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Abstract 

The tectonic development of the Western Indian high-elevation passive margin is complex. 

At least two major rifting events (India/Madagascar and India/Seychelles) and a major 

hotspot (The Reunion plume) are believed to have been instrumental in the formation and 

development of the margin. However, the temporal and spatial extent of these major 

tectonic events remains poorly constrained. The Western Ghats of India has also been cited 

as a type example of a downwarped, elevated passive continental margin. However, 

published low temperature thermochronometry suggests downwearing or parallel 

escarpment retreat as alternative models of margin evolution. Here are present the results 

of a sediment mass balance study utilising new data for the offshore portion of the Western 

Indian margin, new onshore apatite fission track and (U-Th)/He thermochronometry for the 

onshore portion of the Western Indian margin, and flexural isostatic modelling. The 

combined methodologies used within this study are used to resolve some of the 

fundamental questions regarding the tectonic development and subsequent long term 

landscape evolution of the Western Indian margin. 

The Konkan-Kerala basin is a major depocentre for sediment from the onshore hinterland 

of Western India and as such provides a valuable record of the timing and magnitude of 

Cenozoic denudation along the continental margin. This study presents an analysis of 

sedimentation in the Konkan-Kerala basin, coupled with a mass balance study, in order to 

test competing conceptual models for the development of the Western Indian margin. An 

estimated 109,000 km3 of Cenozoic clastic sediment are present within the Konkan-Kerala 

basin, a volume difficult to reconcile with the denudation of a downwarped rift flank 

onshore, and more consistent with denudation of an elevated rift flank. There is evidence 

for two major pulses in sedimentation; an early phase in the Palaeocene, and a second 

beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in 

terms of a denudational response to the rifting between India and The Seychelles, whereas 

the mechanism responsible for the Pliocene pulse is more enigmatic. 

Mass balance analysis only provides spatially and temporally averaged estimates for 

denudation; consequently, this study presents new low temperature thermochronology 
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from onshore regions to constrain the onshore pattern of denudation. Apatite fission track 

ages increase from c.55 Ma at the coast to <350 Ma at the escarpment with mean confined 

track length between 11.3 µm and 14.3 µm. Apatite (U-Th)/He ages range from 37 Ma to 

123 Ma and zircon (U-Th)/He ages range from 324 Ma to 426 Ma. These data, when 

modelled, are consistent with accelerated denudation contemporaneous with rifting 

between India and The Seychelles. Inverse-modelling of the thermochronmetric data 

suggest denudation of at least 4.5 km at the coast decreasing to more modest amounts of 

denudation of between 1.5km and 2.5km further inland towards the escarpment. The 

pattern of denudation inferred from low temperature thermochronometry is consistent with 

escarpment evolution into an elevated rift flank.  

The flexural response of the Western Indian margin to sediment loading and denudational 

unloading can be modelled as a thin elastic beam overlying a fluid substratum. Modelling 

the isostatic response of the Western Indian lithosphere to sediment loading offshore and 

denudation onshore infer that flexural isostasy is an important component in the 

development of the Margin. However, flexural isostasy alone cannot account for the 

pattern of subsidence offshore or the pattern of uplift onshore and additional mechanisms 

must be invoked.  
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1 Introduction 

1.1 Introduction 

Long term landscape evolutions, and specifically the study of landforms, are generally the 

domain of the geomophologist. Davis (1899), King (1955) and Penck (1953) devised and 

developed the classical models of landscape evolution by relating erosional features and rare 

onshore sedimentary deposits to pulses of rejuvenated uplift. Despite the popularity of these 

models, they lacked a detailed treatment of surfaces processes and failed to describe the 

tectonic mechanism for generating uplift. The theory of plate tectonics appeared to present a 

solution and a unifying conceptual framework for understanding the formation and distribution 

of the Earth’s key surface features such as oceans, continents, mountains and basins. 

One of the key areas of study has been passive margin evolution. Ollier (1985) related passive 

margin formation and in particular the presence of coast parallel escarpments to continental 

rifting. Nevertheless, incorporating passive margin morphology into prevailing ideas of plate 

tectonics remains challenging. Both tectonics and surface processes exert fundamental controls 

on landscape morphology along passive margins and strongly influence denudation and 

sedimentation (Beaumont et al., 2000). Understanding landscape morphology, tectonic 

processes (Gilchrist and Summerfield, 1990, 1994; Summerfield, 1985) and denudation rates is 

increasingly recognized as being crucial to improving theories of long term landscape 

development. Consequently, modern landscape evolution studies now incorporate a range of 

methodologies including low temperature thermochronometry (Brown et al., 2002a; Gallagher 

et al., 1994; Gunnell et al., 2003; Persano et al., 2002; Persano et al., 2005), cosmogenic 

isotope analysis (Brown et al., 2002a; Cockburn et al., 2000), offshore sediment analysis 

(Pazzaglia and Brandon, 1996; Pazzaglia and Gardner, 1994; Rust and Summerfield, 1990) and 

numerical surface process modelling (van der Beek et al., 2002). 

This study presents new data derived using a variety of different methodologies with the aim of 

testing prevailing ideas of landscape development for the Western India elevated passive 

margin. Western India has undergone a complex tectonic history and, as a consequence, there 

is still an incomplete understanding of the spatial and temporal influences of the key tectonic 
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events and their effect on denudation. Accordingly, this project utilizes refined offshore data 

for denudational mass balance estimates and a combination of low temperature 

thermochronometers onshore to constrain denudation and provide solutions to the fundamental 

questions that remain unanswered for the Western Indian elevated passive margin. 

The remainder of this chapter outlines the distribution, morphology and origin of passive 

margins, specifically focusing on elevated passive margin. The two key groups of conceptual 

models that have been developed to explain the evolution of passive margins are then 

described. An introduction to Western India summarizing the morphology, geological and 

tectonic history, together with a review of Western Indian landscape evolution studies is then 

provided followed by a final section on predictive forward modelling.  

1.2 Passive margins 

Passive margins are continental-scale features that develop on the trailing edges of plates in 

response to continental rifting, sea floor spreading and ocean basin development (Kearey and 

Vine, 1996). The macro-morphology of passive margins is highly variable; however, Gilchrist 

and Summerfield (1990) identified two end members; (i) low elevation passive margins and, 

(ii) high elevation passive margins. High elevation passive margins exhibit long-lived uplift 

regardless of age and may be characterised by marginal rift flank upwarps (Weissel and 

Karner, 1989). The primary morphological elements of high elevation passive margins are a 

highly dissected coastal plain and an elevated interior plateau, separated by kilometre high 

coast-parallel escarpments lying up to 200 km inland. Interestingly, the majority of the world’s 

high elevation passive margins occur on the edges of the Gondwana continents (Figure 1) and 

have been intimately linked to the breakup and dispersal of Pangaea and Gondwana (King, 

1950; Ollier, 1985). 

1.2.1 Surface uplift mechanisms 

Many mechanisms have been suggested for the both the initial cause of rifting and the 

generation and persistence of surface uplift at elevated passive margins (see Ollier (1985), 

Summerfield (1991b) and Summerfield (1991a) for general review), and although not fully 

understood the connection between rifting and denudation is well established. Proposed 

mechanisms can be grouped into two categories, active rifting processes and passive rifting 

processes. Determining the process(es) responsible for rifting is crucial because the timing of 

surface uplift differs for active and passive rifting. Surface uplift precedes continental splitting 

with active rifting whereas surface uplift occurs after continental splitting with passive rifting 

(Summerfield, 1991b). 
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Figure 1 Global distribution of elevated passive margins. 
Elevated passive margins (toothed ornament) and continental flood basalts (red fill). NAIP – North 
Atlantic Igneous Province. CAMP – Central Atlantic Magmatic Province. 
 

Margins with extensive volcanic rocks are associated with active rifting and mantle plumes, 

and their distribution adjacent to many rifted margins (Figure 1) is central to the idea that 

hotspots can initiate continental rifting and the formation of volcanically rifted margins 

(Storey, 1995; White and McKenzie, 1989; White and McKenzie, 1995). With active, plume-

related rifting and the formation of a volcanic rifted margin domal surface uplift of the order of 

1-4 km occurs (Campbell and Griffiths, 1990), followed by the emplacement of volcanic rocks. 

Finally, continental splitting commences with the initiation of sea floor spreading 

(Summerfield, 1991b). A rising mantle plume impinging on the lithospheres results in thinning 

of the lithosphere and thermal expansion. These thermally-induced mechanisms initiate and 

drive surface uplift; however, such mechanisms are transient and decay after ca. 60 Ma 

(Richards et al., 1989) thus failing to explain the persistence of surface uplift at mature passive 

margins. Magmatic underplating (Cox, 1993) and subaerial emplacement of lavas are active 

rifting processes capable of generating permanent surface uplift through thickening of the 

lithosphere over timescales that extend beyond the duration of thermal decay associated with 

hotspots. 

Margins lacking extensive volcanic rocks are associated with passive rifting where thinning of 

the lithosphere occurs not in response to a thermal anomaly such as a hot spot but as a 

consequence of tensional forces remote from the site of rifting. Thermal mechanisms 

associated with passive rifting include secondary mantle convection in response to thinning of 

the lithosphere (Steckler, 1985) and lateral heat flow from the thinned lithosphere at the site of 

rifting to the unthinned lithosphere beneath the rift flanks (Steckler et al., 1998). Non-thermal 
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or mechanical mechanisms for generating permanent uplift include; primary flexure in 

response to mechanical unloading of rift flanks (Weissel and Karner, 1989), lithospheric 

delamination (McKenzie, 1978) and depth dependant extension (McKenzie, 1978; Rowley and 

Sahagain, 1988). Post-rift secondary flexural uplift in response to denudational unloading 

onshore and sediment loading offshore is an additional mechanism that has been invoked to 

explain continual surface uplift at mature passive margins (Gilchrist and Summerfield, 1990, 

1994). The timing of rift flank surface uplift differs for passive and active rifting; with active 

rifting, surface uplift precedes the rifting event, whereas with passive rifting, surface uplift 

post-dates the rifting event. 

1.2.2 Conceptual models of passive margin evolution 

Regardless of the mechanism(s) deemed responsible for surface uplift, elevated passive 

margins all display a broadly similar morphological pattern and consequently two groups of 

competing conceptual models have developed to explain post-rift passive margin evolution 

qualitatively. These models are: (i) escarpment retreat into a downwarped rift shoulder; and (ii) 

escarpment retreat or in-situ excavation into a high elevation rift shoulder. 

Escarpment retreat into a downwarped rift shoulder (King, 1967a; Ollier and Pain, 1997) firstly 

envisages post-breakup formation of a broad, seaward-dipping monocline by lithospheric 

flexure (Figure 2A). Ollier (1982) suggested that the flexure is caused by tectonic uplift and is 

a direct consequence of continental breakup. Thereafter the lithosphere retains flexural strength 

and remains rigid. Faulting at the periphery of the new continental edge results in the 

formation of an escarpment, this then subsequently retreats landward via rejuvenated fluvial 

erosion (Figure 2A 1-4). This downwarp model does not incorporate isostatic rebound during 

the post-rift development of the margin. Erosion is minimal at the coast (a few hundred 

metres), increasing inland becoming greatest at the base of the escarpment (approximately 

equal to the height of the escarpment) and insignificant on the elevated interior plateau. 

Downwarped plateau remnants bypassed by escarpment retreat and seaward dipping strata on 

the coastal plain have been identified and are taken as supporting evidence for the downwarp 

model (Figure 2A 4) (Ollier, 1982; Ollier and Pain, 1997). 

The second class of models differs from the downwarp model in that the rifted margin is 

initially elevated and bounded by steep normal faults as a consequence of either base level 

drop (due to breakup), tectonic rift flank uplift, or a combination of both (van der Beek, 1995) 

(Figure 2B and C) . The fault bounded escarpment at the edge of the rifted margin then 

evolves via either parallel retreat (Gilchrist and Summerfield, 1990, 1994; Kooi and Beaumont, 

1994; Tucker and Slingerland, 1994) (Figure 2B 1-4), or by downwearing (Gilchrist et al., 
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1994a; Kooi and Beaumont, 1994; van der Beek et al., 2002) (Figure 2C 1-4). The pre-rift 

topography effectively influences the mode of escarpment formation (van der Beek et al., 

2002). For instance, if the pre-rift topography is horizontal and the escarpment lip is 

maintained as a drainage divide, then parallel retreat occurs. However, if there is a pre-existing 

drainage divide located inland of the rift axis, river incision will destroy the original fault 

generated escarpment followed by removal of interfluves and a new escarpment will be 

generated at the inland drainage divide, generating the so-called ‘pinned divide’ (Gilchrist et 

al., 1994a; Kooi and Beaumont, 1994).  

Flexural isostasy in response to denudational unloading during formation of the escarpment 

and coastal plain is incorporated into this group of models, and is particularly important for the 

escarpment retreat scenario helping to maintain the escarpment by continuous backtilting 

(Kooi and Beaumont, 1994). The pattern and magnitude of denudation is characterized by 

kilometre-scale denudation having occurred near the coast and decreased denudation towards 

the base of the escarpment. This class of models therefore differs fundamentally from the 

downwarp model in the amount and timing of the denudation that it predicts. 
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Figure 2 Conceptual models of elevated passive margin development. 
Dashed lines represent missing crustal material: Escarpment retreat into a downwarped rift flank 
(A1-4), note the small volume of the crustal prism removed, and the remnant downwarped surface 
contemporaneous with the elevated plateau (grey areas). Denudation increases from the coast to the 
escarpment. Escarpment retreat into an elevated rift flank (B1-4), note the large volume of the 
crustal prism removed (with accompanied isostatic rebound) and denudation decreases from the 
coast to the escarpment. Downwearing into an elevated rift (C1-4), modification to escarpment 
retreat model but with an initial drainage divide located inland of the rift axis. 
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1.3 The Western Indian margin 

Western India displays many of the geomorphic and structural features of an elevated passive 

margin, yet is unique in that the margin has experienced at least two major rifting events, the 

spatial extent, timing and magnitude of which are poorly constrained. Continental flood basalts 

within the Deccan volcanic province have been used as evidence to support active rifting in 

response to the impingement of a major hot spot (Kent et al., 1992; Richards et al., 1989; 

White and McKenzie, 1989; White and McKenzie, 1995). However, continental flood basalts 

are only restricted to the northern third of the margin (22 – 16 °N) and there is no clear 

evidence to support either active rifting or passive rifting for the remainder of the margin. 

Regardless of the mechanism responsible for the formation of the Western Indian passive 

margin, there is no clear consensus on the post-rift evolution of the margin. This section 

outlines the geology, physiography and debate over the tectonic development of Western India 

before addressing the aims of this study. 

1.3.1 Geological background 

The geology of the Western Indian passive margin can be separated into three broad regions: 

the southern granulite Proterozoic mobile belts of Kerala; the Archeaen granite-greenstone 

Dharwar craton of Goa and Karnataka; and the Cretaceous/Eocene Deccan volcanic province 

of Maharashtra (Figure 3). For the majority of the Proterozoic and Phanerozoic the margin has 

been exposed to sub-aerial processes of erosion and any stratigraphic information contained 

within the geology has predominantly been destroyed by the effect of erosion and denudation. 

The Dharwar cratonic basement is composed of 2.9–3.4 Ga tonalite-tronjemite gneisses and 

granites (Beckinsale et al., 1980). Overlying and infolding this basement complex are the 

greenstone belts of the Dharwar supergroup, which is a metamorphosed (greenschist facies) 

volcano-sedimentary succession deposited 2.8–2.5 Ga (Chadwick et al., 1989; Chadwick et al., 

1986; Taylor et al., 1984). In general, the metamorphic grade increases southwards from 

greenchist facies through to granulite facies, and the schists and gneisses of the Dharwar craton 

have been metamorphosed into charnokites from the Southern Granulite Terrain in Kerala 

(Naqvi and Rogers, 1987). Granulite facies metamorphism within the southern granulite terrain 

has been dated at 2.5-2.6 Ga (Crawford, 1969; Hansen et al., 1997; Santosh et al., 2006) and 

the charnokites and gneisses associated with this metamorphism are thought to be contiguous 

with the Dharwar basement to the north. There are limited Cenozoic sediments occurring in 

small isolated pockets on the coastal strip (Figure 3) and lie unconformably on the 

Precambrian basement (Soman, 1997). 
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The Deccan flood basalts were erupted relatively rapidly over 0.5-5 Myrs at the 

Cretaceous/Tertiary boundary (Allegre et al., 1999; Courtillot et al., 1986; Duncan and Pyle, 

1988; Pande, 2002; Pande et al., 2001) and form the only major startigraphic marker for the 

onshore portion of the Western Indian margin. The startigraphy of the lava pile is now well 

established and individual units have been comprehensively mapped (Beane et al., 1986; 

Devey and Lightfoot, 1986; Mitchell and Widdowson, 1991; Subbarao et al., 1994). The lavas 

form maximum thicknesses along the Western Ghats, (i.e. Kalsubai Peak at 73° 40’E, 19° 

35’N) where 1.2 – 1.7 km are exposed along the escarpment and provide first order constraints 

on the magnitude of denudation for the Deccan volcanic province. The sub-horizontal basalts 

cover an area of approximately 500,000 km2 and lie unconformably on crystalline basement, 

infilling and blanketing the pre-existing shield topography (Wadia, 1989). The lavas form a 

broad lensoid structure (Widdowson, 1997), with maximum thicknesses along the western 

edge of the Deccan plateau towards the eastern and southern boundaries. The general structure 

of the lava pile comprises a broad anticline-monocline dipping gently to the south (Beane et 

al., 1986; Devey and Lightfoot, 1986) and locally forming the Westerly dipping Panvel 

Flexure in the Mumbai region (Figure 3) (Auden, 1949; Dessai and Bertrand, 1995; Sheth, 

1998). The onshore outcrop of the Deccan can be traced offshore where it becomes covered by 

Cenozoic sediments (Naini and Talwani, 1982). 
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Figure 3 Regional Indian geology and associated major rifts, shear zones and faults. 
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1.3.2 Margin physiography 

The physiography of the Western Indian margin is summarized in Figure 4. All three of the 

major geomorphological units characterising elevated passive margins are present: those being 

a low elevation, high-relief coastal plains (Konkan-Kanara lowlands) and elevated, low-relief 

interior plateaus (Maharashtra and Mysore plateaus) separated by a seaward-facing escarpment 

(The Western Ghats) parallel to the west coast. The width of the coastal plain ranges from 0 

km to 100 km but on average rarely exceeds 60 km (Ollier and Power, 1985). Landward of the 

escarpment the Deccan, Karnataka and Mysore plateaux cover an area of approximately 4000 

km2, with an average elevation of 800 m (Kailasam, 1979) (Figure 4). The escarpment, whilst 

a continuous geomorphic feature is composed of several ‘ranges’ of the “Sahyadri” with 

elevations ranging from 500 m to 2200 m, can be traced for over 1500 km from the Tapti River 

north of Mumbai (21°10'N, 74°10'E) to Cape Comorin at the southern tip of the Indian 

peninsula (8°10'N, 77°30'E). Within the Deccan volcanic province the escarpment is linear, 

forming either an abrupt face, or a series of steps with short narrow spurs extending west onto 

the coastal plain. Within the crystalline basement, the escarpment becomes more sinuous with 

large embayments (Mangalore and Nilambur embayments) and in a few places a series of 

elongated gorges and spurs termed ‘Ghats breaches’ is present (Gunnell and Radhakrishna, 

2001). The most notable of these is the 20 km-wide Palghat Gap that forms the only break in 

the escarpment along its entire length. North and south of the Palghat Gap the Nilgiri massif 

and Anaimalia/Cardomon hills form the highest elevations along the margin, with summits 

exceeding 2.5 km. 
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Figure 4 Pysiography of the Western Indian margin. 
Toothed ornament is the great escarpment separating low elevation coastal plains from high elevation 
plateaus. Note the asymmetry of the drainage network, the top of the escarpment forms the major 
continental drainage divide. Box 1 is the northern onshore study area, Goa and Karnataka. Box 2 is the 
southern onshore study area, Kerala. 
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1.3.3 Rifting and tectonic history 

The passive continental margins of India, and the adjacent oceanic regions are the result of a 

multi-stage rift history beginning with the breakup and dispersal of Gondwana in the early 

Jurassic ca. 180 Ma (Besse and Courtillot, 1991; Storey, 1995). At this time, Gondwana split 

into two large fragments, Eastern Gondwana (Madagascar, India, Antarctica and Australia) and 

Western Gondwana (Africa and South America) at 155 Ma (Reeves and de Wit, 2000). At 130 

Ma India rifted from Antarctica to form the eastern continental margin of India (Embleton et 

al., 1980; Powell et al., 1980). Seafloor spreading began in the Mascarene basin between 118 

Ma and 84 Ma during the breakup of Greater India (India and Seychelles) and Madagascar 

(Schlich, 1982; Todal and Edholm, 1998), this being the first major rifting event to affect the 

western margin of India (magnetic anomaly 34; Figure 5). Flood basalts along the east coast of 

Madagascar and feldsic rocks on the St Mary’s Islands off the west coast of India have been 

dated at 85-92 Ma (Pande et al., 2001; Storey, 1995; Torsvik et al., 2000). These volcanic 

rocks are thought to be linked to the Marion hotspot and the breakup of Greater India and 

Madagascar (Storey, 1995). Finally, a ridge jump in the nascent Indian Ocean resulted in the 

breakup of India and The Seychelles microcontinent at the end of the Late Cretaceous 

(McKenzie and Sclater, 1971; Naini and Talwani, 1982; Norton and Sclater, 1979; Schlich, 

1982). The onset of rifting and sedimentation prior to this seafloor spreading is evident from 

sediments and volcanic rocks dated at 71-78 Ma in rift basins to the north of The Seychelles 

(Plummer and Belle, 1995). Emplacement of the Deccan flood basalts on the Indian sub-

continent and volcanic rocks on The Seychelles at 65 Ma are contemporaneous with the final 

stages of breakup and the onset of seafloor spreading along the Carlsberg ridge (Courtillot et 

al., 1986; Miles and Roest, 1993) (Figure 5).  
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Figure 5 Tectonic map of India and adjacent oceanic regions. 
DVP – Deccan Volcanic Province. SGT – Southern Granulite Terrain. Thick black lines are major 
spreading ridges, thin black lines are magnetic anomalies (no. adjacent in black text), and dashed 
black lines are ocean transforms. The thick dashed red line indicates the supposed north-south trace 
of the Reunion plume from the Deccan province to Reunion Islands. Blue numbers are igneous 
crystallisation ages (see Sheth (2005) figure 9 and references within). Note the apparent age 
decrease along the hotspot trace. Crystallization ages correlate well between the Deccan flood 
basalts and igneous rocks on the north of The Seychelles. Crystallization ages for the central and 
southern portion of Western India can be associated with either The Seychelles or Madagascar.  
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The India/Seychelles breakup and the emplacement of the Deccan continental flood basalts are 

believed to be a direct result of impingement of the proto-Reunion plume on the base of the 

Indian lithosphere (Courtillot et al., 1999; Hooper, 1990; Morgan, 1981). It has been suggested 

that the Reunion Islands on the African plate are the current position of the plume, and that the 

Chagos-Laccadive ridge is the trace of the hotspot as the Indian plate migrated northwards 

(Courtillot et al., 1999) (Figure 5). The role of such plumes in the development of a rifted 

continental margins is significant because of the implication for the timing and spatial pattern 

of uplift (see section 1.2.1). The plume impact model may account for the northern third of the 

Western Indian margin (where continental flood basalts are present) but fails to address the 

southern two thirds of the margin where plume effects are further to the west (i.e. the Chagos-

Laccadive ridge). There is also a highly contentious view that the plume model may not even 

be necessary to explain the generation of flood basalts and the initiation of rifting for Western 

India (Anderson, 1994; King and Anderson, 1995; Sheth, 2005). A selective summary by 

Sheth (2005) argues that there is little petrological, geological and geophysical evidence to 

support the presence of abnormally hot mantle and the existence of the Reunion plume. The 

presence or absence of a plume has significant implications for the development of the 

Western Indian margin both spatially (plume effects on the north and south of the western 

margin) and temporally (active, pre-rift surface uplift or passive post-rift surface uplift). 

Plate reconstructions of the Indian Ocean and the adjacent continental fragments have been 

attempted (Besse and Courtillot, 1988; Katz and Premoli, 1979; Muller et al., 1993; Scotese et 

al., 1988) but debate continues as to the precise palaeopositions of Madagascar and The 

Seychelles relative to the west coast of India. The palaeopositions of Madagascar and The 

Seychelles has important implications for the timing and spatial extend of rift related 

denudation. Plummer and Belle (1995) and, Todal and Edholm (1998) place The Seychelles 

continental fragment adjacent to the northern portion of the Western Indian margin, and its 

southerly continuation, the Mascarene plateau, adjacent to central and southern India. They 

also place Madagascar further west along the western boundary of The Seychelles (Figure 6). 

Reeves and de Wit (2000) position Madagascar adjacent to Western India prior to rifting, with 

The Seychelles detaching later but only in the north (Figure 6). Both the initial continental 

rifting and the rupture accompanied by sea floor spreading along the Western Indian margin 

have a direct effect on denudation and sedimentation, yet our understanding of the timing and 

location of the two major breakup events (Madagascar and later The Seychelles) remains 

unresolved. Magnetic lineations within the Arabian Sea have been extensively mapped 

(Chaubey et al., 1998) and the oldest sea floor (magnetic anomaly 28) formed 63 Ma. 

However, magnetic anomaly 28 can only be confidently mapped within the Laxmi basin with a 

large data gap at the Chagos-Laccadive ridge and further east (Figure 5). It is unclear if either 
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the India/Seychelles rifting event or the India/Madagascar rifting event affected the southern 

part of the Western Indian margin. 

1.3.4 Margin geomorphology 

Long-term landscape studies of the margin have been undertaken by geologists and 

geomorphologists since the late 1800s (Foote, 1876) in an attempt to explain the genesis, 

distribution and modification of large scale morphological features. Multidisciplinary reviews 

involving relative dating of erosion surfaces, fluvial network characteristics, laterite 

occurrences and distribution of relief have attempted to constrain a surface uplift chronology in 

order to understand the subsequent development of the Western Ghats (Gunnell, 1998; Gunnell 

and Fleitout, 1998; Radhakrishna, 1967, 1993; Vaidyanadhan, 1977; Widdowson, 1997; 

Widdowson and Cox, 1996). These studies acknowledge that although the Indian peninsula is 

an ancient craton, it has experienced ongoing surface uplift resulting in the elevation of erosion 

surfaces, their dissection and partial destruction, and the evolution of the escarpment since the 

Figure 6 Plate reconstructions for the Indian, Seychelles and Madagascar 
microcontinents. 
Reconstructions from Plummer & Belle, 1995 (a & b) and Reeves & de Wit, 2000 (c & d) 
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formation of the western margin. Within the Deccan volcanic province both the formation of 

the escarpment and the uplift of the Maharashtra plateau must have occurred after basalt 

emplacement at 64 – 67 Ma contemporaneous with rifting between Western Indian and The 

Seychelles. The remaining two thirds of the Ghats escarpment, south of the Deccan province, 

are devoid of stratigraphic markers and dateable sediments, preventing a more detailed surface 

uplift chronology from being established. The escarpment was originally believed to be either 

a marine cliff (Foote, 1876; Oldham, 1893) or a fault scarp (Pascoe, 1964; Radhakrishna, 

1952), but it is now generally accepted that the escarpment is an erosional feature evolved 

from a fault-controlled rift flank that developed as a consequence of continental breakup 

(Ollier and Power, 1985; Subrahmanya, 1987; Widdowson, 1997). The absolute timing of 

escarpment formation is unclear especially south of the Deccan where there is no clear 

evidence of escarpment formation in response to rifting with The Seychelles. It has also been 

proposed that the presence and development of the escarpment south of the Deccan occurred in 

response to rifting between India and Madagascar much earlier during the Cretaceous (Chand 

and Subrahmanyam, 2003; Katz and Premoli, 1979; Pande et al., 2001; Torsvik et al., 2000). 

Regardless of the timing of escarpment formation, there is also no clear consensus on the style 

of escarpment development. The two groups of conceptual models discussed in Section 1.2.2 

and Figure 2 have both been cited for the Western Indian margin, as outlined below. 

A coastal monocline has been inferred from seaward dipping basalts in Maharashtra 

(manifested noticeably around Bombay as the Panvel Flexure), and from the geometry of 

geochemically mapped laterite surfaces (Widdowson, 1997). This monocline has been used as 

evidence to support margin evolution by means of the downwarp model (Widdowson, 1997; 

Widdowson and Cox, 1996; Widdowson and Gunnell, 1999). Two geochemically distinct post-

eruptive laterite surfaces have been identified: an upper-level laterite, structurally concordant 

with the top of the basalt sequence, and a lower-level laterite, structurally discordant with the 

basalts. Formation of the upper-level laterite is interpreted as having ended with a phase of 

uplift resulting in denudation along the coast and the formation of the coastal plain. Both the 

laterite and the basalts on which they were formed were deformed and partially dissected 

simultaneously. The lower-level laterite developed on already-deformed basalts on the newly-

formed coastal plain. Subsequent flexure modified the basalts further and warped the lower 

level laterite. From the structural relationships of the laterites the aforementioned authors 

envisage monoclinal development both as a consequence of syn-breakup primary tectonic 

downwarping and later post-breakup secondary flexure in response to coupled denudational 

unloading and sediment loading (Figure 7C). The downwarp model proposed by Widdowson 

(1997) differs from the model of Ollier and Pain (1997) where downwarping occurs in direct 

response to thermal subsidence soon after breakup. Ollier and Pain (1997) downwarp model 

assumes that after the initial rifting event and accompanying subsidence the lithosphere then 
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retains flexural strength and is not modified by any post-breakup flexure (Figure 2A & Figure 

7B). Widdowson (1997) inferred the removal of 1–1.5 km of basalts seaward of the 

escarpment since Deccan emplacement, amounting to an average denudation rate of 15 - 23 

m/Ma. Average escarpment retreat rates are 1 km/Ma if it is assumed that the locus of the 

proto-escarpment is the West Coast fault located immediately offshore (Balakrishnan, 2001; 

Chandrasekharam, 1985) (Figure 3).  

 

Figure 7 Different downwarp models for passive margin development 
a. Tectonically downwarped surface prior to escarpment retreat 
b. Ollier and Pains (1997) downwarp model incorporating escarpment retreat without 

accompanying isostatic rebound (see also Figure 2A). 
c. Widdowson (1997) modified downwarp model with accompanying isostatic 

rebound.  
Both models are associated with a seaward dipping monoclinal camber but differ in the 
magnitude of crustal section removed.  
 
The Panvel flexure is fundamental to the development of the downwarp hypothesis when the 

flexure is interpreted as either a simple monoclinal camber (Auden, 1949), a primary flexure 

resulting from rifting (Devey and Lightfoot, 1986) or a flexural response to uplift of the 

Western Ghats and accompanied subsidence offshore (Watts and Cox, 1989). A flexural origin 

for the Panvel flexure is a necessary condition for the downwarp model but is not universally 

accepted and alternative models have been developed. Dessai and Bertrand (1995), and Dessai 

and Viegas (1995) suggest that the Panvel flexure is a syn- or post-rift extensional fault 

structure composed of tilted fault blocks and is thus a brittle structure (Figure 8A). Sheth 

(1998) modified the extensional fault model and proposed that the Panvel flexure is a listric 
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fault-controlled reverse drag structure (Figure 8B). These non-flexural models bring into 

question the downwarp paradigm making it necessary to consider the competing group of 

models, escarpment development into an elevated rifted margin. 

 

Figure 8 Panvel flexure alternative models 
a. Model proposed by Sheth (1998) viewing the Panvel flexure as a reverse drag structure. 
b. Model suggesting the Panvel flexure is an extensional fault structure (Dessai and Bertrand, 1995; 
Dessai and Viegas, 1995) 
 

The second class of models differs from the downwarp model in that the rifted margin is 

initially elevated and bound by steep normal faults as a consequence of either base level drop 

(due to breakup), tectonic rift flank uplift or a combination of both (van der Beek, 1995). 

Escarpment development into an elevated rift flank incorporates initial elevation as a 

consequence of tectonic rift flank uplift, base level drop or a combination of both but also 

includes secondary flexural uplift in response to denudational unloading. Gunnell and Fleitout 

(1998) used computer simulations incorporating numerical modelling of lithospheric flexure 
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and escarpment development to examine the role of this secondary flexural response. Two 

plate configurations (with different values for the effective elastic thickness) were found to 

predict adequately the present rift flank morphology, either a discontinuous (broken) plate or a 

continuous plate. The broken plate configuration requires a lithospherically weak zone 

analogous to a master fault decoupling the continental and oceanic lithospheres. The West 

coast fault may represent this master fault located immediately offshore (Chandrasekharam, 

1985). This de-coupling of the continental and oceanic lithospheres produces a concave-up 

flexure analogous to an elevated rift flank. The present topography can be reproduced as a 

result of denudational unloading only and does not require any additional tectonic uplift or an 

elevated initial palaeotopography. Conversely, a continuous plate configuration with the 

offshore and onshore areas coupled produces a concave down flexural monocline and is 

analogous to the downwarped model of Widdowson (1997). The continuous plate 

configuration predicts a much smaller degree of uplift in response to denudational unloading 

and hence requiring preexisting palaeoelevation or an additional pre-rift tectonic component of 

uplift. Both models have advantages. The broken plate model has the benefit of being less 

sensitive to initial model parameters, and denudational unloading alone can generate sufficient 

uplift. Nevertheless, the continuous plate model finds support from the geomorphology in the 

form of a coastal monocline and cambered palaeosurfaces (discussed above) and flexural 

modelling cannot discount the downwarp model altogether. 

Gunnell et al. (2003) apatite fission-track thermochronmetric (AFTT) study of the Western 

Indian margin aimed to quantify the spatial and temporal distribution in denudation rate either 

side of the escarpment. Landward of the escarpment the denudation rate fluctuated throughout 

the Mesozoic, with the maximum rates coinciding with the breakup of Gondwana and rifting 

with Australia, but rarely exceeding 60 m/Ma. Denudation rates then remained low throughout 

the Cenozoic (15 m/Ma) resulting in the removal of <1 km of crust. Seaward of the 

escarpment, denudation rates were low (20 m/Ma) throughout the Mesozoic but began to 

increase at 90 Ma peaking at 120 m/Ma before declining again at 50 Ma. The authors suggest 

that rifting between India/Madagascar and India/Seychelles initiated accelerated denudation in 

the Cenozoic. Inverse modelling of the AFTT data implies removal of over 2 km of crust from 

the coastal plain during this period of accelerated denudation. Such large amounts of rock 

removal are incompatible with Ollier and Pain (1997) downwarp model which requires much 

more modest amounts of denudation, or none at all, particularly along the coast. The AFTT 

data do not appear to be sensitive enough to distinguish between the denudational responses of 

the two major rifting events that have affected the western coast. 
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1.4 The current study 

It is clear from this brief review that the post-rift evolution of the Western Indian margin 

remains a problematic issue. Some authors advocate escarpment retreat into a downwarped 

monocline, whereas others propose escarpment formation into an elevated rift flank, possibly 

accompanied by denudationally driven flexural rebound. The Panvel flexure and laterite 

surfaces support margin evolution into a downwarped monocline similar to the model 

developed by Ollier and Pain (1997) but modified to include post-rift flexural cambering 

(Widdowson, 1997; Widdowson and Cox, 1996; Widdowson and Mitchell, 1999). However, 

numerical flexural models (Gunnell and Fleitout, 1998, 2000) and apatite fission track 

thermochronometry (Gunnell et al., 2003) have been instrumental in fostering the opposing 

view that the margin developed from a flexural upwarp. Both groups of competing conceptual 

models incorporate post-rift flexural adjustment but differ fundamentally in their magnitude 

and spatial distribution of denudation. Obtaining accurate constraints on denudation are thus 

critical for determining long term landscape development of the Western Indian margin (and in 

particular its post-rift evolution). The tectonic development of the margin also remains an 

unresolved issue. The precise breakup history and influence of both Madagascar and The 

Seychelles are poorly constrained particularly south of the Deccan volcanic province, and the 

effect (if any) of the Reunion plume on the development of the margin is still not fully 

understood. This thesis therefore addresses the following questions: 

1. What is the post-breakup evolution of the Western Indian margin? Has the margin 

developed into a downwarped rift flank similar to that proposed by Ollier and Pain 

(1997) or that of Widdowson (1997)? Alternatively, has the margin developed into an 

elevated rift flank either via parallel escarpment retreat or via downwearing? 

2. Has The Seychelles rifting event triggered a denudational response along the entire 

length of the Western Indian margin? 

3. Has the Reunion plume played a significant role in the long-term landscape 

development of the Western Indian margin? 

Apatite fission track thermochronometry is a powerful tool for unravelling denudation histories 

and understanding long term landscape evolution at passive margins. Gunnell et al. (2003) 

utilised this technique in the most recent contribution to landscape development studies in 

Western India. However, the magnitude of denudation experienced by the Western Indian 

margin appears to be relatively small (1-2 km) and as such is at the sensitivity limits of AFTT 

system. This thesis will combine apatite fission track and (U-Th)/He methodologies to obtain 
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more accurate constraints on the magnitude and timing of denudation. Before applying low 

temperature thermochronometry to the Western Indian margin, predictive forward modelling is 

necessary to assess if apatite fission track and apatite (U-Th)/He data are capabale of testing 

the hypotheses listed above. Section 1.5 outlines the methods and results for predictive forward 

modelling of low temperature thermochronometry data.  

1.5 Predictive forward modelling 

1.5.1 Introduction 

Predictive forward modelling was used to model AHe and AFTT ages under different sets of 

conditions for different parts of a margin-normal transect (following a similar methodology to 

that of Persano et al. (2002). The aims of the predictive forward modelling were: 

1) To test if there is a significant difference in model ages for each of the competing groups of 

conceptual model of passive margin evolution, i.e. Ollier and Pains’s (1997) downwarp model 

(DW), escarpment retreat into an elevated rift flank (ER) and downwearing into an elevated rift 

flank with a pinned divide (PD). 

2) To test if there is a significant difference in model ages for a denudational response to either 

the Seychelles/India rifting event or the Madagascar/India rifting event.  

3) to examine the effect on model ages for different magnitudes of denudational isostatic 

rebound (for the elevated rift flank models) and different rates of escarpment formation (for all 

conceptual models)  

4) to determine which sections of a margin-normal transect are most sensitive to different 

model inputs. 

1.5.2 Methods and model parameters 

The initial model set-up is two hypothetical margin-normal transects, one for the northern 

study area (500 m high escarpment, see chapter 4), and one for the southern study area (2500 

m escarpment, see chapter 5) with five modelled samples spaced from the coast to the 

escarpment (Figure 9a). Thermal histories for each sample for different model runs were 

generated and transferred into HeFTy to forward model the AHe and AFTT ages (Figure 9D). 

All model runs assume a geothermal gradient of 20 °C/km and all samples have an initial 

starting age of 0 Ma (i.e., samples are exhumed from a temperature in excess of 110 °C). If a 
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sample is exhumed during a simulated rifting event from lower temperatures than those at 

which complete annealing of fission tracks occurs, then the model run time is extended prior to 

rifting with cooling occurring at 5 m/Myr (Widdowson, 1997) (Figure 9c). The surface 

temperature for all model runs is 20 °C, the average present day surface temperature in 

Western India. The annealing model of Ketcham et al. (1999) was adopted for AFTT forward 

modelling. For forward modelling AHe ages, diffusion of helium in apatite was based on the 

parameters determined by Farley (2000) using a modelled spherical apatite grain with the same 

surface to volume ratio as the mean surface to volume ratio of the apatites used in the analyses. 

Both AFTT and AHe forward modelling was implemented through the software package 

HeFTy, version beta 6 (Ketcham, 2005) (Figure 9D). 

Three model templates were used to represent the three groups of conceptual models, namely, 

escarpment retreat into a downwarped rift flank (DW), escarpment retreat into an elevated rift 

flank (ER), and downwearing into an elevated rift flank with a pinned divide inland (PD) 

(Figure 9a). DW was simulated with a small magnitude of cooling at the coast, equivalent to 

300 m denudation, increasing to a maximum at the escarpment (i.e., the height of the 

escarpment). The downwarp model incorporates parallel escarpment retreat which was 

simulated by initiating cooling first at the coast then further inland in a series of time steps. ER 

was simulated with a large amount of cooling at the coast (the amount being dependent on the 

magnitude of rebound) decreasing to a magnitude of denudation equivalent to the height of the 

escarpment at the escarpment. Parallel escarpment retreat was simulated in the same way as for 

DW. The magnitude of cooling for PD is the same as with ER except that instead of parallel 

escarpment retreat, cooling begins at the same time for all positions across the transect. Each 

model template was adapted for:  

1) Rapid cooling at 65 Ma (Seychelles-India rift) and 80 Ma (Madagascar-India rift)  

2) Constant rate of escarpment retreat beginning at the initiation of rifting and lasting until 0 

Ma, and rapid escarpment formation, beginning at the initiation of rifting and completed within 

10 Myrs  

3) the elevated rift flank model only, incorporating (i) a large magnitude of rebound (4.5 km at 

the coast decreasing to the height of the escarpment at the escarpment), and (ii) a small 

magnitude of rebound (2 km – 3km at coast decreasing to the height of the escarpment at the 

escarpment) (Figure 9B). 
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Figure 9 Procedure implemented for predictive forward modelling. 
A) Hypothetical margin normal transects for each conceptual model. B) Model input parameters for 
each conceptual model. C) Generation of thermal histories for each hypothetical sample across the 
transect. D) importing thermal histories into software (HeFTy) to forward model 
thermochronometry data 
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1.5.3 Forward modelling results for the Northern field area 

Forward modelled AHe ages for escarpment retreat into a downwarped rift flank predict ages 

that are four-times older than the time of cooling measured from the thermochronometry data 

in response to rifting furthest (seaward) from the escarpment. Predicted AHe ages become 

progressively younger towards the escarpment but still remain two to three-times older than the 

measured age of rifting (Figure 10). A similar trend is observed with predicted AFTT ages for 

the DW scenario except ages are eight-times older than the measured thermochronmetry age 

furthest from the escarpment decreasing to six-times older than rifting at the escarpment 

(Figure 10). Forward modelled AHe and AFTT ages for both elevated rift flank models (ER 

and PD) show a general trend of ages that are youngest (similar to the timing of rifting) 

furthest from the escarpment, becoming progressively older towards the base of the escarpment 

(Figure 10). Predictive forward modelling indicates that the patterns of AHe and AFTT ages 

across a margin-normal transect could be used to differentiate between the escarpment 

evolution into a downwarped rift flank and escarpment evolution into an elevated rift flank but 

not between the ER and the PD models. The difference in ages between the conceptual models 

is most significant at the coast. 

The downwarp model is insensitive to the timing of cooling in response to rifting and the 

pattern of modelled ages across a margin-normal transect remains the same (Figure 10). If the 

Western Indian escarpment has developed into a downwarped rift flank, then the rifting event 

responsible for an increase in denudation (either The Seychelles or Madagascar) will be 

difficult to determine. There is a difference in the pattern of modelled ages for different rifting 

events with the elevated rift flank models. The samples closest to the coast have modelled ages 

that are similar to the timing of the rifting event. If the Western Indian escarpment has 

developed into an elevated rift flank, then samples located furthest from the escarpment will 

record the timing of the initiation of escarpment development (i.e., the timing of the rifting 

event that triggered a denudational response).  

With all the conceptual models, the predicted AHe and AFTT ages are not significantly 

affected by changes in rate of escarpment formation and the pattern of ages remains similar 

(Figure 11iii and iv). Regardless of the rate of escarpment formation it should still be possible 

to differentiate between the different conceptual models and the timing of the onset of 

escarpment development. With the elevated rift flank models, smaller magnitudes of rebound 

cause modelled ages to increase at the coast. Modelled ages also increase towards the 

escarpment but with decreasing effect and remain unchanged at the base of the escarpment 

(Figure 11i and ii). Predictive forward modelling for different magnitudes of flexure indicate 

that larger amounts of rebound enhance the difference in modelled ages between the 
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downarped rift flank model and the elevated rift flank models. However, even for smaller 

magnitudes of denudation, it is still possible to differentiate between escarpment evolution into 

a downwarped rift flank and escarpment evolution into an elevated rift flank. 

 

 

Figure 10 Predictive forward modelling results for Goa and Karnataka (I) 
Predictive forward modelling results for constant escarpment evolution beginning at 65 Ma (i & ii) 
and 80 ma (iii & iv) for each of the conceptual models. The grey bars demarcate the timing of 
rifting. 
 



Chapter 1  Introduction 

Daniel Campanile                                                                          26 

 
Figure 11 Predictive forward modelling results for Goa and Karnataka(II) 
Predictive forward modelling results for different magnitudes of rebound with the elevated rift 
flank models (i & ii) for rifting at 65 Ma. Predictive forward modelling results for different rates of 
escarpment development with all the conceptual models (iii & iv) for rifting at 65 Ma. 
 

1.5.4 Forward modelling results for the Southern field area 

Predictive forward modelling for escarpment retreat into a downwarped rift shoulder predicts 

AHe ages at the coast that are over four times older than the age of rifting and the measured 

AHe ages at the coast. The modelled AHe ages decrease to a completely unrealistic ~0 Ma at 

the escarpment. Model results for AFTT ages provide a similar pattern with predicted ages at 

the coast eight times older than the time of rifting, decreasing to approximately 0 Ma at the 

escarpment (Figure 12 i & ii). Predictive forward modelling for escarpment formation into an 

elevated rift flank generates AHe ages that are all younger than the age of the simulated rifting 

event. The escarpment retreat model yields AHe ages that are similar to the age of rifting at the 

coast but decreasing to approximately 0 Ma at the escarpment. The pinned divide model yields 
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AHe ages that are almost half the age of the rifting event at the coast, increasing towards to the 

escarpment (Figure 12 i). Predictive forward modelled AFTT ages for the elevated rift flank 

models also differ from the downwarped rift flank model and are similar to the age of rifting at 

the coast increasing to approximately twice the age of rifting at the escarpment (Figure 12 ii). 

These results indicate that it should be possible to differentiate between the competing groups 

of conceptual models, with the coastal samples being the most sensitive to different scenarios 

(i.e., exhibiting the greatest difference in modelled ages for the different scenarios) and 

escarpment samples the least sensitive. However, it will be much more challenging to 

differentiate between the two elevated rift flank models, with the AHe age variations along the 

margin-normal transect offering the most hope in this regard. 

Predicted AFTT and AHe ages for a denudational response to escarpment retreat into a 

downwarped rift flank initiated at either at 65 Ma or 80 Ma are similar (Figure 12). If the 

southern segment of the Western Indian margin evolved into a downwarped rift flank, it will 

be difficult to ascertain which rifting event triggered the onset of margin formation (i.e either 

65 Ma for The Seychelles, or 80 Ma for Madagascar). Escarpment retreat into an elevated rift 

flank produces AHe and AFTT ages that are similar to the age of the rifting event at the coast 

and should be able to differentiate between a denudational response to rifting at 65 Ma or 80 

Ma. Forward modelling of AFTT results for the pinned divide model also predicts coastal ages 

that are similar to the simulated rifting event and should be able to differentiate between a 

denudational response to either rifting at 65 Ma or rifting at 80 Ma (Figure 12). 

The forward-modelling runs were adapted to simulate differing magnitudes of rebound for 

escarpment formation into an elevated rift flank beginning at 65 Ma. The two different 

magnitudes simulated were: 1) 4.5 km of rebound at the coast, decreasing to 2.5 km at the 

escarpment, and 2) 3 km of rebound at the coast decreasing to 2.5 km at the escarpment. 

Predicted AHe ages follow the same general trend along a transect for different magnitudes of 

rebound, but predicted ages are 5 – 10 Myr older at the coast for 3 km of rebound (Figure 13 

i). A similar pattern is predicted for AFTT ages except that the age of coastal samples are 30 – 

50 Myr older at the coast for 3 km of rebound (Figure 13 ii). Even for smaller magnitudes of 

rebound the pattern and magnitude of predicted AFTT and AHe ages are different (especially 

at the coast) between the downwarped rift flank model and the elevated rift flank models.  
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Figure 12 Predictive forward modelling results for Kerala (I) 
Predictive forward modelling results for each of the three conceptual models for simulated rifting at 65 Ma and 80 Ma. 

The solid grey bars are the time of each rifting event. 
 

Predictive forward modelling was used to simulate constant escarpment formation (escarpment 

formation taking the full post-breakup time of 65 Myr) and rapid escarpment formation 

(escarpment formation completed after 10 Myr). Faster rates of escarpment formation result in 

older predicted AFTT and AHe ages for all three conceptual models, with samples closest to 

the escarpment producing the largest difference in peredicted ages (Figure 13 iii & iv). Rapid 

escarpment formation within 10 Myrs of breakup reduces the differences in predicted ages 

between the escarpment retreat model and the pinned divide model, and the two conceptual 

models cannot be differentiated. At faster rates of escarpment formation, there is still a 

difference in predicted ages between escarpment retreat into a downwarped rift flank and 

escarpment formation into an elevated rift flank. 
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Figure 13 Predictive forward modelling results for Kerala (II) 
Predictive forward modelling results for different magnitudes of rebound (ER and PD only) and different rates of 

escarpment formation (all three conceptual models) for simulated rifting at 65 Ma. The solid grey bars are the time of The 

Seychelles/India rifting event. 
 

The onshore denudational component of a passive margin is intrinsically linked to the offshore 

depositional component, so this thesis also presents new data from a comprehensive offshore 

sedimentary analysis coupled with a mass balance study (Chapter 2). Chapter 3 describes the 

analytical procedures for undertaking apatite fission track and apatite (U-Th)/He analysis 

in addition to interpretation of data. Chapters 4 and 5 outline and interpret new low 

temperature thermochronometry data for two field areas, northern Karnataka and Kerala. 

Chapter 6 presents a detailed treatment of lithospheric flexure and its role in the 

development of the Western Indian margin. Such a multi disciplinary approach will help to 

provide a solution to some of the remaining problems facing geologist and geomorphologists 

studying the Western Indian elevated passive margin. The final chapter provides a general 

discussion and conclusions from the study. 
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2 Mass balance analysis 

2.1 Introduction 

Passive continental margins are commonly associated with offshore basins containing large 

volumes of sediment. The fact that many of these basins host hydrocarbons has stimulated 

research and improved our understanding of basin initiation, development and subsequent 

evolution. Most studies tend to focus on rifting processes (Cooper et al., 1991; Hubbard, 1988; 

Seranne and Anka, 2005), basin subsidence (Allen and Allen, 2005; Watts, 2001), basin 

thermal evolution (Allen and Allen, 2005; Steckler et al., 1993), hydrocarbons potential 

(Arthur et al., 2003; Cameron et al., 1999) or basin stratigraphy (Lawrence et al., 1990; 

Mohriak et al., 1988). There are fewer studies linking uplift and denudation to the generation 

of these sediments even though offshore basins are fundamentally connected to onshore 

hinterlands (Brown et al., 1990; Pazzaglia and Brandon, 1996; Pazzaglia and Gardner, 1994; 

Rust and Summerfield, 1990; van Balen et al., 1995). Sedimentary sequences in offshore 

basins can contain an almost continuous record of the magnitude, timing and variability of 

onshore denudation and thus quantifying these sediments can provide valuable information on 

passive margin development. 

The concept of sediment mass balance assumes that material eroded from a defined source area 

over a certain period of time is equal to material deposited in a defined sink over the same 

period of time (Hay et al., 1989). Sedimentary mass balance analysis can be conducted over a 

range of temporal and spatial scales including short term (yrs) studies of river sediment 

discharge (Summerfield and Hulton, 1994), moderate term (ka) studies of lake and reservoir 

sediments (Einsele and Hinderer, 1998) or long term (Ma) studies of sedimentary basins (Hay 

et al., 1989). Mass balance analysis of offshore basins provides information on the longest 

temporal scale and largest spatial scale and is of greatest value to long term landscape 

development studies such as that conducted here on an elevated passive margin. Hinterland 

source areas (henceforth termed onshore) and peripheral sinks (henceforth termed offshore) are 

coupled erosional-depositional systems. If the source area onshore is known and the offshore 

basin retains all the sediment derived from the onshore area, then the volume of offshore 

terrigenous sediment can be used to calculate the average depth of onshore denudation. 
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Additionally, if the timing of increases in terrigenous sediment input is known it is possible to 

identify the timing of denudational pulses from the sedimentary record. 

Understanding the dynamics of both erosional onshore systems and depositional offshore 

systems is a necessary pre-requisite to a mass balance analysis. The sediment routing system 

(Allen and Allen, 2005) encapsulates the processes and responses operating in the continental 

erosional domain and determines the resultant sediment flux into the oceanic depositional 

domain. Depositional basins are not passive stores and develop in response to sedimentary 

input, thermal subsidence, and changes in sea level. Section 2.2 outlines details of the 

sedimentary routing system and the depositional basin system and the methods of mass balance 

analysis. 

To date, there has been only one mass balance analysis for Western India (Gunnell, 2001). 

Gunnell (2001) utilized isopach maps and the limited number of boreholes available at the time 

to establish sedimentation rates for the Bombay, Konkan and Kerala Basins. The aim of the 

study was to extract a denudation chronology for Western India from the sedimentary record, 

not to reconstruct the palaeogeography. Gunnell’s (2001) work is important because it was the 

first attempt at mass balance analysis for the Western Indian PCM using temporal and spatial 

scales appropriate to long-term landscape development. However, there are a number of 

problems with their mass balance analysis. The Bombay Basin is not a closed system (see 

section 2.3), receiving sediments from rivers draining the Western Indian margin as well as 

receiving sediments from areas further north and east via rivers draining into the Gulf of 

Cambey. Gunnell and Radhakrishna (2001) removed 35% from the total sediment volume to 

account for sedimentological heterogeneity in the form of carbonates not derived from onshore 

denudation. Whereas this may be a reasonable approximation, it is now possible with the 

increasing availability of borehole data to refine this procedure. 

The Western India mass balance analysis undertaken for this thesis does not attempt to 

undertake palaeogeographic reconstructions, having instead two other aims, namely, 

discerning the patterns in sediment flux offshore to constrain temporal variability of 

denudation onshore, and comparing the total volume of sediment offshore with the potential 

missing volume of crust onshore in order to test the two competing groups of conceptual 

models for passive cointinental margin development (downwarped and elevated rift flanks). 

This mass balance is only concerned with absolute volumes of rock removal (equivalent to 

denudation), not changes in surface elevation or the magnitude of rock uplift (England and 

Molnar, 1990) (Figure 14). 
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Figure 14 Different types of uplift 
Rock uplift – the change in elevation between a specific point in the Earths crust (black dot) 
measured from a fixed internal reference frame (such as the Geoid). Represented as R2 – R1. 
Surface uplift – the change in average elevation of the surface measured from a fixed internal 
reference frame. Represented as S2 – S1 
Exhumation – the volume of crust removed from the surface measured form a specific point in the 
Earths crust. Represented as E2 – E1. 
Mass balance analysis of Western India constrains the total volume of crust which has been eroded 
onshore (i.e. the amount of exhumation) 
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Section 2.2 summarises the principles of mass balance analysis followed by a brief review of 

the offshore and onshore areas selected for this study (section 2.3). Section 2.4 outlines the 

methods employed for the mass analysis of Western India and section 2.5 presents the results. 

Finally section 2.6 highlights the conclusion and implications focussing on the following 

issues: 

1. What is the timing of major increases in sediment flux to the Western Indian offshore and 

what implications does the sediment flux have for changes in denudation rate? 

2. Can these pulses in sediment flux be correlated with a particular rifting event or are the 

pulses related to other mechanisms? 

3. Which conceptual model of passive margin evolution is more consistent with the volume of 

terrigenous sediment present offshore? 

2.2 The principles of mass balance analysis 

2.2.1 The coupled erosional-depositional system 

Rocks exposed at the Earth’s surface are subjected to in-situ mechanical and chemical 

weathering processes which are strongly controlled by climate, altitude and rock susceptibility. 

The disaggregated layer that forms in response to these processes is termed the regolith or 

weathered mantle. Although the thickness of regolith is dependent on the rate of production of 

weathered material, the thickness is also controlled by the of the rate of removal of weathered 

material by erosion (Summerfield, 1991a). Hillslope processes and fluvial processes are the 

erosive mechanisms that transport these weathered products from continental areas and transfer 

them to adjacent oceanic basins. Erosion is believed to be controlled largely by relief (Ahnert, 

1970; Summerfield and Hulton, 1994), precipitation (Ohmori, 1983), and lithology. Surface 

runoff connects the onshore hinterland with the offshore basins and is the final link in the 

erosional-depositional system (Figure 15).  

Material can be transferred offshore either in suspension or in solution. The proportions of 

suspended sediment and sediment in solution are highly variable globally but on average there 

is five times more sediment in suspension compared to sediment in solution Summerfield and 

Hulton (Summerfield and Hulton, 1994). The proportion of sediment in suspension to sediment 

in solution is important because suspended sediment is deposited and trapped in adjacent 

offshore basins but sediment in solution is dispersed and deposited throughout the world’s 
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oceans. Sediment in solution can thus contribute significantly to denudation onshore but 

provides a much smaller constituent of the sediment volume deposited offshore. 

Sedimentary basins do not passively receive and accumulate sediment but are dynamic 

systems. The key processes responsible for basin development are tectonic subsidence, thermal 

subsidence, subsidence in response to sediment loading, sea level change, and sediment input 

(Allen and Allen, 2005) (Figure 15). These processes determine the amount of accommodation 

space in a basin and ultimately its stratigraphy. Accommodation space determines whether 

sediments are deposited within the basin or they bypass the basin to be transported further 

offshore. If clastic sediment input is decreased, for example as a consequence of reduced relief 

onshore or a marine transgression, then biogenic processes become prevalent and carbonate 

sedimentation dominates. Periods of carbonate deposition correspond to low fluxes of clastic 

sediment (reflecting, in turn, low denudation rates onshore) whereas high denudation rates 

result in an increased offshore flux of clastic sediments. The timing and volume of clastic 

sediment input are therefore a proxy for spatially averaged denudation occurring within the 

source area of the basin. 
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Figure 15 The coupled erosional-depositional system 
Processes, forcing mechanism and transfers operating within the onshore and offshore domains. 
The regional watershed (thick dashed line) and coast are the boundaries for the onshore area. The 
volume of the onshore prism of denuded material is illustrated as the volume between the upper 
surface of the prism and the topography. 
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2.2.2 Mass balance analysis – methods and assumptions 

The first stage in any mass balance analysis is to define an appropriate source area and an 

appropriate sink area. Regional mass balance analyses require the defining of large offshore 

basins and large onshore continental source areas. It is assumed that the boundaries for the 

onshore and offshore areas are known. These boundaries can alter through the time period of 

the mass balance study provided that any such changes in area can be quantified. Changes in 

offshore basin area tend to be well defined and are usually expressed as shifts in depocentres 

and facies changes within the basin stratigraphy. Changes in the onshore area such as 

migration of drainage divides should also be known; however, such changes are more 

challenging to quantify. 

The next stage in the mass balance analysis is quantifying the volume of offshore sediment that 

was derived from erosion of the onshore hinterland, i.e. the terrigenous sediments only. A 

variety of sources such as isopach maps, seismic cross-sections and borehole data provide 

information on the lithostratigraphy, chronostratigraphy and thickness of each sedimentary 

sequence. The accuracy of the data on the clastic volume and its duration of deposition for 

each sedimentary sequence is highly dependent on the quality and quantity of available sources 

outlined above. The density of sediments increases with depth due to compaction by overlying 

sediment; therefore, the clastic volumes for each sedimentary sequence must be decompacted 

to allow for the effect of sediment loading. The resultant decompacted clastic volumes (and 

their ages) provide information on clastic sediment flux. 

The final stage of the mass balance analysis is quantifying the eroded onshore volume from a 

pre-defined onshore area. Defining the source area for offshore sediments is a particularly 

challenging aspect of any mass balance analysis and some assumption must be made about the 

boundary conditions, the palaeotopography and the flexural properties of the eroding crust. 

The assumptions made for the mass balance analysis of Western India are outlined in section 

2.4.2. Before a comparison can be made between the onshore eroded prism and offshore 

sediment volume, the decompacted sediments must be re-compacted to the equivalent average 

density of bedrock onshore. 

There are two further assumptions required for a mass balance analysis, namely, that the 

system is closed and there is continuity between the onshore and offshore areas. The offshore 

area must be a closed system and there should be no loss of material further offshore or 

addition of material from unaccounted sources. All the material leaving the onshore area 

should be transferred into the offshore area used in the study. There must be continuity 

between the onshore and offshore areas, and the rate at which sediment is removed and 
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exported offshore must equal the rate of weathering and rate of removal by erosion. Continuity 

between the onshore and offshore areas ensures that the erosional and depositional systems are 

connected, allowing a direct comparison between the volume of terrigenous sediment offshore 

and denudation onshore. 

2.3 Mass balance analysis of Western India 

The Western Ghats and the coastal plain seaward of the continental drainage divide at the 

Ghats escarpment lip form a well-defined source area and offshore basins further west form 

depositional sinks, making Western India well suited to mass balance analysis. The discovery 

of petroleum within the Bombay platform has stimulated exploration along the entire Western 

Indian PCM and knowledge of the development of Indian West Coast basins is constantly 

improving (Mathur and Nair, 1993; Rao and Srivastava, 1984; Rao et al., 2002; Singh and Lal, 

1993; Singh et al., 1999). This section provides a summary of the offshore and onshore areas 

selected for this mass balance analysis. 

2.3.1 The offshore area 

The sedimentary basins adjoining the west coast of India include the Northern Basins, 

comprising, from north to south, the Kutch Offshore Basin, the Cambay Basin, the Saurashtra 

Basin, the Surat Basin, and the Bombay Offshore Basin, and the southern basin, the Konkan-

Kerala Basin (Figure 16). The Northern Basins are supplied by sediment derived from 

denudation of the northern one-third of the Western Indian margin but also receive sediments 

from the Cambay and Kutch grabens (Gunnell, 2001; Mathur and Nair, 1993). Additionally, 

the proportions of different clay minerals within sediments from the northern basins indicate 

that sediments are derrived not only from the Deccan volcanic province but also from the Indus 

Fan to the west (Rao and Rao, 1995). The Northern basins are therefore not a closed system 

and are less suitable for mass balance analysis. The proportions of clay minerals within 

sediments entering the Konkan-Kerala Basin indicate that the sediments are derived 

exclusively from the remaining two-thirds of the margin (Rao and Rao, 1995). The shelf 

sediments along the western margin of India are strongly compartmentalised and show marked 

affinities along strike with their adjacent onshore areas. Thus, north of Goa modern shelf 

sediments have a clay content indicating a basaltic source, whereas south of Goa these 

sediments have a clay content indicating a gneissic source (Rao and Rao, 1995). There is a 

close relationship between the onshore geology and the offshore sediments, and, lacking 

evidence to the contrary, it is taken to be the case that there has been little longshore transport 

of sediment in the Konkan-Kerala Basin area. The Vengurla Arch basement high is a natural 

barrier at 17° N latitude, separating the Konkan-Kerala basin from the Northern Basins, and 
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the Chagos-Laccadive Ridge forms a barrier to westward sediment transport into the deeper 

abyssal plain (Gunnell and Radhakrishna, 2001). In effect, the inner shelf of the Konkan-

Kerala Basin is a closed system and sediment sink for the erosional products of the Western 

Ghats, making it a suitable offshore area for mass balance analysis. 

The Konkan-Kerala Basin hosts sediments from ca. 80 – 90 Ma onwards and represents the sag 

basin developed on the stretched pre-Deccan continental basement formed during the rifting of 

India from Madagascar (Singh and Lal, 1993). Sedimentation in the Konkan-Kerala Basin is 

within N-S trending grabens separated by local basements highs. Seismic profiles of the 

sediments show differential vertical movements in the sediments, as well as wrench faults, 

reverse faults and folds (Ghosh and Zutshi, 1989). Some of the faults may be inherited, and 

basement controlled since the thinned crust underlying the sediments is characterized by a 

coast-parallel Precambrian grain (Kolla and Coumes, 1990; Subrahmanyam et al., 1994; 

Subrahmanyam et al., 1995).  

The early rift phase (Upper Cretaceous, Campanian) in the Konkan-Kerala Basin is localized 

in the southern part of the basin west of Cochin and restricted to narrow grabens. 

Sedimentation took place in a shallow continental setting (fan deltas, tidal flats and carbonate 

platforms) suggesting that a major part of the stretched portion of the crust on which the basin 

developed remained above sea-level until the Cretaceous-Tertiary boundary, ending in pre-

Santonian time (Singh and Lal, 1993). The Upper Cretaceous sediments in the deepest wells of 

Konkan-Kerala Basin overlie altered volcanic rocks. These basal volcanic rocks are undated, 

but outcrops of volcanic rocks near the coast on St. Mary Islands (Figure 16) have been dated 

as 85.6 Ma (Pande et al., 2001), contemporaneous with Marion hot-spot magmatism (Joseph 

and Nambiar, 1996). Basin initiation must have occurred at 88 Ma, the time of India-

Madagascar rifting and during the peak of Marion hotspot volcanism (Storey, 1995); 

nevertheless, the bulk of sediments in the Konkan-Kerala basin were deposited during the 

Cenozoic. 
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Figure 16 Location map for onshore and offshore areas 
Total sediment thickness map of the offshore basins compiled from Rao & Srivastava, 1984; Rao et 
al., 2002. Also shown are the locations of wells used in the analysis and the location of the seismic 
profile of Chaubey et al., 2002. DEM-derived contours onshore, the regional watershed and the 
area used for mass-balance calculations are also shown. 
 

Post-rift passive subsidence beginning at the start of the Cenozoic led to the development of an 

extensive marine basin and the deposition of the sediments whose volumes are quantified in 

this analysis. Sediment isopach maps in the Konkan-Kerala Basin indicate Cenozoic sediment 

thicknesses of up to 4 km (Rao and Srivastava, 1984). Total sediment thickness ranges from 

500ms to 3500ms using seismic two way travel times (TWT) averaging 1300 ms for the 

Konkan-Kerala basin. The greatest accumulation occurs where Mesozoic sediments are present 

below Cenozoic sediments within coast-parallel graben structures that lie approximately 50-

150 km offshore. However, sediments thin to less than 500 ms TWT over the Laccadive ridge, 

a portion of the Chagos-Laccadive volcanic ridge. Data from eleven bore-holes show a 
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generalized stratigraphy comprising of a thick carbonate accumulation (Eocene to Late 

Miocene) sandwiched between clastic-dominated sequences (Chaubey et al., 2002; Gunnell 

and Radhakrishna, 2001; Rao et al., 2002; Singh and Lal, 1993). The major breaks in 

deposition/unconformities in the basin occurred in the Middle Palaeocene, the Early Eocene 

and the Late Eocene-Early Oligocene, corresponding to an absence of sediments of these ages 

in the bore-hole logs. 

Paleobathymetry estimates by Raju et al. (1999) imply shallow depths (<100 m) for the 

Konkan Kerala Basin during upper Cretaceous at 85 Ma. The basin became a depocentre at 85-

75 Ma when its depth increased to >200 m. Uplift possibly due to the onset of rifting led to a 

decrease in basin depth to 0 m from 65-60 Ma, marking a period of non-deposition. Re-

submergence then occurred in the Palaeocene/Eocene, followed by a further period of non-

deposition from 28-38 Ma. The Konkan-Kerala Basin is interpreted to have followed a normal 

subsidence path for a rifted passive margin beginning with rapid initial subsidence in the 

Cretaceous, followed by slow thermal subsidence throughout the Cenozoic (Gombos et al., 

1995) (Figure 17). 

 
Figure 17 Subsidence curve for the Kerala basin 
Subsidence curve for the Kerala basin (Gombos et al. (1995)). Basin initiation and rapid 
subsidence began at 85 Ma followed by slow thermal subsidence throughout the Cenozoic. 
The solid line indicates subsidence of the sediment-basement interface. The dashed line 
indicates backstripped thermo-tectonic subsidence  
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Sea-level may also play an important roll in the dynamics and nature of sediment 

transferred from the onshore portion of the margin to the Konkan-Kerlala basin (see 

section 2.2.2). Figure 18 displays the eustaitic sea level curve (Haq et al., 1987). From the 

Palaeocene to middle Miocene sea level fluctuated but remined higher than present day. 

This is reflected in the style of sedimentation where aggradional sequences are observed 

indicating sufficient accommodation space for storage and steady sedimentation rates 

(Gunnell, 2001; Mathur and Nair, 1993; Singh and Lal, 1993). Fluctuating sea level and a 

series of regression occurred from the late Miocene to present, reflected in progradational 

sequences and coastal onlap (Gunnell, 2001). The present day continental shelf is wider 

than the Palaeocene and middle Miocene palaeoshelves as a result of these 

progradadational sequences, however there is no evidence that accommodation space was 

reduced to such an extent that sediment was able to bypass the basin completely. 

 

Figure 18 Eustatic sea-level curve 
Adapted from Haq et al. (1987) 
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There are two potential sources of sediment that cannot be accounted for in the mass balance 

calculations, namely, sediment in solution from chemical weathering and clastic sediment 

sourced from the conjugate margins. Sediment in solution is derived from dissolution, 

chelation and lateritization, processes which are promoted by tropical weathering conditions 

predominating in Western India. The dissolved component of sediment is difficult to quantify 

and there are few constraints on the magnitude of sediment in solution relative to sediment in 

suspension. Approximate present day estimates for sediment in solution are available for 

Western India (Das et al., 2005; Prasad and Ramanatran, 2005) but the variability of dissolved 

sediment over timescales longer than ca. 20 years is unknown. Due to the sparse data on the 

volumes of sediment in suspension and in solution for the Western Indian margin, this mass 

balance analysis utilises the power law relationship whereby chemical weathering = 0.39 

(physical weathering)0.66 developed from data collected from several global rivers including 

Western India (Millot et al., 2002). This power law assumes that there is 4.5 times more 

sediment in suspension than in solution (see section 2.4.2). 

Sediment derived from the conjugate margins (Seychelles and Madagascar) could also possibly 

have contributed significant volumes of sediment to the basin. Madagascar rifted from Greater 

India at 88Ma (Storey, 1995); however, Mesozoic sediments are limited and restricted to the 

deeper central grabens within the Konkan-Kerala basin. Mesozoic sediments have not been 

included in the sediment volume calculations. The establishment of the Carlsberg ridge 

separated India from The Seychelles at 65 Ma, but there is little evidence of major sediment 

contribution from The Seychelles, a low lying microcontinental sliver. Where elevations on the 

microcontinent are significant, sediments are Eocene – Pleostocene carbonates and not 

extensive (Plummer and Belle, 1995). 

2.3.2 The onshore area 

The onshore segment of Western Indian is a typical high elevation passive margin (see Section 

1.3) with a low elevation coastal plain, an erosional escarpment and a high elevation plateau 

inland of the escarpment. The escarpment lip coincides with the regional watershed for most of 

the length of the margin. Easterly flowing rivers drain the elevated interior plateau and deliver 

sediment to the Bay of Bengal, whereas westerly flowing rivers deliver sediment to the 

Arabian Sea derived from the denudation of the escarpment face and coastal plain (Figure 15). 

Apart from the northern third of the margin, the source of the sediment for the westerly 

flowing rivers is the coastal plain and the escarpment face; the southern two thirds of the 

margin therefore form a closed erosional-depositional system. 
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The regional watershed only forms the landward part of the boundary for the onshore area; the 

seaward part of the boundary is dependent on the location of the initial rift or proto-

escarpment. A maximum onshore area would be defined if the proto-escarpment is placed at 

the ocean-continental crust transition 200km offshore from the present coast (Widdowson, 

1997; Widdowson and Cox, 1996). However, a thick Palaeocene – early Eocene clastic fan has 

been identified (Basu et al., 1982; Parida and Mishra, 1992) at the coast near Mumbai. A 

clastic fan of this age could not develop if the proto-escarpment was located 200 km offshore 

and subsequently retreated towards its present position throughout the Cenozoic. This clastic 

fan is taken as evidence that the position for the proto-escarpment (and the seaward portion of 

the onshore boundary) would be near the present coast. 

2.4 Methods 

2.4.1 Quantifying sediment in the Konkan-Kerala basin 

2.4.1.1 Obtaining compacted sediment volumes 

The data used here to document Cenozoic sedimentation in the Konkan Kerala Basin is derived 

from 11 commercial wells (Chaubey et al., 2002; Gunnell and Radhakrishna, 2001; Rao et al., 

2002; Singh and Lal, 1993), seismic profiles (Chaubey et al., 2002; Singh et al., 1999) and 

isopach maps (Rao and Srivastava, 1984). Total sediment thickness is based on the isopach 

maps of Rao and Srivastava (1984) and Rao et al. (2002). A regional seismic survey by Rao 

and Srivastava (1984) derived three Cenozoic sedimentary sequences in the Konkan-Kerala 

Basin (Figure 19): a lower succession, sequence II, with sediments of Palaeogene age ranging 

in thickness from 200 ms to 1200 ms (TWT); a middle succession, sequence III, of Miocene 

sediments ranging in thickness from 200 ms to 1200 ms (TWT); and an upper succession, 

sequence IV, of post-Miocene sediments ranging in thickness from 20 ms to 120 ms (TWT). 

Chaubey et al. (2002) identified six Cenozoic sequences (H1 to H6) on the basis of a multi-

channel seismic reflection profile across the northern part of the Konkan Kerala Basin (Figure 

20). The sequences of Chaubey et al. (2002) and the three sedimentary sequences of Rao and 

Srivastava (1984) have been combined. The boundary between Chaubey et al. (2002) 

sequences H2 and H3 has an inferred age of Late Oligocene (Chaubey et al. (2002) Table 1, 

p306) and thus correlates well with Rao and Srivastava (1984) boundary between sequences II 

and III. Similarly, the boundary between Chaubey et al. (2002) sequences H5 and H6 is Late 

Pleistocene and correlates well with the boundary between Rao and Srivastava (1984) 

sequences III and IV. The relationships between the chronologies of Chaubey et al. (2002) and 

Rao and Srivastava (1984) are summarised in Table 1. The revised chronostratigraphy refines 

the depositional periods for sequences II, III and IV of Rao and Srivastava (1984). 
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Figure 19 Isopach maps for the Konkan-Kerala Basin 
Sediment-thickness maps of the three broad sequences as discussed in the text (modified after Rao 
& Srivastava, 1984). The broken lines are extrapolations based on the total sediment thickness data. 
Units are two way travel time. 

 

Figure 20 Seismic cross section for the Konkan-Kerala Basin 
Generalized cross section along the northern part of the Konkan Kerala Basin (based on the seismic 
profile of Chaubey et al., 2002) showing the major lithostratigraphic units. The topographic profile 
onshore (extracted from the DEM) is also displayed. 
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TWT (ms) Age  Rao & Srivastava 
(1984) 

Chaubey et 
al. (2002) 

Age (refined) 

20 – 120 post Miocene Sequence IV H6 Late Pleistocene – 

Recent 

200 – 1200  Miocene Sequence III H3, H4 & H5 Late Oligocene –  Late 

Pleistocene 

200 – 1200  Palaeogene Sequence II H1 & H2 Palaeocene – Late 

Oligocene 
Table 1 The relationship between the sequence chronologies of Rao & Srivastava (1984) 
and Chaubey et al. (2002)  
 

In this thesis sequences III and II have been further sub-divided based on a detailed analysis of 

the stratigraphy from ten litho-logs from the Konkan-Kerala Basin, and an additional 

stratigraphic column onshore in Kerala. Five sub-divisions (IV, IIIa, IIIb, IIa and IIb) and their 

equivalent ages are given in Figure 21. These sub-divisions were used for the sediment volume 

calculations.  

Sediment volumes were calculated in a GIS using the (digitized) sediment isopach maps of 

Rao and Srivastava (1984),and assuming that 1 s two-way travel time is equivalent to 1 km 

thickness of sediment (Gunnell, 2001). Using lithologies in the eleven boreholes in the study 

area, percentages of clastic (terrigenous) and non-clastic sediments (biogenic and marine 

limestones) were obtained for each of the five sequences (IV, IIIa, IIIb, IIa, IIb). The non-

clastic component of each of the sequences was then removed from the individual volumes 

extracted from the GIS to acquire the compacted clastic components. 

 



Chapter 2        Mass balance analysis 

Daniel Campanile                                                                          46 

 

Figure 21 Simplified lithologies and stratigraphies of wells in the Konkan Kerala 
Basin 
The red lines are stratigraphic correlations for the five sub-sequences used in the analysis. Wells 
A, B, C, D, H (Rao et al. 2002). K-R-1 and DSDP 219 (Chaubey et al. 2002). K-1-1 and CH-1-1 
(Singh & Lal (1993). KG-1-1 and onshore Kerala (Gunnell & Radhakrishna, 2001). 

2.4.1.2 Decompacting sediment volumes 

To obtain true sediment volumes the clastic volumes were decompacted to allow for the effects 

of sediment loading with depth. The relationship between porosity and depth of burial for 

different sedimentary units must be understood for the decompaction procedure, and several 

relationships have been proposed (Athy, 1930; Audet and McConnell, 1994; Baldwin and 

Butler, 1985; Falvey and Deighton, 1982; Hedberg, 1936). Although each porosity-depth 

relationship differs subtly in detail, all assume a negative exponential decrease in porosity with 

depth. The Konkan-Kerala Basin lacks detailed porosity information needed to calibrate many 

of the porosity-depth curves; therefore, we apply the basic procedure of Athy (1930) and 

Hedberg (1936) summarised by Allen and Allen (2005), using the following equation: 

( ) ( )[ ] ( ) ( )[ ]21211212 expexpexpexp 00 ycyccycyyyyy cc ′−−′−+−−−−−=′−′ φφ
  

Equation 1 
 
where y’2 and y2 are the decompacted and compacted depths, respectively, to the base of the 

layer, y’1 and y1 are the decompacted and compacted depth, respectively, to the top of the layer 
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(y’1 = 0 for decompaction to sea level). Ф0 is a constant for the initial porosity prior to 

compaction, 0.56 for shaley sandstone (Allen and Allen, 2005), the most abundant terrigenous 

sediment in the basin (Chaubey et al., 2002; Gunnell and Radhakrishna, 2001; Rao and 

Srivastava, 1984; Rao et al., 2002; Singh and Lal, 1993; Singh et al., 1999). The porosity 

coefficient (c) is a constant which describes the gradient of the porosity-depth curve (0.39 for 

shaley sandstone (Allen and Allen, 2005)) and is equivalent to ‘sliding’ a given sedimentary 

layer up the porosity-depth curve (Figure 22). Average depths for the top and base of each of 

the five sedimentary sequences were used and their percentage increases in thickness were 

applied to their decompacted volumes. For example, the average depths to the base and top of 

sequence IIa are 2900m and 1000m respectively, giving an average compacted thickness of 

1900m. If sequence IIa is decompacted, the thickness increases by 15% to 2200 m. This 15% 

increase is then applied to the compacted volume for sequence IIa to give a true decompacted 

volume. 

Sediment accumulation rates can be calculated from decompacted sediment volumes if the 

depositional periods for the individual stratigraphic units are known. Sediment accumulation 

rates provide useful information on the changes in flux of sediment throughout the basins 

history but a direct comparison between the offshore clastic sediment volume and the volume 

of material eroded onshore can only be made by recompacting the decompacted volume of 

offshore clastic sediment to equivalent crystalline basement rock densities. A density of 1200 

kg m-3 (average for shaley sandstone, the most abundant sediment in the basin) was adopted for 

the sediments and a density of 2700 kg m-3 for crystalline rocks (Rust and Summerfield, 1990). 

A density of 2700 kg m-3 was adopted for crystalline rocks because the majority of the rocks 

onshore are charnokites and gneisses with similar average densities. 

 

Figure 22 Decompaction cartoon 
Modified from Allen and Allen (2005). y1 and y2 are the depths to the upper and lower layers of the 
sedimentary unit being decompacted. y’1 and y’2 are the depth to the upper and lower layers of the 
sedimentary unit after decomapaction. The graph illustrates the relationship between porosity and 
depth (see text for explanation). 
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2.4.2 Calculating the onshore denuded crustal prism 

The onshore denuded crustal prism is bounded to the east by the regional watershed and to the 

west by the coast of the Arabian Sea. The northern limit is onshore of the northern margin of 

the Konkan-Kerala basin east of the Vengurla arch basement high, and the southern limit is the 

tip of the Indian peninsula (Figure 16). The regional watershed was defined by extracting the 

boundary between easterly- and westerly-flowing river basins from the GTOPO30 DEM. The 

offshore sediment volume is a combination of the volume of prism eroded from the coastal 

plain (used to test the different conceptual models) and the additional volume eroded 

between the escarpment lip and the regional watershed (Figure 23).  

The DEM was used to calculate the onshore area and volume of crust now missing from the 

coastal plain. The volume of eroded crust depends on the source area and the position of the 

upper surface of the prism (Figure 23). The position of the upper surface is controlled by both 

the geometry of the syn-rift palaeosurface and the flexural strength of the lithosphere. 

Flexurally strong lithosphere resists the isostatic effects resulting from erosion of the prism and 

the prism of material removed is either cubic where the prism has a horizontal upper surface 

corresponding to a syn-rift palaeosurface extending horizontally seawards from the crest of the 

escarpment or more likely wedge-shaped, thinning towards the coast (Figure 23A). A wedge-

shaped prism is analogous to a downwarped margin geometry where syn-rift downwarping 

occurs, thereafter the lithosphere remains flexurally rigid (Ollier, 1982; Ollier and Pain, 

1997). Denudational unloading may cause flexurally weaker lithosphere to rebound, increasing 

the volume of material that is eroded and subsequently transported offshore. The geometry of 

the crustal prism that incorporates an elevated pre-rift topography and/or flexural rebound is an 

inverted wedge thickening towards the coast, analogous to the elevated rift flank model 

(Figure 23B). Different lithospheric flexural properties cause different amounts of flexural 

rebound (and hence different dimensions of the eroded crustal prism). The flexural response of 

the lithosphere is explored more fully in Chapter 6.  

For the purposes of this work, the eroded volumes were calculated as (i) a seaward tapering 

wedge-shaped geometry corresponding to Ollier and Pains (1997) downwarp model and 

(ii) an inverted wedge-shaped geometry corresponding to both the elevated rift flank 

models (i.e escarpment retreat and pinned divide) (Figure 23A). It is the style of 

escarpment formation that differs between the two elevated rift flank models (escarpment 

retreat vs downwearing) not the magnitude of missing crustal section; therfore, the 
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calculated onshore eroded volumes for both the elevated rift flank models are treated the 

same. The eroded material between the escarpment lip and the regional watershed was then 

added to the eroded volume of each crustal prism (Figure 23B), constrained using 

palaeosurface reconstructions from the Deccan volcanic province (Widdowson, 1997) and 

from the northern Dharwar Craton (Gunnell, 1998). Sediment in solution contributes to the 

volume of material eroded onshore but is not deposited offshore; therefore to compensate for 

this, 19 % is removed from the calculated volumes of missing eroded crust (see section 2.3.1). 

Recompacting the decompacted volume of offshore clastic sediment to equivalent 

crystalline basement rock densities allows a comparison between the offshore sediment 

volume and onshore denuded material (for different crustal prisms), completing the mass 

balance. 

 

Figure 23 Diagrammatic representation of the mass balance procedure 
Different onshore eroded prism produce different eroded volumes. The form of the crustal prism 
depends on both the pre-rift palaeoelevation and the flexural response of the lithosphere. A wedged 
shaped prism reflects a downwarped rift shoulder (A) and an inverted wedge shaped prism reflects 
an elevated rift shoulder (B). 
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2.5 Results 

The results of backstacking are summerised in Table 2. The total equivalent rock volume 

calculated from the combined volumes of re-compacted clastic sediment is 108,740 km3. The 

onshore source area for these sediments comprises of 6 x104 km2 for the area between the 

escarpment and the coast, and 2.3 x104 km2 for the area between the escarpment and the 

regional watershed (total of 8.3 x104 km2). The total volume of denuded lithosphere 

(including the contribution landward of the escarpment lip) for a seaward tapering wedge-

shaped prism (Ollier and Pain’s (1997) downwarp geometry) would have been 38,000 km3
.
 

Accordingly, denudation of a downwarped wedge-shaped prism would account for ~ 30% of 

the sediments present offshore. By contrast, an inverted wedge-shaped prism with 3 km of 

rebound at the coast (decreasing to 1.2 km at the escarpment) has a volume of 110,000 km3, an 

amount more obviously consistent with the volume of sediment calculated as being present 

offshore. 

The Konkan-Kerala Basin contains a total sediment accumulation (clastic and carbonate) of 

464,000km3; the total clastic volumes and decompacted clastic volumes for each sequence are 

given in Table 2. The decompacted sediment volume and the depositional duration for each of 

the five sequences (the latter constrained by the borehole stratigraphy) allow clastic sediment 

volume accumulation rates to be calculated. Estimated onshore volumes of rock are also 

included in Table 2 as recompacted sediment volumes equivalent to crystalline basement. The 

final column of Table 2 displays the denudation rate for sequences IIb, IIa and IIIb. As a 

consequence of the very small duration of deposition (and hence denudation) of sequence IV, 

sequences IIIa and IV have been combined to avoid inappropriately high denudation rates. 

Sequences IIb, IIIa and IV have much greater proportions of clastic sediment compared to 

sequences IIa and IIIb which are carbonate dominated. Clastic sediment accumulation rates 

mirror the total clastic volumes calculated for each sequence, peak accumulation rates in the 

Palaeocene and Pliocene, separated by an intervening period of low clastic accumulation rates 

throughout the Eocene, Oligocene and Miocene (Figure 24). 

 



 
OFFSHORE 
 

Total sediment 
volume (km3) 

% 
clastic 

Total compacted 
clastic volume 
(km3) 

Decompacted 
clastic volume 
(km3) 

Depositional 
duration 
(Myrs) 

Clastic sediment 
accumulation rates 
(km3/Myrs) 

Equivalent 
rock volume 
(km3) 

Denudation 
rate (m/Myrs) 

IV 
Late Pleistocene – 
Recent 

 

40,330 

 

91 

 

37,000 

 

37,000 

 

0.08 

 

462,500 

 

16,300 

 

IIIa 
Early Pliocene– 
Late Pleistocene 

 

94,500 

 

92 

 

87,000 

 

87,500 

 

11.5 

 

7,609 

 

38,900 

 

57.2 

IIIb 
Late Oligocene – Late 
Miocene 

 

140,000 

 

2 

 

2,800 

 

3,808 

 

16.8 

 

227 

 

1,370 

 

0.9 

IIa 
Eocene – Late Oligocene 

 

89,000 

 

11 

 

9,800 

 

11,400 

 

27.4 

 

416 

 

5,070 

 

2.2 
IIb 
Palaeocene – Eocene 

 

100,000 

 

89 

 

89,000 

 

106,000 

 

9.2 

 

111,522 

 

47,100 

 

61.4 
Total 463,830  225,600 245,708 64.9  108,740  

 

ONSHORE FROM DEM   Volume of denuded prism between 
the escarpment and the coast (km3) 

Total volume including material 
denuded landward of escarpment 
(km3) 

Total denuded volume corrected for 
chemical weathering contribution 
(comparable with offshore) 

Ollier & Pain (1997) 
downwarp model 

  36,000 47,500 37,050 

Elevated rift flank model   126,000 137,500 107,250  
 
Table 1 Mass balance results for Konkan-Kerala Basin 
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Figure 24 Sediment flux (a) and denudation rate (b) results 
(a) The grey bars are the decompacted clastic sediment volumes for each of the five sub-sequences. 
(b) The grey bars are the denudation rates for each of the five sub-sequences with sequence IV & 
IIIb combined. 
 

2.6 Discussion and implications 

It is unclear how the separation between India/Madagascar at 85 Ma and India/The Seychelles 

at 65 Ma influenced the development of the Western Indian PCM (see Section 1.3). One of the 

consequences of rifting is a drop in base level at the new continental margin and the initiation 

of sedimentary basins receiving sediment from the new margin. The sediments should thus 

record the timing and spatial extent of rifting. Most of the sediments preserved in the Konkan-

Kerala basin are Cenozoic with only limited Mesozoic sediments restricted to narrow coast-

parallel grabens. The India/Madagascar rift may have initiated the formation of the Konkan-

Kerala basin but that stretching of the crust and denudation were limited. The much larger 

volume of Cenozoic sediments implies that rifting between India and The Seychelles exerted a 

far greater influence on sediment delivery and basin subsidence. 

Two maxima in sedimentation rates are interpreted as reflecting two phases of increased 

denudation. The first phase, beginning in the Palaeocene (Sequence IIb), yielded 106,000 km3 
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of clastic sediment. This phase of increased sediment flux is likely to have resulted from 

denudation and escarpment formation in response to rifting between India and The Seychelles. 

Plume-related regional surface uplift during rifting (Cox, 1989; Thakur and Nagarajan, 1992), 

secondary mantle convection and magmatic underplating (Cox, 1980, 1993) have all been 

suggested as possible active rifting mechanisms for triggering denudation along the western 

margin of India. Uplift tends to precede active rifting (Summerfield, 1991a) so if active rifting 

is responsible for an increase in sediment flux, the age of the sediments should pre-date the 

Palaeocene. Passive mechanisms such as lithospheric delamination, lithospheric necking and 

denudationally driven isostatic rebound onshore (Widdowson, 1997; Widdowson and Cox, 

1996; Widdowson and Mitchell, 1999) provide alternative mechanisms for generating 

sediment of Cenozoic age in response to rifting. 

A second pulse in sedimentation began in the late Miocene yielding 124,500 km3 of clastic 

sediment (ie: Sequence IIIa and IV). It is difficult to envisage this younger phase being related 

to the initial surface uplift in response to rifting and an alternative mechanism is more likely. 

The very high late Miocene sedimentation rates in the Konkan-Kerala basin may reflect 

climate change as a consequence of the Asian monsoon which commenced around 7-8 Ma 

(Prell and Kutzbach, 1992; Quade et al., 1989). Late Cenozoic uplift coupled with climate 

change has also been postulated as a possible mechanism for extremely high rates of 

sedimentation throughout Asia (Metivier et al., 1999; Molnar, 2004; Molnar and England, 

1990). However, the link between tectonic surface uplift and climate change is tenuous with 

the Himalaya reaching their current elevation much earlier at ca. 15 Ma (Harris, 1995). Thus a 

combination of several factors, such as collision-related surface uplift, climatic variations, 

flexural and isostatic rebound, and contributions from the recycling of earlier sediments from 

coastal basins (marine regressions have been common since late Miocene, see Figure 18), may 

be responsible for the increased post-Miocene sedimentation in the Konkan-Kerala Basin. 

The syn-rift topography, the magnitude of post-rift denudation and the scale of the flexural 

isostatic response of the margin to sediment loading and denudational unloading are different 

for the conceptual models for the evolution of Western India. The present mass balance 

analysis provides information on the magnitude of denudation, making it possible to test the 

downwarp hypothesis. The downwarped rift flank model proposed by (King, 1967b; Ollier and 

Pain, 1997) incorporates a flexurally rigid lithosphere and as such only envisages small 

magnitudes of denudation, which is incompatible with the volume of clastic sediment present 

offshore. The downwarp model has been subsequently modified for the Deccan Volcanic 

Province to not only account for the monoclinal structure of this segment of the margin 

(Auden, 1949) but also to include ongoing post-rift flexural uplift (Widdowson, 1997; 

Widdowson and Cox, 1996). The question remains if this modified downwarp model also 
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applies to the segment of the margin south of the Deccan Volcanic Province. The volume of 

clastic sediment within the study area can only be accounted for if there is denudational 

isostasy, which in Figure 23B, is modelled as a component of the elevated rift flank model. 

However, sediment mass balance alone does not have the spatial resolution to differentiate 

between the elevated rift flank model and the modified downwarp model of Widdowson, 

(1997). The volume of clastic sediment could equally be explained by a denuded prism ~ 2 km 

thick similar to the modified downwarp model illustrated in Widdowson’s (1997) figure 12. 

The offshore sedimentary record and mass balance analysis only provide spatially averaged 

denudation rates which are strongly dependent on initial conditions and assumptions about the 

source area and sink area. Furthermore, the sparse data available for quantifying sediments 

offshore can only provide an approximate estimate of denudation onshore. Too fully to 

understand the evolution of the Western Indian PCM a more detailed picture of the spatial and 

temporal variability of denudation across the margin is required. Low temperature 

thermochronometry provides information on the thermal history of rocks in the upper crust and 

offers a complementary approach for refining constraints on the timing, magnitude and spatial 

variability of denudation. Low temperature thermochronometry is capable of resolving the 

spatial differences in denudation between the elevated rift flank model (greatest magnitude of 

denudation at the coast) and the modified downwarp model (greatest denudation at the 

escarpment). Chapter 3 outlines the theory and application of three low temperature 

thermochronometers, the zircon (U-Th)/He system, the apatite fission track system and the 

apatite (U-Th)/He system. Chapters 4 and 5 report the results and interpretation of such data 

for two field areas along the Western Indian margin, Goa and Karanataka, and Kerala. 

One of the key components separating Ollier and Pain’s (1997) downwarped rift flank model 

from the elevated rift flank model is that the latter includes flexural isostatic response to 

denudational unloading onshore and sediment loading offshore. Denudation of a downwarped 

lithospherically rigid crust onshore cannot generate the volume of sediment present in the 

Konkan-Kerala basin and a flexural isostatic response may be required. The theory and 

processes of lithospheric flexure are examined more fully in Chapter 6 to determine the role of 

flexural isostasy in the development of the Western Indian PCM. 
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3 Low temperature thermochronometry 

3.1 Introduction 

Radioisotopes were first used as a dating tool in earth sciences over a century ago (Rutherford, 

1906) and the discipline of radioisotopic geochronology subsequently developed. The rationale 

for many geochronologic studies was to establish crystallization ages (and therefore magmatic 

or stratigraphic ages) of individual rocks. However, it became apparent that some isotopic 

systems produce ages much younger than the formation age established by other isotopic 

systems on the same sample (Hurley, 1954). Geochronologists were aware that these ‘young’ 

ages were not rock crystallization ages but a measure of other processes such as diffusion and 

thermal resetting (Damon and Kulp, 1957; Hurley, 1954; Musset, 1960). It was not until after 

the late 1960s that the isotopic systems the geochronologists were having problems with 

started to be utilised to establish the thermal histories of rocks, in effect, the birth of 

thermochronometry (Clark and Jäger, 1969; Dodson, 1973; Purdy and Jäger, 1976; Wagner et 

al., 1977). 

All geochronometers track the passage of rocks through a particular isotherm (or range of 

isotherms), the temperature being dependent on the host mineral and the isotopic system. 

Above the closure temperature of the isotopic system, all the daughter elements produced by 

radioactive decay diffuse out of the mineral at a greater rate than they accumulate. Below the 

closure temperature of the isotopic system, the daughter elements are retained within the 

mineral (Dodson, 1973). In the case of fission track formation, above the closure temperature, 

track fading due to annealing occurs at a rate faster than the formation of new fission tracks but 

tracks are retained below the closure temperature. The isotopic ages produced by 

thermochronometers are therefore a function of the rocks thermal history. 

Thermochronometers have been used to constrain a range of geological processes such as slip 

rates of faults (Carter et al., 2006; Ehlers and Farley, 2003; Stockli et al., 2003; Tagami, 2005), 

topographic evolution (Braun, 2005; House et al., 2001), magmatic processes (Ehlers, 2005; 

Tagami and Shimada, 1996), sedimentation (Armstrong, 2005) and denudation (Kohn et al., 

2005; Spotila, 2005). In order to relate the thermal histories traced by thermochronometers to 

particular geological processes, there must be an understanding of the processes which allow 
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daughter elements to accumulate and the thermal structure of the lithosphere (Braun et al., 

2006). 

Individual thermochronometers are sensitive to different temperature ranges and a variety of 

thermochronometers have been developed (Figure 25). Low temperature thermochronometry 

(LTT) has the potential to constrain smaller magnitudes of denudation and near-surface 

processes than do other radioisotopic methods such as U-Pb and K-Ar. LTT is thus more suited 

to studies of passive margin evolution because the magnitude of cooling is generally small. 

The more effective techniques for passive margin studies are: zircon (U-Th)/He (Reiners, 

2005); apatite fission tracks (Brown et al., 2002b; Gallagher et al., 1994; Gunnell et al., 2003; 

Moore et al., 1986; Omar and Steckler, 1995); and apatite (U-Th)/He (Balestrieri et al., 2005; 

Persano et al., 2002; Persano et al., 2005). All these techniques provide chronometers of 

cooling that are less than 200 °C. 

 

Figure 25 Closure temperatures for thermochronometric systems  
40Ar/39Ar - Hornblende (Dahl, 1996; Harrison, 1981), Biotite (Grove and Harrison, 1996; Harrison 
et al., 1985), Muscovite (Hames and Bowring, 1994), K-Feldspar (Lovera et al., 1997) 
Fission track – Titanite a (Coyle and Wagner, 1998) b (Naeser and Faul, 1967; Watt and Durrani, 
1985), Zircon c (Tagami et al, 1998), Apatite (Ketcham et al., 1999; Laslett et al., 1987) 
(U-Th)/He – Titanite (Reiners and Farley, 1999), Zircon (Reiners et al., 2004), Apatite (Farley, 
2000). Closure temperatures are for a cooling rate of 1-100 °C/ma 
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The Western Indian margin is almost completely devoid of stratigraphic markers, making 

reconstructing its origin, evolutionary history and vertical movements challenging (see Chapter 

1). Western India does, however, show evidence of prolonged denudation since at least the 

emplacement of the Deccan Traps (Widdowson, 1997) and so low temperature 

thermochronometry has the potential to extract the denudational record. This chapter outlines 

the theory and application of three low temperature thermochronometers (apatite fission track, 

apatite (U-Th)/He and zircon (U-Th)/He) that have been used to constrain denudation for 

Western India. Chapters 4 and 5 outline the results and interpretations for two key field areas 

of the Western Indian margin: Goa and Karnataka, and Kerala (see Figure 4). 

3.2 Apatite fission track thermochronometry 

3.2.1 Introduction 

The development of fission track thermochronometry began in the early 1960s with much of 

the pioneering work undertaken by Fleischer, Price and Walker (summarised by Fleischer et al. 

(1975). Fission track thermochronometry (with apatite in particular) has advanced to become 

the most widely used technique for constraining low temperature thermal histories (see reviews 

by: Gallagher et al. (1998); Gleadow (2002); Hurford (1991); and Wagner and Van den Haute 

(1992)) 

Fission tracks form when heavy, radioactive nuclei decay and split, and the two positively 

charged fragments separate leaving a trail of damage within the crystal lattice of the host 

mineral. Although several radioactive isotopes undergo nuclear fission, 238U occurs in 

sufficient concentrations in natural material and decays rapidly enough to dominate the 

production of fission tracks in naturally occurring minerals (Price and Walker, 1963). Unlike 

other isotopic systems, nuclear fission is unique in that there is no accumulation of an isotopic 

daughter product, only the accumulation of crystal damage in the form of latent fission tracks. 

Latent fission tracks are typically 10 – 20 µm in length and 4 – 10 nm in width (Tagami and 

O'Sullivan, 2005) and must be chemically etched to make them visible under an optical 

microscope.  

The number of fission tracks preserved in a natural sample is dependent on the concentration 

of 238U and the temperature history of the mineral. With apatite, latent fission tracks are only 

stable at moderately low temperatures (less than 60 °C) and will anneal or shorten at a rate 

which is controlled by temperature, time and chemical composition of the host mineral 

(Fleischer et al., 1975). At temperatures greater than 110 °C fission tracks are thermally 

annealed as rapidly as they form and no fission tracks are preserved. At intermediate 
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temperatures between 110 °C and 60 °C fission tracks will only partially shorten or anneal. 

The annealing characteristics of fission tracks are a key property in their usefulness as a 

thermochronometer because different thermal histories produce distinctive ages and track 

length distributions. The temperature range over which fission tracks anneal over geological 

timescales has been termed the partial annealing zone (Gleadow and Fitzgerald, 1987; Laslett 

et al., 1987). 

Apatite fission track samples from Western India were prepared using standard heavy mineral 

separation procedures (see section A.1). Apatite crystals from the separates were mounted in 

epoxy resin on a glass side and prepared for analysis using the external detector method 

(Hurford and Green, 1982) (see section A.2). 

3.2.2 AFTT annealing kinetics 

Fission tracks in apatite only remain stable at less than ~110 °C over timescales of 106- 107 yrs 

(for typical Durnago apatite) and will shorten or anneal at a rate which is controlled by time, 

chemical composition (Barbarand et al., 2003a; Barbarand and Pagel, 2001; Carlson et al., 

1999; Crowley et al., 1991; Donelick, 1991; Gleadow and Duddy, 1981; Green et al., 1986; 

Green et al., 2005; Green et al., 1989; O'Sullivan and Parrish, 1995), track orientation 

(Donelick, 1991; Donelick et al., 1999; Green et al., 1986), alpha particle damage (Hendriks 

and Redfield, 2005) and possibly pressure (Kohn et al., 2003; Wendt et al., 2002, 2003); 

however, the primary control on fission track annealing is temperature (Fleischer et al., 1975) 

The annealing kinetics of fission tracks have been studied using laboratory induced tracks and 

extrapolating the result to natural tracks annealing on geological timescales (Carlson et al., 

1999; Crowley et al., 1991; Donelick et al., 1990; Green et al., 1986), and natural tracks with 

established cooling histories such as boreholes (Gleadow and Duddy, 1981; Naeser and 

Forbes, 1976). From these studies it is now possible to, at least empirically, relate the 

formation and subsequent annealing of fission tracks to temperature. 

It has been intimated that fission track annealing kinetics may be partly controlled by 

temperature and stress (Wendt et al., 2002, 2003). Experiments conducted on spontaneous 

tracks over laboratory temperature and time scales suggest that fission track annealing rates are 

reduced with increasing pressure. However, the experimental design and implementation has 

been severely criticised (Donelick et al., 2003; Kohn et al., 2003). Radiation damage from 

spontaneous α-particle decay is another possible mechanism effecting annealing kinetics, and it 

has been suggested that α-particle decay enhances apatite defect recovery (Hendriks and 

Redfield, 2005). AFTT ages that are ‘too young’ (relative to apatite (U-Th)/He ages), and the 

apparent negative correlation between the concentration of 238U with the age of AFTT samples 
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from Fennoscandia have been used as evidence to support radiation enhanced annealing 

(Hendriks and Redfield, 2005; Lorencak, 2003; Murrel, 2003). However, radiation enhanced 

annealing does not seem to be a significant processes for anomalously young AFTT ages from 

other stable cratonic environments (e.g. Canadian, Australian or Brazilian Shields) (Kohn et 

al., 2006). Enhanced helium retention resulting in anomalously old apatite (U-Th)/He ages 

(rather than anomalously young AFTT ages) has also been proposed as an alternative 

mechanism (Green et al., 2006; Green and Duddy, 2006; Shuster et al., 2006). 

Chemical composition influences the rate at which fission tracks anneal, and it has been 

demonstrated that fluorine-rich apatites tend to be less resistant to annealing than chlorine-rich 

apatites (Carlson et al., 1999; Green et al., 1986; Green et al., 1989). It is becoming 

increasingly common to measure either Cl wt % or Cl apfu to account for kinetic variability 

within an apatite population and incorporate the kinetic information into the modelling of data. 

However, the rate at which fission tracks anneal is controlled by a complex range of chemical 

substitution (Mn, Sr, Fe, OH and REE), not just Cl and F (Barbarand et al., 2003a; Barbarand 

and Pagel, 2001; Carlson et al., 1999). Different chemical substitutions will result in apatite 

structural variability and consequently will alter apatite solubility (Barbarand et al., 2003a) 

therefore, an alternative approach that accounts for kinetic variability is to measure etch pit 

width (Dpar) (Donelick, 1993; Ketcham et al., 1999). Figure 26 summarises the effect of 

kinetic variability within apatites held at different temperatures (110 °C – 70 °C) for different 

times (10 Ma – 100 Ma). Kinetic variability is represented by different values of Dpar which 

can be correlated with Cl wt % (Carlson et al., 1999; Donelick et al., 2005) but is also 

influenced by other apatite crystallographic properties (Donelick et al., 2005). To account for 

different annealing rates (and hence different ages) as a direct result of kinetic variability 

within a single apatite population, this project incorporates Dpar values into the modelling of 

data (see section 3.2.5.2). Samples containing apatite grains that are less resistant to annealing 

(small Dpar values) experience total annealing at lower temperatures, whereas samples 

containing apatites that are more resistant to annealing (large Dpar values) experience total 

annealing at higher temperatures (Ketcham, 2005). Apatite grains with a Dpar value of 1.50 µm 

will completely annealing at 100 °C, apatite grains with a Dpar value of 3 µm will completely 

anneal at 160 °C (Ketcham, 2005).  
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Figure 26 Synthetic AFTT ages for apatites with different chemical compositions 
AFTT ages modelled using HeAFTy (Ketcham, 2005). The spread in AFTT ages is greatest for 
longer holding times and deeper levels within the AFTT PAZ.  
 

Fission tracks also anneal at a rate which is partly controlled by crystal structure; fission tracks 

formed at high angles to the c-axis anneal faster than fission tracks formed at low angles to the 

c-axis (Donelick, 1991; Donelick et al., 1999; Green et al., 1986). The variation in annealing as 

a consequence of their angle to the c-axis can be corrected for using the c-axis projection 

method described by Ketcham (2005). 

Latent fission tracks are chemically etched to make them visible under an optical microscope; 

however, the degree of track revelation is dependant on: the strength of the etchant, the 

temperature during etching, etch time, apatite chemistry and apatite crystal structure. Ideal etch 

times for track revelation have been determined from step etch experiments (Barbarand et al., 

2003b; Crowley et al., 1991; Laslett et al., 1984; Watt and Durrani, 1985) and two well 

established protocols are now in general use, a ‘strong etch’ (5 M HNO3, 20s at 20°C ±1 °C) 

and a ‘weak etch’ (0.8 M HNO3, 45s at 21°C). (Barbarand et al., 2003b) found that the weak 

etch results in more isotropic revelation of tracks (i.e. with respect to angle to the 

crystallographic c-axis) but tracks are more challenging to define and c-axis parallel sections of 

crystals are more difficult to locate, the authors therefore advocate the use of the strong etch. 

Ravenhurst et al. (2003) found that although etch pit morphology is affected by the type of 

chemical etch, track anisotropy appears to be unaffected. Specific etching protocols have been 

used to develop the different annealing algorithms used to model AFTT data; therefore, to 

justify the use of a particular annealing model, identical etching protocol should be adhered to. 

AFTT data from Western India was modelled using HeFTy (Ketcham, 2005), software 
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developed for multi-kinetic modelling of low temperature thermochronological systems. AFTT 

samples from Western India were etched using 5 M HNO3 for 20s at 21°C, identical to the 

etching protocol used to calibrate HeFTy.  

3.2.3 Calculating AFTT ages 

Full details on the derivation of the fission track age equation can be found in Section B.1, the 

standard age equation is: 
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where ζ  is the empirically obtained zeta-calibration (see Section B.2) and Dρ  is the induced 

fission track density of a U-doped standard glass irradiated with the sample. Spontaneous 

fission tracks are sourced from both above (now polished away) and below the polished 

surface whereas induced tracks are only sourced from below the polished surface; therefore, a 

geometry factor of 0.5 is required (G ). The spontaneous and induced track densities are 

sρ and Iρ  respectively. 

In order to calculate a fission track age, sρ , Iρ  and Dρ  must be determined. The density of 

spontaneous tracks is normally calculated by counting the number of tracks that intersect the 

polished etched surfaces of twenty or more grains selected at random using an optical 

microscope (~1250 x magnification). Suitable grains must have well-polished surfaces with 

few crystal defects and well-revealed fission tracks with etch pits aligned parallel to the 

crystallographic c-axis (i.e. prismatic sections). The density of induced tracks is calculated by 

counting the number of tracks that intersect the etched surface of the detector using the prints 

of the same grains and equivalent area. The density of the standard U-doped glass used to 

determine the neutron flux for a particular irradiation is calculated by counting the number of 

tracks over a fixed area (~ 300,000 µm2) for glasses at the top and base of the stack of samples 

(each with its own external detector). The densities are then linearly interpolated for the 

position of the sample within the stack to account for any gradient in the neutron flux density 

created between the top and base of the stack during irradiation. 
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3.2.4 Fission track confined track length distributions (TLD’s) 

The etching process used to expose fission tracks for age measurements also reveals tracks that 

are entirely confined within the host crystal. The etchant reaches these tracks either via an 

existing etched fission track (TINTs – Track IN Track) or via cracks and cleavages (TINCLEs 

– Track IN CLEavage). Fission tracks form at a continuous and predictable rate determined by 

the fission of 238U therefore each fission track forms at a different time and is exposed to a 

different segment of the host crystals complete thermal history. Younger tracks will always be 

longer because they have experienced less annealed compared to older tracks tend to be 

shorter. The confined track length distribution (TLD) consequently provides valuable 

information on the thermal history the host crystal has experienced (Gleadow et al., 1986; 

Green et al., 1989). 

The initial length of a fission track that has not undergone any partial annealing has been 

determined from the length of induced tracks and is approximately 16.3 µm for Durango 

apatite (Laslett et al., 1987). However, the initial length of spontaneous tracks tends to be ~ 10 

% shorter and it has been demonstrated that a degree of partial annealing occurs at ambient 

temperatures ~ 20 °C (Corrigan, 1993; Donelick et al., 1990; Ketcham et al., 1999). Defining 

the initial track length is important because it is a key parameter required for inversely 

modelling of AFTT data (see section 3.2.5.2).  

Typically, the lengths of 100 confined tracks are measured to obtain track length distributions, 

with the mean, standard deviation and a histogram of track lengths being reported. Confined 

tracks are measured on grain sections oriented parallel to the crystallographic c-axis. It has 

been demonstrated that the annealing rate of fission tracks is anisotropic, with tracks 

perpendicular to the c-axis annealing more rapidly than tracks parallel to the c-axis particularly 

when there has been a large degree of annealing (Donelick, 1991; Donelick et al., 1999; 

Ketcham et al., 2003). To reduce the effect of this anisotropy, the angle to the c-axis for each 

confined track is also measured and a projection factor is applied (Ketcham et al., 2003). 

3.2.5 Interpreting AFTT data  

The apatite fission track system is sensitive to temperatures occurring in the upper few 

kilometres of the lithosphere, making it a useful technique for absolute dating of volcanic 

igneous rocks, sedimentary basin evolution, provenance studies, and long term landscape 

evolution in both active and passive tectonic settings (Brown et al., 1994; Gallagher et al., 

1998; Gleadow, 1990; Gleadow et al., 2002). Although the apatite fission track system can be 

applied as an absolute dating tool, the power of the technique comes from the annealing 
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properties of fission tracks and the fact that annealing occurs over a large temperature range 

(60 – 110 °C). Commonly the AFTT age and TLD are the product of a particular thermal 

history and not a measure of an absolute geological event. 

3.2.5.1 AFTT age profiles and TLDs 

An apparent fission track age (as opposed to an absolute age) is best illustrated through the 

concept of a fission track ‘stratigraphy’ (Brown, 1991; Gleadow, 1990) or fission track age 

profile developed within a borehole in a tectonically stable region (Brown et al., 1994). 

Temperature increases with depth within the lithosphere and consequently the fission track age 

will decrease, and the TLD will become progressively shorter, with depth. Above a critical 

temperature (~ 120 °C for apatite) complete fission track annealing occurs, the system is reset 

and the apparent age is zero. Between 110 °C and 60 °C partial shortening of fission tracks 

occurs at a rate controlled by temperature, this temperature range being termed the partial 

annealing zone or PAZ (Gleadow and Fitzgerald, 1987). At shallower depths, less than 60 °C, 

little annealing occurs and the apparent age will be the oldest (Figure 27). 

For a given section of crust, the shape of a fission track age profile depends on both the period 

of time the region has been stable and the denudation rate (Brown et al., 1994). If the 

denudation rate is negligible, and prior to the establishment of the age profile all ages were 

zero, then the age of the shallowest sample reflects the time the region has been stable for and 

ages become younger with depth. If the period of landscape stability is increased then the age 

of the shallowest sample will be greater and the entire age profile will be broadened (Figure 

28a). If the denudation rate is increased then the fission track age profile becomes 

progressively smoother and changes from a concave up profile to a linear profile. The gradient 

of the linear profile approximates the denudation rate and the age of each sample roughly 

corresponds to the time of passage through the 110 °C isotherm (Figure 28b). 
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Figure 27 AFTT ages and TLD’s within a hypothetical borehole 
Variation in fission track age (solid line) and, track length distribution TLD: (dashed line) with 
temperature for a hypothetical borehole. Fission track age  decreases with increasing temperature 
forming the partial annealing zone. TLD becomes progressively shorter and broader with 
increasing temperature. 
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Figure 28 The apatite fission track age profile 
a)Evolution of the apatite fission track partial annealing zone with time (adapted from (Brown et 
al., 1994)). 
b)Relationship between fission track age, temperature and denudation rate (adapted from (Brown et 
al., 1994)). 
 

If, after the development of a fission track age profile, there is a period of increased denudation 

then it possible for the PAZ to be exhumed and exposed. This fossil PAZ may be preserved 

and a new PAZ will develop beneath it. The break in slope separating the fossil PAZ from the 
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newly developed PAZ corresponds to the timing of the exhumation of the fossil PAZ. Prior to 

exhumation, all the samples below the fossil PAZ were at >110  C and completely reset, and 

only accumulate fission tracks after exhumation. Samples within the fossil PAZ accumulate 

and retain fission tracks but each track will be annealed by different amounts depending on its 

temperature and duration within the PAZ, and therefore display older ‘mixed’ ages (Figure 

29). 

 
Figure 29 The PAZ and the fossil PAZ 
Exhumed fission track partial annealing zone and existing partial annealing zone. The break in 
slope marks the time of exhumation. The solid line illustrates the decrease in age with depth, the 
dashed line illustrates the change in mean track length with depth (see text for explanation). 
 

The relationship between fission track age and track length distribution is illustrated in Figure 

30, which displays three hypothetical thermal histories with their corresponding AFTT ages 

and TLDs. Thermal history (a) undergoes rapid cooling through the PAZ at ~100 Ma and 

remains cool until time zero. Few tracks accumulate within the PAZ, the age approximates the 

cooling event and none of the tracks thermally anneal so the TLD is narrow and dominated by 

long tracks. Thermal histories (b) and (c) spend increased amounts of time within the PAZ so a 

proportion of their tracks are annealed resulting in a younger apparent fission track age. 
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Although thermal histories (a) and (b) cannot be differentiated on the basis of age alone, the 

annealing has produced different track length distributions. Simple thermal histories display 

simple TLDs, more complex thermal histories produce more intricate TLDs. 

 
Figure 30 Relationship between AFTT age and TLD for evolving thermal histories 
Three different fission track ages and track length distributions (bottom) produced from three 
hypothetical thermal histories (top) (adapted from (Gleadow and Brown, 2000)). Thermal history 
(a) rapid cooling at ~ 100 Ma produces an AFTT age of 100 Ma and a narrow, unimodal, long 
TLD. Thermal history (b) produces an AFTT which is a combination of rapid cooling at ~ 45 Ma 
and a prior history in the PAZ. The TLD is broad and bimodal, composed of long tracks produced 
during the 45 Ma cooling and short tracks produced and partially annealed as a consequence of 
residence time in the PAZ. Thermal history (c) monotonic cooling through the PAZ produces a 
similar age to thermal history (b) but a different TLD. All ages and track length distributions 
modelled using HeFTy (Ketcham, 2005). 
 

3.2.5.2 Forward and inverse-modelling of AFTT data 

AFTT thermochronometry is particularly effective for constraining the thermal histories of the 

upper few kilometres of the lithosphere because of the information provided by the 

combination of AFTT age and TLD data. However, to make the link between a specific 

thermal history and AFTT data, there must be an understanding of the kinetics of AFTT 

annealing. The kinetics of apatite fission track annealing have been studied extensively and a 

number of models have been developed (Carlson, 1990; Crowley et al., 1991; Donelick et al., 
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2000; Green et al., 1989; Ketcham et al., 1999; Laslett et al., 1987). Such annealing algorithms 

have been used to provide forward models that predict the AFTT age and TLD for a particular 

thermal history. The modelled data can then be compared with data to test hypotheses.  

Forward modelling is particularly useful for confirming how effective the various annealing 

algorithms are: However, as a predictive tool for extracting thermal history data, it can be time 

consuming. Consequently, numerical models have also been developed which inversely model 

fission track data to produce a the range of thermal histories that statistically fit the data 

(Gallagher, 1995; Ketcham et al., 2003). Due to an incomplete understanding of annealing 

kinetics, analytical uncertainty and the inherent non-uniqueness of a particular data set, 

inverse-modelling usually results in an envelope of thermal histories which must then be 

interpreted in a geological context. There are two main software packages available for 

inversely modelling AFTT data: MonteTrax (Gallagher, 1995) and HeFTy (Ketcham et al., 

2003). MonteTrax uses a genetic algorithm which is a particularly efficient search procedure 

for extracting thermal histories, whereas HeFTy uses a Monte Carlo simulation to search for 

suitable thermal histories. HeFTy is used throughout this project for modelling AFTT data 

because the software is capable of incorporating a kinetic parameter (Dpar) and a correction 

for track lengths that are not parallel to (but still in the plane of) the c-axis (see section 3.2.2).  

Not all data are suitable for inverse-modelling, particularly if the spread in ages on individual 

grains from the same samples does not adhere to a Poission distribution. Variations in chemical 

composition (between grains) and different provenance sources can result in non-Poissionian 

distributions, but whatever the reason, such samples should be identified and rejected for 

inverse–modelling. The chi-square test is routinely applied in fission track studies to determine 

the homogeniety of a particular sample and is then assessed by calculating a corresponding p-

value. In general p-values less than 0.05 are taken as evidence that a sample is not normally 

distributed and should not be inversely modelled. Chi-squared values and p-values are quoted 

for this project and only samples where the p-value exceeds 0.05 are considered for inverse-

modelling. 

3.3 (U-Th)/He thermochronometry 

3.3.1 Introduction 

The discovery that isotopes of uranium and thorium are radioactive and decay and produce 

helium initiated the start of geochronological dating (Rutherford, 1904; Strutt, 1908). 

However, the poor retention of He within many minerals meant that the system was of little 

use to geochronolgists who were seeking absolute ages for the formation of rocks, and 
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development of the technique ceased (Hurley, 1954). Renewed interest in the (U-Th)/He 

system commenced three decades later when it was recognised that the loss of helium from 

apatite at temperatures below that of mineral crystallization could be used advantageously to 

constrain low temperature cooling (Zeitler et al., 1987). Quantification of the diffusion rate of 

helium from apatite has resulted in the establishment of the apatite (U-Th)/He system as an 

important low temperature thermochronometer (Farley, 2000; Farley and Stockli, 2002; Wolf 

et al., 1996). 

A number of minerals contain suitable concentrations of uranium and thorium to produce 

measurable amounts of helium and thus have the potential to be utilised for (U-Th)/He dating. 

The accessory minerals apatite, and to a lesser extent zircon, are common in many lithologies, 

and have proved to be of great value for low temperature thermochronometry (Farley, 2002). 

The closure temperature of apatite is ~ 70 °C (Farley, 2000; Wolf et al., 1996), making it the 

lowest temperature thermochronometer in use. Zircon retains helium at higher temperatures, ~ 

180 °C (Reiners et al., 2002). The following sections focus on the mechanism for the 

accumulation and loss of helium, obtaining (U-Th)/He ages and interpreting these ages for 

apatite and zircon. 

3.3.2 (U-Th)/He ages 

The (U-Th)/He age is controlled by the balance between the accumulation of radiogenic 4He 

and the loss of 4He. The accumulation of helium depends on the rate of production of helium 

and the concentration of U and Th within the host mineral. The loss of 4He occurs via two 

mechanisms: 1) diffusion, which is controlled by temperature, time and the retentive properties 

of the host mineral; and 2) alpha ejection (section 3.3.2.3), which is controlled by the geometry 

of the host mineral, distribution of the parent elements and the stopping distance of He. The 

accumulation of He and loss of He are the focus of this section. 

3.3.2.1 The accumulation of helium 

4He is produced via a chain of reactions when 238U, 235U, 232Th and 147Sm decay to 208Pb, 207Pb 

and 206Pb. Except in rare circumstances, the abundance of 147Sm is too low to produce a 

significant contribution to the total 4He content. Helium production within a mineral can be 

defined by the following equation: 

( )( ) ( )( ) ( )( )161
88.137

718 232232235
238

2382384 −×+−×+−×= ttt eTheUeUHe λλλ   

Equation 3 
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where He4 , U238 and Th232  are the measured concentrations, λ s are the decay constants for 

the different isotopes and t  is the time (years). It is not necessary to measure the concentration 

of 235U because the 238U/235U ratio is constant (1/137.88). The decay constants of 238U, 235U and 
232Th are 1.55 x10-10 yr-1, 9.85 x10-10 yr-1 and 4.95 x10-11 yr-1 respectively. The following 

assumptions must be made when calculating the amount of 4He. The parent isotope decay 

chains are in secular equilibrium. There is no initial 4He in the crystal and the only source of 
4He is from the decay of U and Th (Sm contribution is insignificant). All 4He is retained within 

the crystal lattice below the closure temperature. 

3.3.2.2 The diffusive loss of helium 

Diffusion is the net transport of material across a concentration gradient and is controlled by 

the atomic structure within which the material is being transported, the dimensions of the 

diffusive domain and the activation energy required to transport the material. The rate of 

diffusion is thermally-controlled (Walker, 2002), exponentially dependent on temperature and 

follows an Arrhenius relationship where: 

( ) ( )RTEo ae
a
D

a
TD /_

22 =   

Equation 4 

 

where ( )TD  is the diffusivity at temperature T  (K) and a  is the diffusion domain. The 

constants oD , aE  and R  are the diffusivity at infinite temperature, the activation energy and 

the gas constant. Each isotopic system and mineral will have specific values for oD , aE  and a  

which define the diffusivity at a particular temperature. The higher the temperature, the higher 

the probability that a daughter atom will have enough energy to escape the mineral lattice and 

diffuse such that at high temperatures the system is effectively open and no daughter product 

will be retained. At low temperatures, diffusivity is so slow that any daughter product 

effectively remains within the host mineral. The temperature at which the transition from 

diffusive loss to accumulation occurs is defined as the blocking temperature (Dodson, 1973). 

However, parent-daughter isotope systems do not instantly switch from being open to closed 

but have a range of temperatures over which there is partial retention of the daughter product. 

At high temperatures diffusion exceeds accumulation, at moderate temperatures they become 

balanced, and at low temperatures diffusion exceeds accumulation. The isotopic age is 
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therefore a combination of daughter product accumulation when the system was fully closed 

combined with daughter product accumulation when the system was partially open. For 

constant monotonic cooling the isotopic age can be related to the closure temperature (Dodson, 

1973) (see Figure 31) 

 

Figure 31 The concept of closure temperature 
Adapted from (Harrison and Zeitler, 2005). 
 

Incremental release of He from crystals by heating can be used to calculate the parameters for 

the Arrhenius relationship which can then be extrapolated to geological timescales provided 

the relationship holds over a range of temporal scales. If thermally-activated, volume-

controlled diffusion is the dominant process, then data will form a straight line on an Arrhenius 

plot (Figure 32), where the y intercept is the log of the diffusion coefficient (D0) and the 

gradient is related to the activation energy (Ea). From these parameters it is possible to 

calculate the closure temperature: 
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where A is a geometric constant for the shape of the diffusion domain and Tc is the closure 

temperature which can be solved iteratively. For a given mineral chronometer, the closure 

temperature is dependent on the geometry and size of the diffusion domain, and the rate of 

cooling. 

 

Figure 32 The Arrhenius relationship 
Using the Arrhenius relationship to extract the diffusion coefficient and the activation energy 
(Harrison and Zeitler, 2005). 
 

Incremental heating extraction of He from Durango apatite shows that thermally-activated 

diffusion is the dominant process (Farley, 2000). Arrhenius plots also indicate that diffusion 

varies with crystal volume (larger crystals are more retentive) implying that the diffusion 

domain is the whole crystal (Figure 33). The closure temperature also increases with 

increasing cooling rate (Figure 34) (Reiners and Farley, 2001). The closure temperature for 

apatite is ~70 °C for a 100 µm diameter grain (although Tc varies slightly with grain size) and 

the partial retention zone (PRZ) ranges from 70 °C to 40 °C in Durango apatite (Farley, 2000). 

The closure temperature concept, although useful, is only applicable when a sample has cooled 
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rapidly and monotonically. For more complex thermal histories, it is necessary to forward-

model the data (see section 3.3.4.2). 

 

 

Figure 33 Linear Arrhenius plots 
Linear Arrhenius plots for Durango apatite indicating that the diffusion domain is the grain size. 
Different lines are different grain sizes (adapted from (Farley, 2000). 
 

 

Figure 34 The relationship between grain size, cooling rate and closure temperature 
The number marking the liens are closure temperatures for Durango apatite (adapted from (Farley, 
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2000). 
 

Helium diffusion in zircon tends to be more complex than in apatite. Diffusion experiments 

show that zircon does not display a simple Arrhenius relationship, possibly as a result of α-

damage or because there may be multiple diffusion domains of differing size within crystals 

(Reiners, 2005; Reiners et al., 2002; Reiners et al., 2004). Although diffusive behaviour in 

zircon is more challenging to understand, the closure temperature is estimated to be 

approximately 180 °C (Reiners et al., 2002; Reiners et al., 2004). 

3.3.2.3 Alpha ejection 

As well as diffusion, helium can also be lost from the host crystals via alpha ejection during 

radioactive decay. Helium atoms are ejected a distance that depends on both the crystal 

structure (primarily density) and the energy provided by the decaying parent isotope. The 

stopping distance from the decay of uranium and thorium for helium in apatite and zircon  are 

summarised in Table 3. These stopping distances cause depletion in the concentration of 

helium at crystal boundaries (within one stopping distance) because a proportion of helium is 

ejected out of the crystal (Figure 35). Farley et al. (1996) describe a numerical solution that 

accounts for the ejection of helium and ‘corrects’ the (U-Th)/He age. The method requires 

knowledge of the α-stopping distance and the surface-to-volume ratio of the crystal. The α-

ejection correction factor Ft is: 

2
211 ββ aaFt ++=  

Equation 6 

 

Where a1 and a2 are numerical parameters for the parent elements and β is a geometry factor 

controlled by the crystal shape and surface/volume ratio. The Ft correction is calculated for 

each crystal analysed in an aliquot and the mean (weighted against the crystal size) is applied 

to the age. When applying the alpha recoil correction, several assumptions must be made, 

namely, that implantation of 4He is insignificant and need not be accounted for, U and Th are 

homogeneous in the crystal, and alpha recoil is unrelated to diffusion (but the correction is 

only strictly applicable for rapidly cooled samples, see section 3.3.4.2). 



Chapter 3  Low temperature thermochronometry 

Daniel Campanile                                                                          75 

 Apatite Zircon 
238U averaged (µm) 19.68 16.95 
235U averaged (µm) 22.83 19.64 
232Th averaged (µm) 22.46 19.32  

Table 3 Averaged α-stopping distances for apatite and zircon 
Data from Farley (2002) 

 

 

Figure 35 Alpha particle ejection 
a. Three possibilities for a He atom produced via decay of U or Th: Retention, ejection or 
implantation. B. Relationship between the % of alpha particle retention and position within the 
apatite crystal. The % retention is a minimum at the crystal boundaries (50 %) increasing to a 
maximum (100 %) within one stopping distance at ~20 µm (adapted from (Farley, 2002)) 
 

3.3.3 Analytical procedure 

Standard rock crushing and heavy liquid techniques are employed to produce a concentrated 

mineral separate. Grains are then individually hand selected to insure that they are free from 

inclusions and crystal defects to preclude the chance of measuring parentless helium. Helium 

extraction was undertaken initially using an ultra-high vaccum furnace and in later studies a 

diode laser. Following extraction of He, the samples are recovered for U and Th analysis using 

isotopic dilution (see section A.3). 

3.3.4 Interpreting (U-Th)/He ages 

3.3.4.1 (U-Th)/He age profiles 

Apatite (U-Th)/He (AHe) records information on cooling through 40 - 85 °C which depending 

on the palaeogeothermal gradient, is equivalent to removal of the upper 2-3 km of the upper 
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crust. Helium ages reflect the accumulation of helium since complete retention (i.e. less than 

40 °C) but also the period when He is partially retained (i.e. 40 – 85 °C). As for AFTT, the 

effect of partial retention can be observed in vertical profiles or boreholes within a stable 

region that has not undergone significant denudation. AHe ages will be the oldest near the 

surface decreasing with depth until the age is zero at depths where the temperature is high 

enough for complete helium loss from crystals. The pattern of this age decrease is sigmoidal 

and the zone of partial accumulation is known as the partial retention zone (PRZ), analogous to 

the AFTT partial annealing zone (Figure 36). The PRZ occurs at temperatures between ~ 85 

°C and 40 °C (Farley, 2000; Wolf et al., 1998). As with the AFTT partial annealing zone, the 

AHe partial retention zone can be exhumed and its base will be marked by an inflection with 

an age corresponding to the time of exhumation. 

When dealing with AHe ages from surface samples, the concept of a PRZ is useful for 

interpretation. Provided it can be demonstrated that the lithosphere throughout the region has a 

similar thermal structure then the youngest AHe ages correspond to areas of greater 

denudation. In effect the different ages represent different exhumed sections of the PRZ. The 

prevailing conceptual models proposed for elevated passive margin evolution predict different 

magnitudes and spatial variations in denudation. It has been demonstrated that the pattern of 

AHe ages is a key discriminator between the conceptual models, particularly when the amount 

of denudation is low (Balestrieri et al., 2005; Persano et al., 2002; Persano et al., 2005). 

 

Figure 36 Apatite (U-Th)/He PRZ 
Schematic illustration of the apatite helium partial retention zone (dashed line) and the apatite 
fission track partial annealing zone (solid line) for an isothermal holding time of 100 Ma. Thermal 
histories prior to 100 Ma have been reset. 
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3.3.4.2 Forward modelling of (U-Th)/He ages 

When samples have cooled slowly through the He PRZ, it is more appropriate to forward 

model the AHe ages of samples in order to extract potential thermal histories to make 

meaningful geological interpretation. Forward modelling requires solving numerical solutions 

to both the radioactive decay responsible for the generation of helium and the mechanisms 

responsible for the loss of helium (i.e. diffusion and α-ejection) to produce a model age which 

can be compared to the measured age. To forward-model AHe ages it has been demonstrated 

that spheres of identical surface-to-volume ratio to the measured crystals not only provide 

rapid numerical solutions, but also produce accurate model ages (Dunai, 2005; Meesters and 

Dunai, 2002b). It has also been illustrated, particularly with samples that have resided within 

the PRZ for significant amounts of time, that the processes of diffusion and α-ejection must be 

treated simultaneously when forward modelling AHe data (Dunai, 2005; Meesters and Dunai, 

2002a). With these points in mind, AHe data reported from this project have been forward 

modelled using DECOMP (Bikkar et al., 2002), a program that simultaneously solves the 

production-diffusion equation for the algorithms of (Meesters and Dunai, 2002a, 2002b). 

Forward modelling can reduce the number of potential thermal histories a particular AHe age 

will produce; however, because AHe ages are always bulk ages, there are always multiple 

thermal histories that explain the data, i.e. model ages are not unique to a particular thermal 

history. Unlike AFTT data, conventional AHe data provide no information equivalent to track 

length distributions. One solution to this problem is to model AHe data with AFT 

thermochronometers to limit the range of possible thermal histories capable of reproducing the 

measured data (e.g. Persano et al. (2005)). Section 3.4 outlines the procedure of combined 

modelling of thermochronometers. 

3.4 Combining thermochronometers 

A large amount of information can be extracted from a single thermochronometer particularly 

if there are multiple samples from vertical profiles or multiple samples distributed across a 

region (Kohn et al., 2005). However, each thermochronometer has a unique temperature range 

in which the system is most sensitive and can only provide information on specific segments of 

a thermal history. Moreover, due to an incomplete understanding of the processes that control 

these isotopic systems and the errors associated with sample measurements, there is inherent 

non-uniqueness. A particular thermochronometric age can therefore be produced by a variety 

of different thermal histories. Although well planned sampling strategies (Braun and van der 

Beek, 2004) and appropriate treatment of modelling (Dunai, 2005; Ketcham, 2005) can be 
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effective, a complementary approach is to obtain multiple ages for different 

thermochronometers on the same sample. 

The advantages of combining thermochronometers are schematically illustrated in Figure 37. 

It is now commonplace to inversely model AFTT data to extract thermal histories that are 

statistically acceptable as well as geologically reasonable. The AFTT system is sensitive to 

temperatures between 110 °C and 60 °C and will provide constraints on the time rock passes 

through these temperatures. AHe is sensitive to temperatures between 85 °C and 40 °C and 

therefore has the potential to constrain the cooler segment of the thermal history (Figure 37). 

ZrHe with its higher closure temperature of 180 °C, can provide even better control on higher 

temperatures. 

 

Figure 37 Multiple thermochronometers 
Illustration of the advantages to applying multiple thermochronometers. Time temperature history 
(b) (same as fig. 3.5) with three late stage cooling pathways at ~40 Ma. The AFTT system is 
insensitive to these cooling pathways, and the modelled age and TLD remains the same for all three 
thermal histories. The AHe system is sensitive to temperatures less than 60 °C and modelled 
thermal histories predict different AHe ages. All ages modelled using HeFTy (Ketcham, 2005). 
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One of the aims of a thermochronology study is to use data from a sample to obtain a range of 

thermal histories that can be interpreted in a geological context by modelling the data. There 

are two potential approaches for modelling more than one thermochronometer on the same 

sample. The first method involves extracting statistically acceptable individual thermal 

histories that have been inversely modelled for AFTT and importing them into a forward 

model such as DECOMP (Bikkar et al., 2002) to test which thermal histories predict the AHe 

or ZrHe data (Persano et al., 2005). Although this method reduces the number of potential 

thermal histories predicted from AFTT alone, it has several disadvantages. It is time 

consuming, it can only be applied to two thermochronometers and it does not model each 

thermochronometer simultaneously. The availability of user-friendly and increasingly more 

sophisticated modelling software allows the simultaneous inversely modelling of two or more 

thermochronometers and provides the second method for combined modelling. Two computer 

programmes have been developed for simultaneous modelling, ContourTrax (Gallagher, 1995) 

and HeFTy (Ketcham, 2005; Ketcham et al., 2003). Although both programmes have their 

advantages, this project prefers the use of HeFTy because the software can incorporate a 

kinetic parameter into AFTT data (see section 3.2.2). 

3.5 Applying low temperature thermochronometry to 
long-term landscape development 

Low temperature thermochronometric data relate the thermal structure of the upper crust 

by directly relating temperature to depth, and as such, the cooling history provided from 

low temperature thermochronometry approximates movement of rocks to the surface or 

denudation. Both apatite fission track and (U-Th)/He analysis are particularly effective at 

constraining near surface processes and shallow level tectonism because both techniques 

are sensitive to temperatures and magnitude of denudation appropriate to long-term 

landscape development (Braun, 2003, 2005; Braun et al., 2006; Ehlers and Farley, 2003; 

House et al., 1998, 2001; Persano et al., 2002). Further more, the ages provided by low 

temperature thermochronometry are often the result of more complex cooling (e.g. 

apparent or ‘mixed’ ages) produced over longer periods of time and therefore have the 

ability to resolve more complex cooling (and denudational) histories. 

At passive margins, denudation is the dominant process controlling cooling and the 

advection of rocks towards the earth surface (Gallagher and Brown, 1999; Gallagher et al., 

1998). Denudationally driven cooling, couple with the timescales over which passive 

margins develop make low temperature thermochronometry ideally suited to improving 

our understanding of long-term landscape development within these tectonic settings. The 
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following two chapters outline the results of AFTT and (U-Th)/He data for two segments 

of the Western Indian elevated passive margin, outlining the effective use of low 

temperature thermochormetry for constraining denudation and long-term landscape 

development. 
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4 Low temperature thermochronometry 
data for Goa and Karnataka 

4.1 Introduction 

The northern field area is in Goa and Karanataka located between 16 °N and 14 °N. The 

exposed rocks are largely comprised of metasedimentary and metavolcanic rocks belonging to 

the Dhrawar Supergroup overlying Dharwar cratonic basement gneisses and granites (see 

section 1.3.1). Within the field area, the Western Ghats range in height from 0.5 km to 1.5 km 

and the width of the coastal plain varies between 0 km and 50 km. North of the field area 

(within the Deccan Traps) the Ghats escarpment forms a steep barrier of high relief but to the 

south, it is more subdued and, in places, is replaced by a transition zone of smaller ‘foothills’ 

increasing in height towards the interior plateau. Here many truncated interfluves project 

seaward from the escarpment onto the coastal plain. Elevations on the coastal plain range from 

sea level to a maximum of 0.35 km, where granite domes and smaller outliers of the main 

escarpment are present. To the east (inland) of the escarpment lip, the low relief Maharashtra 

and Mysore plateaux are elevated at 0.4 – 0.6 km. 

Goa and Karnataka were selected for study for several reasons. The Deccan Traps are a useful 

Phanerozoic stratigraphic marker along the Western Indian passive margin but only extend as 

far south as 16 °N (Figure 3). North of 16 °N, the escarpment is formed within the lavas, 

implying that escarpment development must have commenced following emplacement of the 

Deccan Traps at ca. 65 Ma in response to rifting between India and The Seychelles 

microcontinent (Widdowson, 1997)(see section 1.3.3). South of the lavas, the Dharwar 

basement lithologies are the first rocks to contain sufficient apatite and zircon for low 

temperature thermochronometery and they are therefore suitable for ascertaining the southerly 

influence of The Seychelles rifting event and the impact (if any) of the Reunion plume (see 

section 1.3.3). If The Seychelles rifted south of the Deccan lavas, the timing and magnitude of 

the denudational response should be detected in the thermal histories of the Dharwar rocks. 

Apatite fission track thermochronometery (AFTT) has been previously undertaken in Goa and 

Karnataka  to elucidate the denudational history of this segment of the Western Indian margin 
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(Gunnell et al., 2003; Kalaswad et al., 1993). Interpreting AFTT data and extracting thermal 

histories requires inversely modelling, which is influenced by input parameters (see section 

3.2.5.2). Gunnell et al. (2003) found that the timing of rapid cooling associated with an 

increase in denudation is governed by the initial track length adopted (14.5 µm or 16 µm ) for 

inverse-modelling and could not distinguish between an increase in denudation associated with 

The Seychelles or Madagascar rifting events. The timing of the development of the escarpment 

remains unresolved using AFTT. Gunnell et al. (2003) reported 92 AFTT results and, with the 

exception of five samples, all have ages between 100 and 400 Ma with mean track lengths 

shorter than 13.5 µm. If The Seychelles rift resulted in an increase in denudation, such 

relatively old ages and reduced mean track lengths would require the accumulation (and partial 

annealing) of tracks prior to rifting, a prolonged period of time within the PAZ, and (for a 

geothermal gradient of 20 °C) only 2-4 km of denudation. Although 2-4 km of denudation is 

within the sensitivity range for the AFTT system, such small magnitudes of denudation 

approach the limits of the AFTT technique. The apatite (U-Th)/He thermochronometer is 

sensitive to temperatures cooler than AFTT and has been used effectively, often in 

combination with AFTT, to constrain smaller magnitudes of denudation on other passive 

margins (Balestrieri et al., 2005; Persano et al., 2002; Persano et al., 2005). The zircon (U-

Th)/He thermochronometer is sensitive to temperatures warmer than AFTT and is therefore 

valuable for constraining magnitudes of cooling that are greater than those which AFTT is less 

sensitive. This chapter reports the results of new AFTT, apatite (U-Th)/He and zircon (U-

Th)/He data to constrain the thermal histories of  the Goa and Karnataka segment of the 

Western Indian margin in order: 

1. To test the competing conceptual models of passive margin evolution; and  

2. To determine the timing of the rifting event responsible for initiating escarpment 

development. 

Forty samples were collected in Goa and Karnataka, comprising two escarpment normal 

traverses, spot samples along the coast and spot samples on elevated areas of the coastal plain 

(Figure 38). This sampling strategy was adopted for two reasons: 1) thermochronometric data 

from samples along escarpment-normal traverses can differentiate between the competing 

models of escarpment evolution (Balestrieri et al., 2005; Gallagher et al., 1998; Persano et al., 

2002; Persano et al., 2005; van der Beek and Braun, 1998). 
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Figure 38 Location of samples for Goa and Karnataka 
Samples are marked by red circles; the escarpment is marked by the ornamented line. 
 

2) If the margin is elevated, thermochronometric ages from the coast should be similar to the 

age of rifting and can therefore be used to determine which rifting event is responsible for 

initiating margin development. Thick laterite cover, aggressive deep tropical weathering and 

thick vegetation precluded an ideal sampling strategy and limited the quality of apatite 

separates. Consequently, I report data from 23 AFTT samples (19 of which had been collected 

previously by M. Widdowson and Y. Gunnell, and analysed by A. Carter at UCL) (see section 

4.2), five apatite (U-Th)/He samples and one zircon (U-Th)/He sample (see section 4.3). Two 

sample locations, one at the coast and one at the escarpment have also been modelled 

simultaneously using AFTT and (U-Th)/He data (see section 4.4). Analysed samples are 

displayed in Figure 39. 
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Figure 39 Location of analysed samples for Goa and Karnataka. 
Ringed samples were analysed for this project, the remaining samples were analysed by A. 
Carter (UCL) 
 

Thermochronmetic data can only provide information on the magnitude of cooling a sample 

has experienced. To convert the magnitude of cooling into denudation, assumptions must be 

made about the palaeogeothermal gradient in the shallow lithosphere and palaeosurface 

temperature. Palaeogeothermal gradients are challenging to estimate and there are only limited 

data for present day geothermal gradients for the Western Indian margin. A geothermal 

gradient of between 11 – 13 °C/km has been calculated from current heat flow and thermal 

conductivity estimates for the Dharwar craton (Roy and Rao, 2000; Verma, 1991). Estimates 

of the offshore geothermal gradient range from 30 – 65 °C/km (Pandey and Agrawal, 2000; 

Rao et al., 2001; Shankar et al., 2004). As a consequence of the large range in estimates of the 

geothermal gradient, I assume an intermediate palaeogeothermal gradient of 20 °C/km for this 

study. The latitude of India has varied throughout the Cenozoic from ~ 30 °S prior to rifting 
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with Madagscar (Pande et al., 2001; Reeves and de Wit, 2000) to its current position ~ 10 °N – 

15 °N. Although latitude variations will affect surface temperature the average surface 

temperature is unlikely to have fluctuated significantly from c.20°C. Thus, it is assumed for the 

numerical modelling of thermal histories that the average surface temperature has remained a 

constant 20 °C throughout the Cenozoic. 

4.2 Apatite fission track data 

Samples are located in three groups: 1) on the coastal plain at Karwar and on the plateau to the 

West of Karwar; 2) on the Aghanashini river; and 3) on the Sharavati river and at Jog Falls 

(see Figure 39). These locations were selected because they provide a range of elevations from 

sea level to 540 m on the elevated interior plateau. A large range of elevations are important 

for maximizing the range of palaeotemperatures from which samples have been exhumed (see 

section 3.2.5). The sample distribution also covers the three macro-geomorpholgical features 

of elevated passive margins, namely the coastal plain, the escarpment and the interior plateau. 

Nine of the samples (located along the Sharavati river) were selected because margin normal 

transects provide the most suitable sampling strategy for differentiating between the two 

competing groups of conceptual models (Gallagher et al., 1998; Persano et al., 2002).  

Between 14 and 20 grains were analysed for each of the four samples collected for this study, 

using the external detector method (Gleadow and Duddy, 1981) and the zeta calibration 

technique (Hurford and Green, 1982, 1983). The 19 samples collected previously by M. 

Widdowson and Y. Gunnell had been analysed using the same method (A. Carter pers. 

comm.). The locations, elevations, fission track ages, mean track lengths and 1 σ errors are 

reported in Table 4 & Table 5.  

4.2.1 AFTT results 

Apatite fission track ages ranges from 62 Ma to 281 Ma and generally increase in age from the 

coast to the elevated interior plateau. The youngest ages are between 62 Ma and 75 Ma and are 

in samples from closest to the coast (IND/9/04, IND 1991 and IND 2316). All other samples 

have AFTT ages older than 108 Ma. Mean track lengths (MTLs) range from 11.72 µm to 14.33 

µm with the longest MTLs closest to the coast and the shortest MTLs inland on the coastal 

plain and on the elevated interior plateau (Figure 40, Table 4 & Table 5). The samples from 

closest to the coast are interpreted as having cooled rapidly from below the partial annealing 

zone (PAZ) at approximately the time of The Seychelles-India rift (65 Ma). All the samples 

further inland display older AFTT ages, shorter MTLs and more complex track length 

distributions, and are interpreted as having experienced a period of track accumulation within 
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the PAZ followed by cooling from within the PAZ. The timing of cooling from within the PAZ 

is difficult to ascertain and is discussed further in section 4.2.2. 

 
Figure 40 AFTT results for selected samples from Goa and Karnataka 
Ringed samples were analysed for this project, the remaining samples were analysed by A. 
Carter (UCL) 



 
Sample  
name 

Degrees 
(N) 

Degrees 
(E) 

Dosimeter No of 
grains 

Spontaneous tracks Induced tracks Age dispersion Central age 

   (ρd) (Nd)  (ρs) (Ns) (ρi) (Ni) Chi-sq P(%) (Ma) 
IND9 14.7752 74.1414 12.34 7139 14 3.53 276 8.594 672 5.34 96.69 67.8 

IND15 14.2713 74.7048 12.28 7139 18 5.536 528 6.574 627 40.26 0.12 137.7 

IND18 14.2237 74.8050 12.89 7139 20 3.723 467 2.727 342 5.87 99.82 232.3 

IND21 14.2218 74.8056 12.51 7139 20 2.056 267 2.542 330 18.35 49.95 134.8 

IND 1856 14.2486 74.6167 1.137 7737 20 3.92 3108 3.107 2463 20 3.9 235 

IND 1960 14.2237 74.8102 1.289 8936 20 1.552 729 1.434 674 <1 23.2 243 

IND 1965 14.2739 74.7106 1.36 9423 20 0.445 537 0.601 725 75 0.03 169 

IND 1967 14.2773 74.7203 1.301 9015 20 1.437 769 1.181 632 40 4.3 263 

IND 1972 14.3592 74.7355 1.289 8936 20 1.434 823 1.236 709 70 1.5 249 

IND 1974 14.3932 74.6600 1.301 9015 20 1.005 461 0.913 419 40 5.9 238 

IND 1977 14.4310 74.6098 1.289 8936 20 1.086 1275 1.229 1443 40 8.5 190 

IND 1981 14.7635 74.2143 1.301 9015 20 0.442 754 0.893 1524 80 0.09 108 

IND 1984 14.6953 74.3000 1.289 8936 20 0.745 1111 1.046 1560 40 7.6 154 

IND 1985 14.6865 74.3580 1.36 9432 20 0.742 961 1.248 1617 <1 17.1 136 

IND 1991 14.8463 74.1312 1.289 8936 20 0.328 351 1.141 1219 <1 19.9 62 

IND 1997 14.9467 74.3597 1.289 8936 20 0.691 522 0.669 505 90 0 222 

IND 1999 14.9775 74.3705 1.301 9015 20 1.193 620 1.21 629 <1 28.8 218 

IND 2030 14.9922 74.1495 1.289 8936 20 0.73 583 0.938 749 40 4.7 168 

IND 2057 14.2333 74.8444 1.301 9015 20 1.594 1014 1.228 781 20 8.6 281 

IND 2062 14.6944 74.3583 1.301 9015 20 0.841 849 1.206 1217 20 13.4 153 

IND 2314 14.3833 76.0833 1.344 7449 20 1.262 953 0.998 754 30 0.92 282 

IND 2316 14.2667 76.3500 1.344 7449 20 1.494 557 1.478 551 90 0.03 226 

IND 2318 14.8403 74.5097 1.364 7568 20 0.406 304 0.333 249 97 0 276  
 
       Table 4 AFTT age data for Goa and Karnataka  
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 Degrees
(N) 

Degrees
(E) 

Number 
of tracks 

Mean TLD Dpar 

Sample name    (µm) (±1σ) (µm) (±1σ) 

IND9 14.7752 74.1414 58 14.33 1.3 2.16 0.39 

IND15 14.2713 74.7048 63 12.62 1.8 3.71 0.68 

IND18 14.2237 74.8050 66 11.89 2.2 2.65 0.23 

IND21 14.2218 74.8056 67 11.80 2.1 2.04 0.31 

IND 1856 14.2486 74.6167 110 12.97 0.19 - - 

IND 1960 14.2237 74.8102 103 13.05 0.2 - - 

IND 1965 14.2739 74.7106 100 12.18 0.18 - - 

IND 1967 14.2773 74.7203 102 12.62 0.22 - - 

IND 1972 14.3592 74.7355 100 12.31 0.16 - - 

IND 1974 14.3932 74.6600 103 12.00 0.19 - - 

IND 1977 14.4310 74.6098 100 12.70 0.14 - - 

IND 1981 14.7635 74.2143 100 12.42 0.2 - - 

IND 1984 14.6953 74.3000 100 11.91 0.2 - - 

IND 1985 14.6865 74.3580 100 12.13 0.18 - - 

IND 1991 14.8463 74.1312 100 13.65 0.13 - - 

IND 1997 14.9467 74.3597 100 12.08 0.22 - - 

IND 1999 14.9775 74.3705 100 11.99 0.18 - - 

IND 2030 14.9922 74.1495 100 12.07 0.2 - - 

IND 2057 14.2333 74.8444 100 11.72 0.21 - - 

IND 2062 14.6944 74.3583 101 12.22 0.16 - - 

IND 2314 14.3833 76.0833 100 12.60 0.22 - - 

IND 2316 14.2667 76.3500 100 13.71 0.15 - - 

IND 2318 14.8403 74.5097 100 12.88 0.17 - -  
Table 5 Track length distribution and Dpar data for Goa and Karnataka 

 
 

Figure 41a is a ‘boomerang’ plot showing the relationship between AFTT age and mean track 

length for the northern study area. If a region has experienced a single cooling event, the data 

should form a coherent boomerang shape with the youngest ages and longest MTLs 

corresponding to the last thermal event (Brown et al., 1994; Gallagher et al., 1998; Gleadow 

and Brown, 2000). The boomerang plot for the northern study area displays such a relationship 

for the youngest samples with the last thermal event contemporaneous with the timing of The 

Seychelles/India rift (Figure 41a). However, the boomerang plot exhibits a less distinct 

relationship with the older ages and shorter MTLs, indicating that more than one cooling event 

may be recorded by the AFTT data further inland, or there are compositional effects. Gallagher 

et al. (1998) demonstrated that the trend in AFTT ages differs along a margin-normal transect 

for the competing groups of conceptual models. Figure 41b displays the relationship between 
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AFTT age and distance from the coast (analogous to several margin normal transects) for the 

northern study area. The trend of AFTT ages is qualitiatively more consistent with the pattern 

of denudation associated with the elevated rift flank model.  

 
Figure 41 Boomerang plot and age vs distance from the coast for Goa and Karnataka 
a - Boomerang plot (AFTT age vs mean track length) for AFTT samples from Goa and Karnataka. 
The timing of The Seychelles/India rift is marked by the solid bar. 
b - AFTT age vs distance from the coast for AFTT samples from Goa and Karnataka.  The timing 
of The Seychelles/India rift is marked by the solid bar. 
 

Figure 42 shows the predictive forward modelling results for AFTT ages (dashed lines) and 

the measured AFTT data (closed circles). The forward modelled results for all three conceptual 

models are for constant escarpment evolution initiated at 65 Ma. The two elevated rift flank 

models were forward modelled with 4.5 km of denudation furthest from the escarpment 
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decreasing to 0.5 km at the base of the escarpment. The forward modelled results from both the 

elevated rift flank models provide the best fit to the measured data. 

 

Figure 42 Predictive forward modelling results and measured data from Goa and 
Karnataka 
Predictive forward modelling results for each conceptual model with constant escarpment evolution beginning at 65 Ma. 

The elevated rift flank models have 4.5 km of rebound at the coast decreasing to 0.5 km of rebound at the escarpment. 

The measured data are closed circles and fit the elevated rift flank models more suitably than the downwarped rift flank 

model. 
 

Such qualitative interpretation of the AFTT data is an important step in interpreting the 

denudational history of the Western Indian margin. Inverse-modelling is a more rigorous 

methodology for extracting information from AFTT data and was used to explore two 

fundamental questions about the denudational history of the Western Indian margin: 1) Did 

The Seychelles-India rift or Madagascar-India rift trigger a denudational response? and 2) 

Which conceptual model is more consistent with the pattern in denudation across the margin? 
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4.2.2 AFTT inverse-modelling 

Inverse-modelling involves searching for thermal histories that statistically fit the measured 

data by linking a set of assumed starting conditions and measured ending conditions (e.g. 

AFTT age, TLD, surface temperature) (Ketcham, 2005) (see section 3.2.5.2). This section 

reports the results from inverse-modelling a sub-set of samples form the northern study area 

using the computer program HeFTy. HeFTy was selected for inverse-modelling because unlike 

other modelling software, HeFTy incorporates a c-axis projection correction for confined 

tracks and a parameter for kinetic variability (Dpar for this study) within a particular AFTT 

population (see section 3.2.5.2). Only samples that pass the chi-squared test, with p-values 

greater than 0.05 (see section 3.2.5.2) were selected for model inversions.  

4.2.2.1 Model parameters 

The time-temperature point from which the thermal history evolves (i.e. the starting 

conditions) was selected such that it exceeded the measured AFTT age of the modelled sample 

and began at temperatures in excess of complete annealing. The ending conditions were 

present day average surface temperatures (20 °C) at 0 Ma. Ten thousand thermal history paths 

were generated for each model run using a Monte-Carlo search approach providing random 

and independent thermal histories which can be statistically compared to the measured data. 

Both statistically ‘acceptable’ modelled thermal histories and statistically ‘good’ modelled 

thermal histories are retained at the end of each model run. A statistically ‘good’ modelled 

thermal history corresponds to a p-value greater than 0.5 and a stastically ‘acceptable’ modeled 

thermal history corresponds to a p-value greater than 0.05 (Ketcham et al., 2003). Model runs 

were set up to test how well the data can be used to distinguish between different tectonic 

scenarios. The first model runs were given no constraints to ascertain if the data can be 

reproduced by a wide or narrow range of thermal histories. Subsequent model runs were 

constrained to mimic reburial from Deccan emoplacement, accelerated cooling at the time of 

the Sechelles/India rift and accelerated cooling at the time of the Madagascar India rift. Four 

samples from this study were inversely modelled using Dpar as a kinetic parameter. Five 

additional samples with complete track length data (i.e. all individual track lengths not just 

mean track length) were provided by A. Carter at UCL. However, the five UCL samples do not 

have any information to constrain a kinetic parameter (such as Dpar) so were modelled as a 

single population. Model results are displayed in Figure 43 and Figure 45 as green envelopes 

for ‘acceptable’ thermal histories and purple envelopes for ‘good’ thermal histories. 
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4.2.2.2 AFTT inverse modelling results 

Inverse-modelling results of the AFTT data from the two youngest samples from the coast 

(IND/9/04 and IND1991) provide evidence for a rapid cooling event from the base of the 

PAZ at ~ 75 - 65 Ma when the model is unconstrained (Figure 43). There are no ‘good’ 

modelled thermal histories when these data are forced to cool at ~ 80 Ma or if the model 

mimics re-burial (Figure 43). If accelerated cooling is imposed at 65 Ma there is a good fit 

between the modelled data and the measured data. The two youngest samples can be 

interpreted as having been rapidly exhumed at the time of The Seychelles/India rift. The 

temperature from which the samples have been exhumed depends on how resistant the 

apatite grains within them are to annealing. IND/9/04 has an average Dpar value of 2.16 µm 

and is expected to completely anneal at ~ 125 °C, a degree of cooling which equates to 

more than ~ 5.25 km of denudation based on the assumption outlined in section 4.1. The 

inverse modelling of AFTT data from the coast provides no evidence for accelerated 

cooling in response to the Madagascar/India rift for this segment of the margin.  
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Figure 43 Inverse-modelling results of coastal samples from Goa and Karnataka 
Inverse modelling-results of coastal samples from Goa and Karnataka for different tectonic scenarios. 
‘Acceptable’ thermal histories fall within the green envelope and ‘good’ thermal histories fall within 
the purple envelope. 
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Inverse-modelling results from the samples further inland are more challenging to interpret. All 

the samples have reduced mean track lengths, complex track length distributions and ages 

older than the two major rifting events. The data can be reproduced by initiating cooling at 

either 65 Ma or 80 Ma; however, for the majority of samples, the inverse-modelling locates 

more ‘good’ thermal histories if rapid cooling occurs at 65 Ma (Figure 45 A - D and Figure 

44). The data from inland samples are not reproduced successfully if re-burial is modelled. 

Inversely modelled samples south of 14.5 °N illustrate the spatial variability in denudation 

across the coastal plain and demonstrate which conceptual model best explains the data. IND 

1991 has already been discussed above and is modelled as having been rapidly cooled from 

temperatures in excess of 110 °C. Data from IND/15/04 (on the coastal plain but not at the 

escarpment) are reproduced if the sample is modelled as having cooled from 80 to 90 °C. Data 

from samples at the escarpment (IND/21/04 and IND/18/04) are reproduced if they are 

modelled as having cooled from 60 to 70 °C (Figure 46). If the temperatures from which these 

samples have cooled are the result of being exhumed from different depths within the 

lithosphere (and not the result of variable geothermal gradient) then this pattern of cooling is 

more consistent with an escarpment that has developed into an elevated rift flank with 5.25 km 

of denudation at the coast, decreasing to 2 – 2.5 km at the escarpment. Table 6 summarises the 

magnitude of denudation for different palaeogeothermal gradients for each of the samples 

analysed for Goa and Karnataka.  

Sample 
Name 

Degrees 
(N) 

Degrees 
(E) 

Post break-
up cooling 
(°C) 

Magnitude of denudation (km) for 
variable palaeogethermal gradients 

   
65 Ma – 0 Ma 20 °C/km 40 °C/km 60 °C/km 

IND/9/04 14.7752 74.1414 90 5.25 2.63 1.75 

IND1991 14.8463 74.1312 90 4.50 2.25 1.50 

IND1984 14.6953 74.3000 30 1.50 0.75 0.50 

IND1985 14.6865 74.3580 40 2.00 1.00 0.67 

IND1977 14.4310 74.6098 30 1.50 0.75 0.50 

IND1856 14.2486 74.6167 20 1.00 0.50 0.33 

IND/15/04 14.2713 74.7048 70 3.50 1.75 1.12 

IND1965 14.2739 74.7106 40 2.00 1.00 0.67 

IND1960 14.2237 74.8102 30 1.50 0.75 0.50 

IND/18/04 14.2237 74.8050 40 2.00 1.00 0.67 

IND/21/04 14.2218 74.8056 50 2.50 1.25 0.83  
Table 6 Summary of magnitude of post break-up cooling of samples from Goa and 
Karnataka 
Summary of magnitude of post break-up cooling from modelled AFTT data and magnitude of 
denudation based on variable palaeogeothermal gradients. 
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With the exception of the two young samples at the coast, it is not possible with any of the 

other samples to identify a precise time and, therefore, the rifting event that resulted in a 

denudational response. The magnitude of cooling, particularly for samples close to the 

escarpment, is small (from 60 - 70 °C) and the denudational response to rifting (if any) is 

difficult to identify. Modelling these samples provides information on the thermal histories 

prior to any cooling in response to rifting during which the majority of tracks formed and 

partially annealed. The small degree of syn-rift and post-rift cooling is at the limit of the 

sensitivity of the AFTT system making it difficult to measure the effects of the rifting event 

and the precise magnitude of denudation. To address these limitations, the next section reports 

on the results from (U-Th)/He thermochronometery which is capable of constraining smaller 

magnitudes of denudation. 

 
Figure 44 AFTT constraints on the time of accelerated cooling for Goa and 
Karnataka 
Apatite fission track constraints on the time of accelerated cooling (x-axis) for individual inversely 
modelled samples (y-axis). The majority of samples can be successfully modelled with an 
accelerated cooling event at ~ 65 Ma (solid bars); however some samples can also be modelled 
successfully with accelerated cooling at ~ 80 Ma (dashed bars). The red solid line is the average 
time of cooling (62.5 Ma) for the modelled samples.  
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Figure 45 AFT inverse-modelling results of inland samples from Goa and Karnataka 
Inverse-modelling results of inland samples from Goa and Karnataka for unconstrained cooling, 
accelerated cooling at 65 Ma, accelerated cooling at 80 Ma and re-burial. ‘Acceptable’ thermal 
histories fall within the green envelope and ‘good’ thermal histories fall within the purple envelope. 
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Figure 46 Inverse-modelling results for a margin normal transect for Goa and 
Karnataka. 
Samples closest to the coast are modelled most effectively with cooling from 110 °C. Samples 
further inland are modelled most effectively with cooling from between 80 – 90 °C. Samples at the 
escarpment are modelled most effectively with cooling from between 80 – 90 °C. 
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4.3 (U-Th)/He data 

The sampling strategy for (U-Th)/He included: 1) coastal samples and 2) margin-normal 

transects. The greatest difference in apatite (U-Th)/He ages between the two competing 

groups of conceptual models should be from samples located the greatest distance seaward 

of the escarpment (i.e. nearest the coast). Transects have the greatest potential to constrain 

the spatial variability in cooling across the coastal plain. Constraining cooling is 

particularly important for samples located close to the escarpment where the magnitude of 

cooling inferred from the AFTT data appears to be small. The ideal sampling strategy was 

difficult to meet for the northern study area and was inhibited by low apatite concentrations 

and poor apatite quality. Consequently, only five samples were analysed for apatite (U-

Th)/He (Figure 47). IND/8/04, IND/9/04 and IND/11/04 are located close to the coast, and 

IND/18/04 and IND/19/04 are located at the escarpment. Two to six inclusion free crystals 

were analysed in each aliquot using the methods outlined in section 3.3.3. The smallest 

dimensions of crystals (i.e. the width) range between 65 µm and 200 µm. The range in 

width was kept to a minimum within separate aliquots to minimise uncertainties on the 

alpha recoil corrections (see section 3.3.3). Results are reported in Table 7 and Table 8. 

 

Figure 47 Apatite and zircon (U-Th)/He results ofr Goa and Karnataka 
The location and results from samples analysed for apatite (U-Th)/He and zircon (U-Th)/He 
 



 
Apatite (U-Th)/He 
Sample 
name 

Degrees  
(N) 

Degrees  
(E) 

Elevation 
(m) Replicate 

238U  
(ng) 

232Th  
(ng) 

4He 
(cc) 

Uncorrected 
He age (Ma) 

Corrected He 
age (Ma) 

Mean age 
(Ma) 2σ 

Analytical 
Error (Ma) 

AFT age 
(Ma) 

IND-8-A 14.8428 74.1253 10 I 0.62141 1.09922 9.63x10
-10 

9.0 12.9 12.9 0.7 0.3  

IND-9-A 14.7752 74.1414 28 I 0.12404 0.08712 2.70x10
-9 

151.6 184.0 173.2 30.7 3.7 67.8 

IND-9-B    II 0.02896 0.01315 4.70x10
-10 

119.3 162.3   7.1  

IND-11-A 14.2418 74.5555 24 I 0.03216 0.10629 4.01x10
-10 

57.4 69.8 69.8 4.2 2.4  

IND-18-A 14.2237 74.805 220 I 0.04894 0.82027 3.90x10
-11 

1.4 2.2 73.9 49.1 0.1 232.3 

IND-18-B    II 0.00487 0.00344 3.57x10
-11 

51.5 71.7   10.8  

IND-18-C 14.2237 74.805 220 I 0.0269 0.0272 3.842x10
-10

 94.2 123.4 116.7 13.2 0.3 232.3 

IND-18-D    I 0.0198 0.0203 2.597x10
-10

 86.1 110.2   3.7  

IND-18-E    II 0.0186 0.0156 2.267x10
-10

 83.2 116.6   7.1  

IND-19-A 14.2234 74.8063 290 I 0.20656 0.16249 5.22x10
-9 

172.9 238.5 137.6 142.7 4.8  

IND-19-B    II 0.03161 0.07124 1.70x10
-10 

28.8 36.7   1.1  

              
Zircon (U-Th)/He   
Sample 
name 

Degrees  
(N) 

Degrees  
(E) 

Elevation 
(m) Replicate 

238U  
(ng) 

232Th  
(ng) 

4He 
(cc) 

Uncorrected 
He age (Ma) 

Corrected He 
age (Ma) 

Mean age 
(Ma) 2σ 

Analytical 
Error (Ma) 

AFT age 
(Ma) 

IND-9-1 14.7752 74.1414 28 I 3.321 0.831 9.249x10
-08

 212.2 360.1 351.5 24.5 7.5 67.8 

IND-9-2       II 3.330 0.688 8.770x10
-08

 202.8 342.8   7.4   
 
       Table 7 and 8 (U-Th)/He data from Goa and Karnataka  
      Errors are quoted to 2σ for multiple analyses. Single analyses are quoted to 6%, the same errors associated with analysis of Durnago apatite.  
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The quality of many of the samples was problematic. In particular, the apatite surfaces were 

often ‘frosted’ preventing detailed examination of the interior of grains and the identification 

of any inclusions. IND/8/04, IND/18/04 (A) and IND /19/04 (B) yielded very young apatite 

(U-Th)/He ages between 2.2 Ma and 36.7 Ma (alpha recoil-corrected). The measured 

concentrations of 4He, U and Th are low for each of these aliquots and difficult to measure 

with precision; therefore, they are treated as suspect ages which cannot be meaningfully 

interpreted. IND/9/04 (A and B) and IND/19/04 (A) yielded very old AHe ages between 162.3 

Ma and 238.5 Ma. Old AHe ages can be the result of unidentified inclusions providing 

parentless 4He (Farley, 2000). The AFTT system is a deeper thermochronometer and provides 

older ages than the AHe system; therefore, another indicator that AHe ages may be erroneous 

is if they exceed the AFTT age. IND/9/04 provided a younger AFTT age (68 Ma) and although 

there is no AFTT age for IND/19/04, the AFTT ages of samples in close proximity are all 

younger than 160 Ma. IND/9/04 yielded ZrHe ages that replicate within 2 standard deviations 

and IND/18/04 (C - E) yielded AHe ages that replicate within 2 standard deviations. Both these 

samples are therefore treated more rigorously with inverse-modelling. The AHe inverse-

modelling follows the same methods as AFTT modelling but uses a production-diffusion 

model to provide thermal histories (see section 3.3).  

Sample IND/9/04 yielded two zircon (U-Th)/He (ZrHe) ages between 343 and 360 Ma. These 

are much older than either rifting event. To generate the old ZrHe ages, IND/9/04 can be 

interpreted as having spent time within the ZrHe PRZ prior to rifting. Inverse-modelling results 

indicate that IND/9/04 has cooled from temperatures between 125 and 140 °C, equating to 5.25 

– 6 km of denudation (Figure 48a). 

Samples IND/18/04 (C - E) have alpha recoil-corrected AHe ages of between 110 Ma and 123 

Ma. These ages are older than IND/11/04 and reflect the time spent accumulating He within 

the He PRZ, prior to cooling to surface temperatures. Inverse-modelling results indicate that 

cooling at either 80 Ma or 65 Ma provides equally plausible thermal histories that fit the data 

and it is not possible based on modelled AHe ages alone to ascertain which rifting event 

initiated a denudational response (Figure 48b). However, in both modelled scenarios (cooling 

at 65 Ma and 80 Ma) the AHe data provides tighter constraints on the magnitude of cooling to 

surface temperatures: cooling cannot be less than 40 °C (otherwise the modelled AHe ages are 

too old) and cooling cannot be more than 60 °C (otherwise the modelled AHe ages are too 

young). The inverse-modelling of the AHe data also provides narrower constraints on the late 

stage segment of the cooling history (i.e., cooling from ~60 °C), with the result that the 

possible range of modelled thermal histories has been reduced when compared to inverse-

modelling results from AFTT data for IND/18/04. 
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Figure 48 (U-Th)/He inverse-modelling of samples from Goa and Karnataka 
a. Results from ZrHe inverse-modelling of IND/9/04 compared to results from AFTT inverse-
modelling of IND/9/04. Note better constraints on the range of thermal histories with ZrHe for 
temperatures in excess of 110 °C 
b. Results from AHe inverse-modelling of IND/18/04 compared to results from AFTT inverse-
modelling of IND/18/04. Each thermochronometers provides tighter contstraints on the range of 
thermal histories for the temperatures they are most sensitive to.  
 

AHe ages are bulk ages and there is no additional information equivalent to AFTT TLD. 

Consequently, inverse-modelling often provides a large range of thermal histories which 
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reproduce the data suitably, and, as illustrated by the modelling results of IND/18/04, more 

than one tectonic history may be plausible. Inverse-modelling of IND/18/04 also demonstrates 

how AFTT and AHe data provide narrower constraints for the portion of the thermal history to 

which they are most sensitive (Figure 48b). The AFTT data constrain the pre-rift history, and 

the AHe data constrain the post-rift history (Figure 48). However, inverse-modelling of the 

data separately implies that the two thermochronometers are working independently when in 

reality fission tracks are formed and annealed at the same time that helium is being produced 

and diffused. Software is now available which allows simultaneous modelling of both AFTT 

data and AHe data to generate better defined thermal histories (see section 4.4). 

4.4 Simultaneous inverse-modelling 

This section reports the results of simultaneous modelling (AFT and AHe) from a sample at the 

escarpment (IND/18/04) and Simultaneous modelling (AFT and ZrHe) from a sample at the 

coast (IND/9/04). As with the individual modelling, simultaneous modelling was used to test if 

a particular rift initiated a rapid cooling event and what the magnitude of the cooling event 

was. 

IND/9/04 was simultaneously modelled using ZrHe data and AFTT data. Figure 49 indicates 

improved constraints on both the high temperature segment of the thermal history (i.e., for 

temperatures >110 °C, as constrained by ZrHe data) and lower temperature segment of the 

thermal history (constrained by AFTT data). To satisfy the data, IND/9/04 must have been 

exhumed from between 140 °C and 110 °C at 65 – 75 Ma. 
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Figure 49 ZrHe and AFTT simultaneous inverse modelling results for IND/9/04 
 
 

Individual inverse-modelling of IND/18/04 failed to resolve whether rifting at 80 Ma or 65 

Ma resulted in a rapid cooling event (Figure 45a and Figure 48), an issue that simultaneous 

modelling may be able to resolve. Results from simultaneously modelling of AFTT data 

and AHe data are reported in Figure 50, but simultaneous modelling fails to satisfy both 

sets of data. There are several possible reasons for this: 1) incomplete understanding 

(and/or incomplete integration into the modelling software) of either the kinetics of fission 

track annealing or the diffusive behaviour of helium in apatite. 2) The data are erroneous or 

of poor quality. 3) The sample has experienced a complex thermal history that cannot 

adequately be replicated by the modelling software. Simultaneous modelling can provide 

additional information on a sample thermal history (as with IND/9/04); however, 

IND/18/04 demonstrates that in some circumstances simultaneous modelling is ineffective. 
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Figure 50 Simultaneous inverse modelling results for Goa and Karnataka 
Simultaneous inverse modelling results for IND/18/04 (escarpment). 
 



Chapter 4  Goa and Karnataka 

Daniel Campanile                                                                          108 

4.5 Summary and conclusions 

Low temperature thermochronometry of rocks from the Goa and Karnataka provide specific 

information on the evolutionary history of the onshore portion of the Western Indian margin 

which complement the information provided from the offshore sedimentary record (see chapter 

2). Samples at the coast have long uni-modal AFTT TLDs and AFTT ages that are 

indistinguishable from the timing of The Seychelles/India rift. The coastal samples can be 

interpreted as having been rapidly cooled from at least 110 °C at 65 Ma. AHe ages from the 

coast are consistent with AFTT ages and can be interpreted as having been rapidly cooled from 

at least 80 °C at 65 Ma. The AFTT or the AHe data do not provide constraints on the upper 

limit of cooling (both thermochronometers are insensitive to temperatures greater than 110 °C). 

However, ZrHe ages and modelling indicate that coastal samples must have been exhumed 

from less than 140 °C. The timing of the onset of increased cooling at the coast is inconsistent 

with either a denudational response to the Madagascar/India rift or active rifting (incorporating 

pre-rift rock uplift) associated with The Seychelles/India rift. 

Samples located inland from the coast have short meant track lengths, complex TLDs and 

AFTT ages older than the timing of either The Seychelles/India rift or the Madagascar/India 

rift. These samples can be interpreted as having spent time in the PAZ prior to being exhumed 

to surface temperatures with the majority of fission tracks accumulating prior to cooling to 

surface temperatures. Inverse-modelling results indicate that the data can be reproduced 

equally well if rapid cooling occurred in response to either of the rifting events; however, the 

amount of cooling is small (~ 20 – 40 °C) and is at the limit of the sensitivity of the AFTT 

technique. AHe data from samples inland of the coast also fail to highlight if a particular rifting 

event initiated rapid cooling but provide improved constraints on the magnitude of cooling. 

Nonetheless, the fact that the coastal samples indicate that accelerated cooling must have 

occurred at 65 Ma means that it is reasonable to suggest that further inland is also likely to 

have experienced accelerated cooling in response to the same event. 

Predictive forward modelled thermochronometry ages for the downwarp hypothesis should be 

old at the coast (as old as ages found on the interior plateau) and become younger towards the 

escarpment. The opposite trend in measured AFTT and AHe ages is observed from the Goa 

and Karnataka study area and is more consistent with escarpment formation into an elevated 

rift flank with 5.25 km of rock uplift at the coast decreasing to 0.5 – 1.5 km at the base of the 

escarpment. Predictive forward modelling also indicates that the measured data are best 

explained by a denudational response to rifting at 65 Ma, not 80 Ma. 
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Simultaneous inverse-modelling of AFTT data and (U-Th)/He data from samples at the coast 

demonstrates that this approach can be effective for providing improved resolution on the 

thermal history experienced by this segment of the margin. However, simultaneous inverse-

modelling of thermochronometery data from samples close to the escarpment was less 

successful and did not yield any additional information. IND/18/04 highlights some of the 

potential challenges of inverse-modelling multiple thermochronometers (see section7). 

The next chapter reports low temperature thermochronometery data from the southern field 

area within the state of Kerala, over 600 km south of the northern field area. Kerala is 

geographically distinct from Goa and Karnataka, the coastal plain is much wider (~100 

km), and the escarpment is higher (2.5 km). The tectonic history of Kerala is poorly 

understood, and there is no clear consensus on the timing of formation of this portion of 

the margin. Kerala is a suitable field area to test if the Madagascar/India rifting event has 

influenced the development of this segment of the Western Indian margin using low 

temperature thermochronometery. 
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5 Low temperature thermochronometry 
data for Kerala 

5.1 Introduction 

The southern field area is in the state of Kerala between 9°N and 12°N. The bedrock is 

predominantly 2.5 – 2.6 Ga charnockites and gneisses of the Southern Granulite Terrane, that 

are locally overlain by Cenozoic sediments (see section 1.3.1). In Kerala the Ghats are 

separated into the Western Ghats and the Nilgiri Block, and the Southern Ghats by the 20 km-

wide Palghat Gap (Figure 51). The Ghats are on average 1 – 2 km high reaching a maximum 

height of 2.9 km north of Munnar. Unlike the northern study area, the Ghats in Kerala are a 

more distinct linear feature with the escarpment rising abruptly from the coastal plain and 

foothills (here termed, for simplicity, the coastal plain). The coastal plain has an average 

elevation of 0.5 km and ranges in width from 30 km, to the north of Callicut, to a maximum of 

70 km, south of Cochin. East of the crest of the escarpment there is a 5 – 10 km wide elevated 

region of dissected hills and inselbergs, bounded further to the east by a prominent east-facing 

escarpment that rises from an extensive interior plateau with an average elevation of 0.7 km. 

Kerala was selected as a suitable area of study because the timing of initiation of escarpment 

formation is incompletely understood as there are few stratigraphic markers. As an alternative, 

the alignment of Precambrian structural lineaments has been used in plate reconstructions to 

place Madagascar adjacent to Western India prior to rifting at 80 Ma (Katz and Premoli, 1979). 

Spectral analysis of gravity and bathymetric data has also been used to ascertain the conjugate 

nature of Madagascar and Western India (Chand and Subrahmanyam, 2003; Subrahmanyam 

and Chand, 2006). Igneous rocks have been dated and tentatively linked to Marion hotspot 

volcanism and rifting between India and Madagascar (Pande et al., 2001; Storey, 1995; 

Torsvik et al., 2000) with little evidence from the volcanic record that The Seychelles/India rift 

propagated as far south as Kerala (see section 1.3.3). The rifting event responsible for the 

formation of the southern segment of the Western Indian margin remains unknown. 

Low temperature thermochronometery has the potential to provide information on the thermal 

history of this portion of the margin to elucidate its tectonic history, yet there is no such 
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published information. This chapter reports apatite fission track and (U-Th)/He data from 

Kerala with the aims of: 

1. Determining if the escarpment has evolved into a downwarped rift flank or an elevated 

rift flank. 

2. Determining if the escarpment has developed in response to rifting between India and 

Madagascar or in response to rifting between India and The Seychelles. 

3. Determining if this portion of the Western Indian margin is a volcanic rifted or a 

passive rifted margin (see section 1.2.1). 

Nineteen samples were collected from a margin-normal transect east of Callicut and 30 

samples were collected from a margin-normal transect east of Cochin (Figure 51 and Figure 

52). Margin-normal transects were adopted for the sampling strategy because they include a 

wide range of elevations necessary to sample a range of palaeo-depths. Low temperature 

thermochronometric data from transects should display different trends between for the 

competing conceptual models of passive margin evolution (Gallagher, 1995). All samples are 

unweathered charnockites, gneisses or granites from either small quarries (on the coastal plain) 

or road-cutting and exposures (at the escarpment). AFTT data from 20 samples from the 

Cochin transect are reported in section 5.2, and (U-Th)/He data from 5 samples are reported in 

section 5.3, and the results of simultaneous inverse-modelling are reported in section 5.4. A 

summary and conclusions are provided in section 5.5. There are few published measurements 

on the present geothermal gradient of the Western Indian margin and even fewer estimates of 

the palaeogeothermal gradient and palaeosurface temperature (see section 4.1). Heat flow 

throughout the Southern Indian shield is highly variable (Agrawal and Pandey, 2004; Manglik, 

2006; Roy and Rao, 2003) but similar to estimates from Goa and Karnataka. Consequently, a 

palaeogeothermal gradient of 20°C/km and a palaeosurface temperature of 20°C are used to 

convert the magnitude of cooling from low temperature thermochronometry into denudation. 
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Figure 51 Location of samples for Kerala 
Samples are marked by red circles; the escarpment is marked by the ornamented line. 
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Figure 52 Location of analysed samples for Kerala 
 

5.2 Apatite fission track data 

Between 14 and 20 apatite crystals from each of the 20 samples from a transect between 

Cochin and Munnar were analysed using the external detector method (Gleadow and Duddy, 

1981) and the zeta age calibration method (Hurford and Green, 1982, 1983) (Figure 52). 

Sample elevations range from sea level to over 1.5 km, covering the coastal plain, the 

escarpment face and the mountainous zone east of the escarpment around Munnar (Figure 52). 

Government restriction within Tamil Nadu prevented sampling of the elevated interior plateau 

further east. Figure 53, Table 9 & Table 10 report the location, elevation, fission track age, 

mean track length, 1σ uncertainties and average Dpar values.  
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5.2.1 AFTT results 

Apatite fission track (AFTT) ages range from 62 Ma to 314 Ma and mean track lengths range 

from 13.24 µm to 11.30 µm. The youngest AFTT age and longest mean TLD was obtained 

from the sample closest to the coast (IND/40/04). All other samples have AFTT ages older 

than 100 Ma and mean track lengths shorter than 13.09 µm. The general pattern is similar to 

AFTT results from Goa and Karnataka: samples closest to the coast are interpreted as having 

cooled rapidly from temperatures in excess of the PAZ at approximately the time of The 

Seychelles/India rift, and samples further inland have undergone smaller magnitudes of 

cooling and contain a proportion of fission tracks that have been partially annealed. 

 
Figure 53 AFTT results for Kerala 
Results of AFTT analysis (ages and corresponding TLD’s) for selected samples in Kerala 
 



 
Sample  
name 

Degrees 
(N) 

Degrees 
(E) 

Dosimeter No of 
grains 

Spontaneous tracks Induced tracks Age dispersion Central age 

   (ρd) (Nd)  (ρs) (Ns) (ρi) (Ni) Chi-sq P(%) (Ma) 
IND40 9.9512 76.3871 12.77 7623 20 1.199 256 3.722 795 0.14 17.85 61.8 

IND41 9.9715 76.4196 13.24 7482 20 5.086 1046 5.028 1034 0.15 7.99 173.6 

IND42 9.9686 76.4750 13.35 7482 20 9.977 1911 9.591 1837 0.22 0.00 186.6 

IND43 9.9881 76.5722 13.45 7482 20 0.661 58 0.627 55 0.01 90.68 187.9 

IND44 10.0045 76.6353 13.55 7482 20 8.145 786 13.492 1302 0.31 0.00 114.8 

IND45 10.0532 76.6004 13.22 7623 16 15.362 2656 8.497 1469 0.25 0.00 313.9 

IND46 10.0534 76.6006 13.11 7623 20 7.184 1018 8.977 1272 0.17 0.84 138.1 

IND48 10.0428 76.7374 13.67 7623 20 3.653 764 2.773 580 0.21 2.84 260.8 

IND49 10.0584 76.7872 12.81 7238 20 5.793 1177 9.859 2003 0.07 15.52 100.3 

IND50 10.0533 76.8243 12.80 7238 20 6.926 1228 7.31 1296 0.15 2.87 162.0 

IND52 10.0187 76.9239 12.79 7238 20 23.312 3767 23.721 3833 0.13 0.01 165.7 

IND53 10.0081 76.9723 12.78 7238 20 14.047 2508 14.193 2534 0.12 0.5 166.0 

IND54 10.0099 77.0021 12.77 7238 20 11.543 2100 15.836 2881 0.15 0.04 122.1 

IND55 10.0232 76.9873 12.76 7238 20 15.062 2502 14.659 2435 0.07 15.75 173.9 

IND56 10.0348 76.9846 12.63 7482 14 14.097 2039 17.105 2474 0.19 0.00 139.8 

IND57 10.0353 77.0177 12.75 7238 20 23.494 3077 30.015 3931 0.13 0.01 131.4 

IND58 10.0575 77.0568 12.74 7238 20 17.768 2594 20.754 3030 0.18 0.00 148.7 

IND60 10.0567 77.1021 12.94 7482 20 30.168 5393 27.136 4851 0.11 0.01 188.5 

IND61 10.0350 77.0842 12.74 7238 13 29.272 2322 41.991 3331 0.15 0.00 119.0 

IND64 10.0183 77.2075 9.32 5303 20 15.108 3329 11.514 2537 0.15 0.02 163.8  
 
       Table 9 AFTT age data for Kerala  
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 Degrees
(N) 

Degrees
(E) 

Number 
of tracks 

Mean TLD Dpar 

Sample name    (µm) (±1σ) (µm) (±1σ) 

IND40 9.9512 76.3871 65 13.24 1.22 1.77 0.22 

IND41 9.9715 76.4196 100 11.55 1.69 1.43 0.16 

IND42 9.9686 76.4750 100 12.37 1.52 1.58 0.15 

IND43 9.9881 76.5722 29 12.54 1.62 1.41 0.15 

IND44 10.0045 76.6353 100 11.90 1.64 1.56 0.19 

IND45 10.0532 76.6004 100 12.02 1.98 1.98 0.25 

IND46 10.0534 76.6006 102 12.73 1.95 1.65 0.16 

IND48 10.0428 76.7374 100 13.09 1.74 1.72 0.18 

IND49 10.0584 76.7872 100 12.45 1.83 1.74 0.24 

IND50 10.0533 76.8243 102 12.48 1.89 1.73 0.19 

IND52 10.0187 76.9239 100 12.29 1.89 1.58 0.16 

IND53 10.0081 76.9723 100 11.37 1.91 1.50 0.19 

IND54 10.0099 77.0021 101 12.19 1.68 1.61 0.14 

IND55 10.0232 76.9873 100 12.26 2.01 1.68 0.17 

IND56 10.0348 76.9846 103 11.30 1.82 1.87 0.16 

IND57 10.0353 77.0177 100 12.40 1.55 1.52 0.16 

IND58 10.0575 77.0568 100 12.05 1.64 1.50 0.13 

IND60 10.0567 77.1021 101 12.22 1.74 2.26 0.32 

IND61 10.0350 77.0842 100 12.84 1.69 1.54 0.23 

IND64 10.0183 77.2075 101 11.68 1.83 1.46 0.16  
Table 10 Track length distribution and Dpar data for Kerala 
 

 

The “boomerang plot” in Figure 54a shows that there is not a strong relationship between 

AFTT age and TLD. However, the youngest sample with the longest mean TLD is 

contemporaneous with The Seychelles/India rift, and not the Madagascar/India rift (Figure 

54a). Figure 54b indicates that there is no systematic geographic pattern within the AFTT age 

data (e.g., with distance from the coast), but the presence of the youngest sample at the coast 

makes it extremely difficult to envisage escarpment evolution into a downwarped rift margin 

where much older AFTT ages would be expected (Gallagher, 1995). In order to obtain 

constraints on the magnitude of cooling across the transect so as to be able to determine how 

the margin developed (downwarped rift flank versus elevated rift flank), as well as to ascertain 

the timing of the onset of this development, inverse-modelling is necessary. Inverse-modelling 

has only been undertaken on samples that pass the chi-squared test and have p-values greater 

than 0.05.  
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Figure 54 Boomerang plot and age vs distance from the coast for Kerala  
a. Boomerang plot (AFTT age vs mean fission track length) for samples from Kerala.  
b. AFTT age vs distance from the coast for samples from Kerala. The timing of The 
Seychelles/India rift and the Madagascar/India rift are marked by the solid bars. 
 

Figure 13 displays the predicted AFTT results of all three conceptual models for constant 

escarpment formation initiated at 65 Ma (solid and dashed lines) and AFTT ages from the 

Cochin – Munnar traverse (see section 5.2) as solid circles. The trend and magnitude of the 

measured AFTT ages are reproduced adequately if the escarpment forms via the pinned divide 

model either with 4.5 km of rebound (more suitable fit to the data at the coast) or 3 km of 

rebound (more suitable fit to the data towards the escarpment). 
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Figure 55 Predictive forward modelling results and measured data for Kerala 
Predictive forward modelling results for all three conceptual models for constant escarpment retreat begging at 65 Ma 

(solid and dashed lines) with measured data from the Cochin  Munnar traverse (solid circles). The solid grey bar is the 

time of The Seychelles/India rifting event. 

 

5.2.2 AFTT inverse-modelling 

The Kerala AFTT data were inversely modelled using the same methods as applied to the Goa 

and Karnataka data (see section 4.2.2). The start conditions for all model inversions were such 

that the model run time exceeded the fission track age of the sample and the temperature of 

total annealing. The end conditions for each model run were 0 Ma and present day average 

surface temperature (20°C). Initial model runs were completely unconstrained. Subsequent 

model inversions were adapted to search for thermal histories that incorporate: re-burial 

accelerated cooling at 65 Ma and accelerated cooling at 80 Ma. Model inversions used the 

annealing algorithm of Ketcham et al. (1999), and they incorporated a c-axis projection 

correction for confined track lengths (Donelick et al., 1999) and the kinetic parameter Dpar 

(see section 3.2.5.2). Each model run randomly searched for 10,000 thermal histories, and 

retained ‘good’ and ‘acceptable’ thermal histories at the end of each inversion. 
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Inverse-modelling results are displayed in Figure 56a-d as time-temperature plots with the 

green envelopes encompassing acceptable thermal histories and the purple envelopes 

encompassing good thermal histories. IND/40/04 is the only sample that provides an age 

contemporaneous with The Seychelles/India rift. Inverse-modelling results from IND/40/04 

indicate that the data are adequately reproduced if the sample cooled rapidly at 65 Ma. If the 

sample is allowed to rapidly cool earlier at 80 Ma or re-burial occurs, model inversions fail to 

locate any thermal histories that fit the data (Figure 56a). The coastal sample can be interpreted 

as having rapidly cooled from the base of the PAZ at the time of The Seychelles/India rift. 

IND/40/04 has apatite grains with an average Dpar value of 1.77 µm, which will fully anneal at 

111 °C. This cooling is equivalent to denudation in excess of 4.5 km for a palaeogethermal 

gradient of 20°C/km and a palaeosurface temperature of 20°C. 

Five further samples return inverse-modelling results that support accelerated cooling from 

within the PAZ at 65 Ma (Figure 56a-d and Figure 57). These samples are modelled as having 

a pre-rift history within the PAZ prior to accelerated cooling at 65 Ma from temperatures of 

between 70°C and 50°C. A pre-rift history within the PAZ is supported by the old AFTT ages 

and complex TLDs that indicate the fission tracks have been partially annealed. These data 

cannot adequately be reproduced if accelerated cooling occurs at 80 Ma or re-burial occurs 

(Figure 56a-c). Cooling from temperatures between 70°C and 50°C is equivalent to denudation 

of between 2.5 km and 1.5 km. These three samples and IND/40/04 support the hypothesis that 

The Seychelles/India rifting event triggered a denudational response and initiated the formation 

of the escarpment along the southern portion of the Western Indian margin. 

Inverse-modelling of one samples (IND/50/04) provide ambiguous results that can be 

explained by accelerated cooling at either 65 Ma or 80 Ma (Figure 56d). There is no obvious 

explanation for IND/50/04 and the reason for successful inversion results for both simulated 

rifting events remains unclear. IND/50/04 could not be successfully inverse-modelled if re-

burial occurs. This sample is bordered on either side by samples which rule out rapid cooling at 

80 Ma. It is difficult to envisage some segments of the transect being affected by one rifting 

event and others by a different rifting event. Consequently, although this sample cannot 

provide robust constraints, they are not inconsistent with having also rapidly cooled at 65 Ma. 
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Figure 56 AFTT inverse-modelling results for Kerala 
Green envelopes are ‘acceptable’ thermal histories, purple envelopes are ‘good’ thermal histories. 
 

The amount of cooling inferred from the inverse-modelling is greatest close to the coast (from 

at least 111°C) and smaller further inland (from 70–50°C), a pattern of cooling that is 

compatible with escarpment formation into an elevated rift flank. It is difficult to envisage 

escarpment formation into a downwarped rift flank based on the results of inverse-modelling 

of AFTT data. Table 11 displays a summary of the magnitude of denudation for different 

palaeogeothermal gradients for samples from Kerala. As with the data from Goa and 

Karnataka, the magnitude of cooling further inland is small enough to test the sensitivity of the 

AFTT technique and constraining the post-rift cooling is challenging. Section 5.3 reports new 

(U-Th)/He data which are used to enhance constraints on post rift cooling. 
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Sample 
Name 

Lat. 
(°N) 

Long. 
(°E) 

Post break-up 
cooling (°C) 

Magnitude of denudation (km) for 
variable palaeogethermal gradients 

   65 Ma – 0 Ma 20 °C/km 40 °C/km 60 °C/km 
IND/40/04 9.9512 76.3871 90 4.50 2.25 1.50 

IND/41/04 9.9715 76.4196 50 2.50 1.25 0.83 

IND/42/04 9.9686 76.4750 30 1.50 0.75 0.33 

IND/43/04 9.9881 76.5722 40 2.00 1.00 0.67 

IND/45/04 10.0532 76.6004 50 2.50 1.25 0.83 

IND/49/04 10.0584 76.7872 50 2.50 1.25 0.83 

IND/52/04 10.0187 76.9239 50 2.50 1.25 0.83 

IND/53/04 10.0081 76.9723 50 2.50 1.25 0.83 

IND/54/04 10.0099 77.0021 50 2.50 1.25 0.83 

IND/55/04 10.0232 76.9873 40 2.00 1.00 0.67 

IND/56/04 10.0348 76.9846 30 1.50 0.75 0.33 

IND/57/04 10.0353 77.0177 40 2.00 1.00 0.67 

IND/58/04 10.0575 77.0568 40 2.00 1.00 0.67 

IND/60/04 10.0567 77.1021 40 2.00 1.00 0.67 

IND/61/04 10.0350 77.0842 50 2.50 1.25 0.83 

IND/64/04 10.0183 77.2075 50 2.50 1.25 0.83  
Table 11 Summary of magnitude of post break-up cooling for Kerala 
Summary of magnitude of post break-up cooling from modelled AFTT data and magnitude of denudation based on 

variable palaeogeothermal gradients. 
 

 
Figure 57 AFTT constraints on the time of accelerated cooling for Kerala 
Apatite fission track constraints on the time of accelerated cooling (x-axis) for individual inverse-
modelled samples (y-axis). The majority of samples can be successfully modelled with an 
accelerated cooling event at ~ 65 Ma (solid bars); however one sample (IND/50/04) can also be 
modelled successfully with accelerated cooling at ~ 80 Ma (dashed bars). The solid red line is the 
average timeof cooling for the modelled samples (59Ma). 
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5.3 (U-Th)/He data 

Compared to the samples from Goa and Karantaka, the apatites and zircons from Kerala were 

better quality (i.e. good apatite morphology and clean surfaces) and more abundant. Apatite 

(U-Th)/He (AHe) analyses were undertaken on IND/40/04, IND/42/04, IND/46/04, IND/52/04 

and IND/64/04 (see Figure 52 and Table 12). IND/40/04 was also analysed for zircon (U-

Th)/He (ZrHe) (see Table13). Three to four inclusion free crystals were analysed per aliquot. 

Helium was extracted using a diode laser and analysis methods are reported in Appendix A. 

The samples were selected because they cover the major geomorphic features of the region – 

coastal plain, escarpment and elevated zone landward of the escarpment – and nearly the full 

range of elevations.  

Table 12 displays the results for AHe and ZrHe analyses from Kerala. Alpha recoil-corrected 

AHe ages range from 36.8 Ma to 104.7 Ma and are all younger than AFTT ages from the same 

samples. Three samples on the coastal plain (IND/40/04, IND/42/04 and IND/46/04 all yielded 

AHe ages less than 65 Ma, whereas the remaining two samples located at the escarpment 

(IND/52/04) and in the elevated zone further east (IND/64/04) produce AHe ages greater than 

65 Ma (Figure 58). This pattern in ages is very difficult to explain if the escarpment formed 

into a downwarped rift margin. The AHe ages at the coast are all younger than the time of The 

Seychelles/India rift suggesting that either these samples cooled rapidly after 65 Ma, or they 

cooled slowly through the PRZ starting at 65 Ma. In the next section the data are modelled in 

order to test if these ages could be produced from an increased cooling event in response to 

rifting between Madagascar and India. 



 
Apatite (U-Th)/He 
Sample 
name 

Degrees  
(N) 

Degrees  
(E) 

Elevation 
(m) Replicate 

238U  
(ng) 

232Th  
(ng) 

4He 
(cc) 

Uncorrected 
He age (Ma) 

Corrected He 
age (Ma) 

Mean age 
(Ma) 2σ 

Analytical 
Error (Ma) AFT age (Ma) 

IND/40/04 9.9512 76.3871 0 I 0.0175 0.1189 1.588x10
-10

 28.7 36.8 48.0 26.5 0.9 61.8 

IND/40/04    II 0.0656 0.0824 4.984x10
-10

 48.0 64.0   1.3  

IND/40/04    III 0.0352 0.3329 4.813x10
-10

 34.8 43.1   0.8  

IND/42/04 9.9686 76.4750 64 I 0.1137 0.3479 7.065x10
-10

 29.6 38.1 45.0 19.5 0.9 186.6 

IND/42/04    II 0.0784 0.5932 1.100x10
-09

 41.4 51.9   1.1  

IND/46/04 10.0534 76.6006 47 I 0.0922 0.1233 5.653x10
-10

 38.2 49.3 44.1 13.6 1.2 138.1 

IND/46/04    II 0.0213 0.0647 1.127x10
-10

 25.3 36.4   1.5  

IND/46/04    III 0.0702 0.0965 4.007x10
-10

 35.4 46.6   1.1  

IND/52/04 10.0187 76.9239 548 I 0.4292 0.1307 3.535x10
-09

 62.9 76.8 92.7 28.2 1.6 165.7 

IND/52/04    II 0.0810 0.0538 8.968x10
-10

 78.2 103.6   2.3  

IND/52/04    III 0.0984 0.0480 1.005x10
-09

 74.9 97.8   2.6  

IND/64/04 10.0183 77.2075 1303 I 0.3323 0.3718 4.407x10
-09

 85.7 104.7 84.9 36.3 2.4 163.8 

IND/64/04    II 0.0621 0.2263 7.427x10
-10

 52.8 69.0   1.9  

IND/64/04    III 0.1283 0.2590 1.423x10
-09

 61.5 81.0   2.0  

              
Zircon (U-Th)/He   
Sample 
name 

Degrees  
(N) 

Degrees  
(E) 

Elevation 
(m) Replicate 

238U  
(ng) 

232Th  
(ng) 

4He 
(cc) 

Uncorrected 
He age (Ma) 

Corrected He 
age (Ma) 

Mean age 
(Ma) 2σ 

Analytical 
Error (Ma) 

AFT age 
(Ma) 

IND/40/04 9.9512 76.3871 0 I 1.2652 0.5148 4.768x10
-08

 254.0 364.6 385.5 69.7 7.2 61.8 

IND/40/04       II 1.1093 0.8068 5.977x10
-08

 335.8 485.7   9.9  

IND/40/04    III 1.4716 0.4144 5.385x10
-08

 255.7 367.1   8.2  

IND/40/04    IV 2.8599 0.5205 9.388x10
-08

 243.1 324.2   7.0   
 
        
      Table 12 and 13 (U-Th)/He data from Kerala 

    Errors are quoted to 2σ for multiple analyses. Single analyses are quoted to 6%, the same errors associated with analysis of Durnago apatite.   
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Figure 58 Apatite (U-Th)/He plot from Kerala 
AHe age versus distance from the coast for samples analysed from Kerala. Error bars are 2 
s.d. Younger ages are observed closest to the coast becoming older towards the 
escarpment, a pattern more consitent with denudation of an elevated rift flank.   
 

The alpha recoil-corrected ZrHe ages for IND/40/04 are between 324.2 Ma and 485.7 Ma, 

much older than the AFTT age (62 Ma). These data indicate that although this sample has 

cooled from the base of the PAZ (as indicated by the AFTT data) it must have cooled from 

within the zircon PRZ prior to rifting to allow the accumulation and retention of He that would 

produce such an old ZrHe age. The temperature from which IND/40/04 has cooled from at 65 

Ma is not immediately apparent from the data; however, inverse-modelling in the following 

section attempts to quantify this. 
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5.3.1 Inverse-modelling (U-Th)/He data 

All five AHe samples and the single ZrHe sample were inversely modelled using the methods 

and model parameters outlined in section 4.2.2 except that a helium diffusion model (Farley, 

2000; Reiners et al., 2004) was implemented instead of a fission track annealing model. Model 

runs were designed to simulate increased cooling at 80 Ma and 65 Ma. The average age and 

the average equivalent radius of each sample were used to carry out the model inversions. 

AHe inverse-modelling results from IND/40/04 support the information provided by the AFTT 

data: the AHe data can be suitably reproduced if the sample is rapidly cooled from the base of 

the PRZ at 65 Ma. However, to reproduce the AHe age, the sample must remain within the 

PRZ during the post-rift period to allow a proportion of helium to diffuse out of the crystal and 

produce an AHe age less than 65 Ma. The inverse-modelling results demonstrate that the AHe 

data provide improved control on the post-rift segment of the thermal history of IND/40/04 

(Figure 59a). The data from IND/40/04 cannot be adequately reproduced if the sample is 

modelled as having rapidly cooled from the base of the PRZ at 80 Ma unless the sample is held 

within the PRZ for the entire duration of the post-rift period and then cools rapidly (Figure 

59a). A very late stage rapid cooling event is difficult to justify and there are no obvious 

mechanisms that could be responsible for such an event. 

AFTT inverse-modelling results for IND/40/04 indicate that the data could be reproduced if the 

sample rapidly cooled from the base of the PAZ at 65 Ma. However, the AFTT data are unable 

to constrain how far below the PAZ the sample could have cooled from. ZrHe inverse-

modelling results for IND/40/04 show that the data can be reproduced if the sample is allowed 

to cool from between 130°C and 110°C within the zircon PRZ (Figure 59a). If the sample 

cools from greater than 130°C the predicted ZrHe age is too young and if it cools from less 

than 110°C the predicted ZrHe age is too old. Inverse-modelling results also demonstrate that 

the ZrHe data are insensitive to the timing of the onset of rapid cooling and the data can be 

adequately reproduced for cooling at either 65 Ma or 80 Ma. 

IND/42/04 and IND/46/04 produced similar AHe inverse-modelling results. If the samples are 

allowed to cool at 65 Ma the data can be reproduced successfully but only if the rate of cooling 

is between 1.7°C/Myr and 0.9°C/Myr (similar to the post-rift cooling rates predicted for 

IND/40/04) and only if they cool from greater than 80°C (Figure 59b). If these samples cool 

more rapidly at 65 Ma or cool from less than 80°C then the predicted AHe age is too old. 

When IND/42/04 and IND/46/04 are inversely modelled with cooling occurring at 80 Ma, then 

it is only possible to model the data successfully when the post-rift cooling rate is very slow 

and there is a late-stage rapid cooling event (Figure 59b). 
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AHe inverse-modelling results for IND/52/04 and IND/64/04 are less conclusive. Cooling at 

65 Ma and cooling at 80 Ma both provide satisfactory modelled results that are consistent with 

the measured data. Samples must cool from between 60°C and 70°C, if cooling occurs at 65 

Ma, or from greater than 80°C, if cooling occurs at 80 Ma (Figure 59c). It is difficult to 

envisage these samples to be recording a cooling signal from the Madagascar/India rifting 

event when samples further west on the coastal plain appear to be recording a cooling signal 

from The Seychelles/India rift.  

The inverse-modelling of the apatite (U-Th)/He data provide support for the AFTT-derived 

conclusion that there was a strong denudational response to rifting between The Seychelles and 

India. Inverse-modelling also provides information on the magnitude of cooling across the 

region. For instance, IND/40/04 must have cooled from between 130°C and 110°C, which is 

equivalent to between 5.5 km and 4.5 km of denudation. The two samples on the coastal plain 

(IND/42/04 and IND/46/04) are modelled as having cooled from 80°C, corresponding to 3 km 

denudation. The two samples at the escarpment (IND/52/04 and IND/64/04) are modelled as 

having cooled from between 70°C and 60°C, equivalent to between 2.5 km and 2 km of 

denudation since 65 Ma. This pattern and magnitude of denudation is more consistent with 

escarpment formation into an elevated rift flank. 
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Figure 59 Results from apatite and zircon (U-Th)/He inverse-modelling of samples 
from Kerala 
Green envelopes are ‘acceptable’ thermal histories, purple envelopes are ‘good’ thermal histories. 
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5.4 Simultaneous inverse-modelling 

Simultaneous inverse-modelling was implemented for two samples, (IND/40/04and 

IND/46/04). The parameters in each model run were the same as those used for the model 

inversion of each thermochronometer separately (section 0 and 5.3.1). The important 

difference from the modelling of the data from the individual thermochronometers is that with 

simultaneous inverse-modelling, successful inversion must satisfy both AFTT data and AHe 

data. Model runs were set up to test if a denudational response occurred in response to either 

rifting at 65 Ma or rifting at 80 Ma.  

The results from IND/40/04 indicate that the data are best explained if the sample cooled 

rapidly from greater than 110ºC to 60ºC at 65 Ma followed by less rapid cooling (0.6ºC/Ma) to 

present day temperatures. This supports the information provided from the inverse-modelling 

of each thermochronometer and confirms that there is no support for rapid cooling at 80 Ma 

(Figure 60). Cooling from greater than 110ºC is equivalent to 4.5 km of denudation.  

Modelling the combined thermochronometers from IND/46/04 is more challenging. 

Acceptable thermal histories that satisfy the AFTT and AHe data were located if the sample 

cools at a rate of 0.7ºC/Myr – 0.6ºC/Myr at 65 Ma from approximately 70ºC, a similar rate to 

the post-rift cooling modelled for IND/40/04. No suitable thermal histories were recovered if 

the sample is allowed to cool at 80 Ma (Figure 60). Cooling from 70ºC at 65 Ma corresponds 

to 2.5 km of denudation. 

These results illustrate how simultaneous inverse-modelling can provide tighter constraints on 

the range of thermal histories for IND/40/04 and IND/46/04. The data that could be adequately 

modelled simultaneous provide support for rapid cooling at 65 Ma, consistent with a 

denudational response to rifting between The Seychelles and India. There is no evidence to 

support a denudational response to rifting between Madagascar and India. The pattern of 

denudation inferred from the simultaneous inverse-modelling results is 4.5 km closest to the 

coast (IND/40/04) decreasing to 2.5 km on rthe coastal plain. This pattern of denudation is 

consistent with escarpment evolution into an elevated rift flank, and is completely inconsistent 

with escarpment retreat into a downwarped rift flank. 
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Figure 60 Simultaneous inverse-modelling results for Kerala 
Simultaneous inverse-modelling results for IND/40/04 and IND/46/04 

Green envelopes are ‘acceptable’ thermal histories, purple envelopes are ‘good’ thermal histories 
 

5.5 Summary and conclusions 

Low temperature thermochronometry of rocks from Kerala provides new information on the 

timing of the onset, and mode, of escarpment formation for this segment of the Western Indian 

margin. The sample closest to the coast (IND/40/04) has an AFTT age that is comparable to 

the age of the onset of rifting between The Seychelles and India. IND/40/04 also has a long, 

uni-modal TLD which can only be produced by rapid cooling from greater than 110°C. 

Inverse-modelling the IND/40/04 data supports the interpretation that this sample cooled 

rapidly from the base of the PAZ at the time of The Seychelles/India rift; there is no evidence 

to support a denudational response in Kerala to rifting between Madagascar and India. 

Inverse-modelling of results from 15 samples from further inland indicate that data from the 

majority of these samples can be suitably reproduced if rapid cooling occurs from between 70 

°C and 50 °C at approximately the time of The Seychelles/India rift. The data cannot be 

reproduced if rapid cooling occurs earlier, at the time of the Madagascar/India rift. Four 
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samples (Figure 56e) provide inverse-modelling results incorporating rapid cooling 

contemporaneous with either rifting event. However, these samples are tentatively interpreted 

as having rapidly cooled at the time of The Seychelles/India rift, consistent with the model 

inversions from surrounding samples. The pattern of cooling inferred from the AFTT data is 

inconsistent with escarpment retreat into a downwarped rift flank, and entirely consistent with 

escarpment evolution into an elevated rift flank (i.e young rift ages at the coast, older ages 

inland). There is little evidence from any of the AFTT data to support active rifting 

incorporating pre-rift uplift with contemporaneous, denudationally-driven rapid cooling (see 

section 1.3).  

It is difficult to provide constraints on the magnitude of cooling from AFTT data of IND/40/04 

because it has cooled from at least the base of the AFTT PAZ. However, inverse-modelling 

results from ZrHe data can only be reproduced if IND/40/04 rapidly cools from between 130°C 

and 110°C. It is also challenging to provide accurate constraints on the magnitude of cooling 

for samples further inland because the data indicate that these samples have cooled from 

between 70°C – 50°C, temperatures which are at the limit of the sensitivity of the AFTT 

technique. Inverse-modelling of AHe data from five samples from the Cochin – Munnar 

transect provides results that adequately reproduce the measured data if rapid cooling occurs at 

65 Ma (i.e.The Seychelles/India rift). However, the data can only be reproduced if the rate of 

post-rift cooling is between 1.7°C/Myr and 0.9°C/Myr. The pattern of cooling across the 

transect is consistent with escarpment evolution into an elevated rift flank. 

Predictive forward modelling of AFTT data for a margin-normal transect provides different 

pattern of ages for the downwarp model and the elevated rift flank models. Forward-modelled 

AFTT ages for escarpment retreat into a downwarped rift flank are very old at the coast 

decreasing to ages that are much younger than the age of rifting (i.e., ~5 – 10 Ma) at the 

escarpment. Forward modelled AFTT ages for escarpment evolution into an elevated rift flank 

are indistinguishable from the age of rifting at the coast increasing towards the base of the 

escarpment. The measured AFTT data form a trend that is compatible with predictive forward 

modelled results for the pinned divide model with 4.5 km of rebound at the coast (decreasing 

to 2.5 km at the escarpment), initiated at the time of The Seychelles/India rift. 

The results from simultaneous inverse-modelling of IND/42/04 and IND/64/04 highlight the 

potential challenges of this approach and model inversions for these samples were 

unsuccessful. However, simultaneous inverse-modelling of the remaining samples illustrates 

that this methodology is successful in providing tighter constraints on their thermal histories. 

Successful simultaneous model inversions are consistent with a denudational response to 

rifting between The Seychelles and India and escarpment evolution into an elevated rift flank. 
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Low temperature thermochronometry from both Goa and Karnataka, and Kerala demonstrate 

that the thermal histories for the Western Indian margin are best explained if an escarpment has 

developed into an elevated rift flank. The elevated rift flank models for passive margin 

evolution incorporate syn-rift lithospheric rift flank uplift (in direct response to rifting) and 

post-rift lithospheric flexure in response to denudational unloading onshore and sediment 

loading offshore (see section 1.2.2). Chapter 6 examines the lithospheric flexural response of 

the Western Indian margin using constraints from low temperature thermochronometry 

onshore (Chapter 4 & 5) and the sediment distribution offshore (Chapter 2).  
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6 Flexure of the lithosphere 

6.1 Introduction 

One of the key aims of this project is to test the competing groups of conceptual models for the 

evolution of the Western Indian high elevation passive margin. Apatite fission track and (U-

Th)/He thermochronometery (chapters 4 and 5) indicate that the thermal history of the shallow 

lithosphere is best explained by a denudational response to escarpment development into an 

elevated rift flank. Similarly, the volume of clastic sediment deposited offshore of this segment 

of the Western Indian margin can only be accounted for by denudation of an elevated rift flank 

(chapter 2). The elevated rift flank models include ongoing flexural modification of the 

lithosphere as a result of denudational unloading onshore and sediment loading offshore. 

Lithospheric flexure is a potentially important mechanism influencing rock uplift, denudation 

and long-term landscape development (Gilchrist and Summerfield, 1990), yet it is poorly 

understood for the Western Indian margin. 

This chapter examines the flexural isostatic response of the Western Indian margin to 

denudational unloading onshore (constrained from low temperature thermochronometry) and 

sediment loading offshore (constrained from basin geometry and sediment volume) to address 

the following questions: 

1. Can rock uplift onshore and subsidence offshore be accounted for solely by flexural 

isostasy?  

2. What are the flexural parameters necessary to generate rock uplift onshore and 

subsidence offshore, and are they compatible with natural conditions and with the 

characteristics of the Western Indian margin? 

3. If flexural isostasy cannot explain the magnitude of rock uplift and subsidence, what 

additional mechanisms can be invoked? 

Prior to discussing the theory of isostatic compensation (see section 6.2) it is necessary to 

examine the different types of vertical displacement acting on a passive margin (see Figure 

14). England and Molnar (1990) defined the following relationship: 
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Surface uplift = Rock uplift – Denudation 

Equation 7 

 

Rock uplift occurs by tectonic uplift, thermal or dynamic mechanisms (e.g. plume/lithosphere 

interactions or mantle convection), isostatic adjustment to sub-lithospheric density variations 

(e.g. underplating or delamination) and isostatic adjustment to surface processes (see section 

1.2.1). This chapter focuses on the isostatic adjustment to the surface processes of denudational 

unloading. If the isostatic response to denudational unloading is the only mechanisms 

generating rock uplift, and there has been no change in surface elevation, then it follows from 

Equation 7 that isostatic uplift (modelled in this chapter) should be equal to denudation 

(constrained from low temperature thermochronmetry). If there is a mismatch between the 

isostatic response to denudational unloading and the magnitude of denudation then either the 

other mechanisms responsible for rock uplift need to be examined, or surface elevation has 

changed (Figure 61). Equation 7 can be modified for the depositional segment of the margin: 

Change in basin elevation = Basin subsidence – (Sediment thickness + water) 

Equation 8 

 

Basin subsidence occurs either as tectonic subsidence, thermal subsidence or isostatic 

subsidence due to sediment and water loading (Allen and Allen, 2005). If it is assumed that the 

basin elevation has not changed and the only mechanism responsible for generating basin 

subsidence is isostatic adjustment to sediment loading, then the sediment thickness 

(constrained from offshore data, (chapter 2) should equal the modelled isostatic response to 

sediment loading. If there is a mismatch between the modelled isostatic response to sediment 

loading and the thickness of sediment present offshore, additional subsidence mechanisms 

must be considered or there has been a change in basin elevation (Figure 61).  

Section 6.2 outlines the different forms of isostatic compensation, namely, local isostasy (Airy 

and Pratt models) and regional isostasy (flexural models). Section 6.3 examines isostasy in the 

context of the Western Indian margin and describes the methods used to model flexure of the 

Indian lithosphere. Section 6.4 reports the results and section 6.5 includes the discussion and 

conclusions. 
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Figure 61 Uplift, subsidence and isostasy 
Diagrammatic illustration of the relationship between denudationally driven isostasy, sediment load driven isostasy and 

additional uplift/subsidence mechanisms. Onshore denudationally driven isostasy is only the same as denudation if there 

is no tectonic uplift, no sub-lithospheric isostasy (e.g. magmatic underplating, lithospheric delamination), or no change in 

surface elevation. Similarly, offshore sediment load driven subsidence is only the same as sediment volume if there is no 

additional thermal/tectonic subsidence or no change in basin elevation. 
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6.2 Isostatic compensation mechanisms 

Isostasy is the state of equilibrium between the lithosphere and asthenosphere whereby 

elevated and depressed areas of the Earth are compensated at depths. The compensation 

mechanism can be either local (see section 6.2.1) or regional (see section 6.2.2). Local isostasy 

treats the lithosphere as individual blocks responding to variations in density or thickness, and 

assumes that the lithosphere has no inherent strength. Local isostasy is an end-member 

condition where changes in the properties of the lithosphere will generate the greatest 

magnitude of rock uplift (or subsidence). Local isostasy has been included in the modelling 

procedure because it is an end-member condition (see section 6.4). Regional isostasy assumes 

that the lithosphere responds elastically over a much greater area and consequently generates 

smaller magnitudes of rock uplift depending on the strength of the lithosphere. For an 

elastically weak lithosphere, flexural isostasy approaches local isostasy and full compensation 

of loads of any size occurs. For an elastically strong lithosphere, flexural isostasy approaches 

completely uncompensated lithosphere capable of supporting large surface loads without any 

isostatic response. 

6.2.1 Local isostasy 

Local isostasy follows Archimedes Principle of hydrostatic equilibrium (first applied to 

isostasy by Fischer (1881)) where discrete, rigid lithospheric blocks move vertically and 

independently of each other while being supported on a fluid sub-stratum. There are two 

established models for local isostasy: the Airy hypothesis (Airy, 1855), subsequently 

developed by Heiskanen (1931), and the Pratt hypothesis (Pratt, 1859) later developed by 

Hayford (1909). The Airy-Heiskanen model assumes that the density of the lithosphere 

everywhere is equal such that areas of upstanding elevation are supported at their base by a 

‘root’ of lithosphere which is less dense than the underlying asthenosphere. Depressed areas 

are supported at their base by an ‘anti-root’ composed of denser asthenosphere (Figure 62a). 

Airy isostatic equilibrium (i.e. the thickness of a root or anti-root) for an elevated lithospheric 

column is defined as: 

( )cm

ch
r

ρρ
ρ
−

=  

Equation 9 
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Where r is the thickness of the root, h is elevation of the lithospheric column, ρc is the average 

density of the lithosphere and ρm is the average density of the asthenosphere. The thickness of 

an anti-root for a depressed lithospheric column is defined as: 

( )
( )cm

wcz
a

ρρ
ρρ

−
−

=  

Equation 10 

 

Where z is the depth of water and ρw is the density of water. 

The Pratt-Hayford model assumes that the thickness of the lithosphere everywhere is equal and 

isostatic equilibrium is achieved through variations in lithospheric density (Figure 62b). The 

density of an elevated area of the lithosphere is defined as: 

( )hT
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Equation 11 

 

Where ρe is the density of the elevated lithospheric column and Tc is the normal thickness of 

lithosphere. The density of a depressed lithospheric column is defined as: 

( )
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Equation 12 

 

Local isostasy represents an end-member scenario capable of generating the maximum amount 

of rock uplift for a given amount of surface lowering. Using typical asthenosphere and 

lithosphere densities (3300 kg/m3 and 2700 kg/m3 respectively), surface lowering of 1 km will 

generate 4.5 km of rock uplift, and accordingly will require 5.5 km of denudation (Equation 9). 

Local isostasy assumes that the lithosphere has no rigidity and no matter how small the applied 

load, the lithosphere will reach isostatic equilibrium. Under certain conditions this assumption 

is valid where there are mechanisms (such as large scale faulting) to accommodate independent 

movement of discrete crustal blocks or the loads are significantly large. However, for many 

geological environments, the assumption that the lithosphere is weak is not appropriate (Banks 

et al., 1977). An alternative mechanism for achieving isostatic equilibrium is regional 
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compensation whereby the lithosphere is not treated as discrete blocks but responds via flexure 

over a broad area. 

 

Figure 62 Models of local isostasy 
a. Airy compensation. Lithospheric blocks are all the same density but vary in thickness. 

b. Pratt compensation. Lithospheric blocks are all the same thickness but vary in density 

 

 

6.2.2 Regional isostasy 

Regional isostasy assumes that the lithosphere responds via flexural subsidence when loaded 

(e.g., by ice, sediments, lava emplacement) or via flexural uplift when unloaded (e.g., by 

deglaciation or denudational unloading) in the same manner as a thin, elastic plate overlying a 

fluid substratum (Gunn, 1943; Vening Meinesz, 1931; Walcott, 1970). A significant difference 

between local isostasy and regional isostasy is that deflection resulting from loading (or 

unloading) of the lithosphere is taken up laterally as well as vertically due to the intrinsic 

strength of the lithosphere. A fundamental consequence of lithospheric flexure is that the 

amount of deflection is reduced and spread over a wide area, the size of which is determined 

by the size of the load, its geometry and the mechanical properties of the lithosphere. A further 

effect of lithospheric flexure is the formation of ‘peripheral bulges’ adjacent to the region of 

deflection (Figure 63a and b). 

Although the flexural response of the lithosphere can be model as a thin elastic plate, due to 

the large horizontal dimensions (relative to vertical thickness) it is also appropriate (and 

mathematically more simplistic) to model the flexural response of the lithosphere as a two 

dimensional elastic beam (Hetenyi, 1979; Timoshenko, 1958; Turcotte and Schubert, 2002; 
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Watts, 2001). The flexural response of the lithosphere modelled as an elastic beam takes the 

form of the fourth order differential equation (see Watts (2001)for derivation): 

( ) 0inf4

4

=−+ gW
dx

WDd
illm ρρ  

Equation 13 

 

Where D is the flexural rigidity (see below), W is the vertical stress, g is the acceleration due to 

gravity, ρm and ρinfill are the mantle and infilling (or removed) material densities respectively. 

The flexural response of an elastic beam can be modelled as either continuous or semi-

continuous (broken at one end). A continuous beam is analogous to an unfaulted section of 

lithosphere, a broken plate is analogous to a slab of lithosphere split by a major fault at one 

end. Equation 13 can be solved for a continuous beam (Equation 14) and a broken beam 

(Equation 15) (Pazzaglia and Gardner, 1994; Watts, 2001): 
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Equation 15 

 

Where Wb (x) is the deflection at distance x from Wo the maximum deflection at the point of 

loading. Wo is defined as (see Figure 63a): 

D
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Equation 16 

 

Where D, the flexural rigidity, and α and q are flexural parameters defined by the following 

relationships (Pazzaglia and Gardner, 1994): 
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xygq ill ∆= infρ  

Equation 19 

 

Where E is the plate elasticity, v is the Poisson’s ratio and Te is the effective elastic thickness, a 

parameter used to estimate the flexural rigidity of the lithosphere. For oceanic lithosphere the 

effective elastic thickness approximately corresponds to the depth of the 600°C isotherm 

(Watts, 2001). For continental lithosphere (which is structurally more complex), the effective 

elastic thickness does not correspond to a specific layer and is more challenging to estimate 

(Burov and Diament, 1996; Burov and Diament, 1995). Estimates of Te for continental 

lithosphere range between 5km and 70km (Watts, 2001). The infilling material and mantle 

densities are ρinfill and ρm respectively, ∆xy is the cross-section that is loading (or unloading) the 

lithosphere at a particular point. Equations 14 and 15 must be solved for flexure deflection in 

response to both sediment loading (ρinfill = sediment density and ∆xy = the cross-section of 

sediment loading the lithosphere) and water loading (ρinfill = water density and ∆xy = the cross-

section of water loading the lithosphere). 

The geometry of the flexural response of the lithosphere can be calculated for the half width of 

the depression (X0) analogous to the flexural wavelength (Equation 20), the distance from the 

point of maximum deflection to the peripheral bulge (Xpb) (Equation 21), and the magnitude of 

the peripheral bulge (Wpb) (Equation 22). 

4
3

0
πα

=X  

Equation 20 

 

πα=pbX  

Equation 21 
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00 0432.0 WeWWpb −=−= −π  

Equation 22 

 

Figure 63a illustrates the different parameters in Equation 13 - Equation 22 for modelling the 

lithosphere as a thin elastic beam. 

Table 14 and Table 15 list the parameters necessary for modelling the isostatic flexural 

response of the lithosphere. 

Constants   Variables  
ν 0.25  ρinfill (offshore) See section 6.3 

E 70 x 10
9
 Pa  ρinfill (onshore) for constraints for  

g 9.8 ms
-2

  ∆xy Western India 

ρm 3300 kg/m
3
  Te   

Table 14 Constants for modelling lithospheric flexure 
Table 15 Variables for modelling lithospheric flexure 
 

The density of material deposited offshore (resulting in flexural subsidence from sediment 

loading) is constrained by the average density of the sediment in the Konkan-Kerala Basin (see 

chapter 2 and section 6.3). The density of the material that has been removed onshore 

(resulting in flexure uplift from denudational unloading) is constrained by the average density 

of crystalline rocks composing the Western Indian margin (section 6.3).  

Distributed loads of various sizes result in contrasting flexural responses such that a narrow 

load flexes the lithosphere differently to a wide load. The geometry of the cross sectional area 

(∆xy) loading the lithosphere (offshore) and unloading the lithosphere (onshore) is constrained 

from the sediment distribution in the Konkan-Kerala Basin and low temperature 

thermochronometery of rocks onshore, respectively (section 6.3). 

The effective elastic thickness (Te) is a theoretical thickness that does not correspond to either a 

mechanical or thermal layer within the lithosphere (Stuwe, 2001). It is a useful variable, 

nonetheless, for altering the flexural properties of the lithosphere. Modifying Te provides 

different magnitudes and geometries of deflection such that low Te values generate large 

amounts of flexure over short distances (approaching local compensation) and large Te values 

generate lower amounts of flexure but over greater distances (approaching no compensation 

and completely rigid lithosphere) (Figure 63b). Estimates for Te are provided in section 6.3. 
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Figure 63 Regional isostasy 
a. Different parameters for modelling the flexural response of the lithosphere as a loaded beam (offshore).The same 

diagram reflected in the horizontal plain illustrates the different parameters for modelling the flexural response of the 

lithosphere as an unloaded beam (onshore). 

b. The geometry of flexure for different effective elastic thicknesses. High Te represents flexurally stronger lithosphere 

with a small magnitude of deflection over a large horizontal distance. Peripheral bulges are also small and extend over 

large horizontal distances. Low Te represents flexurally weak lithosphere with larger amounts of deflection over smaller 

horizonbtal distances and larger peripheral bulges. 
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6.3 Isostasy and the Western Indian margin 

The flexural response of the Western Indian margin has previously been modelled as a 

continuous elastic beam, and a semi-continuous beam with one free end (Gunnell and Fleitout, 

1998, 2000). The broken plate model simulates a break or fault that effectively de-couples the 

onshore and offshore portions of the margin. The much-debated, putative offshore West Coast 

Fault could represent such a de-coupling zone (Balakrishnan, 2001; Chandrasekharam, 1985). 

As a consequence of increased availability of borehole data offshore (Chapter 2) and the 

improved constraints from low temperature thermochronometery onshore (Chapters 4 and 5), 

flexure modelling in response to sediment loading and denudational unloading of the Western 

Indian lithosphere can now be refined. Section 6.3 (this section) outlines the parameters 

employed for flexural modelling (Te, ∆xy and ρinfill) and the methods applied to simulate a 

continuous beam and a semi-continuous beam; section 6.4 presents the results. 

Published constraints for the effective elastic thickness of the Indian sub-continent are rare and 

are summarised in Table 16. 

Publication Te values Method 
Watts and Cox (1989) 100 km Modelling Deccan lava emplacement 

Gunnell and Fleitout (1998)and (2000) 35 km – 70 km Finite difference numerical modelling 

Stephen et al., (2004) 13 km Gravity and topographic coherence function for 

the South Indian Shield 

Rajesh and Mishra (2004) 12 km – 36 km Multitaper spectral analysis 

Chand and Subrahmanyam (2003) 10 km – 13 km Gravity and bathymetry cross-spectral analysis 

Tiwari et al.(2006) 10 km Gravity and topography admittance for the Deccan 

Volcanic Province  
Table 16 Published constraints for Te of the Indian sub-continent. 
 

 

In recognition of the large range of published Te estimates for Western Indian, Te values 

ranging from 10 km to 70 km have been modelled. The oceanic/continental crust transition is 

thought to occur west of the Chagos-Laccadive ridge (Kolla and Coumes, 1990) (Figure 5 and 

Figure 16), The lithosphere beneath the Konkan-Kerala basin therefore has similar rheological 

properties to the adjacent onshore lithosphere and the flexural properties (including Te) should 

also be similar. 

The modelled lithosphere was split into eight cells, five 100 km wide cells representing the 

lithosphere offshore and three for the lithosphere onshore (one 50 km wide cell seaward of the 

escarpment and two 100 km wide cells landward of the escarpment) (Figure 64a). The present 

day coast was taken as the boundary between the loaded offshore section of lithosphere and the 
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unloaded onshore section of the lithosphere. The position of the coastline is largely a function 

of Holocene eustatic sea level rise but it nonetheless marks a reasonable boundary between 

onshore erosion and offshore deposition. It is recognised that the position of the coast will have 

altered throughout the geological history of the Western Indian margin; however, there are no 

adequate constraints on coastal palaeoposition (see chapter 2) so the simplifying assumption is 

made that the coastline has, on average, effectively remained constant. 

The flexural responses for each cell in the cross-section (including the flexural effects on 

neighbouring cells) were modelled for both a continuous beam (Equation 14) and a semi-

continuous beam (Equation 15). The flexural effects of neighbouring cells were allowed to 

propagate throughout the modelled lithosphere for a continuous beam; however, for a semi-

continuous beam, the flexural effects were not transmitted across the broken section of the 

beam (i.e., across the onshore/offshore boundary) (Figure 64b). The ∆xy values for each of the 

five cells loading the lithosphere offshore were obtained by taking the average decompacted 

sediment thicknesses parallel to the margin from their position offshore using the sediment 

isopach maps of (Rao and Srivastava, 1984). The flexural effects of water loading each cell 

were also added using a density of 1000 kg/m3 and ∆xy values for the current average water 

depth (500m). Upper and lower limits for flexural deflection have also been calculated for 

water depths that are 200m higher than present day and 200m lower than present day (see 

Figure 18 and Table 17). The ∆xy value for the cell seaward of the escarpment was obtained 

using constraints from low temperature thermochronometery, and the ∆xy values for the two 

cells landward of the escarpment were obtained by assuming that 500 m of lithosphere has 

been denuded from the interior plateau since the onset of rifting. This is a reasonable value 

because there is evidence for the removal of ca. 500 m Deccan lavas inland of the escarpment 

north of the study area (Widdowson, 1997). The flexural effects from each loaded cell and 

neighbouring cells (including peripheral bulges) were then summed to provide the total 

deflection at a particular point along the modelled lithosphere (Figure 64a). A density of 1200 

kg m-3 (average for shaley sandstone) was adopted for the offshore segment and a density of 

2700 kg m-3 (average for crystalline rocks) for the onshore segment (Rust and Summerfield, 

1990). Table 17 summarises the parameters for each of the eight cells used to model 

lithospheric flexure.  
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Figure 64 Flexural modelling set-up. 
a. The lithosphere modelled as a thin elastic beam split into eight cells (A-H). Each cell 
exerts a flexural response on the elastic beam depending on if it is loaded or unloaded, 
what the density of the load is and what the cross sectional area of the load is (narrow 
dashed lines). The wide dashed lines indicate the total accumulated flexure for a particular 
point along the beam from the combined flexural effects of each cell. 
b. Difference between the continuous beam and semi-continuous beam for cells adjacent to 
the onshore/offshore transition. Semi-continuous beam does not include the flexural effects 
propagating through the onshore/offshore transition (red dashed lines in the continuous 
beam model) 
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 Offshore Onshore 
Cell A B C D E F G H 
Dist. from 
coast (km) 

-450 -350 -250 -150 -50 25 125 225 

∆xy sediment 
(km2) 

74 90 109 195 125 100 50 50 

ρinfill sediment 
(kg/m3) 

1200 1200 1200 1200 1200 2700 2700 2700 

∆xy water 
(km2) 

50 ±20 50 ±20 50 ±20 50 ±20 25 ±10 - - - 

ρinfill water 
(kg/m3) 

1000 1000 1000 1000 1000 - - - 

 
Table 17 Summary of cell parameters 
 

 

6.4 Results 

Results of flexural isostatic modelling are summarised for a continuous beam in Table 18 and a 

semi-continuous beam in Table 19 for a range of effective elastic thicknesses. Results of 

modelling a beam with an effective elastic thickness of 2 km are included to model the end 

member situation for a loaded beam compensated locally (effectively Airy isostasy). Figure 65 

and Figure 66 displays the results in diagrammatic form. The maximum offshore flexural 

subsidence is reported in columns 2 as negative values (± values are for water loading with 

sea level 200 m above and below present sea level).The maximum onshore flexural uplift is 

reported in column 4 as positive values. The maximum flexural deflection is important to 

determine if the amount of subsidence offshore and the magnitude of denudation onshore can 

be accounted for by flexural isostasy alone. Columns 3 and 5 report the distance from the point 

of zero flexure to the point of maximum flexure, analogous to the flexural wavelength; it 

should be noted that these values are for the individual cell, not the precise distance where 

maximum flexure occurs. The magnitude of the flexural wavelength is important to establish if 

the geometry of subsidence offshore and denudation onshore can be explained by flexural 

isostasy. 

6.4.1 Continuous beam 

The continuous beam model assumes that the offshore and onshore segments of the modelled 

lithosphere are completely connected such that the flexural effects propagate through adjacent 

segments influences total flexure of neighbouring segments. The maximum flexural subsidence 

offshore ranges from 1.4 km (for low Te values) to 0.7 km (for high Te values). Regardless of 
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the modelled effective elastic thickness, the flexural wavelength remains constant at 150 km 

for the offshore lithosphere. Onshore, the maximum flexural uplift ranges from 1.4 km (for low 

Te values) to 0.5 km (for high Te values). The flexural wavelength is 25 km for small Te values 

(10 – 30 km) and 125 km for higher Te values (50 – 70 km) (see Table 18 and Figure 65). 

 Offshore  Onshore  

Te (km) Wo, maximum 
deflection (km) 

Xo flexural 
wavelength (km) 

Wo, maximum 
deflection (km) 

Xo flexural 
wavelength (km) 

2 (Airy) -4.860 ±0.34 - 4.620 - 

10 -1.415 ±0.12 150 1.350 25 

30 -0.945 ±0.10 150 0.699 25 

50 -0.825 ±0.09 150 0.536 125 

70 -0.710 ±0.08 150 0.532 125 
 
Table 18 Results for a continuous beam 
 
 

 

Figure 65 Model flexural isostatic response of a continuous beam for different 
effective elastic thicknesses. 
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6.4.2 Semi-continuous beam 

The semi-continuous beam model assumes that there is no connection between the offshore 

and onshore segments of the modelled lithosphere and the flexural effects from one segment 

are not transmitted to the other segment. A semi-continuous beam is modelled by incorporating 

a weak zone (with very low Te) across the transition between the offshore and onshore 

segments, effectively simulating the presence of a major fault. Results for maximum flexural 

subsidence offshore range from 1.4 km (low Te values) to 0.5 km (high Te values); flexural 

uplift onshore ranges from 1.5 km (low Te values) to 0.4 km (high Te values). The flexural 

wavelength is insensitive to the range of Te values and remains constant at 150 km and 25 km 

for the offshore and onshore segments respectively (see Table 19 and Figure 66). 

 

 Offshore  Onshore  

Te (km) Wo, maximum 
deflection (km) 

Xo flexural 
wavelength (km) 

Wo, maximum 
deflection (km) 

Xo flexural 
wavelength (km) 

2 (Airy) -4.860 ±0.34 - 4.620 - 

10 -1.417 ±0.06 150 1.510 25 

30 -0.692 ±0.06 150 0.652 25 

50 -0.578 ±0.06 150 0.478 25 

70 -0.520 ±0.06 150 0.402 25 
 
Table 19 Results for a semi-continuous beam 
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Figure 66 Model flexural isostatic response of a semi-continuous beam for different 
effective elastic thicknesses. 
 
 

 

6.5 Conclusions 

The maximum depth to the sediment-basement interface in the centre of the Konkan-Kerala 

basin, measured directly from seismic cross-sections (Figure 20) is 2.5 km. That average 

distance from coast to where the basin is at its deepest is 150km. If subsidence has occurred 

only in response to sediment loading, the depth to the sediment basement interface should be 

the same as the modelled isostatic response to sediment loading (Steckler and Watts, 1980). 

The greatest maximum flexural deflection offshore is generated if the modelled lithosphere has 

a low effective elastic thickness of 10 km. In order to produce the measured 2.5 km of 

subsidence from flexural isostasy alone the effective elastic thickness for the lithosphere would 

have to be less than 10 km. Despite the large range of published constraints for the effective 

elastic thickness of the Indian lithosphere, there is no evidence for low effective elastic 

thicknesses (i.e. less than 10 km). Flexural isostasy may be a contributing mechanism for 

subsidence; however, additional mechanisms must be invoked to account for the 2.5 km to the 

sediment-basement interface observed offshore. Post-rift thermal contraction accompanied by 
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sub-lithospheric thinning (Sleep, 1971; Sleep and Snell, 1976) or lithospheric stretching (Jarvis 

and McKenzie, 1980; McKenzie, 1978) are possible candidates for tectonic subsidence which 

could augment subsidence generated by sediment loading. The modelled flexural wavelength 

(for all Te values) approximates the distance from the present coastline to the centre of the 

basin, implying that although flexural isostasy may not be the only mechanism contributing to 

the magnitude of subsidence, it may control the geometry of regional basin subsidence. 

 

The low temperature thermochronometric data presented in Chapters 4 and 5 indicate that for a 

palaeogeothermal gradient of 20 °C/km the average magnitude of Cenozoic denudation across 

the coastal plain is 2-2.5 km. The maximum magnitude of flexural isostatic rock uplift that can 

be modelled is only ~1.5 km for a weak lithosphere with a low effective elastic thickness, 

falling short of the magnitude of denudation predicted from low temperature 

thermochronometry. Flexural isostasy alone does not adequately explain the magnitude of 

denudation, implicating additional rock uplift mechanisms. Tectonic rock uplift could be a 

possible cause but is often associated with crustal thickening in compressive tectonic settings 

and is difficult to justify in extensional tectonic settings. Alternative isostatic mechanisms such 

as magmatic underplating or lithospheric delamination could augment rock uplift already 

generated from denudational unloading. There is limited evidence for magamatic underplating 

beneath the Deccan volcanic province (Devey and Lightfoot, 1986); however, there is little 

justification for the thicknesses of underplating required to generate ca. 0.5 – 1 km of rock 

uplift needed to supplement the 1.5 km of rock uplift generated from flexural isostaic 

modelling (Gunnell and Fleitout, 1998). Similarly, there is little evidence that lithospheric 

delamination at passive margins can contribute significantly to rock uplift (Doin et al., 1996). 

An alternative explanation for the mismatch between the magnitude of denudation (constrained 

from LTT) and the modelled flexural deflection could be an elevated palaeosurface that has 

subsequently been eroded. Rock uplift (here modelled as flexural isostasy) is a combination of 

denudation and surface uplift (Equation 7 and Figure 61). If an elevated palaeosurface was 

present during the development of the margin, a lowering in this surface (i.e., a decrease in 

surface elevation) in combination with denudational flexural isostasy could account for the 

magnitude of denudation constrained from LTT.  

 

 



Chapter 6  Flexure of the lithosphere 

Daniel Campanile                                                                        155 

The modelled flexural wavelength onshore is 25 km for all values of effective elastic thickness 

except for high Te values of 50 – 70 km when the lithosphere is modelled as a continuous 

beam. A flexural wavelength of 25 km approximates the half-width of the coastal plain, 

suggesting that flexural isostasy operates at similar spatial scales to the large–scale geomorphic 

features of the Western Indian margin. However, samples located close to the present coastline 

yield low temperature thermochronometry data that are best explained if the magnitude of 

denudation (at the coast) is at least 4.5 km (for a palaeogeothermal gradient of 20 °C/km). 

Such extreme spatial variability in denudation (i.e., 4.5 km of denudation at the coast 

decreasing to 2km of denudation only 10–20 km further inland) is difficult to reconcile with a 

model of margin development incorporating lithospheric flexural isostasy only which predicts 

spatial variability in denudation over much longer wavelengths. One possible mechanism for 

generating such exreme spatial variability in denudation could be elevated rift flank uplift 

produced during the initial stages of continental rifting (Weissel and Karner, 1989). Brittle 

deformation of the lithosphere could be an alternative mechanism where the lithosphere 

deforms not only by flexural isostasy but also by vertical movement of major faults. The 

Western Indian margin contains several major shear-zones: Within the southern Granulite 

Terrane there is the Bavali shear-zone, Palghat-Cauvery shear-zone, Moyar shear-zone and 

Achankovil shear-zone (Radhakrishna et al., 2003). It has also been suggested that within the 

Deccan Volcanic province, the Panval Flexure may be a series of faults (Dessai and Bertrand, 

1995; Sheth, 1998).These major structures could be possible candidates for accommodating 

brittle flexural deformation along the Western Indian margin. 

 

The flexural isostasic modelling incorporates additional uplift from the formation of 

‘peripheral bulges’ (see section 6.2.2). The effect of peripheral bulges was included in the total 

flexure modelled for each cell (see section 6.3 and Figure 64a). The peripheral bulges only 

exert an influence on adjacent cells with the continuous beam model because the flexural 

responses of individual cells are allowed to propagate across the onshore/offshore boundary 

(red dashed lines in Figure 64b). However, the effect of peripheral bulges is minimal, > 50 m 

for low Te (10 km) and > 15 m for high Te (70 km) and contributes very little to the total 

flexural isostatic response at any point along the beam. The limited influence of peripheral 

bulges has implications for the continuous and semi-continuous beam models, which provide 

very similar flexural modelling results. From a flexural modelling perspective, the properties 

of the lithosphere (and specifically whether it is broken by the West Coast Fault or not) appear 

to be largely irrelevant. 
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Both sediment mass balance results and low temperature thermochronometery support the 

hypothesis that the Western Indian margin has developed into an elevated rift flank. Flexural 

modelling also demonstrates that regional isostasy can explain a large amount of the observed 

subsidence offshore and denudation onshore using realistic parameters for the properties of the 

modelled lithosphere. However, flexural isostasy alone does not adequately account for the 

magnitude of subsidence or denudation unless low Te values (which are difficult to justify for 

western India) are modelled. Additional mechanisms must be incorporated into models which 

endeavour to understand the evolution of the Western Indian margin. For the offshore segment 

of the margin, thermal subsidence could provide a complimentary mechanism for flexural 

isostasy. Additional mechanisms for generating uplift for the onshore segment of the margin 

are less clear; however, initial rift-flank uplift during the early stages of rifting, ongoing brittle 

deformation of the lithosphere or a (now denuded) elevated palaeosurface could be possible 

candidates. 
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7 Discussion and conclusions 

7.1 Introduction 

The tectonic history and subsequent landscape evolution of the Western Indian elevated 

passive margin is complex and challenging to understand. The timing of margin formation is 

enigmatic; was the Western Indian margin created in response to rifting between India and 

Madagascar, in response to rifting between India and The Seychelles, or a combination of both 

events? What mechanisms are involved in the rifting process and can these mechanisms be 

determined? Has the margin been actively rifted with associated hot spot interactions or 

passively rifted? What is the syn-rift and post-rift effect on long term landscape development 

and what mechanisms play a key role in the evolution of the Western Indian margin? These 

fundamental questions have been difficult to fully address with existing methodologies 

(Gunnell and Radhakrishna, 2001). Multiple applications of different methodologies used in 

this study utilising the offshore sedimentary record, onshore denudational record and the 

isostatic adjustment of the lithosphere has proved effective in resolving some of these long 

standing problems. 

This chapter highlights the specific details drawn from the conclusions of this study and their 

implications for the aforementioned key questions. The connection between major tectonic 

events and the evolution of the Western Indian margin are then explored followed by a 

discussion of the mode of landscape evolution inferred from this study. Finally, 

methodological issues arising from dealing with offshore data, analysing low temperature 

thermochronometry data and numerical modelling are highlighted. 

7.2 Plate tectonics and passive margin evolution 

Passive margins are the end product of lithospheric extension, rupture and ocean basin 

formation which, within the framework of plate tectonics explains many of the large scale 

features of the Earths surface such as the position of continents and oceans, and the 

formation of sedimentary basins (Beaumont et al., 2000; Kearey and Vine, 1996). 

Subsidence and the record provided by sedimentary deposits offshore has been 
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instrumental in our understanding of passive margin development within the context of 

plate tectonics (Allen and Allen, 2005; Gilchrist and Summerfield, 1994); however, the 

onshore elements of passive margins displaying persistent uplift have proved to be more 

challenging to incorporate into plate tectonic models (Beaumont et al., 2000; Gilchrist and 

Summerfield, 1994). Great escarpments at elevated passive margins provide a foundation 

for understanding the dynamics and timing of rifted margin development and provide the 

opportunity to examine the relationships between tectonic processes, surface processes and 

isostatic flexure (Braun et al., 2006; van der Beek, 1995). The principal questions needing 

addressed for the development of passive margins are: What is the timing of the onset of 

surface uplift (and denudation) and how is it related to the timing of rifting (i.e. active 

rifting or passive rifting)? What is the spatial distribution and magnitude of surface uplift 

and what implications are there for the existing conceptual models of passive margin 

development? These questions have been addressed for several passive margins including 

Southern Africa (Brown et al., 1990; Brown et al., 2002b; Gallagher and Brown, 1999; 

Gilchrist et al., 1994a; van der Beek et al., 2002), South Eastern Australia (Moore et al., 

1986; Persano et al., 2002; Persano et al., 2005; van der Beek and Braun, 1998), South 

America (Gallagher et al., 1994), the Red Sea (Balestrieri et al., 2005; Omar and Steckler, 

1995; Steckler et al., 1998) and Western India (Gunnell et al., 2003; Widdowson, 1997). 

The tectonic evolution of the Western Indian margin is linked to both rifting between India and 

The Seychelles and rifting between India and Madagascar with no clear consensus on the 

spatial extent of either rift. Plate reconstructions place The Seychelles microcontinent adjacent 

to the northern third of the margin (Plummer and Belle, 1995; Reeves and de Wit, 2000) and 

the impigment of the Reunion plume with the subsequent emplacement of the Deccan lavas 

has been linked to separation of The Seychelles at ca. 65 Ma (Richards et al., 1989; Storey, 

1995; White and McKenzie, 1995). However, the constraints on the timing of rifting for the 

southern segment of the margin are much poorer and intrusive igneous rocks have been linked 

to The Seychelles/India rift (Radhakrishna et al., 1994; Widdowson et al., 2000) but also the 

Madagascar/India rift (Pande et al., 2001).  

Sediment mass balance analysis is one methodology which has been used to great effect to 

provide information on the evolution of the Southern African margin (Brown et al., 1990; Rust 

and Summerfield, 1990), the North Eastern Atlantic margin (Pazzaglia and Brandon, 1996; 

Pazzaglia and Gardner, 1994) and the Western Indian margin (Gunnell, 2001). The information 

provided from analysis of the sediments within the Konkan-Kerala basin (chapter 2) 

demonstrate that stretching of the lithosphere and basin initiation began during rifting between 

India and Madagascar creating small coast parallel grabens filled with Mesozoic sediments. 
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However, rifting between India and The Seychelles exerted a much greater influence over the 

development of the Konkan-Kerala basin, initiating major basin wide subsidence (Gombos et 

al., 1995) and increased the sediment flux from the onshore portion of the Western Indian 

margin (Chaubey et al., 2002; Rao and Srivastava, 1984; Singh and Lal, 1993). 

The resolution of offshore data allow only spatially averaged information on sediment flux and 

corresponding onshore denudation rates; however, low temperature thermochronometry 

provides more powerful techniques for obtaining more rigorous constraints on the temporal 

and spatial extent of denudation. Low temperature thermochronometry has been used 

successfully to understand the development of passive margins (see reviews in Brown et al 

(1994), Gallagher (1995), Gallagher et al. (1998) and Kohn et al. (2005)). Low temperature 

thermochronometric data (chapters 4 and 5) for both Goa and Karnataka, and Kerala, 

modelling low temperature thermochronomtery data show an increase in the magnitude and 

rate of cooling at 65 Ma with little evidence to support an increase in cooling at 80 Ma. The 

increase in cooling at 65 Ma can be linked to an increase in denudation in response to rifting 

between India and The Seychelles. Low temperature thermochronometry supports rifting in 

response to the breakup of India and The Seychelles for the entire length of the margin, not just 

the northern segments within the Deccan volcanic province. Although basin initiation offshore 

began at ca. 80 Ma, denudation of the onshore portion of the margin did not occur until 65 Ma. 

One possible explanation for rifting along the entire length of the margin during the Seychelles 

break-up event may be the re-activation of existing faults created during the Madagascar India 

rifting event (Chand and Subrahmanyam, 2003) or the exploitation of the pre-existing fabric 

within the Dharwar basement (Kolla and Coumes, 1990; Subrahmanyam et al., 1994; 

Subrahmanyam et al., 1995).  

Passive margins represent the end stages of a sequence involving continental rifting, rupture 

and sea floor spreading. Two generalised models (each associated with different mechanisms 

and different sequences of events) describe how a continental rift evolves into a mature passive 

margin, active rifting and passive rifting. Active rifting involves plume-lithosphere interaction 

where uplift tends to precede rifting (White and McKenzie, 1989; White and McKenzie, 1995), 

with passive rifting, rifting tends to precede uplift (Braun and Beaumont, 1989; Steckler, 

1985). The northern third of Western India has been cited as a volcanically (hence actively) 

rifted margin (Richards et al., 1989; Storey, 1995; White and McKenzie, 1995) and its 

development has been linked to the Reunion Plume (see chapter 1). However, the extent of 

plume impact and its influence on the development of the entire margin is less clear, and there 

is little evidence to support active rifting processes for the southern two thirds of the margin. 

Low temperature thermochronomtery data from this study indicate that the timing of the onset 

of increased denudation is the same in Goa and Karnataka as it is further south in Kerala. If the 
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Reunion Plume is the primary cause of rifting, low temperature thermochornometry data 

should reveal younger accelerated denudation (in response to impingement of the plume) 

further south as India migrated north over the plume. Mechanisms associated with plume 

impacts are generally thermal and hence transient, yet increased denudation rates inferred from 

low temperature thermochronomery lasted throughout the Cenozoic. The Reunion Plume may 

have played a key role in the initiation of continental rupture, but it cannot be responsible for 

the generation and persistence of denudation across the whole margin throughout the 

Cenozoic.  

The offshore mass balance data also highlighted a younger secondary pulse in sediment flux 

beginning in the late Miocene (see chapter 2). The timing of this younger pulse is challenging 

to explain with any rifting mechanism. Late Miocene increases in sediment flux have been 

observed throughout the Asian continent (Metivier et al., 1999; Molnar, 2004; Molnar and 

England, 1990) and is tempting to link the younger pulse within the Konkan-Kerala basin also 

to climate change (Prell and Kutzbach, 1992; Quade et al., 1989). However, with the limited 

information provided form the mass balance analysis the link between climate change and 

accelerated denudation remains tenuous and the hypothesis will need to be tested more fully 

with future work.  

7.3 Long term landscape evolution of Western India 

The classical conceptual models of elevated passive margin development are, escarpment 

retreat into a downwarped rift shoulder (King, 1967a; Ollier and Pain, 1997), and escarpment 

development into an elevated rift shoulder (Gilchrist and Summerfield, 1990, 1994; Gilchrist et 

al., 1994b; Kooi and Beaumont, 1994; Tucker and Slingerland, 1994). These two groups of 

competing conceptual models have been tested for the Southern African margin (van der Beek 

et al., 2002), the Red Sea (Balestrieri et al., 2005) and South Eastern Australia (Persano et al., 

2002; Persano et al., 2005). The elevated rift flank models and the downwarp model have also 

been proposed for the post-rift evolution of Western India and both groups of models explain 

the topography of the margin adequately (Gunnell and Fleitout, 1998, 2000). Widdowson 

(1997) subsequently modified the downwarp model to incorporate post-rift isostatic flexure in 

response to sediment loading and denudational unloading to explain the morphology of the 

northern portion of the Western Indian margin (Widdowson, 1997; Widdowson and Cox, 

1996; Widdowson and Mitchell, 1999). The methodologies utilised within this study target the 

fundamental differences between the conceptual models to determine the likely mode of 

escarpment development. The characteristics that separate the two groups of conceptual 

models and the methodologies employed to determine these characteristics are outlined in 

Table 20. 
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 Downwarped rift 
shoulder (Ollier) 

Elevated rift 
shoulder 

Methodology 

Pattern of denudation 
across the coastal 
plain 

Small closest to the coast 

(< few 100 m) increasing 

towards the base of the 

escarpment. 

Greatest at the coast 

(several km) decreasing 

towards the base of the 

escaroment. 

Low temperature 

thermochronometry 

(chapters 4 and 5) 

Location and 
magnitude of 
maximum denudation 

At the base of the 

escarpment, of the same 

order as the height of the 

escarpment (0.5 – 2.5 km) 

At the coast, magnitude 

dependent on flexural 

strength of the 

lithosphere (1 – 5 km) 

Low temperature 

thermochronometry 

(chapters 4 and 5) 

Flexural response of 
the lithosphere 

Lithosphere attains post-

rift flexural rigidity with 

no flexural isostatic 

adjustments. 

Lithosphere responds via 

flexural isostasy in 

response to sediment 

loading and denudational 

unloading 

Flexural modelling of the 

lithosphere (chapter 6) 

Presence of coastal 
facets  

Yes No Gemorphological field 

evidence 
Magnitude of 
sediment deposited 
offshore 

Approximates the volume 

of a downwarped wedge 

of missing section 

removed from the coastal 

plain.  

Approximates the 

volume of an inverted 

wedge of missing section 

removed from the coastal 

plain. 

Mass balance analysis 

(chapter 2) 

 
Table 20 Conceptual models and methodologies 
 
 

Chapter 2 quantified the volume of sediment deposited in the Konkan-Kerala basin and 

compared it to the equivalent volume of missing sections onshore that would be predicted for a 

downwarped rift shoulder and an elevated rift shoulder. The assumptions were made that the 

Konkan-Kerala basin is a closed system, all the clastic sediment within the Konkan-Kerala 

basin is derived from the onshore segment used to calculate the missing section, and the 

onshore area has remained constant throughout the Cenozoic. These assumptions are justified 

in Chapter 2. The results indicate that the volume of clastic sediment deposited within the 

Konkan-Kerala basin is greater than the volume that would be expected from a denuded wedge 

predicted for a downwarped geometry. The volume of clastic sediment is more consistent with 

erosion of an inverted wedge predicted for an elevated rift shoulder. The downwarp model 

proposed by Widdowson (1997) differs from the downwarp model developed by Ollier and 

Pain (1997) by incorporating ongoing post-rift lithosperic flexure in response to denudational 

unloading. The Widdowson (1997) downwarp model can also account for the volume of 

sediments present offshore. Mass balance analysis can not differentiate between the elevated 

rift flank models and the Widdowson (1997) downwarp model because mass balance analysis 

provides constraints on the total volume of material denuded from the onshore portion of the 

margin, not the spatial pattern of denudation.  
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Surface uplift, rock uplift and denudation are all important processes for understanding models 

of long-term landscape development; however, quantifying denudation is the key to 

differentiating between the competing conceptual models. The spatial pattern and magnitude of 

denudation can be inferred from the cooling histories obtained from low temperature 

thermochronometry and marked differences in the age pattern across a margin normal transect 

are evident for each of the competing groups of conceptual models (Gallagher, 1995; 

Gallagher et al., 1998). Both Goa and Karnataka (chapters 4), and Kerala (chapter 5) display 

AFTT and AHe ages closest to the coast that, when modelled, are more consistent with rapid 

cooling from greater than ~110 ºC. A reasonable assumption given the difficulty in 

extrapolating geothermal gradients over geological timescales where the lithologies are now 

largely absent is a palaeogeothermal gradient of 20 ºC/km for the Western Indian margin (see 

chapters 4 and 5 for details). The corresponding depth of denudation is ~ 4.5 km at the coast, 

an amount that is inconsistent with more modest depth of denudation of only a few hundred 

meters expected for the downwarped rift shoulder model. LTT data across the coastal plains 

for both Goa and Karnataka, and Kerala are modelled as having more modest degrees of 

cooling from temperatures between 50 ºC and 80 ºC, equivalent to 1.5 – 3 km of denudation. 

This pattern of denudation with 4.5 km at the coast and 1.5 – 3 km further inland (with the 

smallest magnitude of denudation close to the escarpment) would be expected for a margin that 

has developed into an elevated rift shoulder with accompanying isostatic rebound.  

Low temperature thermochronometry and in particular the use of AFTT and AHe 

simultaneously has been instrumental in highlighting more subtle differences in the style of 

cooling (and hence denudation) between the two field areas. Inverse-modelling of data from 

Goa and Karnataka are best explained by rocks that cool rapidly from either greater than 110 

ºC (at the coast) or within the PAZ and PRZ (further inland) to temperatures cooler than the 

top of the PRZ less than 10 Myrs after rifting at 65 Ma. Low temperature thermochronometry 

from Kerala can only be modelled if rocks are first rapidly cooled during rifting at 65 Ma but 

remain within the PRZ during the post-rift period cooling less rapidly. Although rifting 

between The Seychelles and India initiated an increase in denudation along the entire length of 

the margin, the regional effects for separate segments of the margin are different. It is unclear 

why there is a difference in the style of cooling between the two field areas but the LTT data 

indicate that the margin may be compartmentalised at a regional level or that the data are poor. 

Flexural isostasy in response to sediment loading offshore and denudational unloading onshore 

has been cited as a possible mechanism accounting for persistence of rift flank uplift at passive 

margins (Gilchrist and Summerfield, 1990, 1994). Modelling the flexural response of the 

lithosphere to sediment loading and denudational unloading has been undertaken for the North 

Eastern Atlantic margin (Pazzaglia and Gardner, 1994), South Easterrn Australian margin 
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(Bishop and Brown, 1992) and the Western Indian margin (Gunnell and Fleitout, 1998, 2000). 

The flexural properties of the lithosphere are a fundamental discriminator between the two 

groups of conceptual models, the downwarped rift shoulder model assumes that the lithosphere 

attains infinite strength, the elevated rift shoulder models assumes the lithosphere has finite 

strength. Chapter 6 examined the lithospheric flexural isostasic response of Western India to 

denudational unloading onshore and sediment loading offshore to determine the extent to 

which flexural isostasy may have influenced the development of the margin. Results from 

flexural isostatic modelling of the Western Indian lithosphere using a range of natural 

parameters for the flexural rigidity indicate that lithospheric flexure in response to 

denudational loading and sediment loading must be operating and the lithosphere cannot be 

infinitely strong. However, flexural isostasy cannot be the sole mechanism generating rock 

uplift and basin subsidence even if the modelled lithosphere is flexurally very weak (see 

chapter 6). Furthermore, the natural wavelengths over which the lithosphere responds 

flexurally are far too large to account for the inferred pattern of denudation (assuming 

denudation is equal to rock uplift) extracted from LTT data. The development of the Western 

Indian margin is clearly very complex and flexural isostasy is one of many mechanisms which 

need to be integrated into models of the Western Indian long-term landscape evolution. 

 

7.4 Methodological issues and future work 

The effectiveness of a mass balance analysis is dependant on the quality of offshore 

sedimentary data, knowledge of the dynamics of the offshore area (i.e. if there is sediment loss 

further offshore or sediment gain from adjacent offshore areas) and constraints on the spatial 

source area of the sediment (Allen and Allen, 2005; Hay et al., 1989; Summerfield, 1991b). 

Chapter 2 draws some important conclusions on the tectonic evolution and long-term 

landscape development of Western India, based on relatively sparse data which only provides 

partial constraints on the sedimentation history of the Konkan-Kerala basin (Chaubey et al., 

2002; Rao and Srivastava, 1984; Rao and Rao, 1995; Singh and Lal, 1993). Offshore data for 

Western India is challenging to obtain, but despite the small quantity of data (relative to the 

area under study) used for the mass balance analysis, it was still possible to test different 

hypothesis regarding the mode of escarpment development (i.e. downwarped or elevated rift 

flank). The mass balance analysis concluded that the volume of sediment present offshore is 

inconsistent with Ollier and Pain’s (1997) downwarp model, and as such the study is an 

advance on prior attempts at mass balance analysis for Western Indian (Gunnell, 2001). As 

more offshore data becomes available, future work will undoubtedly build a more detailed 
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picture of the sedimentary development of the Konkan-Kerala basin and a more robust 

understanding of the linkages between the onshore and offshore domains. 

Apatite fission track and (U-Th)/He data for this study were inversely modelled to extract 

information on the cooling histories from different segments of the Western Indian margin. 

Successful model inversions depend on; the quality of data being modelled, the boundary 

conditions imposed on the modelling and the model input parameters (Donelick et al., 2005; 

Ketcham, 2005). For AFTT, data quality will be affected by; the number of grains used for 

AFTT age calculations, the number of tracks measured for TLD’s, and uranium concentration. 

For (U-Th)/He, data quality will be affected by; helium, uranium and thorium concentrations, 

unquantified zonation of uranium and thorium, reproducibility and overall sample quality 

(identification of inclusions and/or cracks). Model boundary conditions include; the starting 

time and temperature, the finishing time and temperature, the number of model inversions, and 

the allowed complexity for each modelled thermal history. Model input parameters for AFTT 

comprise of; annealing algorithms, kinetic parameters (e.g. Cl % or Dpar), and c-axis projected 

lengths. Model parameters for (U-Th)/He are; diffusion calibrations, and modelled crystal 

geometry. All of these factors will influence the results obtained from inversely modelling 

LTT data which is why this study has chosen to use model results to test different hypotheses 

(i.e. accelerated cooling in response to different rifting events and re-burial in response to 

Deccan lava emplacement) as opposed to acquiring detailed quantitative information on the 

timing and magnitude of cooling for individual samples.  

Inverse-modelling low temperature thermochronometric data results in multiple thermal 

histories and an inherent non-uniqueness making it problematic extracting absolute constraints 

on denudation. One possible solution is to simultaneously inverse-model different 

thermochronometers on the same sample (e.g. Persano et al. (2005). Within this project 

simultaneous inverse-modelling proved effective for providing more robust constraints on 

modelled thermal histories (and hence denudation) for some samples (see sections 4.4 and 5.4). 

However other samples proved difficult or impossible to simultaneously inverse-model 

because the data being modelled were not good quality. Simultaneous inverse-modelling is a 

recent development and it is only within the last few years that user friendly software has 

become available and perhaps as a consequence it has not been used extensively throughout 

the thermochronometry community. If this methodology is to be utilised effectively, precise 

modelling strategies with careful sample selection and realistic model parameters will have to 

be employed.  

Chapter 6 models flexural isostasy of the Western Indian lithosphere constrained form the 

volume of sediment offshore and the magnitude of denudation (from LTT) onshore. Modelling 
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was undertaken using theory developed for the flexure of beams from mechanical engineering 

(Hetenyi, 1979; Timoshenko, 1958), subsequently adapted to account for the properties of the 

lithosphere. Flexural isostatic studies have proved successful in explaining first order patterns 

of subsidence and uplift (Gunnell and Fleitout, 1998, 2000; Pazzaglia and Brandon, 1996; 

Pazzaglia and Gardner, 1994; Watts, 2001) and, for this study, successfully tested the different 

competing conceptual models of long-term landscape development. However, it still remains 

challenging extrapolating material properties of beams to less well constrained material 

properties of the lithosphere. Future work should attempt to quantify the flexural properties of 

the lithosphere more rigorously using region-specific methods that provide information on the 

composition, structure and isostatic condition of the lithosphere such as gravity, bathymetry, 

and seismic surveys (Chand et al., 2001; Chand and Subrahmanyam, 2003; Chandrasekharam, 

1985; Rajesh and Mishra, 2004; Stephen et al., 2004; Tiwari and Mishra, 1999). 

7.5 Conclusions and closing remarks 

The following conclusions can be summarised from this study: 

• The Western Indian margin began development in response to rifting between India 

and Madagascar, but the evolution of the margin (including the formation of the 

escarpment) was influenced primarily by rifting between India and The Seychelles. 

• The India/Seychelles rifting event influenced the development of the entire length 

of the margin from the Deccan Volcanic Province to the Southern Granulite 

Terrane. 

• The Reunion plume may have triggered rifting and sea-floor spreading during the 

development of the Western Indian margin, but did not play a significant role in 

triggering syn- and/or post-rift denudation. Passive rifting mechanisms are 

therefore more significant contributors to the development of the margin. 

• The downwarp model of Ollier and Pain (1997) is not supported by the volume of 

sediment present within the Konkan-Kerala Basin or the pattern of denudation 

inferred from low temperature thermochronometery. 

• Mass balance analysis cannot resolve the downwarp model of Widdowson (1997) 

from the elevated rift flank model; however, the pattern of denudation inferred 
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from apatite fission track and (U-Th)/He analysis can only be explained if the 

Western Indian margin formed into an elevated rift flank. 

• The Western Indian margin appears to be compartmentalised with different styles 

of landscape development occurring on different segments of the margin. The 

Widdowson (1997) downwarp model provides a suitable explanation for the 

evolution of the escarpment within the Deccan Volcanic Province. Low 

temperature thermochronometry is more consistent with margin development into 

an elevated rift flank for the margin south of the Deccan. 

• Modelling the flexural isostatic effects of sediment loading offshore and 

denudational unloading onshore indicate that flexural isostasy is a contributing 

mechanism but that other mechanisms must also be invoked to explain the 

subsidence and uplift patterns observed for Western India.  

This study incorporates a variety of methodologies which individually are powerful techniques 

for addressing the questions regarding the tectonic evolution and long-term landscape 

evolution of the Western Indian elevated passive margin. However, mass balance analysis, new 

low temperature thermochronometry, and flexural modelling of the Western Indian margin 

each reveal issues which future work will need to address. The strength of this study comes 

from multiple applications of these different methodologies resulting in an improved 

understanding of the development of Western India. 
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Appendix A Analytical procedures for low 
temperature thermochronometry 

A.1 Apatite and zircon mineral separation 

Apatite and zircon are obtained by disaggregating 5 – 10 kg of the host rock using a jaw 

crusher and sieving to obtain a sand-sized fraction less than 300 µm. The fraction that is 

coarser than 300 µm is reprocessed in the jaw crusher until there is a sufficient volume of 

crushed rock. The material is then passed across a Wilfley table to wash the sample efficiently 

and provide a rough heavy mineral separate with grains between 300 µm and 65 µm in 

diameter. Once the sample has been dried at room temperature, magnetic minerals are removed 

using, first, a hand magnet and then a Frantz LB-1 magnetic separator. The non-magnetic 

fraction is then processed using standard heavy liquid separation. Firstly, Lithium Sodium 

Tungstate (2.8 g/cm3) is used to remove minerals that are less dense than apatite (and zircon), 

in particular, quartz and feldspar. The dried heavy fraction is processed using Diiodomethane 

(density of 3.3 g/cm3) to separate zircon (heavy fraction) from apatite (light fraction). 

A.2 Apatite fission track analytical techniques 

Apatite crystals from the separate are mounted in epoxy resin on a glass side. The mount is 

ground and polished to reveal flat internal surfaces of the apatite crystals. The mounts are then 

etched in 5 % HNO3 for 20 seconds at 20 °C followed by cleaning with water and alcohol to 

reveal spontaneous tracks. The method employed for this study is the external detector method 

requiring the attachment of a low uranium mica detector to the mount (Hurford and Green, 

1982). To insure full contact of the mica and mount, the mica-mount pairs are secured by 

wrapping in heat-shrunk plastic film. Between 10 and 15 mounts with their detectors are 

stacked together with 2 - 3 mineral standards (e.g. Durango or FCT) interspersed throughout 

the stack and standard glasses (CN5 or European) at the top and base of the stack The stack is 

then irradiated with neutrons at a well-thermalized reactor, for this study at the X-7 facility, 

Lucas Heights, Australia (Neutron fluence of ~ 1016 thermal neutrons/cm3). After irradiation 

samples are separated and the mica sheets are etched in concentrated hydrofluoric acid for 40 

minutes at 20 °C to reveal induced tracks. The mount and detector pairs are arranged together 
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on glass slides such that it is possible to match spontaneous track counts on individual grains to 

their corresponding induced track counts on prints on the mica detector (Figure 67). Induced 

tracks from the standard glasses at the top and base of the stack are also counted to correct for 

the fluence gradient across the stack created during each irradiation. Apatite fission track ages 

were obtained using the external detector method (Hurford and Green, 1982) and the zeta 

calibration method (Hurford and Green, 1983) (see Section B.2). 

 

Figure 67 Apatite fission track sample preparation procedure 
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A.3 Apatite and zircon (U-Th)/He analytical techniques 

A.3.1 Sample preparation 

Apatite and zircon crystals were selected under a binocular polarising microscope at high 

magnification (x 500) to allow the identification of crystals with good morphology lacking any 

defects or inclusions. Defects or cracks can lead to rapid diffusion of helium out of the crystal 

lattice resulting in erroneously young ages. The presence of inclusions can result in 

erroneously old ages either by contributing parentless helium (e.g. in fluid inclusions) or He 

from a source where the parents cannot be measured (e.g. refractory mineral inclusions that do 

not dissolve during the conventional analytical protocol). A second experienced analyst checks 

suitable crystals. Acceptable crystals are then sketched and their dimensions measured using a 

10 µm x 10 µm graticule. Only crystals with similar diameter in excess of 65 µm were used in 

each aliquot in this study to minimise the error associated with the alpha-recoil correction 

(Farley et al., 1996). The number of crystals per aliquot depends on the concentration of U and 

Th, and their age. For this study between two and five crystals were analysed in each aliquot. 

Helium extraction was undertaken initially using an ultra-high vacuum doubled-walled 

resistance furnace following the procedure of (Persano et al., 2005) (apatite analyses only). 

Sample preparation requires that suitable crystals are loaded into individual re-usable stainless 

steel capsules approximately 2 mm in diameter which are then wrapped in degassed copper 

foil. The capsules are then placed into a Monax glass ‘tree’ which is mounted above the 

furnace. In later studies a diode laser was used to extract helium (apatite and zircon analyses). 

Crystals were loaded into 0.5 mm diameter Pt tubes which are crimped at both ends. The Pt 

packets are placed into 1.5 mm deep by 2 mm wide holes in a high purity copper laser pan 

following the procedure of (Foeken et al., 2006). 

A.3.2 Helium analysis 

Prior to He extraction, both the tree (for furnace extraction) and the laser pan (for laser 

extraction) are pumped to ultra-high vacuum using a turbo pump and a 301/second triode ion 

pump for approximately 2 hours. For the furnace method, prior to analyses, the furnace is 

isolated from the monax glass tree and degassed at 1200 °C for approximately 40 minutes. 

Single capsules are dropped sequentially from the tree into a de-gassed furnace and heated to 

950 °C for 40 minutes. It has been demonstrated by (Persano et al., 2002) that this heating 

protocol results in complete degassing of apatite without volatilisation of U or Th. Following 

extraction, the gases are purified using hot and cold TiZr getters and liquid nitrogen-cooled 

charcoal prior to being measured using a Hidden HAL3F quadropole mass spectrometer. 
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During the extraction a 3He spike is added prior to analysis (Persano et al., 2002). After each 

heating cycle, a re-heat cycle is undertaken in order to ensure complete sample de-gassing.  

In later analyses the laser method was employed allowing more rapid sample throughput, 

smaller sample size and increased precision. For complete extraction of He from apatite, a 2 

mm, 0.5 W beam is focused onto each sample separately in the laser pan. Helium extraction is 

achieved by heating the sample to 600 °C for 30 seconds (Foeken et al., 2006). For complete 

extraction of He from zircon, samples were heated to 1200 °C for 20 minutes using a 1.25 – 

2.00 W de-focused beam (Foeken et al., 2006). Evolved gasses were purified and measured in 

an identical manner to the furnace method but without the necessity of a 3He spike.  

A.3.3 Uranium and thorium analysis 

Following extraction of He, the samples are recovered for U and Th analysis using isotopic 

dilution. For apatite, each sample is dissolved using 2 ml of 5 % nitric acid, and spiked using 

0.45 ng of 230Th and 0.18 ng of 235U. Spiked samples were left to equilibrate for 24 hours on a 

hotplate at 80 °C. For zircon, a new methodology was developed by Dobson (Dobson, 2006; 

Dobson et al., in press) involving acid digestion followed by simple cation exchange column 

chemistry for zircon dissolution and U-Th purification.  

The U and Th are analysed using an Inductively Coupled Mass Plasma Spectrometer (ICPMS) 

following the procedure of (Balestrieri et al., 2005; Persano et al., 2002; Persano et al., 2005). 
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Appendix B Calculating AFTT ages 

B.1 The AFTT age equation 

Calculating the apatite fission track age follows the same general principles of other isotopic 

systems requiring knowledge of the concentration of the decaying parent element, the rate at 

which the parent element decays (decay constant) and the concentration of the daughter 

element. However, the basic age equation for a decaying radioisotope must be altered to 

account for two differences: 1) there is no daughter element and it is the accumulation of 

fission tracks that must be quantified; and 2) 238U also decays via α-emission which must be 

corrected for. The fission track age is calculated using: 

( )1exp238 −= t
U

f
s NN αλ

αλ
λ

 

Equation 23 

 

Where sN  is the number of spontaneous fission tracks per unit volume, fλ  is the decay 

constant for spontaneous fission (8.66 x 10-17 y-1(Guedes et al., 2003)), αλ  is the decay 

constant for α-decay (1.55125 x 10-10 y-1), 
U

N 238  is the number of spontaneous fission per unit 

volume, and t  is the isotopic age (years). 
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Three additional alterations must be incorporated into the age equation to obtain a fission track 

age:  

1. The concentration of 238U cannot be measured directly and the standard procedure is to 

have samples irradiated to induce fission of 235U. The external detector method records 

the fission of 235U. The isotopic ratio of 235U/238U is 7.2527 x 10-3 (Hurford and Green, 

1982) and, provided the cross section for induced nuclear fission of 235U and the 

thermal neutron fluence are known, then the amount of 238U can be determined. The 

concentration of 235U can be determined from: 

φσρ Uqi
235=  

Equation 24 

Where ρi is the induced track density from the fission of 235U in the mica detector, q is the 

proportion of tracks intersecting a single plane, 235U is the concentration of 235U, φ  is the 

thermal neutron flux per unit volume and σ is the cross section of 235U for induced fission. 

2. The decay constant for fission ( fλ ) and the neutron fluence are difficult to measure; 

however, the zeta-calibration method (Hurford, 1990; Hurford and Green, 1982, 1983) 

circumnavigates this problem and also accounts for operator differences. The zeta-

calibration method is now applied ubiquitously to fission track analysis (see Section 

B.2).  

3. Both spontaneous and induced fission tracks are measured by counting the number of 

tracks that intersect the polished and etched surfaces of the sample and the detector 

respectively. The density of tracks and a geometry factor must be integrated into the 

age equation. 

Taking into consideration the previous points, the standard age equation for calculating fission 

track ages is therefore: 
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Where ζ  is the empirically obtained zeta-calibration and Dρ  is the induced fission track 

density of a U-doped standard glass irradiated with the sample. G is the geometry factor, sρ  is 

the spontaneous track density and Iρ  is the induced track density. 

B.2 The zeta calibration method 

The empirically obtained zeta-calibration is defined in Equation 26, where induced fission of 

U-doped standard glasses are irradiated with known mineral standards and the track ratios are 

then compared (see Hurford and Green (1983) for details). Spontaneous fission tracks are 

sourced from both above (now polished away) and below the polished surface whereas induced 

tracks are only sourced from below the polished surface; therefore, a geometry factor of 0.5 is 

required (g). The spontaneous and induced track densities are sρ and Iρ  respectively. The zeta 

calibration is defined as: 

g
e

stdis

std

)/(
)1(

ρρλ
ζ

λ −
=  

Equation 26 

 

Where B  is an empirically-defined constant, I is the 235U/238U ratio, and Fσ  is the cross 

section for induced nuclear fission of 235U (580.2 x 10-24 cm 2) (see (Hurford and Green, 

1983) for details). 
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Appendix C AFTT data 

C.1 Western Indian AFTT ages 

Trackkey plots for AFTT samples 
p. 175- 186 
Table 21 AFTT TLD data for Goa and Karnataka 
p. 187 
Table 22 AFTT TLD data for Kerala 
p. 188-189 
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C.1.1  Trackkey plots 
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C.2 Western Indian TLD’s  

C.2.1 Goa and Karnataka 
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C.2.2 Kerala 
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