
https://theses.gla.ac.uk/39054/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
Determining the role of *Aedes aegypti* host SUMOylation in suppressing arbovirus replication

Samuel Stokes

A thesis presented for the degree of Doctor of Philosophy in the College of Medical, Veterinary, and Life Sciences

Biotechnology and Biological Sciences Research Council Doctoral Training Partnership programme - University of Glasgow Centre for Virus Research (CVR)
Abstract

Approximately half the world’s human population is at risk of infection from mosquito-borne arboviruses. Currently, interactions between the mosquito antiviral response and infecting arboviruses remains poorly understood; deciphering these will be crucial to the development of novel methods to limit replication and transmission that could help control future outbreaks. Previous mammalian studies have shown that the *Homo sapiens* Small Ubiquitin-related Modifier (SUMO) pathway plays a fundamental role in multiple aspects of cell biology, including the regulation of host cell immunity. However, this pathway and its impact on arbovirus replication remain uncharacterised in mosquito hosts such as *Aedes aegypti* (*Ae. aegypti; Aa*).

Comparison between the *Ae. aegypti* and *H. sapiens* (*Hs*) SUMOylation pathways demonstrated a high degree of amino acid sequence and structural similarity. The most notable predicted difference is the lack of ability of *Aa*SUMO to form poly-SUMO chains, which have important functions in *H. sapiens*. Biochemical analysis of the *Aa*SUMOylation pathway identified a conserved function, and confirmed that *Aa*SUMO could not efficiently form poly-SUMO chains, unlike *Hs*SUMO3 (its closest *H. sapiens* homologue) due to the absence of an internal SUMO conjugation motif. Catalytically inactive mutants revealed the necessity of *Aa*PIAS (Protein inhibitor of activated STAT) to induce the formation of poly-SUMO chains. Confocal microscopy confirmed that *Aa*SUMO protein is expressed in haemocytes, the salivary glands, ovaries, and midgut, all of which are sites of arboviral replication. Q-PCR investigations have also revealed the *Aa*SUMOylation pathway to be ubiquitously expressed. *In vitro* depletion of the *Aa*SUMOylation pathway led to significantly enhanced levels of Zika, Semliki Forest, and Bunyamwera virus replication, identifying a vital role for *Aa*SUMOylation in the suppression of these arboviruses. Subsequent studies in *H. sapiens* cells have also identified a significant role for *Hs*PIAS1 in suppressing the replication of Zika, Semliki Forest, and Bunyamwera viruses. Furthermore, depletion of *Hs*SUMO1 significantly enhanced the replication of Bunyamwera virus, indicating that SUMOylation suppresses arbovirus in a virus dependent manner. Collectively, these data have identified a novel role for the SUMOylation pathway in
suppressing arbovirus replication in both the vertebrate and invertebrate species in which arboviruses replicate.
Contents

Abstract .. 2
Contents .. 4
List of Figures ... 9
List of Tables ... 11
Acknowledgements ... 12
Authors Declaration ... 15
List of Abbreviations ... 16
1. Introduction .. 24
 1.1. Overview .. 25
 1.2. Importance of studying vector-borne diseases ... 26
 1.2.1. Aedes aegypti .. 26
 1.2.1.1. Mosquito-arbovirus interactions .. 29
 1.3. Arboviruses .. 32
 1.3.1. Alphaviruses .. 34
 1.3.1.1. Alphavirus epidemiology .. 35
 1.3.1.2. Alphavirus disease .. 36
 1.3.1.3. Alphavirus replication ... 37
 1.3.2. Flaviviruses ... 40
 1.3.2.1. Flavivirus epidemiology .. 41
 1.3.2.2. Flavivirus disease .. 41
 1.3.2.3. Flavivirus replication ... 43
 1.3.3. Orthobunyaviruses .. 45
 1.3.3.1. Orthobunyavirus epidemiology .. 47
 1.3.3.2. Orthobunyavirus disease .. 47
 1.3.3.3. Orthobunyavirus replication ... 48
 1.4. Post-translational modification ... 51
 1.4.1. Ubiquitin .. 51
 1.4.2. Overview of the Small Ubiquitin-like MOdifier (SUMO) protein 53
 1.4.2.1. SUMO proteins ... 54
 1.4.2.2. SUMO interaction motifs (SIMs) .. 57
 1.4.2.3. SUMO pathway ... 57
 1.4.2.3.1. Activating enzyme ... 59
 1.4.2.3.2. Conjugating enzyme ... 59
 1.4.2.3.3. Ligating enzyme .. 60
 1.4.2.3.4. Sentrin specific proteases (SEPNs) .. 62
 1.5. Interactions between the viruses and the immune responses regulated by SUMO 63
1.5.1. Vertebrate innate immune response
1.5.1.1. Alphaviruses and innate immune evasion
1.5.1.2. Flaviviruses and innate immune evasion
1.5.1.3. Orthobunyaviruses and innate immune evasion
1.5.2. Invertebrate innate immune response
1.5.2.1. Alphaviruses and Ae. aegypti immune response
1.5.2.2. Flaviviruses and Ae. aegypti immune response
1.5.2.3. Orthobunyaviruses and Ae. aegypti immune response
1.5.3. SUMOylation pathway interactions with viruses
1.5.4. SUMO and arboviruses
1.6. Premise and primary objectives of the project
2. Materials & Methods
2.1. Materials
2.1.1. Cells and cell culture reagents
2.1.1.1. Cell lines utilised
2.1.1.2. Cell culture reagents utilised
2.1.1.3. Viruses
2.1.2. Antibodies
2.1.3. Plasmids
2.1.4. Primer sequences
2.1.5. Reagents, chemicals, buffers, and kits
2.1.5.1. Commercial kits
2.1.5.2. Buffers made in house
2.1.5.3. Reagents used
2.1.6. Enzymes
2.1.7. Reagents used for prokaryotic work
2.1.7.1. Bacterial strains and culture media
2.1.6.2. Buffers for protein purification from bacterial extracts
2.2. Methods
2.2.1. Cloning and DNA manipulation
2.2.1.1. DNA quantitation
2.2.1.2. Polymerase Chain Reaction (PCR) amplification
2.2.1.3. Restriction endonuclease digestion
2.2.1.4. Agarose gel electrophoresis
2.2.1.5. DNA Ligation
2.2.1.6. Transforming competent bacteria
2.2.1.7. Growing bacterial cultures of E. coli DH5α
2.2.1.8. Isolation and amplification of DNA using kits
2.2.1.9. Sequencing by commercial companies
2.2.1.10. Site directed mutagenesis of plasmid DNA by PCR
2.2.1.11. dsRNA synthesis for cell culture
2.2.1.12. dsRNA synthesis for adult *Ae. aegypti*
2.2.2. Purification of recombinant proteins
2.2.2.1. Expression in recombinant BL21 (DE3)
2.2.2.2. Purification of 6xHis tagged proteins
2.2.2.3. Purification of Strep.II tagged proteins
2.2.2.4. Quantification of proteins by BSA titration
2.2.3. *In vitro* assays of recombinant proteins
2.2.3.1. SUMOylation assays
2.2.4. Cell culture methods
2.2.4.1. Maintenance, growth, and passaging of cells
2.2.4.2. Seeding of cells
2.2.4.3. Transfection of mammalian cells
2.2.4.4. Lentivirus transduction of cells
2.2.4.5. dsRNA transfection of mosquito cells
2.2.5. Virology
2.2.5.1. Propagation of SFV
2.2.5.2. Propagation of BUNV
2.2.5.3. Propagation of ZIKV
2.2.5.4. Determining viral titre
2.2.5.5. Infection of cultured cells
2.2.6. Analytical techniques
2.2.6.1. Sodium dodecyl sulfate - Polyacrylamide gel electrophoresis
2.2.6.2. Coomassie staining of SDS-PAGE gels
2.2.6.3. Western blotting
2.2.6.4. RNA extraction
2.2.6.5. Complementary DNA (cDNA) synthesis
2.2.6.6. Quantitative polymerase chain reaction (q-PCR)
2.2.6.7. ICC-staining plaque assay
2.2.6.8. In Cell Western Blot (ICWB)
2.2.7. Reporter assays
2.2.7.1. Firefly-luciferase reporter assay
2.2.7.2. NanoLuciferase reporter assay
2.2.7.3. Protein quantification assay
2.2.8. Bioinformatics
2.2.8.1. Joined Advanced SUMOylation site and SIM Analyser (JASSA)
2.2.8.2. Modelling software
2.2.8.3. Amino acid alignment
2.2.8.4. Statistical analysis
2.2.9. Cloning strategies used in this study
2.2.9.1. Cloning of pACYC-AaSAE1/2
2.2.9.2. Cloning of pET28a-SUMO chimaera and pET28a-SUMO chimaera K11R
2.2.9.3. Cloning of pET45b-AaUbc9 and pET45b-AaUbc9 C93S
2.2.9.4. Cloning of pET45b-AaPIAS and pET45-AaPIAS C371A
2.2.9.5. Cloning of pET28a-AaSUMO

3. Conservation of the SUMOylation pathway between Ae. aegypti and H. sapiens

3.1. Overview
3.2. Conservation of the SUMOylation pathway
3.2.1. Conservation of SUMO
3.2.2. Conservation of Ubc9
3.2.3. Conservation of SAE1/2
3.2.4. Conservation of PIAS
3.2.5. Confirmation of pathway expression
3.2.6. Summary

3.3. Viral proteins contain SUMO conjugation motifs
3.3.1. SCM sites on BUNV proteins
3.3.2. SCM sites on SFV proteins
3.3.3. SCM sites on CHIKV proteins
3.3.4. SCM sites on ZIKV proteins
3.3.5. SCM sites on DENV proteins
3.3.6. Summary

3.4. Discussion

4. Biochemical analysis of the Ae. aegypti and H. sapiens SUMOylation pathways
4.1. Overview
4.2. Purification of the AdSUMOylation pathway
4.3. Comparison of the biochemical properties of the Ae. aegypti and H. sapiens SUMOylation pathways
4.3.1. Recombinant AaUbc9 forms a thioester bond with SUMO at a similar rate to recombinant HsUbc9
4.3.2. Recombinant AdSUMO is more biochemically comparable to HsSUMO1 than HsSUMO3 in an in vitro biochemical assay
4.3.3. A chimaeric SUMO protein efficiently forms HMW SUMO conjugates
4.3.4. AaPIAS enhances rate of HMW SUMO conjugate formation
4.4. Biochemical activity of the pathways is conserved between species
4.4.1. AaSUMO can be utilised by the HsSUMOylation pathway
4.4.2. AaUbc9 can be utilised in the HsSUMOylation pathway with HsSUMO2
4.4.3. AaSAE1/2 utilise in HsSUMOylation pathway
4.4.4. AaPIAS can enhance rate of HsSUMO3 chain formation
4.5. Discussion

5. AdSUMOylation pathway suppresses arbovirus replication
5.1. Overview
5.2. Expression of the AaSUMOylation pathway

5.2.1. Q-PCR analysis shows the AaSUMOylation pathway is differentially expressed in Ae. aegypti tissues

5.2.2. AaSUMO is expressed in all Ae. aegypti tissues studied

5.2.2.1. AaSUMO is expressed in the haemocytes

5.2.2.2. AaSUMO is expressed in the salivary glands

5.2.2.3. AaSUMO is expressed in the gut

5.2.2.4. AaSUMO is expressed in the ovaries

5.3. Depletion of AaSUMO in vivo does not significantly enhance ZIKV replication

5.4. dsRNA can deplete expression of the AaSUMOylation pathway in AF5 cells

5.5. Interaction of the AaSUMOylation pathway and arboviruses in vitro

5.5.1. Depletion of the AaSUMOylation pathway enhances replication of BUNV

5.5.2. Depletion of the AaSUMOylation pathway enhances replication of SFV

5.5.3. Depletion of the AaSUMOylation pathway enhances replication of ZIKV

5.6. Discussion

6. HsSUMOylation pathway suppresses arbovirus expression

6.1. Overview

6.2. Lentiviral transduction with shRNAs depletes expression of components of the SUMOylation pathway in HFt cells

6.3. Depletion of components of the HsSUMOylation pathway enhances arbovirus expression in vitro

6.4. Discussion

7. Discussion

7.1. Overview

7.2. Conservation of the sequence, structure, biochemical function, and expression of the Aa- and Hs-SUMOylation pathways

7.3. Biochemical properties of the AaSUMOylation pathway

7.4. The SUMOylation pathway is broadly antiviral to arboviruses

7.5. Concluding remarks

8. References

Appendix A: Amino acid sequence comparison between Hs and AaSAE1/2, and Hs and AaPIAS

Appendix B: Purification of AaSAE1/2

Appendix C: Purified AaUbc9 C93S, the SUMO chimaera, and the SUMO chimaera K11R

Appendix D: No primary antibody controls of SUMO expression in Ae. aegypti tissues

Appendix E: Melt curve analysis of q-PCR primers
List of Figures

Figure 1.1 Predicted distribution of *Ae. aegypti*. 27
Figure 1.2 Mechanisms used to suppress arbovirus infection 28
Figure 1.3 Mosquito anatomy 31
Figure 1.4 A basic arbovirus transmission cycle 33
Figure 1.5 The alphavirus genome 35
Figure 1.6 Alphavirus life cycle 39
Figure 1.7 The flavivirus genome 40
Figure 1.8 Flavivirus life cycle 44
Figure 1.9 The orthobunyaviridae genome 46
Figure 1.10 Orthobunyavirus life cycle 50
Figure 1.11 *H. sapiens* SUMOylation pathway. 58
Figure 1.12 Schematic of PIAS1 domains 61
Figure 1.13 Overview of the antiviral interferon response 66
Figure 1.14 Innate immune evasion strategies employed by alphaviruses 69
Figure 1.15 Innate immune evasion strategies employed by flaviviruses 73
Figure 1.16 Innate immune strategies utilised by orthobunyaviruses 75
Figure 1.17 Mosquito immune response 79

Figure 2.1 Schematic of site directed mutagenesis protocol for AaUbc9 114
Figure 2.2 pACYCDuet-1 expression plasmid map 138
Figure 2.3 AaSAE2 primer binding sites 138
Figure 2.4 pET28a vector map 139
Figure 2.5 pET45b vector map 140

Figure 3.1 Conservation of SUMO between *Ae. aegypti* and *H. sapiens*. 147
Figure 3.2 Conservation of Ubc9 between *Ae. aegypti* and *H. sapiens*. 150
Figure 3.3 Conservation of SAE1/2 between *Ae. aegypti* and *H. sapiens*. 153
Figure 3.4 Conservation of PIAS between *Ae. aegypti* and *H. sapiens*. 157
Figure 3.5 A heatmap of amino acid identity between the Aa and Hs SUMOylation pathways 164
Figure 3.6 Predicted SUMO conjugation motifs on BUNV proteins 166
Figure 3.7 Predicted SUMO conjugation motifs on SFV polyproteins 168
Figure 3.8 Predicted SUMO conjugation motifs on CHIKV polyproteins 170
Figure 3.9 Predicted SUMO conjugation motifs on the ZIKV polyprotein 172
Figure 3.10 Predicted SUMO conjugation motifs on the DENV-2 virus polyprotein 174

Figure 4.1 Recombinant *H. sapiens* SUMOylation proteins 185
Figure 4.2 Recombinant *Ae. aegypti* SUMOylation enzymes 186
Figure 4.3 Comparison of HsUbc9 and AaUbc9 rate of thioester formation 189
Figure 4.4 Comparison of Aa and Hs SUMOylation pathways activity at 28 °C 192
Figure 4.5 Comparison of *Aa* and *Hs* SUMOylation pathways activity at 37 °C

Figure 4.6 Comparison of SUMO chimaera with a K11R chimaera mutant

Figure 4.7 Comparison of PIAS activity with a catalytically inactive PIAS mutant

Figure 4.8 Mass spectrometry analysis reveals which lysine’s SUMO is binding to

Figure 4.9 *AaSUMO* is biochemically active with *HsSUMOylation* machinery

Figure 4.10 *AaUbc9* is biochemically active with *HsSUMOylation* machinery

Figure 4.11 *AaSAE1/2* is biochemically active with *HsSUMOylation* machinery

Figure 4.12 *AaPIAS* is biochemically active with *HsSUMOylation* machinery

Figure 5.1 Q-PCR of SUMOylation pathway transcript expression in *Ae. aegypti* tissues

Figure 5.2 Confocal microscopy of SUMO expression in *Ae. aegypti* haemocytes

Figure 5.3 Confocal microscopy of SUMO expression in *Ae. aegypti* salivary glands

Figure 5.4 SUMO expression in the *Ae. aegypti* gut by confocal microscopy

Figure 5.5 Expression of SUMO in *Ae. aegypti* ovaries

Figure 5.6 SUMO transcript expression levels achieved by q-PCR after dsRNA knockdown

Figure 5.7 Effect of knocking down SUMO expression on ZIKV replication in *Ae. aegypti* mosquitoes

Figure 5.8 Depletion of the *AaSUMOylation* pathway by q-PCR and Western blot

Figure 5.9 Effect of depletion of the *AaSUMOylation* pathway on BUNV replication

Figure 5.10 Effect of depletion of the *AaSUMOylation* pathway on SFV replication

Figure 5.11 Effect of depletion of the *AaSUMOylation* pathway on ZIKV replication

Figure 6.1 Depletion of SUMOylation pathway from HFt cells

Figure 6.2 Effect of depletion of the *HsSUMOylation* pathway on arbovirus expression
List of Tables

Table 2-1 Summary table of cell lines used in this study 87
Table 2-2 List of cell culture reagents used in this study 89
Table 2-3 Viruses used in this study 90
Table 2-4 Antibodies used in this study 92
Table 2-5 Plasmids used in this study 94
Table 2-6 Oligonucleotide sequences used in this study 98
Table 2-7 Commercial kits used in this study 101
Table 2-8 List of buffers made in house and used throughout the study 102
Table 2-9 Reagents used in the study 103
Table 2-10 Standard PCR cycle 109
Table 2-11 T7 PCR cycle 109
Table 2-12 Components in a nuclease digestion for mosquito depletion 117
Table 2-13 dsRNA synthesis reaction for mosquito depletion 117
Table 2-14 dsRNA binding solution for mosquito depletion 118

Table 3-1 The SUMOylation pathway specific peptide sequences identified from *Ae. aegypti* cells by mass spectrometry. 159
Table 3-2 Summary of the SCM sequences found on the relevant proteins of different arboviruses 176
Acknowledgements

This PhD was funded by the Biotechnology and Biological Sciences Research Council Doctoral Training Partnership programme, without which I would have been unable to undertake this work. I have also had a great deal of support (and funding) from The Pirbright Institute and the Medical Research Council funded Centre for Virus Research at the University of Glasgow.

I am sincerely grateful to the support from my only remaining full time supervisor, Dr Chris Boutell. Professor Peter Mertens has also been a valuable source of insight and calm in an often troubled journey. Dr Mike Tatham and Professor Ron Hay, our collaborators at the University of Dundee have been incredibly helpful in allowing the work to progress (and asking some obvious questions we hadn’t thought of). Finally, I am hugely grateful for the talent and help of Floriane Almire, and Dr Emilie Pondeville based at the CVR. Without your willingness to painstakingly dissect and inject hundreds of mosquitoes this project wouldn’t have been nearly as interesting as it turned out to be! Many thanks also to my examiners - Professor Steven Sinkins and Dr David Hughes, for making my viva as pain free as possible, to the point that it was verging on enjoyable (I wouldn’t choose to go through it again though).

The BBSRC also provided me with the opportunity to go on a three month placement in the sunny South East during the hottest June day in 41 years (as of June 2017). To the amazing people I met while on placement, thank you for showing me a life outside of academia! The memory of ignoring work as soon as I step foot out of the door will long be cherished. In particular I would like to thank my supervisor while on placement - Sarah Barnett. Your enthusiasm for your work was really inspiring; hopefully we’ll continue to stay in touch in future.

To the friends I made while at Pirbright, you’ve genuinely been amazing. I have no doubt I’d have quit early in my first year without your support and laughter. Especially thanks to Gennaro and Rich, for keeping in touch with constant updates on any drama as it unfolds, and Dr Hu, for being one of the best housemate I’ve had (so far, let’s not get ahead of ourselves). Between the walls
of tea boxes and GÜ glasses, champagne, £35 lamb roasts, constant quiz shows, all the Parks, and blood from broken “safety glass” windows I had a pretty fun year, all things considered.

To friends at Glasgow, thanks for often being the first port of call when I needed help; it’s good to know people are there to support me when I get stubborn. Specifically, Meredith, thank you for helping with all things science and learning to snowboard with me. Watching that video of you falling over will always make me chuckle. Liz, thanks for help with SUMO related questions when I was after a quick answer, and thanks Betty for checking my writing when I was too tired to grammar check myself. Claire and Margus, thank you for constantly being on hand to answer my many, many questions about the viruses and cells I use and Jamie, thank you for making the ZIKV-nl construct, and for constantly seeing the clouds behind the silver lining (just like me). Jack and Pippa, you also wanted a mention.

Many thanks to all the members of the Boutell lab. Steven, there aren’t enough words to describe how helpful/generally amazing you are. James, Matt, and Thamir, working with you all was brilliant. I’ll fondly remember all of you complaining about writing your respective theses (it wasn’t so fun going through it myself). Victor, follow my example and you’ll be an amazing PhD. My former student Matt - thanks for being a pleasure to supervise (and giving me a 100% distinction rate from my students). Kristen, you were great fun, if I’m ever in Canada, I’ll track you down ‘eh.

Friends from the ‘Shire: First off, to be honest I’m surprised you’ve read this far, don’t worry about reading beyond this section, only Lloyd and Rob will understand bits of it (the nerds). Secondly, and more importantly, thank you for being there, thank you for still going on holidays together like we always have, thank you for reminding me that there’s a life outside of science and the PhD, and thank you for constantly getting married blowing a hole into my savings. My bank balance is all the poorer for it.

Finally, I am incredibly grateful to my grandparents for staying interested when I talk about my work, and constantly offering to send food parcels up to Glasgow
(although we do have meat in Scotland too). My sister, Jess, thank you for constantly pushing me to be better, and for constantly offering to go through my work / thesis / presentations / CV / anything else, hopefully one day I can return the favour. To my parents, thank you for your constant support, love, and snarky comments. Your retirement and subsequent holidays have made me very jealous. I hope you’re proud.

“Life’s not fair. And then you die.”

- Denise (Mum) Stokes

“The only stupid mistake is the one you make twice”

https://photos.app.goo.gl/UH1Bns3CQpsEEmis9

- Cheese rolling, Coopers Hill, Gloucestershire
Authors Declaration

All the results presented in this thesis were obtained by the authors' own efforts, unless stated otherwise.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-) ssRNA</td>
<td>negative sense single strand RNA</td>
</tr>
<tr>
<td>(+) ssRNA</td>
<td>positive sense single strand RNA</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µl</td>
<td>microliter</td>
</tr>
<tr>
<td>µM</td>
<td>micromolar</td>
</tr>
<tr>
<td>A; Ala</td>
<td>Alanine</td>
</tr>
<tr>
<td>A20</td>
<td>Aedes aegypti cell line</td>
</tr>
<tr>
<td>A549</td>
<td>Human alveolar carcinoma cells</td>
</tr>
<tr>
<td>Aa</td>
<td>Aedes aegypti</td>
</tr>
<tr>
<td>Aag2</td>
<td>Aedes aegypti cell line</td>
</tr>
<tr>
<td>AF5</td>
<td>Clonal population of Aag2 cells</td>
</tr>
<tr>
<td>Ago2</td>
<td>Argonaute 2</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>ATG8</td>
<td>Autophagy-related protein 8</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BATV</td>
<td>Batai virus</td>
</tr>
<tr>
<td>BFV</td>
<td>Barmah forest virus</td>
</tr>
<tr>
<td>BHK</td>
<td>Baby hamster kidney cells</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BUNV</td>
<td>Bunyamwera virus</td>
</tr>
<tr>
<td>C</td>
<td>Capsid</td>
</tr>
<tr>
<td>C; Cys</td>
<td>Cysteine</td>
</tr>
<tr>
<td>CCLR</td>
<td>Cell culture lysis reagent</td>
</tr>
<tr>
<td>CEV</td>
<td>Californian encephalitis virus</td>
</tr>
<tr>
<td>cGAS-STING</td>
<td>GMP-AMP synthetase-stimulator of interferon genes</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CHIKV</td>
<td>Chikungunya virus</td>
</tr>
<tr>
<td>CPE</td>
<td>Cytopathic effect</td>
</tr>
<tr>
<td>cRNA</td>
<td>Complementary RNA</td>
</tr>
<tr>
<td>CVV</td>
<td>Cache valley virus</td>
</tr>
<tr>
<td>D; Asp</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>DENV</td>
<td>Dengue virus</td>
</tr>
<tr>
<td>DL</td>
<td>Distal lateral lobe</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleotide triphosphates</td>
</tr>
<tr>
<td>dsRNA</td>
<td>Double stranded RNA</td>
</tr>
<tr>
<td>E</td>
<td>Envelope protein</td>
</tr>
<tr>
<td>E; Glu</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>E1</td>
<td>Activating enzyme</td>
</tr>
<tr>
<td>E2</td>
<td>Conjugating enzyme</td>
</tr>
<tr>
<td>E3</td>
<td>Ligating enzyme</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein Barr virus</td>
</tr>
<tr>
<td>EEEV</td>
<td>Eastern equine encephalitis virus</td>
</tr>
<tr>
<td>eIF2α</td>
<td>eukaryotic translation initiation factor 2α</td>
</tr>
<tr>
<td>EILV</td>
<td>Eilat virus</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>FAT10</td>
<td>Fau-ubiquitin like protein</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>Fluc</td>
<td>Firefly-luciferase</td>
</tr>
<tr>
<td>G; Gly</td>
<td>Glycine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>G3BP</td>
<td>Ras-GAP SH3-domain-binding-protein</td>
</tr>
<tr>
<td>Gc</td>
<td>Glycoprotein at the C-terminal of the Medium segment</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GMEM</td>
<td>Glasgow’s minimum essential medium</td>
</tr>
<tr>
<td>Gn</td>
<td>Glycoprotein at the N-terminal of the Medium segment</td>
</tr>
<tr>
<td>H; His</td>
<td>Histidine</td>
</tr>
<tr>
<td>HEK-293T</td>
<td>Human embryonic kidney cells immortalised by insertion of hTERT</td>
</tr>
<tr>
<td>HFT</td>
<td>Human fibroblasts immortalised by insertion of hTERT</td>
</tr>
<tr>
<td>Hs</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>HSV-1</td>
<td>Herpes simplex virus type-1</td>
</tr>
<tr>
<td>I; Ile</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>ICWB</td>
<td>In cell Western Blot</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IMD</td>
<td>Immune Deficiency</td>
</tr>
<tr>
<td>IRF</td>
<td>Interferon regulatory factor</td>
</tr>
<tr>
<td>ISG</td>
<td>Interferon stimulated genes</td>
</tr>
<tr>
<td>ISG15</td>
<td>Interferon stimulated gene 15</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus-associated kinase</td>
</tr>
<tr>
<td>JASSA</td>
<td>Joined advanced SUMOylation site and SIM analyser</td>
</tr>
<tr>
<td>JCV</td>
<td>Jamestown canyon virus</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinase</td>
</tr>
<tr>
<td>K; Lys</td>
<td>Lysine</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo-Daltons</td>
</tr>
<tr>
<td>L; Leu</td>
<td>Leucine</td>
</tr>
<tr>
<td>LACV</td>
<td>La Crosse virus</td>
</tr>
</tbody>
</table>
LacZ β-galactosidase
LB Luria-Bertani broth
LPS Lipopolysaccharide
MAYV Mayaro virus
MED8 Mediator of polymerase II transcription subunit 8
mg milligram
MgCl₂ Magnesium Chloride
MIDV Middleburg virus
Min minutes
miRNA micro RNA
ML Median lobe
ml millilitres
mm millimeter
MOI Multiplicity of Infection
mRNA messenger RNA
MyD88 Myeloid differentiation primary response 88
N Nucelocapsid protein
NaCl Sodium Chloride
NDUV Ndumu virus
NEDD8 Neural-precursor-cell-expressed developmentally down-regulated 8
NEMO NF-κB essential modulator
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
ng Nanogram
nl Nano-luciferase
nm Nanometres
nM nanomolar
NOD Nucleotide-binding oligomerization domain
NRIV Ngari virus
ns Not significant
NS1-5 Non-structural protein 1-5
NSm Non-structural protein encoded by the Medium segment
nsP1-4 Non-structural protein 1-4
NSs Non-structural protein encoded by the Small segment
o/n Over night
ONNV O’nyong-nyong virus
P Phosphate
P; Pro Proline
PAMPS Pathogen associated molecular patterns
PBS Phosphate buffered saline
PCR Polymerase Chain Reaction
pfu Plaque forming units
PGRP Peptidoglycan recognition proteins
PIAS Protein inhibitor of activated STAT
piRNA Piwi-interacting RNA
PKR Protein kinase R
PL Proximal lateral lobe
PML Promyelocytic leukemia protein
PML-NB PML-nuclear body
PRRs Pattern recognition receptors
PTM Post-translational modification
Pup prokaryotic ubiquitin-like protein
Q; Gln Glutamine
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPCR</td>
<td>Quantitative Polymerase Chain Reaction</td>
</tr>
<tr>
<td>R; Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>RDRP</td>
<td>RNA-dependent RNA polymerase</td>
</tr>
<tr>
<td>RIDL</td>
<td>Release of insects carrying a dominant lethal genetic system</td>
</tr>
<tr>
<td>RIG-I</td>
<td>Retinoic acid inducible gene I</td>
</tr>
<tr>
<td>RISC</td>
<td>RNA induced silencing complex</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>RNC</td>
<td>Ribonucleocapsid</td>
</tr>
<tr>
<td>RPB1</td>
<td>RNA polymerase binding protein 1</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>S; Ser</td>
<td>Serine</td>
</tr>
<tr>
<td>SAE1/2</td>
<td>SUMO activating enzyme 1 / SUMO activating enzyme 2</td>
</tr>
<tr>
<td>SAP</td>
<td>Scaffold associating region/Acinus/PIAS</td>
</tr>
<tr>
<td>SARS</td>
<td>Severe acute respiratory syndrome</td>
</tr>
<tr>
<td>SCM</td>
<td>SUMO conjugation motif</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SENP</td>
<td>Sentrin specific protease</td>
</tr>
<tr>
<td>SESV</td>
<td>Southern elephant seal virus</td>
</tr>
<tr>
<td>sfRNA</td>
<td>subgenomic flavivirus RNA</td>
</tr>
<tr>
<td>SFV</td>
<td>Semliki forest Virus</td>
</tr>
<tr>
<td>SIM</td>
<td>SUMO interaction motif</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>SLEV</td>
<td>St Louis encephalitis virus</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SOCS</td>
<td>Suppressors of cytokine signalling</td>
</tr>
<tr>
<td>SPDV</td>
<td>Salmon pancreas disease virus</td>
</tr>
<tr>
<td>SP-RING</td>
<td>SP- Really Interesting New Gene</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal transducer and activator of transcription</td>
</tr>
<tr>
<td>STUbLs</td>
<td>SUMO targeted Ubiquitin Ligase</td>
</tr>
<tr>
<td>SUMO</td>
<td>Small ubiquitin-like modifier</td>
</tr>
<tr>
<td>T; Thr</td>
<td>Threonine</td>
</tr>
<tr>
<td>TAM</td>
<td>Tyro3/Axl/Mer</td>
</tr>
<tr>
<td>TCV</td>
<td>Trocara virus</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TPB</td>
<td>Tryptose phosphate broth</td>
</tr>
<tr>
<td>TRAF</td>
<td>TNF receptor-associated factor</td>
</tr>
<tr>
<td>TRIM</td>
<td>Tripartite Motif family</td>
</tr>
<tr>
<td>TYK2</td>
<td>Tyrosine Kinase 2</td>
</tr>
<tr>
<td>Ubc9</td>
<td>Ubiquitin conjugating enzyme 9</td>
</tr>
<tr>
<td>UFM1</td>
<td>ubiquitin-fold modifier 1</td>
</tr>
<tr>
<td>Upd</td>
<td>Unpaired</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>V; Val</td>
<td>Valine</td>
</tr>
<tr>
<td>VEEV</td>
<td>Venezuelan equine encephalitis virus</td>
</tr>
<tr>
<td>Vero</td>
<td>African green monkey kidney epithelial cells</td>
</tr>
<tr>
<td>vRNA</td>
<td>Viral RNA</td>
</tr>
<tr>
<td>WEEV</td>
<td>Western equine encephalitis virus</td>
</tr>
<tr>
<td>WNV</td>
<td>West Nile virus</td>
</tr>
<tr>
<td>XRN1</td>
<td>Exoribonuclease 1</td>
</tr>
<tr>
<td>YFV</td>
<td>Yellow Fever virus</td>
</tr>
</tbody>
</table>
ZIKV Zika virus
1. Introduction
1.1. Overview

This chapter aims to inform the reader about the importance of studying mosquito vector species and the arboviruses they transmit. The clinical importance of vector-borne diseases will be covered, before describing the distribution of *Aedes aegypti* (*Ae. aegypti*), the vector responsible for the transmission of many clinically and economically important arboviruses. Further details about *alphaviruses*, *flaviviruses*, and *orthobunyaviruses* will be provided, including their clinical significance, epidemiology of disease, genome structure, and replication. The introduction will then cover post-translational modification by ubiquitin-related modifiers, specifically the Small Ubiquitin-like Modifier (SUMO) pathway. What is known about arbovirus interactions with the cellular immune response will be described, followed by what is known about SUMO-virus interactions and SUMO-arbovirus interactions.
1.2. Importance of studying vector-borne diseases

Vector-borne diseases cause of one-sixth of the human illness and disabilities suffered worldwide (WHO 2014). Diseases transmitted by vectors are also widely reported to threaten global food security. They can be a significant threat to plant health, including commercially important crops, and can lead to outbreaks of diseases amongst livestock, which result in illness, loss of productivity, and the death of large numbers of animals (Kilpatrick and Randolph 2012, Whitfield, Falk et al. 2015).

Vector-borne diseases are ubiquitous around the world, including areas inhabited by Homo sapiens, where ticks, midges, flies, sandflies, and mosquitoes are highly prevalent. The only areas where vector-borne diseases are not found is the Polar Regions. Each individual species of arthropod vector possess its own unique geographical distribution (Borkent 2014, WHO 2014).

Mosquitoes act as vector species to a wide range of pathogens. This includes malaria, caused by the parasite Plasmodium falciparum, and tularemia, caused by the bacteria Francisella tularensis (Ulu-Kilic and Doganay 2014). Mosquitoes are also known to be prominent vectors of viral diseases, including dengue virus (DENV), chikungunya virus (CHIKV), and Japanese Encephalitis virus (JEV). Viral diseases transmitted by the mosquito species Aedes aegypti will be the focus of the study.

1.2.1. Aedes aegypti

Aedes aegypti (Ae. aegypti) is amongst the most clinically important vector-species, it is known to be the primary vector for DENV, yellow fever virus (YFV), Zika virus (ZIKV), Semliki Forest virus (SFV), CHIKV, and Bunyamwera virus (BUNV). Together these clinically important arboviruses are responsible for endemic disease burdens in developing areas, and can cause large epidemic outbreaks of disease. Consequently, when Ae. aegypti comes into contact with humans there can be a massive health and economic burden (Figure 1.1, and
described further in Sections 1.3.1; Section 1.3.2; Section 1.3.3). The range of *Ae. aegypti* incorporates countries with very large populations including Brazil, India, Indonesia, and throughout South East Asia. Together, they threaten approximately half of the world's population (Bhatt, Gething et al. 2013). *Ae. aegypti* is predominantly an urban vector which utilises the abundance of artificial containers that contain stagnant water as larval sites, and feeds almost entirely on humans (Kraemer, Sinka et al. 2015).

Figure 1.1 Predicted distribution of *Ae. aegypti*.

A depiction of the predicted probability that *Ae. aegypti* is located in an area (from blue 0, to red 1) from (Kraemer, Sinka et al. 2015)

As a vector species, *Ae. aegypti* is involved in a complex interplay between the human host and vector associated arboviruses. Consequently, multiple methods are currently being employed in an attempt to reduce the impact of arboviruses transmitted by *Ae. aegypti* to humans. These include the use of pesticides and habitat destruction to restrict *Ae. aegypti* population levels. The development of vaccines, such as the vaccine for yellow fever virus, 17D, and supportive treatments to alleviate symptoms are used to limit the disease burden in specific cases (Smith, Penna et al. 1938). Recently there has also been work to suppress arbovirus replication in the vector species. This can be achieved through the release of *Wolbachia* infected mosquitoes, or genetically engineering mosquitoes
to be resistant to arboviruses (Flores and O’Neill 2018). Alternative methods include the release of insects carrying a dominant lethal genetic system (RIDL) (Alphey 2014) (Figure 1.2). In order to develop novel strategies to further restrict arbovirus infection, interactions between *Ae. aegypti* and the arboviruses they transmit need to be better studied.

![Figure 1.2 Mechanisms used to suppress arbovirus infection](image)

Multiple mechanisms are utilised to prevent arboviral illness in humans (or other host species). Where vaccines are available, the arboviruses can be prevented from establishing an infection in the human host. For other arboviruses where no vaccines are available, supportive care may be used to alleviate symptoms. Various pesticides are used to suppress the population of mosquitoes in urban areas, and bed nets can also be used as a physical barrier preventing mosquitoes from biting and infecting people who live in areas where mosquitoes and arboviruses are endemic. Genetic engineering of mosquitoes, or infecting mosquitoes with strains of *Wolbachia* are recent techniques being utilised to suppress arbovirus replication in the mosquito, or to suppress the population of mosquitoes.

Abbreviations: RIDL, release of insects carrying a dominant lethal genetic system.
1.2.1.1. Mosquito-arbovirus interactions

Within the *Ae. aegypti* vector, arboviruses are well reported to be capable of establishing an infection in a range of cells and organs. Initially, arboviruses are taken up by *Ae. aegypti* in a blood meal from an infected vertebrate host. Consequently, the first site of infection is the midgut and the first barrier to arboviral infection is the midgut epithelium. Longitudinal and circular tracheal and muscle cells wrap around the midgut. Digestion products are absorbed and transported through the midgut into the haemolymph, which acts as the mosquito plasma (Okuda, de Souza Caroci et al. 2002). Arboviruses need to enter and successfully replicate in mosquito midgut epithelial cells, which has been shown to be a barrier to arboviral replication (Whitfield, Murphy et al. 1973, Scholle, Girard et al. 2004, Smith, Adams et al. 2008). After escaping the midgut into the haemocoel, the arbovirus needs to amplify, disseminating throughout the mosquito and infecting the salivary glands, before being transmitted horizontally to a new vertebrate host (Figure 1.3A). Many arboviruses can replicate in a range of insect tissues including the fat body, tracheal system, haemocytes, and nerve tissue. Very few arboviruses have been shown to be capable of replicating in muscle cells (Girard, Klingler et al. 2004, Salazar, Richardson et al. 2007, Dong, Kantor et al. 2016). Haemocytes are believed to form an important site of arboviral replication, as studies have shown over 90% of mosquito haemocytes can become infected within four days of infection (Parikh, Oliver et al. 2009, Carissimo, Pondeville et al. 2015). Arboviruses are also known to be capable of infecting mosquito ovaries. Infection of the ovaries can result in vertical transmission of the arbovirus, which can be an important mechanism for arboviral survival during unfavourable conditions (Lequime and Lambrechts 2014). Mosquito ovaries are comprised of multiple synchronous ovarioles. Ovarioles contain a germarium where follicles, or egg chambers, are initially formed. An egg chamber is capable of producing one egg, and is made up of one future oocyte and seven larger interconnected nurse cells. The egg chamber is surrounded by an epithelium of follicle cells covered by an ovarian sheath which contains muscle cells that function to slowly propel the egg chamber towards the oviduct (Snodgrass 1935, Hudson, Petrella et al. 2008) (Figure 1.3B). Primary follicles will develop after emergence to the previtellogenic stage, where follicle development is stopped until a blood meal.
After blood feeding, the follicle undergoes vitellogenesis. Eggs are laid two to three days after a blood meal, allowing the secondary follicles to develop into egg chambers (Nicholson 1921, Clements 1992).

Once the arboviruses have been amplified and disseminated throughout the mosquito, salivary glands need to be infected to enable the arbovirus to be injected into a new host with the saliva. The salivary glands are a pair of organs which comprise of two lateral lobes, and one shorter median lobe connected to the salivary duct (Figure 1.3C). Different sections of the salivary glands secrete different proteins. For instance, proteins involved in interfering with the host immune response or host haemeostasis are produced in the distal lateral lobes (Phattanawiboon, Jariyapan et al. 2014, Pingen, Bryden et al. 2016, Jin, Guo et al. 2018). Arboviruses tend to establish an infection in the mosquito salivary glands at the distal or proximal lateral lobes (Salazar, Richardson et al. 2007, Raquin, Wannagat et al. 2012, Tchankouo-Nguetcheu, Bourguet et al. 2012).
Figure 1.3 Mosquito anatomy

(A) A schematic of the mosquito showing the pathway arboviruses must follow to continue their life cycle. Arboviruses enter the mosquito midgut in a blood meal, replicate to escape, and disseminate throughout the mosquito until the salivary glands are infected. Arboviruses can then infect a new host. Adapted from Franz, Kantor et al. (2015). (B) The mosquito ovary and an individual ovariol. The ovariol is made up of the secondary follicle, germarium, and the primary vitellogenic follicle, containing nurse cells (sea green), the oocyte (grey) and follicular cells (red). Adapted from (Clements 1992) (C) A single adult female salivary glands comprising of two lateral lobes, separated into the proximal region (PL), and distal region (DL) and a median lobe (ML). Adapted from Jariyapan, Choochote et al. (2007)
1.3. Arboviruses

Arboviruses generally have four distinct types of genome: a single strand positive sense RNA genome (within the families Flaviviridae and Togaviridae), a genome composed of 9 to 12 segments of double stranded RNA (within the family Reoviridae), a genome composed of 1, 2, or 3 segments of negative sense RNA (within the families Peribunyaviridae, Orthomyxoviridae, Feraviridae, Fimoviridae, Jonviridae, Nairoviridae, Tospoviridae, Phasmaviridae, and Phenuiviridae), or a DNA genome (the only known DNA arbovirus is in the family Asfarviridae) (Hubalek, Rudolf et al. 2014, Adams, Lefkowitz et al. 2017).

There are many clinically important arboviruses that infect humans, including West Nile virus (WNV), DENV, CHIKV, and JEV. Other economically important arboviruses of livestock include Venezuelan equine encephalomyelitis virus (VEEV), bluetongue virus, and Schmallenberg virus (Mellor 2000). These viruses are emerging into new areas due to climate change resulting in an extended transmission season and increased migration of vectors. The impact of increased globalisation through travel and trade is another cause of arbovirus introduction into new areas (Semenza and Menne 2009). This results in some arboviruses, such as DENV, increasing in incidence by 30 fold since the 1960s (World Health Organization. 2012). Other arboviruses, such as ZIKV, or Keystone virus, have been known for a long time but have only recently been associated with outbreaks and disease in humans (Duffy, Chen et al. 2009, Lednicky, White et al. 2018). The life cycle of the arboviruses involves cycling between the invertebrate vector and vertebrate host (Lundstrom 1999, Mellor 2000, Hubalek, Rudolf et al. 2014). Arboviruses are transmitted from the reservoir host to a new uninfected host through a haematophagous arthropod such as a mosquito, tick, sand fly, or midge vector. These vectors may sometimes infect incidental hosts, which are animals that aren’t the usual feeding source for the vector, and are usually associated with more severe clinical consequences (Figure 1.4). All viruses, arboviruses included, need to manipulate the host cellular system in order to survive and replicate efficiently.

Due to differences in the vertebrate host and arthropod vector, arboviruses have evolved very different replicative mechanisms for each. It has long been known
that arboviruses often establish a persistent infection in the arthropod vector, which may come with a ‘fitness cost’ to the vector. However, infection of mammalian cells usually results in a lytic infection, resulting in cell death (Peleg 1968, Riedel and Brown 1979, Newton, Short et al. 1981, Sirisena, Kumar et al. 2018).

Figure 1.4 A basic arbovirus transmission cycle

The virus normally transmits between the reservoir host and the arthropod vector. Occasionally the vector infects an incident host, or the virus may be transmitted vertically to vector offspring.
There are two primary mechanisms of vertical transmission. Transovarial transmission, where the virus infects germinal cells, is generally more efficient that results in the majority of future eggs being infected (Rosen 1988). Trans-egg infection is the second mechanism, where the virus infects the eggs during egg laying. Trans-egg infection process is generally regarded as less efficient (Rosen 1988, Lequime and Lambrechts 2014). It is estimated that less than 0.1% of mosquito-based infections are due to vertical transmission and that it is only believed to be important for arboviral survival during unfavourable conditions (Lequime and Lambrechts 2014).

1.3.1. Alphaviruses

Alphaviruses are a genus within the *Togaviridae* family. The other genus in the *Togaviridae* family is Rubiviridae, whose only species is the Rubella virus (Dominguez, Wang et al. 1990). Alphaviruses are 50-70 nm in diameter and have a single strand of positive sense RNA ((+)-ssRNA) approximately 10 - 11 kb in length (Fuscaldo, Aaslestad et al. 1971, Arif and Faulkner 1972, Westaway, Brinton et al. 1985, Leung, Ng et al. 2011). The genome is initially transcribed into a polyprotein of non-structural proteins 1-4 (nsP1-4), which are subsequently cleaved into the constituent proteins. A second polyprotein of structural proteins is then transcribed, translated, and cleaved (Figure 1.5). Alphaviruses are spherical, possess T4 icosahedral symmetry, and a total of 240 capsid protein monomers make up the capsid (Soderlund, Kaariainen et al. 1975). The envelope contains approximately 80 spikes formed of trimers of E1/E2 heterodimers (Vogel, Provencher et al. 1986). Alphaviruses are split antigenically into eleven complexes. These are the Western equine encephalitis virus (WEEV), VEEV, Eastern equine encephalitis virus (EEEV), SFV, Middelburg virus (MiDV), Ndumu virus (NDUV), Barmah Forest virus (BFV), Trocara virus (TCV), salmon pancreas disease virus (SPDV), Southern elephant seal virus (SESV), and Eilat virus (EILV) (Kaslow, Stanberry et al. 2014). MiDV, NDUV, BFV, and SESV have no recognised clinical symptoms and EILV is incapable of infecting vertebrates (Kaslow, Stanberry et al. 2014). This section will detail diseases
commonly associated with alphaviruses, their epidemiology, and their replication.

Figure 1.5 The alphavirus genome

The alphavirus genome (vRNA) is transcribed and translated into two polyproteins, the 5’ region of the genome encodes the non-structural polyprotein, which is subsequently cleaved into the constituent parts (nsP1-4), while the 3’ terminal of the genome encodes the structural polyprotein which is cleaved into the capsid (C), the assembly protein (E3), spike glycoprotein E1 (E1), 6K protein (6K), and spike glycoprotein E2 (E2). The individual proteins are annotated within the polyproteins.

1.3.1.1. Alphavirus epidemiology

Alphaviruses can be broadly split into two categories based on their geographical separation; Old World and New World. The Old World alphaviruses include CHIKV (primarily found in Africa, India, and South East Asia), SFV (Africa), and o’nyong-nyong (ONNV) (Africa). New World alphaviruses include VEEV (Americas) and Mayaro virus (MAYV) (South America) (Schmaljohn and McClain 1996, Paredes, Weaver et al. 2005). The distribution of alphaviruses was believed to be due to at least 2 transoceanic migratory events (Powers, Brault et al. 2001). Although, more recent data suggests that the alphavirus genus originated in the southern oceans and spread equally into the Old World and New World (Forrester, Palacios et al. 2012).
1.3.1.2. Alphavirus disease

There are two broad disease phenotypes. Old World alphaviruses, such as CHIKV, are rarely fatal. Symptoms presented are generally fever, rash, and myalgia. CHIKV infection can also result in polyarthralgia in peripheral small joints, which can last weeks to months and is generally debilitating (Deller and Russell 1968, Adebajo 1996). The arthralgia can become chronic, likely due to the virus persisting in macrophages in the joints and results in an inflammatory immune response (Toivanen 2008). During the previous 60 years there have been sporadic epidemic outbreaks of CHIKV every 2-20 years, although due to the disease similarities with DENV, other small outbreaks may have been missed (Powers and Logue 2007). A large epidemic which lasted from 2004 - 2011 and was reported in over 40 countries resulted in 1.4 - 6.5 million cases (Suhrbier, Jaffar-Bandjee et al. 2012). These were predominantly located around the Indian Ocean, with La Reunion island being severely affected in 2005-2006, resulting in a total estimated economic burden of €43.9 million (at 2006 values) (Soumahoro, Boelle et al. 2011). This outbreak was later found to be driven by a single point mutation (A266V) in the E protein (Tsetsarkin, Vanlandingham et al. 2007). There were also localised outbreaks found in some European countries (Moro, Gagliotti et al. 2010, Frank, Schoneberg et al. 2011).

New World alphaviruses, such as VEEV or EEEV, are generally associated with more severe disease phenotypes. This ranges from headaches and vomiting to encephalitis, respiratory symptoms, hematuria, seizures, and coma. Humans infected with EEEV can have a case fatality rate of between 50-70% (Zacks and Paessler 2010). VEEV results in encephalitis less frequently than EEEV, and infection generally results in flu-like symptoms. Case fatality rates in humans is low (<1%), although there are still neurological symptoms associated with infection including disorientation, mental depression, and convulsions in up to 14% of infected people (Johnson and Martin 1974). The most recent major VEEV outbreak was in 1995 in Venezuela and Colombia, where estimated 75,000 - 100,000 cases occurred (Rivas, Diaz et al. 1997).
1.3.1.3. Alphavirus replication

Alphaviruses gain entry to the cell via the viral E glycoprotein. In mosquito salivary glands, the heparin sulfate proteoglycan is believed to mediate entry, although in human tissues the cellular receptor(s) remain unknown (Ciano, Saredy et al. 2014, Vancini, Hernandez et al. 2015). This binding is believed to mediate clathrin-dependent entry into the cell (Sourisseau, Schilte et al. 2007). Low pH triggers fusion of the endosomal membrane with the viral membrane, which then allows for viral RNA (vRNA) to be released into the cytoplasm (White and Helenius 1980, Vancini, Hernandez et al. 2015).

The alphavirus genome is split into two main sections, the non-structural and structural sections (Figure 1.5). There is a opal ‘UGA’ termination codon between nsP3 and nsP4, which approximately 10% of the time is read-through. This read-through is due to the presence of the following cytosine nucleotide (as part of a ‘CUA’ codon). In mutational studies, the read through efficiency decreased from approximately 10% to less than 1% when the cytosine was mutated into a uracil, adenosine, or guanine (Li and Rice 1993). Isolates of SFV which have previously been found encoding an arginine amino acid instead of a stop codon expressed an increased proportion of the nsP1-4 polyprotein and were linked to increased neurovirulence (Tuittila, Santagati et al. 2000).

After being translated, the non-structural polyprotein is cleaved into the constituent proteins through the protease action of nsP2. The nsP1-4 polyprotein is initially cleaved to produce nsP1-3 and nsP4. These form an unstable replication complex which can synthesise a negative strand of vRNA (de Groot, Hardy et al. 1990). nsP1 is then cleaved off the nsP1-3 polyprotein in trans, resulting in nsP1, and nsP2-3. These three proteins form another replication complex which is active on the negative strand to mediate genomic vRNA synthesis (De, Sawicki et al. 1996, Kujala, Ikaheimonen et al. 2001). Negative vRNA synthesis is prevented once the cleavage of nsP1-4 is complete, and the replication complex induces replication of the positive sense vRNA (Shirako and Strauss 1994). The structural polyprotein is translated under the control of the 26S subgenomic promoter, the capsid auto-cleaves from the remainder of the polyprotein as it is being translated (Melancon and Garoff 1987). The capsid
protein is then available to associate with the region coding for nsP1 in the vRNA, ensuring full-length vRNA strands are packaged into nucleocapsid-like particles (Figure 1.6) (Weiss, Nitschko et al. 1989).

The envelope glycoprotein E3 signals for the remainder of the polyprotein to be transferred to the endoplasmic reticulum, where host peptidases cleave it into the constituent proteins (Lobigs, Zhao et al. 1990). Another envelope glycoprotein, 6K, acts as a signalling mechanism for the processing of the downstream E1 glycoprotein (Sanz, Madan et al. 2003). The E1 and E2 precursor glycoproteins interact to form a heterodimer (Andersson, Barth et al. 1997). This heterodimer is transported to the Golgi complex from the endoplasmic reticulum and subsequently onto the cell surface where budding occurs (Fields and Kielian 2013). During transport to the cell surface, host Furin proteases cleave the E2 precursor glycoprotein into E2 and E3 (Zhang, Fugere et al. 2003, Fields and Kielian 2013). Upon release from the cells, an envelope is acquired from the host cell plasma membrane. This process has been shown to occur quickly, with SFV replication in chick embryo cells occurring at a rate of 200 plaque forming units/cell/hour (Acheson and Tamm 1967).
Alphaviruses are initially endocytosed into the cell through the viral E glycoprotein. The drop in pH results in fusion of the endosomal and viral membranes. Genomic RNA is released into the cytoplasm initially translating the non-structural polyprotein (nsPs). An unstable complex of nsP1-3 and nsP4 can synthesise a negative sense RNA ((-)RNA) genome which functions as a template for future positive strands of viral RNA (()+RNA) to be produced. The structural proteins are translated under the control of an internal 26S subgenomic promoter. The (+)RNA and structural proteins migrate to the Golgi complex, followed by budding at the cell surface and release into a new envelope of host cell membrane. Adapted from Leung, Ng et al. (2011)
1.3.2. Flaviviruses

Flaviviruses are a genus in the *Flaviviridae* family. Other members of the *flaviviridae* family include the genus pegivirus, pestivirus, and hepacivirus, which contain hepatitis C virus (HCV). This genus contains some of the most clinically important arboviruses, including DENV, JEV, WNV, and ZIKV. Most of the viruses in the flavivirus genus are transmitted by arthropods, and are approximately 40-65 nm in diameter (Smith, Brandt et al. 1970, Yang, Kim et al. 2004). The genome of a flavivirus is a single strand of positive sense RNA which is approximately 11 kb in length (Yaegashi, Vakharia et al. 1986). The genome consists of one open reading frame which produces a poly-protein that is cleaved into a total of 11 proteins during and after translation and maturation (Figure 1.7) (Cleaves 1985). DENV, one of the most well studied flaviviruses, comprises a capsid protein which forms a complex with the RNA genome. Approximately 180 envelope (E) and 180 membrane proteins are found in the outer lipid envelope in a T=3 icosahedral symmetry (Zhang, Chipman et al. 2003, Strauss and Strauss 2008, Byk and Gamarnik 2016). Flaviviruses are distributed over a large geographical range and rapidly spread into new ecological niches (Mutebi, Rijnbrand et al. 2004). Most flaviviruses use birds and small mammals as natural hosts. Humans can also be hosts, capable of amplifying the virus to titres high enough to establish a new infection in a naïve mosquito. Only a relatively small proportion of infections result in deadly diseases (Solomon and Mallewa 2001).

![Figure 1.7 The flavivirus genome](image-url)

The flavivirus genome (vRNA) is transcribed and translated into one polyprotein. The 5’ region of the genome and polyprotein encodes the structural proteins (the capsid protein (C), peptide pr (pr), small envelope protein M (M), and envelope protein (E)). The 3’ region of the genome and polyprotein encodes the non-structural proteins (non-structural proteins 1-5 (NS1-5)). The final cleaved proteins are indicated within the polyprotein.
1.3.2.1. Flavivirus epidemiology

Flaviviruses which infect humans can be broadly split into three categories, those with no known vectors, those which use ticks as vectors, and those which use mosquitoes as vectors (Kuno, Chang et al. 1998, Gaunt, Sall et al. 2001). The mosquito borne flaviviruses can be further categorised into those which cause neurotropic diseases, such as JEV, and those which cause haemorrhagic diseases, such as DENV (Gaunt, Sall et al. 2001). Generally, flaviviruses which cause neurotropic diseases are transmitted by Culex species of mosquito, while flaviviruses associated with haemorrhagic diseases are more commonly transmitted by Aedes species of mosquito (Waddell and Taylor 1948, Haddow, Williams et al. 1964, Chamberlain, Gogel et al. 1966, Mattingly 1967, Nir, Goldwasser et al. 1968, Sucharit, Surathin et al. 1989). Flaviviruses are distributed throughout the world, with specific geographic spreads dependent on the vector. Generally, flaviviruses transmitted by mosquitoes are located around the tropics, such as India and South East Asia, and flaviviruses transmitted by ticks are more commonly located in the cooler climates, such as Russia or Northern Europe (Solomon and Mallewa 2001).

Flaviviruses are believed to have originated from a common ancestor approximately 10,000 years ago in Africa (Billoir, de Chesse et al. 2000, Solomon and Mallewa 2001). It is believed that the tick-borne lineage diverged, prior to the mosquito-borne lineage (Gaunt, Sall et al. 2001, Mackenzie, Gubler et al. 2004).

1.3.2.2. Flavivirus disease

There are three main disease phenotypes associated with flavivirus infection. These are neurological, viral haemorrhagic fever, and fever-arthralgia-rash symptoms (Solomon and Mallewa 2001). Neurological symptoms, such as encephalitis, can be caused by TBEV, JEV, and St Louis encephalitis virus (SLEV). An example of a haemorrhagic virus is DENV, or YFV.
The neurotropic flavivirus, JEV, is regarded as the most important cause of mosquito-borne encephalitis in Asia and the Western Pacific (WHO 2015, Simon and Kruse 2018). Approximately 1 in 250 infections develop symptoms, which may include headache, fever, tremors, coma, and encephalitis. Up to 33% of symptomatic cases are fatal (NHS 2016). Each year there are between 60,000-70,000 cases of JEV, which predominantly affects children, as infection results in lifelong immunity (WHO 2015).

Haemorrhagic flaviviruses, which include DENV and YFV, are regarded as the most important arbovirus. This is due to their global distribution and significant clinical burden. It is estimated that half the world’s population is at risk of DENV infection, with approximately 390 million people being infected each year (Bhatt, Gething et al. 2013, WHO 2018). Of these, it is predicted that 96 million develop symptoms that include headache, muscle and joint pains, high fever (~105 °F / 40 °C), rash, vomiting, and swollen glands (Harris and Duval 1924, WHO 2018). Symptoms generally develop 3-15 days following the bite from an infected mosquito and may last between 2-7 days (WHO 2009). Haemorrhagic fever may develop as a consequence of plasma leaking from blood vessels which can result in severe bleeding, fluid accumulation, respiratory distress, or organ failure. There are five distinct DENV serotypes (DENV-1, DENV-2, DENV-3, DENV-4, and DENV-5, although there is currently debate about whether DENV-5 exists) (Mustafa, Rasotgi et al. 2015). All serotypes appear to be able to circulate within the same population, although one serotype tends to dominate (Singh, Maitra et al. 1999, Dash, Parida et al. 2006, Shrivastava, Tiraki et al. 2018).

ZIKV is another flavivirus closely related to DENV. ZIKV was identified in Zika forest in 1947, initially associated with only mild clinical symptoms in approximately 20% of cases until the 2015 outbreak in South and Central America (Dick, Kitchen et al. 1952). During this outbreak, ZIKV infection was found to correlate with an increase in the number of cases of Guillain-Barré Syndrome and foetal microcephaly (Oehler, Watrin et al. 2014, Rasmussen, Jamieson et al. 2016, Styczynski, Malta et al. 2017, Wen, Song et al. 2017). This could be due to the effect of ZIKV NS4A and NS4B proteins, which disrupts the Akt-mTOR signalling pathway. The Akt-mTOR signalling pathway is known to have roles in cell development, proliferation, and inhibition of autophagy. Consequently, a
1.3.2.3. Flavivirus replication

As arboviruses, the flaviviruses studied here replicate in both mammalian and insect cells. The replication strategy has been shown to be similar in the host and vector species. Generally, entry of flaviviruses into cells follows a similar mechanism to alphaviruses (Strauss and Strauss 2008). Flaviviruses bind the external viral E protein to a cellular receptor that trigger internalisation through specific cell-type dependent mechanisms (Ang, Wong et al. 2010, Piccini, Castilla et al. 2015). The cellular receptor varies depending on the flavivirus; DENV has been reported to bind to heparin sulfate, while ZIKV has been reported to bind to DC-SIGN, AXL, Tyro3, and TIM-1 in human skin cells (Chen, Maguire et al. 1997, Hamel, Dejarnac et al. 2015). Once the virus has been imported into endosomes, the fall in pH resulted in E-homodimers forming E-homotrimers (Zhang, Zhang et al. 2004, Huang, Butrapet et al. 2010). The E-homotrimers then reorientate so the fusion peptide is able to fuse the viral membrane with the host membrane. This results in the release of the viral genome into the cytoplasm. As flaviviruses possess a genome consisting of a single strand of positive sense RNA (\(+\)ssRNA), the genome is directly translated into a polyprotein which is cleaved into the individual constituent proteins by the autocatalytic NS3/NS2B enzymes and host cell proteases, including furin and signal peptidase (Bazan and Fletterick 1989, Falgout, Chanock et al. 1989, Markoff 1989, Chambers, Grakoui et al. 1991, Stadler, Allison et al. 1997). NS5, the viral polymerase molecule is capable of synthesising a double strand RNA (dsRNA) viral genome (Chu and Westaway 1987, Guyatt, Westaway et al. 2001). The dsRNA genome is then transcribed into more viral (+)ssRNA, and translated into the polyprotein. This process occurs in cytoplasmic replication factories, prior to viral assembly occurring on the rough endoplasmic reticulum (Welsch, Miller et al. 2009, Cortese, Goellner et al. 2017). Progeny viruses are then transported to the Golgi apparatus and exocytosed at the cell surface (Hase, Summers et al. 1987) (Figure 1.8). Interestingly, in mosquito cells, some flaviviruses, such as
DENV-2, appear to mature in nucleocapsid-like structures in the cytoplasm. Virions then bud at the plasma membrane or into cytoplasmic vacuoles (Hase, Summers et al. 1987).

Figure 1.8 Flavivirus life cycle

(1) A flavivirus E protein binds to a virus specific cellular receptor. (2) The virus enters the cell through receptor-mediated endocytosis. (3) Fall in pH causes a conformational change resulting in the viral RNA genome being released into the cytoplasm. (4) Genome is translated into a polyprotein which auto-cleaves. NS5 functions as a polymerase which is responsible for replication of viral genome. Viral assembly occurs on the rough endoplasmic reticulum (Rough ER). (5) Progeny viruses are transported to the Golgi for maturation and transport to the cell surface. (6) Virus is released from the cell surface. Adapted from Bartenschlager and Miller (2008).
1.3.3. Orthobunyaviruses

Orthobunyaviruses are a genus of the *Peribunyaviridae* family, within the *Bunyavirales* order. There are over 170 viruses in the *orthobunyavirus* genus (Calisher 1996). The prototype species is BUNV. Most viruses in this genus are arboviruses, with a virion diameter of approximately 80-120 nm (Obijeski, Bishop et al. 1976, Talmon, Prasad et al. 1987). Heterodimers of envelope glycoproteins form on the surface of the virion. Orthobunyaviruses possess a genome made of three single strands of negative sense RNA ((-ssRNA); termed the Small (S), Medium (M), and Large (L) segments (*Figure 1.9*). BUNV is reported to be pleomorphic in shape with locally-ordered lattices of glycoprotein spikes (Bowden, Bitto et al. 2013). Due to segmented structure of the genome, it has the potential to naturally re-assort genome segments between strains co-infecting the same host cell.

The viral genome comprises three single strands of negative sense RNA of approximately 1 kb, 4.5 kb, and 6.5 kb. The S segment transcribes two genes, the nucleocapsid protein (N), and a non-structural (NSs) protein (Elliott 1989). The M genome translates a polyprotein which is cleaved into a non-structural protein (NSm), and two glycoproteins (Gn, and Gc, corresponding to the location on the N- or C-terminal) (Lees, Pringle et al. 1986). The L genome translates a large protein which serves as the RNA-dependent RNA polymerase (RDRP) (*Figure 1.9*) (Elliott 1989).
Orthobunyaviridae have a genome comprising three single strands of negative sense RNA which is used to produce complementary RNA (cRNA) that is then transcribed and translated. The S segment encodes both the nucleocapsid protein (N) and an overlapping genomic region encodes the non-structural protein (NSs). The M segment encodes a polyprotein that is cleaved to produce Glycoproteins Gn and Gc, and a non-structural protein (NSm). Finally, the L segment encodes the RNA-dependent RNA polymerase.
1.3.3.1. Orthobunyavirus epidemiology

Within the orthobunyavirus genus, there is the clinically important Bunyamwera serogroup that contains the prototype virus, BUNV. Other notable members of the Bunyamwera serogroup include Ngari virus (NRIV), Batai virus (BATV), and Cache Valley virus (CVV). BATV has been identified throughout Europe and Asia, while BUNV is predominantly distributed throughout Africa (Smithburn, Haddow et al. 1946, Kokernot, Smithburn et al. 1958, Bardos and Cupkova 1962, Liu, Shao et al. 2014). NRIV is a naturally occurring recombinant virus comprising of BATV M segment, and BUNV S and L segments (Section 1.3.3.3) (Yanase, Kato et al. 2006). As NRIV is a recombinant of BATV and BUNV. NRIV can be vectored by a wide range of mosquito species, including Aedes, Culex, and Anopheles. Consequently, it has a broad geographical spread throughout Europe, Central, and Eastern Asia (Bardos and Cupkova 1962, Singh and Pavri 1966, Yadav, Sudeep et al. 2012, Liu, Shao et al. 2014). To date, BATV has only been isolated in Africa once (Briese, Bird et al. 2006). However, due to the presence of vector species and the existence of NRIV, BATV distribution is believed to be severely underreported. Other viral members of this serogroup, such as CVV, are found distributed throughout North America, and can be spread by Ae. aegypti, although the evolutionary history of these viruses remains unknown (Holden and Hess 1959, Edwards, Higgs et al. 1998, Dutuze, Nzayirambaho et al. 2018).

1.3.3.2. Orthobunyavirus disease

There are a range of disease phenotypes experienced by people infected with orthobunyviruses. Those infected with members of the California serogroup of orthobunyviruses, such as La Crosse Virus (LACV), Californian encephalitis virus (CEV), or Jamestown Canyon virus (JCV), ranges from mild febrile disease to fatal encephalitis (CDC 2018). Most symptomatic cases experience sudden fever, followed by headache, fatigue, and vomiting, although symptoms usually end within 7 days. Up to half of cases may experience seizures, but fatalities are rare (<1%) (CDC 2018).
Within the *bunyamwera* serogroup, BUNV, BATV, and NRIV are known to cause disease in both humans and animals. BUNV infection generally results in mild symptoms, if any, which include fever, headache, joint pain, rash and occasional CNS symptoms (Southam and Moore 1951, Kokernot, Smithburn et al. 1958). BATV infection may result in flu-like symptoms in humans, although it has a more severe disease phenotype in ruminants, which includes abortions and premature births (Hubalek 2008). NRIV can result in more severe clinical symptoms, including haemorrhagic fever (Bowen, Trappier et al. 2001). NRIV has also been associated with a large outbreak in Sudan in 1988, although reported symptoms were less clinically severe (Nashed, Olson et al. 1993, Groseth, Weisend et al. 2012).

1.3.3.3. Orthobunyavirus replication

Generally, the viral Gn-Gc heterodimer binds to the cell receptor, enabling the virus to undergo endocytosis into the cell (Schmaljohn, Connie et al. 2007). The viral membrane fuses with the vesicle membrane after acidification of the vesicle, due to a conformational change in Gc, allowing the viral genome to be released (Gonzalez-Scarano, Janssen et al. 1985). Initially, viral cDNA of the S and L gene is transcribed through the action of virion-associated RDRP, the viral mRNA is then translated into the N, NSs, and RDRP proteins by free ribosomes. The M gene is translated by ribosomes bound to the endoplasmic reticulum, to produce Gc, Gn, and NSm. Gn and Gc are transported to the Golgi through Golgi targeting signals in Gn for viral assembly (Lappin, Nakitare et al. 1994, Shi, Lappin et al. 2004).

A switch occurs from protein synthesis to viral replication, through a currently unknown mechanism. RDRP transcribes more viral genome in the cytoplasm. vRNA and complementary RNA (cRNA) are both encapsidated by the N protein, although with a higher affinity for vRNA (Severson, Partin et al. 1999, Kaukinen, Koistinen et al. 2001). This produces the ribonucleocapsid, which serves as an anti-termination signal enabling the entire genome to be synthesised (Eifan and Elliott 2009). Orthobunyaviruses usually mature by budding at smooth
membranes of the Golgi. A build-up of Gn and Gc proteins in the Golgi triggers viral assembly. The ribonucleocapsid carrying S, M, and L genes localizes to the Golgi, for some viruses in the *bunyavirales* order, including Seoul virus and Hantaan virus, this has been shown to be through interactions with the Human Small Ubiquitin-like Modifier-1 (SUMO1), the SUMO conjugating enzyme (Ubc9), and the Protein Inhibitor of Activated STAT (PIAS) 1, and PIAS2β (Lee, Yoshimatsu et al. 2003, Maeda, Lee et al. 2003). After budding at the Golgi, the virion is released from the cell by exocytosis due to signalling by the Gn cytoplasmic tail (*Figure 1.10*) (Överby, Pettersson et al. 2007).
Figure 1.10 Orthobunyavirus life cycle

(1) The orthobunyavirus enters through pH mediated endocytosis. (2) pH induced conformational change allows the release of viral RNA (vRNA) into the cytoplasm. (3) vRNA is transcribed into viral mRNA by virion associated RNA-dependent RNA polymerase (L). (4) The viral mRNA is translated into the L, nucleocapsid and non-structural proteins (S) by cytoplasmic ribosomes. (5) The viral mRNA from the M genome is translated into a polyprotein by ribosomes attached to the endoplasmic reticulum, the polyprotein is then cleaved into the glycoproteins G\textsubscript{n}, and G\textsubscript{c}, and the non-structural NSm protein. (6) G\textsubscript{n}-G\textsubscript{c} heterodimers localize to the Golgi for virus assembly. (7, 8) Replication of vRNA is required to build-up sufficient quantities of genomic vRNA to be packaged into virions. (9) Ribonucleocapsids of S, M, and L segments are transported to the Golgi to be packaged with the G\textsubscript{n}-G\textsubscript{c} glycoproteins. (10, 11) The virus undergoes exocytosis into the extracellular space. From Szemiel (2011).
1.4. Post-translational modification

The post-translational modification (PTM) of proteins plays an important role in the regulation of protein function within cells. PTMs can do this by providing a new charge or surface that influences protein-protein interactions, conformational structural changes, and catalytic or substrate binding properties of target proteins. Some well-characterised examples of PTMs include glycosylation, methylation, phosphorylation or acetylation. Along with these, the addition of small proteins or chains of proteins can be added onto acceptor sites of target proteins undergoing modification. Ubiquitin and related family members, including Small Ubiquitin-like M0difier (SUMO) are key examples of such protein PTMs that influence target protein function or sub-cellular location.

This section will focus on the ubiquitin family of PTMs, which is a group of nine members including ubiquitin, SUMO, Neural-precursor-cell-expressed developmentally down-regulated 8 (Nedd8), Interferon-Stimulated Gene 15 (ISG15), Fau-ubiquitin like protein (FAT10), Autophagy-related protein 8 (ATG8), and Ubiquitin-fold modifier 1 (UFM1) (Pickart and Eddins 2004, Hochstrasser 2009). These members all display similar structural homology but very divergent amino acid identity. For instance, there is only ~20% amino acid sequence identity between human ubiquitin and human SUMO1 (Bayer, Arndt et al. 1998). Another shared characteristic of all members of the ubiquitin-like family is the C-terminal diglycine motif, which is only exposed after proteolysis of the terminal region (Pickart and Eddins 2004). This terminal diglycine is responsible for enabling the mature ubiquitin family of proteins to modify the target protein through the formation of an isopeptide bond to lysine residues found within target substrate proteins.

1.4.1. Ubiquitin

Ubiquitin, the founding member of the family, was initially identified in 1975 as an inducer of differentiation of T-cells and B-cells. Ubiquitin was identified in animal cells, yeast, and higher plants using radioisotope studies (Goldstein, Scheid et al. 1975). Using this method ubiquitin was also identified in bacteria.
It was therefore believed to be found universally throughout life and given the name ubiquitin (Goldstein, Scheid et al. 1975). Later work showed that ubiquitin was only found in eukaryotic organisms (Rechsteiner 1988, Gottesman 1989). Bacteria have been shown to possess a ubiquitin-like pathway, called prokaryotic ubiquitin-like protein (Pup), which performs a similar biological function to ubiquitin (Pearce, Mintseris et al. 2008).

The ubiquitination pathway involves a three step enzymatic cascade comprised of an activating enzyme (E1), conjugating enzyme (E2), and ligating enzymes (E3) (Scheffner, Nuber et al. 1995). The enzymes exist in a hierarchical structure. There are two known activating enzymes in humans (Pickart 2001), and 35 E2 enzymes. The larger number of E2 enzymes is due to their selective interactions with the E3 ligating enzymes. There are hundreds of E3 ligating enzymes, which provide specialised substrate protein interactions and functions (Pickart 2001, van Wijk and Timmers 2010). One of the best-understood biological roles for ubiquitin is ATP dependent protein degradation through the 26S proteasome. Poly-ubiquitin chains are covalently bound to the target protein, which then activate subunits of the proteasome that subsequently degrade the modified protein (Elsasser, Gali et al. 2002, Kerscher, Felberbaum et al. 2006).

Various forms of PTM have been shown to influence arboviral replication. For instance, the E2 ubiquitin conjugating enzyme, UbcH10, is usually downregulated in cells following CHIKV infection. Studies which over expressed UbcH10 resulted in reduced cellular susceptibility to CHIKV infection indicating a role for ubiquitin conjugation in suppressing CHIKV replication, although no precise mechanism was identified (Treffers, Tas et al. 2015). Furthermore, nsP2 from CHIKV and SFV have been shown to avoid the cellular transcriptional shut off by targeting RNA polymerase binding protein 1 (RPB1), a catalytic subunit of RNA Polymerase II, for ubiquitin mediated degradation (Akhrymuk, Kulemzin et al. 2012). Demonstrating that arboviruses hijack the ubiquitin pathway to benefit arboviral replication. Furthermore, a recently identified mosquito ubiquitin, named Ub3881, has been identified in mosquitoes to possess antiviral activity against DENV infection. DENV infection was found to downregulate expression of Ub3881, and overexpression studies indicate Ub3881 was required
to target DENV envelope protein for degradation, decreasing the number of infectious virions produced. Further depletion studies in mosquito cell culture and mosquitoes correlated with an increase in DENV replication, although it was not statistically significant (Troupin, Londono-Renteria et al. 2016).

1.4.2. Overview of the Small Ubiquitin-like MOdifer (SUMO) protein

This section aims to provide an overview of the SUMO modification pathway. PTM by SUMO can result in a range of altered biological roles, including protein localisation, protein-protein interactions, and regulation of gene expression through the modification of transcription factors (Geiss-Friedlander and Melchior 2007, Cubenas-Potts and Matunis 2013). SUMO can also modify proteins through multiple mechanisms, including both covalent and non-covalent interactions. Various types of SUMO interactions include: covalent mono-SUMOylation bonds to SUMO conjugation sites on a target protein, covalent poly-SUMO chains on a target protein, or non-covalent interactions mediated by SUMO Interaction Motifs (SIMs) within target proteins. SUMO can also interact with the ubiquitin pathway through competitively binding to the same lysine residue on the substrate proteins thereby preventing protein degradation, or by acting as a signal for poly-ubiquitin chain formation mediated by SUMO targeted Ubiquitin ligases (STUbLs), such as RING finger protein 4 (RNF4), thereby promoting protein degradation (Pickart and Eddins 2004, Miteva, Keusekotten et al. 2010). SUMO modification has been shown to be involved in cellular immunity helping the cell overcome viral infection. This can occur through the actions of SUMO modification of RIG-I, enhancing its interaction with the downstream acceptor molecule Cardif, which increases the expression of IFN (Mi, Fu et al. 2010). Melanoma differentiation associated gene 5 (MDA5) has also been reported to be SUMOylated, resulting in an increase in IFN expression (Fu, Xiong et al. 2011). One member of the Tripartite Motif family (TRIM) of proteins, TRIM19, or promyelocytic leukaemia (PML) protein, contains three SIM sites, and four SUMO conjugation motif (SCM) sites, and has been shown to possess antiviral activity against a range of viruses including herpesviruses, papillomaviruses and
SUMO is known to have roles in cell cycle progression, and dysregulation of the SUMOylation pathway has well documented roles in cancer (Seeler and Dejean 2017). SUMO also plays a role in the development of both mammals and *Drosophila*. Many signalling pathways with roles linked to embryonic development are known to be regulated by SUMO. For instance, SUMO negatively regulates JNK signalling that is responsible for dorsal closure in embryos, thorax closure in pupae, and stress induced apoptosis (Igaki 2009, Huang, Du et al. 2011). Furthermore, *Drosophila*’s SUMO conjugating enzyme, Ubc9 (initially identified as Lesswright) has roles in anterior patterning, and is believed to be required for the nuclear localisation of Bicoid, a transcription factor (Epps and Tanda 1998). Currently, the only studies investigating the *Ae. aegypti* SUMOylation pathway have been based on bioinformatics, detailing the conservation of the pathway between *Ae. aegypti* and *H. sapiens*, demonstrating that the pathway is broadly conserved except the SUMO protein is lacking an internal SCM in insects (Choy, Severo et al. 2013, Urena, Pirone et al. 2016).

1.4.2.1. SUMO proteins

SUMO was initially identified in 1996 in mammalian cells (Matunis, Coutavas et al. 1996). There are 5 SUMO paralogues in humans; SUMO1, SUMO2, SUMO3, SUMO4, and SUMO5. mRNA for SUMO4 has been shown to be predominantly detected in the kidneys, while SUMO5 is more abundantly expressed in the testes and peripheral blood leukocytes (Bohren, Nadkarni et al. 2004, Liang, Lee et al. 2016). All 5 paralogues are between 10.5-12 kDa in size (GenBank FJ042790.1, Uniprot P55854 2014, Uniprot P61956 2014, Uniprot P63165 2014, Uniprot Q6EEV6 2014). Once SUMO mRNA has been transcribed, it is translated into an immature SUMO protein. The C-terminal of SUMO is cleaved by sentrin specific proteases (SENPs). This reveals the diglycine (GG) motif and produces a mature SUMO protein (Kamitani, Nguyen et al. 1997, Suzuki, Ichiyama et al. 1999). The structure of SUMO has previously been resolved and shown to be similar to the retroviruses (Maul, Ishov et al. 1996, Mossman, Saffran et al. 2000, Everett 2001, Shen, Lin et al. 2006).
tertiary structure of ubiquitin (Bayer, Arndt et al. 1998). Like ubiquitin, SUMO is known to covalently bind to the ε-amino group on an acceptor lysine residue located in the substrate protein. Studies have previously shown that SUMO and ubiquitin can compete for binding at the same lysine residue (Desterro, Rodriguez et al. 1998). The target lysine residue is commonly found in a SUMO Conjugation Motif (SCM; Ψ-Lys-X-[Asp/Glu]), where Ψ represents a branched amino acid and X represents any amino acid (Rodriguez, Dargemont et al. 2001). Analysis of various studies reveals that glutamic acid is preferentially bound over aspartic acid within the SCM (Wang and Dasso 2009, Wasik and Filipek 2014). SUMO has also been reported to be capable of binding inverted SCMs (Matic, Schimmel et al. 2010). Moreover, there are reports of SUMO modification that is dependent on phosphorylation, extended SUMO conjugation motifs, and SUMO that binds to negatively charged amino acids (Hietakangas, Anckar et al. 2006, Yang, Galanis et al. 2006). Approximately 25% of SUMO conjugation sites with target substrates occur at non-canonical SCMs (Matic, Schimmel et al. 2010).

For an efficient transfer of SUMO from Ubc9 to the target acceptor lysine, the interaction needs to be stabilised. The SCM acts as a site with affinity for the amino acid residues in the Ubc9 near the active site. The four residues in the SCM interact with Ubc9. The first residue is hydrophobic which allows the side chains to form Van der Waals forces with four different Ubc9 residues (Pro128, Ala129, Gln130, and Ala131). The second residue is the conserved lysine that is the target for SUMO modification. Due to the interactions between the interfaces of Ubc9 and the target protein, the acceptor lysine can be observed to fit in a hydrophobic shallow groove. The orientation of the amino acid side chain of the third residue directs away from Ubc9. However, the amino acid space is required to saddle the consensus peptide through Van der Waals forces. The fourth residue, commonly Asp/Glu are believed to be preferred due to the longer side chain which enables hydrophobic Van der Waals forces to form (Bernier-Villamor, Sampson et al. 2002). For SUMO modification of a target protein to occur more efficiently, an E3 ligase may help to stabilize the interaction between the target protein and Ubc9. Alternatively, extended versions of SCMs, or phosphorylation sites at the C-terminal have also been identified which enhance affinity for Ubc9 (Hietakangas, Anckar et al. 2006, Yang, Galanis et al. 2006, Mohideen, Capili et al. 2009, Matic, Schimmel et al. 2010).
SUMO2 and SUMO3 proteins share 87% nucleotide sequence identity and 97% amino acid sequence identity (Saitoh and Hinchey 2000). Due to the high degree of homology at the amino acid level, these two proteins can’t be distinguished using antibodies, and therefore are often referred to as SUMO2/3. SUMO1 can be distinguished by antibodies as there is less amino acid identity, approximately 47% (Saitoh and Hinchey 2000). SUMO2/3 also contains an internal SCM, which allows chains of SUMO2/3 to efficiently form (Muller, Hoege et al. 2001, Tatham, Jaffray et al. 2001). SUMO1, does not contain an SCM and consequently doesn’t efficiently form chains in vivo, but can be incorporated into the SUMO2/3 chains as a chain terminator (Tatham, Jaffray et al. 2001).

In some eukaryotes including the fruit fly D. melanogaster, baker’s yeast Saccromyces cerevisiae and the nematode Caenorhabditis elegans, only one SUMO protein has been identified (Matunis, Coutavas et al. 1996, Lehembre, Badenhorst et al. 2000). This SUMO protein shares a high degree of sequence identity with human SUMO2/3 (Matunis, Coutavas et al. 1996, Saitoh and Hinchey 2000). The D. melanogaster homologue is believed to function more like human SUMO1, due to the lack of internal SCM, and studies have suggested that uncontrolled SUMO chain formation can be lethal (Urena, Pirone et al. 2016). However, the SUMO homologue in S. cerevisiae has been found to be capable of forming poly-SUMO chains, due to the presence of three SCMs in its N-terminus (Bylebyl, Belichenko et al. 2003). The gene sequences of two SUMO proteins have been identified in the cockroach Blattella germanica, and in Ae. aegypti (Choy, Severo et al. 2013, Urena, Pirone et al. 2016). No biochemical studies have been performed thus far on an Ae. aegypti SUMO.

Once SUMO is covalently bound to the substrate, non-covalent interactions can form that are mediated by SIMs in other proteins. This non-covalent interaction allows temporary protein-protein interactions to form. Multiple SIM motifs have been identified, the best characterized being the hydrophobic [Val/Ile]-X-[Val/Ile]-[Val/Ile] (Minty, Dumont et al. 2000, Wang and Dasso 2009).
1.4.2.2. SUMO interaction motifs (SIMs)

SIM sites are known to be important in regulating SUMO interactions. SIM sites function by binding onto the surface patch of the SUMO substrate between the α-helix and a β-sheet, extending the β-sheet by one strand. This interaction extends the β-strand in either a parallel or antiparallel orientation (Namanja, Li et al. 2012, Jardin, Horn et al. 2015). In *S. cerevisiae*, it has been found that in all SIM sites studied, antiparallel binding interactions are more stable when compared to parallel binding interactions (Jardin, Horn et al. 2015). SIM sites are frequently flanked by acidic residues or phosphorylated serine residues (Stehmeier and Muller 2009). In the mammalian system these can help determine SUMO2/3 specificity (Hecker, Rabiller et al. 2006).

1.4.2.3. SUMO pathway

The SUMOylation system is comprised of an analogous set of enzymes to the ubiquitin pathway as both contain E1, E2, and E3 enzymes. The ubiquitin pathway contains several E2 conjugation enzymes and many E3s (Rotin and Kumar 2009, Wasik and Filipek 2014). The SUMO pathway, however, only contains one E2 (Ubc9), and a limited number of E3s. Examples of E3 enzymes include the RING-finger-domain families, such as ‘SAP and Miz-finger domain-containing protein 1 / Protein Inhibitor of Activated STAT’ (SIZ/PIAS), or RanBP2. E3 enzymes help increase the rate and specificity of SUMO ligation *in vivo*, although aren’t necessary *in vitro* if target proteins contain an SCM (Verger, Perdomo et al. 2003). The ubiquitin pathway also contains an E4 enzyme specifically responsible for efficient formation of poly-ubiquitin chains (Huang, Minaker et al. 2014). A potential SUMO E4-like enzyme, ZNF451, has also been identified as part of the vertebrate SUMOylation pathway (Eisenhardt, Chaugule et al. 2015).

The mature SUMO protein binds E1 through the generated C-terminal glycine residue. E1 exists as a heterodimer comprising of the SUMO activating enzymes SAE1 and SAE2 (Desterro, Rodriguez et al. 1999). Using ATP and a magnesium ion, the E1 heterodimer activates SUMO, allowing it to form a thioester bond.
with E1. Subsequently, SUMO forms a thioester bond with the E2 conjugating enzyme, Ubc9 (Schwarz, Matuschewski et al. 1998, Desterro, Rodriguez et al. 1999). E3 enzymes are known to play important regulatory roles in SUMOylation, as they increase SUMOylation efficiency (Johnson and Gupta 2001). SENPs, initially utilised to mature SUMO, are also required to deSUMOylate target proteins, releasing SUMO into a pool of unconjugated SUMO. The SUMOylation pathway can be seen depicted in Figure 1.11.

Figure 1.11 H. sapiens SUMOylation pathway.

SUMO is activated by the SAE1/SAE2 activating heterodimer in an ATP dependent manner. SAE1/2 (grey) forms a thioester bond with the terminal glycine of SUMO (yellow) and then passes SUMO to Ubc9 (blue), forming a second thioester bond. Ubc9 can directly SUMOylate a substrate protein at a SCM, but *in vivo* this process is often assisted by the presence on an E3 ligase (PIAS; pink). Modification of substrate proteins occurs via an isopeptide linkage at a target lysine residue. SENPs can deSUMOylate proteins contributing to a pool of unconjugated SUMO.
1.4.2.3.1. Activating enzyme

The mature SUMO protein is activated by the SUMO activating enzyme (SAE) 1 - SAE2 heterodimer. There is only one SUMO E1 activating heterodimer which activates SUMO in two steps. ATP and magnesium are utilised to prime the terminal glycine of SUMO, and a conserved catalytic cysteine residue located within SAE1/2. The subsequent binding of the terminal glycine of SUMO to the cysteine residue of SAE1/2 results in a thioester bond forming (Desterro, Rodriguez et al. 1999). Some viruses, such as adenovirus has been shown to target the SAE1 protein of the heterodimer for degradation. This occurs through the action of the Gam1 protein, which forms a complex with ubiquitin in order to degrade the protein. As there is no longer an activating enzyme, cellular SUMOylation is prevented (Boggio, Passafaro et al. 2007). A combination of the activating enzyme and the C-terminal of the ubiquitin-like modifier which interacts with the E1 have been shown to be responsible for E1-ubiquitin-like modifier specificity. For instance, the E1 for NEDD8 would not activate ubiquitin without specific mutations (Walden, Podgorski et al. 2003, Souphron, Waddell et al. 2008, Ronau, Beckmann et al. 2016). Furthermore, SAE1/2 has been shown to be a substrate for SUMO modification, altering its cellular localisation, and decreasing the interaction between SAE1/2 and Ubc9 (Truong, Lee et al. 2012, Truong, Lee et al. 2012). SAE1/2 has also previously been reported to be able to autoSUMOylate during in vitro studies (Truong, Lee et al. 2012).

1.4.2.3.2. Conjugating enzyme

The E2 conjugating enzyme is responsible for covalently binding SUMO onto the substrate protein. The SUMO system only has one known E2 enzyme, Ubc9 (Gong, Kamitani et al. 1997, Schwarz, Matuschewski et al. 1998). The surface of Ubc9 is known to possess a positive charge, while the corresponding surface in SUMO-1 possesses a negative charge resulting in an attraction between the proteins (Tong, Hateboer et al. 1997, Liu, Jin et al. 1999). Ubc9 initially forms a thioester bond with SUMO through the terminal glycine with the Cys93 in the Ubc9 catalytic triad (Schwarz, Matuschewski et al. 1998, Tatham, Kim et al. 2003).
The cysteine residue orientates itself in order to form a new thioester bond requiring another ATP (Gong, Kamitani et al. 1997, Olsen, Capili et al. 2010). The surface of Ubc9 opposing the catalytic site is known to possess a distinct charge, which may assist with conjugating SUMO instead of ubiquitin or other ubiquitin-like modifiers (Giraud, Desterro et al. 1998). Mammalian SUMO1, SUMO2, and SUMO3 can all also bind the N-terminal of Ubc9 with similar affinity, SUMOylating Ubc9 (Tatham, Kim et al. 2003). Interestingly, the formation of a thioester bond has been shown to be initially slowed by the presence of the amino acids Asp100 and Lys101, the subsequent rate of transfer to the target protein is then enhanced by the presence of these amino acids (Tatham, Chen et al. 2003).

1.4.2.3.3. Ligating enzyme

The E3 ligating enzymes are responsible for increasing the rate of SUMO conjugation to substrate proteins. This is usually accomplished through two mechanisms. The E3 can enhance the rate of transfer by ‘priming’ the Ubc9–SUMO thioester and can also form a complex of the substrate protein with Ubc9–SUMO thioester. Consequently, the E3 enzymes are believed to be responsible for substrate specificity. However, relatively few E3 enzymes have been identified for the SUMO pathway (Cubenas-Potts and Matunis 2013, Jiang, Saavedra et al. 2014, Cappadocia and Lima 2018). Examples include RanBP2, Pc2 polycomb protein, ZNF451, and the PIAS family (Takahashi, Toh-e et al. 2001, Pichler, Gast et al. 2002, Merrill, Melhuish et al. 2010, Eisenhardt, Chaugule et al. 2015). The PIAS family have been studied in more detail and consequently, will be the focus of this section.

The PIAS proteins were initially identified due to their role in suppressing STAT and therefore suppressing the innate immune response, this was later found to be through PIAS activity as an E3 SUMO ligase (Chung, Liao et al. 1997, Liu, Liao et al. 1998, Takahashi, Toh-e et al. 2001, Kotaja, Karvonen et al. 2002, Rogers, Horvath et al. 2003). PIAS proteins are split into multiple functional domains including the SAP, PINIT, SP-RING, SIM, and S/T domains (Figure 1.12). The N-
terminal Scaffold Associating region/Acinus/PIAS (SAP) domain is responsible for binding to different biological factors, including DNA, transcription factors, and nuclear receptors (Liu, Gross et al. 2001, Tan, Hall et al. 2002). The PINIT domain is responsible for regulating the localisation of PIAS within the cell (Duval, Duval et al. 2003). The SP-RING domain functions in protein-protein interactions, and is the catalytically active site of the proteins SUMO ligase activity (Hochstrasser 2001). The C-terminal S/T domain has been shown to be highly variable, with several roles including binding to nuclear coactivators (Jiménez-Lara, Heine et al. 2002). Finally, between the S/T domain and the SP-RING domain there is one, or more, SIM site(s) which are believed to help facilitate SUMO interactions (Minty, Dumont et al. 2000, Kaur, Park et al. 2017). PIAS proteins have been found to be substrates of SUMO modification, recent studies have found that SUMO modification of PIAS1 inhibits its function as an inhibitor of activated STAT (Alagu, Itahana et al. 2018).

Figure 1.12 Schematic of PIAS1 domains

Domain structures, function, and PTM of HsPIAS1 is indicated. P is phosphorylation site, M is methylation site, numbers indicate the number of amino acids. Adapted from (Rytinki, Kaikkonen et al. 2009).

Abbreviations: Scaffold Associating region/Acinus/PIAS (SAP), Siz PIAS-Really Interesting New Gene (SP-RING), SUMO Interaction Motif (SIM), Serine/threonine-rich C-terminal (S/T).
1.4.2.3.4. **Sentrin specific proteases (SENPs)**

SENPs are deSUMOylating enzymes which have two roles in the cell. They mature the SUMO protein by cleaving off the C-terminal, revealing a diglycine motif, and they deSUMOylate modified proteins (Li and Hochstrasser 1999, Gong, Millas et al. 2000, Mossessova and Lima 2000). This results in a constant cellular supply of unconjugated SUMO which can subsequently be used in other modifications. This is a tightly regulated process, as uncontrolled deSUMOylation is highly toxic to mammalian cells (Johnson 2004). Humans possess 6 reported SENPs (1-3, 5-7) which fall into two branches based on their genetic similarity. SENP6 and SENP7 are closely related to each other and share homology with the yeast homologue Ulp2, but more distant from SENP1-3, SENP5, and the yeast homologue Ulp1 (Li and Hochstrasser 2000, Nayak and Muller 2014). In humans, SENP-3, -5, -6, and -7 have all been shown to preferentially target poly-SUMO2/3 chains, likely by trimming the external SUMO proteins off one at a time (Di Bacco, Ouyang et al. 2006, Eckhoff and Dohmen 2015).
1.5. Interactions between the viruses and the immune responses regulated by SUMO

1.5.1. Vertebrate innate immune response

Vertebrates possess a complex immune system ranging from an initial intrinsic immune response within cells at the site of infection, to a complex extracellular immune system. As the focus of this study is on the cellular mechanisms that influence arbovirus replication, only the mechanisms associated with cell based immunity will be presented. Cellular innate immunity is provided by biological factors which are upregulated in response to infection. Cellular intrinsic immunity is provided by biological factors that are constitutively expressed in the cell. Both the intrinsic and innate cellular immune response is tightly regulated in order to efficiently respond to infection, but not be constantly active. SUMO modification is well reported to regulate a plethora of components in the host innate immune response ensuring the immune response is only active in response to infection (Adorisio, Fierabracci et al. 2017). As a consequence of host cell intrinsic and innate immune factors, viruses have evolved a range of mechanisms to interfere with regulators of the immune response in order to replicate more efficiently.

When a cell becomes infected, pattern recognition receptors (PRR), such as the family of Toll-like receptors (TLR), or the cytoplasmic Retinoic acid inducible gene I (RIG-I) receptor, detects the pathogen associated molecular patterns (PAMPs) and initiate expression of antimicrobial genes to prime neighbouring cells. The most effective immune strategy to prime neighbouring cells that all mammalian cells possess is the interferon (IFN) system. There are three types of IFN, named type I, type II, and type III, which are released from an infected cell to signal neighbouring cells to enter an antiviral state. Cells possess IFN receptors which can recognise the different types of IFN. Type I IFN, comprising IFNα, IFNβ, IFNε, IFNκ, and IFNω are recognised by IFN alpha receptors 1 and 2 (IFNAR1/2), type II IFN, comprising IFNγ, is recognised by IFN gamma receptors (IFNGR), and type III IFN comprises IFNλ1, IFNλ2, and IFNλ3, and is recognised by IL-28 receptor α, and IL-10 receptor β (Kotenko, Gallagher et al. 2003). The focus of this section will be on IFN types I and II.
Upon activation, IFN receptors activate the Janus kinase - signal transducer and activator of transcription (JAK-STAT) pathway. Briefly, activation of the IFN receptors by IFN results in the activation of members of the Janus kinase family. Janus Kinase 1 (JAK1) and tyrosine kinase 2 (TYK2) are activated in response to type I IFN, while JAK1 and JAK2 are activated in response to type II IFN. Following activation of JAK1/TYK2 STAT proteins form homo- or hetero-dimers of STAT1/STAT2, or STAT2/STAT2. When IFNγ activates the JAK1/JAK2 proteins, STAT1 form homodimers. These STAT dimers translocate to the nucleus and function as a transcription factor, activating antiviral genes, including the MxA protein, protein kinase R (PKR), and TLRs (Figure 1.13) (Shuai, Stark et al. 1993, Silvennoinen, Ihle et al. 1993, Watling, Guschin et al. 1993).

SUMO is reported to regulate the signalling pathways that result in translation of types I and II IFN, and components of the JAK-STAT pathway. For instance, ssRNA is a PAMP detected by TLR7 and TLR8, which activate the myeloid differentiation primary response 88 (MyD88) signalling pathway. The MyD88 signalling cascade activates many important cellular proteins, including the transcription factors interferon regulatory factor 7 (IRF7) and IRF8. IRF7 and IRF8 then translocate to the nucleus to trigger the transcription of IFN (Kawai, Sato et al. 2004). SUMO modification of IRF7 and IRF8 has been shown to prevent the activation of these proteins, thereby suppressing the IFN response. Furthermore, removal of SUMO by SENP1 allows IRF8 to be activated (Kubota, Matsuoka et al. 2008, Chang, Xu et al. 2012). Other IRF family members, including IRF1 and IRF3 have also been reported to be targets of PIAS mediated SUMO modification, which suppresses this transcriptional activity (Nakagawa and Yokosawa 2002, Han, Jiang et al. 2008). Within the JAK-STAT pathway of neighbouring cells, SUMO has a well reported role of modifying STAT1 in a PIAS dependent manner. This effectively inhibits the type II IFN response, although the type I response can still occur through the formation of STAT2 homo-dimers (Rogers, Horvath et al. 2003).

Another important PRR is the RIG-I protein. This cytoplasmic protein detects viral RNA triggering a signalling cascade which activates IRF3 and NF-κB. IRF3 triggers the transcription of IFN, while the NF-κB pathway triggers the production of a myriad of gene products, including antiviral proteins such as pro-inflammatory cytokines, interleukins, or Mx1 (Liu, McEachin et al. 2003,
Gérardin, Baise et al. 2004, Gao, Hannan et al. 2006). RIG-I is known to be a target for SUMO modification which enhances modification of RIG-I by ubiquitin, and therefore promotes interactions with downstream proteins, and upregulates the antiviral response (Mi, Fu et al. 2010). There are also components of the NF-κB pathway which are also targets for modification by SUMO. NF-κB essential modulator (NEMO), a subunit of the IκB kinase complex which activates NF-κB, is SUMO modified in a PIAS dependent manner. SUMO modification results in the nuclear localisation of NEMO, and allows the ubiquitylation of NEMO to activate downstream signalling proteins in the cytoplasm (Huang, Wuerzberger-Davis et al. 2003, Mabb, Wuerzberger-Davis et al. 2006). SENP2, a SUMO protease is upregulated by NF-κB activation and functions to deSUMOylate modified NEMO, resulting in a negative feedback loop, which restricts the activation of the NF-κB pathway (Lee, Mabb et al. 2011). SUMO modification is also capable of negatively regulating the NF-κB pathway. IκBα is an inhibitor of the NF-κB pathway which is usually degraded through the proteasome. However, SUMO modification of IκBα protects the inhibitor from degradation, resulting in SUMOylation maintaining the repression of the NF-κB pathway (Desterro, Rodriguez et al. 1998).

One important antiviral cellular mechanism is the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by the dsRNA dependent protein kinase R (PKR). PKR is an ISG, induced by type I IFN, which is required to be SUMOylated in order to phosphorylate and activate eIF2α. The phosphorylation of eIF2α serves to prevent the initiation of translation of both cellular and viral proteins, and can result in cellular apoptosis indicating another antiviral role for SUMO modification (Harding, Novoa et al. 2000, Wek, Jiang et al. 2006, Muaddi, Majumder et al. 2010, de la Cruz-Herrera, Campagna et al. 2014).

When under stress, cells can also form nuclear stress granules formed of multiple strands of mRNA stalled in translation. They form through interactions between mRNA binding proteins through conventional protein-protein interactions, and intrinsically disordered regions. One mechanism by which stress granule formation is initiated is through the inhibition of eIF4A (Dang, Kedersha et al. 2006). eIF4A has been shown to be modified by SUMO1 and SUMO2 in vivo, where SUMO modification is required for the formation of eIF4A

Figure 1.13 Overview of the antiviral interferon response

Left hand side: In an infected cell, viral pathogen associated molecular patterns (PAMPs) are detected by pattern recognition receptors (PRRs), such as the family of Toll-like receptors (TLR) or Retinoic acid inducible gene-I (RIG-I). Activation of these proteins triggers signalling pathways which induces expression of antiviral compounds, including interferon (IFN). Right hand side: extracellular IFN activates IFN receptors, which activates the Janus kinase – signal transducer and activator of transcription (JAK-STAT) signalling pathway. JAK phosphorylates STAT, STAT forms a hetero- or homo-dimer, and translocates to the nucleus to trigger expression of IFN stimulated genes (ISG), putting the cell into an antiviral state.

Abbreviations: phosphate (P); protein kinase R (PKR); tyrosine kinase (TYK2)

SUMO has been shown to regulate multiple aspects of the cellular innate immune response, yet currently very few studies have been published investigating interactions between arboviruses and host SUMOylation (Section 1.5.4). Section
1.5.1.1. **Alphaviruses and innate immune evasion**

Members of the alphavirus family have been shown to suppress the host cell immune response by multiple mechanisms. Alphaviruses are capable of both, host-cell transcription and translation shut-off. Transcriptional shut-off is conducted through the activity of the viral nsP2 protein of Old World alphaviruses. nsP2 translocates to the nucleus where it targets the catalytic subunit of RNA polymerase II, RPB1, for ubiquitin mediated degradation (Peranen, Rikkonen et al. 1990, Akhrymuk, Kulemzin et al. 2012). New World alphaviruses use the capsid protein to mediate host-cell transcriptional shut-off, by forming a complex with nuclear import and export factors, thereby blocking nuclear import mediated by different karyopherins (Garmashova, Gorchakov et al. 2007, Atasheva, Fish et al. 2010).

During alphavirus infection, PKR becomes highly activated to the point where the cell experiences nearly complete eIF2α phosphorylation, resulting in translational shut-off (Ventoso, Sanz et al. 2006). Old World alphaviruses avoid this shut-off due to the presence of a highly stable hairpin loop in the RNA which provides resistance to eIF2α phosphorylation, by stalling the ribosome at the correct AUG, enabling viral RNA to be translated (Ventoso, Sanz et al. 2006, Toribio, Diaz-Lopez et al. 2016). Interestingly, New World alphaviruses enhance the shut-off of host cell translation by promoting phosphorylation of eIF2α then utilising the stable hairpin loop to continue translation of viral proteins, restricting the amount of host cell antiviral proteins that are translated (Aguilar, Weaver et al. 2007).
Alphaviruses have also developed mechanisms to interfere with the IFN pathway. CHIKV nsP2 has been identified as the protein responsible for inhibiting the nuclear localisation of STAT dimers, thereby reducing ISG expression. This appears to be independent of the function of nsP2 in host-cell shut-off, but the function is ablated if the nuclear localisation signals on nsP2 are mutated. This indicates that the nuclear localisation of nsP2 is required for it to inhibit STAT nuclear localisation (Fros, Liu et al. 2010, Fros, van der Maten et al. 2013). Together, these strategies ensure that alphaviruses are able to suppress the cellular immune response and are consequently able to replicate efficiently (Figure 1.14).

Like many other viruses, SFV is capable of disrupting the formation of cellular stress granules, preventing their antiviral activity. The c-terminal domain of nsP3 from SFV has been shown to sequester Ras-GAP SH3-domain-binding-protein (G3BP), a protein consistently found in all types of stress granule, and therefore inhibit stress granule formation (McInerney, Kedersha et al. 2005, Beckham and Parker 2008, Lloyd 2012, Panas, Varjak et al. 2012).
Alphaviruses utilise different strategies to avoid the mammalian immune response. The viral RNA possesses a stable hairpin loop at the 5’ end, resulting in successful translation initiation. This occurs following protein kinase R (PKR) phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) which results in shut-off of host cell translation. The viral nonstructural protein 2 (nsP2) also translocates to the nucleus to degrade the RNA Polymerase II (RNA Pol II) subunit, RPB1, preventing host cell transcription. nsP2 is also capable of preventing the nuclear localisation of signal transducers and activators of transcription (STAT) dimers, both mechanisms reduce expression of interferon (IFN) stimulated genes (ISGs).

Abbreviations: tyrosine kinase (TYK2), Janus kinase (JAK), phosphate (P).
1.5.1.2. Flaviviruses and innate immune evasion

At least four PRRs are utilised by the cell to detect flaviviruses, these are the Retinoic acid-inducible gene I (RIG-I)-like receptors, TLR3, 7, and 8, nucleotide-binding oligomerization domain (NOD)-like receptors, and the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) - dependent pathway (reviewed by Takeuchi and Akira (2010)). Consequently, many flaviviruses have developed mechanism to evade this host cell response. For instance, WNV, DENV, JEV, and TBEV have all been shown to delay the onset of IFN signalling by forming intracellular membranes to hide the viral dsRNA. dsRNA is a key PAMP that initiates an interferon response through the activation of a variety of PRRs including TLR3 and RIG-I (Fredericksen and Gale 2006, Welsch, Miller et al. 2009, Överby, Popov et al. 2010, Espada-Murao and Morita 2011, Junjhon, Pennington et al. 2014).

Many flaviviruses have also been shown to block the IFN response. For instance, NS2A of Kunjin virus (a strain of WNV; WNV\textsubscript{KUN}) has been identified as an inhibitor to IFN-β transcription (Liu, Chen et al. 2004). DENV NS2A, NS4A and NS4B can prevent JAK-STAT signalling by reducing the phosphorylation and transport of STAT1 into the nucleus (Muñoz-Jordán, Sánchez-Burgos et al. 2003). Upon activation by interferon, the STAT family of proteins usually form homodimers or heterodimers which induce expression of ISGs, reviewed in Harrison (2012). DENV and ZIKV NS5 proteins have been shown to block STAT2 signalling. DENV blocks STAT2 through promoting proteasome mediated degradation of STAT2, following targeting by the E3 ubiquitin ligase UBR4 (Mazzon, Jones et al. 2009, Morrison, Laurent-Rolle et al. 2013). ZIKV blocks STAT2 signalling through the same pathway, but independent of the E3 ubiquitin ligase (Grant, Ponia et al. 2016). Both mechanisms prevent the cellular interferon-dependent innate immune response from restricting viral replication. Recent studies with ZIKV have also found that the NS5 protein blocks IFN induction and signalling, this was achieved by reducing levels of STAT2, and blocking phosphorylation of STAT1 (Hertzog, Dias Junior et al. 2018).
Other anti-antiviral mechanisms employed by flaviviruses include the NS3 protein of DENV, which has been reported to bind to a protein called 14-3-3ε, which functions to translocate RIG-I within the cell. NS3 binding to 14-3-3ε prevented translocation of RIG-I, and thereby blocked the RIG-I mediated antiviral response (Chan and Gack 2016).

DENV has also been shown to form a stable complex of NS2B-NS3 which is capable of inhibiting IFN signalling by proteolytically cleaving the STING protein, a component of the cGAS pathway. This has also been shown to be species specific, as the mouse STING was not cleaved by DENV NS2B-NS3 (Falgout, Pethel et al. 1991, Aguirre, Maestre et al. 2012). NS2B-NS3 has also been shown to block the induction of RIG-I through masking the kinase domain of IκB kinase ε, thereby preventing the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3) (Anglero-Rodriguez, Pantoja et al. 2014). NS4B from DENV has been implicated in suppressing the RNA interference (RNAi) response in the human liver Huh7 cell line (Kakumani, Ponia et al. 2013). Although as the RNAi response is not the most potent antiviral mechanism in mammals, this may have a more prominent role in the vector species.

Subgenomic flavivirus RNA (sfRNA), a non-coding RNA derived from the 3’ untranslated region (reviewed by Clarke, Roby et al. (2015)), has also been implicated in being an antagonist of IFN production. This has been found to occur through multiple mechanisms, including inhibiting the activation of RIG-I, through blocking nuclear translocation of IRF3, and sfRNAs from ZIKV may also antagonise MDA5 activation (Schuessler, Funk et al. 2012, Chang, Hsu et al. 2013, Manokaran, Finol et al. 2015, Donald, Brennan et al. 2016). Furthermore, sfRNAs are resistant to Dicer or exoribonuclease 1 (XRN1) mediated degradation of the viral genome, due to the presence of pseudoknots and stem loops restricting the RNA interference response (Schnettler, Sterken et al. 2012).

Flaviviruses are capable of targeting individual ISGs in order to prevent antiviral mechanisms utilised by the cell. For instance, one family of ISGs, MxA, has been shown to have antiviral activity against various RNA viruses (Landis, Simon-Jodicke et al. 1998, Chieux, Chehadeh et al. 2001). WNV_{KUN} is believed to hide
from MxA through the induction of membranous structures (Hoenen, Liu et al. 2007).

Finally, it’s also reported that various flaviviruses are capable of promoting suppressors of cytokine signalling (SOCS)-1 and SOCS3 expression through binding to the Tyro3/Axl/Mer (TAM) receptor on certain cell types, such as dendritic cells. This has the function of suppressing JAK-STAT signalling (Mansfield, Johnson et al. 2010, Bhattacharyya, Zagorska et al. 2013). Together, these demonstrate a wide range of strategies flaviviruses employ to evade antiviral responses in the cell (Figure 1.15).
Flaviviruses utilise various strategies to avoid the mammalian innate immune response. DENV and ZIKV non-structural protein 5 (NS5) have both been shown to degrade the signal transducer and activator of transcription 2 (STAT2). DENV non-structural protein 2A (NS2A), 2B (NS2B), 4B (NS4B), and ZIKV NS5 have also been shown to inhibit the phosphorylation of STAT1, which results in fewer STAT1/2 heterodimers forming. DENV NS3 also has roles in binding to 14-3-3ε, preventing 14-3-3ε from shuttling retinoic acid-inducible gene I (RIG-I) into the nucleus. Furthermore, subgenomic flaviviral RNA (sfRNA) can inhibit activation of RIG-I. DENV NS2B-NS3 also serves to proteolytically cleave stimulator of interferon genes (STING), a component of the cyclic GMP-AMP synthesesase (cGAS) signalling pathway. DENV can also bind to Tyro3/Axl/Mer (TAM) receptors on specific cell types, which induces expression of suppressors of cytokine signalling (SOCS)-1 and -3, which suppress the janus kinase - signal transducers and activators of transcription (JAK-STAT) pathway.

Abbreviations: interferon (IFN), interferon stimulated genes (ISG), double stranded RNA (dsRNA), tyrosine kinase (TYK2), phosphate (P).
Orthobunyaviruses and innate immune evasion

Orthobunyaviruses have not been studied to the same extent as alphaviruses and flaviviruses. The majority of the immune evasion mechanisms that are adopted by orthobunyaviruses utilise the non-structural NSs protein (Section 1.3.3.3). The NSs protein has been shown to act as an IFN antagonist. BUNV NSs inhibits the phosphorylation of the RNA polymerase II, which decreases the amount of host mRNA synthesis (Thomas, Blakqori et al. 2004). The C-terminal of BUNV NSs interacts with the protein Mediator of RNA polymerase II transcription subunit 8 (MED8), part of the mediator complex which regulates RNA polymerase II transcription, preventing transcription initiation (Léonard, Kohl et al. 2006). LACV NSs also targets the RNA polymerase II to block the IFN response, but this is achieved through degradation of the RNA pol II protein (Verbruggen, Ruf et al. 2011). Both of these mechanisms have the effect of restricting the cells antiviral response, while not restricting the viruses’ transcription, due to the function of the viral RDRP. Finally, NSs has also been reported to delay cellular apoptosis through suppressing the interferon regulatory factor-3 signalling pathway (Kohl, Clayton et al. 2003). This extends the length of time which orthobunyaviruses are able to replicate for within the cell (Figure 1.16).
Innate immune evasion strategies employed by Orthobunyaviruses have only been reported to utilise the non-structural protein produced by the S gene (NSs). BUNV NSs serves to inhibit phosphorylation of RNA polymerase II (RNA Pol II), while LACV NSs degrades RNA Pol II. BUNV NSs can also interact with Mediator of RNA Pol II transcription subunit 8 (MED8), preventing MED8 from interacting with RNA Pol II, thereby reducing host cell gene expression. NSs can also suppress the interferon response factor 3 signalling pathway (IRF3), reducing the induction of interferon stimulated genes (ISG) and delaying apoptosis.
1.5.2. Invertebrate innate immune response

As the SUMOylation pathway in mosquitoes has yet to be fully deciphered, this section will broadly describe the vector innate immune response.

Mosquito cell culture is well known to develop a persistent infections which rarely result in cell death (Peleg 1968). This is believed to be due to the antiviral mechanisms of the vector cell restricting arboviral replication. Invertebrates do not have an adaptive immune response, or a directly equivalent IFN based antiviral response. Consequently, invertebrates predominantly rely on cellular based innate immune response, although they do possess haemocytes which act as circulating immune cells. Classically, most work on invertebrate immune responses was conducted on *Drosophila melanogaster* (*D. melanogaster*), although much of this work has now also been studied in more relevant species such as *Ae. aegypti*. Consequently, much of what is described here will focus on *D. melanogaster*. Important invertebrate innate antiviral pathways include the Toll, immune deficiency (IMD), JAK-STAT, and RNAi pathways as summarised in Figure 1.17, all of the following pathways have been shown to be antiviral in mosquitoes (for review see Sim, Jupatanakul et al. (2014)).

The Toll and IMD pathways are functionally similar to the mammalian nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. The Toll pathway was initially identified as an antiviral pathway in *D. melanogaster* (Zambon, Nandakumar et al. 2005). Briefly, extracellular PAMPs are detected by PRRs which stimulates the secretion of a cytokine, Spätzle (DeLotto and DeLotto 1998). Spätzle activates the transmembrane Toll receptor, which signals through associated adaptor proteins to phosphorylate Cactus, a homologue of the IκB protein in humans (Nicolas, Reichhart et al. 1998). Cactus phosphorylation leads to proteasomal degradation, which allows Dorsal (named Rel1 in mosquitoes), to translocate to the nucleus and transcribe Toll-regulated antimicrobial genes (Lemaitre, Nicolas et al. 1996, Sim, Jupatanakul et al. 2014).

The IMD pathway is also activated through the detection of extracellular PAMPs by PRRs, resulting in the activation of the IMD protein. In *D. melanogaster* the Peptidoglycan Recognition Proteins (PGRP) are the PRRs which activate the IMD
pathway (Choe, Lee et al. 2005). The IMD pathway then splits into two branches; one activates the transcription factor AP-1 through the JNK signalling, the other branch results in the activation and translocation of the NF-κB like transcription factor, Relish (Rel2 in mosquitoes) (Davis 1994, Sluss, Han et al. 1996, Stöven, Ando et al. 2000, Sanders, Foy et al. 2005, Fragkoudis, Chi et al. 2008, Costa, Jan et al. 2009) (Figure 1.17).

The JAK-STAT pathway is widely known in mammals for its role in the IFN response. In D. melanogaster, the pathway is activated either by initial binding of the ligand Unpaired (Upd) to the extracellular region of the Domeless (Dome) receptor or through the action of the cytokine Vago, independent of Dome (Harrison, McCoon et al. 1998, Brown, Hu et al. 2001, Hombría, Brown et al. 2005, Paradkar, Trinidad et al. 2012). D. melanogaster is only reported to possess one Janus kinase (Hopscotch, or Hop in mosquitoes), and one STAT transcription factor (Binari and Perrimon 1994, Hou, Melnick et al. 1996, Yan, Small et al. 1996). Similar to mammals, receptor activation results in a conformational change and dimerization of Dome. This leads to self-phosphorylation of the receptor associated Hop, which recruit the STAT proteins to be phosphorylated by the Dome/Hop complex. STAT proteins are dimerized and translocate to the nucleus to induce gene expression (Arbouzova and Zeidler 2006) (Figure 1.17).

The most potent mechanism invertebrates have for restricting arbovirus replication is from the RNA interference (RNAi) pathway. There are three RNAi pathways, the small interfering RNA (siRNA) pathway, the micro RNA (miRNA) and Piwi-interacting RNA (piRNA) pathways (for review, see Blair and Olson (2015), Olson and Blair (2015)). miRNA genes are commonly utilised by the cell as a form of post-transcriptional gene regulation, affecting approximately 15% of the Drosophila genome (Grün, Wang et al. 2005). The function of the piRNA pathway is still largely unresolved. Generally they are thought to regulate transposons in germline cells. The piRNA pathway is distinct from miRNA and siRNA as the biogenesis is independent of Dicer (Vagin, Sigova et al. 2006). The siRNA pathway is the best studied of the RNAi pathways and has a widely known role in cellular antiviral defence. Upon arboviral replication in the host cell, the siRNA pathway is initiated by long strands of dsRNA located in the cytoplasm.
The dsRNA is cleaved by Dicer 2 into siRNA stretches of 21 nucleotides. The siRNA-Dicer 2 complex, in association with the dsRNA binding protein R2D2, enables the 21 nucleotide stretch of dsRNA to bind and load onto the RNA-induced silencing complex (RISC), which assembles differently in humans and invertebrates (Yoda, Kawamata et al. 2010). Argonaute 2 (Ago2) is the effector protein of the RISC complex, which unwinds the double stranded siRNA into a single guide strand of siRNA. If the guide siRNA forms a base paired duplex with the complementary viral RNA strand, Ago2 then cleaves the complementary RNA strand at the centre of the base paired duplex (Bernstein, Denli et al. 2001, Martinez, Patkaniowska et al. 2002, Pham, Pellino et al. 2004, Matranga, Tomari et al. 2005, Rand, Petersen et al. 2005).

There is also a degree of crosstalk between the immune pathways which likely evolved to ensure a comprehensive immune response. For instance, Dicer 2, along with its function in the RNAi pathway, also activates TNF receptor-associated factor (TRAF). TRAF cleaves and activates Rel2, the NF-κB like transcription factor utilised in the IMD pathway. This allows Rel2 to promote the transcription of Vago, which is secreted and activates the JAK-STAT pathway, in a similar manner to the IFN response in mammals (Dedouche, Matt et al. 2008, Paradkar, Trinidad et al. 2012, Paradkar, Duchemin et al. 2014) (Figure 1.17).

Many arboviruses have co-evolved with their vector species with the aim to minimise adverse effects on vector survival. Consequently the majority of the evidence of viruses possessing strategies to suppress the vector immune responses is recent and not fully uncovered. Section 1.5.2.1, Section 1.5.2.2, Section 1.5.2.3 will describe what is currently known about mechanisms the arboviruses employ to evade the vector immune response.
Figure 1.17 Mosquito immune response

In Toll pathway signalling, extracellular viral pathogen associated molecular patterns (PAMPs) are detected by pattern recognition receptors (PRR) which then cleave Spätzle. Spätzle binds and activates the Toll receptor which triggers the phosphorylation (P) and degradation of Cactus. Cactus degradation enables the transcription factor RelI to localise to the nucleus and induce expression of toll-regulated genes. The IMD pathway is also activated by viral PAMPs triggering PRR (probably the peptidoglycan recognition protein (PGRP)), resulting in IMD activation and a functional split in the pathway. One branch triggers the c-Jun N-terminal kinase (JNK) signalling pathway which activates the transcription factor activator protein I (AP-I). The other branch phosphorylates and cleaves the transcription factor Rel2, which activates it allowing Rel2 to translocate to the nucleus and induce IMD regulated gene expression. The JAK-STAT pathway is activated by unpaired (Upd) binding to the receptor, Dome. Binding activates the receptor associated Hop janus kinase, which then recruits and phosphorylates the transcription factor, STAT.

Continued on next page
1.5.2.1. Alphaviruses and *Ae. aegypti* immune response

The primary mechanism of suppressing alphavirus replication in *Ae. aegypti* is through the action of the RNAi pathway. Old World alphaviruses have previously been reported to suppress the Toll, IMD, and JAK-STAT pathway immune responses in *Ae. aegypti* cell lines. Prior stimulation of the antiviral pathways has been shown to reduce SFV and CHIKV replication in invertebrate cell culture, this was achieved through non-specific and incomplete host cell transcriptional shut-off (Fragkoudis, Chi et al. 2008, McFarlane, Arias-Goeta et al. 2014). Although the specific viral protein was not identified, it is likely to be the function of nsP2 in the Old World alphaviruses, as this is the protein identified as being responsible for host cell shut-off in vertebrate cells, as described (Section 1.5.1.1) (Garmashova, Gorchakov et al. 2006, Breakwell, Dosenovic et al. 2007). CHIKV has also been shown to influence the RNAi pathway through altering miRNA expression within *Ae. albopictus* cells (a mosquito vector closely related to *Ae. aegypti*). For instance, CHIKV infection upregulated the miRNA named miR-2944b-5p, which is predicted to target four cellular pathways including...
protein processing in the ER, citrate cycle, ribosome, and ubiquitin mediated proteolysis (Shrinet, Jain et al. 2014). SFV, however, contains viral siRNA ‘hot spots’ in its genome, which produce more abundant siRNAs with poor antiviral activity that act to suppress this arm of invertebrate immunity (Siu, Fragkoudis et al. 2011).

Interestingly, when mosquitoes are infected with SINV, the viral siRNA produced is crucial for vector survival. If the accumulation of this viral siRNA is suppressed, the virus replicates to higher titres but at the cost of vector survival, indicating an evolutionary trade-off for the virus (Myles, Wiley et al. 2008).

1.5.2.2. Flaviviruses and *Ae. aegypti* immune response

DENV infection of adult *Ae. aegypti* has been reported to down regulate several antimicrobial peptides that are promoted by the Toll signalling pathway (Ramirez and Dimopoulos 2010). The transcriptome of DENV infected mosquitoes and mosquitoes with an over-activated Toll pathway had overlapped intensity of up- and down-regulated transcripts. This indicates that the Toll pathway is a regulator of DENV infection in mosquitoes (Xi, Ramirez et al. 2008). Furthermore, similar studies in *Ae. aegypti* cell culture has also been shown to down-regulate the transcription of many antimicrobial compounds stimulated from both the IMD and Toll pathways (Sim and Dimopoulos 2010). JEV has also been reported to block the phosphorylation of the STAT protein of the JAK-STAT pathway in RNAi deficient *Ae. albopictus* cells (Lin, Chou et al. 2004). Together, this indicates that flaviviruses utilise a wide range of mechanisms to suppress the *Ae. aegypti* Toll, JAK-STAT, and IMD immune pathways.

As the RNAi pathway is the primary method of antiviral action in invertebrates, flaviviruses have reportedly evolved multiple mechanisms to suppress the RNAi response. DENV NS4B has been reported to suppress the RNAi response in both mammals and in the invertebrate fall armyworm *Spodoptera frugiperda*, possibly through interfering with Dicer 2 activity (Kakumani, Ponia et al. 2013), although
this has not yet been studied in *Ae. aegypti* vector. YFV capsid protein has also been implicated as a viral suppressor of RNA silencing, through interfering with Dicer 2, and with a conserved function in other flaviviruses (Samuel, Wiley et al. 2016). sfRNA also possesses a functional role in the *Ae. aegypti* vector, along with the *H. sapiens* host. sfRNAs have been shown to inhibit the processing of dsRNA by Dcr2 and Ago2 in vitro and vector mosquitoes (Schnettler, Sterken et al. 2012, Moon, Dodd et al. 2015). Other studies investigating the role of sfRNAs in mosquitoes have suggested a tissue specific role for sfRNAs, as relatively larger quantities of sfRNA, and corresponding higher viral titres were produced in the salivary glands compared to the midgut or carcass (Pompon, Manuel et al. 2017). DENV infection can also lead to altered expression of cellular miRNA. The miRNAs altered included those involved in protein transport, transcriptional regulation, mitochondria, chromatin modification, and signal transduction processes in order to promote viral replication (Campbell, Harrison et al. 2014). WNvKUN has also been shown to encode its own miRNA strand which targeted and increased accumulation of *Ae. aegypti GATA4* transcripts. When GATA4 mRNA was silenced, WNvKUN replication was significantly reduced, indicating that the arbovirus is able to manipulate expression of cellular proteins to benefit the virus in *Ae. aegypti* (Hussain, Torres et al. 2012).

1.5.2.3. Orthobunyaviruses and *Ae. aegypti* immune response

The NSs proteins from BUNV and LACV have been reported as viral suppressors of RNAi. Studies that deleted sections of NSs and assessed the replication in Dcr2 deficient mosquito cell lines found BUNVΔNSs to be less infectious in *Ae. aegypti* mosquitoes. This indicates that NSs has a role in suppressing the function of Dcr2 in the vector, although a mechanism has not been identified (Soldan, Plassmeyer et al. 2005, Szemiel, Failloux et al. 2012).
1.5.3. SUMOylation pathway interactions with viruses

PTM by SUMO is known to be an essential form of cellular modification. SUMOylation has previously been shown to either positively or negatively influence viral replication for a range of DNA and RNA viruses in mammalian cells (Wilson 2012, Wimmer and Schreiner 2015, Wilson 2017). SUMOylation is also known to help host cells enter an antiviral state, due to alterations of host cell signalling pathways (Hannoun, Maarifi et al. 2016). As a consequence, many viruses may need to alter cellular SUMOylation in order to propagate efficiently. This section will focus on interactions between the SUMOylation machinery and viral proteins.

Many aspects of viral replication are known to be regulated by SUMOylation of viral proteins. For instance, the N protein from severe acute respiratory syndrome (SARS) coronavirus is SUMO modified, promoting oligomerization (Li, Xiao et al. 2005). Furthermore, SUMO modification of the M1 matrix protein of influenza A virus promotes viral assembly and maturation (Wu, Jeng et al. 2011). Other studies have found components of the SUMOylation pathway to be targeted by viruses in order to promote viral replication. Human Papillomavirus has been found to decrease the cellular concentration of Ubc9 through the action of the E6 oncoprotein, decreasing overall cellular SUMOylation in order to promote viral propagation (Heaton, Deyrieux et al. 2011). Furthermore, the latent membrane protein 1 from Epstein Barr virus (EBV) has been found to possess a C-terminal activating region, which interacts with Ubc9 in order to increase cellular SUMOylation (Bentz, Whitehurst et al. 2011). RNAi studies have implicated SAE1/2 and Ubc9 in restricting adeno-associated virus replication by targeting entry of the capsids (Hölscher, Sonntag et al. 2015). Members of the PIAS family of proteins, which are classically regarded as suppressors of innate immunity, have also been reported to localise to nuclear domains during Herpes Simplex Virus-1 (HSV-1) infection to suppress replication as part of an intrinsic immune response (Brown, Conn et al. 2016, Conn, Wasson et al. 2016). In contrast, HCV infected cells upregulated the expression of SUMO1, with depletion of SUMO1 resulting in reduced viral replication, indicating that SUMO1 has a pro-viral effect on HCV replication (Akil, Wedeh et al. 2016).
1.5.4. SUMO and arboviruses

To date, there are three studies looking at the interaction between arboviruses and the SUMO pathway with contradictory outcomes (Chiu, Shih et al. 2007, Su, Tseng et al. 2016, Feng, Deng et al. 2018). Chiu, Shih et al. (2007) demonstrated that Ubc9 in human cells could interact with DENV E protein, possibly through SUMO modification of Lysines 51 and 241. Ubc9 could also restrict DENV replication following ectopic expression. This is supported by recent studies by Feng, Deng et al. (2018) who utilised siRNA to deplete expression of Ubc9 and found an increase in DENV RNA, although they did not investigate a phenotype. In contrast to this, Su, Tseng et al. (2016) demonstrated that the NS5 protein is a target for SUMO modification which prevents ubiquitin-mediated degradation and consequently helps to stabilize the viral protein, furthermore shRNA transduction to deplete expression of Ubc9 was found to suppress DENV replication (Su, Tseng et al. 2016). Together, these demonstrate that there is a role for the SUMOylation pathway in the regulation of arboviruses. However, currently the role of SUMOylation on arbovirus replication in *H. sapiens* is contradictory, and no work has yet been conducted in the mosquito vector species.

Studies have been conducted in *D. melanogaster* investigating changes in the SUMO proteome in response to bacterial lipopolysaccharide (LPS) activation of host immune responses. A total of 710 proteins were confidently identified as being SUMO modified, of which 4.8% were known to be in a functional group involved in an immune response. Proteins which were found to be SUMO modified include: STAT92E (transcription factor in JAK-STAT pathway), Basket (JNK signalling), 14-3-3ε (signalling and protein transport), Casp (negative regulator of IMD/NF-κB pathway), or Imd (signal transducer in IMD/NF-κB pathway) (Gronholm, Ungureanu et al. 2010, Handu, Kaduskar et al. 2015). This indicates a prominent role for SUMO modification during the regulation of invertebrate immunity.
1.6. Premise and primary objectives of the project

Arboviruses are a major pathogen of both humans and livestock. Understanding the molecular basis for how they replicate in both the host and vector species may be key to identifying novel strategies for controlling arbovirus replication.

The SUMO pathway is well known to both positively and negatively influence the replication of a wide range of RNA and DNA viruses in a virus dependent manner. However, to date, there are only two studies which focus on the influence of the SUMO pathway on arboviruses. Both focus on DENV, and both studies are conducted in *H. sapiens* cells. Consequently, there is a lack of understanding about the influence of this pathway on arboviruses in the vector species, and with a range of arboviruses from different viral families.

The primary objectives of the work presented here aims to:

- Investigate the homology between the *H. sapiens* and uninvestigated *Ae. aegypti* SUMOylation pathways
- Characterise the biochemical properties of the *Ae. aegypti* SUMOylation pathway with respect to the *H. sapiens* SUMOylation pathway
- Investigate the physiological effect of the *Ae. aegypti* SUMOylation pathway on arbovirus replication (SFV, BUNV, and ZIKV).
- Investigate the physiological effect of components of the *H. sapiens* SUMOylation pathway on SFV, BUNV, and ZIKV replication.

In doing so, the aim is to improve our understanding of the influence of invertebrate and vertebrate SUMOylation on arbovirus replication.
2. Materials & Methods
2.1. Materials

2.1.1. Cells and cell culture reagents

2.1.1.1. Cell lines utilised

Table 2-1 Summary table of cell lines used in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Growth and maintenance media</th>
<th>Growth and maintenance conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A20</td>
<td>Larval Ae. aegypti cell line originally cultured by Varma and Pudney (1969).</td>
<td>L15 supplemented with 10% FBS</td>
<td>28°C</td>
</tr>
<tr>
<td>Aag2</td>
<td>Larval Ae. aegypti cell line originally cultured by Peleg (1968). Have been validated to show they possess an immune response comparable to Ae. aegypti mosquitoes (Barletta, Silva et al. 2012).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF5</td>
<td>Single cell clone of Ae. aegypti cells originally derived from Aag2s and found to have a similar immune response to Aag2s (Varjak, Maringer et al. 2017).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hft</td>
<td>Human Foetal Foreskin Fibroblast cells immortalized by stable expression of human telomerase, as described by Smith, Goddard et al. (2013). Hft cells were gifted from Steven McFarlane (MRC-University of Glasgow Centre for</td>
<td>DMEM supplemented with 10% FBS and 5 µg/ml Hygromycin</td>
<td>37°C, 5% CO₂</td>
</tr>
<tr>
<td>Cell Line</td>
<td>Description</td>
<td>Media</td>
<td>Temperature</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>A549-Npro</td>
<td>Human alveolar carcinoma cells, modified to contain an NPro which renders the cells IRF3 deficient and prevents them from producing an interferon response, as previously described (Hilton, Moganeradj et al. 2006, Perez-Cidoncha, Killip et al. 2014). Gifted from Dr Claire Donald (MRC-University of Glasgow Centre for Virus Research).</td>
<td>DMEM supplemented with 10% FBS, and 0.5 µg/ml Puromycin</td>
<td>37˚C, 5% CO₂</td>
</tr>
<tr>
<td>HEK-293T</td>
<td>Human embryonic kidney cells that express a mutant version of the SV40 large T antigen (DuBridge, Tang et al. 1987).</td>
<td>DMEM supplemented with 10% FBS</td>
<td>37˚C, 5% CO₂</td>
</tr>
<tr>
<td>Vero-E6</td>
<td>African green monkey kidney epithelial cells (Yasumura and Kawakita 1963).</td>
<td>DMEM supplemented with 10% FBS</td>
<td>37˚C, 5% CO₂</td>
</tr>
<tr>
<td>BHK</td>
<td>Baby Hamster kidney cells originally cultured by Macpherson and Stoker (1962).</td>
<td>GMEM supplemented with 10% FBS and 10% TPB</td>
<td>37˚C, 5% CO₂</td>
</tr>
</tbody>
</table>
2.1.1.2. Cell culture reagents utilised

Table 2-2 List of cell culture reagents used in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Catalogue number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5% Trypsin (10X)</td>
<td>Gibco</td>
<td>15090-046</td>
</tr>
<tr>
<td>Avicel RC dispersible microcrystalline cellulose (Avicel)</td>
<td>FMC BioPolymer</td>
<td>RC-591NF</td>
</tr>
<tr>
<td>Dharmacon DhermaFECT 2</td>
<td>GE Healthcare</td>
<td>T-2002-02</td>
</tr>
<tr>
<td>Dimethyl sulphoxide (DMSO)</td>
<td>Sigma</td>
<td>D2660</td>
</tr>
<tr>
<td>Dulbecco’s Modified Eagle Medium (DMEM)</td>
<td>Gibco</td>
<td>41966-029</td>
</tr>
<tr>
<td>Fetal Bovine Serum (FBS)</td>
<td>Gibco</td>
<td>10270-106</td>
</tr>
<tr>
<td>Glasgow’s Minimum Essential Medium (GMEM)</td>
<td>Gibco</td>
<td>21710-025</td>
</tr>
<tr>
<td>Hexadimethrine bromide (Polybrene)</td>
<td>Sigma-Aldrich</td>
<td>H9268</td>
</tr>
<tr>
<td>Leibovitz’s-L15</td>
<td>Gibco</td>
<td>31415-029</td>
</tr>
<tr>
<td>Lipofectamine2000</td>
<td>Invitrogen</td>
<td>11668027</td>
</tr>
<tr>
<td>Lipofectamine LTX with PLUS reagent</td>
<td>Invitrogen</td>
<td>10964021</td>
</tr>
<tr>
<td>Poly-D-Lysine Hydrobromide</td>
<td>Sigma-Aldrich</td>
<td>P7405</td>
</tr>
<tr>
<td>Puromycin</td>
<td>Sigma-Aldrich</td>
<td>P8833</td>
</tr>
<tr>
<td>Sodium Bicarbonate</td>
<td>Gibco</td>
<td>25080-060</td>
</tr>
<tr>
<td>Tryptose Phosphate Broth (TPB)</td>
<td>Gibco</td>
<td>18050-039</td>
</tr>
<tr>
<td>Versene in PBS</td>
<td>E&O laboratories</td>
<td>BM0400</td>
</tr>
</tbody>
</table>
2.1.1.3. Viruses

<table>
<thead>
<tr>
<th>Virus</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFV-eGFP</td>
<td>Semliki Forest virus modified to encode an eGFP within the nsP3 protein, as described by Tamberg, Lulla et al. (2007). The plasmid was kindly gifted by Dr Esther Schnettler (Bernhard Nocht Institute for Tropical Medicine).</td>
</tr>
<tr>
<td>SFV-Ffluc</td>
<td>Semliki Forest virus modified to encode a Firefly luciferase (Ffluc) reporter protein within the nsP3 protein, as previously described (Tamberg, Lulla et al. 2007). The plasmid was kindly gifted by Dr Esther Schnettler (Bernhard Nocht Institute for Tropical Medicine).</td>
</tr>
<tr>
<td>ZIKV PE243</td>
<td>A clinical strain of ZIKV originally isolated from a patient in Recife (Brazil) from the 2016 outbreak, as described Donald, Brennan et al. (2016). The virus was grown and gifted by Dr Claire Donald (MRC-University of Glasgow).</td>
</tr>
<tr>
<td>ZIKV-nl</td>
<td>A clinical strain of ZIKV containing a NanoLuciferase reporter protein. The modified polyprotein contains a duplicated copy of the capsid protein flanked by a foot-and-mouth-disease virus 2A autoprotease, as previously described Mutso, Saul et al. (2017), Royle, Donald et al. (2017). The virus was produced and gifted by Jamie Royle (MRC-University of Glasgow Centre for Virus Research) subsequent stocks were grown by the author.</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>BUNV</td>
<td>A wild type strain of Bunyamwera virus, as described by Bridgen and Elliott (1996), gifted by Dr Xiaohong Shi (MRC - University of Glasgow Centre for Virus Research)</td>
</tr>
<tr>
<td>BUNV-nl</td>
<td>A strain of Bunyamwera virus modified to contain a NanoLuciferase (nl) reporter protein within the cytoplasmic domain of NSm, producing a fusion NSm-nl protein. As described by Dietrich, Shi et al. (2017), gifted by Dr Xiaohong Shi (MRC - University of Glasgow Centre for Virus Research).</td>
</tr>
</tbody>
</table>
2.1.2. Antibodies

Table 2-4 Antibodies used in this study

<table>
<thead>
<tr>
<th>Target</th>
<th>Origin</th>
<th>Source</th>
<th>Primary or secondary</th>
<th>Dilution used</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMO1</td>
<td>Rabbit</td>
<td>Abcam - AB32058</td>
<td>Primary</td>
<td>1:1000</td>
</tr>
<tr>
<td>SUMO2/3</td>
<td>Mouse</td>
<td>Abcam - AB81371</td>
<td>Primary</td>
<td>1:1000</td>
</tr>
<tr>
<td>Ubc9</td>
<td>Goat</td>
<td>Abcam - AB21193</td>
<td>Primary</td>
<td>1:1000</td>
</tr>
<tr>
<td>Actin</td>
<td>Rabbit</td>
<td>Sigma Aldrich -A5060</td>
<td>Primary</td>
<td>1:1000</td>
</tr>
<tr>
<td>SAE2</td>
<td>Rabbit</td>
<td>Bethyl - A302-925A</td>
<td>Primary</td>
<td>1:1000</td>
</tr>
<tr>
<td>PIAS1</td>
<td>Rabbit</td>
<td>LSBio - LS-B9173</td>
<td>Primary</td>
<td>1:1000</td>
</tr>
<tr>
<td>PIAS2α</td>
<td>Rabbit</td>
<td>Millipore - AB5447</td>
<td>Primary</td>
<td>1:1000</td>
</tr>
<tr>
<td>GFP</td>
<td>Rabbit</td>
<td>Abcam - AB290</td>
<td>Primary</td>
<td>1:1000</td>
</tr>
<tr>
<td>ZIKV NS3</td>
<td>Rabbit</td>
<td>A kind gift from Andres Merits (University of Tartu, Estonia) (Mutso, Saul et al. 2017)</td>
<td>Primary</td>
<td>1:1000</td>
</tr>
<tr>
<td>BUN N</td>
<td>Rabbit</td>
<td>A kind gift from Dr Xiaohong Shi (MRC - University of Glasgow Centre for Virus Research) (Weber, Dunn et al. 2001)</td>
<td>Primary</td>
<td>1:5000</td>
</tr>
<tr>
<td>Mouse primary</td>
<td>Goat with fluorophore</td>
<td>Thermo Scientific - SA535521</td>
<td>Secondary</td>
<td>1:10000</td>
</tr>
<tr>
<td>Antibodies</td>
<td>Conjugate</td>
<td>Manufacturer</td>
<td>Type</td>
<td>Dilution</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>Rabbit primary antibodies</td>
<td>Goat with fluorophore conjugate</td>
<td>Thermo Scientific - SA535571</td>
<td>Secondary</td>
<td>1:10000</td>
</tr>
<tr>
<td>Goat primary antibodies</td>
<td>Donkey with fluorophore conjugate</td>
<td>Li-Cor - 926-32214</td>
<td>Secondary</td>
<td>1:10000</td>
</tr>
<tr>
<td>Rabbit primary antibodies</td>
<td>Goat with peroxidase conjugate</td>
<td>Sigma Aldrich - A0545</td>
<td>Secondary</td>
<td>1:5000</td>
</tr>
</tbody>
</table>
2.1.3. Plasmids

Table 2-5 Plasmids used in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pACYC-AaSAE2/1</td>
<td>Bacterial dual expression vector containing the Ae. aegypti SAE1/2 activating heterodimer.</td>
<td>This study</td>
</tr>
<tr>
<td>pET28a-HsSUMO1</td>
<td>Bacterial expression vector containing the sequence for HsSUMO1</td>
<td>cDNA obtained from Professor Ron Hay, plasmids were a kind gift from Dr Chris Boutell</td>
</tr>
<tr>
<td>pET28a-HsSUMO2</td>
<td>Bacterial expression vector containing the sequence for HsSUMO2</td>
<td>cDNA obtained from Professor Ron Hay, plasmids were a kind gift from Dr Chris Boutell</td>
</tr>
<tr>
<td>pET28a-HsSUMO3</td>
<td>Bacterial expression vector containing the sequence for HsSUMO3</td>
<td>cDNA obtained from Professor Ron Hay, plasmids were a kind gift from Dr Chris Boutell</td>
</tr>
<tr>
<td>pET28a-HsUbc9</td>
<td>Bacterial expression vector containing the sequence for HsUbc9</td>
<td>cDNA obtained from Professor Ron Hay, plasmids were a kind gift from Dr Chris Boutell</td>
</tr>
<tr>
<td>pET28a-AaSUMO</td>
<td>Bacterial expression vector containing the sequence for AaSUMO</td>
<td>Dr Sue Jacobs, unpublished data</td>
</tr>
<tr>
<td>Vector Name</td>
<td>Description</td>
<td>Synthesis/Cloning Information</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>pET28a-SUMO chimaera</td>
<td>Bacterial expression vector containing the sequence for SUMO chimaera</td>
<td>Synthesised by GENEWIZ, cloned in this study</td>
</tr>
<tr>
<td>pET28a-SUMO chimaera K11R</td>
<td>Bacterial expression vector containing the sequence for SUMO chimaera with a mutated lysine -> arginine at position 11</td>
<td>Synthesised by GENEWIZ, cloned in this study</td>
</tr>
<tr>
<td>pET45b-AaUbc9</td>
<td>Bacterial expression vector containing the sequence for AaUbc9</td>
<td>This study</td>
</tr>
<tr>
<td>pET45b-AaPIAS</td>
<td>Bacterial expression vector containing the sequence for AaPIAS</td>
<td>Synthesised by GENEWIZ, cloned in this study</td>
</tr>
<tr>
<td>pET45b-AaPIAS C371A</td>
<td>Bacterial expression vector containing the sequence for AaPIAS with a cysteine -> alanine mutation at position 371</td>
<td>Synthesised by GENEWIZ, cloned in this study</td>
</tr>
<tr>
<td>pET45b-AaUbc9 C93S</td>
<td>Bacterial expression vector containing the sequence for AaUbc9 with a mutated cysteine -> serine at position 93</td>
<td>This study</td>
</tr>
<tr>
<td>pGEX-HsSAE1/2</td>
<td>Bacterial expression vector containing the sequence for HsSAE1/2 as described in (Tatham, Jaffray et al. 2001)</td>
<td>cDNA obtained from Professor Ron Hay, plasmids were a kind gift from Dr Chris Boutell</td>
</tr>
<tr>
<td>pCMV.DR.8.91</td>
<td>Lentivirus helper vector that expresses the reverse transcriptase polymerase, capsid protein (gag), and regulatory proteins (Rev and</td>
<td>A kind gift from Professor Rodger Everett (MRC - University of Glasgow Centre for</td>
</tr>
<tr>
<td>Plasmid/Vector</td>
<td>Description</td>
<td>Source</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>pCMV-SFV4.eGFP</td>
<td>Plasmid encoding Semliki Forest Virus containing an internal eGFP reporter protein as described in (Tamberg, Lulla et al. 2007)</td>
<td>A kind gift from Dr Esther Schnettler (Bernhard Nocht Institute for Tropical Medicine)</td>
</tr>
<tr>
<td>pCMV-SFV4.Ffluc</td>
<td>Plasmid encoding Semliki Forest Virus containing an internal Firefly luciferase reporter protein as described in (Tamberg, Lulla et al. 2007)</td>
<td>A kind gift from Dr Esther Schnettler (Bernhard Nocht Institute for Tropical Medicine)</td>
</tr>
<tr>
<td>pVSV-G</td>
<td>Lentivirus helper vector that expresses the VSV envelope protein, used in the production of lentivirus vectors as described in (Everett, Rechter et al. 2006)</td>
<td>A kind gift from Professor Rodger Everett (MRC - University of Glasgow Centre for Virus Research)</td>
</tr>
<tr>
<td>shCtrl</td>
<td>Plasmids encoding a short hairpin RNA against a non-targeted control sequence (5’-TTATCGCGCATATCACGCG-3’)</td>
<td>A kind gift from Dr Chris Boutell (Everett, Rechter et al. 2006).</td>
</tr>
<tr>
<td>pLKO-shSUMO1</td>
<td>Plasmids encoding a short hairpin RNA against SUMO1</td>
<td>A kind gift from Dr Kristen Conn, unpublished data, from MISSION shRNA lentivirus vector collection (Sigma-</td>
</tr>
<tr>
<td>Plasmid</td>
<td>Description</td>
<td>Source</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>pLKO-shSUMO2/3</td>
<td>Plasmids encoding a short hairpin RNA against SUMO2/3</td>
<td>A kind gift from Dr Kristen Conn, unpublished data, from MISSION shRNA lentivirus vector collection (Sigma-Aldrich)</td>
</tr>
<tr>
<td>pLKO-shPIAS1</td>
<td>Plasmids encoding a short hairpin RNA against PIAS1 (5’-TTGTAAGTCGTAAGGCATGGG-3’) as described in Brown, Conn et al. (2016)</td>
<td>A kind gift from Dr Kristen Conn</td>
</tr>
</tbody>
</table>
2.1.4. Primer sequences

Table 2-6 Oligonucleotide sequences used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Use</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pET-Ubc9 F</td>
<td>Cloning</td>
<td>CCGGACC CGGTTCCCGGAATTGCATCGC</td>
</tr>
<tr>
<td>pET-Ubc9 R</td>
<td>Cloning</td>
<td>CGCGCTCGAGCTACTCCGTGGACAGCATGG</td>
</tr>
<tr>
<td>Ubc9 C93S Int F1</td>
<td>Site directed mutation</td>
<td>AACCGTCTCTCTGTGTCGC</td>
</tr>
<tr>
<td>Ubc9 C93S Int R1</td>
<td>Site directed mutation</td>
<td>GCGACAGAGAGACGTTT</td>
</tr>
<tr>
<td>AaSAE2 F</td>
<td>Cloning</td>
<td>GCACTGCAGGAAAACATAGG</td>
</tr>
<tr>
<td>AaSAE2 R</td>
<td>Cloning</td>
<td>CTCAGCTCCCGCTCCCGGAATCC</td>
</tr>
<tr>
<td>AaSAE2 F1</td>
<td>Cloning</td>
<td>TCTCCGGATACTGCGGATCC</td>
</tr>
<tr>
<td>AaSAE2 R1</td>
<td>Cloning</td>
<td>GAATGATGTTTCCCGCCATGG</td>
</tr>
<tr>
<td>AaSAE2 F2</td>
<td>Cloning</td>
<td>GCTTTGAAAGTCAAATCCATGG</td>
</tr>
<tr>
<td>AaSAE2 R2</td>
<td>Cloning</td>
<td>CAATGTGTACTCTTTACC</td>
</tr>
<tr>
<td>AaSAE1 F</td>
<td>Cloning</td>
<td>ACCGCAGACGC CGCCTTG</td>
</tr>
<tr>
<td>AaSAE1 R</td>
<td>Cloning</td>
<td>GATATTAAGGTATATACG</td>
</tr>
<tr>
<td>AaSAE1 F1</td>
<td>Cloning</td>
<td>GAACGAACCGTGCGGAAGCTTC</td>
</tr>
<tr>
<td>AaSAE1 R1</td>
<td>Cloning</td>
<td>CTGAGCCCGAGACAAAGAAGCTTC</td>
</tr>
<tr>
<td>AaPIAS F for pET45b</td>
<td>Cloning</td>
<td>CCGGACC GGTATGAGAAAAACGCGG</td>
</tr>
<tr>
<td>AaPIAS R for pET45b</td>
<td>Cloning</td>
<td>CGCGGCCGCGCTCATATCTTGG</td>
</tr>
<tr>
<td>pET28-AaSUMO F</td>
<td>Cloning</td>
<td>GGCATATGCTCGAAAGAAAAAAGG</td>
</tr>
<tr>
<td>pET28-AaSUMO R</td>
<td>Cloning</td>
<td>TATCTCGAGTTATCCCGCTGTCTG</td>
</tr>
<tr>
<td>pET28-SUMO chimera F</td>
<td>Cloning</td>
<td>ATTGCATATGTCCGAGGAGAAGCC</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Q_AaSUMO_F</td>
<td>Q-PCR</td>
<td>CGCCAATTTTCAGCACAC</td>
</tr>
<tr>
<td>Q_AaSUMO_R</td>
<td>Q-PCR</td>
<td>CGGATCCCTTCGAGTCC</td>
</tr>
<tr>
<td>Q_AaUbc9_F</td>
<td>Q-PCR</td>
<td>CGGCGAGGAGCGAAAAAG</td>
</tr>
<tr>
<td>Q_AaUbc9_R</td>
<td>Q-PCR</td>
<td>TTCTTTTCTGGAATAG</td>
</tr>
<tr>
<td>Q_AaPIAS_F2</td>
<td>Q-PCR</td>
<td>GACAATCTTTGTTATCAGTGGCT</td>
</tr>
<tr>
<td>Q_AaPIAS_R</td>
<td>Q-PCR</td>
<td>GCGCTTCAATGGGAGATC</td>
</tr>
<tr>
<td>Q_LacZ_F</td>
<td>Q-PCR</td>
<td>CCGGCTGTGCCGAAAT</td>
</tr>
<tr>
<td>Q_LacZ_R</td>
<td>Q-PCR</td>
<td>GCGGCTGATTTGGACTGG</td>
</tr>
<tr>
<td>Q_Ago2_F</td>
<td>Q-PCR</td>
<td>GAGCAAAACAAATATCCCA</td>
</tr>
<tr>
<td>Q_Ago2_R</td>
<td>Q-PCR</td>
<td>TGGTGTCGCTTTTGGA</td>
</tr>
<tr>
<td>Q_AeS7_F</td>
<td>Q-PCR</td>
<td>CCAGGCTATCCTGGAGTTG</td>
</tr>
<tr>
<td>Q_AeS7_R</td>
<td>Q-PCR</td>
<td>GACGTGCTTGCCGGAAGAC</td>
</tr>
<tr>
<td>Q_BUNV_Lprt_F_cRNA strand</td>
<td>Q-PCR</td>
<td>GACACCCCTGAGCTAGAGGAGC</td>
</tr>
<tr>
<td>Q_BUNV_Lprt_R_cRNA strand</td>
<td>Q-PCR</td>
<td>CCACCTCTGTCTCTGTCTGC</td>
</tr>
<tr>
<td>Q_SFV_Stru_F</td>
<td>Q-PCR</td>
<td>GCCGAAAACGCAGCCCAAG</td>
</tr>
<tr>
<td>Q_SFV_Stru_R</td>
<td>Q-PCR</td>
<td>GGGGTACCAGTGACCTTCTCTT</td>
</tr>
<tr>
<td>Q_ZIKV_NS3_F</td>
<td>Q-PCR</td>
<td>ATCTGTATGGAGGTTGGTGC</td>
</tr>
<tr>
<td>Q_ZIKV_NS3_R</td>
<td>Q-PCR</td>
<td>CTCTCCCTCAATGGCTGTA</td>
</tr>
<tr>
<td>T7-AaSUMO F</td>
<td>dsRNA synthesis</td>
<td>taatacgactcataagggTCCGAATCGGAGCACATTAA</td>
</tr>
<tr>
<td>T7-AaSUMO R</td>
<td>dsRNA synthesis</td>
<td>taatacgactcataagggCATGTTCATGCGTTTGTA CG</td>
</tr>
<tr>
<td></td>
<td>dsRNA synthesis</td>
<td>dsRNA synthesis</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>T7-AaUbc9 F</td>
<td>taatacgactcactatagggATGTCCGGAATTGCAGTC</td>
<td>taatacgactcactatagggGGATCCCTGATGTTCCGT</td>
</tr>
<tr>
<td>T7-AaUbc9 R</td>
<td>taatacgactcactatagggGGATCCCTGATGTTCCGT</td>
<td>taatacgactcactatagggAAcAGGAGGATTACTTCC</td>
</tr>
<tr>
<td>T7_AaPIAS_F_3</td>
<td>taatacgactcactatagggAAcAGGAGGATTACTTCC</td>
<td>taatacgactcactatagggGCAGACGGGACAGTTCCA</td>
</tr>
<tr>
<td>T7_AaPIAS_R_3</td>
<td>taatacgactcactatagggGCAGACGGGACAGTTCCA</td>
<td>taatacgactcactatagggGCAGACGGGACAGTTCCA</td>
</tr>
<tr>
<td>Ago2 T7 F</td>
<td>taatacgactcactatagggGCCCTCAACAAGAAACAC</td>
<td>taatacgactcactatagggGCCCTCAACAAGAAACAC</td>
</tr>
<tr>
<td>Ago2 T7 R</td>
<td>taatacgactcactatagggGCCCTCAACAAGAAACAC</td>
<td>taatacgactcactatagggGCCCTCAACAAGAAACAC</td>
</tr>
<tr>
<td>βGal T7 F</td>
<td>taatacgactcactatagggGCCCTCAACAAGAAACAC</td>
<td>taatacgactcactatagggGCCCTCAACAAGAAACAC</td>
</tr>
<tr>
<td>βGal T7 R</td>
<td>taatacgactcactatagggGCCCTCAACAAGAAACAC</td>
<td>taatacgactcactatagggGCCCTCAACAAGAAACAC</td>
</tr>
</tbody>
</table>
2.1.5. Reagents, chemicals, buffers, and kits

2.1.5.1. Commercial kits

Table 2-7 Commercial kits used in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Catalogue number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EndoFree Plasmid Maxi Kit</td>
<td>Qiagen</td>
<td>12362</td>
</tr>
<tr>
<td>Fast SYBR Green Master mix</td>
<td>Applied Biosystems</td>
<td>4385612</td>
</tr>
<tr>
<td>Firefly Luciferase kit</td>
<td>Promega</td>
<td>E1500</td>
</tr>
<tr>
<td>MEGAScript RNAiKit</td>
<td>Ambion</td>
<td>AM1626</td>
</tr>
<tr>
<td>Micro BCA™ Protein Assay Kit</td>
<td>Thermo Scientific</td>
<td>23235</td>
</tr>
<tr>
<td>NanoLuciferase kit</td>
<td>Promega</td>
<td>N1110</td>
</tr>
<tr>
<td>PureLink HiPure Plasmid Filter Maxiprep Kit</td>
<td>Invitrogen</td>
<td>K210017</td>
</tr>
<tr>
<td>QIAEX II® Gel Extraction Kit</td>
<td>Qiagen</td>
<td>20021</td>
</tr>
<tr>
<td>QIAprep Spin Miniprep Kit</td>
<td>Qiagen</td>
<td>27106</td>
</tr>
<tr>
<td>QIAquick PCR Purification Kit</td>
<td>Qiagen</td>
<td>28106</td>
</tr>
<tr>
<td>Rneasy Plus Mini Kit</td>
<td>Qiagen</td>
<td>74136</td>
</tr>
<tr>
<td>TaqMan Reverse Transcription reagents</td>
<td>Applied Biosystems</td>
<td>N8080234</td>
</tr>
</tbody>
</table>
2.1.5.2. Buffers made in house

<table>
<thead>
<tr>
<th>Name</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x BM</td>
<td>30% SGB (v/v), 30% Glycerol (v/v), 8 M urea, 6.5% SDS (w/v), 100 mM DTT</td>
</tr>
<tr>
<td>3xBM -DTT</td>
<td>30% SGB (v/v), 30% Glycerol (v/v), 8 M urea, 6.5% SDS (w/v)</td>
</tr>
<tr>
<td>Blocking buffer (FBS)</td>
<td>5% filtered FBS in PBS</td>
</tr>
<tr>
<td>Blocking buffer (milk)</td>
<td>5% Skimmed Milk Powder in PBST</td>
</tr>
<tr>
<td>Coomassie Brilliant Blue Stain</td>
<td>0.12% Coomassie Brilliant Blue powder, 50% Methanol, 10% Acetic acid in water</td>
</tr>
<tr>
<td>Coomassie destain Solution</td>
<td>5% Methanol, 7% Acetic acid in water</td>
</tr>
<tr>
<td>Coomassie fix solution</td>
<td>50% Methanol, 10% Acetic acid in water</td>
</tr>
<tr>
<td>DNA loading buffer</td>
<td>65% Sucrose (w/v), 10 mM Tris, 10 mM EDTA</td>
</tr>
<tr>
<td>Fixing buffer</td>
<td>1.8% Formaldehyde, 0.1% NP40 in PBS</td>
</tr>
<tr>
<td>PBST</td>
<td>0.05% Tween-20 in PBS</td>
</tr>
<tr>
<td>Stacking Gel Buffer (SGB)</td>
<td>0.5 M Tris, 0.4% SDS (w/v), pH6.8</td>
</tr>
<tr>
<td>TAE Buffer (50x)</td>
<td>40 mM Tris, 1 mM EDTA, 5 mM sodium acetate (pH7.6)</td>
</tr>
<tr>
<td>Trypsin-versene</td>
<td>2.5% trypsin (v/v) in versene</td>
</tr>
</tbody>
</table>
2.1.5.3. Reagents used

Table 2-9 Reagents used in the study

<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Catalogue / CAS number</th>
</tr>
</thead>
<tbody>
<tr>
<td>100bp DNA ladder</td>
<td>Promega</td>
<td>G571A</td>
</tr>
<tr>
<td>1kb DNA ladder</td>
<td>Promega</td>
<td>G210A</td>
</tr>
<tr>
<td>2-Propanol</td>
<td>Sigma-Aldrich</td>
<td>24137</td>
</tr>
<tr>
<td>2-Mercaptoethanol</td>
<td>MERCK</td>
<td>8.05740.0250</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>VWR Chemicals</td>
<td>20104.334</td>
</tr>
<tr>
<td>Amersham Protran 0.2 μm NC blotting membrane</td>
<td>GE Healthcare</td>
<td>10600001</td>
</tr>
<tr>
<td>Agar</td>
<td>E&o laboratories</td>
<td>BM5280</td>
</tr>
<tr>
<td>Agarose</td>
<td>Sigma-Aldrich</td>
<td>A9539</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Melford</td>
<td>A0104</td>
</tr>
<tr>
<td>Bovine Serum Albumin (BSA)</td>
<td>BioRad</td>
<td>500-0207</td>
</tr>
<tr>
<td>CellLyse</td>
<td>Sigma-Aldrich</td>
<td>C2978</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>Sigma-Aldrich</td>
<td>C0378</td>
</tr>
<tr>
<td>Coomassie Brilliant Blue</td>
<td>BioRad</td>
<td>161-0400</td>
</tr>
<tr>
<td>d-Desthiobiotin</td>
<td>Sigma-Aldrich</td>
<td>D1411</td>
</tr>
<tr>
<td>Deoxynucleotides (dATP/dGTP/dCTP/dTTP)</td>
<td>Sigma-Aldrich</td>
<td>DNTPCA10</td>
</tr>
<tr>
<td>DL-Dithiothreitol (DTT)</td>
<td>Sigma-Aldrich</td>
<td>43819</td>
</tr>
<tr>
<td>Ethylenediaminetetraacetic acid (EDTA)</td>
<td>VWR International</td>
<td>60-00-4</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Fisher Chemicals</td>
<td>64-17-5</td>
</tr>
<tr>
<td>Ethidium Bromide</td>
<td>Sigma-Aldrich</td>
<td>E1510</td>
</tr>
<tr>
<td>Formaldehyde solution (36.5-38%)</td>
<td>Sigma-Aldrich</td>
<td>F8775</td>
</tr>
<tr>
<td>Glycerol</td>
<td>Fisher Chemicals</td>
<td>56-81-5</td>
</tr>
<tr>
<td>Gurr Giemsa</td>
<td>VWR Chemicals</td>
<td>350864X</td>
</tr>
<tr>
<td>His-select® Nickel Affinity Gel</td>
<td>Sigma-Aldrich</td>
<td>P6611</td>
</tr>
<tr>
<td>Imidazole 99+% (titration)</td>
<td>Sigma-Aldrich</td>
<td>10250</td>
</tr>
<tr>
<td>Isopropyl-thio-B-D-galactoside</td>
<td>GibcoRBL</td>
<td>15529-019</td>
</tr>
<tr>
<td></td>
<td>Supplier</td>
<td>Code</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>(IPTG)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hygromycin B</td>
<td>Invitrogen</td>
<td>10687010</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>Sigma-Aldrich</td>
<td>60615</td>
</tr>
<tr>
<td>KPL True Blue Peroxidase Developing Solution</td>
<td>Sera Care</td>
<td>5510-0030</td>
</tr>
<tr>
<td>Luria-Bertani (LB) Broth</td>
<td>E&O laboratories</td>
<td>BM5300</td>
</tr>
<tr>
<td>Methanol</td>
<td>Fisher Chemicals</td>
<td>67-56-1</td>
</tr>
<tr>
<td>PageRuler™ Prestain NIR Protein Ladder</td>
<td>Thermo Scientific</td>
<td>26635</td>
</tr>
<tr>
<td>Phosphate Buffered Saline (PBS)</td>
<td>Sigma-Aldrich</td>
<td>D1408</td>
</tr>
<tr>
<td>Protease inhibitor cocktail tablets, EDTA Free</td>
<td>Roche</td>
<td>11 873 580 001</td>
</tr>
<tr>
<td>Magnesium Chloride (MgCl$_2$)</td>
<td>VWR Chemicals</td>
<td>25108.260</td>
</tr>
<tr>
<td>Nonidet P-40 (NP40) Substitute</td>
<td>Sigma-Aldrich</td>
<td>9016-45-9</td>
</tr>
<tr>
<td>NuPAGE™ MES SDS running buffer (20X)</td>
<td>Invitrogen</td>
<td>NP0002</td>
</tr>
<tr>
<td>NuPAGE™ Sample Reducing Agent (10X)</td>
<td>Invitrogen</td>
<td>NP0004</td>
</tr>
<tr>
<td>NuPAGE™ Transfer Buffer</td>
<td>Invitrogen</td>
<td>NP0006-1</td>
</tr>
<tr>
<td>NuPAGE™ 4-12% Bis-Tris Gel 10x12 well</td>
<td>Invitrogen</td>
<td>NP0322BOX</td>
</tr>
<tr>
<td>NuPAGE™ 4-12% Bis-Tris Gel 10x15 well</td>
<td>Invitrogen</td>
<td>NP0323BOX</td>
</tr>
<tr>
<td>Skimmed Milk Powder</td>
<td>Marvel</td>
<td></td>
</tr>
<tr>
<td>Slide-A-Lyzer® MINI Dialysis Unit MWCO 3500</td>
<td>Thermo Scientific</td>
<td>69552</td>
</tr>
<tr>
<td>S.O.C. Media</td>
<td>Invitrogen</td>
<td>15544-034</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>VWR Chemicals</td>
<td>27810.295</td>
</tr>
<tr>
<td>Sodium dodecyl sulfate solution (SDS)</td>
<td>Sigma-Aldrich</td>
<td>05030</td>
</tr>
<tr>
<td>Strep.Tactin Superflow™ Agarose</td>
<td>Novagen</td>
<td>71592</td>
</tr>
<tr>
<td>Tris</td>
<td>Roche</td>
<td>10 708 976 001</td>
</tr>
<tr>
<td>Triton-X-100</td>
<td>Promega</td>
<td>H5142</td>
</tr>
</tbody>
</table>
2.1.6. Enzymes

All restriction enzymes and corresponding buffers were obtained from NEB. Phusion High-fidelity DNA polymerase and T4 DNA Ligase were obtained from NEB.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween 20</td>
<td>Millipore</td>
<td>655204</td>
</tr>
<tr>
<td>Urea</td>
<td>Sigma-Aldrich</td>
<td>U0631</td>
</tr>
</tbody>
</table>
2.1.7. Reagents used for prokaryotic work

2.1.7.1. Bacterial strains and culture media

Two strains of chemically competent *Escherichia coli* (*E. coli*) were used in this study. DH5α (Invitrogen) were used in plasmid DNA amplification and cloning. The strain BL21(DE3) (New England Biolabs) was used in protein expression. All bacterial cultures were grown in a Luria-Bertani (LB) medium overnight, and spread onto agar plates containing the relevant antibiotic selection for the plasmid. Concentrations were: Ampicillin 100 µg/ml, Kanamycin 50 µg/ml, Chlormphenicol 50 µg/ml.

2.1.6.2. Buffers for protein purification from bacterial extracts

The reagents used for protein purification can be found in Table 2-9.

6xHis epitope tag purification buffer:

50 mM Tris (pH 7.0), 250 mM NaCl, 5% Glycerol, 2.5 mM MgCl₂, 10 mM 2-Mercaptoethanol, 30 mM Imidazole, 0.1% Triton-x-100, Protease Inhibitor Cocktail Tablet. Final pH 7.5.

6xHis tag elution buffer:

50 mM Tris (pH 7.0), 250 mM NaCl, 5% Glycerol, 2.5 mM MgCl₂, 10 mM 2-Mercaptoethanol, 350 mM Imidazole, 0.1% Triton-x-100, Protease Inhibitor Cocktail Tablet. Final pH 7.5.
6xHis tag dialysis buffer:

50 mM Tris (pH 7.0), 150 mM NaCl, 5% Glycerol, 2 mM MgCl$_2$, 1 mM DTT

Strep.II tag purification buffer:

Used for AqSAE1/2;

50 mM Tris (pH 7.0), 50 mM NaCl, 1 mM MgCl$_2$

Strep.II tag elution buffer:

50 mM Tris (pH 7.0), 50 mM NaCl, 1 mM MgCl$_2$, 2.5 mM d-Desthiobiotin (pH 8.5)

Strep.II tag dialysis buffer:

50 mM Tris (pH 7.0), 150 mM NaCl, 5% Glycerol, 2 mM MgCl$_2$, 1 mM DTT
2.2. Methods

2.2.1. Cloning and DNA manipulation

2.2.1.1. DNA quantitation

The Nanodrop 2000 spectrophotometer (Thermo Scientific), was used to quantify DNA or RNA when necessary measuring absorbance at 260 and 280 nm.

2.2.1.2. Polymerase Chain Reaction (PCR) amplification

PCR was utilised for the amplification of nucleic acids. A total of 50 µl volume was used for each reaction, and occurred in a PCR Thermal Cycler (Techne TC-312). Each reaction contained 10 µl 5x Phusion® HF buffer (1x), 1 µl Phusion® DNA polymerase (1 U), 0.5 µl dNTPs (5 µM), 10 µM forward primer, 10 µM reverse primer, and approximately 50-100 ng template DNA or cDNA, made up with nuclease free water. Reactions were prepared on ice. Standard reactions were cycled as noted (Table 2-10). For dsRNA synthesis, the oligonucleotides contained an additional T7 sequence (5’-taatacgactcactataggg-3’), consequently the reaction cycle was modified (Table 2-11). Furthermore, for the production of T7-SUMO for dsRNA production, the concentration of oligonucleotides was decreased to 500 nM forward or reverse primer.
Table 2-10 Standard PCR cycle

<table>
<thead>
<tr>
<th>Stage</th>
<th>Temperature (°C)</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial denaturation</td>
<td>98</td>
<td>3 minutes</td>
</tr>
<tr>
<td>Denaturation</td>
<td>98</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Oligo annealing</td>
<td>$T_m -5$</td>
<td>45 seconds</td>
</tr>
<tr>
<td>Extension</td>
<td>72</td>
<td>30 seconds $->$ 1 minute</td>
</tr>
<tr>
<td>Final extension</td>
<td>72</td>
<td>5 minutes</td>
</tr>
</tbody>
</table>

- Cycle 35 times

Table 2-11 T7 PCR cycle

<table>
<thead>
<tr>
<th>Stage</th>
<th>Temperature (°C)</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial denaturation</td>
<td>98</td>
<td>3 minutes</td>
</tr>
<tr>
<td>Denaturation</td>
<td>98</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Oligo annealing</td>
<td>$T_m -10$</td>
<td>45 seconds</td>
</tr>
<tr>
<td>Extension</td>
<td>72</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Denaturation</td>
<td>98</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Oligo annealing</td>
<td>$T_m -5$</td>
<td>45 seconds</td>
</tr>
<tr>
<td>Extension</td>
<td>72</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Final extension</td>
<td>72</td>
<td>5 minutes</td>
</tr>
</tbody>
</table>

- Cycle 6 times
- Cycle 35 times
2.2.1.3. Restriction endonuclease digestion

A total volume of 20 µl of reaction mixture was made up for each digestion, containing 1 µl restriction enzyme (1 U/µl), 2 µl 10x required buffer, and plasmid DNA (up to 1 µg), made up in DNase-free water. The restriction enzymes and required buffers were purchased from New England Biosciences (NEB). Reactions were incubated for 1-2 hours at 37 °C prior to being analysed by agarose gel electrophoresis and extracted for further use (Section 2.2.1.4).

2.2.1.4. Agarose gel electrophoresis

All DNA products, and dsRNA products, were analysed by agarose gel electrophoresis in 1% agarose gels prepared with 1x TAE buffer containing ethidium bromide at 0.5 µg/ml. Samples were mixed with DNA loading dye at a 1:5 ratio, and the gels were resolved at 60 V for between 30 minutes - 2 hours, depending on the size of the product and distance required between bands. DNA ladder markers were used alongside samples to provide reference about the concentration and fragment size. After resolution, samples were visualised by an ultraviolet (UV) transilluminator. Short wave UV was used for imaging and long wave UV was used for gel extraction. Fragments were isolated with a scalpel and DNA isolated with the QIAEX II® Gel Extraction Kit (Section 2.1.5.1), following manufacturers guidance.

2.2.1.5. DNA Ligation

Digested fragments of the vector backbone and insert were examined on a 1% agarose gel and quantified by Nanodrop spectrophotometer to confirm expected size and assess concentration (Section 2.2.1.1; Section 2.2.1.4). The products were ligated together at a ratio of 7:1 insert fragment to vector backbone. Ligation reactions occurred in 10 µl volumes with 1 µl T4 DNA ligase and 1 µl DNA ligase buffer (Section 2.1.6). Samples were incubated overnight at 15 °C.
2.2.1.6. Transforming competent bacteria

E. coli DH5α’s, used for DNA isolation and amplification, were transformed in 50 µl aliquots. Either 10 µl of ligated product (Section 2.2.1.5) or 100 ng plasmid DNA was gently mixed with the competent bacteria and left to incubate on ice for 30 minutes. The competent bacteria were then heat shocked at 42 °C for 45 seconds, and cooled briefly on ice. The bacteria were subsequently grown in 300 µl S.O.C medium for 45 minutes without any antibiotic present at 37 °C, and plated onto antibiotic selective plates. Bacterial plates were incubated overnight at 37 °C.

E. coli BL21 (DE3)’s, used for protein isolation, were transformed in 20 µl aliquots. Approximately 100 ng plasmid DNA was mixed with the competent bacteria and left to incubate on ice for 30 minutes. The competent bacteria were subsequently heat shocked at 42 °C for 30 seconds, and briefly cooled on ice. The bacteria were then grown in 300 µl S.O.C. Medium for 45 minutes without any antibiotic, and plated onto antibiotic selective plates overnight at 37 °C.

2.2.1.7. Growing bacterial cultures of *E. coli* DH5α

After competent DH5α were transformed with a plasmid of interest (Section 2.2.1.6), individual colonies were selected to be grown in LB Broth (Table 2-9). For small scale plasmid isolation colonies were grown o/n in 5 ml LB aliquots containing the relevant antibiotic with constant shaking. For large scale plasmid isolation, individual colonies were grown for 3 hours in 5 ml aliquots before being transferred to pre-warmed 350 ml batches of LB broth, containing the relevant antibiotic and allowed to grow o/n at 37 °C with constant shaking.
2.2.1.8. Isolation and amplification of DNA using kits

Small scale isolation

Colonies of DH5α were grown as specified (Section 2.2.1.7). To isolate the plasmid DNA, 3 ml of culture was centrifuged in an Eppendorf tube at 13,000 rpm for 3 minutes (Eppendorf benchtop centrifuge). The supernatant was removed and plasmid DNA was extracted using the QIAprep® Spin Miniprep Kit (Table 2-7) following manufacturers protocol. Following isolation, plasmid DNA was analysed by restriction digest and agarose gel electrophoresis, to confirm correct insert, and sequenced to confirm the gene sequence was correct.

Large scale isolation

Colonies of DH5α were grown as specified (Section 2.2.1.7). To isolate plasmid DNA, colonies were centrifuged at 3500 rpm for 30 minutes (Megafuge 16R, Thermoscientific). The supernatant was subsequently removed, and DNA was extracted using the EndoFree® Plasmid Maxi Kit, if the samples were to be used for mammalian transfection (Table 2-7). Samples that were intended to be used for further cloning, or bacterial transfection, were isolated using the PureLink HiPure Plasmid Filter Maxiprep Kit (Table 2-7).

2.2.1.9. Sequencing by commercial companies

DNA samples to be sequenced were sent to Source Bioscience for processing by Sanger sequencing. Samples were sequenced with primers provided by the company and data was subsequently analysed with VectorNTI® software (Life Technologies).
2.2.1.10. Site directed mutagenesis of plasmid DNA by PCR

The gene of interest (AaUbc9) was amplified using two pairs of forward and reverse primers, one pair at the 5’ and 3’ ends of the gene, and a complementary pair of internal primers which contained the Guanosine-Cytidine base pair mutation at position 278 to change the codon from 5’-TGT-3’ (Cysteine) in to a 5’-TCT-3’ (Serine). Two PCR reactions were initially needed which amplified the 5’ and 3’ halves of the gene. The next step involved combining the 5’ and 3’ halves and conducting a third PCR using the external 5’ and 3’ primers again, as described in (Heckman and Pease 2007) (Table 2-10).
The gene of interest was amplified using forward and reverse primers (1 and 4). Mutants are produced from two internal primers (2 and 3) which contain the genetic changes encoding the amino acid change Cysteine → Serine at position 93. In the first set of PCR reactions, primers 1 and 3 are used together, and primers 2 and 4 are used as a separate PCR reaction. Equal concentrations of the products are then combined to produce a template for the third PCR, which were undertaken using primers 1 and 4. Primers 1 and 4 also contained restriction endonuclease sites for future cloning into plasmid vectors.
2.2.1.11. dsRNA synthesis for cell culture

Total RNA was extracted from *Ae. aegypti* A20 cell culture, using RNAeasy Plus Kit, following the manufacturer’s instructions (Table 2-7; Section 2.2.6.4), and cDNA was synthesised with random hexamer primers to use as a template for the PCR reaction (Section 2.2.6.5; Section 2.2.1.2). As the kit uses T7 DNA-dependent RNA polymerase, all the genes of interested used required the addition of a T7 gene sequence (5’-taatacgactcactataggg-3’) which was included in the primer sequences (Table 2-6). Between 700 ng - 1 µg of purified T7-PCR product was used to produce dsRNA using the MEGAScript RNAi Kit (Table 2-7). The dsRNA synthesis occurred following the manufacturers guidance. The optional step of pre-heating the elution solution to 95 °C was undertaken in order to increase yields. Concentration of dsRNA was measured as described (Section 2.2.1.1), and purity of product was checked by agarose gel electrophoresis (Section 2.2.1.4).

2.2.1.12. dsRNA synthesis for adult *Ae. aegypti*

Total RNA was extracted from *Ae. aegypti* A20 cell culture, using RNeasy Plus Kit, following manufacturer’s guidance (Table 2-7; Section 2.2.6.4). cDNA was synthesised with random hexamer primers to use as a template for the PCR reaction (Section 2.2.6.5; Section 2.2.1.2). As the kit uses T7 DNA-dependent RNA polymerase, all the genes of interested used required the addition of a T7 gene sequence (5’-taatacgactcactataggg-3’) which was included in the primer sequences (Table 2-6). Between 10 - 15 µg of purified T7-PCR product was used to produce dsRNA using reagents from a MEGAScript RNAi Kit (Table 2-7). The initial reaction to synthesise dsRNA was set up as shown in Table 2-12, and the reaction was allowed to continue o/n at 37 °C. The following day RNA was annealed together for 5 minutes at 75 - 80 °C and left to cool at room temperature (RT). To remove DNA and any single stranded RNA which did not anneal, the sample was subjected to nuclease digestion; the reaction was set up as shown in Table 2-13. The reaction occurred at 37 °C for 1 hour. The dsRNA was subsequently purified by suspending the dsRNA in a binding buffer, as
described in Table 2-14 binding the dsRNA to a column and centrifuging at 12400 rpm for 1 minute at 4 °C (Eppendorf benchtop centrifuge). Elution solution was pre-heated to 95 °C to maximise yields. dsRNA was then centrifuged at 4 °C at 12,400 rpm for 5 minutes and transferred to another RNase free Eppendorf tube in order to remove the salt pellet. The concentration and purity was checked to ensure there would be enough dsRNA in the final volume to treat mosquitoes with 2 µg dsRNA / mosquito (Section 2.2.1.1; Section 2.2.1.4). The dsRNA was vortexed with 1/10 volumes Sodium Acetate and 3 volumes 100% ethanol, the mixture was incubated at -80 °C for 2 hours. The sample was centrifuged again (30 minutes, 4 °C, 13,000 rpm) supernatant was discarded and the pellet was washed with 1 ml 70% ethanol, followed by another 10 minute centrifuge at 4 °C (13,000 rpm). The wash was removed and the pellet was allowed to air dry for 2 minutes before resuspension in nuclease free H2O at 60 °C. The dsRNA was checked again by making a 1/50 dilution, quantifying on the nanodrop and resolving on an agarose gel (Section 2.2.1.1; Section 2.2.1.4).
Table 2-12 Components in a nuclease digestion for mosquito depletion

<table>
<thead>
<tr>
<th>Component</th>
<th>Total for nuclease digestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsRNA solution</td>
<td>300 µl</td>
</tr>
<tr>
<td>Nuclease free H₂O</td>
<td>To total volume of 750 µl</td>
</tr>
<tr>
<td>10X Digestion buffer</td>
<td>75 µl</td>
</tr>
<tr>
<td>DNase I</td>
<td>30 µl</td>
</tr>
<tr>
<td>RNase</td>
<td>30 µl</td>
</tr>
</tbody>
</table>

Table 2-13 dsRNA synthesis reaction for mosquito depletion

<table>
<thead>
<tr>
<th>Component</th>
<th>Total for dsRNA synthesis for mosquito depletion</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA template</td>
<td>10-15 µg</td>
</tr>
<tr>
<td>Nuclease free H₂O</td>
<td>To total volume of 300 µl</td>
</tr>
<tr>
<td>10x T7 reaction</td>
<td>30 µl</td>
</tr>
<tr>
<td>ATP solution (75mM)</td>
<td>30 µl</td>
</tr>
<tr>
<td>GTP solution (75mM)</td>
<td>30 µl</td>
</tr>
<tr>
<td>CTP solution (75mM)</td>
<td>30 µl</td>
</tr>
<tr>
<td>UTP solution (75mM)</td>
<td>30 µl</td>
</tr>
<tr>
<td>T7 enzyme mix</td>
<td>30 µl</td>
</tr>
</tbody>
</table>
Table 2-14 dsRNA binding solution for mosquito depletion

<table>
<thead>
<tr>
<th>Component</th>
<th>Total for dsRNA purification</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsRNA solution</td>
<td>750 µl</td>
</tr>
<tr>
<td>Nuclease free H₂O</td>
<td>2.25 ml</td>
</tr>
<tr>
<td>10X binding buffer</td>
<td>750 µl</td>
</tr>
<tr>
<td>100% Ethanol</td>
<td>3.75 ml</td>
</tr>
</tbody>
</table>
2.2.2. Purification of recombinant proteins

2.2.2.1. Expression in recombinant BL21 (DE3)

After competent *E. coli* BL21 (DE3) cells were transformed with a bacterial expression plasmid of interest (Section 2.2.1.6), 5 independent colonies were selected to be grown together o/n in LB broth with the relevant antibiotic at 37 °C with constant shaking as starter cultures. The starter cultures were used to set up larger pre-warmed cultures of 200-250 ml supplemented with the relevant antibiotic. The larger cultures were grown for 2 hours at 37 °C with constant shaking, and then transferred to a shaking 30 °C incubator, and protein expression was induced with the addition of 0.1 mM IPTG for 4-5 hours (Table 2-9).

2.2.2.2. Purification of 6xHis tagged proteins

BL21 (DE3) cells were initially transformed, and grown to express the protein of interest (Section 2.2.1.6; Section 2.2.2.1). Bacterial pellets containing bacterial expression plasmids which encode *HsSUMO1, HsSUMO2, HsSUMO3, HsUbc9, HsSAE1/2, AaSUMO, AaUbc9, AaUbc9 C93S, AaPIAS, AaPIAS C371A*, SUMO chimaera, or SUMO chimaera K11R, were re-suspended in 25 ml 6xHis purification buffer (Section 2.1.6.2). The bacteria were lysed by probe-sonication (45 pulses, 30 Amps), and cell debris was centrifuged at 13000 xg for 10 minutes (Thermo Scientific Evolution RC) and filtered through a 0.45 µm filter (Sartorius). His-select Nickel Affinity Gel (Ni-NTA beads) (Table 2-9) were spin washed twice in 1ml 6xHis purification buffer by centrifugation at 6000 rpm for 30 seconds, and re-suspended in 300 µl 50% (w/v) purification buffer. The samples were tumbled end-over-end for 90 minutes at RT, washed twice in 10 ml 6xHis purification buffer, centrifuged at 1500 xg for 5 minutes (Eppendorf benchtop centrifuge), and washed a further three times in 1 ml 6xHis purification buffer. Proteins were eluted in 750 µl 6xHis elution buffer in three fractions (Section 2.1.6.2). Dialysis of protein samples occurred with slide-a-
lyser MINI dialysis units (Thermo Scientific), in 6xHis dialysis buffer for four hours (Section 2.1.6.2).

2.2.2.3. Purification of Strep.II tagged proteins

Bacterial pellets containing bacterial expression plasmids which encode AaSAE1/2 were re-suspended in 2 ml Strep.II tag purification buffer (Section 2.1.6.2). Samples were then lysed by digital sonicator (7 repeats, 50% intensity, 30 seconds, 4 °C, Branson Digital Sonifier) and cell debris was centrifuged at 14000 xg for 10 minutes at 4 °C (Thermo Scientific Evolution RC). The samples were then filtered with a 0.45 µm filter, tumbled end-over-end for 90 minutes at RT, and washed three times with 1 ml Strep.II tag purification buffer. Samples were then eluted in three fractions of 600 µl Strep.II tag elution buffer, and dialysed o/n at 4 °C in Strep.II tag dialysis buffer (Section 2.1.6.2).

2.2.2.4. Quantification of proteins by BSA titration

Samples were resolved on a NuPAGE™ 4-12% Bis-Tris Gel alongside a prediluted BSA titration and coomassie stained, protein concentration was determined on the Li-Cor Odyssey Imaging System (Table 2-9; Section 2.2.6.1; Section 2.2.6.2; Li-Cor Odyssey CLx).
2.2.3. *In vitro* assays of recombinant proteins

2.2.3.1. SUMOylation assays

SUMOylation assays were carried out in 50 mM Tris (pH 7.0), 50 mM NaCl, and 5 mM ATP. The reactions analysed by Western blot consisted of 50 ng SUMO, 50 ng Ubc9, and 50 ng SAE1/2 and 10 ng PIAS, where applicable, and occurred at either 28 °C or 37 °C, as indicated. Reactions analysed by Coomassie stain consisted of 300 ng SUMO, 100 ng Ubc9, 100 ng SAE1/2, and 20 ng PIAS where applicable. Reactions were allowed to continue for the desired length of time until the reaction was terminated by the addition of 3XBM (Table 2-8). Thioester-formation assays were terminated with 3XBM-DTT (Table 2-8). Samples were boiled at 95 °C for 10 minutes and resolved by SDS-PAGE before being transferred to a nitrocellulose membrane for analysis by Western blot (Section 2.2.6.1; Section 2.2.6.3).

Assays conducted for Mass Spectrum analysis by collaborators were conducted using 5 µg SUMO, 500 ng Ubc9, 500 ng SAE1/2, and 50 ng PIAS when required. Reactions were conducted at 28 °C for 1 hour and terminated with NuPAGE™ Sample Reducing Agent (Table 2-9). Samples were subsequently boiled for 10 minutes at 95 °C prior to being shipped to collaborators (Dr Michael Tatham, and Professor Ron Hay, University of Dundee) on dry ice.
2.2.4. Cell culture methods

2.2.4.1. Maintenance, growth, and passaging of cells

Mammalian cell cultures were sustained in T75 tissue culture flasks, unless otherwise stated (Nunc Fisher Scientific UK Ltd). Cells were maintained in appropriate media (Table 2-1) at 37 °C with 5% CO₂. When cells were approximately 90% confluent they were washed 2 - 3 times with 5 ml versene, and incubated with 2 ml trypsin-versene until the cells detached (Table 2-8). An aliquot of detached cells were re-suspended in 5 ml of the appropriate media before being seeded in a new flask or counted prior to seeding (Section 2.2.4.2).

Ae. aegypti cell cultures were sustained in T25 tissue culture flasks (Nunclon Delta surface Thermo scientific). Cells were maintained in L15 media at 28 °C with no CO₂ (Table 2-1), when cells were approximately 90% confluent they were knocked off into 2 ml of media using a Cell Scraper (Corning incorporated costar). An aliquot of cells were either re-suspended in 5 ml media in a new flask or counted and seeded for future experiments (Section 2.2.4.2).

2.2.4.2. Seeding of cells

The number of cells was determined using a Neubauer haemocytometer counting chamber using a light microscope. Mammalian cells were seeded in 6-, 12-, or 24-well plates. HFT cells were seeded at 1.5 x 10⁵ cells / well in a 24-well plate, A549-Npros were seeded in 12 well plates at 3 x 10⁵ cells / well, and BHK cells were seeded in 6 well plates at 5 x 10⁵ cells / well.

Ae. aegypti cell culture were seeded in 24-well plates at 5 x 10⁵ cells / well, after the wells had been treated with Poly-D-Lysine Hydrobromide. Briefly, Poly-D-Lysine Hydrobromide was diluted in sterilised PBS, the wells were incubated with 500 µl Poly-D-Lysine at room temperature for 30 minutes before the Poly-D-Lysine was aspirated off.
All cells in 24-well plates were covered with 1 ml of appropriate media, 12-well plates were covered in 1.5 ml media and cells in 6-well plates were covered with a total volume of 3 ml media. Cells were incubated in the required conditions overnight prior to future experiments.

2.2.4.3. Transfection of mammalian cells

Two different mammalian cell lines were transfected with plasmids:

BHK

3 x 10⁵ BHK cells were seeded per well of a 6 well plate, each well was transfected with 2 µg pCMV-SFV4.eGFP or pCMV-SFV4.Ffluc using Lipofectamine2000 following manufacturers guidance (Section 2.2.4.2; Section 2.2.4.3; Table 2-2; Table 2-5). Conditioned media was added to transfection media after 4 hours and at the end of the day the transfection media was removed and fresh media was added. Cells were then incubated at 37 °C during propagation of virus stocks (Section 2.2.5.1).

HEK-293T

HEK-293T cells were seeded at a concentration of 2 X 10⁶ cells in a 60 mm dish. Cells were incubated o/n at 37 °C in 5% CO₂ in 5 ml media, 3 µg of pLKO plasmid expressing a non-target control, SUMO1-targeting, SUMO2/3-targeting, or PIAS1-targeting short hairpin RNA (called shCtrl, shSUMO1, shSUMO2/3, or shPIAS1, respectively), along with the helper plasmids pVSV-G (3 µg) and pCMV-DR8.91 (3 µg) (Table 2-5) were combined with 250 µl of serum-free DMEM. PLUS reagent (8 µl) was added to the plasmid mixture and incubated for 15 minutes at room temperature. Simultaneously, 12 µl of Lipofectamine was also mixed with 250 µl serum-free DMEM, and left to incubate at room temperature for 15 minutes. After the incubation was completed, the serum-free DMEM with PLUS reagent, and serum-free DMEM with Lipofectamine were mixed together and allowed to
incubate together for a further 15 minutes at room temperature. Conditioned media was removed, and HEK-293T cells were incubated with the transfection media for 4 hours at 37 °C. A 50:50 mix of fresh and conditioned media was then replaced and incubated o/n at 37 °C. When CPE was observed (approximately 2 days post transfection), cell supernatant containing released lentiviral particles were harvested, and filtered through a 0.45 µm filter. Samples were then immediately used (Section 2.2.4.4).

2.2.4.4. Lentivirus transduction of cells

60 mm dishes of HFt cells at 4 x 10^5 cells / dish were seeded (Section 2.2.4.2). Filtered lentivirus (3.5 ml) was mixed with polybrene (3.5 µl) for each target (Table 2-2). The filtered lentivirus with polybrene was subsequently added to each dish, the cells were allowed to incubate o/n at 37 °C. The following day, the media was removed and fresh media supplemented with 1 µg/ml Puromycin, and 50 µg/ml of Hygromycin was applied to select for successfully transduced cells. The cells were passaged under continuous selection pressure, (5 µg/ml of Hygromycin, and 0.5 µg/ml of Puromycin). mRNA and protein expression was assessed by q-PCR and Western blotting (Section 2.2.6.3; Section 2.2.6.6).

2.2.4.5. dsRNA transfection of mosquito cells

AF5 cells were seeded in 24 well plates at 2.5 x 10^5 cells / well, and left to incubate o/n at 28 °C. Target dsRNA (300 ng) was transfected with 2 µl DharmaFECT2 (Table 2-2) per well following manufacturer’s instructions. Cells were incubated at 28 °C for 72 hours prior to infection (Section 2.2.5.5).
2.2.5. Virology

2.2.5.1. Propagation of SFV

BHK cells were transfected with either the plasmid pCMV-SFV4.Fluc, or pCMV-SFV4.eGFP (as described in Section 2.2.4.3), and incubated at 37 °C until CPE was observed, at which point the supernatant containing SFV was collected and centrifuged at 3000 rpm at 4 °C for 10 minutes, 1 ml of this p0 stock was used to infect a T175 flask of BHKs. The flask was incubated at 37 °C for 2-4 days until CPE was observed. Supernatant was then collected, centrifuged again at 3000 rpm at 4 °C for 10 minutes; virus was then aliquoted and stored at -80 °C for titration and future experiments.

2.2.5.2. Propagation of BUNV

An aliquot of both wild type BUNV and BUNV possessing a NanoLuciferase reporter protein was provided by Dr Xiaohong Shi (MRC - University of Glasgow Centre for Virus Research), this was used to infect a monolayer of 80-90% confluent BHK cells at a low MOI (0.01 - 0.001) (Table 2-1; Table 2-3). Upon observation of CPE (approximately 4 - 5 days post infection), supernatant was harvested and centrifuged at 3000 rpm at 4 °C for 10 minutes. Virus was aliquoted and stored at -80 °C for titration and future experiments.

2.2.5.3. Propagation of ZIKV

An aliquot of a clinical strain of ZIKV (PE243) and ZIKV possessing a NanoLuciferase reporter protein was provided by Dr Claire Donald (MRC - University of Glasgow Centre for Virus Research) and Jamie Royle (MRC - University of Glasgow Centre for Virus Research), respectively (Table 2-3). This virus was used to infect a roller bottle containing 60-70% confluent Vero cells at a low MOI (0.01 - 0.001) (Table 2-1). Media pH was maintained during this time by the addition of Sodium Bicarbonate (Table 2-2). Upon observation of CPE,
approximately 7 - 12 days post infection, virus was harvested and supplemented with an additional 10% FBS, aliquoted and stored at -80 °C for titration and future experiments.

2.2.5.4. Determining viral titre

Viral titre was determined by either lytic plaque formation or Immunocytochemistry (ICC) plaque staining. For the three viruses used; SFV and BUNV were titrated by lytic plaques, ZIKV was titrated by ICC. All titration involved 10-fold serial dilutions of the virus from stock concentrations. Titrations were calculated by determining the number of plaque forming units per ml (pfu/ml) of virus supernatant using the following formula:

\[
pfu/ml = \text{Number of plaques} \times \text{Dilution factor}
\]

Lytic plaques

BHK cells were seeded in 12 well plates at 2.5 x 10^5 cells / well and left to incubate o/n at 37 °C (Table 2-1). SFV or BUNV were serially diluted in serum-free GMEM and used to infect the cultured cells (Section 2.2.5.5). Infected cells were overlaid with an Avicel overlay (Table 2-2), and incubated for 48 hours (SFV) or 96 hours (BUNV). Overlay was removed by gently washing 2 - 3 times with 1 ml room temperature 1x PBS until all the Avicel had been removed. The cells were simultaneously fixed and stained with Giemsa (Table 2-9), and the number of lytic plaques counted under a plate microscope.

ICC plaque assay

A549-NPro cells were seeded in 12 well plates at 3 x 10^5 cells / well and left to incubate o/n at 37 °C. ZIKV was serially diluted in serum-free DMEM and used to
infect cultured cells (Section 2.2.5.5). Cells were then overlaid with an Avicel overlay and incubated for 72 hours at 37 °C (Table 2-2). Overlay was removed by gently washing 2 - 3 times with 1 ml room temperature 1xPBS until the Avicel had been removed. The cells then underwent an Immunocytochemistry (ICC) staining (Section 2.2.6.7) and the number of plaques counted under a plate microscope.

2.2.5.5. Infection of cultured cells

Media was aspirated and an appropriate volume of virus stock was then diluted in 100 - 500 µl of serum-free media, depending on the size of the well. Virus was absorbed by incubating the cells under the relevant conditions for 1 hour (Table 2-1). The plates were rocked and rotated every 10 - 15 minutes to ensure even distribution of the virus across the cell monolayer. Finally, the cells either had the media replaced if a luciferase assay was being conducted (Section 2.2.7), or an Avicel overlay made up to 0.6% if a plaque assay was being conducted (Table 2-2).
2.2.6. Analytical techniques

2.2.6.1. Sodium dodecyl sulfate - Polyacrylamide gel electrophoresis

If cells were being used for SDS-PAGE and Western blotting, cells were washed twice with PBS before whole lysates were harvested in 3x BM diluted in water to 1.5x BM (Table 2-8). Samples from protein assays were terminated in 3x BM and therefore could instantly be resolved by SDS-PAGE. All samples were boiled for 10 minutes at 95 °C prior to loading. Wells were loaded with 10-15 µl of sample, and a PageRuler pre-stained NIR protein ladder was used as a reference marker for molecular mass. Proteins were resolved on Novex 4-12% Bis-Tris gels using NuPAGE MES (1x) running buffer (Table 2-9). Gels were resolved at 210 volts until the dye front reached the bottom of the gel. Resolved SDS-PAGE gels were then Coomassie stained (Section 2.2.6.2) or transferred to a nitrocellulose membrane for Western blotting (Section 2.2.6.3).

2.2.6.2. Coomassie staining of SDS-PAGE gels

Gels required for Coomassie staining analysis were fixed with Coomassie fix solution for 5 minutes (Table 2-8). The Coomassie fix solution was washed off with distilled water, and Coomassie Brilliant Blue Stain was added to the gel (Table 2-8). This was incubated together for 3 minutes before being washed off with distilled water again. The gel was then briefly rinsed in 100% Methanol, and left in Coomassie destain solution at room temperature with constant shaking until bands were visible (Table 2-8).

2.2.6.3. Western blotting

Resolved SDS-PAGE gels were transferred to an Amersham protran 0.2 µm nitrocellulose blotting membrane in 1x NuPage transfer buffer and 10% Methanol at 30 V for 60 mins. The membranes were blocked in blocking buffer (5% FBS) at
RT for 1 hour (Table 2-8). The required primary antibody was diluted in blocking buffer (5% FBS), and incubated on the blotting membrane at room temperature for 1 hour or o/n at 4 °C with constant shaking (Table 2-4; Table 2-8). The membrane was washed 3 times for 5 minutes each in PBST at room temperature. Secondary antibody was incubated with the membrane at room temperature for 1 hour (Table 2-4). The membrane was then washed 3 times for 5 minutes each with PBST, 2 times with PBS, and rinsed 4 times with distilled water. Western blots were imaged and quantified using a LiCor Odyssey Imaging System.

2.2.6.4. RNA extraction

Cells were seeded at 2 x 10^5 cells / well and left to incubate overnight in the required conditions (Table 2-1; Section 2.2.4.2). RNA extraction occurred following the RNeasy Plus Mini Kit (Qiagen) following manufacturers guidance (Table 2-7). Cells were harvested in 350 µl Buffer RLT Plus, and stored at -20 °C until processing.

2.2.6.5. Complementary DNA (cDNA) synthesis

Extracted RNA was used as a template for cDNA synthesis by reverse transcription of mRNA using the TaqMan™ Reverse Transcription Reagents kit and the provided random hexamer primers (Table 2-7). Purified RNA underwent reverse transcription in a final volume of 20 µl of reaction mix, consisting of a final concentration of 1x RT buffer, 1.75 mM MgCl₂, 0.5 mM each dNTP, 1 U / µl RNase Inhibitor, 2.5 U / ml MultiScribe™ RT, 2.5 µM Random Hexamers, and 1 µl template RNA (under 1 µg / reaction). The solution was made up to 20 µl in nuclease-free water. The RNA template was incubated at 25 °C for 10 minutes, to anneal primers, 37 °C for 60 minutes for extension, and 95 °C for 5 minutes to inactivate the reverse transcriptase.
2.2.6.6. Quantitative polymerase chain reaction (q-PCR)

SYBR Green

Ae. aegypti mRNA expression was analysed in triplicate using a SYBR Green Master mix with gene specific primers (Table 2-6). Each reaction occurred in a 20 µl volume, consisting of 10 µl SYBR Green, 1 µl each Forward and Reverse primer, and 0.3 µl cDNA template, made up with nuclease-free water. Samples were initially denatured at 95 °C for 20 seconds, prior to 40 cycles of 3 second denaturation at 95 °C, and 30 second anneal / extend stage at 60 °C. Previously validated ribosomal S7 was used as an endogenous control (Table 2-6) (McFarlane, Arias-Goeta et al. 2014). q-PCR was conducted on an Applied Biosystems 7500 Fast-Real Time PCR system using MicroAmp plates and Optical Adhesive covers (Applied Biosystems). Results were subsequently analysed using Applied Biosystems 7500 Software v2.0.5.

Primer-probes

Primer probe analysis was conducted on mammalian cells with targeted gene expression being depleted (Section 2.2.4.4). Here, the reactions occurred comprising of 1 µl gene specific primer-probe mix, 10 µl Taqman Fast universal mix, 2 µl cDNA, to a total volume of 20 µl with nuclease-free water (Table 2-7). Samples were initially denatured at 95 °C for 20 seconds, prior to 40 cycles of 3 second denaturation at 95 °C, and 30 second anneal / extend stage at 60 °C. Commercial GAPDH (4333764F) was used as an endogenous control; commercial primer probes to SUMO1 (4331182 (Hs02339312_g1)), SUMO2/3 (4331182 (Hs02743873_g1)), and PIAS1 (4331182 (Hs00184008_m1)) were all obtained from Thermo Fisher Scientific. Q-PCR was conducted on an Applied Biosystems 7500 Fast-Real Time PCR system using MicroAmp plates and Optical Adhesive covers (Applied Biosystems). Results were subsequently analysed using Applied Biosystems 7500 Software v2.0.5.
2.2.6.7. ICC-staining plaque assay

Cells undergoing an ICC-staining plaque assay had the Avicel overlay washed off 2 - 3 times in 1x PBS. Cells were then simultaneously fixed and permeabilized in Fixing buffer (Table 2-8). Cells were washed twice in PBST and blocked in blocking buffer (5% milk) for 30 minutes at room temperature with constant shaking (Table 2-8). Cells were incubated for 60 minutes at room temperature with the primary antibody of interest diluted in blocking buffer (5% milk) (Table 2-8). Cells were washed twice for 5 minutes each in PBST, and incubated for 2 hours with a relevant IgG-peroxidase secondary antibody. Three 5 minute washes with PBST were performed following the secondary antibody and True Blue Peroxidase stain was added and incubated until the colour was developed (Table 2-9). Plates were washed three times with PBST, once with PBS and once with distilled H₂O. Plates were allowed to dry prior to plaques being counted under a light microscope.

2.2.6.8. In Cell Western Blot (ICWB)

Throughout ICWB experiments, all reagents were filter sterilised with a 0.45 µm filter. All incubation steps occurred in the dark, and at no point were the plates allowed to come into contact with blue roll.

Experiments which required an ICWB were seeded on glass bottom 24 well plates (Greiner Bio-one) at 1 x 10⁵ cells / well. Cells were infected, and incubated with an Avicel overlay for the duration of the experiment (Section 2.2.5.5). The Avicel overlay was washed off 3-4 times in 1x PBS, filtered with a 0.45 µm filter (Table 2-2). Cells were then simultaneously fixed and permeabilized in filtered Fixing buffer (Table 2-8). Cells were washed twice in filtered 1x PBST, and blocked in filtered blocking buffer (5% FBS) for 1 hour at room temperature with constant shaking (Table 2-8). Cells were subsequently incubated for 1 hour at room temperature with the primary antibody of interest diluted in blocking buffer (5% FBS) and filtered. Cells were washed 4 times for 15 minutes each in 500 µl filtered PBST, and incubated for 2 hours with the relevant Celltag 700 (1:5000)- IgG fluorophore secondary antibody made up in filtered blocking buffer.
(5% FBS) (Table 2-4). Wells were washed 5 times for 15 minutes in 1ml filtered PBST, followed by 3 washes of 15 minutes in 1ml filtered PBS, and 2 times for 30 minutes in 1ml filtered \(H_2O \). Plates were allowed to dry prior to being scanned on the LiCor, with scanning offset to 4 \(\mu m \). Staining area was assessed by LiCor Image Studio Lite.
2.2.7. **Reporter assays**

2.2.7.1. **Firefly-luciferase reporter assay**

Upon completion of experiments using SFV4-Ffluc, media was aspirated off. When HFT cells were infected they were washed twice with PBS and lysed with 50 µl of 1x Cell Culture Lysis Reagent (CCLR) (Promega). When AF5 cells were used, 50 µl of 1x CCLR was immediately added to the cells. Following manufacturer’s instructions, samples were vortexed, for 15 seconds and transferred to a fresh Eppendorf tube. Luciferase Assay Reagent (50 µl) was then mixed with 10 µl sample and the samples were tested using a Glomax luminometer (Promega) following manufacturer’s instructions (Table 2-7). Readings were produced in relative light units and were recorded (Section 2.2.8.3).

2.2.7.2. **NanoLuciferase reporter assay**

Upon completion of experiments using ZIKV-Nl or BUNV-NL, media was aspirated off. When HFT cells were infected they were also washed twice with PBS. Samples were incubated directly with 50 µl Nano-Glo® Luciferase Assay Substrate + Buffer mix (Promega) (Table 2-7). Samples were transferred to an Eppendorf tube, and incubated at room temperature for 3 minutes prior to being tested in a GloMax luminometer (Promega) following manufacturer’s guidance. Readings were produced in relative light units and were recorded (Section 2.2.8.3).

During mosquito analysis, samples were provided by collaborators of mosquitoes which had been treated with dsRNA to LacZ as a non-target control, or dsRNA to SUMO and subsequently fed blood containing ZIKV-NL at 1x10^7 pfu/ml, supplemented with 2 mM ATP. Samples had already been lysed with glass beads by the collaborators (Floriane Almire, and Dr Emilie Pondeville, University of Glasgow), so 10 µl sample was mixed with 50 µl Nano-Glo® Luciferase Assay Substrate + Buffer (Table 2-7).
2.2.7.3. Protein quantification assay

Samples that needed to be quantified prior to mass spectrometry were harvested in CellLyse lysis buffer (Table 2-9). Samples were then sonicated using a digital sonicator (7 repeats, 50% intensity, 30 seconds, 4 °C, Branson Digital Sonifier), and a Micro BCA Protein Assay Kit (Table 2-7) was utilised to quantify the concentration of protein against a standard curve of known BSA concentrations, following manufacturer’s instructions. Samples were diluted 1:5, 1:10, and 1:20 and quantified using a Nanodrop 2000 spectrophotometer (Thermo Scientific) measuring absorbance at 562 nm.
2.2.8. Bioinformatics

2.2.8.1. Joined Advanced SUMOylation site and SIM Analyser (JASSA)

Annotated amino acid sequences were obtained from UniProt for the proteins of interest. These amino acid sequences were then analysed through JASSA which is an online tool (http://www.jassa.fr/) that predicts sites likely to be SUMO modified (Beauclair, Bridier-Nahmias et al. 2015). The results were then annotated and presented using Illustrator for Biological Sequences (Ren, Wen et al. 2009, Liu, Xie et al. 2015). Some sites were also modelled to demonstrate location of the potential site of SUMO modification (Section 2.2.8.2).

2.2.8.2. Modelling software

Annotated amino acid sequences were obtained from UniProt for the proteins of interest. Viral proteins which had already been analysed with JASSA (Section 2.2.8.1), and the resolved structures available were then downloaded and analysed by the modelling programme Chimera 1.10.1 (Pettersen, Goddard et al. 2004).

Models of *Ae. aegypti* SUMOylation pathway proteins were conducted by obtaining the sequence of the proteins from UniProt, and predicting the tertiary structure with either Phyre2 or Chimera 1.10.1 (Pettersen, Goddard et al. 2004, Kelley and Sternberg 2009). The models predicted with Chimera were then plotted against the resolved structure of the *H. sapiens* SUMOylation proteins (Pettersen, Goddard et al. 2004).
2.2.8.3. Amino acid alignment

Amino acid alignment was conducted using the online software T-COFFEE (http://tcoffee.crg.cat/) (Notredame, Higgins et al. 2000). These results were then plotted and exported with BOXSHADE (http://sourceforge.net/projects/boxshade/).

2.2.8.4. Statistical analysis

Statistical analysis and graphs were produced with GraphPad 7.02. 2-Way ANOVAs, or Mann-Whitney U-tests were used to determine statistical significance (indicated in figures).
2.2.9. Cloning strategies used in this study

All cloning conducted used procedures detailed in Section 2.2.1 using oligonucleotides detailed in Table 2-6. Specific approaches to cloning components of the *Ae. aegypti* SUMOylation pathway into vectors are described in this section. The correct construction was confirmed by restriction endonuclease digestion (Section 2.2.1.3) and sequencing (Section 2.2.1.9). Unless stated otherwise, genes were cloned from cDNA originally extracted from A20 cells by Dr Sue Jacobs (Table 2-1).

2.2.9.1. Cloning of pACYC-AaSAE1/2

The pACYCDuet-1 vector is a bacterial expression vector that allows dual expression of two proteins following induction with IPTG. The vector is designed with chloramphenicol resistance, and a 6xHis tag in the N-terminal of one protein, and an S-tag on the C-terminal of the second protein (Figure 2.3). cDNA from A20 cells was used as a template with the primers *AaSAE2 F*, *AaSAE2 R*, *AaSAE2 F1*, *AaSAE2 R1*, *AaSAE2 F2*, *AaSAE2 R2* (Table 2-6). *AaSAE2* is a large gene (approximately 2000 bp), consequently *AaSAE2* was cloned in three sections of approximately 650 bp, 450 bp, and 800 bp, and further PCRs were conducted to ensure the template was complete. Primers were designed to bind to the gene as depicted (Figure 2.2). The restriction endonuclease sites EcoRl and NotI were used to ligate the insert into the vector backbone.

AaSAE1 was cloned with the primers *AaSAE1 F*, *AaSAE1 R*, *AaSAE1 F1*, and *AaSAE1 R1* (Table 2-6). *AaSAE1* is also a large gene (approximately 1000 bp); consequently the gene was cloned in two parts of approximately 250 bp and 750 bp. An additional stop codon was inserted at the C-terminal to prevent the S-tag from being translated. *AaSAE1* was ligated into MCS2 on Ndel and Xhol.

A Strep.II tag was synthesised (Dundee Cell Products) of the sequence 5’-TGGAGGCCACCCGCAGTTCCGAAAAG-3’ which was ligated to replace the 6xHis tab between the Ncol and EcoRl sites on the N-terminal of *AaSAE2*.
Figure 2.2 pACYCDuet-1 expression plasmid map

The plasmid map of pACYADuet-1, with cloning sites and other regions of interest shown. The plasmid expresses resistance to chloramphenicol. Image from Novagen.

Figure 2.3 AaSAE2 primer binding sites

Image depicts the primer binding sites for cloning of AaSAE2
2.2.9.2. Cloning of pET28a-SUMO chimaera and pET28a-SUMO chimaera K11R

The SUMO chimaera and SUMO chimaera K11R mutant were synthesised (GENEWIZ), and digested and ligated into the pET28 bacterial expression vector on the sites NdeI and XhoI, using the primers pET28-AaSUMO R and pET28-SUMO chimaera F (Section 2.1.6; Section 2.2.1.3; Section 2.2.1.5; Table 2-6; Figure 2.4).

Figure 2.4 pET28a vector map

The plasmid map of pET-28a, with cloning sites and other regions of interest shown. The plasmid expresses resistance to kanamycin. The image is from Novagen.
2.2.9.3. Cloning of pET45b-AaUbc9 and pET45b-AaUbc9 C93S

AaUbc9 was cloned from A20 cDNA extracted by Dr Sue Jacobs (Unpublished data), using the primer sequences pET-Ubc9 F and pET-Ubc9 R (Table 2-6). This was cloned into the pET45b bacterial expression vector which contains an ampicillin resistance gene (Figure 2.5) on the Agel and Xhol restriction sites. AaUbc9 C93S was produced using site directed mutagenesis by PCR described (Section 2.2.1.10) using the Ubc9 C93S Int F1 and Ubc9 C93S Int R1 primers (Table 2-6). AaUbc9 C93S was subsequently amplified with pET-Ubc9 F and pET Ubc9 R primers and cloned into the pET45b vector on the Agel and Xhol restriction sites. Sequencing confirmed the mutation was present (Section 2.2.1.9).

Figure 2.5 pET45b vector map

The plasmid map of pET-45b, with cloning sites and other regions of interest shown. The plasmid expresses resistance to ampicillin. The image is from Novagen.
2.2.9.4. Cloning of pET45b-\textit{AaPIAS} and pET45-\textit{AaPIAS C371A}

\textit{AaPIAS} and \textit{AaPIAS C371A} were synthesised (GENEWIZ) and amplified by PCR with the primers \textit{AaPIAS F} for pET45b and \textit{AaPIAS R} for pET45b (Table 2-6). The primers contained AgeI and NotI restriction sites for cloning into the pET45b vector (Figure 2.5).

2.2.9.5. Cloning of pET28a-\textit{AaSUMO}

Using pET28 vector (Figure 2.4), \textit{AaSUMO} was cloned from a plasmid of pET45-\textit{AaSUMO} (produced by Dr Sue Jacobs, unpublished data) using the primer sequences pET28-\textit{AaSUMO F} and pET28-\textit{AaSUMO R} (Table 2-6). PCR products were digested in Ndel and Xhol for ligation into the pET28 vector.
3. Conservation of the SUMOylation pathway between *Ae. aegypti* and *H. sapiens*
3.1. Overview

A limited amount of research has been conducted on the AdSUMOylation pathway. Two previous studies have utilised a bioinformatics approach to compare the conservation of SUMO orthologues between invertebrate and vertebrate species. Choy et al., (2013) compared the amino acid sequence of ubiquitin and ubiquitin-like proteins between four vector species. They found *Ae. aegypti* and *Anopheles gambiae* (*An. gambiae*) to both possess two SUMO orthologues, whereas *Culex quinquefasciatus* (*C. quinquefasciatus*) and *Ixodes scapularis* (*I. scapularis*) only possess one each (Choy, Severo et al. 2013). Urena et al., (2015) compared the SUMO amino acid sequence from a range of insect species to mammalian SUMO homologues, including that of *H. sapiens*. They were able to determine that all insect SUMO proteins appear to lack a SUMO Conjugation Motifs (SCM) important for poly-SUMO chain formation (Urena, Pirone et al. 2016). However, neither study determined if constituent proteins of the SUMO pathway were expressed, or investigated their respective biochemical properties to orthologous proteins. Consequently, the biological activity of these proteins within insect vectors remains to be characterised.

Arboviruses are required to replicate efficiently in the vertebrate and invertebrate cells. Consequently, any divergence in biological activity of the SUMOylation pathways of *Ae. aegypti* and *H. sapiens* could result in different physiological consequences between species. It was hypothesised that if there is a high degree of conservation between the SUMOylation pathways, then any interaction between arboviruses and the SUMOylation pathway will likely be conserved between the two species.

A limited amount of research has currently been conducted on the interactions between arboviruses and the SUMOylation pathway in either *H. sapiens* or *Ae. aegypti*. Consequently, a bioinformatics approach was initially undertaken to determine if arboviral proteins contained sites amenable to SUMO modification. It was hypothesised that if SUMO modification was crucial for viral replication, SCM (ψ-K-x-[E/D]) sites would likely be conserved between closely related viral strains, and potentially between different virus family members. This strategy potentially increases the risk of false positives as it does not take protein folding
into account, or may miss genuine targets that require SUMO E3 ligases for modification independently of SCMs. However, this methodology serves as an initial indication of how likely viral proteins were to be targets of SUMO modification, and consequently, how likely the SUMOylation pathway is to affect arboviral replication.

In this chapter, the degree of conservation of the SUMOylation pathway between \textit{Ae. aegypti} and \textit{H. sapiens} were compared, and the antibody binding for the constituent parts of the SUMOylation pathways investigated. Furthermore, for each component of the SUMOylation pathway, mass spectrometry analysis was conducted to provide experimental evidence of protein expression. The arboviral proteins which could represent targets of SUMO modification for BUNV, SFV, and ZIKV have been determined.
3.2. Conservation of the SUMOylation pathway

3.2.1. Conservation of SUMO

The annotated *Ae. aegypti* genome sequence revealed the presence of two SUMO homologues, which we named *Aedes aegypti* SUMOa (AaSUMOa; Q16EQ3) and *Aedes aegypti* SUMOb (AaSUMOb; Q16I57). These were compared to the sequence of *Homo sapiens* SUMO 1-3 (HsSUMO1-3; P63165; P61956; P55854). The highest degree of amino acid identity was found with either AaSUMOa or AaSUMOb with HsSUMO3 (Figure 3.1A). Interestingly, however, neither AaSUMOa nor AaSUMOb contained an internal SCM like HsSUMO3. This indicates that AaSUMOa and AaSUMOb are unlikely to efficiently form poly-SUMO chains in contrast to its closest HsSUMO orthologue.

In order to determine any substantial differences in the tertiary structure of the SUMO homologues, the structure of AaSUMOa was modelled using Phyre2 (Figure 3.1B) (Kelley and Sternberg 2009). The structural alignment with the resolved structure of HsSUMO3 was additionally compared with the programme Chimera 1.10.1 (Pettersen, Goddard et al. 2004, Xu, Plechanovova et al. 2014). As demonstrated in Figure 3.1C, there was a high degree of structural similarity observed between AaSUMOa and HsSUMO3, with the only difference observed in the highly flexible N-terminal region. Together, Figure 3.1B and Figure 3.1C demonstrate that multiple programmes predict a highly conserved tertiary structure. Antibody binding was also tested, this demonstrated that the antibody raised to HsSUMO2/3 could be utilised as a tool to detect AaSUMO conjugated HMW proteins (Figure 3.1D). Unfortunately, unconjugated SUMO was not detected in this assay (data not shown) and therefore we cannot confirm the predicted molecular weight of the protein (~15 kDa). As the amino acid sequence identity between AaSUMOa and AaSUMOb is high, it was predicted that any biochemical differences would be conserved between the two homologous proteins. Furthermore, as there was no direct evidence to specifically support AaSUMOb expression (Table 3-1); the focus of the rest of the study was on AaSUMOa.
AaSUMOa 1 MSEEEKKD-SRGSESE-EH-----INLKVLGQDNVVFIFIKHTPLKLMLNAYCDRAGLMS
AaSUMOb 1 MSTDKKDQPKAEG-EH-----INLKVLGQDNVVFIFIKHTPLKLMLNAYCDRAGLMS
HsSUMO3 1 MSEEEKPKECVKTED-DH-----INLKVAQDGSVVQFIFKHTPLKLMLKAYCERQGLSM
HsSUMO2 1 MADEKPKECVKTEDNDH-----INLKVAQDGSVVQFIFKHTPLKLMLKAYCERQGLSM
HsSUMO1 1 MSDQEAKPQSTEDLG-DKKEGEYIKLKVIGQDNAIHFVKTMLTTLKLLKESYCQRQGVM

AaSUMOa 54 QVVRFRFDGQPINEDETPTLLEMEGDTIEVYQQQTGG
AaSUMOb 55 QVVRFRFDGQPINEDETPTLLEMEGDTIEVYQQQTGG
HsSUMO3 55 RQIRFRFDGQPINEDETPAQLEMEDETDIDVFQQQTGG
HsSUMO2 56 RQIRFRFDGQPINEDETPAQLEMEDETDIDVFQQQTGG
HsSUMO1 60 NSLRFLFEGQRIADNHTFKELGMEEDVIEVYQQQTGG

Continued on next page
Figure 3.1 Conservation of SUMO between *Ae. aegypti* and *H. sapiens*.

(A) The annotated amino acid sequence of the two SUMO proteins in *Ae. aegypti* was compared to the sequence of *H. sapiens* SUMO3, *HsSUMO1* and *HsSUMO2* was included for comparison. Dashed box indicates the conjugation motif on *HsSUMO2/3*. (B) Modelling the predicted structure of *AaSUMOa* with Phyre2, (C) and comparing the resolved structure of *HsSUMO3* (PDB ID: 2MP2) to the predicted structure of *AaSUMOa* modelled with Chimera, demonstrated structural conservation between the orthologous proteins. (D) 2.5×10^5 *Ae. aegypti* cells (A20, Aag2, AF5) or 1×10^5 *H. sapiens* cells (HFt; positive control) were seeded and incubated overnight. Cells were lysed into 100 µl and 10 µl cell lysate was resolved by SDS-PAGE and a Western blot was conducted with antibodies to *HsSUMO2/3* (upper blot). A Western blot probing for the expression of Actin was also conducted (lower blot) as a loading control. Molecular weight markers indicated.
3.2.2. Conservation of Ubc9

The annotated genome sequence of AaUbc9 was compared to the published sequence of HsUbc9. This demonstrated a high degree of amino acid identity, at 85%. Including the conservation of C93 (indicated with a ‘#’), which is important for the function of Ubc9 as a conjugation enzyme in H. sapiens. Furthermore, the ‘PAQA’ sequence is conserved (indicated by a bar) between HsUbc9 and AaUbc9, which has been shown to be the residues responsible for efficient recognition of SCM sites (Bernier-Villamor, Sampson et al. 2002). Interestingly, however, the D100 is not conserved between HsUbc9 and AaUbc9. This amino acid, along with K101 has been shown to slow the rate of thioester bond formation, which indicates that AaUbc9 may form thioester bonds at a greater rate than HsUbc9 (Figure 3.2A) (Tatham, Chen et al. 2003). The predicted tertiary structure of AaUbc9 was produced using multiple programmes, and a comparison of the structure of AaUbc9 against the resolved structure of HsUbc9 was conducted (Figure 3.2B; Figure 3.2C) (Giraud, Desterro et al. 1998). Once again, multiple programmes confirmed the conservation of secondary (α-helix and β-sheets) and tertiary structure of the protein. Antibody binding was assessed, and one antibody was found which cross reacted between species which resolved at the expected molecular weight of ~20 kDa (Figure 3.2D).
Continued on next page
Figure 3.2 Conservation of Ubc9 between Ae. aegypti and H. sapiens.

(A) The annotated amino acid sequence of the Ubc9 in Ae. aegypti was compared to the sequence of H. sapiens Ubc9, they were found to share 85% amino acid identity, catalytically active Cys\(^{93}\) is represented by a ‘#’, the residues which help regulate thioester bond formation Asp\(^{100}\) and Lys\(^{101}\) are indicated by ‘*’, and the amino acids PAQA, which has a high affinity for SCM sites are indicated by a bar. (B) Modelling the predicted structure of AaUbc9, (C) and comparing it to the resolved structure of HsUbc9 (PDB ID: 1A3S), indicated structural conservation between the orthologues. (D) \(2.5 \times 10^5\) Ae. aegypti cells (A20, Aag2, AF5) or \(1 \times 10^5\) H. sapiens cells (HFT; positive control) were seeded and incubated overnight. Cells were lysed into 100 µl and 10 µl cell lysate was resolved by SDS-PAGE and a Western blot was conducted with antibodies to HsUbc9 (lower blot). A Western blot probing for the expression of Actin was also conducted (upper blot) as a loading control. Molecular weight markers indicated.
3.2.3. Conservation of SAE1/2

The amino acid sequence of AaSAE1 and AaSAE2 was taken from the annotated sequence of Ae. aegypti, and compared to the amino acid sequence of H. sapiens SAE1/2 activating heterodimer (Appendix A: Amino acid sequence comparison between Hs and AaSAE1/2, and Hs and AaPIAS). The amino acid identity between HsSAE1/2 and AaSAE1/2 was lower than other components of the SUMOylation pathway, at 42% identity for SAE2, and 50% amino acid identity between the SAE1 orthologues. Structural models of the AaSAE1/2 heterodimer and structural comparisons with the HsSAE1/2 activating heterodimer revealed that even with an amino acid identity of 42% and 50%, the tertiary structure was still well conserved between species (Lois and Lima 2005) (Figure 3.3A; Figure 3.3B). Due to the reduced amino acid identity, the antibody available against HsSAE2 did not appear to detect AaSAE2 at the predicted molecular size of ~80 kDa (Figure 3.3C). There is a distinct band detected when Ae. aegypti cell lysate was tested at approximately 130 kDa (*, Figure 3.3C), however this is a far larger protein than AaSAE2 is predicted to be, and far larger than recombinant AaSAE2 resolved at (Figure 4.2).
Figure 3.3 Conservation of SAE1/2 between *Ae. aegypti* and *H. sapiens*.

(A) Modelling the predicted structure of *AaSAE1/2*, (B) and comparing it to the resolved structure of *HsSAE1/2* (PDB ID: 1Y8Q), indicated a high degree of structural conservation between the orthologues. (D) 2.5×10^5 *Ae. aegypti* cells (A20, Aag2, AF5) or 1×10^5 *H. sapiens* cells (HFt; positive control) were seeded and incubated overnight. Cells were lysed into 100 µl and 10 µl cell lysate was resolved by SDS-PAGE and a Western blot was conducted with antibodies to *HsSAE2* (upper blot). A Western blot probing for the expression of Actin was also conducted (lower blot) as a loading control. Molecular weight markers indicated.
3.2.4. Conservation of PIAS

AaPIAS was located in the Ae. aegypti annotated genome and compared to the five H. sapiens PIAS homologues. There was a relatively low level of amino acid identity, in comparison to the other parts of the SUMOylation pathway: between 32-37% (Appendix A: Amino acid sequence comparison between Hs and AaSAE1/2, and Hs and AaPIAS; Figure 3.4A). However, when the amino acid identity of the SP-RING domain was compared between AaPIAS and HsPIAS1-4, the degree of amino acid identity increased to 65-70% (Figure 3.4A). Furthermore, the active C371 was identified, predicted to be responsible for the ligase activity of the protein (Figure 3.4B). Structural modelling was conducted, and a comparison was conducted with HsPIAS2-α (Figure 3.4C; Figure 3.4D). Again, two different programmes predicted the overall structure of the protein was conserved, and the SP-RING domain of the PIAS orthologues has been indicated on the models. As the amino acid identity was predicted to be greatest throughout the entire protein with HsPIAS2-α, an antibody to HsPIAS2-α was used in an attempt to detect AaPIAS. Unfortunately, the antibody did not cross-react between the two species (Figure 3.4E). There is a faint band at the same molecular size as HsPIAS2-α (~85 kDa), however as it is not a distinct band, this could be non-specific, and it does not resolve at the expected molecular weight of AaPIAS (~70 kDa).
A

<table>
<thead>
<tr>
<th></th>
<th>% Amino acid identity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AaPIAS whole protein</td>
<td>AaPIAS SP-RING Domain</td>
</tr>
<tr>
<td>HsPIAS1</td>
<td>35</td>
<td>70</td>
</tr>
<tr>
<td>HsPIAS2-α</td>
<td>37</td>
<td>69</td>
</tr>
<tr>
<td>HsPIAS2-B</td>
<td>36</td>
<td>69</td>
</tr>
<tr>
<td>HsPIAS3</td>
<td>34</td>
<td>68</td>
</tr>
<tr>
<td>HsPIAS4</td>
<td>32</td>
<td>65</td>
</tr>
</tbody>
</table>

B

![Diagram of AaPIAS protein with highlighted SP-RING domain and C371 labeling](image.png)

Continued on next page
Figure 3.4 Conservation of PIAS between *Ae. aegypti* and *H. sapiens*.

(A) The annotated amino acid sequence of the *Ae. aegypti* PIAS was compared to the sequence of *H. sapiens* PIAS1-4, they were found to share 32-37% amino acid identity, although the catalytically active SP-RING domain contains 65-70% amino acid identity between the orthologues. (B) A schematic of the *Aa*PIAS protein indicating the SP-RING domain and the catalytically active C371. (C) Modelling the predicted structure of *Aa*PIAS using Phyre2, the SP-RING domain is highlighted in light blue, and the catalytically active C371, along with the flanking T370, and S372 are indicated; (D) the predicted structure of *Aa*PIAS, made with Chimera 1.10.1 was compared to the resolves structure of *Hs*PIAS2-α (PBD ID: 4FO9), The SP-RING domain of both orthologues are indicated in orange (*Hs*PIAS2-α), and silver (*Aa*PIAS), and the catalytically active C371 and flanking proteins are again indicated. (E) 2.5 x 10⁵ *Ae. aegypti* cells (A20, Aag2, AF5) or 1 x 10⁵ *H. sapiens* cells (HFt; positive control) were seeded and incubated overnight. Cells were lysed into 100 µl, 10 µl was resolved by SDS-PAGE and a Western blot was conducted with antibodies to *Hs*PIAS2-α (upper blot). A Western blot probing for the expression of Actin was also conducted (lower blot) as a loading control. Molecular weight markers indicated.
3.2.5. Confirmation of pathway expression

In order to confirm the AaSUMOylation pathway was expressed, Ae. aegypti cells were assessed by LC-MS mass spectrometry for the presence of peptides to specific SUMO component proteins of the AaSUMOylation pathway. Samples were prepared and quantified (as described Section 2.2.7.3), and sent to collaborators in Dundee University for analysis by mass spectrometry (Table 3-1). These data demonstrate that core component proteins of the AaSUMOylation pathway are constitutively expressed in Ae. aegypti cells. q-PCR analysis was also conducted on AaSUMO, AaUbc9, and AaPIAS on different tissues from Ae. aegypti mosquitoes (Figure 5.1). This also confirmed that the components of the SUMOylation pathway were expressed in different Ae. aegypti tissues.

In the Table 3-1, the ‘Protein’ subheading indicates which protein the peptide sequence (‘Amino acid sequence’) is identified in. ‘Sequence unique to protein’ indicates if throughout the entire genome, the peptide sequence is only encoded in the ‘Protein’ identified, or if the peptide sequence is also encoded in other proteins. ‘Length’ details the number of amino acids in the peptide sequence, and ‘Start / End amino acid position’ indicates the position of the amino acid sequence within the protein.
Table 3-1 The SUMOylation pathway specific peptide sequences identified from *Ae. aegypti* cells by mass spectrometry.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Amino acid sequence</th>
<th>Sequence unique to protein</th>
<th>Length</th>
<th>Start amino acid position</th>
<th>End amino acid position</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMOa/b</td>
<td>KLMNAYCDR</td>
<td>no</td>
<td>9</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>LMNAYCDR</td>
<td>no</td>
<td>8</td>
<td>41</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>VLGQDNAVVQFK</td>
<td>no</td>
<td>12</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td>SUMOa</td>
<td>AGLSMQVVR</td>
<td>no</td>
<td>9</td>
<td>49</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>SEEKKDSKGSESEHINLK</td>
<td>yes</td>
<td>18</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Ubc9</td>
<td>CKFEPPLFHPNVYPSGTVCSSLLEEEKDWRPAITIK</td>
<td>no</td>
<td>36</td>
<td>75</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>DDYPTSPPK</td>
<td>no</td>
<td>9</td>
<td>66</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>DHPFGFVVAR</td>
<td>no</td>
<td>9</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>DHPFGFVARPVK</td>
<td>no</td>
<td>12</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>DWRPAITIK</td>
<td>no</td>
<td>9</td>
<td>102</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>FEPPLFHPNVYPSGTVCSSLLEEKDWRPAITIK</td>
<td>no</td>
<td>34</td>
<td>77</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>GTPWEGGLYK</td>
<td>no</td>
<td>10</td>
<td>50</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>KDHPFGFVVAR</td>
<td>no</td>
<td>10</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>KDHPFGFVARPVK</td>
<td>no</td>
<td>13</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>KGTPWEGGLYK</td>
<td>no</td>
<td>11</td>
<td>49</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>MIFKDDYPTSPPK</td>
<td>no</td>
<td>13</td>
<td>62</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>NADGTLNLMTWECAPGKK</td>
<td>no</td>
<td>19</td>
<td>31</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>QILLGIQDLLNEPNIK</td>
<td>no</td>
<td>16</td>
<td>111</td>
<td>126</td>
</tr>
<tr>
<td>SAE1</td>
<td>Sequence</td>
<td>Score</td>
<td>Position 1</td>
<td>Position 2</td>
<td>Position 3</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>QILLGIQDLNNEPNIKDPQAEAY</td>
<td>no</td>
<td>31</td>
<td>111</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>ADTEELPK</td>
<td>no</td>
<td>8</td>
<td>108</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>AQQLNPVMEVLK</td>
<td>no</td>
<td>11</td>
<td>97</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>AQQLNPVELKADTEELPK</td>
<td>no</td>
<td>19</td>
<td>97</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>AVTLLDDQQVVK</td>
<td>no</td>
<td>11</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>AVTLLDDQVVKEADFCSQFLAPQDSLRF</td>
<td>no</td>
<td>27</td>
<td>60</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>EADFCQFLAPQDSLRF</td>
<td>no</td>
<td>16</td>
<td>71</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>FRDDEKRDPLYSER</td>
<td>no</td>
<td>14</td>
<td>240</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>GFDVVCVIGANTEQLLR</td>
<td>no</td>
<td>17</td>
<td>123</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>ILIAGVNLGAIEIAK</td>
<td>no</td>
<td>15</td>
<td>37</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>KTDDFFKGFDVVCVIGANTEQLLRF</td>
<td>no</td>
<td>24</td>
<td>116</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>LWGLDSQK</td>
<td>no</td>
<td>8</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>LWGLDSQKR</td>
<td>no</td>
<td>9</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>NVIILSGVK</td>
<td>no</td>
<td>8</td>
<td>52</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>RSGPALPLLR</td>
<td>no</td>
<td>10</td>
<td>226</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>SGPALPLLR</td>
<td>no</td>
<td>9</td>
<td>227</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>TELVTSTVK</td>
<td>no</td>
<td>9</td>
<td>191</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>TELVTSTVKR</td>
<td>no</td>
<td>10</td>
<td>191</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>TKTELVTSTVK</td>
<td>no</td>
<td>11</td>
<td>189</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>TKTELVTSTVKR</td>
<td>no</td>
<td>12</td>
<td>189</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>TLSYPAYQVLLDFDYK</td>
<td>no</td>
<td>16</td>
<td>201</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>TLSYPAYQVLLDFDYKAQSYAR</td>
<td>no</td>
<td>22</td>
<td>201</td>
<td>222</td>
</tr>
<tr>
<td>Peptide</td>
<td>Bound?</td>
<td>Start</td>
<td>End</td>
<td>Sequence</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>TNRAEASLSR</td>
<td>no</td>
<td>10</td>
<td>87</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>VEANGIELTEQEAEALYDR</td>
<td>yes</td>
<td>18</td>
<td>2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>AAQIVGVFEPPELQEK</td>
<td>yes</td>
<td>15</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>ALNMLNPVDVLIGK</td>
<td>no</td>
<td>14</td>
<td>467</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>AQIFNIPR</td>
<td>no</td>
<td>8</td>
<td>357</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>AQIFNIPRK</td>
<td>no</td>
<td>9</td>
<td>357</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>ARVSNDDDDDDDLIVIN</td>
<td>no</td>
<td>16</td>
<td>627</td>
<td>642</td>
<td></td>
</tr>
<tr>
<td>ASTSNNGAVDDDDDMCIVEEDAEKPSTSDAGGPSSSGSEKR</td>
<td>no</td>
<td>42</td>
<td>573</td>
<td>614</td>
<td></td>
</tr>
<tr>
<td>AYHSITTSNYGVNFFQQFNLVLNALDNR</td>
<td>no</td>
<td>29</td>
<td>93</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>CYVCAAKPEVTLLK</td>
<td>no</td>
<td>13</td>
<td>436</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>DESSFIVADPDSLKPK</td>
<td>no</td>
<td>17</td>
<td>534</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>DPGRDESSFIVADPDSLKPK</td>
<td>no</td>
<td>21</td>
<td>530</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>EDEDQKTDDVQPSTSGQNGNSK</td>
<td>yes</td>
<td>22</td>
<td>551</td>
<td>572</td>
<td></td>
</tr>
<tr>
<td>ELRDDLILK</td>
<td>no</td>
<td>9</td>
<td>458</td>
<td>466</td>
<td></td>
</tr>
<tr>
<td>ESALSFNPNVK</td>
<td>no</td>
<td>11</td>
<td>80</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>GLTQCYECTPK</td>
<td>no</td>
<td>11</td>
<td>156</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>GTIVISSEEGETDCNNDK</td>
<td>no</td>
<td>18</td>
<td>481</td>
<td>498</td>
<td></td>
</tr>
<tr>
<td>GTIVISSEEGETDCNNDKK</td>
<td>no</td>
<td>19</td>
<td>481</td>
<td>499</td>
<td></td>
</tr>
<tr>
<td>GTIVISSEEGETDCNNDKKLEDLQIVDGcILK</td>
<td>no</td>
<td>32</td>
<td>481</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>HAMDFVAACANIR</td>
<td>no</td>
<td>13</td>
<td>344</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>HLHNQLFGESNEDEDVSPDTADPEAGAEAGESALAAEANEK</td>
<td>no</td>
<td>41</td>
<td>193</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>Peptide</td>
<td>Span</td>
<td>Start</td>
<td>End</td>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>HLFNQLFGESNEDEDVSPDTADPEAGAEAGESALAAEANEKGNVDR</td>
<td>no</td>
<td>46</td>
<td>193</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>ILVVGAGGIAGEILK</td>
<td>no</td>
<td>15</td>
<td>22</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>KLEDLQIVDGCLILK</td>
<td>no</td>
<td>14</td>
<td>499</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>LAEGDHLVWDKDDK</td>
<td>no</td>
<td>14</td>
<td>330</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>LAEGDHLVWDKDDKHAMDFVAA CANIR</td>
<td>no</td>
<td>27</td>
<td>330</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>LCLTADVPLIESGTAGYNGQVELIKR</td>
<td>no</td>
<td>26</td>
<td>130</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>LEDLQIVDGCLILK</td>
<td>no</td>
<td>13</td>
<td>500</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>LFYDDINYLLSMSNLWK</td>
<td>no</td>
<td>17</td>
<td>259</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>NLVLSGFQDIEIIDLDTIDVSNLNR</td>
<td>no</td>
<td>25</td>
<td>37</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>NQLFVPDR</td>
<td>no</td>
<td>8</td>
<td>420</td>
<td>427</td>
<td></td>
</tr>
<tr>
<td>NTPSEPIHCIVWAK</td>
<td>no</td>
<td>14</td>
<td>179</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>QFLFHKEHVGK</td>
<td>no</td>
<td>11</td>
<td>62</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>SMAGNIIPAIATTNAITAGVVVMH AFR</td>
<td>no</td>
<td>27</td>
<td>372</td>
<td>398</td>
<td></td>
</tr>
<tr>
<td>SRTPNPAKWDALEEDGEAAPTDTVLR</td>
<td>no</td>
<td>27</td>
<td>276</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>TLPNNPK</td>
<td>no</td>
<td>8</td>
<td>428</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>TPPNPAKWDALEEDGEAAPTDTVLR</td>
<td>no</td>
<td>25</td>
<td>278</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>TPPNPAKWDALEEDGEAAPTDTVLRDQK</td>
<td>no</td>
<td>28</td>
<td>278</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>TWADQQCGYDPEK</td>
<td>no</td>
<td>12</td>
<td>243</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>TWADQQCGYDPEKIFNK</td>
<td>no</td>
<td>16</td>
<td>243</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>VDDFVQNYELTVTIHK</td>
<td>no</td>
<td>17</td>
<td>513</td>
<td>529</td>
<td></td>
</tr>
<tr>
<td>PIAS</td>
<td>Sequence</td>
<td>Predicted</td>
<td>p</td>
<td>p+1</td>
<td>p+2</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>VFGESITALKK</td>
<td>no</td>
<td>11</td>
<td>315</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>VLSLTESAK</td>
<td>no</td>
<td>9</td>
<td>306</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>VSNDDDDDDLIVIN</td>
<td>no</td>
<td>14</td>
<td>629</td>
<td>642</td>
<td></td>
</tr>
<tr>
<td>WDALEEDGEAAAPTDTVLR</td>
<td>no</td>
<td>18</td>
<td>285</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>WDALEEDGEAAAPTDTVLRLDK</td>
<td>no</td>
<td>21</td>
<td>285</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>GGQVHANGIVPIPYPEATPNPGYPIHPDVK</td>
<td>no</td>
<td>30</td>
<td>126</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>GYAAACYLVR</td>
<td>no</td>
<td>10</td>
<td>297</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>IEHTIQVQLR</td>
<td>no</td>
<td>10</td>
<td>212</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>IQEGSFFFHLTPQQATDIATNR</td>
<td>no</td>
<td>22</td>
<td>183</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>KPTWNCPCVDK</td>
<td>no</td>
<td>11</td>
<td>389</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>LAFFDVLATLKLATLVPSNTTQR</td>
<td>no</td>
<td>24</td>
<td>159</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>LCPLPNIPIPTNKPGVEPK</td>
<td>no</td>
<td>18</td>
<td>247</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>LSSEDNEIQLHK</td>
<td>no</td>
<td>12</td>
<td>421</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>NVNKIEHTIQVQLR</td>
<td>no</td>
<td>14</td>
<td>208</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>QAAEFTELKDLVHQLR</td>
<td>no</td>
<td>16</td>
<td>6</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>RPRPVPNITPNVK</td>
<td>no</td>
<td>13</td>
<td>265</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>TNDSCTLDTPSKPVQK</td>
<td>no</td>
<td>16</td>
<td>442</td>
<td>457</td>
<td></td>
</tr>
<tr>
<td>VEVVSDDEIITTDPPK</td>
<td>no</td>
<td>17</td>
<td>458</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>VPQGMYQQQYANAVQNNDNR</td>
<td>no</td>
<td>19</td>
<td>107</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>VSDLQQLLGENNISR</td>
<td>no</td>
<td>15</td>
<td>22</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>VSLVCPLGK</td>
<td>no</td>
<td>9</td>
<td>351</td>
<td>359</td>
<td></td>
</tr>
</tbody>
</table>
3.2.6. Summary

This analysis demonstrates that the SUMOylation pathway is conserved in *Ae. aegypti*. Sequence analysis has shown a high conservation of the protein (summarised in Figure 3.5), and importantly, revealed the catalytically functional residues of the proteins are present, shown for *AaPIAS* in Figure 3.4B. Modelling the structure of the *AaSUMOylation* proteins has revealed that they are very similar to their *H. sapiens* orthologues. Western blot analysis of *Ae. aegypti* cell lysate has also demonstrated that there are HMW SUMO conjugates in *Ae. aegypti*, demonstrating that the pathway is active. Antibody cross reaction also helps to demonstrate the amino acid sequence identity of the SUMO and Ubc9 orthologues. Finally, mass spectrometry analysis has also demonstrated that components of the *AaSUMOylation* pathway which we can’t detect by western blot (*AaSAE1/2*, and *AaPIAS*), are expressed in *Ae. aegypti*.

![Figure 3.5](image)

Figure 3.5 A heatmap of amino acid identity between the *Aa* and *Hs* SUMOylation pathways

The amino acid sequence of the *AaSUMOylation* and *HsSUMOylation* pathways were compared. Heatmap generated with Graphpad Prism 7.02, red demonstrates a greater percentage amino acid identity.
3.3. Viral proteins contain SUMO conjugation motifs

It is hypothesised that any direct effect of SUMOylation on arbovirus replication in either *H. sapiens* or *Ae. aegypti* would likely be dependent on SUMO modification of viral proteins. Approximately 74% of experimentally confirmed SUMO modifications occur at SCMs (Yavuz and Sezerman 2014). Consequently, polyprotein sequences from different arbovirus families were analysed for the presence of SCM motifs to determine the potential relevance of SUMO modification in the regulation of arboviral replication.

The published amino acid sequence of the proteins was analysed by the Joined Advances SUMOylation site and SIM Analyser (JASSA), an online SCM prediction tool (Beauclair, Bridier-Nahmias et al. 2015). Sites representing ‘Strong Consensus’ sequences were identified and are indicated with a bubble. ‘Weak Consensus’ sequences are depicted as vertical lines on the schematics. SCMs which are in a forward orientation are indicated in aqua, while sites in an inverse orientation are indicated in orange.

3.2.1. SCM sites on BUNV proteins

The Bunyamwera virus genome transcribes four proteins, these four proteins were analysed by JASSA to determine if they contained SCM sites. Multiple lysine residues were identified as potential targets of SUMO modification (Figure 3.6). Three of the ‘Strong Consensus’ sequences were located on the envelopment polyprotein, which is cleaved into the glycoproteins Gn and Gc, a non-structural protein NSm is also produced by the envelopment polyprotein. The three inverse ‘Strong Consensus’ sites (‘EKKP’; ‘ETKV’, and ‘EPKI’) are all located on the Gc glycoprotein. The other three sites, also inverse SCMs, were located on the RNA-directed RNA polymerase (RDRP) L protein (‘DYKV’; ‘DGKV’, and ‘EHKV’). Very few sites were identified as being capable of SUMO modification on the Nucleoprotein and non-structural NSs protein, none of which were identified as a ‘Strong Consensus’ sequences. As the structure of the Gc glycoprotein, and the RDRP has not currently been resolved, no further analysis was conducted.
Figure 3.6 Predicted SUMO conjugation motifs on BUNV proteins

The annotated amino acid sequence of BUNV proteins were assessed by JASSA for the presence of SUMO conjugation motifs. Sites predicted as being a ‘Strong Consensus’ sequence are represented as bubbles. ‘Weak Consensus’ sequences are annotated as vertical lines. Of the four proteins produced by the BUNV genome, only two possess ‘Strong Consensus’ motifs, located on the Envelopment polyprotein and the RNA Directed RNA Polymerase L.
3.2.2. SCM sites on SFV proteins

The two polyprotein sequences from SFV and CHIKV were also analysed for the presence of SCMs with JASSA. SFV contained many sites amenable to SUMO modification, 10 of which were in the classical ‘Strong Consensus’ sequence (Figure 3.7A). Of these, seven were located on the non-structural polyprotein. Within the non-structural polyprotein, one site with the sequence ‘VKGE’ is located on the non-structural protein nsP1. Two SCM sites were found on nsP2 (‘VKRE’; ‘ERKI’), and a further two SCM sites were located on nsP3 (‘EKKI’; ‘VKCE’). Finally, the last two predicted SCMs were found on nsP4 (‘DVKI’; ‘EVKI’). The three remaining ‘Strong Consensus’ sequences were located on the structural polypeptide; two of which were found within the capsid (which overlap each other in the sequence ‘VKHEGKV’) and one was located in the Envelope glycoprotein E2 (‘EGKP’) (Figure 3.7A).

The resolved structure of the capsid protein was analysed to determine where the predicted SCM was located (Figure 3.7B; Figure 3.7C; Figure 3.7D). It was hypothesised that if the SCM was located on an internal section of the protein, it would be inaccessible as a target for SUMO modification. The resolved capsid structure revealed that the predicted SCM was found on a readily accessible part of the monomer, at the interface where monomers form multimers. As the resolved structure was not available for the Envelope glycoprotein E2 or the nsP1-4 proteins, the analysis was not continued for other potential SCMs in SFV.
The annotated amino acid sequence of SFV polyproteins were assessed by JASSA for the presence of SUMO conjugation motifs. (A) Sites predicted as being a ‘Strong Consensus’ sequence are represented as bubbles, ‘Weak Consensus’ sequences are annotated as vertical lines. Of the two polyproteins produced by the SFV genome, both possess multiple ‘Strong Consensus’ motifs. (B) The resolved structure of the Capsid (PDB ID: 1DYL) monomer, (C) trimer, (D) and a fully formed Capsid multimer are shown with the predicted ‘Strong Consensus’ motif indicated in red (Mancini, Clarke et al. 2000).
3.3.5. SCM sites on CHIKV proteins

Further JASSA analysis with CHIKV indicated three potential SCMs on the structural polyprotein, and one further potential SCM on the non-structural polyprotein (Figure 3.8A). As the ‘VKHEGKV’ region was found to be conserved from SFV to CHIKV in the capsid protein this indicated that the site has an important and conserved role between alphaviruses. The other potential SCM site found on the structural polyprotein was a ‘PKGE’ motif located on the Spike Glycoprotein E2 (Figure 3.8B). This SCM appears to not be readily accessible, as it is located within a fold of the protein, and therefore unlikely to be exposed for SUMO modification. The potential SCM on the non-structural polyprotein (‘VKGE’) was located on the nsP2. As the resolved structure of nsP2 was available this was modelled where the ‘VKGE’ region was located and it was found to be also located on an exposed region of the protein (Figure 3.8C).
Figure 3.8 Predicted SUMO conjugation motifs on CHIKV polyproteins

The annotated amino acid sequence of CHIKV polyproteins were assessed by JASSA for the presence of SUMO conjugation motifs. (A) Sites predicted as being a ‘Strong Consensus’ sequence are represented as bubbles, other ‘Weak Consensus’ sequences are annotated as vertical lines on the polyproteins. Of the two polyproteins produced by the CHIKV genome, there are a total of four ‘Strong Consensus’ motifs. (B) The ‘Strong Consensus’ motifs identified in A were assessed for which protein they are located on, using the resolved structure of CHIKV Envelope glycoprotein E2 (PDB ID: 3N43) (Voss, Vaney et al. 2010), (C) and nsP2 (PDB ID: 3TRK), the SUMO conjugation motifs were identified and indicated in red.
3.3.6. SCM sites on ZIKV proteins

The analysis was also conducted on flaviviruses. Here, analysis of Zika virus identified three potential SCMs on the polyprotein (Figure 3.9A). One (‘IKVE’) was located on the small envelope protein. However, while the sequence was found on the strain of ZIKV used in these studies (PE243; Table 2-3) this was not conserved between strains and therefore was not examined further. Another potential SCM (‘VKQD’) identified on NS3 was also not conserved between different ZIKV strains, and therefore no further examinations were conducted. The final potential SCM (‘VKYE’) was located on NS5. This SCM was found to be conserved, and so the potential SCM site was modelled on the resolved structure of NS5. This was found to be on an exposed region of the protein, indicating a potential site for SUMO modification (Figure 3.9B).
The annotated amino acid sequence of ZIKV polyprotein was assessed by JASSA for the presence of SUMO conjugation motifs. (A) The 3 sites predicted to be a ‘Strong Consensus’ sequence are represented as bubbles, other ‘Weak Consensus’ sequences are annotated as vertical lines on the polyprotein. There are three ‘Strong Consensus’ sequences located on the ZIKV polyprotein. (B) The ‘Strong Consensus’ motifs identified in A were assessed for which protein they are located on, using the resolved structure of ZIKV NS5, the SUMO conjugation motifs were identified and indicated in red (PDB ID: 5KQR) (Coloma, Jain et al. 2016).
3.3.7. SCM sites on DENV proteins

Previous studies have suggested an interaction between DENV and the SUMOylation pathway in *H. sapiens* (Chiu, Shih et al. 2007, Su, Tseng et al. 2016, Feng, Deng et al. 2018). DENV-2, the serotype utilised in previous studies which contain a large number of resolved structures to the proteins, was analysed revealing four potential SCM sites (Figure 3.10A). Of these four sites, two, ‘VKWD’ and ‘PKNE’, were not conserved from the proteins NS2b and NS3, respectively. ‘VKKD’, also located on NS3, was conserved and the resolved structure was available (Figure 3.10B). This indicated that the lysines in the ‘VKKD’ SCM are likely to be exposed, and consequently accessible for SUMO modification. Finally, the inverted ‘PFKE’ is located on the Non-structural protein 4B, however, the structure of the protein has not been resolved, and consequently, no further analysis was conducted on this site.
The annotated amino acid sequence of DENV polyprotein was assessed by JASSA for the presence of SUMO conjugation motifs. (A) The 4 sites predicted to be a ‘Strong Consensus’ sequence are represented as bubbles, other ‘Weak Consensus’ sequences are annotated as vertical lines on the polyprotein. (B) The ‘Strong Consensus’ motifs identified in A were assessed for which protein they are located on, using the resolved structure of DENV-2 NS3, the SUMO consensus motifs were identified and indicated in red (PDB ID: 4M9K) (Yildiz, Ghosh et al. 2013). Other ‘Strong Consensus’ motifs were either not conserved, or the resolved structures were not available for analysis.
3.3.8. Summary

As summarised in Table 3-2, there are many potential sites of SUMO modification in arboviral proteins. While the resolved structure of many of these proteins is not available, for those which have been resolved indicate the SCM is frequently in an exposed location and consequently a potential target for SUMO modification. Su, Tseng et al. (2016) found that DENV-2 NS5 was a target of SUMO modification, unfortunately, this protein was not identified by this analysis, which is discussed further in Section 3.4 and may indicate that the list does not represent all potential targets of SUMO modification in the arboviral proteins, suggesting a potential role for E3 ligase specificity.
Table 3-2 Summary of the SCM sequences found on the relevant proteins of different arboviruses

<table>
<thead>
<tr>
<th>Virus</th>
<th>Protein</th>
<th>Resolved structure</th>
<th>SCM sequence</th>
<th>Exposed: Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUNV</td>
<td>Gc glycoprotein</td>
<td>Not available</td>
<td>EKKP / ETKV / EPKI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RDRP</td>
<td>Not available</td>
<td>DYKV / DGKV / EHKV</td>
<td></td>
</tr>
<tr>
<td>SFV</td>
<td>Capsid protein</td>
<td>Present(PDB ID: 1DYL)</td>
<td>VKHEGKV</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Envelope glycoprotein</td>
<td>Not available</td>
<td>EGKP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nsP1</td>
<td>Not available</td>
<td>VKGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nsP2</td>
<td>Not available</td>
<td>VKRE / ERKI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nsP3</td>
<td>Not available</td>
<td>EKKI / VKCE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nsP4</td>
<td>Not available</td>
<td>DVKI / EVKI</td>
<td></td>
</tr>
<tr>
<td>CHIKV</td>
<td>Capsid protein</td>
<td>Present(as shown with SFV)</td>
<td>VKHEGKV</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Spike glycoprotein</td>
<td>Present(PDB ID: 3N43)</td>
<td>PKGE</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>nsP2</td>
<td>Present(PDB ID: 3TRK)</td>
<td>VKGE</td>
<td>Y</td>
</tr>
<tr>
<td>ZIKV</td>
<td>Small envelope protein</td>
<td></td>
<td>IKVE</td>
<td>Not conserved</td>
</tr>
<tr>
<td></td>
<td>NS3</td>
<td></td>
<td>VKQD</td>
<td>Not conserved</td>
</tr>
<tr>
<td></td>
<td>NS5</td>
<td>Present(PDB ID: 5KQR)</td>
<td>VKYE</td>
<td>Y</td>
</tr>
<tr>
<td>DENV</td>
<td>NS2b</td>
<td></td>
<td>VKWD</td>
<td>Not conserved</td>
</tr>
<tr>
<td></td>
<td>NS3</td>
<td>Not conserved / Present(PDB ID: 4M9K)</td>
<td>PKNE / VKKD</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>NS4b</td>
<td>Not available</td>
<td>PFKE</td>
<td></td>
</tr>
</tbody>
</table>
3.4. Discussion

All viruses manipulate the cell they infect in order to replicate efficiently. Unlike most other viruses, arboviruses need to manipulate two distinct cell types, the vertebrate and invertebrate host species. The SUMOylation pathway has previously been reported to influence arbovirus replication; however the studies to date only investigate the interaction of the SUMOylation pathway on Dengue Virus Serotype 2 (Chiu, Shih et al. 2007, Su, Tseng et al. 2016, Feng, Deng et al. 2018). The studies by Chiu, Shih et al. (2007), Su, Tseng et al. (2016) and Feng, Deng et al. (2018) have also only been conducted in mammalian cells and found both pro-viral and anti-viral roles for the SUMO pathway. Consequently, while there is an understanding of interactions occurring in mammalian cells, nothing is known about any interactions between the SUMOylation pathway and arboviruses in *Ae. aegypti*. There are also a very limited number of studies investigating the *Ae. aegypti* SUMOylation pathway, and previous studies have only looked at the amino acid sequence homology (Choy, Severo et al. 2013, Urena, Pirone et al. 2016). Consequently, as an initial step, the *Aa*SUMOylation pathway was analysed for its similarity to the *Hs*SUMOylation pathway.

The analysis conducted here agrees with previous bioinformatic studies which demonstrate that the SUMO protein is conserved between *H. sapiens* and *Ae. aegypti* (Figure 3.1). Studies by Urena, Pirone et al. (2016), and Choy, Severo et al. (2013) both demonstrate that *Ae. aegypti* possesses the gene sequence of two SUMO homologues (Choy, Severo et al. 2013, Urena, Pirone et al. 2016). The study by Urena, Pirone et al. (2016) has also demonstrated that, based on the amino acid sequence, both *Ao*SUMO proteins lack the SCM and should be unable to efficiently form poly-SUMO chains, work which agrees with the studies conducted here. Neither study, however, proceeded to investigate the tertiary structure of the *Aa*SUMO proteins, nor did they examine if the proteins were expressed. Consequently, we show the novel findings that the SUMO protein shares a highly conserved tertiary structure, and demonstrated that the *Aa*SUMOa protein in *Ae. aegypti* is expressed (Table 3-1; Figure 3.1). Our mass spectrometry analysis failed to identify peptide sequences specific to *Aa*SUMOb. This could be because the *Aa*SUMOb protein could be expressed in specific
tissues which weren’t studied, or AaSUMOb may lack a promoter sequence and so may be a pseudogene.

Choy, Severo et al. (2013) also produced a phylogenetic tree of the annotated ubiquitin, ubiquitin-like conjugating enzymes, and activating enzymes, from a range of vector species. As their study focused on the generation of phylogenetic trees demonstrating how related the enzymes are between vector species, they did not look at the structure of the proteins. Here, we also demonstrate a shared amino acid identity, and proceed to show a similar tertiary structure of the predicted structure of AaUbc9 with the resolved structure of HsUbc9. This was also demonstrated with the predicted structure of AaSAE1/2 plotted against the resolved structure of HsSAE1/2. Finally, we validate the expression of AaSUMOa, AaUbc9, AaSAE1, and AaSAE2, by mass spectrometry and Western blot (Figure 3.2; Figure 3.3; Table 3-1).

More studies have been conducted on AaPIAS, due to its widely known role as a regulator of the JAK-STAT pathway. Zou, Souza-Neto et al. (2011) analysed the amino acid sequence of AaPIAS and found conserved domains, including the SAP, PINIT, RING-finger like domain, and the Serine/Threonine-rich domain. Zou, Souza-Neto et al. (2011) also performed depletion studies and showed AaPIAS to be expressed in Ae. aegypti, we demonstrate AaPIAS to have a conserved tertiary structure and confirm AaPIAS expression by mass spectrometry (Figure 3.4; Table 3-1).

We have demonstrated that the pathway is conserved, and that the proteins are expressed in Ae. aegypti. Consequently, we assessed the potential effect of SUMO modification on arboviral proteins. For this a bioinformatics based approach was initially adopted. Previous studies have found predictive algorithms to be a suitable method of identifying potential sites of SUMO modification within cellular and viral proteins, and therefore the JASSA programme was utilised to help identify potential sites of SUMO modification on arboviral proteins (Handu, Kaduskar et al. 2015, Estruch, Graham et al. 2016, Iribarren, Di Marzio et al. 2018).
Representative model and clinically important arboviruses from three arboviral families were selected for analysis. All the arboviruses studied are known to be transmitted by *Ae. aegypti*. BUNV, a negative-strand RNA *orthobunyavirus*, was found to possess six potential SCM sites in the three proteins, and one polyprotein, which BUNV initially translates (*Figure 3.6*). Unfortunately, the resolved structure of the proteins was unavailable, and consequently, the analysis does not examine the location of the SCM sites on the proteins.

JASSA analysis was also conducted on the alphavirus SFV, a positive-stranded RNA virus which appears to have 10 SCM sites throughout the two polyproteins it translates. Two sites were identified on the resolved capsid protein. These SCMs were located on an external surface, at the site where capsids form multimers (*Figure 3.7*). As SUMO modification has previously been reported to have roles in directing protein sub-cellular localisation (Matunis, Wu et al. 1998, Duprez, Saurin et al. 1999, Sachdev, Bruhn et al. 2001), this could potentially indicate a role for SUMO modification whereby SUMO modification transports the capsid monomers to the same location where they form multimers. Alternatively, it could indicate a role for SUMO in binding to the capsid monomers preventing the formation of multimers. CHIKV, another alphavirus, was also analysed (*Figure 3.8*). Interestingly, two SCM sites in the capsid protein were conserved between SFV and CHIKV, which indicates a potentially important and conserved role for this region of the capsid protein. Other sites which were indicated as possessing SCMs were the Envelope glycoprotein E2 and the non-structural nsP2 protein. The SCM site on the Envelope glycoprotein does not appear to be readily accessible, and therefore unlikely to be a site of SUMO modification. The SCM on nsP2, however, is on the surface of the protein, and consequently could represent a target for SUMO modification (*Figure 3.8*).

The polyprotein produced from the flavivirus ZIKV was assessed and found to contain three predicted SCM sites (*Figure 3.9*). Of these three, only one was located on a protein which had a resolved structure (NS5). This SCM was located on the surface of the protein, indicating that it is accessible for SUMO modification. The NS5 protein from many flaviviruses is well reported to localise to the nucleus of cells, a site of abundant SUMO modification within cells (Buckley, Gaidamovich et al. 1992, Miller, Sparacio et al. 2006, Hou, Cruz-Cosme...
et al. 2017). DENV-2 was also assessed and found to possess four potential SCMs (Figure 3.10). The resolved structure was available for NS3. Here, the SCM was also found on a region of the protein accessible for SUMO modification. Previous studies have demonstrated DENV NS5 to be SUMO modified at the N-terminal (Su, Tseng et al. 2016). The JASSA analysis conducted here does not predict DENV NS5 to possess a ‘Strong Consensus’ SCM. Interestingly, however, the study by Su, Tseng et al. (2016) could not identify one lysine residue which was predominantly SUMO modified, and consequently hypothesised that SUMO could ‘float’ in the N-terminal binding with any available lysine, as even after all 12 N-terminal lysines were mutated, there was still SUMO binding to NS5. The analysis here does identify many ‘Weak Consensus’ sequences at the N-terminal of NS5 which may be the SUMO modified section of NS5 that Su, Tseng et al. (2016) identified (Figure 3.10). Alternatively, it could indicate a necessity for E3 SUMO ligase activity in order to modify NS5.

This work could be extended further to look at a bioinformatics comparison on the SENPs, which haven’t been addressed in this study. Furthermore, other non-PIAS E3 ligases may be translated by Ae. aegypti, which could also influence the AaSUMOylation pathway, but have not been studied here. The analysis here could also extend to other strains of clinically important arboviruses, such as Japanese Encephalitis Virus, or Western Equine Encephalitis Virus, which may indicate how well conserved, and how important a SCM is on any individual arboviral protein.
4. Biochemical analysis of the *Ae. aegypti* and *H. sapiens* SUMOylation pathways
4.1. Overview

Biochemical studies of the *H. sapiens* (*Hs*) SUMOylation pathway have revealed that the different *Hs*SUMO homologues possess different biological functions within the cell. For instance, *Hs*SUMO1 promotes ocular lens cell differentiation, while *Hs*SUMO2/3 inhibits this cell differentiation. This is due to the SUMO isoforms having different effects on the stability of transcription factors (Gong, Ji et al. 2014). As *Hs*SUMO2/3 possess an internal SCM at lysine 11 (Lys11; K11), both are capable of efficiently forming poly-SUMO chains, while *Hs*SUMO1 cannot. The formation of poly-SUMO chains is reported to have a variety of effects on proteins, including altering protein localisation, protein stability, and protein-protein interactions (Hardeland, Steinacher et al. 2002, Joseph, Tan et al. 2002, Pfander, Moldovan et al. 2005, Mullen and Brill 2008, Tatham, Geoffroy et al. 2008). As *Hs*SUMO1 does not contain an internal SCM, *Hs*SUMO1 modifications generally occurs as mono-SUMOylation, or as a chain terminator events (Wang, Pan et al. 2002).

*Aa*SUMOa and -b both lack an internal SCM. Consequently, the amino acid sequence suggests *Aa*SUMOa/b should share a biochemical function more equivalent to *Hs*SUMO1 than *Hs*SUMO3. This chapter investigates the biochemical function of the *Aa*SUMOylation pathway component enzymes to determine if *Aa*SUMO can form poly-SUMO chains in the absence of an SCM, utilising *in vitro* biochemical assays (Bencsath, Podgorski et al. 2002, Prudden, Pebernard et al. 2007, Vethantham and Manley 2009, Boutell and Davido 2015, Yang, Campbell et al. 2018).

The core components of the *Aa*SUMOylation machinery were expressed using a bacterial expression system and purified as recombinant proteins, and *in vitro* biochemical studies conducted to investigate the biochemical properties of individual *Aa*SUMOylation pathway component enzymes. Our data demonstrates that *Aa*SUMO is biochemically more similar to *Hs*SUMO1 than *Hs*SUMO2/3 due to the lack of an internal SCM. Interestingly, however, when a catalytically active *Aa*PIAS was included, *Aa*SUMO efficiently formed poly-SUMO chains. The formation of *Aa*SUMO chains being *Aa*PIAS dependent indicates a potential regulatory mechanism for poly-SUMO chain formation in *Ae. aegypti*. We also
demonstrate that the biochemical activity of the SUMOylation proteins is highly conserved and functionally interchangeable between *Ae. aegypti* and *H. sapiens*.
4.2. Purification of the AaSUMOylation pathway

In order to determine the biochemical properties of the AaSUMOylation pathway, the constituent proteins were cloned into vectors in frame with affinity tags. A bacterial expression system was adopted to purify recombinant proteins as bacteria do not possess a SUMOylation pathway. This reduces the likelihood of by-products being co-purified with biochemical activity that could influence \textit{in vitro} SUMOylation assays. Many previous studies have utilised affinity tagged recombinant proteins for biochemical assays to characterise the biochemical propriety of the proteins demonstrating the validity for use in these studies (Derewenda 2004, Arnau, Lauritzen et al. 2006, Alontaga, Bobkova et al. 2012).

Constituent proteins from the \textit{Hs}SUMOylation pathway were previously cloned into bacterial expression vectors in frame with either GST- or His-tags on the N-termini of the proteins (Table 2-5). Corresponding proteins from the AaSUMOylation pathway were also cloned into bacterial expression vectors (Section 2.2.9). AaSUMO, AaUbc9, AaPIAS, and respective catalytically inactive mutants, and the SUMO chimaera were cloned to contain an in frame His-tag on the N-termini. Purification of AaSAE1/2 required an N-termini Strep.II tag on AaSAE2, as a His-tag resulted in dissociation of the heterodimer. It was hypothesised that AaSAE1/2 was unable to be purified by Ni-affinity chromatography due to the presence of non-conserved Histidine residues in AaSAE1 at positions 179/279/297/310, and AaSAE2 at position 66, which are located at the interaction interface of AaSAE1/2 (Appendix B: Purification of AaSAE1/2).

Purification of recombinant proteins yielded predominantly pure samples, although some contained significant breakdown products (Figure 4.1; Figure 4.2). Additionally, a catalytically inactive AaUbc9 (AaUbc9 C93S), and AaPIAS C371A, a chimaeric SUMO, and a chimaeric SUMO K11R mutant were also purified by Ni-affinity chromatography (Section 2.2.9; Appendix C: Purified AaUbc9 C93S, the SUMO chimaera, and the SUMO chimaera K11). A chimaeric SUMO protein, and K11R mutant, was produced to demonstrate that the lack of Lysine within an SCM in AaSUMO was responsible for lack of efficient poly-SUMO chain formation. If the addition of an SCM within AaSUMO did not resulted in the
efficient conjugation of poly-SUMO chains it would suggest another component of the \textit{Aa}SUMOylation pathway was preventing poly-\textit{Aa}SUMO chain formation.

\textit{Hs}SUMOylation pathway

![Image of electrophoresis gel]

\textbf{Figure 4.1} Recombinant \textit{H. sapiens} SUMOylation proteins

Core proteins of the \textit{H. sapiens} SUMOylation system were purified through Ni-affinity chromatography and resolved by SDS-PAGE with standardised concentrations of BSA. The gel was stained with Coomassie brilliant blue. Molecular weights indicated. * = His-SAE1, ** = GST-SAE2
Figure 4.2 Recombinant *Ae. aegypti* SUMOylation enzymes

Core proteins of the *Ae. aegypti* SUMOylation system were purified through Ni-, or Biotin-affinity chromatography (SAE1/2). The proteins were resolved by SDS-PAGE with standardised concentrations of BSA. The gel was stained with Coomassie brilliant blue. Molecular weights indicated. * = SAE1, ** = Strep.II-SAE2, # = His-AaPIAS, ##=His-AaPIAS C371A.
4.3. Comparison of the biochemical properties of the *Ae. aegypti* and *H. sapiens* SUMOylation pathways

4.3.1. Recombinant *AaUbc9* forms a thioester bond with SUMO at a similar rate to recombinant *HsUbc9*

Ubc9 is known to form a thioester bond with the terminal glycine residue of SUMO (Ubc9–SUMO) prior to modifying target substrates (Schwarz, Matuschewski et al. 1998, Tatham, Kim et al. 2003). The sequence similarity demonstrated 85% amino acid sequence identity (Figure 3.2A). Interestingly, previous work has implicated Asp\(^{100}\) and Lys\(^{101}\) as amino acids which influence the rate of thioester formation in *HsUbc9*. The presence of these amino acids has been shown to slow down the rate of thioester formation, but increase the rate of SUMO transfer to the substrate protein (Tatham, Chen et al. 2003). *AaUbc9* encodes a Glu\(^{100}\) instead of an Asp\(^{100}\) (Figure 3.2), which led us to hypothesise that the rate at which *AaUbc9* forms thioester bonds should occur at a slightly faster rate compared to *HsUbc9*.

Biochemical assays were conducted utilising recombinant proteins (300 ng *HsSUMO3*, 100 ng *HsSAE1/2*, and 100 ng *Hs* or *AaUbc9*). The proteins were mixed together in the presence of ATP, and incubated at 37°C for the time course specified. The reactions were terminated with 3x BM -DTT (Table 2-8), which maintains the thioester bond. As indicated in Figure 4.3A, Ubc9–SUMO thioester conjugate resolved at the expected molecular weight. Furthermore, the addition of a catalytically inactive Ubc9, containing a C93S mutation, prevented thioester bond formation and therefore ensures that the band at the expected molecular weight represents Ubc9–SUMO. The formation of Ubc9–SUMO thioester was quantified, normalising to the background reading of the Coomassie stained gel at T0. Ubc9–SUMO thioester bond formation between *HsSUMO* and either *Hs* or *AaUbc9* occurred at approximately the same rate (Figure 4.3B). These data demonstrate that thioester bond formation between *HsSUMO3* and *AaUbc9* occurs at a similar rate to *HsSUMO3* and *HsUbc9*, likely due to the high degree of
amino acid identity between the two Ubc9 orthologue proteins, indicating that these enzymes are biochemically indistinguishable \textit{in vitro}.
Figure 4.3 Comparison of HsUbc9 and AaUbc9 rate of thioester formation

Non-reducing biochemical Ubc9~SUMO thioester formation assays were conducted with 300 ng SUMO, 100 ng SAE1/2, 100 ng of either Aa or HsUbc9 in the presence of ATP and terminated at the specified time points. (A) Coomassie stained gel of the biochemical assay with either AaUbc9~ or HsUbc9~HsSUMO3 indicated. One reaction containing no Ubc9, and a functionally inactive AaUbc9 mutant were included as controls. Molecular weight and other recombinant proteins are indicated. (B) Mean signal intensity of Ubc9~SUMO from (A), with standard error bars shown. Curve plotted is nonlinear fit of data, as a specific binding with hill slope, with R² values shown, produced with GraphPad Prism 7.02, N=3.
4.3.2. Recombinant AaSUMO is more biochemically comparable to HsSUMO1 than HsSUMO3 in an in vitro biochemical assay

The HsSUMOylation pathway has been shown to be biochemically capable of forming poly-SUMO chains in vitro (Tatham, Jaffray et al. 2001). Using SAE2 and SUMO as substrates of SUMO modification, our assay compared the biochemical activity of the AaSUMOylation pathway with the HsSUMOylation pathway. Here, 50 ng of SAE1/2, 50 ng of Ubc9, and 50 ng of SUMO were incubated together at 28 ºC. The reaction was terminated at the time points indicated with 3x BM (Table 2-8), the samples were resolved on an SDS-PAGE gel and a Western blot was conducted with antibodies raised against HsSUMO2/3, and HsSUMO1 when required.

AaSUMO doesn’t efficiently form mid-tier chains or HMW poly-SUMO chains, compared to HsSUMO3 (Figure 4.4A). The biochemical activity of AaSUMO is more comparable to that of HsSUMO1 (Figure 4.4B). However, AaSUMO does appear to be conjugated to AaSAE2 slightly more efficiently compared to HsSUMO1 conjugated to HsSAE2. The signal intensity of the HMW SUMO conjugates was quantified and normalised to unconjugated SUMO at T0. When the biochemical activity of the three SUMO proteins was compared, AaSUMO was observed to conjugate slightly more efficiently than HsSUMO1, but far less efficiently than HsSUMO3. The efficiency of SUMO conjugate formation of AaSUMO is therefore more similar to that of HsSUMO1 than HsSUMO3 (Figure 4.4C).

The assays comparing the biochemical activity of AaSUMO with HsSUMO3 (Figure 4.5A) and HsSUMO1 (Figure 4.5B) were also conducted at 37 ºC, in order to determine if the lower temperature was altering the efficiency of the HsSUMOylation pathway. However, as demonstrated in Figure 4.5C, AaSUMO remained more biochemically comparable to HsSUMO1, than HsSUMO3, regardless of temperature. Collectively, these data indicate that AaSUMO is biochemically more comparable to HsSUMO1 than HsSUMO3. This is likely due to the lack of an internal SCM, which is lacking in both HsSUMO1 and AaSUMO.
Continued on next page
Biochemical reactions comparing the activity of 50 ng SUMO, SAE1/2, and Ubc9 from the Aa and Hs SUMOylation pathways were incubated together at 28 °C prior to the reaction being terminated after the specified periods of time. (A) Comparison of the build-up of SUMO-SUMO dimers and HMW SUMO conjugates of either AaSUMO or HsSUMO3. Commercial poly-SUMO2 chains were also included to indicate sizes of SUMO chains. An antibody to HsSUMO2/3 was used to probe for Aa and HsSUMO3 expression. (B) Comparison of the build-up of either AaSUMO or HsSUMO1 conjugates. Antibodies to HsSUMO2/3 and HsSUMO1 were utilised to probe for HsSUMO1 and AaSUMO expression over time. (C) Graphical view of the build-up of SUMO-SUMO dimers and HMW SUMO conjugates from both (A) and (B), signal intensity quantified using a LiCor. Curve is Specific binding with hill slope nonlinear fit of data, mean, standard error, and R² values shown, produced with GraphPad Prism 7.02. N≥3.
Continued on next page
Figure 4.5 Comparison of *Aa* and *Hs* SUMOylation pathways activity at 37 °C

Biochemical reactions comparing the activity of 50 ng SUMO, SAE1/2, and Ubc9 from the *Aa* and *Hs* SUMOylation pathways were incubated together at 37 °C prior to the reaction being terminated after the specified periods of time. (A) Comparison of the build-up of SUMO-SUMO dimers and HMW SUMO conjugates of either *Aa*SUMO or *Hs*SUMO3. Commercial poly-SUMO2 chains were also included to indicate sizes of SUMO chains. An antibody to *Hs*SUMO2/3 was used to probe for *Aa* and *Hs*SUMO3 expression. (B) Comparison of the build-up of either *Aa*SUMO or *Hs*SUMO1 conjugates. Commercial poly-SUMO2 chains were also included to indicate sizes of SUMO chains. Antibodies to *Hs*SUMO2/3 and *Hs*SUMO1 were utilised to probe for *Hs*SUMO1 and *Aa*SUMO expression over time. (C) Graphical view of the build-up of SUMO-SUMO dimers and HMW SUMO conjugates from both (A) and (B) signal intensity quantified using a LiCor. Curve is Specific binding with hill slope nonlinear fit of data, mean, standard error, and R² values shown, produced with GraphPad Prism 7.02. N≥3.
4.3.3. A chimaeric SUMO protein efficiently forms HMW SUMO conjugates

This work has demonstrated a biochemical difference between the AaSUMO protein and HsSUMO3 utilising a combination of both bioinformatics and biochemical assays (Section 3.2.1; Section 4.3.2). The lack of efficient AaSUMO poly-SUMO chain formation was hypothesised to be due to the lack of an internal SCM in AaSUMO. A chimaeric SUMO protein was synthesised made from the N-terminal of HsSUMO3 and the C-terminal of AaSUMO. The N-terminal of the chimaeric protein consisted of the sequence MSEEKPKEGVKTE, from HsSUMO3, containing the SCM VKTE (shown in aqua). The C-terminal consisted of amino acid residues 14-91 from AaSUMO. This resulted in a SUMO protein which could efficiently form poly-SUMO chains. A mutant chimaeric SUMO protein was also synthesised and purified which contained a K11R mutation, ablating the internal SCM (Figure 4.6A). This ensured AaSUMO possessed the SCM and a control which cannot efficiently form poly-SUMO chains.

A similar biochemical experiment was set up utilising 50 ng chimaeric or K11R mutant SUMO protein, 50 ng Ubc9, and 50 ng SAE1/2. The samples were resolved on an SDS-PAGE gel, and probed with an antibody to HsSUMO2/3 (Figure 4.6B). As demonstrated, the chimaeric SUMO formed HMW SUMO conjugates more efficiently than the K11R mutant chimaera. The signal intensity was quantified, normalised to the concentration of unconjugated SUMO at T0. The resulting graph demonstrates that the SUMO chimaera formed HMW conjugates far more efficiently than the SUMO chimaera K11R mutant, due to the presence of the lysine within the SCM (Figure 4.6C).

Together, these data demonstrate that a K11 within an SCM is necessary for the efficient formation of poly-AaSUMO chains.
Continued on next page
Figure 4.6 Comparison of SUMO chimaera with a K11R chimaera mutant

Biochemical reactions comparing the activity of 50 ng SUMO chimaera, SUMO chimaera K11R, SAE1/2, and Ubc9 from the AaSUMOylation pathway was incubated together at 28 °C prior to the reaction being terminated after the specified periods of time. (A) A schematic of the SUMO chimaera, and SUMO chimaera K11R mutant which demonstrates what the protein is made from and where the K11R mutation is. (B) Comparison of the build-up of SUMO-SUMO dimers and HMW SUMO conjugates when the SUMO chimaera was used compared to the SUMO chimaera K11R mutant at time points indicated post initiation of reaction. An antibody to HsSUMO2/3 was used to probe for SUMO expression. Commercial poly-SUMO2 chains were also included to indicate sizes of SUMO chains. Molecular mass markers are shown. (C) Signal intensity of SUMO conjugates from (B) was detected with a LiCor, normalised to unconjugated SUMO at T0. Mean results were plotted on a graph with standard error bars, n≥3, nonlinear fit of data was plotted as Specific binding with hill slope with R^2 values shown produced with GraphPad Prism 7.02.
4.3.4. AaPIAS enhances rate of HMW SUMO conjugate formation

In *H. sapiens*, the family of PIAS proteins are well reported to efficiently increase the rate of poly-SUMO chain formation (Eisenhardt, Chaugule et al. 2015). This is due to the catalytically active SP-RING domain. AaPIAS shares a relatively well conserved SP-RING domain and a conserved catalytically active Cys371 (Section 3.2.4). Consequently, we sought to identify if PIAS shared a similar biochemical function in the SUMOylation pathway of *Ae. aegypti* as in *H. sapiens*. Wild type and catalytically inactive mutant AaPIAS (AaPIAS C371A; CA) were cloned into a bacterial expression vector and purified (Figure 4.2). Upon addition of 10 ng of AaPIAS or AaPIAS C371A to the SUMOylation assay mixture at 28 °C, there was a rapid build-up of HMW SUMO conjugates in a SP-RING dependent manner (Figure 4.7A). Assays were quantified and plotted (Figure 4.7B). These data demonstrate that biochemically active AaPIAS is required to efficiently form poly-AaSUMO chains *in vitro*.

Equivalent reaction samples were sent for mass spectrometry analysis by collaborators at the University of Dundee (Section 2.2.3.1; Figure 4.8A). Mass spectrometry analysis revealed that every AaSUMOa lysine residue can act as an acceptor site for SUMO modification *in vitro* (Figure 4.8B), with the most prominent lysine residues being K5/6/9/40 (Figure 4.8C). These residues are predominantly located around the N-terminus of AaSUMO (Figure 4.8D). Further analysis of the effect of AaPIAS on the formation of SUMO dimers or poly-SUMO chains indicated that AaPIAS does not appear to influence acceptor site preference (Figure 4.8E), but rather rate of accumulation (Figure 4.7A).

Together this demonstrates that AaSUMO is capable of forming poly-SUMO chains, but it only efficiently occurs in the presence of an AaPIAS. This could potentially indicate an additional level of regulation on the formation of poly-SUMO chains in *Ae. aegypti*, compared to *H. sapiens*. Although the formation of poly-SUMO chains in *Ae. aegypti* mosquitoes has not been investigated, and the potential biological effects of poly-SUMO chain formation indicates an exciting new avenue of research.
Biochemical reactions comparing the activity of 50 ng SUMO, SAE1/2, Ubc9, and 10 ng AaPIAS or AaPIAS C371A from the AaSUMOylation pathway was incubated together at 28 °C prior to the reaction being terminated after the specified periods of time. (A) A representative biochemical assay demonstrating the difference in the build-up of HMW SUMO conjugates when the AaPIAS was used against the AaPIAS C371A mutant at time points of 0, 5, 15, 30, or 60 minutes post initiation of the reaction at 28 °C. Membranes were probed with an antibody to H. sapiens SUMO2/3 for expression of SUMO. Commercial poly-SUMO2 chains were also included to indicate sizes of SUMO chains. Molecular weight is indicated. (B) Signal intensity of SUMO-SUMO dimers and HMW SUMO conjugates from (A) was quantified with a LiCor, normalised to unconjugated SUMO at T0. Mean of n≥3 repeats calculated and plotted as a nonlinear curve with specific binding with hill slope by Graphpad Prism 7.02, with standard error and R^2 values indicated.

Figure 4.7 Comparison of PIAS activity with a catalytically inactive PIAS mutant
Figure 4.8 Mass spectrometry analysis reveals which lysine’s SUMO is binding to.

Biochemical assays were conducted prior to being sent to collaborators at the University of Dundee for analysis by mass spectrometry. (A) Coomassie gel showing in vitro conjugation assay products from reactions either lacking AaPIAS (-) or including an active (WT) or inactive (CA) AaPIAS. Schematic that explains the sample processing and mass spectrometry analysis using a branched peptide database. (B) Sequence alignment of the Ae. aegypti and H. sapiens SUMO orthologues. Sequence identity is shown by grey boxes and SUMO-1 secondary structure shown above with arrow showing strands, and box showing helices. The ubiquitin-like domain is indicated by the broken blue box. AaSUMOa lysine residues are shown in red and the position indicated. (C) Summary of mass spectrometry data associated with identified SUMO-SUMO branched peptides from the samples shown in (A). Data are aggregated for all samples and separated by lysine acceptor. (D) A model of the AaSUMOa protein with the lysine residues which are most likely to be SUMO modified, as identified in (C) indicated. (E) Slice-specific peptide intensity data separated by lysine acceptor. Data are % total intensity of all branched peptides found in each slice.
4.4. Biochemical activity of the pathways is conserved between species

As the orthologous proteins are well conserved at an amino acid and structural level, we hypothesised that the biochemical activity of the proteins should be sufficiently conserved to enable the individual *Ae. aegypti* SUMOylation proteins to substitute for *H. sapiens* SUMOylation pathway constituent proteins. If so, this would demonstrate that the proteins share a high degree of biochemical conservation as well. The assays were conducted at 37 °C as described in Section 2.2.3.1.

4.4.1. *Aa*SUMO can be utilised by the *Hs*SUMOylation pathway

*Aa*SUMO shares 68% amino acid identity with *Hs*SUMO2, and possesses a similar tertiary structure (Section 3.2.1). In order to determine if *Aa*SUMO is capable of being conjugated by the *Hs*SUMOylation pathway, 100 ng SAE1/2, 100 ng Ubc9, and 300 ng either *Aa*SUMO, or *Hs*SUMO2 were incubated together. Additional samples were also included which lacked either SUMO, or *Hs*Ubc9, to demonstrate that the HMW bands represent genuine SUMO conjugates. The samples were terminated at the specified times, resolved by SDS-PAGE, and the gel was Coomassie stained (Figure 4.9). This analysis revealed that *Aa*SUMO can be utilised by the *Hs*SUMOylation machinery, to be conjugated to the GST-*Hs*SAE2, although conjugation of *Aa*SUMO does not appear to be as efficient as *Hs*SUMO2. This is likely explained by the lack of SCM on *Aa*SUMO, as previously described (Section 4.3.2; Section 4.3.3).
Figure 4.9 AaSUMO is biochemically active with HsSUMOylation machinery

100 ng HsUbc9, 100 ng HsSAE1/2, and 300 ng either AaSUMO or HsSUMO2 were incubated together at 37 °C for varying lengths of time. Samples including no SUMO or no Ubc9 were included as controls. The reaction was terminated and the samples were resolved on an SDS-PAGE gel. The gel was stained by Coomassie and demonstrates that over time there is a build-up of HMW SUMO conjugates when AaSUMO was incubated. This shows that the AaSUMO protein is functionally interchangeable with HsSUMO. N=2.
4.4.2. AaUbc9 can be utilised in the HsSUMOylation pathway with HsSUMO2

AaUbc9 shares 85% amino acid identity with HsUbc9, a conserved active site (C93), and a conserved tertiary structure (Figure 3.2). As a consequence, it was hypothesised that AaUbc9 should be able to efficiently conjugate HsSUMO2 after activation by HsSAE1/2. The biochemical conservation of AaUbc9 was tested against HsUbc9, to determine if AaUbc9 is able to be substituted for HsUbc9 in the HsSUMOylation pathway. An experiment utilising 300 ng HsSUMO2, 100 ng HsSAE1/2, and either 100 ng AaUbc9 or HsUbc9 was set up, the reactions were terminated at the times stated, samples were then resolved by SDS-PAGE, and Coomassie stained. AaUbc9 was found to be capable of efficiently conjugating HsSUMO2 to GST-HsSAE2 (Figure 4.10).
Figure 4.10 AaUbc9 is biochemically active with HsSUMOylation machinery

300 ng HsSUMO2, 100 ng HsSAE1/2, and 100 ng either AaUbc9 or HsUbc9 were incubated together at 37 °C for varying lengths of time. A sample including no Ubc9 was included as a control. The reaction was terminated and the samples were resolved on an SDS-PAGE gel. The gel was stained by Coomassie and demonstrates that over time there is a build-up of HMW SUMO2 conjugates when AaUbc9 was incubated. This shows that AaUbc9 is functionally interchangeable with HsUbc9. N=2.
4.4.3. *AaSAE1/2* utilise in *HsSUMOylation* pathway

Due to the relatively low degree of amino acid identity between *HsSAE1/2* and *AaSAE1/2* (50% and 42%, for SAE1 and SAE2 respectively) compared to the rest of the SUMOylation pathway (*Section 3.2.3*), it was unlikely that *AaSAE1/2* would work to the same efficiency as *HsSAE1/2* when used in the *HsSUMOylation* pathway. However, the active Cys173 is still conserved (*Appendix A: Amino acid sequence comparison between Hs and AaSAE1/2, and Hs and AaPIAS*), and the tertiary structure of the proteins is also well conserved (*Section 3.2.3*), therefore it was hypothesised that *AaSAE1/2* could still activate *HsSUMO* orthologues. An experiment utilising either 100 ng *AaSAE1/2* or *HsSAE1/2*, with 300 ng *HsSUMO2*, and 100 ng *HsUbc9* was conducted and terminated at specified times. The samples were then resolved by SDS-PAGE, and Coomassie stained. The results reveal that *AaSAE1/2* is capable of activating *HsSUMO2* that *AaSAE2* can act as a substrate for *HsSUMO2* modification (*Figure 4.11*).
Figure 4.11 AaSAE1/2 is biochemically active with HsSUMOylation machinery

300 ng HsSUMO2, 100 ng HsUbc9, and 100 ng either AaSAE1/2 or HsSAE1/2 were incubated together at 37 °C for varying lengths of time. A sample including no SAE1/2 was included as a control. The reaction was terminated and the samples were resolved on an SDS-PAGE gel. The gel was stained by Coomassie and demonstrates that over time there is a build-up of HMW SUMO2 conjugates when AaSAE1/2 was incubated. This shows that the AaSAE1/2 heterodimer is functionally interchangeable with the HsSAE1/2 heterodimer. N=1.
4.4.4. **AaPIAS can enhance rate of HsSUMO3 chain formation**

AaPIAS was also tested for its ability to be utilised by the HsSUMOylation pathway. As described in Section 3.2.4, AaPIAS only shares 32% - 37% amino acid identity with the orthologous proteins, however, the SP-RING domain does share a higher degree of amino acid identity (between 65% - 70%). The activity of AaPIAS was tested against the activity of the catalytically inactive mutant. The experiment was conducted with 300 ng HsSUMO2, 100 ng HsUbc9, 100 ng HsSAE1/2 and either 20 ng AaPIAS, or AaPIAS C371A. Reactions were terminated at the specified times, resolved by SDS-PAGE, and Coomassie stained. AaPIAS can be seen to efficiently form HMW conjugates, compared to AaPIAS C371A, while utilising HsSAE1/2, HsUbc9, and HsSUMO2 (Figure 4.12). Within 15 minutes, the E3 ligase activity of AaPIAS efficiently forms a build-up of HMW SUMO conjugates indicative of poly-SUMO chain formation. In the absence of a catalytically functional SP-RING domain, the same build-up of HMW SUMO conjugates is not present until the 90 minute time point. This also demonstrates that even though the overall amino acid identity between AaPIAS and the *H. sapiens* orthologues is 32% - 37%, AaPIAS is still able to interact with HsSUMO2, HsUbc9, and HsSAE2.
300 ng HsSUMO2, 100 ng HsUbc9, 100 ng HsSAE1/2 and either 20 ng AaPIAS, or AaPIAS C371A, were incubated together at 37 °C for varying lengths of time. Samples including no Ubc9 and no PAIS were included as controls. The reaction was terminated and the samples were resolved on an SDS-PAGE gel. The gel was stained by Coomassie. This demonstrates that a functional SP-RING domain results in an efficient increase in HMW HsSUMO2 conjugates. N=1.
4.5. Discussion

Protein modification by the SUMOylation pathway is known to have a wide variety of important biological functions in many species of eukaryotes. A large body of work has been produced in *H. sapiens* demonstrating the effect of mono- or poly-SUMO modification. Likewise, there has been a large body of work conducted in yeast (*Saccharomyces cerevisiae*; *S. cerevisiae*) and in *D. melanogaster*. This work has revealed important functions of SUMO modification, including protein sub-cellular localisation and protein stability (Desterro, Rodriguez et al. 1998, Miteva, Keusekotten et al. 2010).

It is well known that in the *HsSUMOylation pathway*, Ubc9 forms a thioester bond with SUMO through the Sulphur atom in the R group of the cysteine amino acid (Tatham, Chen et al. 2003, Tatham, Kim et al. 2003). It was hypothesised that *AaUbc9* would also form a thioester bond with SUMO, due to the conserved active site (C93); a mutant which is incapable of forming thioester bonds was also purified as a control (*Appendix C: Purified AaUbc9 C93S, the SUMO chimaera, and the SUMO chimaera K11*). As *AaUbc9* encodes a Glutamic acid (E100) instead of an Aspartic acid (D100), we expected the rate of *AaUbc9~SUMO* formation to be up to 1.3-fold greater than *HsUbc9~SUMO* (Tatham, Chen et al. 2003). However, these results demonstrate that the C93 in *AaUbc9* does form thioester bonds with SUMO at a comparable rate to *HsUbc9* irrespective of the presence of E100 instead of D100 (*Section 4.3.1*). This is likely due to the similarity between the structure of Aspartic acid and Glutamic acid resulting in a predominantly similar phenotype.

As *AaSUMO* is lacking an internal SCM, it was hypothesised it should not be able to efficiently form poly-SUMO chains (*Section 3.2.1*). Utilising the recombinant proteins described in *Section 4.2*, the ability of *AaSUMO* to form poly-SUMO chains in an *in vitro* assay was assessed. When comparing the build-up of HMW SUMO conjugates between the *AaSUMOylation pathway* and the *HsSUMOylation pathway*, there are a range of similarities and differences with both *HsSUMO1* and *HsSUMO3* (*Figure 4.4; Figure 4.5*). These results show that conducting the assay at either 28 °C or 37 °C have no effect on the activity of the *AaSUMOylation pathway*; we also found that *AaSUMO* and *HsSUMO1 / HsSUMO3*
all form SUMO-SUMO dimers within 5-15 minutes, and all SUMO orthologues studied are capable of SUMO modifying SAE2. SUMO modification of SAE2 has previously been reported to result in the localisation of SAE2 out of the nucleus, and altering enzyme activity (Truong, Lee et al. 2012, Truong, Lee et al. 2012). As AaSAE2 also appears to be a substrate for SUMO modification, it seems likely that SUMO modification of AaSAE2 results in a similar phenotype, although further studies would be needed to confirm this in vivo. There are also notable differences in the biochemical activity of AaSUMO and HsSUMO3, demonstrated in Figure 4.4 and Figure 4.5. This includes the ability of HsSUMO3 to efficiently form mid-tier SUMO chains, and the formation of a ‘smear’, typically indicative of poly-SUMO chains, at the top of the blot of HMW SUMO conjugates. The mid-tier and HMW chains are also both absent when HsSUMO1 is utilised. Together, this demonstrates that the biochemical activity of AaSUMO is more comparable to HsSUMO1, compared to HsSUMO3. This also demonstrates that AaSUMO cannot efficiently form poly-SUMO chains at either 28 °C or 37 °C. Furthermore, as the rate of Ubc9-SUMO thioester bond formation is equivalent between species, it rules out a lack of poly-SUMO chain formation being due to different activity of Ubc9, and further implicates the lack of SCM in the inability to form poly-SUMO chains. SUMO1 has been reported to form chains on low affinity sites when large concentrations of Ubc9 are added in vitro, and it is possible that any poly-HsSUMO1 chains, or poly-AaSUMO chains formed in this assay could be due to the concentration of Ubc9 (Matic, van Hagen et al. 2008). This could be confirmed by titrating in lower concentrations of Ubc9 and performing mass spectrometry analysis to determine if one lysine is predominantly modified.

To confirm that the SCM would result in the formation of poly-SUMO chains, a chimaeric SUMO protein was produced and purified, which contained the SCM from HsSUMO3, replacing the first 14 amino acids of the AaSUMO protein, including the SCM (Section 4.3.3). The chimaeric SUMO formed chains of HMW SUMO conjugates more efficiently than a chimaeric mutant which contained a mutation in lysine 11 (K11R), the primary substrate for SUMO chain formation (Tatham, Jaffray et al. 2001). The chimaeric protein is capable of efficiently forming HMW SUMO conjugates when compared to the chimaera K11R (Figure 4.6). This shows that the lack of a lysine within an internal SCM prevents SUMO chains from efficiently forming in Ae. aegypti.
Upon addition of the E3 ligase, AaPIAS, however, there was a rapid build-up of HMW SUMO chains forming (Figure 4.7). The activity of AaPIAS was compared to AaPIAS C371A, which clearly demonstrated a rapid increase in HMW SUMO conjugates forming. The SP-RING domain of PIAS proteins are widely known to be the catalytically active site for enhancing SUMO conjugation (Hochstrasser 2001, Hay 2005). This work demonstrates that the AaSUMOylation pathway is capable of forming poly-AaSUMO chains, but only when an AaPIAS is available. This indicates that the important biological functions of poly-SUMO chains are also utilised in Ae. aegypti. Previous work by Urena, Pirone et al. (2016), on Blattella germanica (B. germanica) and D. melanogaster suggested that insect SUMO proteins could not form poly-SUMO chains. The evidence here indicates that AaSUMO can form poly-SUMO chains in vitro, but requires the presence of an AaPIAS for this to occur efficiently. The in vitro biochemical evidence Urena, Pirone et al. (2016) presented on B. germanica did not include the activity of a PIAS protein. They also found that ectopic expression of HsSUMO3 had a deleterious effect on D. melanogaster development, which suggests that poly-SUMO chain formation is tightly regulated in insects. Further mass spectrometry analysis also indicates that AaSUMO can form chains on any internal lysine, although chains are predominantly formed on K5/6/9/40. These lysine residues are all expected to be located on a readily accessible region of the N-terminal of the protein (Figure 4.8).

Previous studies have looked at the conservation of the SUMOylation pathway by ectopically expressing tagged Drosophila SUMOylation proteins in human cells, and determining that they could be conjugated to human proteins (Lehembre, Badenhorst et al. 2000). In this study, we sought to further characterise the conservation of the Aa- and Hs-SUMOylation pathways in an in vitro based assay. Much previous work on the biochemistry of the H. sapiens and S. cerevisiae SUMOylation pathways have been conducted using in vitro biochemical assays (Tatham, Jaffray et al. 2001, Bencsath, Podgorski et al. 2002, Yang, Campbell et al. 2018). It was hypothesised that due to the shared amino acid sequence, tertiary structure, and enzyme active sites, the biochemical function of the proteins should be conserved as well (Section 3.2.1; Section 3.2.2; Section 3.2.3; Section 3.2.4). Biochemical conservation could be observed by substituting the orthologous proteins, as previously demonstrated (Urena, Pirone
et al. 2016). Here, we have demonstrated in vitro that AaSUMO, AaUbc9, AaSAE1/2, or AaPIAS can function as a substitute for their H. sapiens orthologues (Figure 4.9; Figure 4.10; Figure 4.11; Figure 4.12). For Ubc9 and SAE1/2, there appears to be a difference in the activity of the enzymes. This could be due to deviation between reactions as only one repeat was undertaken. Other causes could be due to the buffering conditions during protein purification, which were originally optimised for the HsSUMOylation pathway. HsUbc9 and HsSAE1/2 also evolved to activate and conjugate the HsSUMO proteins, so a difference in the activity may be due to a lower affinity between AaUbc9 or AaSAE1/2 with HsSUMO. This could be further explored by investigating the activity of the HsSUMO proteins, HsUbc9, or HsSAE1/2, in the AaSUMOylation pathway, experiments that there was not time to conduct here.

Other ways this work could be extended is by examining the functional phenotype of SENPs. Previous work in S. cerevisiae has indicated that SENPs have different roles in maturing SUMO or in deSUMOylating proteins (Di Bacco, Ouyang et al. 2006, Eckhoff and Dohmen 2015). Further studies could also be conducted to perform a poly-SUMO chain pull down on Ae. aegypti cell lysate, to determine if Ae. aegypti produce poly-SUMO chains in vivo. Mass spectrometry analysis could then be conducted to attempt to determine which proteins are modified by, or interact with poly-SUMO chains. Furthermore, confirming these phenotypes with recombinant and endogenous AaSUMOb would help to demonstrate if AaSUMOb is biochemically and biologically similar to AaSUMOa, or if there are undiscovered roles for the two proteins.
5. AaSUMOylation pathway suppresses arbovirus replication
5.1. Overview

The SUMOylation pathway is known to regulate the expression of a variety of genes, including those involved in cellular immunity in species ranging from *H. sapiens* to *D. melanogaster*. For instance, the immune proteins 14-3-3ε, Imd, and STAT92E have all been shown to be a substrate of SUMO modification in *D. melanogaster* (Handu, Kaduskar et al. 2015). The function of SUMO modification of these proteins has not yet been determined; however it is likely that SUMOylation of STAT92E suppresses the activation of STAT, in a similar mechanism to SUMOylation of *H. sapiens* STAT proteins. Due to the importance of SUMOylation in the regulation of immune pathways, the SUMOylation pathway is a prominent target for virus manipulation in order to restrict the immune response and promote replication from the outset of infection. Moreover, previous work with arboviruses in *H. sapiens* cells suggests that various components of the SUMOylation pathway interact directly with DENV proteins to the benefit or detriment of viral replication. Studies by Chiu, Shih et al. (2007) suggest that Ubc9 can SUMO modify the viral E protein at various lysine residues, although no biological function of this modification was determined. Overexpression of Ubc9 has also been shown to suppress DENV replication, indicating an antiviral role for Ubc9 during DENV infection (Chiu, Shih et al. 2007). This was supported by more recent studies by Feng, Deng et al. (2018) who depleted Ubc9 by siRNAs and found an increase in viral RNA expression (Feng, Deng et al. 2018). In contrast to this, studies by Su, Tseng et al. (2016) have shown that the N-terminal of DENV NS5 is a substrate for SUMO modification, which stabilizes NS5 to suppress induction of STAT2 antiviral signalling. Consequently, this study indicates a proviral role for SUMO modification during DENV infection (Su, Tseng et al. 2016). To date, no virology has been conducted on the effect of the SUMOylation pathway on arbovirus replication in *Ae. aegypti*.

This chapter aims to address the expression pattern of the *AaSUMOylation* pathway in different organs and cells within *Ae. aegypti*, and to determine if there is a biologically functional requirement for the *AaSUMOylation* pathway during arboviral replication. Previous studies have investigated the expression of the SUMOylation pattern in a range of tissues of multiple species by q-PCR analysis and microscopy studies (Bohren, Nadkarni et al. 2004, Hu and Chen...
2013, Bocksberger, Karch et al. 2014, Liang, Lee et al. 2016). These studies have revealed different patterns of expression of SUMO in different organs of invertebrates. For instance, in the salivary glands of *D. melanogaster*, SUMO is predominantly nuclear, localising to the chromosome arms, chromocentre, and chromosome telomeres within the nucleus (Nie, Xie et al. 2009, Bocksberger, Karch et al. 2014). To our knowledge, no studies have investigated the expression of SUMO in *Ae. aegypti*. Consequently, q-PCR and microscopy studies were conducted to reveal the ubiquitous, but differential, expression of SUMO in different *Ae. aegypti* tissues. dsRNA was utilised to deplete mRNA transcripts encoding *SUMO, Ubc9, PIAS*, or *LacZ* as a non-target negative control. Arboviral infections were conducted with arboviruses encoding an internal luciferase reporter protein to measure any effect on viral replication, as conducted previously (Tamberg, Lulla et al. 2007, Dietrich, Shi et al. 2017, Royle, Donald et al. 2017). q-PCR analysis was done on viral genome to ensure luciferase expression correlated with viral replication, and depletion of the SUMOylation pathway was not altering viral translation. These studies were conducted in mosquitoes *in vivo*, to determine the effect of SUMO depletion on the replication of ZIKV, and *in vitro* with BUNV, SFV, and ZIKV. Together, these studies reveal that the *AeSUMOylation* pathway has an overall suppressive effect on arbovirus replication in a virus-dependent manner.

Throughout this chapter, *in vivo* experiments were conducted by Floriane Almire and Dr Emilie Pondeville.
5.2. Expression of the AaSUMOylation pathway

SYBR Green q-PCR was undertaken to determine the level of transcript expression of AaSUMO, AaUbc9, and AaPIAS relative to the carcass in four tissues known to support arboviral replication. The midgut is known to be the first barrier to arboviral replication, as it constitutes the first cells arboviruses need to establish replication in. Haemocytes, the mosquito immune cells, can transport the arbovirus around the mosquito once they are infected and are believed to be a key amplifying site for arboviruses. The ovaries are the site of replication essential for vertical transmission of the arbovirus, and the salivary glands are the site of replication prior to being injected into a new host (Hardy, Houk et al. 1983).

Dissection of the female adult mosquitoes was conducted by Floriane Almire and Dr Emilie Pondeville. RNA extraction, and cDNA synthesis was undertaken by F. Almire. Mosquitoes were non-blood fed prior to harvesting and analysis. Throughout the course of this chapter, the mosquito midgut is referred to as the gut. The term tissues are used to mean both perfused mosquito cells (haemocytes) and dissected mosquito organs (salivary glands, gut, and ovaries).

5.2.1. Q-PCR analysis shows the AaSUMOylation pathway is differentially expressed in Ae. aegypti tissues

Q-PCR analysis was conducted to examine the expression of mRNA transcripts in the tissues mentioned. Primers were designed to SUMO, Ubc9, or PIAS and primers to the ribosomal S7 gene were used as an endogenous control to standardise expression of the gene of interest across tissues (Table 2-6). Melt curves were conducted to ensure primer dimers were not interfering with the analysis (Appendix E: Melt curve analysis of q-PCR primers). Results were normalised to the carcass, material which consists of the abdomen after the gut and ovaries have been removed. The results show that SUMO, Ubc9, and PIAS mRNA are all expressed throughout these Ae. aegypti tissues. These results show that the SUMOylation pathway is expressed in the haemocytes and the ovaries,
as approximately 20-25 fold more *SUMO* mRNA is expressed compared to the carcass (Figure 5.1). *SUMO* mRNA expression in the gut and salivary glands is also greater than the carcass, but only by approximately 3-6 fold.

![Graph showing relative mRNA expression](image)

Figure 5.1 Q-PCR of SUMOylation pathway transcript expression in *Ae. aegypti* tissues

SYBR Green q-PCR was conducted on cDNA synthesised with random hexamers on RNA extracted from *Ae. aegypti* salivary glands, gut, ovaries, haemocytes, and carcass. Transcript expression of *SUMO*, *Ubc9*, and *PIAS* was examined. Levels of mRNA were normalised to ribosomal *S7*, using the threshold cycle (ΔΔCT) method and expressed relative to the carcass, which consists of the abdomen after the gut and ovaries have been removed. The results demonstrate the SUMOylation pathway is most abundantly expressed in the ovaries and haemocytes, but still have a higher level of expression in the salivary glands and gut relative to the carcass. Means of relative quantitation (RQ) and standard deviations (SD) shown, n=3, plotted with GraphPad Prism 7.02.
5.2.2. **AaSUMO is expressed in all *Ae. aegypti* tissues studied**

Confocal microscopy studies were conducted on the tissue samples. Here, DAPI stain is used to detect nucleic acids (blue), Phalloidin 488 stain is used to detect F-actin (green), and an antibody to SUMO2/3 are used to detect SUMO expression (red). Confocal microscopy was undertaken by Floriane Almire. Controls staining with no primary antibody were also performed for each replicate, where no signal was detected (Appendix D: No primary antibody controls of SUMO expression in *Ae. aegypti* tissues).

5.2.2.1. **AaSUMO is expressed in the haemocytes**

Ae. aegypti haemocytes are known to be a key site of arboviral amplification within the vector species, and are therefore a crucial target for arboviral infection. Investigation into the expression of SUMO by confocal microscopy revealed that all forms of haemocytes studied express SUMO. Undifferentiated prohaemocytes (*Figure 5.2A*), and differentiated granulocytes (*Figure 5.2B*) both express SUMO in a predominantly punctate nuclear distribution. This punctate distribution is commonly found in *H. sapiens* cells due to extensive SUMO modification of PML nuclear bodies (PML-NB) (Kamitani, Nguyen et al. 1998).

AF5 cell culture was also assessed for SUMO expression. AF5 cells are derived from Aag2s, a larval *Ae. aegypti* haemocyte cell line (*Table 2-1*) (Barletta, Silva et al. 2012, Varjak, Maringer et al. 2017). These cells expressed a similar pattern of staining to the haemocytes isolated from *Ae. aegypti*, as punctate nuclear structures. Interestingly, these structures are more defined in AF5 cells than in the haemocytes. There was also some cells which did not express SUMO in nuclear punctate structures, these cells are likely to be expressing a diffuse nuclear staining pattern which was not detected under these conditions.
Haemocytes were extracted from adult *Ae. aegypti* and stained with DAPI (nuclei, in blue), phalloidin 488 (F-actin, in green), and αSUMO2/3 primary antibody (red). (A) Undifferentiated prohaemocytes and (B) differentiated granulocytes both displayed the greatest extent of SUMO staining within the nuclei. (C, D) 3×10^4* AF5* cells were seeded in each well of an ibidi slide and incubated overnight. Images were taken on a Zeiss LSM 880 microscope with a 63X (A and B) or 40X (C and D) oil-immersion objective and are representative of *n*=≥3. Scale bar represents 20 µm.

Figure 5.2 Confocal microscopy of SUMO expression in *Ae. aegypti* haemocytes
5.2.2.2. **AaSUMO is expressed in the salivary glands**

Ae. aegypti salivary glands are a key site for arboviral replication prior to infecting a naïve host. SUMO staining was therefore conducted on the salivary glands; however, the majority of the staining appears to be localised to fat bodies. The distal-lateral lobe (*Figure 5.3A*), proximal-lateral, and median lobe (*Figure 5.3B*) are imaged. Surrounding these organs are fat bodies (arrows), which express SUMO to the greatest levels.

![Image of SUMO expression in salivary glands](image)

Figure 5.3 Confocal microscopy of SUMO expression in *Ae. aegypti* salivary glands

Salivary glands were extracted from adult *Ae. aegypti* and stained with DAPI (nuclei, in blue), phalloidin 488 (F-actin, in green), and αSUMO2/3 primary antibody (red). (A) Distal lateral lobe, (B) proximal-lateral lobes, and median lobe stained for SUMO expression (circled). Arrows indicate likely fat bodies. Images were taken on a Zeiss LSM 880 microscope with 40X oil-immersion objective and are representative n=≥3. Scale bar represents 20 µm.
5.2.2.3. **AaSUMO is expressed in the gut**

The gut acts as the first site of arboviral infection in *Ae. aegypti*, and therefore acts as a prominent antiviral barrier to incoming arboviruses. Within the gut, SUMO appears to be predominantly localised to the nuclei of cells (Figure 5.4). Without cell specific markers it is impossible to be certain which cells of the midgut are being stained, however, they are likely to be a combination of stem cells, enteroendocrine cells, and enterocytes.

![Image](image.jpg)

Figure 5.4 SUMO expression in the *Ae. aegypti* gut by confocal microscopy

The gut was extracted from adult female *Ae. aegypti* and stained with DAPI (nuclei, in blue), phalloidin 488 (F-actin, in green), and αSUMO2/3 primary antibody (red). A combination of stem cells, enteroendocrine cells, and enterocytes are shown and likely examples are indicated, with SUMO predominantly localised to the nucleus. Images were taken on a Zeiss LSM 880 microscope with 40X oil-immersion objective and are representative of n=≥3. Scale bar represents 20 µm.
5.2.2.4. AaSUMO is expressed in the ovaries

Upon investigation of *Ae. aegypti* ovaries, SUMO was found to be expressed in differential patterns in different sites. In the oviduct, SUMO is expressed predominantly in the nuclei (*Figure 5.5A*). In the ovarian sheath, SUMO again appears to be primarily expressed in the nuclei, the DAPI stained nuclei which are not expressing punctate SUMO structures are likely epithelial somatic follicular cells, which surround the egg chamber but are located below the ovarian sheath (*Figure 5.4; Figure 5.5B*) (Dr Emilie Pondeville, personal communications). *Figure 5.5C* and *Figure 5.5D* show the primary vitellogenic follicle, and the germarium within an ovariole. Interestingly, within these tissues, SUMO expression is primarily cytoplasmic. The most abundant staining appears in the cytoplasm of the germarium and secondary follicles. Also within the germarium there is further staining of the nuclei of stem germ cells, which give rise to new follicles (Nicholson 1921). There is also prominent cytoplasmic SUMO expression in the follicular cells surrounding the future oocyte (*Figure 5.5C*). Within the nurse cells, there is a build-up of SUMO expression at the perinuclear region of the nuclei (arrows), similar to what has previously been observed in *D. melanogaster* ovaries (Hashiyama, Shigenobu et al. 2009). Furthermore, SUMO expression within the follicular cells surrounding the primary follicle is predominantly cytoplasmic. The differential expression of SUMO in the tissues studied here strongly indicates a cellular and tissue specific role for SUMO modification in *Ae. aegypti*.
Figure 5.5 Expression of SUMO in *Ae. aegypti* ovaries

Ovaries were extracted from adult *Ae. aegypti* and stained with DAPI (nuclei, in blue), phalloidin 488 (F-actin, in green), and αSUMO2/3 primary antibody (red). (A) Oviduct, (B) ovarioles encased by the ovarian sheath, (C, D) and ovarioles containing the primary vitellogenic follicle (circled in C) and secondary follicle and germarium (circled in D). Within the ovaries, SUMO is found predominantly localised in the cytoplasm, while in the ovarian sheath, and oviduct SUMO is primarily localised in the nuclei. Arrows indicate SUMO signal accumulating in the perinuclear region of nurse cells. Images were taken on a Zeiss LSM 880 microscope with 40X oil-immersion objective and are representative of n=±3. Scale bar represents 20 µm.
5.3. Depletion of AaSUMO \textit{in vivo} does not significantly enhance ZIKV replication

In order to determine the overall effect of AaSUMO during arbovirus replication, \textit{SUMO} mRNA expression was depleted through dsRNA knock down. A negative control dsRNA was also produced against the bacterial LacZ. dsRNA was injected into 10 female adult \textit{Ae. aegypti}, which were subsequently harvested and assessed for \textit{SUMO} mRNA expression by q-PCR. Two strains of \textit{Ae. aegypti} were tested for depletion efficiency, Liverpool and Paea strains. A trial dsRNA knock down was conducted which resulted in no deaths amongst the mosquitoes (Figure 5.6A), and approximately 70% depletion in the Liverpool strain, and 92% depletion in the Paea strain (Figure 5.6B; Figure 5.6C). Experiments were continued with the Paea strain of \textit{Ae. aegypti}, as these achieved a better level of depletion and are more susceptible to ZIKV infection \textit{in vivo} (Dr Emilie Pondeville, personal communications). \textit{Ae. aegypti} depleted of \textit{SUMO} mRNA were then infected with ZIKV-nl (Table 2-3). Three biological replicates indicated a trend that \textit{SUMO} mRNA depletion resulted in a greater replication of ZIKV, but the phenotype was not statistically significant (P=0.7969). This is likely due to the overall variance of ZIKV-nl in the mosquito population (Figure 5.7A), discussed further in Section 5.6.

To determine if there was a correlation between the samples expressing high or low levels of luciferase and \textit{SUMO} mRNA depletion, three individual mosquitoes with the highest luciferase expression, and the three with the lowest luciferase expression from each replicate were combined and assessed. The dsSUMO treated samples (blue) had consistently lower \textit{SUMO} mRNA expression by q-PCR than the dsLacZ control (brown) treated samples (Figure 5.7B). Notably, there was a wide variation in the basal expression of \textit{SUMO} mRNA within the dsLacZ treated samples, indicating that \textit{SUMO} mRNA expression varies between individuals. Analysis was also conducted on ZIKV RNA to ensure that the samples expressing high or low levels of luciferase correlated with levels of viral RNA replication. The samples with high concentrations of luciferase expression consistently had higher levels of viral RNA, compared to the samples expressing low concentrations of luciferase, indicating that the luciferase expression was an accurate indicator of viral replication (Figure 5.7C).
As stated, there appears to be a large degree of variation between SUMO expression between individual mosquitoes (Figure 5.7B). There are also other variables to consider within individuals treated with dsRNA, including the variation between which tissues are depleted of SUMO mRNA and which tissues are amplifying the arbovirus at the time point of harvest. For instance, if the dsRNA is targeting SUMO mRNA in the ovaries, salivary glands, and fat bodies, but haemocytes are the primary amplifying cell type, then any effect of SUMO depletion may be diminished (Xi, Ramirez et al. 2008, Ramirez, Souza-Neto et al. 2012, Carissimo, Pondeville et al. 2015).

As a consequence of the difficulty in controlling these variables in vivo, in vitro depletion studies were performed to directly assess the influence of SUMOylation on arbovirus replication. This approach enabled a greater range of arboviruses to be tested, and a greater selection of components in the SUMOylation pathway to be analysed for their respective biological phenotype.
Figure 5.6 SUMO transcript expression levels achieved by q-PCR after dsRNA knockdown

(A) Survival rates of 10 female *Ae. aegypti* Liverpool or Paea strain mosquitoes treated with dsRNA to target SUMO or LacZ (negative control). (B) *Ae. aegypti* (Liverpool) SUMO mRNA levels were determined by SYBR Green q-PCR. Values were normalised to ribosomal S7 using ΔΔCT and expressed relative to the normalised levels in the LacZ treated wells. Results represent RQ mean with RQ Min/Max shown. (C) *Ae. aegypti* (Paea) SUMO mRNA levels were determined by SYBR Green q-PCR by Floriane Almire. Values were normalised to ribosomal S7 using Standard Curve, and expressed relative to the normalised levels in the LacZ treated wells. Results represent RQ mean. All graphs produced with GraphPad Prism 7.02 (n=1).
A

P = 0.796

Nano-Luciferase expression (rfu)

dsRNA treatment

dsLacZ dsSUMO

B

SUMO mRNA

dsLacZ dsSUMO dsLacZ dsSUMO dsLacZ dsSUMO

Replicate 1 Replicate 2 Replicate 3

Continued on next page
Figure 5.7 Effect of knocking down SUMO expression on ZIKV replication in *Ae. aegypti* mosquitoes

Female *Ae. aegypti* mosquitoes were treated with dsRNA to SUMO or LacZ and fed blood containing 1.04×10^7 pfu/ml ZIKV-nl, supplemented with 2 mM ATP. Mosquitoes which fed were isolated and harvested for analysis 7 days post blood feeding. (A) Nano-Luciferase readings were analysed by a luminometer, and readings are indicated. Black lines show the medians; blue lines represent individual data points, lengths are proportional to frequency of occurrence; polygons represent the estimated density of the data. Mann-Whitney U statistical test was conducted on >100 mosquitoes from three independent experiments. (B) Samples expressing the three highest and three lowest luciferase readings were combined from the dsLacZ and dsSUMO treated conditions from each biological replicate were assessed for levels of depletion by SYBR Green q-PCR by Floriane Almire. RQ values indicated as individual points, the mean and standard deviation are shown. Samples were normalised to a dsLacZ treated sample at random. (C) The samples from (B) were assessed for relative levels of ZIKV RNA by SYBR Green q-PCR by Floriane Almire. Mean calculated from RQ values and standard deviation shown plotted on GraphPad Prism 7.02. Samples were normalised to the dsLacZ treated high luciferase sample from replicate 3.
5.4. dsRNA can deplete expression of the AaSUMOylation pathway in AF5 cells

Due to the previously mentioned variables in mosquitoes we cannot control for, dsRNA was used to deplete SUMO, Ubc9, and PIAS mRNAs in AF5 cells. AF5 cells are a single cell clonal population of Aag2 cells, which are likely derived from haemocytes (Barletta, Silva et al. 2012). Haemocytes are known to be an amplifying tissue for arboviral replication and to express SUMO (Franz, Kantor et al. 2015) (Figure 5.1; Figure 5.2). Samples were treated with the desired dsRNA for 72 hours, followed by a 48 hour infection with an arbovirus encoding a luciferase protein at a low MOI (0.05 pfu/cell). Samples were subsequently harvested either for q-PCR or luciferase analysis. Q-PCR analysis confirmed that the mRNA transcripts were consistently depleted by 72% - 82% for the different mRNAs of interest by 72 hours post transfection (Figure 5.8A). One sample was taken to assess the effect of dsRNA treatment on SUMO and Ubc9 expression by Western blot. This demonstrated that there were fewer HMW SUMO conjugates in the samples treated with dsRNA to SUMO, Ubc9, or PIAS relative to the non-target control. Ubc9 did not appear to decrease in concentration by Western blot (Figure 5.8B).
A

Relative mRNA expression (LacZ)

<table>
<thead>
<tr>
<th>dsRNA treatment</th>
<th>LacZ</th>
<th>Ago2</th>
<th>SUMO</th>
<th>Ubc9</th>
<th>PIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

B

dsRNA treatment

kDa

LacZ | Ago2 | SUMO | Ubc9 | PIAS

HMW SUMO2/3 conjugates

Actin

55 | 45

Ubc9

15
Figure 5.8 Depletion of the AaSUMOylation pathway by q-PCR and Western blot

AF5 cells were treated with dsRNA against the indicated cellular transcripts for 72 hours, followed by infection for 48 hours at an MOI of 0.05 pfu/cell. (A) Bar graph shows mRNA levels of Ago2, SUMO, Ubc9, and PIAS, determined by SYBR Green q-PCR. Values were normalised to ribosomal S7 using ΔΔCT and expressed relative to the normalised levels in the non-target (LacZ) treated wells. Results represent RQ means, with SD bars shown, produced with GraphPad Prism 7.02 (n=15). (B) A representative Western blot was conducted to determine the effect of RNA depletion on protein expression. Membranes were probed with antibodies to SUMO2/3, Ubc9, or Actin as a loading control. Molecular mass markers are shown.
5.5. Interaction of the AaSUMOylation pathway and arboviruses in vitro

AF5 cells were treated with dsRNA to SUMO, Ubc9, PIAS, Ago2 as a positive control, or LacZ as a non-target control. Cells were infected with a virus encoding an internal luciferase protein as detailed in Table 2-3. SYBR Green q-PCR was also conducted to determine if depletion of the SUMO pathway was affecting viral translation or viral replication. Luciferase expression and viral RNA levels were normalised to the non-target LacZ control.

5.5.1. Depletion of the AaSUMOylation pathway enhances replication of BUNV

In order to assess the effect of the AaSUMOylation pathway on BUNV replication, depleted AF5 cells were infected at a low MOI (0.05) with BUNV-nl (Table 2-3). Nano-Luciferase readings were taken as five biological repeats, each in triplicate. These readings demonstrate that depletion of SUMO, Ubc9, or PIAS significantly enhances the replication of BUNV-nl by approximately two- to three-fold, on par with the positive control, Ago2 (Figure 5.9A). Q-PCR was conducted in parallel on the viral complementary RNA (cRNA). Only depletion of Ubc9 resulted in a statistically significant increase in BUNV cRNA levels, with a mean increase of approximately 2.2-fold, compared to between 1.2- and 1.6-fold increases when Ago2, SUMO, or PIAS was depleted (Figure 5.9B). These results indicate that depletion of components of the AaSUMOylation pathway may be affecting viral transcription and translation differently. Alternatively, depletion of SUMO or PIAS may be weakly effecting viral replication, yet the depletion still has a significant effect on viral luciferase levels. This would also be true for the positive control, Ago2, which may alternatively indicate that the q-PCR may not be sensitive enough to detect the changes in viral cRNA levels.
AF5 cells were treated with dsRNA against SUMO, Ubc9, PIAS, Ago2 (positive control), or bacterial LacZ (non-target control; Ctrl) for 72 hours. Cells were then infected with BUNV-nl (MOI 0.05 pfu/cell) for 48 hours. (A) Samples were harvested and assessed for Nano-Luciferase expression, readings were normalised to the non-target control, triplicate samples were taken, n=5, mean and Standard deviation from biological repeats presented. (B) Viral complementary RNA (cRNA) levels were assessed by SYBR Green q-PCR. Values were normalised to ribosomal S7 using ΔΔCT and expressed relative to the normalised levels in the non-target control. Results represent RQ mean, with standard deviation bars shown (n=5). Graphs were produced with GraphPad Prism 7.02, two-way ANOVA statistics utilised, ns = not significant, ** indicates p=<0.01, **** indicates p= <0.001
5.5.2. Depletion of the AaSUMOylation pathway enhances replication of SFV

In order to assess the effect of the AaSUMOylation pathway on SFV replication, the depleted AF5 cells were infected at a low MOI (0.05 pfu/cell) with SFV-Ffluc (Table 2-3). Firefly-luciferase readings were taken as five biological repeats, each in triplicate. These readings demonstrate that depletion of SUMO, and especially Ubc9, but not PIAS, significantly enhanced the replication of SFV-Ffluc. Mean viral luciferase expression increased by two- and five-fold for SUMO and Ubc9 depleted cells, respectively, in comparison to the control (Figure 5.10A). Q-PCR was conducted on the viral RNA levels harvested. Here, q-PCR results demonstrated a similar, but more pronounced, phenotype as observed with the luciferase readings. Mean viral RNA levels increased by six- and ten-fold for SUMO and Ubc9 depleted cells, respectively, compared to the control. This demonstrates that depletion of SUMO or Ubc9, but not PIAS significantly enhanced replication of SFV-Ffluc (Figure 5.10B). This indicates that endogenous Ae. aegypti SUMO and Ubc9 both suppress the replication of SFV, while PIAS does not, although it is also possible that the AaPIAS depletion levels need to be more thorough to see a significant effect.
AF5 cells were treated with dsRNA against SUMO, Ubc9, PIAS, Ago2 (positive control), or bacterial LacZ (non-target control; Ctrl) for 72 hours. Cells were then infected with SFV-FFLuc (MOI of 0.05) for 48 hours. (A) Samples were harvested and assessed for Firefly-Luciferase expression, readings were normalised to the non-target control, triplicate samples were taken, n=5, mean and standard deviation from biological repeats presented. (B) Viral RNA levels were assessed by SYBR Green q-PCR. Values were normalised to ribosomal S7 using ΔΔCT and expressed relative to the normalised levels in the non-target control. Results represent RQ mean, with standard deviation bars shown (n=5). Graphs were produced with GraphPad Prism 7.02, two-way ANOVA statistics utilised, ns indicates not significant, * indicates p=<0.05, ** indicates p=<0.01, **** indicates p= <0.001

Figure 5.10 Effect of depletion of the AaSUMOylation pathway on SFV replication
5.5.3. Depletion of the AaSUMOylation pathway enhances replication of ZIKV

When testing the effect of the AaSUMOylation pathway on the replication of ZIKV, depleted AF5 cells were infected at a low MOI (0.05 pfu/cell) for 48 hours with ZIKV-nl (Table 2-3). Samples were then harvested for q-PCR or luciferase analysis. Nano-Luciferase expression demonstrates that depletion of SUMO, Ubc9, or PIAS resulted in a small, but consistent, increase in viral replication of approximately 1.5-fold (Figure 5.11A). When investigating the viral RNA levels by q-PCR, viral RNA levels also increased following depletion of the SUMOylation pathway. Interestingly, q-PCR had a higher proportional increase in viral RNA than observed by luciferase 1.5-fold up to a three-fold increase in viral RNA levels when PIAS was depleted (Figure 5.11B).
AF5 cells were treated with dsRNA against SUMO, Ubc9, PIAS, Ago2 (positive control), or bacterial LacZ (non-target control; Ctrl) for 72 hours. Cells were then infected with ZIKV-nl (MOI 0.05 pfu/cell) for 48 hours. (A) Samples were harvested and assessed for Nano-Luciferase expression, readings were normalised to the Ctrl, triplicate samples were taken, n=5 mean and standard deviation from biological repeats presented. (B) viral RNA levels were assessed by SYBR Green q-PCR. Values were normalised to ribosomal S7 using ΔΔCT and expressed relative to the normalised levels in the non-target control (n=5). Results represent RQ mean, with standard deviation bars shown (n=5). Graphs were produced with GraphPad Prism 7.02, two-way ANOVA statistics utilised, ns = not significant, ** indicates p=<0.01, **** indicates p= <0.001
5.6. Discussion

Component enzymes of the SUMOylation pathway are known to be differentially expressed in different tissues and organs from a range of species (Bohren, Nadkarni et al. 2004, Hu and Chen 2013, Liang, Lee et al. 2016). To date, however, little work has been reported in insects. Early studies in D. melanogaster indicated that SUMO and Ubc9 were expressed in a variety of tissues, although no comparison of relative expression levels have been reported (Lehembre, Badenhorst et al. 2000). Experiments by Hu and Chen (2013), in Cynoglossus semilaevis indicated that Ubc9 mRNA was expressed to the greatest extent in the reproductive organs, followed by the blood cells. According to open source data from the Human Protein Atlas (https://www.proteinatlas.org/), in H. sapiens, Ubc9 protein is predominantly expressed in reproductive organs and tissues involved in the immune system (including the lymph nodes and tonsils). SUMO1, SUMO2, and SUMO3 are expressed to a relatively high level in tissues involved in the immune system, endocrine tissues, reproductive tissues, and adipose tissues (Uhlen, Oksvold et al. 2010, Uhlen, Fagerberg et al. 2015). We hypothesised that different organs in Ae. aegypti would have different requirements for SUMO modification and consequently, tissues would express varying levels of SUMO, Ubc9 and PIAS. Collectively, the data presented in this study does correlate with what has been previously reported, despite comparing vertebrate to invertebrates. We show that the SUMOylation pathway is expressed to the greatest extent in the reproductive organs (ovaries) and immune cells (haemocytes), whereas there is a relatively low level of SUMO expression in the gut, relative to the carcass (Figure 5.1). Consequently, we sought to assess the expression of SUMO in a range of Ae. aegypti tissues.

To our knowledge, there aren’t any studies investigating the expression of SUMOylation pathway component proteins in D. melanogaster haemocytes. Consequently, comparisons are drawn with H. sapiens cells. In H. sapiens cells, SUMO expression is predominantly localised to the nucleus due to the extensive SUMO modification of PML-NBs (Kamitani, Nguyen et al. 1998). The staining seen in Figure 5.2 displays a similar phenotype to H. sapiens cells, and could indicate a PML-like protein expressed in the nuclei that is also extensively SUMO-
modified. Studies on the expression of SUMO in the salivary glands of *D. melanogaster* found SUMO localised to the nuclei, likely localised to the chromosome arms, chromocentre, and chromosome telomere (Nie, Xie et al. 2009, Bocksberger, Karch et al. 2014). In our microscopy, we cannot confidently detect SUMO in the nuclei of salivary gland cells, due to the presence of fat bodies (Dr Emilie Pondeville, personal communications; Figure 5.3). However, it seems likely that SUMO would localise to the same region of the salivary glands, as they are relatively closely related insect species. Further studies would be needed to confirm this using specific cellular markers at a higher resolution. To our knowledge, no published studies exist investigating the expression of SUMO in the midgut of *D. melanogaster*. In the studies we have conducted, SUMO appears to be localised to the nucleus of specific cells (Figure 5.4). Without cell specific markers, it is impossible to say with certainty which cells have the greatest abundance of SUMO expression. However, due to the location and size of the nucleus, cells with the greatest abundance of SUMO expression are believed to be enterocytes, enteroendocrine cells, and stem cells (Dr Emilie Pondeville, personal communications).

Studies investigating the expression of SUMO during the development of *D. melanogaster* ovaries found that SUMO was primarily localised to the nuclei of the germ cells. After the ovaries had developed primary vitellogenic follicles, SUMO staining was predominantly localised to the nuclei of oocytes and also found at the perinuclear region of the nurse cells (Hashiyama, Shigenobu et al. 2009). In our samples, *Ae. aegypti* SUMO is primarily expressed in the cytoplasm of the ovarioles, although there is a similar accumulation of SUMO expression at the perinuclear region of the nurse cells and oocyte (Figure 5.5). There is also extensive cytoplasmic SUMO expression in the follicular cells, similar to what has previously been observed in *D. melanogaster*. The most predominant SUMO expression appears to be localised to the cytoplasm of the germarium, which were not analysed in *D. melanogaster*. The expression pattern of SUMO in *Ae. aegypti* ovaries strongly suggests that there is a shared biological function during egg development as in *D. melanogaster*. Previous studies have demonstrated that within *D. melanogaster* Ftz-f1, a nuclear receptor involved in lipid uptake, is only expressed in the presence of SUMO, and Ftz-f1 is itself a substrate of SUMO modification. Furthermore, Ftz-f1 has also been shown to be expressed in
the ovaries of *Ae. aegypti*, indicating that Ftz-f1 could be a substrate of SUMO modification in *Ae. aegypti* ovaries, although studies would be required to confirm this (Zhu, Chen et al. 2003, Talamillo, Herboso et al. 2013).

Some genes which alter in expression include genes involved in the antiviral immune response. For instance, 14-3-3ε, has been shown to be upregulated following a blood meal, 14-3-3ε is also a known target of SUMO modification in *D. melanogaster* (Bottino-Rojas, Talyuli et al. 2015, Handu, Kaduskar et al. 2015). Due to the known regulation of cellular immunity by SUMO in other species, it was hypothesised that SUMO modification could influence the replication of arboviruses in *Ae. aegypti*. Initially, these studies were attempted *in vivo*. However, while we were able to detect a trend that ZIKV replication increased following treatment with dsRNA, the trend was not statistically significant. Previous studies have encountered similar problems with not being able to detect a significant effect *in vivo* (Trupin, Londono-Renteria et al. 2016). This is potentially due to the virus upregulating the gene expression *in vivo* but not *in vitro*, or effect of the larger number of variables that are challenging to control or account for. For instance, as the dsRNA is injected into *Ae. aegypti* it is impossible to say which cells and tissues were depleted of SUMO to the greatest extent. As the midgut acts as the first site of arboviral replication in the mosquito, a greater depletion in the midgut may result in a more pronounced phenotype, compared to a greater depletion achieved in the salivary glands. This could be the case even if the overall level of SUMO mRNA appears to be depleted to a similar extent (*Figure 5.6*). Furthermore, the range of SUMO mRNA expression in the dsLacZ treated samples also indicates that the basal level of SUMO significantly varies between individual populations or individuals within the population of mosquitoes (*Figure 5.7B*). Consequently, there is no way of knowing which individuals in the control population may have more or less SUMO expression prior to infection, which may distort the statistical analysis of results.

The difficulty in controlling the variables in adult *Ae. aegypti* led to a greater emphasis on *in vitro* depletion and infection work. This also enabled other components of the AdSUMOylation pathway to be examined for any effect on arboviral replication of SFV, BUNV, or ZIKV. Following successful depletion of
AaSUMO, AaUbc9, or AaPIAS, we show that depletion of the AaSUMOylation pathway results in a significant increase in the expression of BUNV luciferase and RNA expression (Figure 5.8; Figure 5.9). Depletion of AaSUMO and AaUbc9 also resulted in a significant increase in the replication of SFV (Figure 5.10). Interestingly, AaPIAS depletion did not enhance replication of SFV, which indicates a virus specific role for AaPIAS in suppressing arbovirus replication, although this could be due to the depletion not being effective enough for a phenotype to be observed with SFV. Alternatively, it could indicate that some substrates for SUMO modification do not require PIAS to enhance the rate of conjugation, or it could indicate that SUMO and Ubc9 are suppressing SFV replication independent of SUMO conjugation. When ZIKV was infected in cells depleted of AaSUMO, AaUbc9, or AaPIAS, ZIKV replication was significantly enhanced (Figure 5.11).

Due to potential differences in the protein half-life of AaSUMO, AaUbc9, or AaPIAS, we cannot say what levels of protein depletion were achieved for AaPIAS, as we do not possess an antibody which cross reacts with AaPIAS. By Western blot AaUbc9 does not appear to be depleted (Figure 5.8B), this is likely due to protein stability, as the mRNA levels have been depleted by ~70%. Furthermore, as a Western blot for SUMO was only conducted at the end of the experiment, after harvesting, it is unknown how efficiently AaSUMO protein was depleted from cells.

Time limitations resulted in the mechanism of action not being determined. However, in *D. melanogaster* SUMO is well-known to modify proteins involved in cellular immunity, including 14-3-3ε, the Imd protein, Casp, STAT92E, or Hop (Bhaskar, Smith et al. 2002, Gronholm, Ungureanu et al. 2010, Handu, Kaduskar et al. 2015). Furthermore, previous studies in *Ae. aegypti* which depleted the expression of PIAS suggested that mosquitoes became more resistant to DENV infection. Five antimicrobial peptides (four Cecropin A-like genes and one Defensin 1-like gene), were found to be down-regulated in mosquito cell cultures which had JAK-STAT activated (by depleting PIAS expression) (Souza-Neto, Sim et al. 2009). The study by Souza-Neto, Sim et al. (2009) implicates a broad role for the JAK-STAT pathway in suppressing DENV replication, although they do not examine the possibility that PIAS is also acting as a SUMO E3 ligase on separate
immune proteins, as other antimicrobial peptides could be up-regulated when PIAS was endogenously expressed.

These results support the hypothesis that SUMO is differentially expressed in the Ae. aegypti tissues that we investigated. This is likely due to proteins expressed in specific tissues possessing different requirements for SUMO modification. AaSUMOylation pathway expression is broadly in line with what has previously been reported in H. sapiens and D. melanogaster. Furthermore, due to differing effects from depletion of the AaSUMOylation pathway on the arboviruses studied, the AaSUMOylation pathway is capable of suppressing the replication of BUNV, SFV, and ZIKV, in a virus specific manner.

The underlying mechanism of suppression is not clear, and requires further investigation. Infected cell lysate was analysed by mass spectrometry (data not shown), however this proved unsuccessful in identifying any SUMO modified viral proteins. It was also unable to identify cellular substrates of SUMO modification that had changed in response to infection. Time constraints meant that this experiment was not repeated or optimised further, but future work could optimise this experiment to attempt to identify a mechanism of suppression.

Experiments, such as cell viability assays, should be conducted to confirm cell health following depletion of the SUMOylation pathway. Further studies would also be required to determine if the SUMOylation pathway was having positive and negative roles at different stages of arbovirus replication, rather than just determine an overall phenotypic effect. If there was a pro-viral effect at any stage of the virus replication cycle, it could open opportunities for small molecule inhibitors to be developed. Other arboviruses and other vectors could also be studied to determine if the SUMOylation pathway has a broad antiviral effect on all arboviruses in their vector species. Future studies could also investigate the expression of SUMO in Ae. aegypti tissues following a blood meal. In vivo, the expression of proteins and the structure of tissue are well known to change following a blood meal; it would therefore be interesting to determine if SUMO expression also changes (Perrone and Spielman 1988, Kato, Dasgupta et al. 2002, Sodja, Fujioka et al. 2007). Finally, repeating the in vivo depletion studies and assessing how effective the depletion, along with viral levels in different
tissues could indicate a statistically significant, or tissue specific role for SUMO modification in arbovirus replication.

Collectively, the data presented here suggests that the SUMOylation pathway acts to suppress arbovirus replication. As no substrates were identified, we cannot say for certain if the suppression is due to SUMO modification of target proteins, or if the constituent proteins are interacting with the viral proteins through novel mechanisms. Although, as depletion of any component of the AaSUMOylation pathway results in a significant increase in BUNV and ZIKV replication, it seems likely that SUMO conjugation, requiring the entire pathway, is suppressing replication of these viruses.
6. *HsSUMOylation* pathway suppresses arbovirus expression
6.1. Overview

Published studies examining the role of host SUMOylation during arbovirus infection have focused on the influence of the \textit{HsSUMOylation} pathway during DENV infection, which found opposing roles for the \textit{HsSUMOylation} pathway. Chiu, Shih et al. (2007) found that over expression of Ubc9 had an antiviral effect on the replication of DENV, due to Ubc9 interacting with the E protein, potentially through Lys51 and Lys241 suggesting that Ubc9 was antiviral. This was supported by a recent study which used siRNAs to deplete expression of Ubc9 and found an increase in DENV viral RNA (Feng, Deng et al. 2018). Su, Tseng et al. (2016) however, conducted studies which used stably tranfected shRNAs to deplete expression of Ubc9, and found a decrease in DENV replication, suggesting a proviral effect of endogenous Ubc9. The mechanism they characterised indicated that SUMO2/3 modified the N-terminal of DENV capsid protein, promoting its stability and enhancing replication. Consequently, it is still unclear if SUMO conjugation has an overall proviral or antiviral role during flavivirus infection in \textit{H. sapiens} cells. Furthermore, nothing is known about the influence of the \textit{HsSUMOylation} pathway on arboviruses from other viral families.

This chapter aims to determine if the \textit{HsSUMOylation} pathway is capable of influencing the replication of alphaviruses, flaviviruses, and orthobunyaviruses. A depletion system was utilised as for \textit{Ae. aegypti} cells (Section 5.4) to determine the effect of the \textit{HsSUMOylation} pathway during arboviral replication. An immortalised Human fibroblast cell line (HFT) was utilised in these studies, as arboviruses are known to initially amplify in fibroblast cells at the inoculation site (Vogel, Kell et al. 2005). Furthermore, HFT’s are known to possess a competent immune response to viral infection (Smith, Goddard et al. 2013). \textit{SUMO1}, \textit{SUMO2/3}, and \textit{PIAS1} mRNA was targeted for depletion by lentiviral transduction and expression of targeted or non-targeting (control) short hairpin RNAs (shRNA). Utilisation of shRNA expressing lentiviruses is a well-established approach for targeting host SUMOylation proteins in human fibroblast cells (Brown, Conn et al. 2016, Conn, Wasson et al. 2016, Alandijany, Roberts et al. 2018). Viral luciferase assays were conducted as described in Section 5.5. In cell Western blot assays (ICWB) were conducted to monitor the initiation and development of ZIKV infection. ICWB has the advantage of being readily
quantifiable due to the use of near-infrared probes, more reproducible, and quicker than Western blots (Aguilar, Zielnik et al. 2010, Hoffman, Moerke et al. 2010). Cell stains can be utilised as a loading control to ensure a similar number of cells are present for each depleted cell line. ICWBs have also been used previously to determine the effect of depletion on viral plaque numbers (Sklan, Staschke et al. 2007).

6.2. Lentiviral transduction with shRNAs depletes expression of components of the SUMOylation pathway in HFT cells

Previous studies have utilised shRNA to target host mRNAs which decrease expression of components of the HsSUMOylation pathway to determine the effect of that protein, either direct or indirect, on viral replication (Brown, Conn et al. 2016, Conn, Wasson et al. 2016, Su, Tseng et al. 2016). Only the study by Su, Tseng et al. (2016) utilises shRNAs targeting Ubc9 (also known as UBE2I) to determine the effect on DENV2 replication. Their study was conducted in alveolar adenocarcinoma (A549) cells.

Here, diploid HFT cells were stably transduced with lentiviruses expressing shRNAs targeting SUMO1, SUMO2/3, or PIAS1 (shSUMO1, shSUMO2/3, or shPIAS1, respectively). To ensure lentiviral transduction was not affecting the phenotype, parallel HFT cells were transduced with lentiviruses containing a non-targeting shRNA (shCtrl). At passage 3, samples were validated for mRNA abundance and protein expression by q-PCR and Western blot, respectively (Figure 6.1A; Figure 6.1B; Figure 6.1C; Figure 6.1D). All subsequent viral experiments were conducted on cells at passage 3 or 4 to ensure cells maintained a similar level of depletion over the course of the study. Q-PCR demonstrates that there is a reduced amount of targeted mRNA remaining. A total of 96% depletion was achieved when SUMO1 was depleted relative to the shCtrl sample, while 80% and 79% depletion was achieved when SUMO2/3 or PIAS1 were depleted. Western blot also indicates that expression of all the proteins was reduced compared to the shCtrl sample.
A

mRNA expression

Relative mRNA expression (shCtrl)

sh target

shCtrl shSUMO1 shSUMO2/3 shpIAS1

B

HMW SUMO1 conjugates

Actin

shCtrl shSUMO1 shSUMO2/3 shpIAS1

55 43

95 130 250
Figure 6.1 Depletion of SUMOylation pathway from HFT cells

HFT cells were transduced with lentivirus vectors expressing short-hairpin RNA (shRNA) targeting SUMO1 (shSUMO1), SUMO2/3 (shSUMO2/3), PIAS1 (shPIAS1), or a non-target control (shCtrl). (A) Bar graph shows mRNA levels of SUMO1, SUMO2/3, and PIAS1 in the stably transduced lentivirus cell lines. Levels of mRNA were determined using TaqMan system of qPCR. Values were normalised to GAPDH mRNA as an endogenous control using cycle threshold (∆∆CT), and expressed relative to shCtrl. Results represent the mean of three relative quantitation (RQ) plus standard deviation. Western blot for expression of (B) SUMO1, (C) SUMO2/3, (D) and PIAS1, with a loading control (lower blot) from whole cell lysates. Membranes were probed with antibodies to SUMO1, SUMO2/3, or PIAS1 to determine level of protein depletion, and antibodies to Actin as the loading control. Molecular weights indicated.
6.3. Depletion of components of the \textit{HsSUMOylation} pathway enhances arbovirus expression \textit{in vitro}

As depletion of the \textit{AaSUMOylation} pathway increased the replication of BUNV, SFV, or ZIKV, it was hypothesised that the \textit{HsSUMOylation} pathway would also influence arbovirus replication, as this pathway is well conserved. To assess the effect of the \textit{HsSUMOylation} pathway on arbovirus replication, three parallel cell lines depleted of SUMO1, SUMO2/3, and PIAS1 were infected with arboviruses containing a luciferase reporter protein at a range of MOIs (0.5, 0.1, and 0.05) for 24 hours (SFV) or 48 hours (ZIKV and BUNV). Luciferase readings were taken over three biological repeats. When the cells were infected with BUNV-nl, luciferase expression increased significantly in cell lines depleted of SUMO1 or PIAS1 (Figure 6.2A). Interestingly, upon infection of the cells with SFV-Ffluc, neither SUMO1 nor SUMO2/3 depletion had a significant effect on Ffluc expression. However, depletion of PIAS1 led to a significant 8.4-fold increase in Ffluc expression (Figure 6.2B).

Studies of the flavivirus DENV, in \textit{H. sapiens} cells have found contradictory roles for the \textit{HsSUMOylation} pathway (Chiu, Shih et al. 2007, Su, Tseng et al. 2016, Feng, Deng et al. 2018). ZIKV, another flavivirus, was shown to be suppressed by the \textit{AaSUMOylation} pathway (Section 5.5.3). It was therefore hypothesised that the \textit{HsSUMOylation} pathway would also influence ZIKV replication. Consequently, using \textit{H. sapiens} HFT cells depleted of SUMO1, SUMO2/3, or PIAS1, the effect of the \textit{HsSUMOylation} pathway on ZIKV was determined. Luciferase assays of ZIKV-nl expression in cells depleted of PIAS1 resulted in a significant; approximately five fold, increase in luciferase expression (Figure 6.2C). This phenotype was corroborated by an ICWB conducted which showed more plaques forming in cells depleted of PIAS1 compared to the shCtrl treated cells (Figure 6.2D). Average plaque forming efficiency (PFE) experiments from ICWBs indicated that SUMO1 depleted cells have two plaques while PIAS1 depleted cells have approximately six plaques, while infected shCtrl cell monolayers didn’t produce any plaques (Figure 6.2E). PFE and luciferase analysis on the effect of SUMO2/3 depletion on ZIKV expression shows no statistically significant effect. Although, luciferase
assays indicate that ZIKV expression in cells depleted of SUMO2/3 is lower than control cells (Figure 6.2C).

Collectively, these results indicate that the HsSUMOylation pathway is capable of suppressing arbovirus replication. This predominantly occurs through the actions of HsPIAS1. Depletion of PIAS1 results in a significant increase in the luciferase expression of all arboviruses studied here. This could be due to a shared mechanism, or through a mechanism which is specific to each arbovirus. Furthermore, depletion of SUMO1, but not SUMO2/3, suppresses the replication of BUNV, which shows that a target protein needs to be modified specifically by SUMO1. Due to time limitations these observations could not be pursued further.
A

Relative luciferase expression (shCtrl)

sh target

B

Relative luciferase expression (shCtrl)

sh target

Continued on next page
Continued on next page
Figure 6.2 Effect of depletion of the HsSUMOylation pathway on arbovirus expression

Cells were transduced with lentiviruses targeting SUMO1, SUMO2/3, PIAS1 mRNA, or a non-target control (Ctrl). Cells were infected with either BUNV expressing a Nano-Luciferase reporter (BUNV-nl), SFV expressing a Firefly Luciferase reporter (SFV-Ffluc), a clinical strain of ZIKV (ZIKV-wt), or ZIKV expressing a Nano-Luciferase reporter (ZIKV-nl). Infections occurred at a MOI of 0.5, 0.1, or 0.05 for 48 hours (BUNV and ZIKV) or 24 hours (SFV) before the samples were harvested. (A) BUNV-nl, (B) SFV-Ffluc and (C) ZIKV-nl readings were normalised to the Ctrl samples, and the mean of five technical repeats was taken and plotted for each of the three biological replicates on a Log2 graph. Statistics were conducted on GraphPad Prism 7.02 using a 2-way ANOVA, ns indicates not significant; * = p≤0.05, **** = p≤0.001. (D) ICWB of cells depleted of the SUMOylation pathway and either mock infected, or infected with ZIKV-wt at an MOI of 0.5. Upon harvesting, cells were fixed and probed with antibodies against ZIKV NS3-protein (green) and CellTag 700 stain was included as a loading control (red). N=2. (E) The number of plaques produced in (D) was counted, and plotted in Graphpad Prism 7.02 showing the mean number of plaques and standard deviation. N=2.
6.4. Discussion

The *HsSUMOylation* pathway has previously been shown to positively or negatively influence viral replication for a range of viruses (reviewed in Wilson (2012), Lowrey, Cramblet et al. (2017)). This may occur through direct modification of the viral proteins, or as a consequence of modifying other cellular proteins, for instance transcription factors. Previous studies indicate that the SUMOylation pathway has a proviral and antiviral effect on DENV replication. However, both of these studies interpreted the effect of SUMOylation based on Ubc9 (overexpression or depletion), and neither of these studies looked at other arboviruses. Consequently, our knowledge is limited as to the overall relevance of SUMOylation in the replication of arboviruses in human cells. Given that our previous data indicates that the *AaSUMOylation* pathway can influence arbovirus replication from different arboviral families, and that the SUMOylation pathways are well conserved (Section 3.2; Section 5.5), we hypothesised that the *HsSUMOylation* pathway should also influence the replication of these arboviruses.

This hypothesis was tested through the depletion of SUMO1, SUMO2/3, and PIAS1 from HFt cells, an immortalised *H. sapiens* fibroblast cell line which possesses a competent innate immune response (Smith, Goddard et al. 2013, Alandijany, Roberts et al. 2018). Depletion levels ranged from ~95% for SUMO1, to ~80% for SUMO2/3 or PIAS1 (Figure 6.1). When cells depleted of components of the SUMOylation pathway were infected with BUNV-nl, SUMO1 and PIAS1 depletion both appeared to significantly increase the luciferase expression. When PIAS1 was depleted, luciferase expression increased by two-fold, and when SUMO1 was depleted luciferase expression increased by four-fold (Figure 6.2A). Firefly-Luciferase data indicates that PIAS1 depletion also significantly enhances the expression of SFV, while depletion of SUMO1 and SUMO2/3 had no significant effect (Figure 6.2B). By luciferase analysis, cells infected with ZIKV after being depleted of PIAS1 experienced a significant increase in luciferase expression (Figure 6.2C). A similar phenotype is demonstrated by ICWB, as more plaques are visible in cells depleted of PIAS compared to the control (Figure 6.2D).
This work correlates with work by Guo, Chen et al. (2017), which found that replication of the flavivirus HCV was restricted by PIAS2. PIAS2 was found to reduce HCV core, NS3, and NS5A levels through the proteasome pathway (Guo, Chen et al. 2017). Furthermore, studies on PIAS1 and PIAS4 with Herpes Simplex Virus-1 (HSV-1) found that HSV-1 is also restricted by the PIAS1 and PIAS4 homologues (Brown, Conn et al. 2016, Conn, Wasson et al. 2016). Together, these studies indicate an antiviral role for the PIAS family of proteins independent of its role as an inhibitor of activated STAT, and negative regulator of innate immunity.

Furthermore, previous studies by Su, Tseng et al. (2016), suggest that SUMO modification of DENV NS5 increases protein stability, and therefore is proviral. The studies by Su, Tseng et al. (2016) were conducted by depleting Ubc9 expression. The experiments conducted here depleted expression of SUMO1 or SUMO2/3, and while the luciferase readings when SUMO2/3 was depleted were consistently lower than the non-target control sample (Figure 6.2C), the effect was not statistically significant. This could be due to a number of reasons, for instance the ~20% mRNA expression remaining in the SUMO2/3 depleted cells, may be enough to protect the viral protein from degradation. Alternatively, SUMO2/3 has previously been reported to be able to substitute for loss of SUMO1 function in the development of mice, consequently it is possible that in this assay SUMO1 is substituting for loss of SUMO2/3 (Zhang, Mikkonen et al. 2008). Furthermore, cells are known to possess a supply of unconjugated SUMO, therefore depletion levels need to be extensive enough to reduce both the supply of unconjugated SUMO and HMW SUMO conjugates. If depletion levels are not extensive enough, a biological phenotype of SUMO2/3 in arboviral infection may be missed. Other previous reports have utilised overexpression, or depletion of Ubc9 to implicate Ubc9 in being antiviral against DENV (Chiu, Shih et al. 2007, Feng, Deng et al. 2018). In order to confirm the validity of either previous study, future work would need a greater depletion of the individual SUMO homologues, Ubc9, and could include the activating enzyme, SAE1/2, to determine if it is the SUMO modification, or interaction with Ubc9 which is producing the pro- or anti-viral phenotype.
Further ICWB analysis was attempted for lentivirus-sh depleted cells which were infected with SFV-eGFP, or a wild type BUNV (data not shown). During this analysis all infections were left for 48 hours, this resulted in ZIKV plaques being visible, but small. It is likely that if the ZIKV infected cells were left for longer more plaques would be visible. Conversely, cultures infected with SFV-eGFP were lysed by the end of the infection period. Depleted cell cultures infected with BUNV did produce readily detectable plaques; however there was not a noticeable difference between the shCtrl and other treated cells, which would make drawing comparisons difficult.

Collectively, these data indicate that the HsSUMOylation pathway is capable of suppressing the replication of a range of arboviruses. SUMO1 depletion significantly enhanced BUNV luciferase expression, while PIAS1 appears to have a wide ranging antiviral effect which is capable of suppressing BUNV, SFV, and ZIKV. Due to time limitations, the studies here are primarily relying on luciferase expression to infer replication, and consequently further studies investigating viral RNA are required to confirm these phenotypes alter viral replication. Other studies, such as mass spectrometry analysis to identify SUMO substrates and introducing lysine mutations, would also be required to decipher the underlying mechanism of action.
7. Discussion
7.1. Overview

This thesis had three initial objectives: to determine the homology between the *Ae. aegypti* and *H. sapiens* SUMOylation pathways; to characterise the biochemical properties of the *Ae. aegypti* SUMOylation pathway; and to determine if the SUMOylation pathway affected the replication of Semliki Forest Virus, Bunyamwera virus, or Zika virus within the transmitting vector species *Ae. aegypti*. Bioinformatic analysis indicated that the *Ae. aegypti* and *H. sapiens* SUMOylation pathways were well conserved. The biochemical properties of the *AaSUMOylation* pathway demonstrated that there was significant overlap between homologous proteins of both species, to the extent that the *AaSUMOylation* proteins were biochemically interchangeable with the *HsSUMOylation* pathway. Furthermore, this analysis indicated that *AaSUMO* required a catalytically active *AaPIAS* in order to efficiently form poly-SUMO chains. Finally, it was identified that components of the *Ae. aegypti* and *H. sapiens* SUMOylation pathways can suppress arbovirus replication in an arbovirus dependent manner.

7.2. Conservation of the sequence, structure, biochemical function, and expression of the *Aa- and *Hs*-SUMOylation pathways

The SUMOylation pathway is known to be important for a wide array of important biological processes throughout the cell, including cellular immunity, cell cycle progression, and the cell stress response. Consequently, SUMO modification is known to be well conserved between various species, including *H. sapiens*, *D. melanogaster*, and *S. cerevisiae* (Matunis, Coutavas et al. 1996, Lehembre, Badenhorst et al. 2000). Our mass spectrometry analysis of *Ae. aegypti* cell culture demonstrates that SUMO, along with the constituent proteins of the SUMOylation pathway are expressed (*Table 3-1*). Bioinformatics and computational modelling show that the amino acid sequence and tertiary structure of SUMO, the E2 conjugating enzyme (Ubc9), and activating heterodimer (SAE1/2), were well conserved (*Figure 3.2; Figure 3.3*).
There is only one known PIAS in *Ae. aegypti*, in contrast to five known *Hs*PIAS homologues. The *Hs*PIAS homologues can have different functions in the cell, as they are able to act as a ligase for SUMO conjugation on specific target proteins (Chung, Liao et al. 1997, Liu, Liao et al. 1998, Reindle, Belichenko et al. 2006). As there is only one *Aa*PIAS, it seems likely that there is not the same degree of E3-target protein specificity. More work has been conducted on *Aa*PIAS, than *Aa*SUMO, *Aa*Ubc9, or *Aa*SAE1/2, because of the biological homology of PIAS as an inhibitor of activated STAT. Previous studies have mapped the biologically functional domains of *Aa*PIAS, which identified the SP-RING domain, along with the SAP, PINIT, and S/T variable domains (Zou, Souza-Neto et al. 2011). Our work has also identified the SP-RING domain of *Aa*PIAS to be conserved, and found that *Aa*PIAS possessed a conserved tertiary structure, even though the amino acid sequence identity was only between 32% - 37% (Figure 3.4). Previous studies have also investigated the function of *Aa*PIAS as an inhibitor of the *Ae. aegypti* JAK-STAT pathway, and found that depletion of PIAS activated the JAK-STAT signalling, demonstrating a conserved biological function for PIAS in *Ae. aegypti* and *H. sapiens*. The greatest variation in biochemical activity came from the SUMO homologue. Although the amino acid sequence and predicted tertiary structure of SUMO is well conserved with *Hs*SUMO3, *Aa*SUMO lacks the SCM in the N-terminus of SUMO (Figure 3.1). As a consequence, *Aa*SUMO functions biochemically more similarly to *Hs*SUMO1. This aligns with previous reports, which found that most eukaryotic organisms express both SUMO1 and a SUMO2/3 parologue. Insects, however, do not possess a SUMO1 parologue, and the SUMO2/3 parologue(s) lack the SCM (Choy, Severo et al. 2013, Urena, Pirone et al. 2016). This suggests that insect SUMO does not have the ability to efficiently form poly-SUMO chains without the presence of an E3 ligase, indicating an extra degree of regulation in insects.

The biochemical function of the homologous SUMOylation pathways is well conserved. The recombinant proteins are biochemically similar enough that they can substitute one another. *Hs*SAE1/2 and *Hs*Ubc9 can activate and conjugate *Aa*SUMO to form HMW SUMO conjugates (Figure 4.9). *Aa*SAE1/2 can also activate *Hs*SUMO2, and *Aa*Ubc9 is capable of conjugating *Hs*SUMO2 into HMW SUMO conjugates, to form poly-SUMO chains (Figure 4.10; Figure 4.11). These demonstrated that the biochemical properties of the SUMOylation pathways are
well conserved and function interchangeably. These studies were only undertaken to determine if the biochemical properties were conserved, consequently there is a low number of replicates. For these experiments, the analysis was conducted by Coomassie staining of SDS-PAGE gels. This has the advantage of being able to observe the relative abundance of all proteins within reaction mixtures. However, care must be taken to ensure the protein which is being observed is the protein of interest. Throughout this study, no work was conducted on Ae. aegypti deSUMOylating enzymes (SENPs), further studies are required to determine the structure, biological function, organ localisation, and number of AaSENP homologues.

The expression pattern of SUMO throughout Ae. aegypti also indicates a conserved pattern of expression between species. Analysis of the open source Human Protein Atlas (https://www.proteinatlas.org/), and studies on the fish species Cynoglossus semilaevis, also indicate that the SUMO homologues and Ubc9 are abundantly expressed in the reproductive organs and immune related organs (Uhlen, Oksvold et al. 2010, Hu and Chen 2013, Uhlen, Fagerberg et al. 2015). Our data also shows that the AaSUMOylation pathway is primarily expressed within the reproductive tissues and the haemocytes of adult female Ae. aegypti (Figure 5.1). Further work to develop greater insight into the expression of SUMO within different organs of Ae. aegypti could be conducted by dissecting the specific Ae. aegypti organs and conducting proteomic analysis to try to identify SUMO conjugated proteins. If SUMO modification of homologous proteins is conserved between species it would suggest a conserved biological function within organs.

7.3. Biochemical properties of the AaSUMOylation pathway

Biochemical studies have previously been used to provide detailed biological insights into host SUMOylation pathways (Muller, Hoege et al. 2001, Tatham, Jaffray et al. 2001, Gong, Ji et al. 2014). Utilising affinity tag protein purification, the components of the AaSUMOylation pathway have been purified
(Figure 4.2) and biochemically characterised for the first time. The assays revealed that the biochemical properties of the homologous pathways appear to be broadly similar. Ubc9 is capable of forming thioester bonds with SUMO at comparable kinetic rates (Figure 4.3). No studies were conducted to determine the rate of thioester formation on SAE2. This was because SAE1/2 has a known ability to autoSUMOylate (Truong, Lee et al. 2012). However, future studies could be conducted in parallel non-reducing and reducing environments to compare the rate of SAE2-SUMO thioester formation. The primary difference between the H. sapiens and Ae. aegypti SUMOylation pathway is from the biochemical properties conferred by AaSUMO. AaSUMO is biochemically more comparable to HsSUMO1, as both lack an internal SCM, even though AaSUMO shares more amino acid identity with HsSUMO3 (Figure 3.1; Figure 4.4; Figure 4.5; Figure 4.6). Our studies show that AaSUMO can still form chains, but this process only occurs efficiently when in the presence of an AaPIAS (Figure 4.7). Poly-SUMO chain formation is widely known to be important for a myriad of cellular processes in species ranging from H. sapiens to S. cerevisiae (Tatham, Jaffray et al. 2001, Bylebyl, Belichenko et al. 2003, Ulrich 2008). The conserved ability to form poly-SUMO chains, as demonstrated by the formation of HMW SUMO conjugated proteins (Figure 4.7), indicates that poly-SUMO chains are likely to also have an important biological function in Ae. aegypti. Previous studies have shown the D. melanogaster SUMO (DmSUMO) cannot form poly-SUMO chains due to the lack of SCM (Urena, Pirone et al. 2016). Here, we show that AaSUMO cannot form poly-SUMO chains unless an E3 ligase, such as an AaPIAS, is present (Figure 4.7). Consequently, based on our studies, it seems likely that insects including Ae. aegypti and D. melanogaster can form chains, but only under tightly regulated circumstances with the presence of an E3 ligase such as PIAS.

Mass spectrometry analysis of our samples indicated that poly-SUMO chains could form on any lysine residue on the AaSUMO protein, although lysine 5, 6, 9, and 40 were primary acceptors for SUMO-SUMO conjugation (Figure 4.8). In H. sapiens and S. cerevisiae, the primary site of SUMO conjugation is within an SCM. It is likely that if this analysis was repeated including the SUMO chimaera, the Lysine 11 would be the primary site of SUMO conjugation as it is located in an SCM. Furthermore, in vitro assays can force the formation of poly-HsSUMO1
chains by increasing the concentration of Ubc9 incubated in the assay (Matic, van Hagen et al. 2008). Perhaps one possible avenue for investigations would have been to titrate in lower concentrations of the SAE1/2 and Ubc9, to identify the lowest concentrations of protein required to conjugate SUMO in the timeframe of the assay. A lower concentration of SAE1/2 and Ubc9 would increase the chance of SUMO conjugating to substrates with a higher affinity, and may have helped to identify if there is a preference for a specific SUMO lysine. A pull down specific for SUMO-chains could also have conclusively proven poly-SUMO chain formation in vivo. Poly-SUMO chains are important in H. sapiens cells for a range of biological properties, including protein localisation, protein stability, and protein-protein interactions. If insects cannot form poly-SUMO chains in vivo, it raises many questions about how these functions are performed in insect cells.

7.4. The SUMOylation pathway is broadly antiviral to arboviruses

Many studies have implicated components of the SUMOylation pathway as having a proviral or antiviral effect through depletion experiments (Brown, Conn et al. 2016, Conn, Wasson et al. 2016, Su, Tseng et al. 2016, Guo, Chen et al. 2017, Feng, Deng et al. 2018). SUMO depletion experiments are crude, as they do not distinguish between different targets of SUMO modification, so it becomes hard to determine if a phenotype is directly or indirect (Lyst and Stancheva 2007). It does, however, demonstrate whether the SUMO pathway has an overall proviral or antiviral effect on arbovirus replication within the cell. Previous studies have also used dsRNA to deplete expression of targets proteins, such as Ago2, or PIWI4, in Ae. aegypti or Ae. aegypti cell culture to determine the effect of the target protein on arbovirus replication (Schnettler, Donald et al. 2013, McFarlane, Arias-Goeta et al. 2014, Dietrich, Shi et al. 2017, Varjak, Maringer et al. 2017).

Initially, in adult Ae. aegypti mosquitoes, SUMO mRNA was depleted by dsRNA injection, and the mosquitoes were infected with ZIKV-nl (Figure 5.6). No
significant effect was found on luciferase expression (Figure 5.7). However, there are a large number of variables which could not be controlled for that may alter the infectivity of ZIKV in the mosquitoes. These include variations in which tissues are being depleted and which are becoming infected. For instance, the dsRNA could be predominantly depleting SUMO mRNA in the ovaries and salivary glands, which together account for over 50% of SUMO mRNA (Figure 5.1). If, however, at the end of the experiment ZIKV was primarily replicating in the haemocytes and midgut, the SUMO levels would not have been altered in the relevant tissues. Consequently, we opted to deplete expression of SUMO, Ubc9, or PIAS in Ae. aegypti cell culture, where there are fewer variables, and subsequently infected with the alphavirus SFV, orthobunyavirus BUNV, or flavivirus ZIKV (Figure 5.8). Studies were later conducted in H. sapiens cells. Lentiviruses expressing short hairpin RNA was transfected into fibroblast cells, to deplete expression of SUMO1, SUMO2/3, or PIAS1 (Figure 6.1). Following successful depletion, cells were infected with SFV, ZIKV, or BUNV and changes in luciferase readings were assessed.

When SFV replication was assessed in depleted Ae. aegypti cells, depletion of AaSUMO or AaUbc9 resulted in a significant increase in viral luciferase expression and viral RNA levels, indicating that endogenous AaSUMO and AaUbc9 suppress arbovirus replication. When AaPIAS was depleted there was no significant effect on viral replication (Figure 5.10). There are many potential mechanisms this could be due to. The capsid protein of SFV contains two readily accessible overlapping SCMs (Figure 3.7). One possibility could be that the capsid monomers could be SUMO modified, interfering with the formation of the capsid during virus assembly. Depletion of SUMO or Ubc9 would hypothetically reduce the amount of SUMO conjugation on the capsid, and therefore reduce the amount of interference, increasing viral assembly and replication. This would need to be investigated experimentally. Mass spectrometry analysis could indicate if the capsid was a target of SUMO modification, and mutation of acceptor sites in the SFV capsid could demonstrate if SUMO modification was altering viral replication. Alternatively, many other proteins SFV encodes also contain an SCM, including the envelope glycoprotein, nsP1, nsP2, nsP3, or nsP4. SUMO binding to any of these proteins could alter viral protein activity or stability, this could also be investigated through mass spectrometry and
mutational studies to determine target, and function of SUMO modification. An alternative hypothesis would be that the increased replication is due to SUMO modification of immune proteins which could normally suppress SFV replication. As the SUMO pathway is suppressed, the immune proteins would not be modified, and SFV could theoretically replicate to higher titres. Again, this would need to be confirmed experimentally; potentially through mass spectrometry analysis of SUMO modified immune proteins in uninfected and infected cells. Interestingly, and in contrast to *Ae. aegypti*, *H. sapiens* cells depleted of SUMO1 or SUMO2/3 showed no significant effect on viral luciferase expression. However, there was a significant increase in viral luciferase when *HsPIAS1* was depleted (Figure 6.2). This could suggest that the SUMO modification hypothesised in *Ae. aegypti* does not occur in *H. sapiens*. Alternatively, the *H. sapiens* SUMO homologues could possess redundant or overlapping functional roles with each other. This could be examined experimentally by depleting expression of Ubc9 or SAE1/2, and determining if the SUMO conjugation alters viral luciferase expression.

When the effect of the depletion on BUNV replication was assessed, *AaSUMO*, *AaUbc9*, or *AaPIAS* depletion all increased the replication of BUNV (Figure 5.9). Furthermore, depletion of *HsSUMO1* or *HsPIAS1* also increased luciferase expression of BUNV (Figure 6.2). This indicates a conserved role for the SUMOylation pathway in suppressing BUNV replication between host and vector species. As depletion of *HsSUMO2/3* did not result in a statistically significant increase in luciferase expression, modification specifically by *HsSUMO1* seems likely. Two potential targets of this modification are the Gc protein, or the RDRP, both of which contain three SCM sites (Figure 3.6). As the resolved structure of these proteins is not available, it is currently impossible to say if the SCMs are accessible to SUMO modification, or to postulate on a potential mechanism of action. Interestingly, SUMO1, Ubc9, PIAS1, and PIAS2β have all been implicated in the transport of the ribonucleocapsid (RNC) of other Bunyavirales (Seoul and Hantaan viruses) to the Golgi prior to viral packaging (Lee, Yoshimatsu et al. 2003, Maeda, Lee et al. 2003). Due to the overall antiviral effect on BUNV, the findings suggest that either BUNV RNC may be transported to the Golgi via a different mechanism to Hantaan virus or Seoul virus, or alternatively, modification by SUMO may still transport the RNC to be
packaged, but there may also be an overall more significant antiviral effect on another part of the virus replication cycle. This would result in the overall antiviral effect from SUMO1 that these studies show.

Depletion of AaSUMO, AaUbc9, or AaPIAS in Ae. aegypti resulted in a small but consistent significant increase in ZIKV replication (Figure 5.11). This could be due to modification of NS5, which contain a readily accessible SCM (Figure 3.9). Alternatively, as described for SFV, SUMO could be modifying immune related proteins which normally function to suppress ZIKV replication. As the AaSUMOylation pathway has been depleted, cellular immune proteins may not be modified, and consequently ZIKV replication could increase. In contrast to this, in H. sapiens cells, HsSUMO1 and HsSUMO2/3 depletion did not have any significant effect on viral replication (Figure 6.2). This could be explained if the level of depletion in H. sapiens cells were not as effective as Ae. aegypti. Alternatively, there may be redundancy between the function of HsSUMO1 and HsSUMO2/3. Another possibility is that ZIKV could have evolved a mechanism to replicate without being affected by SUMO modification in H. sapiens cells, potentially due to the evolutionary divergence between the HsSUMOylation and AaSUMOylation pathways. The flavivirus DENV has been shown to be SUMO modified at the N-terminal of NS5 to increase protein stability, the study could not identify one specific lysine residue that was modified. Consequently, they hypothesised that SUMO ‘floats’ around the N-terminus of the protein and could modify any of the available lysine residues, as even mutation of all 12 lysine residues in the N-terminal resulted in a weak SUMOylated band (Su, Tseng et al. 2016). Our study does not provide evidence to support this mechanism occurring with ZIKV. However, it could be due to redundancy between HsSUMO1 and HsSUMO2/3 modification.

Surprisingly, regardless of the arbovirus utilised, when HsPIAS1 was depleted there was a statically significant increase in viral luciferase expression (Figure 6.2). It seems likely that this indicates a novel biological antiviral function for PIAS1, independent of and in contrast to its reported function as an inhibitor of STAT and negative regulator of the IFN response (Liu, Liao et al. 1998, Liu, Mink et al. 2004). The majority of PIAS functions are related to SUMO, so it is likely that the antiviral activity found here is also related to SUMO modification.
(Rytinki, Kaikkonen et al. 2009). This could occur through its activity as an E3 ligase, for instance by SUMO modifying a transcription factor, and activating it or altering the subcellular localisation, or by SUMO modifying a viral protein targeting it for proteasome degradation. PIAS2 was recently found to target the HCV core, NS3, and NS5A proteins for proteasome degradation in a ubiquitin independent manner, and therefore act as an antiviral protein during HCV infection (Guo, Chen et al. 2017). It is possible that PIAS1 acts in a similar mechanism against a range of arboviral proteins. Alternatively, PIAS1 has also been reported to associate with PML-NBs through SIM dependent mechanisms, resulting in the SUMO-1 modification of PML-NBs and enhancing the antiviral properties of this protein complex (Brown, Conn et al. 2016). Previous studies have found that PML-NBs suppress the replication of DENV2, and consequently it is possible that PML-NBs also suppress the replication of other arboviruses, and that this activity could be enhanced by PIAS1 mediated SUMO modification (Giovannoni, Damonte et al. 2015). PIAS4 has also been previously shown to be an intrinsic antiviral protein to HSV-1, through SIM-dependent and SIM-independent mechanisms, PIAS4 localises to sites of genome entry and to replication compartments, and suppress viral replication (Conn, Wasson et al. 2016).

Collectively, these results indicate that the interplay between the SUMOylation pathway in the host and vector, following arbovirus infection is context dependent. Future work should focus on determining the mechanism of action. This could be achieved through mass spectrometry analysis to determine if any viral proteins are being SUMO modified; it could also demonstrate other immune related proteins being SUMO modified in response to infection with an arbovirus. It is likely there is a combination of proviral and antiviral roles for SUMO modification during arbovirus replication. More studies should be conducted to decipher mechanisms to determine if there is a potential for genetically engineered mosquitoes which may help target any proviral roles for SUMO modification. In turn, this may help to restrict arboviral replication to reduce the burden of arboviral disease.
7.5. Concluding remarks

The SUMOylation pathway is a conserved and vital form of protein modification found in all eukaryotic organisms studied to date, including Ae. aegypti. The formation of poly-SUMO chains in Ae. aegypti requires an AaPIAS, due to the lack of an internal SCM within AaSUMO. This indicates an extra regulatory step for the AaSUMOylation pathway, which is less prevalent in other species that express a SUMO with an internal SCM. Constituent AaSUMOylation pathway enzymes are expressed throughout Ae. aegypti, albeit in a tissue dependent manner. The AaSUMOylation pathway has also been shown to contribute to the suppression of arbovirus replication from three distinct viral families in an arbovirus dependent manner. Furthermore, work in H. sapiens cell lines indicates a novel and important function for PIAS1 in restricting the replication of a range of arboviruses.
8. References

BINDING ACTIVITY BY LIPOPOLYSACCHARIDE TREATMENT AND BY JAPANESE ENCEPHALITIS VIRUS INFECTION." Journal of Biological Chemistry 279(5): 3308-3317.

UBC9 E2 enzyme.” Proceedings of the National Academy of Sciences of the United States of America 95(2): 560-564.

“Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-γ; gamma; signal transduction pathway.” Nature 366: 166.

Appendix A: Amino acid sequence comparison between Hs and AaSAE1/2, and Hs and AaPIAS
AdSAE1 and HsSAE1

<table>
<thead>
<tr>
<th></th>
<th>AdSAE1</th>
<th>HsSAE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MVEA--NGIELTEQEAELYDRQIRLWGLDSQKLRLARILIAVG</td>
<td>MVEKEEAGGGISEEAAQYDRQIRLWGLEARQKRLARSREVLLVLGLGAEIAKNLILAGV</td>
</tr>
<tr>
<td>59</td>
<td>KAVTLLDDQVVKEDDFCSQFLAPQDSLRTNRAEASLSRAQQ1NPMVEKLADTEELPKTD</td>
<td>KGLTMLDEHQVTEDPGAFILRTGSVGRNRAEASIQAQLNPMVDVKEDEIEKKE</td>
</tr>
<tr>
<td>119</td>
<td>DFFKGFVDVVCIGANTEQLLRIDGVCREAGIKFFAADLWGMFGFSFADLQEHNFADVVK</td>
<td>SFFTQFDADVCLTCCSRDVIKVDQICHKNSIKFFTGVDFGHGTYFAKLGHEHEFVEEKT</td>
</tr>
<tr>
<td>179</td>
<td>HKIVSKPEKTKE----L----VTSTVKTLSYPAYQVLIIDFDYKAYQSYARKLKRSGPAL</td>
<td>VAKVSQGVEDGPDKRAKLDSEETTMVKKVVFCPVEALEVSDSEKAAALKRTTSDY</td>
</tr>
<tr>
<td>232</td>
<td>PLRLVQLKFRDEKRPDDLYSEREAQLQKLKIRDEV-----AADLIPDNAFLHVFAQIS</td>
<td>PLLQVLLKFRTDKGRDFSDTLEYEEDSELLLQIRNDVLDSLGISDPLLPEDFVRCFEMA</td>
</tr>
<tr>
<td>286</td>
<td>PAAAIVGGAVAEIIKTVSEQKEAPHNNVFLFPESECCGFIESIGVDA</td>
<td>PVCAVGGILAQEIVKALSRDPHNNFFFDGKEKNGIVECLGPG--K</td>
</tr>
<tr>
<td>301</td>
<td>PVCAVGGILAQEIVKALSRDPHNNFFFDGKEKNGIVECLGPG--K</td>
<td></td>
</tr>
</tbody>
</table>
AdSAE2 and HsSAE2

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>1</th>
<th>MAQQ1VGFEPPELQEKISNSKILVVGAGGIGCEILKNLVLGQFDIEIDLDIDTVDSNLN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>1</td>
<td>MA--LSRGLFRELAEAVAGGRVLVVGAGGIGCEILKNLVLGQFDISDHLDLDIDTVDSNLN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>61</th>
<th>RQFLFHKHEVGKSKANVARESALSFNPNVKIKAYHDSITSNYNGVNFQQFNLVLALDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>59</td>
<td>RQFLFQQHKHRGRSAQAQVAKEVLQFYPKANIYAVHDSIMNPVPNFPFFQRFLVMALDN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>121</th>
<th>RAARNHVNRCLTADVPFLIESGTAGYNGQVELIKLGTLQYECTPKAAQTRFGCTIRRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>119</td>
<td>RAARNHVNRMCLADVPLIESGTAGYLQVTITKGVTECYPKPTGRTFGCTIRRT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>181</th>
<th>PSEPIHCVWAHLFNQLFGESNEDVSPDTADPEAGAEAGS--ALAAEANEKGNVDRV</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>179</td>
<td>PSEPHICVWAHYLFNQLFGEDEAQEVSPDRADPEAAWEPTEAEARARASNEGDIKRI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>240</th>
<th>NTRTWAQQCGYDPEIFKNKLYDDINYLLSMNSNLWKSRTFPNPAKWDALMEDGEAAP---</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>239</td>
<td>STKEWAKGSTYDPVLKFTKLKFDDRYLTMKDCLWRKRPVPLDWAEVPSQCGCTITIF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>297</th>
<th>--TD--VLRDQKVLSLTEASAVFEGESTALKKDFEKLAEGDHLVWDKDKHAMDFAAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>299</td>
<td>QQNEPOQLGLDQQLDVSKYRLFSKSIETLRLVHAEGPCAELWINDDDPSAMDFVTA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>353</th>
<th>ANIRAQIFNPKRSFPEVKSMAIIPIAIAITTNAITGAVVMAFRVLLKGDLDCKSVYM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>359</td>
<td>ANLPMHFSMNKSRFDIKSMAGNIIPAIATTNAIAGLVLLEGKLILSCKIDQCRTIF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>413</th>
<th>RLRPNARNQQLFVFPDRLNFPFNPCKYVCAAKPEVTLKVDKNVTVKELRDDILKALNMLN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>419</td>
<td>CALDPFNPCVYCASKPEVTVRLNVKTVTPLQDKVKEFAMVANKQPFRKLLVP-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>473</th>
<th>PDVI--LDGKGTIVISSEGETDCNDDKKLEDLQIVDGGILKVDDFVQNYELVTTV1HDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>478</td>
<td>PDVQ1EDGKGTISSEGETANHDDKLSQFRGNSRDQADDFLQDTLILLLINLHED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>532</th>
<th>GRDESSFDIVA--DPDSLKPKKEDEDQKDDVQPSGQGNSKASTSNNGAVDDMDCIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>538</td>
<td>LGKDVFEFVEVGDAPEKVGPKQAEDA--A---KSTNGSDDGQP---TSTAQEDDVLIV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AdSAE2</th>
<th>591</th>
<th>EDEAEKFSTSDAGGPSGSGSEKRKIEDSEFGSTKARKVSNDDDDLDDVIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HsSAE2</td>
<td>591</td>
<td>DSDEEDS--SNNADVSEE-ERSRKRLDEKENLASKRSRIEQKKEELDDVIALD</td>
</tr>
</tbody>
</table>

* catalytically active cysteine (Lois and Lima 2005)
AaPIAS and HsPIAS

<table>
<thead>
<tr>
<th></th>
<th>Sequence Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>AaPIAS 1</td>
<td>60 YVKRDLHKQAQETELLLQAAETPTVPVITTQIPPPPFLPEFPPVIRSFQGMYQQAYANA</td>
</tr>
<tr>
<td>HsPIAS1</td>
<td>MKIKELYRRRFPPQIMTFADLS-----IPNVHSSPMFEAT----L-SFSTFQLYTDGH</td>
</tr>
<tr>
<td>HsPIAS2α</td>
<td>113 SPSSPGSLQLDLTTFETMQQPS--PPPPVHDPQKLNFPYDVLKLKPLTSVQ--S</td>
</tr>
<tr>
<td>HsPIAS2β</td>
<td>113 SPSSPGSLQLDLTTFETMQQPS--PPPPVHDPQKLNFPYDVLKLKPLTSVQ--S</td>
</tr>
<tr>
<td>HsPIAS3</td>
<td>98 ---PTTLAPGTLGKPEVMH-----FPFLQPVHDVTMKEVYELPIRTTLAS--S</td>
</tr>
<tr>
<td>HsPIAS4</td>
<td>105 NIDYPVLGYKYNLGLG------R-LEAKTLKPEEVRLKLPFNLMDKLELTVLFPQ--N</td>
</tr>
<tr>
<td>AaPIAS 2</td>
<td>120 VQNDNKRGGQVHANGIVPYYFPETPNFPGYIHPDVKLKLAFDVDLATLKLKPATLVP--N</td>
</tr>
<tr>
<td>HsPIAS1</td>
<td>103 PASSFLPYVLSLGPKEHELEPHLTS--SAHLHPVHDKLQKLPPYDLDLLEKTSIAD--N</td>
</tr>
<tr>
<td>HsPIAS2α</td>
<td>113 SPSSPGSLQLDLTTFETMQQPS--PPPPVHDPQKLNFPYDVLKLKPLTSVQ--S</td>
</tr>
<tr>
<td>HsPIAS2β</td>
<td>113 SPSSPGSLQLDLTTFETMQQPS--PPPPVHDPQKLNFPYDVLKLKPLTSVQ--S</td>
</tr>
<tr>
<td>HsPIAS3</td>
<td>98 ---PTTLAPGTLGKPEVMH-----FPFLQPVHDVTMKEVYELPIRTTLAS--S</td>
</tr>
<tr>
<td>HsPIAS4</td>
<td>105 NIDYPVLGYKYNLGLG------R-LEAKTLKPEEVRLKLPFNLMDKLELTVLFPQ--N</td>
</tr>
<tr>
<td>AaPIAS 3</td>
<td>180 TQRIQEGSFHHHTLPPQQATDIATNDRIRNVKIEHTIQQLRFECLLETSCQEDYYFPN</td>
</tr>
<tr>
<td>HsPIAS1</td>
<td>161 SQRFRETCFAPALTPOQQQIQSSMDIS--GKCDPDTQVQRLFCSETSCFQEDHFPNL</td>
</tr>
<tr>
<td>HsPIAS2α</td>
<td>171 IQRFQEKFPFIFALTPOQQVREICISRDFLPPGRDRYTQVQQLLAEETSCFQEDNYPNSL</td>
</tr>
<tr>
<td>HsPIAS2β</td>
<td>171 IQRFQEKFPFIFALTPOQQVREICISRDFLPPGRDRYTQVQQLLAEETSCFQEDNYPNSL</td>
</tr>
<tr>
<td>HsPIAS3</td>
<td>152 SQRFEEAHFTALTPOQQVQILTSREVLPGARCTTYQVQGLCTSETSCFQEDYPFNP</td>
</tr>
<tr>
<td>HsPIAS4</td>
<td>152 MNEKLSHDSLFPQVELRINRSFELQPGVKA-----VQVVLRYCIDSTSCFQEDQYPFNI</td>
</tr>
<tr>
<td>AaPIAS 4</td>
<td>240 VVKVNKLCLPLPNFIPTNKPGVEKPRPPVPNGTPNKVLSPLVNHAIASWCTEYNYGAYA</td>
</tr>
<tr>
<td>HsPIAS1</td>
<td>220 CVKVNTKPCSFLPGYLPPTKNGVEKPKRSPRPINITSLVRLSTTVPTNTSVSWTAEIGRNY</td>
</tr>
<tr>
<td>HsPIAS2α</td>
<td>231 CIVKVNKLPLPFLPGYAPFKNGIEKQRGRPLNTLSLRLSVSAPNFQISISWASEIGNY</td>
</tr>
<tr>
<td>HsPIAS2β</td>
<td>231 CIVKVNKLPLPFLPGYAPFKNGIEKQRGRPLNTLSLRLSVSAPNFQISISWASEIGNY</td>
</tr>
<tr>
<td>HsPIAS3</td>
<td>212 FVCSKLPLFGYLPPTKNGVEKPRPPRINITPLARSATVNPNTVWNSSEFRGNY</td>
</tr>
<tr>
<td>HsPIAS4</td>
<td>213 AVKVNHSYCSVPGGYFPNKRPGVEKPRCPPINITLHMLYLSATNRIVTVGNYGKSYS</td>
</tr>
<tr>
<td>AaPIAS 5</td>
<td>300 AACYLVRKLTSSLQQLRQMKTGKVPADYTRALIKEKLNEDAEDIATTMLKVSLCPLGK</td>
</tr>
<tr>
<td>HsPIAS1</td>
<td>280 NAYLVQLQSSLVTQLRRLAKGIRNPDHSRESKLTDADSEIATTTSSRLVSLCPLGK</td>
</tr>
<tr>
<td>HsPIAS2α</td>
<td>291 MSYLVQRLTSLAMLQRIKMNGIRNPDHSLIEKTLTDSEIATTTSSRLVSLCPLGK</td>
</tr>
<tr>
<td>HsPIAS2β</td>
<td>291 MSYLVQRLTSLAMLQRIKMNGIRNPDHSLIEKTLTDSEIATTTSSRLVSLCPLGK</td>
</tr>
<tr>
<td>HsPIAS3</td>
<td>272 LSYLVQRLTSLAMLQRIKMNGIRNPDHSLIEKTLTDSEIATTTSSRLVSLCPLGK</td>
</tr>
<tr>
<td>HsPIAS4</td>
<td>271 VALYLVQRLTSSELLQRLKTIGVHKFECKALVKEKLRDPSEIATTGVRSVLICPLVK</td>
</tr>
</tbody>
</table>

S Stokes, 2018

PAIS and PIAS
AaPIAS 360 MRMATPCRSSTCSHLQCFDASLYLQMNERKPTWNCPCDKAAYDNLVIDGYQEVIALSN
HsPIAS1 340 MRLTIPCRALTCSHLQCFDATLYQMNEKKKPTWCCPCKDAALYLQMNERKPTWNCPCDKAAYDNLVIDGYQEVIALSN
HsPIAS2α 351 MRLTIPCRAVCTCHLQCFDAALYLQMNEKKKPTWICPCDCKAAYESLILDGLFMEIL---
HsPIAS2β 351 MRLTIPCRAVCITHLQCFDAALYLQMNEKKKPTWICPCDCKAAYESLILDGLFMEIL---
HsPIAS3 332 MRLTIPCRLTCASHLQCFDAALYLQMNEKKKPTWICPCDCKAAYESLILDGLFMEIL---
HsPIAS4 331 MRLVPCRAALTCASHLQCFDAALYLQMNEKKKPTWICPCDCKAAYESLILDGLFMEIL---

AaPIAS 420 KLSSEDNEIQLHKGDSWSTHVTNSCSTLDTPSKPVQKVVE---VSD-DIEIITDPPKS
HsPIAS1 397 KYTDCCDEIQFKEDGTWAPMRKVEQVES---ASY-NGVDCLSSTLEHQVASHHQS
HsPIAS2α 408 NDSCDVEIKQEDGSSWCMPRKKEAMKVS---SQPCTKIES---SSVLSKPCSVTVAEAS
HsPIAS2β 408 NDSCDVEIKQEDGSSWCMPRKKEAMKVS---SQPCTKIES---SSVLSKPCSVTVAEAS
HsPIAS3 389 SSCSDCDEIQFMEDGSSWCMPKKEASEVC---PPFYGLDGS---L-QYSFVQGGDPSEN
HsPIAS4 388 SECEDAEIEYLVDSWCPRAEKECS---C---SPQ------------------GAILVLPDPSAN

AaPIAS 477 INQASVISSSEPSSTTPSDTVDLTLSSDDLPL-KRKTVTARAAGG--Q
HsPIAS1 454 N-------------------KKVEVIDLTIIDSSSDDEESEPASAKTCPCLSLPSF--P-L
HsPIAS2α 464 K-------------------KKVDVIDLTIIESSDDEEEDPPA-KRKCIFMSEQS---S
HsPIAS2β 464 K-------------------KKVDVIDLTIIESSDDEEEDPPA-KRKCIFMSEQS---S
HsPIAS3 442 K-------------------KKVEVIDLTIIESSDDEELPT--KKHCSVSTAAIPALP
HsPIAS4 431 G-------------------LLPAPSVNGSALGSTGG--GGPVSNG--P
Appendix B: Purification of AaSAE1/2
Initially, a Ni$^{2+}$ affinity purification was used on AaSAE1/2, with a 6xHis tag cloned in frame with either AaSAE1 or AaSAE2. During purification the heterodimer appeared to dissociate, and consequently there was a bias towards the protein which possesses the 6xHis tag. Optimisation studies revealed that this is due to the imidazole concentration, used for elution which induced heterodimer dissociation. Further analysis of the modelled structure of AaSAE1/2 revealed non-conserved histidine residues at the interface of AaSAE1 and AaSAE2, which are likely the cause of the dissociation. We hypothesise that the imidazole competitively binds to the histamine residues at the interface of AaSAE1 and AaSAE2, leading to heterodimer dissociation. Consequently, the AaSAE1/2 heterodimer was cloned into a Strep.II tag vector, interestingly, when the Strep.II tag was cloned onto the N-terminal of AaSAE1, the heterodimer was inactive (data not shown). However, when the Strep.II tag was cloned onto the N-terminal of AaSAE2, a functional heterodimer was produced that was utilised for the rest of the biochemical studies.

![Purification of 6x His AaSAE1/2 through Nickel affinity chromatography](image)

Coomassie stained SDS-PAGE gel of purified AaSAE1/2, containing a 6xHis tag on the N-terminal of either the SAE2 protein (left), or the SAE1 protein (right). Regardless of which protein was tagged, the heterodimer dissociated during purification.
Imidazole titration performed during purification of 6xHis-AaSAE1/AaSAE2

Coomassie stained SDS-PAGE gel of 6xHis-AaSAE1/AaSAE2 samples grown and purified using increasing concentrations of imidazole in the elution buffer. As the concentration of imidazole increased, the ratio of 6xHis-AaSAE1 to AaSAE2 became more skewed in favour of 6xHis-AaSAE1.
Histidine residues at the AaSAE1/2 interface

(A) The predicted structure of AaSAE1/2 was modelled and histidine residues (pink, labelled) located around the AaSAE1 (light sea green), AaSAE2 (cornflower blue) interface were identified. (B) 180° rotation on the Y-axis focusing on the interface of AaSAE1 and AaSAE2.
Appendix C: Purified AaUbc9 C93S, the SUMO chimaera, and the SUMO chimaera K11R
In order to characterise biochemical properties of proteins in the \textit{AaSUMO}ylation pathway, catalytically inactive, and chimaeric proteins were produced. A catalytically inactive \textit{AaUbc9} (Ubc9 C93S) was produced and cloned as described (Section 2.2.1.10; Section 2.2.9.3), and purified through the 6xHis tag (Section 2.2.2.2). A chimaeric SUMO protein and a chimaeric SUMO containing a K11R mutation were also synthesised, cloned as described and purified through 6xHis tag (Section 2.2.9.2; Section 2.2.2.2).
Purification of chimaeric proteins, and proteins containing point mutations

Coomassie stained SDS-PAGE gel of 6xHis purified (A) Ubc9 C93S, (B) SUMO chimaera, and (C) SUMO chimaera K11R. BSA standards included to determine concentration. Molecular weight markers indicated.
Appendix D: No primary antibody controls of SUMO expression in *Ae. aegypti* tissues
Non blood-fed adult female *Ae. aegypti* had cells and organs dissected. Confocal microscopy was conducted without primary (αSUMO2/3) antibody, tissues were stained with DAPI (nuclei, blue), and Phalloidin 488 (F-actin, green), secondary antibody Alexa Fluor 568 goat anti-mouse IgG was diluted 1:1000 (red). Experiment was conducted on haemocytes (A), salivary glands (B), midgut (C), and ovaries (D). Images were acquired on a Zeiss LSM 880 confocal microscope with 40x or 63x oil-immersion lens using the same settings as the samples incubated with a primary antibody. Scale bar represents 20 µm.
Appendix E: Melt curve analysis of q-PCR primers
RNA was harvested from either mosquito AF5 cells or Ae. aegypti organs, cDNA was synthesised and q-PCR analysis was conducted. Subsequent melt curves were conducted to ensure no primer dimers were interfering with analysis. (A) melt curves following q-PCR of primers targeting the ribosomal S7, (B) melt curves following q-PCR of primers targeting SUMO, (C) melt curves following q-PCR of primers targeting Ubc9, and (D) melt curves following q-PCR of primers targeting PIAS.
“Have no fear of perfection - you’ll never reach it”
- Salvador Dali