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Abstract 

Herpes simplex virus (HSV) is a neurovirulent virus that in the course of natural infection 

of man predominantly infects sensory neurons. The aim of this project was to develop a 

safe, nonvirulent HSV, capable of expressing exogenous genes which altered the binding 

characteristics of the virus so that tropism was directed predominantly to motor nerves. It 

was envisaged that these viruses could then act as prototypes for gene therapy vectors 

targeted to the treatment of motor nerve diseases. 

To achieve this, two mutant vIruses were created, RFa and RFb. These contained 

deletions of the main HSV glycoprotein involved in cellular binding (glycoprotein C). 

Gene fusions were created of truncated portions of gC (amino acids 377-51l(RFa) and 

amino acids 477-51l(RFb)) to E.coli heat-labile enterotoxin B-subunit (LTB). The gene 

fusions were inserted in the RL 1 gene thereby abolishing expression of the virulence 

factor ICP34.5. LTB is a ligand which binds to several gangliosides, including GMl and 

GM2 which are motor neuron markers. It was hoped that by deletion of the main viral 

protein involved in adsorption to cells and replacing it with an L TB-containing fusion 

protein, the tropism of the mutant viruses could be altered to promote an increase in 

motor neuron infection. 

RFb was constructed. RFa was constructed but could not be purified to homogeneity. 

This was thought to be due to poor adsorption/penetration or cell-to-cell spread, brought 

about by expression of the L TB fusion protein. RFb was analysed to determine the effect 

of expresssion of the novel L TB fusion protein within the context of the HSV genome. 

Western blot analysis using antibodies directed against L TB failed to detect expression of 

the L TB-gC fusion protein. In vitro replication studies showed that the RFb was non­

virulent as demonstrated by its inability to replicate in growth arrested 3T6 cells, a 

phenotype characteristic of HSV which fails to produce ICP34.5. However no marked 

difference in virus replication kinetics was seen between RFb and wild type HSV (17+) 

on two motor neuron-like cell lines (NSC-l9 and NSC-34). In vitro and in vivo 

adsorption studies were also carried out on the mutant virus. Again, no increased 



adsorption was seen with respect to wild type virus on a variety of cell lines and to a 

variety of gangliosides as assayed by ELISA techniques. Interestingly, the role for gC in 

binding to several gangliosides was seen. The affinity of wild type virus for several 

indidvidual gangliosides was shown to be greater than that of gC-null HSV. In vitro wild 

type HSV bound more strongly to several gangliosides including GD3 and GTI b than it 

did to heparin, the main HSV binding ligand. This finding opens the possibility of 

investigating whether the inherent neurotropism of HSV may be related to specific 

ganglioside binding mediated through the glycoprotein gC. 



1. INTRODUCTION 

Herpes simplex VIruS (HSV) is a member of the family Herpesviridae. This family 

includes many viruses of medical and veterinary importance. Herpes simplex virus types 

1 and 2 belong to the subfamily Alpha herpesvirinae, as they have the capacity to 

establish latent infections primarily in the sensory ganglia. HSV is a neurotrophic virus 

responsible for a broad spectrum of clinical diseases ranging from relatively benign 

cutaneous lesions to fatal encephalitis. The life cycle of HSV includes acute, latent and 

recurrent phases. In acute infection, the genes of HSV are expressed and the extent of the 

disease is controlled by the cellular and humoral responses of the host. In latent 

infection, gene expression is repressed except for a limited region of the HSV genome 

encoding latency-associated transcripts (LATs). The virus can remain in this latent state 

in humans for life without destroying the sensory neurons in which it resides. Latent 

virus can be induced by a variety of stimuli to reactivate from this quiescent state to cause 

a recurrent peripheral infection. 

1.1 Virion structure 
Herpes viruses all have a similar virion structure which has led to their classification into 

one family. HSV virions are 150-200 nm in size and consist of four basic morphological 

elements: a nuclear core covered by an icosahedral nucleocapsid, an amorphous tegument 

surrounding the capsid and an outer envelope (reviewed by Rixon, 1993). 

1.1.1 Core 
The core of a mature HSV virion contains the viral DNA. The HSV DNA genome is 

approximately 152 kbp in size. The genome consists of two covalently linked 

components, namely, the unique long (Ud and unique shOl1 (Us) each of which is flanked 

by te1111inal invel1ed repeats (TRL/IRL' and TRs/IRs respectively). The HSV genome 

encodes at least 84 gene products (Roizman and Sears, 1996). 



1.1.2 Capsid 

Capsids are assembled 111 the nucleus. They are composed of protein, and are 

approximately 125nm in diameter, exhibiting 5:3:2 axial symmetry and comprise 162 

capsomeres, of which 150 are hexameric (hexons) and 12 pentameric (pentons) and 320 

triplexes that provide intercapsomeric connections (Wildy et aI., 1960; Scharge et aI., 

1989; Zhou et al., 1994). Three capsid forms have been observed and purified from wild 

type virus-infected cells. They are visualised as light scattering bands in sucrose 

gradients and are designated A, Band C in order of increasing distance sedimented 

(Gibson and Roizman, 1972). Type A capsids are empty capsids which lack viral DNA; 

Type B capsids also lack viral DNA, but possess 2 proteins not found in A capsids (VP21 

and VP22a); Type C capsids contain viral genomes and mature into infectious virions. 

The capsid is composed of nine proteins: 

VP23 (UL18), VP5 (UL19), VP21 (UL26), VP22a (UL26.5), VP26 (UL35), VP19C 

(UL38), VP11 + 12 (UL46), VP 13+ 14 (UL47), VP22 (UL49) 

Capsids are shaped like hexagonal prisms with a hollow tube through the length of the 

longitudinal axis (Wildy et al., 1960). VP5 is the major capsid protein, forming both 

hexons and pentons. VP22a present only in B capsids, occupies the inner space and 

functions as a scaffold for the icosahedral capsid shell. VP24 is a protease encoded by 

UL26. VP26 is a protein expressed late in the infectious cycle after the onset of DNA 

replication and has been shown to be present in multiple phosphorylated forms (McNabb 

and Courtney, 1992). This is the only capsid protein that is not required for replication in 

cell culture however infectious virus yield of VP26-deleted virus is decreased two-fold 

relative to wild type (Desai et aI., 1998). VP26 is impOliant however for yilUS replication 

in vivo (Desai et aI., 1998). 

1.1.3 Tegument 
The teuument is an electron-dense material located between the capsid and the enyelope. 

t:-

The amount of tegument in each virion is not equi\'alent. The tegument can assemble into 

a stable structure withollt capsid interaction, and its assembly or dissociation depends on 



the phosphorylation state of its structural proteins (Leslie et al., 1996; Morrison et al .. 

1998). It is composed of at least 20 distinct viral proteins, some present in major. other 

in quite minor amounts (McGeoch et al., 1993). Several tegument proteins are essential 

for particle formation e.g. UL48, UL36 (McGeoch et al.. 1993; Campbell et al., 1984). 

while others are known to be dispensible e.g. UL46, UL47 (Zhang and McKnight, 1993). 

Tegument proteins are the first to encounter the intracellular environment and many of 

these are released into the newly infected cell. While the function of many of these 

proteins has yet to be precisely defined, several have been shown to aid in the initiation 

of the viral replicative cycle (Roizman and Sears, 1996). Among these are VP16 and the 

virion host shutoff protein (vhs). VP 16 serves multiple functions during HSV infection: it 

activates transcription of the viral IE genes, binds to vhs and downregulates its activity, 

and fonlls a complex with the tegument protein VP22 (Elliot et al., 1995; Lam et al .. 

1996; O'Hare, 1993). Vhs is a tegument protein that triggers shutoff of host protein 

synthesis and accelerated degradation of both cellular and viral mRNAs (Fenwick and 

Everett, 1990). 

1.1.4 Envelope 
The tegument is completely enclosed in a trilaminar membrane envelope (Wildy et a!., 

1960). This is the outenllost covering of the virus and is composed primarily of lipids 

derived from the host cell membrane, into which are inselied at least 11 virus-encoded 

glycoproteins. These glycoproteins are responsible for attachment and entry of the 

infectious viral particle into the host cell and for cell-to-cell spread. The diameter of the 

envelope is approximately 150-200mn, although the exact dimensions depend on the 

visualisation technique. 

1.2 Structure and organization of the HSV genome 
HSV-l DNA is linear. double-stranded (Becker et al., 1968) and contains approximately 

152 kbp (McGeoch et al., 1986; Perry and McGeoch, 1988). The genomes of HSV -1 and 

HSV -2 share approximately 500~) homology, \yith HSV -2 haying a slightly higher G+C 

content (68.3 0;) compared to 67( 0) (Kieff ct al., 1972: D<lyison and \Vilkie. 1983: 



McGeoch et al., 1988a). The coding sequences of corresponding genes show in general 

70-80% identity, with one major exception: the coding sequence of HSV-2 US4 (gG-2) 

contains an extra sequence of 1460bp (McGeoch et aI., 1987). 

The HSV-1 and HSV-2 genomes consist of two covalently joined segments, designated 

long (L) and short (S) (Figure l.1). Each component is composed of a unique sequence 

(UL, Us) flanked by terminal and inverted repeat sequences (TR, IR). The repeats of the 

L-component TRL and IRJ are respectively designated a b and a 'b ' , while those of the S 

component, TRs and IRs, are respectively designated ({'C' and c ({ (Wadsworth et aI., 

1975). 

The Land S genome components invert relative to one another giving four equimolar 

isomers, termed P(prototype), IL (inversion of the L component), Is (inversion of the S 

component) and ISL (inversion of both Sand L components) (Sheldrick and Berthelot, 

1974; Hayward et aI., 1975; Clements et aI., 1976; Wilkie and Cortini, 1976; Roizman, 

1979). Due to isomerisation, restriction analysis of DNA yields three classes of 

fragments (Clements et al., 1976; Skare and Summers, 1977) which occur at different 

frequencies. Fragments derived entirely from the UJ and Us regions appear in 1M 

quantities relative to the molarity of intact viral DNA. As each tenninus is present in 

only 2 of the 4 isomers, tenllinal sequence fragments are present in 0.5M quantities while 

fragments which consist of the joint sequences are present in only 1 of the 4 isomers so 

are in 0.25M quantities (Wilkie and Cortini, 1976; Skare and Summers, 1977). 

1.2.1 The a sequence 
The a sequence is a sequence that is found as a direct repeat at TRL and TRs and present 

as an inverted repeat at the LIS junction in the HSV -1 and HSV -2 genome. The a 

sequence is approximately 500 bp in HSV -1 (strain F), but its size varies from strain to 

strain. The HSV -1 (F) ({ sequence has a 20 bp direct repeat (DR]), a 65 bp sequence (Ub), 

a 21 bp sequence (DR~), a 37 bp sequence (D~), a 53 bp unique sequence (Uc) and 

another copy of DR1 (Roizman and Sears, 1990). The number of ({ sequences at the LS 

junction and at the L tenllinus of the DNA varies from 1 up to 10, but only a single copy 
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Figure 1.1 Gross organisation of the HSV -1 genome. 

A conventional representation of the HSV -1 genome is shown. with unique sequences 

(UL and Us) as solid lines and major repeat elements (TRL and IRL, IRs and TRs) as open 

boxes. The locations of the Land S segments are marked. Terminal (f sequences and the 

internaL opposite orientation ({' sequence are indicated. Also shown are the location of 

three genes important in this study are shown: RL 1 (gene product: ICP34.5) and UL44 

(gene product: gC). 



is found at the S tenninus (Wilkie 1976; Wagner and Summers, 1978). The size of the a 

sequence varies from strain to strain due to the variation in the number of copies of DR2 

and D~. The {[ sequence appears to be a cis-acting site for inversion as insertion of the a 

sequence elsewhere in the genome (Mocarski et (/f., 1980) or deletion of the entire 

internal inverted repeat sequences (a' b' c ') leads to additional inversions or the loss of 

the ability of the Land S components to inveli respectively (Poffenberger et ([I., 1983). 

Chou and Roizman (1985) demonstrated that deletion of DR4 drastically reduces 

inversion while deletion of both DR2 and DR4 completely abolishes inversion. Deletion 

of the Db and Dc domains does not affect the ability of the a sequence to mediate 

mverslOn. The a sequence was also shown to contain the cis-acting sites for the 

circularisation of the genome after infection, for cleavage of the HSV genome into unit 

length concatamers and for the encapsulation of DNA (Mocarski and Roizman, 1982; 

Vlazny et al.. 1982; Vanlluza and Smiley, 1985) 

1.3 Pathogenesis of HSV 

From studies in experimental animals and observations of human infections, a "classical 

theory" of HSV pathogenesis has evolved (Wildy et al., 1982). According to this theory 

there are four stages which characterize an HSV infection: 

1. Entry into the host at the time of infection, and here the virus replicates at peripheral 

sites such as the eyes, skin or mucosae. 

2. Spread to the axonal tenninae of sensory neurons is followed by retrograde intra­

axonal transport to neuronal cell bodies in sensory ganglia, where further viral 

replication may occur. 

3. Establishment of latency then occurs and lytic gene expression is repressed. At this 

stage no infectious virus can be detected but the \'iral genome remains in the neuron in 

a transcriptionally active state. 
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4. Reactivation can occur when poorly defined stimuli, e.g. stress, menstruation, sunlight 

cause the controls responsible for maintaining latency to break down. This leads to the 

production of infectious virus in the ganglion followed by anterograde transport to the 

periphery where, following further replication, lesions may occur at or near the site of 

primary infection. 

1.4 Lytic life cycle 

Virus binds to heparan sulphate components of the cell surface, usmg several 

glycoproteins (gC and gB). Several glycoproteins in the virion envelope are then 

required for penetration after initial attachment (gB, gD, gH and gL) (Cai et aI., 1988; 

Ligas and Johnson, 1988; Forrester et aI., 1992). Following attachment, the virus 

penetrates the cell by fusion of the virus envelope with the cell plasma membrane (Spear, 

1993). Virus capsids are then transported to the nuclear pore (Tognon et aI., 1981; 

Batterson et aI., 1983) and DNA is released into the nucleus to allow gene expression. 

Transport to the nuclear pores is thought to be mediated by the cellular cytoskeleton 

(Kristensson et al., 1986). To promote their replication, HSV manipulates the host cell 

such that viral proteins are preferentially synthesised, at the expense of host cell gene 

expression (Zelus et al., 1996). Within 3 hours post-infection, HSV-DNA replication is 

detected in the nucleus (Roizman et aI., 1963; Roizman and Roane, 1964), and host 

protein synthesis and mRNA levels decline by approximately 90% (Zelus et al., 1996). 

vhs is a tegument protein that triggers shutoff of host protein synthesis and accelerated 

degradation of both cellular and viral mRNAs (Zelus et ai., 1996). Its mechanism of 

action is unknown, but evidence suggests it is either an endo-RNase or a required subunit 

of an endo-RNase that also includes one or more cellular subunits (Elgadi et a/., 1999; 

Elgadi and Smiley, 1999). VP16, an abundant 65kDa virion phosphoprotein is thought to 

downregulate vhs activity at intermediate and late times postinfection, thereby allowing 

the maintenance of viral protein synthesis (Lam ct al., 1996). 
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1.4.1 Gene expression 

Gene expression involves regulatory loops controlled by signals which act either in cis or 

in trans (Fig1.2). According to the manner in which they are expressed, viral genes can 

be divided into three temporal classes: immediate-early, early and late (Honess and 

Roizman, 1974). The polypeptides these produce are classified as a (immediate-early), ~ 

(early), and y (late) (Roizman, 1978). Broadly speaking, a gene products function in the 

synthesis of ~ proteins, ~ proteins function in viral DNA replication, and y proteins are 

the structural proteins of the virus. Soon after infection of the cell, the cascade of viral 

gene expression is initiated and it is enhanced by a viral stnlctural protein VPI6, which is 

brought into the nucleus with the viral genome (Campbell et af., 1984; Pellett et al., 

1985a). VP16 transactivates immediate early genes as pati of a complex with the cellular 

transcription factor oct-l and other proteins (Sten1 et (fl., 1989). Immediate early gene 

products then activate early gene expression with the resultant initiation of HSV DNA 

replication at the viral origins (Vlazny and Frenkel, 1981; Stow, 1982, Boehmer and 

Lehman, 1997) 

HSV DNA replicates by a rolling circle mechanism (Ben-POI-at and Towazewski, 1977; 

Jacob et al.. 1979; Roizman, 1979) with a replicative intennediate consisting of linear 

head-to-tail concatamers of the viral genome (Jacobs et al., 1979). Synthesis is initially 

restricted within the nucleus to a few well-defined sites called replication compartments 

or inclusions (Quinlan et al., 1984; Kops and Knipe, 1994) which are organized in the 

nuclear interior rather than at the periphery (Kops and Knipe, 1994). The number and 

size of these compartments increases throughout infection until the entire nucleus is filled 

with replicating viral DNA (Rixon et al., 1983). 

Three origins of replication have been identified: the origin of replication in the long 

region, oriL, is located in the middle of the long unique segment, between the divergent 

transcripts for the DNA polymerase (UL30) and the major DNA binding protein (UL29) 

(Quinn et af., 1985); the origin of replication in the short region, oriS. is present in two 

identical copies in the intact genome, one in IRs and one in TRs (StO\\. 1982). Sequence 

analysis revealed palindromic organisation of oriL and oriS. OriL exhibits a single 
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Figure 1.2 HSV -1 Gene Regulation 

The immediate early (IE) genes are expressed immediately after infection in the absence 

of de novo protein synthesis. The VP 16 virus tegument protein interacts with the cellular 

factor Oct! to regulate the expression of IE genes by positively binding to their 

promoters. The IE gene products ICP4, ICP27, and ICPO are responsible for activating 

early (E) genes. After viral DNA replication, the ICP4, ICP22, and ICP27 IE 

polypeptides regulate expression of the late (L) genes. ICP4 can also inhibit the 

expression of IE genes, including its own expression, once transcription of the E class 

has been initiated. 
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perfect palindrome of 144bp, while oriS exhibits a 45bp palindrome (Weller et al .. 1985; 

Knopf et al., 1986; Lockshon and Galloway, 1986). Neither copy of oriS is essentiaL as 

deletion of one or both copies of oriS has no effect on viral DNA replication in cultured 

cells (Igarashi et ([I., 1993). 

Seven HSV-l genes are necessary and sufficient for DNA replication: UL5, UL8. UL9, 

UL29, UL30, UL42, and UL52 (Wu et al., 1988; McGeoch et ({I., 1988). These encode 

the following proteins: a heterodimeric DNA polymerase (UL30, UL42). single-strand 

DNA-binding protein (also known as ICP8) (UL29), a heterotrimeric primo some with 5'-

3' DNA helicase and primase activity (UL5, UL52, UL8), and an origin-binding protein 

with 3' -5' DNA helicase activity (UL9). HSV -1 also encodes a set of enzymes involved 

in nucleotide metabolism that are not required for viral replication in cultured cells. These 

enzymes include a deoxyuridine triphosphate (UL50), a ribonucleotide reductase (UL39, 

UL40), a thymidine kinase (UL23), an alkaline endo-exonuclease (ULI2), and a uracil­

DNA glycolase (UL2) (reviwed by Boehmer and Lehman, 1997). 

Following DNA synthesis, late genes are expressed which lead to assembly of capsids in 

the nucleus. Cleavage and packaging of concatemeric DNA replication intennediates 

into prefonned capsids is a tightly coupled process in which DNA cleavage occurs once a 

capsid is filled with one genome equivalent. Cleavage introduces an asymmetric cut in 

the ([ sequence, producing an L tenninus that contains 18bp of the DRI repeat and a 

single 3' -nucleotide extension, and an S tenninus that contains 1 bp of DRI and a single 

3' -nucleotide extension. Circularization of these ends reconstitutes a complete DRI 

sequence that is shared between the tenninal a sequences of the Land S components 

(Mocarski and Roizman, 1982). The exact molecular mechanism of the cleavage­

packaging reaction is unknown, however several biochemical activities that may be 

involved in the process have been identified. These include virus-encoded proteins that 

specifically recognise the pac2 site, an element within the a sequence responsible for 

cleavage and packaging (Chou and Roizman, 1989): a \'inls-induced DNA endonuclease 

that introduces double-strand cuts in the a sequence (Wohlrab ct al .. 1991; Dutch et al., 
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1994) and is part of an activity that promotes in vitro recombination of repeated a 

sequences (Bruckner et af., 1992). In addition, mutational studies have implicated several 

non-structural HSV-l gene products (UL6, ULI5, UL25, UL28, UL32, and UL33 

proteins) as well as several capsid proteins (ULI8, UL19, and UL26.5 proteins) (Addison 

et aI., 1990; AI-Kobaisi el aI., 1991; Tengelsen et aL 1993; Desai et aI., 1993). 

Assembled capsids leave the nucleus and gain tegument and envelope as they bud 

through the nuclear membrane, however the exact process is not fully understood. 

Following maturation virions leave the cell by exocytosis (Rixon, 1993). 

1.5 HSV latent infection 

HSV has been classified in the subfamily alphaherpesvirinae on the basis of its ability to 

establish and maintain latent infections in neurons. Latency has been defined as the 

persistence of the vinls in a host in a non-infectious fonn. During latency the viral 

genome takes the form of a circular episomal element formed due to joining of the 

tennini (Aurelian et af., 1990). The latent genome is associated with cellular histones 

thus having a nucleosomal structure similar to that of cellular chromatin (Deshmane and 

Fraser, 1989). In contrast to the lytic pathway, viral gene expression is almost 

completely repressed during latency. This restriction prevents lysis of neurons and is a 

major feature of latency (Cann, 1993). During latency, transcription only occurs from a 

single area of the genome and results in a family of RNA molecules referred to as 

latency-associated transcripts (LATs). 

1.5.1 Latency-Associated Transcripts (LATs) 

In both HSV -1 and HSV -2, a single region of the genome, located in the long tennina1 

repeat, known as the latency-associated transcript or LAT has been shown to encode 

RNA (Stevens et af., 1987). The minor LAT product is 8.3kbp. The most abundant (i.e. 

major) LATs are 2 co-linear, predominantly nuclear poly(A)- RNAs of 2kbp and 1.5kbp, 

which are believed to be spliced from the 8.3kbp poly(A)+ LAT (Devi-Rao et aL 1991; 

Farrell e{ aL 1991; Spivack ct af., 1991; Wagner et al.. 1988). The major LATs appear 

to share 5' and 3' tennini differing only in the excision of a small intron with unusual use 
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ofGC instead of the consensus GU at the 5' consensus site (Wagner et ai., 1988; Spivack 

et ai., 1991). LATs can be readily detected in latently infected neurons, by Northell1 blot 

analysis (Wagner et al., 1988) or by oligonucleotide probe (Zwaagstra et al., 1990). 

However, protein expression from LATs has not been detected during latency. 

LA T overlaps the rcpo and ICP34.5 genes in an antisense direction. Thus, it was 

postulated that the transcripts influenced and maintained latency by down regulating 

ICPO through an antisense mechanism (Farrell et 0/., 1991). However, viruses with 

deletions in the promoter or the transcribed region of LA T are able to establish and 

maintain latency and reactivate. 

Many researchers have shown that LAT deletion mutants demonstrate a reduced capacity 

to reactivate and the kinetics of reactivation of these mutants is slower than wild-type, 

suggesting that LATs play no role in the establishment and maintenance of latency, but 

rather playa role in efficient reactivation (Steiner et ai., 1989; Hill et 01., 1990; Block et 

al., 1990; Pemg et al., 1994). 

Chen et ai., (1997) analysed the effects of a mutation in the LAT locus on viral gene 

expression in latently infected mouse trigeminal ganglia. The mutation removed the 

promoter, transcriptional start site, and 1,015 bp of transcribed sequences of LAT. This 

mutant had reduced levels of the major LATs, which resulted in an increase in the 

accumulation of transcripts from the IE gene encoding ICP4, and an accumulation of 

transcripts from the early gene encoding thymidine kinase. Chen et al. (1997) thus 

concluded that a viral function associated with the LAT locus is the repression of the 

accumulation of at least two productive cycle genes in latently infected mouse ganglia. 

Pen1g et ai., (1996) recently showed that the first 1.5 kb ofLAT is sufficient to generate 

wild-type levels of spontaneous reactivation from LAT -ve mutants. This region does not 

overlap any portion of any known HSV -1 gene. 
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1.5.2 Latency promoters 

Two LAT promoters have been identified, LAPI and LAP2. LAPI is situated at the 5' 

end of the 8.3 kb LAT and is 700 bp upstream of the 2 kbp intron. Sequence analysis has 

demonstrated the presence of several cis-acting elements. Upstream elements 

specifically contribute to LAPI function and sequences 620 nucleotides upstream of the 

transcription start site have been found to be responsible for full promoter activity 

(Soares et oi., 1996). LAPI contains a TATA box basal element (Soares et ai., 1996) and 

proximal elements such as CAAT, USF j , and Spl, YYl, AP-2, and a potential binding 

site for the HSV-l immediate early transactivator, ICP4 (Zwaagstra et al., 1989). ICP4 

negatively regulates expression directed from LAT constructs in cotransfection assays. 

(Batchelor and 0 'Hare, 1992). 

A second promoter which lies between LAPI and the 5' end of the 2 kb LAT has been 

identified and designated LAP2 (Soares et ai., 1996). It is considerably weaker than 

LAPI (Goins et ai., 1994). It lacks a TATA box, yet contains elements found in a variety 

of housekeeping promoters such as a GC-rich and a CIT rich sequence separated by a 

stretch of 23 thymidine residues, all of which contribute to LAP2 activity ill vitro (Goins 

et ai., 1997). The CIT rich element forms a non-B-DNA triplex structure and can be 

bound by a family of transcription factors (Bossone ct al., 1992; Pyrc ct ai., 1992) as well 

as Spl (Goins et ai., 1997). A minor groove binding factor HMG I(Y) binds to the polyT 

stretch and thus facilitates the binding of Sp 1 to LAP2 (French et ai .. 1996). A region of 

LAT required for efficient reactivation has been mapped to LAP2 (Bloom ct al., 1996; 

Pemg et ai., 1996), suggesting that this promoter may playa role in driving expression of 

some downstream gene impOliant to the reactivation phase. 

1.5.3 Reactivation 
Reactivation of HSV results in anterograde axonal transport to susceptible cells of the 

dennis, resulting in recurrent productive vinls infection at or near the initial site of 

infection. Lytic infection proceeds until the host immune response clears it. HSV can be 

induced to reactivate by a yariety of stimuli. These include axonomy, elevations in cyclic 

AMP (cAMP), UV light hyperthermia, or possible hom10nal fluctuations e.g. 



menstruation. The molecular basis of how HSV -1 reactivates from latency is unknown. 

It is clear that mutations that result in reduced viral replication efficiency in all cell types 

have a negative impact on both the establishment of latency and the ability to reactiYate 

(Leib et ai., 1989; Katz et ai., 1990; Cai et ai., 1993). Mutations that result in replication 

deficits in nondividing cells such as thymidine kinase (TK)-negative mutants, also result 

in reactivation defects (Izumi and Stevens, 1990; Tenser, 1991). Mutations within the S­

end or promoter region of the latency-associated transcript (LAT) gene do not affect viral 

replication in any cell type but result in reduced reactivation ill 1 'j1 '0 in rabbits and mice 

(Bloom et ai., 1996; Hill ct ai., 1996; Thompson and Sawtell, 1997). In the murine 

model, it has been demonstrated that LAT mutants establish significantly fewer latent 

infections, and this most likely accounts for the reduction in reactivation observed 

(Thompson and Sawtell, 1997). IE expression has been implicated in the switch from 

latency to the lytic phase. This is supported by findings that an increase in intracellular 

cAMP levels stimulates transcription of genes via a cAMP response element in the IE 

gene promoter (Wheatley ct ul., 1992). Reactivation is thought to occur in the absence 

of any preexisting viral proteins. Because the immediate early protein ICPO is the only 

HSV -1 protein expressed at very early times during productive infection and is capable of 

activating expression of all classes of viral genes (IE, E and L) (Cai and Schaffer, 1992), 

it has been suggested that low-level expression ofICPO in neurons may be responsible for 

the initiation of productive-phase gene expression during reactivation (Leib et aI., 1989; 

Clements and Stow, 1989). Other viral gene products reported to facilitate reactivation 

include thymidine kinase and ribonucleotide reductase (Aurealian ct al., 1990). 

1.6 HSV -1 Adsorption and Penetration 
HSV -1 is an enveloped virus. For these viruses, entry into a cell requires binding of virus 

to receptors on the cell surface followed by endocytosis of the virion or by direct fusion 

of the virion envelope with the cell plasma membrane (Marsh and Helenius, 1989). 

For enveloped viruses e.g. HSV, that penetrate by fusion with the plasma membrane, 

molecular interactions between virion surface components and cell surface components 

may be necessary, not only to pennit binding of the virus to the cell but also to trigger 

fusion of the viral and cell membranes. The cutTent hypothesis is that virus attachment is 
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a two-step process (McClain and Fuller, 1994) involving different glycoproteins and 

several receptors. gB and gC have been shown to be involved in the initial attachment 

phase, through interactions of positively charged glycoprotein structures with neaatiyelv b _ 

charged heparan sUlphate (HS) moieties located on cell surface proteoglycans (Lycke et 

aI., 1991; Sheih et aI.. 1992). This HS-dependent attachment may facilitate a second 

attachment in which gD binds to a cellular receptor. Following attachment, the virus 

penetrates the cell by fusion of the virus envelope with the cell plasma membrane. This 

step involves several glycoproteins including gB, gD, gH, gL and gK (Spear, 1993). 

Endocytosis of HSV -1 does occur. This may be largely a dead-end route that leads to 

virus destruction in lysosomes (Campadelli-Fiume et aI.. 1988(a); Wittels and Spear, 

1991). 

Following binding HSV -1 fuses with the plasma membrane. The envelope and many of 

the tegument proteins are lost, however, some remain associated with the capsid 

(Morrison et aI.. 1998; Sodeik et ai., 1997). Next the capsid is transported through the 

cytosol to the nucleus where it binds to nuclear pore complexes (NPCs) (McClain and 

Fuller, 1994). Transport occurs along microtubules. Electron microscope pictures of the 

infection process show that the DNA is rapidly and efficiently ejected from the NPC­

bound capsid, leaving behind an empty capsid that is eventually released into the cytosol 

(Sodeik et ai., 1997; Tognon et ai., 1981). Inside the nucleus, the incoming viral DNA 

localizes adjacent to the nuclear domain ND 1 0 (Maul et ai., 1996) and results in its 

disruption (Maul et ai., 1993). 

1.7 HSV-l Egress 
Herpesvirus nucleocapsids assemble in the nuclei of infected cells and acqll1re an 

envelope by budding through the ilmer nuclear membrane (Griffiths and Rottier, 1992; 

Roizman and Sears, 1996), however, the subsequent route of virus maturation and egress 

is uncertain. Two models have been proposed: the lumenal model and the 

reenvelopement model. 
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Lumenal Model: In this model capsids acquire envelope only from the inner leaflet of the 

inner nuclear membrane, and exit the cell by means of the host secretory pathway, 

remaining within lumenal spaces throughout the entire trip. This model is based largely 

on the findings of Johnson and Spear (1982). 

Reenvelopement Model: This model originally proposed by Stackpole (1969), involves 

the release of naked nucleocapsids into the cytoplasm by fusion of "primary enveloped 

virions" with the outer nuclear membrane. Final envelopment then occurs by budding 

into a cytoplasmic compartment before release from the cell via the host secretory 

pathway. 

The controversy over which model is correct centres upon naked nucleocapsids that are 

frequently observed in the cytoplasm of infected cells. The lumenal model states that 

these are aberrant fusion events and represent dead-ends, while the reenvelopment model 

recognises these as fundamental intermediates in the egress pathway. Neither model has 

been conclusively proved, however the weight of evidence favours the reenvelopment 

model. These include electron-microscopic studies which have been interpreted as 

showing final envelopment by budding into a late Golgi compartment or into cytoplasmic 

vesicles (Gershon et al., 1994; Whealy et al., 1991). Also, the phospholipid composition 

of secreted virions most closely resmbles that of Golgi membranes (van Genderen et al., 

1994). If this two-stage envelopment model is correct, envelope proteins accumulate in 

the Golgi compartment or in Golgi-derived vesicles where final envelopment occurs. 

Following egress, mature virions are capable of infecting neighbouring cells, however, it 

has been shown that the entry of HSV -1 from the extracellular medium and entry of the 

virus by cell-to-cell spread between adjacent cells apparently do not occur by identical 

processes (Roller and Herold, 1997). 
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1.8 Adsorption 

1.8.1 Glycoproteins involved 

To date in HSV, twelve membrane glycoproteins have been identified i.e. gB, gC, gD, 

gE, gG, gH, gr, gJ, gK, gL, gM, gN - five of these (gB, gD, gH. gK, gL) have been 

shown to be important for viral infectivity. Several of these glycoproteins have been 

shown to playa major role in adsorption of virus to cell surface components. 

The initial interaction of the virion with the cell is the binding of gC to heparan sUlphate 

(HS) moieties of cell surface proteoglycans. The major evidence for this is as follows: 

• Loss or alteration of cell HS significantly reduces the binding to cells (WuDunn and 

Spear, 1989) 

• Heparin inhibits the binding of virus to cells (WuDunn and Spear, 1989), also virions 

can bind to heparin-affinity columns in physiological saline (WuDunn and Spear, 

1989) 

• HSV -1 gC null mutants are reduced in their ability to bind to cells with respect to 

wild-type virus (Herold et (/1., 1991) 

• Neutralising antibodies specific for HSV -1 gC can block the binding of virus to cells 

(Fuller and Spear, 1985; Svennerholm et aI., 1991) 

Other alphaherpesviruses also initially bind HS by a alphaherpesvirus gC family member. 

When these gC family members were compared, it was seen that they all share a cluster 

of basic mnino acids in the vicinity of a very hydrophilic region near the N-tenninus. 

These sequences are good candidates for heparin-binding domains (Jackson et aI., 1991). 

In HSV -1 another glycoprotein has HS-binding ability. gB has heparin-binding activity 

independent of gC (Herold et aI., 1991). For some cell types, absence of gB from the 

virion has little effect on virus binding provided gC is present (Herold et aI., 1991), but 

binding is dependent on gB when gC is absent. 
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1.8.2 Proteoglycans 

A glycosaminoglycan (GAG) is a linear heteropolysaccharide possessing a characteristic 

disaccharide repeat sequencc. One monosaccharide of the disaccharide repeat is an 

amino acid with D-glucosamine or galactosamine, and the other unit is typically, but not 

always, a m'onic acid residue of either D-glucuronic acid or iduronic acid. Both units are 

invariably N- and O-sulphated, which adds to the heterogeneity of these complex 

macromolecules. Typically GAG chains are covalently attached at their reducing end 

through an O-glycosidic linkage to a serine residue or N-Iinked to asparagine in a core 

protein; the resulting macromolecule is ten11ed a proteoglycan. Three of the most 

abundant GAGs on plasma membrane proteoglycans are heparan sulphate (HS), 

chondroitin sulphate (CS), and dermatan sulphate (DS) (Kjellen and Lindahl, 1991). 

Proteoglycans are ubiquitous molecules present as integral membrane proteins of cells 

and as components of the extracellular matrix. Proteoglycans and their attached GAGs 

have a variety of roles in cell-cell and cell-matrix interactions and serve as activators of a 

variety of factors e.g. growth factors (Jackson et af., 1991; Kjellen and Lindahl, 1991). A 

major function of cell surface proteoglycans is in cell adhesion and migration, dynamic 

processes that are mediated through interactions between the proteoglycan GAG chains 

and extracellular matrix (ECM). such as laminin, collagen and fibronectin. Proteoglycans 

also occur as integral components of basement membranes in probably all mammalian 

tissues. Interactions of these macromolecules with other ECM constituents contribute to 

the general architecture and permability properties of the basement membrane, and thus 

these GAGs playa structural role (Jackson et af., 1991). 

1.8.3 Heparan sulphate glycosaminoglycans 
Heparan sulphate proteoglycans serve as impOliant regulators of cellular signalling by 

modulating, for example, the stability and biological activity of heparin-binding growth 

factors (Jackson ct af., 1991). HS chains are heterogenous, varying in sites of N 

acetylation, N sulphatlon, 0 sulphation, and epimerization of glucuronic acid (GlcA) to 

iduronic acid (IdoA). Thus different subpopulations of HS might be present in different 

distributions on various cells types. Thus, it is plausible that this hetcrogeneity could 
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specify distinct receptors for various ligands, including HSV-1 and HSV-2. For example, 

heparin binds antithrombin III via a specific pentasaccharide structure which occurs 

infrequently within heparin chains near the nonreducing ends (Lindahl et al., 1984). HS 

is distinguished from the closely related GAG heparin by its lower degree of su1phation, 

higher degree of N acteylation compared with the N sulphation of glucosamine residues, 

and the predominance of glucuronic acid rather than iduronic acid (Lindahl and Kjellen, 

1991 ). 

1.9 Penetration 

It is proposed that multiple interactions involving virion glycoproteins and cell surface 

components are required to trigger fusion of the virion envelope with the cell plasma 

membrane, following initial binding to the cell surface. 

gB, gD, and gH are required for penetration, but not for the initial binding of the virus to 

the cell surface (Cai et aI., 1988; Ligas and Johnson, 1988; Forrester ct aI., 1992). Other 

glycoproteins thought to be involved include gK and gL. gK plays some role in 

controlling virus-induced cell fusion (Debroy et al., 1985; Pogue-Gei1e and Spear, 1987). 

gL fonus a heterodimer (or higher oligomer) with gH - an association that appears to be 

essential for the proper processing and intracellular transport of both proteins 

(Hutchinson ct aI., 1992). 

Many cell surface receptor-ligand interactions trigger tyrosine phosphorylation and 

activation of signal transduction pathways. For example, the activities of fibroblast 

growth factors (FGFs) are mediated by a family of tyrosine kinase transmembrane 

receptors, the FGF receptors (Jaye ct aI., 1992). Tyrosine phosphorylation may also play 

a role in cytomegalovirus (CMV) and human immunodeficiency \'irus entry (Briand et 

aI., 1997; Keay and Baldwin, 1996). Qie ct aI., (1999) ha\'c s110\\'11 that upon exposure to 

HSV -1 and HSV -2, at least three Vero cytoplasmic host cell proteins, p80, pI () .. L and 

p140, become tyrosine phosphorylated within 5-10 minutes after \'iral exposure. No 
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phosphorylation is detected when the cells are exposed to a gL-deleted mutant, which 

binds, but fails to penetrate, suggesting that more than a physical binding of viral 

particles to cell surface receptors is required. Also from time studies. phosphorylation is 

associated with fusion of the viral envelope with the cellular plasma membrane. 

Therefore, tyrosine phosphorylation is triggered by viral entry. 

The precise roles of gB, gD, and gH in viral penetration are as yet Unknm\'ll. Interactions 

of these proteins with cell surface components somehow lead to fusion between the 

virion envelope and the cell plasma membrane. 

1.10 Glycoprotein C (gC) 

gC is a type I integral membrane protein (type I IMP), also known as group A IMPs 

(Garoff, 1985). A type I IMP contains an amino-tenninal signal sequence that is cleaved 

during processing, a large extenlal domain, a single transmembrane domain, and a 

hydrophilic cytoplasmic domain at its carboxy tenninus. gC of HSV -1 is acquired by 

virions during budding of the nucleocapsid through the inner nuclear membrane 

(Griffiths and Rottier, 1992; Roizman and Sears, 1996). 

1.10.1 Oligomeric structure 

Glycoprotein C is the gene product of gene UL44 (Frink ct aI., 1983; Draper et al., 1984). 

The gene is non-essential for virus replication in cell culture, as shown by the isolation of 

virus mutants that fail to produce gC (Heine et ai., 1974; Holland et al., 1983; Holland et 

aI., 1984). It encodes for a protein of Mr 54,995. It contains 511 amino acids, of which 

the first 25 constitute a cleavable signal sequence (Frink et ai., 1983; Kikuchi et aI., 

1984). The protein has nine consensus sites for N-linked oligosaccharides (Frink et aI., 

1983) as well as numerous O-linked oligo saccharides (Johnson and Spear, 1983: 

Olofsson ct a I., 1983: Dall' Olio et aI., 1985). 

gC contains eight cysteine residues which form .+ disulphide bonds (Rux et al.. 1996). 

The disulphide bond anangement is Cys-l (aa 127) to Cys-2 (aa 1.+.+): Cys-3 (aa 286) to 

2() 



Cys-4 (aa 347); Cys-5 (aa 386) to Cys-8 (aa 442); Cys-6 (aa 390) to Cys-7 (aa -1-19). 

These domains have been shown to play key roles in gC e.g. the disulphide bond between 

Cys-l and Cys-2 produces a loop which forms a binding region to the C3b fragment of 

the third component of human complement. 

No function has been associated with the region of gC containing Cys-5 through Cys-8. 

However the disulphide bonds result in an extended loop which may stabilise the carboxy 

terminus. It is also thought to be important in maintaining the native, functional 

confon11ation of the protein (Rux et al., 1996). 

The transmembrane domain of wild type gC consists of a sequence of 23 hydrophobic 

amino acids, followed by a highly charged cytoplasmic domain consisting of 11 amino 

acids. The cytoplasmic domain of HSV -1 gC is essential for the stable anchoring of the 

glycoprotein in the cellular plasma membrane (Holland et aI., 1988). Although important 

for membrane anchoring, the domain appears to be dispensable for incorporation of the 

glycoprotein into virions (Holland et aI., 1988). 

Unlike most other enveloped VIruses, HSV VIrIOnS display a distinctly disorganised 

arrangement of glycoproteins. StaImard et ([i., (1987) showed by immunoelectron 

microscopy that gC appeared to consist of "randomly distributed" long, thin components 

which appear to extend approximately 20nm from the envelope. Handler et aI., (1996) 

calculated the relative proportions of each glycoprotein in a HSV virion. They calculated 

that there are approximately 4,900 molecules of gC per particle of HSV -1 (KOS). 

1.10.2 HS binding domains 
Glycoprotein C has been shown to be the principal glycoprotein involved in binding of 

HS moieties (Fuller and Spear, 1985; Herold cr al., 1991; Svennerholm et aI., 1991). 

Trybala et al., (1994) reported the discovery of the sites of gC involved in HS binding. 

They elucidated this using a panel of anti-gC monoclonal antibodies. mar viruses 

caITying specific mutations in the gC gene, and synthetic peptides to localise the 

functional binding site. 
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The ammo acid residues critical for gC-mediated attachment of HSV -1 to HS \\ere 

localised to two separate regions of the glycoprotein: one including Arg-143, 

-145, -147 and Thr-150, and the other containing Gly-247 (Trybala et al., 19()'+). While 

the two regions are separated by almost 100 amino acids, in the three dimensional 

structure they are in close proximity. This area is an Arg-rich sequence and of a 

polycationic nature. Other polycationic substances e.g. neomycin, poly-L-Iysine and 

poly-arginine are known to compete with HSV attachment to cells (Langeland et aI., 

1987, 1988, 1990; WuDunn and Spear, 1989; Campadelli-Fiume et aI., 1990). Thus 

similarly, it is suggested that the gC-HS interaction relies a great deal on ionic 

interaction. 

1.10.3 gC null mutant viruses 

Herold et aI., 1991 constructed a gC-negative VIrus, to detennine the role of gC in 

adsorption and infectivity. Using HEp-2 cells, they found that significantly fewer gC­

negative virions than either wild type or gB-negative virions bound to the cells. However 

binding of gC null mutants was more avid than wild type to cells, as they could not be 

removed by simple washing. This could indicate that binding of gB (the other HS binding 

glycoprotein) to HS or to its receptor is stronger than gC to HS. Also, there was a 

significant delay in the penetration of adsorbed gC -negative virus compared to wild type, 

but the rates of penetration for the two viruses were then comparable (Herold et aI., 

1991 ). 

For HEp-2 cells, when gC is present in the VI non, the binding activity of gC 

predominates, and gB appears not to contribute significantly to initial viral attachment. 

For gC-negative viruses, gB plays the key role in the attachment of \'iruses (Herold et aI., 

1991). Thus gB may interact when gC is missing or when the structural elements of HS 

to which gC binds are inaccessible or limited. These features may be present in different 

concentrations in different cell lines. Sears c[ aI., 1991, showed that wild type and gC­

negative strains differentially infect the apical and basolateral surfaces of polarized 

MDCK canine kidney cells. The uC -neuati\e strain could onl\' infect cells from the v b -



basolateral surface, whereas the wild type could infect from both surfaces. This could be 

due to the fact that in gC-negative virus the structures to which gB binds. are only present 

on the basolateral surface, whereas those with which gC interacts are present on both 

surfaces. 

1.11 Glycoprotein B (gB) 

Glycoprotein B is the gene product of gene UL27. gB is among the most highly 

conserved herpesvirus structural components, suggesting a common and essential role in 

the life cycle of the Herpesviridae (Albrecht and Fleckenstein, 1991; Pellet et al., 1985b). 

gB is expressed as an early gene product that persists following viral DNA synthesis, 

indicating that it is a member of the yl temporal class of genes. The gB structural gene 

encodes 904 amino acids (Bzik et al., 1984). Biochemical analysis of gB has 

demonstrated that it contains a 30-residue N-terminal signal sequence that is cleaved 

during processing, a 967 -residue external domain, a 68-residue transmembrane domain 

that is predicted to span the membrane three times, and a 109-residue cytoplasmic 

domain (Bzik ct al., 1984; Cai et al., 1988; Claesson-Welsh and Spear, 1987; Pellett et 

al., 1985b). The molecule forms minimally a homodimer during or soon after the process 

of translation and is subsequently glycosylated through a series of successive stages in 

the rough endoplasmic reticulum involving carbohydrate addition to six consensus sites 

for N-linked glycosylation (Chapsal and Pereira, 1988; Claesson- Welsh and Spear, 1986; 

Kousoulas et al., 1983). The functional form of gB is an oligomer (Cai et al .. 1988) and 

it was seen that oligomer fonnation required a 28- amino acid movable domain consisting 

of residues 626 to 653 (Laquerre et aI., 1996). Within this domain it was shown that a 

Cys residue at position 633 is essential for folding, processing. and incorporation into 

mature infectious virus particles. gB is fmiher processed in the Golgi complex and is 

transported to the surface of infected cells. The pathway for gB insertion into the viral 

envelope is thought to involve diffusion or active transport of immature gB to the inner 

nuclear membrane where it is initially acquired. along with the other envelope 

glycoproteins during the process of virion budding (Darlington and Moss, 1968, Gilbert 

and Ghosh, 1993; Gilbert ct al., 1994, Torrisi Cl a/., 1992) 
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By immunoelectron microscopy, Stannard et ai .. (1987) showed that gB appeared in the 

HSV virion as clustered "T -shaped" spikes. These fonn the most prominent spikes. 

extending about 14nm from the envelope. Unlike gC, gB was in patches which \vcre 

distinct from one another. From Handler et ai .. (1996), the quantity of gB in the virion 

envelope was similar to gC in both HSV KOS and HSV NS (i.e. approx. -L900 

molecules). 

1.11.1 Role in Adsorption and Penetration 

Although gB is able to mediate virus binding, at least when gC is absent, it is unknown 

whether this binding is distinct from the non11al pathway, only occurring when gC is 

absent, or whether it occurs alongside gC-binding, though is only responsible for a small 

proportion of viral glycoprotein binding. gB is also required for viral penetration and for 

HSV -induced cell fusion (Manservigi et al .. 1977; Sanniento et ai .. 1979; Cai et ai., 

1988), whereas gC is dispensable for these two processes (Manservigi et ai.. 1977; Homa 

et ai., 1986). Therefore, the possibility exists that the interaction of gB with HS is 

important in part for its contribution toward activation of membrane fusion. 

1.11.2 HS binding domains 
gB contains a lysine-rich (pK) sequence (amino acids 68-76: KPKKNKKPK). This 

sequence is similar to the consensus sequence predicted for the HS binding domain of 

proteins (Cardin and Weintraub, 1989; Trybala et ai.. 1994). Laquerre et ai., (1998c) 

deleted this sequence from gB to detennine what role this played in HS binding, viral 

entry and cell-to-cell spread. They found that the pK sequence is not essential for gB 

processing or function in infection; is responsible for HS binding; and the mutant gB 

molecule lacking the pK sequence proved functional for virus penetration by rescue of 

gB null mutant virus. 

1.11.3 gD and its receptors 
Glycoprotein D is the gene product of gene US6 (Watson c! ([I., 1982). This gene is 

essential. It encodes for a protein of Mr 43.344, and contains 39.+ amino acids. It 

functions in adsorption, binding to several cellular ligands. it contains a cleavable N-



terminal signal sequence. It has a hydrophobic sequence near it's N-terminus, a 

hydrophilic sequence near it's C-terminus which functions as a membrane-spanning 

domain and several sites for N-linked and O-linked glycans (Campadelli-Fiume and 

Serafini-Cessi, 1985). At the amino acid level, gD from HSV -1 (gD-l) is 85% identical 

to its homologue in HSV-2 (gD-2) (Lasky and Dowbenko, 1984; Watson, 1983; Watson 

ct a/., 1982). The two proteins are functionally interchangeable (Muggeridge et aI., 

1990b, Ruyechan et ({I.. 1979) and give rise to type-common and type-specific 

monoclonal antibodies (Muggeridge et aI., 1990a). gD-l and gD-2 have high structural 

and functional homology (Chiang et aI., 1994; Lasky and Dowbenko, 1984; Muggeridge 

et aI., 1990b; Ruyechan et aI., 1979; Watson, 1983). Both proteins have identical 

disulphide bond patten1s (Long et aI., 1992) and analogous mutations in gD-l or gD-2 

have similar effects on antigenicity and function of both proteins (Chiang et aI., 1994). 

1.12 Other HSV binding ligands 

Human and animal representatives of the alphaherpesvirus subfamily exhibit common 

requirements for entry into cells (Mettenleiter, 1995; Spear, 1993). A cloning strategy 

has been devised for isolating plasmids encoding cell surface proteins that can mediate 

herpes simplex virus type 1 entry (Montgomery et aI., 1996). 

This assay relies on the use of Chinese hamster ovary (CHO) cells, which express GAGs 

required for virus binding to cells but are resistant to the entry of certain HSV -1 strains 

such as HSV-l(KOS) (Sheih et aI., 1992). Expression plasmids or subdivisions of the 

libraries, that contain plasmids capable of confelTing susceptibility to HSV -1 (KOS) can 

be identified by transfecting the CHO cells and then assaying for infectivity with a 

recombinant HSV -1 (KOS) expressing a reporter gene. This method was used to isolate a 

previously undescribed member of the human TNF receptor family, which was originally 

called herpesvirus entry mediator (HVEM), nO\\ termed H\eA (herpesvims entry protein 

A) (Montgomery et aI., 1996). HveA is a type I membrane glycoprotein "'ith cysteine­

rich repeats in the ectodomain that are characteristic of the TNF receptor family 

(Montgomery e{ al.. 1996) and \\'ith a cytoplasmic domain that can interact \vith members 

of the TRAF family of signalling molecules (Hsu c[ al..1997; !\larsters C[ ([1..199-'), 



HveA also binds to isolated HSY -lor HSY -2 gD and to gD in virions (Nicola et at., 

1998; Whitbeck et af., 1997). The stage ofHSY entry at which HYEM operates must be 

either the membrane fusion reaction that occurs after binding of virus to cell-surface 

GAGs, or the release of internal virion proteins, including YP 16, from sites of entry and 

their transport to the cell nucleus i.e. virus binding to CHO-Kl cells occurs efficiently in 

the absence of HYEM or in the absence of anti-HYEM antibody (Montgomery et at., 

1996). By use of anti-HveA antibodies that blocked HSY entry. it was shown that HveA 

serves as the principal co-receptor for entry of HSY -1 (KOS) into activated human T 

lymphocytes (Montgomery ct at., 1996). The antibodies did not protect a number of 

other human cell types from infection, however, indicating that there must be other co­

receptors for HSY entry. Another indication for the existence of multiple independent 

receptors for HSV entry was the finding that, although HveA expression in CHO cells 

enhanced the entry of all wild type HSV -1 and HSV -2 strains tested, they failed to 

mediate the entry of three mutant HSV -1 strains (Montgomery ct at., 1996) - HSY­

I(KOS)Ridl, HSV-l(KOS)Rid2, and HSY-l(ANG). The gD from these mutant viruses 

also failed to bind HveA, whereas wild-type fOlIDS ofHSY-1 and HSV-2 gD were able to 

bind (Whitbeck et at., 1997) 

A second mediator of HSV entry was shown to be poliovirus receptor-related protein 2 

(PlT2) (Eberle et af .. 1995). No function and no poliovirus receptor activity have been 

reported for this protein, and it was therefore designated herpesvirus entry mediator B 

(HveB) (Wanler et af., 1998) or Nectin2 (Takahashi et a/., 1999). HveB mediates the 

entry of HSV-2 strains, PRY, and certain mutants of HSV-l, (KOS)Ridl, (KOS)Rid2, 

ANG), but fails to mediate the entry of wild-type HSV-I strains or BHY-l (Warner et at., 

1998). This data shows that multiple alphaherpesvirus receptors exist, and differ in their 

specificities for individual viruses in the subfamily. 

Because HveB is closely related to the poliovirus receptor (Pvr) (Mendelsohn et at., 

1989) and to the poliovirus receptor-related protein 1 (PlTI) (Lopez ct at., 1995). the 

possibility that one or both of these proteins might mediate the entry of HSV -1 and -2 as 

well as PRY and BHY-I was explored. Prrl mediated the entry of several HSV-I strains 



and three HSV -1 mutants (ANG, Ridl, Rid2) with amino acid substitutions in gD that 

preclude the use of HveA for entry (Montgomery cf aI., 1996). Prrl designated as HYeC 

(Geraghty et al.,1998) or Nectinl (Takahashi ef (fl., 1999), also enhanced infection by 

HSV-2 strains (Sheih et al., 1992). HveC expression rendered CHO cells susceptible to 

PRY and BHV -1 as well as HSV, entry being a function of virus dose. The region of gD­

binding activity and that functions in HSV entry is located in the V domain of its 

ectodomain (Cocchi et aI., 1998; Krummenacher et aI., 1999). Pvr mediated the entry of 

PRY and BHV-l but not of the HSV-l strains. The fact that HveC and Pvr (designated 

Pvr-HveD), both of which are human molecules, can mediate entry ofPRV and BHV-l 

does not imply that human cells could support the replication of those viruses; it does 

suggest, however, that the animal homologues of HveC and Pvr-HveD could mediate 

entry of those viruses into cells of the natural hosts. Expression of HveA is detected 

principally in lymphoid organs (Kwon et aI., 1997; Hsu et (fl., 1997), whereas HveB, 

HveC, and Pvr-HveD can be expressed in cells of the nervous system (Wanler et aI., 

1998; Mendelsohn et aI., 1989) or in cells cultured from the nervous system. The cellular 

role of HveB and HveC is that of intercellular adhesion molecules. They are anchored to 

the actin cytoskeleton and are recruited to cadherin-based adherens junctions through 

binding to L-afadin (Takahashi et al., 1999; Lopez et al., 1998). 

HveB and HveC can be expressed individually or together in various human cell types of 

neuronal, fibroblastic, and epithelial origin (Wanler et aI., 1998). In these cell types, 

either or both of these proteins could be important entry mediators for HSV -2 strains, and 

rare variant HSV -1 strains, whereas the wild-type HSV -1 strains would be able to use 

HveC, but not HveB. Thus it is possible that the variable ability of different HSV strains 

to utilise HveA, HveB, and HveC (and other unidentified proteins) for entry and variable 

expression of these entry proteins in different cell types will gO\'ern in pati any strain­

specific and serotype-specific patterns of viral spread in infected persons. 

Cocchi et al. (2000) report HveC as a cellular function involved in cell-to-cell 

transmission of HSV -1, both in cells expressing H\'eC cDNA as a transgene and in a 

variety of human cell lines. Cell-to-cell spread, like entry, invol\'ed the V domain. Taken 
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with its expression in numerous human tissue types, this makes H \'eC a likely candidate 

as a mediator of virus spread to tissues that are the target of HSV infection in humans. 

Cocchi et of. (2000) propose that it promotes cell-to-cell spread by establishing the 

necessary intercellular contacts between juxtaposed cells, both by engaging in 

homophilic interaction and by interaction with viral gD. 

A further gD receptor, 3-0-sulphated heparan SUlphate, has recently been found by 

Shukla et al., (1999). By screening CHO cells resistant to HSV entry transfected with 

cDNA, isoforms of D-glucosaminyl 3-0-sulfotransferases (3-0STs) were shown to 

confer susceptibility to HSV entry (3-0ST -3 A and 3-0ST -3 8 ). Members of the family 3-

OSTs are responsible for the addition of sulfate groups at the 3-0H position of 

glucosamine in HS. They modify HS late in its biosynthesis and each isoform recognizes 

as substrate, glucosamine residues in regions of the HS chain having specific, but 

different, prior modifications, including epimerisation and sulfation at other positions 

(Liu et al., 1999). Thus different 3-0STs generate different potential protein-binding sites 

in HS. From Shukla et 01., (1999) the enzyme-modified HS, rather than the enzymes 

themselves served as receptors to permit HSV -1 entry, as heparinase blocked entry of 

HSV -1 to cells. 3-0STs are expressed in a variety of human tissues and cells (Shworak et 

al., 1999) and may help explain the broad host range of HSV -1. 

1.13 HS binding domain-deleted virus 
Laquerre et aI.. 1998( c) constructed a virus which was gC-negative and gB pK-negative, 

thus all its HS binding domains were deleted i.e. tenned KgBpK-gC-. The rate of cell 

bound KgBpK- (HS binding domain of gB deleted) mutant vinls penetration was reduced 

compared to wild type virus, indicating that gB recognition of HS was required for this 

process. A gC null virus (KCZ) also entered cells more slowly, whereas the double 

mutant (KgBpK-gC-) virus did not differ significantly from either single-mutant virus, 

suggesting that HS recognition by both glycoproteins is required for efficient virus entry 

and that they may cooperate in this process. Also the double-mutant entered cells with a 

kinetics similar to wild type virus on sog9 cells (a glycosaminoglycan-deficient L-cell 

line) (Laquerre ct aI.. 1998c). This suggests that deletion of the HS binding function of 
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gB does not alter the fusion function of gB. Also, since the double-mutant was capable 

of binding to the cell surface through a non-HS receptor, but demonstrated a lower rate of 

penetration than wild type virus, viral binding to the inherent non-HS receptor can 

substitute for HS binding in promoting virus entry, but with less efficiency. 

Laquerre et aI., (1998c) also observed the ability of the mutant viruses to form plaques in 

the presence of virus-neutralising antiserum, where plaque formation is dependent on 

cell-to-cell spread. They showed that the KgBpK- virus produced smaller plaques than 

wild type, while gC -negative virus produced plaques larger than wild type, and KgBpK­

gC- virus produced plaques similar in size to wild type virus. Thus, gB binding to the HS 

receptor is required for efficient intercellular infection. 

1.14 HSV entry into primary neurons 

HSV in its nonnal life-cycle, mainly infects two distinct cell types, epithelial and 

neuronal cells (Roizman and Sears, 1993). Most of the work on HSV-l has been carried 

out using epithelial cells. However, it is unknown whether the requirements for HSV-l 

entry may vary between the two cell types, as has been postulated for other viruses e.g. 

human immunodeficiency virus type 1 (HIV-l) (Bhat et aI., 1991; Peudenier et al., 1991; 

Parmantier et aI., 1995). It is possible that a different family of GAGs may mediate 

binding in neurons, or that they may be present in different concentrations on neuronal 

cells, or may possess different structural elements. 

To investigate the entry requirements Immergluck ef aI., 1998, used embryonic chick 

brain as a modeL and compared entry with fibroblast cells. They showed that less soluble 

heparin was needed to inhibit entry to chick fibroblast cells than primary neurons. This 

may be because neuronal cell surface contains more HS receptors than fibroblasts, or that 

the virus may have a higher affinity for neuronal HS than fibroblast HS, or that soluble 

heparin may not resemble neuronal HS as well as fibroblast HS. 

A gC -negative virus was used to infect the primary neurons, and it \\as seen that it had a 

reduced specific binding acti\ity and specific infectivity compared to the parental \\ild 



type VIruS or gC+ VlrLlS 111 fibroblasts (Immergluck et o/., 1998). There was no 

impainnent in the ability of the gC-negative virus to bind to neuronal cells (\'irion 

particles bound per cell). However, there was a marked reduction in the ability of the gC­

negative virus to infect neuronal cells and express an immediate early reporter gene, ~_ 

gal (Immergluck et aI., 1998). 

These results obtained for neurons suggest that gC does not play the same role in initial 

binding to neurons as it does to fibroblast or epithelial cells, but it does playa key role in 

entry at a step beyond the initial binding of virus to the cell surface. 

1.15 Cell tropism and serotype differences in viral entry 

Although HSV -1 and HSV -2 bind HS, the serotypes exhibit differences in epidemiology, 

cell tropism, and susceptibility to inhibitors of viral binding that may reflect differences 

in viral entry. For example, HSV -1 is more likely to cause oral lesions and sporadic 

encephalitis, whereas HSV -2 commonly causes genital lesions. For HSV -1, but not 

HSV-2, gC plays the predominant role (at least ill vitro) although gC-2 may contribute to 

the interactions of HSV -2 with cell surface HS (Gerber et aI., 1995). It seems likely that 

gB-2, the other heparin-binding glycoprotein, may play the key role in mediating HSV-2 

binding. Thus, the differences in the relative contribution of gC and gB to viral binding 

for HSV -1 and HSV -2 may help to explain differences in tropism and viral pathogenesis. 

For example, cells that preferentially bind HSV -1 may express more gC-specific 

structural features of HS, whereas cells that preferentially bind HSV -2 express more gB­

specific structural features of HS. 

The heterogeneity of the various HS proteoglycans expressed on cell types could specify 

distinct receptors for various ligands, including HSV -1 and HSV -2, Binding of HSV -1 to 

Vero or HEp-2 cells is mediated principally by gC-1 (Herold et ai., 19()'+: Herold cl ai., 

1991; Svennerholm ct aI., 1991; Tal-Singer ct ai., 1995)' with gC-deleted mutants 

showing decreased specific binding activities, marked lag in penetration and reduced 

specific infectivities (Herold c! ai., 1991). In contrast, an HSV -2(G) mutant with gC-2 

deleted shows no impain11ent in specific binding acti\'ity, rate of penetration, or specific 
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infectivity on Vero or HEp-2 cells (Gerber et (fl., 1995). Thus, it suggests that gB-2, the 

other HS-binding glycoprotein, plays a key role in HSV-2 attachment to these cells. 

Most viruses bind at low temperatures (0 to 4°C) but penetrate cells only at physiological 

temperatures. For some viruses, a secondary binding step follows the initial binding at 

4°C (Haywood, 1994). Thi s secondary binding generally occurs only at temperatures 

pennissive for penetration and may be required for penetration. Herold et a/., 1996 

showed the differences in HSV -1 and HSV -2 binding at 4(IC and 37()C by comparing the 

effects of modified heparin compounds during the adsorption period at these two 

temperatures. They have shown that the initial step in HSV -1 adsorption may be a low­

affinity interaction between gC-l and HS stnlctures. This initial binding is observed at 

4°C and promotes efficient adsorption, but is not necessary. This interaction may serve to 

concentrate virions at the cell surface, and at physiological temperatures, may promote a 

confonnational change in the virus so that a second, higher-affinity interaction with HS 

occurs. The second interaction is mediated primarily by gB-l binding either to a 

different subset of HS structures or with higher affinity to similar HS moieties (Herold et 

al., 1995). Studies conducted at physiological temperatures primarily reflect this second 

interaction, as evidenced by the observation that there are no significant differences 

between wild-type viruses (containing both HS-binding glycoproteins, gB and gC) and 

viruses with gC-l deleted (containing only gB) with respect to susceptibility to inhibitors 

of viral adsorption at 37°C; differences are only detected at 4llC. This second interaction 

may be essential and presumably triggers subsequent heparin-independent interactions 

between the virus and the cell surface that culminate in virus-cell fusion. Subsequent 

interactions probably include interactions between gD and/or gH-gL and other cell 

surface components (Fuller and Lee, 1992; Jolu1son c! (fl., 1990; Jolmson and Ligas, 

1988; Karger and Mettenleiter, 1993; McClain and Fuller, 1994). Minimal temperature­

dependent differences were seen for HSV -2 i.e. binding at both temperatures may be 

mediated principally by only one glycoprotein, presumably gB-2. Thus, there may be 

differences in the structural sequences of HS \\'ith \vhich HSV -1 and HSV-2 

preferentially bind and differences in initial (evident at .fIC) and secondary (evident at 

37°C) interactions with cell surface HS. These differences in the roles of gC and gB in 

viral binding, may contribute to the obsen'ed differences in epidemiology and cell 
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tropism. Also, Shukla et aI., (1999) have shown that the action of D-glucosaminyl 3-0-

sulfotransferases (3-0STs) creates modified HS which binds to gD. Cells expressing 3-

OSTs are more susceptible to HSV -1 than to HSV -2. thus this could also playa role in 

determining cell tropism. 

1.16 Motor neuron infection by HSV-l 

HSV -1 infections begin at sites of the host exposed to the environment e.g. the epithelial 

linings of the pharyngeal tract, the eyes. Virus replication usually occurs first in 

nonneuronal cells, followed by spread of virus into afferent (e.g. sensory) or efferent (e.g. 

motor) nerve fibres innervating the infected tissue. Typically HSV -1 establishes a latent 

infection predominantly in sensory nerves, however, infection of motor nerves occurs. 

Early studies by Sabin (1938) first demonstrated that the site of infection influenced 

transneuronal spread of virus. Motor neuron infection in experimental animals can be 

achieved by infection of the animal at several sites e.g. tongue, gastrocnemius muscle. 

Dobson et aZ., (1990) showed that HSV -1 can establish a latent infection in motor 

neurons. Expression of a 0-galactosidase marker within the virus in motor neurons was 

seen to be transient with respect to expression of the marker in sensory neurons. This was 

thought to be due to the choice of promoter (Maloney murine leukaemia virus long 

terminal repeat promoter) driving the marker (Dobson et (fZ.,1990). Yamamura et aZ., 

(2000) injected rats with an attenuated HSV expressing 0-galactosidase under the LAT 

promoter in the gastrocnemius muscle. The virus was introduced into the anterior hom 

motor neurons of the spinal cord where 0-gal activity was observed without apparent 

tissue destruction or inflammation. The expression of 0-gal activity was recognised in 

90% of the motor neurons and lasted for over 182 days, with expression occurring during 

the latent phase of the virus. 

1.17 ICP34.5 
In 1983 Thompson et ({Z., identified a neurovirulence locus in the long repeat region of 

the HSV -1 genome. Subsequently the gene was identified and called yI 3-J..5 by Chou and 

Roizman (1986) in strain F. and RLI in strain 17+ (Dolan cr al., 1992). The gene product 
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of this locus is called ICP34.5. Following intracranial inoculation, mutants in this region 

are 100,000 times less virulent than wild type viruses (Taha ct al .. 1989: Chou et al .. 

1990; MacLean et al., 1991). The RL1 promoter is found partially within the (I sequence 

and it lacks a canonical TAT A box. 

Two common strains of HSV-l, F and 17+ show homology in ICP34.5 with the 

exception of a peptide repeat PAT present 10 times in strain F but only 5 times in strain 

17+ (Dolan et al .. 1992). Deletion mutants ofRLl include 1716, a 759 bp deletion, that 

is located within each copy of the BamHI s fragment (0 to 0.02 and 0.81 to 0.83 map 

units). The deletion removes one complete copy of the 18bp DR1 element of the {I 

sequence and terminates 11 05 bp upstream of the 5' end of IE l. (MacLean et al., 1991). 

Several other RLI mutations have been made by introducing stop co dons downstream of 

the initiating methionine. 

At some sites of primary infection e.g. footpad, vagma, the replication of ICP34.5 

mutants is much less than that of wild type virus, whereas in others e.g. eye, replication 

appears to be almost completely inhibited (Spivack et aI., 1995). ICP34.5 -mutants 

establish latency inefficiently and have been reported to reactivate far less efficiently than 

wild type virus as measured by explant in vitro reactivation from mouse ganglia 

(Robertson et aI., 1992; Pen1g et al.. 1995). 

The function of the protein has shown to be cell type and cell state dependent (Brown et 

(II., 1994a). In mouse 3T6 cells, the lack of ICP34.5 results in a defect in maturation and 

the egress of virus from infected cells (Brown et (II., 1994b). In the human 

neuroblastoma SK-N-SH cell line, infection with ICP34.5-negative HSV results in 

preclusion of host cell protein synthesis via the protein kinase PKR pathway (Chou and 

Roizman, 1992, Chou ct (II., 1995). 

ICP34.5 is thought to function by complexing \\·ith proliferating cell nuclear antigen 

(PCNA), a protein involved in DNA replication and repair. This fact and their selective 

replication capacity has led to the development of ICP34.) null mutants in the treatment 



of brain tumours (Rampling et al., 2000; Markert c{ ai., 2000). In tumour cells, PCNA 

levels are high and so ICP34.5 is not required for productive HSV replication, whereas in 

the surrounding nondividing, fully differentiated cells, PCNA levels are 10\\'. and so 

ICP34.5 is an absolute requirement for viral replication. 

A 63-amino-acid carboxyl-terminal domain of ICP34.5 has been shown to haye 

significant homologies (McGeogh and Barnett, 1991) with the carboxyl domains of the 

mouse myeloid differentiation protein MyD 11 6 and the hamster growth arrest and DNA 

damage protein GADD34 (Fornace et al., 1989). The amino-telminal portions of the 

proteins are quite diverse, and the sizes of the 3 proteins also vary (ICP34.5: 248 aa; 

MyDl16: 657aa GADD34: 590aa). It has been shown that the carboxyl-terminal 63 

amino acids are essential but not necessarily sufficient for the prevention of host cell 

shutoff by ICP34.5 and can be replaced by the homologous domain of MyD 116 (He et 

al., 1996). 

The roles of MyD 116 and GADD34 in the cell appears to be in blocking growth and 

DNA replication after damage, and the genes may act as tumour suppressor genes. 

However, the expression of MyD 116 or GADD34 does not determine permissivity for 

ICP34.5-negative HSV (Brown et (il., 1997). 

1.18 Viral vectors for gene therapy 

One of the principal goals of gene therapy has been the development of a "magic bullet" 

- a vector that could be used to deliver theraputic genes efficiently and accurately to any 

preselected tissue or cell type in the body. Ideally the vector would be administered by 

injection or infusion, whereupon it would accumulate and deliver the gene in the target 

organ or cells, but not into the surrounding neighbouring cells. Viruses are seen as ideal 

candidates for vectors e.g. retroviruses, adenoviruses, herpesviruses because of the 

natural viral mechanisms which efficiently and effectively deliver DNA to the host cell 

nucleus. At present no virus is ideally suitable for use as yiral \'ector and seyeral 

techniques are being used to improve their capabilities. 



The first requisite of an injectable vector is that it should be preferentially retained in the 

organs and tissue that harbour the target cells. One strategy to ensure this is to modify the 

binding characteristics of these vector particles. One way has been to genetically modify 

the virus coat proteins e.g. retrovirus (Valsesia-Wittmann et af.. 1996), adenovirus 

(Watkins et af., 1997), herpesvirus (Laquerre et af., 1998a). An alternative strategy has 

been to use soluble bifunctional crosslinkers that bind both to the vector particle surface 

and to a cell-surface receptor, thereby providing a molecular bridge to anchor the vector 

particle to a targeted receptor (Wickham et af., 1997). A combined approach is to display 

an immunoglobulin binding domain on the vector as a genetic fusion to the coat protein, 

and then use a monoclonal antibody to crosslink the vector with the targeted cell (Ohno el 

of., 1997). A fourth approach has been to replace the coat proteins of the vector with the 

coat proteins of another virus that already has a desired host range. For example, 

retroviral vectors have been targeted to CD4-expressing cells by adding HIV gp 120 to the 

retrovirus (Indraccola et af., 1998). CD4 was also incorporated into the HSV genome 

(Dolter et aI., 1993), however, very low levels of the protein were incorporated into the 

viral envelope. Attempts to demonstrate that CD4 in the HSV envelope can interact with 

HIV -1 env on a cell surface to promote membrane fusion proved unsuccessful. 

1.18.1 Viral vectors for eNS applications 
Specific behavioural and pathological changes can result from the altered expression of 

small groups of genes or single genes within individual neuronal popUlations. Changes in 

the expression of specific genes in localized brain areas have been observed in 

association with particular diseases e.g. Alzheimer's disease (Mullan, 1992), amyotrophic 

lateral sclerosis (Rosen cT af., 1993). Current approaches using drugs have proved 

moderately successful, however often they cannot be directed towards a specific target, 

nor be specific or selective enough to be targeted directly to specific targets. 

Viral vectors have been suggested as ideal candidates for use in the treatment of CNS 

diseases. The premise is based on the inoculation of a viral vector within the nervous 

system to produce localized expression of a gene of interest. This also has the advantage 

that several genes can be transmitted simultaneously. At present vectors for gene transfer 



to the eNS have been developed from adeno-, adeno-associated, retro- and herpes 

viruses. All of these have many advantages and disadvantages. 

• Adeno- and adeno-associated viral vectors 

Adenoviruses are linear double stranded DNA viruses that are pathogenic in humans, 

producing respiratory and intestinal infections. Their major advantage is that they can 

infect a wide variety of cell types, including post-mitotic cells, and can be obtained at 

high titre (Barkats et aI., 1998; Kozarsky and Wilson, 1993). However the disadvantages 

of this system include high immunogenicity, toxicity at high titres and inability to sustain 

long-tenn expression of the transgene (Barkats et aI., 1998). 

Adeno-associated virus (AA V) is a non-pathogenic member of the parvovirus group that 

requires coinfection with a helper virus (adenovirus or HSV) to replicate. They have 

several advantages for use as a viral vector: they can transfer foreign genes into neuronal 

cells, although at low efficiency; they are physically stable which allows purification, 

storage and in vivo administration; they have low toxicity; they have the ability to 

maintain long-tenn and stable transgene expression. However, the primary disadvantage 

of AA V -based vectors is that the insert size is limited to a maximum of approximately 

5kb. Also efficient large-scale production of high-titre AA V is difficult to achieve 

(Snyder, 1999). 

• Retroviral vectors 

The most widely used vector systems in gene therapy are replication-defective murine 

and avian retroviruses packaged into infectious virions with helper virus. However, 

retroviral integration and gene expression requires target cells that are undergoing cell 

division (Miller et al., 1990), and therefore neurons cannot be infected. Recently 

however, non-pathogenic retroviral vectors based on lentivirus have been developed 

(Olsen, 1998; Poeschla et al., 1998). They can infect non-dividing cells in a long-lasting 

manner, delivering foreign genes in the absence of tissue pathology or immune reaction. 

1.18.2 Herpes simplex virus vectors 
HSV -1 has been suggested as a viral vector candidate for deli\'ery to the nervous system. 

It has many advantages: it infects neurons efficiently: natural infection in humans 



includes a latent state in which the viral genome persists in a non-integrated form in 

neurons, without causing disease in the immune-competent host. In this state it is 

transcriptionally active, and this latency-specific promoter system can be used to express 

transgenes (Fink et af., 1996). HSV -1 is ideal for the delivery of multiple genes because 

of the large size of its genome (152kb) and the fact that approximately half of the gene 

functions may be deleted without blocking viral replication, allowing it to accommodate 

extensive foreign genetic sequences. A further advantage is the wide host range and so is 

not limited in its range of target cells. 

Some concerns exist using HSV as a viral vector. Immune-mediated toxicity has been 

noted in experimental animals after direct inj ection of recombinant HSV -1 into the brain, 

especially when animals had generated a peripheral immune respons to the vector (Wood 

et af., 1994). 90% of humans are thought to have circulating antibodies to HSV-l 

(Thomas et af., 2000). This immune sensitisation can enhance autoimmune reactions to 

self or transgene antigens. Triggering of autoimmune diseases has been noted as a 

consequence of virus infections in "immune-privileged" organs such as the brain and eye 

( Levin et af., 1998; Zhao et af., 1998), due in part to antigen mimicry. Thus, vectors 

derived fr01n a variety of viruses bearing or expressing antigenic proteins can potentially 

create damaging immune reactions in the sh011 term (weeks to months) or long term 

(years). 

A further safety issue is that the introduction/expression of vinls proteins may activate or 

facilitate replication of endogenous pathogenic viruses, or that replication-competent 

recombinant virus may be generated. Analysis of human brains at autopsy suggest that 

almost half bear latent HSV -1 (Sanders et af., 1996) and potential activation and 

replication of this virus in the brain could cause fatal encephalitis, \\'ith heightened risk to 

immune-comprimised patients. Experimental studies to date (Sundaresan et af., 2000) 

support the consensus that HSV vectors do not activate latent HSV -1, however, this is a 

relative parameter and may \'ary with different yersions of HSV \'cctors and the 

biological status of indiyidual subjects. 
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Three types of HSV -1 vectors are commonly in use: amplicons, replication-defecti\"e and 

replication-competent vectors. 

• Amplicons: these are plasmid-derived vectors engineered to contain both an 

Escherichia coli and HSV origin of replication and HSV cleavage-packaging recognition 

sequences. Due to their production method, samples are contaminated with high 

percentages of unwanted helper virus particles. This problem has been circumvented by 

using packaging-defective cosmid- or HSV -1 bacterial artificial-chromosome-based 

transfection systems to provide the helper functions (Frafel et al., 1996; Stavropoulos and 

Strathdee, 1998). The main advantages of these vectors are that they are easy to construct 

and multiple copies of the trans gene (up to 15) can be delivered to neurons within each 

viral capsid; however the size of the transgene is limited to 10kb 

• Replication-defective vectors: these are made of mutant viruses with deletions in 

one or more genes essential for the lytic cycle. Thus these need complementing cell lines 

for production. Several replication-deficient vectors have been constructed in which the 

immediate-early genes, whose expression produces ICPO, ICP4, ICP27 and ICP22 have 

been deleted or inactivated in various combinations (Marconi et al., 1996; Wu et al., 

1996). Deletion of all IE genes prevents virus toxicity for cells at high multiplicity of 

infection, allowing the vector to persist for long periods (Samaniego et al., 1998). 

However, elimination of ICPO also reduces the level of transgene expression in cell 

culture. The advantages of these vectors are the low toxicity and the possibility of 

introducing multiple transgenes in the viral genome. However, their principal limitation 

is the inability to sustain long-tenn expression of the trans gene in the brain. They are also 

difficult to grow to high titre and require cell lines expressing multiple complementing 

genes - these are also difficult to maintain. 

• Replication-competent vectors: These are composed of attenuated viruses where 

genes that are not essential for replication in cultured cells in 1'irro are either mutated or 

deleted. Mutant viruses have been created that are non-neurovimlent e.g. 1716 (MacLean 

c/ al., 1991). These can be produced to high titres and can hold multiple transgenes. 

1.19 Cell culture models 
Studies of motor neurons are quite difficult owing to the limitations in their isolation and 

culture. Also, no spontaneously arising motor neuron tumour cell line has eyer been 



described. In 1992 Cashman et aI., reported a proliferating, unifonn cell line which 

constitutively expressed motor neuron attributes. These were developed by perfonning a 

series of fusions between motor neuron-enriched primary embryonic spinal cord cells and 

N18TG2 neuroblastoma cells. Unlike the parental N18TG2 cells, some of these 

neuroblastoma-spinal cord (NSC) cell lines constitutively express a variety of 

characteristics associated with primary neurons. Two of the cell lines isolated and used 

in this study are tenned NSC-19 and NSC-34. 

1.19.1 NSC-19 and NSC-34 cell lines 

1.19.1.1 Motor neuron-like characteristics 

NSC-19 and NSC-34 cells express many of the morphological and physiological 

properties of primary motor neurons i.e. they extend processes, establish contacts with 

cultured Inyotubes, synthesize and store acetylcholine, support action potentials, induce 

myotube twitching and express neurofilament proteins (Cashman ct aI.. 1992). 

Hunter et aI., 1991, have shown that NSC-34 cells, similar to primary motor neurons and 

chick ciliary ganglion cells, adhere specifically to the leucine-arginine-glutamate (LRE) 

motif on S-laminin, a neuromuscular synapse-specific basal lamina glycoprotein (Hunter 

ct aI., 1989 a, b; 1991). This adhesion provides the best evidence that this hybrid 

uniquely expresses motor neuron phenotypic characteristics, as this attribute was not 

observed in a large series of other neural cells lines (Hunter et al .. 1991). Thus NSC-34 

is considered the most motor neuronal. 

1.19.1.2 Ganglioside expression 
Gangliosides are expressed in high concentrations in nervous tissues and are considered 

as cell surface antigens and receptors implicated in yarious biological functions including 

the control of cellular growth and differentiation (Yu and Saito, 1989). Due to the 

limitations and difficulties of using primary neurons, Matsumoto cl uI.. (1995), used 

various NSC cell lines ill lic/{ of motor neurons, in an attempt to elucidate their 

ganglioside composition. 



The major ganglioside ofNSC-34 cells was GM2 (~75%). Also present was GD1a, \yith 

GM1 being present in small quantities. The high level of GM2 expression may be due to 

high expression of N-acetylgalactosaminyltransferase (EC 2.4.1.92) which converts GM3 

to GM2. This pattern was entirely different from the other cell lines or the parental cell 

line i.e. NSC -19 cells expressed an unknown ganglioside, probably LM 1, predominantly, 

with other gangliosides GD 1 a, GD 1 b, GM3, and a second unknown ganglioside, 

probably Hex-LM1 was also expressed. 

The ganglioside expreSSIOn of NSC-34 cells is thought to mnTor most closely the 

characters of motor neuron cells i.e. the over representation of GM2 may correspond to a 

phenotypic property distinguishing motor neurons from other neurons. A paper 

published by Yoshino et al., (1994) with GM2 in primary neurons is in agreement with 

this hypothesis. 

1.20 Gangliosides 

Gangliosides are complex glycolipids that are found in all cell membranes, especially in 

neuronal cells (Wiegandt, 1985). They consist of a ceramide tail with an oligosaccharide 

chain of up to four sugars that by definition must contain at least one sialic acid residue 

(Figure 1.3). Sialic acid is a generic name for N-acetylneuraminic acid, and it is almost 

always attached to the galactose group of the oligosaccharide chain. The ceramide is 

attached to glucose, which is followed by galactose-N-acetylgalactosamine-galactose 

linked to the oligosaccharide chain. This structure sits on the outer cell membrane with 

the ceramide anchored in the phospholipids, leaving the oligosaccharide chain exposed 

(Guido and Riboni, 1985). 

The length and sialic acid composition of the extruding sugars from the plasma 

membrane, is thought to play an important role in the density, charge and binding 

characteristics of the cell (Ando, 1983). They possess high binding potential dependent 

on their ceramide and oligosaccharide portions (Tettamanti and Masserini, 1987). The 

gangliosides are believed to arrange themselves around membrane-bound proteins as 



functional aggregates instead of a unifonn distribution over the plasma membrane 

(Sharom and Grant, 1978; Yamakawa and Nagai, 1978). The interaction with these 

membrane-bound proteins is postulated to modulate the activity of the proteins and 

influence the membrane-mediated transfer of infonnation (Fishman, 1988; Hakomori, 

1990). Gangliosides have been postulated to have a multifunctional role, with influences 

on protein interactions (receptors, enzymes, ion channels and calTiers) at the membrane 

level. 

Studies have tried to identify differences in ganglioside composition between motor and 

sensory neurons, however no major differences in the localisation of the major 

gangliosides have been reported. However for gangliosides GM, and GD'a, results have 

shown that the ceramide components in human sensory and motor nerves do significantly 

differ in their long chain fatty acids (Ogawa-Goto et oL 1990). These differences can 

playa role in binding as Ogawa-Goto et al., 1990 showed that anti-GM 1 antibodies from 

sera of patients with Guillain-BalTe Syndrome showed greater reactivity to sensory nerve 

GM] than motor nerve GM" and both of these showed greater reactivity with eNS GM] 

(Ohta, 1994). As the oligosaccharide chain and sialic acid are identical in these 

gangliosides the differences in reactivity are most likely due to the ceramide moiety, but 

could also be due to other factors in the local microenvironment. 
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Ganglioside Structure 

GAt .................................. Cer-Glc-Gal-GaINAc-Gal 

GM.1 ................................. Cer-Glc-Gal 

NANA 

GM2 .... ............................. Cer-Glc-Gal-GaINAc 

NANA 

GMt ................................. Cer-Glc-Gal-GaINAc-Gal 

NANA 

GDta ............................................ Cer-Glc-Gal-GaINAc-Gal 

NANA NANA 

GD tb ................................. Cer-Glc-Gal-GaINAc-Gal 

NANA-NANA 

GTta ................................. Cer-Glc-Gal-GaINAc-Gal 

NAN A NANA-NANA 

GTtb .......................................... Cer-Glc-Gal-GaINAc-Gal 

NANA-NANA NANA 

GQtb ........................................ Cer-Glc-Gal-GaINAc-Gal 

NANA-NANA NANA-NANA 

Figure 1.3 Structure of gangliosides and related compounds 

Cer- Ceramide; Glc - glucose; Gal- galactose; GalNac - N-acetylgalactosamine; 

NANA - N-acetylneuraminic acid (sialic acid) 
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1.21 Escherichia coli heat-labile enterotoxin (LT) 

LT is an enterotoxin produced in the intestinal lumen by certain serotypes of Escherichia 

coli. It is responsible for a cholera-like illness in man. This is known by a \'ariety of 

names including traveller's diarrhoea and "Montezuma's revenge" (Rowe et ai., 1970). 

It is an ABs hexamer consisting of 5 identical B subunits and a larger A subunit. The 

class of AB" toxins may be subdivided into families on the basis of sequence homology 

and catalytic activity. The cholera toxin (CT) family includes, in addition to CT itself, 

the E. coli heat-labile enterotoxins LT (HoI et ai., 1995) and LT -II (Pickett et ai., 1987; 

Pickett et ai., 1989), and a less-well characterised toxin from Cal71pylohacter jejuni 

(Calva et ai., 1989) whose identity remains unproven. 

1.21.1 Genetics 

The gene encoding LT in E. coli is plasmid bOll1e (So ct ai., 1978; Dallas ct ai., 1979). 

By analysis of deletion mutants (Dallas et ai., 1979) the genes for the L T subunits, L TA 

and LTB, tenned eltA and cItB, were found to be transcribed into a single mRNA. 

1.21.2 Structure 

LTB is synthesized as a precursor with a N-ten11inal extension of 21 amino acids (PaIva 

ct ai., 1981). This leader peptide directs the protein through membranes and is cleaved 

from the polypeptide, releasing a mature protein. 

CT and LT are heterohexameric proteins (Mr, 84,000) (Meckalanos et ai., 1983) 

produced by Vihrio cholera and E. coli, respectively. The toxins consist of an A subunit 

separated from the plane of a pentameric ring f0l111ed by 5 smaller, identical B subunits 

(Gill, 1976; Lai ct al., 1976; Ohtomo et ai., 1976; Gill ct ai., 1981; Sixma et cd. 1991). 

Each B subunit interacts extensively with its adjacent subunits (Sixma et ai., 1993; 

Zhang ct ai., 1995a; Zhang et ai., 1995b) via multiple hydrophobic interactions, 

Hydrogen-bonds and salt bridge interactions. 



Consequently, B-subunit pentamers are highly stable. maintaining their quaternary 

structures in the presence of ionic detergents, in 8M urea, in 7M guanidinium chloride. 

and when heated to temperatures of < 80°C. LTB pentamers are also stable O\"er a pH 

range of 2.0-11.0, only undergoing disassembly at pH values less than 2.0 (Ruddock et 

a/., 1995). 

The main features in the B-monomer are two three-stranded anti-parallel ~-sheets, tenned 

I W2, ~3, ~~) and II (~l, ~5. ~6), a small N-tenninal helix and a large "central" helix (Sixma 

et at., 1991). A disulphide bridge (between amino acids 9 and 86) connects the N­

tenninal helix and strand ~5 (Sixma et at., 1991). In the pentamer, the monomers are 

arranged such that sheet I of each subunit fon11s a six-stranded anti-parallel ~-sheet with 

sheet II of the next subunit (Sixma, et at., 1991). The pentamer has a diameter of ~64A 

and a height of ~40A (Sixma et al., 1991). 

Sixma et at., (1991) have shown from crystallography that the A subunit can be 

described as a triangular or wedge shape in one view and a V -shape when rotated by 90°. 

Gill, D.M. (1976) by a series of cross-linking experiments showed that the one A subunit 

is actually composed of two peptides linked by a single disulphide bond. It is actually 

composed of two functionally different subunits, an enzymatic subunit (AI) and a short 

connector (A2) that mediates contact between Al and the B pentamer. The Al strand is a 

single-domain subunit with a complicated topology, consisting of many short stretches of 

secondary structure containing both a-helices and ~-strands. The A2 subunit is an 

extended a-helix, which associates with Al through extensive van der Waals interactions 

and continuing into the centre of the central pore fonned by the B pentamer. 

1.21.3 Mode of action 
L T is produced in the intestinal lumen by E. coli. Both the A and the B subunits are 

synthesised intracellularly as precursor proteins. After translocation across the bacterial 

cytoplasmic membrane and removal of leader peptides, the AB~ complex is assembled in 

the periplasm (Hirst cl (/t.. 1984; Hofstra cl at., 1984). Enterotoxigenic strains of E. coli 



may release the toxin as part of outer membrane fragments (Hirst et aI., 198-L Hofstra, et 

([I., 1984). 

The B pentamer binds ganglioside GMI in the membrane of intestinal epithelial cells, or 

any other cell that contains GMI (van Heyningen, 1974) with its plane parallel to the 

membrane (Ludwig, et 01., 1986; Reed, et aI., 1987; Ribi e! ul., 1988). Subunit A is 

inserted into the cytosol, activated by reduction of a disulphide bond (Gill and 

RappapOli,1979; Mekalanos ('1 aI., 1979; Tomasi and Montecucco, 1981) and associated 

with one or more cytosolic factors (Gill, and Meren, 1983: Kahn, and Gilman, 1984: 

Kahn and Gilman, 1986). The Al fragment released by reduction is capable of binding 

NAD (Cassel and Selinger, 1977; Cassel and Pfeuffec 1978) and catalysing the ADP­

ribosylation of Gsa, a GTP-binding regulatory protein associated with adenylate cyclase. 

The result is a sharp increase in cyclic AMP (cAMP) production (Cassel and Pfeuffer, 

1978; Gill, 1977; Gill and Richardson, 1980) which is responsible for the efflux of fluids 

and ions from the affected cell. The symptoms are manifested as a severe cramp and the 

copious "rice water" dianhoea characteristic of the disease. 

Neither the A subunit, nor the binding oligomer (B pentamer) is cytotoxic alone. 

1.21.4 Binding of the B pentamer 
The oligosaccharide moiety of GMI is bound by the complete AB~ hexamer and also by 

the B pentamer, but not by the monomeric B subunits (de Wolf et al., 1981). There are 

five binding sites on the holotoxin, and binding of GM 1 to the five sites is co-operative 

(Schon and Freire, 1989). 

The binding mode of members of the CT family has been elucidated from X-ray 

structures of the LT AB) assembly (Sixma et al., 1991; Sixma ct al., 1993) and a complex 

of the CT B pentamer with the branched pentasaccharide characteristic of GM 1 (Merritt 

c! o/., 1994). 



The receptor-toxin binding interaction may be described as a "two-fingered gnp 111 

which the Gal-GaiNAc "forefinger" of the longer branch of the pentasaccharide is fairly 

deeply buried in the toxin, and the sialic acid "thumb" which constitutes the shorter 

branch, lies along the toxin surface. The terminal galactose residue of the GM1 is 

completely buried in the toxin-pentasaccharide complex; the binding site for this tenninal 

sugar is notable for a complex net of H-bonding interactions tying all of the galactose 

hydroxyl oxygens to the protein, either directly or via tightly associated \vater molecules 

(Merritt et al., 1994). 

1.21.5 Binding specificities of L TB 

Both CT and L T require the free carboxyl group of sialic acid for optimum binding 

(Schengrund and Ringler, 1989), since neither binds asialo-GM1 effectively. Nuclear 

magnetic resonance data (Sillerud et al., 1981) suggest that a confoffi1ational change 

occurs in the oligosaccharide portion of the ganglioside when CT binds oligo-GM 1. CT 

and LT bind the tenninal sugar sequence Gal~1-3GalNAc (NeuAcu2-3) ~1- 4Gal. .. 

( Holmgren et al., 1973; Fukuta et al., 1988), and L T can interact directly with lactose, 

binding the galactose portion of that sugar (Sixma et al., 1992). 

Both CT and LT bind ganglioside GM1. CT interacts very weakly, approximately 1,000-

fold less effectively (Holmgren et al., 1973), with GD] h, but it does not bind any other 

related ganglioside. L T on the other hand interacts with a second class of receptors not 

recognised by CT (Holmgren ct al., 1982; Holmgren et al., 1985; Griffiths et al., 1986). 

These additional interactions include weak binding to GM2 and asialo-GM1 (Fukuta ct 

al., 1988). 

1.21.6 L TB fusion proteins 
Fusion proteins have been fused either genetically or chemically to the B-subunit 

(Czerkinsky ct al., 1989; Sanchez et al., 1988; Dertzbaugh and Macrina, 1989: Nashar ct 

al.. 1993). Fusions have been predominantly designed such that epitope or antigen 

extensions are present at the C -ten11inus of the B subunit (Nashar ('{ al .. 1993) i.c. the 3 
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end of the gene. This is largely due to the fact that the C -tenninus of L TB may be 

extended without interfering with B subunit assembly or GM 1 binding. Hmyeyer, 

fusions with functional GMl binding have also been constructed at the N-tenninus 

(Dertzbaugh and Macrina, 1989). 

Fusions that are too large or made at an inappropriate location may alter the confonnation 

of L TB and hence its stability. Ruddock et al., 1995, have shown that the acid stability of 

the pentamer is dependent upon the presence of an intersubunit bridge between the C­

tenninal carboxylate of the B subunit, Asn-103, and an adjacent subunit in the pentamer. 

Thus fusions with C-terminal extensions should disassemble at higher pH values than the 

wild type pentamer e.g. an (Asn-Ala-Asn-Pro)3 extension at the C-tenninus of hLTB 

(Fergusson et al., 1990) results in a pentameric protein which disassembles below pH 

3.52. 

1.22 Translational differences between prokaryotes and eukaryotes 

The mechanisms whereby ribosomes engage a messenger RNA and select the start site 

for translation differ between prokaryotes and eukaryotes. This initiation phase of protein 

synthesis does more than assemble the components that will assemble the components 

that will polymerise amino acids. Selection of the staIi codon sets the reading frame that 

is maintained normally throughout all subsequent steps in the translation process. Protein 

synthesis is often regulated at the level of initiation, which adds to the importance of that 

step. 

1.22.1 Selection of start sites in prokaryotic mRNAs 

At certain AUG or AUG-cognate codons, the small (30S) ribosomal subunit fonns an 

initiation complex with a special fonn oftRNA (fMet-tRNA) and a GTP-binding protein 

called IF2. In addition to IF2, two other protein factors are required for initiation. The 

8kDa IF 1 is encoded by the i1~rA gene in Escherichia coli and the 20kDa IFJ is encoded 

by inrC. None of these initiation factors appears to interact directly \\'ith mRNA, although 

[Fl has an RNA binding domain (Sette ct al., 1997). 
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One function of IF1 and IF3 is to maintain a pool of free 30S subunits: IFI promotes 

dissociation of 70S ribosomes, while IF3 binds to the 30S subunit (McCutcheon Cl al., 

1999) and prevents rejoining of the 50S subunit. Both of these factors also stabilize the 

binding of fMet-tRNA-IF2 to the 30S subunit. IF3 contributes to the fidelity of initiation 

in a special way by destabilizing initiation complexes that may transiently fonn at weak 

sites, such as non-AUG codons (Butler et aI., 1987, Sussman et (fl., 1996). IF2 is the only 

tRNA-binding factor able to engage the 30S ribosomal subunit and fMet-tRNA is the 

only tRNA recognised by IF2. Thus it follows that all polypeptide chains initiate with 

methionine. This conclusion also holds when the start codon is something other than 

AUG. 

AUG is the most common initiator codon because it fon11s the most stable interaction 

with the CAU anticodon in fMet-tRNA, but GUG and UUG are used as start codons in 

>10% of bacterial genes (Blattner et aI., 1997; Cole ct (fl., 1998; Kunst ct aI., 1997). A 

two base pair interaction is apparently sufficient for interaction with the anticodon with 

those non-AUG codons. The 30S subunit positions itself conectly on the mRNA, and the 

initiation phase is completed when the 50S ribosomal subunit joins, fonning a 70S 

ribosome with fMet-tRNA occupying the P-site. 

1.22.2 The Shine-Dalgarno (SD) interaction 
Start codons in prokaryotic mRNAs are distinguished by an upstream, purine-rich 

sequence that pairs with a complementary sequence of the small ribosomal subunit. The 

earliest evidence for this SD interaction was the isolation of a complex between a 3' 

fragment of the 16S rRNA and a 30 nucleotide fragment of coliphage R17 mRNA that 

encompassed the start site for translation (Steitz and Jakes, 1975). 

The SD sequence consists of three to nine contiguous bases in the mRNA that fonn 

standard base pairs (not including G-U) \\'ith some or all of bases 153..+ to 15..+2 

(ACCUCCUUA) at the 3' end of the 16S rRNA. Chen cl (fl.. (1994) has shown that 

optimal translation occurs with a spacing of 5 nucleotides bet\\l:en the SO sequence and 



the intitiator codon. The SD sequence does function. albeit with reduced efficiency. \\hen 

it resides as far as 13 nucleotides from the AUG codon (Chen et al., 1994), Non-AUG 

codons that lack a SD sequence can support a very low level of initiation. This can be 

accomplished by coupled translation, i.e. an upstream cistron that terminates close to the 

UUG or GUG start codon of the next cistron delivers ribosomes to the internal start site 

which, lacking an SD element, is unable to recruit ribosomes independently (Groeneveld 

et aI., 1996). This device has been suggested to achieve limited expression of potent 

proteins that must not be overproduced. 

The SD interaction augments initiation apparently by anchoring the 30S subunit in the 

vicinity of the stmi codon. By promoting ribosome entry while an mRNA is transiently 

unfolded, the SD interaction also counteracts the refonnation of secondary structure that 

could hinder access to the AUG codon (De Smit and \'al1 Duin, 1994a). With many 

bacterial mRNAs, initiation depends simply on the SD sequence and nearby AUG codon 

being accessible to ribosomes (De Smit and van Duin, 1994b). There are however many 

mechanisms that control accessibility of the initiation codon, including repressor proteins, 

trans-acting RNAs, and switches in mRNA secondary structure (BruneI et aI., 1995; De 

Smit and van Duin, 1990; Lease et aI., 1998). In some cases, initiation is regulated by a 

repressor protein that traps the ribosome at the SDI AUG site. rather than blocking 

ribosome entry (Philippe et al.. 1993). 

1.22.3 Selection of start sites in eukaryotic mRNAs 
The eukaryotic mechanism of initiation is distinctive in that the small (40S) ribosomal 

subunit nonnally enters, not at the AUG codon, but at the 5' end of the mRNA. The 40S 

ribosomal subunit, canying Met-tRNA j-eIF2-GTP and other factors, then migrates 

through the 5' UTR until it encounters the first AUG codon. which is recognised by base 

pairing with the anticodon in Met-tRNA j (Cigan et ai" 1988), When a 60S ribosomal 

subunit joins the paused 40S subunit, selection of the stmi codon is fixed, 

In contrast to prokaryotic ribosomes, which often initiate at GUG or DUG. the eukaryotic 

initiation mechanism does not allow an altematiyc codon simply to substitute for :\l:G, 
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There is a limited ability to initiate at ACG or CUG in addition to the first AUG codon. 

As in prokaryotes, methionine is the first amino acid incorporated even when the initiator 

codon is something other that AUG (Yoon and Donahue, 1992). In the majority of natural 

eukaryotic mRNAs, the start site for translation is the first AUG codon, as the scanning 

model suggests (Kozak, 1987b). Flanking sequences modulate the efficiency with which 

the first AUG codon is recognised as a stop signal during the scanning phase of initiation. 

In vertebrate IllRNAs, initiation sites usually confonll to all or part of the sequence 

GCCRCCaugG, tenned the Kozak sequence (Kozak, 1987a). This consensus has been 

derived from observing the sequences surrounding the first AUG in exons as well as 

mutagenesis studies. The most highly conserved position within this consensus sequence 

is the purine, usually A, in position -3 (3 nucleotides before the AUG codon, which is 

numbered + 1 to +3). Mutations affecting A-3 strongly impair initiation ill 1'h'o and in vitro 

(Kozak, 1986; 1989). If an AUG codon is flanked by A-3
, or by G-3 and G+~, the rest of 

the consensus sequence contributes only marginally. A recent study by Peri and Pandey 

(2001) have cast doubt over this consensus sequence. They analysed the context of 

initiator co dons using a large dataset of curated human transcripts. When positions -3 and 

+4 are examined only 46% of transcripts contain a purine (A or G) at -3 and a G at +4. 

Thus, over half of the transcripts differ from what are believed to be the most conserved 

nucleotide positions (-3 and +4) surrounding the AUG. How this consensus sequence is 

recognised and how it functions are not yet known. One possibility is that an interaction 

with GCCACC might slow scanning and thus facilitate recognition of the AUG codon by 

Met-tRNA j • 

1.22.4 Alternative mechanisms 

1.22.4.1 Leaky scanning 
Leaky scanning means that some 40S ribosomal subunits bypass the first AUG codon and 

initiate instead at the second or, rarely, even the third AUG. The most predictable cause 

of leaky scanning is the absence of a good context around the first AUG codon. Leaky 

scanning also operates at a non-AUG codon, such as CUG, ACG or GUG. In higher 
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eukaryotes, ribosomes may initiate at an upstream non-AUG codon in addition to 

initiating at the first AUG, thus producing long and short fonns of the encoded proteins; 

but a non-AUG codon nonnally cannot substitute for AUG as the sole start site (Kozak, 

1991) 

1.22.4.2 Reinitiation 

After an 80S ribosome translates the first open reading frame (upORF) and reaches a 

tenninator codon, the 40S subunit may hold on to the mRNA, resume scam1ing, and 

reinitiate at a downstream AUG codon. The ability of eukaryotic ribosomes to reinitiate is 

limited by the size of the upORF. In one study, the cut-off length was about 30 codons 

(Luukkonen et al., 1995). This means one mRNA can produce a small peptide and a full­

length protein but not two complete proteins. Reinitiation in eukaryotes is most efficient 

when the upORF tenninates some distance before the stmi of the next cistron (Kozak, 

1987b ). 

1.22.4.3 Internal initiation of translation 
Internal ribosome entry sites (IRES) is the name gIven to a sequence that allows 

ribosomes to enter directly at an AUG codon rather than scanning from the capped 5' end 

of the mRNA (Jackson and Kaminski, 1995), allowing two transcripts to be translated 

from the same promoter. 

1.23 Project rationale 
The aim of this project IS to develop several HSV -1 mutants with altered binding 

characteristics, such that the tropism of the virus can be changed so that it preferentially 

infects motor neurons. To achieve this, recombinant virus will be constructed from a gC­

negative background to prevent HS binding. Gene fusions will be constructed between 

E.coli heat-labile enterotoxin B subunit (LTB) and varying lengths of gC. The size of the 

gC glycoprotein in both constructs will vary, ho\\'e\'er, none \\'ill contain HS-binding 

domains. LTB was chosen as it binds to several glycolipids including GM2. This is a 
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ganglioside that is expressed in several cell types in the body, especially in motor 

neurons. Thus, we hope that the mutant HSV following inoculation in the gastrocnemius 

muscle (a site which promotes motor neuron infection) will bind to GM2 ganglioside and 

infect motor neurons in greater numbers than wild type virus. Infection spread \\"ill be 

determined by ~-gal expression. If successful this could act as a model for future \'ectors, 

with possible applications in gene therapy for treatment of several neurological diseases. 



2. MATERIALS 

2.1 Bacteria 

The E. coli strain used for cloning was NM522. Bacteria were grown in L-broth (170mM 

NaCl, 10 gil Difco bactotryptone, 5g/l yeast extract) and 2xYT (85mM NaCL 16 gil 

Difco bactotryptone, 5gll yeast extract). Bacteria from glycerol stocks were plated out 

onto L-broth agar (L-broth containing 1.5% (w/v) agar). 

2.2 Plasmids 

pTRH101R was provided by Prof. T.R. Hirst. This is derived from plasmid pMMB138 

(Sandkvist et at., 1987) to which the extB gene had been cloned in the EcoRI-HindIII 

sites. 

RL1.del was provided by Dr. E.A. McKie. This plasmid consists of the 5.9kb BamHI k 

fragment containing the RL1 gene cloned into the BamHI site of pGEM2fz (+). The 

477bp PflMI-BstEII fragment (bases 125,292 to 125,769) was excised from the plasmid 

and replaced with a multi-cloning site, to form the plasmid RL1.del. 

Plasmid KpnI d, provided by Dr. A.R.MacLean, contains the HSV -1 KpnI d fragment, 

cloned into the PstI site ofpAT153 (Davison, 1981). 

2.3 Cells and Tissue Culture Media 

2.3.1 ETCI0 
Baby Hamster Kidney 21 clone 13 (BHK) cells (MacPherson and Stoker, 1961) were 

grown in Eagle's medium (Gibco) supplemented with 10% new-bom calf serum (Gibco) 

and 10% (v/v) tryptose phosphate broth (Busby ct al., 1964). 

2.3.2 DMEMI0 
Mouse embryo fibroblast 3T6 cells (European Tissue Culture Collection) and t\\'o 

Neuroblastoma-spinal cord (NSC) cell lines (NSC -19 and NSC -3-1-) (Cashman cr al .. 

1992) were grown in Dulbecco's modified essential medium (DMEM) supplemented 



with 100/0 foetal calf serum (DMEM10). Penicillin/streptomycin and/or gentycin \\·ere 

used at appropriate concentrations. 

2.4 Viruses 

2.4.1 Strain 17+ 

The wild-type parental virus used in this study was HSV -1 strain 17+ (Brown et aI., 

1973). 

2.4.2 Mutant gC-ve 

A strain 17+ mutant variant with an in-frame stop codon disrupting UL44 (Cunningham 

and Davison, 1993) and with the gD promoter driving IacZ expression in the UL43 locus 

(A. MacLean, personal communication) was used for making recombinant viruses. 

2.4.3 Mutant 1716 
Strain 17+ deletion variant, 1716, was used as an [CP34.5 negative control 111 many 

experiments (MacLean, et al., 1991). 

2.5 Antisera 
Mouse Inonoclonal antibodies against the monomenc fonn (LDS47 and LDSI02) 

(Sandkvist et aI., 1987) and pentameric fonn (118-8) (Sandkvist ct aI., 1987) of E. coli 

heat-labile enterotoxin were provided by Prof. T.R. Hirst. Dr. H. Marsden provided 

rabbit polyclonal antisera (4916 and 4901), which recognise gC. Antisera to the ORF of 

RL1, Rabbit 137, was provided by Dr. J. Harland (Brown et al., 1997). 

2.6 Radiochemicals 
[32p]dCTP radioisotope was supplied by DuPont NEN. It had an actiyity of 1 OO~lCi. 
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2.7 Enzymes 

Restriction endonucleases were purchased from Promega and New England 

Biolaboratories. T4 DNA ligase was purchased from Prom ega. Lysozyme, Proteinase K 

and RNaseA were purchased from Sigma Chemical Company. 

2.8 Sequencing 

All sequencing in this thesis was carried out by DNAshef Ltd., Edinburgh. 

2.9 Solutions 

2.9.1 Bacterial Culture Reagents 

Promega Wizard kit: 

Resuspension Solution: 

Lysis Solution: 

Neutralisation Solution: 

TE buffer: 

50mM Tris-HCl (pH7.5), IOmM EDTA, and IOO~g/ml 

RNaseA 

0.2M NaOH, 1 % (w/v) SDS 

I.32M KAc (pH4.8), 40% (v/v) propan-2-ol, and 4.2M 

guanidine hydrochloride 

IOmM Tris-HCI (pH7.5), ImM EDTA 

Small scale preparation of plasmid DNA 

Solution 1: SOmM Glucose, IOmM EDTA, 25mM Tris-HCI (pH8.0) 

and Lysozyme (4mg/ml) 

Solution 2: 0.2M NaOH and 1% (w/v) SDS 

Solution 3: 3M KAc (pH4.8) 



2.9.2 Tissue Culture Reagents 

PBS: 170mM NaCI, 3.4mM KCI, 10mM Na2HP04, 1.8m;\1 

KH2P04 (pH7.2) 

2.9.3 Agarose Gel Reagents 

TAE: O.04M Tris, 0.14% acetic acid (v/v), and ImM EDTA 

(pH8.0) 

TBE: 

RE stop: 

89mM Tris, 89mM boric acid, and 2mM EDT A 

100mM EDTA, 10% (w/v) Ficoll 400, 0.25% (w/v) 

Bromophenol blue in 5x TBE 

2.9.4 Southern blot Reagents 

Gel Soak 1: 200mM NaOH and 600mM NaCI 

Gel Soak 2: 1 M Tris-HCI (pH8.0) and 0.59M NaCl 

20xSSC: O.3M Na3Citrate and 3M NaCI 

Hybridization buffer: 0.54M NaHP04 (pH7.4) and 7.5% (w/v) SDS 

Wash solution I: 0.5M NaHP04 (pH7.4), 7% (w/v) SDS 

Wash solution II: 1 % (v/v) 20xSSC, 0.1125% (w/v) SDS 



2.9.5 SDS-PAGE Reagents 

Boiling Mix: 

Running Gel Buffer: 

Stacking Gel Buffer: 

Tank Buffer: 

151mM Tris-HCI (pH6.7), 6.2S% (w/v) SDS, 0.15% (w, Y) 

~-mercaptoethanol, 0.31 % (v/v) glyceroL and 0.1 % (\\'Y) 

bromophenol blue 

~ 75mM Tris-HCI (pHS.9) and 0.1 % (w!y) SDS 

O.IM Tris-HCI (pH6.7) and 0.1 % (w/v) SDS 

6.32% (w/v) Tris, 4% (w/v) glycine, 1.33% (w/v) SDS 

2.9.6 Non-denaturing PAGE Reagents 
Boiling Mix: 151mM Tris-HCI (pH6.7), 0.31 % (v/v) glycerol, and 0.1 % 

(w/v) bromophenol blue 

Running Gel Buffer: 375mM Tris-HCI (pHS.9) 

Stacking Gel Buffer: O.IM Tris-HCI (pH6.7) 

Tank Buffer: 6.32% (w/v) Tris and 4% (w/v) glycine 

2.9.7 Western Blot Reagents 

Towbin buffer: 

Fix and Stain: 

20% (v/v) MeOH, 25mM Tris-HCI (pHS.3), 192mM 

glycine 

46% (v/v) MeOH, -l()Oo (\)y) dH20, 7.Sl% (Y/\') acetic acid, 

0.2% (w/v) coomassie brilliant blue R250 
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Destain: 5% (v/v) MeOH, 7% (vi\') acetic acid, 88% (vIY) dH
2
0 

2.10 Chemicals 

Chemicals used were analytical grade and mostly obtained from Sigma Chemicals 

Company or BDH chemicals, UK. 

APS and TEMED were supplied from Bio-Rad Laboratories 

2.11 Other materials 

2.11.1 Centrifuges 

Volumes >50ml up to 10,000 rpm 

Volumes 1.5ml- 45ml up to 3,000 rpm 

Beckmai1 Centrifuge 

Benchtop Fison' s Coolspin 

Centrifuge 

Volumes <1.5ml up to 13,000 rpm Micro-centrifuge 

2.11.2 Film 

Autoradiograph XS-l film (Southern and Westen1 blots) was supplied by Kodak. 

Autoradiographs were developed in an X-OGRAPH CompactX2. 

Film used for immunofluorescence analysis was 400 ASA colour exposure from Fuji. 

2.11.3 Plasticware 
Plasticware was supplied mostly by eppendorf. 

Tissue culture plates and dishes were supplied by Nunc. 

2.11.4 Miscellaneous Equipment 
DNA was crosslinked to nitrocellulose membrane using a XL-lOOO UV crosslinker from 

the Spectronics Corp. 

Optical densities were read using a Dynatech MR5000 plate reader. 
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3. METHODS 

3.1 Tissue Culture 

Herpes simplex virus growth was studied ill vitro for protein expression and replication 

kinetics 

3.2 Cells 

Replication ofHSV-l strain 17+ is more efficient than RLI deleted viruses in some (3T6) 

but not all cell lines (BHK) (Brown et ai., 1994a). Additional cell lines such as NSC-19 

and NSC-34 were used to study viral adsorption and growth as these contain many 

phenotypes characteristic of motor neurons. These were used as a motor-neuron cell line 

in vitro. 

3.3 BHK211C13 Cells 

Baby Hamster Kidney cells 21 (BHK) seeded at a 1 in 10 dilution were grown in 100ml 

ETCI0 in 850cm2 roller bottles in a humidified atmosphere of 5% CO2 at 37°c for 3 to 4 

days. Confluent cells (3x 1 O:-llroller bottle) were harvested as described in section 3.6. 

3.4 3T6 Cells 
3T6 cells were grown for 3 days in DMEMI 0 with 5% CO2. Cells were passed in large 

flasks (T-175) by seeding at a 1 in 10 dilution in 50ml DMEMIO. Confluent cells (3xl0
7 

cells/T-175 flask) were harvested as described in section 3.6. 

3.5 NSC-19 and NSC-34 
NSC-19 and NSC-34 cells were grown for 3 days in DMEMI0 with 5% CO::. Cells were 

passed in large flasks (T-175) by seeding at a 1 in 10 dilution in 50ml DMEMIO. 

Confluent cells (3x 107 cells/T -175 flask) were harvested as described in section:'. 7. 
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3.6 Passaging BHK and 3T6 Cells 

Trypsin solution was thawed from -20°C and mixed with HBSS to yi~ld a TrypsinlHBSS 

solution. 

T -175 flasks or roller bottles with confluent monolayers were opened in a category 2 

hood, the supernatant decanted, and 10ml or 20mL respectively. of HBSS poured over the 

monolayer and decanted. This was then repeated with HBSS/Trypsin and the solution 

left for 30 seconds before decanting. The cells were then shaken into 10ml or 20ml of 

media for further use. 

3.7 Passaging NSC-19 and NSC-34 Cells 

T-175 flasks with confluent monolayers were opened in a category 2 hood, the 

supernatant decanted and 20ml media added. The flask was then agitated to remove the 

cells. This cell suspension was then pipetted vigorously to break up clumps of cells 

before further use. 

3.8 Cryopreservation of BHK and 3T6 Cells 

Confluent cell mono layers of BHK or 3T6 cells were harvested from T175 flasks as 

described in section 3.6 by trypsinizing and resuspending in 15ml media and pipetted into 

Falcon tubes. Cells were centrifuged at 3,000g (Fison's Coolspin) at 4()C for 10 min and 

resuspended in 5ml of the appropriate growth medium, with 10% DMSO. Aliquots of 

Iml were pipetted into 1.5ml cryo-vials. These were frozen overnight at -70°C and 

moved to a liquid nitrogen freezer for long tenn storage. 

3.9 Cryopreservation of NSC-19 and NSC-34 Cells 
For cryopreservation of NSC cells, cell media of 80% heat-inactivated FCS and 20 0

;) 

DMEM with 1 % penicillin/streptomycin added was prepared by filtering through a 

0.22).lm filter. The filtered cell media was then stored on ice. Freezing media \\"as 

prepared by filtering 70% heat-inactivated FCS. 10° ° DMEM \\ith 1°;) 

penicillin/streptomycin through a O.22).lm filter. with 20 0
0 DMSO added aftcn\ards. The 

freezing media was then stored on ice. 
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Confluent cell mono layers were harvested from T 1 75 flasks as described in section 3.7 

and pipetted into falcon tubes. Cells were centrifuged at 3,000g (Fison's Coolspin) at 

4°C for 10 min. The supen1atant was discarded and the pellet was resuspended in 3ml of 

filtered cell media. 0.51111 cell suspension was aliquoted into a chilled 1.5ml cryo-\'ial. 

0.5ml freezing media was then slowly dripped into each vial using a chilled pipette, with 

care being taken not to agitate the tube. These were frozen ovemight at -70°C and 

moved to a liquid nitrogen freezer for long-term storage 

3.10 Growth and harvest of HSV 

Confluent roller bottles were infected with 0.02 pfu/cell of HSV in 20ml of ETC10, 
. 8 

assummg that there were 2x 1 0 cells per roller bottle. These were incubated at 3 ilc for 

3-4 days until cpe was complete. Cells were then shaken into the medium. The cells 

were pelleted in 250ml plastic falcon tubes by spinning at 2000g for 10 min at 4°C. The 

supernatant and cell pellet were separated and two individual virus stocks were prepared: 

Supernatant stock: The supernatant was poured into 250ml centrifuge bottles and spun 

at l2000g for 2 hours (4()C) in a Sorvall GSA rotor. The supen1atant was discarded, and 

the virus pellet resuspended in lml ETC10 or PBSII 0% NCS per roller bottle. The pellet 

was sonicated until homogenous, before aliquoting into l.5ml amounts and storing at -

70°C. 

Cell-associated stock: The cell pellet was resuspended in 0.5ml medium/roller bottle and 

thoroughly sonicated before spilming at 2000g for 10 min at 4()C. The supernatant was 

kept on ice while the process was repeated. The two supen1atants were combined to give 

the cell-associated virus stock. This was aliquoted and stored as above. 

3.11 Titration of virus stocks 
Virus stocks were serially diluted 10-fold in PBS/lO% NCS. 100~Ll aliquots were added 

to 70% confluent monolayers ofBHK2l1C13 cells on 60mm petri dishes from which the 

medium had been removed. The plates were incubated at 37°e for 45 min-l hour, to 

allow adsorption of the virus to the cells before overlaying \\ith 4ml El\lC 1 on n. Plates 

were incubated at 3 ilc for .2 days. Monolayers \\ere Ilxed and stained \vith Geimsa at 
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RT for 1h. After washing, plaques were counted on a dissection microscope and \'irus 

titres were calculated as pfu/ml. 

3.12 Preparation of HSV DNA 

For preparation of a large scale HSV DNA stock. 10 roller bottles of almost confluent 

mono layers of BHK2 lIC 1 3 cells were infected with virus at a moi of 0.02 pfu/cell. The 

infection was continued at 37°C until cpe was extensive (3-4 days). The cells were 

shaken into the medium and spun at 2000g for 10 min. The supenlatant was kept and 

stored on ice. The cell pellet was resuspended in 10ml 0.5% (w/v) NP40 in RSB (1 OmM 

KCl, 1.5mM MgCb, 10mM Tris-HCl, pH 7.5) and left on ice for 10 min. The nuclei 

were pelleted by centrifuging at 1000g for 3 min (4°C), wi th the supematant kept. This 

was repeated, and the supernatants were pooled and spun at 12K for 2 hours in a Sorvall 

centrifuge to pellet the virus. 

The virus pellet, containing cell released and cytoplasmic virus was resuspended in NTE 

buffer (lOmM Tris-HCl, pH7.5, 10mM NaCl, lmM EDTA) and sonicated until no lumps 

remained. EDT A and SDS were added to a final concentration of 10mM and 2% (w/v) 

respectively to cause lysis of the virus. Viral DNA was extracted 3-4 times with 

saturated phenol and once with chloroform:isoamylalcohol, prior to precipitating with 2 

volumes of ethanol at R T for 5 min. DNA was pelleted at 2000g for 10 min, washed with 

70% ethanol, dried at 37°C and resuspended in a minimal volume of H20 (containing 

RNaseA 50~g/ml). 

3.13 One-cycle Replication Kinetics 
30mm plates were seeded with 2x 1 06 cells/plate in 2ml ETC 1 0 growth medium and cells 

incubated ovenlight at 37°C and 5%C02. Growth media was poured off and 1 OO~tl of the 

virus (0.01-0.001 pfu/cell) added. The plates were retunled to 37°C and 5°,;) CO2 for 1 h. 

After 1 hour the plates were overlaid with 2ml ETC 1 O. This \\'as time point Oh. Plates 

were incubated at the appropriate temperature and hancsted at the designated time points 

(usually 0, 4, 8, 24, 48 and 72h) by scraping the cell monolayer into the medium and 

transferring the suspension to a sterile bijou bottle. The samples \\cre sonicated and 



stored at -70°C until the experiment was complete. The samples were quickly thawed 

and titrated as described in section 3.11. 

3.14 Large scale isolation of plasmid DNA: Promega © WizardDt Maxiprep 

A 500ml E. coli plasmid-containing culture was grown overnight in L-broth containing 

100~lg/ml ampicillin. Cells were pelleted by centrifugation at 5,000rpm (Sorvall GSA 

rotor) for 10 min. at R T. The supernatant was discarded and the pellet resuspended in 

15ml resuspension solution. 15ml Lysis Solution was added to the pellet by gently 

mixing throughout and incubating at RT for 20 min. l5ml Neutralization Solution was 

added and mixed by inverting several times. The samples were centrifuged at 2,000g 

(Fison's Coolspin) for 20 min. The clarified supen1atant was poured into a fresh 50ml 

Falcon tube and 0.5x propan-2-01 was added and mixed by inversion. Samples were 

centrifuged at 2,000rpm (Fison's Coolspin) for 15 min at RT. The supernatant was 

discarded and the pellet left to dry. Once dry, the pellet was resuspended in 2ml TE 

buffer. 10ml Wizard™ resin was added to the pellet. This solution was added to a 

Wizard™ maxi-column. A vacuum was applied to draw the solution through the 

Wizard™ maxi-column. The resin was washed by adding 80% EtOH to the Wizard™ 

maxi-column. The DNA was eluted by adding 1.5ml of preheated H20 (65-70°C) and 

incubating for 1 min at RT before centrifuging the WizardI'M maxi-column at 2,500g 

(Fison's Coolspin) for 5 min. A final step of purification of DNA was done by using a 

syringe with a Luer-Lok® extension and 0.22~m filter. Once the solution went down 

through the filter the DNA was precipitated by adding .2 volumes EtOH and 0.1 volume 

3M NaAc, vortexing and placing on dry ice for 20 min before centrifuging at .2,500g 

(Fison's Coolspin) for 10 min. The supernatant was discarded and the pellet was rinsed 

with Iml 70% EtOH and centrifuged as above. The sllpen1atant was discarded and the 

pellet left to dry at RT. The DNA pellet was resuspended in l.5ml dH20 (containing 

50~lg/ml RNaseA). 



3.15 Restriction endonuclease digestion 

Plasmid and viral DNA were routinely evaluated by different restriction endonuclease 

digestion profiles. The duration and temperature conditions were carried out according to 

the manufacturers' instnlctions. Enzyme activity was stopped by placing RE stop in the 

reaction mixture. Digestion was visualized by electrophoresis through an agarose gel and 

staining with ethidium bromide. 

3.16 Phenol chloroform extraction and precipitation of plasmid DNA 

An equal volume of phenol: chloroform was added to the DNA, mixed by vOliexing and 

subjected to centrifugation for 2 min at 13,000g at RT (microfuge). The aqueous layer 

containing the DNA was pipetted into a fresh tube. Two volumes of EtOH and 0.1 

volume 3M NaAc was added to the aqueous layer, vortexed, and placed on dry ice for 20 

min. The solution was centrifuged for 20 min at 13,000g (microfuge). The SUpell1atant 

was discarded and Iml 70% EtOH added and centrifugation calTied out as stated above. 

The supen1atant was discarded and the DNA pellet left to dry. The pellet was 

resuspended in dH20 (containing 50/-1g/ml RNaseA). 

3.17 Ligation of plasmid DNA 

Different molar ratios of plasmid DNA to vector were added to a total volume of 14/-1l. 

4/-11 5x ligation buffer was added, the solution mixed and centrifuged to collect at the 

bottom of the tube. Lastly, 2/-11 T4 DNA ligase (3U/~Ll) was added to the solution, mixed 

well and placed in a water bath at 16°C oven1ight. The following day this was used in a 

transfonnation reaction. 

3.18 Transformation of E. coli 

1 0-15 ~tl of a glycerol E. coli stock was used to inoculate 10ml 2YT medium. This \Vas 

grown oven1ight at 37°C with shaking to produce a saturated culture. 1 ml of this culture 

was then used to inoculate lOOml of 2YT, and this \Vas incubated at ::; i'c for .2 ~!2 hours 

\\"ith shaking. The bacterial cells were pelleted by centrifugation at 2000g for 10 min at 



4°C. The cells were resuspended in 1Il0th volume of TSB. These cells were incubated 

on ice for at least 10 minutes, after which time they were considered competent for 

transformation. 

1- 10/-l1 of DNA was mixed with 100 /-ll of competent bacteria and incubated on ice for 30 

min. The volume was made up to Iml by the addition of TSB and the bacteria further 

incubated for 1 hour at 37°C. If the bacteria had been transfonned with a plasmid which 

conferred a particular trait e.g. antibiotic resistance, the 1 hour incubation at 3 i1c 

allowed plasmid gene expression to occur. 

100/-l1 of the transfonned bacteria were plated out onto L-broth agar plates containing, if 

appropriate, 100/-lg/ml ampicillin. Plates were allowed to dry at room temperature, 

before incubating in an inverted position at 3 iJc ovemight. 

3.19 Small scale preparation of plasmid DNA 

Single, transfonned bacterial colonies were inoculated into Sml 2YT containing 

100/-lg/ml ampicillin. These were incubated at 37()C for 8-16 hours with vigorous 

shaking. 1.Sml of this culture was removed and the bacteria pelleted by low -speed 

centrifugation (6000g, 2 min). The pellet was resuspended by vortexing in 100/-ll of 

solution I (SOmM glucose, 10mM EDTA, 2SmM Tris-HCl, pH 8, 4mg/ml lysozyme 

added just prior to use). After five minutes at RT 200~tl of solution II was added (0.2M 

NaOH, 1 %SDS) and the cultures mixed by rapid inversion. Following S min incubation 

at RT lS0~Ll of solution III was added (SM KAc, pH4.8). Following S min incubation at 

RT, a white precipitate consisting of the cell debris was pelleted at high speed (l3K) in a 

microcentrifuge. 

Plasmid DNA was extracted from the supenlatant usmg an equal volume of 

phenol:chlorofonn, followed by ethanol precipitation at RT for 1 min. The DNA was 

pelleted by spinning at 13,000g for S min in a microfuge, washed in 70% ethanol, dried 

in a speedivac and resuspended in 100 /-ll H::O (containing RNaseA SO~lg/ml). 



3.20 Agarose gel electrophoresis 

Agarose gels (0.6-1.S% (w/v) agarose) were prepared by boiling the appropriate quantity 

of agarose in 1 xTBE or 1 xT AE. Ethidium bromide was added at a concentration of 

O.S/lg/ml, immediately prior to pouring the gel. The solution was poured into a tray 

(BioRad) which held a comb. Once cool, the tray was placed in an electrophoresis kit, 

the comb removed and samples pipetted into individual wells. Electrophoresis of the 

samples was carried out until the dye front was approximately 1 cm from the end of the 

gel and visualised using a short wave UV lamp. A 100bp or 1 kb marker of known 

concentration was run alongside the fragments to enable confimlation of the 

vector/fragment size and approximate quantitation of the concentration of each sample. 

3.21 Minigel electrophoresis 

This method was generally used to quantitate small volumes of fragment and vector DNA 

prior to ligation. Gels were prepared by boiling the appropriate concentration of agarose 

in lxTBE. When cool, O.S~lg/ml ethidium bromide was added and the agarose was 

poured directly into the minigel kit (Bio-Rad). Once set the comb was removed and 

SOml lxTBE was added to the kit. Samples (generally (lO~d) were run at SOV for Ihour 

and visualised using a shOl1 wave UV lamp. A 100bp or lkb marker of known 

concentration was run alongside the fragments to enable confirmation of the 

vector/fragment size and approximate quantitation of the concentration of each sample. 

3.22 Elution of Restriction Enzyme Fragments from Agarose Gel 

DNA was digested with the appropriate restriction enzyme and electrophoresed through 

an agarose gel containing O.Smg/ml EtBr until the fragment to be isolated was well 

resolved. The gel was visualized under a short wave UV light and the desired fragment 

excised using a sterile scalpel. The DNA was eluted using the Nucleon DNA purification 

kit. A I.Sml microtube was weighed and the gel slice added to the tube. This \\"as re­

weighed with the DNA volume calculated as 1 ~d equi\"alent to lmg. -+.5 volumes of 

standard salt was added to the DNA sample before incubating at 5S()C to melt the gel 

slice. Once melted, lOp I of resin was added to the tube. This \\as incubated at RT for I 



mm with frequent inversions before centrifuging at 13.000g for 30 seconds. The 

supernatant was discarded and 1 ml of Ix wash added to resuspend the pellet. This was 

centrifuged at 13,000g for 30 seconds. The wash solution was discarded, and the tube 

was left with its lid open at RT for 5 min to remove any remaining ethanol droplets. The 

DNA was eluted by adding 20~tl of sterile water to the tube, incubating at RT for 1 min 

before centrifuging at l3,000g for 30 seconds. The eluted DNA sample was removed 

into a new labeled tube. 

3.23 Transfection of virus DNA by CaP04 and DMSO boost 

Viral HSV DNA and plasmid DNA were diluted to the desired molar ratios and placed in 

an eppendorftube. The following were added to the DNA, 400~tl HEBS (pH7.5) and calf 

thymus DNA (1 O~g/ml). These were mixed and spun down in a microfuge and CaCl2 

added to a final concentration of 130mM. The samples were left at RT for 30 min and 

added to a fresh confluent monolayer of BHK cells in 60mm plates, from which the 

medium had been removed. Following incubation at 3711C for Ih, cells were overlaid 

with 4ml ETCI0 and incubated at 37°C. Four hours later, the media was removed from 

the plates and the plates washed twice with ETC10. For exactly 4 min the cells were 

overlaid with Iml 25% (w/v) DMSO in HEBS at RT. 4ml ETCIO was added 

immediately and subsequently the plates were washed twice with 4ml ETCIO, and 

overlaid with 4ml ETCI0. Plates were incubated at 3711C until cpe was complete. Cells 

were scraped into the medium and pelleted by centrifugation at 2,000g (Fison's Coolspin) 

for 10 min, resuspended in lml medium, sonicated and the virus was stored at -70°C until 

further use. 

3.24 Transfection of mammalian cells 

Promega Transfection Kit: 

In a sterile eppendorftube, 6-l2~g DNA was added to 37pl 2M Cael::, with dH::O added 

to a final volume of 300~ll. This was vortexed before slowly adding to 300~Ll LX HBS. 

This was incubated at RT for 30 min to allow the f01111ation of a calcium phosphate-DNA 

co-precipitate, before being added dropwise to a fresh confluent monolayer of BHK cells 

67 



in 60mm plates, from which the medium had been removed. Follo\\ing 4h at 3i1c. the 

DNA complex was removed and Iml 10% DMSO/PBS (v/v) added Aft !.:; . h . er _._ mm t e 

DMSO solution was removed and 4ml ETC 1 0 added. Plates were then incubated at 37(JC 

for 48h. 

3.25 Plaque purification 

Once cpe was complete in transfection plates (section 3.23), cells were scraped into 

growth media, transferred to a bijou bottle and sonicated in a soni-bath until 

homogenous. Seriall0-fold dilutions were made in PBS/lO% NCS. 100~1 from the 

10-2 to 10-6 dilutions from each were plated on fresh BHK mono layers in 60mm plates 

from which the medium had been removed. After Ih adsorption at 3T IC and S% CO2, the 

plates were rinsed once with PBS/lO% NCS and overlaid with 4ml EMCI0 and 

incubation continued at 3 TIC for a further 48-72h. Using a 200~1 Gilson pipette 

individual plaques from the plate with the most well-separated plaques were picked, 

resuspended in SOOIlI PBS/l 0% NCS and sonicated in a soni-bath until homogenous. 

This procedure was either repeated or a Southen1 blot perfonned to check the purity of 

the recombinant virus. 

3.26 DNA Extraction of HSV Plaque Isolates 

During viral purification, viral plaque isolates were routinely checked for purity by DNA 

digestion with subsequent Southern blotting. Plaque isolates were harvested as described 

above. 200~1 of the viral suspension was used to infect a linbro well of BHK cells. The 

virus was incubated at 37()C until cpe was evident. The medium was removed and 200~1 

of cell lysis buffer was added (20mM Tris (pH7.S). :2mM EDTA, O.Smg Proteinase K and 

O.S% (w/v) SDS) to the infected monolayer. This was incubated for at least 6h at 3 i1c. 

The lysate was transferred to an eppendorf tube containing IS ~Ll SM N aCI and 200~tl 

phenol :chlorofon11 (I: 1), vortexed and centrifuged at 13,000g for :2 min. The top layer 

was removed and added to 200~Ll of chlorofon11, vortexed and centrifuged at 13,000g for 

2 min. The top layer was again removed and the DNA pelleted by adding to 1 ml of 

EtOH, vortexing and centrifuging at 13,000g for 5 min. The pellet was \\"ashed \\ith :()O (I 

EtOH, before air-drying and dissolving in 200~d dH::O containing RNase A (:~Opg m1). 
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This was digested with a suitable restriction enzyme before checking for "iral purity by 

Southern blotting (section 3 .28). 

3.27 Radiolabelling DNA 

2Sng template DNA in dH20 III a final volume of 13.SJ.lI was placed in a tube and 

denatured by heating in a boiling water bath for 10 min followed by chilling quickly in an 

ice bath. The DNA was pulsed in a microcentrifuge and placed on ice while 5 fll 5x 

random primer buffer, BSA, dNTPs (minus dCTP) and 2U Klenow was added. 2.S J.lI 

(SOJ.lCi[a
32

P]dCTP) was added and the tube incubated for at least Ih at 37"C. The 

reaction was stopped by placing the tube in a boiling water bath for 1 0 min. After boiling 

the radiolabelled probe was used with the blot as described in section 3.28. 

3.28 Southern Blot and Hybridisation 

Purified DNA was digested with the appropriate restriction enzyme(s) before 

electrophoresing on a 1 % (w/v) agarose gel. The gel was visualised under a short wave 

UV light to confirm DNA digestion, then placed in a bath containing gel soak I for 30 

min at RT. After rinsing with dH20 the gel was incubated in gel soak II for 30 min at RT 

and rinsed as above. Finally, the gel was incubated in 20xSSC for 30 min at RT. A pack 

of "Hi-Dry" towels were stacked on the bench followed by three sheets of dry Whatmann 

3MM paper. On top were 3 sheets of pre-soaked 3MM paper and 1 sheet of 

nitrocellulose membrane (Hybond-N) in 20xSSC. The gel was placed on top. A glass 

plate and heavy weight were placed atop and this was left overnight to transfer DNA. To 

transfer DNA to two membranes, this procedure was repeated on top of the gel. The 

following day, the DNA was cross-linked to the membrane by a UV crosslinker. The 

membrane was allowed to dry and placed in a glass bottle with hybridisation buffer and 

radio labelled-DNA probe added. The membrane was incubated in a Hybaid oven at 6S
11

C 

overnight. The membrane was washed three times in \,·ash solution at 6S(1C for 30min. 

Finally. it was dried. The membrane was exposed to XS I film making sure it ,,·as 1 ()()o;) 

dry each time it was exposed. 
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3.29 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SOS-PAGE) 

SDS-PAGE analysis of proteins was perfonned in 12.5% gels using 2.5°0 (Wi\\') 

crosslinker. Slab gels were cast vertically in a sandwich consisting of 2 glass plates 

separated by a l.Smm thick perspex spacer. Typically, 60ml gel mix was prepared using 

a rumling gel buffer (RGB) which contained 37SmM Tris-HCI, pH 8.9 and 0.1 % (WI\') 

SDS. Polymerisation was achieved by the addition of 0.06% (w/\') ammonium 

persulphate (APS), and 0.04% (v/v) N, N, N', N', tetramethylenediamine (TEMED), just 

prior to pouring. A thin layer ofbutan-2-01 (3-5ml) was poured on top to exclude air and 

enable polymerization of the gel. Prior to adding the stacking gel, the butan-2-01 was 

removed and the surface of the rmming gel was rinsed several times with distilled water. 

It was then thoroughly dried using filter papers to allow good adhesion between it and the 

stacking gel. 

The stacking gel was composed of S% acrylamide crosslinked with the same ratio of 

N,N' -methylbisacrylamide used in the resolving gel, in a buffer (SGB), composed of 

O.l1M Tris-HCI, pH 6.7 and 0.1 % (w/v) SDS. As previously, APS and TEMED were 

added to the gel just prior to pouring and a teflon comb was used to fonn the wells. 

Samples were boiled for 10 minutes in a sample buffer (lSlmM Tris-HCI, pH 7.6, 6.28% 

(w/v) SDS, O.IS% (v/v) 2-mercaptoethanol, 0.31 % (v/v) glycerol) before loading on the 

gel, and were run for 3-4 hr at 5SmA. 

Gels were fixed or stained in a solution of methanol: acetic acid: water, 50:7:50, with or 

without 0.2% (w/v) Coomassie Brilliant Blue R250, for 1 hr at RT, then destained for a 

minimum of3x 30 minutes in a 5:7:88 solution of methanol: acetic acid: water. 

3.30 N on-denaturing Polyacrylamide Gel Electrophoresis 
Protein smnples whereby interactions between proteins were to be examined, for example 

those of the pentameric form of LTB, were analysed using non-denaturing PAGE. These 

gels were prepared in a similar manner to those of SDS-PAGE (section 3.29), however 

none of the RGB, SGB, sample buffer, and tank buffer contained SDS (section 2.9.6). 

Protein samples were loaded onto the gel without boiling and separated at 55mA for 3-

4h. 
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3.31 Western Blotting 

SDS-P AGE was carried out as previously described and Westen1 blotting carried out 

essentially as described by Towbin (1979). In general two types of protein sample \\'ere 

used for Western blotting. The first was infected cell proteins which had been harvested 

into boiling mix at a density of 107 cells/ml, and the second was small aliquots of 

fractions which had been obtained from protein purification columns. After separation of 

the proteins, they were transferred onto nitrocellulose using a Bio-Rad blotting apparatus. 

The foam pads, sheets of Whatmann 3MM paper and the nitrocellulose to be used for the 

transfer were pre-soaked in transfer buffer (192mM glycine, 25mM Tris-HCI pH 8.3, 

20% methanol). The gel was placed on top of the nitrocellulose, 3 sheets of 3MM paper 

and one foam pad. Three further sheets of 3MM paper and foam pad were then placed on 

top. The plastic folder was then closed, placed in the transfer kit and blotted at 250mA 

for a minimum of 3h. After this time the nitrocellulose was removed, placed in a plastic 

"tuperware" tub and then blocked for 2x 30 minutes using 2% dried milk in PBS, 0.05% 

Tween 20. The nitrocellulose was washed for 3x 10 minutes in PBS, 0.05% Tween 20, 

1 % BSA, before addition of the first antibody diluted appropriately in PBS, 0.05% Tween 

20, 1 % BSA. Following incubation at 37°C for 2h or oven1ight at 4°C the nitrocellulose 

was washed as before. The second antibody. non11ally goat anti-mouse IgG coupled to 

HRP, was added at 111000 dilution in PBS/complete, 0.05% Tween 20, 1 % BSA at 37°C 

for Ih after which time the nitrocellulose was washed twice with PBS/0.05%Tween 20 , 

and once with PBS alone. 

The protein-antibody complexes were then visualised using Amersham ECL reagents, 

according to manufacturer's recommended instructions. 

3.32 Protein Expression in Infected Cell Extracts 
Virus stocks were used to infect 60mm plates containing 4x 1 0

6 
cells with 5-10pfu/cell. 

Plates were incubated for the desired time at 37°C. Samples were har\'ested by remO\'ing 

media and washing infected cell mono layers twice with cold PBS. The monolaycrs \\'ere 

taken off in 300~Ll lxBM. 
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3.33 Harvesting Protein Samples for Denaturing Gels 

Protein samples from infected cell monlayers or transfected cells were often concentrated 
.. 'I'M . 

usmg a MICROSEP mlcroconcentrator. The proteins were harvested by removing the 

medium from a 60mm plate and washing the cells with wan11ed PBS. The cells \\cre 

then scraped off into 10ml of PBS and centrifuged at 1,500g for 10 min. The pellet \\as 

resuspended using 600~d of buffer (SOmM Hepes pH7.S, SOmM NaCI, 10% glycerol, 

O.S% NP40) before sonicating briefly, and centrifuging at 13,000g for 2 min to remove 

cellular debris. The supen1atant was stored at -20oe. 

3.34 Concentration of Protein Samples 

Several protein samples which were thought to contain low concentrations of a protein 

were concentrated using a MICROSEp'I'M micro concentrator (Pall Gelman Laboratories). 

Protein saITIples were harvested as per section 3.33 or 3.34, depending on whether the 

concentrated sample was to be run on a denaturing or non-denaturing PAGE gel. The 

samples were the loaded onto a MICROSEp™ micro concentrator. with a molecular 

weight cutoff 3 to 6 times less than the molecular weight of the protein to be retained, 

typically 3kDa or 10 kDa, and centrifuged at 7,SOOg (Sorvall centrifuge) for 90 min. The 

concentrated sample (30~tl) was then stored at - 20uC until loading on a protein gel. 

3.35 Harvesting Protein Samples for Non-denaturing Gels 

Protein samples from virally infected mono layers or from transfected cells were often 

separated by non-denaturing PAGE. To avoid disassociation of the proteins the media 

was removed frOlTI a 60mm plate and the cells washed with cold PBS. The cells were 

then scraped into 10ml of PBS and centrifuged at 1,SOOg for 10 min. 300~ . .tl of buffer 

(20mM Hepes pH7.6, 7SmM NaCI, 10% glycerol, 0.4% Triton X100) was used to 

resuspend the pellet, which was then incubated on ice for 30 min. Cellular debris was 

removed by centrifuging at 13,000g for 2 min. Immediately 300111 of non-denaturing 

sample buffer was added and the protein sample was loaded, \\"ithout boiling, onto a non-

denaturing gel (section 3.30). 
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3.36 Indirect Immunofluorescence 

Linbro wells containing coverslips were seeded at 0.5-5x 1 05 cells/well and incubated 

overnight at 37()C with 5%C02. The cells were infected at a low moi (0.1 pfu/cell) for 

16h, or transfected with plasmid DNA. The cells were fixed by removing the medium 

and washing three times with PBS and adding fixing solution. usually paraformaldehyde 

or methanol, for 10 min RT or 10 min at -20°C, respectively. Coverslips were washed 

three times in PBS and blocked using PBS/l %BSA for 1h at 4()C. Again coverslips were 

washed three times with PBS. The primary antibody was diluted to the appropriate 

dilution in PBS/l %BSA and 100!-l1 added to each coverslip. Coverslips were incubated 

in the primary antibody for 2h at 4°C. Following this, excess antibody was removed and 

the coverslips washed three times with PBS. The secondary antibody was diluted to the 

appropriate dilution in PBSII %BSA and 100!-l1 added to each coverslip. These were 

incubated for 1h at RT and washed three times with PBS. 

Coverslips were mounted by dipping in H20 and drying on a paper towel at RT until dry. 

A small drop of mounting fluid was placed on a glass slide and the dry coverslip, cells 

facing down, placed on the drop. A longer period of storage required painting clear nail 

van1ish around the edges of the covers lips to prevent drying. 

To detect cell surface antigens the cells were unfixed prior to antibody staining. 

Antibody staining was carried out as above. Following the removal of unbound 

secondary antibody the covers lips were treated with ice-cold MeOH for 10 min at -20°C, 

then washed three times with PBS and once with H20 before mounting. 

3.37 X-gal Staining 
Viruses and plasmids containing the ~-galactosidase gene I(/('Z were identified on BHK 

cells by staining with X-gal. Cells that were infected with a lacZ-containing vims or 

transformed with a lacZ-containing plasmid were rinsed with PBS. Cells were fixed 

using 20/0 fonnaldehyde, 0.2% parafonnaldehyde in PBS for 5 min at RT. The fixing 

solution was removed and cells rinsed with PBS, before the addition of staining solution 

(5mM Potassium Ferrocyanate, 5mM Potassium FelTicyanate. 2mM MgCb, 2.sn;) 

20mg/ml X-gal). Plates were incubated at RT for 16 hours to allO\\ development of the 

blue colour. 



3.38 Viral Adsorption to Cells 

30mm plates were seeded with 2x 1 0
6 

cells/plate in 2ml growth medium and incubated 

overnight at 37
0
e and 5%e02. Growth media was poured off and 500pfu ,"irus, 

containing LacZ, (in 1 OO~tl) was added to each plate. This was time point 0 min. Plates 

were incubated at 37°e, and at designated time points, usually 0, 2.5, 5, 15. 30 and 60 

min, any unbound virus was removed, the plates washed several times with wanned PBS 

and 2ml of growth medium added. The plates were incubated at 37°e for 24h to allO\y 

expression of the ~-galactosidase gene. The plates were then stained for X-gal and the 

number of blue cells were counted on a dissection microscope, whereby every blue cell 

represented one bound vinls 

3.39 HSV Glycolipid-Binding ELISA 

Currently all the ligands to which HSV binds are unknown. Nervous tissue is enriched 

with gangliosides, and these may be HSV binding ligands. Thus to dete1l11ine how wild­

type HSV and the L TB-containing mutant viruses bind to these sugars, if at all, a 

glycolipid-binding ELISA was developed. An Immulon 2 96-well plate (Dynex) was 

coated with various gangliolipids, at the following dilutions in MeOH. 

Rows Columns 

Blank Wells A,B,e,D 1, 2 1 OO~Ll MeOH 

GMI A,B,e,D 3,4 1 OO~Ll GM 1 2~lg/ml 

GM2 A,B,e,D 5,6 1 OO~Ll GM2 2~lg/ml 

GM3 A,B.C,D 7, 8 1 OO~Ll GM3 2~g/ml 

GAl A,B,e,D 9, 10 100~Ll GAl 2~g/ml 

GDla A,B,C,D 11, 12 1 OO~Ll GD 1 a 2~lg/l11l 

GDlb E,F,G,H 1, 2 100~Ll GDlb 2~lg/l11l 

GTlb E.F,G,H 3,4 1 OO~Ll GTI b 2~lg/l11l 

GQlb E,F,G,H 5,6 1 OO~d GQ 1 b 1 ~lg/l111 

GD3 E,F,G,H 7, 8 1 OO~tl GD3 2~lg! Illl 
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The MeOH was allowed to evaporate in a fume hood until the plate dried, before storing 

the plate at 4°C. The plate was then blocked by the addition of IS0).11 PBS-2%BSA to 

each well for 1h at 4°C. The PBS-BSA was discarded by flicking and the plate dried by 

clapping against a paper towel. Virus was diluted to a desired concentration in PBS-

1 %BSA and 100).11 added to each well for 1h at 411 C. The \'irus was discarded and the 

plate washed in PBS/O.OS% Tween. 100~d of primary antibody, Rabbit cx-HSV (1 :200) 

(Dako) was added at 4()C for 2h before washing with PBS/O.OS% Tween. I 00).11 of 

secondary antibody, Donkey a-Rabbit (1: 100) (Dako) was added for 1h at 4°C before 

washing with PBS/O.OS% Tween. 100).11 of tertiary antibody, PAP (I: 100) (Dako) was 

added for 1h at 4°C, before washing with PBS/O.OS°/c) Tween. The plate was then 

developed by the addition of 100).11 of substrate solution (ISmg O-phenylenediamine 

tablet dissolved in 60ml of a citrate buffer (0.02M citric acid, O.OSM Na~HP04). activated 

by the addition of 20).11 of 30% H20 2) to each well. After IO min in the dark, the reaction 

was stopped by the addition of S0).11 2M H2S04 to each well. The optical densities of the 

wells were then read at 490nm. 

3.40 Heparin-binding ELISA 
To detelmine how wild type and various HSV mutants bind to heparin an ELISA was 

developed. 100/-11 of a 2~lg/ml heparin solution, in PBS. was added to each well and 

stored at 4°C overnight. The plate was then blocked by the addition of IS0).11 PBS-

2%BSA to each well for lh at 4°C. The PBS-BSA was discarded by flicking and the plate 

dried by clapping against a paper towel. Virus was diluted to a desired concentration in 

PBS-1 %BSA and 100~tl added to each well for a selected time, nonnally 1,3, 5, IS. 30, 

60 min., at 37°C before washing in PBS/O.OS% Tween. Bound virus was detected as in 

section 3.39. 

3.41 III vitro Transcription 

Using the Ambion (Europe) Ltd. MEGAscript T7 Transcription Kit (Cat No: L~3-+), R\: A 

was synthesised from the DNA template: pGEM.LTB.gC(b) as described: 
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Preparation of Template DNA 

Ten micrograms of plasmid pGEM.LTB.gC(b) was linearised by BamHI digestion to 

prepare a template that would generate transcripts from the gene fusion LTB.gC(b). The 

restriction digest was tenninated by adding 1120 volume of O.SM EDT A and 1110 yolume 

of SM sodium acetate and then treated with Proteinase K (200~Lg/ml) and SDS (O.S%) for 

4S minutes at SOoC to remove residual RNase. DNA was extracted from the supernatant 

using an equal volume of phenol:chlorofonn pH 8.0 followed by precipitation with two 

volumes of 100% 'AnalaR' grade ethanol at -20°C for 1 hour. DNA was pelleted by 

centrifugation at 13,000g for 30 minutes at 4()C. washed once with 70% ethanoL dried 

and resuspended in nuclease-free H20 at a concentration ofO.S~Lg/~Ll. 

Transcription Reaction 

One mIcrogram of the linearised plasmid template was used in a 20~Ll transcription 

reaction, assembled in a micro centrifuge tube, as described in the manufacturers protocol. 

The reaction was incubated at 37°C for 4 hours prior to degrading the template DNA by 

the addition of l/-ll of RNase-free DNase I and a fmiher incubation at 370e for IS 

minutes. The reaction was stopped and the RNA precipitated by the addition of 30/-l1 of 

nuclease free H20 and 2S~d of Lithium Chloride precipitation solution: 7.SM Lithium 

Chloride, SOmM EDTA, mixing thoroughly and chilling the reaction at -lO()e for 1 hour. 

RNA was pelleted by centrifugation at 13,000g for 30 minutes at 4
11
C. washed once with 

70% ethanol, dried and resuspended in 20/-l1 of nuclease-free H~O. 

Analysis of Transcription Products by Gel Electrophoresis 

The RNA transcript (4.S~Ll) and 2/-lg RNA Century-Plus size markers [Ambion (Europe) 

Ltd., Cat No: 714S] (2~Ll marker + 2.S/-l1 nuclease free H::!O) \,·ere electrophoresed on a 

6% Acrylamidel7M Urea gel in 1 x TBE buffer. All equal \·olume of gel loading buffer 

(SO% glycerol, ImM EDT A pH 8.0, 0.2S% bromophenol blue and 0.2:'0 ° xylene cyanol 



FF) was added to the RNA, the samples heated to 80()C for 10 minutes to denature any 

secondary structure, chilled on ice, centrifuged briefly and loaded directly onto the 

denaturing polyacrylamide gel. RNA was visualised by ethidium bromide staining. 

RNA Century-Plus Size Markers Information 

The RNA size standards are a set of 7 RNA transcripts of 100, 200, 300,400, 500, 750 

and 1000bp. 
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4. CONSTRUCTION OF HSV-1 RECOMBINANT VIRUSES CONTAI~Il\'G 

LTB-gC GENE FUSIONS 

4.1 Introduction 

HSV -1 predOlninantly infects sensory neurons, however it is capable of infecting motor 

neurons (Dobson et aI., 1990). Infection by HSV -1 involves an initial adsorption of the 

virion at the cell surface, followed by virion penetration of the cell. From studies on 

epithelial cells, the principal virion protein involved in adsorption is glycoprotein C (gC) 

which binds to cellular glycosaminoglycan, heparan sulphate (HS) (Fuller and Spear. 

1985; Herold et al., 1991; Svem1erholm et al., 1991). gC has been characterised, and two 

domains of the protein have been shown to play a role in adsorption to HS - one 

including Arg-143, -145, -147 and Thr-150, and the other containing Gly-247 (Trybala et 

al., 1994). Though separated by almost 100 amino acids, in the teliiary structure of the 

protein they are in close proximity. These regions are Arg-rich and of a polycationic 

nature. Other polycationic substances e.g. neomycin, poly-L-lysine are known to 

compete with HSV attachment to cells (Langeland et al., 1987,1988,1990; WuDunn and 

Spear, 1989; Campadelli-Fiume et al., 1990). 

Gangliosides are complex glycolipids that are found in all cell membranes. These are 

found especially in neuronal cells (Wiegandt, 1985). Due to the limitations and 

difficulties of using primary neurons, Matsumoto et al., (1995), used various NSC cell 

lines in lieu of motor neurons, in an attempt to elucidate their ganglioside composition. 

Due to various phenotypic characteristics e.g. adhesion to the leucine-arginine-glutamate 

(LRE) motif of S-laminin, a neuromuscular synapse-specific basal lamina glycoprotein 

(Hunter et aI., 1989 a, b; 1991), NSC-34 was seen to be the most motor neuron-like cell 

line available. The major ganglioside of NSC-34 cells \Vas GM2 (~75%). Also present 

was GD1a, with GM1 present in small quantities. 

Escherichia coli heat-labile enterotoxin (LT) is an enterotoxin produced by E. coli. It is 

an ABc; hexamer consisting of 5 identical B subunits and a larger A subunit. The toxins 

consist of an A subunit separated fiom the plane of a pentameric rmg fom1ed bv .5 
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smaller, identical B subunits (Gill 1976' Lai et al 1976' Oht I 1976 G'll I " ." Olno el ([ " ; 1 et a ., 

1981; Sixma et al., 1991). The pentameric B subunit binds to GMI in the membrane of 

intestinal epithelial cells, or any other cell that contains GM 1 (van Heyningen. 197..J.), 

Thus, to promote binding towards gangliosides present in motor neurons and shift the 

balance of tropism of HSV towards motor neurons, two recombinant vimses \\ere 

constructed, each containing separate truncated portions of gC fused to LTB. 

4.2 Construction of Mutant Viruses: RFa and RFb 

Two new recombinant viruses were constmcted in a gC-ve (LacZ) background 

(Cunningham and Davison, 1993) and named RFa and RFb. These viruses each contain 

fusions of a different length of the gC gene (both with the HS-binding domains deleted) 

to LTB. To generate these vimses, several plasmids were sub-cloned and are described 

in detail below (Figure 4.1). 

4.3 Subcloning of etxB 
The E. coli LTB gene was contained in the plasmid pTRHI0IR (Prof. T. Hirst,). This 

was subcloned into pGEM2fz(+) (Promega). The 400bp EcoRI - SpeI fragment 

containing the LTB gene was cloned into the EcoRI I Xb{[I sites of pGEM-3Zf(+) to 

create the plasmid pGEM.LTB (Figure 4.2). 

4.4 Creation of gC-LTB fusions 
Based on the findings of Holland et ai., 1988, the gC gene was altered such that the 

encoded protein would retain its cytoplasmic domain. This ensured that the tmncated 

glycoprotein (and any fusions to it) will be anchored in the plasma membrane, and \\ill 

also be inserted into the virion envelope. T\\"o \'arying lengths of gC gene were 

constructed: one encoding the cytoplasmic and transmembrane domains (a.a.s:..J. 78-511). 

tenned gC(b), the other encoding the cytoplasmic and transmembrane domains and also a 

region of the extracellular domain that contains Cys-5 to Cys-8 (a,a.s:3 77-511 ). tenned 

gC(a). The smaller of the two gene sizes was chosen as it encodes the smallest p0l1ion of 

glycoprotein C that \vill be inserted into the membrane (Holland cl al., 1988). and also 
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LTB 
(from 
pTRH101R) 

PCR of KpnI d: 

_ gCa 

pGEM.LTBgCa 

pGEM.LTB 

Figure 4.1 Schematic overview of cloning steps (part 1) 

pGEM2t2(+) 

PCR of KpnI d: 

- gCb 

pGEM.LTBgCb 
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• 
CMV IE promoter 
(from pcDNA3) 

PCR ofpGEM.LTBgCa: 

RLl .dCMV.LTBgCa 

pRFa 

RL1.dCMV 

-
HSV-2 IES PolyA (from pFJ14) 

Figure 4.1 Schematic overview of cloning steps (part 2) 

RL1.del 

PCR ofpGEM.LTBgCb: 

(LTBgCb) 

RLl.dCMV.LTBgCb 

pRFb 
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EeaR I 

LTB 

pTRHIOIR 
(9.3Kb) 

H illd III 
Xbn I 
BnlllHI 
Spe 1 

An1pr 

pGEM.LTB 
(3.6Kb) 

pCE . 12f2( + ) 
(3 .2Kb) 

Figure 4.2 Schematic subcloning of extB into pGEM2fz( +) 

EeaRI 
Sac I 
Kp71 I 
Ava 1 
Smol 
Bnl11HI 
X ba 1 
Sa! I 
Aec I 
Hill e II 
Pstl 
Sph I 
Hind III 
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Figure 4.3 

Figure 4.4 

gC(a) PCR - ampli fied using Kpll Id as a template and primers: 

51 GGG TAA Gcr TIT ACC GCC GAT GAC G 31 

51 AAC CAA Gcr TAT GGA An TGG GGT C 31 

98°C - 10 mins 

98°C - Imin 

57°C - 30 sees 

72°C - 30 sees 

72°C -10 mins 

] 30 eycles 

I I 
CysS Cys6 - Cys7 Cys8 

Schematic diagram of gC(a) PCR 

lkb -

500bp -

lOObp 
ladder 

PCR-amplification of gC(a) 

gCa (134 a.a.) 

Using KpnI d as a template, the 42Sbp fragment was amplified using primers GCl and GC3. 

Following the PCR reaction, the reaction mix was fractionated on a 1 % agarose gel. The 42Sbp 

gC fragment (as indicated by arrow) was then cloned into pGEM.LTB. 
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100bp 1. 2. '") 4. 5. 6. 7. 8. .J. 9 . 10. ll. 12. 100bp 
ladder 

ladder 

. ~ ~ 

Figure 4.6 Cloning of gC(a) into pGEM.LTB 

Fo llowing li gation of H indlll - d igested gC(a) into the Hind" I s ite of pGEM. LTB, 12 co lonies 

had the ir plasmid DNA extracted and analysed by EcoRIIXba l di gesti on (lanes 1-1 2) on a 1% 

agarose ge l. An Xbal restri cti on enzyme site ex ists at base-pair pos ition 97,669 of the HSV- l 

genome, 229bp fro m th e 5' end of gC(a). Thu s, as th e gC(a) in seli coul d recombine into the 

plasmid in either direction , a band of 629bp indicates the in sert is in the correct or ientati on (w ith 

a fU liher band of 3.4kb), whereas a band of 564bp signi fies the incorrecti on ori entati on of the 

in sert (w ith a fLlliher band of 3 .5 kb). From the diagram, several clones formed with in seliions in 

e ither directions. However, c lone number 10, that showed a band of 629bp, was chosen and 

grown up to provide plasmid pG EM.LTB.gC(a). 
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4.4.2 PCR of gC(b) 

KpnI d was used as a template, and the gC fragment was amplified using the following 

primers: GC4, a 25mer which anneals to the 3' end of the gC gene, and contains a BamHI 

site: (GGGTGGATCCTTACCGCCGATGACC), and GC2, a 25mer, which anneals to 

the gC gene from amino acids 478 to 481. This contains an XbaI recognition site: 

(GGAGTCTAGATGGGTGGGGATTGGA) 

The conditions used were 10 min at 98° C, followed by 30 cycles of 1min at 98° C, 30 

sec at 65° C, and 30 sec at 72° C, with final extension at 72° C forlO min (Figure 4.7). 

The 125bp gC(b) fragment was amplified, fractionated on a 1 % T AE agarose gel (Figure 

4.8), excised using a Nucleon gel extraction kit, then digested with BamHI and XbaI 

(these sites contained within the PCR primers). The fragment was cloned into the BamHI, 

XbaI sites of pGEM.LTB to generate plasmid pGEM.LTBgC(b) (Figure 4.9). Upon 

cloning, the gene fusion remained in-frame: 

+100 +478 

ATC AGT ATG GAAAAG CTTTCT AGA TGG GTG GGG 

LTB gene product HindUI XbaI gC(b) 

4.5 Creation of an expression plasmid 

In order for the mutant viruses to be avirulent, the glycoprotein-toxin fusions were 

inserted into the RL1 locus. It's gene product, ICP34.5, has been shown to be one of the 

major determinants of virus pathogenicity. Following intracranial inoculation, mutants in 

RL 1 are 100,000 less virulent than wild type viruses (Taha et al., 1989; Chou et al., 1990; 

MacLean et al., 1991). In order to achieve homologous recombination of the gene 

fusions into the RLI locus, the fusions were cloned into the plasmid RL l.del (E.A. 

McKie). This plasmid consists of the 5.9kb BamHI k fragment containing the RL1 gene 

cloned into the BamHI site of pGEM2fz(+). The 477bp PflMI-BstEII fragment (bases 

125,292 to 125,769) was excised from the plasmid and replaced with a multi-cloning site, 

to form the plasmid RL l.del (Figure 4.11). This plasmid was then manipulated further as 

described below. 
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gC(b) PCR - amplified using Kpn Id as a template and primers: 

5' GGA GTC TAG ATG GGT GGG GAT TGG A 3' 
:S' GGG TGG ATr rTT Arr Grr GAT GAr r v 

Figure 4.7 

98°C - 10 mins 

98°C -1 min 

65°C - 30 sees 

72°C - 30 sees 

72°C - 10 mins 

478 

] 30 cycles 

Transmembrane 
domain 

Schematic diagram of gC(b) PCR 

Cytoplasmic 
domain 

511 

gCb (34 a.a.) 
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300bp -

200bp -

1 nnhn _ 

Figure 4.8 

lOObp 
ladder 

1. 

PCR -amplification of gC(b) 

2. 4. 

Using KpnI d as a template, the 125bp fragment was amplified using primers GC2 and 

GC4. FOLlr various concentrations of primer and template were u ed in the peR mix, and 

the reactions were fractionated on a 1 % agarose gel. As can be seen from the diagram. 

all four lanes show amplification of the 125bp fragment (indicated by arrow) 
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pGEM.LTB 

EcoR I 

+ 
HindIII 
XbaI 
BamHI 
SajI 
AccI 
HincII 
PstI 
Spit I 
HindIII 

pGEM.LTBgCb 
(3.7Kb) LTB 

EcoR I 

Hind III 

Xba I 

BamHI 
SajI 
AccI 
HincII 
PstI 
Spit I 
HindIII 

BamH I / Xba I 
PCR - amplified 
gC(b) (125bp) 

+100 +478 
ATe AGT ATG GAA AAG CTT TCT AGA TGG GTG GGG 

L TB HindIII XbaI gC 

Figure 4.9 Schematic diagram of gC(b) cloning into pGEM.LTB 
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1kb -

500bp -

100bp l. 
ladder 

Figure 4.10 

2. 3. 4 . 5. 6. 7. 8. 

C loning of gC(b) into pGEM .LTB 

9. 10. II. 12. 13. 14. 15 . 16. 100bp 
ladder 

The 125bp gC( b) fragment \,vas di gested with BomHI and Xba l and li gated into these s ites in 

pG EM.LTB. 15 coloni es ( lanes 1-15 ) from th e li gati on were grown up and had the ir pl asmid 

DNA extracted a nd ana lysed by di gestion w ith BomHI and E coRI on a 0.8% agaro e ge l. If the 

gC fragment had cloned in correctly, bands of 499bp and 3.2kb wo uld res ult from thi s d igest. As 

seen from the di agram, severa l co lonies y ie lded c lones. Lane 16 conta in ed di gested pGEM.L TB 

w hich g ives a band of 374bp . Co lony number 3 was se lected and grown to g ive p lasmid 

pGEM .LTB.gC(b). 
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4.5.1 Subcloning of the CMV IE promoter 

To drive gene expression, the CMV immediate early promoter was cloned into RL l.del. 

This promoter was chosen for several reasons: it is an efficient promoter in HSV, and 

also it is non-HSV genetic material and shows little homology to the HSV backbone-thus 

lessening the chances of non-homologous recombination, during virus construction. 

The CMV immediate early promoter, contained in the plasmid pcDNA3 (Invitrogen), 

was digested with NruI and XhoI, removing a 771 bp fragment containing the CMV 

promoter (Figure 4.13). This was cloned into the Nrul - X7101 site of RL 1. del, generating 

the plasmid RL1.dCMV (Figure 4.14). 

4.5.2 Subcloning of gC(a)-LTB into RL1.dCMV 

To clone the larger gC-LTB fragment into RLl.dCMV, the fragment was PCR-amplified 

using pGEM.LTBgC(a) as a template. The following primers were used: prLTB, a 

25mer, which anneals to the 5' end of extB and contains an X7101 recognition site 

(GGGACTCGAGATGAATAAAGTAAAA), and GC5, a 25mer which anneals to the 3' 

end of the gC gene and contains a HpaI recognition site: 

(GGGTGTT AACTT ACCGCCGATGACG). 

The conditions used were 10 min at 98° C, followed by 30 cycles of Imin at 98° C, 30 

sec at 52° C, and 30 sec at 72° C, with final extension at 72° C forI 0 min (Figure 4.15). 

The 825bp gene fusion was amplified, fractionated on a 1 % T AE agarose gel (Figure 

4.16) excised using the Nucleon gel extraction kit then digested with XhoI and HpaI and 

cloned into these sites within RL1.dCMV, thus creating the 10.lKb plasmid, 

RL 1.dCMV.L TB gCa (Figure 4.18). 
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I GTAAC 

p G EM2f2(+) 
(3 .2Kb) 

GTTAAC 
CAATTG 

Hpn l 

BI7I I1 H l k (123,459 - 129,403) 
(5.9Kb) 

123,459 

129,403 

CTCGAG 
GAGCTC 

X110 1 

Amp!' 

TAC 
(,125, 111 ) ./' PfiM I (125,292) 

+ 

RL1 

ATe 
(,125,859) 

TCGCGA ACATCT 
AGCGCT TCTAGA 

Nyu I BglIJ 

t 

RL1.del 
(S.6Kb) 

13stE TI (1 25,796) 

ATCGAT 
TAGCTA 

CIa I 

PfiM T 
Cln I 
BgIT 
N m l 
XIIO J 
Hpn J 
Rc;tE II 

eTC 

Figure 4.11 Schematic construction ofRLl.del 

I 
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peD A3 
(5.4Kb) 

Ampr 

Hilld 1 
Kpn J 
BnmHI 
Bsfx I 
EcoRl 
EcoR V 
Bs tx I 
Not J 
Xho I 

A r .. mp 

RL1.dCMV 
(9.3Kb) 

r~L1.de l 

(8 .6Kb) 

Figure 4.12 Subcloning of the CMV IE promoter into RLl.del 

~f7M I 
eTn I 
Bgil 
Nl'IIl 

Hind .!II 
Kpll I 
Bnll1 H r 
Bsfx ] 
fcoR I 
EcoRV 
I3stx I 
Not I 
Xl,o T 

Hpn l 
B -fE rI 

Pj7M 1 
eTn I 
Rg II 

1m l 
XIIO J 

Hpnl 
BsfE Il 



Ikb RLl.de l 
I adder 

1 kh -

Figure 4.13 Subclonin g of the CMV IE promoter 

pcDNA J IOObp 
ladder 

- 500bp 

Plasmid pcDNAJ was di gested with NruI and Xho l, cutting the 77 1 bp CMV IE promoter 

(indicated by arrowhead). Thi s was then cloned into the 8.6kb Nru ll Xhol digested RL l .del to 

create the plasmid RL l .dCMV . 
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lkh 

Figure 4.14 

lOObp 
ladder 

1. 2. ') 

.J . 4. 

Subclonin g of the CMY IE promoter into RLI.del 

5 . 

Following the I iga ti on of the C MY IE promoter into th e NrullXho l ites of RL I.de l, fi ve co loni e 

were se lected (lanes 1-5) and their plasmid DNA extracted and analysed by digesti on with BamHI 

and BglIl on a 1% agarose ge l. If the promoter has been c loned, the 77 1 bp promoter will be 

cleaved from the plasmid , a long with 3 other band s of 1.8kb, 3.2kb and 3.5kb, RL l .del only 

giving the three latter bands. As can be seen from the di agram, the 77 1 bp band (arrowhead) 

appears in 4 colonies (lanes 1-4). Co lony number 2 \Va chosen and grovvn lip to provide pia mid 

RLl .dCMY. 
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LTB-gCa 

51 
PCR - amplified using pGEM.LTBgCa as a template and primers: 

51 
GGG ACT CGA GAT GAA TAA AGT AAA A 31 

GGG TGT TAA CTT ACC GCC GAT GAC G 31 

98°C - 10 ll1ins 

98°C - 1 111in 

52°C - 30 sees 

72°C - 30 sees 

72°C - 10 mins 

t 
LTB 

] 30 cycles 

Cys - Cys 

Cys - Cys 

t 
gC Extraeel1uLar 

domai.n 

t 
gC 

Transmembrane 
domain 

Figure 4.15 Schematic diagram ofLTB-gC(a) PCR 

~ 
gC 

Cytoplaslnie 
domain 
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Figure 4.16 PCR-amplification of L TB-gC(a) 

IOObp 
ladder 

- 800bp 

- 500bp 

Using pGEM.LTBgC(a) as a template, the 82S bp fragment was amplifi ed lI sing primers pLTB 

and GCS. Following the PC R reacti on, the react ion mi x was fracti onated on a 1% agarose ge l. 

The 82Sbp gC fragment (as indicated by arrow) was digested with Xho l and Hpal and then cloned 

into these sites in plasm id RL I .dCM V. 
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RLl .dC1:v[V 
Hind IJI 
K.pn I 
BamHJ 
Bstx I 
EcoRI 
EcoR V 
Bstx I 
No!.! 
Xlzo I 
Hpa J 
BstE II 

J 

RL1.dC1:v[VLTBgCa 
(lO.1Kb) 

LTB 

+ 

llpn I 

Rs/~ TT 

Xho [ / Hpn J - d ige ted 
LTBgCa PCR product 
(825bp) 

Hin d III 
Kpl7 I 
BnlllH J 
BSlx 1 
feaR J 
fea R V 
BSlx I 
NO l I 
Xho r 

Figure 4.17 Schematic diagram OfLTBgC(a) clolling into RL l .dCMV 
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800bp -

SOObp -

IOObp I . 
ladder 

2. 3. 4 5. 6. 7. 8. 9. 10. I I. 12. 13. 14. 15. 16. 17. 18. I OObp 
ladder 

Figure 4.18 C lonin g of L TBgC(a) into RL l .dCMV 

Fo ll owin g li gati on of the X ho llHpa l d igested LTBgC(a) PCR fragment to RL l. dCMV , 18 co lonie 

(labe ll ed 1-1 8) were se lected and their pl asmid DNA extracted and analysed by digestion with EcoRIIHpa l 

on a 0.8% agarose ge l. If the fragment had been cloned, digestion woul d yield ba nds of 825bp (the in serted 

fragment), 3.7 kb and 5.5kb. RLI .dCMV yields the latte r two bands. As seen fro lll the diagram severa l 

co loni es contained th e c loned fragment. Number 3 was se lected and grown up to give plasmid 

RL I.dCMV.LTBgC(a). 

100 



LTB-gCb 

Sl 

Sl 

PCR - amplified using pGEM.LTBgCb as a template and primers: 

GGG ACT CGA GAT GAA TAA AGT AAA A 31 

GGG TGT TAA CIT ACC GCC GAT GAC G 31 

98°C - 10 mins 

98°C - 1 min 

S2°C - 30 sees 

72°C - 30 sees 

72°C - 10 m ins 

t 
LTB 

] 30 cycles 

t 
gC 

Transmembrane 
domain 

Figure 4.19 Schematic drawing ofLTB-gC(b) PCR 

1.5kb -

500bp -

IOObp I. 2. 
ladder 

Figure 4.20 PCR -amplification of LTB-gC(b) 

t 
gC 

Cytoplasm ic 
domain 

Using pGEM.LTBgC(b) as a template, the 525bp gene fusion was amplified usmg 

primers pL TB and GC5. Two concentrations of template and primer were used and the 

PCR reaction mix was fractionated on a 1 % agarose gel. The 525bp fragment (as 

indicated by arrow) was digested with XhoI and HpaI and cloned into these sites in 

RL1.dCMV. 
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pCMY 

RL1.dCMV Hind III 
Kpn I 
BamHI 
Bstx I 
EeaR I 
EeaR V 
Bstx I 
Nat I 
Xha I 
Hpa I 
BstE II 

RL1.dCMVLTBgCb 
(9.8Kb) 

+ 

Hpa I 

XhoI / HpaI­
digested LTBgCb 
PCR product 
(S2Sbp) 

Hind III 
Kpn I 
BamHI 
Bstx I 
EeaR I 
EeaR V 
Bstx I 
Nat I 
Xha I 

Figure 4.21 Schematic diagram ofLTBgC(b) cloning into RL1.dCMV 
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lOObp l. 2 . 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 
ladder 

lkb-

500bp-

Figure 4.22 Cloning of L TB-gC(b) into RL l.dCMV 

Following the ligation of' /\170I/HpaI-digested LTB -gC( b) to RL1 .dCMV, 14 co lonies 

(labelled 1-14) were picked. They had their plasmid DNA extracted and analysed by 

digestion with EcoRI/J-IpaI , on a 1 % agarose gel. If the fragment had been c loned, three 

bands would be formed by the digestion: 525bp (LTB-gC(b) frag ment), 3.7kb and 5.5kb, 

otherwise, just the two latter bands would be formed. As can be seen fro m the diagram , 

colony 12 gave the 525bp band (indicated by arrowhead). Thi s \vas then selected and 

grown up to provide plasmid pGEM.L TB-gC(b). 
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4.5.3 Subcloning ofgC(b)-LTB into RL1.dCMV 

To clone the smaller gC-LTB fragment into RL l.dCMV, the fragment \\'as PCR-

amplified using pGEM.LTB.gC(b) as a template. The following primers were used: 

prL TB, a 25mer, which anneals to the 5' end of extB and contains an XhoI recognition 

site (GGGACTCGAGATGAATAAAGTAAAA), and GC5, a 25mer which anneals to 

the 3' end of the gC gene and contains a Hpclf recognition site: 

(GGGTGTT AACTT ACCGCCGATGACG). 

The conditions used were 10 min at 98° C, followed by 30 cycles of lmin at 98° C, 30 

sec at 52° C, and 30 sec at 72° C, with final extension at 72° C forI 0 min (Figure 4.19). 

The 525bp gene fusion was amplified, fractionated on a 1 % TAE agarose gel (Figure 

4.20), excised using the Nucleon gel extraction kit then digested with XhoI and HpaI and 

cloned into these sites within RL1.dCMV, thus creating the 9.8Kb plasmid, 

RL1.dCMV.LTBgCb (Figure 4.21). 

4.5.4 Sub cloning of a Poly A site into the expression plasmids 

As both expression plasmids were missing polyA sequences, the HSV -2 IE5 

polyadenylation sequence was sub cloned from plasmid pFJl4 (A.R.MacLean) into both 

RL1.dCMV.LTBgCa and RL1.dCMV.LTBgCb. pFJl4 was digested with BamBI and 

HindIII, excising the 114bp polyA sequence (Figure 4.23). This was Klenow-treated to 

blunt-end the fragment, which was then cloned into the HpaI site of the expression 

plasmids RL1.dCMV.LTBgCa, and RL1.dCMV.LTBgCb to create plasmids pRFa and 

pRFb respectively (Figure 4.24, Figure 4.26). To detennine if the inserts were in the 

correct orientation, clones were digested with EcoRI and Pstr. A Pstr site exists within 

the polyA sequence. For pRFa, a band of 785bp signified a clone with the polyA site in 

the correct orientation (Figure 4.25) and for pRFb a band of 485bp signified the polyA 

sequence had inserted correctly (Figure 4.27). 
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300bp-

200bp -

IOObp pFJI 4 

ladder 

Figure 4.23 Subcloning of the HSV -2 IE5 polyadenylation sequence 

Plasmid pFJl4 was digested with BamHI and HindlII. excising the 11 4bp HSV-2 IE5 

polyadenylation sequence (faint band above dye fro nt indicated by arrowhead). This 

was then treated with Klenow to blunt-end the fragment. before cloning into the [-{paT site 

in plasmids RLl.dCMV.LTB-gC(a) and RLl.dCMV.LTB-gC(b). 
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Ampr 

RL1.dCMV 
LTBgCa 

EeaR I 

Hpa 1 

pRFa 
(lO.2Kb) 

LECEND: 

Psl-T 

pFJ14 
(7.8Kb) 

l~Til7d TIT 

EcoR I 

Bnl11H 1 

TJ : 5V40 cClrJy polyaden y Ja tion sequence 
T2: H 5V-l g D prom_oter 
T2: H SV-2 1E5 polyaden yJati on sequnce 

Figure 4.24 Schematic di agram of sub cloning of Poly A into RL l. dCMV.LTBgCa 

106 



lOObp 
ladder 

Figure 4.25 

l. 2. ') 

J. 4. 5. 

C lonin g of Pol yA into RLI .dCMV .LTB-gC(a) 

6. lOObp 
ladder 

- 1 kb 

- 500bp 

Following li gati on of the 11 9bp CMV IE polyadenylat ion sequ ence into RL l.dCMV.L TB-gC(a) 

6 co loni es were se lected ( lanes 1-6), their plasmid DNA extracted , di gested with Eco RI and PsI[, 

and ran on a 1% agarose ge l. The CMV IE polyadenylat ion seq uence contain s a PsI I site staliing 

at base-pair position 4. If th e PolyA sequence in serted in the correct ori entati on, thi s di gest will 

cut out a fragment of 804bp(indicated by arrow). If however, in co rrect or ientati on has occu rred, 

then a band of9 19bp w ill be CLlt (three other bands of2.5 kb, 3.2kb, and 3.7kb are also cut). As 

can be seen fro m the diagram, co lonies 2-4 have the PolyA sequ ence in the correct orientat ion. 

whereas numbers 5 and 6 have the sequence cloned in an invelied pos iti on. 

chosen and grown up to provid e plasmid pRFa. 

LImber 3 \Va 
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RLl.dCMV 
LTBgCb 

EeaR 1 

Hpa I 

pRFb 
(9.4Kb) 

Pst] 

pFJH 
(9. 8.Kb) 

Hilld ITT 

EcoRI 

Bnl1l H I 

LEGEND : 
Tl : 
T2: 
T2: 

SV40 early po lyadenylation sequence 
HSV-l gO promoter 
HSV-2 IE5 polyadenylation sequnce 

Figure 4.26 Schematic diagram of sub cloning of Poly A into RLl.dCMV.LTBgCb 
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100bp 1. 2. 
ladder 

c;nnhn _ 

'") 

..J. 4. 5. 6 . 

Figure 4.27 Cloning of Poly A into RLl.dCMV.LTB-gC( b) 

100bp 
ladder 

Following ligation of the 119bp CMV TE polyadenylati on sequence into 

RL l.dCMV.L TB-gC(b) 6 co lonies were selected (lanes 1-6), their plasmid DNA 

extracted, digested with EcoRI and PSIJ , and ran on a 1 % agarose ge l. The CMV IE 

polyadenylation sequence contains a PSI1 site starting at base-pair position 4. If the 

Poly A sequence inserted in the correct orientation, thi s di gest will cut out a fragment of 

504bp. If however, incorrect orientation has occurred then a band of 6 19bp will be cut 

(three other bands of 2.5kb, 3.2kb, and 3. 7kb are also cut). As can be seen fro m the 

diagran1, colony 5 has the Poly A sequence in the correct orientation (faint band. indi cated 

by arrowhead), whereas the other colonies have the equence c loned in an inverted 

position. Number 5 was chosen and grown up to provide plas mi d pRFa. 
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4.5.5 Sequencing of pRFa and pRF 

Following cloning of the polyA sequence the plasmids were sequenced by DNAshef, 

Edinburgh. The sequences were returned as follows: 

pRFa: 

CTC GAG ATG AAT AAA GTA AAA TTT TAT GTT TTA TTT ACG GCG TTA 
CTA TCC TCT CTA TGT GCA CAC GGA GCT CCT CAG TCT ATT ACA GAA 
CTA TGT TCG GAA TAT CAC AAC ACA CAA ATA TAT ACG ATA AAT GAC 
AAG ATA CTA TCA TAT ACG GAA TCG ATG GCA GGC AAA AGA GAA ATG 
GTT ATC ATT ACA TTT AAG AGC GGC GCA ACA TTT CAG GTe GAA GTC 
CCG GGC AGT CAA CAT ATA GAC TCC CAA AAA AAA GCC ATT GAA AGG 
ATG AAG GAC ACA TTA AGA ATC ACA TAT CTG ACC GAG ACC AAA ATT 
GAT AAA TTA TGT GTA TGG AAT AAT AAA ACC CCC AAT TCA ATT GCG 
GCA ATC AGT ATG GAA AAG CTT ATG GAA TTT GGG GTC CGC ATT GTG 
GTC TGC ACG GCC GGC TGC GTC CCC GAG GGC GTG ACG TTT GCC TGG 
TTC CTG GGG GAC GAC CCC TCA CCG GCG GCT AAG TCG GCC GTT ACG 
GCC CAG GAG TCG TGC GAC CAC CCC GGG CTG GCT ACG GTC CGG TCC 
ACC CTG CCC ATT TCG TAC GAC TAC AGC GAG TAC ATC TGT CGG TTG 
ACC GGA TAT CCG GCC GGG ATT CCC GTT CTA GAA CAC CAC GGC AGT 
CAC CAG CCC CCA CCC AGG GAC CCC ACC GAG CGG CAG GTG ATC GAG 
GCG ATC GAG TGG GTG GGG ATT GGA ATC GGG GTC CTC GCG GCG GGG 
GTC CTG GTC GTA ACG GCA ATC GTG TAC GTC GTC CGC ACA TCA CAG 
TCG CGG CAG CGT CAT CGG CGG TAA GTT AAC 

Sequencing showed the gene fusion to be in-frame. The initiating codon ofLTB (ATG) is 

shown in bold. Also shown in bold is the HindUI site at the LTB-gC gene fusion junction. 

This sequence was then translated electronically using the VectorNTI software package: 

Translation ofLTBgCa ORF from base pairs 7 to 786: 

mnkvkfyvlftallsslcahgapqsitelcseyhntqiytindkilsytesmagkremviitfksgatfqvevpgsqhidsqkk 

aiermkdtlrityltetkidk1cvwnnktpnsiaaismeklmefgvrivvctagcvpegvtfaw£lgddpspaaksavtaqes 

cdhpglatvrstlpisydyseyicrltgypagipvlehhgshqppprdpterqvieaiewvgigigvlaagvlvvtaivyvvrt 

sqsrqrhrr 
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pRFb: 

CTC GAG ATG AAT AAA GTA AAA TTT TAT GTT TTA TTT ACG GCG TTA 
CTA TCC TCT CTA TGT GCA CAC GGA GCT CCT CAG TCT ATT ACA GAA 
CTA TGT TCG GAA TAT CAC AAC ACA CAA ATA TAT ACG ATA AAT GAC 
AAG ATA CTA TCA TAT ACG GAA TCG ATG GCA GGC AAA AGA GAA ATG 
GTT ATC ATT ACA TTT AAG AGC GGC GCA ACA TTT CAG GTC GAA GTC 
CCG GGC AGT CAA CAT ATA GAC TCC CAA AAA AAA GCC ATT GAA AGG 
ATG AAG GAC ACA TTA AGA ATC ACA TAT CTG ACC GAG ACC AAA ATT 
GAT AAA TTA TGT GTA TGG AAT AAT AAA ACC CCC AAT TCA ATT GCG 
GCA ATC AGT ATG GAA AAG CTT TCT AGA TGG GTG GGG ATT GGA ATC 
GGG GTC CTC GCG GCG GGG GTC CTG GTC GTA ACG GCA ATC GTG TAC 
GTC GTC CGC ACA TCA CAG TCG CGG CAG CGT CAT CGG CGG TAA GTT 
AAC 

Sequencing showed the gene fusion to be in-frame. The initiating codon ofLTB (AT G) is 

shown in bold. Also shown in bold is the HindUI and XbaI sites at the LTB-gC gene 

fusion junction. 

This sequence was then translated electronically using the VectorNTI software package: 

Translation ofLTBgCb ORF from base pairs 7 to 486: 

mnkv kfyv Iftallss1cahgapq si te1cseyhntqi ytindkilsytesmagkrem vii tfks gatfqvevp gsqhidsq kk 

aiermkdtlrityltetkidklcvwnnktpnsiaaismeklsrwvgigigvlaagvlvvtaivyvvrtsqsrqrhrr 

Sequence Alignment LTB and pRFa/b 

pRFa: 

pRFb: 

LTB: 

mnkvkfyvlftallsslcahgapqsitelcseyhntqiytindkilsyte 
mnkvkfyvlftallsslcahgapqsitelcseyhntqiytindkilsyte 
mnkvkcyvlftallsslcaygapqsitelcseyrntqiytindkilsyte 

pRFb: smagkremviitfksgatfqvevpgsqh~dsqkka~ermkdtlr~tylte 
pRFb: smagkremviitfksgatfqvevpgsqhldsqkka~ermkdtlr~tylte 
LTB: smagkremviitfksgatfqvevpgsqhidsqkkalermkdtIrltyIte 
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pRFa: t~dklcvwnnktpnsiaaismeklmefgvrivvctagcvpegvtfawf1 
pRFb: tkidklcvwnnktpnsiaaismeklsrwvgigigvlaagvlvvtaivyvv 
LTB: tkidklcvwnnktpnsiaaismen 

pRFa: gddpspaaksavtaqescdhpglatvrstlpisydyseyicrltgypa 
pRFb: rtsq srqrhr 

pRFa: gipvlehhgshqppprdpterqvieaiewvgigigvlaagvlvvtaivyv 

pRFa: vrtsq srqrhrr 

The sequences were aligned using the VectorNTI software. Both pRFa and pRFb showed 

homology to the extB gene, as indicated by bold lettering. Some sequence differences 

were seen at amino acids -16, -2, 13 and 103, as indicated by red lettering. These are due 

to the following sequence differences: 

LTB: -16 (TTT) pRFa: (TGT) pRFa: (TGT) 

-2 (CAC) (TAC) (TAC) 

13 (CAC) (CGC) (CGC) 

103 (AAC) (AAG) (AAG) 

For the first three sequences, the differences are due to the origin of the LTB gene 

sequence. For the purpose of gene alignment the LTB sequence was taken from NCBI 

(accession number S60731). These nucleotide differences at positions -16, -2 and 13 

have been reported by Leong et al. , (1985), as sequencing differences between LTB 

subunits of different strains i.e. L TB from an enterotoxigenic E. coli strain infectious for 

humans (Leong et al., (1985)) and LTB from a porcine E. coli isolate (Dallas and 

Falkow, 1980). The gene sequence for pRFa and pRFb is in 100% agreement with the 

sequence of extB published by Leong et al. , (1985). The final sequence difference (AAG 

instead of AAC) is due to the HindIII site that was inserted at the end of the LTB gene. 
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Sequence Aligment HSV -1 gC and pRFa/b 

gC: mapgrvglavvlwgllwlgagvaggsetastgptitagavtnaseaptsg 
gC: spgsaaspevtptstpnpnnvtqnkttptepasppttpkptstpksppts 
gC: tpdpkpknnttpaksgrptkppgpvwcdrrdplarygsrvqircrfmst 
gC: rmefrlqiwrysmgpsppiapapdleevltnitappggllvydsapnltd 

pRFa: nIDk 
gC: phvlwaegagpgadpplysvtgplptqrliigevtpatqglnyylawgrmd 

pRFa: vkfyvlftallsslcahgapqsitelcseyhntqiytindkilsytesma 
gC: spheygtwvrvrmfrppsltlqphavmegqpfkatctaaayypmpvefd 

pRF a: glaemvii tfks gatfqvevpgsqhidsqkkaiern1kdtlri ty 1 tetki 
gC: drqvfnpgqidtqthehpdgfttvstvtseavggqvpprtftcqlntwhrd 
pRFb: n1l1kvkf 

pRFa: dldcvwnnktpnsiaaismeklmefgvrivvctagcvpegvtfawflgdd 
gC: svtfsrrnatglalvlprptitmefgvrivvctagcvpegvtfawflgdd 
pRFb: yvlftallsslcahgapqsite1cseyhntqiytindkilsyteslnagkr 

pRFa: pspaaksavtaqescdhpglatvrstlpisydyseyicrltgypagipvl 
gC: pspaaksavtaqescdhpglatvrstlpisydyseyicwltgypagipvl 
pRFb: emviitfksgatfqvevpgsqhidsqkkaiermkdtlrity1tetkidld 

pRFa: ehhgshqppprdpterqvieaiewvgigigvlaagvlvvtaivyvvrtsqsr 
gC: ehhgshqppprdpterqvieaiewvgigigvlaagvlvvtaivyvvrtsqsr 
pRFb: cvwnnktpnsiaaismeklsfwvgigigvlaagvlvvtaivyvvrtsqsr 

pRFa: qrhrr 
gC: qrhrr 
pRFb: qrhrr 

The sequences were aligned using the VectorNTI software. Both pRFa and pRFb showed 

homology to HSV -1 gC, as indicated by bold lettering (pRF a showed homology to amino 

acids 377-511 of gC; pRFb showed homology to amino acids 478-511 of gC). 
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4.6 Co-transfection of pRFa/pRFb with HSV -1 gC-ye ON A 

4.6.1 Generation of RFa and RFb 

Plasmids pRFa and pRFb were digested with Xl11111 and co-transfected with gC-\'e (lacZ) 

DNA onto BHK cells, as described in section 3.23, to generate new recombinant yinlSeS 

RFa and RFb, respectively. The transfection plates were incubated until cpe was 

complete. The infected cells were centrifuged, virus released by sonication, and titrated 

on BHK monolayers. Discreet plaques were picked and used to infect BHK cells in 24-

welllinbro dishes. Two days post-infection, the medium was removed, and stored, from 

the linbro wells, and the viral DNA extracted (section 3.26). The DNA was digested with 

EeoR! and Southern blotted (section 3.28) using a 32P-RL1.del probe. 

Both RFa and RFb have an additional EeoRI site in the region recognised by the RL 1.del 

probe (Figure 4.29), thus on Southern blotting the recombinant \'iruses generate a 

different pattern of bands (Figure 4.30). 

When a recombinant viral plaque was isolated it was then taken through a fUliher two 

rounds of plaque purification (section 3.25), with Southern blotting carried out at each 

step to ensure the purity of the virus. 

By the end of the third round of plaque purification, recombinant VIruS RFb, was 

completely pure as determined by the presence of a novel 6.8kb band (Figure 4.31). The 

virus was shown to be free of contaminating background virus by the absence of a 21kb 

band seen only in the parental virus. A ten-roller bottle stock was grown on BHK cells to 

generate a stock of purified virus (section 3.10). 

Following co-transfection of pRFa and gC-ve (LacZ) DNA, a positive recombinant virus 

was detected by Southen1 blotting as detected by the presence of the indicative 7.1kb 

band. Attempts to purify the virus failed, with the recombinant \'irus lost, as determined 

by Southen1 blotting, between the 1st and 2
nd 

round of plaque purification. Further 

recOlnbinant viruses failed to be completely purified. Southem blotting of the partially 

purified virus shows the 7.1 kb band, indicati\'e of the I1C\\ recombinant \'irus, but also 

contamination with background \'irus, as the 21 kb band was present (Figure -L) 1 ), 
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a. 

J d g n f mol a e 'k h k 

I I 
I D 

b. 

EcoRI Fragments Molecular Size (b~) 
a 21835 
b 21439 
c 17753 
d 16747 
e 16277 
f 16232 
g 16135 
h 15160 

13344 
J 12591 
k 5566 
I 5219 
m 4073 
n 2416 
0 1491 

Figure 4.28 Schematic diagram of EcoRI-digested HSV-l 

a. A schematic representation of the twelve EcoRI sites within the HSV-1 genome 

b. A reference to the molecular weights of each of the fragments. Fragment b is formed 

by bands e + k, while band c is formed by bands j + k 
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CMVIE 
Promoter 

CMVIE 
Promoter 

EcoRI 

LTB gC(a) PolyA 

EcoRl 

LTB gC(b) PolyA 

Figure 4.29 Schematic representation of recombinant viruses 

RFa 

RFb 

gC-ve (LacZ) was used as the parental strain for the recombinant viruses . Both viruses 

consist of a LTB-gC gene fusion, containing different sizes of the gC gene, downstream of 

the CMV IE promoter, and upstream of the HSV -2 IE5 polyadenylation sequence. A 

novel EcoRl site is located between the CMV IE promoter and the LTB-gC gene fusion. 

They were inserted in the RL 1 loci, and thus are present in two copies in the genome. The 

large X indicates the gC deletion within UL44. 
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gC-ve 
LacZ 



EeoRI EeoRI EeoRI EeoRI 

DI-------------7\-::lIV~--___t......_+_~----1D gC-ve (lacZ) 

- - \32p-RL1.del 

The gC-ve (lacZ) genome was digested with EeoRI and probed with 32p_RL l.del during Southern 
blotting. The EeoRI recognition sites are marked above the genome, with the recognition sites of 
the probe seen as lines beneath the genome. 
From Figure 4.27 the following bands are generated and detected by Southern blotting: 

21,439bp 
l7,553bp 
l6,277bp 
12,591bp 
5,566bp 

EeoRI EcoRI EcoRI 

~ 15,968bp .... ---+-...-\---I 

EcoRI 

RFalRFb 

h-+-12,282bP 

l 1,542bp (RFa) 
1,243bp (RFb) 

'- 7,109bp (RFa) 
6,809bp (RFb) 

Due to the additional EeoRI site, several new bands are generated and recognised by 32P-RLl.del during Southern 
blotting. Thus, the recombinant viruses give the following bands: 

RFa 
17,553bp 
15,968bp 
12,591bp 
12,282bp 

7,109bp 
5,566bp 
1,542bp 

RFb 
17,553bp 
15,968bp 
12,591 bp 
12,282bp 

6,810bp 
5,566bp 
1,243bp 

Figure 4.30 Schematic diagram of Southern blotting bands for gC-ve, RFa and RFb using a RLl.del probe 



RFb gC- lkb Step 
Ladder 

RFa gC- lkb Step 
Ladder 

Figure 4.31 Southern blot of purified RFb and partially purified RFa 

-7kb 

- 6kb 

- 5kb 

- 4kb 

BHK cells were infected with 17+, RFb or partially purified RFa, and the viral 0 A 
extracted 36h pi. DNA was digested with EcoRI and separated on a 0.8% TBE agarose 
gel. The gel was then Southern blotted using a 32P-labelled RL l.del probe 
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4.7 Conclusion 

To alter the tropism of HSV -1 from sensory to motor neurons, two recombinant viruses 

(RFa and RFb) were constructed. To promote binding to GMI ganglioside, gene fusions 

of HSV-l gC and E.eali heat-labile enterotoxin were inserted into a HSV-l gC-ve 

background. The size of the fusions varied in the degree of truncation of gC. Two 

different sizes were chosen: One encoding the cytoplasmic and transmembrane domains 

(amino acids 478-511), which is estimated to be the smallest size of gC which would be 

incorporated into the membrane (Holland et aI., 1988); and a second which encodes the 

cytoplasmic and transmembrane domains and a region of the extracellular domain (amino 

acids 377-511). This encodes four cysteine residues that form two disulphide bonds that 

are suggested to play a role in maintaining the functional conformation of the 

glycoprotein (Rux et al., 1986). 

To generate the recombinant viruses several plasmids were manipulated. The truncated 

gC genes were amplified by PCR and cloned into pGEM.LTB. This generated fusions of 

gC with the C-terminal of LTB. The plasmids were sequenced and the gene fusions were 

seen to be in-frame. These gene fusions were further sub cloned into the RLI locus within 

plasmid RL1.del, and placed under the control of the CMV IE promoter. The HSV-2 IE5 

polyadenylation sequence was then cloned immediately downstream of the gene fusions, 

generating plasmids pRFa and pRFb. 

pRFa and pRFb were then used in a co-transfection with gC-ve (LacZ) DNA to generate 

mutant viruses RFa and RFb, respectively. Recombinant viruses were detected by EeaR! 

digestion followed by Southern blotting using 32P-Iabelled RLl.del. The recombinant 

viruses have an additional EeaR! recognition site located between the CMV IE promoter 

and the LTB-gC fusion. Using a RLl.del probe, novel bands of7.1kb and 1.5kb (RFa) or 

6.8kb and 1.2kb (RFb) not seen in the parental virus are detected. The purity of the 

viruses can be seen by Southern blotting as EeaR! b (21.4kb) is digested into two bands 

of 15. 9kb and 7.1 kb or 6. 8kb. Thus if any background contaminating virus was present 

in the mutant viruses, the 21.4kb band would be present. 
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A positive recombinant virus was detected from the co-transfection of pRFb and gC-ve 

(LacZ) DNA. This was plaque-purified three times to ensure purity, before a large-scale 

stock was grown up on BHK cells. 

Similarly a positive recombinant virus was detected for RFa. This however was unable to 

be purified to homogeneity. Reasons for this will be discussed in chapter 6. 
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5. CHARACTERIZATION OF RFa & RFb 

5.1 Introduction 

Following construction of mutant virus RFb and the partial purification of RFa, the 

characteristics of these viruses were investigated. Viral expression of the L TB-gC fusion 

was detected by two monoclonal antibodies, 118-8 and LDS47. 118-8 recognises the 

pentameric, and biologically active form, of L TB and is used in Western blots against 

unboiled protein samples, while LDS47 recognises the monomeric form of LTB. 

Immunofluorescence using these antibodies also determined where these proteins were 

expressed in the cell. The growth characteristics of the viruses were determined on 

several cell lines to see what effect if any the novel glycoprotein would have on virus 

binding and replication. The rate of adsorption of virus to various cells, including the 

motor neuron cell-lines was ascertained. Finally, the rate of viral binding to heparin and 

several glycolipids was determined by ELISA. 

5.2. gC Expression 
Glycoprotein C has shown to be the principal glycoprotein involved in binding of HSV-1 

to cell surface HS (Fuller and Spear, 1985; Herold et al., 1991; Svennerholm et al., 

1991). The regions of gC which bind to HS have been mapped to two distinct regions: 

one including Arg-143, -145, -147, and Thr-150, and the other containing Gly-247 

(Trybala et aI., 1994). To promote binding of ganglioside GM1 rather than HS, the 

mutant viruses were constructed from a gC-negative (17+) parental strain. 

To confirm virus RFb was indeed gC-ve, BHK cells were infected and harvested 16h pi 

in SDS lysis buffer and analysed by 12.5% SDS-PAGE and Western blotted with gC 

antiserum (Figure 5.1). Glycoprotein C was detected from 17+ infected extracts, with no 

gC-expression detected from either RFb or its parental virus, gC-ve (LacZ). 

121 



5.3 ICP34.5 Expression 

The gene product of RL1, ICP34.5 has been shown to be the major determinant of 

neurovirulence in HSV-1 (Thompson et ai., 1983). Mutants in this region have been 

shown to be considerably less virulent than wild type virus (Taha et aI., 1989; Chou et 

aI., 1990; MacLean et aI., 1991). To ensure the non-neurovirulence ofRFb the LTB-gC 

gene fusion was inserted into the RL 1 locus. Lack of gene expression from this locus 

was determined by Western blotting using antisera against ICP34.5 (Figure 5.2). ICP34.5 

was detected from 17+ infected extracts, with none detected from RFb or 1716 (an RLI 

null mutant). The 70kDa virus induced protein of unknown origin, which is detected by 

Ab137, is present in all viral samples (Brown et ai., 1997). 

5.4 LTB-gC Gene Expression in RFb 
Recombination of the DNA encoding the L TB-gC fusion molecules with viral DNA may 

lead to redirected virus infection through recognition of various gangliosides only if the 

recombinant glycoproteins are appropriately expressed and incorporated into the viral 

envelope. Thus BHK cells were infected with the recombinant viruses and analysed for 

the presence ofLTB-gC fusions by Western blotting and immunofluorescence. 

5.4.1 Western Blotting 
BHK cells were infected with RFb and harvested 16h pi. Samples were harvested in two 

ways. To detect the monomeric form of LTB, cells were harvested in SDS lysis buffer 

and boiled for 10 min prior to loading on a SDS-PAGE gel. This results in dissociation of 

any L TB pentamers into its monomeric form. This was then Western blotted using 

monoclonal antibodies LDS47 or LDS102. To detect the pentameric form samples were 

harvested in a manner to avoid dissociation of the proteins (section 3.35) and separated 

by non-denaturing PAGE. This was then detected by Western blotting using monoclonal 

antibody 118-8. 
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gC ~ 

Pre-gC ~ 

Figure 5.1 

+ 17 gC-ve Mock RFb RFa 

Western blot using anti-gC antisera 

.. - 21SkDa 

• - 132kDa 

. - 9SkDa 

. -42.SkDa 

Protein samples were run on a 12.5% SDS-PAGE and blotted using anti-gC antisera. 

Two bands (gC and pre-gC) were seen in the wild type lane, but no gC bands were seen 

in the mock-infected lane, virus RFb or its parental virus gC-ve. 
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Mock 1716 RFb 

218kDa- -

131kDa- •• 
86kDa-

43.8kDa-

33kDa-

• 
A • • • 

Figure 5.2 Western blot using 137 anti-ICP34.5 antisera 

Protein samples were run on a 12.5% SDS-PAGE, blotted and reacted with Ab137, anti­

ICP34.5 polyclonal antiserum. ICP34.5 showed up only in the wild type lane (indicated 

by double arrow head). The 70kDa protein showed up in all viral samples (indicated by 

arrow head). 
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Following Western blotting no LTB-gC fusion protein was detected from RFb-infected 

extracts (Figures 5.1, 5.3 and 5.4). To ensure viral proteins were being expressed by the 

mutant virus, the infected cell extracts were Western blotted using monoclonal antibody 

ZlF11 (Schenck et al., 1988; Murphy et al., 1989) (Figure 5.5). This recognises the 65 

kDa non-structural DNA binding protein, made early in HSV -1 infection. This 65 kDa 

band was seen in all virus-infected samples, showing that RFb was capable of infecting 

BHK cells and expressing genes from its genome. 

Laquerre et al., (1998a) recently constructed a series of HSV-1 mutants with gene 

fusions between N-terminally truncated forms of gC and the full-length erythropoietin 

hormone (EPO). The smallest fusion consisted of a truncated form of gC containing the 

cytoplasmic and transmembrane domains and a small portion of the extracellular domain 

(amino acids 376-511). This mutant virus exhibited poor levels of incorporation into the 

viral envelope, roughly 20% with respect to wild type. As this fusion is considerably 

larger than the L TB-gC fusion present in RFb, it was thought that similarly the gC fusion 

would be expressed in low levels. In an effort to load more viral proteins onto a PAGE 

gel, samples were harvested as per section 3.33 or 3.35 depending on whether the sample 

was to be boiled or not, and concentrated using a MICROSEP ™ rnicroconcentrator with 

a 3 kDa molecular weight cut off (MWCO) filter. Following concentration the samples 

were Western blotted using 118-8 or LDS102. This however did not lead to detection of 

the fusion proteins (data not shown). To confirm the rnicroconcentrator actually worked, 

a concentrated RFb sample was loaded onto a SDS-PAGE gel and ran alongside a RFb 

infected sample harvested in SDS-Iysis buffer. This was Coomassie blue stained and 

dried (Figure 5.6). 

As no protein was being detected it was thought that possibly the antibodies being used 

were not sensitive enough to detect low levels of protein. To determine the levels of 

protein which the respective antibodies i.e. 118-8, LDS47 and LDS102, could detect, 

known concentrations of purified LTB were added to SDS-PAGE and non-denaturing 

PAGE gels and Western blotted (Figures 5.7, 5.8, 5.9). 118-8 was able to detect 
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RFb 17+ Mock L TB 

" 

42.9kDa-

32.9kDa-
" 

Figure 5.3 Western blot ofRFb using 118-8 

Protein samples from 60mm plates of BHK cells infected with wild-type and RFb were 

harvested 24h pi , and loaded, without boiling, onto a 12.5% non-denaturing protein gel. 

The gel was then blotted against MAb 118-8. As can be seen, no fusion protein was 

detected in the recombinant virus. O.5~g purified LTB was run alongside as a control. 
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Figure 5.4 

95kDa-

42.5kDa-

32.9kDa-

19.5kDa-

7.5kDa -

RFb Mock 17+ L TB 

Western blot ofRFb using 118-8 

Protein samples from 60mm plates of BHK cells infected with wild-type and RFb were 

harvested 24h pi, and loaded, onto a 12.5% denaturing-protein gel. The gel was then 

blotted against monoclonal antibody LDS 1 02. As can be seen, no fusion protein was 

detected in the recombinant virus. 0.5 ~g purified L TB was run alongside as a control. 
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215kDa -

132kDa-

95kDa-

42.5kDa-

32.9kDa-

RFb Mock 17+ 1716 

Figure 5.5 Western blot using ZIFll antibody 

Protein samples from wild-type, 1716, RFb and mock-infected cell extracts were run on a 

12.5% SDS-PAGE gel and blotted using ZIFll antibody. The 65kDa nuclear protein is 

visible in all viral lanes, with none in the mock-infected. 
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1. 2. 3. 

Figure 5.6 Coomassie Blue-Stained SDS-PAGE Gel ofRFb viral proteins 

Two 60mm plates of BHK cells were infected with RFb. 16h pi the viral proteins were 

harvested. One plate had its proteins removed in 500J.ll BM. The other had its proteins 

concentrated in a Microsep 10kDa molecular weight cut-off microconcentrator, which 

concentrated the sample to 50J.l1. 30ml of both were separated on a 12.5% SDS-PAGE 

gel and stained with Coomassie Brilliant Blue R250. 

Lane 1: Bio-Rad Colour Marker 

Lane 2: Unconcentrated RFb sample 

Lane 3: Concentrated RFb sample 
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42.5kDa-

• 
32.9kDa-

19.5kDa- -

Figure 5.7 Western blot of 118-8 Sensitivity 

Io ascertain the sensitivity of MAb 118-8 to the pentameric form of LIB, various 

concentrations of purified LIB protein were run on a 12.5% non-denaturing protein gel, 

and Western blotted using 118-8. As can be seen from the blot, the MAb can detect 

protein concentration of 0.01 ).lg. 

Lane 1: l).lg purified LIB Lane 3: O.I).lg purified LIB Lane 5: O.OI).lg purified LIB 

Lane 2: 0.5).lg purified LIB Lane 4: 0.05).lg purified LIB 
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95kDa-

42.5kDa-

32.9kDa-

19.5kDa - .. 

7.5kDa- - -

Figure 5.8 LDS47 Sensitivity Assay 

Io determine the sensitivity of MAb LDS47 various concentrations of LIB were loaded 

onto a 12.5% SDS-PAGE gel and Western blotted using LDS47. As can be seen the 

lowest concentration of L TB that the MAb recognises is ll-lg. Protein concentrations less 

than this are undetected. 

Lane 1: 41-lg LIB 

Lane 2: 21-lg LIB 

Lane 3: ll-lg LIB 

Lane 4: 0.51-lg LTB 

Lane 5: O.ll-lg LIB Lane 7: 0.0 ll-lg LIB 

Lane 6: 0.051-lg LIB 
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1. 2. 3. 4. 5. 6. 

Figure 5.9 LDS 102 Sensitivity Assay 

To determine the sensitivity of MAb LDS 102 various concentrations of LTB were loaded 

onto a 12.5% SDS-PAGE gel and Western blotted using LDSI02. As can be seen the 

lowest concentration of LTb that the MAb recognises is 0.05j.lg. Protein concentrations 

less than this are undetected. 

Lane 1: lj.lg LTB Lane 3: 0.25j.lg LTB Lane 5: 0.05j.lg LTB 

Lane 2: 0.5j.lg LTB Lane 4: O.lj.lg LTB Lane 6: O.Olj.lg LTB 



pentameric protein concentrations of O.OIf.lg. LDSI02 was seen to be the more sensitive 

of the two monoclonal antibodies for detection of the monomer. It was able to bind 

protein of concentration 0.01-0.05f.lg, compared to 0.5-0.1f.lg for LDS47. Consequently, 

LDS 1 02 was used for the majority of subsequent experiments. 

5.4.2 Indirect Immunofluorescence 

BHK cells were infected with RFb. LTB epitopes were detected using MAbs 118-8 and 

LDSI02. Bound primary antibody was detected with a TRITC-Iabelled anti-mouse 

antibody, and the cells fixed with ice-cold methanol. As seen in Figure 5.1 0, no fusion 

protein was detected from transfected cells. 

5.5 L TB-gC gene expression in RFa 
It was thought that L TB-gC may not have been detected from RFb infected cells due to 

its small size, causing it to be incorporated into the viral envelope less efficiently than a 

larger fusion. Partially purified RFa was thus used to infect BHK cells. The cells were 

harvested as before and Western blotted using 118-8 and LDS 1 02 (Figures 5.11 and 

5.12). No fusion protein was detected. Samples were then concentrated using a 

MICROSEp™ microconcentrator with a 3 kDa molecular weight cut off (MWCO) filter. 

However, upon Western blotting no protein was detected (data not shown). 

5.6 Transfection of pRFa and pRFb 
As no fusion protein was detected from either of the mutant viruses, it was decided to 

analyse BHK cells transfected with plasmids pRFa and pRFb. Fresh, confluent BHK 

monolayers were transfected with plasmid by either CaP04 transfection (section 3.23) or 

by using a commercially-available kit (section 3.24). Plasmid gene expreSSIOn was 

ascertained by indirect immunofluorescence (section 3.36) or by harvesting cell 

mono layers and Western blotting. 
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Phase 
Immunofluorescence 

(a) 

(c) (d) 

Figure 5.10 RFb-infected BHKs stained with 118-8 and LDS102 

BHK cells were mounted on coverslips and infected with RFb. 24h pi cells were 

incubated using mouse MAb 118-8 (a) & (b) or MAb LSD102 (c) & (d), and then 

detected using a TRITC-conjugated anti-mouse secondary antibody. Cells were 

photographed under phase and fluorescent light. 
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RFa Mock LTB 

42.5kDa-

32.9kDa-

19.5kDa -

7.5kDa-

Figure 5.11 Western blot of partially purified RFa against 118-8 

A partially purified RFa was used to infect a 60mm plate of BHK cells. The proteins 

were harvested 24h pi and loaded on a 12.5% non-denaturing protein gel, and Western 

blotted using MAb 118-8. No fusion protein was detected in the viral sample. O.5mg of 

purified LTB was run alongside as control. 
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32.9kDa-

19.5kDa-

7.5kDa-

RFa Mock LTB 

... 

.. 

Figure 5.12 Western blot ofRFa using LDSI02 

A partially pure RFa was used to infect a 60mm plate of BHK cells. 24h pi the ce ll s were 

harvested and ran on a 12.5% SDS-PAGE gel , and Western blotted using MAb LDS 1 02. 

No fusion proteins were detected in the viral sample. 2~g of purified L TB was used as a 

control (lane 3). 
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5.6.1 Western Blot Analysis 

Confluent BHK cells were transfected with 2 J.lg, 5 J.lg or 10J.lg of purified plasmid. 48h 

post-transfection cells were haryested and Western blotted using 118-8 and LDS 1 02 

(Figures 5.13 and 5.14). A LacZ-containing plasmid was transfected as a control and this 

was seen to have a transfection efficiency of ~40%. However, from Western blotting, no 

fusion protein was detected. Transfection was repeated and the cell proteins concentrated 

using a MICROSEpTM micro concentrator with a 3 kDa molecular weight cut off 

(MWCO) filter. However, upon Western blotting no protein was detected (data not 

shown). 

5.6.2 Indirect Immunofluorescence 

BHK cells were transfected with plasmids pRFa and pRFb. 24h post-transfection, 

detection of the presence of L TB epitopes on the surface of unfixed transfected cells by 

indirect immunofluorescence was attempted using MAb 118-8 and LDS 1 02. Bound 

MAbs were detected with an anti-mouse secondary antibody conjugated with TRITC. 

However, the anti-LTB MAbs did not recognise any LTB epitopes at the surface of 

transfected BHK cells (data not shown). 

5.7 In vitro transcription of L TB.gCb gene fusion 

As no fusion protein was being detected by Western blotting or Immunofluorescence, it 

was possible that this was due to a problem in transcription of the gene fusion. To 

investigate, the LTB.gCb gene fusion was in vitro transcribed using the Ambion 

MEGAscript T7 Transcription Kit (section 3.41). The RNA transcripts were separated on 

a 6% Acrylamide17M Urea gel and stained with ethidium bromide (Figure 5.15). As can 

be seen the gene fusion gave a RNA transcript of the correct expected size (504bp). 

5.8 In vitro Replication of RFb 
The fact that we were unable to detect L TB-gC fusion proteins from virally-infected cells 

by Western blot or indirect immunofluorescence was not necessarily indicative of a lack 
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of fusion gene expreSSIOn from the viral backbone. This may have been merely a 

consequence of slight alterations in the tertiary structure of the L TB protein, caused by 

fusion to gC, thus masking epitope recognition sites from MAbs against LTB. 

To determine if incorporation of the L TB-gC fusion protein into the viral envelope could 

alter the growth characteristics of the mutant virus, we analysed the growth of several 

different HSV -1 viruses in different cells. 

In BHK cells, all viruses grew like wild type (Figure 5.16; Table 1). Using 3T6 cells, a 

cell line that is non-permissive for RLl-deleted viruses, RFb grew similarly to 1716, a 

RLl-null mutant, demonstrating that insertion of the gene fusion into the virus had indeed 

knocked out RLI gene function in vitro (Figure 5.17). In experiments with the motor 

neuron-like cell lines, NSC-19 and NSC-34, all viruses tested failed to grow as 

successfully as they had on BHK or 3T6 cells (Figures 5.18 & 5.19). Here viruses had a 

very small growth burst, typically only one log higher than input. Using NSC-34 cells, 

RFb and its parental virus gC-ve grew less well than wild type or 1716. 

5.9 In vivo Adsorption of RFb 
The ability of RFb to adsorb to cells in vivo was compared to that of wild type and gC-

negative virus (section 3.38). During this experiment virus was allowed to adsorb to cells 

at 37°C, rather than 4°C, as the motor neuron-like cell lines were sensitive to prolonged 

incubation at 4°C. 

On BHK cells all viruses showed similar patterns of adsorption (Figure 5.20; Table 2). 

gC-negative and RFb both showed a slight lag in the initial stages of binding with respect 

to wild type, however all virus was adsorbed after 60 min. 

All viruses showed a decreased ability to bind to NSC-19 and NSC-34 cells with only 

10% of added virus binding (Figures 5.21,5.22). 
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1. 2. 3. 4. 5. 6. 7. 8. 

- 42.5kDa 

-32.9kDa 

-19.5kDa 

-7.5kDa 

Figure 5.13 Western blot oftransfected cell extracts using IIS-S 

BHK cells were transfected with both pRFa and pRFb at a variety of concentrations. The 

cell extracts were then ran on a 12.5% SDS-PAGE gel and Western blotted using MAb 

IIS-S, which recognises the pentameric form of LTB. LTB-gC fusion proteins were not 

detected in the transfected samples, with only control LTB giving a band (laneS). 

Lane 1: pRFa (2~g) 

Lane 2: pRFa (5~g) 
Lane 3: pRFa (10~g) 

Lane 4: pRFb (2~g) 

Lane 5: pRFb (5~g) 
Lane 6: pRFb (10~g) 

Lane 7: BHK (untransfected) 

Lane S: LTB control (2~g) 
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Figure 5.14 Western blot oftransfected cell extracts using LDS 1 02 

BHK cells were transfected with both pRFa and pRFb at a variety of concentrations. The 

cell extracts were then ran on a 12.5% SDS-PAGE gel and Western blotted using MAb 

LDS 1 02, which recognises the monomeric form of LTB. LTB-gC fusion proteins 

weren't detected in the transfected samples, with only control LTB giving a band (lane8). 

Lane 1: pRFa (2~g) 

Lane 2: pRFa (5~g) 

Lane 3: pRFa (lO~g) 

Lane 4: pRFb (2~g) 

Lane 5: pRFb (5~g) 

Lane 6: pRFb (lO~g) 

Lane 7: BHK (untransfected) 

Lane 8: LTB control (2~g) 
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RNA 

Transcript 

Figure 5.15 In vitro transcription ofpGEM.LTB.gC(b) 

100bp 

Ladder 

- 1,OOObp 

-500bp 

Using the Ambion (Europe) Ltd. MEGAscript T7 Transcription Kit, RNA was 

synthesised from the DNA template pGEM.LTB.gC(b), separated on a 6% 

Acrylamide/7M Urea gel and stained with ethidium bromide. The 504bp transcript can be 

seen indicated by arrow. 
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Figure 5.16 In vitro growth of 17+, 1716, gC-ve and RFb in BHK cells 

BHK cells were infected at a moi of 0.01 pfu/cell. Infected cells were harvested at 0, 3, 

6, 24, 48 and 72 h pi. Infected cells were harvested, sonicated and virus titrated on BHK 

cell monolayers. 
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Figure 5.17 In vitro growth of 17+, 1716, gC-ve and RFb in 3T6 cells 

3T6 cells were infected at a moi ofO.Ol pfulcell. Infected cells were harvested at 0, 3, 6, 

24,48 and 72 h pi. Infected cells were harvested, sonicated and virus titrated on BHK cell 

mono layers. 
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Figure 5.18 In vitro growth of 17+, 1716, gC-ve and RFb in NSC-19 cells 

NSC-19 cells were infected at a moi of 0.01 pfu/cell. Infected cells were harvested at 0, 

3, 6, 24, 48 and 72 h pi. Infected cells were harvested, sonicated and virus titrated on 

BHK cell mono layers. 
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Figure 5.19 In vitro growth of 17+, 1716, gC-ve and RFb in NSC-34 cells 

NSC-34 cells were infected at a moi of 0.01 pfulcell. Infected cells were harvested at 0, 

3, 6, 24, 48 and 72 h pi. Infected cells were harvested, sonicated and virus titrated on 

BHK cell mono layers. 
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3T6 cells 
Time(h) 17+ 1716 gC-ve RFb 
0 3.2x104 2.1x104 2.4x1Q4 2.2x104 
3 1.8x104 5.9x104 1.0x104 

4.5x103 

6 1.5x105 4.0x104 9.5x104 3.0x104 
24 6.2x107 5.5x104 2.5x107 4.2x104 
48 6.8x107 4.1x104 4.2x107 4.8x104 
72 6.5x107 2.5x104 3.2x107 4.2x104 

BHK cells 
Time (h) 17+ 1716 gC-ve RFb 
0 3.5x104 3.0x104 2.9x10<f 2.7x104 
3 3.0x104 2.0x104 1.7x104 1.5x104 

6 3.8x105 3.0x105 1.9x105 1.5x105 

24 6.3x107 1.5x107 5.0x107 3.1x107 

48 7.1x107 7.0x107 6.7x107 6.7x107 
72 8.0x107 6.7x107 6.7x107 6.5x107 

NSC-19 cells 
Time (h) 17+ 1716 gC-ve RFb 

0 9.8x10j 9.4x10-' 8.5x103 8.8x103 

3 5.5x103 5.0x103 5.8x103 4.5x103 

6 7.5x103 6.5x103 6.3x103 5.9x103 

24 1.5x104 1.0x104 9.5x103 1.0x104 

48 5.5x104 4.8x104 2.5x104 3.8x104 

72 1.0x103 2.5x104 1.3x104 9.5x104 

NSC-34 cells 
Time (h) 17+ 1716 gC-ve RFb 

0 2.7x104 2.4x104 2.4x104 2.6x104 

3 1.0x104 1.5x104 5.8x103 7.5x103 

6 2.7x104 3.0x104 3.2x103 5.9x103 

24 8.5x104 5.9x104 4.5x103 1.0x104 

48 3.3x105 1.9x105 6.9x104 8.5x104 

72 3.5x104 4.1x104 9.0x103 2.0x104 

Table 1. 3T6, BHK, NSC-19 and NSC-34 titres for single cycle growth kinetics 

Titres given as p.f.u. per 10
6 

cells 
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Figure 5.20 In vivo adsorption of 17+, gC-ve and RFb to BHK cells 

BHK cells were infected at a moi of 500 pfuiplate. Virus was allowed to adsorb to cells at 

37°C. At 0, 1, 2.5 , 5, 10, 15, 20, 30 and 60 min unbound virus was washed off, and cells 

overlaid with growth medium. Following 24h incubation at 37°C media was removed and 

cells stained for LacZ expression. Cells were counted, whereby each blue cell represented 

one bound virus. 
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Figure 5.21 In vivo adsorption of 17+, gC-ve and RFb to NSC-19 cells 

NSC-19 cells were infected at a moi of 500 pfuJplate. Virus was allowed to adsorb to 

cells at 37°C. At 0, 1, 2.5 , 5, 10, 15, 20, 30 and 60 min unbound virus was washed off, 

and cells overlaid with growth medium. Following 24h incubation at 37°C media was 

removed and cells stained for LacZ expression. Cells were counted, whereby each blue 

cell represented one bound virus. 
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Figure 5.22 In vivo adsorption of 17+, gC-ve and RFb to NSC-34 cells 

NSC-34 cells were infected at a moi of 500 pfuJplate. Virus was allowed to adsorb to 

cells at 37°C. At 0, 1, 2.5, 5, 10, 15, 20, 30 and 60 min unbound virus was washed off, 

and cells overlaid with growth medium. Following 24h incubation at 37°C media was 

removed and cells stained for LacZ expression. Cells were counted, whereby each blue 

cell represented one bound virus. 
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BHK cells 
Time (min) 0 1 2.5 5 10 15 20 30 60 
% Adsorbed 
17+ 0 60.0 73.2 85.0 87.6 94.2 91.8 96.0 100 
gC-ve 0 57.2 58.2 64.0 79.0 84.0 89.6 95.0 98.6 
RFb 0 59.0 65.8 70.2 82.0 83.0 93.6 95.6 97.2 

NSC-19 cells 
Time (min) 0 1 2.5 5 10 15 20 30 60 
% Adsorbed 
17+ 0 0.2 2.8 3.8 5.0 6.0 7.2 9.6 10.4 
gC-ve 0 1.8 4.6 4.8 6.8 7.0 7.6 8.4 9.6 
RFb 0 1.4 3.4 4.2 5.4 6.2 7.0 8.0 9.4 

NSC-34 cells 
Time (min) 0 1 2.5 5 10 15 20 30 60 
% Adsorbed 
17+ 0 0.2 2.0 3.8 5.2 6.2 7.6 9.8 10.0 
gC-ve 0 1.0 1.6 2.2 6.4 6.8 6.8 8.2 8.4 
RFb 0 0.6 1.4 2.4 6.0 6.6 7.0 7.8 8.0 

Table 2. Titres of Adsorption Studies on BHK, NSC-19, and NSC-34 cells 
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5.10 In vitro Adsorption ofRFb 

Heparan sulphate moieties of cell surface proteoglycans have been shown to interact with 

HSV gC in the initial binding of HSV -1 to cells (WuDunn and Spear, 1989). The 

principal ganglioside ligand of LTB is GM1, however it is also able to weakly bind 

several other gangliosides (Fukuta et ai., 1988). To determine the binding abilities ofRFb 

to heparin and a range of gangliosides a HSV -binding ELISA was carried out as per 

section 3.39 and 3.40. 

Binding of wild type, gC-negative and RFb to heparin in vitro mirrored the adsorption of 

these viruses to BHK cells where heparan sulphate is thought to playa major role in 

binding of virus (Figure 5.23). Bound virus was detected by a peroxidase-linked antibody 

complex. Following the addition of substrate solution, optical densities were read at 

490nm. RFb and gC-ve both showed a lag in the initial stages of adsorption with respect 

to wild type, however all virus bound to heparan after 60 min. 

Wild type, gC-negative and RFb were then assayed for their ability to bind to a range of 

gangliosides (section 3.39). Bound virus was detected by spectrophotometer and this was 

expressed as a percentage of virus bound to heparin after 60 min (Figure 5.24; Table 3). 

17+ bound to several gangliosides with a higher affinity than to heparin. These included 

GAl and GD1b, to which the virus bound slightly stronger and GT1b and GD3 to which 

the virus bound with a stronger affmity than heparin. 

gC-negative HSV-1 bound to GAl with a similar affmity to heparin, however this 

binding was not as strong as wild type to this ligand. It also bound less strongly than wild 

type to several other gangliosides including GD1b, GT1b, GQ1b and GD3, indicating 

that viral binding to these gangliosides requires gC. 

RFb bound the gangliosides in a manner similar to its parental virus gC-negative. It did 

not bind stronger than gC-negative HSV to gangliosides to which LTB binds i.e. GM1, 

GM2, GD1b. 
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Figure 5.23 In vivo adsorption of 17+, gC-ve and RFb to Heparin 

~17+ 

---- gC-ve 
RFb 

An ELISA plate was coated with heparin. 1 x 1 07 pfulwell virus was added to each well. 

This was incubated at 37°C. At 1, 5, 10, 30 and 60 min unbound virus was removed. 

Bound virus was detected as described in section 3.39. Results are expressed as a 

percentage of 17+ bound at 60 min. Each time point is the average of three readings. 
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Figure 5.24 In vitro adsorption of 17+, gC-ve and RFb to Gangliosides 

An ELISA plate was coated with various gangliosides. lxl07 pfu/well virus was added to 

each well and incubated at 37°C for 60 min. Unbound virus was removed by washing and 

bound virus detected as section 3.39. Bound virus was expressed as a percentage of the 

respective virus bound to heparin. Each time point is the average of three readings. 
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17+ RFb gC-ve 
Heparin 100.00 98.56 100.00 
GM1 49.82 27.36 30.57 
GM2 18.59 17.08 19.32 
GM3 49.47 33.45 37.52 
GAl 107.71 97.21 101.24 
GD1 a 7.36 14.71 12.53 
GDh 107.01 42.91 49.67 
GTh 161.40 61.54 57.21 
GQh 104.91 47.49 45.21 
GD3 242.10 49.58 56.82 

Table 3. % normalised binding with respect to heparin binding 
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5.11 Conclusion 

Following the purification of RFb and the partial purification of RFa, the properties of 

these viruses were determined through gene expression, growth characteristics on a 

variety of cell lines, and adsorption to a variety of cell ligands in vivo and in vitro. 

Initially it was shown that these VIruses, like the parental VIruS, failed to produce 

glycoprotein C. As a result the mutant viruses had their major HS-binding glycoprotein 

eliminated. The gene fusion was inserted in the RL 1 locus and expression of this gene 

product, ICP34.5, was investigated by Western blotting. RFb failed to produce ICP34.5, 

and so would be non-neurovirulent if used in animal studies. 

Detection of the LTB-gC fusion protein was ascertained by a number of methods: 

Western blotting of infected cell extracts; indirect immunofluorescence of infected cells; 

transfection of plasmids pRFa and pRFb with subsequent detection by Western blotting 

and indirect immunofluorescence; concentration of protein extracts prior to Western 

blotting. However, no fusion protein was detected. There are many possible reasons for 

this. 

Ruddock et ai., (1995) have shown that fusion proteins containing LTB can alter the 

conformation and stability of LTB. By fusing truncated portions of HSV-1 gC to LTB, 

slight changes in the L TB tertiary structure may be occurring. These could mask the 

epitopes that antibodies against LTB recognise and so fusion proteins would go 

undetected by these monoc1onals. Anti-gC antisera also failed to recognise any fusion 

protein in Western blots. Again this may be simply due to the fact that the truncated gC 

genes encode the cytoplasmic, transmembrane, and in the case of RFa, a small stretch of 

the extracellular domain. These may not be recognised by the anti-gC antisera. There are 

several examples of fusion proteins involving LTB which are detectable by anti-LTB 

antibodies, however, the majority of these are small peptides fused to the B-subunit e.g. a 

12 amino acid-peptide linked to LTB (Sandkvist et ai., 1987), much smaller than the 

fusions presented in this work. 
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Alternatively, the antibodies may not be able to detect the fusion proteins as their level of 

expression and incorporation into the virus envelope is quite low. In previous work, 

Laquerre et al., (1998a) constructed fusions of truncated forms of gC and full-length 

erythropoietin hormone (EPO). One of the fusions contained the cytoplasmic, 

transmembrane, and part of the extracellular domain (amino acids 376-511) - the same 

gC truncation that RFa contains. This was poorly incorporated into the viral envelope, 

approximately fivefold less than wild type gC. RFb contains a more truncated gC in its 

fusion, and the external gC domain deleted may be required for efficient glycoprotein 

incorporation into the virus. If this is the case it can be assumed that it would incorporate 

poorly into the viral envelope, if at all. This would result in very low levels of protein 

expression and may be too low for the MAbs against L TB to detect. Also due to the size 

of the gC truncation (cytoplasmic and transmembrane domains remaining) the fusion 

protein of LTB fused to gC may be sterically hindered from forming a pentamer due to its 

proximity to the viral envelope. 

The mutant virus RFa could not be purified. Following co-transfection, mutant viral 

plaque isolates containing the insert were detected by Southern blotting. These were 

found to be contaminated with parental virus. The virus was taken through rounds of 

purification to obtain a pure virus stock. After the first round of purification the amount 

of mutant virus had lessened, and following a further round of purification the mutant 

was lost. The inability of this mutant to be purified may be explained by several ways. 

Our experiments using RFa (Western blot analysis of infected cellular extracts, indirect 

immunofluorescence) used an impure viral plaque isolate from the first round of 

purification (the step immediately before the mutant virus was lost). If our fusion protein 

incorporated with 20% efficiency of wild type gC, as the equivalent fusion of Laquerre et 

aI., (1998c) incorporated, then this may have caused poor levels of attachment and/or 

entry. Thus, if the initial plaque isolate was partially pure, each round of purification 

would have lessened the amount of mutant virus present until the mutant was diluted out. 

Also as a consequence there would be very little fusion protein produced which could be 

detected in these experiments. 
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From the studies of Stannard et at., (1987) gC appeared to consist of "randomly 

distributed" long, thin components which extend approximately 20nm from the envelope. 

Therefore, by replacing 375 residues of gC with 102 residues ofLTB, this could result in 

a more compact confonnation of the glycoprotein. This could have the effect of burying 

the molecule into the envelope and prevent efficient binding, and consequently cause 

dilution of the virus during purification. As the exact mechanism of binding and 

penetration is not fully understood, it is also possible that receptor binding physically 

altered the envelope in a manner that prevented it from carrying out efficient attachment, 

entry or cell-to-cell fusion. 

Campadelli-Fiume et aI., (1988a) reported a BHK cell line that expressed HSV-1 gD (BJ­

o cells). This cell line was seen to spontaneously fuse causing polykaryocytes. They 

found that the characteristics and requirements of cell fusion of BJ-o cells are the same 

for HSV -1 induced fusion. They showed that fusion of cells was greatest· when the 

terminal sialic acid of cellular carbohydrate moieties was available and exposed. This is 

consistent with earlier reports that HSV -induced cell fusion is reduced in cells treated 

with neuraminidase, which removes terminal sialic acid residues (Campadelli-Fiume et 

at., 1988b). LTB binds ganglioside GM1, and less strongly to GDlb (Holmgren et at., 

1973) and GM2 (Fukuta et at., 1988). From crystallography studies (Merritt et at., 1994) 

the binding of LTB to GM1 is described as a "two-fmgered grip" in which the Gal­

GalNAc "forefinger" of the oligosaccharide is buried deep within the toxin, and the sialic 

acid "thumb" lies along the toxin surface. GM1, GDlb, and GM2 all contain free sialic 

acid residues (Figure 5.25). 
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GM2 .......... Cer-Glc-Gal-GaINAc 

NANA 

GMt .......... Cer-G1c-Gal-GaINAc-Gal 

NANA 

GD1b .......... Cer-G1c-Gal-GaINAc-Gal 

NANA-NANA 

Figure 5.25 Ganglioside structures 

Legend: Cer -ceramide; Glc -glucose; Gal-galactose; GalNAc -N-acetylgalactosamine; 

NANA -N-acetylneuraminic acid (sialic acid) 

Therefore, L TB-gC produced by RFa could sequester cellular sialic acids necessary for 

viral-cell fusion. If low levels of the fusion protein were produced, or if they ineffectively 

bound to sialic acid this could explain why the virus became diluted and eventually lost 

during purification. 

In vitro transcription of the LTB.gC(b) gene fusion from plasmid pGEM.LTB.gC(b) was 

carried out using the Ambion MEGAscript T7 transcription kit. This plasmid was 

chosen as its sequencing showed the cloning of the gene fusion to be error-free (data not 

shown) and also this plasmid contains the T7 promoter directly upstream of the gene 

fusion. Following in vitro transcription, mRNA of the correct size was seen, showing 

that this construct was correctly transcribed. 
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Despite the fact we were unable to identify fusion protein from either virus, further 

experiments were carried out to characterize them. Replication experiments were carried 

out in a variety of cell lines. 

In BHK cells RFb grew similar to its parental virus gC-negative. The virus initially grew 

more slowly than wild type, however rates of growth and [mal titres were similar 

between the two. In 3T6 cells, a cell line not permissive for RLI-negative mutants, RFb 

grew poorly, and its growth pattern mirrored that of 1716, a RL I-deleted virus, showing 

that the gene insert had knocked out RLI function in vivo. In the NSC cell lines, all 

viruses showed poor growth characteristics. This may be in part due to the morphology of 

the cells, in that there is poor contact between neighbouring cells, resulting in poor cell­

to-cell spread. 

The ability of RFb to adsorb to cells in vivo was investigated. Normally adsorption 

experiments are carried out at 4°C. This is because most viruses can bind but are unable 

to enter cells at this temperature. However, due to the sensitivity of the NSC cell lines to 

prolonged exposure at 4°C all adsorption experiments were carried out at 37°C. All 

viruses bound similarly to BHK cells with over 75% of virus binding within the first 10 

min. RFb showed a slight lag in adsorption compared to 17+ in the first 30 min, however 

all virus was bound after 60 min. Viruses bound poorly to both NSC-I9 and NSC-34, 

with only 10% of virus binding. In both cell lines wild type virus bound slightly better 

than RFb or gC-negative. This may be due to the expression of cell ligands on the surface 

of the cells e.g. both cell lines were shown to be heterogenous for expression of cholera 

toxin-binding ligands (data not shown); thus only subpopulations of cells may express 

ligands to which HSV -1 binds e.g. HS, HveA etc. The greater ability of wild type virus to 

adsorb may be due to the part gC plays in binding NSC-I9 and NSC-34 cells. 

HSV -binding ELISAs were then carried out to see how virus bound to heparan (a known 

HSV ligand) and a variety of gangliosides. Binding to heparan mirrored the adsorption 

seen in BHKs in vivo. This is not surprising as BHKs use heparan sulphate as the major 
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HSV -binding ligand. Initially RFb bound less heparin, however all virus bound after 60 

min. When comparing how RFb bound to gangliosides it was seen that it did not exhibit 

any higher degree of affmity to GM1, GM2, or GD1b (gangliosides that LTB binds), in 

comparison to wild type or gC-negative virus. This lack of binding may be due to poor 

incorporation of gC-LTB into the envelope, or due to its small size that it was hindered in 

binding gangliosides. Of note were the gangliosides that 17+ bound to a greater extent 

than heparin. These included GAl, GD1b, GT1b, GQlb, and GD3. As gangliosides are 

expressed in many tissues of the nervous system, these may act as ligands for HSV in the 

human body. 17+ bound to GD1b, GT1b, GQlb, and GD3 in much greater numbers than did 

RFb or gC-negative virus, indicating that gC is important in the binding of these 

gangliosides, at least in vitro. 
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6. FINAL CONCLUSION & DISCUSSION 

Over the past decade the concept of gene therapy for human disease has become widely 

accepted by the medical and scientific community. This concept of curing disease at the 

genetic level is one of the most radical in recent years, and if successful may prove to be 

one of the milestones in medical history. Disorders of the CNS and other neurological 

defects were not prominent candidates in early discussions of gene therapy. Problems 

arising from the complexity of neuronal interactions, the perceived physical 

inaccessibility of the CNS, and physiological barriers to the introduction of gene transfer 

vectors through the blood-brain barrier combined to make gene therapy seem less feasible 

in the nervous system than other organs. However, in recent years the genetic 

components of many genetic diseases have been identified e.g. Alzheimer's disease 

(Mullan, 1992), amylotrophic lateral sclerosis (Rosen et al., 1993), making nervous 

system disorders a target for gene therapy. The aim of researchers now is to develop safe 

methods of delivering theraputic genes to target organs, ensuring tissue-specific and 

regulatable gene expression. This development of vector systems for the direct transfer of 

genes in vivo will be crucial to the development of this medical strategy. 

Attenuated or replication-defective recombinant VIruses carrymg theraputic genes 

represent attractive candidates for in vivo gene delivery. These can utilise cell surface 

receptors to gain entry to the cell, where trans gene expression can take place. Many 

viruses including HSV are capable of persisting in a non-pathogenic, latent state 

requiring the expression of few gene products for maintenance of latency. Eliminating 

pathogenic virus properties while retaining the ability of the virus to establish latency or a 

latent-like state provides the core strategy for long-term gene therapy using viral vectors. 

Herpes simplex virus has many features that make it a suitable candidate for gene therapy 

to neuronal cells: 
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• 

• 

HSV -1 infects postmitotic neurons and can be maintained indefinitely in a latent 

state (Stevens, 1975) 

Latent HSV -1 is quiescent: HSV -1 gene expression is limited at most to the IE 

genes and a latency-associated transcript (Wagner et al., 1988); DNA replication 

does not occur (Stevens, 1975); No progeny virus are produced (Stevens, 1975) 

• In its latent state a neuronally active latency-specific promoter system can be used 

to express transgenes (Fink et al., 1996) 

• The genetics of HSV are well studied and the virus genome can be manipulated to 

accept large inserts of foreign DNA (Knipe et a!., 1978) 

The cytotoxic features of HSV have been eliminated by the deletion of immediate early 

(IE) genes, which prevent the expression of both early and late genes. As a result virus 

replication or reactivation from latency can be achieved without viral replication (Dobson 

et al., 1990). Another approach is the deletion of genes required specifically for growth in 

neuronal cells, but not in other cell types. This latter method has the advantage that virus 

does not need to be grown up on cell lines expressing the essential genes which allows 

for the possibility of regeneration of wild type virus by recombination. 

HSV -1 has a wide host range, infecting many cell types. To target HSV vectors to a 

specific cell type, the natural tropism of wild type virus will have to be eliminated, or at 

least altered, and vectors may have to express new ligands which are capable of binding 

cell surface receptors on the target cell surface, without affecting cell penetration or cell­

to-cell spread. gC is the principal glycoprotein involved in binding of HSV to HS, 

however it is non-essential and can be deleted. To target HSV -1 to motor neurons, the 

HS-binding domain was deleted and replaced by E. coli heat-labile enterotoxin B subunit 

(LTB). LTB is a non-toxic protein which forms pentamers that bind several gangliosides 

including GM1, GD1b, GM2 and asialo-GMI. Gangliosides are complex glycolipids 

found at high levels in neuronal cells (Wiegandt, 1985), with GM2 thought to be a major 

ganglioside in motor neurons (Yoshino et al., 1994). Thus it was hoped that this novel 

glycoprotein could alter the tropism from sensory neurons, towards motor neurons. 
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In this work, experiments were designed to meet several objectives: 

(i) Construct gene fusions between LTB and varying lengths of truncated gC 

(ii) Construct viruses containing these fusions that are non-neurovirulent and have 

their natural binding property eliminated 

(iii) Analyse the gene expression of these viruses to ensure correct production of 

the fusion proteins 

(iv) Analyse the binding capabilities of these viruses to determine if the chimeric 

molecules have novel binding function 

(v) Analyse by p-Gal staining in vivo using mouse models, that the mutant viruses 

had altered their tropism towards motor neurons 

Chimeric gene fusions were constructed between L TB and two differing lengths of gc. 

These were sequenced to ensure that the fusions were in-frame. They were combined into 

a gC-negative LacZ virus at the RL110cus. Mutant virus RFb was constructed and shown 

to be both gC-negative and ICP34.5-negative, thus achieving the fIrst aims of the 

experiment. Virus RFa failed to be constructed. Positive plaque isolates were discovered 

following co-transfection, however, the virus failed to be purifIed. Several reasons were 

suggested for this. Laquerre et aI., (1998c) produced a similar fusion of gC with the 

hormone EPO. This was found to have incorporated into the viral envelope fIvefold less 

than wild type gC. If our fusion inserted into the envelope at a similar level this may have 

caused poor levels of attachment and/or entry. Alternatively due to the size of the 

construct (237 L TB-gC amino acid residues as opposed to 511 gC amino acid residues) 

the construct may have become buried deep within the viral envelope, again causing 

ineffIcient binding. If however, binding of the fusion protein did take place, the 

possibility that receptor binding physically altered the envelope in a manner that 

prevented it from carrying out effIcient attachment, entry or cell-to-cell fusion cannot be 

ruled out. Finally Campadelli-Fiume et al., (1988(a)(b)) reported that HSV-induced cell 

fusion is reduced in cells treated with neuraminidase, which removes terminal sialic acid 

residues. L TB binds a variety of gangliosides, and studies of its binding have showed that 
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it requires a free sialic acid to bind. Thus, the fusion protein may have bound this, 

sequestering cellular sialic acids necessary for viral-cell fusion. 

Mutant virus RFb was analyzed to determine if it expressed the fusion protein in a form 

that could bind ligands. No fusion protein was detected by Western blot or indirect 

immunoflourescence. This may have been caused by conformational changes in L TB 

brought about by fusion to gC which masked epitopes recognized by anti-L TB MAbs. 

Alternatively, the level of protein produced may have been too low to be recognized by 

the MAbs. Laquerre et al., (1998(b)) showed that modification of a HSV-I glycoprotein 

can result in defective recombination molecule processing and/or intracellular trafficking 

and subsequent failure to incorporate the modified glycoprotein into the virion envelope. 

The possibility that this occurred with L TB-gCb cannot be ruled out. A further possibility 

is that the gene fusion may not have been transcribed or translated correctly, however, in 

vitro transcription of the LTB.gC(b) gene fusion showed the presence ofLTB-gC mRNA. 

Sequencing of the expression plasmids pRFa and pRFb was carried out and no mutations 

were detected in the gene fusions. The CMV IE promoter was chosen to drive expression 

of the fusion as this was a non-HSV promoter and so would lessen the chances of 

recombination occurring at an incorrect position in the genome. This has been shown to 

generate high levels of expression however, as the fusion was inserted into the RLllocus, 

the use of the RLI promoter may have been more pertinent, however several 

recombinants viruses have been constructed with the CMV IE promoter at the RLllocus 

with excellent expression of the transgene (S.M. Brown, personal communication). 

Despite being unable to detect the novel chimeric protein, mutant VIrus RFb was 

characterized. Its replication in several cell lines showed that it grew similar to gC­

negative HSV-I in BHK cells, while the fact that it had RLI deleted meant it failed to 

grow in 3T6 cells. In the motor neuron-like cells lines (NSC-19 and NSC-34) where it 

was hoped the virus may have grown better due to its L TB-containing glycoprotein, no 

discernable difference in replication characteristics were distinguished between it and its 

parental virus. Binding assays carried out on BHK, NSC-19 and NSC-34 cells also failed 

to show any increase in the rate of adsorption with respect to its parental virus. Finally to 

investigate whether the virus was perhaps binding more efficiently to the motor neuron 
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cells, but was not seen due to some problem with viral entry, a HSV -1 binding ELISA to 

several gangliosides was carried out. A heparin-binding ELISA was also carried out and 

results of the ganglioside assay were expressed as a percentage of heparin binding. 

Increased binding to several gangliosides known to bind LTB was not seen in RFb, with 

binding mirroring that of gC-negative virus. 17+ however, bound several gangliosides to a 

greater extent than heparin. These included GAl, GD1b, GT1b, GQlb, and GD3. As 

several of these are expressed in the human nervous system, these may be natural HSV-1 

binding ligands in vivo. 17+ also bound GD1b, GT1b, GQlb, and GD3 to a much higher 

degree than either of the gC-deleted viruses. Therefore it can be postulated that gC plays 

a key role in binding these gangliosides. Binding of wild type virus to ganglioside GD3 

was especially high. This ganglioside is a major glycolipid component of the developing 

central nervous system but diminishes considerably as the CNS matures (Goldman and 

Reynolds, 1996). In the adult CNS GD3 is expressed in low amounts by some neuronal 

subpopulations, on reactive and resting microglia, and by reactive astrocytes (Goldman 

and Reynolds, 1996). Much of the information we have about HSV-1 

adsorption/penetration has been determined from non-neuronal tissue e.g. epithelial cells 

and HS is seen to be the major cellular ligand involved in initial binding of virus to cell. 

Thus, it may be in vivo that GD3 acts as the major ligand for HSV -1. This may be 

important as administering anti-GD3 antibody could potentially block the entry of HSV-1 

into neurons. 

As RFb did not exhibit any signs of novel binding towards gangliosides, it was decided 

not to investigate the effectiveness of this virus in an animal model. 

While many of the objectives of the experiments were not achieved, the idea of altering 

the tropism of HSV -1 to act as a gene therapy vector is still one worth investigating. 

There are several possible ideas for future work to be carried out on this project. 

To avoid steric hindrances between the viral envelope and the fusion protein, fusions 

involving less truncated portions of gC could be investigated. Possible truncations could 

include amino acid residues 280 to 511, or 120 to 511, as both these truncations contain 

165 



cysteine residues known to form disulphide bonds, which may be of importance in 

maintaining the tertiary structure of gC. These should therefore place the L TB protein 

further from the viral envelope facilitating ganglioside binding. 

While L TB has many characteristics that make it a suitable candidate as a binding ligand 

to motor neurons, namely its stability and wide binding range, it also has many 

drawbacks. These include the fact that LTB must pentamerise to become a functional 

binding protein. As our knowledge of the organization of glycoproteins in the viral 

envelope and interactions between them is superficial, the ability of a gC-LTB chimera to 

pentamerise may prove difficult. This may cause subsequent problems with other 

glycoproteins, which in turn may affect various aspects of viral growth, namely viral 

fusion, entry and cell-to-cell spread. Thus it may be more suitable to construct vectors 

which contain binding ligands that do not need oligomerization prior to binding. 

Fusion proteins of HSV glycoproteins with binding ligands seem logical to ensure their 

incorporation into the viral envelope, as it is unknown whether glycoprotein 

incorporation requires specific signals or interactions. This idea is supported by Anderson 

et al. (2000), who found that vesicular stomatitis virus G protein was incorporated into 

HSV -1 virions but the efficiency of incorporation was increased if the transmembrane 

domain was replaced with that of HSV -1 gD. However, a paper by Whiteley et al. (1999) 

showed that the transmembrane of gD can be replaced by the corresponding domain of 2-

siayl transferase without a discemable decrease in gD incorporation or virion infectivity. 

This throws into doubt the idea of HSV -glycoprotein interactions prior to incorporation in 

the viral envelope. Also Dolter et al. (1993) reported the incorporation of human CD4 

receptor into HSV -1 albeit at poor levels of incorporation. Taken together, this suggest 

that a novel receptor may be incorporated into a HSV vector without prior modifications, 

thus ensuring its native conformation and maximal receptor function, however gene 

fusions with some HSV glycoprotein genes may increase its level of incorporation. 

A further drawback of using L TB in future viral vectors is its characteristic as a powerful 

immunogen. L TB can function as carriers for mucosal delivery of vaccine antigens 
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(Schodel and Will, 1989; Nashar et al., 1993) and can possess some adjuvant activity 

(Verweji et aI., 1998). It is unknown whether this immunogenic effect of L TB could 

hinder the progress of the vector if it was used in gene therapy in vivo. However, 

replacement of LTB with a less-immunogenic protein may ameliorate this problem. 

A consequence of this immunogenic-role is that while the vector may elicit a high 

immune response that may hinder its success in gene therapy, the vector may become an 

excellent vaccine against HSV. HSV -1, while ubiquitous in the human population is the 

leading cause of acute sporadic fatal viral encephalitis in the United States and is 

responsible for over 200,000 cases of blindness every year (Fresney, 1983). Because of 

the location of glycoproteins on the surface of infected cells, they act as major antigenic 

determinants for the cellular and humoral immune responses of the host (Norrild, 1985; 

Spear, 1985). gC binds the C3b fragment of the third component of complement 

(Friedman et al., 1984). This region has been located to Cys-1 (aa 127) and Cys-2 (aa 

144), which forms a disulphide bond, producing a loop which forms a binding region. 

Thus, genetic fusion of gC and L TB may provoke an excellent immune response when 

administered. 

6.1 Position of research approach relative to gene therapy strategies for 

neurological disease 

Since commencement of the first human gene therapy trial in 1989, the field has grown to 

more than 400 currently approved trials (Hsich et aI., 2002). Only a few, however, have 

been directed to diseases of the nervous system, including treatment of brain tumours and 

degenerative diseases (Rampling et al., 2000; Anderson, 2000; Tuszynski et al., 2002). 

The lack of more trials is due in part to the difficulties in designing positive interventions 

in the nervous system, a system so complex and critical to human integrity. Early 

concerns focussed on inherent toxicity and immunogenicity of vectors, as mild 

inflammatory responses and edema can cause damage to neurons, and immune responses 

to self-antigens can be elicited. Other damaging responses to injection injury include 

hemorrhage, infection and gliosis, which can lead to epileptic foci (Albensi, 2001). 
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Further, delivery constraints within the brain are formidable, with focal injections usually 

limited by the rapid cellular uptake of vectors and their relatively large size (20-150mn), 

which restricts diffusion within the brain parenchyma, as well as the need to use small 

volumes and slow delivery times to avoid compression damage. Attempts at more global 

brain delivery via the cerebrospinal fluid and vasculature were initially frustrated by high 

toxicity of ventricular injections and difficulties in breaching the blood-brain barrier. 

The most important issue today in the development of gene therapy vectors is the 

potential risk to patients, as highlighted by the death of an 18-year-old patient following a 

hepatic-arterial infusion of a replication-defective adenovirus vector during a gene 

therapy trial for ornithine transcarbamylase deficiency (Somia and Verma, 2000). This 

death was due to a massive cytokine response to the adenoviral vector vector, resulting in 

disseminated intravascular coagulation (Schnell et aI., 2001). Several safety issues exist 

today: 

Vector/delivery toxicity 

• Vector may be directly toxic to cells e.g. through low-level expression of viral 

proteins 

• Vector or trans gene products may cause an inflammatory response, and may 

facilitate an immune reaction to protein in deficient patients, such that they can no 

longer receive protein replacement therapy, or may cause autoimmune reaction 

• Route of delivery may be damaging e.g. injection of the vector into the spinal 

cord may cause mechanical damage 

• Transgene product may have untoward effects e.g. growth factors may cause 

sprouting and misconnection of neurons 

• Replication-conditional vectors may cause damage to normal tissue VIa 

inflammation and cell death and may activate latent viruses 

Gene delivery to the eNS is complicated by difficulties in accesss, which usually require 

neurosurgical procedures, and the need, in some cases, for disseminated delivery over 

extended regions. Direct intraparenchymal injections are limited by the small volumes 
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that can be injected into focal areas. Diffusion is minimal in nervous tissue, so cells at the 

injection site may take up a large number of virions whereas those over a few 

micrometres to millimetres away may not be transduced. Many vectors can move by 

retrograde or anterograde transport within neuronal processes, however, and thus traverse 

extensive distances. Further, neuronal processes can serve to spread trans gene products 

e.g. retinal neurons infected in the eye with AA V vectors project back through the optic 

tract and release corrective lysosomal enzyme to the brain proper (Hennig et al., 2001). 

A promising strategy for global or directed gene delivery has been the use of ex vivo­

modified migratory cells, such as neuroprogenitors, which can migrate extensively in the 

damaged adult brain and can be used as biologic sources of theraputic gene products or as 

carriers of replication-competent vectors (Herrlinger et aI., 2000) or on-site retrovirus 

production (Lynch et aI., 1999; Sena-Esteves et aI., 1999). Global delivery can also be 

achieved through the vasculature by temporary disruption of the blood-brain barrier 

(BBB). Virus vectors can pass across the BBB, and more easily the blood-tumour barrier, 

with temporary vascular disruption by pharmacologic or osmotic agents (Nilaver et aI., 

1995; Rainov et aI., 1995); by the use of cells, such as endothelial cells, which can 

migrate across the vasculature (Messina et aI., 1992); or by targeting to the transferrin 

receptor, which can transport compounds across the microcapillary endothelium (Xia et 

aI., 2000; Bickel et aI., 2001). However, the BBB provides protection for the brain, and 

breach of this barrier can have toxic consequences through fluid influx leading to edema, 

changes in electrolyte balance, and access to blood-borne pathogens (Inamura and Black, 

1994). 

Thus, the experimental approach conducted in this thesis has a valid place in the 

development of effective viral gene therapy vectors for the treatment of neurological 

disease. Phase one clinical studies of RL I-null HSV -1 vectors in the treatment of brain 

tumours (Rampling et ai., 2000; Markert et al., 2000) were successful, showing this 

vector system to be potentially safe in humans. While some concerns may exist regarding 

the safety of the virus, e.g. recombination with latent wild type virus, the many attributes 

of HSV -1 make it an exciting candidate for further studies. Also, by directing the virus to 
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the motor neuron system via injection of the gastrocnemius muscle potential damage to 

the system is averted e.g. in comparison to direct injection. If future vectors can be 

directed efficiently to the motor nervous system, then the ability of the virus to remain 

latent while expressing exogenous theraputic genes through the LAT promoter, could 

provide the solution to many neurological diseases. 
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