells to X n - l via attaching maps j : sn-l ---+ X n - l , so from the boundary of a single n-disc to 

the (n - 1 )-skeleton. 

As alluded to earlier, if we take a cohomology theory or more specifically, a reduced cohomology 

theory K* on CW complexes then we have a sequence of contravariant functors K n 
: ~1f/ ---+ szI 

from the category of CW complexes to the category of abelian groups. As a cohomology theory 

this sequence satisfies certain properties. If, along with these properties the cohomology theory 

K* satisfies something called the Wedge Axiom then we can apply the represent ability theorem of 
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Brown. Brown's Representability Theorem essentially means that there exists a sequence of C1V 

complexes 

along with isomorphisms 

The sequence of spaces K = {Kn }nEZ form a spectrum and we say that this spectrum K represents 

the cohomology theory K*. 

A CW prespectrum has all spaces CW complexes Dn and all structure maps 'LDn ------+ Dn+l 

are cellular. The theory of CW spectra is developed by taking the domains of the attaching maps 

to be sphere spectra sn. 
The fundamental invariants of spectra are their homotopy groups and we say that a map of 

spectra is a weak equivalence if it induces an isomorphism on homotopy groups. As with based 

spaces, the Whitehead theorem holds that is, a weak equivalence between CW spectra is a homotopy 

equivalence. As a consequence, we have for every spectrum E, a weak equivalence I : r E ------+ E 

for some CW spectrum r E. 

1.3 Derived Categories of Abelian Categories 

We base this account of localization and derived categories on the texts of Konig and Zimmermann 

[25] and Weibel [46] and aim to provide a comprehensive overview of the processes involved. We 

begin with an abelian category d, and aim to construct the derived category D(d). We note that 

Konig chooses to write maps on the right and therefore denotes "g follows £" by fg. Throughout 

the rest of this thesis we shall be thinking in terms of maps on the left and will therefore give a 

close account of the material in [25] using this convention. 

This construction involves performing a localization procedure on a homotopy category K(d). 

This involves inverting morphisms which are quasi-isomorphisms, and so, in building the derived 

category D(d) we are forcing certain complexes to become isomorphic. Essentially, if we have two 

complexes X and Y that are related by a morphism f that induces an isomorphism in cohomology, 

then these complexes will become isomorphic. 
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We begin with an abelian category sz1 and we have the following definitions. 

Definition 1. 7. A complex X in sz1 consists of two double infinite sequences {Xn}nEZ and {d'X }nEZ 

where xn is an object in sz1 and d''X is a differential or morphism in Hom,J;1'(Xn,Xn+1). We have 

the condition that ~+ldx = o. 

Definition 1.8. A homomorphism between two complexes X and Y is a sequence {fn }nEZ of 

morphisms fn E Homd(Xn, yn) such that the diagram shown below commutes. 

X n- 1 dn - 1 dn x xn x ) xn+1 ) ) -----*) ... 

r- 1l rl r+11 
yn-1 

dn - 1 dn 
yn+1 y yn y 

) ) ) -----*l ... 

We consider the category 0(sz1) of complexes as defined above, which is also an abelian category. 

We also note that if sz1 has enough projectives and enough injectives, then to any object M in our 

abelian category, we can associate a projective resolution and an injective resolution, all of these 

'disguised' versions of M will become isomorphic in the derived category D(sz1). 

Definition 1.9. A homotopy between two morphisms f and g from X to Y is a sequence {Sn}nEZ 

of morphisms sn : xn -------+ yn-1, such that fn - gn = ~-1 sn + sn+ldx for each n. 

d'X 
xn ----~) X n+1 

yn-1 ____ .,..;. yn 
dn - 1 

y 

We say that f and g, in the above definition, are homotopic and we have an equivalence relation. 

If a morphism is homotopic to a zero morphism then it is described as being null homotopic. If 

the identity morphism of a complex X is homotopic to a zero morphism then X itself is homotopy 

equivalent to the zero complex. 

Example 1.10. Consider the example shown below of a complex in the category of abelian groups 

along with the identity morphism. The only possible homotopy map for s2 : Zj2Z -------+ Z is the 

zero map. In fact we choose sl to be multiplication by m and all other homotopy morphisms are 
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forced to be zero. 

It is clear that this does not give a homotopy between the identity and the zero map and we can 

therefore say that the complex in question is not homotopy equivalent to the zero complex. 

Example 1.11. Now consider an alternative example of a complex in the category of abelian 

groups along with the identity morphism. The maps in the complex are the obvious inclusion and 

projection maps. We put 8
1 

: Z/2Z ---t Z EB Z/2Z as the inclusion into the second factor and 

8
2 

: Z EB Z/2Z ---t Z as the projection onto the first factor. 

0-Z - Z EB Z/2Z - Z/2Z - 0 

;/1/1/17 
0-Z - Z EB Z/2Z ------+ Z/2Z - 0 

These homotopy morphisms give a homotopy between the identity and the zero map and we can 

therefore say that the complex is homotopy equivalent to the zero complex. 

We are now in the position to take the first step towards forming the derived category D(d). 

That is, we now pass from C(d) to the homotopy category, as given in the following definition. 

Definition 1.12. For the category of complexes C(d) of an abelian category d, consider two 

complexes X and Y in C(d) and let Ht(X, Y) be the set of morphisms from X to Y that are 

homotopic to zero. With X and Y fixed, note that HOmC(d) (X, Y) is a group under addition, the 

new set Ht(X, Y) is a subgroup and the cosets of this subgroup are precisely the homotopy classes 

of maps, or in other words the equivalence classes of maps under the relation of homotopy. Konig 

[25, Definition 2.2.3] emphasizes this further by pointing out that the collection of all sets Ht(X, Y) 

as X and Y vary form in effect an ideal in the entire category. This is because the composite of 

two maps, one of which is null homotopic, will also be null homotopic. We form the homotopy 

category K(d) whose objects are those of C(d) but whose morphism sets are given by 

HOmK(d) (X, Y) = HOmC(d) (X, Y)/ Ht(X, Y). 
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There is an obvious functor from C(d) to K(d), along with an associated universal property. 

Details can be found in Weibel's book [46, Proposition 10.1.2]. 

As stated in Chapter 2 of [25]' the category K(d) is a triangulated additive category, but in 

general not abelian. We introduce the concept of a triangle in K(d) below and refer the reader to 

[46], Chapter 10 for further details on triangulated categories. We will however include a sketch of 

the definition of a triangulated category. 

Definition 1.13. An additive category 1 is called a triangulated category if it has an automor­

phism T : 1 ----? 1, a family of distinguished triangles and is subject to a number of axioms 

(six in Konig's account [25] and four in Weibel's account [46]). The distinguished triangles always 

consist of four objects and three morphisms like this: 

A ----? B ----? C ----? T ( A) . 

Notice that the fourth object is always the translate by T of the first. 

(TRO) The collection of distinguished triangles is closed under isomorphism of triangles. This axiom 

is Konig's TRO [25, Theorem 2.3.1]' and Weibel includes this as a part of an axiom TRI 

[46, Definition 10.2.1], hence the ambiguity on how many axioms are required. 

(TRl) For each object X in 1 there is a distinguished triangle 

X ~ X ----? 0 ----? T(X) 

involving the identity map on X. This tells us that every object in the category appears in at 

least one distinguished triangle. This axiom is Konig's TRI [25, Theorem 2.3.1], and Weibel 

includes this as a part of his TRI [46, Definition 10.2.1]. 

(TR2) Given any homomorphism f : X ----? Y in 1, there is a distinguished triangle 

X L Y ----? Z ----? T(X) 

involving f. This tells us that every morphism in the category appears in at least one 

distinguished triangle. This axiom is Konig's TR2 [25, Theorem 2.3.1]' and is part of Weibel's 

TRI [46, Definition 10.2.1]. 
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(TR3) If the triangle 

x ---L y ~ Z ~ T(X) 

is distinguished, then the triangles 

y ~ Z ~ T(X) -!J!) T(Y) 

and 

are distinguished. This is known as the rotation axiom and the two triangles above are rotates 

of the first. This axiom is Konig's TR3 [25, Theorem 2.3.1]' and Weibel's TR2 [46, Definition 

10.2.1] . 

(TR4) If 

X~Y~Z~T(X) 

and 

x' L Y' ~ Z' ~ T(X') 

are distinguished triangles, with commutative diagram 

x f ) Y 

f ' X' -~) Y' 

then there exists a morphism w : Z ~ Z' giving a morphism of triangles, as shown below. 

X f )Y 9 )Z h ) T(X) 

ul vl wl T(u) 1 
x' f' ) Y' 

g' 
) Z' h' 

) T(X') 

This axiom is Konig's TR4 [25, Theorem 2.3.1], and Weibel's TR3 [46, Definition 10.2.1]. 

(TR5) Verdier's octahedral axiom holds. This axiom is often regarded as the most complicated 

and confusing of the axioms (see [46, Exegesis 10.2.3] for example). However there are good 

accounts in [46] and Chapter 2 of [25]. 
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The translate T(X) of an object X can also be written as X[l]. In this alternative notation we 

can write X[n] to mean that we have applied the translate n times. Also, since we have the notion 

of translating X in the opposite direction given by T-I(X), it makes sense for n to be negative. 

We are interested in a particular example of a triangulated category, namely K(szI). We consider 

the kth translate of a complex X in C(szI) , described in [25] as applying the shift functor. This 

functor is defined for an integer k, and sends a complex X to another complex X[k] defined by 

X[k]n:= xn+k and d~[k] := (_l)k~+k. It is clear that applying the shift functor for a positive k 

moves a complex to the left. The definition of the mapping cone below explains the reason for the 

differential sign convention. 

Definition 1.14. For complexes X and Y in C(szI), we consider the morphism f : X ---+ Y. The 

mapping cone of f is the complex M(f) whose degree n part is xn+1 EEl yn and the differential is 

given by the matrix d%IU) := X[I] . 
(

d
n 0) 

f n+1 dy 

We now define what is meant by a distinguished triangle in the category K (szI). 

Definition 1.15. A distinguished triangle in the category K(szI) is a triangle which is isomorphic 

to a strict triangle which is of the form 

X L y ---+ M(f) ---+ X[l]. 

By this, we mean that there is a commutative diagram of chain complexes in K(szI) as follows 

X f )Y g 
Z 

h ) X[l] 

ui vi wi T(u) 1 
x' f' ) y' g' 

) M(f) h' ) X'[l] 

such that the maps u, v and ware isomorphisms in K(szI). 

A distinguished triangle is sometimes referred to as an exact triangle (see for example [46, 

Definition 10.1.3]). 

Moving from the category C(szI) to the homotopy category K(szI) forces complexes that are 

homotopy equivalent to zero to be isomorphic to zero. Before constructing the derived category 

D(szI), in which two complexes related by a morphism which induces an isomorphism in cohomology, 

will become isomorphic, we must define the nth cohomology of X in C(szI). For an integer n, we 
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write zn(x) for the kernel of the differential d''X and Bn(x) for the image of d'l-1. The nth 

cohomology of X is written as Hn(x) and is the quotient zn(X)j Bn(x). Complexes with all 

cohomology zero are called exact. Hn(_) : O(d) ---+ d is an additive functor. We have the 

following result. 

Lemma 1.16. If f : 0 ---+ D is null homotopic then every map fn : Hn(o) ---+ Hn(D) 'ts zero. 

A complex which is homotopy equivalent to zero is exact. But notice, as we have seen, that exact 

complexes need not be homotopy equivalent to zero. 

As already mentioned, the derived category D(d) is constructed via a localization procedure. 

D(d) is defined to be the localization Q-1 K(d) of the homotopy category K(d) at a collection 

of quasi-isomorphisms Q. We explain what is meant by the term localization by including the 

definition [46, Definition 10.3.1] below. 

Definition 1.17. Let 8 be a collection of morphisms in a category O. A localization of 0 with 

respect to 8 is a category S-10, together with a functor q : 0 ----+ 8-10 such that 

1. q ( s) is an isomorphism in S-10 for every s E 8; 

11. Any functor F : 0 ----+ D such that F (s) is an isomorphism for all s E S factors in a unique 

way through q. 

The existence of localizations becomes a set theoretic problem when the class S is not a set 

(see [46, Set-Theoretic Remark 10.3.3]). The quasi-isomorphisms we are going to invert in our 

localization procedure are defined as follows. 

Definition 1.18. Consider a morphism f : X ----+ Y in K(d). If Hn(f) : Hn(x) ----+ Hn(y) 

is an isomorphism in d for any integer n, then we call f a quasi-isomorphism and X and Y 

quasi-isomorphic. 

Konig [25] mentions an equivalent condition for f to be a quasi-isomorphism, that is, the 

mapping cone M(f) has zero cohomology. We can see this by considering the long exact cohomology 

sequence 
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We can see that if f is a quasi-isomorphism then the induced map Hn(f) : Hn(x) -----+ Hn(y) is 

an isomorphism and so by exactness Hn(M(f)) = 0 and vice-versa. 

We localize a category ce with respect to a certain class of morphisms. This class is called a 

multiplicative system and it satisfies certain conditions. 

(81) For each object X in ce, the identity morphism on X is in S. 

(82) If f : X ~ Y and 9 : Y -----+ Z are in S, then gf is in S. 

(83) If there is a diagram 

Z 

t9 

X~Y 
with 9 in S, then there exists some object Wand h : W -----+ X in Sand k : W ~ Z such 

that the following diagram is commutative. 

We can write this condition as g-l f = kh-1. This is sometimes called the Ore condition and 

allows us to define composition. It is named after the Norwegian mathematician 0ystein Ore 

(1899-1968). 

(84) If f, 9 : X -----+ Yare parallel morphisms in ce then the following two conditions are equivalent: 

(a) tf = tg for some t E S, t : Y ~ Y'. 

(b) f8 = g8 for some 8 E S, 8: X' -----+ X. 

This condition is used when proving that compositions are well defined. 

If we have a multiplicative system S, then we can form the category ces called the localization 

of ce at S. This category has the same objects as the original category ceo For any two objects X 

and Y, the morphisms from X to Y in ces can be thought of as a triple (X', 8, f) where X, is any 

object, 8 : X' ~ X is in Sand f : X, -----+ Y is any morphism. We can think of the morphisms 

from X to Y as fractions. 

f8- 1 : X ~ X' L Y 
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We define an equivalence relation by calling X ~ X' ~ Y equivalent to X ~ X" ~ Y if and 

only if there is a fraction X +--- XIII ---+ Y fitting into a commutative diagram in <"C. 

X' 

/i~ 
X +---- X'" ---- Y 

~t/' 
X" 

It can be shown that this is indeed an equivalence relation. 

It is also important to consider the composition of our new morphisms. If we want to compose 

X ~ X' ~ Y with Y ~ Y' ~ Z, we use the Ore condition to find a commutative diagram 

And so the composition given as 

and rewritten by the Ore condition, and expressed as hf(rs)-l. Hence the composite is the class 

of the fraction X +--- Y ----? Z. We can prove that this composition is well defined. 

It is clear that we have just defined localization with respect to a class of morphisms, it is also 

possible to localize with respect to a class of objects. This class of objects is known as a null system 

TJ and is defined by Konig [25, Definition 2.5.3]. The definition utilizes the triangulated category 

structure of <"C by working with distinguished triangles. To this null system or class of objects in a 

category <"C, Konig associates a class of morphisms, denoted by S(TJ). Konig defines S(TJ) as follows. 

Definition 1.19. For null system TJ, we define 

S(T/) = {f : X ---+ Y} 

such that X and Yare objects in <"C and there is a distinguished triangle 

with Z in T/. 
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S(TJ) is a multiplicative system. We form the category ~S(TJ) by localising with respect to S(TJ) 

and write ~S(TJ) as ~ fTJ, since the canonical functor Q : ~ ~ ~ fTJ sends any object Z E TJ to zero 

as follows. 

By TR1 for triangulated categories we have a distinguished triangle 

Z ~ Z ~ 0 ~ Z[l] 

with idz E S(TJ). Hence (by TR3 or rotation) we have distinguished triangle 

where Z[l] E TJ and hence Z ~ 0 E S(TJ) and so is inverted in ~ fTJ and becomes an isomorphism, 

and therefore Z is sent to O. 

To summarize, we have defined a class of objects in a triangulated category ~ known as the 

null system TJ and we have shown that we can associate to this class of objects a class of morphisms 

S(TJ) giving us a multiplicative system which we can use to localize. 

We now apply this same construction to the triangulated category K(~). The null system is 

defined by 

TJ := {X E ~: Hn(X) = 0, \In E Z}. 

Then S(TJ) consists of those morphisms f : X ~ Y such that there is a distinguished triangle 

with Z E TJ, that is, Hn(z) = O. We pass to cohomology giving the following long exact sequence 

0= Hn-l(z) -+ Hn(X) -+ Hn(y) ~ Hn(Z) = 0 

in which the cohomology of Z vanishes since Z is in the null system. Thus we have the isomorphisms 

and f is therefore a quasi-isomorphism. The derived category D(~) is the localization of the 

homotopy category with respect to S(TJ) as defined. 

The following proposition is given by Konig [25, Proposition 2.5.2]. 
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Proposition 1.20. The functor which is a composition of the embedding and the localization func­

tor 

defines an equivalence between the category ~ and the full subcategory of D(~) having objects with 

cohomology vanishing in non-zero degrees. 

The embedding sends any object M in our abelian category ~ to an associated complex with 

XO = M and all other xn as well as all differentials being zero. This gives a full and faithful 

embedding of ~ into K (~). Complexes of this form have cohomology vanishing in non-zero degrees. 

The motivation for introducing localization is that if we have a distinguished triangle X L 
y ~ Z ~ X[l] in our homotopy category K(~) then Z is quasi isomorphic to the mapping 

cone M(f). So by localizing, the quasi isomorphism M(f) ~ Z becomes an isomorphism. This 

allows us to form the distinguished triangle 

XLY~M(f)~X[l] 

which is sometimes called the strict triangle on f. The important point is that there may be no 

similar distinguished triangle in our homotopy category. 

1.4 Model Categories 

We include the definition of a model category, based on the account given in [17]. The notion of a 

model category allows us to obtain the stable homotopy category of the following section. We begin 

with the following important preliminary notions. 

Definition 1.21. A map f in ~ is a retract of a map g E ~ if and only if there is a commutative 

diagram of the following form, where the horizontal composites are identities. 

A ) C ) A 

B ) D ) B 

Definition 1.22. A functorial factorization is an ordered pair (0:, (3) of functors M ap~ ~ M ap~ 

such that f = (3(f) 0 o:(f) for all f E M ap~. 
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Definition 1.23. Suppose i : A -----+ Band p : X ---+ Yare maps in a category~. Then i has the 

left lifting property with respect to p and p has the right lifting property with respect to i if, for 

every commutative diagram of the following form, there exists a lift h : B -----+ X, such that hi = f 

and ph = g. 

Definition 1.24. ([17, Definition 3.3]) A model category is a category ~ with three distinguished 

classes of maps; weak equivalences, fibrations and cofibrations. Each class of maps is closed under 

composition and contains all identity maps. A fibration or cofibration is said to be acyclic if it is 

also a weak equivalence. We have the following axioms. 

1. Finite limits and colimits exist in ~. 

11. If f and 9 are maps in ~ such that 9 f is defined and two out of three maps f, g and g fare 

weak equivalences, then so is the third. 

lll. If f and 9 are maps in ~ such that f is a retract of g and g is a fibration, cofibration or weak 

equivalence, then so is f. 

IV. The acyclic cofibrations have the left lifting property with respect to the fibrations and the 

cofibrations have the left lifting property with respect to the acyclic fibrations. 

v. Any map f in ~ can be factored in two ways: f = pi where i is a cofibration and p is an 

acyclic fibration or, f = pi where i is an acyclic cofibration and p is a fibration. 

We follow the definition above with a preliminary observation about model categories [17, 

Proposition 3.13]. 

Proposition 1.25. Let ~ be a model category. 

i. The cofibrations in ~ are the maps which have the left lifting property with respect to acyclic 

fibrations. 

1,1,. The acyclic cofibrations in ~ are the maps which have the left lifting property with respect to 

fibrations. 
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iii. The fibrations in C(j' are the maps which have the have the right lifting property with respect 

to acyclic cofibrations. 

iv. The acyclic fibrations in C(j' are the maps which have the have the right lifting property with 

respect to cofibrations. 

Proposition 1.25 implies that the axioms for a model category (Definition 1.24) are over pre­

scribed (as remarked upon in [17], Remark on Proposition 3.13). In describing a model structure 

on a category, it is sufficient to choose the fibrations and weak equivalences or cofibrations and 

weak equivalences. 

1.5 The Derived Homotopy Category 

In this section we aim to describe the process by which we obtain the stable homotopy category 

from the category of spectra Y described in Section 1.2. 

There is a strong motivation for constructing this stable homotopy category to work in. It 

was in the 1960's that algebraic topologists realized that a good 'stable homotopy category' was 

needed in order to carry out calculations. The objects of said category should be the stabilized 

analogue of spaces, each of which represents a cohomology theory. The category in question was 

first constructed by Boardman [10] in 1964 and later reviewed by Adams [2]. 

A primary need in constructing a stable homotopy category was for multiplicative structures 

given by rings and modules. Hence, a smash product E 1\ E, was defined which is associative, 

commutative and unital (with unit the sphere spectrum S). A category with such a product is 

described as symmetric monoidal and this product structure does indeed allow us to use algebraic 

notions such as ring and module in stable homotopy theory. Note that we have a smash product 

1\ which is associative commutative and unital in hY, but we do not have these relations on the 

point-set level. 

The stable homotopy category can be thought of as the topological derived category, that is, 

the analogue of the derived category D(d) of an abelian category described in 1.3. 

In what follows, we use the theory of model categories (see Section 1.4 and homotopy categories 

to obtain hY. 

The terms cofibration and fibration will continue to be used to describe maps which satisfy 
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the homotopy extension property and covering homotopy property respectively. For this reason we 

adopt the same nomenclature as [19] and use q-cofibrations and q-fibrations for the model caterrOfV 
b v 

terms. 

It is important that the category of spectra Y is a model category and so we state the following 

theorem, which is contained within [19, VII Theorem 4.4]. 

Theorem 1.26. The category Y of spectra is a model category with respect to the weak equivalences 

and Serre fibrations. 

A Serre fibration of spectra is a map that satisfies the CHP with respect to the set of "cone 

spectra" (see [19, VII.]). 

Using the basic theory of model categories set up in Section 1.4 and Definition 1.17 we are 

able to use [22, 1.2] and [17, Theorem 6.2], to define the homotopy category h~ associated to a 

model category Cfl. As we shall see, h~ is in fact a localization of ~ obtained by inverting the 

subcategory of weak equivalences. This interpretation of a homotopy category depends only on the 

weak equivalences and suggests that these carry the fundamental homotopy theoretic information. 

Theorem 1.27. Let ~ be a model category and let W be the class of weak equivalences in~. Then 

the functor "I : ~ ---+ h~ is a localization of ~ with respect to W. 

Hence, if ~ is a model category and W is the class of weak equivalences in ~, then W-l~ 

exists and is isomorphic to h~. 

It is now clear that the stable homotopy category or topological derived category hY is isomor­

phic to the localization W-1Y, where W is the class of weak equivalences. We should note that 

in algebraic topology hY denotes the homotopy category where homotopic maps are identified and 

hY denoted the stable homotopy category where we adjoin formal inverses to the weak equivalences 

via a localization procedure as discussed above. 

We are now able to utilize the notion of OW spectra. We use a weak equivalence "I : r E ---+ E 

for spectrum E and OW spectrum r E. 

We also have Whitehead's theorem which states that every weak homotopy equivalence of OW 

spectra is a homotopy equivalence, that is, an isomorphism in hY. These results allow us to show 

the following. 
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Corollary 1.28. The stable homotopy category heY is equivalent to the homotopy category of CltV 

spectra 

We use a similar argument in 2.4 to show that the derived category of R-modules !!JR is equiv­

alent to h~R' 
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Chapter 2 

Structured ring and module spectra 

2.1 Ring spectra and their modules 

In the previous chapter we formed homotopy category hY, in which the homotopic maps are 

identified. The desired stable homotopy category fLY is obtained from hY by adjoining formal 

inverses to the weak equivalences. Every spectrum is weakly equivalent to a CW spectrum and fLY 

is equivalent to the homotopy category of CW spectra. 

We have that the smash product on the stable homotopy category is associative, commutative 

and unital, with unit the sphere spectrum and therefore fLY is symmetric monoidal. The structure 

allows us to carryover algebraic notions such as ring and module to stable homotopy theory. Hence 

we are able to make the definition of a ring spectrum E and E-module M in terms of unit and 

product maps. 

Definition 2.1. A ring spectrum R, is a spectrum R, together with a product ¢: R 1\ R ---+ R, 

and a unit TJ: S ---+ R, such that the unit and associativity diagrams commute in fLY. 
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Further, R is said to be a commutative ring spectrum if the diagram 

RI\R T > RI\R 

~~ 
R 

commutes in hY. 

Example 2.2. The Eilenberg-Mac Lane spectrum H R for R a ring is a ring spectrum. The 

Eilenberg-Mac Lane spectrum is obtained from the Eilenberg-Mac Lane prespectrum (Example 

1.5) in the standard way. 

We also have the following notion of a module spectrum over a ring spectrum R or an R-module. 

Definition 2.3. For a ring spectrum R, an R-module is a spectrum M together with a map 

fL : R 1\ M ~ M such that the diagrams below commute in fLY. 

1]1\1 
SI\M >RI\M 

~~ 
M 

Example 2.4. For R a ring and M a left R module, the Eilenberg-Mac Lane spectrum H M is an 

HR-module. 

2.2 The category of S-modules 

We begin by describing the basic object on which all subsequent work is based: the S-module. 

The following material is based on [19, 11.1]. In [19] the construction of a symmetric monoidal 

category of S-modules .4ls is preceded by a category which possesses nearly all of the desired 

properties. This is the category of IL-spectra which has an associative and commutative product 

denoted by 1\;£, which is not however unital. In fact, the natural map>.. : S 1\;£ M ~ M is often 

an isomorphism, but always a weak equivalence. lL is in fact a monad in the category Y and is 
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specified in [19, Notations 4.1]. An lL-spectrum is a spectrum that is an lL-algebra and \ye denote 

the category of lL-spectra by Y[lLJ. We define an S-module as follows. 

Definition 2.5. An S-module is an lL-spectrum M, such that A: S/\:£1M ---+ M is an isomorphism. 

For our purposes it is adequate to think of an S-module as a spectrum with additional structure. 

A map of S-modules f : M ---+ N is a map as lL-spectra. 

We denote the category of S-modules by Jlts and restricting /\:£1 to S-modules we rename it /\s 

and write M /\s N for the smash product of S-modules M and N in this category. We have that 

S /\s M rv M for every object in Jlts from Definition 2.5. We accept the existence of symmetric 

monoidal Jlts and proceed by examining its properties. 

The reason for the name S-module is illustrated by the following commutative diagrams. 

As well as the smash product /\s we have function S-module functor Fs. The following theorem 

is taken from [19, IL1.6J and displays an adjunction between /\s and Fs. 

Theorem 2.6. The category Jlts is symmetric monoidal under /\s and for S-modules M, Nand 

P there is an adjunction 

Jlts(M /\s N, P) rv Jlts(M, Fs(N, P)). 

A homotopy in the category of S-modules is, as in the category of spectra (Section 1.2), a map 

M /\ 1+ ---+ N. We say that a map of S-modules is a weak equivalence if it is a weak equivalence 

of spectra. 

Recall the process by which we formed the stable homotopy category hY from the category 

of spectra Y, detailed in Section 1.5. In a similar manner, we arrive at the derived category !!2s 

of the category of S-modules. We first construct the homotopy category hJlts and then localize 

with respect to the weak equivalences. This localization essentially adjoins inverses to the weak 
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equivalences. This process is made rigorous by ew approximation, as for spectra. \Ye use sphere 

S-modules S8 as the domains of the attaching maps in the definitions of cell and en' S-modules. 

We define sphere S-modules as in [19, Chapter II, (1.7)] by 

(2.1) 

where IL is the free functor taking ew spectra to ew IL-spectra. We also have the following, from 

[19, 11.1.8] 

(2.2) 

where for S-module M, hy(sn, M) r-v h.As(S8, M) follows from results on the category of IL­

spectra. 

We can develop a theory of cell and ew S-modules as in the theory of cell and ew spectra. 

This theory is a specialization of that presented in Section 2.4. We can summarize by the following 

statements. 

Theorem 2.7. i. A weak equivalence of cell S -modules is a homotopy equivalence. 

n. Any S-module is weakly equivalent to a ew S-module. 

n'/,. Ps is equivalent to the homotopy category of ew S -modules. 

Elmendorff, Kriz, Mandell and May [19] establish an equivalence between Ps and hY, via the 

equivalence between stable homotopy categories hY and hY[IL] as given in [19, 1.4.6]. 

We can conclude that homotopy theory can be done in hY or !»s, since these categories are 

equivalent. When working on the point-set level we have constructed a category of S-modules .As 

with an associative, commutative and unital smash product I\s. 

2.3 S-algebras and their modules 

We work in the symmetric monoidal category of S-modules.As and begin by defining the concepts 

of an S-algebra and a commutative S-algebra. 

Definition 2.8. An S-algebra is an S-module R with unit TJ : S ----+ R and product ¢ : Rl\sR ----+ R 
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such that the following unity and associativity diagrams commute. 

idA4> 
R/\s R/\s R~R/\s R 

¢Aid 1 1 ¢ 

R /\s R --4>----+)0 R 

R is a commutative S -algebra if the following commutativity diagram also commutes. 

R /\s R T )0 R /\s R 

~~ 
R 

We progress by considering left modules over a (commutative) S-algebra R. 

Definition 2.9. For an S-algebra or commutative S-algebra R, a left R-module is an S-module 

M with a map J.L : R /\s M ---+ M such that the following diagrams commute. 

·dA/-L 
R/\s R/\s M ~ R/\s M 

4>Aid t t /-L 

R/\sM----:;. M 
/-L 

Modules will mean left R-modules and we let .AR denote the category of left R-modules. It is 

worthwhile noting that the definitions of S-algebras and commutative S-algebras given above are 

brave new versions of Aoo and Eoo ring spectra. In [19] they are described as 'unital sharpenings' 

of Aoo and Eoo ring spectra, first introduced in [34]. We quote the following lemma given in [19, II 

Lemma 3.4]. 

Lemma 2.10. An S -algebra or commutative S -algebra is an Aoo or Eoo ring spectrum which is 

also an S -module. 

We observe that S is a commutative S-algebra with unit id and product A. 
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2.4 R-modules 

In this section we explore the theory associated to modules over an S-algebra R. The theory of cell 

spectra can be generalized to give the theory of cell R-modules. We discuss the construction of the 

derived category ~R of R-modules which is equivalent to the homotopy category of cell R-modules. 

Again, the following material is based upon [19]' with particular reference to Chapter III. 

We work in the category of S-modules viis and fix an S-algebra R. We begin by considering 

cell and CW theories for R-modules. We define sphere R-modules S''R via a free R-module functor 

on spectra and define a cell R-module as below (see [19, Definitions 2.1]). The following definition 

mirrors that for cell spectra and we quote it for completeness. We let C X denote the cone functor 

ex = X 1\1. 

Definition 2.11. A cell R-module M is the union of an expanding sequence of sub R-modules 

Mn, such that Mo = * and Mn+l is the cofiber of a map 4>n : Fn ------t Mn where Fn is a (possibly 

empty) wedge of sphere R-modules Sk (of varying dimensions). The restriction of 4>n to a wedge 

summand Sk is called an attaching map. The induced map CSk ------t Mn+l c M is called a cell. 

We also have the following definition of CW R-modules [19, Definition 2.5]. 

Definition 2.12. A cell R-module M is said to be a CW R-module if each cell is attached only 

to cells of lower dimension. The n-skeleton M n of a CW R-module is the union of its cells of 

dimension at most n. A map f : M ------t N between CW R-modules is cellular if f(Mn) c N n for 

all n. 

The following two results allow us to form the derived category of R-modules ~R' The first 

is the R-module version of the Whitehead Theorem and is a formal consequence of the homotopy 

extension and lifting property for R-modules [19, III 2.7]. 

Theorem 2.13. If M is a cell R-module and e : N ------t P is a weak equivalence of R-modules, 

then e* : hvliR(M, N) ------t hvliR(M, P) is an isomorphism. Therefore a weak equivalence between 

cell R-modules is a homotopy equivalence. 

We also have the following theorem giving us an approximation by cell modules. 

Theorem 2.14. For any R-module M, there is a cell R-module rM and a weak equivalence 

'Y : r M ------t M. If R is connective or (-1) -connected, r M can be chosen to be a CW R-module. 
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For each R-module M, choose a cell R-module rM and a weak equivalence I : rM -----t 1U. 

Considering an R-module N and weak equivalence I : r N -----t N, we use the Whitehead theorem 

given above to get the following isomorphism. 

(2.3) 

For a map f : M ----t N, there is a map r f : r M -----t r N, unique up to homotopy, such that the 

following diagram is homotopy commutative 

M--~)oN 
f 

and so r is a functor hJ/tR ----t hJ/tR and I a natural transformation of functors on the homotopy 

category. 

The derived category PR of R-modules is the category whose objects are the R-modules and 

whose morphisms are given by 

When M is a cell R-module, we use the isomorphism in 2.3, to see that 

We obtain a functor i : hJ/tR -----t PR by taking the identity on objects and r on morphisms. This 

functor sends weak equivalences to isomorphisms by Theorems 2.13 and 2.14. If we let ct'R be the 

full subcategory with objects the cell R-modules, the functor r induces an equivalence of categories 

(lJR ~ hct'R. 

There is a smash product M /\R N of right R-module M and left R-module N, which is an 

S-module. There is a function S-module FR(M, N) for left R-modules M and N. Each FR(M, N) 

is an S-module. If R is commutative, then M /\RN and FR(M, N) are R-modules. In this case JliR 

and (lJR have all of the properties of J/ts and Ps. This means that PR is a symmetric monoidal 

category under /\R with unit R and we have the notion of a monoid or commutative monoid in PRo 

These are the analogues of ring spectra in classical stable homotopy theory and are referred to as 

R-ring spectra in [19, V.2]. 
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2.5 An example: Products on ko/w 

In this section we shall work 2-locally. In general for any prime P we let Z(p) denote the integers 

localized at a fixed prime p. That is 

We first consider the algebraic construction of the localization of a group at prime p. An 

exposition of such a construction is given in [44]. 

We wish to consider the fixed prime p and allow division by all other primes. Of course the 

appropriate ground ring for this situation is Z(p) and is used to localize Abelian groups by tensoring. 

We have, for an Abelian group G, 

and call G(p) the localization of G with respect to the prime p. 

We can think of G(p) as constructed as follows. We let Pl,P2,·· . ,Pn, ... be an enumeration 

of the primes excluding our fixed prime p. We construct the following direct system indexed over 

directed set N, where the map Pi is multiplication by Pi. 

G PI G PIP2 G PIP2P3 PI .. 'Pn-I G PI "'Pn G PI "'Pn+ I 
1 --+ 2 --+ 3 --+ ... --+ n --+ n+l --+ ... 

We take the colimit of the above system: 

~Gi = EB Gil rv. 

iEN 

This construction ensures that multiplication by integers prime to P is an isomorphism and hence 

invertible. G is isomorphic to its localization at P if and only if G is a Z(p)-module. In this case G 

is described as p-local. 

The example in this section is based on work by Strickland [43]. As in [43], we work in the 

derived category of R-modules !!JR and think of this category as the brave-new analogue of the 

stable homotopy category. We construct R-modules Rlx and consider when these constructions 

inherit an R-ring spectrum structure. 

Let us begin by considering a commutative S-algebra R and an element x E 1fnR, which we 

write as x ERn. We think of x as a map SR --+ R and make use of the map 

(2.4) 
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We write ~n R for Sli I\R R and x : ~n R ----+ R for the map 2.4. We define R/ x to be the cofibre 

of the map 2.4. 

In considering products on modules R/x, over commutative S-algebra R, such that R* = 7f*R 

is concentrated in even degrees; Strickland [43] shows that there are never any obstructions to 

associativity and that the obstructions to commutativity are given by a certain naturally defined 

element c(x) E 7f2d+2(R)/(2, x) and ultimately by a certain power operation. The example we 

consider is R = ko, the spectrum representing real connective K-theory, and we use these results 

to show that there exists a unique associative and commutative product on ko/w, where w E 

7fgko, noting that ko* = 7f *ko is not concentrated in even degrees and does not therefore fulfil the 

hypothesis used by Strickland [43]. 

It is known that ko can be taken to be a q-cofibrant commutative S-algebra, and after 2-

localization the homotopy ring of ko is 

Z(2)[7],y,w]/(27] = 7]3 = 0, y2 = 4w, 7]Y = 0) 

where 

7] E kol, Y E k04 and w E kog. 

In order to compare any discussion with Strickland [43], we should note that for our example 

R = ko, x = w E kOg and so d = 8. We have the co fibre sequence 

~gko ~ ko ~ ko/w L ~gko. 

Since w is not a zero divisor, we have 7f*(ko/w) = ko*/w. In particular, we consider 7fg(ko/w) = 

kog/w. Since kog is generated by 7]W, we have kog/w = 0 (this corresponds to Rd+1/X = 0, in [43], 

which is due to d+ 1 being odd). Taking the cofibre sequence above and applying the contravariant 

functor [-, ko/w], we get 

[~gko, ko/w] L [ko, ko/w] L [ko/w, ko/w] E- [~gko, ko/w], 

which gives 
* p* {3* 

0= kog/w ~ [ko, ko/w] +-- [ko/w, ko/w] +-- kog/w = O. 

By exactness we find p* : [ko/w, ko/w] rv [ko, ko/w]. It follows, as in [43], that ko/w is unique up 

to unique isomorphism as an object under ko. 
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The following results are those in Strickland [43], modified for our particular example. The 

proofs in Strickland work for our modified results, and any potential problems due to ko* not being 

even are given further clarification below. 

In reconsidering the cofibre sequence above as follows 

8s WOP 
ka ---+ 8 ka ---+ ko/w 

and referring to the definition of cell R-modules (2.11), we can see that w is an attaching map. 

ko/w is therefore a cell ko-module with one O-cell and one 9-cell. As in [43], we can also consider 

(ko/w? = ko/w Aka ko/w as a cell ko-module with one O-cell, two 9-cells and one 18-cell and we 

say that ¢ : (ko/w)2 ---+ ko/w is a product if it agrees with p on the bottom cell, in other words 

¢o (po p) = p: ko ---+ ko/w. 

The main result is stated as follows. 

Proposition 2.15. In ~ka, ko/w has the following properties: 

'to There exist products on ko/w. 

't't. All products on ko / ware associative, and have p as a two-sided unit. 

't't't. ko/w admits a unique commutative product. 

Lemma 2.16. The map w : '£.sko/w ---+ ko/w is zero. 

Proof. This proof works in exactly the same way as the proof for x : '£.d R/ x ---+ R/ x is zero in 

[43]. We use the cofibration 

we also note that kol7/w = 0 (in [43], 7r2d+l(R/x) = R2d+dx = 0 since 2d + 1 is odd). We 

apply the contravariant functor [-, ko/w] to the cofibration above and use kOl7/w = 0 along with 

exactness to find that p* : ['£.sko/w, ko/w] ---+ ['£.sko, ko/w] = kos/w is injective. We have zero 

on the right hand side, since kosi w = 0 and injectivity implies zero on the left hand side, so 

w : '£.s ko / w ---+ ko / w is zero as claimed. 0 

Corollary 2.17. There exist products on ko/w. 
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Proof· As in [43], having proved Lemma 2.16, we consider the original cofibre sequence 

Smashing with ko/w over ko we get the following cofibration 

8 / w lAp 
~ ko w ----+ ko/w ----+ ko/w Ako ko/w = (ko/w)2, 

where 1 : ko/w ----+ ko/w is the identity map. From 2.16 above, the first map is zero. Hence by 

exactness, 1 A P is a split monomorphism with splitting 1> : (ko/w)2 ----+ ko/w. This splitting is a 

product. o 

Lemma 2.18. If 1> : (ko/w)2 ----+ ko/w is a product then p is a two-sided unit for 1> in the sense 

that 

1>0 (pA 1) = 1>0 (1 Ap) = 1: ko/w -t ko/w. 

Proof. As in [43]. o 

Proposition 2.19. Any product on ko/w is associative. 

Proof. As in [43], we use unital properties of products on ko/w along with [43, Lemma 3.6]. Strick­

land also uses the fact that 7r3d+3(R)/x = 0 (since 3d + 3 is odd); likewise we have 7r3d+3ko/w = 

ko27/w = O. 0 

Corollary 2.20. ko/w admits a unique commutative product. 

Proof· By Strickland [43, Corollary 3.12]' there is a naturally defined element c(x) E 7r2d+2(ko)/ (2, w) 

such that ko/w admits a commutative product if and only if c(x) = O. In order to show that 

c(x) = 0, it is sufficient to show that the group 7r2d+2(ko)/(2, w) = O. We have 7r2d+2(ko)/w = 

k018 /W = (71/2)'f/2w2/w = 0 and hence 7r2d+2(ko)/(2, w) = 0, therefore we have a commutative 

product on ko/w. Again by [43, Corollary 3.12], the set of commutative products has a free tran­

sitive action of the group ann(2, 7r2d+2(ko) /w) := {y E 7r2d+2ko/w : 2y = O}. In particular, if 

7'l2d+2ko/w has no 2-torsion then there is a unique commutative product. Since d = 8, we have 

7'l2d+2ko/w = k018 /W = 0, hence ann(2, 7r2d+2(ko)/w) = 0 and so there exists a unique commutative 

product on ko/w. 0 
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2.6 Localization for R-modules and R-algebras 

In this section we introduce Bousfield localizations of R-modules and R-algebras and consider 

localization at a prime p as a particular example. 

An overview of the concept of localization, both as an algebraic construction and for spaces 

within homotopy theory is provided in [44]. 

The classical Bousfield localization is a homological localization and commutes with suspension. 

For further details on localizations commuting with suspension see [14]. 

We begin by letting R be an S-algebra and taking a cell R-module E. We note that R could be 

S itself. We construct Bousfield localizations of R-modules at E. The following material is based 

on [19, VIII] and founded upon Bousfield's papers ([11], [12]). The model category structure on 

JitR (given in [19, VII, Corollary 4.8]) facilitates the construction of E-Iocalizations of R-modules. 

A map of R-modules f : M --+ N is an E-equivalence or E-acyclic map if the induced map 

is a weak equivalence. That is f : M --+ N induces the following isomorphism in E-homology, for 

all k E Z. 

Hence, homologically, we should call such maps E!!-equivalences. 

An R-module W is E-acyclic if E I\R W rv *, or equivalently Ek(W) = 0 for all k E Z. It is 

evident that a map f is E-acyclic if and only if its cofibre is E-acyclic. 

An R-module L is E-local if each E-equivalence f : M --+ N induces an isomorphism 

or equivalently if ~R(W, L) = 0 for any E-acyclic R-module W. 

As Dwyer described in [16], L is local if E-equivalent R-modules cannot be distinguished by 

mapping them into L. 

A localization of R-module M at E is a map A : M --+ ME such that A is an E-equivalence and 

ME is E-Iocal. The model structure on vIIR in Theorem 2.21 below is constructed in [19, VII.4] 

and implies the existence of E-Iocalizations of R-modules. 
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Theorem 2.21. The category vltR is a topological model category where the weak equivalences 

are the E-equivalences and the cofibrations are the q-cofibrations of the original model category 

structure in [19, VII, Corollary 4.8]. The fibrations satisfy the right lifting property with respect to 

the E-acyclic q-cofibrations. 

We follow [19] by defining E-fibrations and E-cofibrations as follows. 

Definition 2.22. A map f : M ~ N is an E-fibration if it has the right lifting property with 

respect to the E-acyclic inclusions of sub complexes in cell R-modules. A map f : M ~ N is an 

E-cofibration if it satisfies the left lifting property with respect to the E-acyclic E-fibrations. 

The motivation for using inclusions of sub complexes is made transparent in [19, VIII, Lemma 

1.9]. We have the following two results which consolidate the comparisons referred to in Theorem 

2.21 and are given in [19, VIII, Lemma 1.3 and 1.4]. 

Lemma 2.23. A map is an E-cofibration if and only if it is a q-cofibration. 

Lemma 2.24. A map is an E-fibration if and only if it satisfies the right lifting property with 

respect to the E-acyclic q-cofibrations. 

An R-module L is said to be fibrant if the unique map L ~ * is an E-fibration. We include 

the following proposition [19, VIII Proposition 1.5]. 

Proposition 2.25. An R-module is E-fibrant if and only if it is E-local. 

Lemma 2.26. Every R-module M has a localization).: M ~ ME. 

Proof. Consider the trivial map M ~ *. By Definition 1.24, any map can be factored as an 

E-acyclic E-cofibration and a fibration. This allows us to consider M ~ * as the composite of 

). : M ~ ME and E-fibration ME ~ *. 0 

We proceed by stating further lemmas, as given in [19], that are key to the existence of the 

model category structure given in Theorem 2.21. 

Lemma 2.27. Any map f : M ~ N factors as a composite 

M~M'~N 

where p is an E-fibration and i is an E-acyclic q-cofibration that satisfies the left lifting property 

with respect to the E -fibrations. 
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Lemma 2.28. The following conditions on a map f : M -----7 N are equivalent. 

~. f is an E-acyclic E-fibmtion. 

ii. f is an E-acyclic map that satisfies the right lifting properly with respect to all q-cofibmtions. 

m. f is an acyclic q-fibration. 

We note that Lemma 2.28 gives Lemma 2.23. 

In [19] the authors progress the discussion of Bousfield localization by restricting R to a q­

cofibrant commutative S-algebra and letting E once again be a cell R-module. In [19, VIII Theo­

rems 2.1 and 2.2] it is proven that the localization at E of a cell R-algebra A can be constructed as 

a cell R-algebra and similarly for commutative cell R-algebras. Of course, any R-algebra is weakly 

equivalent to a cell R-algebra and we can therefore surmise that Bousfield localizations of R-algebras 

and commutative R-algebras are again R-algebras and commutative R-algebras respectively. 

We now consider a particular example of Bousfield localization, namely localization at a prime 

p. A p-Iocalization of S-module M may be defined with respect to the Z(p) Moore spectrum MZ(p). 

We have that the map oX : M -----7 M(p) is an MZ(p) equivalence and M(p) is MZ(p)-local. 

We include some further details which are taken from [14, Section 3]. In considering M as an 

S-module, we take the map 

~ = TJ 1\ id : M f'J S I\s M -----7 MZ(p) I\s M 

where TJ is given by the unit of MZ(p) and is a localization of S at p. It can be shown that ~ is the 

localization of M at MZ(p) and so p-Iocalization is smashing; 

For each k E Z we have 
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Chapter 3 

Nuclear and Minilllal AtOlllic 

S-ll1odules 

The notion of a minimal atomic space or spectrum was first introduced by Hu, Kriz and May 

[23], inspired by work of Priddy [40] and relating to the more established idea of atomic spaces 

and spectra. Atomic spaces and spectra are tightly bound together so that a self map inducing 

an isomorphism on homotopy in the Hurewicz (bottom) dimension is necessarily an equivalence. 

We can associate various algebraic analogues to the concepts of atomic and minimal atomic spaces 

and spectra which help to illustrate the ideas involved. As a consequence of this algebraic link, we 

have the concept of an irreducible spectrum. We present the definition of an irreducible S-module 

(different to that in [23] where a spectrum was defined to be irreducible if it has no non-trivial 

retracts which is equivalent to wedge indecomposability), given in [5]. We also include the proof 

that the irreducible S-modules are precisely the minimal atomic S-modules. This is all included in 

Section 3.1, where we also provide a homological characterization of irreducible S-modules. 

It is in Section 3.2 that we first introduce the term nuclear. The notion of a nuclear space or 

spectrum emerges by constructing something called a core of a space or spectrum. This construction 

of a core is in fact a generalization of a construction in [40] where the Brown-Peterson spectrum 

BP was constructed from S(p). In Section 3.2 we give a proof that nuclear S-modules are minimal 

atomic, as conjectured in [23] and shown in [5]. We also include the result that every minimal 

atomic S-module is equivalent to a nuclear S-module. 

In [5] a notion of minimality was introduced that allows us to show that any S-module is 
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equivalent to a minimal one. We examine the characterization of minimal S-modules in terms of 

nuclear S-modules in Section 3.3. 

The ideas introduced in [23] including that of nuclear spaces and spectra and cores of spaces 

and spectra were developed further by Baker and May [5] providing a characterization of minimal 

atomic spaces and spectra. Both [23] and [5] give results on complexes, by which we mean CW 

spaces or spectra. We should note however, that these results can be adapted to other frameworks 

in which there is a notion of CW objects. In this chapter we present the known results on minimal 

atomic and nuclear spectra contained in [23] and [5] in terms of S-modules, that is, in the context 

of [19]. Working in the category ./Its of S-modules allows us to extend the results contained in this 

chapter to the case of commutative S-algebras; details of which are contained in Chapter 5. 

3.1 Definitions, basic constructions and characterization results 

3.1.1 Notation and Terminology 

In this section we provide the definitions of several of the concepts mentioned in the introduction, 

which allow us to characterize minimal atomic and irreducible S-modules. We work in the category 

As of S-modules and agree that all S-modules are localized at a fixed prime p. We also decide 

that all S-modules are to be p-local OW S-modules with the domains of the attaching maps being 

wedges of p-local sphere S-modules. 

We take all S-modules to have Hurewicz dimension 0, which is equivalent to being (-1)­

connected with 1T"0 as the first non-zero homotopy group. We say that X is a Hurewicz S-module if 

it has a single cell in dimension zero. If, 1T"o(X) is cyclic over Z(p) or, equivalently, Ho(X; rip) = rip, 

then X is weakly equivalent to a Hurewicz S-module. We may assume that X has no cells of 

negative dimension (except the base vertex) and we assume further that there are only finitely 

many cells in each dimension. We write Xn for the n-skeleton of X. We take X-I = * and, if X is 

a Hurewicz S-module, Xo = So. For n > 0, Xn+1 is the cofiber of a map jn: I n --+ Xn, where In 

is a finite wedge of p-local n-sphere S-modules sn. 
We take Hn(X) to be (reduced) homology with p-local coefficients and any S-module X has 

each Hn(X) a finitely generated Z(p)-module. 
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3.1.2 Definitions and Remarks 

We begin by stating the several basic definitions and observations required to give the characteri­

zations of irreducible and minimal atomic S-modules found in Section 3.1.3. 

The following are definitions of concepts which are invariant under equivalence. 

Definition 3.1. A map f: X --+ Y is a monomorphism if f*: 7ro(X) ® IFp --+ 7ro(Y) ® IFp and all 

f*: 7rn(X) --+ 7rn(Y) are monomorphisms. 

If f: X ----t Y is a monomorphism of Hurewicz S-modules then f induces an isomorphism on 

7r0 as follows. As Hurewicz S-modules X and Y have a single cell in dimension zero and so 7ro(X) 

and 7ro(Y) are cyclic over Z(p). We have that fo : 7ro(X) ---+ 7ro(Y) is a monomorphism and is 

surjective, hence we have an isomorphism on 7r0. 

Definition 3.2. Y is irreducible if any monomorphism f: X ----t Y is an equivalence. 

The definition given above is different to that found in [23, Definition 1.1], where Y was defined 

to be irreducible if it does not admit any trivial retracts. 

Definition 3.3. X is atomic if it is a Hurewicz S-module and a self-map f: X ----t X that induces 

an isomorphism on 7r0 is an equivalence. 

An atomic S-module can be shrunk to S-modules with smaller homotopy groups; namely min­

imal atomic S-modules, which can be shrunk no further. Let us consider the definition of such an 

S-module. 

Definition 3.4. Y is minimal atomic if it is atomic and any monomorphism f: X ---+ Y from an 

atomic complex X to Y is an equivalence. 

We can think of minimal atomic S-modules as analogues of the algebraic notion of irreducible 

modules; whose only submodules are itself and the zero module. Obviously the definition of irre­

ducible S-modules given above makes this analogy more transparent. In the next section (3.1.3) 

we give the result from [5] proving that the irreducible S-modules are precisely the minimal atomic 

S-modules. The implication that irreducible means minimal atomic is the analogue of Schur's 

lemma. 

Definition 3.5. Y has no homotopy detected by mod p homology if Y is a Hurewicz S-module and 

and the modp Hurewicz homomorphism h : 7rn(Y) ----t Hn(Y; IFp) is zero for all n > O. 
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3.1.3 Characterization Results 

We will now begin to explore the relationships between the concepts defined above. Let us start by 

characterizing irreducible S-modules with the following theorem extracted from [5, Theorem 1.3]. 

Theorem 3.6. The following two conditions on a Hurewicz S -module Yare equivalent. 

~. Y is irreducible. 

ii. Y has no homotopy detected by modp homology. 

Proof. We use proof by contradiction. Firstly, let us assume condition (i) and assume that the 

Hurewicz homomorphism h : 7rn(Y) -------+ Hn(Y; lFp ) is non-zero, where n > o. So there is a map 

sn ~ Y that is non-zero on mod p homology, hence there is a map g : Y -------+ HlF p that is non-zero 

on homotopy. Let f : X -------+ Y be the homotopy fibre of g. So we obtain a homotopy long exact 

sequence as follows 

Clearly f : X -------+ Y induces an isomorphism on 7ro and at least a monomorphism on all f* 

7f"*(X) -------+ 7r*(Y). Therefore f is a monomorphism but not an equivalence, which contradicts (i). 

Now let us assume condition (ii) and let f : X -------+ Y be a monomorphism. We will show that f 

is an equivalence. Let g : Y -------+ Z be the homotopy cofibre of f. The induced homotopy long exact 

sequence along with the assumptions we have made means that f is an equivalence if and only if 

7f"*(Z) = O. Let us suppose that 7f"*(Z) =1= 0 and let 7f"n(Z) be the first non-zero homotopy group. 

Then h : 7rn(Z) --t Hn(Z; lFp ) is non-zero, by the definition of the Hurewicz homomorphism. Let 

us consider the following portion of the homotopy long exact sequence 

in which 7rn-l (Z) = O. We have the assumption that f is a monomorphism and so fn-l is an iso­

morphism. This implies that im 8n = 0 and so 9n is an epimorphism. Considering the commutative 

diagram given below, we can see that the left arrow h is non-zero, which contradicts (ii). 

7rn(Y) 
gn 

7rn(Z) 

hI hI 
Hn(Y;lFp ) 

g* ) Hn(Z;lFp ) 

0 
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We now give the following result which is proven using results from the following section (3.2) 

on nuclear S-modules. 

Theorem 3.7. For any 8 -module Y, there is a monomorphism f: X -t Y such that X is atomic. 

We now give the following key characterization theorem. 

Theorem 3.8. A Hurewicz S -module Y is irreducible if and only if it is minimal atomic. 

Proof. First, let us suppose that Hurewicz complex Y is irreducible. From Theorem 3.7, there 

exists a monomorphism f : X -t Y such that X is atomic and from the definition of irreducible 

f is an equivalence. This gives us that Y is minimal atomic, again by the definition. 

Now, let Y be minimal atomic and f: X -t Y be a monomorphism. Suppose 9 : W -t X is 

a monomorphism such that W is atomic. The composite fog is an equivalence by the definition 

of minimal atomic and so we have that f is also an equivalence. Therefore we have that Y is 

irreducible. D 

3.2 Nuclear and Minimal Atomic S-modules 

3.2.1 Motivation 

As in [5], we are interested in describing minimal atomic S-modules in terms of nuclear S-modules. 

This description will allow us to prove Theorem 3.7. We will begin by introducing the concept of 

a nuclear S-module. The definition of a nuclear S-module emerges from the construction of a core 

of an S-module. 

3.2.2 Definition and basic construction 

In this section we shall attempt to explain what is meant by the concept of a nuclear S-module. 

Hu, Kriz and May construct the core of a preassigned complex Y by building a nuclear complex 

X; essentially as an atomic space built up in an economical way [23, 1.6]. We especially do not 

want any cells attached trivially. It is illustrative to consider the following simple example. We can 

take the preassigned 8-module Y to be 8 0 V sn, n > 0 and we can aim to construct the core of 

Y; namely a nuclear S-module X, along with a monomorphism f: X -t Y. Firstly we note that 

sphere S-modules are nuclear. We begin our construction by taking the O-skeleton Xo of X to be 
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the a-sphere SO. We aim to build the complex X by attaching cells, ensuring at each stage, that a 

map, Jk: Xk --+ Y from the k-skeleton of X to our S-module Y induces a monomorphism on the 

homotopy groups in dimension k, namely, 7rk. We know that the homotopy groups of the product 

SO V sn is equal to the direct sum of the homotopy groups of each sphere S-module, so we have, 

We also know that for an n-sphere the first non-trivial homotopy group is 7rn(sn). So we have a 

monomorphism from the homotopy of SO to the homotopy of the product SO V sn and composing 

this with the projection onto the first factor gives the identity 

If we try to attach k-cells to X o to form Xk via attaching maps Sk-l --+ X o, we find that 

the attaching maps must be null homotopic. Since we do not want any trivial attaching maps, we 

cannot attach any cells. And so in constructing the core of SO V sn, we get SO only. We can state 

this more generally, by saying that the core of a wedge product X V Y, where X is nuclear, is just 

X itself. 

Now follows the definition of a nuclear S-module. 

Definition 3.9. Let X be a Hurewicz S-module whose CW structure is given by cofibrations 

I n --+ Xn --+ Xn+l. We say that X is nuclear if the following condition is satisfied for each n; 

(3.1) 

Definition 3.10. A core of an S-module Y is a nuclear S-module X together with a monomorphism 

J: X --+ Y. 

The definition of a core given above is more general than that in [23], where it was restricted 

to Hurewicz complexes. 

We state and prove the following lemma, which is based on an observation of Priddy [40] and 

is given in [5, Lemma 3.6]. We will use this lemma to prove a result on minimal and nuclear 

S-modules in Section 3.3, as it gives us a way of redefining the notion of a nuclear S-module in 

terms of the Hurewicz homomorphisms of its skeleta. 
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Lemma 3.11. A Hurewicz S-module is nuclear if and only if the modp Hurewicz homomorphism 

h: 1T"n(Xn) -+ Hn(Xni lFp ) is zero for all n > O. 

Proof. Considering the cofibre sequence 

we get the following commutative diagram with exact rows 

1T"n+l (Xn+1 ) 1T"n(Jn) j* 
1T"n(Xn) 

hl hl hl 
o ) Hn+l(Xn+lilFp) ) Hn(Jn;lFp) j* ) Hn(Xn; lFp ) 

where the vertical maps are Hurewicz homomorphisms. By considering the composition 

we can see that condition (3.1) holds if and only if the left most arrow h is O. o 

We include the following result, given in [23, Lemma 1.13] which is immediate from the defini­

tions and is utilised in Chapter 5 to prove an important result for S-algebras (Proposition 5.9). 

Lemma 3.12. If g : Y -+ Z is a map of S -modules that induces an isomorphism on 7ro and a 

monomorphism on all homotopy groups and if f : X -+ Y is a core of Y, then g 0 f : X -+ Z is 

a core of z. 

3.2.3 Results 

As in [5], we now want to begin to explore the relationship between nuclear S-modules and the 

various concepts that have been discussed previously in this chapter. This discussion leads to a 

theorem which describes minimal atomic S-modules. First we have the following result, which is 

proven in [23, Proposition 1.5] and is used to prove Theorem 3.7. 

Theorem 3.13. A nuclear S-module is atomic. 

The proof of this theorem begins with a nuclear S-module X along with a self map f : X -+ X 

that induces an isomorphism on 7ro. The authors show inductively that, for all n, the self maps fn 
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of the skeleta Xn are equivalences. This gives us that f is a homotopy equivalence. We adapt the 

proof in Chapter 5 to give the analogous result for S-algebras in Theorem 5.5. 

Using a similar construction to that given in [23, 1.6], of a core of a preassigned S-module Y 

along with the result above 3.13, we have Theorem 3.7. 

The proof of 3.13 above, also adapts to give the following proposition which is a restatement of 

[5, Proposition 2.5] in the language of S-modules. This in turn implies the stronger result that a 

nuclear S-module is a minimal atomic S-module 3.15, conjectured in [23, 1.12]. 

Proposition 3.14. Let X and Y be nuclear S -modules and let f: X ----+ Y be a core of Y. Then 

f is an equivalence. 

Proof. Let the given nuclear X and Y have OW structures given by the cofibrations 

By hypothesis X is a nuclear S-algebra and the map f: X ----+ Y is a map of S-modules that 

induces a monomorphism on all homotopy groups. We may assume that f is cellular, and so, we 

prove that f: Xn ----+ Yn is an equivalence for all n. As f : X ----+ Y is a monomorphism between 

Hurewicz S-modules, f : Xo ----+ Yo is an equivalence. We assume inductively that f: Xn ----+ Yn 

is an equivalence and deduce that f: X n+1 ----+ Yn+l is an equivalence. We use the attaching maps 

of X and Y to give the following diagram of cofibre sequences 

I n 
jn 

) Xn ) X n+l 

fl fl fl 

Kn 
kn ) Yn ) Yn+l 

When we pass to homology, we get the following commutative diagram 

0---+ H n+1(Xn+d ) Hn(Jn) 
(jn)* 

Hn(Xn) ) Hn(Xn+l) ---+ 0 ) 

f* 1 f* 1 f* 1 ~ f* 1 (3.2) 

o ---+ Hn+l (Yn+l) ) Hn(Kn) 
(kn)* 

Hn(Yn) ) Hn(Yn+l) ---+ 0 ) 

in which the rows come from the long exact homology sequences for X and Y induced by the cofibre 

sequences. It is necessary to show that the left and right vertical arrows are isomorphisms. By 
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the Five Lemma, this will hold if the induced map f* : Hn(Jn) -----+ Hn(Kn) is an isomorphism. In 

view of the Hurewicz isomorphisms in dimension n it suffices to show that 7rn(Jn) -----+ 7rn(Kn) is 

an isomorphism. We have the following commutative diagram with exact rows 

) 7rn(Jn) (jn)* 
) 7rn(Xn) ) 7rn(Xn+1) ) 0 

f* 1 f* 1 ~ f* 1 (3.3) 

) 7rn(Kn) (kn )* 
7rn(Yn) ) 7rn(Yn+1) ) ) 0 

arising from the long exact sequences of homotopy groups. Using this diagram, we can see that the 

right vertical arrow is an epimorphism. Let us consider the following diagram 

----4 7rn (X) 

f* 1 (3.4) 

7rn(Y) 

In the above diagram, the right vertical arrow is a monomorphism because X is a core of Y 

and hence the left arrow is a monomorphism. We have then, that 7rn(Xn+1) -----+ 7rn (Yn+1) is an 

isomorphism. This implies that the right vertical arrow is an isomorphism in the following diagram 

o Ker jn* 
i 

7rn(Jn) ) Imjn* ) ) ----» 0 

1 f* 1 ~l 
) Ker kn* ) 7rn(Kn) ) Imkn* 

i 
o ----4) 0 

Using the nuclear condition (3.1), both maps i become 0 after tensoring with IFp. This implies that 

f* Q9 IFp is an isomorphism. We can deduce that f* : 7rn(Jn) ---7 7rn(Kn) is an epimorphism by 

Nakayama's lemma [3, Corollary 2.7]' and then, observing that 7rn(Kn) is a free Z(prmodule, it 

further follows that f* is a monomorphism. o 

We now give the following result, which is a stronger result than Theorem 3.13. The result was 

conjectured in [23, 1.12] and proven in [5]. 

Theorem 3.15. A nuclear S-module is a minimal atomic S-module. 

Proof. Let Y be a nuclear S-module and let f : X ---7 Y be a monomorphism from an atomic S­

module X. As Y is nuclear, it is atomic by 3.13 and we need to show that f is an equivalence in order 

to show that Y is minimal atomic. Let us consider the composite of f and a core g : W ---7 X. By 

Proposition 3.14 fog: W ---7 Y is an equivalence and so we have that f is also an equivalence. 0 
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Now we have the following description of minimal atomic S modules. 

Theorem 3.16. The following conditions on an S-module Yare equivalent. 

1,. Y is minimal atomic. 

1,1,. Any core of Y is an equivalence. 

'Z'Z'Z. Y is equivalent to a nuclear S -module. 

Proof. Theorem 3.15 gives (iii) ==} (i). If we assume that condition (i) holds, then by the definition 

of minimal atomic, any monomorphism from an atomic S-module X to Y is an equivalence and 

hence by Proposition 5.5 any core of Y is an equivalence i.e. condition (ii) holds. Finally, we can 

see that condition (ii) implies (iii) easily by considering the definition of a core. 0 

3.3 Minimal S-modules and Nuclear S-modules 

As mentioned in the introduction to this chapter, Baker and May [5J introduced a notion of min­

imality that allows us to show that any S-module is equivalent to a minimal one. This notion 

of minimality is due to Cooke [15J. In this section we examine the characterization of minimal 

S-modules in terms of nuclear S-modules giving us Theorem 3.19, the key result of this section. 

We begin by defining the term minimal in this context. Firstly we should note that a CW 

S-module X has a p-local chain complex 

(3.5) 

with Cn(X) = Hn(Xn, Xn-l). 

This cellular chain complex may be used to calculate the ordinary homology groups of an 

S-module X. 

Definition 3.17. An S-module X IS minimal if the differential on its modp chain complex 

C*(X;JFp ) is zero. 

In terms of the chain complex (3.5), we have that S-module X is minimal ifimdn ~ p.Cn-l(X). 

Tensoring with IF p, (3.5) becomes 

(3.6) 
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with dn 0 id = 0 for all n, as in Definition 3.17. We also have that 

Hn(X; IFp) = Hn( C(X) 0 IFp) 

= ker(dn 0 id)j im(dn+1 0 id) 

= Cn(X) 0 IFp. 

This is also true for X n, namely Hn(Xn; IFp) = Cn(Xn) 0 IFp. 

From the cofiber sequence Xn ~ X n+1 ~ Xn+d X n, we consider the following long exact 

sequence. 

Evidently we have an induced epimorphism 

(3.7) 

For X minimal we have Hn+1(Xn+l; IFp) = Cn+1(Xn+1) 0 IFp = Hn+1(Xn+d Xn; IFp), glVmg an 

isomorphism 

This implies that our induced epimorphism 3.7 is actually an isomorphism. 

As a consequence we have an alternative formulation of the notion of minimality, namely there 

is an isomorphism Hn(Xn; IFp) ----+ Hn(Xn+1; IFp) for each n, so that there isomorphisms 

(3.8) 

We say that an S-module is minimal Hurewicz if it is minimal and Hurewicz. We should note that 

X is minimal if and only if each Xn is minimal. 

3.3.1 Results 

The first result given below is stated and proven for complexes in [5]. It originates from Cooke's 

paper [15] and has made a recent reappearance in [21]. We state the theorem below and give an 

outline of the proof from [5]. 

Theorem 3.18. For any S -module Y, there is a minimal S -module X and an equivalence f 

X~Y. 
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The theorem above is proven in the following way. We begin with an S-module Y and build 

a minimal S-module X along with an equivalence I : X ---+ Y. In order to prove that we hm"e 

I : X ---t Y with the desired properties it is sufficient to show that I induces an isomorphism on 

H*. 

From Section 3.1.1 we have assumed that each Hn(Y) is a finitely generated Z(ptmodule. Let us 

describe Hn(Y) as a direct sum of finitely many Z(prmodules. We construct the minimal S-module 

X by taking it to have an n-cell for each Z(p)-module. 

The proof is inductive as it assumes the construction of the n-skeleton Xn together with a based 

map In : Xn -? Y which induces an isomorphism Hi for i < n and on Hn a map from n-cells 

of Xn to chosen generators of the Z(p)-modules of Hn(Y). Using the cofibre C In of In, attaching 

maps for the construction of X n+1 from Xn are found. An extension In+l : X n+1 ---+ Y of In is 

obtained which induces an isomorphism on Hn and completes the inductive step in the construction 

of I: X -? Y. 

The following theorem brings together the main notions of this chapter and emphasizes the 

relevance of minimality to the current theory. 

Theorem 3.19. A minimal S-module is nuclear il and only il it has no homotopy detected by 

modp homology. 

Proof. We assume that X is a minimal S-module. Let us consider the following diagram relating 

the Hurewicz homomorphisms of Xn and X, where n> no· 

Since X is minimal, by 3.8 we have that the bottom arrow is an isomorphism. We also have that 

the top arrow is an epimorphism. The left Hurewicz arrow is zero if and only if the right Hurewicz 

arrow is zero and so we have the conclusion from 3.11. 0 

The following theorem gives a description of minimal atomic S-modules and completes this 

discussion of nuclear and minimal atomic S-modules. 

Theorem 3.20. The lollowing conditions on an S -module Yare equivalent. 

i. Y is minimal atomic. 
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'//t. Any equivalence f : X ----+ Y from a minimal S-module X to Y is a core oiY. 

iii. A minimal S -module equivalent to Y is nuclear. 
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Chapter 4 

Topological Andre-Quillen Homology 

for Cellular Commutative S-algebras 

In this chapter we give an account of some basic results on topological Andre-Quillen homology 

and cohomology for CW commutative S-algebras. This theory is required in order to extend the 

existing results for S-modules, contained in the previous chapter, to the case of CW commutative 

S-algebras. 

In Chapter 5, we will define atomic and minimal atomic S-algebras and, in particular, consider 

the construction of a core of a commutative S-algebra, which leads to the definition of a nuclear 

commutative S-algebra. Essentially, we aim to characterize nuclear commutative S-algebras in 

terms of atomic and minimal atomic commutative S-algebras. In order to produce these results, 

which contribute to a theory of nuclear and minimal atomic S-algebras, we require arguments 

based on skeletal filtrations relying on a suitable homology theory, namely topological Andre­

Quillen homology. As the name suggests, this theory is the topological analogue of Andre-Quillen 

homology for commutative algebras, discussed in [46], among others. 

Our sources on topological Andre-Quillen (co ) homology include [6,8,9,33]. We also benefited 

from helpful comments by Birgit Richter and Maria Basterra. 

52 



4.1 Recollections on Topological Andre-Quillen (co)homology 

We take the definition of topological Andre-Quillen homology and cohomology from [6] and [29]. 

In [6], Basterra begins with a discussion of the topological model categories in which the work takes 

place. We begin similarly, introducing the model categories on which the definition of topological 

Andre-Quillen (co ) homology is founded. 

For definiteness, we work in the category of commutative S-algebras described in [19]. For 

a commutative S-algebra A, we let vitA denote the category of A-modules and 7i'A/ B denote the 

category of commutative A-algebras with A-algebra maps to B. We also have SA, the category 

of non-unital commutative A-algebras. Given a model category 7i', we let h7i' denote its derived 

homotopy category. 

We then present a series of adjunctions, as in [6], between the model categories in question. 

These adjunct ions lead to an equivalence of homotopy categories h7i'A/A and hJVA which allow the 

description of an abelianization functor for commutative A-algebras over B. 

The topological Andre-Quillen homology and cohomology of commutative S-algebras is defined 

in terms of the abelianization functor. This discussion is given in 4.l.3, along with the topological 

analogue of Quillen's transitivity exact sequence and a version of the classical Hurewicz isomorphism 

theorem. We end this section with a discussion of ordinary topological Andre-Quillen homology on 

sphere objects. The account of topological Andre-Quillen (co ) homology found in this section is 

based on [6] and [29]. The theory is also included in an overview paper by Basterra and Richter [9] 

on existing homology theories for commutative S-algebras. 

4.1.1 Categories of A-algebras 

We let A be a commutative S-algebra and vitA denote the category of A-modules. 

First let us consider the category of commutative A-algebras, 7i'A· From [19] we have the monad 

IF: .4lA ~ vitA given by 

IPM = V Mj /~j 
'>0 J-

where M is an A-module, Mj denotes the j-fold smash power over A and MO 
= A. 

We also have that 7i'A, the category of commutative A-algebras, is isomorphic to the category 

of IF-algebras in vitA, denoted vitA [IP]. That is, we have the monad IP in vitA whose algebras are the 
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commutative monoids in ./ItA (see [19, II, Proposition 4.5] for further details). 

By [19, VII, Corollary 4.10] the category 1fA is a topological model category in the sense of 

Quillen [41]. By this we mean that together with the usual model structure, the category is top<r 

logically enriched, that is, the Hom sets are topological spaces and the composition of morphisms 

is continuous. 

Now let B be a commutative A-algebra and consider the category of commutative A-algebras 

over B, denoted 1fA/B. An object C of 1fA/B is a commutative A-algebra equipped with an A­

algebra map c : C ----+ B. A morphism between two such objects C and D is the following 

commutative diagram in 1fA. 

C ,.D 

~/ 
( 4.1) 

B 

~A/B inherits a topological model category structure from 1fA. When B = A, we have the category 

~A/A which is the category 1fA/B over the terminal object A and so, as discussed in [22], is a pointed 

model category. 

Let us denote by AA, the category of non-unital commutative A-algebras. An object in this 

category is an A-module M, together with a strictly associative multiplication map M /\AM ------+ M. 

Following [6] and [29] we call an object in AA an A-NUCA. Basterra considers JYA as a category 

of algebras over a certain monad A : ./ItA ----+ ./ItA defined as 

AM= V Mjj'Ej 
j>O 

We have that AA is the category of A-algebras ./ItA[A]. 

4.1.2 Equivalence of homotopy categories h~A/A and hJYA 

In this section we describe an adjunction which gives us an equivalence of homotopy categories 

h~A/A and hAA. The first functor from the adjoint equivalence is K : AA ------+ 1fA which assigns 

to an A-NUCA M, the commutative A-algebra A V M. The A-algebra A V M can be considered 

as an object in 1fA/A via the canonical projection map 7r : A V M ----+ A. Therefore we can view 

the functor K as K : flA ----+ 1f A/A' 

Now we must introduce the second functor I. Let B be an A-algebra over A. So B is a 

commutative A-algebra with augmentation map c : B ----+ A. We denote the augmentation ideal 
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of B by J(B) and by this we mean the fibre of the augmentation map c. J(B) is then naturally an 

A-NUCA and we consider J as a functor from 1ffA/A to ufA. Basterra [6, Proposition 2.1 and 2.2] 

states and proves the following result. 

Proposition 4.1. The functor K is left adjoint to J and this adjunction gives us an equivalence 

of homotopy categories h1ffA/A and hufA. 

To see that the functors K and J are adjoint, that is, we have 

1ffA/A(K(X) , B) "-' ufA(X, J(B)), 

we use the monad A : ..$lA --1- ..$lA of Section 4.1.1. Recall that ufA is the category of A-algebras 

AA[A] in A-modules and note that K(AM) is a free commutative A-algebra on M. Therefore for 

an A-module M we have; 

To get the adjointness result for any A-NUCA X, we observe that there is a split coequalizer: 

AAX~AX-+X. 

We can illustrate the adjointness isomorphism explicitly as follows. If 9 : X --1- J(B) is a morphism 

in J1A then its adjoint 9 : A V X --1- B is given by the composite 

9 : A V X ~ A V J(B) ~ B 

where i is the canonical map J(B) --1- B. 

In order to show that the adjunction 1ffA/A(K(X) , B) "-' J1A(X, J(B)) passes to the homotopy 

categories, we use [17, 9.7]. This result shows that we are required to show that the functor 

K preserves cofibrations and acyclic cofibrations. We can then show, using [17, 9.7(ii)] that the 

adjunction gives the proposed equivalence of homotopy categories. Dwyer and Spalinski [17, 9.7] 

give a refinement of Quillen's total derived functor theorem [41, 1.4], which Quillen used heavily in 

order to show that two model categories have equivalent homotopy categories. 

4.1.3 Abelianization functor 

Let RJ denote the total derived functor of J. Let us consider the functor Q : J1A --1- JltA called 

the indecomposables functor which is given by the cofibre sequence: 

N I\A N ~ N --1- Q(N), 
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where m denotes the multiplication map. The right adjoint functor of Q is the functor Z : J/(A ------. 

.;VA which is given by considering A-modules as objects in utA with zero multiplication. Let LQ 

denote the total derived functor of Q. Now we can define the abelianization functor: 

which is left adjoint to the trivial B-algebra extension functor 

We have the functor -I\A B : CCAjB -----* CCAjA and so -I\~ B : hCCAjB ----+ hCCAjA. 

Definition 4.2. Let C be a commutative A-algebra over B. Then 

Ab~ (C) := LQRI( C I\~ B). 

The adjunction described above gives us the following. 

Theorem 4.3. Let C be a commutative A-algebra over Band M a B-module. Then: 

We should note, as mentioned in [29] and [6], that the isomorphism of Theorem 4.3 holds on 

the level of homotopy categories, but does reflect an adjunction between strict categories. 

4.1.4 Topological Andre-Quillen homology 

For B a commutative A-algebra, we let 0BjA denote the B-module obtained by applying the 

abelianization functor to B, so that 

Then the topological Andre-Quillen homology and cohomology of B over A with coefficients in a 

B-module M are defined by 

TAQ*(B/A; M) = 1l"*(OBjA I\B M), 

TAQ*(B/A; M) = 1l"_* (FB (OBjA, M)) 

where FB denotes the internal function object in vltB· 
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The definition of topological Andre-Quillen homology and cohomology leads us to a basic struc­

tural result, which is essentially the topological analogue of Quillen's transitivity exact sequence 

[46, 8.8.6]. The following result is given in [6, Proposition 4.2]. 

Proposition 4.4. Let B --+ C be an A-algebra map. Then 

is a homotopy cofibre sequence of C -modules. 

And so, associated to an A-algebra map B --+ C with MaC-module, there are natural long 

exact sequences, 

... ---+ TAQk(B/A; M) ---+ TAQk(C/A; M) --+ TAQk(C/ B; M) 

---+ TAQk_l(B/A;M) ---+ ... (4.4a) 

and 

... ---+ TAQk(C/B;M) ---+ TAQk(C/A;M) ---+ TAQk(B/A;M) 

---+ TAQk+l(C/B;M) ---+ ... (4.4b) 

We will be especially interested in the situation where A and B are connective and the map 

¢: A ---+ B induces an isomorphism AD ~ Bo; we will write Ik = AD = Bo. Then there is 

an Eilenberg-Mac Lane object HIk, which can be taken to be a CW commutative A-algebra or B­

algebra, which allows us to define the ordinary topological Andre-Quillen homology and cohomology 

of B over A: 

HAQ*(B/A) = TAQ*(B/A; HIk) = 1l"*(OBjA /\B HIk), 

HAQ*(B/A) = TAQ*(B/A; HIk) = 1l"-*(FB(OBjA, HIk)). 

When Co = Ik, the long exact sequences of (4.4) become long exact sequences as follows. 
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We can also introduce coefficients in a Ik-module M by setting 

HAQ*(BjA; M) = TAQ*(BjA; HM) = 1l"*(OB/A I\B HM), 

HAQ*(BjA; M) = TAQ*(BjA; HM) = 1l"-*(FB(OB/A, HM)). 

(4.7a) 

(4.7b) 

The following lemma is an important result on ordinary topological Andre-Quillen homology 

and is given in [6, lemma 8.2]. The result appears to be incorrectly stated and should read as 

below; we note that the proof appears to be correct. For a map () of A-modules we let Co denote 

the mapping cone of () in .,dA. 

Lemma 4.5 (Basterra [6, lemma 8.2]). Let ¢: A -----4 B be an n-equivalence, where n > 1. Then 

OB/A is n-connected and there is a map of A-modules T: C¢ -----4 0B/A for which 

Lemma 4.5 above allows, as an immediate consequence, the following version of the classical 

Hurewicz isomorphism theorem. 

Corollary 4.6. The map T induces the following isomorphism 

Proof. From [19] there is a Kiinneth spectral sequence for which 

For dimensional reasons we have E(\n+l = E5,n+l and so, on recalling that Ao = Bo = Ik, 

Recall that for any A-module X, there is a free commutative A-algebra on X, JID AX = V i~O Xi /'£i· 

The A-algebra map JID AX ---+ JID A* = A induced by collapsing X to a point makes A into an JID AX­

algebra. 

Let X be a cell A-module. We can write 
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where taq is the construction of Kuhn [27] generalised from S-modules to A-modules. From [27. 

Lemma 3.6] and [27, Example 3.8], both generalised from S-modules to A-modules, we get 

and 

and it follows that 

On taking B = JPl AX and C = A, the cofibration sequence of Proposition 4.4 yields the following 

cofibration sequence of A-modules 

in which !1AjA ~ *. Hence as A-modules, 

(4.8) 

For the A-sphere sn = SA with n > 0 we obtain the commutative A-algebra JPl ASn and aug­

mentation JPl ASn ---+ A; this allows us to view an A-module as a JPl ASn-module. 

Proposition 4.7. For any JPl ASn-module M we have 

TAQ* (JPl ASn j A; M) rv M*-n. 

In particular, 

if k = n, 

otherwise. 

Proof. Taking X = sn in (4.1.4) we obtain 

TAQ*(JPl ASn jA; M) = 7f*!1lP'ASnjA !\lP'ASn M = 7f*sn !\ M rv M*-n, 

TAQ*(JPlAsnjA;M) = 7f-*FlP'ASn(!1lP'AsnjA,M) = 7f_*F(Sn,M) rv M*-n. 
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When M = Ht with t = Ao this gives 

if k = n, 

otherwise, 

as claimed. o 

Proposition 4.8. We have 

HAQk(AjlP' Asn) = HAQk(AjlP' Asn) = {: 
if k = n + 1, 

otherwise. 

Proof. Taking X = sn in (4.8) we have 

n A/IP'AXSn !\A Ht c:::: ~nIP'Asn/A !\IP'ASn A!\A Ht c:::: ~nIP'Asn/A !\IP'ASn Ht, 

FA (nA/IP'ASn , Ht) c:::: FA(~nIP'Asn/A !\IP'ASn A, Ht) c:::: FIP'Asn(~nIP'Asn/A' Ht). 

Using Proposition 4.7 the result is now immediate. o 

4.2 Topological Andre-Quillen homology for cell S-algebras 

We will apply the results of Section 4.1 to the case of a CW commutative S-algebra R for which 

R[o] = S and the (n + I)-skeleton R[n+l] is obtained by attaching a wedge of (n + I)-cells to R[n] 

using a map kn : Kn ----i- R[n] from a wedge of n-spheres Kn = V sn. Thus 

which is also the pushout of the following diagram. 

(4.9) 

We will also assume that only cells of degree greater than 1 are attached, thus R[l] = R[o] = Sand 

Ro = 1foS. We will call such S-algebras simply connected. 

Now by [6, proposition 4.6], for A-algebras A ----i- B and A ----i- C we have the following 

isomorphism 

(4.10) 
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For n > 1 this gives 

We can consider the following long exact sequence derived from (4.6a), 

.,. ~ HAQk(R[n]/S) ---+ HAQk(R[n+l]/S) ---+ HAQk(R[n+l]/R[n]) 

---+ HAQk_l(R[n]/S) ---+ '" 

which by (4.10) becomes 

... ~ HAQk(R[n]/ S) ---+ HAQk(R[n+l]/ S) ---+ HAQk(IP'sCKn/IP'sKn) 

~ HAQk_l(R[n]/S) ----+ ... 

in which there is an equivalence of IP'sKn-algebras 

IP'sCKn ~ IP's* = S. 

Hence we obtain the following long exact sequence 

.. , --t HAQk(R[n]/S) --t HAQk(R[n+l]/S) ~ HAQk(S/IP'sKn) 

~ HAQk_l(R[n]/S) ~ .... (4.11) 

Using Proposition 4.8, we can now give an estimate on the size of HAQ*(R/ S) when R is a 

finite dimensional CW commutative S-algebra. 

Proposition 4.9. Let R be a CW commutative S -algebra with cells only in degrees at most n. 

Then HAQk(R/S) = 0 when n < k. 

Corollary 4.10. If R has only finitely many cells, then 

n 

L rank HAQk (R/ S) < number of cells. 
k=O 

We also have an analogue of a standard result on CW spectra. 

Proposition 4.11. Let ¢ : P ---+ Q be a map of simply connected CW commutative S-algebms. 

Then ¢ is an equivalence if and only if ¢* : HAQ* (P / S) ~ HAQ* ( Q / S) is an isomorphism. 
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Proof. Let n > O. Then 1> is an n-equivalence if and only if the mapping cone C¢ is n-connected. 

But on combining Corollary 4.6 with the long exact sequence of (4.5a), we see that C¢ is n-connected 

if and only if 1>* : HAQk(P / S) ----+ HAQk( Q / S) is an isomorphism for all k < n. 

Since this holds for all n, the result follows. o 

We will continue to work with a CW commutative S-algebra R as discussed at the beginning 

of this section. Let in: R[nJ ----+ R[n+lJ be the inclusion map (this is a map of S-algebras and 

therefore of S-modules). The following discussion provides us with the arguments that allow us to 

give results on nuclear and minimal atomic S-algebras in the following chapter. Let us consider 

the following two cofibration sequences in the category of S-modules; 

Kn kn) R[nJ ----+ Ckn , 

R[nJ ~ R[n+lJ ----+ Cin . 

From the proof of [6, lemma 8.2], there is a homotopy commutative diagram 

R[nJ in) R[n+lJ Un) OR[n+l]/R[n] 

which we shall show to extend to a homotopy commutative diagram of the following form. 

R[nJ Ckn 2:.Kn 

=1 1 1~ 
( 4.12) 

First let us prove that the map Ck
n 

----+ R[n+lJ exists. Recall that R[n+lJ is a pushout for the 

diagram (4.9), of commutative S-algebras, that is, we have the following commutative diagram. 
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We also have that Ckn is defined as a pushout, and so we also have this commutatiye diagram. 

By considering the natural map CKn -----+ IPsCKn -----+ R[n+lJ as well, we get a commutative diagram 

of S-modules as follows 

Kn 

y~ 
R[nJ CKn 

~/ 
R[n+lJ 

and so by the definition of Ckn as a pushout we have a map Ckn -----+ R[n+lJ. 

As before, let us consider DR[n+1]/R[n] and use (4.10) to get 

We now use the equivalence of IPsKn-algebras 

IP sCKn ~ IP s* = S. 

to get 

We now use (4.8) and (4.1.4) to get 

And so, 

DS/PSKn rv ~npsKn/S /\PsKn S 

rv ~(IPsKn /\s Kn) /\PsKn S 

~Kn /\ S. 

DR /R ~ R[nJ /\PsKn S /\ ~Kn [n+l] [n] 
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as modules over R[n+lJ = R[nJ /\PsKn S. 

Let us now smash over R[n+lJ with HZ to arrive at 

Now consider the composite map Tn 0 hn from diagram (4.12) above, and let us smash with HZ, 

giving the following map 

We obtain a self map in : HZ /\ ~Kn ----+ HZ /\ ~Kn by following the map above with the natural 

map 

( 4.13) 

Since Kn is a wedge of n-spheres, HZ /\ Kn is a wedge of copies of HZ. In fact, the map of (4.13) 

induces an isomorphism on 71"n+l( ). 

Lemma 4.12. in : HZ /\ ~Kn ----+ HZ /\ ~Kn is an equivalence. Equivalently, the following maps 

are isomorphisms: 

Proof. The pairs (Gkn' R[nJ) and (R[n+lJ' R[nJ) occurring in (4.12) are relative cell complexes which 

have the same cells in degrees up to n. The cells in degree n + 1 correspond to those on ~Kn and 

therefore (hn)* : 71"n+l~Kn ----+ 71"n+l Gin is an isomorphism. For a discussion of cellular structures 

in this context see [19, VII 3, X 2]. It now follows from the Hurewicz isomorphism theorem that 

fn induces an isomorphism on 71"n+l(HZ /\ ~Kn) which agrees with Hn+l(~Kn)' o 

Now applying homotopy to the diagram of (4.12), we obtain a commutative diagram of groups, 

a part of which is 

) 71"n+lR[nJ 71"n+l G kn 71"n+l~Kn ) 71"nR[nJ -----t) ..• 

=1 1 f2! 1 (hn )* =1 
) 71"n+lR[nJ 

(in )* 
71"n+lR[n+lJ 71"n+l Gin ) 71"nR[nJ ) -----t) •.. 

=1 =1 ~ 1 (Tn )* =1 
71"n+lR[nJ 

(in )* 
71"n+lR[n+lJ 

(un )* 
71"n+l DR[n+1]/R[n] ) 71"nR[nJ ) -----t) ••. 

(4.1-1) 

64 



and in which the top two rows are exact. In the t· h th b por IOn sown, e ottom row is also exact 

because of the isomorphism (Tn)* on 1Tn+1( ). 

Now we claim that the natural map 

induced from the map 

extends to a diagram 

1Tn+1 R[n+1] 

lOn+l 

HAQn+1 (R[n+1]I S) 

1TnR[nJ 

len ( 4.15) 

-----*) HAQn(R[n]IS) 

in which the bottom row is a portion of the usual long exact sequence (4.6) for A = S, B = R[nJ 

and C = R[n+1]. Furthermore, these diagrams are compatible for varying n. 

We prove this by induction on n. The initial case n = 0 is trivial since R[o] = Sand 

HAQo(R[o]I S) = o. Now suppose we have the result for some n > o. From Proposition 4.9, 

HAQn+1 (R[n] I S) = 0, hence there is a commutative diagram 

1T n+ 1 R[n+ 1] 1Tn +10 R[n+l]/ R[n] 1TnR[n] 

~l 1 en 

-----*) HAQn (R[n] IS) . 

Recalling that (4.14) has exact first and second rows, we see that both rows here are exact, we see 

that there is a map 8n+1 : 1Tn+1R[n+1] --+ HAQn+1 (R[n+1]I S) as desired. 

Making use of the isomorphism (Tn 0 hn )*, we can replace the diagram (4.15) by 

1Tn+1L.Kn 

(4.16) 

o ---t HAQn+1(R[n+1]IS) ) HAQn+1(R[n+1]IR[n]) ) HAQn(R[n] IS). 

Using the evident natural transformation HAQn( ) --+ HAQn( ; lFp ) we can map the 

bottom row of (4.16) into the exact sequence 
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to obtain 

7rn+lR[n+lJ 7rn+l~Kn 7rnR[nJ 

1 en+ 1 epi 1 1 en ( 4.17) 

0-+ HAQn+l (R[n+lJI S; lFp ) -------1) HAQn+l (R[n+lJI R[nJ; lFp ) -------;) HAQn(R[nJI S; lFp ) 

in which the rows are exact and the middle vertical arrow is an epimorphism. 
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Chapter 5 

Nuclear and Minimal Atomic 

S-algebras 

Hu. Kriz and 1Iay [23] discussed the notions of nuclear complexes and cores of spaces. spectra and 

commutatiYe S-algebras. In particular, they consider the construction of a core of R as a commu­

tative S-algebra and this is the case of most interest to us. This construction leads to the definition 

of a nuclear commutatiye S-algebra. They remark that the constructions have non-commutatiye 

analogues. \Ye explain in detail the analogous definition for not necessarily commutative S-algebms. 

\Ye extend results of [5] and [23] that hold for S-modules to the case of commutative S-algebras. In 

particular, ,ye characterize nuclear commutatiye S-algebras in terms of atomic and minimal atomic 

commutatiye S-algebras. 

5.1 Definitions and Basic Constructions 

\Ye work in the context of [19]: specifically in the category of commutatiye S-algebras ~ JZ1 s and 

the category of S-algebras JZ1s • \Ye also ,york p-locall:' for a fixed prime p. "'here p-localizations 

of commutatiye S-algebras are commutatiye algebras over the p-local sphere S-module S(p) which 

we shall denote as S from this point forward. Such localizations are described in Section 2.6. \Ye 

use results on topological Andre-Quillen homology giyen in Chapter 4. \Yhen we have a map of 

commutati,'e connectiye S-algebras 6: A ---+ B. we set 
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where TAQ*(BIA; H'lL(p)) is the topological Andre-Quillen homology of B over A with coefficients 

in the Eilenberg-Mac Lane object H'lL(p). We assume that all S-algebras are cellular and have 

only finitely many cells in each dimension with each homotopy group and HAQn (XI S) a finitely 

generated 'lL(p)-module. 

We let .As denote the category of S-modules. We have a forgetful functor ~ d s ---+ .As with 

left adjoint free functor]P>: .As ----+ ~ d s, producing from S-modules, free commutative S-algebras. 

The composite .As ----+ ~ d s ----+ .As of Wand the forgetful functor is the monad associated with 

this adjunction. As before, we shall also denote this monad by W. It is introduced in [19, II, 

Construction 4.4] and [19, II, Proposition 4.5] gives, as a consequence of the construction, that the 

category ~ d s is isomorphic to the category of W-algebras in .As. There is an analogue for not 

necessarily commutative S-algebras using the monad ']I'; .As ---+ ds [19, II, Construction 4.4]. Let 

C X denote the cone on an S-module X and b; X ----+ C X be the canonical inclusion. We let Kn be 

a wedge of finitely many copies of sn and for an S-algebra Qn we consider the map kn ; Kn ---+ Qn 

as a map of S-modules. For commutative S-algebra Q we assume that the unit",; S ---+ Q induces 

an isomorphism on 'ITo, that is, 'ITo ( Q) = 'lL(p). We should note that this implies that any self map 

Q ---+ Q also induces an isomorphism on 'ITo. 

Definition 5.1. A nuclear commutative S-algebra is a commutative S-algebra Q such that Q = 

colim Qn, where Qo = S and inductively Qn+l is the pushout of the following diagram. 

Also, the map kn : Kn ----+ Qn satisfies the following condition. 

(5.1) 

A core of a commutative S-algebra R is a nuclear commutative S-algebra Q together with a map 

g; Q ----+ R of S-algebras, such that, the induced map of homotopy groups 

is a monomorphism. 
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Below we include the explicit construction, given R, of the map g: Q ~ R, which is a core of 

R as a commutative S-algebra, as in [23, Construction 2.1]. The core is constructed by inductively 

killing homotopy groups. 

Construction 5.2. We let Qo = S and let go : Qo ~ R be the unit of commutative S-algebra 

R. We construct Q inductively and begin by assuming that we have constructed a commutative 

S-algebra Qn and a map gn : Qn ~ R of S-algebras that induces a monomorphism on homotopy 

groups in dimension less than n. Let Ul,"" Urn be a minimal set of generators of the kernel 

of gn* : 7rn (Qn) ------+ 7rn(R). We take a wedge Kn of copies of sn; one for each Ui. We take 

kn : Kn ~ Qn to be a map of S-modules that realizes each generator Ui of ker gn* through the 

following diagram. 

K V Sn VUi V Q 'V n= i ~ i n~Qn 

ith factor t 
sn 

We have kn* : 7rn (Kn) ---* ker gn*' The minimality of our chosen family of generators (Ui) for ker gn* 

implies that 

We have the induced map kn : IP Kn ------+ Qn of S-algebras which gives Qn as a IP Kn-algebra. 

We define Qn+l = IPCKn I\PKn Qn, that is Qn+l is the pushout of the following diagram. 

Evidently, by our construction, gn 0 kn is null homotopic. Let us now choose a null homotopy 

hn : C Kn ------+ R, with hn : IPC Kn ------+ R the induced map of S-algebras. By the universal 

property of pushouts there exists a map gn+l : Qn+l ------+ R that restricts to gn on Qn· Define 

Q = colim Qn and let g : Q ------+ R be the map of S-algebras obtained by passage to colimits from 

the gn. We have that, by construction, the induced map of homotopy groups g* : 7r*(Q) ~ 7r*(R) 

is a monomorphism. 

We can also define a nuclear not necessarily commutative S-algebra and the core of a not 

necessarily commutative S-algebra in a similar way as follows. 
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Definition 5.3. A nuclear not necessarily commutative S-algebra l'S a not '1 . necessan y commutatlYe 

S-algebra Q such that Q = colim Qn, where Qo = S and inductively Qn+l is the pushout of the 

following diagram in ds; 

lI.'Kn kn;. Qn 

1 T~ 
11.' C Kn 

Also, the map kn : Kn ~ Qn satisfies the following condition; 

A core of a not necessarily commutative S-algebra R is a nuclear not necessarily commutative S­

algebra Q together with a map g: Q ~ R of S-algebras, such that, the induced map of homotopy 

groups 

is a monomorphism. 

Definition 5.4. A commutative S-algebra Q whose unit induces an isomorphism on 7ro is 

l. atomic if any map of S-algebras f: Q ~ Q is an equivalence 

11. minimal atomic if it is atomic and if a map g: P ~ Q of commutative S-algebras from 

an atomic S-algebra P to Q that induces a monomorphism on all homotopy groups is an 

equivalence. 

5.2 Results on Nuclear and Minimal Atomic S-algebras 

In this section we extend results of [5] and [23] that hold for S-modules to the case of commutative 

S-algebras. In particular, we characterize nuclear commutative S-algebras in terms of atomic 

and minimal atomic commutative S-algebras. The penultimate result of this section allows us to 

factorize a core of S-modules as a core of S-modules composed with a core of S-algebras, and it is 

this result that leads us to the examples contained in the next chapter. 

We can now consider the analogue of [23, 1.5] which was conjectured in [23, 2.9J 

Theorem 5.5. Every nuclear commutative S -algebra is an atomic commutative S -algebra. 
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Proof· Let X be a nuclear commutative S-algebra whose unit induces an isomorphism on 7ro. Let 

f: X ~ X be a map of S-algebras. We may assume that f is cellular, and so, we prove that 

f : Xn ~ Xn is an equivalence for all n. 

Since X is nuclear, we have Xo = S and the (n+1)-skeleton X n+1 is the pushout of the following 

diagram; 

T1])K kn X 
.lL n )0 n 

! PL 

WC Kn 

where Kn is a wedge of finitely many copies of sn. So, X n+1 = Xn /\PKn JID C Kn. We assume 

inductively that f: Xn ~ Xn is a homotopy equivalence and deduce that f: X n+1 ~ X n+1 is a 

homotopy equivalence. 

By Proposition 4.11, a map 'lj;: P ~ Q of simply connected CW commutative S-algebras is 

an equivalence if and only if 'lj;: HAQ* (P / S) ~ HAQ* (Q / S) is an isomorphism. For the nuclear 

commutative S-algebra X we can derive the following long exact sequence 

which by 4.10 and the equivalence of JID Kn -algebras, JID C Kn ~ S becomes (4.11) 

We now note that by the definition and (4.5) we have that 

We also use 4.8 to give 

This allows us to see the the following 

HAQk(S/JIDKn ) = 7rk(~OPKn/S /\PKn HZ(p)) 

= 7rk-l(OPKn/S /\PKn HZ(p)) 

= HAQk_l(JIDKn /S). 

We are therefore able to use the isomorphism below in the discussion that follows. 
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We have the following commutative diagram with exact rows 

0---+ HAQn+l (Xn+I! S) -~) HAQn(IF'Kn/S ) --4> HAQn(Xn/S) 

f* 1 f* 1 f* 1 ~ 
0---+ HAQn+l (Xn+I/ S) -~) HAQn (IP' Kn/ S) --4) HAQn(Xn/S) 

-----+) HAQn(Xn+dS) ------> 0 

f* 1 
-----+) HAQn(Xn+dS) ~ 0 

(5.2) 

It is necessary to show that the left and right vertical arrows are isomorphisms. By the 

Five Lemma, this will hold if HAQn (IF' Kn / S) ---+ HAQn (IF' Kn / S) is an isomorphism. That is, 

if, HAQn+l (Xn+I/ Xn) ---+ HAQn+l (Xn+I/ Xn) is an isomorphism. By 4.16, we have an isomor-
rv 

phism 7rn+l~Kn ~ HAQn+1 (Xn+I! Xn). And so it suffices to show that f induces an isomorphism 

f* : 7rn(Kn) ---+ 7rn(Kn). 

We have co fibre sequence 

and this leads to a long exact sequence in homotopy: 

Of course 7rj(Kn) vanishes for j < n because Kn is a wedge of copies of sn. Moreover, the self 

map f respects the cofibration because it is cellular and f induces a self map of this long exact 

sequence. Hence we obtain the following commutative diagram with exact rows 

-----+) 7rn(Xn) -----+) 7r n ( C kn ) -----+) 0 

f* 1 f* 1 
-----+) 7rn(Xn) -----+) 7rn (CkJ -----+) O. 

We have assumed that f : Xn --> Xn is a homotopy equivalence and hence f* : 7rn(Xn) --> 7rn(Xn) 

is an isomorphism in the diagram above. By this and a diagram chase we deduce that the right 

vertical arrow is an epimorphism, but we cannot deduce that it is a monomorphism from the 

diagram because at this stage we do not know that the left vertical arrow is an epimorphism. 

However, we know that an epimorphic endomorphism of a Noetherian module is an isomorphism 

and this implies that the right vertical arrow is an isomorphism. It follows that in the diagram 

below the right hand map is an isomorphism. 

o i ) 7rn(Kn) ) Imkn* ) 0 

1 f* 1 ~l (5.3) 

) 7rn(Kn) ) 1m kn* ) 0 o 
i 
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We use this diagram to show that 

(5"±) 

Let us choose x E 7rn(Kn) and find from the diagram x E 7rn(Kn) such that f*(x) and x have the 

same image under kn*. Hence, 

using (5.1). Hence x E 1m f* + p.7rn(Kn) and so we have shown that (5.4) holds. By Nakayama's 

Lemma, (see [3, Corollary 2.7]) 1m f* = 7rn(Kn) and so we have that f* is an epimorphism in the 

diagram 5.3. We can now apply the Noetherian argument used previously to get that f* is an 

isomorphism. o 

Proposition 5.6. A minimal atomic commutative S-algebra is equivalent to a nuclear commutative 

S-algebra. 

Proof. Let Y be a minimal atomic commutative S-algebra and consider a core of Y, that is, a 

nuclear commutative S-algebra X along with a map f: X ----+ Y that induces a monomorphism 

on all homotopy groups. X is a nuclear commutative S-algebra and therefore by Theorem 5.5 it is 

an atomic commutative S-algebra. Since Y is minimal atomic, we use Definition 5.4(ii) to see that 

the map f: X ----+ Y is an equivalence. Hence we have minimal atomic commutative S-algebra Y 

being equivalent to nuclear commutative S-algebra X. o 

The proof of Theorem 5.5 above, strongly suggests that the following may also hold. 

Conjecture 5.7. Every core of a nuclear commutative S-algebra is an equivalence. 

This conjecture is a natural generalization of Baker and May's [5, Proposition 2.5] about nuclear 

complexes and cores. In fact, we can already give a detailed picture of how the proof might work. 

Let Y be a nuclear commutative S-algebra whose unit induces an isomorphism on 7ro· And let 

f: X ----+ Y be a core of Y, that is, X is a nuclear commutative S-algebra and the map f: X ----+ Y 

is a map of commutative S-algebras that induces a monomorphism on all homotopy groups. 

We may assume that f is cellular, and so, we prove that f: Xn ----+ Yn is an equivalence for all 

n. As X and Yare both nuclear, we have Xo = Yo = S and the respective (n + 1 )-skeleta are given 

by X n+1 = Xn I\lP'J
n 

lP' C I n and Yn+1 = Yn I\lP'Kn lP' C Kn, where I n and Kn are wedges of copies of 
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sn. We assume inductively that f: Xn ------+ Yn is an equivalence and deduce that f: X
n
+

1 
~ Y

n
+

1 
is an equivalence. 

We obtain the following commutative diagram with exact rows in a similar way to (5.2). \Ye note 

again, that a map 'Ij;: P ------+ Q of simply connected CW commutative S-algebras is an equivalence 

if and only if 'Ij;: HAQ* (P / S) ------+ HAQ* (Q / S) is an isomorphism. 

o ~ HAQn+l(Xn+dS) ) HAQn(1P'Jn/S) ) HAQn(Xn/S) 
-----t) HAQn(Xn+dS) ~ 0 

~1 ~1 ~1~ 
o ---+ HAQn+ 1 (Yn+ 1/ S) 

f* 1 
-----7) HAQn(Yn+dS) ~ 0 

(5.5) 

It is necessary to show that the left and right vertical arrows are isomorphisms. By the Five 

Lemma, this will hold if HAQn (JP' I n/ S) ------+ HAQn (JP' Kn/ S) is an isomorphism. It suffices to show 

that 7fn(Jn) ------+ 7fn(Kn) is an isomorphism. We have the following map of cofibre sequences 

which gives us the following commutative diagram with exact rows 

7fn( I n) jn* 

f* 1 
7fn(Kn) kn * 

1 
o 

) 7fn(Xn) 

f* 1 
) 7fn(Yn) 

i 
-----I) 7fn( I n ) 

f* 1 
-----7) 7fn(Kn) 

i 

) 7fn(Cjn ) -----t) 0 

f* 1 
) 7fn(CkJ 

-----I) 0 

1 
-----+) 0 

Using the nuclear condition (5.1), both maps i become 0 after tensoring with lFp . The argument 

can now be completed in the same way as the proof for Proposition 3.14. 

It seems reasonable that the following S-algebra analogue of [5, Theorem 2.6], which was stated 

for S-modules in Theorem 3.15, should hold. 
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Conjecture 5.8. A nuclear commutative S-algebra is a minimal atomic commutative S-algebra 

Proof that 5.7 =} 5.8. 

The proof of [5, Theorem 2.6] adapts to S-algebras as follows. Let Y be a nuclear commu­

tative S-algebra and let f: X ------+ Y be a map from an atomic S-algebra X to Y that induces 

a monomorphism on all homotopy groups. We aim to show that f: X ------+ Y is an equivalence. 

Consider the composite of f and a core g: W ------+ X. This composite will induce a monomorphism 

on all homotopy groups and hence is a core. Since Y is nuclear, we use the result that a core of a 

nuclear commutative S-algebra is an equivalence (Conjecture 5.7) to show that the composite of f 

and g is an equivalence and we have that f is also an equivalence. 

The following proposition is stated in [23, Proposition 2.10]. We have provided a shorter proof 

using a result on S-modules given in 3.12. 

Proposition 5.9. For any core g: Q ------+ R of commutative S-algebras, there exists a core f: X ~ 

R of S -modules and a map ~: X ------+ Q of S -modules such that f = g 0 ~. In particular, ~ induces 

a monomorphism on all homotopy groups. 

Proof. We have a core g: Q ------+ R of commutative S-algebras. So Q is a nuclear commutative 

S-algebra and g: Q ------+ R is a map of S algebras that induces monomorphisms on all homotopy 

groups. Let ~: X ------+ Q be a core of S-modules, then X is a nuclear S-module and the map ~ 

also induces monomorphisms on all homotopy groups. Hence by (Lemma 3.12) ([23, Lemma 1.13]), 

go~: X ------+ R is a core of R as S-modules. So the proposition holds, since for any core g: Q ~ R, 

we have a core f: X ------+ R of S-modules such that f = g o~, by choosing the map ~: X ~ Q of 

S-modules to be a core. o 

We should note that ~: X ------+ Q is a core of S-modules. We have that Q is nuclear as a 

commutative S-algebra, but not nuclear as an S-module and so we cannot use Theorems 3.15 and 

3.16 ([5, Theorems 2.6 and 2.7]) to get that ~ is an equivalence. For the examples of commutative 

S-algebras R in the following chapter, we show in fact that ~ cannot be an equivalence, by showing 

that there is no map of commutative S-algebras X ----t R, where X is a core of R as S-modules. 

These examples produce some interesting examples of non-cores. In one of our examples we look 

at the spectrum BoP introduced by [37] which is known to be a core of M SU when both spectra 

are considered as S-modules (see [5, Example 6.1]). We use the same techniques as Hu, Kriz and 
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May [23, Proposition 2.11] to show that there is no map BoP -----+ MSU of S-algebras. This work 

relies heavily upon the action of the Dyer-Lashof algebra on the homology of various commutati,'e 

S-algebras. 

The following relies upon Conjecture 5.8. 

Conjecture 5.10. Any commutative S-algebra R, which is minimal atomic as an S-module is 

equivalent to a core of R as S-algebras and therefore equivalent to a minimal atomic S-algebra. 

Proof that 5.8 =} 5.10. 

Suppose we have a commutative S-algebra R which is minimal atomic as an S-module. If 

we let g: Q -----+ R be a core of commutative S-algebras, then by Proposition 5.9, there is a core 

f: X -----+ R of S-modules and a core e: X -----+ Q of S-modules such that f = go e. Since R is 

minimal atomic as an S-module, the core f: X -----+ R is an equivalence by Definition 5.4(ii). Hence 

we have g: Q -----+ R as an equivalence, and therefore, R is equivalent to a nuclear commutative 

S-algebra. Since a nuclear commutative S-algebra is a minimal atomic commutative S-algebra 

(Conjecture 5.8), we have that R is equivalent to a minimal atomic S-algebra. 

5.3 Minimal and Nuclear Commutative S-algebras 

In Chapter 3, the notion of a minimal S-module X was introduced. Such an S-module was defined 

to have a zero differential on its cellular chain complex C*(X; lFp ). Theorem 3.18 states that every 

S-module Y is equivalent to a minimal one. We continue to take the view that HAQ* is a good 

substitute for ordinary homology when considering commutative S-algebras and consider the notion 

of minimality in that situation. 

Continuing to work with p-local CW commutative S-algebras, we give a suitable definition of 

a minimal commutative S-algebra. 

Definition 5.11. Let R be a commutative S-algebra with n-skeleton R[n]' Then R is minimal if, 

for each n, the induced epimorphism 

is actually an isomorphism. 
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We present and prove the following theorem which is analogous to Theorem 3.18. The details 

of the proof are closely based upon the proof of Theorem 3.18 presented in [5]. 

Theorem 5.12. For a commutative S -algebra Y, there is a minimal commutative S -algebra X and 

an equivalence of commutative S -algebras f : X ~ Y. 

Proof. We are given a p-local OW commutative S-algebra Y. We have assumed Y to have finitely 

many cells in each degree and so we take HAQn (Y / S) to be a direct sum of finitely many cyclic 

Z(ptmodules, which we shall denote as An,i' We must construct a minimal commutative S-algebra 

X along with an equivalence f : X ---+ Y. Recall from Theorem 4.11 that a map f : X ---+ Y of 

S-algebras is an equivalence if and only if f* : HAQ*(X/ S) ----+ H AQ*(Y/ S) is an isomorphism. 

The S-algebra X will have an n-cell jn,i for each summand An,i and an (n + I)-cell with 

differential qiln,i, for the HAQ cellular chain complex where An,i is of order qi. Since each qi must 

be a power of p it is clear that the differential on the HAQ cellular chain complex is zero and so 

we induce the isomorphisms given in Definition 5.11. 

We assume inductively that we have constructed minimal n-skeleton Xn together with a map 

fn : Xn ~ Y that induces isomorphisms on HAQ in dimensions less than n and an epimorphism 

on HAQw That is, we assume that HAQn(Xn/S) is a free Z(p)-module on basis given by cells jn,i 

that map to the chosen generators of the An,i' 

We have the following long exact sequence associated to S-algebra map fn : Xn ----+ Y. 

We have HAQk(Y/Xn) = 0 for k < n. Consider the kernel of f* : HAQn(Xn/S) ----+ HAQn(Y/S) 

and note that it will be free on the basis qiln,i for those i such that An,i has finite order. These 

elements will be the images of elements k~ i in HAQn+l (Y/ Xn). , 

We use a version of the Hurewicz isomorphism given in Corollary 4.6 to get k~,i = T*(k~,i) for 

unique elements k~ i in 7r n+ 1 ( 0 f n) . , 

Similarly, the chosen generators for the An+l,i C HAQn+l (Y/ S) map to elements j~+l,i in 

HAQn+l(Y/Xn) with j~+l,i = T*(j~+l,i) for unique elements j~+l,i in 7rn+l(Ofn). 

For commutative S-algebras, the connecting homomorphism 7rn+l (0 fn) ----+ 7rn(Xn) allows us 

to choose maps sn ----+ Xn that represent k~,i and j~+l,i and consider them as attaching maps 

for the construction of X n+l from X n, by attaching cells kn,i and jn+l,i. Since the sequence 
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1fn+l(Gln) ----+ 7Tn(Xn) ----+ 7Tn(Y) is exact, the attaching maps are null homotopic in Y and so 

there is an extension In+l : X n+1 ----+ Y. 

We therefore have the following map of cofiber sequences. 

-----71 X[n+1J -----;I) OX[n+l]/X[n] 

1 fn+1 1 II 
Y Gin 

which gives rise to the following commutative diagram with exact rows. 

o --+ HAQn+l (Xn+l/ S) ----+) HAQn+l (Xn+1/ Xn) ---+) HAQn(Xn/S) 

(fn+1)* 1 1 
" 

o --+ HAQn+l (Y/ S) HAQn+ 1 (G In) ---+) HAQn (Xn/ S) 

(5.7) 

-...-....ot) HAQn(Xn+1/S) --+ 0 

(fn+l)* 1 
HAQn (Y / S) --+ 0 

(5.8) 

Again consider the HAQ cellular chain complex, where the differential HAQn+l (Xn+1/ Xn) ----+ 

HAQn(Xn/ X n- 1) is the composite given below. 

where the map HAQn(Xn/S) ----+ HAQn(Xn/Xn- 1) is a monomorphism. 

The map HAQn+l (Xn+d Xn) ----+ HAQn(Xn/ S) will send basis elements kn,i to qiJn,i and jn+l,i 

to zero. We therefore have that HAQn+l (Xn+d S) is a free Z(ptmodule on the basis elements jn+l,i. 

By a diagram chase we have that In+l induces an isomorphism on HAQn and we can complete 

the inductive step in constructing I : X ----+ Y by sending the basis elements jn+l,i to the generators 

of the An+1,i. o 

Definition 5.13. A commutative S-algebra is said to have no modp detectable homotopy if, for 

n> 0, the map 7TnR[nJ ----+ HAQn(R/S;1Fp ) is trivial. 

Theorem 5.14. A commutative S -algebra R is nuclear il and only il it is minimal and has no 

mod p detectable homotopy. 
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Proof. By a diagram chase we have that the nuclear condition 5.1 holds for R if and only if On+l = 0 

for n > ° in the following commutative diagram with exact rows, obtained in 4.17. 

7rn+lR[n+lJ 

10n+1 

0-+ HAQn+l (R[n+lJ/ S; JFp ) 

7rnR[nJ 

10n 

--+) HAQn(R[nJ/S;JFp ) 

Let us now suppose that R is nuclear, that is On+l = ° . Note that for n = 0, we have 

And for n > 0, the image of the boundary map 

is trivial since im en = 0. We have therefore shown that the epimorphism 

(5.9) 

is a monomorphism and so R is minimal. R can also be described as having no mod p detectable 

homotopy in the sense that the map, 7rnR[nJ ----+ HAQn(R/ S; JFp ) is trivial. This can be seen via 

the following diagram. 

(5.10) 

HAQn(R/S;JFp ) 

Conversely, if R is minimal and has no mod p detectable homotopy then we have isomorphism 

and using diagram 5.10 above, we also have that On: 7rnR[nJ ----+ HAQn(R[nJ/S;JFp ) is trivial. 

o 
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Chapter 6 

Examples of non-cores 

In Chapter 5 we proved in Proposition 5.9 that for any core 9 : Q -----t R of S-algebras, we have 

cores of S-modules f : X ---+ R and ~ : X ---+ Q such that f = 9 0 ~. In what follows, we show that 

the S-module core ~ : X ---+ Q cannot be an equivalence for particular examples of commutative 

S-algebras R. For each example we show that there is no map of commutative S-algebms X -----t R. 

We note that if ~ were an equivalence then we would have commutative S-algebra core Q of R 

being equivalent to X contradicting our results. 

We give examples of non-cores for commutative S-algebras MU, MSU, MO and MSO. These 

results are motivated by Proposition 5.9 as well as [23, Proposition 2.11] where it was proven 

that BP is not a core of MU considered as commutative S-algebras. The proofs of the results 

which follow rely heavily upon the action of the Dyer-Lashof algebra on the modp homology of the 

commutative S-algebras under consideration. For this reason we begin with an account of Dyer­

Lashof operations including an introduction to infinite loop space theory, homology operations and 

leading to the definition of the Dyer-Lashof operations admitted by the homology of the infinite 

loop space X. We also give results based on formulae derived by Kochman [24] which we use 

directly in the final section containing the main results of this chapter; examples of non-cores. 

6.1 Dyer-Lashof operations 

The following material is based on the account of infinite loop spaces and their homology operations 

given in [32, Chapter 6]. Throughout this section H*(X),denotes the homology of X with lF2-
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coefficients. 

For an infinite loop space X, we have Dyer-Lashof operations: 

which are natural with respect to infinite loop maps. The definition of the operation Qk is analogous 

to the definition of the mod 2 Steenrod operations, or Steenrod squares: 

which exist for any space X. 

Recall that, passing to homotopy classes, we find a natural one to one correspondence 

[Y, OX] +---7 [~Y, X] 

We can iterate this one to one correspondence to give 

where on X = o(on-l X). In particular on X is the set of basepoint preserving maps 

(sn, *) ----+ (X, xo). 

(6.1) 

X is an infinite loop space if there is a sequence of spaces X o, Xl, X2, .,. with Xo = X and with 

weak equivalences 

We can associate to each weak equivalence above, the map 

We can see, recalling details from Section 1.2, that the sequence Xn is a particular type of prespec­

trum. 

Let us consider a prespectrum E, with structure maps 

or equivalently 

81 



If the structure maps c~ are weak equivalences, we call E an n-spectrum. So we can say that an 

infinite loop space X is the Oth term of an n-spectrum X = {Xn }. We note that in defining a 

spectrum we require the structure maps to be homeomorphisms. 

Eilenberg-Mac Lane spaces (Example 1.5) are actually examples of infinite loop spaces. \Ye see 

this as follows. Consider nK('Jr, n + 1) and note that 

7rq (nK(7r, n + 1)) ~ 7rq+l(K(7r, n + 1)) = { : 
q=n, 

q-=j:. n. 

There is therefore a weak equivalence K ('Jr, n) ----+ nK ('Jr, n + 1). 

Let X be an infinite loop space, that is, a single space in an n-spectrum. We have a natural 

embedding of n i ~i X in n H 1 ~H 1 X. Let us take 

that is, Q(X) denotes the direct limit of the spaces nn~nx under this embedding and 'Jri(Q(X)) = 

'Jri(X) , the ith stable homotopy group of X. Dyer and Lashof [18] were the first to study the 

structure of this infinite loop space and gave a geometric construction C(X) which is taken as a 

model for Q(X). This construction is reviewed in [32, Chapter 3B]. 

We obtain the following structure maps for infinite loop space X from the Dyer-Lashof model 

for Q(X): 

(6.2) 

where ~2 is the symmetric group on two letters, E~2 is the covering space for B~2 and ~2 acts on 

X x X by permutation of coordinates. We have, by [32, Lemma 3.20]' that H*(EL2 X~2 X X X) 

is generated by elements ei 0 a 0 a and eo 0 a 0 b for a, bE H*(X). 

We now make the following definition for the Dyer-Lashof operations. 

Definition 6.1. Let X be an infinite loop space. The jth lower Dyer-Lashof operation 

is defined by 

where a E Hi(X) and (d2)* is the map induced by d2 in homology, that is, 
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Many of the properties of the Dyer-Lashof operations are usually and, in the case of the Adem 

relations, more conveniently described in the notation of the upper Dyer-Lashof relations, denoted 

Qk. We have the following connection between the upper and lower operations. 

So, if we take a E Hi(X),we get 

and so, 

that is, Qk raises degree by k. 

The Dyer-Lashof operations satisfy many properties, including the following. 

For x E Hn(X), 

where the product is the Pontrjagin product. We also have 

where ¢ E Ho(X) is the identity element for the multiplication in H*(X). These operations also 

satisfy the multiplicative Cartan formula, given by 

r 

Qr(xy) = L Qi(x)Qr-i(y), 
i=O 

as well as Adem relations, namely 

for k > 2l and all a E H*(X). We note at this stage that Kochman [24] chooses an alternative 

notation for the binomial coefficients throughout his paper, he writes 

{ 

(i + j)!/i!j! 
(i, j) = 

o 
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6.2 Dyer-Lashof Operations for Cobordisrn Thorn spectra 

We consider non-cores for the cobordism Thorn spectra in the following section. Kochman computes 

the Dyer-Lashof algebra on the homology of the infinite classical groups in [24]. We have, by 

a result of Lewis [30, IX, Proposition 7.4], that the Thorn isomorphisms commute with Dyer­

Lashof operations. We therefore use results in [24] to give the action of the Dyer-Lashof algebra 

R, generated by Dyer-Lashof operations Qn, on H*(MU;W2), H*(MSU;W2 ), H*(MO:W2) and 

H*(MSO;W2). 

Notation 6.2. We write aI, a2, a3, ... for the standard sequence of generators for H*(MU; Z). 

Thus 

is a polynomial ring in which deg ai = 2i. We shall need to work mod p and by abuse of notation 

we shall again denote the mod p generator corresponding to ai by ai. The mod 2 homology ring 

H*(MSU;W2) can be identified with a subring of H*(MU;W2). This is also a polynomial ring 

in which the generators bi have degree 2i and are related to the ai by 

bi = ai + terms involving aj's with j < i. 

If we write m for the ideal of H*(MU, Wp ) generated by all the ai then this says that (in case p = 2) 

or equivalently in Kochman's terminology [24], bi = ai modulo decomposables. 

From [24, Theorem 6 and Theorem 18] we have the following theorem. 

Theorem 6.3. In H*(MU; Wp ) and with r > ° and n > 1, we have 

mod m2
, (6.3) 

for an odd prime p and 
(6A) 
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for p = 2. 

Then we have in H*(MSU; F 2) for r > 0, n > 2 and k > 1: 

2r (r -1) Q (an) = n an+r modm2 (6.5) 

if n is not a power of 2 and 

(6.6) 

Notation 6.4. We write Zl, Z2, Z3, •.. for the standard sequence of generators for H*(lIIO; F2)' 

Thus 

is a polynomial ring in which deg Zn = n. We shall always work mod 2. The mod 2 homology ring 

H*(MSO; F2) can be identified with a subring of H*(MO; IF2)' This is also a polynomial ring 

in which the generators Yn have degree n and are related to the Zn by 

Yn = Zn + terms involving zm's with m < n. 

If we write j for the ideal of H*(MO, F2) generated by all the Zn then this says that 

d ·2 
Yn = Zn mo J, 

or equivalently in Kochman's terminology [24], Yn = Zn modulo decomposables. 

From [24, Theorem 36 and Theorem 53] we have the following theorem. 

Theorem 6.5. In H*(MO; F 2) and with r > 0 and n > 1, we have 

(
r - 1) .2 

Qr(Zn) = n Zn+r mod J 

Then we have in H*(MSO; F2) and with r > 0 and n > 2 : 

(
r -1) 2 Qr (Yn) = n Yy+r mod j 

if n is not a power of 2 and 
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6.3 Examples of non-cores 

6.3.1 MU 

We can consider Proposition 5.9 in the previous chapter for commutative S-algebra AIU: by taking 

R = MU and any commutative S-algebra core g: Q ----t MU, we have a factorization of an S­

module core f: BP ----+ MU as go~ for a core ~: BP ----t Q of S-modules. If ~ were an equivalence 

then we would have any commutative S-algebra core Q of MU being equivalent to BP~ which 

would contradict the following result, given in [23, Proposition 2.11]. 

Proposition 6.6. (Hu, Kriz, May) There is no map g: BP ----t MU of commutative S-algebras. 

The proof of Proposition 6.6 above will be mirrored for the examples which follow. It is assumed 

that there is such a map g: BP ----+ MU of commutative S-algebras. By hypothesis BP and 

MU are both commutative S-algebras and so the map g*: H*(BP; IFp) ----t H*(MU; IFp) on modp 

homology would be a monomorphism that commutes with Dyer-Lashof operations. Using the Dyer­

Lashof operations on H*(MU) computed by Kochman [24] and re-stated in 6.3, it is found that the 

commutativity condition is not satisfied and we conclude that there is no such map g: BP -----t MU 

of commutative S-algebras. 

6.3.2 MSU 

We consider a further example; R = MSU, the Thorn spectrum associated with special unitary 

cobordism, and ask the analogous question to [23, Proposition 2.11]. The 2-localization MSU(2) 

is equivalent to a wedge of suspensions of BP and an indecomposable 2-local spectrum BoP. In 

[38], Pengelley constructs BoP by applying the Sullivan-Bass construction to M SU to produce a 

spectrum whose localization is closely related to the indecomposable spectrum BoP. 

Proposition 6.7. There is no map f: BoP ---+ M SU of commutative S -algebras. 

Proof. Let us suppose that there is such a map f. Since BoP and M SU are commutative S­

algebras, they have unit maps TJ: S ---+ BoP and c: S --+ MSU. The map f will commute with 

the units, forming the following commutative diagram 

7J 
S » BoP 

~!f 
MSU 
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which gives us 

?TO(S) 17*,.. ?To(BoP) 

~ !f* 
?To (MSU) 

and since BoP and MSU are both commutative S-algebras, whose units induce isomorphisms 

on ?To, we have that f* is an isomorphism. In [5], Baker and May construct BoP as a nuclear 

spectrum and show in [5, Example 6.1] that BoP is a core of MSU as S-modules. By Theorem 

3.13 [5, Proposition 2.3], a nuclear S-module is atomic, and so any self map BoP ---+ BoP is an 

equivalence. If we consider the composite of f and a splitting map MSU ---+ BoP, we have a self 

equivalence of BoP. So we have that f is the inclusion of a retract and so the map 

on mod 2 homology would be a monomorphism that commutes with Dyer-Lashof operations. The 

Thorn isomorphism 8: H*(MSU) --+ H*(BSU) commutes with the Dyer-Lashof operations, by 

a result of Lewis. Kochman [24] has computed the Dyer-Lashof operations on H*(BSU; Fp) and 

hence on H*(MSU; Fp), for any prime p. We refer to Notation 6.2 and Theorem 6.3. Pengelley 

[37] makes the following identification 

Here B is isomorphic to 

as a comodule over the dual Steenrod algebra A (where (j is the conjugate of Milnor's generator 

~j, and so deg ~j = 2j - 1) and Y is the exterior algebra 

Let us consider the generator of H*(BoP; F2) in degree 6, we can apply the monomorphism 

f*: H*(BoP; lF2) --+ H*(M SU; IF2) to this element to give an element of degree 6 that is equivalent 

to a3 modulo m2 . We can now consider Q16(a3), which by 6.5 gives the following 
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Q'6(a3l = G) au mod m' 

= 35al1 mod m2 

Applying Q16 to our element of degree 6 in H*(BoPi lF2 ), we get an element of degree 22, however 

H*(BoPi lF2) has no indecomposable elements in degree 22, and so we have 0 mod decomposables, 

therefore, f* does not commute with Dyer-Lashof operations. Hence there is no map f: BoP --4 

M SU of commutative S-algebras. 0 

6.3.3 MO 

Thorn showed that M 0, the spectrum representing unoriented bordism, is a wedge of mod 2 

Eilenberg-Mac Lane spectra HlF2. 

Proposition 6.8. There is no map h: HlF2 --+ MO of commutative S-algebras. 

Proof. Suppose there is such a map h of commutative S-algebras. By a similar argument to that in 

Proposition 6.7 and noting that HJF2 is atomic as an S-module we have that h*: H*(HlF2;lF2)---+ 

H*(MOi lF2) is a monomorphism that commutes with the Dyer-Lashof operations. We recall No­

tation 6.4 and note that we also have 

where A is the dual Steenrod algebra. Consider 6 E H1(HlF2ilF2). We can apply the monomor­

phism h*: H*(HlF2; lF2) ---+ H*(MO; JF2) to 6 to give h*(6) E H1(MOi lF2), that is, an element of 

degree 1, so h*(6) = Zl. We can now consider Q4(zd, which by (6.7) gives the following 

Q4(Zll = G) Z5 mod j' 

= 3 Z5 mod j2 

= Z5 mod j2 
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Applying Q4 to 6 E Hl(HJF2 i IF2), we get an element of degree 5, however H*(HIB'2: IF2)) has no 

indecomposable elements in degree 5, and so Q4(6) = 0 mod j2, and so h*( Q4(6)) = 0 mod j2. 

So we have that h* does not commute with Dyer-Lashof operations. Hence there is no map 

h: HJF 2 ----t M 0 of commutative S-algebras. D 

6.3.4 MBa 

Thorn showed that M SO, the spectrum representing oriented bordism, when localized at the prime 

2 is a wedge of integral and mod 2 Eilenberg-Mac Lane spectra HIF2 . 

Proposition 6.9. There is no map]: HZ ----t MSO of commutative S-algebras. 

Proof. Suppose there is such a map] of commutative S-algebras. By a similar argument to that 

in Proposition 6.7 and noting that HZ is atomic as an S-module we have that ]*: H*(HZ; IF2 ) -----t 

H*(MSOi IF2 ) is a monomorphism that commutes with the Dyer-Lashof operations. We recall 

Notation 6.4 and Theorem 6.5 and note that we also have 

where A is the dual Steenrod algebra. Consider 6 E H3(HZ; IF2). We can apply the monomorphism 

]*: H*(HZi JF2) ----t H*(MSOi IF2) to 6 to give ]*(6) E H3(MSO; IF2), that is, an element of degree 

3, so ]*(6) = Y3 mod j2. We can now consider Q8(Y3), which by 6.8 gives the following 

Q8(Y3) = G) Yu mod j2 

= 35 Yll mod j2 

= Yll mod j2 

Applying Q8 to 6 E H3(HZ; IF2), we get an element of degree 11, however H*(HZ; IF2)) has 

no indecomposable elements in degree 11, and so Q8(6) =(2) 0 mod j2, and so ]*(Q8(6)) =(2) 0 

mod j2. So we have that ]* does not commute with Dyer-Lashof operations. Hence there is no 

map]: HZ ---+ MSO of commutative S-algebras. D 
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Chapter 7 

Further calculations 

In this chapter we explore the theory of cellular commutative 8-algebras set up in Chapters 4 and 

5. In particular we consider MU, the Thom spectrum associated with unitary cobordism. We have 

already met MU as a commutative 8-algebra in Chapter 5, and we note in Chapter 6 that Hu, 

Kriz and May [23] showed by contradiction that there is no map 9 : BP ----> MU of commutative 

8-algebras. MU was originally constructed as an Eoo ring spectrum, but, as in Chapter 5, can be 

thought of as a commutative S-algebra. The homotopy groups of MU are concentrated in even 

degrees. We focus on one homotopy element X2 E 1f4MU and construct MU /\PMUS4 lP'MU C 8 4
, 

denoted by MUllx2. The material in this chapter is designed to provide an insight into some of 

the techniques required to investigate MUll X2 and other similar constructions. It would also be 

interesting to consider the relationship between MU and ku, the spectrum representing complex 

K-theory KU, by killing homotopy elements of MU via a similar pushout construction. 

We begin in Section 7.1.1 by calculating the homotopy of commutative MU algebra MU //X2 via 

a Kiinneth spectral sequence. In Section 7.1.2 we continue this examination of MU //X2 by consid­

ering one possible approach to the calculation ofHAQk(MU//x2/8 ). We discuss the possibility of 

using results on long exact sequences from Chapter 4 and note that this may require the calculation 

of H*(ku), leading us to consider the Hurewicz homomorphism h : 1f*(MU) ---+ H*(MU) and its 

Image. 

In Section 7.2 we examine Dyer-Lashof operations on a2, the generator of degree 4 in H*(J..!U; F2)' 

The element a2 is the image of X2 E 1f 4 (MU) under the Hurewicz homomorphism. The techniques 

used in this section could be used in establishing a full description of H*(MU) in terms of the 
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allowable Dyer-Lashof operations. 

7.1 Calculations on MU //X2 

This section serves as an introduction to the techniques employed later in this chapter. We construct 

a commutative MU -algebra via a pushout construction involving a homotopy element. \Ye then 

use a Kiinneth spectral sequence to arrive at the final answer. For efficiency we write X* for '7T*(X). 

Consider the commutative 8-algebra MU and take homotopy element X2 E '7T4.f1JU. We can 

think of X2 as a map 8 4 
----+ MU from the 4-sphere MU-module 8 4 = 8iru to MU itself. Recall 

from Chapter 4, that for any MU-module X, there is a free commutative MU-algebra on X, 

denoted JID MU X. Taking the MU -sphere 8iru we obtain commutative MU -algebra JID MU 8 4 . The 

MU-algebra map 

8 4 X2 U JIDMU ----+ JIDMU* = M 

is induced by collapsing 8 4 to a point. We therefore have MU as a JIDMu8 4-algebra, allowing us 

to view an MU-module as a JIDMu84-module. Again, we have C 8 4 as the cone on MU-module 54 

and [, to be the canonical inclusion. 

We can construct the commutative MU-algebra MU I\PMUS4 IP'MU C 54 as the pushout of the 

following diagram: 
4 PI, 8 4 X2 MU JIDMU C 8 +-- JIDMU ----+ . 

Let us denote MU I\PMUS4 JIDMU C 8 4 as MU //X2' The reason for this notation will become clear 

as we proceed. 

In order to calculate '7T*(MU//X2) we use the Kiinneth spectral sequence, given and constructed 

in [19, IV,(6.1)]. 

We have that (JIDMu84)* = MU*[u] where u is a polynomial generator in degree 4. We also have 

the following equivalence of JID MU 8 4-algebras 
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We have the maps 

(7.2) 

U 1-----+ 0 

and 

(7.3) 

Hence we adopt the following notation; we write (IP'MU C 8 4)* as MU* in (7.2) and MU* as 

(MU*)X2 in (7.3). We consider both as (IP'Mu84)*-modules, giving the following; 

In order to proceed with our spectral sequence calculation we need to form a free (Koszul) 

resolution for MU*, recalling that it is a (IP'Mu84)*-module, that is, an MU*[u]-module. We 

consider the following complex 

d o ---t MU* [u] ---t MU* [u] ---t O. 

It is useful to give separate names to the generators of the free modules, so we write; 

(7.5) 

for the Koszul resolution of MU*. The differential is given by 

but we could also write d( el) = u. 

Now we take the Koszul resolution for MU* (7.5) and tensor with (MU*)X2 to yield 

This gives us the following complex, which we shall denote as T*. 

idQ9d 
--+ (7.6) 

92 



Using this complex, we calculate the following. 

Ho(T*) 

(MU*)X2/(MU*)X2 X2 

HI (T*) 

{a E (MU*)X2 : aX2 = O} 

o 

(i.il 

(7.8) 

And hence, 'Tr*(MU//X2) = (MU*)X2/(MU*)X2X2. This conclusion makes explicit the reason for the 

chosen notation MU / /X2' 

7.1.2 Working towards HAQk(MU//X2/S) 

This section provides an insight into one possible approach to calculating HAQk(MU //X2/ 5). It 

was hoped the material that follows could be used, along with results on long exact sequences from 

Chapter 4, to perform the afore mentioned calculation. 

To illustrate, we begin with one such long exact sequence, as in 4.6a. This sequence is associated 

to an A-algebra map B ----t C. 

In the previous section we constructed the commutative MU-algebra MU /\~MUS4 JP>MU C 54 via a 

pushout construction and denoted it by MU // X2 . Now we consider the map i : MU --+ MU / / X2 

as a map of S-algebras, allowing us to arrive at the following long exact sequence . 

.. , --+ HAQk(MU/S) --+ HAQk(MU//X2/S) ----t HAQk(MU//X2/MU) 

--+ HAQk-I (MU /5) --+ ... 

We have that 'TrkCi = 0 for k < 4 where Ci is the mapping cone of i in JliA and we use a version of the 

Hurewicz isomorphism theorem as given in Corollary 4.6 to find that 'Tr5Ci f'.J HAQ5(MU//X2/MU ). 

We can therefore consider the following portion of the long exact sequence . 

.. , -+ HAQ5(MU/S) ----t HAQ5(MU//X2/5) ----t HAQ5(MU//X2/MU ) 

----t HAQ4(MU/5) ----t HAQ4(MU//X2/5) --+ HAQ4(MU//x2/A1U) = 0 
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We notice that we can apply a corollary from [7 page 5] stating that the ttl (\ , co angen comp ex HMU/S 

is the MU-module MU 1\ ~2ku. By equations 4.5 and this result, we have 

7rk(nMUjS I\MU HZ) 

7rk(MU 1\ ~2ku I\MU HZ) 

7rk (~2 ku 1\ HZ) 

Hk-2(ku). 

We progress this section by developing the calculation of H*(ku), where H = HZ. We begin 

with the Kunneth spectral sequence, involving the Hurewicz homomorphism. The material on the 

Hurewicz homomorphism will also be of use in the last section of this chapter. 

We use the Kunneth spectral sequence, as given below. 

We recall that H*(MU) = 7r*(HZ 1\ MU). 

We are now required to form a free resolution of ku* over MU*. We use the following. 

Z[t], deg t = 2 

Let us choose generators as below. 

Xi f-----7 0, i > 1. 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

We can attempt to follow the same recipe used in the calculation in Section 1. We begin by 

forming a Koszul resolution for ku*, recalling that it is a MU*-module. We should note however, 

that in this case we are looking for a free resolution of ku* = MU*/~MU*, where ~ is regular 

sequence (X2' X3, ... ). 

We use the classical Koszul resolution K(~) given in [46, Corollary 4.5.5]. The degree (p - 1) 

part of K(~) is a free MU* module generated by the symbols 
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The differential 

sends 

to 

E( -1)k+lxke2 1\ ... 1\ €k 1\ ... 1\ e
p 

for k > 2. So, for example the differential 

would map 

to 

We therefore have differential map d : Kp(~) ~ Kp-l(~) given by d(ei) = Xi and satisfying the 

Leibnitz rule. 

We take the Koszul resolution K(~) for ku* and tensor over MU* giving H*(MU) 0MU. K(~). 

On taking homology, this gives the following. 

For the complex in the spectral sequence above, the differential is given by dei = h(Xi) where 

h: 1T*(MU) --+ H*(MU) is the Hurewicz homomorphism. 

In order to calculate the E;* terms, we need to understand the differential dei = h(Xi), that 

is, we require the image of Xi under the Hurewicz homomorphism. Kozma [26] constructs explicit 

polynomial generators for 1T*(MU). Based on Notation 6.2 we have; 
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in which degai = 2i. Kozma defines elements Tp,i E H 2(pi-I)(MU) for every prime p by the 

induction formula 

Tp,i = papi-I - L as-IT;,d· 
sd=l,d<i 

Kozma then proves the following theorem. 

Theorem 7.1. [26] Tp,i E Im(h) for every i and p. 

(7.1::» 

We use a theorem due to Witt-Milnor, see [42], which states that a is a polynomial generator 

in dimension 2n if and only if a - Aan mod reducibles, where A = p if n + 1 = pk for a prime p 

and A = 1 otherwise. Using this theorem, we find the following; Tp,pk is a polynomial generator for 

Im(h) in dimension 2(pk+I_1). If n+ 1 is divisible by two primes p =I- q (if n+ 1 =I- pk, then n+ 1 = 

a product of prime powers) write n + 1 = PSI = qS2 to give the elements Tp,Sll Tq ,S2 E H2n (MU), 

and so a suitable linear combination of Tp,Sl and Tq,S2 will be a polynomial generator in dimension 

2n (if aTp,Sl + bTq,S2 is a polynomial generator in dimension 2n, then ap + bq = 1 for A = 1). 

We can consider the following examples; 

Example 7.2. Take p = 2 and k = 1, giving n = 3. And so we have n + 1 = 4 = 22. 

since T2 I = 2al· , 

T2,2 = 2a3 - L as_IT~,d 
sd=2 

2a3 - alTil , 

T22 is a polynomial generator in degree 2(22 - 1) = 6. , 

Example 7.3. Take p = 2 and k = 2, giving n = 7. And so we have n + 1 = 8 = 23. 

T2,4 = 2a7 - L as_IT~,d 
sd=4 

4 rp2 
2a7 - a3T2,1 - ap 2,2 

2a7 - a3(2al)4 - al (2a3 - 4af)2 

2a7 - 16aia3 - 4aIa~ + 16aia3 - 16aI 

T2,4 is a polynomial generator in degree 2(23 
- 1) = 14. 
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Example 7.4. Take p = 3 and k = 1, giving n = 8. And so we have n + 1 = 9 = 32 . 

T3,3 = 3ag - L as- 1T3,d 
sd=3 

3ag - a2Tll , 

since T3,1 = 3a2. T3,3 is a polynomial generator in degree 2(32 - 1) = 16. 

Now consider two examples where n + 1 =I- pk; 

Example 7.5. Take n + 1 = 6 = 2.3, and so a suitable linear combination of T2,3 and T3,2 will be 

a polynomial generator in dimension 2n = 10. 

Hence we have that 

T2,3 = 2a5 - L as-lT~,d 
sd=3 

2a5 - a2Ti 1 , 

2a5 - a2(2al/ 

2a5 - 8(al)3a2 

T3,2 3a5 - L as- 1T3,d 
sd=2 

3a5 - a1Trl , 

is a polynomial generator in degree 10. 

Example 7.6. Take n + 1 = 10 = 2.5, and so a suitable linear combination of T2,5 and T5,2 will be 

a polynomial generator in dimension 2n = 18. 

T2,5 2ag - .. , 

T52 5ag - .,. , 
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Hence we have that 

3T2,5 - T5,2 = ag - ... 

is a polynomial generator in degree 18. 

7.2 Dyer-Lashof operations and H*(MU) 

In this section we examine the Dyer-Lashof operations on a homotopy element of lIIU, namely 

X2 E 7r 4 (MU). Our hope is that the techniques which follow could be used to establish a full 

description of H*(MU) in terms of the allowable Dyer-Lashof operations on X2, denoted QIX2 . 

Let us again consider generator X2 of degree 4 in 7r*(MU) = Z[Xi]' In Chapter 6 we used 

Kochman's [24] results on the Dyer-Lashof operations on H*(BU; lFp ) to give the Dyer-Lashof op­

erations on H*(MU; lFp ) in Theorem 6.3. We require the Hurewicz homomorphism h : 7r*(MU) ---+ 

H*(MU) along with these Dyer-Lashof operations on H*(MUi lFp), in order to calculate the Dyer­

Lashof operations on X2. 

We use Notation 6.2 and write 

in which deg ai = 2i. We also have that the image of X2 under the Hurewicz homomorphism is 

element 3a2. We calculate the Dyer-Lashof operations on a2, working modulo 2. Using Theorem 

6.3 we have in H*(MU; lF2) and with r > 0 and n > 1, 

Q'r(an) = r n l)an+r mod m' (7.16) 

Since all the calculations that follow involve binomial coefficients modulo 2, for the binomial coef­

ficient (~), we can write 

a 

b 

where ai, bi = 0,1. Then, 

ao + 2al + 22a2 + .. , + 2r ar 

bo + 2b1 + 22b2 + .. , + 2r br 
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We also recall that 

C) = {1 if i = j = 0 or i = 1, j = 0 or i = j = 1, 

J 0 if i = 0, j = 1. 

By applying various Dyer-Lashof operations to a2 we can attempt to reach the generators of 

H*(MU; IF'2) of higher degree. We begin by using single Dyer-Lashof operation and get the following 

lemma. 

Lemma 7.7. For q > 1, we have, working modulo decomposables; 

Q2(4q+l) (a2) =(2) 0 

Q2(4q+2) (a2) =(2) 0 

Q2(4q) (a2) =(2) a4q+2 

Q2(4q+3) (a2) =(2) a4q+5 

Proof. To show (7.17), we use equation (7.16) to get 

Q2(4q+1) (a2) = (~q) a4q+3. 

Now we write 

gIvmg 

Note that 

2 = 0.1 + 1.2. 

Hence 

(42q) =(2) (~) m (~) (~) ... 
o 

and we have that 

99 

(7.17) 

(7.18) 

(7.19) 

(7.20) 



Now to show (7.18), we use equation (7.16) to get 

Q2(4q+2) (a2) = (4q + 1) 
2 a4q+4 

(
4q + 1) 

2 a4p for p = q + 1 

We have 

Giving 

(4q

2+ 1) 
(2) 

o 

Hence we have 

To show (7.19), we use 

(
4q -1) 

2 a4q+2 

(
4r + 3) 2 a4q+2 for r = q - 1 

We have 

which gives us 

(
4r2+ 3) =(2) 

1 

and hence we have 

Finally we consider (7.20) 

(
4q + 2) 

2 a4q+5 

(
4q + 2) 1 2 a4p+ 1 for p = q + 

(
4q + 2) 

2 a4p+l· 
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We write 

giving 

(4q

2+ 2) 
(2) 

1. 

Hence we have 

o 

Now we consider composing two Dyer-Lashof operations in an attempt to reach the missing 

generators a4q and a4q+3. We begin from the the generators we have reached already, namely a4q+ 1 

and a4q+2, we then apply an appropriate Dyer-Lashof operation to try to reach a4q and a4q+3' We 

work modulo decomposables and have the following four cases; 

Here we ask if 

is a possibility. 

We have the following; 

We can write 

and 

Now write 4r - 4q - 2 as 4(r - q - 1) + 2, giving 
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We also have 

Hence we have that 

and we fail to reach m4r. 

Here we ask if 

is a possibility. 

We have the following; 

We can write 

and 

(
4r - 4q - 2) 

4q+ 1 

o 

Q2[4(r-q)-2] ( ) _ (4r - 4q - 3) 
a4q+2 - 4q + 2 a4r 

Rewriting 4r - 4q - 3 as 4(r - q - 1) + 1, we have 

4(r - q - 1) + 1 = 1.1 + 0.2 + (ro - qo - 1)22 + (rl - ql)23 + .... 

We also have 

Hence 

(4r 4q;; 3) =(2) (~) (~) ... 
o 

and again we fail to reach m4r. 
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Here we ask if 

Q2[4(r-q)+lj ( ) _ 
a4q+2 =(2) a4r+3 

is a possibility. 

We have the following; 

Q2[4(r-q)+lj (a ) _ (4r - 4q) 
4q+2 - 4q + 2 a4r+3 

We write 

and 

Rewriting 4r - 4q as 4(r - q), we have 

4(r - q) = 0.1 + 0.2 + (ro - qo)22 + (rl - qI)23 + .... 

We also have 

Hence 

(~q+i) =(2) mm---
o 

and so we fail to reach m4r+3· 

Here we ask if 

is a possibility. 

We have the following; 
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We can write 

and 

with each qi, ri = 0, 1. If there is no i such that ri = 0 and qi = 1, then 

and 

so 

(
4r - 4q + 1) 

=(2) 4q+ 1 

which is congruent to 0 modulo 2 if ri = qi = 1 for any i. 

By similar reasoning we get the following. 

1. If rand q are both odd we get (4r;~: 1) =(2) 0 and therefore do not reach a missing generator. 

11. If rand q are both powers of 2 with r > 2q then (4r;~:1) =(2) 1 and we do reach a missing 

generator. 

This is the only case out of the four considered that gives us some of the missing generators. It is 

not straight forward to say for certain when generators will be reached. 
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