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Abstract 

The ability to automatically measure the power of discrimination of terms, or the amount 
of information in terms, is a fundamental issue in intelligent information retrieval (IR). It 
is widely acknowledged that the issue must be faced by almost all textual retrieval systems. 
The discrimination of terms has been a significant subject of interest among IR researchers 
since the early sixties. Since the publication of Van Rijsbergen's book in the late seventies it 
has moved into the mainstream of theory-oriented study and analysis. Many discrimination 
methods have been successively developed. 

Nevertheless, there is no widely recognized formal definition of what should characterize 
term information. Typically, studies in related literature are accompanied by discussions 
of the circumstance in which the discrimination of terms is essential. Such discussions are 
argued by concrete examples and appeals to intuition, or by some empirical formulae. While 
these informal discussions might be sufficient to convey some of the ideas that discrimination 
encompasses, however, they are inadequate for any more formal analysis. In fact, the formal 
interpretation of term information for discrimination is not simple. This thesis introduces 
new techniques for defining term information as one, or more discrimination measure(s). 

The problem of term mismatch and ambiguity has long been serious and outstanding in 
IR. The problem can result in the system formulating an incomplete and imprecise query 
representation, leading to a failure of retrieval. Many query reformulation methods have been 
proposed to address the problem. These methods employ term classes which are considered 
as related to individual query terms. They are hindered by the computational cost of term 
classification, and by the fact that the terms in some class are generally related to some 
specific query term belonging to the class rather than relevant to the context of the query. 

In this thesis we propose a series of methods for automatic query reformulation (AQR). The 
methods constitute a formal model called LfV, standing for Information for Discrimination. 
In L fV, each discrimination measure is modelled as information contained in terms supporting 
one of two opposite hypotheses. The extent of association of terms with the query can thus be 
defined based directly on the discrimination. The strength of association of candidate terms 
with the query can then be computed, and good terms can be selected to enhance the query. 

Justifications for LfV are presented from several aspects: formal interpretations of infor­
mation for discrimination are introduced to show its soundness; criteria are put forward to 
show its rationality; properties of discrimination measures are analysed to show its appro­
priateness; examples are examined to show its usability; extension is discussed to show its 
potential; implementation is described to show its feasibility; comparisons with other methods 
are made to show its flexibility; improvements in retrieval performance are exhibited to show 
its powerful capability. Our conclusion is that the advantage and promise of L fV should make 
it an indispensable methodology for AQR, which we believe can be an effective technique for 
improvement in retrieval performance. 
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Chapter 1 

Introduction 

Information retrieval (IR) is concerned with the processes involved in the representation, 
storage, searching and finding of information relevant to a query for information desired by a 
human user [89]. The study of information retrieval is the study of the optimal relationship 
between the input and output of the information retrieval system [115]. 

The intention of an IR system is to identify latent useful information in response to 
user information needs. The objective of a textual IR system is to retrieve all relevant 
documents, and at the same time to retrieve as few of the non-relevant ones as possible 
with respect to a user query. Many important issues of IR have been studied for this primary 
objective, for example, [167,207]. Some good formal models have been developed, for instance, 
[5, 60, 62, 110, 136, 152, 167, 178, 201, 206, 207, 208, 209, 221, 223, 228]. 

Generally, textual retrieval strategies depend mainly on (1) document representation; (2) 
query representation; and (3) decision function. These three central issues are very model 
dependent. They are briefly described in the following three sections. 

1.1 Document Representation 

In a textual information retrieval system, the objects we deal with are documents and 
queries. The system does not deal directly with the objects themselves but their surrogates. 
In order to design a formalism having predictive capability of relevance, we first need to know 
the explicit representations of the objects. That is, we have to design a reasonable scheme to 
generate the surrogate of each object. Thus, the document representation is the first central 
issue for the development of a quantitative textual retrieval model. 

In information retrieval, each document is characterized by a set of concepts. Hitherto, 
the simplest way of describing each concept involved in a document is to use index terms that 
appear in the document. Usually, a single index term might contain one piece of information. 
However, there exist complex semantic relationships between index terms. Each document 
may therefore contain large amounts of information. No assumptions are made regarding the 
structure of the information, although in practice structured subdivisions of documents may 
be accommodated. 

Generally, there exists a weight transformation, called a document term weight junction, 
which maps each index term to a numerical quantity related to a given document. The 

1 



CHAPTER 1. INTRODUCTION 2 

quantity, known as the weight of index term, is considered to 'indicate' the importance of the 
index term concerning the document. 

Thus, each document can be approximately represented by means of the corresponding 
weights of a set of index terms, which is usually referred to as a representation of the document 
(we will return to this topic in Section 3.1). With such a representation, the relationships be­
tween documents, and between documents and the query, becomes transparent when dealing 
with a specific quantitative retrieval model. 

In an ideal retrieval environment, the document representation would be independent 
of individual retrieval models. It is desirable that there exists a unified formalism which 
can effectively represent documents. However, a feasible scheme for accurately computing 
the importance of terms is not available. The document representation has to depend on a 
specific model itself, and it is frequently consistent with the statistical nature of the indexing 
procedure. 

It should be pointed out that to arrive at a precise representation of a document by means 
of weights of a set of index terms is a difficult task. This is because it is very hard to obtain 
sufficient statistical data for the estimation of the importance of index terms (we will return to 
this topic in Section 3.7). It is also very hard to explicate the complicated semantic relations 
between index terms. In information retrieval, the problem of how to properly represent 
documents has not been satisfactorily resolved. 

1.2 Query Representation 

In like manner, each query is characterized by a set of concepts, and index terms are used 
to describe the concepts involved in the query. In information retrieval, query representation 
is the second central issue. It is one of the main obstacles to be faced in developing an ef­
fective quantitative retrieval system. In order to make a thorough investigation into query 
representation, we need to define some important notions: query formulation, term mismatch, 
term ambiguity and query reformulation. 

1.2.1 Query Formulation 

An original query is a description of the information need typically expressed in natural 
language. The process of the original query description is complex and depends on particular 
attributes of the user, such as his know ledge of the contents of the database, of the indexing 
and searching procedure of the system, his familiarity with the topic matter being searched, 
his personal preferences as to vocabulary and style, and so on. Indeed, the original query 
can hardly include all the aspects of the need [198]; the probability of the user being able to 
describe a query which will retrieve all of the documents satisfying his information need is 
very small [158]. 

In a quantitative textual retrieval system, query formulation is a process whereby the orig­
inal query is initially transformed into a numerical representation. The weight transformation 
is called a query term weight function; the quantity representation is in this thesis called an 
original query representation. In practice, the original queries are usually inadequate, impre­
cise, or incomplete descriptions of users' information needs, and a retrieval system cannot be 
expected to produce ideal retrieval results by using the original query representation. 
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1.2.2 Term Mismatch and Term Ambiguity 

In a practical IR environment, extremely large collections are routinely processed, and docu­
ments that match the query are displayed in real time. The retrieval efficiency is attributable 
to the use of conventional inverted index file technology, and documents that do not have any 
term matching the query (i.e., that do not have at least one term in common with the query) 
are immediately discarded. Users of an IR system that employs term matching as a basis for 
retrieval are faced with the challenge of describing their queries with terms in the vocabulary 
of the documents they wish to retrieve. This difficulty is especially severe in extremely large, 
full-text databases containing many different term descriptions of the same concept [214]. 

Term mismatch is a phenomenon whereby the terms used to describe one concept char­
acterizing a query are different from the terms used to describe the same concept that char­
acterizes documents. Term ambiguity is a phenomenon in which the terms used to describe 
one concept characterizing a query can also be used to describe other concept(s) that char­
acterize(s) documents. These two notions refer to two opposite aspects. Speaking popularly, 
term mismatch addresses the problem that many terms (such as, synonymous terms) can be 
used to describe one concept; whereas term ambiguity talks about the problem that one term 
(such as, polysemous term) is used to describe several concepts. In information retrieval, the 
problems of term mismatch and term ambiguity have long been serious and outstanding. 

Some research, [63] for instance, has shown that people use a surprisingly large variety of 
terms to refer to the same thing in everyday life. The probability of two people - author and 
user - choosing identical terms is less than 0.20. A retrieval system may only be able to make 
a successful retrieval if users enter terms coinciding with the ones assigned to documents they 
desire. This means that users may fail to retrieve documents on 80 to 90 percent of their 
attempts. 

We may consider the problems of term mismatch and term ambiguity from the several 
points of view given below. 

Linguistic Aspect 

o Semantic relationships between terms are a type of term mismatch. 

" ... If a user describes his information need as Aviation School, then relevant informa­
tion indexed by terms Aeronautical Engineering Institute might meet with retrieval 
failure. Term mismatch arises from the synonymous terms. 

" ... A user types in a term cow, he might really be interested in information about 
mammal. Term mismatch arises from the speciality of terms. 

"... A user enters a term planet, he might be thinking of something like Mercury, or 
Venus. Term mismatch arises from the generality of terms. 

" ... A user tries terms crime, violate and murder when she desires to find some thrillers. 
Term mismatch arises from the related terms. 

o Two different terms referring to the same thing but used in different (specific) situations 
are a type of term mismatch. 

"... Different authors have different vocabulary. 
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DNA profile is frequently used by journalists reporting crime events such as 
murder, whereas DNA sequence is usually used by the authors of scientific 
work in biology and medicine. 

' ... Authors and users have different vocabulary. 

If a user describes her query with a term shingles, then a relevant document 
indexed by terms herpes zoster (used by medical authors) might not be re­
trieved. 

" ... The difference between British English (BrE) and American English (ArnE). 

BrE ArnE 

autumn fall 
axe ax 

judgement judgment 
labour labor 
laptop notebook 

pavement sidewalk 

" ... Abbreviation (Abbr.). 

Abbr. 

AST 
maths 

MS-DOS 
MSG 
U.K. 
TV 

Instead of 

Atlantic Standard Time 
mathematics 

Microsoft Disk Operating System 
Monosodium Glutamate 

United Kingdom 
Television 

o Morphological variation, that is, the structure and form of terms (including inflection, 
derivation, and the formation of compounds), is a type of term mismatch. 

"... In a retrieval based on term sun, the user might be also interested in the docu­
ments containing term sunspot, or term sundog. Also, in a retrieval based on term 
constellation, the user is usually interested in the documents indexed by terms 
constellations and constellatory. 

o Polysemous terms (multiple-meaning terms) constitute a type of term ambiguity. 

" ... In a retrieval based on term phoenix, a system can only guess whether to return 
documents related to 

User Aspect 

'the capital and largest city of Arizona', or 

'a bird in Egyptian mythology', or 

'a constellation in the Southern Hemisphere near Tucana and Sculptor'. 

o Whether a retrieval is successful or not depends on the quality of the original query. A 
high quality of the query should consist of proper terms that can precisely describe the 
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concepts involved in the information need, and also should cover all aspects of the need. 
However, it is very hard for users to form high quality queries owing to their limited 
perception of the information they desire and limited understanding of the retrieval 
system. The use of improper terms and incomplete coverage of the subject of interest 
can produce an unsatisfactory output outcome, even failure. 

o Domain knowledge is particularly important for users to be able to choose proper terms 
for describing concepts involved in his query. Unfortunately, that knowledge is exactly 
what users seek. For example, in a library search, a student may seek information on 
a concept vector. However, he does not understand that the concept is usually defined 
and explained in linear algebra. A query described by a term vector would not retrieve 
some relevant books like, for instance, 'Introduction to Linear Algebra'. 

o The problem is more pronounced for a short query consisting of just a few terms related 
to the subject of interest: it can best be illustrated through the scenario of information 
search on the Web where users' queries are usually very short [91]. As the query becomes 
shorter, there may be less chance for some important terms to co-occur in both relevant 
documents the query. It is hard for a short query itself to produce reliable predications 
for the information needs. With the advent of the Internet, short queries have become 
increasingly more common. 

o It is likely that a query description for the same information need would vary from user 
to user, and, contrariwise, the information sought would vary with the user's different 
perspectives even though the same query is described. 

System Aspect 

o An information retrieval system is usually complex, and an information resource can 
be extremely large and wide-ranging. Moreover, the processes of retrieval, in most 
systems, are not transparent to users. It can therefore be very difficult for users to 
precisely describe queries according to their information needs. 

o In order to achieve an effective search, retrieval systems should be able to recognize 
terms that are tried spontaneously by users. This means that the system vocabulary 
should be considerable. The problems of term mismatch and term ambiguity therefore 

become conspicuous and severe. 

o It is also questionable whether retrieval systems can effectively formulate queries. This 
is because representing queries is as difficult as representing documents. 

1.2.3 Query Reformulation 

One motivation for the studies presented in this thesis is to meet the challenge of the increasing 
demand for high precision from realistic retrieval systems. In particular, with the increasing 
use of the Internet, the user tends to view only the top few documents retrieved. A retrieval 
system with high precision returns would therefore be more desirable than one with a high 

recall but low precision. 
Because terms used to describe concepts involved in the query are frequently not the same 

as terms used to describe the concepts involved in the documents, because the inherent nature 



CHAPTER 1. INTRODUCTION 6 

of polysemous terms, because the number of terms tried spontaneously by users for describing 
their information needs may be very few, and so forth, the original query representation 
usually lacks adequate, precise and complete information to match with the representations 
of the potentially relevant documents. Given such a scenario, a retrieval system can never be 
sure it has correctly inferred the user's referent, and thus cannot be expected to accurately 
distinguish relevant documents from non-relevant ones. As a result, a retrieval may achieve 
low precision even if it achieves high recall. 

We need good ways of matching and disambiguating terms. Query reformulation is a 
process that revises the original query representation by strengthening, or intensifying, some 
concepts so as to more precisely describe the information need. It produces an enhanced 
(modified, refined) query representation. 

The most common method for query reformulation is the technique of query expansion. In 
particular, when expansion terms are drawn from a sample set of relevant documents, query 
expansion can be thought of as a technique that adds terms describing the concepts involved 
in the relevant documents into the original query which describes the same concepts involved 
in the query. The technique of query expansion counteracts the problem of term mismatch, 
whereas choice of relevant sample documents counteracts the problem of term ambiguity. 

Query expansion is usually considered to be a recall-enhancing device. This is because 
all documents retrieved against the original query are also retrieved against the expanded 
query; some new documents against the expanded query are also retrieved when they contain 
the expansion terms. Precision, however, may decline if the expansion results in non-relevant 
documents being ranked above relevant ones. Past experimental investigations, reviewed in 
[74, 81, 164], showed that query expansion, while it improves recall, may reduce precision. 
Ways of effectively improving retrieval performance by query expansion, in particular, focusing 
on improving precision of the top-ranked documents, have been extensively studied [27, 29, 
82, 96, 130]. 

In this thesis we propose a series of formal methods for automatic query expansion. In the 
presentation of the proposed methods, we will use 'automatic query reformulation (AQR)' 
and 'automatic query expansion (AQE)', interchangeably. 

1.3 Decision Function 

We have described two central IR issues - the representation of documents and of queries. 
The third central issue involves relevance classification. The criterion for classifying docu­
ments into the different relevance classes with respect to a given query is called a relevance 
decision function (or similarity measure). The decision function determines the degree to 
which a document is relevant to a query, that is, it is a mathematical method for predicting 
relevance. To be successful, the classification should be performed in such a way that the 
resultant prediction and the actual outcome are, on the average, in close agreement. In this 
thesis, the dichotomous relevance classification (relevant or, non-relevant) will be adopted. 

Textual retrieval methods may be divided into exact and partial match methods [8]. 
The former are usually Boolean retrieval methods, the latter consist of several methods, of 
which the most prevalent are perhaps the linear algebraic retrieval methods and probabilistic 

retrieval methods. 
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Boolean retrieval models are perhaps the best understood by virtue of their simplicity 
and sound theoretical basis. In Boolean retrieval models, the relevance is interpreted as 
logical implication. A document is considered to be relevant to a query only when it logically 
implies the query. In this case, documents either exactly match the query or not, and all 
retrieved documents are treated to have equal relevance. Such an interpretation might be 
inappropriate for information retrieval. In fact, relevance often cannot be determined by strict 
inference (logical implication). Some disadvantages have been pointed out by some researchers 
[8, 101, 221]: it may miss some relevant documents whose representations match the query 
representation partially; it cannot take into account the importance of terms concerning a 
document or query; it cannot provide ranked output as all documents are considered equally 
important; it is apt to retrieve either too many or too few documents; it requires a complicated 
logical formulation of the query. 

In contrast, weighting terms is a main feature of partial match retrieval methods. In 
partial match methods, all those documents that contain at least one query term will be 
retrieved and ranked according to their presumed relevance. The degree of the relevance may 
be calculated based on weights of document terms, and possibly also on weights of query 
terms. The weights are usually derived by using the statistical data available, such as, the 
frequencies of terms within the individual documents and the document frequencies of terms 
concerning the collection as a whole [162, 185]. Thus, it is clear that the partial match 
methods take into consideration of the importance of terms concerning individual documents 
and the query. Also, the query can usually be described in natural language or even as a set 
of terms. Thus, the partial match methods may remedy the problems of Boolean retrieval 
methods [101]. The evidence accumulated so far indicates that the use of term weighting 
provides an effective means to improve retrieval performance [164, 167, 207, 224]. 

In the linear algebraic retrieval model (also called the vector space model) [161, 167], 
the query can be directly formulated by system or user. Both documents and queries are 
represented as n' -dimensional (numerical) vectors in a concept space spanned by a chosen 
set of orthonormal base vectors (where n' < n = IVI is the number of concepts involved in 
the collection). Thus, the decision function is simply the scalar product between a docu~ent 
vector and a query vector. If the document vector and the query vector are normalized, 
then the scalar product is the usual cosine similarity measure. A critical analysis of this 
model was given in study [142], and the study pointed out that one of the main problems 
was the assumption of term pairwise orthogonality. Some attempts [227, 228] were made to 
remove such a strict assumption, and a formal method, called the generalized vector space 
model, for computing term correlation was proposed. However, the establishment of the set 
of orthonormal base vectors remains an open problem. 

In the conventional probabilistic retrieval model [42, 152, 206, 207, 235], the query is not 
directly formulated by system or user. Instead, the decision function, which represents the 
query, is derived by the system automatically through a relevance feedback procedure. It is 
well known that if an assumption of pairwise probabilistic independence among terms is made, 
then a linear decision function can immediately obtained. If pairwise probabilistic dependence 
is taken into account among terms nevertheless, then the decision function becomes quadratic 
in the components of document vector. 

In this thesis, relevance and usefulness are not treated as equivalent concepts. The degree 
of relevance is estimated by the decision function designed into the system, and the estimation 
is objective. The choice of the decision function is essential for an effective retrieval. The 
notion of relevance in IR has been studied by many researchers, such as, [12,35,79, 173, 17 -l]. 
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In contrast, the degree of usefulness is subjectively assessed by the user. A document may 
or may not be useful to a given query depending on many factors. If a document is assessed 
by the user to be of interest, it is useful; it is useless otherwise. Since many factors (such 
as, user's knowledge, search intention, etc.) determine the interest in a complex way, it is 
unlikely that the system can precisely retrieve only and all useful documents for the user. 
Instead of this, the system normally adopts some decision function that facilitate the ranking 
of documents in the order of their estimated relevance to the query. 

1.4 About This Thesis 

Discuss judgement methods of 'good' terms. 

Are any judgement methods more fundamental than association functions? 

Are any association functions more fundamental than discrimination measures? 

Should not the fundamental theory be about these 

more fundamental discrimination measures? 

Term information for discrimination and its application to AQE are central themes of this 
thesis. The main objective of this thesis is to establish a formal model for studying effective 
methods of AQE. We call this formal model LfD, Information for Discrimination. 

It has not been easy to interpret the meaning of the amount of information contained 
in a given term rationally and explicitly within the context of IR. It has not been simple to 
introduce the technique of query reformulation meaningfully and successfully into scientific 
discussions. This thesis is an attempt to do this. 

Before we can talk about this thesis in more detail, let us first look at some examples and 
think about the corresponding questions below. 

1.4.1 Examples and Questions 

Example 1.4.1 A query contains terms power plant. Because term plant has multiple mean­
ings, a query expansion technique may add terms garden, tree, vegetable; or add terms am­
phibious plant, herbaceous plant, monoecious plant; or add terms cement plant, chemical plant, 

milling plant, and so on. 

Question-I: How can we avoid expanding with terms related to incorrect meanings of 
query terms? 

Example 1.4.2 A query contains terms gun control and crime. A good query expansion 
technique should add terms blood, dead, kidnap, murder and robbery, rather than terms like 
bribe, fraud, steal and tax evasion. All these terms are obviously narrower terms for term 

crzme. 

Question-2: How can we expand terms which will precisely describe the content of the 
query? 
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Example 1.4.3 A query contains a phrase South Africa. It seems that it does not make 
sense to treat the phrase as two terms and expand them independently. The argument is that 
some of terms, such as, South Pole, the South Seas, the South Downs, the south of Europe, 
the hot south wind, and so on, would be incorrectly added to the query. 

Question-3: How can we deal with phrases in the query in an appropriate way? 

Example 1.4.4 A query is: What is tomorrow's computer? It seems that term computer 
would not provide any discrimination information for the relevance classification for a collec­
tion catalogued as computing science. Yet term computer is central to the query. 

Question-4: Why does a term central to the query not provide any discrimination 
information about relevance? 

Example 1.4.5 A query contains terms gun control and crime. Terms, such as, kidnap, 
murder, robbery, bribe, fraud, steal, may appear in some top-ranked documents. Obviously, 
these terms are more or less statistically associated with some of query terms. 

Question-5: Which of these terms should be strongly associated with the context of the 
query? 

Example 1.4.6 A query is: DNA testing in trials of criminal cases. Two phrases DNA 
profile and DNA sequence are nearly synonymous (both are related to query term DNA). 
Interestingly, DNA profile is frequently used in relevant documents, but DNA sequence is not. 
This is because journalists reporting crime events, such as murder cases, tend to use phrase 
DNA profile, while the authors of scientific work in biology and medicine tend to use phrase 
DNA sequence. 

Question-6: How can we explain such a phenomenon with the Association Hypothesis 
given in [207]? 

1.4.2 Main Ideas of the Thesis 

A fundamental issue in any kind of textual retrieval model is how we can measure the power 
of discrimination of terms, or the amount of information in terms. A central subject in any 
method to query expansion is how we can judge whether a term is a good one with respect to 
a given query. In order to achieve an effective measure and judgement, this thesis is devoted 
to a theory-oriented study and analysis. This has three aspects: (a) the measurement of the 
discrimination information of terms; (b) the definition of association of terms with a query; 
(c) the construction of an association score function. The study and analysis applies basic 
concepts of information measures introduced in information theory and is supported by a 
retrieval system, IjV, developed in this thesis. The mathematical interpretations of the 
basic concepts are fully centred around the three aspects. We now survey the main ideas of 
the study, and analysis and elaborate them in the following chapters. 

Discrimination Information of Terms 

In this thesis, we view the measure of term information as a fundamental issue of IR. This 
is because the knowledge concerning the amount of information contained in a term, or the 
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amount of mutual information contained in a term pair, can be of great benefit. By using 
the knowledge, we can measure the importance of a term and decide whether to use it to 
index a document; we can measure the extent of the association of a term with a query and 
decide whether to use it to expand the query; a retrieval system can measure the degree of the 
relevance of documents to a query, and determines which documents would be of interest to 
the user; the performance of a retrieval system may be examined by measuring the information 
contained in documents retrieved; and so forth. Acquisition of the knowledge is therefore at 
the very core of central issues of IR. 

The concept of information is too broad to be captured completely by a single definition. 
It is hence very difficult to measure term information by only one mathematical formula. In 
this thesis, we concentrate on the study of discrimination information of terms. Discrim­
ination information of a term is used in this thesis to refer to the amount of information 
contained in the term in favour of one of two opposite hypotheses. In particular, when the 
hypotheses involve relevance, discrimination information refers to the amount of information 
conveyed by the term for distinguishing relevant documents from non-relevant ones. A se­
ries of discrimination measures are discussed, interpreted, and analysed. The discrimination 
measures are designed based on five basic concepts borrowed in information theory: directed 
divergence (also called information measure), divergence, information radius, Jensen differ­
ence (also called entropy increase), and expected mutual information. The discrimination 
measures form a basis for formal methods proposed in this thesis for query expansion. 

How can we judge all potential good terms for query expansion? In point of fact, we 
cannot. However, if we can predict the expected amount of discrimination information then 
we will be in a strong position to judge good terms. Thus we want to predict the expected 
amount. The five basic concepts of information theory provide powerful tools to estimate the 
expected amount. We can hence measure the extents of the contributions made by individual 
terms to the expected amounts. The formulae used to measure the extents are called the 
discrimination measures. 

We point out that the discrimination measures mayor may not be query-related. Thus, a 
term may be very informative, i.e., it may·possess higher power of discrimination, but it may 
not be associated with a given query. For instance, term Himalayas would be very informative, 
however, it should not be associated with the query given in Example 1.4.6. Conversely, a 
term may be strongly associated with some query, but not be informative, for instance, term 
computer in Example 1.4.4. These interesting phenomena will be explained in this thesis. 

Association of Terms with the Context of a Query 

The concept of the association is also hard to capture in only one mathematical formula. In 
this thesis, we focus on investigating the association of terms with a given query. Thus, each 
association function is defined as query-related, or more precisely, query-context-related. It 
should refer to the statistical association of terms with all query terms that appear in the 
relevant sample documents. In this way, we may effectively avoid the increase of 'query 
ambiguity', caused by the ambiguity of individual query terms, because it combinatorially 
considers all possible information contained in the query. Particularly, when expansion terms 
are drawn from the relevant sample documents, these terms can provide sufficient context 
to clear up confusion, and may have the potential power of discrimination on relevance with 
respect to the query. 

We especially emphasize that a term strongly associated with the context of the query 
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is a necessary condition for the term to be a good one. Some experimental evidence has 
shown that expanding each query term independently and ignoring the specific context of 
the query completely might cause a problem that expansion terms would be related to the 
incorrect meanings of the query terms [123, 230]. For instance, in Example 1.4.1, if we expand 
query terms power plant independently, then some terms, such as, garden, tree, amphibious, 
herbaceous, cement, milling, would be added to the query, which is not desirable. Similarly, 
in Example 1.4.3, if the query contains a phrase South Africa, then terms, such as pole, sea, 
europe, east, hot and wind, are likely to be added to the query, which is also not desirable. 

Notice that, the methods proposed in this thesis are able to accommodate the polyse­
mous term problem. This is because, for a given term, our methods take a comprehensive 
consideration of association of the term with the query based on the statistical data of the 
co-occurrence of the term with all query terms that appear in the relevant sample documents. 
Consequently, when a term, such as garden in Example 1.4.1, is associated with query term 
plant, it would be weakly associated with query term power (and perhaps also weakly asso­
ciated with other query terms). Thus, the (total) association of term garden with the query 
would be rather weak. In the end, term garden would be eliminated by the query expansion 
procedure. In other words, term power may help avoid selecting term garden for expan­
sion. The consideration of the context of the query can effectively prevent some undesirable 
matches. 

Common terms (except stop words) drawn from the relevant sample documents tend to 
co-occur more frequently with most query terms than uncommon ones. Thus, the common 
terms would have a higher chance to be selected as expansion terms. Some studies, [20] 
for instance, show that adding common terms from the (relevant) sample documents would 
achieve significant improvements in retrieval performance. Therefore, we may find good terms 
among the common terms drawn from the relevant sample documents. 

Correlation among terms has long been an important issue, and many IR researchers 
have objected to the methods of automatic classification of terms on the grounds that the 
correlations among terms are ignored. The derivation of term correlations may be achieved 
by taking into account statistical correlation information on which some statistical methods 
of successful term classification depend. However, it should be pointed out that the concept of 
association of terms with the query, in this thesis, is not the same as the concept of correlation 
of terms. The concept of association requires terms to have both high power of discrimination 
and strong correlation with all query terms that appear in the relevant sample documents. 

We will see that all the definitions of the association functions are given in this thesis in 
more formal forms. Each of the association functions depends only on its three arguments: 
two probability distributions related to two opposite hypotheses and the original query rep­
resentation. 

Association Score Functions 

In this thesis, the set of candidate terms for query expansion consist of all (relevance or 
pseudo-relevance) feedback terms. In order to select potentially good terms with respect to 
the query, an association score function is designed for assigning a score to each feedback 
terms and then sorts them for comparison and selection. 

The construction of a score function is rather intuitive and simple: it is based entirely on 
a certain association function. In fact, in our formal methods, the association functions are 
abstract forms of the score functions, whereas the score functions are specializations of the 
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abstract forms. In other words, each score function is an embodiment of some association 
function by providing particular mathematical expressions of the three association function 
arguments. Once these three expressions are given, the score function is uniquely determined. 

Thus, from our point of view, the issue of the construction of the score function is the 
issue of estimating the three arguments. Evidently, the estimations are crucial for effectively 
distinguishing the potentially good terms from many others. In this thesis, the estimations 
are treated as an important subject, and detailedly discussed and carefully analysed from 
general to specific. Particularly, a unified framework is established to support a systematic 
investigation into effective estimation. 

Obviously, the different association functions and a variety of ways of estimating the three 
arguments would generate a number of score functions. However, it is remarkable that all the 
score functions given in this thesis involve only three essential factors: (i) the significance of 
a term concerning the query; (ii) the importance of a term concerning the relevant sample 
set; (iii) the discrimination information of a term concerning two opposite hypotheses. 

Experimentation 

IR experimentation should illuminate and help to develop theories and models which, in 
turn, should guide the design of good systems [151}. Thus, after some formal discussions, we 
investigate to what extent each score function contributes to improvement in retrieval per­
formance. We evaluate the average retrieval performances of the expanded queries obtained 
from our methods, and compare the performances with that of the original queries without 
query expansion, and with that of the expanded queries obtained from the Rocchio formula 
[158]. In addition, we propose a new reweighting function for weighting the expanded query 
terms, which emphasizes both importance of query terms and association of expansion terms 
with the context of the query. We experimentally demonstrate: 

- Our methods are both precision-enhancing and recall-enhancing devices, particularly, 
their use can greatly increase precision at-5 and at-10, which indicates that they are 
effective in improving retrieval performance. 

- Our score functions are more suitable for shorter queries on relevance feedback, whereas 
they are more effective for longer queries on pseudo-relevance feedback. 

- treating the discrimination information of terms as an important factor in weighting 
expanded query terms may help increase retrieval performance. 

- Weighting expanded query terms using our reweighting function works better than using 
the Rocchio formula on pseudo-relevance feedback, and significantly better than using 
the Rocchio formula on relevance feedback; 

- Our query expansion methods are insensitive to the size of the sample set and to the 
number of expansion terms. 

1.4.3 Outline of the Thesis 

To make it coherent and clear how the parts of this thesis are related, we will focus especially 
on the fundamental issue of the discrimination information of terms and its applications to 
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automatic query expansion. The elaborate discussions on the strategies of document repre­
sentations and the designs of decision functions can be found elsewhere in, for instance, the 
monographs by Van Rijsbergen [207] and Salton & McGill [167]. Thus, the organization of 
this thesis is outlined as follows. 

In Chapter 2, we review the most popular statistical methods to query expansion proposed 
in the past. We want to show how a query can be enhanced and then be used to improve the 
retrieval performance effectively. We also discuss several existing problems of query expansion, 
which are closely related to the studies described in this thesis. 

In Chapter 3, we study the application of the concept of directed divergence for AQE. 
The rationality of using a logarithmic measure of information to measure the amount of 
information contained in a given term is interpreted. The estimations of the term probability 
distributions are elaborated. 

In Chapter 4, we concentrate on the application based on the concept of divergence for 
AQE. Because the condition of absolute continuity between two distributions may not be 
satisfied in a practical context of IR, this chapter is devoted to a formal analysis and mathe­
matical discussion on the feasibility of applying divergence to AQE. 

In Chapter 5, we intend to give an easily understood account of the concept of information 
radius and its application for AQE. Some interesting properties of the discrimination measure 
are discussed. 

In Chapter 6, we concern ourselves with the application of the concept of entropy increase 
for AQE by introducing a more general concept, the Jensen difference. Three typical entropy 
functions are considered, and the appropriateness of applying them as a divergence measure 
is investigated. 

In Chapter 7, we focus on the application of the concept of expected mutual information for 
AQE. The notion of amount of mutual information contained in a term pair is interpreted. 
Some important properties of the discrimination measures are discussed. The estimations 
of the term state distributions is studied, and a general framework for the estimations is 
established. 

In Chapter 8, we present a series of experimental results of applying the formal methods 
proposed in this thesis to AQE. A function for reweighting terms of expanded queries is 
introduced. The retrieval performances are compared and analysed. 

In Chapter 9, we summarize the contributions of studies given in this thesis, and discuss 
some points that are worth further investigation in the future. 

Finally, in Chapter 10, we deal with some mathematical details, which are mentioned in 
the earlier chapters. 

The formal discussions given from Chapters 3 to 7 are inevitably mathematical in tone. 
Readers less interested in mathematical details should still be able to follow the analyses and, 
particularly, the descriptions of the practical discrimination procedures we propose. 



Chapter 2 

Historical Review 

Query reformulation, an important component in a retrieval system, has long been an effective 
technique to improve retrieval performance [27, 29, 47, 54, 72, 111, 130, 158, 165,210,231]. 
Before detailing our formal model If'D, we review some methods of query reformulation that 
have appeared in the literature. Other good reviews of query reformulation methods can be 
found in [29, 53, 65]. 

There is a large literature on query reformulation, and we will not survey it exhaustively. 
Instead, we concentrate on some popular statistical methods related to the subject of this 
thesis. Our review will also allow us to introduce notation and concepts for the discussions 
given in subsequent chapters. In Section 2.1 we establish a consistent notation for describing 
the concepts and the formal methods proposed in this thesis. In Section 2.2 we discuss AQR 
by only reweighting terms of the original query without query expansion. Section 2.3 focuses 
on AQR by selecting good terms by means of score functions and is closest in spirit to the 
studies in this thesis. Other related reformulation methods are described in Section 2.4. 

2.1 Notation 

Let D = {d1 , d2, ... ,dN} be a document collection, and a finite ordered tuple V = {tl' t2, 
... ,tn } the vocabulary of terms used to index at least one document in D. Let q be a query. 

Let x be an object representing x = d E D or x = q. In this thesis, we will denote V X as 
the set of terms that appear in object x, and Ivxl the size of V X (i.e., the number of distinct 
terms appearing in x), where 1·1 is a counting measure for a set. We will denote fx(t) as the 
occurrence frequency of term t in object x (i.e., the number of postings of term t in x), and 
Ilxll = LtEVX fx(t) the length of x. Obviously, Ivxl < Ilxll always holds. In this thesis, we will 
always assume that 2 < IVdl < IVI = n, i.e., each document has at least two distinct terms, 
and we will see that such an assumption is necessary in the estimations of the probability 
distributions. We will denote maxfx = max{fx(t)I t E VX} is the maximum frequency of the 
occurrence frequencies of terms in x. 

Let X ~ D be the set of documents in D. We will denote V X as the sub-vocabulary 
consisting of those terms that appear in at least one document in set X, and IXI the size of 
X (the number of documents in X). Particularly, when X = D, it has VD = V and IDI = N. 
We will denote fx(t) = LdEX fd(t) as the occurrence frequency of term t in X (i.e., the 
total number of postings of term t in X), and IIXII = LtEVX fx(t) as the length of X (also, 
we can write IIXII = LdEX IIdll, i.e., it is the sum of the lengths of individual documents 

14 



CHAPTER 2. HISTORICAL REVIEW 15 

in X). Obviously, IVxl < IIXII always holds. We will denote ave(D) = _1 '" f (t) _ 
1. . IDI L.tEV D -
TDT LdED Ildllis the average length of documents m D. 

We will denote Fx(t) as the frequency of documents in X in which t occurs. Clearly, it 
has Fx(t) < !,D.(t) since X.~ D. It is important to understand the difference between Fx(t) 
and fx(t). SImIlarly, we WIll denote FX(ti, tj) as the frequency of documents in X in which 
ti and tj co-occur. 

We will denote q' as an expanded (modified) query of an original query q, and sq a set 
consisting of selected terms which are judged to be good terms. Thus, Vql = sq U V q, and, 
generally, Sqnv

q 
=I=- 0., i.e., selected terms can be query terms. We call terms t E Eq = sq-V q 

(usually, Eq c sq) expansion terms. 

Finally, for a given query q, we will denote R as the set of all relevant documents in D - , 
and R = D - R the set of all non-relevant documents in D, with respect to q. We will denote 
3 as a sample set obtained from an initial retrieval iteration, 3+ = 3 n R a set of all relevant 
sample documents in 3, and 3- = 3 n R = 3 - 3+ a set of all non-relevant sample documents 
in 3. Thus, we have 3+ U 3- = 3 and 3+ n 3- = 0. 

2.2 AQR by Reweighting Query Terms 

Relevance feedback, introduced in the mid-1960s, is an automatic process for reformulat­
ing the original query based on relevance assessment provided by the user. Specifically, an 
initial retrieval is performed using the original query, and a small number of documents with 
high-similarity are presented to the user for relevance assessment. The assessment is then 
returned to the system and used to automatically modify the original query in such a way 
that terms appearing in previously retrieved relevant documents are emphasized, whereas 
terms in previously retrieved non-relevant documents are de-emphasized. Such a query refor­
mulation process is expected to produce an enhanced query which has greater similarity with 
the relevant documents and greater dissimilarity with the non-relevant ones, and so retrieve 
more relevant documents while at the same time fewer non-relevant ones [161, 165]. 

The basic assumptions underlying relevance feedback are: (i) query terms are generally 
good at distinguishing relevant documents from non-relevant ones; (ii) terms co-occurring 
frequently with query terms might be likely to be good discriminators, and should be added to 
the original query; (iii) terms co-occurring frequently in some documents (with low document 
frequencies) may relate to the same topic. Thus, term co-occurrence statistics can be used to 
reveal some semantic relations inherent in terms. Extensive study of relevance feedback has 
been made within the frameworks of Boolean, linear algebraic, probabilistic, and language 
modelling methods [49, 87, 152, 153, 158, 160, 161, 164, 166, 167, 168, 207, 235]. 

In an operational situation where no relevance information is available in advance, the 
feedback process is called pseudo-relevance feedback. In this case, all documents in the sam­
ple set obtained from the initial retrieval are treated as relevant. Pseudo-relevance feedback 
aims to minimize the intellectual effort of human users at the query reformulation stage. It 
allows the reformulation to be performed by completely automatic means, in accordance with 
a term discrimination measure. The intellectual effort of users is shifted and concentrated at 
the time the system is set up. An effective discrimination measure is required to select good 
terms for enhancing the original query. Much of the research on query reformulation using 
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pseudo-relevance feedback has made significant performance improvements [74, 130, 165, la(S:. 

2.2.1 Linear Algebraic Methods 

In the linear algebraic (vector space) method, an ideal query is defined by Rocchio [158] 
as one which induces a ranking over the collection such that all relevant documents are 
ranked higher than non-relevant ones. Since relevance is a subjective attribute determined 
by individual users, there is no certainty that an ideal query in fact exists for a given query. 
Rocchio thus suggested computing an optimal query. An optimal query, corresponding to a 
given relevant document set R, under a weighting function, is the one which maximizes the 
difference between the mean of the similarities of relevant documents in R and the mean of 
the similarities of non-relevant documents in R. 

The Rocchio method cannot be used when sets Rand R are unknown, in advance of the 
search being carried out. However, his method can help in generating a feedback query when 
relevance assessment is available for documents previously retrieved in answer to the query. 
In this case, all relevant or non-relevant documents used in his method are replaced by known 
relevant documents in 2+ ~ R or non-relevant documents in 2- ~ R. 

Experience shows that the original query terms should be preserved by the feedback 
iteration process. Therefore, the formula (reweighting function) actually used by Rocchio to 
construct a new query from the original query q was: 

(2.1) 

where Q, (3, I > 0 are constants, and wx(t) is weight of terms in x = d E D or x = q. Rocchio 
investigated relevance feedback using this formula, and found that it does improve retrieval 

results [158]. 
Ide [87] extended Rocchio's work by presenting three variations: 

rew1,1 (t) = Q wq(t) + (3 L Wd(t) - L Wd(t), 
dE3+ dE3-

rew1,2 (t) = Q wq(t) + (3 L Wd(t) - Wds (t), 
dE3+ 

rew1 ,3 (t) = Q wq(t) + (3 L Wd(t). 
dE3+ 

In the second variation, ds E 2- is the first non-relevant document retrieved in the ranking 
list. Notice that, unlike Rocchio's formula, these three variations do not normalize the vector 

length. 
Salton & Buckley [165] experimentally investigated and compared relevance feedback 

methods across six different test collections. From their results, they concluded: (i) rew 1,2 (t) is 
the best, whilst being computationally very efficient; (ii) for rew1 (t), relatively higher weights 
should be given to terms obtained from the relevant documents than to those extracted from 
the non-relevant ones; (iii) expansion using all terms from the known relevant documents (i.e., 
without term selection, which is generally very expensive) is preferable to expansion using 
only the most common terms, but the performance difference is modest; (iv) expansion using 

the highest weighted terms is inferior. 
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Salton et al. [18, 165] modified the Rocchio formula: initially they considered non-relevant 
documents to be those that had been seen by the user and judged non-relevant (i.e., dE :=:-). 
However, in the modified formula, they made an assumption that all unseen documents are 
non-relevant (i.e., d E D - 3). 

2.2.2 Binary Independence Probabilistic Methods 

Over the past 40 years there has been a great deal of interest in using probabilistic methods 
for textual retrieval systems. The papers of [5, 13, 14, 37, 60, 62, 77, 78, 124, 136, 152, 153, 
170, 199, 202, 206, 207, 223] are representative. 

Most probabilistic retrieval methods are based on the so-called 'probability ranking princi­
ple' [147]. The principle asserts that, for optimum performance with a given query, a retrieval 
system should rank documents in order of their probability of relevance to the query, accord­
ing to the information available to the system. Some counterexamples to this assertion can 
be given; however, it underlies much of the research in IR that exploits probability theory in 
a non-superficial way [36]. 

The binary independence probabilistic (BIP) method [77, 152, 153, 206, 235], an alterna­
tive typical relevance feedback method, may be the most well-known. A clear mathematical 
account of this formal method, outlined here, was presented in [61, 207]. 

Assume that terms are independently assigned to relevant and non-relevant documents of 
a collection, and that binary term weights restricted to 0 and 1 are assigned to documents. 
Under these assumptions, optimum performance can be achieved [146, 150, 210] by using a 
similarity measure (q' is a modified query): 

sim(d, q') = L Wd(t) . reWql(t) = L reWql(t), 
tEV 

and, for a given term t E V ql = V q, a reweighting function is 

pt(l - qt) 
rew2(t) = log (1 ) = reWql(t), 

qt - Pt 

where Pt expresses the probability that term t is assigned to a certain relevant document, and 
qt equivalently for a certain non-relevant document. This reweighting function can also be 
found in Bayes' decision theory [51, 132]. 

Notice that rew2 (t) only modifies the weights of query terms, but no new terms are added 
to the query (i.e., there is no query expansion). Notice also that rew2 (t) cannot be used in 

practice without knowing probabilities Pt and qt· 
Harper & Van Rijsbergen [77] pointed out that the best way of estimating probabilities is 

to estimate Pt from documents known to be relevant, and to estimate qt from all documents 
not known to be relevant. Thus, the probabilities can be estimated by 

and 

Problems occur for the following cases: 

1) 1:=:+1 = 0 (in this case F=:+(t) = 0), 

2) 1:=:+1 > 0 but F=:+ (t) = 0, 

3) 1:=:+1 > 0 but F=:+(t) = 13 +1. 
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This is because, in these cases, the logarithmic expression in rew
2 
(t) is meaningless. That is, 

these three cases respectively correspond to three indeterminate expressions: 

o 
log 0 

a 

o 
log b 

a 

b 

log 0 
a 

where a, b > O. In practice, to solve these problems, an adjustment factor 0.5 is adopted in 
the conventional BIP method for estimating probabilities [152, 153]: 

F:=;+(t) + 0.5 
Pt = 12 +1 + 1 and FD(t) - F:=;+ (t) + 0.5 

qt = IDI -1.:::.+1 + 1 (2.2) 

Experiments with this modified version consistently showed high retrieval performance [74, 
152, 153]. 

From rew2 (t), it is clear that a term assigned a high weight, implies that the term is 
prevalent among relevant documents in the collection; the reverse obtains for a term that 
occurs mostly among the non-relevant documents [170]. Thus, rew

2 
(t) succeeds in empha­

sizing terms concentrated in the relevant documents. Terms with high weights may also be 
considered to have relatively low document frequencies, because terms with high document 
frequencies tend to appear indistinguishably both in relevant and non-relevant documents. 
Consequently, rew2 (t) can be viewed as a measure of discrimination on relevance, and may 
be expected to be capable of enhancing retrieval precision. 

Sparck Jones [187, 188, 189] performed a number of experiments, and found that the 
use of rew2 (t), with only a few relevant documents, would result in significant performance 
improvements over weighting terms using an alternative reweighting function 

. IDI 
rew3 (t) = zdfD(t) = log ( )' 

FD t 

which is normally called the weight of the inverse document frequency of terms. Early studies, 
[169, 170, 171, 172, 185, 207] for instance, showed that document frequencies, FD(t), of terms 
are directly related to the power of discrimination of terms on relevance. Hence document 
frequency can be considered as a discrimination measure. We will return to this function in 
Section 2.4. 

Wu & Salton [229] showed that both rew2 (t) and rew3 (t) are closely related over a 
wide spectrum of document frequencies. Particularly, for the medium frequency terms, both 
weights rew2 (t) and rew3 (t) are rather similar. They pointed out, since most query terms 
used in practice may be expected to fall in the medium frequency range, that reweighting 
terms with rew2 (t) would not produce retrieval results that are substantially better than with 
rew3 (t). 

The BIP method has been criticized for a variety of reasons. Firstly, the adjustment 
factor 0.5 may provide very poor estimation when F3+(t) = 0 [40]. In fact, it overestimates 
the probabilities involved [181, 210], and hence, this solution to the estimation problem is not 
ideal [233]. Some different adjustment factors have successively been proposed to estimate 
probabilities Pt and qt [22, 149, 165, 233]. Secondly, documents can only be represented as 
binary vectors, although attempts have been made to remove such a restriction, [234] for 
instance. Finally, it is often difficult to justify the probabilistic independence assumption. 
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2.2.3 The EMIM Methods 

In order to overcome the estimation problems posed by the BIP method, Harper & Van 
Rijsbergen [77] proposed the following term reweighting function: 

(t) """" P(£ )1 P(5i ,iq) rew4 i = 6 Uiq Ui, iq og P(5-)P( )' 
8- '"V -lot iq 

2} Iq- , 

where ~iq = 1 if term ti occurs (or does not occur) in a relevant (or non-relevant) document 
with respect to query q; ~iq = -1 otherwise. They used the factor ~iq as an indicator of how 
good a term ti is as a relevance discriminator. The presence of a term in a relevant document, 
and its absence in a non-relevant document, implies that the term is a positive discriminator of 
relevance. Function rew4 (t) is in fact the expected mutual information measure incorporating 
factor ~iq. 

Further, Harper & Van Rijsbergen [77] proposed a way to estimate the probability distri­
bution involved in rew4 (t). Thus, we have the following reweighting function: 

(
F=:+(t) IDI 

rew4,1 (t) = F=:+ (t) log FD(t) 13+1) 

_ (F (t) - F-::; (t)) 10 (FD(t) - F=:+(t) IDI ) 
D ~+ g FD(t) IDI-13+1 

_ (1 3 +1- F-::; (t)) 10 (1 3 +1- F=:+(t) JQL) 
~+ g IDI- FD(t) 13+1 

~+ IDI-13+1- FD(t) + F=:+(t) IDI 
+(IDI-I~ I-FD(t)+F=:+(t))log( IDI-FD(t) IDI-13+1)· 

They performed a set of experiments with the Cranfield collection, using complete relevance 
information. The results showed that query terms reweighted using rew4 1 (t) give much better 

performance than those using rew2 (t). 
Sparck Jones & Webster [195] conducted some experiments using rew2 (t) and rew4 ,1 (t) and 

concluded that, when a fair amount of relevance information is available, query reformulation 
may be positively advantageous compared with the original query. 

Smeaton & Van Rijsbergen [181] used rew2 (t) and rew4 ,1 (t) to carry out a set of exper­
iments using the NPL collection. The results showed that the performance obtained from 
rew

2 
(t) appears better than that of rew

4
,1 (t), but there was no significant difference between 

them. 
Biru et al. [10] attempted to analyse the relationship between the power of discrimination 

of terms on relevance and the document frequencies of terms by means of an alternative 

reweighting function: 
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It is interesting to notice that this reweighting function is rather different from rew (t). and 
the difference is not only a constant. 4,1 

. In previous experiments, it had been found that rew4 ,1 (t) outperformed rew2(t). It was 
pomted out [40] that the only disadvantage of using rew (t) is that some relevant documents 4,1 

far down in the initial ranking may be pushed even further down after feedback and that , 
this demotion happens because terms that do not occur in the relevant retrieved documents 
may be given lower weights. 

Harper & Van Rijsbergen [77] wrote that there may be theoretical justification for ex­
ploiting term dependence in this particular way. Smeaton & Van Rijsbergen [181] stated that 
rew2 (t) can be shown to be optimal (under the independence assumption), and that rew4 1 (t) 
has an ad hoc basis and is suboptimal. Similarly, Croft [40] stated that rew (t) is heuristic 4,1 

in nature, whereas rew2(t) is theoretically superior. Van Rijsbergen, Harper & Porter [210] 
also wrote that there is no theoretical justification for the dependence weight rew4 (t), but 
it outperforms the independence weight rew2 (t). It may be that, in the light of rew4 1 (t)'s 
robustness and effectiveness, some theoretical justification will be found. We will discu;s this 
very interesting issue and justify rew4 1 (t) in Chapter 7. 

The mutual information measure has been used widely in many applications of IR, [9, 34, 
64, 96, 102, 108, 230], for instance. We will discuss this measure in depth in Chapter 7. 

2.2.4 Adaptive Linear Methods 

The concept of user preference is closely related to the concept of relevance. A user preference 
can be formally expressed by a binary relation ~ on collection D, which reflects the qualitative 
judgement of preference from the user point of view. 

It has been shown [222] that if relation ~ on D satisfies some additional conditions (a 
mathematical discussion about the conditions can be found in [56]), then we can express 
such a relation by a linear decision function. It has also been shown [134) that there exists 
one necessary and sufficient condition for the existence of a linear decision function based 
on measurement theory within the framework of user preference. More precisely, in the 
general vector space model, suppose that each document d E D is characterized by the term 
probability distribution Pd(t) on V. Then, under the additional conditions, there exists a 
real-valued function u on V, for two arbitrary documents d1 , d2 E D, satisfying 

user prefers d1 to d2 ~ d1 ~ d2 ~ E(u,Pd1) > E(u,Pd2) 

~ L U(t)Pdl (t) > L U(t)Pd2 (t), 
tEV tEV 

where u = u(t) is called a utility function, which can be viewed as a measure of usefulness of 
a term with respect to relation ~. The expected-utility E(U,Pd) can be viewed as a measure 
of usefulness of document d with respect to query q, and used to rank documents d E D. 

Wong & Yao [221] suggested two simple methods for constructing such a linear decision 
function, namely, two methods of estimating the utility function u(t). One is based on the user 
input query, i.e., u(t) ~ wq(t). Another is based on the BIP method, i.e., u(t) ~ rew2(t) = 

wq,(t). . 
Further, Wong et al. [222, 225] proposed an iterative algorithm in terms of the gradIent 

descent function [51] for constructing an appropriate query vector from the user preference 
relation. Thus, given the user preference judgement on a sample set, a query can be auto­
matically generated by the iterative algorithm without introducing any specific formulae or 
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parar:neters. Their studies showed that Rocchio's optimal solution, rew
1 
(t), is onlv a special 

case III the general gradient descent procedure. . 

Wong et al. [225] demonstrated, when the iterative algorithm is applied to a binarv 
document representation system, that a modified query can be reformulated by the following 
reweighting function 

rew (t) = ID112+1 [F2 +(t) _ FD(t)] 
5 12 +1 IDI' 

They viewed the absolute value I F~}lt) - ~~(It) I as an approximate measure of the power of 

term t to discriminate on relevance. Further, Wong & Yao [222] showed that the iterative 
algorithm may be applicable to any document representations. 

Subsequently, Wong et al. [226] evaluated the retrieval performance of the iterative al­
gorithm. The results from their experiments seem to be superior to rew

1
,2 (t) [87], which is 

considered to be the best for relevance feedback [164]. 

The use of the iterative algorithm requires the user to provide a complete preference 
structure (restricted to satisfy the additional conditions) on the sample set according to his 
preference jUdgement. This implies that the user may be forced to browse (perhaps to 'read') 
all sample documents, and make some comparison between documents in order to determine 
his preference structure properly. Such a practice would likely lead to the user being in 
a much better position to reformulate the query himself or, perhaps, refusing to provide a 
preference structure simply because he feels that it is easier to reformulate the query. Also, 
in the context of IR, the conditions that the user preference relation must satisfy may be too 
stringent, and we may not be able to justify any choice of a linear decision function defined 
by E(U,Pd) meets the user preference relation [221]. 

2.2.5 Term Dependence Probabilistic Methods 

In fact, the term independence assumption is grossly inaccurate, and tends to be too simple 
and too strong. As stated by Cooper & Huizinga [37]: " ... arbitrarily adopting special inde­
pendence assumptions is not a wholly desirable approach to the problem of obtaining sound 
probability-of-usefulness estimates in information search systems. Indeed, such assumptions 
are usually recognised to be crude even by those who employ them, their use being justified 
more or less as a desperation measure." Bollmann & Raghavan [133] also indicated that 
retrieval, based on a similarity measure, such as the cosine function used in the vector space 
model, is incompatible with term independence assumption. 

In order to remove the artificially simplifying and unrealistic assumption of term inde­
pendence, retrieval techniques based on the assumption of term dependence have successively 
been developed; [77, 206, 207] were early influential representatives. 

Cooper & Huizinga [37] addressed the problem of how to make probability estimates, with­
out introducing the independence assumption, using the maximum entropy principle (MEP). 
Kantor [97] discussed the technical issue of formulating the maximum entropy problem in a 
realistic IR environment. This work had almost no impact, although Kantor & Lee [98, 99] 
provided one 'toy calculation' showing that the MEP behaves sensibly in the situation where 
terms co-occur very frequently. After some experiments with the TREe collection, Kantor & 
Lee [99] drew the conclusion, "the evidence cannot support the strong claim that the MEP ac­
curately describes the distributions of terms across relevant and non-relevant documents. Nor 
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does it support the weaker claim that computing according to the MEP will lead to enhanced 
information retrieval". 

Croft [41] proposed a method which attempted to integrate Boolean and probabilistic 
retrieval methods. In his method, Boolean queries are interpreted as specifying term de­
pendencies in the set of relevant sample documents. Later, Croft & Lewis [43] presented 
an algorithm to generate dependent term groups from their own representations. Losee & 
Bookstein [117] proposed a probabilistic method integrating Boolean queries in conjunctive 
normal form, where most of the dependencies exist between the disjunctions of terms. 

Cho, Lee & Lee [31] proposed a method which incorporates term dependence into a prob­
abilistic retrieval method by adapting the concept of Bahadur-Lazarsfeld expansion (BLE) 
developed in the area of pattern recognition [51]. A theoretic process in applying BLE to the 
probabilistic method [152] and to the state-of-the-art 2-Poisson method [154] was described. 

It has been recognized that incorporation of term dependence information into term 
weights would improve the retrieval performance to some extent [31, 41, 43, 116, 133, 206]. 
However, the term dependence methods have not been shown to have consistently and sig­
nificantly better performance than the methods assuming term independence of [40]. Also, a 
major disadvantage in using these methods is that they are computationally very expensive 
because information on the co-occurrence of two terms must be obtained at search time [31]. 
Another problem is that some of them need to decide the parameters which might be necessary 
for determining retrieval performance, but the parameter estimation cannot be performed in 
real time. 

2.2.6 Language Modelling Methods 

Language modelling methods were introduced to IR by Ponte and Croft [136], and further 
explored in [9, 44, 109, 112, 127, 182, 232, 238, 239]. These methods have recently been 
proposed as an alternative to the conventional vector space and probabilistic methods, and 
have been shown to have relatively effective performance experimentally. The basic idea of 
these methods is to estimate a language model for each document, and then rank documents 
by the likelihood of the query according to the estimated language models. 

An essential problem in the language modelling methods is the smoothing of estimation. 
The language models for IR must be smoothed, so that non-zero probability can be assigned to 
query terms that do not appear in a given document [109]. The smoothing is directly related 
to the retrieval performance. Miller et al. [127] smoothed the document language model with 
a background model (i.e., a collection language model) using hidden Markov chains. Zhai & 
Lafferty [239] also studied the problem, and examined the sensitivity of retrieval performance 

to the smoothing parameters. 
In the language modelling framework, Berger & Lafferty [9] proposed a method exploiting 

ideas and approaches of statistical machine translation: how a user may translate a given 
document into a query. The query expansion, which can be viewed as using a Markov chain 
method, when applied to a set of sample documents, can be regarded as a method that re­
estimates an existing query language model. The Markov chain method is a very general 
method for expanding either a query language model or a document language model [109]. 

Lavrenko & Croft [112] suggested a method of estimating probabilities of terms in the 
relevant document class by estimating a query language model based on a set of relevant 
sample documents. Their method also attempts to address the important issues of synonymy 

and polysemy. 
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Lafferty & Zhai [109] developed a feedback method for estimating an expanded quer~; 
language model, which may assign probability to terms that are not in the original query. 
The essence of their method is a Markov chain term translation model that can be computed 
based on a set of sample documents. 

Zhai & Lafferty [238] proposed a feedback method within a language modelling framework, 
which incorporated the directed divergence measure into retrieval strategies [109]. They sug­
gested two schemes for re-estimating an existing query language model: one is to estimate the 
query language model using the relevant sample documents based on a maximum likelihood, 
and the other is to estimate the query language model by minimizing the average divergence 
between the query language model and the relevant sample document language models. 

Cronen-Townsend et al. [44) introduced a method for predicting query performance by 
computing the directed divergence of a query language model, estimated using the method 
given in [112], from a collection language model. 

However, feedback strategies have been dealt with heuristically within the language mod­
elling methods, and are not very compatible with the essence of these methods. As a result, 
the expanded query may be interpreted differently from the original query [238]. 

2.2.7 Some Experimental Methods 

Croft & Harper [42] investigated application of the BIP method to the situation where no 
relevance information is available (i.e., 13+1 = 0), the term probability distribution can be 

estimated by Pt = a (where 0 < a < 1 is a constant) and qt = ~~It). The query terms can 
thus be weighted by 

a IDI- FD(t) 
WCH(t) = log-- + log F () . 1-a Dt 

In this weighting function, the first item is simply a constant, whereas the second item is 
essentially rew

3 
(t). This function has been shown to be effective [40, 42, 76). 

Croft [40) extended the work of Croft & Harper [42] by incorporating within-document 
term weights Wd(t) into relevance feedback search. The reweighting function for modifying 

the query was: 
rew

6
(t) = [k + (1 - k)Wd(t)] x WCH(t), 

where 0 < k < 1 is a constant Wd(t) = Jd(t) is term weight, and maxJd = maX{!d(t)1 t E Vd} 
, maxfd 

is the maximum frequency of terms in d. The Cranfield and NPL collections were used 
in his experiments. He found that constant k significantly affects retrieval performance, 
and that the optimum value of k is different for the different collections. This reweighting 
function significantly improved retrieval performance for both collections compared with the 
performances obtained from the original queries and from query reformulation using rew2 (t). 

Harman [74) proposed a reweighting function (without query expansion): 

log (J d ( t) + 1) 
rew7 (t) = log(lldll) x rew2 (t). 

10 top-ranked documents were used for relevance feedback (with the Cranfield collection). 
However there was no difference between her reweighting function and rew2 (t). 

Klink et al. [103) presented a method which used relevance feedback information ~nd 
information globally available from old queries. The original query was then expanded usmg 
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the previously learnt concepts. According to their method, each concept, Cj, of query term 
tj E V q can be built from the sum of all vectors of documents relevant to the old queries 
having term tj in common. Then, each query term tj corresponds to a concept Cj, which has 
been learnt from old queries. Their experimental results showed that this method is more 
effective than Rocchio's for some collections, but ineffective or even worse for others. Notice 
that their method used all terms in 'relevant' documents without a term selection stage, and 
that the documents are relevant to some old queries, rather than to the original query, and so 
it is likely that these relevant documents are unrelated to the original query, and the expanded 
query, by using terms appearing in non-relevant documents, will produce 'drift'. 

2.3 AQR by Adding Good Terms 

Robertson [150] stated that it may be appropriate to filter relevance feedback terms, and 
that rather than expanding the original query with all the relevance feedback terms, many 
of which may have low weights, only the best terms should be selected. Harman [74] pointed 
out, after experimental analysis, that adding only well-selected relevance feedback terms is 
superior to adding all relevance feedback terms. Carpineto et al. [29] also pointed out that 
query expansion using all relevance feedback terms may be only slightly better than using 
selected good terms, and that using a limited number of expansion terms may be important 
in reducing response time, especially for large collections. 

Thus, in this section, we discuss some query expansion methods. Query expansion can be 
automatic and, in this case, the system judges good terms and adds them into the original 
query without reference to the user. Query expansion can also be semi-automatic and, in this 
case, the system identifies potential good terms and presents them to the user for possible 
addition. Either way, it is necessary to design a score function which can measure how good 
a term is as a discriminator on relevance. 

2.3.1 Information Measure Based Methods 

To measure the power of discrimination of terms Carpineto et al. [28, 30] proposed a score 
function using a divergence measure [107] (in pseudo-relevance feedback): 

P=(t) 
score l (t) = (P=:(t) - PD(t)) log P~(t)' 

in which, term probability distributions were estimated by 

Px(t) = LdEX fd(t) , 
LdEX (LtEVd fd(t)) 

where X = 2 or X = D. They carried out a series of experiments on TREC-6, TREC-7 and 
TREC-8 data (with 121 = 5 and IEql = 30,60). Terms were considered as expansion terms 
if they made a marked contribution to the divergence (see a detailed account in Chapter 3). 
The experimental results showed that rankings with the expanded queries achieved a better 

performance than ranking with the original queries. . . 
A necessary condition that must be satisfied in application of the dIvergence measure is 

that the two probability distributions are absolutely continuous with respect to one another, 
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otherwise the divergence is meaningless. Usually, the condition is not satisfied \vhen we 
attempt to derive the probability distributions from the different sets of documents for the 
purpose ~f query e~pans.ion. It is a key issue that needs to be carefully analysed, in order 
to establIsh the ratIOnalIty of applying the divergence measure to feedback. Carpineto, et 
al. [2S] thoroughly discussed this problem, and, in order to solve it, suggested a scheme 
that attempted to find a 'discounting factor' J-L (0 < J-L < 1) for discounting the probability 
distribution .of terms. In their work, however, it seemed that factor J-L was not really found, 
and the mam experiments described relied on J-L = 1. In fact, the theoretical problem of 
applying the divergence measure to query expansion remains open, and is one of the focal 
points of the study given in Chapter 4. 

Carpineto et al. [29] proposed an alternative score function based on the directed diver­
gence measure [106]: 

score
2 
(t) = P=(t) log P3(t) . 

- PD(t) 

Further, they experimentally compared score2 (t) with four other score functions: 

score3 (t) = I:: Wd(t), 
dE3 

s cor e 4 ( t) = (I:: W d ( t) ) P3 ( t) , 
dE3 

scores (t) = (p3(t) - PD(t)) / PD(t), 

score6 (t) = (P3(t) - PD(t))2 /PD(t), 

where, score3 (t) is a variation of the Rocchio formula, score4 (t) was given by Robertson [150] 
and scores (t) by Doszkocs [50]. From the experimental results (with 131 = 10 and IEql = 40 
on TREC-7 and TREC-S data), they found: (i) expanded queries worked markedly better 
than the original queries for all five score functions; (ii) score

2 
(t) is the only one which leads 

to a significant improvement over the Rocchio formula, whereas score functions 4,5,6 led to 
worse performances; (iii) the term scores obtained from score

2 
(t) can be used not only for 

selecting expansion terms but also for reweighting them; (iv) when the Rocchio formula is 
used for reweighting expanded query terms, the use of more sophisticated methods, such 
as, score functions 4,5,6, for selecting expansion terms, does not produce any performance 
improvement. 

Carmel et al. [27] presented a query expansion method, which was based on the informa­
tion gain obtained by adding lexical affinities to the query. Each lexical affinity, LA, is a term 
pair (ti' tj), one of which must be a query term. LAs are used to represent the dependence 
between terms co-occurring in a document, and identified by looking at term pairs found in 
close proximity to each other [121]. For a given LA, denote 3 1 as a set including all docu­
ments containing the LA, 3 0 = 3 - 3 1 as a set including all documents not containing the 
LA. A score function, for selecting good LAs, based on the entropy increase measure (see a 
detailed account in Chapter 6) was suggested: 

score',1 (LA) = H (p(S)) - [Iiill H(p(St}) + I~I H(p(So)) 1, 
where H(p(·)) = -p(.) log (p(.)) - (1 - p(.)) log (1 - p(.)). The first item in score7,1(t) is 
the entropy of set 3 before splitting, and the second is the average entropy of subsets =1 



CHAPTER 2. HISTORICAL REVIEW 
26 

an~ 3 0 after splitting. T~e difference is information gained by the splitting process. The.': 
~lalm~d that a good term IS one that successfully differentiates all relevant sample documents 
mto :::1 and all non-relevant sample documents into 3 0 ; in this case, the entropy will be 
reduced to zero, and information gain seore7 ,1 (t) is maximal. In the situation where no 
relevance information is available, they estimated the probabilities by means of the similarities 
of documents to the query. Experiments were carried out with TREC-7 data and results 
showed improvement in precision when adding 2-3 LAs. However, the analy~is of lexical 
affinity is generally very expensive, and the quality of the estimation depends highly on the 
similarity measure. 

It is interesting to notice that the following score function 

seems to capture their intention more clearly: the addition of LA, if it is a good discrimina­
tor, may better separate relevant sample documents from non-relevant sample ones. Their 
experimental results showed that the performance obtained from score (LA) is markedly 

7,2 
better than that obtained from seore

7
,1 (LA). 

The directed divergence, divergence and entropy increase measures were also used in 
other studies, for instance, [5, 44, 48, 109, 232, 238]. We will discuss these measures in the 
subsequent chapters. 

2.3.2 Some Experimental Methods 

Smeaton & Van Rijsbergen [181] conducted some query expansion experiments with the NPL 
collection. The power of discrimination of the feedback terms (t E V:=:+ - V q ) was measured 
by using the following four score functions: 

seore8 (t) =rew2 (t), 

seoreg(t) = rew4 ,1(t), 

seore10(t) = \D\F:=:+(t) -\3+\FD(t), 

seorell (t) = F:=:+ (t), 

where seore10 (t) was proposed by Porter [138]; seore ll (t) was discussed by Martin [125] and 
Ingwersen [88]. For seore ll (t), the ties (whenever there is more than one term with the same 

document frequency) are ranked in alphabetical order. I~ql terms were added to the query, 
and the reweighting of expanded query terms used rew2 (t) and rew4 ,1 (t). For these four 
score functions and two reweighting functions, all performances showed degradation when 
compared with the performances obtained from reweighting only query terms (without query 
expansion) using rew2 (t) and rew4 ,1 (t). From the results obtained, they concluded that these 
four score functions possessed roughly the same discrimination power. 

Buckley et al. [19] also used seore ll (t) to rank all relevance feedback terms for query 
expansion. However, in their experiments, the ties were broken by considering the highest 

average weight among the average weights 1:=:\1 '2...: dE:=: + Wd(t). 
Harman [72] tested the effectiveness of query expansion by using the Cranfield collec­

tion. 10 top-ranked relevant documents (i.e., \3+\ = 10) were used for query expansion (no 
reweighting of terms in the expanded queries). In her experiments, score functions were gen­
erated based on the product of factors considered to be important in measuring the power 



CHAPTER 2. HISTORICAL REVIEW 27 

of discrimination of terms. The sco f t' d t k re unc IOns use 0 ran relevance feedback terms were 
score ll (t) and: 

score12 (t) = noise(t), 

score13 (t) = noise(t) x log ( L fd(t)), 
dE:=:+ 

score14 (t) = noise(t) x log ( L fd(t)) x F:=:+(t), 
dE:=:+ 

in which, ranking with noise(t) (which we discuss in Section 3.7) was from lowest noise 
to highest noise. 20 top-ranked terms were added to the query. From the experimental 
results she concluded: (i) score12 (t) performs the worst, which indicates that term distribution 
within the collection is not a good discrimination measure; (ii) score ll (t) works better than 
score12 (t), because if a term appears in most relevant documents, this usually implies it 
describes a concept central to these documents; (iii) score13 (t) is not very effective even 
though term frequencies are used; (iv) score14 (t) seems to be the best and works much better 
than score12 (t), because a term appearing frequently in a document is often an important 
term in the document and this idea can be extended to a set of documents. 

For the four score functions 11,12,13,14, Harman [74] carried out a new set of experiments. 
This time, however, she used rew2 (t) to reweight the expanded query terms. In her new 
experiments, the poorer function score12 (t) was replaced by a score function 

score15 (t) = rew3 (t). 

Her experimental results showed that scorel3 (t) is the best, and that there are marginal 
differences between score functions 11,14,15. She noticed that the major improvements come 
from expansion terms, although reweighting of terms contributes a further improvement. 

Robertson [150] suggested that, under some assumptions (term independence and binary 
term weights for document representation), the power of discrimination of terms can be 
measured using a score function with the form 

where w(t) is a weighting function, Pt expresses the probability that term t is assigned to a 
relevant document, and qt equivalently for a non-relevant document. He stressed that the 
relevance feedback terms should then be ranked according to their scores scoreR (t), rather 
than their weights w(t). scoreR(t) has been widely used in various systems with different 
weighting functions and different methods of estimating Pt and qt [19, 29, 52, 53, 74, 111, 156, 

159]. 
Harman [74] carried out a set of experiments with the Cranfield collection, and the addition 

of 20 expansion terms. Several score functions were tested in her experiments. These functions 
are all related to ratios or probabilities of a term occurring in relevant documents as opposed 

to occurring in non-relevant ones. They are score8 (t) and 

FD(t) 
score16 (t)= IDI XNDR , 

FR(t) FD(t) 
score17 (t) = IRI - IDI ' 
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where score16 (t) was given by Doszkocs [50], in which, factor N is the total number of 
. d d DR 

retneve ocuments; score l7 (t) was given by Porter & Galpin [139]; score functions 19,20,21 
were scoreR (t) with w(t) being the inverse document frequency weights, the BIP weights, 
and the total frequency of terms in the relevant sample set, respectively. The probabilities, 
Pt and qt, were estimated by Eq.(2.2}. In her experiments, she used rew

7
(t) to reweight the 

expanded query terms. From her results, she concluded: (i) score functions 16,17 are not very 
effective; (ii) scores (t) is the most effective; (iii) there is no significant difference between score 
functions 8,18,19,20,21. 

In the experiments given by Allan [3], about 10% of the relevance judgements from TREC 
for disks 1-2 were used. The relevance feedback terms were first ranked with a simple score 
function 

score22 (t) = L fd(t). 
dE:=:+ 

500 top-ranked terms were then re-ranked according to the Rocchio formula that is , , 

score23 (t) = rew 1 (t), 

with parameters a = 1, f3 = 2, I = !, and with weights of terms (in query x = q or document 
x = d): 

wx(t) = 0.4 + 0.6 fx(t) log ([IDI + 0.5] / Fv(t)) 
fx(t) + 0.5 + 1.5 [llxll/ ave(D)] log (IDI + 1) 

where ave(D) is the average length of documents in collection D. 100 top-ranked terms in 
the second ranking list were treated as good discriminators and added to the query. His 
experimental results showed that the expanded queries give a performance improvement over 
the original queries. 

In addition, Allan [3] experimentally investigated the effect of feedback using partial rel­
evance information, and he concluded that partial relevance information can achieve almost 
the same precision and recall as complete relevance information, even though it includes only 
10% of relevant documents (judgements provided by TREe data). This indicated that we 
have lost very little important information by sampling. His experimental results showed 
that the sampling provides a reasonable approximation to the complete information. In his 
experimental environment (with an average of almost 1800 relevant documents per query) 
10% of relevant documents resulted in 10-30 relevant documents per query, which is a lot for 
an interactive setting. 

Allan et al. [4] conducted an alternative experiment studying the effectiveness of query 
expansion. The complete relevance information from TREC disks 1-3 were used for feedback. 
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The following score function was used to rank relevance feedback terms: 

score (t) = FR(t) _ F~- (t) 
24 IRI 13 -1' 

where 3- (with 13 -1 = IRI) consists of the top-ranked non-relevant documents initially re­
trieved. 3- was incorporated into the sample set (i.e., 3 = R U 3-) for training good terms. 
score24 (t) is rather similar to score17 (t). 50 top-ranked terms were selected. The expanded 
quer~ terms ~ere re~eighted uSing.the Rocchio formula rew

1 
(t) with parameters Q' = 0, (3 = 2, 

, = "2' and wIth weIghts of terms m document d: 

Wd(t) = 0.4 + 0.6 [0.4 min {I, 200 } + 0.6 log (Jd(t) + 0.5) ] log ([FD(t) + 0.5] IIDI) 
maxfd log (maxfd + 1.0) log (IDI + 1) , 

where max fd is the maximum frequency of terms in d. However, their experimental results 
did not show that this method is effective even though complete relevance information is used. 

2.3.3 Passage-Level Search Methods 

A long document comprises many different subtopics which may be related to one another 
and to the context in many different ways [83]. Long documents usually contain too much 
information, which reduces the effectiveness of feedback. Trimming long documents by choos­
ing a good passage has a marked impact on effectiveness [2]. The same technique used to 
rank documents can be applied to the passages of a document, and the best-ranked passage 
of a document can be chosen for feedback in place of the entire document [2, 24]. 

Many attempts have been made to generate passages. Wilkinson [219] split documents into 
individual sections. Robertson et al. [157] used sub-documents consisting of an integral num­
ber of consecutive paragraphs. Hearst et al. [83] broke documents down to multi-paragraphs. 
Callan et ai. [24] showed that passages based upon paragraph boundaries are less effective 
than passages based upon overlapping text windows. Buckley et al. [19] experimentally 
demonstrated that fixed-length text windows may be more effective than short sentences and 
paragraphs. Callan et ai. [24] and Allan [2] suggested, when fixed-length passages are used, 
that anywhere between 200-300 words is a good choice for a variety of collections. 

Overlapping passages were fixed at some length i: the first passage in a document starts 
at the first term matching a query term, and ends 1 terms after that, and subsequent passages 
begin at intervals of ~ from the first starting point. For example, if 1 = 200 and the first 
matching term is at position 7, overlapping passages would start at positions 7, 107, 207, 
etc. The use of overlapping passages reduces the chance that a small block of relevant text 
passage is split among two passages. In a study given by Buckley et al. [19], the setting of 
text windows starts at the beginning of the document, with a fixed length 200 words. 

In Allan's query expansion experiments [2], 13+1 passages (from the corresponding relevant 
sample documents) were used for feedback. The score function used in his experiments was: 

since IDI + 0.5 ~ IDI + 1 ~ IDI. He claimed that this function is rather similar to function 
f d ( t) x idf D ( t), which is considered an effective discrimination measure [164, 171, 172]. The 
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top IEql = min{3 + 21~+1, 300} .terms were selected and added to the query. The expanded 
query terms were rewelghted usmg a function: 

rew
8 
(t) = a(t) [L fd(t)] log ([IDI + 0.5] / FD(t)) 

dED log (IDI + 1) , 

where the. first factor a(t) = 1.0 if t E V q is a query term, and a(t) = 0.3 if t E Eq is 
an ex~ansIOn. term; t.he second factor, in the square brackets, is the term frequency in the 
collectIOn. H~s expenmental results showed that the expanded queries result in an average 
performance Improvement over the original queries. 

In Xu's experiments [230], each document was broken into 300-word passages. TREC-3 
and TREC=-.4 data and the WEST collection were used in the experiments. For each feedback 
term t E V'=' - V q

, he used the following score function: 

(t) - II [£ log (F=:(t,tj) +1) score26 - VD + ~ 

tjEVq log(I~I) 

where 6t = min {1.0, 0.2 log )~It) }. He treated the second item in square brackets to be 
a measure used to calculate the degree of dependence of terms t and tj; the first item 60 
is a small constant which is added to each degree in order to handle the situation where a 
query term does not occur in the top-ranked documents and the second item is zero. The 
results showed performance improvement compared with the original queries for TREC-3 and 
TREC-4, but was worse for the WEST collection. 

Passage-level operations are costly in some systems [2]. Particularly, when the setting of 
text windows uses the technique that the first passage in a document starts at the first term 
matching a query term, passage locations vary from query to query and are very expensive. 

2.3.4 Interactive Methods 

In an interactive query expansion (IQE), the potential expansion terms are shown to the user 
for selection. The user then decides which to add and which to discard. Such a technique 
can be used with any source of candidate terms, particularly, with the feedback term source. 
One of the arguments in favour of IQE is that humans can recognize expansion terms that 
are semantically related to the information they are seeking [159]. 

Harman [72] tested the effectiveness of IQE by using the Cranfield collection. Relevance 
feedback was used to produce a list of 20 potential expansion terms, which were selected using 
score functions 11,12,13,14. The potential expansion terms were then presented to the user for 
further selection. The user's selection was simulated by using only terms which appeared in at 
least one of the relevant unretrieved documents, on average 12 out of 20. The simulated IQE 
produced a performance improvement compared with relevance feedback expansion. In her 
experiments, 20 terms was deemed an appropriate number to provide for user selection: the 
results for the 'best' score function reached a peak performance after only 12 terms were added 
to the query, with performance slowly decreasing after that. The shape of the performance 
revealed the effectiveness of the 'best' score function: putting the most useful terms at the 
top of the ranking list, and adding terms beyond 12 top-ranked terms, tend to be less useful. 
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Efthimiadis [52] carried out a set of experiments for studying IQE. The score functions 
used in his experiments were score (t) score (t) score (t) score (t) (t) d 

8' g, 11' 17' score20 an 

score
27

(t) = log (~ F=.+(t) + Ct / FD(t) - F=+(t) + Ct 

18 +1 - F=.+(t) + 1 - Ct IDI-13+1- FD(t) + F=.+(t) + 1 - c), 

h - FD(t) (t)· .. 11 . 
were Ct - lDr· score27 was ImtIa y gIVen by Robertson [149] for estimating probabilities 
Pt and qt and for modifying rew2 (t) in the BIP method. Efthimiadis concluded from his ex­
perimental results: (i) very similar rankings are obtained from pairs score

8
(t) and score

27
(t), 

scoreg (t) and score20 (t), scorel! (t) and score17 (t); (ii) there are major differences in the 
term rankings between the first pair score8 (t) and score

27 
(t) and the second pair scoreg (t) 

and score20 (t), but there is no significant difference in performance; (iii) the best perfor­
mances are given by scoreg(t) and score20 (t), followed by score

17 
(t), score

27 
(t), score

8
(t) and 

scorel! (t). 

From the study of the behaviour of these score functions and the inspection of the term 
rankings obtained from his experimental results, Efthimiadis suggested a simpler ranking 
algorithm [52] for selecting good terms, called the Llohi algorithm: rank terms according 
to their document frequencies concerning the sample set, i.e., F=.+ (t); the ties are ranked 
according to their document frequencies concerning the collection, i.e., F D (t), from low-to­
high frequency. Efthimiadis [53] carried out an additional set of experiments, and found: 
(i) the r_lohi algorithm and score17 (t) have similar performances to that of scoreg(t) and 
score20 (t); (ii) the concentration of user-preferred terms at the top of the ranking list obtained 
from these four score functions is rather high. 

Magennis & Van Rijsbergen [122] performed a set of experiments using real users to 
determine the effectiveness of IQE with TREe collection WSJ. 20 top-ranked documents were 
displayed to users for relevance assessment, score8 (t) was used to rank relevance feedback 
terms, and 20 terms were selected for query expansion. They concluded: (i) AQE using 
relevance feedback offers a marked improvement in retrieval performance; (ii) IQE by an 
experienced user offers a small further improvement over AQE; (iii) inexperienced users of 
IQE do not make a proper selection and fail to do better than AQE. Hancock-Beaulieu et 
al. [69] also experimentally studied IQE using real users, and found that it fails to show any 
significant improvement over AQE. 

Ruthven [159] conducted a series of experiments to compare the retrieval effectiveness of 
IQE versus AQE. From his results he concluded that IQE has the potential to be an effective 
technique compared with AQE. He further pointed out, however, that the potential benefits 
of IQE may not be easy to achieve: users cannot identify good terms for effective query 
expansion; users cannot identify semantic relationships between the information needs and 
the possible expansion terms; users cannot identify which semantic relationships are going 
to attract more relevant documents; users cannot identify the effect of individual expansion 
terms on further retrieval. A similar conclusion was also drawn by Blocks et al. [11]: for IQE, 
users usually require more background information on how and why results are retrieved and, 
hence it is difficult for users to use semantic relationships even when the system supports , 
the recognition of the relationships. Also, Magennis & Van Rijsbergen [122] pointed out that 
IQE requires extra effort from users involving careful reasoning (decision making) and good 
strategy, and may not be appropriate for inexperienced users. 
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2.4 Other Methods 

The issue of the power of discrimination of terms and the issue of term association (term 
dependence) are part of the core of IR and are strongly interrelated. We look at them from 
a variety of angles. 

2.4.1 Discrimination Values of Terms 

A well-know term discrimination method was developed by Salton et ai. [169, 170, 171, 172, 
236]. It can be briefly described as follows. 

In the linear algebra methods, documents are represented by vectors in a vector space. 
In order to achieve a maximum possible separation between the individual document vectors, 
an average similarity between documents over the collection is considered. The similarity can 
be regarded as a measure of space density. If the average similarity is small, documents are 
widely separated in the space. Contrariwise, if the average similarity is large, the documents 
exhibit close proximity to one another. 

The discrimination value of a term, in Salton et ai. 's work, is a measure of the difference of 
the space densities before and after assignment ofthe term. If the term is a good discriminator, 
then the space after its removal will be more compact. If the term is a poor discriminator, 
then the removal results in a decrease in space density. A large number of terms are indifferent 
discriminators, that is, their assignments would not essentially affect the space density. 

The calculation of discrimination values is normally very expensive. Many IR researchers 
have investigated how best to calculate discrimination values. A series of algorithms for the 
calculation and for improving execution times were successively proposed [10, 26, 39, 45, 
55, 220]. However, this term discrimination method has been criticized because it does not 
exhibit well-substantiated theoretical properties [164]. 

In addition, it is worth mentioning that if relevant and non-relevant documents are not 
well-separated by their representations, our chances of increasing the separation by expanded 
queries are low, however the queries are represented. This has been investigated by Van 
Rijsbergen [204] and Sparck Jones [186]. For instance, the use of document clusters results in 
lower performances for the Inspect and Keen collections than for the Cranfield collection [93, 
205, 211]. Since the objective of this thesis concentrates only on the study of effectiveness of 
query representation (reformulation), document representation will not be discussed further. 

2.4.2 Document Frequencies of Terms 

Salton et al. [169, 170, 171, 172] considered the relationship between the discrimination values 
of terms (according to their term discrimination method) and the document frequencies of 
terms. They study revealed a interesting fact that discrimination values of terms are closely 
related to the document frequencies of terms. The relationship can be summarized as follows: 

- Terms with high document frequencies, i.e., lfal < FD(t), are poor discriminators. These 
terms are usually too general in nature, and their use would produce an unacceptable 
precision loss. The retrieval performance can be improved by including these poor terms 

in appropriate phrases. 
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- Terms with neither too high nor too low document frequencies i.e. 1Qi < F (t) < J..Qi 
d d· . . , '100 - D - 10 

are goo Iscnmmators. These terms can be used directly as indexing terms. 

- Terms with low docume~t frequencies, i.e., FD(t) < i~J, are indifferent discriminators. 
These terms are so specrfic that they cannot retrieve an acceptable proportion of the 
:elevant docume~ts,. and their use would depress the recall performance. The major­
~ty of ter~s are md~ffe~ent discriminators. Retrieval performance can be improved by 
mcorporatmg these mdIfferent terms into appropriate thesaurus classes. 

Thus, ,:e can see that the term discrimination method gives criteria to the automatic indexing 
strategIes, and that document frequencies of terms may be used as an approximation of the 
discrimination values of terms. 

The relationship between term document frequencies and term discrimination values was 
also remarked by Sparck Jones [184]: 

- Terms with high document frequencies are not very useful. 

- Terms with medium document frequencies are quite useful. 

- Terms with low document frequencies are likely to be useful but not as much as terms 
with medium document frequencies. 

- Terms with very low document frequencies are useful in the sense that they are good 
indicators of relevance when they do appear. 

Also, the study given by Biru et al. [10] suggested that: 

- Terms with high-frequencies of occurrence only in relevant or only in non-relevant doc­
uments are good discriminators. 

- Medium-frequency terms are not necessarily the best discriminators when relevance 
information is available. 

- Low-frequency terms can have the greatest power of discrimination on relevance. 

The findings were somewhat at variance with the findings presented by Salton et al.. In 
practice, a term with a very low document frequency may have a low discrimination value 
(simply because it does not occur in enough documents), but nevertheless can be a good 
relevance discriminator for the rare documents in which it does occur [153]. 

Salton & Buckley [164] pointed out, when considering term discrimination values, that the 
best terms for document representation should be those which are able to distinguish certain 
individual documents from the remainder of the collection. This implies that the best term 
should have a high term frequency but low document frequency, i.e., fd(t) x idfD(t), because 
it allows a term to be weighted according to not only its importance within the individual 
documents but also to its importance within the collection as a whole [171, 172]. 

2.4.3 Co-occurrence Frequencies of Terms 

Since the late 1950s there has been a great deal of interest in statistically-oriented retrieval 
methods. Luhn [119, 120] was the first to suggest that the frequencies of occurrence of 
terms might be used to represent documents and queries. He pointed out that automatic 
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retrieval systems should be based on comparison of such representations: (( The more two 
representations agreed in given elements (concepts, terms, etc.) and their distributions. the 
higher would be the probability of their representing similar information." Luhn's idea inspired 
many IR researchers to devote their studies along this line. 

Statistical association of terms, derived from the frequencies of co-occurrence of terms, 
has long been a major area of interest for IR researchers. The association has been widely 
applied to automatic thesaurus construction and query reformulation. 

Maron & Kuhns [124] followed up on Luhn's idea with an investigation int'o indexing and 
searching using term co-occurrence frequencies. Several association measures were defined. 
Stiles [197] carried Maron & Kuhns' work further. He showed it is possible to successfully 
retrieve relevant documents using expansion terms selected using an association measure. 

Lesk [113] progressed some of Stiles' work. Term association was computed by an asso­
ciation measure. The terms assumed to be associated were clustered into one class and all , 
the terms in the same class (called class-related terms) were added to the query if the class 
contained at least one query term. However, he had little success. He found that there is 
little consistency between a human-produced thesaurus and statistical term classifications, 
and that manually constructed thesauri were superior to automatically constructed ones. He 
explained that the classifications capture only terms whose association is purely local (to a 
specific collection) and do not reflect their general meanings. This is easily understood as 
the association indicates statistical relations of terms, rather than general meanings of terms. 
Statistical relations depend completely on the statistics of the collection. 

The most extensive study of statistical term classifications was conducted by Sparck Jones 
[184, 186, 192, 193]. She clustered term classes based on term co-occurrence frequencies, and 
showed that the use of automatically generated term classifications can achieve a better 
retrieval performance than that obtained with unclassified terms alone. She explored exper­
imentally many different classification strategies, and found their effects relatively similar. 
She claimed: (i) term classes represent topic clusters rather than synonym sets; (ii) term 
classification limits ambiguity, thus a match on two terms from the same class is very sug­
gestive of which term meaning is present. However, her subsequent experimental results were 
not optimistic: retrieval performance was improved by term classification only in one small 

collection. 
Sparck Jones [183, 194] also experimented with many query expansion methods by adding 

class-related terms to the original query. She concluded that a better retrieval performance 
can be obtained by means of automatic term classifications. In order to improve retrieval 
performance by query expansion, Sparck Jones [184, 192] suggested: (i) high-frequency terms 
are not clustered; (ii) low-frequency terms are clustered; (iii) strongly associated terms are 

also clustered. 
Minker, Wilson & Zimmerman [129] evaluated retrieval performance obtained from the 

expanded queries by adding class-related terms to the original queries. They found however 
that the expanded queries are marginally useful and generally produce worse performance 
than the original queries. Their work did not confirm the findings of Sparck Jones. They 
showed that term classifications can be detrimental to retrieval effectiveness. 

Usually, phrases are less ambiguous than single terms. Thus, a statistical term classifica­
tion method may be used in conjunction with a syntactic phrase formation method. Lewis 
& Croft [114] tried such a combined method with the CACM collection, and found a small 

performance improvement using the expanded queries. 
In the early 1970s, studies on query expansion were concentrated on single term classifi-
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cations before the user submitted a query. Queries were expanded by adding all class-related 
terms. In order to calculate the term association, a document collection was represented 
by a term-term association matrix [167]. The association measure was then used to cluster 
terms by setting a threshold. Terms with association values greater than the threshold were 
clustered in the same class, equivalent to a thesaurus class. 

However, some studies [47, 135] argued that clustering terms into classes and treating 
terms of the same class as equivalent is too naive to be useful. Indeed, as Sparck Jones [190] 
commented, "It was depressing that, after ten years' effort, we had not been able to get 
anything from classification." Further, as automatic term classification is very expensive, it 
is unsatisfactory to use it to construct a classification which ultimately will not work [186]. 

2.4.4 The Maximum Spanning Tree 

The maximum spanning tree (MST) method is a term-term association structure, generated 
using an association measure of terms. The structure is simply a tree where each term is 
connected to at least one other term considered to be the most associated with it. The MST 
method was elaborated and discussed by Van Rijsbergen in [206, 207]. The proof of the 
optimization procedure for generating the MST can be found in [32]. One of the effective 
algorithms for generating the MST from an association measure can be found in [218]. 

Obviously, different association measures generate different MSTs. The association mea­
sures can be used to score and rank terms for selection. For each query term tj, some studies 
[207, 210] suggested considering the following association measures: 

association6(ti,tj) = - L p(6i,6j)logp(6i,6j), 
6i,6j=l,O 

. . association5 (ti,tj) 
assocwtwn7 (ti, tj) = . t· (t t)' assocw wn6 i, j 

where association
l 
(ti' tj) was used by Maron & Kuhns [124] and association2 (ti' tj). was .given 

by Ivie [90]; both of which were employed for handling different sit~~tions. The estImatIOn of 
association (t- t -) called EMIM, was described in detail by Van RIJsbergen [206, 207]. Also, 
studies give~ i~ [~7, 181, 210] showed how an MST can be generated from the distribution of 
co-occurrences of terms in the collection, and how the MST can be used to expand a qu~ry. 

Harper & Van Rijsbergen [77] performed a set of experiments with the Cranfield c.ollectIOn, 
using complete relevance information. The experiments were designed for the followmg cases: 
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(1) query ~xpansion using the MST generated from associations (ti, tj), and reweighting of 
terms III the expanded queries using rew 4 (t); 

(2) query terms reweighted using rew4 (t) without query expansion; 

(3) query terms reweighted using rew2 (t) without query expansion. 

The results showed that the performance of case-l was much better than that of case-2 which , 
in turn was much better than that of case-3. 

Van Rijsbergen, Harper & Porter [210] carried out a set of experiments with three col­
lections (Cranfield, UKCIS I and II). The size of the sample set, lSI, was set to 10,20, and 
rew4 (t) was used to reweight terms in the expanded queries. Query expansion was done 
with MSTs, each of which was generated from the association measures 1,3,4,5,6 listed above. 
Their experimental results showed that the MSTs give similar retrieval performances, even 
though the MST generated from associations (ti, tj) on the whole shows a slightly better 
performance than others. 

Van Rijsbergen, Harper & Porter [210] carried out a further set of experiments, which 
were designed for the following cases: 

(1) query expansion using the MST generated from associations(ti, tj), and reweighting of 
terms in the expanded queries using rew4 (t); 

(2) query expansion using score
8 
(t), and reweighting of terms in the expanded queries using 

the same function, i.e., rew2 (t). 

The results showed the superiority of the performance of case-lover case-2 on all three 

collections. 
Smeaton & Van Rijsbergen [181] gave a set of experiments with collection NPL and with 

13 1 = 10. Their experiments were designed for the following cases: 

(1) query expansion using the MST generated from associations (ti, tj), and reweighting of 
terms in the expanded queries using rew4 (t); 

(2) query expansion using the MST generated from associations (ti, tj), and reweighting of 

terms in the expanded queries using rew2 (t); 

(3) query terms reweighted using rew4 (t) without query expansion. 

The results showed that the performance of case-l was better than that of case-2, and 

marginally better than that of case-3. . 
From the above series of experiments it can be seen that the association measures denved 

from information measures, such as associations (ti, tj), produced better retrieval performance 

than the others. 

2.4.5 Association Measures 

Peat & Willett [135] considered the limitations of using term co-occurrence data for query 
expansion. Their analysis was based on the following three association measures [167, 207]: 

FD(ti, tj) 
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association (t· t.) _ 2 X FD(ti, tj) 
9 1, J - F ( ) , 

D ti + FD(tj) 

association (t· to) _ FD(ti, tj) 
10 1, J - F () ( . Dti +FDtj)-FD(ti,tj) 

They claimed that query expansion based on term co-occurrence data is unlikely to bring 
about substantial improvement in retrieval performance. The basis for this claim is that the 
association measures 8,9,10 may have their maxima when FD(ti) = FD(tj). They argued: 
(i) a term is likely to be strongly associated with those terms that have comparable docu­
ment frequencies; (ii) query terms tend to have substantially higher document frequencies 
than other terms, thus, terms strongly associated with query terms are also likely to have 
high document frequencies; (iii) terms with high document frequencies tend to be poor at 
distinguishing relevant documents from non-relevant ones, hence, terms strongly associated 
with query terms are unlikely to be good discriminators. 

We would dispute their claim from two points. First, obviously, the association measures 
8,9,10 may reach their maxima if FD(ti, tj) = min {FD(ti), FD(tj)}, rather than FD(ti) = 

FD(tj). Also, FD(ti) = FD(tj) does not imply that terms ti and tj co-occur in the same 
documents, and hence cannot infer they are associated with one another. In particular, when 
FD(ti, tj) = 0, the three measures equal zero, which indicates that terms ti and tj are not 
statistically associated with each other, even though FD(ti) = FD(tj). Therefore, there is no 
link between the association of terms and their 'comparable document frequencies' given by 

FD(ti) = FD(tj). 
Second, it may not be true that the document frequencies of query terms are substantially 

higher than that of other terms. The way of deriving mean document frequencies of terms 
(for seven collections) in their work might be too crude. As we know, many terms occur only 
in one or two documents, and the proportion of such very infrequent terms is extremely large. 
This results in mean document frequencies, obtained over all terms (including very infrequent 
terms), being rather low. On the other hand, the user usually does not select intentionally 
very infrequent or very frequent terms to formulate his query: he selects terms, randomly in 
some sense, according to his judgement that these terms best describe his information needs. 
The difference in mean document frequencies between the query terms and other terms, given 
in their work, cannot indicate that query terms tend to have substantially higher document 
frequencies than other terms. In our own studies, we found the vast majority of query terms 
possess document frequencies less than 5%jDj, which fall into the range of medium-frequency 
terms. Thus, according to the studies given by Salton et al. [169, 170, 171, 172], most query 
terms should be viewed as good terms. Consequently, any terms closely associated with the 
context of the query tend to co-occur with most query terms, and hence are likely to be good 

discriminators. 
Chung et al. [33] studied the application of association measures to term classification. 

They considered association measures 8,10 and three further association measures: 

o • (FD(ti,tj)/FD(ti) FD(tj )) 
assocwt'lOn ll (ti' tj) = log jDj jDj jDj , 

~---;-~,.....,--::;:::;--;---~ 

. . y'FD(ti, tj)FD(ti' tj) - VFD(ti, tj)FD(ti' tj) 
assocwt'lOn12 (ti,tj) = / ( )F ( )' /FD(ti, tj)FD(ti' tj) + V FD ti, tj D ti, tj 

jDj [FD(ti' tj)FD(li' Ij) - FD(ti, Ij)FD(li' tj)]2 
association13 (ti' tj) = FD (ti)FD (ti)FD (tj )FD (tj) 
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where ass~ci~tionll (ti, tj) is given in [106, 207], association
12

(ti, tj) can be found in~:rll 
and assocwtwn 13 (ti,tj) can be found in [85]. They analysed the relationships and e~alu~ 
ated the similarities of these measures They concluded' (1') the most . '1 . . '. sIml ar measures are 
assocwtwnll (ti' tj) and association12 (ti' tj), whereas others show quite similar behaviour 
o~ly. for terms with ~ig~ document frequencies; (ii) the least affected by document frequen­
CIes IS measure assocwtwn 13 (ti, tj). They stated that it is necessary to select an association 
measure most appropriate for the application of query expansion because different measures 
may ~mphasize terms in a different range of the document frequencies. Kageura [95] also 
exammed and evaluated the characteristics and performance of these association measures in 
the morphological analysis of Japanese kanji sequences. 

Kim et ai. [102] compared experimentally five association measures for query expansion 
(with 100 expansion terms). They considered association measures 8,9,10 and two further 
association measures: 

. t' (t t) 1 I PD(ti, tj) 1 FD(ti, tj)/IDI assocw wn14 i, j = og = log -:--__ ---'_-=-.:...:....:....:....:... __ 

log IDI PD(ti)PD(tj) log IDI (FD(ti)/IDI) (FD(tj)/IDI) 

- 1 10 FD(ti, tj) IDI 
- log IDI g FD (ti)FD (tj) , 

association15 (ti' tj) = ~ (PD(tiltj) + PD(tjlti )) = ~ (PD(ti' tj) + PD(ti, tj )) 
2 2 PD(ti) PD(tj) 

= ~ (FD(ti' tj) + FD(ti, t j )) 
2 FD(ti) FD(tj )' 

They called association14 (ti, tj) normalized mutual information, and association
15 

(ti' tj) av­
erage conditional probability. Their experimental results showed that performances obtained 
from association measures 8,9,10 are similar, and are better than those obtained from associ­
ation measures 14,15. 

However, some studies have shown that exploiting the frequencies of co-occurrence of terms 
in the collection has generally achieved little or no effect on average retrieval performance 
[129, 135, 181]. 

2.4.6 Thesaurus 

The traditional thesaurus in an IR environment may be called a global thesaurus, and differs 
from the local thesaurus described by Attar & Fraenkel [6, 7]. A global thesaurus is con­
structed prior to the indexing process and is used to index both documents and queries; in 
contrast, a local thesaurus is constructed dynamically during query processing (using infor­
mation obtained from the documents retrieved in response to a particular query) and is used 
to modify only that query [46]. 

Kristensen [104] used a manually-constructed thesaurus in a limited domain (economics 
and environment). Adding loosely-defined synonyms, related terms and narrower terms, 
resulted in a large improvement in average recall at the expense of a small drop in average 
preCISIOn. 

Voorhees & Hou [216] used a general purpose thesaurus, WordNet [128], as a source of 
related terms, resulting in the improvement of some queries but the degradation of others. 
Voorhees [213] attempted to exploit the lexical-semantics contained within WordNet to dis­
ambiguate word senses, but retrieval performance became degraded. She [21-:1] further inves­
tigated the effect of query expansion using WordNet. To reduce the possibility of expanding 
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the query. with po~r terms, expansion terms were selected by hand. A series of experiments 
were carned out wIth TREC collections, and results showed that the expansion is ineffectiye 
for long queries, but indeed improves performance for short queries . 

. The limitation of query expansion using WordNet is that most domain-specific relation­
shI~s between terms ~re not found in WordNet [123]. Some past studies, [94, U1, 175] 
for mstance, reported mcreased retrieval effectiveness from query expansion using collection­
based thesauri. A collection-based thesaurus may incorporate domain-specific information as 
it is constructed from a set of documents relating to a specific domain. 

Crouch [45, 46] proposed a method of constructing a global thesaurus based on a specific 
document clustering method. He supposed that the term discrimination method [169 170 , , 
171, 172, 236] provides a criterion for the formation of global thesauri: the thesaurus classes 
should consist of indifferent discriminators (i.e., terms with low document frequencies). He 
used document frequencies of terms as an approximation to the discrimination values of terms. 
A premise of his method is that terms in a thesaurus class should come from closely related 
documents, which implies that the document clusters themselves must be small and tight. 
One algorithm that produces clusters of this type is the complete link clustering algorithm. 
This algorithm has a stronger grouping criterion than the single link clustering algorithm 
[167, 207]. Once the document clusters have been established, the thesaurus classes can 
be constructed from the low frequency terms contained in those clusters. The strategies 
to generate a thesaurus class might be: (i) the intersection of all the low frequency terms 
in a cluster; (ii) the union of all the low frequency terms in a cluster; (iii) the top-ranked 
terms from the intersection of all the low frequency terms in a cluster. Experiments carried 
out by Crouch [46] showed that the best results are obtained by using strategy (i). Further 
experiments were carried out by Crouch & Yang [47], and the results indicated that his method 
can be produce useful thesauri, which substantially improves retrieval effectiveness. However, 
a major disadvantage of his method is that the construction of a thesaurus needs to be based 
on a document clustering method. Cluster creation and maintenance is time-consuming, 
especially for an effective cluster structure consisting of many small and tight document 
groups; when fast responses are important, as it is in modern on-line search environments, 
time efficiency is essential [163, 212]. Another problem with his method is that it involves 

many parameters to be specified by the user. 
Mandala et al. [123] proposed a query expansion method using heterogeneous thesauri. 

The expansion terms were selected from three thesauri, a general purpose thesaurus (such 
as, WordNet), a co-occurrence-based automatically constructed thesaurus, and a predicate­
argument-based automatically constructed thesaurus (i.e., term relations are gathered on the 
basis of linguistic relations [84]). The weighting of the expansion terms depended not only on 
the weights of the original terms, but also on the weights of those terms in each thesaurus. 
Experiments showed that use of the combined set of thesauri produces better performance 

than the use of only one type of thesaurus. 
Generally, a thesaurus can be viewed as a recall improving device. The formation of query 

term (thesaurus) classes may be expected to retrieve more relevant documents because extra 
'related' terms are added to the query when the thesaurus classes are assigned to the query 
instead of single terms. However, if terms included in a thesaurus class have high document 
frequencies, then the addition of these terms would be likely to lead to unacceptable losses in 
precision. For this reason, thesaurus classes should be formed only from those terms which 

have low document frequencies [236]. 
Many kinds of thesauri have been constructed, often tailored to specific topic areas. How-
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ever, it is not easy to apply thesauri to practical IR, and there is no guarantee that a thesaurus 
tailored to a particular document collection can also be used with other collections. As a re­
sult, it is unlikely that reliable improvements in retrieval effectiveness over a variety of different 
collections can be obtained using thesauri [162]. ' 

It is, further, very difficult to use thesauri to build term classes which effectively capture 
semantic relationships between terms [236]. The construction of thesauri is also extremely 
time-consuming [135]. An alternative, possibly more practical and equally effective procedure, 
may be to use statistical methods. There has therefore been a great deal of interest in 
techniques for the automatic identification of statistical association of terms. 

2.4.7 Stemming 

The conflation of morphological variants of terms using stemming (suffixing) algorithms is one 
of the earliest techniques used in quantitative retrieval systems. The algorithms reduce dif­
ferent term variants to common stems (roots) that are assumed to refer to the same concepts. 
Two typical algorithms, the Lovins algorithm [118] and the Porter algorithm [137], have been 
widely employed. The Lovins algorithm simply removes the longest suffix of a term, whereas 
the Porter algorithm iteratively removes endings from a term according to a set of rules until 
no more can be removed. By reducing query and document terms to common stems, retrieval 
systems can achieve the effect of automatically expanding queries with morphological variants 
of the original query terms. 

Harman [71] pointed out that query expansion by adding morphological variants of terms 
does not always improve retrieval effectiveness, but it could increase retrieval efficiency be­
cause the number of terms is reduced. Harman [72], after a series of experiments using the 
Cranfield collection, observed that the addition of term variants using the Lovins stemmer 
produces a significant decrement in performance. The performance decrement is somewhat 
smaller using the Porter algorithm. She attributed the decrement to many of the added term 
variants being not useful for retrieval and reducing precision. Also, Harman [73] used the 
Porter stemmer on the Cranfield, Medlars and CACM collections and found no significant 

improvement in retrieval performance. 
Other experimental results were subsequently reported: Keen [100] showed that stem­

ming can offer small average improvements in most situations but with great variation across 
queries, some being improved greatly, others being degraded; Krovetz [105] found that stem­
ming is more useful for short queries and short documents; Hull's studies [86] demonstrated 
that stemming can produce consistent, though small, improvements in retrieval effectiveness 

over a large range of collections. 

2.5 Summary 

~ The potential of AQR for improving retrieval performance has been extensively in­
vestigated by many IR researchers by analysing many different score and reweighting 
functions, and by trying a variety of sources of candidate terms. The .investigations 
have shown that AQR is capable of producing large improvements, partIcularly, when 

AQR is performed alongside relevance feedback. 
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, The effectiveness of AQR depends on many factors. Some of the factors are: the 
weighting function for document terms and query terms; the similarity measure for 
ranking documents against the query; the features of the collection; the length of a 
query; the quality of the sample set; the score function for selecting expansion terms; 
the reweighting function for expanded query terms; the size of the sample set: the 
number of expansion terms. 

, Using statistical relations for AQR is attractive since the term associations can be easily 
generated from the statistics of the sample documents or collection. In contrast, using 
lexical semantic relations as a source of related terms is normally very expensive to 
build and maintain, particularly for an extremely large collection. 

, Many AQR experimental results demonstrate that it can be profitable to use an in­
formation measure as a device to construct a discrimination measure (score function) 
for selecting good terms. The superiority of information measure methods over other 
methods is apparent. 

To automatically measure the power of discrimination of terms is a fundamental issue 
in IR. This issue has been a significant subject of interest among IR researchers since the 
early sixties. Many discrimination methods have successively been developed. Nevertheless, 
there is no widely recognized formal definition of what should characterize term discrimi­
nation information. Typically, studies in related literature are accompanied by discussions 
of the circumstance in which the discrimination of terms is essential. Such discussions are 
argued by concrete examples and appeals to intuition, or by some empirical formulae. While 
these informal discussions might be sufficient to convey some of the ideas that discrimination 
encompasses, however, they are inadequate for any more formal analysis. Indeed, the formal 
interpretation of term discrimination information is not simple. 

A thorough investigation into the issue of the power of discrimination of terms for effective 
AQR is urgently needed. This thesis attempts new practices for defining term discrimination 
information as one, or more discrimination measures, which are derived from information 

measures. 



Chapter 3 

AQE Based on Directed Divergence 

The purpose of this chapter is to study the application of the basic concept of directed diver­
gence to automatic query expansion. In Section 3.1, we give terminology used to formulate 
formal methods proposed in this thesis. In Section 3.2, we intend to provide an accessible 
account of the meaning of information contained in a term. The rationale of applying logarith­
mic measure of information to measuring the amount of information in a term is interpreted. 
In Section 3.3, we look at the divergence measure more generally by putting forward some 
necessary criteria and hypotheses that underlie the methodology introduced in this thesis. 
In Section 3.4, we concentrate on investigating the relevance discrimination measure, which 
is a basis for the formal methods proposed in the thesis, based on directed divergence. In 
Section 3.5, we are concerned with the definition of the concept of the association of terms 
with the context of the query, which plays a central role in constructing a score function for 
query expansion. In Section 3.6, we describe the method of construction of the score function 
for judging good terms with respect to the query. In Section 3.7, we present a mathematical 
discussion on the estimation of the term probability distributions. 

3.1 Terminology 

First of all let us establish a consistent terminology for describing the concepts and the formal 

methods proposed in this thesis. 

3.1.1 Representation of Objects 

Let D, IDI = N, be a document collection. Let V, IVI = n, be the vocabulary of terms 
indexing documents of the collection. Let q be a query. A basic tool for the construction of 
an object space is provided by the notion of an n-tuple. An n-tuple [w(td, W(t2), ... , w(tn )] is 
an array (or a 1 x n matrix) of n symbols, w(td, W(t2), ... , w(tn ), which are called, respectively, 
the first component, the second component, and so on, up to the nth component of the n­

tuple. The order in which the components of the n-tuple are written is of importance. The 
usefulness of n-tuples derives from the fact that they are convenient devices for representing 

documents of the collection and queries provided by users. 
To represent an object x = d E D or x = q, an n-tuple Mx = [wx(h), Wx(t2), ... , wx(tn )] = 

[wx(t)] lxn is used, in which wx(t) gives statistical information of term t E V concerning object 

42 
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x. ~.n I~, cO,mpo~ent wx(t) is called the weight of term t. Generally, weight wx{t) is considered 
to mdIcate ~he Im.p~rtance.af term t. concerning object x. The terms with higher weights are 
regarded to c~ntam more mformatIOn concerning object x than those with lower weights. 
T~us, to descnbe a natural language object, one needs only to state its representation Mx. 
WIth such a knowledge representation, the relationships between the objects will become 
clear when one deals with a specific quantitative retrieval model. 

Let a statistical population Dk ~ D, where k = 1,2, ... , r, be a set of documents. 
Similar to the representation of a document, to represent a set Dk an n-tuple MDk = 

[WDk(td,WDk(t2), ... ,WDk(tn)] = [WDk(t)] lxn is used, in which component WD (t) gives sta­
tistical information concerning term t, and is regarded to 'reflect' the import:nce of term t 
concerning set Dk. Particularly, when Dk = {d}, i.e., only one document d in set Dk, we 

denote MDk = M{d} = [W{d} (t)Lxn = [wd(t)Lxn = Md· 

3.1.2 Probability Distributions 

In this thesis, we confine ourselves to consider only a situation of discrete probability distri­
butions. Let Pn be a convex set l of all finite multinomial (discrete) probability distributions 
defined on a probability space (V,2V

), 

n 

Pn = {p = (Pl,P2, ···,Pn) I Pj > 0 (j = 1,2, ... , n) and LPj = I}. 
j=l 

Each element P E Pn may be considered an experiment having n possible outcomes with 

probabilities Pl,P2···,Pn· 
Let PDk (t) E Pn, derived from set Dk, where k = 1,2, ... , r, be a term probability distribu-

tion over (V,2V). Also, PDk (t) can be considered as the weight of importance of terms t E V 
concerning set Dk. We will see that distribution PDk (t) is a normalized form of representa­
tion MDk' Thus, we say that PDk (t) defines set Db or say Dk is characterized by PDk (t). In 
particular, for a given query q, we have two mutually exclusive and exhaustive events on D: 
d E Dl = R characterized by PR(t) and d E D2 = R characterized by Pfl(t). 

For a given term t E V, by saying that term t is drawn from set Dk we simply mean that 
t should always have distribution PDk (t) which defines Dk, even though it does not occur in 
any document d E Dk (in this case, PDk (t) = 0). Thus, it is important to understand that 
term t should have domain V, rather than V D k , unless otherwise indicated. 

Since log C is not defined when C < 0, it does not make sense to ask what happens to log C 
as C ---+ 0-. However we can ask what is the situation when we have, for example, product 
clog c of c multiplied by log c as c ---+ 0+. Thus, in what follows, we shall use the following 

expressions: 

o . logO = lim Cl ·logcl = 0, 
cl-+O+ 

O. (Cl ) o . log ( -) = hm Cl· log - = 0, o €1 ,c2-+0+ C2 

o C o . log ( -) = lim c· log ( -) = 0, 
a c-+o+ a 

lBy the convexity of set Pn we mean here that A1FDl (t) + A2FD2(t) + .... : Ar~Dr~t) ~ Fl;(t) E !,n if 
FDk(t) E P

n 
for k = 1,2, ... ,1' and FA = {Al,A2, ... ,Ar } is an a priori probablhty dlstnbutlOn concernmg r 

distributions FDI (t), FD2 (t), ... , FDr (t). 
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w.here ~ s~tisfi~s 0 <. a < +00. Also, in order to avoid meaningless expressions III the 
discussion III this thesis, we adopt the following notational conventions: 

a . log (~) = lim a· log (~) = +00 o £-+0+ C ' 

(0 - a) . log (Q) = lim (c - a) . log (~) = + 00 
a £-+0+ a' 

(a - 0) . log (~) = lim (a - c) . log (~) = +00. o £-+0+ c 

For instance, for some tf E V, if P D1 (tf) = 0 (but P D (tf) :f: 0) then the conventions that 
( f) 0 2 , 
0- PD2 (t) log PD

2
(t') = +00 are accepted. 

A very important notion in this thesis is absolute continuit'!l of probability distribution 
PD1 (t) with respect to probability distribution P D2 (t), denoted P D1 (t) « PD

2 
(t). It is gener­

ally necessary in applications of the divergence measure that the two probability distributions 
should satisfy condition(s) of absolute continuity. However, in practice, the condition(s) are 
usually not satisfied when we attempt to derive the probability distributions from the different 
sets of documents: because the above expressions may be encountered in the discrimination 
measures. We will discuss this problem in depth in the subsequent chapters. 

3.1.3 Terms and Proposition 

Although probability associated with random variables seems of more direct interest to most 
of us, the more fundamental idea is that of the probability of a proposition. All other types 
of probabilities are special cases on that basis, provided that the word proposition is taken in 
its most general sense. In the propositional notation, distribution P(t) should be written as 
P ( {~ = t}), (here ~ is a discrete random variable), and P (t) is best regarded as abbreviated 
notation. Hypothesis H will be regarded as a special type of proposition. 

In this thesis, we assume that t is a proposition describing an event: term t occurs. Thus, 
proposition t is true if term t occurs; proposition t is false, or proposition l is true, if term t 
does not occur. Also, we assume that a term pair (ti' tj) expresses proposition tiAtj describing 
an event: terms ti and tj co-occur. Term pair (ti, tj) must satisfy the requirement that two 
terms ti and tj are distinct, i.e., i :f: j. Thus, proposition (ti' tj) is true if terms ti and term 
tj co-occur; proposition (ti' lj) is true if term ti occurs but term tj does not occur; and so 
forth. In what follows, we will use, for instance, 'term t occurs (or, terms ti and tj co-occur)' 
and 'proposition t is true (or, proposition (ti, tj) is true)', interchangeably. 

In like manner, we assume that Hk is a proposition representing a hypothesis concerning 
a statistical non-empty document set Dk with some characteristic, where k = 1,2, ... , r. Two 
types of characteristics considered in this thesis are document relevance and term dependence. 
We will indicate the concrete explication of hypotheses in a specific context. 

3.1.4 Quantitative Aspect of Information 

Information has both qualitative and quantitative aspects. Information theory is concerned 
only with the quantitative aspect [203]. 

2Probability distribution PD1 (t) is said to be absolutely continuous with respect to distribution PD2 (0. or 
in symbols, PD1 (t) « PD 2 (t), if P D1 (t) = 0 whenever PD2 (t) = O. 
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. Bef~re introducing numbers and formulae, let us get our bearings by thinking about an 
mterestmg example. Suppose a policeman is talking to a lady. If the man says 'Your house 
is red', the lady may remain indifferent, unless her house is blue. If, however, he savs 'Your 
house was robbed this morning', the lady's reaction will be very different. ' 
. According to our usual way of looking at information, the amount of information conveyed 
m an event should depend on the probability of the occurrence of the event. If we are told 
something that we already know, the probability before being told was already unity, the 
probability remains unity after being told. Then, the statement that the event will occur 
does not give much information. On the other hand, if we are told something that was almost 
improbable, the probability changes from a small value before being told to unity afterwards. 
The statement that the event will occur gives a good deal of information [66, 203]. 

Thus we can see that the amount of information is strongly connected to the amount of 
uncertainty. In fact, the information is equal to the removed uncertainty. Shannon [176] 
made the first consistent attempt towards the measurement of such difficult and abstract 
notions as information and uncertainty [68]. Shannon [176] introduces two important ideas 
in his mathematical theory of communication. The first idea is that information should be 
a statistical concept, that is, amount of information or, measure of information, should be 
defined in a technical sense, and it should not be confused with a semantic concept. The 
distribution of statistical frequency of symbols that make up a message must be considered 
before the notion can be discussed adequately. The second idea springs from the first one 
that, on the basis of the frequency distribution, there is an essentially unique function of 
probability distribution which measures the amount of information. The second of Shannon's 
ideas has been applied by Kullback and Leibler in [107]. Following them, speaking broadly, 
whenever we make observations, or conduct experiments, we seek information. 

In the propositional notation, in probabilistic IR, the information contained in a certain 
term t should be interpreted as the amount of information received when we discover that 
proposition t is true. In other words, information in term t should be regarded as the amount 
gained when we observe that term t occurs in a document, or a set of documents. Similarly, 
the mutual information contained in a certain term pair (ti' tj) should be interpreted as the 
amount received when we discover that proposition (ti' tj) is true. In other words, the mutual 
information of terms ti and tj should be regarded as the amount gained when we observe that 

terms ti and t J" co-occur. 
Probability P(t) is usually interpreted as the uncertainty concerning the occurrence of 

term t before an experiment is performed. The larger the probability that term t has, the less 
information that term t contains when it occurs. Based on the second of Shannon's ideas, the 
amount of information contained in term t, or the gain in information about term t, can be 

defined as 
i(t) = -log P(t), 

which can also be considered as the uncertainty concerning the occurrence of term t before 
we observe that t appears in a document or a set of documents. In fact, if we decide to 
make the amount of information depend only on the probabilities of occurrence of terms, if 
we want it to be a decreasing function of P(t), and if we insist on its having the additive 
property for probabilistically independent terms, then the expression i(t) is the only ~ossible 
definition [67, 176]. Any other function satisfying these properties must be proportlOnal to 

i( t). ... . . 
The conditional gain in information, denoted by 2(tjjti), IS defined as the gam m mfor-
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mation when tj occurs given ti has occurred, provided that P(ti) > 0, that is. 

If terms ti and tj are independent then i(tjlti) = i(tj). That is, the occurrence of term ti 
gives us no information concerning term tj. 

The amount of information may more specifically be called an amount of probabilistic 
information. This is, it is a statistical notion, rather than a semantic one. 

The purpose of this thesis is to apply Shannon's two ideas to IR theory by interpretations 
of the notion of the amount of information contained in a given term or, term pair, (rather 
than in a message). Some basic concepts of information theory are introduced for constructing 
mathematical forms of discriminant measures for the selection of good terms for AQE. These 
concepts are closely related and share a number of simple properties. Thus, we will see 
that formal methods proposed are information-theoretic in nature, and that the measures of 
information of terms will be proportional to the degree of the uncertainty of the occurrence 
of terms. 

3.2 Information Gain I(PR : PrJ 

The concept of directed divergence, which is what is generally called information gain, or 
in short information, by statisticians and communications engineers [92], is by now a familiar 
one for many IR researchers. A detailed account about it is given in [106], and an axiomatic 
characterization for it can be found in [145]. A general definition for the discrete case, in the 

context of IR, is written as follows. 

3.2.1 Information Contained in a Term 

The first step in the subject is to define what we mean by information contained in a term. 
In order to fix our ideas we will always imagine in this thesis that each term is related to two 

opposite hypotheses. _ 
Let HI and H2 be two opposite hypotheses (i.e., H2 = HI, the complement of HI) related 

to a certain term t. We ignore the specific meaning of HI and H2 at the moment, and only 

know they are hypotheses concerning t. 
Then, by the product axiom in probability theory, 

(k = 1,2). 

A likelihood can be written as 

(k = 1,2). 

Express them together in the odds form as a likelihood ratio 

P(tIHI) = P(HI1t)/P(HI) = O(HIlt)/O(HI), 
P(tIH2) P(H2It) P(H2) 
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where O(HIlt) is the odds in favour of HI against H2 given t, and O(Hd is the odds in favour 
of HI against H2· 

One can intuitively feel that term t may be statistically dependent on hypothesis H k, in 
the sense that the probability of the occurrence of term t is affected by the knowledge that 
H k was true. Denote the logarithm of the likelihood ratio by 

which is a very central subject of this thesis. Let us now carefully examine i(HI : H21t) to look 
at what insight it can give. As we know, P(Hk) is the a priori probability of Hk, and P(Hklt) 
is the a posteriori probability of Hk given proposition t to be true, where k = 1,2. Therefore, 
i(HI : H21t) is a measure of the difference between the logarithm of the odds after the 
observation showing the occurrence of term t and that before the observation. This difference, 
which can be positive or negative, may be interpreted as the information gained from the 
observation. Consequently, i(HI : H21t) measures the amount of information contained in 
term t in support of HI as opposed to H2. The base of the logarithm in i(HI : H21t) is 
immaterial. Throughout this thesis, logarithms are taken to base 2, unless otherwise specified. 
We will return to this measure and to a detailed discussion in Section 3.4. 

An alternative well-known information measure is i(H, t) = log pf~rt{t)' which is the 
amount of information in hypothesis H concerning term t, and also the amount of information 
in term t concerning hypothesis H, in virtue of the symmetry in Hand t, namely, it is the 
intersection of the information in H with the information in t. We can easily see that measure 
i(HI : H21t) is closely related to measure i(H, t). In fact, if P(t) i- 0 then 

From such an equality, we can give a different interpretation to i(HI : H2It): it is a measure 
of the difference between the intersection of information in HI with information in t and that 
of information in H2 with information in t. In other words, it is the difference in information 
about HI compared to H2 provided by t. In applications, i(HI : H21t) is a more intuitive and 

basic concept than the information measure i(H, t) [67]. 
Also, we can see that measure i(HI : H21t) is related to information measures i(tIH): 

This equality give us an alternative interpretation to i(HI : H2It): it is a measure of. the 
difference between the gain in information when t occurs given H2 is true and of that given 
HI is true. In other words, it is the difference in information about t provided by H2 and HI, 

respectively. 

3.2.2 Directed Divergence Measure 

Now for a given query q, let HI be the hypothesis that term t is drawn from the relevant doc­
ume~t set R, and H2 the hypothesis that term t is drawn from the non-relevant document set 
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R .. ~ssume that P:(t) and Pk(t) are two term probability distributions over the same prob­
abIlIty space (V,2 ) .~nder two opposite hypotheses HI and H2, respectively. Then P(tlHd 
and P(tIH2) are famIlIar expr~ssions stating that term t follows distribution P(tlHd = PR(t) 
and P(tIH2) = Pk(t), respectIvely. Thus, when HI is true, measure 

i(Hl : H21t) = log P(tIH1) = 10 PR(t) 
P(tIH2) g Pk(t) , 

can be used to measure the amount of information contained in term t in accepting the 
relevant hypothesis HI rejecting the non-relevant hypothesis H2, or more precisely, in favour 
of PR(t) against Pk(t), when t occurs. In this thesis, we will use 'in favour of HI against H2' 
and 'in favour of PR(t) against Pk(t)', interchangeably. 

Let us now further assume that distribution PR(t) is absolutely continuous with respect to 
distribution Pk(t), i.e., PR(t) «Pk(t). Then, the expected information, given HI was true, 
is defined by 

(3.1) 

which can also be referred to as the expected gain in information in favour of PR(t) against 
Pk(t). Kullback and Leibler [107] regarded it as a measure of the directed divergence, which 
means that I(PR : Pk) can be used to measure the expected divergence of distribution Pk(t) 
from distribution PR(t). In practical applications, I(PR : Pk) can also be interpreted as the 
measure of the expected difference of the information contained in PR(t) and that contained 
in Pk(t) about PR(t). 

One of the typical applications of directed divergence to IR theory can be found in the 
study described by Van Rijsbergen [206]. The study designed a term weighting method under 
an assumption that terms are not independently distributed with respect to each other. In 
his explorative study, the extent to which two terms ti and tj deviate from independence is 
measured by the directed divergence 

) 
""' P( 6i, 6j) 

I(6i,6j) = I(P(6i,6j) : P(6i)P(6j) = 0. P(6i,6j) log P(6i)P(6j) 
8i ,8j-l,0 

L P((6i,6j)I Hdi (Hl: H21(6i,6j)), 
8i,8j=I,0 

where variable 6 = 1,0 indicates that term t occurs or, does not occur, respectively, under 
hypothesis HI: 6i and 6j are dependent with a joint distribution P(6i' 6j), and hypothesis 
H2: 6i and 6j are independent with the product of marginal distributions P(6i) and P(6j). 
Therefore, I(6i,6j) is the expected information in a term pair (ti,tj) in favour of dependent 

hypothesis HI against independent hypothesis H2· 
Therefore, it is easily seen that expression I (6i' 6j), also called expected mutual information 

[67, 107, 176], is a special case of directed divergence. In the context of IR, it is usuall~ u.sed 
as a measure of the statistical dependence between terms ti and tj, that is, as the statIstIcal 
amount of information in term ti concerning term tj, and vice versa. We will return to this 

important topic in Chapter 7. .. ' 
An alternative application is the probability distribution model proposed by Wong &: r ao 

[221]. Their study attempted to apply I(pq : Pd) as a divergence measure betweell Pq(t) and 
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Pd(t), where Pq(t) a~d Pd(t) were term probability distributions representing querv q and 
document d, respectIvely. However in the context of IR 0 11 d· ' 1 .. ' , ne usua y cannot lrect y use 
the dIrected dIVergence ~easure because Pq(t) is not necessarily absolutely continuous \vith 
respect to Pd(t). F~r solvIll~ such a problem, a divergence measure called entropy increase, 
closely related to dIrected dIvergence was introduced in theI·r wo k d ··l·t ' r ,an a SImI an y measure 
:vas t~en defined based on the entropy increase measure. We will also discuss this interesting 
Issue III Chapters 5 and 6. 

I~ what fo~lows, we will concentrate on the discussion of the discrimination measure based 
on dIrected dIvergence, and its application to query expansion. Before doing so let us first 
look at divergence measure more generally. 

3.3 On Divergence Measures 

Probability distributions derived from the different document sets form a basis for the 
divergence measures. The divergence measures of the distributions form the basis for the 
derivation of the discrimination measures for the judgement of good terms. 

3.3.1 Two Criteria 

In a practical IR context, the first stage in measuring the power of discrimination of terms is 
to calculate the expected divergence, the expected information, followed by the derivation of 
the contributions made by individual terms to the expected divergence. 

For the divergence measure to be appropriate, with respect to a number of terms, for 
judging potential good terms, the measure should satisfy some criteria. 

Criterion 1: It should be possible to compare the extent to which each term contributes 
to the expected divergence. 

For instance, term desk can apparently be discriminated from both terms vegetable and 
lamp, but it should be that desk differs more from vegetable than from lamp. 

Suppose that, for each document set Dk ~ D, an effective method for estimating the term 
distribution can be devised, i.e., probability densities FDk (t), for each term t E V, can be 
obtained. Then, set Dk can be characterized and analysed by the densities. For a given term, 
it is likely that this term will have unequal densities related to the different sets. Therefore, 
the expected divergence of the distributions would be measured by means of the extent of 
the differences in the densities of individual terms. Simply stated, the individual pieces of 
divergence, each of which arises from some term, can be combined to obtain the expected 
divergence. Thus, an assumption that the extent to which individual terms contribute to the 
divergence can be measured, is needed. Under such an assumption, the contributions can be 
meaningfully combined to yield the expected divergence of the distributions. 

It is seemingly simple but important that 'meanings' of terms and 'statistical quantities' 
of terms should be well distinguished in applying the divergence measure to AQE. In prac­
tice, confusion may arise from attempts to measure the divergence of the meanings of terms 
rather than of the statistical quantities referring to the terms. There can be no statistical 
comparability between term meanings. For instance, the meanings of terms desk, lamp, and 
vegetable cannot be compared by their contributions to the divergence, even though desk i~ 
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more ~ifferent from vegetable than from lamp in meanings. In this thesis, for the sake of 
convemence, we will simply say 'the contributions made by terms to the divergence', but it 
should be understood that the discrimination is really in the sense of the statistical contri­
butions (of the terms) to the divergence in our formal methods, rather than the meanings 
themselves. 

Criterion 2: The effect of adding or removing terms unrelated to the classification should 
make no difference to the divergence. 

By saying that terms are unrelated to a classification, we mean here they have an invari­
ant probability density over the document sets considered. It is essential that a divergence 
measure should be independent of the addition or removal of terms which are unrelated to 
the classification. 

Informally speaki~g, in IR, for a given query, a document collection is normally classified 
into two sets, Rand R. When a term has equal probability density over Rand R, it implies 
'this term is not related to the relevance classification', i.e., this term does not provide any 
relevance information for classifying D into R or R. The implication should be carefully 
distinguished from 'this term is not relevant to the query'. A term may be statistically 
closely related to the relevance classification when it is entirely non-relevant to the query, and 
VIce versa. 

For instance, let us consider a query 'What is tomorrow's computer?' in Example 1.4.4. 
Term computer may be an unrelated term in respect to the relevance classification for a 
collection catalogued as computing science. It is apparent that term computer would distribute 
rather uniformly over the whole collection, that it would therefore have an invariant density 
over any document sets, and would not provide any profitable information for the purpose of 
the relevance classification. However, everyone would agree that term computer is central to 
the query. This query may not be a good one from the IR point of view. It is fairly intuitive 
and understandable that the divergence measure should not be dependent on the addition or 
removal of those terms, such as, computer, which are unrelated to the relevance classification. 

3.3.2 Two Hypotheses 

Divergence has different applications in a variety of research areas, in particular, it has become 
a useful tool in designing discrimination measures in a probabilistic IR framework. Perhaps 
the usefulness of divergence can be best illustrated by the following specific situation. 

In practice, it is desirable or necessary to consider the expected diverge~ce of two dis­
tributions derived from the relevant and non-relevant document sets Rand R, respectively. 
This is because one would expect that the expected divergence, a statistical measure, may 
reveal some semantic relations between terms. A feasible scheme of capturing true semantic 
relations of complicated semantics is not yet available. But if the expected divergence in 
the form of the distributions can be obtained, and if the distributions can reflect statistical 
information concerning the sets, then one will know for sure that the expected divergence 
may meet one's needs. Underlying all the discussions given in this thesis is the following 

hypothesis. 

Hypothesis 1: The expected divergence of two term probability distributions derived from 
the relevant and non-relevant document sets may be related to semantic 

relations between terms. 
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Many experimental results have shown that the difference between the distributions of 
terms in the relevant and non-relevant document sets can reflect some semantic relations 
between terms. One would expect, for instance, that the terms strongly associated with the 
query will occur more frequently in relevant documents than in non-relevant ones. 

In IR, the idea that some terms are more important than others is in fact rather vague. 
It is almost impossible to rationally derive a priori weights of terms, which truly indicate the 
importance of terms, based on no empirical or observational information. Thus, the issue we 
should focus mainly on is the question: what forms of a posteriori weights of terms may be 
used in a relevance classification process for the purpose of effective retrieval? Generally, it is 
accepted that terms with higher power of discrimination should be considered more important. 
Statistically, terms which are thought of as having higher power of discrimination tend to 
contribute more to the expected divergence than others. The extent of the contributions that 
terms make may hence be used as a device for representing a posteriori weights to reflect the 
importance of terms. These statements can be formulated by the following hypothesis. 

Hypothesis 2: The terms making a greater contribution to the expected divergence should 
be regarded as statistically conveying more valuable discrimination informa­
tion, and therefore being more important than others. 

According to the foregoing discussion, it appears that the terms with more concentrated 
distribution in one of sets Rand R, i.e., with greater variant probability densities within sets 
Rand R, would make more contribution to the expected divergence and, therefore, should 
be viewed as statistically containing more discrimination information. 

In Section 3.5, we will focus mainly on a detailed account of the construction of score 
functions based on the measure of discrimination information for selecting good terms from 
the relevant sample documents. For this purpose let us give an in-depth investigation of the 
concept of discrimination information of terms. 

3.4 Discrimination Measure ifdI(t) 

This section concentrates on the definition of discrimination information, which is a basis 
for all methods proposed in this thesis. The estimation of discrimination information will be 

discussed in Section 3.7. 

3.4.1 Definition of Discrimination Measure 

As pointed out, for the selection of good terms, we have to measure the discri~ina~ion infor­
mation contained in individual terms, i.e., to measure the extent of the contnbutIOns made 
by individual terms to the expected divergence (expected information). . 

Let us return to Eq.(3.1). The directed divergence can be expressed as a sum of the Items, 

I(PR : PfJ = L ifdI12(t), 
tEV 

where each item, in short ifdI(t) when without confusion, can be written down 

ifdI(t) = PR(t) log PR(t) = P(tJH1)i(H1 : H2Jt). 
Pk(t) 
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It is remarkable that the likelihood ratio 

~r, with :r:uring's appealing terminology, Bayes factor, is an intuitive and important concept in 
mformatlOn theory. Turing introduces the expression 'Bayes factor in favour of a hypothesis'. 
Kullback [l06} defined the logarithm of the Bayes factor, 

as the 'information for discrimination' in favour of HI against H2. Good [67] also gives 
a similar interpretation, he describes the logarithm of the Bayes factor as the 'weight of 
evidence' concerning HI as opposed to H2, provided by t (in this case, the occurrence of term 
t is thought of as a piece of evidence). 

Consequently, the amount of information i(HI : H21t) in ifdI(t) can be viewed as the power 
of term t to discriminate two opposite relevance hypotheses HI and H2. The magnitude of 
probability P(tlHd in ifdI(t) measures the significance of term t concerning relevant set R in 
determining the power of discrimination. Thus, quantity ifdI(t) indicates the 'information for 
discrimination' for term t supporting relevant hypothesis HI but opposing non-relevant hy­
pothesis H 2 , and summation I(PR : PfJ is the expectation of the discrimination information 
of terms over vocabulary V. 

The above explains what we mean by the discrimination information of a given term. Thus, 
we can introduce a discrimination measure which computes the extent of the contributions 
made by individual terms to the expected discrimination information. 

More generally, for two opposite hypotheses HI and H2 related to a given term t drawn 
from sets Rand R, respectively, we can make the following formal definition. 

Definition 3.4.1 Let PR(t) = P(tlHd and Pk(t) = P(tIH2) be discrete probability distribu­
tions over (V,2V ), and derived from sets Rand R, respectively. Assume that PR(t) « Pk(t) 
when t E V. The information in term t for discrimination on hypotheses HI and H2 is defined 

by 

(t E V), 

which is referred as to the (relevance) discrimination measure of terms, and i(HI : H21t) the 

(relevance) discrimination factor of terms. 

Notice that the directed divergence is information-theoretic, its units are information 
units (bits). Also, since PR(t) « Pk(t) for every term t E V, its individual items satisfy 
ifdI(t) < +00, and thus the items always exist and are comparable (i.e., it satisfies Criterion 

1). -
Let us further consider the situation where term t occurs in both sets Rand R with 

an equal probability PR(t) = Pk(t) =1= O. As pointed out above it has ifdI(t) = 0, namely, 
the contribution made by term t to summation I (PR : Pk) will be zero. Therefore, the 
directed divergence possesses the property that it is independent of those terms which are 
unrelated to the relevance classification (i.e., it satisfies Criterion 2). From this property we 
can see that the discriminant measure ifdI(t) emphasizes the importance of the terms that 
have variant probabilities within sets Rand R, and removes the dependence on the terms 

that have invariant probabilities in the sets. 
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It is s~own that I(PR : PtJ > 0, with equality if and only if PR(t) = Pfl(t) for all 
t E V. ThIs property tells us that, in the expectation, the discrimination information obtained 
from all terms is positive. There is no the expected discrimination information if the term 
distributions are identical under the hypotheses. 

3.4.2 Interpretation of Discrimination Measure 

The interpretation of the discrimination information depends on a specific application. For 
instance, when the hypotheses involve the relevance of documents to the query, then the 
discrimination information is explained as the relevance discrimination as given in Definition 
3.4.1. In this case we have the following interpretation (notice that ifdI(t) can be positive or 
negative): 

1& If PR(t) = Pfl(t), then the discrimination factor i(HI : H21t) = 0, and term t gives us 
no discrimination information about the relevance classification, and the corresponding 
quantity ifdI(t) = O. 

1& If PR(t) > Pfl(t), then the discrimination factor i(HI : H21t) > 0, and term t contains 
positive information in support of the relevant hypothesis HI; thus the discrimination 
measure indicates that term t contributes quantity ifdI(t) = lifdI(t)1 for supporting 

HI· 

1& If PR(t) < Pfl(t), then the discrimination factor i(HI : H21t) < 0, and term t contains 
negative information in support of the relevant hypothesis HI; thus the discrimination 
measure indicates that term t contributes quantity ifdI(t) = -lifdI(t)1 for supporting 

HI· 

However, when the hypotheses are concerned with the statistical dependence of terms, 
then the discrimination information should be interpreted as the dependence discrimination. 

We will discuss such an application in Chapter 7. 

3.4.3 About Absolute Continuity 

Notice that in order to speak of the discrimination information of terms, we must consider 
distributions PR(t) and Pfl(t) to be defined on the same probability space V, and assu~e 
PR(t) « Pfl(t) for all terms t E V (i.e., PR(t) = 0 whenever Pfl(t) = 0). Consequently, wIth 
the notational conventions: 0 . log (%) = 0 and 0 . log (§) = 0, measure ifdI(t) -=1= 00 always 

holds, and summation I(PR : Pfl) exists. 
For example, let V = {tl, t2, t3}, and let PR(td = PR(t2) = ~ and Pfl(h). = Pfl(t2) = 

Pfl(t3) = ~. Then PR(t) is absolutely continuous with res.pect to l!fl(t) , that IS, PR(t). 0 
whenever Pfl(t) = O. However, Pfl(t) is not absolutely contmuous wIth respect to PR(t) smce 
Pfl(t3) = ~ when PR(t3) = O. More precisely, from the definition, we have 
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I(Pfl : PR) = I: Pfl(t) log Pfl(t) 
tEV PR(t) 

1 1 1 1 1 1 2 ') 
= 3" log f + -3 log ~ + -3 log .1 = -log ~ + (+00) = +00. 

2 '2 0 3 3 

. .Let .us now .further e~amine requirement PR(t) « Pfl(t) for I(PR : Pfl) to look at what 
mSIght It can gIve. ConsIder a more general situation. Suppose that 

PR(t) { > 0 t E V
R 

= 0 t E V - VR and 

are two probability distributions over (V, 2v). Notice that 

Thus, consider the following three cases: 

case-A: when t E VR but t rf- V R, it has i(Hl : H2Jt) = log P~(t) = +00; 

case-B: when t rf- VR but t E V R, it has i(Hl . H2Jt) = log _0(_ = -00' 
. PH t) , 

case-C: when t E VR and t E V R, it has -00 < i(Hl : H2Jt) = log ~;m < +00. 

It is easy to imagine that if terms occur only in some relevant documents but never in 
any non-relevant documents (case-A), then they should be considered to be associated with 
the query and added into the query. Conversely, if terms occur only in some non-relevant 
documents but never in any relevant documents (case-B), then they should be viewed as not 
associated with the query and discarded immediately. Thus, it is clear that case-A and case-B 
are not our main concerns. 

The problem that mainly concerns us here is those terms that occur in both relevant and 
non-relevant documents (case-C), i.e., t E VR n yR. Notice that we here suppose PR(t) > 0 
if t E V R, and PR(t) > 0 if t E yR. Notice also that the probability distributions PR(t) and 
PR(t) are generally not disjoint (see a footnote given in Section 5.1), i.e., vRnvR =I- 0. Thus, 
if we assume PR(t) « PR(t) then, according to the definition of absolute continuity, it must 
satisfy V R ~ V R. Consequently, the assumption of absolute continuity actually implies that 
the terms considered in the current discrimination method should be only those which satisfy 
t E VR ~ VR and PR(t) . PR(t) =I- O. 

We proceed with our examination of applications of the discrimination information by 
considering some special situations. One such situation we shall discuss in the next section 
is to define the concept of the statistical association of a given term with the query~ which 
plays a central role in constructing a score function for query expansion. 

3.5 Association Function atqI (t, q) 

The discrimination measure ifdI(t) corresponding to sets Rand R has no direct implica­
tions for retrieval since the sets in question are the object of the retrieval. In practice. there i~ 
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no a priori way to obtain the term discrimination information ifd[(t). This kind of circularity 
however suggest~ a strong anal?g~ to t~e relevance or, pseudo-relevance, feedback process. 

. In order to gIve a systematic Investigation into the derivation of the association of terms 
wIth the query through a feedback process, in this thesis, we start our discussion with some 
necessary assumptions. 

3.5.1 Three Assumptions 

It has been stated that query expansion is a technique for enhancement of queries. In other 
words, the technique is concerned with good terms with respect to the query about which we 
have postulated certain properties. The question immediately arises: how do we formulate 
postulates for good terms? This is done by introducing an assumption about good terms: 

Assumption 1: In a general probabilistic IR framework, a good term should be defined as 
statistically informative; a good term with respect to a given query should 
be defined as statistically informative and strongly associated with the 
context of the query. 

The informativeness of terms can generally be measured by means of some information mea­
sure(s) offered in, such as, information theory. Whereas the association of terms with the 
query may be designed through some technique of composition/combination of the informa­
tion measure(s). 

To simplify the discussion, an alternative assumption about good terms would be: 

Assumption 2: Query terms, which occur in some relevant documents, should be regarded 
as good ones with respect to the query. 

In other words, query terms which do not index any relevant documents should not be treated 
as good terms. It is interesting to notice that a term that is not considered a good one is not 
necessarily a poor term, but means we are unable to tell that it is a good or poor term. 

An important notion in developing any feedback technique is the sample set S since it is 
the starting point of all feedback methods. Before designing a score function to judge good 
terms with respect to the query through a feedback process, we must first decide the sample 
set. We mention here the difficulties that arise in obtaining an effective sample set through 
an initial retrievaL If the sample set is effective as desired, it is likely that all relevance 
information will be contained. To be able to talk about our subjects explicitly, we shall state 

an assumption below. 

Assumption 3: The sample set used to establish the statistical association functions in a 
feedback procedure is effective if it contains all important statistical infor-

mation of relevance to the query. 

However, in the more practical situation, where the sample set is poorer than we might like, 
the problem of choice of the sample set is a pressing one. Unfortunately, solutions remain 
unsatisfactory even though much effort has been made. It is beyond the scope of this thesis 
to discuss the problem of choice of the sample set in greater detail, and will be treated as an 
important subject for further study. It should be emphasized that a query expansion method 

itself cannot compensate for a poor sample set. 



CHAPTER 3. AQE BASED ON DIRECTED DIVERGENCE 56 

3.5.2 Generalized Association Hypothesis 

The Asso.ciation H.ypothesis. due to Van Rijsbergen [207] (p.134) is an important underlying 
hypothesIs theoretlcally, whIch we now write down as follows. 

If an index t~rm i~ good at distinguish relevant from non-relevant documents then any 
closely assoc'lated zndex term is also likely to be good at this. 

Some researchers, [230] for instance, have questioned the correctness of the Association 
Hypothesis. Let us now return to Example 1.4.6, an interesting example taken from [230] 
(p.36). Two phrases DNA profile and DNA sequence in [230] are viewed as nearly synonymous, 
and related to the query term DNA. It seems that DNA profile is good at distinguish relevant 
from non-relevant documents, but DNA sequence is not. A question arises: 'How can we 
explain such a phenomenon with the Association Hypothesis?' 

Generally, in practice, it is very hard for a single term to achieve the difficult task of 
separating relevant documents from non-relevant ones for an extremely large collection. In 
fact, if there really existed such a (unique) term that could identify all relevant documents, 
then this term would contain complete discrimination information about relevance. Thus, 
we would not need query expansion, and it should be true that any term associated strongly 
with this term was likely to possess the ability of discrimination of relevance. However, 
a single term, even a group of terms (such as, all good query terms), can usually provide 
very limited discrimination information about relevance. That is the reason why we need 
to explore discrimination measures for capturing the power of discrimination of other terms 
so as to obtain more discrimination information for enhancing the query and improving the 
retrieval performance. The problem does not lie in the Association Hypothesis itself, but in 
it being very difficult to find a single term which satisfies the condition of the Association 
Hypothesis. As we know, theoretically, the conclusion(s) of a hypothesis holds only when its 
condition(s) can be satisfied. 

Very often, two terms il and i2 refer to the same concept c but serve for different specific 
situations (see Section 1.2). Such situations might be American English and British English, 
or might be terms used by authors of literature and by authors of medicine, and so forth. 
In these cases, terms il and i2 are called conditional synonyms concerning concept c. When 
retrieval is performed over a collection that is based in some specific situation, the choice of 
term from a group of conditional synonyms for describing concept c would directly affect the 
retrieval performance. A consistent choice (for both relevant documents and the query) would 
increase the match and improve retrieval performance, otherwise, the match would decrease 
and the performance would decline. Clearly, conditional synonyms may not be statistically 
associated with one another. This is because terms il and i2 tend not to co-occur to describe 
concept c under the specific situation. This point is very important to understand basic 
concepts (such as, the Association Hypothesis) in IR, and to establish an effective IR system. 

We are now ready to analyse the above example and answer the above question. Notice 
that DNA profile can be thought of as two terms, as can DNA sequence. Notice also that 
terms profile and sequence are neither synonyms, nor conditional synonyms, but they can be 
thought of as associated conditionally with term DNA. Obviously, term DNA itself in the 
above query cannot completely distinguish the relevant documents from non-relevant ones, 
even though it might have relatively higher power of discrimination than others. It is possible 
that phrase DNA profile enhances the power of discrimination, while phrase DNA. sequence 
weakens the power of discrimination. This is because, when terms profile and sequence arc 
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combined with term DNA to form phrases, they are normally used for different situations: 
the former is used by journalists reporting crime events and the latter is for scientific work in 
biology and medicine. The feature of the use determines that phrases DNA profile and DNA 
se?uence would not be associated with one another. On the other hand, even if there really 
eXIsts such a. term or phrase closely associated with phrase DNA profile, we remain unable to 
~nsure t~at It po~s~sses the ability of discrimination on relevance since phrase DNA profile 
IS weak m the abIlIty (that is, the phrase does not satisfy the condition of the Association 
Hypothesis) . 

Also, it is clear that the Association Hypothesis is a very statistical concept. Therefore, 
not surprisingly, exceptions might happen in some special situations. Mathematically, we can 
never assert a statistical hypothesis wrong when some exception happens unless a number of 
observations/experiments are able to prove the assertion. 

The Association Hypothesis [207] derives its importance from the fact that it is an under­
lying basis for the following more general hypothesis which we call the Generalized Association 
Hypothesis. 

Hypothesis 3: If a group of terms combinatorially possesses high power of discrimination 
on relevance then any term associated closely with the group of terms as 
a whole is also likely to possess higher power of discrimination on relevance. 

Notice that in Hypothesis 3 we do not make any restriction on what the group of terms 
should be. In the case of query expansion, the group of terms can refer to all good query 
terms. 

Comparing Hypothesis 3 with the Association Hypothesis [207], it is clearly seen that 
there is one important different point between them: we are talking about the association of 
a given term closely with a group of terms as a whole, rather than with a single term. This 
generalization is necessary for almost all methods of query expansion. In fact, users usually 
describe their queries with more than one term. An expansion term should be associated with 
the context of the query, that is, with all good query terms, rather than only one of them. 
For instance, a term that is associated simultaneously with a group of terms DNA, test, trial 
and criminal should have a higher power of discrimination than another that is associated 
only with DNA. The former should be considered as being more strongly associated with the 
context of the query than the latter. 

3.5.3 Association Function 

Let the sample set 3 consist of the top-ranked documents obtained from the previous search 
iteration. Based on the user's opinion about relevance, we may define two mutually exclusive 
and exhaustive events on set 3 by assuming that 3+ i= 0 is the set of top relevant sample 
documents, and that 3- is the set of top non-relevant sample documents. 

As we know, in practice, it is unlikely that every relevance feedback terms would contain 
information related closely to the query. Our aim is to judge which feedback terms are good 
ones with respect to the query. This may be achieved by estimating th~ statistical association 
of terms with the context of the query. That is, we assume that set V.::.+ constitutes a source 
of candidate terms, and select good terms among them (i.e., sq C V:=:+). 

How can we directly estimate the association? We do not know. However, if the relevant 
sample set 3+ is effective, that is, all important relevant information pertaining to the query is 
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contained in 2+, then it is natural and reasonable for us to de· th . t· b d . rIve e assoCla IOn y rawmg 
'useful information' from the set. 

What is the useful information? For a given term t E V:=:+, a piece of useful information 
w.oul~ ~e: t~e amount of information contained in term t for discriminating on relevance. The 
diSCrI.mmatlOn measu~e ifdI(t) can be invoked to measure the amount. In order to 'explain' 
why IfdI(t) ca~ provIde a piece of useful information, we need only adopt an assumption 
(stated rather mformally): The statement, 'the extent of the association of term t with the 
context of the query' can be restated as, 'the power of the discrimination of term t in favour 
of relevant hypothesis HI against non-relevant hypothesis H 2 '. 

The above discussion may already answer the question: what do we mean by the statement 
that term t is associated with the context of the query? The concept of the discrimination 
information of terms derives its importance from the fact that it provides a means to define 
the concept of the association, which we define formally as follows. 

Definition 3.5.1 Let P:=:+ (t) and PD(t) be discrete probability distributions over (V,2 V
), 

and derived from sets 2+ and D, respectively. Assume that P:=:+(t) « PD(t) when t E V. 
The association of term t with query q, denoted by atqI (t, q), is defined as 

atqI (t, q) = Q(t) . ifdI(t) = Q(t)P:=:+ (t) log i;g; (t E V), 

where Q ( t) > 0 measures the significance of terms t E V concerning query q. 

With function Q(t), the statistical information contained in query terms can be effectively 
incorporated into the association function atqI (t, q). 

We will see shortly that the association function provides a convenient way of combining 
miscellaneous pieces of evidence into the association score of terms. The various statistical 
clues - query term weights, document term weights, term importance concerning the relevant 
sample set, term specificity concerning the collection, the discrimination information of terms, 
etc. - as important factors, can be considered for constructing the score functions. Once the 
score functions have been constructed, the desired association values for the individual terms 
can be derived from each of them and terms can be sorted in accordance with the values. 

3.6 Score Function scoreI(t) 

A more detailed discussion on selection of good terms is offered in this section. The dis­
cussion bases directly on the concept of the association given in Definition 3.5.1. 

3.6.1 Relevance Feedback Process 

The relevance feedback can be easily implemented by using information display techniques 
to establish communication between system and the user: a set of top-ranked documents can 
be graphically displayed for the user, and screen pointers can be used to designate some of 
the top-ranked documents as relevant to his information needs. The relevance information is 

then further used by the system to produce a modified feedback query. 
In the LfV system, the sets of all relevant or non-relevant documents used in measure 

ifdI(t) are replaced by the set of known relevant documents and the colle~tion of all doc­
uments, respectively. That is, we use P:=:+(t) instead of PR(t), and FD(t) mstead of Fk(t) 
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(since R = I? - R ~ D becaus~ t~e siz~ of R is generally very small so that R is negligible 
compared wIth that of D). ThIs IS eqmvalent to stating that PR(t) ~ PD(t) does not vary 
from query to query. Thus, HI may be the hypothesis that term t is drawn from set :=:+ 
defined by distribution P=.+ (t), and H 2 is the hypothesis that term t is drawn from collection 
D defined by distribution PD(t). 

Now co~!ider the activity of LfV as a decision procedure: whether or not a candidate 
term t E V~ should beco~e a selected one with respect to the query. The decision depends 
on the sortmg of the candIdate terms, and ultimately, on the extent of the association of the 
candidate terms with the query. 

Suppose that the statistical frequency data f=.+(t) and fD(t) for all terms t E V has been 
given. Then both sets 3+ and D can be characterized by the probability distributions P=.+ (t) 
and PD(t) which are estimated by using the frequency data. Consequently, the discrimination 
information of individual terms can be examined based on the estimates. 

More precisely, suppose that the term probability distributions have the form (see Sub­
section 3.7.4): 

P=+ t -{ 
> 0 t E V='+ 

~ () = 0 t E V - V=.+ and P t > 0 t E V-
{ 

=+ 

D () 2 0 t E V - V='+ . 

Obviously, V='+ ~ V and thus P=.+(t) «PD(t) for all terms t E V. Therefore, we can directly 
apply I(P=.+ : PD) to a query expansion procedure. 

Next, for each term t E V, there are two probability densities P(tIHI ) = P=.+(t) and 
P(tIH2 ) = PD(t). In view of the interpretation of the discrimination measure ifdI(t), the 
concept of the association of term t with the context of the query can be introduced, and then 
an association score function can be constructed. Consequently, each term can be assigned a 
score and be sorted in order to compare with others for the selection. 

Obviously, it has Isql < IV='+ I; we need not construct the score functions, otherwise. In 
practice, the number of selected terms is very much less than the total number of candidate 

terms indexing the relevant sample documents. 
It is worth pointing out that we do not deal with the situation where 3+ = 0, that is, 

where there is no positive relevance information available and all documents in the sample 
set 3 are assessed to be non-relevant. In this case, the user should be required to renew his 
query in order to produce an effective sample set 3 satisfying 13 + I > O. 

3.6.2 A General Form 

After the discussion of the concept of the association, we are ready to tackle the problem of 
the construction of the association score function, which uses the ideas we met in previous 
sections. In particular, with a direct use of the Definition 3.5.1, the score function given below 

is rather intuitive and simple. 
There may be many ways to construct the score function based on the association function 

by the different methods of estimating Q(t), P=.+ (t) and PD(t). One of the methods we show in 
this subsection considers just the estimation of function Q(t). The estimation of distributions 

P=.+ (t) and PD (t) will be discussed in the next section. . 
To begin with, consider a query q. Assume that q is initially represented as a matnx 

M = [w (t)] where weight wq(t) (satisfying wq(t) > 0 when t E vq) indicates the 
q q I xn' 
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b
impobrtance of term t ~ V. in representing query q. As we pointed out, function Q(t) should 

e a Ie to. reflect the sIgmficance of terms t E V concerning query q. 

For thIS purpose, let /'1;1 and /'1;2 be two constants satisfying 0 < /'1; < /'1; < m' . { (t)} 
D fi 

- 2 - 1 lfitE I. q Wq . 
eM -

wq(t) when t E V n vq 

Q(t) = when t E V:=:+ - vq 

That is, 

- if term t is a query term then it is assigned a true weight wq(t); 

- if term t is not a query term but appears in at least one relevant sample document then 
it is assigned a stronger 'fictitious' weight /'1;1; 

- if term t is not a query term and never appears in any relevant sample documents then 
it is assigned a weaker 'fictitious' weight /'1;2; 

- if term t is a query term but does not index any documents in the collection then it is 
discarded immediately. 

Generally, the setting of the fictitious weights should be dependent on a specific system, 
and normally not greater than the minimum query term weight. Also, all terms in V:=:+ - vq 
are treated equally (i.e., assigned an equal fictitious weight /'1;1), so are all terms in V-V:=:+ - vq 
(i.e., assigned an equal fictitious weight /'1;2). In practice, we may be interested only in those 
terms which belong to domain t E V:=:+, in this case, the fictitious weight /'1;2 is set to zero (or 
simply ignored). 

Consequently, with Definition 3.5.1, the association score function may be defined by 

scoreI (t) = atqI (t, q) = Q(t) . ifdI(t) 

wq(t) . ifdI(t) when t E V n vq 

. ifdI(t) 

. ifdI(t) 

-+ when t E V=' - vq 

-+ whentEV-V=' -vq. 

If nothing special is known about the score function under consideration, we might conjecture 
that this score function should be one that can put good terms, that distinguish the relevant 
documents from non-relevant ones, near to the top of the sorting list. 

It should be noticed that, in a probabilistic IR environment, two terms are considered 
as being 'semantically related' if they refer to similar documents which may be regarded as 
relevant to the same query. Thus, 'semantic relation', like the association score, is a statistical 
property of a term that may change from query to query. We point out that the association 
of a term with the query is not a property intrinsic to the term. Rather it is a term property 
with respect to the query. A given term may have as many association scores as the number 
of queries in which it appears, and its score might be high with respect to some queries and 

low with respect to some others. 
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3.6.3 Reduction of Domain 

It is very. important ~o u~derstand that that ifdI(t) = 0 when t E V - t"=:+ since P=:+(t) = 
O. That IS, all contrIbutIOns made by terms to summation I(P . P ) co 1 f . -=+ =:+. D me pure y rom 
can~ldate terms t E ~ ~ , rather than from terms t E V - V=:+. Therefore, a completely 
eqUIvalent score functIOn can be written as 

-+ when t E V'::' n vq 

which is called the association score of term t with query q. 

If the reader traces through all the discussions given in this chapter, it should become clear 
that the mathematical definition of the association score embodies the intuitive meaning of the 
definition, which is that the score involves the product of three essential factors: significance 
Q (t) of term t concerning query q, importance P=:+ (t) of term t concerning the relevant 
sample set 3+, and the discrimination information i(HI : H21t) = log (P=:+(t)/PD(t)) of term 
t concerning two opposite relevance hypotheses HI and H 2. 

Notice that function score I (t) also assigns scores to all query terms t E V=:+ n vq. In 
practice, as documents become longer, almost all the query terms can appear in the relevant 
sample documents (if they index documents in D). The function judges good terms among 
all candidate terms t E V=:+, even though some of them are query terms that are considered 
as good ones with respect to the query itself under Assumption 2. In practice, it might happen 
that the expansion terms t E Eq = sq - vq C V=:+ - V q obtain higher scores than query terms 
t E V=:+ n V q . This implies that the expansion terms might be more strongly associated with 
the query than query terms themselves. This may happen if the original query is not good 
enough, and relevant sample documents provided by the user contain completely relevant 
information concerning his information needs. 

Notice also that, when some query term, say tj, does not appear in any relevant sample 

documents, i.e., tj E V - V=:+ , using function scoreI (t) may cause the loss of the consideration 
of term tj, that is, scoreI(tj) would not exist (or precisely, scoreI(tj) = /'i,2' o log PD(tj) = 0) 
and term tj would be ignored, but such a possibility would be generally very rare in a practical 

query expansion process. 

3.6.4 About Positive Scores 

For some candidate term t E V=:+ , if scoreI (t) = Q(t)P=:+ (t)i(HI : H21t) < 0 then it must 
have i(HI : H21t) < 0 since Q(t) > 0 and P=:+(t) > 0, namely, term t contributes quantity 
-lifdI(t)1 for supporting the relevant hypothesis HI' If scoreI(t) = 0 then it must have 
i(HI : H21t) = 0 and/or Q(t) = 0, namely, term t is either unrelated to the relevance 
classification or insignificant concerning query q. Consequently, we limit ourselves to consider 
only those terms which obtain positive scores as probably selected terms. This implies that, 
in effect, the highest priority of the judgement of terms is given to the discrimination f~ctor 
i(HI : H21t) in the score function: if the candidate term t is asserted in favour of HI negatively, 
it is immediately discarded even though it might be 'significant' (i.e., it has a greater value 
Q(t)) and/or 'importance' (i.e., it has a greater value P=:+(t)), even if it is a query ternl. 
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.F~rtunately, in the practical context of IR, we always have P=.+ (t) > PD(t) for t E \ "='+. 

!hIS IS b~cause .t~e size of set 2+ (set to 12+1 < 121 = 10 in our experimental designs. for 
mst~n:e) IS neglIgIble compared with the size of the extremely large collection D. Therefore, 
denSIties P=.+ (t) are relatively much greater than densities PD (t) for all terms tEI/='+: 
P=+(t) l(h' 'd PD(t»> ere x» y enotes that number x is much greater than number y). P=.+(t) > 
PD(t) ensures that the discrimination factor i(HI : H21t) > 0, and that term t conveys the 
positive discrimination information in favour of HI against H2. Thus, when t E V='+ , we 
always have score] (t) > 0 which makes our experimental consideration become very simple. 

To sum up, let us say that we consider a term t whenever we find that it belongs to V='+. 
The problem can then be stated as that of computing term scores with function score (t) over 
~+. ] 

set V- . The terms can be sorted m decreasing order of their scores, which can be regarded 
as the extent of the association of terms with the context of the query. The terms with 
the highest positive scores should be given a high priority as selected terms t E sq because 
these terms make the greatest contribution to summation I(P=.+ : PD) among terms t E V. 
These selected terms should be regarded as strongly associated with query q, and as good 
discriminators to distinguish relevant documents from many non-relevant ones. 

3.6.5 Pseudo-Relevance Feedback Process 

In an operational situation where no relevance information is available in advance, we would 
proceed as follows. Let the sample set 2 be the top-ranked documents obtained from an 
initial (a previous) retrieval iteration. All documents d E 2 are treated as relevant, and V=. 
constitutes a source of candidate terms. We can also invoke the method proposed in this 
section to construct the score functions, with 2 instead of 2+, as discussed in the case of the 

relevance feedback process. 
Since terms in the top-ranked documents are more likely to be relevant to the context of 

the query than many other documents, it may be reasonable for us to consider the judgement 

of good terms from the top-ranked documents. 
However, in a pseudo-relevance feedback procedure, if the initial retrieval returns a low 

precision, the estimates of the discrimination measure or, the estimate of the probability dis­
tributions (see Section 3.7), may be poor due to limited and noisy training samples providing 
insufficient and unreliable relevance information. In this case, the expanded query cannot be 
expected to produce any further improvement in retrieval performance, and may even hurt 

the original query. 
Insofar as query expansion is the technique of enhancement of queries, it cannot give rules 

for construction of the sample set. The consideration by which we choose an effective sample 
set is a part of the art of designing a feasible and effective query expansion method. 

3.6.6 Examples for Estimating Q(t) 

In order to actually consider a more practical form of function score] (t), we here provide two 
examples of estimating Q(t) based on the different considerations on the importance of query 

terms. 

Example 3.6.1 As we know, determining the importance of each query term is generally 
rather difficult, and not all query terms have the same discrimination capability. For instance, 
it is generally assumed that query terms that are assigned to many documents are not very 
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useful in di~tinguishing the relevant documents from the non-relevant ones; whereas terms 
that occur III a few documents have a good chance of occurring in the relevant documents. 
Such an assumption, while not necessarily true for every term in every query, may be expected 
to hold for the vast majority of query terms. 

Basic~lly, the factors for measuring the importance of terms are the occurrence frequencies 
of terms III the query, and probably the document frequencies of terms. Thus, assume that 
query q is initially represented by Mq = [wq(t)] lxn' we can give the following initial weights 
for query terms: 

where 

wq(t) = Pq(t) x id!D(t) , 

when t E vq 
when t E V - vq 

is the a priori probability of term t being true in query q. 
Suppose that FD(t) < O.lIDI for all terms t E V holds3

. Thus, we can set Kl = II~II x log 10. 

It has Kl < mintEVq {wq(t)} since Pq(t) = ~,~f? > rlrr and id!D(t) = log )~~) > log oWb l = 

log 10. Then, for each candidate term t E V S+, we have 

{ } { 
!q(t)id!D(t) log 10 

Q(t) = max wq(t), Kl = max Ilqll '1Iqll}· 

That is, if term t E V s+ n vq then it is assigned a true weight fq(t~~:~D(t); if term t E V
s
+ - vq 

then it is assigned a fictitious weight liMlo. Notice that Ilqll is basically just a scale factor 

normalizing query q, and is independent of all terms t E Vs+. By eliminating the scale factor, 

we obtain the following (equivalent) score function: 

P=+ (t) 
scoreI(t) = max {!q(t)id!D(t), log 10}Ps+(t) log PD(t) 

-+ 
(t E V::: ). 

From this, we can easily see that, normally, the length of the query need not be taken into 
account in the I fV system since we consider only one query at a time. • 

Example 3.6.2 Consider a special case where all query terms are regarded as being equally 
important for the query. In this case, we can easily take wq(t) = 1 (when t E V

q
) and set 

Kl = 1 (when t E V s+ - vq). Clearly, it has Kl < mintEVq {wq(t)}. Then, for each candidate 

term t E V S +, we have Q(t) = 1 and 

-+ 
(t E V::: ). 

Thus, all candidate terms are scored by considering only their discrimination information. • 

3In the IiD model, terms with the document frequencies FD(t) > O.IIDI are removed (see Subsection 

8.2.2). Here number O.IIDI is immaterial, and depends on a specific model itself. 
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3.7 Estimation of Term Distributions 

The discrimination measure is the main component of the score function. Thus, the 
estimation of the discrimination measure is crucial for effectively identifying the potentially 
good terms from many others. Therefore, before finishing this chapter, we will discuss this 
important estimation issue. 

It is clear that the discrimination measure ifd[(t) in Definition 3.4.1 is uniquely determined 
by its two arguments PR(t) and PJl(t). Thus, the issue of the estimation is centred round the 
estimation of its arguments. Based on Shannon's basic ideas that the probability distributions 
should be established before the discrimination information of terms can be considered. Thus, 
we now concentrate on mathematical discussions of these distributions. A general framework 
for the estimation is established. Some estimation schemes are, as examples, elaborated to 
embody the arguments in the discrimination measure. 

The term probability distribution concerning a certain document set, Db can generally 
be estimated based on the representation, MD

k
, of the set, which is in turn estimated based 

on the representation, M d , of document d in the set. Set Dk may consist of just a few sam­
ple documents, or of all of documents in the collection; whatever the set may be, depends 
on a specific application. The representation of the document set plays an essential role in 
determining retrieval effectiveness. As we know, the accuracy and validity of effective rep­
resentations for individual documents and document sets has long been a crucial and open 
problem. This is because, as mentioned before, it is very difficult to obtain sufficient statistics 
for the estimation of the amount of information contained in terms, and for the indication 
of the semantic relations between terms. Almost all existing probabilistic methods suffer 
from the same problem. This thesis does not give rules for the representations, which will 
be regarded as a significant subject for further study. Instead, we only show some simple 
estimation methods, and the corresponding experimental investigations on the effectiveness 

of the methods will be discussed in Chapter 8. 

3.7.1 Estimation of MDk 

In this thesis, the general form of the representation, MDk [WDk (t)] lxn' of document set 

Dk is defined as 

dEDk 

where XDk (d) is a function used to reflect the importance of document d concerning set Dk · 

For instance, for each d E Db we may set 

XDk (d) = 1 and X Dk (d) = sim(d, q). 

Function XD (d) = 1 is the most common one, which indicates that all documents in Dk 
is treated as eq~ally important concerning Dk. This function is needed when one .has ~o 
particular reason to emphasize anyone of documents in Dk · A typical exa~ple for usmg thls 
function is the situation where we consider documents in the whole collectlOn D. 

In order to design an effective discriminant measure through the relevance feedback, the 
relevance information obtained from the initial retrieval iteration may be taken into account 
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by incorporating the information into representation MDk to estimate distribution FDic (t). 
Thus, function XDk (d) = sim(d, q) is introduced to depict the importance of documents by 
their similarity with query q (the choice of the similarity measure sim( d, q) depends on a 
specific model itself). An example for this is the case where the relevant sample set :::;+ is 
considered, and we say that one document d E :::;+ is more important if it obtains higher 
similarity than others. 

Thus, we can see that the component, WD k (i), of representation MDk is the summation 
of weights Wd(i), multiplied by the importance X

Dk 
(d) of the corresponding document d, of 

term i E V d over d E D k. It is clear that term weight Wd(t) concerning a given document d 
is essential in component WD k (i), which we discuss below. 

3.7.2 Estimation of Md 

The different recall4 and precisions requirements may favour the different combination of 
factors, that contain recall- and/or precision-enhancing components, for weighting terms of 
documents. Some such factors and their combinations have been studied experimentally 
for representing the statistical importance of a term concerning the individual documents, 
[70, 164] for instance. We here discuss some common important factors. 

Frequencies of Terms 

In practice, what we have are only observations, i.e., the statistical frequency of terms within 
documents. Thus, the factor affecting the importance of a term i concerning a given document 
d is, first and foremost, its frequency of occurrence within the document: 

It is clear that terms frequently appearing in individual documents are useful as a recall­
enhancing device. The term frequency Jd(i) considered as a component of weighting functions 
of terms has been used for many years in automatic indexing environments [119,161,167,207]. 

Function log Jd(i) is a variety of frequency Jd(i), and might be necessary to accord with 
other functions in scale. In particular, log Jd(i) is needed when it is incorporated into other 

functions with log. 
Function Pd (i) is the normalization of frequency J d (i), i.e., it considers the length, II dll = 

~tEVd Jd(i), of document d. Generally, the importance of a term has two aspects: 

_ the importance in representing a specific document. 

For instance, dl = {iI, i2, i2, i3}, 

thus we may say that term i2 is more important than others for document d 1· 

_ the importance in representing the different documents. 

. ) _ fd 1 (t2) _ ~ 
For mstance, dl = {il,i2,i2,i3}, andpdl(i2 - Iidill - 4' 

) 
fd2(t2) _ 3 

d2 = {iI, i2, i2, i2, i3, i4, is, i6, h, i8, ig, ilO}, and Pd2(i2 = lj(:8\ - 12' 

4 Recall-the proportion of relevant documents actually retrieved in answer to a query. 
5 Precision-the proportion of retrieved documents actually relevant to the query. 
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thus we may say that term t2 is more important for document d1 than document d2. 

Normalization of the term frequency in some sense moderates the effect of high-frequency 
terms. This point is rather important because a term t2, for instance, with fd2 (t2) = 3 > 
2 = f dl (t2) should not be viewed as more important for document d2 than for document 
d1 . In other words, the importance of a term in a specific document would depend highly 
on the 'percentage' that this term possesses over the total sum of frequency of terms in the 
document (i.e., II dll)· The higher the percentage, the more important the term would be for 
the document. 

On the other hand, when some longer document involves a large number of terms, the 
chance of term matches between the document and the query would be rather high, and hence 
the document has a better chance of being retrieved than other short ones. Thus, the use of 
the normalization factor can make all documents be treated equally for retrieval purposes. 

Inverse Document Frequency of Term idfD(t) 

Besides the functions of term frequency given above, another factor that can also affect the 
importance of terms concerning a given document, and thus should be incorporated into the 
term weights, is the information of the specificity of a term concerning the whole collection. 
A well-known one is the inverse document frequency: 

. FD(t) 
'tdfD(t) = -log IDI ' 

which states that the specificity of term t is inversely proportional to the document frequency, 

FD(t), of the term. 
Thus the more documents in which the term occurs, the less specificity the term has. , 

This formula was implemented in some experiments [187] as 

. * FD(t) 
'tdfD(t) = -log , 

maxFD 

where maXF = max{FD(t); t E V} was the maximum document frequency among all terms. 
We can h~nce see that the inverse document frequency provides a measure of the specificity 

of a term. The measure assigns higher values to more specific terms that tend to be capable 
of isolating the few relevant documents from the many non-relevant ones. Thus, the inverse 
document frequency can be viewed as a precision-enhancing device. 

The inverse document frequency weighting was initially proposed by Sparck Jones [185]. 
She justified this weighting scheme based on the observation that ter~ di,stribution h~d the 
similar Zipf shape [240]. Robertson [148] pointed out however that Zlpf s argu~e~t is ~ot 
intended as a theoretical justification for the weighting function, and the only JustlficatlOn 

suggested is retrieval performance. . . .. . 
The use of document frequency for representing term importance is a slmplif!mg deVice 

which is generally, but not absolutely, valid. A more accurate indication of term importance 
may be obtained by using the distribution of the document frequency of term across all 

documents of the collection, which is discussed below. 
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Inverse Noise of Term intD(t) 

An alternative function, noise of term [167 171] can be d t t h " 
t . 11' "use 0 cap ure t e unspeClfiClty of a erm concernmg co ectlOn D: 

noiseD(t) = H(PD(dlt)) = - L PD(dlt) log PD(dlt), 
dED 

where 

PD(dlt) = fd(t) = fd(t) 
LdED h(t) fD(t)' 

That is: noiseD(t) is the entropy of conditional probability distribution PD(dlt). From the 
propertIes of the entropy function, we have the following conclusions. 

- If term t Occurs in only one document, that is, for some fixed k (1 < k :s; N), it has 

then the noise of term t will receive zero. 

- If term t is uniformly distributed over a certain document set D t ~ D (D t is the set of 
documents in which term t appears, obviously, FD(t) = IDtl), that is, 

then the noise of term t will be: 

when d EDt 

when d E D - Dt , 

H(PD{dlt)) = - ,LPD{dlt)logPD(dlt) = - I: 1 log_l_ 
dED dED

t 
FD(t) FD(t) 

1 1 
= -IDtl FD(t) log FD(t) = log FD(t). 

- Particularly, if term t is uniformly distributed over the whole collection (i.e., Dt = D), 
we have, 

1 
PD(d1lt) = PD(d2 It) = ... = PD(dNlt) = IDI 

and the noise of term t will arrive at the maximum log IDI. 

It is very clear that entropy H(PD(dlt)) gives the degree of uncertainty of term t when 
it is used to index collection D. Namely, measure noiseD(t) offers the extent of the lack of 
concentration of the occurrence of term t, and thus it emphasizes the uselessness of those 
terms that are in agreement with probability PD(dlt) for individual documents in D. 

It is worth noticing that the specificity of term t is in inverse relation to its noise. Thus, 
the specificity of term t may be computed by [70]: 

intD(t) = noisemax - noiseD (t), 
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where noisemax = max {noiseD(t)/t E V} i e the' . 
measure of int D (t) is called inverse noise 'of' t~rm t m~xlmum nOIse among all terms. The 
values to those terms that are not concentrated in . £ ecaus~ measure intD(t) assigns low 
are prevalent in the whole collection it should be a ew pa~tlcular documents, but instead 
and hence, as measure idj (t) b th h f an a~~ropnate measure of term specificity", 

D , e oug t 0 as a preclslOn-enhancing device. 

Example 3.7.1 Let D - {d d d d} 
d ' - 1, 2, 3, 4 , Suppose h = computer t2 = information t = 
~vergence, and so on. " 3 

D 

1 200 
3 000 
1 110 
2 100 

, 1 1 3 31 1 2 2 
nmseD(tl) = --log - - -log --log - - -log-

7 7 7 77 7 7 7 

o 
o 
o 
o 

= -0.1429 log 0.1429 - 0.4286 log 0.4286 - 0.1429 log 0.1429 - 0,2857 log 0.2857 

= 0.1429 x 1.9456 + 0.4286 x 0.8472 + 0.1429 x 1.9456 + 0.2857 x 1.2528 

= 0.2780 + 0.3631 + 0.2780 + 0.3579 = 1.2770, 
, 22001111 

nmseD(t2 ) = --log- - -log- - -log- - -log-
44444444 

= -0.510g 0.5 - 0.5 log 0.25 = 0.5 x 0.6931 + 0.5 x 1.3863 

= 0.3466 + 0.6932 = 1.0398, 

. 00001100 
nmseD(t3) = --log - - -log - - -log - - -log - = 0 0000 

11111111' . 

Thus, if we take noisemax = 1.2770, then the specificity of terms might be computed by 

intD(tI) = noisemax - noiseD(t1) = 1.2770 - 1.2770 = 0.0000, 

intD(t2) = noisemax - noiseD (t2) = 1.2770 - 1.0398 = 0.2379, 

intD(t3) = noisemax - noiseD(t3) = 1.2770 - 0.0000 = 1.2770. 

Obviously, the occurrence of term divergence is more important for the subject of the docu­
ment than the occurrence of term computer. • 

The Relationship Between idjD(t) and intD(t) 

A common basic idea used in both measures idfD(t) and intD(t) is that if term t has a 
skewed document frequency distribution over D, then term t can be expected to be a good 
discriminator for distinguishing one document from many others [167]. However, the point of 
these two measures is different: measure idjD(t) ignores the consideration of term frequencies 
within documents, and thus terms with the same document frequency will be treated equally 
by assigning the same weights. In contrast, measure intD(t) takes into account both term 
and document frequencies, and hence it is very likely that terms with the same document 
frequency are given different weights. 
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In o:-der to further ~nvestigate the relationship between measures idf D (t) and in t D (t), let 
us consIder an alternatIve measure, very similar to intD(t), suggested by Wong & Yao [224}: 

int"D(t) = 1 _ noiseD(t) , 
Hmax 

wher~ Hmax is denoted as the maximum entropy. According to the properties of the entropy 
functIOn, the value of Hmax for entropy function H(PD(df t )) should be log IDI for a collection 
of IDj documents. Thus, we can write down 

int*D(t) = 1 _ noiseD(t) 1 ( 
log IDI = log IDI log jDI- noiseD(t)), 

which is completely equivalent to 

int'D(t) = log IDI- noiseD(t) 

since factor loglDI is a positive constant independent of any particular term. We can state 
that both measures idfD(t) and intD(t) are special cases of measure int'D(t). 

On one hand, in practice, maximum Hmax = log IDI would never be attained simply 
because, in practice, we usually remove all stop-words (even some general terms with very 
high document frequencies, e.g., FD(t) > O.lIDI in our experimental setting), which implies 
that there is no term that would appear in all documents. It is clear that generally Hmax > 
noisemax for every term t E V. When the maximum entropy Hmax is reasonably substituted 
by the maximum noise noisemax , we obtain int'D(t) = intD(t). 

On the other hand, assume now that documents are represented by the binary weights of 
terms. In this case, term frequency information would be ignored, and each term t E V will 
correspond to a distribution, 

when d E D t 

when d E D - Dt , 

which is the same as the distribution derived from the case that term t is uniformly distributed 
over D t · From the above discussion on the properties of the entropy function, it can readily 
be seen that int'D(t) = log IDI-Iog FD(t) = idfD(t). More generally, as pointed out by Wong 
& Yao [224], it is explicitly shown that idfD(t) can be derived from int'D(t) by assuming that 
the document frequency of a term is uniform within the corresponding set D t . 

We can now interpret measure idfD(t) in the information theoretic sense. Notice that, 
with the binary representation, it has logFD(t) = H(PD(dlt)). Thus, as mentioned above in 
the context of the entropy function, log F D ( t) measures the degree of uncertainty of term t 
when it is used to index collection D. Clearly the larger the number of documents in which 

. ' FD(t) b the term t appears, the larger the uncertamty that term t causes. Further, log lDI can e 

thought of as relative uncertainty, and idfD(t) = log )~~) can be regarded as a measure of 
certainty. 

In addition, it may be worth mentioning the following formula proposed by Salton & 
McGill [167]: 

intD'{t) = log (L fd(t)) - noiseD(t) = log fD(t) - noiseD(t). 
dED 
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It was shown that thi~ measure produces inferior performance compared with the id!D(t) 
measur~ [167]. We pomt out that this measure may have a problem for the application in 
a practIcal IR context, and attempt to explain the reason why an inferior performance was 
caused by this measure by an example. 

Consider Example 3.7.1, we can easily compute 

intD'(tl) = fD(h) - noiseD(tl) = log 7 -1.2770 = 1.9460 - 1.2770 = 0.6690, 

intD'(t2) = fD(t2) - noiseD(t2) = log 4 -1.0398 = 1.3863 - 1.0398 = 0.3465, 

intD'(t3) = fD(t3) - noiseD(t3) = log 1 - 0.0000 = 0 - 0.0000 = O. 

These results are very different from the corresponding results obtained in Example 3.7.1 in 
which measure intD(t) was applied. For this measure, a term with a larger total frequency 
f D (t) will obtain a higher term weight. For instance, term tl appearing in all documents 
receives the greatest weight, whereas term t3 occurring in only one document (so it should 
be the most specific) gains least weight zero. Such results are not acceptable for an effective 
term weighting scheme. This problem is absent in the more general measure int'D(t). Thus, 
this may explain the reason why the idfD(t) weighting method, as a special case of int'D(t), 
may produce a superior performance than that achieved by the intD'(t) weighting method. 

3.7.3 Combination Schemes 

All functions discussed above can be combinatorially considered to form term weights for 
representing documents and the document sets considered. Generally, the term weights should 
be designed to be able to highlight the natures of the sets themselves. 

Once term weights Wd(t) for the individual documents in corresponding sets 3+ and D, 
and functions X""+ (d) and XD (d), are given, components W~+ (t) and W D (t) of representations 
M~+ and MD can be easily obtained, respectively. The different combinations will produce 
the different estimations of P~+ (t) and PD (t), and then generate the various score functions. 

For instance, consider set 3+, if we take Xs+(d) = sim(d,q) and Wd(t) = log!d(t), then 
the component of representation M~+ can be written down 

W~+(t) = L Xs+(d)Wd(t) = L sim(d,q) (log!d(t)), 
dE~+ dE~+ 

which indicates the importance of term t E V concerning set 3+. 
Also, consider collection D, if we take XD (d) = 1 and Wd(t) = (log !d(t) )id!D(t), then we 

have component of representation MD as 

IDI 
WD(t) = LXD(d)Wd(t) = L (logfd(t)) log FD(t) , 

dED dED 

which indicates the importance of term t E V concerning collection D. 
Salton & Buckley [164] in their studies pointed out that the 'best' terms for documen~ rep­

resentation are those which can distinguish certain individual documents from the remamder 
of the collection, and in this case, should have high term frequencies but low inverse document 
frequencies. Thus, a reasonable measure of term importance may be obtained by product 
fd(t)idfD(t) [171, 172]. Notice that, for d E D, we may adopt Wd(t) = (lo.g!d(t))?'I~ID(~) 
instead of Wd(t) = fd(t)idfD(t) since it may be necessary for fd(t) to accord WIth log FD(t) III 

scale. 
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I Schemes I X~+ (d) - sim(d, q) I xD (d) - 1 I 
I scheme-a I Wd(t) - (log fd(t) )intD(t) I Wd(t) - (log fd(t) )intD(t) I 
I scheme b I Wd(t) - log fd(t) I Wd(t) - (log fd(t) )intD(t) I 
I scheme-c I Wd(t) - fd(t)intD(t) I Wd(t) - fd(t)intD(t) I 
I scheme d I Wd(t) - fd(t) I Wd(t) = fd(t)intD(t) I 
I scheme-e I Wd(t) = (log fd(t) )idfD(t) I Wd(t) = (log fd(t) )idfD(t) I 
I scheme-f I Wd(t) = logfd(t) I Wd(t) = (logfd(t))idfD(t) I 
I scheme-g I Wd(t) - fd(t)idfD(t) I Wd(t) = fd(t)idfD(t) I 
I scheme-h I Wd(t) = fd(t) I Wd(t) = fd(t)idfD(t) I 

Schemes I X~+ (d) = 1 I XD (d) = 1 I 
scheme-i I Wd(t) = Pd(t) I Wd(t) = fd(t)intD(t) I 
scheme-j I Wd(t) = Pd(t) I Wd(t) = fd(t)idfD(t) I 
scheme-k I Wd(t) = fd(t) I Wd(t) = fd(t)intD(t) I 

I scheme-I I Wd(t) = fd(t) I Wd(t) = fd(t)idfD(t) \ 

I scheme-m I Wd(t) = fd(t) I Wd(t) = fd(t) I 
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Some simple examples of combination schemes of the representations M=.+ = [w=.+(t)] lxn 

and MD = [wD(t)Lxn are listed in the tables above. 

3.7.4 Estimation of P=.+(t) and PD(t) 

Assume that, for a given document set Db representation MDk = [WDk(t)] lxn has been 
obtained. Once we have quantities WDk (t) for all terms t E V, it will be simple to express for 

distribution PDk (t): 

when t E VDk 

when t E V - V Dk , 
(3.2) 

which is clearly a probability distribution over V. It is easily seen that PDk (t) > 0 for every 
t E VDk. Obviously, VDl ~ VD2 if Dl c D2, and PDl (t) « PD2 (t) when t E V (since 
PDl (t) = 0 whenever PD2 (t) = 0). This ensures that summation I(PDl : PDJ always exists. 

Particularly, for Dl = 3+ and D2 = D, we can write representations M=.+ = [w=.+(t)] lxn 

and MD = [WD(t)] lxn according to the foregoing discussions, and estimate distributions 

P=.+(t) and PD(t) in terms of expression (3.2). That is, 

{ 

ws+(t) t E V 3+ WD(t) 
P=.+(t) = LtEVs+ ws+(t) ~ PD(t) = ~ (t) t E V. o t E V - V.::. + , tEV WD 

(3.3) 

Clearly, it has 3+ C D, and so summation I(P=.+ : PD) exists. 
Therefore, we can estimate P=.+ (t), for instance, for scheme-f, by 

w=.+(t) ~dE='+ sim(d,q) (logfd(t)) 
P:::+ ( t) = = [ . ) ( f ( ))] 1 ~ ~tEVS+ W=.+ (t) ~tEVs+ ~dE='+ s~m(d, q log d t 

WD(t) ~dED (logfd(t))idfD(t) 
PD (t) = = [ ( ) ( )] , ~tEV WD(t) ~tEV ~dED log fd(t) idfD t 
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which s~tisfies that P=:+(t) > 0 for every t E V=:+ and PD(t) > 0 for every t E V. 
N~t~ce that in the 'LfV model the postulates of P~+(t) > 0 and PD(t) > 0 for even­

t E V~ C V ~re not excessive. They are necessary and the least of conditions for applyin~ 
the dIrected d~vergenc.e I (P=:+ : PD) to construct the score function score I (t). Because 
vocabulary V IS a fillIte tuple, these postulates are not infeasible and are practical in a 
realistic IR context. 

Fin~~ly, ~e ~oul~ like to point out that the discrimination information gained from the 
probabIlIty dlstnbutIons estimated from the (relevant) sample set may not be correctly mea­
sured for each term. This fact should not be taken as a major criticism of any formal model 
because almost all feedback methods would suffer from the same problem of sampling [60, 226]. 

3.8 Summary 

This chapter describes the application of the basic concept of directed divergence to the 
technique of automatic query expansion. The rationale of applying logarithmic measure of 
information to measuring the discrimination information contained in terms is interpreted. 
Some important points of this chapter are now summarized as follows. 

, It is essential and important for any divergence measure to satisfy two criterion which 
were given in Section 3.3. Under these two criteria, the extent to which terms con­
tribute to the expected divergence can be measured, and the divergence measure can 
be independent of the addition or removal of terms which are unrelated to the relevance 
classification. 

, Generally, it is accepted that terms with higher power of discrimination should be 
considered as more important. Statistically, terms which are thought of as having 
higher power of discrimination tend to contribute more to the expected divergence than 
others. It appears that the terms with more concentrated distribution in a certain 
document set, i.e., with greater variant probabilities within the different document sets, 
would make a greater contribution to the expected divergence and, therefore, should be 
viewed as statistically containing more discriminant information. 

, The information of terms for discrimination is a fundamental issue in IR. The discrim­
ination factor i(Hl : H21t) is carefully examined, and is regarded as a measure of the 
amount of the information contained in term t for discrimination in favour of H 1 against 
H 2 . The discrimination measure ifdI(t), a basis for the methods proposed in this thesis. 
is formally introduced. 

, The concept of the association of terms with a query plays a central role in the construc­
tion of the score functions for query expansion. The association function is formally 
defined. We pointed out that the Association Hypothesis due to Van Rijsbergen ['lOi] 
is an important underlying hypothesis theoretically in IR. A more general hypothesis, 
called the Generalized Association Hypothesis, is introduced based on the Association 
Hypothesis. The difference between these two hypotheses is discussed. 

, The construction of a score function is described for judging good terms. A general form 
of the construction indicates that the mathematical definition of the association score 
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involves three essential important factors: significance Q(t) of term t concerning query 
q, importance P2+(t) of term t concerning relevant sample set, and the discrimination 
information i(Hl : H2\t) of term t concerning two opposite relevance hypotheses. There 
may be many ways to construct the score function by the different methods to estimate 
Q(t), P2+(t) and PD(t). 

~ The estimation of distributions P2 + (t) and PD (t) is crucial for effectively distinguishing 
the potentially good terms from many others. Some estimation schemes are elaborated 
to embody the arguments of the discrimination measure. A preliminary study is given 
from general to specific. Some factors are combinatorially considered to form term 
weights for representing the different documents sets, thus producing different estima­
tions of the term probability distributions, and generating the various score functions. 

It should be emphasized again that, in order to speak of the discrimination information 
of terms, we should regard the arguments of the divergence measure, i.e., the probability 
distributions involved, as defined on the same probability space. Thus, we say that both 

=+ distributions P2+ (t) and PD(t) are over V even though P2+ (t) = 0 for all terms t E V - V- . 
We will see that this point is the major premise of all discussions given in the next chapter. 

In addition, I(PR : PRJ is not symmetric in arguments PR(t) and PR(t). It may be 
desirable to have a symmetrical divergence measure which is meaningful in terms of the 
information gain. Symmetric divergence measures will be discussed in the following chapters. 



Chapter 4 

AQE Based on Divergence 

This chapter is mainly concerned with discussion of a formal method, based on the basic 
concept of divergence, for automatic query expansion. After discussing the divergence measure 
concisely in Section 4.1, in Section 4.2, we introduce a relevance discrimination measure 
based on the concept of divergence, and discuss a severe application problem that arises: the 
condition of absolute continuity of probability distributions may not be satisfied; this problem 
must be solved if the divergence measure is to be applied to automatic query expansion. In 
Section 4.3, a possible way of solving the problem is suggested, and the solution is carefully 
discussed in general form. Then, a modified discrimination measure is formally defined. In 
Section 4.4, we give the concept of the association of terms with the context of the query 
based on the modified discrimination measure. In Section 4.5, we focus on the construction of 
the score function, and address the issue of the reduction of the domain of the score function. 
In Section 4.6, we make further mathematical discussions about the existence of the modified 
discrimination measure by providing concrete forms of modifying probability distributions. 
Two methods of modification are described. 

4.1 Information Gain J(PR : PrJ 

Let HI and H2 be two opposite hypotheses that term t is drawn from sets Rand R, respec­
tively. Assume that PR(t) and Pfl(t) are term probability distributions over (V, 2V) under the 
hypotheses. Then, divergence between hypotheses HI and H2 due to Kullback & Leibler [107] 

is defined by 

J(PR, Pfl) = I(HI : H2\HI) - I(HI : H2\H2) 
= I(HI : H2\HI) + I(H2 : HI\H2) = I(PR : Pfl) + I(Pfl: PR). 

It may also be interpreted as the expected information for discrimination in favour of. Hl 
against H2, given HI, plus the expected information for discrimination in favour of H2 agamst 

HI, given H 2 · 

If PR(t) and Pfl(t) are absolutely continuous with respect to each other, then J(PR, Pk) < 
00, and can be expressed as 

PR(t) 
J(PR,Pfl) = L (PR(t) - Pfl(t)) log P-(t)' 

tEl' R 

74 
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which can be used to measure the expected divergence of distribution Pk(t) from distribution 
PR(t), plus the expected divergence of distribution PR(t) from distribution Pk(t). In appli­
cations of IR, J (PR, Pk) can also be interpreted as a measure of the difference between the 
information contained in PR(t) and that contained in Pk(t) about PR(t), and vice versa. 

It is shown that J(PR, Pk) > 0 with equality if and only if PR(t) = Pk(t) for all t E '-. 

There is no expected discrimination information if the term distributions are identical. 
It can be seen that J(PR, Pk) is symmetric with respect to PR(t) and Pk(t). In practical 

IR, it may sometimes be desirable to be consistent in measuring the difference between two 
distributions. Measure J(PR) Pk) is explored so as to produce a symmetric divergence mea­
sure when we have no particular reason to emphasize either PR(t) or Pk(t). Thus, it may be 
more natural and reasonable for us to think of the divergence as a 'distance' measure between 
distributions. 

4.2 Discrimination Measure ifdJ(t) 

4.2.1 Definition of Discrimination Measure 

In order to measure the extent of the contributions made by individual terms to the divergence, 
similar to the discussion of the directed divergence, let us write the divergence as the sum of 

items, 
J(PR, Pk) = L ifdj(t), 

tEV 

in which, each item, 

PR(t) 
ifdj(t) = (PR(t) - Pk(t)) log Pk(t) 

= P(tIHI)i(HI : H21t) + P(tIH2)i(H2 : HIlt) 

= ifdh2 (t) + ifdI21 (t), 

indicates 'information for discrimination' for term t. 
Recall that for the non-symmetric direct divergence I(PR, Pk), each of its items, ifdI(t), 

can be positiv~ or negative in sign. In contrast, the ite~s. of t.he symmetric divergence 
J(p p-) are always non-negative. The non-negativeness IS ImplIed by PR(t) - Pk(t) > 0 

R, R PR(t) . 
and log ~~m > 0 if PR(t) > Pk(t), and by PR(t) - Pk(t) < 0 and log Pil(t) < 0, otherwIse. 

We ca~ make a formal definition as follows. 

Definition 4.2.1 Let PR(t) = P(tlHd and Pk(t) = ~(tIH2) be discrete probability dis­
tributions over (V, 2 V), and derived from sets Rand R, respect~vel~. Assume th~t ~ot~ 
PR(t) « Pk(t) and PR(t) «Pk(t) hold when t.E V. The informatIOn III term t for dIscnmI-

nation on two opposite hypotheses HI and H2 IS defined by 

PR(t) 
ifdj(t) = (PR(t) - Pk(t)) log Pk(t) 

= (P(tIHd - P(tIH2)) . i(HI : H21t) (t E 1-). 

which is referred as to the (relevance) discrimination measure of terms. 
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4.2.2 Interpretation of Discrimination Measure 

It is interesting to notice that two sub-items ifdI (t) and I· cd (t) f' cd (t) 1 .. ~ ., . . . '12 1II2l' 0 111 J are a \\d.\:-; 

OpposIte In sIgn. We can show this through the following simple theorem. . 

Theorem 4.2.1 For an arbitrary term t E V satisfying PR(t) . Pk(t) > 0, we always have 

(1) ifdh2 (t) = 0 if and only if PR(t) = Pk(t) , i.e., ifdI21 (t) = 0; 

(2) ifdh2 (t) > 0 if and only if PR(t) > Pk(t), i.e., ifdI21 (t) < o. 
Proof. If PR(t) =I- 0 and Pk(t) =I- 0, then 

(1) ~fdI12 (t) = 0 if and only if log ;;m = 0, i.e., PR(t) = Pk(t), i.e., log ;~m = 0, i.e., 
IfdI21 (t) = O. 

(2) ifdI12 (t) > 0 if and only if log ;;m > 0, i.e., PR(t) > Pk(t), i.e., log ;R~~~ < 0, i.e., 
ifdI21 (t) < O. R 

The proof is complete. 

Consequently, similar to the discussion given in Section 3.4, we have the following inter­
pretations. 

I&' If PR(i) = Pk(t), then the discrimination factors i(HI : H 21t) = i(H2 : HIlt) = 0, and 
term i gives us no discrimination information about the relevance classification, and the 
corresponding quantity ifdJ(i) = O. 

I&' If PR(i) > Pk(t), then the discrimination factor i(HI : H21t) > 0, term t contributes 
quantity ifdh2 (i) = lifdh2 (i)1 for supporting the relevant hypothesis HI. Whereas 
the discrimination factor i(H2 : HIli) < 0, term t contributes quantity ifdhl (t) = 

-I ifd hi (t) I for supporting the non-relevant hypothesis H 2· 

Thus, the positive quantity ifdJ(i), which is an algebraic sum, is dominated by its 
positive sub-item ifdI12 (i). The algebraic sum, the difference between the information 
in i in favour of HI and the information in t in favour of H 2, indicates that term t 
contributes quantity ifdJ(i) for supporting HI· 

I&' If PR(i) < PR(i), then i(Hl : H21i) < 0, term t contributes ifdh2(t) = -lifdh2(t)1 for 
supporting HI. Whereas i(H2 : HIli) > 0, term t contributes ifdI21 (t) = lifdlz1 (t)1 for 
supporting H2. 

Thus, the positive quantity ifdJ(i) is dominated by its positive sub-item ifdlz1 (t). The 
algebraic sum indicates that term i contributes ifdJ(t) for supporting H2 · 

4.2.3 About Absolute Continuity 

Notice that ifdJ(i) = 0 when PR(i) = PR(i) =I- 0 (it also has ifdJ(i) = 0 log § = 0 when 
PR(i) = PR(i) = 0). We can thus see that the contribution, to the expected divergence, 
of terms unrelated to the relevance classification, will be zero. Thus, divergence J(PRl Pk) 

satisfies Criterion 2. 
It should be emphasized especially that in order to speak of the discrimination information 

of terms in the sense of the divergence, one must regard distributions PR(t) and Pk(t) to be 
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absolutely continuous with respect to one another. The continuity ensures that ifd (t) < 
for all terms. t E V, t~at summation J(PR, PiTJ exists, and that Criterion 1 can be s~tisfied~ 

In. fact, If we desIre that _both PRJt) « PiT.(t) and PiT.(t) « f'R(t) hold simultaneously, 
then It must have VR C VR and VR C VR that is VR - VR Ob· I . ' 

R R . .. -.. . -, , - . VlOUS y, reqUIrement 
~ = V. IS a ngld restnc~wn that IS very difficult to satisfy in realistic IR applications. It 
IS a crucIal problem that wIll be solved in this chapter. 

4.3 Solution 

Let. ~+ ~ 0. be .the set of relevant sample documents. Let P3+(t) and PD(t) be the 
probabIlIty dlstnbutlOns over (V,2V) as given in Eq.(3.3). 

O~viously, V 3
+ C V. If V 3+ = V then P3+(t) «PD(t) and PD(t) «P3+(t) when t E V, 

and dIvergence J (p3 +, PD ) is meaningful. We can therefore directly apply J (p
3

+, P
D

) to 
generate the discrimination measure 

(t E V), 

and use the measure as a device to derive the association of terms with the query. 
Without losing generality, let us consider V 3+ C V, i.e., V 3+ is a proper subset of V. 

In this case, P3+(t) « PD(t) but PD(t) ¢:. P3+(t) when t E V, because PD(t) of. 0 but 
P3+(t) = 0 for t E V - V

3
+. Such a case results in ifdJ(t) = (0 - PD(t)) log FvO(t) = +00 for 

t E V - V 3
+. On the other hand, notice that ifdJ(t) is meaningful, and so ifdJ(t) < +00, 

for all t E V 3+. Consequently, ifdJ(ti) < ifdJ(tj) = +00, where ti E V 3+ and tj E V _ V 3+, 
and we under no circumstances say that the contributions to 'summation' J (p3 +, PD) come 

mostly from terms ti E V 3 + mathematically. In fact, because J (p3 +, PD ) is meaningless (the 
summation does not exist at all), and because quantities ifdJ(tj) = +00 cannot be compared 
with each other for all terms tj E V - V 3 + (thus, Criterion 1 is not satisfied), it does not make 
sense to generate the discrimination measure ifdJ(t), and then compare the extent to which 
each term contributes to J(P3+, PD). 

4.3.1 Solution of Problem 

It is almost impossible to have V 3+ = V, i.e., P3+(t) « PD(t) and PD(t) « P3+(t), in a 
practical IR context. As mentioned before, P3+ (t) and PD (t) naturally characterize set :=:+ 
and collection D, respectively. Thus one way of finding the solution to the problem might be 
to change the characterizations conditionally. 

More precisely, a direct way to solve the problem is to modify distributions P=.+ (t) a~~ 
PD(t) to respective distributions P~+(t) and Ph(t), which are over some domain V' ~ V= 
(where it mayor may not have V' = V). The essential aim of the modification is to produce a 
meaningful summation J (p~+, Ph) so it becomes possible for the comparison of its individual 
items over V' (i.e., Criterion 1 can be satisfied). 

In order to make the modification profitable in the sense that the discrimination informa­
tion of the candidate terms t E V 3 + can be captured, we wish that the modified distributions 
characterize the candidate terms in the same way as the original distributions do. If this can 
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be achieved then P;+ (t) and PD' (t) can faithfully efl t th . £. . . (_ r ec e same m ormatIOn as contamed 
m P~+ t) and PD(t), respectively, for the candidate terms. 

Also, we ~ish that the modified distributions are capable of highlighting the contributions 
made by candIdate terms to the modified divergence that is the co t 'b t' d b . I -::;-+ ' , n n u Ions ma e y terms 
m V - V~ should not 'overwhelm' the ones by terms in V~+ If thO . t b h' d . . . . IS pom can e ac leve 
then ~t IS ~ppropna~e for u~ to give a mathematically reasonable explanation that the score 
functIOn wIth domam t E V can be reduced to having the domain V~+. 

All of these statements on the modification imply that Pi-. (t) and pI (t) h ld t' f d' . ,::.+ D S ou sa IS y 
sO.me con 'ltwns. Before we are able to give the conditions, a 'crux' term, denoted by to, 
WIll playa key role throughout the discussions given below, and needs first be set. In the 
later s.tag~s, we will p.rove t~a~ term to can be ignored in a practical IR environment. ('Pay 
attentIOn In order to Ignore. Make concession for the sake of future gains'. Such thoughts 
may b~ helpful to un~~r~tand t~e strategy we will take for the crux term.) 

. lt IS clear t,;:;t ~~ Is.a fimte set, and that ifdJ(t) is entirely meaningful over V~+. So 
{lfdj(t) It E V- } IS a fimte set, and we are able to take an argument minimum over ~<=+. 
Let term to be such an argument minimum, that is, 

which_is a minimal meaningful value amongst all of the meaningful values ifdJ(t) for terms 
t E V='+. 

Now, we can give the conditions that P~+ (t) and P1 (t) should satisfy as follows. 

(Cl) P~+(t) and P1(t) are absolutely continuous with respect to one another when 

terms belong to domain V' :2 V~+; 

(C2) Except only one term to, P~+(t) and P~+(t) are identical in domain V:=:+ - {to}, 

so are P1(t) and PD(t); 

(C3) The extents of the contributions made by term to and all terms t E V' - V:=:+ to 
divergence J (p~+, P1) can be proven to be never greater than the minimal meaningful 

value ifdj(to). 

Obviously, Condition (Cl) is the minimum requirement enabling the modified distribu­
tions to make the corresponding divergence meaningful and so satisfy Criterion 1. In Condition 
(C2), the coincidence of the modified distributions with the respective original distributions 
except a point to guarantees that the modified ones almost completely reflect the same infor­
mation as the original ones. Notice that Condition (C3) requires not only two inequalities to 
hold, but also the crux term to to be the argument minimum. Under these requirements, we 
can use a simple score function with the original distributions within domain V:=:+ without 

caring what to should be. 
lt is apparent that in this way we may impose some extra constraints on distributions 

P:=:+ (t) and PD (t) (see Sections 4.4 and 4.5). However, it may still be feasible ifthe constraints 
are much weaker than restriction V:=:+ = V, and can be satisfied in an IR environment. The 
method itself is simple and clear: it satisfies the required application and offers a mathemat­
ically reasonable interpretation, enabling the divergence measure to be used to generate the 

discrimination measure. 
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4.3.2 Modified Discrimination Measure 

Assume that the modifie.d distributions P~+(t) and P~(t) satisfying conditions (C1)-(C3) 
have been found. Then dIvergence J (p2 +, PD ) can be modified to 

J(p~+,p1) = L (p~+(t) - P~(t)) log ;,+~t) = L ifd~(t) 
tEV' D ( ) tEV' 

= [ L ifdJ(t)] + ifd~(to) + L ifd~(t), 
(<-1.1 ) 

tEV:=:+ -{to} tEV'-V:=:+ 

which is meaningful, i.e, the summation exists. 
B~ the foregoing d~scussion, the modified divergence J (p~+, p~) can be used to measure 

the dIfference of the mformation contained in p~+ (t) and that contained in P' (t) about 
I () . - D P2 + t , and VIce versa. Thus, each term t E V' will more or less make contributions to the 

difference. The measure used to calculate the extent of the contribution of each term can be 
expressed by 

ifd~(t) = ifd~(to) 

ifd~(t) 

when t E V 2 + - {to} 

-+ 
when t = to E V'=' 

-+ 
when t E V' - V'=' , 

which is referred to as the modified discrimination measure of terms. 

4.3.3 Two Inequalities 

It can be seen easily that condition (C3) in fact requires two inequalities: 

and 

-+ -+ 

(4.2) 

( 4.3) 

where to E V'=' and tj E V' - V'=' . 
From condition (C2), we can see that the extent of the contributions made by terms 

ti E V 2 + - {to} to divergence J (p~+, p~) is equal to the corresponding meaningful values 
ifdJ(ti). As to point to, notice that ifdJ(to) is the minimal meaningful value amongst all of 

meaningful values. Thus, we have 

Consequently, from two inequalities in Eq.(4.3), we can immediately obtain 

and (4.-1) 

-+ {} V' V=+ where ti E V'=' - to and tj E - -. -~ 
The inequalities in Eq.(4.4) explicitly indicate that quantity ifd~(ti) of each term ti E ,.~ 

will be greater than or equal to quantity ifd~(to) of term to and quantities ifd~(tj) of all terms 

t. E V' _ V 2 + and that the difference between P~+ (t) and P~(t) comes mostly from ifd~(ti) 
J' --+ 

for terms ti E V 2 + - {to}, rather than from terms to and tj E V' - V'=' . 
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In the next section, we will discuss the score function constructed based on the modified 
discrimination measure ifd~(t). Notice that we are interested only in the candidate term:; 
t E V:=:+ , and that ifdj(t) is meaningful for terms t E V:=:+ including term to, and that 
ifd~(t) = ifdj(t) when t E V:=:+ - {to}. Thus, we wish to make a simplification' so that it 
is reasonable for us to directly use measure ifdj(t) for terms t E V:=:+ without considering 
what term to should be. In other words, we wish to be able to ignore the contributions 
ifd~(to) and ifd~(tj) made by terms to and tj E V' - V:=:+ , respectively, when we use ifd~(t) 
as the discrimination measure. We will see that this can easily be achieved if the modified 
discrimination measure satisfies two inequalities in Eq.(4.3). 

Next, a question: whether we can find such modified distributions satisfying conditions 
(Cl)-(C3)? The answer is yes, but it is rather difficult to do. In order to give the reader some 
sense about the existence of P~+ ( t) and Pb ( t), two typical modified methods are proposed in 
Section 4.6. It should be pointed out that the mathematical interpretations and arguments 
given in the current chapter are based on the premise that we limit ourselves to consider the 
discrimination information for only terms t E V:=:+ in a practical IR environment. 

Before the existence of the modified distributions are discussed, let us proceed with our 
central subject below. 

4.4 Association Function atqJ(t, q) 

As mentioned before, a piece of 'useful information' is viewed as the amount of information 
in term t E V' for discriminating two opposite relevance hypotheses. The discrimination 
measure ifd~(t) can thus be used to measure the amount, and the amount actually provides 
the extent of the statistical association information of term t with the context of the query. 

Therefore, a formal definition can be given as follows. 

Definition 4.4.1 Let P:=:+(t) and PD(t) be discrete probability distributions over (r,2
V

) as 
expressed in Eq.(3.3). Let P~+(t) and Pb(t) be probability distributions over (V' ,2

V
), where 

V' ~ V:=:+, satisfying: 

(Cl) P~+(t) «Pb(t) and Pb(t) «P~+(t) when t E V', 

(C2) P~+(ti) = P:=:+(ti) and Pb(ti) = PD(ti) when ti E V:=:+ - {to}, 
~+ 

(C3) ifdj(to) > ifd~(to) and ifdj(to) ~ ifd~(tj) when tj E V' - V= , 

where term to is the argument minimum of ifdj(t) over t E V:=:+. Then, the association of 

terms with query q, denoted by atqJ (t, q), can be defined as 

P~+ (t) ') 
atqJ(t,q) = Q(t)· ifd~(t) = Q(t)(p~+(t) - pb(t)) log Pb(t) (t E V , 

where Q(t) > 0 measures the significance of term t concerning query q. 

4.5 Score Function scoreJ(t) 
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A method f?r sel~cting the strong associated terms with the query is offered in this section 
based on the dIscussIOns of the divergence given in the previous sections. 

In relevance feedback, with Definition 4.4.1, the association score function is defined by 

scoreJ(t) = atqJ(t,q) = Q(t) ·ifd~(t) 

wq(t) . ifd~(t) when t E vq n V' 

""I . ifd~(t) -+ when t E V=- - vq 

""2 . ifd~(t) when t E V' - v::::+ - vq, 

where the estimation of Q(t) was discussed in Section 3.6., and the expression of ifd~(t) is 
given in Eq. (4.2). 

Notice that, like function scoreI(t), function scoreJ(t) only assigns scores to the query 
terms ti E vq n V 2 +, but not to query terms tj E V' - V::::+. However such non-assignments 
will be very rare. 

4.5.1 Reduction of Domain 

Recall that, function scoreI (t), given in Section 3.6, with domain t E V can immediately be 
reduced to the one with domain t E V 2 + simply because ifdI(t) = 0 when t E V - V::::+ (since 
P2 + (t) = 0). 

However, it is very likely to have P~+(t)'Pb(t) i- 0 and P~+(t) i- Pb(t) when t E V' - V 2 +, 
and in this case, it has ifd~(t) i- O. This implies that the contributions to summation 

I -+ -+ 
J(P~+ : PD) may come not only from terms t E V=- , but also from terms t E V' - V=- . 

As mentioned before, in practice, all query terms that index documents d E D can with 
very high possibility appear in at least one relevant sample document. In this case, the query 
terms should not belong to domain V' - V 2 +. Thus, we can simply set Q(tj) = ""2 when 

-+ -+ -+ tj E V' - V=- , and Q(ti ) = ""I when ti E V=- - vq. Therefore, when til E V=- n vq, 
-+ I -+ ti2 E V=- - vq and tj E V - V=- ,we have 

scoreJ(ti l ) = Wq(til) . ifd~(til) > ""2' ifd~(tj) = scoreJ(tj), 

scoreJ(ti2) = ""I . ifd~(ti2) > ""2' ifd~(tj) = scoreJ(tj), 

since Wq(til) > mintEvq {wq(t)} > ""I > ""2 > 0 (see Section 3.6) and ifd~(ti) 2: ifd~(tj) 2: 0 
-+ 

(see condition (C3) and inequalities in Eq.(4.4)). That is, the scores of terms tj E V' - V=-
will never exceed the scores of terms ti E V 2 + whether ti is a query term or not. Also, 
Isql is much smaller than IV3 +1 and we are interested only in the terms with the top scores. 
Therefore the score function with domain t E V' can also be reduced to the one with domain , 

-+ 
t E V=- : 

( 
I ') P~+ (t) 

scoreJ(t) = Q(t) P2 +(t) - PD(t) log Pb(t) 

= { wq(t). (p~+ (t) - Pb(t)) log j:(~;) when t E V
2
+ n vq 

( 
I I ( )) P~+(t) V'='+ vq 

""I . P2 +(t) - PD t log P.f:>(t) when t E ~ - . 

From the first inequality in Eq.(4.4), we can see that term to makes a minimal contribution 
to J (p~+, Pb) among all terms t E V 2 +. In this case, to is usually not a query term in 



CHAPTER 4. AQE BASED ON DIVERGENCE 
82 

practic~~ IR context. Thus, we can set to E V:=:+ - vq. Therefore, when til E V:=:+ n ~ -q and 
ti2 E V~ - vq, we have 

scoreJ(ti1) = W q(ti1)· ifd~(ti1) > K1· ifd~(to) = scoreJ(to), 

scoreJ(ti2) = K1 . ifd~(ti2) ~ K1 . ifd~(to) = scoreJ(to), 

since if~~(td > i~d!(to) > 0 (see condition (C3) and inequalities in Eq.(4.4)). That is, term 
to ~~btams the mmlmal score among all terms t E V:=:+ , and should fall into sub-domain 
V'=' - sq. Therefore, from the application point of view, there is no necessity to consider 
what term to should be. Notice that F~+(t) = F=.+(t) and Fb(t) = FD(t) when t E F:=:+ 
except only one term to (see condition (C2)). Thus, we can write a completely equivalent 
score function by 

score J (t) = Q(t) (F=+ (t) - FD(t)) log F:=:+ (t) 
~ FD(t) 

= { wq(t). (F:=:+(t) - FD(t)) log ~=:(~~) 

K1 . (FR(t) - FD(t)) log ~~m 

-+ when t E V-=:' n vq 

~+ 

when t E V'=' - vq, 

which is called the association score of term t with query q. The estimations of P=.+ (t) and 
FD(t) can be found in Section 3.7. 

4.5.2 About Positive Scores 

It is important to understand that, in principle, from a higher positive score J (t) one cannot 
infer that term t is positively associated with the query. This is because, when t E V='+ , 
ifdhl (t) can be positive or negative. Ififdh1 (t) > 0 (it must be accompanied by ifdh2(t) < 0), 
then ifdJ(t) > 0 indicates that the algebraic sum is dominated by sub-item ifdh1 (t), and term 
t contributes quantity ifdJ(t) for supporting H 2 . In this case, the higher the score term t 
obtains, the more unlikely it is statistically associated with query q. The 'prime culprit' that 
leads to ifdh1 (t) > 0 is F:=:+(t) < FD(t). 

Fortunately, in practice, we generally have F:=:+(t) > FD(t) for all terms t E V=.+. Thus, we 
need not verify F:=:+ (t) > FD (t) for each of the selected terms. Therefore, each candidate term 
t E V:=:+ is assigned a score by function scoreJ (t), which is always positive, and the terms with 
top scores should be first considered as the selected terms t E sq: they actually make the most 

) 
~+ 

contributions to the expected divergence J (p~+, Fb among terms t E V'=' . Consequently, 
according to Hypothesis 2 given in Section 3.3, they are more strongly associated with query 
q than others. 

4.5.3 Relationship of Score Functions 

The score function can also be written as 

scoreJ (t) = Q(t) . ifdJ(t) = Q(t) . ifdI12 (t) + Q(t) . ifdh1 (t) 
-+ 

(t E V'=' ). = scorer (t) + score! (t) 12 21 

From ifdJ(t) > 0 we have scoreJ(t) > 0 (since Q(t) ~ 0). Also, from ifdh2(t)· ifdrn(t) ~ 0 

we have scorer (t)· score! (t) < o. 12 21-
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Recall we mentione~, in a practical IR context, that we always have P=:+(t) > PD(t) for 
candidate terms t E V'::;+. In this case, we have ifdh2 (t) > 0 and ifdI21 (t) < 0, and then 
score

l12 
(t) > 0 and score/

21 
(t) :::; O. 

We point out, when term t appears in both relevant and non-relevant documents that , 
it would contain information for supporting both the relevant hypothesis Hi and the non-
relevant hypothesis H 2· If P=:+ (t) > PD (t), then term t contains information ifd 112 (t) = 

lifdh2(t)1 for supporting Hi, and also contains information ifdI21 (t) = -lifdI21 (t)1 for sup­
porting H 2 · Because the finalized information (the algebraic sum of information that term 
t conveys) ifdJ(t) is positive, the information of term t is determined by its positive part 
ifdI12 (t). The finalized information thus indicates that term t contains information ifdJ(t) 
for supporting Hi. 

Therefore, function score J (t) provides the finalized association of term t with the query, 
namely, it is the algebraic sum of the positive association score l (t) and the negative associ-12 
ation score l (t). This means that scoreJ (t) takes into account simultaneously two opposite 

21 

pieces of relevance information contained in term t, and incorporates them into the associ-
ation score. Particularly, when P=:+(t) > PD(t), the finalized score indicates that term t is 
associated with the query to extent scoreJ(t). In contrast, function score/(t) = score

l12
(t), 

discussed in Section 3.5, offers only the positive association of terms with the query, but 
ignores the negative association inherent in term t when it also appears in non-relevant doc­
uments. So we can see that score J (t) may measure the extent of association of a term with 
the query more accurately than score l (t) does. 

4.5.4 In Pseudo-Relevance Feedback Procedure 

In pseudo-relevance feedback, i.e., there is no relevance information available, let the sample 
set 2: be the top retrieved documents, and all documents in 2: be viewed as relevant. In this 
case, we can also construct function score J (t) using 2: instead of 3+ as discussed in the case 

of relevance feedback. 

4.6 Two Methods to Modify the Divergence Measure 

We are now in a position to investigate the existence of the modified distributions P~+ (t) 
and P1(t) satisfying conditions (C1)-(C3) by giving the concrete forms of P~+(t) and P1(t) 
satisfying two inequalities in Eq. (4.3). 

4.6.1 Method I 

Let to E V=:+ be an arbitrary term. Notice that we assumed that IVdl 2:: 2 for each docum~nt 
dE D. Then, we have IV=:+ I > 2 if V=:+ -# 0. Thus, we obtain 0 < P=:+(to) < 1 (see SectlOn 

3.7). . . ) 1 . 
In order to construct P~+ (t) and P1(t) satisfyin~ condItl~nS (C1) and (C2: et .us m-

troduce a fictitious 'term' t* without containing any mformatlOn content, and t (j:. ~ ". Let 
V' = V=:+ U {t*}. The strategy adopted here is based on discounting the val~e of densIty of 
P=:+ (to) with a discounting factor J-l = P=:+ (to) (satisfying 0 < J-l < 1). The dIscounted value 
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of density P'3+(to) - j.1P'3+(to) = P'3+(to) - P~+(to) is restored by redistributing it onto the 
fictitious term t*. We may formulate the strategy by the piecewise probability distribution: 

when t E V' - {to} - {t*} 

when t = to E V' 

A key idea in the strategy is to introduce the fictitious term t*, and then sum densities 
PD (t) for all terms t E V - V'3+ onto one point t* which is assumed not to convey any infor­
mation. These statements may be further formulated by means of the piecewise probability 
distribution: 

PD(t) when t E V' - {to} - {t*} 

when t = to E V' 

PD(to) - P'3+(tO)PD(tO) + 2:tEV-V=:+ PD(t) when t = t* E V'. 

lt can be seen readily that P~+ (t) > 0 and Pfy (t) > 0 hold for every t E V', and that 

and that 

L P~+(t) = L P~+(t) + P~+(to) + P~+(t*) 
tEV' tEV'-{to}-{t*} 

L P'3+(t) + P~+(to) + P'3+(to) - P~+(to) 
tEV'-{to}-{t*} 

L P'3+ (t) + P'3+ (to) = L P'3+ (t) = 1, 
tEV=:+ 

L Pfy(t) = L Pfy(t) + Pf>(to) + Pfy(t*) 

tEV' tEV'-{to}-{t*} 

L PD(t) + P'3+(tO)PD(tO) + PD(tO) - P'3+(tO)PD(tO) + L 
tEV-V=:+ tEV'-{tO}-{t*} 

L PD(t) + PD(tO) + L PD(t) = L PD(t) = l. 
+ tEV-V=:+ tEV tEV=: -{to} 

PD(t) 

That is, P~+ (t) and Pfy(t) satisfy two axioms of probability distribution, they are hence 

probability-distributions over (V',2V'). . (' ') 
o bviously, P~+ (t) and Pfy (t) satisfy conditions (C 1) and (C2). Thus, summatlOn J ~ '3+' P D 

exists. Notice t-hat V' - V'3+ = {t*}. Thus, divergence J (P'3+, PD) can be modlfied to 

J(p~+,pfy) as expressed in Eq.(4.1), in which, 

P'3+ (to) 
ifd~(to) = (P~+(to) - P'3+(tO)PD(tO)) log PD(tO) , 
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ifd~(t*) = [(P:=:+(tO) - P~+(to)) - (PD(to) - P:=:+(to)PD(to) + L PD(t))] x 

tEV -v=:+ 

1 
P:=:+ (to) - p';+ ( to) 

x og~~~--=-~~~~~~~---------­
PD(tO) - P:=:+(tO)PD(tO) + LtEV-V:=:+ PD(t)' 

85 

We can hence immediately write the modified discrimination measure as expressed in Eq.(4.2). 
Notice that, in the current modification method, t* is treated as a fictitious term that 

does not contain real information content. Thus, t* is of course impossible to be associated 
with any given query. So it is clear that there is no need to consider contribution ifd~(t*) 
made by term t* to divergence J(p~+, Pb) at all during a query expansion procedure. On the 

other hand, it can be seen easily that quantities ifd~(t) are independent of t* when t E V:=:+. 
Thus, our task can be reduced to considering the contributions ifd~(t) made by individual 
terms t E V' - {t*} = V:=:+ , we need hence only to prove the first inequality given in Eq.(4.3). 

The proof that P~+(t) and Pb(t) can satisfy condition (C3), that is, that the modified 
discrimination measure ifd~(t) can satisfy the first inequality in Eq.(4.3), requires Theorem 
4.6.1, which is given in Section 10.1. We will see that Theorem 4.6.1 clearly tells us that the 
difference between P~+(t) and Pb(t) over V' = V:=:+ U {t*} comes mostly from ifd~(t) for 

terms t E V:=:+ - {to}, rather than from term to (since t* is ignored). 

4.6.2 Method II 

In Method I, we discussed the issue of modifying the divergence measure through modifying 
its arguments by means of the discounting factor jJ. In fact, in that method, we gave a specific 

value of jJ: jJ = P:=:+(to). 
More generally, we can modify the arguments by using the discounting factor jJ satisfying 

o < jJ < 1. Obviously, there are many different strategies to modify distributions P:=:+ (t) 
and/or PD(t) so that the modified distributions are absolutely continuous with respect to one 
another. Notice that PD(t) > 0 for all terms t E V. Thus, for instance, the m,9st natural and 
simple one probably is to only modify P:=:+ (t) satisfying P:=:+ (t) > 0 for t E V=.+ to 

P:=:+(t) when t E V:=:+ - {to} 

jJP:=:+ (to) 

I-J.L p_ (t ) 
lVI-IV:=:+ I =.+ 0 

-+ 
when t = to E V=' 

-+ 
when t E V - V=' 

satisfying P~+(t) > 0 for t E V' = V, where 0 < jJ < 1 and term to E ~:=:+ is arbitrary. 
The strategy adopted here is to discount density P:=:+ (to) with the discountmg factor jJ. The 
discounted density P:=:+ (to) - jJP:=:+ (to) is restored by redistributing it evenly or;~ all terms 
t E V - V:=:+. Clearly, P~+ (t) is, in this case, a constant over domain t E V - V- . 

It is readily seen that 

L P~+(t) = L P~+(t) + P~+(to) + L P~+(t) 
tEV tEV:=:+-{to} tEV-V:=:+ 

::-+ 1 - jJ L P:=:+(t) + jJP:=:+(to) + (IVI-IV- I) IVI_IV:=:+IP:=:+(to) 

tEV:=:+ -{to} 
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L P3+(t) + jJ,P3+(to) + (1 - jJ,)P3+(to) 
tEV:=:+ -{to} 

L P3+(t) + P3+(tO) = L P3+(t) = l. 
tEV:=:+ -{to} tEV:=:+ 

That is, P~+ (t) is a probability distribution on V . 
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. Thus, P~+(t: and,P5J(t) = PD(t) s~tisfy conditions (C1) and (C2). Therefore, the modified 
dIvergence J(P3 +, PD ), as expressed III Eq.(4.1), exists, in which, 

=+ (to E V- ), 

Then, we can write the modified discrimination measure as given in expression Eq.(4.2). 
We will prove the first inequality by Theorem 4.6.2, which is discussed in detail in Section 

10.1. We give the proof of the second inequality in [21]. With these two inequalities, we can 
see that the difference between P~+(t) and PD(t) over V' = V comes mostly from ifd~(t) for 
terms t E V 3+ - {to}, rather than for terms to and t E V - V 3+. 

4.7 Summary 

This chapter addresses a formal method based on the basic concept of divergence for 
automatic query expansion. The meaning of applying divergence to measure the amount of 
information contained in a term is interpreted, and the discrimination measure is introduced. 
Because the condition of absolute continuity of the probability distributions with respect to 
one another is usually not satisfied in a the practical context of IR, this chapter is devoted to 
a formal analysis and mathematical discussion on the feasibility of applying the divergence 
to feedback techniques. 

~ A possible way of modifying the discrimination measure for solving the problem is 
suggested, and the solution is expounded in a general form. 

In order to make the modification profitable, the modified distributions P~+ (t) and 
P5J(t) should satisfy some conditions. Conditions (C1)-(C3) are discussed, which can 
make the modified divergence measure: satisfy Criterion 1; almost completely reflect 

=+ 
the same information as the original discrimination measure for terms t E V - ; and 
construct a simple score function. 

~ The existence of the modified discrimination measure satisfying conditions (C1)-(C3) is 
shown. Two typical methods of modification are formally described. 

Taking them in reverse order: the second modification method is very intuitive, and 
the mathematical thought and theoretical proofs are elegant (see Section 10.1 and [21]). 
However, for simplification, the original term distributions P3+ (t) and PD (t) must sat­
isfy some extra constraints. Unfortunately, in a realistic IR environment, it is vcr," 

difficult for us to verify the constraints can be satisfied experimentally. 
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The first modification method is interesting, and requires a thorough mathematical 
treatment. As we ha,;-; see~, for simplification, it needs only constraint P::::+ (to) ~ 
PD (to), where to E V - . It IS clear that such a constraint is much weaker t han con­
straints required in the second method, and can usually be satisfied in a practical IR 
environment. The key idea introduced is a fictitious term t*. Doing it this way not only 
makes the main concern simple and clear, but also gives a reasonable mathematical 
interpretation which lets us be able to easily apply the divergence measure to generate 
the discrimination measure for query expansion. 

~ A modified discrimination measure is naturally introduced based on the modified prob­
ability distributions, and the concept of the association of terms with the context of the 
query is formally defined based on the modified discrimination measure. 

~ The construction of the score function is addressed, and the issue of the reduction of 
the domain of the score function is formally discussed. 

It should be noted especially that, theoretically, a higher positive score J (t) does not 
imply that term t must be associated with the query, and condition P::::+(t) > PD(t) 
should be verified. The reason for this has been clearly explained in the previous 
sections. Fortunately, in practice, we usually have P::::+ (t) > PD (t) for all terms t E V::::+. 
Thus, from the application of view, we may ignore the verification of P::::+(t) > PD(t), 
and directly use positive score J (t) for selecting good terms. 

In addition, J(PR : PfJ is symmetric in arguments PR(t) and Pi?(t). This property might 
be desirable in some practical applications o! IR. However, it requires that PR(t) « Pi?(t) 
and P- (t) « PR(t) for t E V, or VR = V R. Such a requirement may be too strong for 
the IRRcontext. In the next chapter, we will discuss another information measure, which is 
well-defined for its arguments, i.e., it need not place any requirement on distributions PR(t) 

and Pi?(t). 



Chapter 5 

AQE Based on Information Radius 

Information radius was initially introduced to IR theory, as a device for generating the dis­
crimination measure of terms, by Van Rijsbergen in his book [207] in the late seventies. It 
seems that IR researchers have been comparatively slow to appreciate that an information 
radius method to the problem of the discrimination information of terms can prove prof­
itable. The study in this chapter is based on Van Rijsbergen's earlier idea, and is a further 
development and implementation of a methodology initiated there. 

In Section 5.1, we intend to give a simple account of the concept of information radius. In 
Section 5.2, we focus on a detailed discussion of a relevance discrimination measure based on 
the information radius. In Section 5.3, we consider a symmetric discrimination measure which 
is a special situation of the discrimination measure. In Section 5.4, we define the concept of 
association of terms with the context of the query in the sense of the information radius. In 
Section 5.5, we address the method of constructing a score function and the simplification of 
the domain of the score function, and illustrate how the score function can be employed in 
both relevance and pseudo-relevance feedback. 

5.1.1 Information Moment 

To gain a full appreciation of the discrimination power of the concept of information radius, it 
is necessary not only to consider its interpretation but also to become acquainted with some 
other supporting considerations (i.e., some simple properties). An excellent paper about these 
has been provided by [177]. In addition, it is helpful to become familiar with the concept of 
information moment and its interpretation. The following is illustrative. 

Let HI, H2, ... , Hr be competing hypotheses that term t is drawn from the document sets 
DI, D2, ... , Dr, respectively. Assume that PDk (t) E Pn defines set Dk with a priori probability 
Ak (Ak > 0 for k = 1, ... , r and L:~=I Ak = 1 ). Also, let H* be a hypothesis that term t is 
drawn from a document set D* and assume that P*(t) E Pn defines set D*. 

The information moment for these r sets DI, ... , Dr and a set D* is defined by 

r r 

Kr({Ad;{PDk}: P*) = LAkI(PDk: P*) = LAkI(Hk: H*IHk)· 
k=l k=l 
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If we regard Ak as the probability of PDk (t) being correct, then the information moment can 
be interpreted as the expected gain in information on rejecting P* (t) in favour of PD

k 
(t) for 

k = 1, ... , r. Particular ly, when r = 1, we have A1 = 1 and the corresponding information 
moment is reduced to the directed divergence K 1 ( {I}; {PDJ : P*) = I (PD

1 
: P*). 

Now, assume that all PDI (t), ... , PDr (t) are known, and let 

Obviously, we have P E (t) E Pn by virtue of the convexity of Pn . It was shown [177] that the 
information moment satisfies the equality 

It is clear that the first item on the right side of the equality above is a constant when AI, ... , AT 
and PDI (t), ... , PDr (t) are given, and that the second item is the function of distribution 
P*(t) E Pn · Consequently, it can be seen readily that KT({Ad; {PDk} : P*) arrives uniquely 
at a minimum when P*(t) = PE(t), that is, 

since I(PE : P*) > 0 with equality if and only if PE(t) = P*(t). 

5.1.2 Information Radius Measure 

If the probability that PD
k 
(t) should be correct is initially given by Ak, then the minimum 

above can be regarded as the expected gain in information on judging which PDk (t) should 

be correct. 
The information radius for these r distributions PD k (t) with a priori probability Ak, due 

to Sibson [177], is defined as the minimum, and denoted by 

Therefore, it can be immediately expressed as 

It can easily be seen that KT({Ak}; {PDk}) > 0 with equality if and only. if PDkl (t) . ... = 

P (t) · h· h' > 0 where l - 1 s 1 < s < r (that is, it vanishes If and only If those Dk , In w lC Ak/, - , ... , , - - . .) 

PDk; (t), for which the corresponding coefficie.nt ~kl ~re not equ.al to zer~, are l~ent.lcal . 
Furthermore, for r disjoint probability dlstnbutlOns l

, the mformatlOn radlUs IS reduced 

to the entropy of its a priori probability distribution P).. = {AI, A2, ... , AT}: 

IThe r probability distributions PD k (t), k = I, ... , r,. ~e said to. be d!sjoin: if PD'~! 2: ~ ~h~\ ~ ,E=' ~ 
and PD. (t) = 0 when t ~ Vk, where VI, ... , Vr is a partItIOn of V, l.e., \ = \ I U .. , U r an k k 

(1 ~ k, k' ~ r; k 1= k'). 
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r 

Kr({Ak};{PDk }) = (2:+ ... + 2:) I: AkPDk(t) log PDk(t) 
tEVl tEVr k=1 A1PDl (t) + '" + ArPDr (t) 

- '" A P (t) 1 PD1 (t) '" PD (t) - L.....t 1 Dl og A P (t) + ... + L.....t ArPDr(t) log r 

tEVl 1 Dl tEVr ArPDr(t) 

= -AI log Al - '" - Ar log Ar = H(P)..). 

Notice that, when Al·A2· ... ·Ar #- 0, we have A1PDl (t)+A2PD2(t)+ ... +ArPDr(t) = 0 ifand 
only if PD1 (t) = PD2 (t) = ... = PDr (t) = O. Thus, if we assume that Ak > 0 for k = 1, ... , T, 

then PDk (t) « P E (t) holds for k = 1, ... , T. Therefore, under the assumption, the information 
radius can be used to compare with arbitrary term distributions over (V,2V). Because of this 
outstanding property, the information radius appears to be of some general interest. There are 
many practical IR contexts which may consider to apply information radius as a divergence 
measure, in particular, in situations where an a priori probability distribution in the sense of 
Bayesian statistics is needed. 

5.1.3 A Particular Situation 

Let us now consider a particular situation where T = 2. Let HI and H2 be two opposite 
hypotheses that term t is drawn from sets Dl = Rand D2 = il, respectively. Assume that 
PR(t) and Pil(t) are the term probability distributions over (V,2V) under the hypotheses. 
Also, let HE be a hypothesis that term t is drawn from set R U il = D characterized by the 
term probability distribution P E (t) = AIPR(t) + A2Pk(t) over (V,2v) under the hypothesis. 
Denote the corresponding information radius as 

which can be viewed as the expected divergence between distributions PR(t) and Pk(t). Based 
on the interpretation of the information gain given in Section 3.2, if we view Al and A2 as the 
initial probabilities that the respective distributions PR(t) and Pk(t) are correct, then the 
information radius can be interpreted as the expected gain in information on discrimination 
rejecting P E (t) in favour of PR(t) and Pk(t) [92]. 

In applying the information radius to the relevance classification, a priori probabilities Al 
and A2 should be given beforehand. The choice of a priori probabilities depends on a specific 
retrieval strategy itself. Generally, for instance, for a given query, if one classifies D in~o sets 

- . ., - IRI d' -@ Rand R, then, clearly, a natural and reasonable way IS to assIgn Al - f15T an A2 - IDI' 

It is readily shown that property 0 < K(Al,A2;PR,Pk) ::; 1 holds. In fact, by the 
definition, the lower bound K(Al' A2; PR, Pk) > 0 holds as pointed out earlier for the general 
case, whereas the upper bound can be shown by 
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= L (>qPR(t) log >qPR(t) + A P- (t) 10 A2PH(t) ) 
tEV >qPR(t) + A2 PH(t) 2 R g AIPR(t) + A2 PH(t) 

- (AI L PR(t) log Al + A2 L PH(t) log A2) 
tEV tEV 

< 0 + 0 - (AI log Al + A2log A2) < 1 

since from calculus we can easily prove that -~ < xlogx < 0 when x E [O,lJ. More of its 
properties are to be found in [177]. 

To conclude this section, it is interesting to repeat the important role the composite 
or, intermediary, distribution PE(t) plays in the arguments of the information radius. It 
is the composite distribution that makes the information moment reach the minimum and 
then to become the information radius. It is the composite distribution, in which individual 
component distributions are absolutely continuous with respect to it, that ensures that the 
information radius always exists, and, due to such an outstanding property, is applicable to 
wide research areas, particularly, in IR. 

5.2 Discrimination Measure ifdK(t) 

Information radius K(Al' A2; PR, PH) is well-defined in comparison with the directed di­
vergence I(PR : PH) and divergence J(PR : PH) because both PR(t) and PH(t) are always 
absolutely continuous with respect to P E (t) unconditionally. In what follows, we will always 

assume that Al -=I- 0 and A2 -=I- O. 

5.2.1 Definition of Discrimination Measure 

The information radius consists of a sum of items: 

K(AI' A2; PR, PH) = ~ ifdK(t). 
tEV 

Each item 

which can be positive or negative, indicates 'information for discrimination' for each term t. 

Two sub-items of ifdK(t): 

ifdI,E(t) = PR(t) log ),,[PR(~:tl2PR(t) = P(tIH[)i(H[ : HElt), 

ifdI (t) = P-(t) log PH(t) ( ) = P(tIH2)i(H2 : HElt), 
2E R AIPR(t) + A2PH t 

can also be positive or negative. Consequently, we can make a formal definition as follows. 

Definition 5.2.1 Let PR(t) = P(tIHI), PH(t) = P(tIH2), and PE(t~ = AIPR(t) + A2Prt(t) = 
P(tIH

E
) be discrete probability distributions over (V,2V

), and denved from sets R, Rand 
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R U R, resp~ctively. The information of term t for discrimination on two opposite hypotheses 
HI and H 2 IS defined by 

ifdK(t) = AIPR(t) log PR(t) + A2P -(t) log Pf?(t) 
A1PR(t) + A2Pf?(t) R AIPR(t) + A2Pf?(t) 

= AIP(tIHdi(HI : HElt) + A2P (tIH2)i(H2 : HElt) (t E V), 

which is referred as to the (relevance) discrimination measure of terms. 

5.2.2 Interpretation of Discrimination Measure 

Similar to Theorem 4.2.1, it is interesting to point out the following theorem. 

Theorem 5.2.1 For an arbitrary term t E V satisfying PR(t) . Pf?(t) > 0, we always have 

(1) ifdI1E (t) = 0 if and only if PR(t) = Pf?(t), i.e., ifdI2E (t) = 0; 

(2) ifdhE (t) > 0 if and only if PR(t) > Pf?(t), i.e., ifdI2E (t) < o. 
Proof. If PR(t) -I- 0 and Pf?(t) -I- 0, then 

(1) ifdI1E (t) = 0 if and only if PR(t) = A1PR(t) + A2Pf?(t) = AIPR(t) + (1 - AI)Pf?(t), i.e., 
(1 - AdPR(t) = (1 - Al)Pf?(t), i.e., PR(t) = Pf?(t), i.e., Pf?(t) = PR(t), i.e., (1 - A2)Pf?(t) = 

(1 - A2)PR(t), i.e., Pf?(t) = (1 - A2)PR(t) + A2Pf?(t) = AIPR(t) + A2Pf?(t) if and only if 
ifdI2E (t) = O. 

(2) ifdhE (t) > 0 if and only if PR(t) > AIPR(t) + A2Pf?(t) = AIPR(t) + (1 - AI)Pf?(t), i.e., 
(1 - Al)PR(t) > (1 - AdPfl(t), i.e., PR(t) > Pfl(t), i.e., Pf?(t) < PR(t), i.e., (1 - A2)Pf?(t) < 
(1 - A2)PR(t), i.e., Pfl(t) < (1 - A2)PR(t) + A2Pfl(t) = AIPR(t) + A2Pf?(t) if and only if 
ifdI2E (t) < O. The proof is complete. 

From Theorem 5.2.1, we see that, for t E V, ifdhE(t) and ifdI2E (t) are opposite in sign. 
Thus, similar to the discussion given in Section 3.4, we have the following interpretations. 

1& If PR(t) = Pfl(t), then the discrimination factors i(HI : HE It) = i(H2 : HElt) = 0, and 
term t gives us no discrimination information about the relevance classification, and the 
corresponding quantity ifdK(t) = O. 

1& If PR(t) > Pfl(t), then (1 - AdPR(t) > (1 - AI)Pfl(t), i.e., PR(t) > AIPR(t) + A2Pf?(t), 
and the discrimination factor i(Hl : HE It) > 0, term t contributes quantity ifdhE (t) = 

lifdhE(t)1 for supporting the relevant hypothesis HI· Whereas from (1 - A2)Pf?(t) < 
(1- A2)PR(t), we have Pfl(t) < A1PR(t) + A2Pfl(t) , and the discrimination factor i(H2 : 
HElt) < 0, term t contributes quantity ifdIzE(t) = -lifdI2E(t)1 for supporting the non­
relevant hypothesis H 2 . 

Thus, if ifdK(t) > 0, the weighted algebraic sum is dominated by its positive subitem 
ifdhE(t), and term t contributes quantity ifdK(t) for supporting HI; if ifdK(t) < 0, 
the weighted algebraic sum is dominated by its negative sub-item ifd[2E (t), and term t 
contributes quantity ifdK(t) for supporting H2· 

1& If PR(t) < Pfl(t) , then PR(t) < AIPR(t) + A2Pfl(t), and i(HI : HE It) < O. term t 
contributes ifdI1E(t) = -lifdI1E(t)1 for supporting HI· Whereas Pfl(t) > AIPR(t) + 
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H 
A2Pk(t) and i(H2 : HElt) > 0, term t contributes ifdI2E (t) = lifdhE(t)1 for supporting 

2· 

Thus, if ifdK( t) > 0, the weighted algebraic sum is dominated by its positive sub-item 
ifdI2E (t), and term t contributes ifdK(t) for supporting H2; ififdK(t) < 0, the weighted 
algebraic sum is dominated by its negative sub-item ifdI1E(t), and term t contributes 
ifdK(t) for supporting HI. 

5.2.3 About Absolute Continuity 

Notice that ifdK(t) = 0 for term t that appears in both sets Rand R with an equal probability. 
PR(t) = Pk(t), (it also has ifdK(t) = AI0log g + A20log g = 0 when PR(t) = Pk(t) = 0). 
We can thus see that the contribution, to the expected divergence, of terms unrelated to 
the relevance classification, will be zero. Thus, the information radius satisfies Criterion 2. 
This means that K(Al' A2; PR, Pk) emphasizes the importance of those terms with variant 
probabilities within sets Rand R. 

Recall that, in the application of measure I(PR : Pk), we required that PR(t) « Pk(t), 

or VR ~ V k . Also, in the application of measure J(PR,Pk), we required that PR(t)« Pk(t) 

and Pk(t) «PR(t), or VR = V k . In contrast, we need not make any requirements for PR(t) 
and Pk(t) in the application of measure K(Al' A2; PR, Pk)' In fact, properties PR(t) «PE(t) 
and Pk(t) « PE(t) inherent in the information radius ensure that, for each term t E V, 
sub-items ifdhE(t) < 00 for k = 1,2. Therefore, they are meaningfully weighted summed 
with weight Ai, and thus, item ifdK(t) exists. In the end, the summation over individual 
items offers the expected divergence between PR(t) and Pk(t). 

Consequently, by means of an intermediary composite distribution PE (t), one can mea­
sure the expected divergence between distributions PR(t) and Pk(t). This view appears to 
be appealing because when we cannot use the divergence measures I(PR : Pk) or J(PR : 
Pk) to directly elicit the extent of divergence of Pk(t) from PR(t), we would use measure 
K(Al' A2; PR, Pk) to indirectly capture it instead. 

In addition, K(Al' A2; PR, Pk) is not symmetric in arguments PR(t) and Pk(t), neither in 
Al and A2. It may be desirable to have a symmetrical divergence measure, which is meaningful 
in terms of information radius, when there is no particular reason to emphasize either PR(t) 
or Pk(t). A symmetric divergence measure K(Al' A2; PR, Pk) can be easily introduced, which 

is discussed below. 

5.3 Symmetric Discriminant Measure 

Now consider a more particular situation which involves two probability distributions with 
equal a priori probability, Al = A2 = ~, and denote the corresponding information radius by 

K (PR, Pk)' Thus, we further obtain 

K(PR,Pk) = K(~, ~;PR,Pk) = LifdK(t) = ~ L (ifdhE(t) +ifdhE(t)), 
tEV tEV 

in which, for each term t E V, sub-items 

ifdI (t) = PR(t) log PR(t; = P(tIHdi(H1 : HE It), 
lE ~PR(t) + 2Pk(t) 
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P- (t) 
ifd'2E(t) = Pk(t) log 1 R 1 = P(tJH2)i(H2 : H",jt). 

2PR (t) + 2Pk(t) '-' 

Obviously, K(PR, Pk) is symmetric with respect to PR(t) and Pk(t). 
In the case where the two distributions are disjoint, the information radius K (p P_) 

can be reduced to unity. In fact, it can be found that R, R 

If the two distributions overlap2 over some subset r ~ V R n V R, then the divergence 
would drop sharply. Particularly, in an extreme case where they overlap over vocabulary V 
the divergence vanishes, i.e., K(PR, PR) = O. ' 

. Thus, it can clearly be seen that the contribution of a term to the expected divergence 
IS completely dependent on the densities of the term. The greater the difference between 
the densities, the larger the divergence Pk(t) from PR(t) at point t, the more the contribu­
tion J ifd K (t) j term t makes. This characteristic is essential to K (PR , P k), as discussed for 
K (AI, A2; PR, Pk). 

Some more interesting discussions on the symmetric discrimination measure is offered in 
Section 10.2. 

5.4 Association Function atqK (t, q) 

Let 3+ f. 0 and 3- f. 0 (3+ U 3- = 3 and 3+ n 3- = 0) be the respective sets of top 
relevant and non-relevant sample documents obtained based on the user's assessment in a 
relevance feedback procedure. Notice that 3- is the non-relevant sample set, and should not 
be viewed as an approximation of the non-relevant set R. Let P=:+ (t) be a term distribution 
over (V,2V) defining set 3+, where P=.+(t) > 0 when t E V=.+ and P=:+(t) = 0 when t E 
V - V=.+. Let P=.- (t) be a term distribution over (V,2v) defining set :=:-, where P=:- (t) > 0 
when t E V=.- and P=.-(t) = 0 when t E V - V='-. 

Distributions P=.+ (t) and P=.- (t) are not necessarily absolutely continuous with respect 
to one another: they are both absolutely continuous with respect to the composite dis­
tribution PE (t) = AlP=.+ (t) + A2P=.- (t). Therefore, we can apply the information radius 
K (AI, A2; P=.+, P=.-) to query expansion. This may be an effective way to solve a fairly sticky 
problem when P=.+ (t) « P=.- (t) and/or P=.- (t) « P=.+ (t) do not hold in a practical feedback 
environment. 

As we know the extent of association of term t with the context of the query can be , 
measured by the power of discrimination of term t in favour of relevant hypothesis HI against 
non-relevant hypothesis H2. The discrimination measure ifdK(t) can be used to measure the 
power. Thus, a formal definition can be made as follows. 

Definition 5.4.1 Let P=.+ (t) and P=.- (t) be discrete probability distributions over (\., 2 \ "), 

2Two probability distributions are said to overlap over some sub-domain f ~ i' if their densities coincide 
over f. Particularly, when they overlap over the whole domain, PR(t) = PfI.(t) for all tEL 
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and derived from sets 3+ and 3-, respectively. The association of term t with quer:-.' q. 
denoted by atqK(t, q), is defined as 

atqK(t,q) = Q(t) ·ifdK(t) = Q(t) (>'lP:=:+(t) log P:=:+(t) 
AlP:=:+ (t) + A2P:=:- (t) 

P- (t) + A2P::;- (t) log ::.- ) 
~ AlP:=:+(t) + A2P:=:- (t) 

(t E F), 

where Q(t) > 0 measures the significance of terms t E V concerning query q. 

5.5 Score Function score
K 

(t) 

A method to select strongly associated terms with the query is offered in this section based 
on the discussions on the information radius given in the previous sections. 

In relevance feedback, with Definition 5.4.1, the association score function is defined by 

(t E V), 

where the estimation of Q(t) was discussed in Section 3.6. 
Notice that function score K (t) also assigns scores to the query terms in vq n V:=:+ , whereas 

the query terms in V - V:=:+ might be ignored. 
Notice also that the method proposed in this section is not concerned with treating the 

situation where 3+ = 0 and 3- = 3 (i.e., Al = 0 and A2 = 1), that is, where no positive 
relevance information is available and all sample documents are found to be non-relevant. In 
this case, the user should be required to reformulate his query and submit it to the retrieval 
system to produce an effective sample set. For the situation where 3+ = 3 and 3- = 0 
(i.e., Al = 1 and A2 = 0), that is, all sample documents are justified to be relevant, the user 
can terminate his search if he is satisfied that he has found enough documents relevant to 
his information need. Otherwise, for obtaining more relevant documents, he can enter an 
iterative (pseudo-relevance) feedback loop by taking an extra 'non-relevant' sample set ~ and 
merging it into the sample set 2. Thus, we can conduct the selection of good terms as in the 
situation of pseudo-relevance feedback discussed in Subsection 5.5.5. 

5.5.1 Reduction of Domain 

Notice that 2 = 3+ U 2- and the whole domain can be partitioned into four sub-domains: 

Thus, the discrimination measure can correspondingly be decomposed as 
-+ --

Alifdlu~ (t) + A2ifdln~ (t) =I- 0 when t E V::' n V::' 

-+ --when t E V::' - V::. 

-- -+ when t E V::. - V::. 

when t E V - l-::;. 
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When t E V - V::::, P::::+ (t) = P::::- (t) = 0 and ifdK(t) = O. In this case term t does not 
give u~ ~ny discrimination infor~ation for. the relev~~ce classification, and score

K 
(t) = O. 

Thus, It IS not necessary to consIder terms III V - V'::' ,and the score function with domain 
t E V can immediately be reduced to the one with domain t E V::::. 

-- -+ -
When t E IV'::' - V'::' ~ V'::', we have .P::::- (t). > P::::+ (t) = 0 and ifdK(t) = A2ifdI2E (t) = 

A2.P::::-(t).log '\2 > O. Thus, term t contrIbutes IfdhE(t) = 0 for supporting HI, and con­
trIbutes IfdI2E (t) > 0 for supporting H 2. Because ifdK(t) > 0, the weighted algebraic sum is 
determined by its positive sub-item ifdI2E (t), and term t contributes quantity ifdK(t) for sup­
porting H 2 . In other words, when terms appear in only the non-relevant sample documents, 
the terms will not offer any statistical information for supporting the relevant hypothesis. 
Conversely, they provide fully positive information for supporting the non-relevant hypothe­
sis. Such kind of terms might be informative, but would not be associated with the query. 
Therefore, we should be concerned only with those terms that appear in at least one relevant 
sample document, and throw all terms t E V::::- - V::::+ = V:::: - V::::+ away. Consequently, the 
score function with domain t E V:::: can further be reduced to the one with domain t E ~'::::+, 
that is, 

-+ (t E V'::' ), 

which is called the association score of term t with query q. The estimation of P::::+(t) can be 
found in Section 3.7. The estimation of P::::- (t) can use the same way of estimating PD(t) found 

in Section 3.7. In addition, a priori probabilities can be given easily by setting Al = I~::::~I > 0 

- 1::::-1 
and A2 - 1::::1 > O. 

Next, when t E V::::+ - V::::- ~ V:::: + , we have P::::+ (t) > P::::- (t) = 0 and ifdK(t) = 

Al ifdhE(t) = AIP::::+(t) log 11 > O. Thus, term t contributes ifdhE(t) > 0 for supporting HI, 
and contributes ifdhE (t) = 0 for supporting H2. Because ifdK(t) > 0, the weighted algebraic 
sum is determined by its positive sub-item ifdhE(t), and term t contributes quantity ifdK(t) 
for supporting HI' In other words, when terms appear in only relevant sample documents, 
the terms will provide information for supporting the relevant hypothesis. Such kind of terms 

should be considered as associated with the query. 
Finally, when t E V::::+ n V::::- ~ V::::+, we have P::::+ (t) > 0 and P::::- (t) > O. In this case, 

each of ifdhE (t) and ifdI2E (t) can be positive or negative, and they are opposite in signs. 
Recall that ifdhE(t) > 0 if and only if P::::+(t) > P::::-(t), and ifdI2E(t) < 0 if and only if 
P::::+ (t) > P::::_ (t). From the discussion given in Section 5.2, we can see that, just in the case 

that P::::+ (t) > P::::- (t) and 

ifdK(t) = AIifdhE(t) + A2ifdhE(t) = Al ifdhE(t) - A2!ifdlzE (t)! > 0, (5.1) 

term t is able to contribute quantity ifdK(t) for supporting HI' In other words when term t 
appears in both relevant and non-relevant sample documents, it would contain statistical infor­
mation for supporting both the relevant and the non-relevant hypotheses. If P::::+(t) > P::::- \t), 
then term t contains positive information ifdhE(t) for supporting HI, and also contams 
negative information ifdI

2
E(t) for supporting H2. Further, if the finalized information (the 
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weighted algebraic sum of information that term t conveys) ifdK(t) is positive. then the in­
formation of term t is dominated by its positive sub-item ifdln~ (t). The finalized information 
thus indicates that term t contains information ifdK(t) for supporting HI. 

5.5.2 About Positive Scores 

It should be emphasized here that, only one condition scoreK(t) > 0 cannot guarantee that 
term t is more or less positively associated with the query. It is true that a positive score 
implies that ifdK(t) is positive as well (since Q(t) 2:: 0), however, this is not enough to 
infer that term t contains statistical information supporting HI. This is because, when t E 

V=:+ n V=:-, it may have ifdI2E (t) > 0 (and ifdI1E (t) < 0), thus ifdK(t) > 0 indicates that the 
weighted algebraic sum is dominated by sub-item ifdhE(t), and term t contributes quantity 
ifdK(t) for supporting H 2. In this case, a higher positive score would express that term t is 
not statistically associated with query q. The 'prime culprit' that leads to ifdI2E (t) > 0 is 
P=:+(t) < P=:- (t). 

Recall that, in the application of the directed divergence I(P=:+ : PD) and divergence 
J(P=:+,PD), scoreI(t) > 0 and scoreJ(t) > 0 implies ifdI(t) > 0 and ifdJ(t) > 0, respectively, 
and that the terms with positive scores can immediately be inferred to more or less contain 
information associated with the query. This is because, in practice, we generally have P=:+ (t) > 
PD ( t) for all terms t E V=:+ (since the size of set 3+ is very much smaller than the size of 
collection D). It would not, however, be true that P=:+ (t) > P=:- (t) for t E V=:+ in our current 
application of the information radius since the size of set 3+ may be quite close to the size 
of set 3-. Therefore, in order to effectively carry out a feedback process, we must verify 
that conditions P=:+ (t) > P=:- (t) and score K (t) > 0 can simultaneously be satisfied for each 

selected term. 
In fact, it can be seen easily that the satisfaction with two conditions P=:+(t) > P=:- (t) 

and scoreK (t) > 0 is completely equivalent to the satisfaction with only one condition 

(5.2) 

since ifdhE (t) > 0 implies P=:+(t) > P=:- (t), and inequality (5.2) implies scoreK(t) > O. 
Therefore, the expansion terms selected, from t E V=:+, should be those that contribute 

most to the expected divergence K (AI, A2; P=:+, P=:- ) . These expansion terms should be 
either those which obtain positive scores and satisfy P=:+(t) > P=:-(t), or those which satisfy 
inequality (5.2). The higher the positive score, the more likely they are strongly associated 

with the query. 

5.5.3 Relationship of Score Functions 

Similar to function scoreJ(t), function scoreK(t) can also be decomposed as 

scoreK(t) = Q(t) . ifdK(t) = Q(t) . A1ifdI1E(t) + Q(t) . A2 ifdI 2E(t) 
~+ 

= AlscoreI1E (t) + A2scoreI2E (t) (t E V'::' ), 

which, obviously, can be positive or negative since ifdK(t) can be positive or negative. From 

ifdln~(t) . ifdI2E(t) < 0 we have scorehE(t) . scoreI2E(t) < O. . . 
We can see that function score K (t) is the weighted algebraIC sums ?~ two Op~o~Ite as-

sociation scores scoreI1E(t) and scoreI2E(t): it offers not only the pOSItive assoClatlOns of 
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terms ~ith the query, but also the negative associations inherent in terms when they also 
appear III non-relevant documents. In particular when P (t) > P (t) 't h ·cd (') • ' :=:+ D 1 as 111 In:, t > 0 
and Ifd1n: (t) < 0, and then scorel (t) > 0 and score (t) < O. Further if (t) 0 .. r A ( IE l2E - , scoreK >. 
It I~p.Ies lscor~IIE t) > A2IscoreI2E(t)1 > 0, which expresses that term t is more or less 
statistIcally assocIated with the query to the extent given by score

K 
(t). 

5.5.4 A Symmetric Score Function 

Particularly, when 13+1 = 13-1 we have Al = A2 = ~. With Definition 5.4.1, we can construct 
the score function with form 

scoreK(t) = Q(t)· ifdK(t) = Q(t)~(ifdIIE(t) + ifdI2E (t)). 

By eliminating the scale factor ~, we obtain the following equivalent score function: 

scoreK (t) = Q(t) (P:=:+(t) + P:=:_ (t) + P:=:+ (t) log P:=:+ (t) 
P:=:+(t) + P:=:-(t) 

p-- (t) + P-::::- (t) 10 =- ) ~ gP:=:+(t)+P:=:-(t) 

5.5.5 In Pseudo-Relevance Feedback Procedure 

In an operational situation where no relevance information is available in advance we would , 
proceed as follows. Let statistical sample set 3 be the top a (= 151) documents retrieved in 
the initial search. All documents d E 3 are treated as (pseudo) relevant to the query q, and 
V:=: constitutes a source of candidate terms. 

Let N be a set of documents ranked in the initial search, and N = {d,6+1' d,6+2, ... , d,6+,}, 
where f3 > a and, > 1 are positive numbers, and subscripts {3 + 1, {3 + 2, ... , {3 + , are 
ranking numbers. The choice of a, f3 and " depending on a specific retrieval strategy, is not 
immateriaL For instance, we can take a = 10, f3 = 1000 and, = 10, if we have sufficient belief 
that documents dEN = {dl00l,dlO02, ... ,dlOlO} are not very relevant to the query. Thus, we 
obtain an alternative sample set 8' = 3 U N with 5 n N = 0 (generally, v:=: n V~ 1= 0). Similar 
to relevance feedback, we thus may define two mutually exclusive and exhaustive events on 
the sample set by assuming Dl = 5 being the set of the pseudo-relevant documents, and 
D2 = N being the set of the pseudo-non-relevant documents. 

Similarly, let P:=:(t) be a term distribution over (V,2V) defining set 5, where P:=:(t) > 0 
when t E V:=: and P:=:(t) = 0 when t E V - V:=:. Let P~(t) be a term distribution over (V,2v) 
defining set N, where P~(t) > 0 when t E V~ and P~(t) = 0 when t E V - V~. The estimation 
of P:=:(t) and P~(t) can be derived in the same way as the estimation of P:=:+(t) and PD(t), 
respectively, which can be found in Section 3.7. 

If, i- a, then we can use K(Al,A2;P:=:,P~) to construct the score function as discussed 

in the relevance feedback situation above with Al = o:~, and A2 = o:~" 
If, = a, then we have Al = A2 = ~, and we can apply K(P:=:, p~) to construct the score 

function as discussed in the relevance feedback situation above. 

5.6 Summary 
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.In this chapter, informati~n radius is introduced as a device for constructing the discrimi-
natIOn measure of terms. A sImple account of the concept of l·n£or t· d··· Th .. . . . rna Ion ra lUS IS gIven. e 
applIcatIOn of the mformatIOn radIUs to measurement of the amount of· £ t· t· d . . . m orma IOn con ame m a term IS mterpreted. 

, Unlike I(PR,PflJ and J(PR,P.k), in the applications of K(A A.P P_) .. b· . . . . 1, 2, R, R, a prwll 
proba lhty dlstnbutlOn P).. = {AI, A2} must be provided beforehand. The choice of P).. 
depends on a specific model itself. 

Unlike I(PR,P.k) and J(PR'P.k)~ two term distributions of K(Al,A2;PR,PH) can be 

completely disjoint, i.e., VR_ n V R = 0 (recall that I(PR, P.k) requires VR ~ ~·k and 

J(PR, P.k) requires V
R 

= VR). In this case, K(AI' A2; PR, PH) is reduced to the entropy 
of its a priori probability distribution. 

, Like I(PR, P.k) and J(PR, P.k), if t~o term distributions of K(Al' A2; PR, PH) overlap 

over some sub-domain f ~ VR n V R, i.e., PR(t) = P.k(t) for t E f, then the expected 
divergence would drop sharply. Particularly, when PR(t) = P.k(t) for t E V, then 
K(AI,).,2;PR,PR) = o. 
Like I (PR, P.k) and J (PR, P.k), K (AI, A2; PR, PH) emphasizes the importance of those 
terms with variant probabilities within sets V R and V.k. 

, The discrimination measure, and a symmetric discrimination measure (as a special case), 
based on the information radius is discussed. The concept of association of terms with 
the context of the query is then defined. 

It is important to notice that divergence K(PR, P.k) cannot be reduced to <p(t) by con­
sidering K(PR, P.k) = 1 + ~<P(t), and by eliminating coefficients 1 and ~, when we want 
to use a symmetric discrimination measure (see Section 10.2 for a detailed discussion 
about <p(t)). This is because <p(t) is non-positive and does not possess Criterion 2, so it 
cannot serve as a divergence measure. 

, The method of constructing a score function and the simplification of the domain of 
the score function is addressed, and how the score function can be employed in both 
relevance and pseudo-relevance feedback is illustrated. 

It should be especially pointed out that only one condition scoreK (t) > 0 cannot in­
fer that term t contains statistical information supporting HI. As mentioned, when 
t E V 3 + n V 3 - , it may have ifdIzE (t) > 0 (in this case ifdI1E (t) < 0), and positive quan­
tity ifdK(t) is dominated by its sub-item ifdI2E (t), and term t contributes ifdK(t) for 
supporting H2. In order to effectively select good terms, two conditions P:=:+(t) > P=.- (t) 
and score K (t) > 0 should be simultaneously verified for each candidate term. 

K().,l' ).,2; PR, P.k) is not symmetric in arguments PR(t) and P.k(t) , neither in Al and 
A2. Nevertheless, a symmetric divergence measure can be easily introduced by setting Al = 
A2 = ~. Also, there is no need to require the absolute continuity of PR(t) and Pk(t) in the 
applications of the information radius since PR(t) « PE(t) and P.k(t) « PE(t) always hold 
unconditionally (when ).,1 # 0 and A2 # 0). Such an outstanding property is not possessed by 
the divergence measures I(PR,P.k) and J(PR,P.k). In the next chapter, we will give another 
way to look at the information radius based on the concept of entropy increase. 



Chapter 6 

AQE Based on Jensen Difference 

Our interest is to analyse the expected divergence of two term probability distributions derived 
from the relevant and non-relevant document sets, respectively. The analysis is expected to 
able to reveal some semantic relations between terms. The study addressed in this chapter 
is to view this issue in another way: the comparison of the diversities of terms in the sets of 
relevant and non-relevant documents, and the set of the combination of these two sets. 

In Section 6.1, we discuss the diversity measure, and introduce three typical entropy 
functions used as the diversity measures. In Section 6.2, we discuss Jensen difference by 
means of the concavity of the diversity measure, and the Jensen difference for three entropy 
functions are derived. In Section 6.3, we discuss the measure of entropy increase, which is 
a special case of the Jensen difference, and the appropriateness of the application of three 
entropy functions is carefully investigated. 

Diversity measure is a general concept, which can be applicable to observations belonging 
to any sample space when it satisfies some concavity properties. 

6.1.1 Diversity Measure 

A diversity measure can be conceived as a function from the space of term probability distri­
butions into the real line. It reflects differences between terms within a set of documents. 

Before a definition of the diversity measure can be given, it is necessary to understand 

th·e notion of concavityl of a function. 
Then, use symbol H to indicate Heterogeneity, the concept of diversity measure can be 

defined as follows. 
lA function f(x) is said to be concave over some interval (a,b) iffor arbitrary two points Xl,X2 E (a,b) and 

two numbers AI, A2 satisfying 0 :::; AI, A2 :::; 1 and Al + A2 = 1, 

f(AIXl + A2X2) 2: Ad(xI) + A2f(X2). 

Geometrically, a concave function always lies above any chord. Examples of concave functions include log I 

for (0, +00) and _x2 for (-00, +00), etc. 

100 
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Definition 6.1.1 A function H ( . ) mapping Pn into the real line [0, +x) is said to be a 
measure of diversity if 

(Cd H(PDk ) > 0 with equality if and only if PDk(t) is degenerate2, 

(C2 ) H ( . ) is a concave function, that is, 

H(A1PDl + A2PDz) > )qH(PD1 ) + A2H (PD
2

) 

with equality if and only if PD1 (t) = PD2 (t) (0 ~ AI, A2 ~ 1 and Al + A2 = 1), 

which is referred to as the diversity within a document set Dk . The quantity of H(PD
k

) 

reflects the difference between terms within set Dk . 

The condition C1 is a natural one since a measure of diversity should preferably be non­
negative and take the value zero only when all terms of a document set, in an extreme case, 
are 'identical'. 

Consider two term distributions PD1 (t) and PD2 (t) and a composite distribution P
E 

(t) = 

A1 PD1 (t) +A2PD2 (t). Condition C2 is motivated by considering that the amount of diversity 
in a mixture of document sets should not be smaller than the average of the diversities within 
the individual sets, that is, the diversity possibly increases by mixing the sets of documents. 
We may formulate this requirement by condition C2 . In other words, the condition C2 is 
equivalent to saying that H is a concave function. The concavity of H reflects the intuitive 
requirement that two terms drawn from different sets are on the average more different than 
those coming from the same document set. 

6.1.2 Entropy Functions as Diversity Measures 

A variety of diversity measures have been introduced through the concept of entropy in 
information theory. In fact, an entropy function H ( . ) can be directly conceived of as a 
function defined on set Pn , satisfying some postulates. Some of the postulates are that it is 
non-negative, attains the maximum for the uniform3 distribution P1(t), and has the minimum 
when the term distribution is degenerate. In some sense, an entropy function is an index of 
similarity of an arbitrary distribution PDk (t) with the uniform distribution P1(t), and hence 
a measure of diversity [131]. 

Mathai & Rathie [126] and Aczel & Daroczy [1] consider three general forms for entropy 
functions: 

~tEV Pg: (t) log PDk (t) 
H(PDk) = - ~ p f3t (t) , 

L"tEV Dk 

1 ~ pO:+ f3t - 1(t) 
() 1 ( 

L"tEV Dk ) (> 0 ~ 1) 
H PDk = 1 _ a og ~ p f3t (t) a, a I , 

L"tEV Dk 

( ) 
_ 1 (~tEVP~~f3t-1(t) -1) 

H PDk - 21-0: _ 1 ~ p f3t (t) (a > 0, 0.=1=1). 
tEV Dk 

2 A probability distribution P = {Pl,P2, ... ,Pn} is said to be degenerate if Pk = 1 (1 :::; k :::; n) and Pi = 0 

(1 :::; i :::; n, if. k). .... . __ 1 (1 < . < ) 
3 A probability distribution P = {Pl,P2, "',Pn} IS saId to be uniform, denoted PI, If P, - 1\"1 _ 1 _ n . 
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When f3t = 1 for all terms t E V we obtain the familiar expressions introduced by Shannon 
[176], Renyi [145], Havrda & Charvat [80]: 

HSh(PDk ) = - LPDk(t)logPDk(t), 
tEV 

HRe(PDk ) =1 1 a log (LPDk(t)) (a> 0, a i= 1), 
tEV 

HHC(PDk) 1_~1-Q(1-LPDk(t)) (a>O, ai=1). 
tEV 

All these measures are non-negative and take value zero when and only when PD (t) is 
degenerate. They all attain the maximum when PDk (t) = I~I for every term t E V. k Thus 
they satisfy condition Gl . 

lt can be verified that HSh satisfies the concavity condition C2 , HRe satisfies G2 for only 
o < a < 1, while HHC satisfies the concavity condition G2 for any a > 0 (a i= 1) [144]. 

In addition, for a = 1, HRe(PDk) and HHC(PDk) are defined in the limiting sense: 

lim HRe(PDk) = lim HHC(PDk ) = HSh(PDk ). 
Q~l Q~l 

For more properties of these functions see [1, 126]. 
N ayak studied the relationships between these three entropy functions for the different 

values a. We will not further discuss this topic in this thesis. The interested reader is referred 
to [131]. 

6.2 Jensen Difference 

If we have a mixture of several document sets, it would be of interest to know how much 
of the diversity in the mixture set is due to diversity within the sets and how much due to 
between the sets. Rao [143, 144] refers to this problem as decomposition of diversity. 

The concavity of the diversity measure provides the decomposition of the total diversity 
in a composite distribution as defined in the following. 

Definition 6.2.1 Let PDk (t) define the document set Dk with a priori probability Ak (k = 

1,2, ... , r). Define the decomposition [144] by 

r r 

H(LAkPDk) = LAkH(PDk ) + JH({Ak};{PDk}), 
k=l k=l 

in which, the first item on the right side of equation above is the average diversity within the 
term distributions, and the second item 

r r 

JH({Ak};{PDk}) = H(LAkPDk) - LAkH(PDk ) 
k=l k=l 

is referred to as the Jensen difference with respect to entropy H, which is non-negative 
and vanishes when PD1 (t) = ... = PDT (t). Jensen difference provides a measure of overall 
differences among the term distributions PDk (t) (k = 1,2,· .. ,r). 
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Thus, for the three entropy functions given in the last section from th d . t' . 
. S t' 10 3 . . , e enva Ion gIven 
III ec IOn ., we can Immediately obtain the following results. 

For Shannon's entropy, the Jensen difference can be written as 

r r 

JHSh({Ak};{PDk }) = HSh(LAkPDk) - LAkHSh(PDk) 
k=l k=l 

r 

= L L AkPD (t) log PDk (t) 
tEV k=l k .L~=l AkPDk (t) , 

which is t~e ~~formation radius defined by Sibson [177]. 
For RenYl s entropy, when 0 < a < 1, the Jensen difference can be written as 

r r 

JHRe({Ad;{PDk }) =HRe(LAkPDk) - ~AkHRe(PDk) 
k=l k=l 

_ 1 1 .LtEV(.L~=lAkPDk(t)t - ---- og--~~~~~--~~_ 
1 - a rr~=l (.LtEV PDk (t)f'k 

For the entropy of Havrda & Charvat, when a > 0 (a #- 1), the Jensen difference can be 
written as 

r r 

JHHC({Ak};{PDk }) = HHC(~AkPDk) - ~AkHHC(PDk) 
k=l k=l 

1 r r 

= 1- 2l - a L ((LAkPDk(t)) - (~AkPDk(t)t). 
tEV k=l k=l 

6.3 Appropriateness of Applications 

Let us now consider a particular situation where r = 2. Assume that PR(t) and Pk(t) are 
discrete probability distributions over (V,2V ), and derived from sets Rand R, respectively. 
Denote the corresponding Jensen difference by 

which is referred as to the measure of entropy increase of term t. 
From the condition C2 , the entropy increase JH (AI, A2; PR, Pk) is positive if distribu­

tions PR(t) and Pk(t) are different, equals to zero when PR(t) = Pk(t), and hence may be 
considered a direct measure of overall differences between PR(t) and Pk(t). In other words. 
J H (AI, A2; PR , PRJ provides the excess variability, representing the amount of difference be­
tween the sets Rand R. Then we obtain a measure of differences between PR(t) and Pk(t) 
induced by the diversity H(·), which is not necessary symmetric in PR(t) and Pk(t), respec­
tively. 

In practice, we may need a symmetric entropy increase measure. For this reason, take 
Al = A2 = ~, and denote the corresponding entropy increase measure by 

1 1 1 1 
JH(PR,Pk ) = H(2 PR + 2PR) - 2H (PR) - 2H (Pk ), 
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which is symmetric in PR(t) and PR(t), and thus can be viewed as 'distance' between PR(t) 
and PR(t) induced by the diversity H. 

In applications to IR, J H (>'1, A2; PR , PR) should be chosen to effectively reflect some in­
trinsic difference between terms related to a specific classification procedure. 

6.3.1 Entropy Function HSh 

Shannon's entropy has many properties that agree with the intuitive notion of what a measure 
of information should be [38]. As mentioned in Section 3.1, measure i(t) = -log P(t) can be 
interpreted as the uncertainty concerning the occurrence of term t before an experiment is 
performed. Then, Shannon's entropy 

HSh(P) = L P(t)i(t) = - L P(t) log P(t) 
tEV tEV 

can be thought of as a measure of the expected uncertainty concerning the occurrence of 
term t (as a random variable), that is, a measure of the amount of information required in 
the expectation to describe the random variable t. 

Notice that we adopt here the convention 0 log 0 = 0 since it is rather natural that adding 
items with zero probability does not affect the degree of uncertainty, i.e., does not change the 
Shannon entropy. It is shown that the entropy, HSh(P), of a discrete random variable may 
be finite, even when the random variable takes on a denumerable number of values. 

Particularly, the concavity of HSh(P) is typically useful in IR applications: it provides a 
natural measure of divergence between distributions PR(t) and PR(t). For Shannon's entropy, 
we have the measure of increase in entropy, 

which is the divergence measure K(AI' A2; PR, PR), and the expression of each of its items 

PR(t) A P- (t) 10 PkJt) 
r HSh (t) = AIPR(t) log AIPR(t) + A2 PR(t) + 2 R g >'lPR(t) + A2PR(t) 

is the discrimination measure ifdK(t). Thus, another way oflooking at the information radius 

and its individual items is by the entropy increase. 
We have given detailed discussions on K(AI' A2; PR, PR) and ifdK(t) , and on how we .can 

apply them to establish the association concept and construct the association score functIOn, 

in the last chapter. 

6.3.2 Entropy Function HRe 

For Renyi's entropy, when 0 < a < 1, we have the entropy increase measure 

1 2:tEV (AIPR(t) + A2PR(t)r~ 
JHRe (AI, A2; PR, PR) = 1 _ a log (2:tEV P

R
(t))A1 (~tE" PR(t))A2 

_ ('" (A1PR(t)+A2PR(t))O )120 . 
- log Lt )A1 ('" P O ( ))A2 

tEV (~tE" PR(t) utE'" R t 
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Notice that function log is monotonically increasing of its argument: 

(2:: (A1 PR(t)+A2PH(t))Q )12<>. 
tEV (LtEVPR(t))Al(LtEVP~(t))A2 

Notice also that, it has a = l~Q > 1 when 0 < a < 1. Thus, function Xa is monotonically 
increasing since its argument 

Therefore, the order of the contributions made by individual terms to JHRe (AI, A2; PR, PH) is 
the same as that of argument X. 

Thus, considering the contributions made by terms to measure JHRe can be reduced to 
considering the contributions made by terms of argument X, in which, each item of X can be 
written by 

() 
_ (A1 PR(t) +A2PH(t))Q 

f HRe t - A A . 
(LtEVPR(t)) I(LtEVP~(t)) 2 

For some term t E VR satisfying PR(t) = PH(t) =I- 0, 

PR(t)(A1 + A2)Q 

(LtEV PR(t)) Al +A2 

that is, JHRe (AI, A2; PR, PH) does not possess Criterion 2. Consequently, the expression, 
fHRe (t), of the individual items of JHRe (AI, A2; PR, PH) should not be an appropriate dis­

crimination measure of terms. 

6.3.3 Entropy Function HHC 

For the entropy of Havrda & Charvat, when a > 0 (a =I- 1), we have the entropy increase 

measure 

JH
HC 

(AI, A2; PR, PH) = 1 _ ~l-Q L ((A1PR(t) + A2P~(t)) - (A1 PR(t) + A2PH(t)t)· 
tEV 

Each of its items is 

1 ((A1 PR (t) + A2P~(t)) - (A1PR(t) + A2PH(t)t)· 
1 - 21- Q 

It is easily seen that JH
HC 

(AI, A2; PR, PH) possesses Criterion 2. In fact, for some term t E VR 

satisfying PR(t) = PH(t) =I- 0, we have 

(A1 PR(t) + A2PR(t)) - (A1 PR(t) + A2PR(t))Q = PR(t) - PR(t) = O. 

However, its items would not be an appropriate discrimination measure of terms. In order to 

explain this point, let us consider a simple case when a = 2: 

J (AI A2' PR PR-) = 1 '" ((A1Pk(t) + A2Pk(t)) - (A1PR(t) + A2Pk(t))2) 
HHC ' " 1 - 21- 2 0 

tEV 
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= 2 L ()'1P~(t) + A2Pk(t) - Aip~(t) - A~Pk(t) - 2A1A2PR(t)Pf{(t)) 
tEV 

= 2 L (A1P~(t)(1 - A1) + A2Pk(t)(1 - A2) - 2A1A2PR(t)Pf{(t)) 
tEV 

= 2 L (AIP~(t)A2 + A2Pk(t)A1 - 2AIA2PR(t)Pf{(t)) = 2AIA2 L (PR(t) - pf{(t))2. 
tEV tEV 

It is reduced to the Euclidean distance apart from a scale factor 2AIA2. Each of its items is 

In order to discuss the appropriateness of r H He (t) as a discrimination measure, let us recall 
our analysis given in the previous chapters (see the summary of the signs of the discrimination 
measures ifdI(t), ifdJ(t), ifdK(t) given in Table 6.3.1), we knew that, 

- If PR(t) > Pf{(t), term t contributes quantity ifdI(t) > 0 for supporting H 1. 

If PR(t) < Pf{(t), term t contributes quantity ifdI(t) < 0 for supporting HI. 

- If PR(t) > Pf{(t), term t contributes quantity ifdJ(t) > 0 for supporting HI. 

If PR(t) < Pf{(t), term t contributes quantity ifdJ(t) > 0 for supporting H 2. 

- If PR(t) > Pf{(t) and ifdK(t) > 0, term t contributes ifdK(t) for supporting HI. 

If PR(t) < Pf{(t) and ifdK(t) > 0, term t contributes ifdK(t) for supporting H 2. 

Table 6.3.1 The signs of the discrimination measures 

ifdh2 (t) > 0 ® HI ifdh2 (t) < 0 ® HI ifdh2 (t) = 0 
ifdJ(t) ifdhI (t) < 0 ® H2 ifdhI (t) > 0 ® H2 ifdhI (t) = 0 

ifdJ(t) > 0 ® HI ifdJ(t) > 0 ® H2 ifdJ(t) = 0 

ifd1n: (t) > 0 ® HI ifdlu : (t) < 0 ® HI ifd1u; (t) = 0 
ifdK(t) ifdh 2: (t) < 0 ® H2 ifdh 2: (t) > 0 ® H2 ifd1n (t) = 0 

ifdK(t) > 0 ® HI ifdK(t) > 0 ® H2 ifdK(t) = 0 

ifdK(t) < 0 ® H2 ifdK(t) < 0 ® HI . 
Symbol 'lfd(t) ® Hk' expresses that the discrimination measure Ifd(t) 
supports hypothesis H k ; and HI and H2 are two hypotheses that term t 

are drawn from Rand R. respectively. 

We can easily see that whether term t supports the relevant hypothesis depends mainly 
on the relationship between PR(t) and Pf{(t) , rather than on the mathematical sign of the 
discrimination measures. These results dearly tell us that, as long as PR(t) > Pf{(t) , term t 
is deemed to contain statistical information supporting H 1· Conversely, so long as PR(t) < 
Pf{(t), term t supports H2. Thus, PR(t) -Pf{(t) is in fact the simplest discrimination measure. 

One might think that, in a pseudo-relevance feedback procedure, P=.(t) ;::: PD(t) holds for 

all terms t E V=', and thus, function 2AIA2Ip=.(t) - PD(t)1
2 

can be consistent with function 
P=.(t) - PD(t) in the sense of reflecting the relationship between PR(t) and Pf{(t). However, 

in this case, it has Al = i~11 -+ 0 as IDI = N -+ +00 and A2 = i~i = 1, which implies that the 
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entropy increase measures discussed in this chapter would not be suitable for the situation of 
pseudo-relevance feedback. 

On the other hand, in a relevance feedback procedure, we use S+ instead of R, and take 

S- = S -. S+ (~.R :::::; D). In this case, one can very easily set Al = 'f=:~' and A2 = 'f~'. 
However, In practIce, we cannot assume that condition P2 + (t) > P=:- (t) holds for all terms 

t E V=:+. Thus, function 2AIA2\P=:+ (t) - P=:- (t) \2 cannot give the relationship between PR(t) 
and PR(t). Consequently, expression fHHC(t) is not an appropriate discrimination measure 
of terms. 

6.4 Summary 

This chapter attempts to study the application of the concept of entropy, or entropy 
increase, to IR, by introducing the more general concepts of diversity and Jensen difference. 
Three typical entropy functions are discussed, and the appropriateness of applying them as a 
divergence measure is investigated. 

~ The concavity of HSh(P) provides a natural measure of divergence between distributions 
PR(t) and PR(t). It turns out that the entropy increase measure JHSh (AI, A2; PR, PRJ = 

K(Al,A2;PR,PR), and each of its items fHsh(t) = ifdK(t). Thus, with the entropy 
increase, we have another way to interpret the concept of the information radius and 
its individual items. 

~ For entropy HRe(P), when 0 < a < 1, for term t E VR satisfying PR(t) = Pk(t) i- 0, 
it has fHRJt) i- 0, that is, JHRe (AI, A2; PR, Pk) does not possess Criterion 2. Thus, the 
entropy increase measure JHRe (AI, A2; PR, Pk) should not be an appropriate divergence 

measure of term distributions. 

~ It can be seen that, when a > 0 (a i- 1), JHHC (AI,A2;PR,Pk) possesses Criterion 
2. However, when a = 2, it is reduced to the Euclidean distance ap~rt fr~m a scale 
factor 2Al).2, and each of its items is fHHC(t) = 2AIA2IPR(t) - Pk(t) I ' whIch cannot 
give the relationship between PR(t) and Pk(t). Thus, the entropy increase me~sur.e 
JHHC (AI, ).2; PR, PR) might not be an appropriate divergence measure of term distn-

butions either. 



Chapter 7 

AQE Based on Expected Mutual 
Inforlllation 

This chapter is devoted to the discussion of an interesting subject: discrimination on the 
mutual information, or dependence, of terms. The formalism of the discrimination measures 
is based on the concept of expected mutual information [67, 106]. 

The discrimination on mutual information of terms was formally introduced to IR theory, 
as a device for identifying good terms, by Van Rijsbergen [206, 207]. This chapter attempts 
a further investigation into the issue based on the study initiated there. We will see that 
the formal method proposed in this chapter not only covers the method EMIM as a special 
case, but also suggests a general form of the definition and estimation of mutual information 
within a more general probabilistic framework. 

In Section 7.1, after distinguishing term state distribution from term distribution, we 
intend to give a formal interpretation of the notion of amount of mutual information contained 
in a given term pair. In Section 7.2, we focus on the mathematical study of estimating term 
state distributions. Three particular methods are considered, and then a general framework 
for the estimation is established. In Section 7.3, we make an in-depth investigation into 
dependence discrimination measures and reveal some important relationships between them, 
which underpin the method proposed in this chapter. In Section 7.4, we give an insight into 
the concept of dependence of terms. Section 7.5, we devote to introducing the concepts of 
mutual association in the sense of the mutual information of terms. Three basic concepts: 
term-based association, set-based association and query-based association, are discussed. In 
Section 7.6, two score functions are proposed, and their relationship is analysed. In Section 
7.7, we address extensions of our methods to other information entities. Also, the reader is 
referred to Section 10.6 where three examples are given which elaborate on all computations 
encountered in this chapter. 

7.1 Information Gain I(8i ,8j ) 

The objective of this section is to apply the idea of information theory to IR theory by 
interpretations of the notion of amount of mutual information contained in a given term pair. 
The formal method proposed in this chapter will be based on these interpretations. 

108 
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Before entering into a formal discussion on the mutual information of terms, let us first 
clarify the difference between the notions of a term state distribution and a term distribution. 

7.1.1 Term State Distribution and Term Distribution 

To speak of the mutual information of terms, we must regard the term state distribution as 
defined on a different probability space from the term distribution. 

A term is usually thought of having its state values present or absent in some document. 
Thus, for an arbitrary term t, we need to introduce a variable 8 taking values from set 
n = {1,0}, where 8 = 1 expresses that term t is present and 8 = 0 expresses that term t 
is absent. That is, if we denote t l = t and to = t, then it has to = t t when 8 = 1 0 , , , , 
respectively. We call n = {1,0} a state value space, and each element in n a state value, of 
the term. 

Similarly, for an arbitrary term pair (ti, tj), we introduce a variable pair (8i,8j ) taking 
values from set n x n = {(I, 1), (1,0), (0,1), (0, O)}. We call n x n a state value space, and 
each element in n x n a state value, of the term pair. 

In information retrieval, the notion of term state distribution should be carefully distin­
guished from the notion of term distribution. For a given document d and term t E V d

, its 
state distribution, denoted by Pd(8) = P(tO\d), should be over the state value space n = {I, O}. 
Whereas the term distribution, denoted by Pd(t) = p(t\d), should be derived from document 
d, and over term set V d . Generally, the term state distribution can easily be derived in terms 

of the term distribution. 
More precisely, assume that, for each document dE D, set V d satisfies 2 :::; \Vd

\ :::; n (i.e., 
each document has at least two distinct terms). Also, assume that frequencies fd(t) for all 
terms t E V d have been obtained. Based on the statistical data within document d, each 

document can be characterized by 

(7.1) 

which is the term probability distribution over (V d
, 2Vd

). Obviously, under assumption \V
d

\ 2: 
2, we have 0 < Pd(t) < 1 for every t E yd. (Notice that Pd(t) can also be defined over (V,2

V
), 

a detailed discussion about this is given in Section 10.5). 
Based on the term distribution, for a given term t E V d

, the probabilities of the different 

state values concerning document d can be written down 

(7.2) 

which is over n = {I, O}. Clearly, 0 < Pd(8) < 1 for 8 = 1, O. . . 
It can easily be seen that different terms in a given document are likely to obtam d.ifferent 

term state distributions depending on the term distribution which is uniquely determmed by 

the statistical data within the document. 

Example 7.1.1 Suppose that we are given a document d = {tl' t2, t2, t2, t3, t4}· From which 

we have V d = {tl, t2, t3, t4}, and the term distribution: 
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Thus, the term state distributions for individual terms t E V d are: 

and 

and 

and so on. • 

For a te~m pair (ti' tj), ~he estimation of the term (joint) state distribution Pd { (\, 8j ) is a 
more complIcated task, whIch we shall specially discuss in the next section. 

It should especially be pointed out that the term taking a certain state value 8 should 
be looked upon as complex because many other term state values may be dependent on the 
state value. This is a central issue on which we shall concentrate in this chapter. 

7.1.2 Mutual Information Contained in a Term Pair 

The concept of expected mutual information is a very familiar one. More formal discussions 
about it can be found in [106]. An account for discrete variables is given as follows. 

Let HI and H2 be two opposite hypotheses related to a term pair (ti, tj). Similar to the 
discussion on the information gain i(HI : H21t) given in Section 3.2, the logarithm of the 

likelihood ratio, 

measures the amount of information contained in term pair (ti' tj) for discrimination in favour 

of HI against H2· 
Particularly, if we assume that hypothesis HI: terms ti and tj are dependent with a joint 

probability distribution P( 8i , 8j ) over f2 x f2, and that hypothesis H2 : terms ti and tj are 
independent with the product of marginal distributions P(8i ) and P{8j ) both over f2. Then, 

when HI is true, measure 

is the information gained from term pair (ti' tj) for discrimination in support of the dependent 
hypothesis HI against the independent hypothesis H2 when (ti, tj) has the state value (8i , 8j ). 
In practice, i(HI : H21(8i , 8j )) is referred to as the mutual information of terms ti and tj under 
the corresponding state value (8i ,8j). Notice that, in contrast to Eq.{7.3), we here adopt 
notation i(HI : H21(8i , 8j )) instead of i(HI : H21(ti, tj)) as a more general expression which 
can be applicable to any state value of a given term pair. In the remainder of this chapter 
'amount of mutual information' and 'extent of dependence' are treated synonymously, and 

they can be measured by using the same measure i(HI : H21(8i ,8j)). 
It is interesting to notice that the mutual information between terms ti and t J under the 

state value (bi , bj ) can also be written as 

. P(~,~) 
Z(HI : H21(bi ,bj )) = log P(bi)P(bj ) 

= log P(bilbj ) = logP(bilbj ) -logP(8i) = i(bi ) - i(bilbj ) 

P(bi ) 
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= 10 P(6jI6i) _ . . 
g P(6j) -10gP(6jI6i) -10gP(6j) = '/.(6j) - '/.(6jI6i) 

= i(Hl : H2 1(6j, 6i)), 

provided that P(6i) > 0 and P(6J') > O. Thus i(H . H 1(£' £ .)) . t' . £ d £ 
. , 1· 2 ut , UJ IS symme fIC III ui an u' 

and It can be positive or negative. J' 

Particularly, when (6i' 6j) = (1,1), we have 

i(Hl : H2 1(ti, tj)) = i(ti) - i(tiltj) = i(tj) - i(tjlti) = i(Hl : H
2
1(tj, td), 

provided that P(ti) > 0 and P(tj) > O. 

Th~refore, another way of ~o~king at i(Hl : H2 1(ti, tj)) would be as follows. Intuitively, 
when '/.(Hl : H2 1(ti, tj)) > 0, It IS a measure of the decrease in the uncertainty about the 
occurrence of term ti (or term tj) caused by the occurrence of term tj (or term ti). This can 
also be thought of as a measure of the positive information concerning the occurrence of term 
ti (or term tj) provided by the occurrence of term tj (or term ti)' 

Conversely, when i(Hl : H2 1(ti, tj)) < 0, it is a measure of the increase in the uncertainty 
about the occurrence of ti (or tj) caused by the occurrence of tj (or ti). This can also be 
thought of as a measure of the negative information concerning the occurrence of ti (or tj) 
provided by the occurrence of tj (or ti ). 

7.1.3 Expected Mutual Information Measure 

Let us further assume that the joint state distribution is absolutely continuous with respect 
to the product of its marginal distributions. Then, the expected mutual information contained 
in term pair (ti' tj) is defined [67, 106, 176] by 

It can be verified that I(6i,6j) > 0, with equality if and only if P(6i,6j) = P(6i)P(6j) for 
6i,6i = 1,0 [106]. This property tells us that, in the expectation, the mutual information 
received from term pair (ti' tj) is positive. There is no mutual information if terms ti and tj 
are statistically independent. 

The essential reason for the assumption that P(6i' 6j) « P(6i)' P(6j) for 6i, 6j = 1,0 is to 
ensure that I(6i,6j) is well-defined. That is, P(6i,6j)i(Hl : H2 1(6i, 6j)) =I 00 for 6i, 6j = 1,0 
under the notational conventions 0 . log (§) = 0 and 0 . log (~) = 0 (where 0 < a < +(0). 

In practice, the information contained in a document is generally regarded as an infor­
mation entity, and documents (as stored units) are usually treated as independent. Thus, if 
two terms appear in different documents, it is unlikely that they are statistically dependent 
(again, not in the sense of a semantic relation). Therefore, in this chapter, we restrict the 
'distance' between terms to a document, that is, the mutual information of terms is estimated 
by using statistical data within a document. Also, one can estimate the mutual information 
of terms by using the statistical data within an information subentity (such as, a local context. 
abstract, summary, passages, etc.), or within an information superentity (such as, a set of the 
relevant sample documents). In these cases, the information subentity or superentity would 
in effect be considered as a new independent information entity. 
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As we will see at later stages, with such a restriction, i.e., considering the mutual infor­
mation of ter~s w.ithin a s.pecific information entity rather than within an extremely large 
and all-embracmg mformatIOn source (the whole collection), the Score functions can be easily 
designed, and the total computation involved in the method proposed in the current chapte'r 
is not expensive, nor complex. 

Thus, for a given information entity, denoted by E, let the joint state distribution of term 
pair (ti' tj) be PE(Oi, OJ), and its corresponding marginal distributions be PE(0z) and PE(O). 
All these distributions are derived by using the statistical data within entity E. Assume t~at 
PE (Oi' OJ) « PE (Oi) . PE (OJ) for Oi, OJ = 1, O. Then the expected mutual information of terms 
ti and tj concerning entity E can be expressed as 

(7.4) 

It should be emphasized, in studying mutual information of terms, that our interest is in 
the fact that quantity IE (Oi' OJ) is 'concerning entity E'. In fact, for a given term pair (ti' tj), 
quantities IE( Oi, OJ) elicited from the statistical data within the different entities are likely to 
be different. 

To speak of the mutual information of terms concerning a certain entity E, based on 
Shannon's basic ideas, the joint and marginal state distributions on which IE( Oi, OJ) is based 
must be set up. Thus, in the next section, we will focus mainly on the issue of the estimation 
of these distributions. 

There are various possible ways to estimate the state distributions. Usually, the estimation 
of the marginal state distributions PE (od and PE (OJ) can be given easily by, for instance, the 
term probability distribution over V E . The marginal state distributions can also be estimated 
based on a non-negative function over V E , which may not be a term probability distribution; 
we shall shortly see such an example. 

Thus the main aim of this section is to study the estimation of the joint state distribution , 
Pd(Oi, OJ), which needs more complicated mathematical treatment. We start by considering 
three particular methods (as examples), in order to try to get ideas of what happens in the 
general situation, and then a general framework for the estimation is established. 

7.2.1 Method A: Using Term Co-occurrence Data 

To begin with, let us consider a given document. It will be found that it is very easily extended 
to other kinds of information entities. 

For two arbitrary terms ti, tj E V d, using the statistical data of the co-occurrence of terms 
within document d, the estimation of Pd(Oi, OJ) can be expressed as 
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Pd(6i = 1, 6j = 0) = Pd(6i = 1) - Pd(6i = 1, 6j = 1) = Pd(ti) - fd(ti, tj), 

Pd(6i = 0, 6j = 1) = Pd(6j = 1) - Pd(6i = 1, 6j = 1) = Pd(tj) - Td(ti, tj), 

Pd(6i = 0, 6j = 0) = 1 - Pd(6i = 1) - Pd(6j = 1) + Pd(6i = 1, 6j = 1) 

= 1 - Pd(ti) - Pd(tj) + fd(ti,tj), 
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(7.5) 

where fd (ti' tj) is a positive function and Pd(t) is given in Eq.(7.1). Obviously, Pd(6i, 6J ) in 
Eq.(7.5) is uniquely determined by fd(ti, tj) and Pd(t). 

We first prove that Eq.(7.5) constitutes a probability distribution over n xn by establishing 
the following theorem and corollary. 

Theorem 7.2.1 Given tj, tj E V d, for the expression given in Eq.(7.5), we have: 

(1) Pd(ti) > fA (ti' tj) if and only if 

L Jd(ti' )Jd(tj') > Jd(tj)Jd(tj); 
i'<j'; t i , ,tj' EVd_{tj} 

L Jd(ti' )Jd(tj') 2: Jd(ti)Jd(ti). 
i' <j'; t i , ,tj' EVd_{td 

The detailed proof of this theorem is given in Section 10.4. 

Corollary 7.2.1 For given tj, tj E V d, the expression given in Eq.(7.5) is a probability 

distribution if 

L Jd(ti' )Jd(tj') > Jd(tj)Jd(tj), 
i' <j'; t i , ,tj' EVd_{ tj} 

L Jd(ti' )Jd(tj') > Jd(ti)Jd(ti). 
i' <j'; t i , ,tj' EVd_{td 

Proof. Denote the denominator of probability Pd(6i = 1, 6j = 1) by 

r;:; = 

it follows immediately, 

. . _ _ Jd(ti) _ Jd(tj) + Jd(ti)!d(tj) 2: O. 
1 - Pd(ti) - Pd(tj) + fd(tt,tJ) - 1 Ildll Ildll w 
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Also, it is easily seen 2:o
i
,Oj=l,O Pd(6i, 6j) = 1. The proof is complete. 

Corollary 7.2.1 tells us that Pd(6i, 6j) in Eq.(7.5) is a probability distribution if it satisfies 
two inequalities given in the corollary. Whereas Theorem 7.2.1 states that these two inequal­
ities can be verified as long as we have Pd(ti) > fd(ti, tj) and Pd(tj) ~ fd(ti, tj), which are 
much easier to verify in practical applications. 

Let us see an example below, which will help to clarify the above ideas and understand 
the computations involved in Eq.(7.5). 

Example 7.2.1 For a document d = {tl, t2, t2, t2, t3, t4} in Example 7.1.1, we find 

W= 

i'<J'"t" t"EVd 
, t , J 

= fd(tl)fd(t2) + fd(tl)fd(t3) + fd(tl)fd(t4)+ 

fd(t2)fd(t3) + fd(t2)fd(t4) + fd(t3)fd(t4) 

= 1 x 3 + 1 x 1 + 1 x 1 + 3 x 1 + 3 x 1 + 1 x 1 = 12. 

Thus, for instance, for term pair (iI, t2), we have 

fd(tl)fd(t2) 1 x 3 3 
Pd(6l = 1,62 = 1) =fd(tl,t2) = W = ~ = 12> 0, 
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Pd(6l = 1,62 = 0) = Pd(tl) - fd(tl, t2) = 6 - 12 = -12 < 0, 

3 3 3 
Pd(6l = 0,62 = 1) = Pd(t2) - fd(tl, t2) = 6 - 12 = 12 > 0, 

1 3 3 7 
Pd(6l = 0,62 = 0) = 1 - Pd(tl) - Pd(t2) + fd(tl, t2) = 1 - 6 - 6 + 12 = 12 > 0, 

from which we can conclude that Pd(6l, 62) is not a probability distribution since Pd(tl) -
fd(tl, t2) < 0. Also, we can verify this in another way: 

L fd(ti' )fd(tj') = L fd(ti' )fd(tj') 
i' <j'; t

i
, ,tj' EVd_{ t2} i' <j'; ti , ,tj' E{ tl h,t4} 

= fd(tdfd(t3) + fd(tl)fd(t4) + fd(t3)fd(t4) = 1 + 1 + 1 < 9 = fd(t2)!d(t2), 

L fd(ti' )fd(tj') = L !d(ti' )!d(tj') 
i' <j'; t

i
, ,tj' EVd_{ tI} i' <j'; ti , ,tj' E{ t2 h,t4} 

= fd(t2)fd(t3) + fd(t2)fd(t4) + fd(t3)!d(t4) = 3 + 3 + 1 > 1 = fd(tl)!d(t 1). 

That is, the first inequality given in Corollary 7.2.1 is not satisfied. • 

From the above example, we can see that, as documents become longer, fac~or '[i] would 
become larger rapidly (then fd(ti, tj) remains positive but becomes smaller rapldlY)'b!hUS, 
it should not be a problem to satisfy Pd(ti) > fd(ti, tj) and Pd(tj) > fd(ti, tj). for ar Itrary 

terms ti, tj E V d, in practice. F th f of 
Clearly it is important to compute function fd(ti, tj) in Eq.(7.5), rom e prolo b 

, . b bTt P. (6' - 1 6, = 1) can a so e 
Theorem 7.2.1, we can see that the denommator of pro a 11 y d 1 - , J 
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expressed as 

(7.6) 

which might give a simpler formula for computing w. An example of the computation can 
be found in Section 10.6 (see Example A). 

The thought line of how individual probabilities in Eq.(7.5) are obtained is rather clear 
and intuitive: Pd (8i = 1, 8j = 0) and Pd (8i = 0, 8j = 1) are derived by means of constraints 

Pd(8i = 1, 8j = 0) + Pd(8i = 1, 8j = 1) = Pd(8i = 1), 

Pd(8i = 0, 8j = 1) + Pd(8i = 1, 8j = 1) = Pd(8j = 1), 

and probability Pd (8i = 0, 8j = 0) is derived by using another constraint 

L Pd (8i , 8j ) = l. 
6i,6j=1,O 

It is worth explaining the derivation of probability Pd(8i = 1,8j = 1), which is nor­
mally more interesting for us, in more detail. Its numerator fd(ti)fd(tj) characterizes the 
co-occurrence frequencies of ti and tj in document d. Its denominator w, the sum of all 
possible numerators fd(ti')fd(tj') for i' < j';i',j' E {i1,i2, ... ,is }, is a normalization factor 
for the probability. An alternative way of looking at Pd(8i = 1,8j = 1) is through an n x n 
matrix, called the co-occurrence frequency matrix of terms, which is discussed in Section 10.5. 

It should be pointed out, in the above estimation, that we suppose that individual docu­
ments are represented by Md = [J d (t)] 1 x n· However, the estimation discussed here is indepen­
dent of the specific document representation scheme. This implies that the estimation method 
can be applied to a more general representation scheme Md = [wd(t)Lxn. In this case, one 
need only estimate the state distributions using Wd(t) (which should satisfy Wd(t) > 0 for all 
t E V d) instead of fd(t) as discussed above. Notice that Eq.(7.5) is determined by functions 
Id(ti, tj) and Pd(t). Thus, for ti, tj E V d, we can write down 

and so forth. 
Now let us discuss further the extension of the above estimation to other information 

entities. ' First, we consider the relevant sample set 3+. In this case, all documents in ::::+ are 
merged together to form a new (larger) document. Notice that !=;+(t) = I:dE:=:+ fd(t) (i.e., it 
is the sum of the frequencies of term t in individual documents in 3+) and 11::::+11 = I:dE:::~ Ildll 
(i.e., it is the sum of the lengths of individual documents in 3+). Thus, one can estimate the 
state distributions using the statistical data within set 3+ as discussed above. That is. for 
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::-+ 
ti, tj E V- ,we have 

f -+ (t) P::-+(6i=1)=p::-+(t-)= .::. 2 

- - 2 11 2 +11 ' 

P::-+(6- = 1 6- = 1) ='"'1 (t- to) - h· .. +(ti)f::-+(tj) 
- 2 'J I:=:+ 2, J - . 

2:il <j'; ti' ,tj' EV:=:+ f=.+ (til ) f=.+ (tjl ) 

(7_ 7) 

Next, consider ~ s~b-document do of document d as an information entity. In this case, 
the sub-documen!o IS vle;e.d as a new ~smaller) document, and frequency Jdo(t) ::; Jd(t) for 
every term t E V ~ V (It should satisfy IVdol > 2). Then, one can also estimate the state 
distributions using the statistical data within sub-document do. That is for t- t - E Vdo we 

, 2, J , 
may have 

(7.8) 

7.2.2 Method B: Using Conditional Probabilities 

As with our discussion of Method A, we start by considering a given document, and then 
extend the consideration to other information entities. 

A typical example for the derivation of conditional probability in probability theory is the 
problem of randomly drawing a ball from an urn, without replacement. Before we can give an 
alternative estimation of distribution Pd(6i, 6j), let us first see a simple example which may 
clarify the idea involved. 

Let us examine an urn containing six balls numbered 1, 2, 2, 2, 3, 4. Except for the number 
assignment, the balls are identical in every detail; they are indistinguishable. Let two balls 
be drawn at random from the urn, one after the other, and their numbers noted; the first ball 
drawn is not returned to the urn before the second ball is drawn. For i = 1,2, let Ai be the 
event that the ball drawn on the ith draw bears number i; we write that the outcome (event) 
of two draws is (AI, A2)' We are thus seeking probabilities P(AI' A2), P(AI, A2), P(A1' A2) 
and p(jh, .A2 ). 

It is intuitively appealing that the conditional probability of drawing a ball with number 
2 on the second draw, given that ball numbered 1 was drawn on the first draw, is P(A2IAd = 

_3_ since before the second draw there were 6-1 balls in the urn, of which 3 balls bore number 
6-1 ' 
2. Also the conditional probability of drawing a ball that does not bear number 2 on the 

, . - 3 
second draw, given that ball of number 1 was drawn on the first draw, IS P(A2IA1) = 1- 6-1' 

Similarly, we can have P(.AI IA2) = 1 - 6~1' Then, with the conditional probability formula 
given in probability theory, we can immediately write down 
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P(AI' A2) = P(AdP(A2IAI ) = 6' 6 - 1 = 30' 

_ _ 1( 3) 2 
P(AI' A2) = P(AdP(A2I Ad = 6' 1- 6 - 1 = 30' 

_ _ 3 1 12 
P(AI' A2) = P(A2)P(AI IA2) = 6' (1- 6 - 1) = 30' 

_ - 13 
P(.AI' .A2) = 1 - P(AI' A2) - P(A1' A2) - P(AI' A2) = 30' 
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It should be noted that the last probability P(A I A2 ) is given acco d· t t . P() - - , r mg 0 a cons ramt 
AI, A2 + P(Al' A2) + P(Al' A2) + P(Al' A2) = 1. In fact, substituting 

P(~d = P(Al, A2 U A2) = P(Al' A2) + P(Al' A2), 

P(Ad = P(Al' A2 U A2) = P(Al' A2) + P(Al' .42), 

into_1-P(Ad = _P(~l)' we can immediately obtain the constraint 1-[P(A
1

, A2)+P(A
1

, .42)J = 
P(Al' A2) + P(Al' A2). 

The example above may be a prototype of our problem which as stated involves the 
probabilities of four state values of term pairs, such as, (tl' t;), from' a given d~cument d. 

Let us return to Example 7.2.1. In like manner for document d = {t t t t t t} 
( h II II d '1, 2, 2, 2, 3, 4 
t us d = 6, V = {tl, t2, t3, t4}, IVdl = 4 > 2, fd(tl) = 1 and fd(t2) = 3), let terms 

t l , t2, t2, t2., ~3' t4 correspond _to t~e balls bearing numbers 1,2,2,2,3,4, respectively. Also 
Ie! proposltlOnsJtl~t2)' (tl' t2), (tl' t2) and (tl' t2) correspond to events (AI, A2), (AI, .42), 
(AI, A2 ) and (AI, A2 ), respectively. Then we obtain immediately the same results as the 
above experiment of drawing balls as follows. 

Pd(6l = 1,62 = 1) = Pd(6l = 1)Pd(62 = 11 61 = 1) = fd(tl) fd(t2) 3 
IIdll IIdll - 1 30' 

Pd(6l = 1,62 = 0) = Pd(6l = 1)Pd(62 = 01 61 = 1) = !d(td (1 _ fd(t2) ) = ~ 
lid" lid!! - 1 30' 

Pd(6l = 0,62 = 1) = Pd(62 = 1)Pd(6l = 0/62 = 1) = fd(t2) (1- fd(t l ) ) = 12 
IIdli lid!! - 1 30' 

13 
Pd(6l = 0,62 = 0) = 1 - Pd(6l = 1,62 = 1) - Pd(6l = 1,62 = 0) - Pd(ch = 0,62 = 1) = -. 

30 

From the viewpoint of statistics, terms t l , t2, ... , tn are simply treated as some distinct 
abstract symbols without explicitly taking into consideration the real semantic meaning of 
individual terms. A document d can then be viewed as a 'multi-set' of the symbols since many 
of the symbols (terms) may not occur only once. Statistics is concerned with statistical fre­
quencies fd(td, !d(t2), ... , fd(tn) of these symbols or, symbol weights Wd(tl), Wd(t2), ... , Wd(tn) 
derived from the statistical frequencies. Therefore, as abstract symbols, there is no essential 
difference between tl, t2, ... , tn and 1,2, ... , n (numbers 1,2, ... , n can also be thought of as ab­
stract symbols). Thus, saying 'a ball bearing number i is drawn from an urn' is equivalent 
to saying 'number i is taken from an urn', and is equivalent to saying 'symbol ti is found 
in a multi-set (i.e., term ti occurs in a document)'. Also, saying 'number j is found on the 
second draw, given that number i was found on the first draw (without replacement)' is 
equivalent to saying 'symbol tj is found in the remainder of the multi-set, given that sym­
bol ti was found'. Given the occurrence of term ti will lead to a change of the probability 
distribution of the occurrence of other terms in document d. For instance, for document d 
in Example 7.2.1, the probability of the occurrence of term t2 is Pd(62 = 1) = Pd(t2) = ~, 
but the conditional probability of the occurrence of term t2, given that term t1 occurred, is 

Pd(62 = 11 61 = 1) = Pd(t2ltd = 6~1 f:. ~. 
Now let us establish the same fact in general. For arbitrary terms ti, tj E \'d, using the 

conditional probabilities, the joint state distribution Pd (6i' 6j) can be formulated by 
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Pd(6i = 1, 6j = 1) = Pd(6i = 1)Pd(6j = 11 6i = 1) 

_ fd(ti ) fd(tj) 
- Ildll Ildll- 1 = Id(ti, tj), 

Pd(6i = 1, 6j = 0) = Pd(6i = 1)Pd(6j = 016i = 1) 

= f d ( ti) (1 _ f d ( t j) ) _ . _ '. 
Ildll Ildll- 1 - Pd(tt) Id(tt, tJ ), 

Pd(6i = 0, 6j = 1) = Pd(6j = 1)Pd(6i = 016j = 1) 

_ f d (t j) ( f d ( ti) ) 
- Ildll 1- lIdll -1 =Pd(tj)-'d(ti,tj), 

Pd(6i = 0,6j = 0) = 1- Pd(6i = 1,6j = 1) - Pd(6i = 1,6j = 0) - Pd(6i = 0,6j = 1) 

= 1 - Pd(ti) - Pd(tj) + Id(ti, tj), 
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(7.9) 

where Id(ti,tj) is a positive function andpd(t) is given in Eq.(7.1). Obviously, Pd(6i,6j) in 
Eq.(7.9) is uniquely determined by Id(ti, tj) and Pd(t). 

It is interesting to observe that the two joint distributions given in Eq.(7.5) and Eq.(7.9) 
are rather different, whereas they share the same marginal distributions given in Eq.(7.2). 
In practice, the joint probability distribution generally cannot be uniquely determined by its 
marginal probability distributions, that is, the character of a bivariable random vector can 
not be defined by the character of its individual components. 

Similar to the discussion of Method A, if we consider the relevant sample set ::::+ as an 
information entity, for ti, tj E V:=;+, we can write 

f:=;+(ti) 
P:=;+ (6i = 1) = P:=;+ (ti) = 113+ II ' 

f:=;+(ti ) f:=;+(tJ ) 

P:=;+(6i = 1,6j = 1) = Is+(ti,tj) = 113+11 113+11-1 

(7.10) 

Also, if we consider a sub-document do of document d as an information entity, for ti, tj E 

Vdo, we can write 

(7.11) 

7.2.3 Method C: Using Document Frequency Data 

In some probabilistic methods involving the consideration of statistically dependent terms, 
one would state that the binary assumption suffices to specify the dependence of terms. The 

method discussed below is under this assumption. 
Consider the relevant sample set 3+ as an information entity, on which it is assumed 

that the statistical data F:=;+(ti) (the number of documents in which term ti occurs). and 
F:=;+(ti) tj) (the number of documents in which terms ti and tj co-occur) can be obtamed. 

Define a function 
-+ 

(t E V=- ). (7.12) 
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It is clear that 0 < ¢s+ (t) < 1 for every t E V::=:+ (since term t occurs in at least one document 
and at most all documents in 2+). 

Based on function ¢s+ (t), for each term t E V::=:+, define 

and Ps+ (0 = 0) = 1 - ¢::=:+ (t), (7.13) 

which is a probability distribution over n = {l,O}. Clearly, 0 < P::=:+ (0 = 1) ~ 1 and 
0::; Ps+(o = 0) < l. 

For arbitrary terms ti, tj E V S +, using the statistical data of the document frequencies 
concerning set 2+, it is very easy to directly derive probabilities P::=:+(Oi, OJ) for Oi,Oj = 1,0. 
Notice that the (total) number of documents in the relevant sample set is 12+1. Then, the 

probability that terms ti and tj co-occur should be F=Ti~l,tj) since the number of documents 

in which ti and tj co-occur is F3+ (ti, tj). Also, the probability that term ti occurs but term tj 

does not occur should be F=+(td~~+(ti,tj) since the number of documents in which ti occurs 

but tj does not occur is Fs+ (ti)-Fs+ (ti, tj). Similarly, we can give the probability that term ti 

does not occur but term tj occurs F::;:+ (tj )~~-r (ti ,tj). Finally, the probability that neither of the 

terms ti and tj occur should be wlg~?), where W(ti, tj) = 12+I-Fs+(ti)-F::=:+(tj)+F::=:+(ti, tj) 
is the number of documents in which none of terms ti and tj occur. Therefore, the estimation 

of distribution Pd (Oi' OJ) can be expressed as 

F3+(ti' tj) 
PS+(Oi = 1, OJ = 1) = 12 +1 = '::;:+ (ti' tj), 

F::=:+(ti) - F::=:+(ti, tj) ( ) () 
PS+(Oi = 1, OJ = 0) = 12 +1 = ¢s+ ti - '::;:+ ti, tj , 

F3+(tj) - F3+(ti' tj) _ (_) (_ _) (7.14) 
PS+(Oi = 0, OJ = 1) = 12+1 - ¢::=:+ t J - '::;:+ t l , tJ ' 

12+1- F::=:+(ti) - F3+(tj) + FS+(ti, tj) 
PS+(Oi = 0, OJ = 0) = 12+1 

= l-¢s+(ti) -¢3+(tj) +,::;:+(ti,tj), 

where ,-;::+(ti,tj) is a non-negative function. Obviously, PS+(Oi, OJ) in Eq.(7.14) is uniquely 

determi~ed by , -;::+ (ti' tj) and ¢s+ (t). . . . . 
An alternati;e way to derive distribution P3+ (Oi' OJ) is to use a condItlonal probabIlIty 

formula: the conditional probability of observing term tj occurs, given that term ti occurred, 

. p. (0- - 110' - 1) - F::;:+(ti,tj) since before the observation there were F3+(ti) documents 
IS d J - 2 - - F -;::+ (td ' . 
in 2+, in which ti occurr;d. Also, the conditional probability of observmg term tj does not 

. . (£. _ 0II. - 1) = 1- F::;:+(ti,tj). Similarly we have 
occur, gIven that term ti occurred, IS Pd UJ - u2 - F::;:+(td ' 

P. (0' - 010' - 1) - 1 - F::;:+(ti,tj) Then we can immediately write the expression: 
d 2 - J - - F::;:+(tj) . , 

PS+(Oi = 1,Oj = 1) = Pd(Oi = l)Pd(Oj = 11 0i = 1) 

F3+(ti) F3+(ti,tj) _ FS+(ti,tj) 

12 +1 F::=:+(ti) - 12 +1 

PS+(Oi = 1, OJ = 0) = Pd(Oi = l)Pd(Oj = 0loi = 1) 
FS+(ti) Fs+(ti' tj) _ Fs+(ti) _ FS+(ti. tj), 

= 12 +1 [1 - FS+(ti) ] - 12 +1 12 +1 
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P:=.+(t5i = 0, t5j = 1) = Pd(t5j = l)Pd(t5i = Olt5j = 1) 

= F:=.+(ij) [1- F:=.+(ti,ij )] = F=.+(tj) _ F=.+(ii,ij) 
12+ I F:=.+ (tj) 12+ I 12+ I ' 

P:=.+ (t5i = 0, t5j = 0) = 1 - Pd(t5i = 1, t5j = 1) - Pd(t5i = 1, t5j = 0) - Pd (t5i = 0, t5j = 1) 

_ 1 _ F:=.+(ii) _ F=.+(ti) F=.+(i l , ij) 
- 12+1 12+1 + 12+1 

These results are in agreement with the ones given in Eq.(7.14). 
Next, let us analyse the absolute continuity of distribution P=.+(8i ,8j ) with respect to 

product P:=.+ (t5i ) . P:=.+ (t5j ) by the following theorem. 

Theorem 7.2.3 For arbitrary terms ii,ij E V:='+, P:=.+(t5i ,t5j )« P:=.+(8i ) ·P:=.+(8j ) for 8i ,8j = 

1,0. 

The detailed proof of this theorem is given in Section 10.4. 

By the above theorem, we now can substitute estimates Eq.(7.13) and Eq.(7.14) into 
measure I:=.+ (t5i , 8j ), called EMIM in [207], and further obtain: 

,=+ (ii, ij) 
I:=.+(t5i ,t5j ) = '3+(ii,ij) log ¢:=.+(ii)¢:=.+(ij) 

¢:=.+(ii) -,=+ (ii, ij) 
+ (¢:=.+(ii) -'3+(ii,ij)) log ¢:=.+(id(l--¢:=.+(ij)) 

¢:=.+(ij) -,=+ (ii, ij) 
+ (¢:=.+ ( i j) - '3+ ( ii, i j )) log (1 _ ¢:=.+ ( ii) ) ¢:=.+ ( i j ) 

+ (1 - ¢:=.+(ii) - ¢:=.+(ij) + '3+ (ii, ij)) X 

1 - ¢:=.+ ( ii) - ¢:=.+ ( i j) + , c ( ii, i j ) 
x log (1 _ ¢:=.+(ii)) (1 - ¢:=.+(ij)) 

=[ F:=.+~ii' ij) log F:=.+(ii' ij) 
1.::.+1 F:=.+ (ii)F:=.+ (ij) 
F-;::+(ii) - F-;::+(ii, i J') 1 F-;::+(ii) - F:=.+(ii' ij) + ~ ~ ~ og ~ 

1.::.+1 F:=.+(ii)(I.::.+I- F:=.+(ij)) 

F:=.+(ij) - F:=.+(ii, ij) log F:=.+(ij) - F:=.+(ii' ij) 
+ 12+1 (12+1- F:=.+(ti))F:=.+(ij) 

12+1- F:=.+(ii) - F:=.+(tj) + F:=.+(ii, ij) x 
+ 12+1 

12+1- F:=.+(ii) - F:=.+(ij) + F:=.+(ii' ij) ] + 
x log (1 2+1- F:=.+(ii)) (12+1- F=.+(ij)) 

F-;::+(ii, ij) F:=.+(ti) - F:=.+(ii' ij) + F-=:+(ij) - F:=.+(ti, ij) + 
[ 12+1 + 12+1 13+1 

12+I-F:=.+(ii) -F:=.+(ij) +F:=.+(ii,ij )] x log 13+1 
+ 12+1 

F:=.+(ii, ij) 
=[ F:=.+(ii, ij) log F=.+ (ti)F=.+ (ij) 
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+ (F2+(ti) - F2+(ti, tj)) log F2+(ti)~- F2+(ti' tj) 
F2+(ti)(I~+I- F2+(tj)) 

+ (F2+(tj) - F2+(ti, tj)) log :2+ (tj) - F=.+(ti, tj) 
(I~+I- F=.+(ti))F2+(tj) 

+ (13+1- F2+(ti) - F=.+(tj) + F=.+(ti, tj)) x 

x log 13+1- F2+(ti) - F=.+(tj) + F-:::+(ti, tj) 1 ~+ 
(13+I-F2+(ti))(13+1-F:=:+(tj)) ] x 13+1 +logl~ 1 

= emim2+(6i, 6j) x 13
1
+1 + log 13+1, 

1:21 

in which, a scale factor 121+1 and a constant log 13+1 are independent of all term pairs (ti' tj) E 

V 2 + X V 2 + (where i =I- j). Thus, we can eliminate the scale factor and constant. Adopting 
Van Rijsbergen's notation [207], we obtain the following equivalent (i.e., strictly monotone), 
but simpler, measure: 

in which, 

nll = F2+ (ti' tj), 

n lO = F2+(ti) - F2+(ti, tj), 

n Ol = F2+(tj) - F2+(ti , tj), 

noo = 13+1- F2+(ti) - F2+(tj) + F2+(ti, tj), 

n l . = F2 + (ti), 

no. = 13+I-F2+(ti), 

n. l = F2 + (tj), 

n.o = 13+1- F=:+(tj). 

An essential difference between Eq.(7.13) and Eq.(7.14) and nu through no is that the 
former are normalized by factor 13+ 1 but the latter are not. 

It is very important to notice that, from the relation 

we can clearly see that 12 + (6i' 6j) > 0 cannot infer emim2+ (6i' 6j) > O. The following theorem 

is interesting. 

Theorem 7.2.4 For arbitrary terms ti,tj E V 2+, emim2+(6i,6j) < O. 

The proof of the above theorem is simple (see Section 10.4). 

The fact that the individual items of emim2+ (6i' 6j) are non-positive can also be seen 

directly by the relations: 

In Theorem 7.2.3, we proved that, when cP2+(ti) = 1, i.e., F=:+(ti) = 13+1, P2+(6i. 6j) was 
still absolutely continuous with respect to P2+ (6i) . P2+ (6j). The following theorem (the proof 

is given in Section 10.4) tells us another interesting fact. 

Theorem 7.2.5 For terms ti,tj E V 2+, if F2+(ti) = 13+1 then I2+(6i,6j) = o. 
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Theorem 7.2.5 tells us that, when F=.+ (ti) = 12+1, the occurrence of term ti (in all sample 
documents) will not provide any information about the occurrence of term tj (in some sample 
documents). Thus, these two terms are independent of one another concerning set 2+. 

Consequently, in IR applications, we should require that the sample set satisfies 12+ 1 > 1. 
In fact, in order to avoid too many terms having F=.+ (td = 12+ I, we usually take a relatively 
larger sample set, for instance, 12+ 1 > 5. 

Some examples on aspects of the above discussions can be found in Section 10.6 (see 
Example C). 

Estimations I=.+ (6i' 6j) and emim=.+ (6i' 6j) are well-known to all IR researchers. It was 
initially introduced by Van Rijsbergen in his earlier book and papers [206, 207]. It is interest­
ing to notice that the ways of deriving the estimation of I=.+ (6i' 6j) and emim=.+(6i, 6j) given 
here are very different from that of the one given there. 

7.2.4 A General Framework for Estimation 

Having described three methods of estimating PE(6i,6j) by giving specific expressions in 
Eq.(7.5), Eq.(7.9) and Eq.(7.14), respectively, you may realize that their consistency would 
suggest unified expressions. 

The Unified Expressions 

Given an information entity E, introduce a positive function 'fE : VE -+ (0,1), and a non­
negative function IE : VE X VE -+ [0,1] satisfying IE (ti' tj) ::; 'fE(ti), and IE(ti, tj) < 'fE(tj), 

and IE (ti' tj) > 'l/JE(ti) + 'l/JE(tj) - l. 
Based on function 'l/J E (t), for a given term t EVE, define 

and PE(6 = 0) = 1 - 'fE(t). (7.15) 

Also, based on function l(ti, tj), for a given term pair (ti' tj) EVE X VE (i i- j), define 

Then, we can give a unified expression for the estimation of PE (6i' 6j) as follows. 

PE(6i = 1, 6j = 1) = IE (ti,tj) , 

PE(6i = 1, 6j = 0) = 'l/JE(ti) -'E(ti, tj), 

PE(6i = 0, 6j = 1) = 'fE(tj) -IE(ti, tj), 

PE(6i = 0, 6j = 0) = 1 - 'l/JE(ti) - 'fE(tj) + IE(ti, tj), 

(7.16) 

d b (t t) d nl. (t) The following discussion is which is obviously uniquely determine y IE i, j an 'f'E . 

necessary. 

A Few Points of Discussion 

There are a few important points to make about the unified expressions above. 

* From 0 < 'fE(t) < 1, it is clear that PE(6) > 0 for 6 = 1,0 and L6:=1,0 PE(6) 
Thus, PE(6) is a probability distribution over Q. 

1. 
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* From the way we introduce function IE (ti, tj), it can be seen 

IE (ti, tj) ~ 0, 

'l/JE(ti) - IE (ti' tj) > 0, 

'l/J E ( t j) - 'E ( ti, t j) > 0, 

1 - 'l/J E (t i ) - 'l/J E (t j) + 'E (ti, t j) ~ 0, 

1:?3 

(7.1/) 

i.e., PE.(~i,tSj! >.0 fO.r tSi,tSj = 1,0. Also, ~6i,c5j=1,OPE(tSi,Oj) = 1. Thus, PE(Oi,O') is a 
probabIlIty dIstnbutlOn over n x n. ] 

* It can be easily verified that 

L PE(tSi = 1, tSj ) = IE(ti, tj) + 'l/JE(ti) - IE (ti, tj) = 'l/JE(td = PE(tSi = 1), 
6j=1,0 

L PE(tSi = 0, tSj ) = 'lj;E(tj) - rE(ti, tj) + 1- 'lj;E(ti) - 'lj;E(tj) + IE(ti, tj) 
6j =1,0 

= 1- 'lj;E(ti) = PE(tSi = 0); 

and that 

L PE (tSi , tSj = 1) = IE (ti' tj) + 'l/JE(t j ) - IE(ti, tj) = 'l/JE(tj) = PE(Oj = 1), 
6i=1,0 

L PE(tSi , tSj = 0) = 'l/JE(ti) - IE (ti' tj) + 1 - 'l/JE(td - 'l/JE(tj) + IE(ti, tj) 
6i =1,0 

from which, we immediately obtain 

L PE (tSi , tSj ) = PE(tSi ) and L PE(tSi , tSj ) = PE(Oj). 
6j=1,0 6i=1,0 

Therefore, PE(tSi) and PE(tSj ) are the marginal distributions of distribution PE(tSi , OJ). 

* Finally, for arbitrary terms ti,tj EVE, PE(tSi,tSj )« PE(tSi ) ,PE(tSj ) for tSi,tSj = 1,0. In 
fact, PE(tSi ) . PE(tSj) i= 0 since 0 < PE(tS) < 1 for tS = 0,1. 

Notice that function 'l/JE(t) mayor may not be a probability distribution over V E. Some 
examples can be found in the above methods: Pd(t) in Method A and Method B is a probability 
distribution over V d, whereas ¢s+(t) in Method C is not a probability distribution over V:=:+ 
since its denominator is a scale factor 12+ 1 rather than a normalization factor LtE \ .:=:+ F:=:+ (t). 

Generally, function 'l/JE(t) is required to satisfy 0 < 'l/JE(t) < 1 so as to guarantee PE(6d . 
PE(tSj ) i= 0, and PE(tSi,tSj ) « PE(tSi) . PE(tSj ) for tSi,tSj = 1,0. The estimations given in 
Methods A and B are for this case. However, one can also define 0 :::; 'l/JE(t) < 1. In this case, 
it is necessary to verify PE (tSi , tSj ) « PE (tSi ) . PE (tSj ), particularly for those points such that 
'l/JE(ti) = 0 and/or 'l/JE(tj) = 0, and 'l/JE(td = 1 and/or 'l/JE(tj) = 1. An example for this can 
be found in Method C, in which, 0 < ¢E(t) < 1, and Theorem 7.2.3 serves for proving the 
absolute continuity for arbitrary terms ti, tj E V S+. 
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Ob~i~usl~, ~E(6). is .a .prob~bility distribution if 0 < 'ljJE(t) < 1. Also, PE(6i,6)) is a 
probabIlIty dIstnbutIon If It satIsfies all conditions given in Eq.(7.17). ( Lc5 15-10 P

E
(6i, 6j) 

= 1 must hold for any estimation possessing the form of the unified expres~i~~).' Thus, the 
key for any estimation of PE (6i' 6j) is to verify these conditions. Corollary 7.2.1 is an example 
of the verification for the estimation given in Method A. The estimates given by Methods C 
and B are derived from the conditional probability formulae, and thus are clearly probability 
distributions. 

For any estimate possessing the form of the unified expression, it is shown that PE(6i) 
and PE( 6j) must be the marginal distributions of distribution PE (6i, 6j). The estimates given 
by Methods A, Band C are examples for this case. 

Remark 

The issue of the mutual information of terms is an active research subject in IR. A variety of 
methods have been developed in order to assign a 'similarity' value to every pair of terms, and 
then some decision(s) are made on those values. The discrimination measures can influence 
retrieval performance significantly. However, it seems that only the 'form' of the measures 
has frequently been a focus of research in IR literature, whereas the problem of verification 
of the probability distributions was often ignored as an unimportant matter. This implicitly 
means that a function with the form 

. P(x, y) 
~(x,y) = log PI (x)P

2
(y) 

would be a 'mutual information measure', and that the discussion on P(x, y), Pdx) and P2(y) 
in the function is trivial. 

It is not true indeed. In fact, if expressions P(x,y), P1(x) and P2(y) are not proba­
bility distributions, then function i(x, y) would not be a mutual information measure in an 
information-theoretic sense. Neither would it be a mutual information measure if PI (x) and 
P2(y) are not marginal distributions of the joint distribution P(x, y), even though they are 
all probability distributions. It may even not converge if P(x, y) « PI (x) . P2(y) does not 
hold. The mathematical interpretation for all these points can be found in Section 7.l. 

Section 7.5, we will devote to a detailed account of the concept of association of a term 
with the context of the query based on the state distributions. Before doing so let us give an 
in-depth investigation of the discrimination measure in the sense of the mutual information 
of terms. 

7.3 Discrimination Measure ifdM(t) 

So far we have concentrated on developing a unified method for tackling various estima­
tions of the state distributions. Before seeing how to apply our knowledge of these estimates 
to more practical problems, we need to study further the dependenc~ dis~rimination measures 
and find out their relations, which underpin the method proposed III thIS chapter. 

7.3.1 Definition of Discrimination Measures 

Having discussed some relevance discrimination measures in the previous cha~ters, you m~l!' 
have thought of, in order to measure the expected mutual information for a gIven term paIr, 
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that we need first to derive the contributions made by its individual state values to the 
~xpected .mutual ~nf~rmation. !hus,. let us return to Eq.(7.4). We use symbol AI to indicate 
Mutual mformatIOn. For a gIven mformation entity E and terms ti- tj E ~'E, denote the 

first item of IE(6i, 6j) by 

ifdfr(ti, tj) = PE(6i = 1, 6j = l)iE(H1 : H21(6i = 1, 6j = 1)), 

which indicates information for discrimination of the dependence of terms ti and tj when 
proposition (ti' tj) is true in entity E; also, denote the second item by 

ifdfr(ti,tj) = PE(6i = 1, 6j = 0)iE(H1 : H21(6i = 1, 6j = 0)), 

which ind~cates information for discrimination of the dependence terms ti and tj when propo­
sition (ti' tj) is true in entity E; and so forth. 

Then, the expected mutual information of terms ti and tj concerning the information 
entity E can be expressed as a sum of the items, 

As in the foregoing, the amount of the mutual information iE(HI : H21(6i,6j)) measures 
the power of terms ti and tj to discriminate two opposite dependence hypotheses Hi and 
H2 under the corresponding state value (6i,6j). The magnitude of probability PE(6i,6j) 
measures the significance of the corresponding state value (6i' 6j) in determining the power 

of discrimination. Thus, quantity ifdfr(t1i
, t~j) indicates the mutual 'information of terms ti 

and tj for discrimination' in favour of the dependent hypothesis HI against the independent 
hypothesis H2, under the state values (6i,6j) concerning entity E. We may formulate these 

statements by a more formal definition as follows. 

Definition 7.3.1 Given an information entity E and terms ti, tj E V E
, let the joint state 

distribution of (ti' tj) be PE(6i, 6j), and its corresponding marginal distributions be PE(6i) 
and PE(6j). Assume PE(6i,6j) « PE(6i) . PE(6j) for 6i,6j = 1,0. The information for 
discriminating their dependence under state value (6i' 6j) is defined by 

ifdf, (tfi, t!j) = PE (0;, OJ) log P:(O~~~:( i
j

) = PEl 0;, OJ )iE(H, : H21 (0;, OJ)), 

which is referred to as the (dependence) discrimination measure of term pair (ti' tj), and 
i(HI : H21(6i, 6j)) the (dependence) discrimination factor of term pair (ti' tj). 

In most of the discussion in this chapter, we assume terms ti, tj EVE. However, for 
convenient discussion at the application stage, we also make the following definition. 

Definition 7.3.2 Given an information entity E and terms ti,tj E V, for ti rt. ~'E or/and 

tj rt. V E, define 

That is the contributions made by individual state values (6i' 6j) to summation IE((\/' 6)) 
will receiv~ zero, and hence we have IE(6i,6j) = 0. This is equivalent to stating that t\\"u 
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terms contain mutual information (whether more or less) only when they co-occur in some 
entity E (see Section 10.5 for the appropriateness of such a definition). 

It is important to notice, unlike the expected information discussed in previous chapters, 
that the contributions to IE(6i,6j) made by the statistical quantities should refer to the 
individual state values for 6i, 6j = 1,0, rather than to term pair (ti' tj) itself. 

7.3.2 Interpretation of Discrimination Measures 

Similar to the discussion given in Section 3.4, for a given state value (6i,6j), we have the 
following interpretations. 

~ If PE(6i, 6j) = PE(6i) . PE(6j), then the discrimination factor iE(HI : H2 1(6i,6j)) = 0, 
and the state value (6i' 6j) gives us no discrimination information about the dependence 

judgement, and the corresponding quantity ifdt(tf\ t~j) = o. 

~ If PE(6i,6j) > PE(6d· PE(6j), then the discrimination factor iE(HI : H2 1(6i,6j)) > 0, 
the discrimination measure indicates that the state value (6i' 6j) contributes quantity 

ifd~(tfi, t~j) > 0 for supporting the dependent hypothesis HI· 

~ If PE(6i, 6j) < PE(6i) . PE(6j), then the discrimination factor iE(Hl : H2 1(6i,6j)) < 0, 
the discrimination measure indicates that the state value (6i' 6j) contributes quantity 

ifdt(tfi, t~j) < 0 for supporting the dependent hypothesis HI· 

Recall that, if PR(t) > PR.(t) and ifdI(t) > 0 (or ifdJ(t) > 0, or ifdK(t) > 0), then term 
t contributes a positive information quantity for supporting the relevant hypothesis HI· In 
like manner, for a given state value (6i' 6j), in order to discriminate whether it contributes 
a positive information quantity for supporting the dependent hypothesis HI, a key point 
is to derive the relation between PE(6i,6j) and PE(6i) . PE(6j). Obviously, different state 
values might have different relations. Thus, we have to obtain all relations for 6i, 6j = 1,0 for 

determining the corresponding signs of measures ifdt(tfi, t~j). 

7.3.3 Properties of Discrimination Measures 

Now, substituting estimates PE(6) and PE(6i, 6j) given in Eq.(7.15) and Eq.(7.16), respec­

tively, into ifd~(tfi, t~j), we obtain the following (four) general expressions of the discrimi­

nation measures: 

(7.18) 

Obviously, for a given entity E, the expressions are uniquely determined by functions TE(ti, tj) 

and 'IjJ E (ti)· 
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. ~he following ~h~orem enables. us to gai~ an insight into the signs of ifd f[ (t1' . t ~j) for 
oz, oJ - 1,0 by denvIng only one sIngle relatIOn. The relation is the one between P (0 0 ) 
a~d PE(.od . P~(~j) .under (Oi' OJ) = (1,1), i.e., between IE(ti, tj) and 'l/JE(ti} . 'l/JE(t;}. lT~e 
sIgns of mequalIties In the theorem should be carefully noted. 

Theorem 7.3.1 Given ti, tj EVE, Suppose that IE(oi,oj) is estimated by using the unified 
expressions given in Eq.(7.15) and Eq.(7.16), we have 

(1) if IE.(ti~j)_ = 'l/JE(ti)'l/JE(tj}, then ifdft(ti, tj} = 0, ifdft(ti, tj) = 0, ifdft(ti, tj) = ° 
and IfdM(ti, tj) = 0; 

(2) if IE.(ti~j)_> 'l/JE(ti)'l/JE(tj), then ifdft(ti, t j } > 0, ifdft(ti, tj) > 0, ifdft(ti, tj) :::; ° 
and IfdM(ti, tj) < 0; 

(3) if IE.(ti~j}_ < 'l/JE(ti}'l/JE(tj}, then ifdft(ti, tj} < 0, ifdft(li,tj} :::; 0, ifdft(ti,tj) ~ ° 
and IfdM(ti, tj) > O. 

Theorem 7.3.1 (for the detailed proof see Section 10.4) shows clearly that if we use the 
estimates given by Eq.(7.15) and Eq.(7.16} then 

- a single relation between IE(ti, tj} and 'l/JE(ti) . 'l/JE(tj) can entirely determine all signs 
of ifdft (tfi , t~j) for Oi, OJ = 1,0; 

- the signs ofifdft(ti, tj} and ifdft(ti, tj} are always the same, so are the signs ofifdft(ti, tj) 
• E (- ) and IfdM ti, tj ; 

- the signs of ifdft(ti, tj) and ifdft (ti' tj) are always opposite to the signs of ifd~[(ti' tj) 
. E-and IfdM(ti, tj}. 

Hereafter, we call ifdft (ti' tj) and ifdft (li, tj) the consistent mutual information of terms, 
which means that terms ti and tj have identical state values, Oi = OJ, i.e., either they co­
occur or neither of them occurs; we call ifdft(ti, tj} and ifdft(ti, tj) the inconsistent mutual 
information of terms, which means that terms ti and tj have opposite state values, Oi # OJ, 
i.e., one of them occurs but another one does not occur. 

Particularly, for the estimates of the joint state distribution given by Methods A, Band 
C, we have the following corollaries, respectively. 

. . • d • d -. -. Corollary 7.3.1 For the estimates gIVen by Eq.(7.1} and Eq.(7.5), IfdM(ti, tj) > 0, Ifdi\f(tt, tJ ) 

> 0, ifd~(ti,tj} < 0 and ifd~(ti' tj} < 0 always hold if 

L fd(ti,)fd(tj') > fd(tj}fd(tj), 
i' <j'; t i , ,tj' EVd -{ tj} 

L fd(ti' }fd(tj'} > fd(ti)fd(ti). 
i' <j'; t i , ,tj' EVd_{ til 

Proof. By Corollary 7.2.1, Pd(Oi, OJ} in Eq.(7.5) is a probability distribution. Also, for 

arbitrary terms ti, tj E V d , 

'(JJ = 



CHAPTER 7. AQE BASED ON EXPECTED MUTUAL INFORMATION 128 

from which we have 

1 (ti' t .) = f d ( td f d ( t j) > f d (ti) f d ( t j) = (.) (.) 
d J 7JJ Ildll Ildll Pd t2 Pd tJ . 

Take PE(6i, 6j) = Pd(6i, 6j), IE(ti, tj) = Id(ti , tj) and 'l/JE(t) = Pd(t). Thus, from (1) of Theo­
rem 7.3.1, we can see that four inequalities given in this corollary hold. The proof is complete. 

Corollary 7.3.2 For the estimates given by Eq.(7.1) and Eq.(7.9) ifdd (t· t·) > 0 ifdd (l f.) 
• d ( - • d - , M 2, J , M 1, J 

> 0, IfdM ti, tj) < 0 and IfdM(ti, tj) < 0 always hold. 

Proof. Pd (6i,6j) in Eq.(7.9) is a probability distribution. Also for arbitrary terms t· t· E V d 
, 2, J , 

Ildll- 1 < Ildll, 

from which we have 

(t. t·) = fd(ti) fd(tj) fd(t i) fd(tj) _ . . 
Id 2, J Ildll Ildll- 1 > Ildll Ildll - Pd(t2 )Pd(tJ ). 

Take PE(6i,6j) = Pd(6i,6j), IE (ti' tj) = Id(ti, tj) and 'l/JE(t) = Pd(t). Thus, from (1) of 
Theorem 7.3.1, we can see that four inequalities given in this corollary hold. The proof is 
complete. 

Corollaries 7.3.1 and 7.3.2 tell us that, with Methods A and B, the signs of the consistent 
mutual information are always positive, and the signs of the inconsistent mutual information 
are always non-positive. This is because, in this case, relation Id (ti' tj) > Pd(ti)Pd(tj) holds 
for arbitrary terms ti, tj E V d . Consequently, the use of estimates given by Eq.(7.1) and 
Eq.(7.5), or Eq.(7.1) and Eq.(7.9), asserts that terms co-occurring in some document must 
be more or less statistically dependent since quantity ifd~(ti' tj) > 0 supports the dependent 
hypothesis H 1. 

Corollary 7.3.3 For the estimates given by Eq.(7.13) and Eq.(7.14), 

(1) ·f F=+(ti,tj) F=+(ti) F=+(tj) th ,c...l3+(t t) 0 'c...l3+(t- t-) > 0 ·fr3 +(t· t-·) < 0 1 -1.::.+1 > 1.::.+1 13+1' en hUM i, j > ,huM i, j , 1 UM 2, J -
~+ -

and ifdM (ti' tj) < 0; 

(2) l
·f F:=.+(ti,tj) - F:=.+(ti) F=+(tj) then 1·C...l3+(t· t·) = 0 ifd-MO:=+(l f.) = 0 ifd=M-+(t.; fJ·) = 0 13+1 - 13+1 13+1' lUM 2, J ' 2, J' ., 

~+ -
and ifdM (ti' tj) = 0; 

(3) l
'f F=+(ti,tj) < F=+(ti) F=+(tj) then 1·fr3+(t· t·) < 0 ifd=M-+(l fJ·) < 0 ifd=M-+(ti,tJ') > 0 13+1 13+1 13+1' UM 2, J _ , 2, -, -

~+ -
and ifdM (ti' tj) > O. 

Proof. P3 +(6i,6j) in Eq.(7.14) is a probability distribution. Take PE(6i,6j) = P3 +(6i,6j), 

'V (t· t·) = 'V (t· t·) = F:=.+(ti,tj) and nl'E(t) = ""0:=+ (t) = F:"'I=~+}lt). The proof is complete. 
, E 2, J ':=.+ 2' J 13+1 'P 'P_ .::. 

Corollary 7.3.3 tells us that, with Method C, the signs of the consistent mutual info~mat~on 
are always opposite to the signs of the inconsistent mutual information. How:~er, unhke ~Ith 
Methods A and B, the signs of the consistent mutual information can be posItive or negative, 
similarly for the inconsistent mutual information. This is because Method C ~;>:s not ensure 
that relation I:=.+ (ti' tj) > ¢3+ (ti)¢3+ (tj) holds for arbitrary terms ti, tj E \ - . Therefore, 
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Corollary 7.3.3 .can~ot directly assert that, if estimates Eq.(7.13) and Eq.(7.14) are used, 
ter:ns :=:c;>-occurrmg m some rele-:ant sample set can be statistically dependent since the sign 
of IfdM (ti, tj) would be very dIfferent from term pair to term pair. We can illustrate this 
point by an example below. 

Example 7.3.1 Suppose 3+ = {dl ,d2,d3}, and V d1 = {tl t2 t3 t4 t5} V d2 = {t t t t-} d ' , , " 1, 4, 5, I , 

V 3 = {t4,t7,t8}' Then, we have F:=:+(h) = 2, F:=:+(t2) = 1, F:=:+(t5) = 2, F:=:+(t7) = 2, 
F:=:+(tl,t2) = 1, F:=:+(t5,t7) = l. Thus, 

~ = ~ = F:=:+(tl , t2) > F:=:+(tl) F:=:+(t2) _ ~~ _ ~ 
9 3 \3+\ \3+\ \3+\ -33-9' 

from which we know that ifd~ (tl' t2) > 0, ifd~ (tl' t2) > 0, ifd~ (tl' t2) < 0, ifd~ (tl' t2) < 
0, and that terms tl and t2 are statistically dependent when they co-occur. Also, 

3_1_F:=:+(t5,t7) F=.+(t5)F=.+(t7) 22 4 
9 - 3 - \3+\ < \3+\ \3+\ = 33 = 9' 

from which we know that ifd~ (t5, t7) < 0, ifd~ (t5, t7) < 0, ifd~ (t5, t7) > 0, ifd~ (t5, t7) > 
0, and that terms t5 and t7 are not statistically dependent when they co-occur. • 

Now, compare the first items of I:=:+(6i,6j) and emim:=:+(6i,6j). By Corollary 7.3.3, 

we know that from a single relation between I=..+ (ti,tj) = F="Tiil,t j
) and ¢:=:+(ti)¢=.+(tj) = 

FI;l~d Fi;ly) we can infer all the signs of the discrimination measures ifd~ (tfi, t~j) for 

6i,6j = 1,0, and then determine whether term pair (ti' tj) is statistically dependent under its 
individual state values. However, the inference and determination cannot be made from the 
relation between n ll = F=.+(ti, tj) and n1.n1 = F:=:+(ti)F=.+(tj). In fact, by Theorem 7.2.4, 
we know that the individual items of emim:=:+(6i, 6j) are always non-positive (see Example C 
given in Section 10.6). 

7.4 On Dependence of Terms 

Based on the ideas developed in the last section, we can gain insight into the concept of 
the dependence of terms. 

7.4.1 Dependence in Broad and Narrow Senses 

Suppose ti, tj EVE. Now imagine that you find that tj is a very important term, and that 
IE(6i, 6j) obtains a rather high value. Now ask yourself the question: 'Is term ti the one that 

I am certainly interested in 7'. 
If you try to give an answer 'Yes', think about the kind o! c~se where E is a documen.t d, 

and ifdit(ti, tj) < 0, ifdit(ti,tj) > 0, ifdit(li, tj) > 0, ifdit(ti, tj) < 0, and another questIOn: 
'What do these discrimination measures tell us substantively?'. 

The answer to the second question is clear: the positive value Id (6i' 6j) would be dominated 
by the positive quantities ifdit(ti, tj) and/or ifdit(ti, tjJ The hi?h~r ~alue the ~easure 
I d(6i,6j) has, the larger quantities the measures ifdit(ti, tj) and/or Ifd,\I(ti, tj) proVIde, and 
the more they indicate that ti and tj should not co-occur in d. 
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Consider a further situation where tj is a unique term of the query and d is a rele\-ant 
document. Then, in the above case, a higher value Id (6i, 6j) indicates that the occurrence 
of query term tj in document d should accompany the absence of term ti from d. Thus, in 
order to better match the relevant document with the query, the selection of term ti as an 
expansion term for query expansion would not be what we desire. The answer of the first 
question is now apparent. 

In IR, a higher value of IE(6i, 6j) would not imply that term ti is the one that we are 
surely interested in. In other words, a term very 'dependent' on term tj might not mean that 
it is a good one with respect to the query (suppose vq = {tj}). 

It is certainly true that each of the discrimination measures ifdEM(ti tJ-) ifdEM(t- f.) 
• E - • E - - " l' ) ' 

IfdM(ti, tj) and IfdM(ti, tj) can be used to measure the extent of dependence of terms ti and 
tj. Also, it is certainly true that the larger the quantities the measures offer, the higher the 
extent term ti is statistically dependent on term tj (and vice versa). However, the implications 
of the dependence for the individual measures are very different. Remember that we always 
emphasize 'the dependence under the state value (6i' 6j)'. This emphasis is necessary because 
it clearly indicates that it is the state value (6i' 6j) that supports the dependence. Such kind 
of dependence we can call dependence in a broad sense. 

In IR, we generally agree to concentrate our attention on the statistical data of the co­
occurrence of terms. Thus, the dependence of terms of which we usually speak is the one 
when terms co-occur, i.e., (6i,6j) = (1,1), which we can call dependence in a narrow sense. 
Example 7.3.1 is a nice illustration of our viewpoint. 

We are indeed interested in dependence in the narrow sense rather than in the broad 
sense. If we are given another case where E is a relevant document d and tj is a unique query 
term, but this time ifd~(ti' tj) > 0, ifd~(ti,tj) < 0, ifd~(ti' tj) :::; 0, ifd~(ti' tj) > 0, then, 
for a higher value Id( 6i, 6j), we would like to answer the first question: 'Yes, definitely!' (How 

about ifd~(ti' tj) > 07 See Section 7.5). 
Consequently, the dependence of terms can be given by the mutual information of terms 

under some state value, by the consistent/inconsistent mutual information of terms, by the 
expected mutual information of terms. The different implications of the dependence should 

be carefully distinguished from one another. 

7.4.2 Global and Local Dependence 

We often need to find the values of dependence (of terms) that some dependence measure 

(( tOi lj) such as ifdE (t~i t~j) can take when variable (ti' tj) is restricted to lie in a certain 
t'J' Mt'J' 

domain. 
For a given document collection D, we call ((tti, t~i) the global dependence of ti and tj 

under the state value (6i,6j) if measure ((tti, t~j) is derived from the statistical data within 

D. The global dependence that ((tti, t~j) takes on the vocabular~ VD = V is ?recisely what 
it says, that is, it is all the possible values the measure takes whIle (ti' tj) vanes throughout 

domain V x V. 6 6 
For a given document set (i.e., information entity) 3+ ~ D, we call ((ti', t/) the local 

dependence of ti and tj under the state value (6i' 6j) if measure (( tt; , t~~) is derived from the 

statistical data within 3+. Again, the loc~l dependence on the set V:::+ is p~ecis.~~ :l~ .~~e 
possible values the measure takes as (ti' tj) IS allowed to vary throughout domam , -
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The estimation Method C derives its importance from the fact that its simplicity of 
computation enables us to have an insight into the dependence of terms. Thus, from the 
example below, which shows a typical situation, you can see that the local dependence of a 
certain term pair need not to be equal to the global dependence of this term pair, and need 
not be the same as another local dependence of this term pair. 

Example 7.4.1 Let us return to Example 7.3.1. We now further suppose D = {d
1

, d
2

, ... , 

dlOOOO }· For term tl and t4, we have F=:+(tl) = 2, F=:+(t4) = 13+1 = 3, F=:+(tl' t4) = 2. Thus, 
from Theorem 7.2.5, we obtain immediately 

= 0.0000 - 0.0000 - 0.0000 + 0.0000 = 0.0000. 

Now, we fix F=:+(h) = 2, F=:+(t4) = 13+1 = 3, F=:+(tl' t4) = 2, but this time, take 13+1 = 10. 
Then, we find 

2 2 2 2-2 2 10 - """IO 
I=:+ (61,64) = 10 log 2 3 + ---w log 2 (1 _ ~) 

10 10 10 10 

3 - 2 3-2 10 - 2 - 3 + 2 10-2-3+2 
1 10 10 10 

+ ---w og (1 - 2) ~ + 10 g (1 - 2) (1 _ ~) 
10 10 10 10 

2 10 1 10 7 10 
= 10 log 3 + 0 log 0 + 10 log 24 + 10 log 8 
~ 0.2408 - 0.0000 - 0.0875 + 0.1562 = 0.3095. 

More dependence values for a variety of sizes of set 3+ are computed and results are listed 
in the table below. 

I~+III ifd~+(tl t4) [ifdt(tl t4) I ifdX7(tl,t4) I ifdX7(tl,t4) 1\ 1:::+(61,64) I ~ M , , -
3 0.0000 0.0000 0.0000 0.0000 0.0000 
4 0.1438 0.0000 -0.1014 0.1733 0.2157 

5 0.2043 0.0000 -0.1176 0.2043 0.2910 

6 0.2310 0.0000 -0.1155 0.2027 0.3182 

7 0.2421 0.0000 -0.1089 0.1923 0.3255 

8 0.2452 0.0000 -0.1014 0.1798 0.3236 

9 0.2441 0.0000 -0.0941 0.1675 0.3175 

10 0.2408 0.0000 -0.0875 0.1562 0.3095 

15 0.2146 0.0000 -0.0637 0.1145 0.2654 

20 0.1897 0.0000 -0.0497 0.0896 0.2296 

30 0.1535 0.0000 -0.0343 0.0621 0.1813 

50 0.1125 0.0000 -0.0212 0.0384 0.1297 

100 0.0701 0.0000 -0.0108 0.0196 0.0789 

1000 0.0116 0.0000 -0.0011 0.0020 0.0125 

10000 0.0016 0.0000 -0.0001 0.0002 0.0017 

-FS+(t1 ) - 2, FS+(t4) - 3, F~+(h,t4) 2 

in which the numbers at the last row are for the global dependence of ~erms tl and t~l (wh~re 
, . h· m (m absolute va ues) lor 13+1 = IDI = 10000), and the numbers underlmed are t e maxlmu 

the corresponding measures. • 
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Clearly we are using the above table of (mutual) information quantities to tell us about 
the behaviour of the individual discrimination measures. There are five different measures 
that can give us useful information. Each tells us different aspects about the dependences of 
terms, and so should be given the correct interpretation. This information table can be called 
the broad dependence measure table of terms t1 and t4. 

Not surprisingly, from the above table, we see that the dependence values (i.e., amount 
of mutual information} vary as the size of set 3+. As we know, the sample sets with the 
different sizes should be thought of as different entities, and usually they provide rather 
different statistical data. Thus, the state distributions, further, the discrimination measures, 
are very inconsistent from sample set to sample set. Therefore, the dependence of terms is in 
reference to entity 3+, that is, it is a local concept. 

Let us now carefully examine the information table above to look at what insight it can 
give. First, when 13+1 = 3, we have F:=;+(t4) = 13+1, i.e., term t4 occurs in all documents 
in 3+. In this case, the occurrence of term t4 would not provide any information about the 
occurrence of term it in documents in 3+. Thus, these two terms are independent of each 
other, and ifd~(t~1,t~4) = ° for 61,64 = 1,0, so I:=;+ (61, (4) = 0. 

Next, we see the individual dependence values in each of the columns are increasing (in 
absolute values) as the increase in the size of 3+. This is because if terms t1 and t4 occur in 
few of the documents in 3+, and also co-occur in some of these, then it should indicate that 
these two terms are dependent. 

Intuitively, if the size of 3+ is larger, while terms t1 and t4 occur only in few of the 
documents in 3+ (i.e., do not occur in most of the documents in 3+), and meanwhile they 
co-occur in some of the few documents, then these two terms should be very dependent. That 
is, the dependence values should become greater as the size of 3+ increases (when F=.+ (tl), 
F:=;+ (t4), F:=;+ (it, t4) are fixed). However, to our surprise, from the information table above, 
we see that the dependence values drop greatly when, for instance, 13+1 = 100 (again, in 
absolute values), and almost are equal to zero when 13 + I = 10000. 

More generally, when F:=;+(ti, tj), F:=;+(ti) and F:=;+(tj) are fixed, we can find: 
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more important statistical information, and thereby weaken and dilute the potential capabilitv 
of discrimination measures derived from the statistical information. It is not clear at presen't 
how to determine an appropriate size of the sample set against a set of term pairs. So far, 
there is no research about this interesting issue in IR. 

7.5 Association Functions 

One of the applications of the mutual information of terms, that we shall study in this 
section, is to establish the concepts of mutual association in the context of IR. The mutual 
association of a term with another term, with the relevant sample set, or with the query, 
have long been interesting subjects for query expansion. Thus, this section discusses three 
concepts: term-based association, set-based association and query-based association, all based 
on the interpretations and estimation of the mutual information of terms as provided in the 
previous sections. 

In the following two sections, we will consider individual documents as the information 
entities, and use only the consistent mutual information, which are estimated by using Method 
A and B. Also, for a given term pair (ti' tj), the state value 6j of term tj is required to follow 
the state value 6i of term ti, i.e., 6j is given by 6i. Therefore, for terms ti, tj E V d, the general 

expression ifdf:r(tfi, t;i) in Eq.(7.18) is specialized as 

(7.19) 

where Id(ti, tj) is given in Eq.(7.5) or Eq.(7.9), and Pd(t) is given in Eq.(7.1). 
In addition all concepts discussed in this section are related to the relevant sample set 

3+. Thus, he:eafter, we will always assume that 3+ =I 0 and IV:=:+ I > 2, and that 3+ is 
effective, that is, all important relevant information to the query can be contained in 3+. 

7.5.1 Term-Based Association attM (tfi, t;i) 

In order to estimate the mutual association of terms with the context of the query, it is 
reasonable for us to think of drawing some pieces of 'useful information' from set 3+. For 
a given term ti E V:=:+ , a piece of useful infor~~tion in the current method ~o~ld be: h.ow 
term t- is associated with another term tj E V'=' - {ti}' A term-based assoClatlOn functlOn 
att (/ t -) is thus introduced to measure the quantity of a piece of useful information. 

M t, J d 1 'nf . f t 
More precisely, in the foregoing, measure ifdM(ti, tj) was the mutua 1 ormatlO~ 0 erms 

ti and tj concerning document d when they co-occur in d. Thus, we now consld:r all. of 
documents in 3+, check them one by one, and sum ifd i£ ( ti, t j) for those documents m whIch 

terms ti and tj co-occur. We can formulate this idea by a function: 

att (t- t·) = _1_ '" ifddM(ti, t J-), 
M t, J 13+1 L: 

dE.=.+ 
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which can be regarded as the (average) mutual association of terms t· d t . 
~+ . .. t an j concermng set 
.::. when the proposItIOn (ti, tj) IS true in some of the documents in =+ h _1_. 

. . ~ , were 1=+1 IS a 
normalIzatIOn factor for the size of set 3+. -

More gen~rally, a definition of the mutual association of terms may be made, in which 
°dnfily ~~e consIstent state values are considered. We are thus led to the following more formal 

e mtIOn. 

Definition :.;5.1 For a given term ti E V 2 +, the mutual association of term ti with another 
term tj E V - - {td under the state values ((\, 6i) is defined as 

att (t~i t~i) = _1_ """ ifdd (tbi t~i) 
M t' J 13+1 L-t M t' J ' 

dE2+ 

which is called the term-based association of term ti with term tj. 

Obviously, when terms ti and tj do not CO-occur in any document in ::::+, we have 
attM (tt

i
, t;i) = 0 since, by Definition 7.3.2, ifdir(tti , t;i) = ° for every dE ::::+. 

Notice that it is important to be careful about notation here. It is easy to confuse 
'fdd (tbi tbi) d '£dd (t bi tbj ). th b d fi . . A· . 1 M i' j an 1 M i' j mea ove e mtIon. gam, term tj IS imposed upon the 
same state value 6i as term ti has. 

To gain an understanding of term-based association of terms, let us see the simple example 
below. 

Example 7.5.1 Let us return to Example 7.3.1. Recall that V d1 = {iI, t2, t3, t4, t5}, V d2 = 

{tl, t4, t5, t7}, V d3 = {t4, t7, t8}. Thus, V 2 + = {tl, t2, t3, t4, t5, t7, t8}, and 

attM (tl' t2) = ~ifd~(tl' t2), attM (t5, t4) = ~ [ifd~(t5' t4) + ifd~(t5' t4)], 

attM (tl' t8) = 0, 

and so on. • 

7.5.2 Set-Based Association ats
M 

(tti
, S+) 

In the foregoing we have discussed the concept of term-based association. However, one may 
desire to consider the 'overall' association of term ti with the whole set ::::+. A set-based 
association function ats M (ti' 3+) is introduced here to achieve this. 

If we accept the assumption (stated rather informally) that the statement 'the mutual 
association of terms ti and tj concerning set ::::+, is equivalent to 'the mutual association of 

term ti with set 3+ by means of term ti', then, for a given term ti E V 2 +, quantity attM(ti, tj) 
actually provides a piece of association information of term ti with set ::::+ by means of a single 
term tj when ti and tj co-occur in some documents in 3+. 

Function ats M (ti' 3+) is designed by extending the term-based association function, i.e., 
-;:::'+ 

by considering the summation of quantities attM (ti' tj) for all terms tj E V- - {ti}. A more 
formal definition which involves the consistent state values, is given as follows. , 

Definition 7.5.2. For a given term ti E V 2 +, the mutual association of term ti with set ::::+ 
under the state value (6i' 6i) is defined as 

atsM(tti , 3+) = L attM(tti,t;i), 
tj EV:=:+ -{til 
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which is called the set-based association of term ti with set :=;+. 

It is easily found that function ats M (tfi , :=;+) is simply a pooling of all possible pieces of 

the association information att M (tfi , t;i), satisfying tj =I- ti, together. The following example 
illustrates the idea involved. 

-::-+ Example 7.5.2. Let us return to Example 7.4.1. Recall that V- = {tl, t2, t3, t4, t5. t-;, ts}. 
So we can give the table below, in which, dm (m = 1,2,3) in each cell expresses the fact that 
terms ti and tj co-occur in document dm , whereas an empty cell expresses that there is no 
document (in 3+) in which terms ti and tj co-occur. 

Table 7.5.1 Documents in which ti and tj (E V:=:+) co-occur 

I ti \ tj II tl I t2 I t3 I t4 I t5 I t7 I ts I 
tl - dl dl dl , d2 dl , d2 d2 
t2 dl - dl dl dl 
t3 dl dl - dl dl 
t4 dl , d2 dl dl - dl , d2 d2,d3 d3 
t5 dl , d2 dl dl dl , d2 - d2 
t7 d2 d2,d3 d2 - d3 
ts d3 d3 -

Then, for instance, we have, 

tjEV:~+ -{td 

= ~ [ifd~(tl' t2) + ifd~(tl, t3) + ifd~(tl' t4) + ifd~(tl' t4)+ 
3 

ifd~(tl' t5) + ifd~(tl' t5) + ifd~(h, h) ], 

ats M (t2' 3+) = L attM (t2' tj) 
tjEV:=:+ -{t2} 

= ~ [ifd~(t2' tl) + ifd~(t2' t3) + ifd~(t2' t4) + ifd~(t2' t5) ], 
3 

ats M(ts,3+) = L attM(ts,tj) 
tjEV:=:+ -{tal 

= ~ [ifd:(ts, t4) + ifd:(ts, t7) ]. • 
3 

Generally, we have the following theorem: 

Theorem 7.5.1 For a given term ti E V:=:+, we have 

1 '" atsM(tfi,:=;+) = 1-;:;'+1 u 
....... tj EVd_{td;dE:=:+ 

From the above theorem (for the proof see Section 10.4), it follows that we c~n gte ~p 
·f t· E V:=:+ - {t·}· d E 3+, and write tj E V d - {ti}; dE:=;+ instead. ObVlOUS y, t e 

wn mg J t , . h· h th m can be carried out than the 
latter is clearer for describing the domam over w IC e su 

former. 
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7.5.3 Query-Based Association atqM (t~i, q) 

We have discussed the concepts of term-based and set-based association; both of them are 
considered without directly involving the query. Now, we come to the heart of this section -
defining the concept of query-based association. 

Under the hypothesis that query terms in set vq n V 3 + are good ones with respect to the 
query itself, our aim is to judge other good terms from set V 3 + - vq = V 3 + - (V3 + n vq). 
Thus, for the first component of term pairs, we limit terms considered to those that occur in 
at least one relevant sample document but are not query terms, i.e., ti E V 3+ - V q . 

Next, what should we think about the limitation of the second component of term pairs? 
As mentioned, terms that occur in some document would more or less contain information 
related to the document itself. Because the documents may be long, and include different 
information content, many of them may not be very relevant to the query. Thus, it is unlikely 

=+ that every term tj E V - - {ti} would be related to the query. It is clear that an effective score 
function should be constructed by combining only those pieces of association information 
attM(ti, tj), in which, terms tj are related to the query. In other words, we should not 
simply apply function ats M (ti' 2+), the mutual association of term ti with set 2+, to estimate 
the mutual association of term ti with the query. Instead, we can adopt a conservative 
but more effective way that considers only those terms occurring in the query, i.e., tj E 

vq n V 3 + c V 3 + - {ti}, since we certainly know that those terms are good ones under the 
hypothesis. In a word, the extent of the mutual association of term ti with the query should 
be measured by pooling 'valuable' pieces of association information by means of good query 

~+ ~+ {} terms tj E V q n V'=' ,rather than all terms tj E V'=' - ti . 
The above paragraph may give you an idea: what do we mean by the statement that term 

ti has query-based association with a given query? The concept of term-based association 
derives its importance from the fact that it provides a means to define the concept of query­
based association. We can thus construct a query-based association function atqM (ti' q), 
which computes the summation of attM(ti, tj) for all query terms satisfying tj E V q n V 3

+. 

We therefore make the following formal definition which considers only the consistent state 

values. 

Definition 7.5.3 For a given term ti E V 3 + - V q
, the mutual association of term ti with 

query q under the state value (6i,6i) is defined as 

tjEVq nv3 + 

which is called the query-based association of term ti with query q, where scale factor Q(tj) ~ 0 

measures the significance of term tj in representing query q. 

We clarify the meaning of the foregoing idea by considering the example below. 

Example 7.5.3 (Example 7.5.1 continued). Consider our example of th~.!erm-based associ­
ation. We now further assume V q = {t2, t5, t6}. Notice that tj E V

q n V'=' = {t2~:5}. So we 

have Table 7.5.2, in which, the terms in parentheses are query terms tj E V
q 
n V-

Then, for instance, we obtain 
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Table 7.5.2 Documents in which ti and tj (E V q ) co-occur 

I ti \tj II tl I (t2) I t3 I t4 I (t5) I t7 I t8 I 
tl - d1 d1, d2 

( t2) -

t3 d1 - d1 
t4 d1 - d1, d2 

( t5) -

t7 d2 -

t8 -

1 
= 3" [ Q(t2) ifd~(h, t2) + Q(t5) ifd~(tl' t5) + d t5) ifd~(tl' t5) ], 

atqM(t3,q) = L Q(tj) attM(t3,tj) 

tjEVqnv:=:+ 

1 
= 3" [ Q(t2) ifd~(t3' t2) + Q(t5) ifd~(t3, t5) ], 

atQM(t8,q) = L Q(tj) attM (t8, tj) = O. • 
tjEVqnv:=:+ 

There are two main differences between the set-based and query-based associations: (a) 
For ats

M
(tfi,2+), the domains of terms are given without any limitation, i.e., ti,tj E V~+ 

(where tj i=- ti); whereas for atqM (tfi, q), the domains are limited to ti E V~+ - V
q 

and 
tj E V q n V 3 +. (b) For atsM(tfi, 2+), terms tj E 2+ - {ti} are treated as equally important, 

and assigned the same weight 1; whereas for atqM (tfi, q), terms tj E V q n V 3
+ are assigned 

higher (generally unequal) weights Q( tj) > 0, and terms tj E 2+ - V q are assigned weight 
o and thus thrown away. These two differences allow the computation of the query-based 
association to be reduced greatly. From Table 7.5.2, we can clearly see that the non-empty 
cells in the table above are far fewer than the non-empty cells in the table of Table 7.5.I. 
Thus, the total computation of the mutual association of terms with the query should not be 

excessive even though the size of V 3 + is larger. 
Similar to the set-based association, we have the corresponding theorem for the query-

based association below. 

Theorem 7.5.2 For a given term ti E V 3 + - vq, we have 

(7.20) 

The proof is similar to the one given in Theorem 7.5.l. 

Up to now we have formally introduced three concepts of the mutual association. We 
shall see that with these concepts the association score functions given in the next section are 

intuitive and simple. 
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7.6 Score Functions 

This section proposes two score functions for judging good terms. The functions are 
constructed based on the concept of query-based association given in the last section. 

From Theorem 7.5.2 we can see that individual items of function atqM (t~i, q) are summed 

over a combined domain. From the definition of measure ifdd
M (t

8i t8i ) the combined domain 
Z , J ' , 

more clearly, should be written as ti, tj E V d; tj E vq n V d; d E :::;+. In order to have an insight 
into the combined domain and its nature, we need to introduce a further piece of notation­
we need define the notion of association set. 

7.6.1 Association Set 

For a given term ti E V 3+ - vq, to calculate its query-based association, a key point is to find 
all possible term pairs (ti' tj), each of which satisfies the condition that ti and tj co-occur in 
dE :::;+, and that tj also occurs in q. Let (ti' tj)d represent ti, tj E V d, we thus can introduce 
the following definition. 

Definition 7.6.1 Given a query q and its relevant sample set :::;+, for a given term ti E 

V 3 + - V q define , 

which is called the association set of term ti with query q concerning set :::;+. 

According to the above definition, the following aspects are obvious but important: 

- From the notation of (ti' tj)d, we have 

u~+ = {(ti,tj)d I tj E V q and tj E V
d and dE :::;+} 

= UtjEVQnVd;dE3+{(ti, tj)d}· 

(7.21) 

_ For every element (ti' tj)d E Ur+, its first component is the given term ti under consid­
eration; its second component ttj is always some query term satisfying tj E V

q 
n V

d ~ 
V q n V 3 +. 

_ Since ti E V 3 + - V q and tj E V q n V 3 +, term ti under consideration will never be the 

same as term tj, and never be a query term. 

_ U~+ = 0 if term ti and none of the query terms tj E V q n V 3
+ co-occur in any documents 

in :::;+. 

_ U~+ does not exist if term ti rt. V 3
+ - V

q
. 

_ For a given collection D and a given scheme of the representation of documents over D, 

U~+ is uniquely determined by term ti, query q and set :::;+. 

It can be seen that the notion of association set is useful in describing a mutual ~sociation 
phenomenon of term ti with query q. It is also helpful for compu~a~ion: ~or a gIven qu:'r~ .. 
q and its :::;+, set U~+ is exactly the domain over which the indIvIdual Items of funct 1011 
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atqM (ti' q) are summed. In fact, comparing Eq.(7.20) with Eq.(7_21) it c b' d- 1 . 
'tt d ' an e lmme late \ wn en own . 

(7.22) 

It avoids reference to the combined domain t- t - E V d. t - E V q n V d. d E ~+ d' t d 
2, J , J ,:::: ,an Ins ea 

speaks of a single domain (ti' tj)d E U~+. 

Notice that the size of the association set can be easily expressed as 

IU~+I = L IVq n Vdl, 
dE:=:+ 

i.e., it is the sum of the numbers of query terms in the individual documents over dE:=:+. In 
particular, we have the following three special cases: 

- If 1-;::::;'+1 - l{d}1 - h :=:+ - {d}_ ~ - - 1, t en Uti - Uti - Uti = Ut -Evqnvd{ (ti' tJ)d}. Thus, IlJt 1 = 
d . J 1 Iv q n V I, I.e., the number of query terms in d. 

- If IVql = l{t}1 = 1, then U~+ = UdE:=:+{(ti, t)d}. Thus, IU~+I = 2:dE:=:+ I{t} n Vdl, i.e., 
the number of documents in which t occurs. 

- If j:~:+1 = l{d}1 = 1 and IVql = l{t}1 = 1, then U~+ = Uti = {(ti, t)d}. Thus, IUtil = 
I{t} n Vdl, i.e., 1 if t occurs in d, 0 otherwise. 

Informally speaking, it is clear that the extent of the mutual association of term ti with 
the query would depend relatively on the size of U~+, that is, the number of possible term 

pairs in U~+. The fewer term pairs the set U~+ has, the less chance term ti has mutual 
information with good query terms, the less the mutual association of term ti is with the 
query as a whole. By 'relatively' here we mean that the length of each document dE:=:+ 
and the size of set 3+ should be taken into account. The size of U~+ is likely to be greater 
for longer documents than shorter ones, and for a larger sample set than a smaller one. This 
problem can be managed in some way by, for instance, normalizing the length of documents 
(e.g., using the probability distributions to represent documents), and normalizing the size of 
set 3+ (e.g., using factor 1:=:1+1), 

In order to give you some idea of what association sets look like, we consider the following 
example. 

Example 7.6.1 Let us return to the example for the query-based association concept (cf. 
Examples 7.4.3). Let ti E V:=:+ - V q and tj E V q n V:=:+. Then we can give association sets 

U~+ for all terms ti E V:=:+ - V q in the resultant table below. 

-=+ Table 7.6.1 Association sets for terms ti E V- - vq 
i 

t1 dl d1, d2 Ur,+ = {(tl, t2)dl' (tl' tS)dl' (tl' tS)d2} 

t3 d1 dl U~+ = {(t3,t2)dl' (t3J tS)d1 } 

t4 dl dl , d2 U~+ = {(t4' t2)dl' (t41 tS)dl' (t4' tS)d2} 

t7 none d2 ::;:+ ) } Ut; = {(t7' ts d2 
t8 none none 

::;:+ 
Urs = 0 
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Comparing this table with Table 7.5.2, we can clearly see that each element of Ur+ corre­
sponds to some dm in one of the non-empty cells for term k Thus, the results of caiculating 
atqM (tl' q), atqM (t3, q) and atqM (ts, q) by using Eq.(7.22) (taking Oi = 1) will certainly be in 
agreement with the calculation performed in Example 7.5.3. Also, from looking at this table, 
we can notice that it is reasonable for each element, (ti' tj)d, of U~+ to be attached a spe­
cific document d rather than expressed as a subscript less (ti' tj): two elements, for instance, 

(h, ts ) dl and (h, ts) d2 of U~+ would otherwise be indistinguishable. • 

7.6.2 Score Functions score
M1 

(ti ) and score
M2 

(t i ) 

Assume that V 3 + - V q constitutes a source of candidate terms. Now we are ready to talk 
about the construction of the score function, which in fact integrates all concepts and ideas 
from the previous sections. 

Notice that the construction of the score function is rather simple. It is a direct application 
of the concept of query-based association. There may be a variety of ways to define e( t j), 
and estimate Pd(Oi,Oj) and Pd(O) for computing ifdir(tti,t;i). These ways would construct 
the different score functions. As an example, we show below one way by using the estimates 
Pd(Oi, OJ) and Pd(o) given by Methods A and B, and define e(tj) as follows. 

Consider a given query q. Assume that 

is an a priori probability of the proposition tj being true in query q. 
Consider the statistical information of the co-occurrence of terms. For each candidate 

term ti E V 3 + - V q , with Definition 7.4.3 and Eq.(7.22), the association score function may 

be defined by 

in which, 131+1 and \\q\\ are basically just scale factors normalizing set 3+ and qu::y q, re­

spectively. Notice that the scale factors are independent of all elements (ti' tj )d. E Ut: .. Thus, 
we can eliminate the factors and obtain a completely equivalent score functlOn, whIch, by 

Eq.(7.19), can be further written as: 

. t ~+ 
which is called the (mutual) association score of term ti with query q conc~rnmg se :::: . 

We can see as function score (t), that the score function is the summatlOn of the product 
of three essen;ial factors - freduency fq(tj) of query term tj, probability Pd(Oi = 1,oj = 

1) = Id (ti' tj) of state value (1,1), and the mutual information id(Hl : H2\(Oi = 1, OJ = 1)) = 
10 Td(ti,tj) of terms ti and t· concerning relevant document d under the state value (1,1) 

g Pd(ti)Pd(tj) J 

- over the association set Ur:+ of term ti· 
The idea of using statisti~al information of co-occurrence of terms leads us next to the 

idea of using statistical information of 'none-occurrence' of terms (neither of the terms occur 
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in some document). In fact, it is fairly natural to conceive of the matter that, if two terms 
a~e closely related to the s~me topic, then they s.hould have identical state values, namely, 
elther ~hey co-occur or neIther of them occurs, m some relevant documents. In fact. for 
measurmg the mutual association of terms with the query, the statistical information of the 
none-occurrence of terms, which might be equally important as the one of the co-occurrence 
of terms, should also be taken into consideration. 

U nder s~ch a conside~at.ion, for each candidate term ti E V=':+ - vq, an alternative way 
to constructmg the aSSoClatlOn score function would be formulated by 

score (t·) = ~ atq (t?i ) = _1_ ~ fq(tj) [·-'"ad ( ) . d - - ] 
M2 t ~ M t' q 12+1 L IIqll III M ti,tj + IfdM(ti. tj) . 

0,-1,0 (t· t·) EU=:+ 
" J d ti 

Similar to scoreM1 (ti), by eliminating 1=.:1+1 and IIqll, we have an equivalent score function, 

which, by Eq.(7.19), can be further written as: 

Some details about the computation of scores of terms using two score functions for 
Methods A and B, respectively, can be found in Section 10.6 (see Examples A and B). 

7.6.3 About Positive Scores 

Recall that, by Corollaries 7.3.1 and 7.3.2, we have Id(ti, tj) > Pd(t)Pd(tj), ifd~(ti' tj) > 0 
and ifd~(ti' tj) > 0, for arbitrary terms ti, tj E V d and every dE 3+. Because fq(tj) > 0 for 
all query terms tj E V q n V=':+, we thus have scoreM1 (ti) > 0 and scoreM2 (ti) > 0 for every 

~+ 

term ti E V'=' - V q. 
Thus, the scores can be regarded as the measure of the extent of the mutual association 

of the candidate terms with the context of the query. The terms selected should be those 
which obtain higher (positive) scores. The higher the score terms obtain, the stronger they 

are mutually associated with the query. 

7.6.4 Relationship of Score Functions 

It may be interesting to think of the relationship between these two score functions math­
ematically. We now attempt to explain that they might not be equivalent. By equiva­
lent we mean here that they give the same order, that is, for arbitrary terms t1 and t2, 

scoreMl (td < scoreMl (t2) implies scoreM2(td < scoreM2(t2), and vice versa. In other words, 
we want to show that order score

M2 
(t1) < scoreM2 (t2) may not. guarantee ~he same order 

scoreMl (t1) < score
M1 

(t2)' Our final theorem is established for thIS purpose, ItS proof can be 

found in Section 10.4. 

Theorem 7.6.1 Given two candidate terms t1, t2 E V=':+ - V
q

, if score M2 (td ~ score M2 (t:2), 

then there exists a function V(t1' t2), such that 

score
M1 

(t1) < scoreM1 (t2) + V(t1' t2), 
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where V(tl' t2) may not be always equal to zero. 

It is important to realize that equivalence requires v = 0 and th t --I- 0 1 d . . . a v r may ea to non-
eqUlvalence. ThIs can be Illustrated by a very simple example S ( ) 

d ( ) 
. uppose score\[ tl = 0.5 

an scoreMl t2 = 0.3; scoreM (t1 ) = 0.2 and score (t2) = 03· v(t t) - 0 4 ~ 01 Th 
2 M 2 " 1, 2 - . r. en, 

scoreMl (td < score
Ml 

(t2) + V(tl' t2). 

However, it is clear that these two score functions are not equivalent since 

and 

In contrast to function scoreMl (td, function scoreM (ti) takes into account the consistent 
mutual information of terms which, by Theorem 7.6.1~ incorporates some additional infor­
mation into scor~s ~f terms. Therefore, score

M2 
(ti) might be more accurate at estimating 

the mutual assoCIatIOn of terms with the query than score
M 

(t i ). But a major advantage of 
scoreMl (ti ) is that it is simple to compute. 1 

7.6.5 A Few Points of Discussion 

There are a some interesting points to make about the score functions given in the current 
section. 

* For some query term tf rf. V 2 + (i.e., t f rf. V q n V 2 +), the method proposed in the current 
chapter will immediately discard it. As mentioned, if t f rf. V 2 + then it does not occur 
in any sample documents, and is not considered as a good term under the hypothesis. 
In fact, in this case, we also have ifd~(ti' tf) = ifd~([i' 2) = 0 for every d E 3+ when 
ti E V 2 + - vq. 

* Functions scoreMl (t) and score
M2 

(t) do not assign scores for any query terms. They 

just judge good terms among candidate terms ti E V 2 + - V q , whereas all query terms 
tj E V q n V 2 + are immediately considered as good ones with respect to the query itself 
under the hypothesis. 

* In constructing the score functions, we intentionally disregard the inconsistent mutual 
information of terms. That is, they are constructed by considering the consistent mu­
tual information rather than the expected mutual information. This is because, as 
shown in Corollaries 7.3.1 and 7.3.2, the signs of the consistent mutual information are 
always positive, whereas the signs of the inconsistent mutual information are always 
non-positive. The expected mutual information is calculated based on the sum of the 
individual items over the state space, and thus the amounts of information given by the 
individual items offset one another (see Examples A and B given in Section 10.6). In 
practice, we are concerned usually with occurrence or/and none-occurrence of terms. 
Therefore, it might be a sensible way to construct the score functions using only the 
consistent mutual information. 

* For a given query q and its set 3+, let us now analyse the complexity for computing 
-+ .. 

scores for all candidate terms. Notice that for each ti E V'::' - V q
, its assoClatIOn set 

U2+ consists of elements (t· t ')d satisfying t· E V 2 + n V q and d E t"2+. Thu:;, it can 
ti t, J J .' 

easily be seen that the association sets of individual candidate terms WIll never mtersect. 
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that is, for two different terms ti, t f E V:=:+ - vq we always ha 7 ~:=:+ n n:=:+ _ rh , 
t ve Uti UtI - VJ (::-.ee 

Example 7.5.2, for instance). Denote ' 

Obviously, each element (ti, tj)d E G corresponds to one computation of ifdd (t· t.) 
Th AI z, J . 

us, we need tot~llGI number of comput~tions of i~di.t(ti' tj) for function score
M1 

(t), 
and 2/G/ for functlOn scoreM2 (t). In practIce, the SIze of G is much smaller than the 
size of G I , and is inconsiderable compared with the sizes of G2 and G3 . For instance, 
from Table 7.5.2 and Table 7.6.1, we have 

IG/ =9, 

IGII = 5 x 2 x 3 = 30, 

/G2 1 = 8 x 8 x 3 = 192, 

IG3 1 -+ 00 (When n = IVI -+ 00 and/or N = IDI -+ 00). 

Consequently, the total computation involved in our methods is not expensive. 

7.7 Extension 

In the last two sections, we expounded the concepts of the mutual association and the 
constructions of the score functions on the premise that the information entities were individ­
ual documents, and that the state distributions were estimated by using Methods A or B. We 
point out that all discussions given in the last two sections may be applicable to a variety of 
information entities, and to the different estimation methods of the state distributions. The 
following discussion is made to support this viewpoint. We shall start by considering a special 
case where there is only one document in the relevant sample set. 

7.7.1 A Special Case 

Notice that we did not put any restriction on the size of set 3+ for the discussions given 
in Sections 7.5 and 7.6. Thus, suppose now 13+/ = l{d}1 = 1. Obviously, in this case, 
the concepts of the mutual association and the construction of the score functions can be 

described in a simpler way. 
From Definition 7.5.1, for terms ti, tj E V:=:+ = V d, the mutual association of term ti with 

term tj under the state values (Oi' Oi) can be written as 
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From Definition 7.5.3, for a given term ti E V:=:+ - V q = V{d} - v q - V d _ T -q h 
. t· f . - ~,t e mutual 

aSSOCla Ion 0 term ti WIth query q under the state value (I - I) b . 
U t , Ui can e wntten as 

atqM (tf\ q) = L e( tj )tba( tfi, t;i) = 

tjEVqnVd 

Also, for a given term ti E V d - V q
, the expression of the association set U:=:+ of term t-

can be simplified to t, 1 

Uti = Utj Evqnvd {( ti, tj)d}. 

Therefore, we can express an alternative form of the query-based association function: 

and the score functions: 

7.7.2 Extension to Other Information Entities 

Having discussed the special case, it is now very easy to extend our method to other infor­
mation entities. Recall that we mentioned that an entity is in our method a document, and 
that any superentity or subentity can be thought of as a new entity, i.e., a new larger or 
smaller single document. Thus, for the new entity, still denoted by E, we have the same 
discussion as the one given in the special case just above. Therefore, the general forms for 
the corresponding expressions given in the special case can be written out as follows. 

From Definition 7.5.1, for terms ti, tj EVE, the mutual association of term ti with term 
tj under the state values (6i' 6j) is 

From Definition 7.5.3, for a given term ti E VE - V q
, the mutual association of term ti 

with query q under the state value (6i' 6i) is 

atqM(tfi,q) = L e(tj)ifd~(t~i,tJi). 
tjEVqnVE 

L t (t t) t t t E V E Thus, for a given term t; EVE - V q
, the association e i, j E represen i, j . . 

set of term ti can be expressed as 
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Consequently, we have the query-based association function: 

and the score functions: 

where ifdft.(ti, tj) and ifdft.(ti, tj) are the general expressions of the discrimination mea­
sures given in Eq.(7.18). Obviously, when functions IE (ti, tj) and 'l/JE(ti) are given, measures 
ifdft.(t~i, t~i), where 6i = 1,0, can be specialized, and all general forms above can be deter­
mined. We can thus write the specializations for our three estimation methods as follow. 

For Methods A and B 

(1) When E = 2+, the general expression Eq.(7.18) becomes 

• ::-+ '-:0+ (ti, t j ) 
1fd:M (ti,tj) = '-:0+ (ti,tj) log ~(t) (t.)' 

~ P2+ i P2+ J 

• ::-+ _ _ 1 - P2+(ti) - P2+(tj) + '3+ (ti, tj) 
1fd:M (ti' tj) = (1- P2+(ti) - P2+(tj) + '3+ (ti' tj)) log (1 _ P2+(ti)) (1 - P2+(tj)) 1 

where functions '3+ (ti' tj) and P2+(t) are given in Eq.(7.7) or Eq.(7.10). 

(2) When E = dOl the general expression Eq.(7.18) is 

Id (tiltj) 
ifd:(ti,tj) = IdO(ti,tj) log (~-) (t-)' 

Pdo t Pdo J 

1-Pdo(td -Pdo(tj) + Ido(tiltj) 
ifd:(ti, tj) = (1 - Pdo(ti) - Pdo(tj) + Ido (ti' tj)) log (1 - Pdo(ti)) (1 - Pdo(tj)) 1 

where functions Ido (til tj) and Pdo(t) are given in Eq.(7.8) or Eq.(7.11). 

For Method C 

There is only one case E = 2+. The general expression Eq.(7.18), is written as 

• ::-+ '-:0+ (ti,tj) 
1fd:M (ti' tj) = '-:0+ (til tj) log ~ (t-)~ (t _)' 

~ '1-'2+ t '1-'2+ J 

1 - ¢2+ (ti) - ¢2+ ( t j) + 13+ ( ti ,t j ) 
ifdX7 (ti' tj) = (1 - ¢2+ (ti) - ¢2+ (tj) + '3+ (til tj)) log (1 - ¢2+ (ti)) (1 - ¢2+(tj)) 

where functions '3+ (til tj) and ¢2+(t) are given in Eq.(7.13) and Eq.(7.U), respectively. 
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Notice that, by Corollar~ ~.3.3, the sig~s of.the consistent mutual information ifdX; (tti, to,), 
where 0i = 1,0, can be posItIve or negatIve smce Method C cannot guarantee that relati~n 
'=.+ (ti,tj) > ¢3+(ti)¢3+(tj) holds for arbitrary terms ti,tj E V 3+. Thus, we should be aware 
that the scores of term ti, 

(ti,tj)=.+ EUti 

scoreM2 (ti ) = L fq(tj) [ifdX; (ti' tj) + ifd~ (ii, i j )], 

(ti ,tj )=.+ E Uti 

are likely to be negative. 

Obviously, terms selected should be those which obtain the higher positive scores. The 
restriction that each score should be positive is imposed so that the total information quantity 
contained in term ti (i.e., the algebraic sum of fq(tj )ifdX; (tti , t;i) over Ud should still support 
dependent hypothesis HI· If the score of ti is negative, then the total information quantity 
in ti would support independent hypothesis H 2. 

Some details about the computation of scores of terms using the above score functions for 
Method C can be found in Section 10.6 (see Example C). 

7.8 Summary 

This chapter focuses on discrimination using mutual information of terms. The formalism 
of the dependence discrimination measures is based on the concept of the expected mutual 
information. The notion of the amount of mutual information contained in a given term pair 
is formally interpreted. 

, The mathematical methods for the estimation of term state distributions are developed. 
Three specific estimation methods are considered: using term co-occurrence data, using 
conditional probabilities, and using document frequency data. Some properties of the 
estimated state distributions are studied which are important for guiding practical ap­
plications. Then, a unified method is suggested and a general framework is established 
for tackling a variety of estimations of term state distributions. 

, The dependence discrimination measures are formally defined corresponding to four 
state values of term pairs. Some relationships between the measures are revealed: 

- A single relation between IE (ti' tj) and 'lfJE(ti) . 'lfJE(tj) can entirely determine the 
signs of all the dependence discrimination measures. 

- The signs of the consistent mutual information are always the same, so are the 
signs of the inconsistent mutual information. 

- The signs of the consistent mutual information are always opposite to the signs of 

the inconsistent mutual information. 

These relations are important, they underpin the method proposed in this chap~er. 
Particularly, the relations of the dependence discrimination measures estimated usmg 
three specific methods are carefully discussed. 
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~ The concept of the dependence of terms is analysed by clarifying the difference between 
broad and narrow dependence, and between global and local dependence. It is pointed 
out that a term very dependent on another term tj (even tj E V q is a unique query 
term) may not imply that it is one we desire. It is also pointed out that the local 
dependence of a term pair need not to be equal to the global dependence of the term 
pair, nor the same as another local dependence of the term pair. 

~ The mutual association of a term with another term, with the relevant sample set, 
or with the query, are addressed. Three basic concepts: term-based association, set­
based association and query-based association, are introduced, and their difference and 
relation are shown. 

~ Two score functions are proposed, which directly apply the concept of query-based 
association, for the judgement of good terms. One uses statistical information of co­
occurrence of terms; the other is as the first, but incorporating statistical information 
of 'none-occurrence' of terms. The relationship between these two score functions is 
analysed, and the conclusion is that they may not be equivalent. 

~ All discussion in this chapter may be applicable to a variety of information entities, and 
to different estimation methods of term state distributions. 



Chapter 8 

Experimental Results 

In this chapter, we concentrate on investigating to what extent each relevance discrimination 
measure contributes to improvement of retrieval performance. We evaluate the average re­
trieval performances of the expanded queries obtained from our methods, and compare the 
performances with that of the original queries without query expansion, and with that of the 
expanded queries obtained from the reduced Rocchio formula. 

We point out that information retrieval is a complex procedure and, from an empirical 
point of view, it is unlikely a single technique will be effective for all retrieval problems. The 
effectiveness of the query expansion will be dependent on the ability to use several retrieval 
techniques (such as the method of weighting expanded query terms) in concert. 

In Section 8.1, we introduce a reweighting function for terms of the expanded queries. In 
Section 8.2, we describe briefly the LfD methodology. In Sections 8.3 and 8.4, we concen­
trate on investigating retrieval effectiveness resulting from the estimation of term probability 
distributions. In Sections 8.5 and 8.6, we focus on investigating retrieval effectiveness of the 
discrimination measures. In Section 8.7, we are concerned with the optimal size of sample set 
and number of expansion terms. In Section 8.8, our experimental results are discussed. 

8.1 Weighting Function for Terms of Expanded Query 

There are several points which should be considered in designing any reweighting function 
for terms of the expanded query: (1) The original query terms appearing in the top-ranked 
documents should be important and properly emphasized; (2) The association scores of terms 
may be an important factor in indicating the importance of terms with respect to the context 
of the query, and should be incorporated into weights of expanded query terms; (3) Weights 
of query terms and scores of selected terms should be adjusted to the same scale. Based on 
these three points, we can propose a reweighting function as follows. 

Assume that mw is the maximum weight among weights of the original query terms and 

that ms is the maximum score among scores of selected terms, that is, 

and 

Let tw be a term maximizing wq(t), and ts a term maximizing scoreq(t), that is, 

tw = arg max {wq(t)\ t E V q n V3} and ts = argmax {scoreq(t)\ t E sq}, 

148 
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that is, wq(tw ) = mw and score(ts ) = ms· 

Also, take numbers Lw and L s , such that, 

and 

149 

where.10Lw and 10L8 are. called the significant figures l of mw and m s , respectively. 
It IS ~e~sonable ~o belIeve that th~ original query carries some useful information regarding 

the us:r. s mformatlOn ne~ds. Thus It may be appropriate not to make too much change to 
the ongmal query. For thIS reason, we take advantage of the original query by incorporating 
term weights into the expanded query, as defined by Eq.(8.1) below. As with any method of 
query expansion, it is important for us to have a relatively good original query. 

A key point in the design of a reweighting function is to ensure that new term weights nei­
ther override the original term weights, nor have an negligible effect during the next retrieval 
iteration. To achieve this aim, we introduce the following simple piecewise function: 

{ 

Wq(t) + spwq(t) when t E sq n V q 

rew1jD (t) = spwq(t) when t E sq - V q 

wq(t) when t E V q - sq 
(8.1) 

SpWq(t) = 10Lw-L
s x score(t) 

is referred to as a supplementary weight of term t, in which, 10Lw-L
s is called a shifting factor 

of the decimal point. 
The idea behind the reweighting function is the following. We are only interested in terms 

in Vql = sq U V q over which rew1jD(t) is defined. First of all, let us keep the original weight 
wq(t) unchanged for terms t E V q - sq. Then, for each selected term t E sq, a supplementary 
weight spwq(t) is produced by adjusting its score to be of the same scale as the weights of 
the original terms, that is, by proportionately increasing or decreasing the score by means 
of consistently shifting the decimal point for each of them. The supplementary weight is 
assigned to terms in sq - V q immediately, and added to the original weight wq(t) to highlight 

terms in sq n V q. 
It is interesting to notice that the supplementary weight satisfies a constraint: 

The constraint states that the maximum supplementary weight spwq(ts ) should fall in the 
same significant interval as the maximum weight mw by multiplying the maximum score 
ms by the shifting factor 10Lw-Ls. There exists one and only one shifting factor under the 
constraint. It is easily verifiable that the shifting factor with the form 10Lw-

L
s will satisfy 

the constraint, such that, spwq(ts ) = 10Lw-L
s x ms lies precisely in significant intervaZ

2 

[10Lw , 10Lw+ l ) of mw. The direction and distance (the number of digits) to be shifted are 

1 For any real number x there exists an integer L satisfying x E [lOL, lOL+1). Number lO
L 

is called the 
significant figure of x, digi~ L the significant digit of x, and [lOL, lOL+1) the signifi.cant. in.terval o~~. For 
instance, for x = 0.0765 E [10- 2 ,10-2+1) = [0.01,0.1), 10-2 is its significant figure, 2 1tS slgmficant d1gIt, and 

[0.01,0.1) its significant interval. 
2See preceding footnote. 
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determined by the shifting factor 10Lw-Ls which de d I . 
d th

' ,pen s on y on two maxImums m and 
ms, un er e constraint. ' W 

Conseq~e~tly, w~en Ls = Lw (Lw - Ls is zero in this case), that is, both ms and mw have 
the same sIgmficant mterval, we need not shift the decimal o' t d . h " pIn, an we retaIn t e ongInal 
scores as the supplementary weights for all terms t E sq. Wh L --/.. L (L _ 
b T .). en s I w w Ls can 

e POSI I.ve or neg~tI~e , that IS, ~wo significant intervals of ms and mw are not completelY 
overlappmg, the shlftmg factor 10 w-Ls is used to carry out the shifting of the decimal poi~t 
on the s~ores of term~, and t~e supplementary weights of all terms t E sq can be obtained 
from theIr correspondmg modIfied scores. 

A simple example given below illustrates how our reweighting function works. 

Example 8.1.1 From Table 8.1.1, it can be easily seen that 

mw = Wq (t3) = 0.0765 = 7.65 x 10-2 E [10-2 ,10-1), 

ms = score(td = 6.6317 x 10-8 E [10-8 ,10-7 ). 

Thus, we have Lw - Ls = (-2) - (-8) = 6. Take the supplementary weight 

spwq(t) = 106 x score(t) (t E sq), 

which satisfies 

Table 8.1.1 Reweighting terms in the expanded query 
I V q I wq(t) II sq I score(t) II sPWq(t) I rew (t) I ltD 

tl 0.0534 tl 6.6317x10-1S 0.066317 0.119717 
t2 4.1003x10-8 0.041003 0.041003 

t3 0.0765 t3 3.7103x10-8 0.037103 0.113603 
t4 1.0604x10-8 0.010604 0.010604 
t5 8.2038x 10-9 0.008204 0.008204 

t6 0.0227 0.022700 

This example shows intuitively how it is possible for the reweighting function to achieve our 
aim that supplementary weights of terms neither override the original term weights, nor have 
a negligible effect in the next retrieval iteration. • 

In practice, we almost always have ts E sq n V q. Therefore, the design of function 
rew

1fD 
(t) is in effect based chiefly on consideration of the 'most important' term, tw, of the 

query and the 'most associated' term, ts, with the query (they are frequently the same one). 
Of course, more importantly, the function provides an effective way to incorporate the scores 
(i.e., the information on the power of discrimination of terms with respect to the original 
query) into the new weights of the expanded query terms, particularly, when the two values 

wq(t) and score(t) are different in scale. 
Notice that, for a given query q, the maximums mw and ms are fixed after the score func­

tions are applied to the query. Thus, the shifting factor 10Lw-
L

s can be uniquely determined 
with respect to the query. However, the factor may be very different from query to query. 
from collection to collection (even for the same query), and further, from model to model. 
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Notice also that we do not introduce any additional parameters in Eq (8 1) Th' . b ~ th . . .. IS IS eca ll~e 
e parameters have to be entlrely determined experimentally' they a th d d . . re us epen ent on 

the document representatlons, query representations and score functions. 

8.2 Overview of the IfD Methodology 

In order to investigate to what extent our methods of query expansion improve retrieval 
performance, we have ca~ried out a number of experiments with TREC data [215]. The 
components of I fV used m our experiments include: database, vocabulary, query expansion 
process and baselines. These components are presented below. 

8.2.1 Database 

Our experiments use two collections from the TREC ad hoc data: AP90 (the Associated 
Press newswire, 1990) and FT (the Financial Times 1991-1994). The statistics for these two 
collections can be found in Table 8.2.1. 

Table 8.2.1 Document collection statistics 
I Collection II Number of documents ! Mean number of terms / document 

78,321 I 478.4 

Table 8.2.2 Topic set statistics 
1\ Min I Max I Mean I 

TREC-4 (201-250) 8 33 16.3 
description 8 33 16.3 

TREC-7 (351-400) 31 114 57.6 
title 1 3 2.5 
description 5 34 14.3 
narrative 14 92 40.8 

Each document is formed by extracting from collections AP90 and FT. Words are strings of 
alphanumeric character. No stop words were removed, and no word stemming was performed. 

Regarding queries for the experiments, we use two sets of queries, which are automatically 
derived from the corresponding two groups of 50 natural language topics. The two groups 
of topics are TREC-4 (201-250) and TREC-7 (351-400). The number of words in topics, 

including stop words, is shown in Table 8.2.2. 
For TREC topics, the title field consists of words considered to best describe the topics. 

The description field is a one sentence description of the topic area, which might not contain 
all the words of the title field. The narrative field gives a concise description of what makes 
a document relevant. A typical example of a topic is shown as follows. 

For TREC-4, each of the queries (201-250) is produced from the corresponding description 
of the topic, which is the only field (denoted by dese-only). For TREC-7, each of the queries 
(351-400) is produced, respectively, from the corresponding title field (denoted by title-only), 
both title and description fields (denoted by title+dese), and the full text of the topic (denoted 

by full-text). 
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< top> 

< num > Number: 354 

< ti tl e > Journalist risks 

< dese > Description: 
Identify i~stances where a journalist has been put at risk (e.g., killed, arrested Or taken 
hostage) m the performance of his work. 

< narr > Narrative: 
Any document identifying an instance where a journalist or correspondent has been killed 
arrested or taken hostage in the performance of his work is relevant. ' 

< ftop > 

In subsequent sections, for the purpose of discussing the experiments, we always suppose 
that the TREC-4 queries (201-250) are used to retrieve against collection AP90, and the 
TREC-7 queries (351-400) against collection FT. 

8.2.2 Vocabulary 

It has been recognized since the earliest days of IR [119] that many of the most frequently 
occurring words in English (such as, 'and', 'of', 'the', 'to', etc., called as common function 
words) are worthless as indexing terms. These words make up a large fraction of the text of 
most documents: the ten most frequently occurring words in English typically account for 
20% to 30% of the words in a document [59]. Eliminating such words from consideration 
early in automatic indexing processing, saves huge amounts of space in indexes, and does not 
substantially damage retrieval effectiveness. A list of common function words, filtered out 
during automatic indexing processing, is called a stop list. A frequently used stop list of 250 
words can be found in [207]. A stop list of 425 words drawn from a broad range of literature 
in English was given by [59]. Fox [57] discussed the derivation of a stoplist, which is specially 
constructed by using the lexical analysis. In IfD, a stop list [207] is used to delete common 
function words from document and query texts. 

As Fox [58] stated that most numbers are not good discriminators, and should be removed 
from further consideration as indexing terms. However, certain numbers in some kinds of 
databases may be useful. A solution for such a problem is to allow terms including numbers 
but do not begin with a number. Also, he stated that breaking hyphenated terms into 
their constituents may lose the specificity of a hyphenated phrase. Breaking up hyphenated 
terms increases recall but decreases precision. Following his statements, I fD removes all 
numbers that do not begin with a number. However, IfD breaks hyphenated terms into 
their constituents. The retrieval with hyphenated terms will be considered as a further work. 

Stemming may be useful for the entire retrieval process, particularly, to alleviate deficien­
cies in the lexicon. I fD uses a stemming algorithm [137] for suffix-stripping to extract word 

stem forms. Word stems are called terms in this thesis. 
As we have stated repeatedly, the document frequencies, FD(t), of terms can be used 

as an important factor in determining whether a term should be considered as an indexing 
term. A term with a very high value FD(t) tends to have a poor power of discrimination, 
and should be dropped from the vocabulary. A term with a very low value FD(t) should 
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also be dropped from the vocabulary. There are normally many very infrequent terms in 
the collection, and many of them are strange codes or misspellings. The terms with very 

high or very low document frequencies should be regarded as 'bad' terms. All others ar'e 
regarded as 'not bad' terms, and are therefore deemed 'useful' indexing terms. However. it is 
not necessarily the case that these 'not bad' terms are good ones, that is, they mayor may 
not be informative or associated with a given query. 

It is desirable that a system exhibits both high recall by retrieving all documents that are 
relevant, and also high precision by rejecting all documents that are non-relevant. As is well­
known, the recall-preferred weighting function appears to use more general, high-frequency 
terms that occur in many documents of the collection. Such terms may be expected to pull 
out many documents, including many of the relevant documents. The precision-preferred 
weighting function, however, seems to support more specific, very low-frequency terms that 
are capable of isolating the few relevant documents from the mass of non-relevant ones. 

Thus, the removal of terms with very high document frequencies would result in decreasing 
the retrieval recall by making it impossible to accept some relevant documents. The deletion 
of many terms with very low document frequencies, on the other hand, would tend to diminish 
retrieval precision by making it impossible to reject many non-relevant documents. In practice, 
compromises are normally made to achieve a reasonable recall level, without at the same time 
producing unreasonably poor precision [164J. The different recall and precision requirements 
favour the combined use of a variety of term weighting factors that contain both recall- and 
precision-enhancing components. We have discussed this issue in Section 3.7. 

Following the studies given in [169, 170, 171, 172J (see Section 2.4) LfV removes those 
terms that appear in more than ten percent of the size of the collection or in less than three 
documents. That is, we have 

V= {t J2<FD(t) <0.1 x JDJ}. 

By dropping these' bad' terms, the size of the vocabulary is greatly reduced. For instance, in 
the FT collection, roughly a quarter of terms occur in only one or two documents. We note, 
however, that some experiments have shown that retrieval performance decreases slightly 
when very frequent and infrequent terms are not used as indexing terms [17, 141J. 

In this thesis, content units, which are used for content representations of documents 
and queries, are treated as single terms. In most early experiments, quite effective retrieval 
was achieved using single-term content representations [167, 207J. Salton & Buckley [164] 

reviewed some past studies and pointed out: 

"Ultimately, however, sets of single terms cannot provide complete ide~tification o! doc­
ument content. For this reason, many enhancements in content analyszs and text mdex­
ing procedures have been proposed over the years in an effort ~o ge~erat: complex text 
representations . ... It was evident that the construction and zdent~ficatz~n of co.mplex 
text representations was inordinately difficult. ... The overwhel.mmg evzd.ence zs that 
the judicious use of single-term identifiers is preferable to the mcorporatwn of ,"!ore 
complex entities extracted from the texts themselves . .. the performance of t~e retneval 
system with complex identifiers (such as, term phrases) will differ only margmally from 

the results obtainable with single-term indexing." 
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8.2.3 Query Expansion Process 

For the ~nitial r:trieval, w: use the Okapi weighting scheme (BM25) [155] to calculate initial 
term weights wd(t) and wq(t), t E V, for documents and queries, respectively. That is, 

Wd(t) = (1.2 + l)fd(t) 

1.2 x [(1 - 0.75) + 0.75 a~~~lb)] + fd(t) , 

*(t) - (1000 + l)fq(t) IDI- FD(t) + 0.5 
Wq - 1000 + fq(t) x log FD(t) + 0.5 ' 

w~ere ave(D) is .the average length of documents in collection D. This weighting scheme has 
widely been realIzed to be able to produce good initial retrieval performance. 

Obviously, an n-tuple Md = [Wd(tl), Wd(t2), ... , wd(tn )] can also be seen as an n-dimensional 
vector Vd = (Wd(tl),Wd(t2), ... ,wd(tn )) in the Euclidean space. Thus, the inner product, 

sim(d, q) = Vd . Vq = L Wd(t) . w;(t), 
tEV 

is used as a decision function in our experiments to compute the similarity between document 
d and query q. 

Based on the initial retrieval, for each original query q, the sample set:::: consisting of top­
ranked documents. In pseudo-relevance feedback, in order to avoid potential harm caused by 
a large amount of information noise in too large a sample set, 10 top-ranked documents are 
used in our experiments (i.e., taking 121 = 10). In this case the candidate terms come from 
V 2 . In relevance feedback, however, we use 100 top-ranked documents (i.e., taking 1::::1 = 100). 
In this case the candidate terms come from V 2 +, where 2+ = :::: n Rand R is provided from 
TREe data. 

Then our score functions, score(t) and score*(t), see Example 3.6.2, for instance, are 
applied to score and rank candidate terms. 30 additional expansion terms are selected (i.e., 
taking IEql = Isq - Vqr = 30). Our reweighting function rew1jD (t) is then performed over 

terms of the expanded query (i.e., terms t E Vql = sq U vq). The whole collection then goes 
through the second retrieval iteration with respect to the expanded query, and documents are 
re-ranked using the similarity measure 

sim(d, q') = Vd . Vql = L Wd(t) . rew1jD (t). 
tEV 

Finally, the results are presented to the user. 
The I fV system is implemented in the Java programming language. I fV incurs an 

initial time cost by indexing the whole collection and by performing the initial ranking with 
respect to a set of original queries. This one-off cost can be relatively large (several hours 
in our implementation) because I/O procedures are not optimized. The time necessary for 
performing solely query expansion is negligible (a few seconds). As the collection is stored as 
an inverted file, the computation of the term probability distributions is straightforward. Our 
query expansion methods are not complex, and the time required for the second ranking is 
proportional to the number of terms in the expanded queries, and is comparable to standard 

query expansion methods, such as [150]. 
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8.2.4 Three Benchmarks 

In order to evaluate the retrieval effectiveness of I fV at satisfying user information needs, 
experiments have been conducted in terms of the standard evaluation measures using the 
TREe evaluation tools [200]. This subsection presents the average retrieval performance 
of the original queries, and that of the expanded queries using a reduced Rocchio formula. 
These results are adopted as benchmarks in our experimental studies demonstrated in the 
subsequent sections. 

In our experiments, all queries are considered equally since all users are assumed to be 
equally important. Hereafter, the standard evaluation measures used in all the result tables 
in this chapter are Average Precision (non-interpolated) over the set of 50 queries (denoted 
by A-P), Precision at 5 and 10 documents (denoted by P@5 and P@10, respectively) and 
R-Precision (i.e., precision at IRI documents, denoted by R-P). 

Performance of the Original Queries 

Table 8.2.3 gives statistics in terms of the standard evaluation measures when the If V system, 
with the Okapi weighting scheme, retrieves documents with respect to the original queries. 
The statistics that apply to the set of queries 201-250 (desc-only) retrieving collection AP90 
can be found in column 2; columns 3 to 5 pertain to the set of queries 351-400 (full-text, 
desc+title, title-only, respectively) retrieving collection FT. 

It should be noticed that, for queries 351-400 against collection FT, there are large per­
formance differences between the run that uses the full-text queries, the run that uses the 
desc+title queries, and the run that uses the title-only queries. It is clear that better perfor­
mance is achieved when retrieval is based on the full-text queries. This is most likely because 
long queries are usually more detailed and may thus contain more useful information than 
the short ones. The decreases in performance using desc+title or title-only queries are rather 
marked. 

Table 8 2 3 Performances of the original queries .. 
AP90 FT 

desc-only full-text desc+title title-only 

P@5 0.3667 0.4542 0.3583 0.3106 
P@10 0.3167 0.3604 0.2792 0.2532 
A-P 0.2682 0.2697 0.2212 0.1973 
R-P 0.3041 0.2925 0.2537 0.2154 

For convenience, we will use benchmark-l as an abbreviation to mean 'the performance of 
the original queries'. 

Performances of the Expanded Queries 

A well known method of query expansion is to use the Rocchio formula Eq.(2.1) .which has 
been shown to achieve a good retrieval performance [16, 165). A reduced verSIOn of the 

formula is expressed as 
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~n practice, the reduced formula can be used for both ranking candidate terms and reweight­
mg expanded query terms [28, 29, 130, 179, 196]. It is employed in our experiments with 
parameter setting a = (3 = 1. 

(a) By Pseudo-Relevance Feedback 

Table 8.2.4 gives statistics in terms of the standard evaluation measures. The retrieval with 
the expanded queries (expanding the original queries 201-250) against collection AP90 can be 
found in column two. Columns 3 to 5 pertain to the different expanded queries (expanding 
the different parts of the original queries 351-400) against collection FT. 

The results in column 2 show that, for collection AP90, ranking with the expanded queries 
using the reduced Rocchio formula achieves better performance than ranking with the original 
queries at all the evaluation points (see Table 8.2.3, column 2). 

The results in columns 3 to 5 also show that, for collection FT, the different parts of the 
original queries produce different expanded queries. As one might expect, the three runs from 
the different expanded queries obtain rather inconsistent average retrieval performance. It is 
clear that the run based on title-only queries works worse than others. However, comparing 
with Table 8.2.3 (columns 3 to 5), it can readily be seen that, for the three runs, the ranking 
with the expanded queries achieves better performances than ranking with the original queries 
at most evaluation points. It seems that the best performance corresponds to the run based 
on the expanded queries derived from full-text queries. 

Table 8.2.4 Performances of the pseudo-relevance feedback queries 
AP90 FT J 

desc-only full-text desc+title title-only 
P@5 0.3958 0.4708 0.3583 0.3106 

P@10 0.3521 0.3729 0.2896 0.2532 
A-P 0.2965 0.2891 0.2361 0.2198 
R-P 0.3274 0.3110 0.2718 0.2411 

For convenience we will use benchmark-2 as an abbreviation to mean 'the performances , . 
of the expanded queries obtained from pseudo-relevance feedback using the reduced RocchlO 
formula'. 

(b) By Relevance Feedback 

Similarly, Table 8.2.5 gives statistics from investigations based on relevanc~-f~edback. The 
results clearly show that ranking with the expanded queries achieves substan~lallmprovement 
in performances compared with the original queries (see Table 8.2.3), and WIth the expanded 
queries derived from pseudo-relevance feedback (see Table 8.2.~), for. both collections AP90 
and FT. The level of improvement is marked at all the evaluatlOn pomts. 

Table 825 Performances of the relevance feedback queries .. 

AP90 FT 
desc-only full-text desc+title title only 

P@5 0.6500 0.5875 0.6255 0.6917 

P@lO 0.5604 0.4646 0.4915 0.5583 

A-P 0.5251 0.3983 0.4307 0.5422 

R-P 0.5311 0.4113 0.-±316 0.5575 
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For convenience, we will use benchmark-3 as an abbreviation to mean 'the performances of 
the expanded queries obtained from relevance feedback using the reduced Rocchio formula'. 

8.3 Effects of the Different Probability Estimation Schemes 
(by Pseudo-Re.levance Feedback) 

For the experiments given in this section and the next, the selection of good terms for the 
expanded queries uses only function score; (t), which does not incorporate weights of terms 
of the original queries into term scores (see Example 3.6.2 given in Section 3.6). In this way, 
we can gain an insight into how purely discrimination information of terms can be used to 
select good terms. 

Recall that, in Section 3.7, we discussed some schemes for estimating the term probability 
distributions. We gave some examples of estimations, which generate the 'different' score 
functions. The estimation schemes used in our experiments are listed in Table 8.3.0. The 
main purpose of this section and the next is to compare average retrieval performance of 
query expansion using these different estimation schemes. 

Table 8.3.0 The different probability estimation schemes 
I Schemes IdE ~ IdE D 

I scheme-1 I X3(d) = sim(d, q), Wd(t) = P'd(t) I XD(d) = 1, Wd(t) = w'd(t) 

I scheme-2 I X3(d) = sim(d, q), Wd(t) = w'd(t) I XD(d) = 1, Wd(t) = w'd(t) 

I scheme-3 I X3(d) = 1, Wd(t) = w'd(t) I XD(d) = 1, Wd(t) = wd(t) 
I scheme-4 I X3(d) = sim(d, q), Wd(t) = fd(t) I XD(d) = 1, Wd(t) = fd(t) 

I scheme-5 I Xdd) = 1, Wd(t) = fd(t) I XD(d) = 1, Wd(t) = fd(t) 

In which, !d(t) is the frequency of term t within document d; wd(t) is the weight of term t 
. Ok . . h . h * (t) wd(t). th (concerning document d) denved from the apl welg tmg sc erne; Pd = EtEVd Wd(t) IS e 

probability density of term t in V d; and sim(d, q) is the cosine similarity measure between 
document d and query q. Thus, for instance, from the discussions given in Section 3.7, for 
scheme-4 , we have 

w-:::(t) EdE'= XOO (d)Wd(t) EdE=: sim(d, q)!d(t) 
P (t) ~ - - -

=: = EtEVSw=:(t) = EtEVS (EdE=:Xs(d)Wd(t)) - EtEVS (EdE=:sim(d,q)fd(t)) ' 

WD(t) EdED XD (d)Wd(t) _ EdED fd(t) 
P (t) - - - ( )' 

D - EtEVWD(t) - EtEV (EdEDXD(d)Wd(t)) EtEV EdEDfd(t) 

which satisfies that P=: ( t) > 0 for every t E V=: and PD (t) > 0 for every t E V. 
The following two subsection focus on analysing average retrieval perfor~a~ce based. on 

two different ways of weighting terms of the expanded queries. Our rewelghtmg functIOn 
rew1jD (t) and the reduced Rocchio formula rewRoC(t) will be considered, respectively. 

8.3.1 Weighting Terms of Expanded Query by Function rew1fD (t) 

Table 8.3.1 gives the average retrieval performances in terms of standard eval~ati~n measu~es 
when the different estimation schemes in Table 8.3.0 are considered. The rewelghtmg functIOn 



CHAPTER 8. EXPERIMENTAL RESULTS 
1.58 

rew If D (t) is used to weight terms of the expanded queries, expanding the original queries 201-
250. Collection AP90 is retrieved with respect to the expanded queries. The statistics that 
apply to scheme-l can be found in column 2, column 3 pertains to scheme-2, and so on. From 
the experimental results, it can be seen that: 

- The five estimation schemes exhibit different average retrieval performances. Scheme-4 
and scheme-5 gain similar performances. Scheme-5 works slightly better than others. 

- The rankings with the expanded queries obtained from the five estimation schemes 
achieve better performances than benchmark-i. The improvements are shown at all the 
evaluation points. 

- The performances of the expanded queries obtained from the five estimation schemes 
are similar to benchmark-2. Scheme-5 shows a slight further performance improvement 
compared with benchmark-2 at all the evaluation points. 

Table 8.3.1 Performances of the estimation schemes on TREC-4 (desc-only) 
benchmark-l benchmark-2 scheme-l scheme-2 scheme-3 scheme-4 scheme-S 

P@5 0.3667 0.3958 0.3792 0.3917 0.3792 [0.4167] [0.·U67] 
P@10 0.3167 0.3521 0.3458 [0.3604] 0.3583 0.3510 0.3532 
A-P 0.2682 0.2965 [0.3068] 0.2920 0.2910 0.3030 0.3045 
R-P 0.3041 0.3274 0.3348 0.3107 0.3206 0.3323 [0.3350] 

Table 832 Performances of the estimation schemes on TREC-7 (full-text) .. 

I benchmark-l benchmark-2 scheme-l scheme-2 scheme-3 scheme-4 scheme-S 

P@5 0.4542 0.4708 0.4542 [0.5000] 0.4875 0.4792 0.4792 
P@10 0.3604 0.3729 0.3771 [0.3875] [0.3875] 0.3646 0.3667 
A-P 0.2697 0.2891 0.2692 [0.2955] 0.2776 0.2849 0.2724 
R-P 0.2925 0.3110 0.2909 [0.3216] 0.2997 0.3113 0.3010 

Table 833 Performances of the estimation schemes on TREC-7 (desc+title) 
benchmark-l benchmark-2 scheme-l scheme-2 scheme-3 scheme·4 scheme-S 

P@5 0.3583 0.3583 0.3500 0.3792 0.3708 [0.3875] 0.3833 

P@10 0.2792 0.2896 0.2896 0.2854 0.2854 [0.2917] 0.2896 

A-P 0.2212 0.2361 0.2044 0.2170 0.2179 [0.2359] 0.2184 

R-P 0.2537 0.2718 0.2416 0.2439 0.2502 [0.2792] 0.2463 

Table 834 Performances of the estimation schemes on TREC-7 (title-only) .. 
benchmark-l benchmark-2 11 scheme-l scheme-2 scheme-3 scheme-4 scheme-S 1 

P@5 0.3106 0.3106 0.2766 0.3191 0.3277 [0.3362] 0.3234 

P@10 0.2532 0.2532 0.2426 0.2574 0.2553 [0.2596] 0.2574 

A-P 0.1973 0.2198 0.1977 0.2070 0.2022 [0.2305] 0.2285 

R-P 0.2154 0.2411 0.2333 0.2192 0.2188 [0.2490] 0.2483 

Similarly, Tables 8.3.2-8.3.4 give the average retrieval performances when the expanded 
queries expanding the original queries 351-400, are used to retrieve. collection FT for the 
differe~t parts of the original queries. From the experimental results, it can be seen that: 

_ The five estimation schemes exhibit different average retrieval performances. Scheme-2 
works better than others for the full-text queries. Scheme-4 works be.tter than others 
for desc+title or title-only queries. Scheme-4 and scheme-5 have similar performance 

gains at most evaluation points. 
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The rankings with the expanded queries obtained from the five estimation schemes 
achieve better performances than benchmark-i. The improvements are shown at most 
evaluation points. On close inspection, Scheme-2 gains a marked performance improve­
ment for the full-text queries. Scheme-4 gains better performances for all the different 
parts of the queries, and the improvements at most evaluation points are marked. 

- Scheme-2 shows a further performance improvement compared with benchmark-2 for 
the full-text queries. Scheme-4 shows further performance improvements compared with 
benchmark-2 for desc+title or title-only queries. 

In the subsequent discussions, all the experiments based on pseudo-relevance feedback 
use scheme-4 to estimate the term probability distributions. We chose scheme-4 because the 
results presented above suggest that it may achieve a relatively better performance for all the 
different parts of queries. In particular, it appears to work well for desc+title or title-only 
queries (which is to be desired), even though it may not give the best performance for the 

full-text queries. 

8.3.2 Weighting Terms of Expanded Query by Formula rewROC(t) 

The Rocchio formula can be used for both ranking candidate terms and reweighting expanded 
query terms. In order to compare average retrieval performance of our reweighting function 
with that of the reduced Rocchio formula, we repeat the experiments given in the last sub­
section using rewRo)t) to reweight expanded query terms, in place of rew1fD (t). 

Table 8.3.5 gives the retrieval performances when the query expansion is applied to queries 
(201-250) for retrieving collection AP90. The experimental results demonstrate that: 

_ The five estimation schemes exhibit different average retrieval performances, but the 

differences are small. 

_ The rankings with the expanded queries obtained from the five estimation schemes 
achieve much better performances than benchmark-i. The improvements are shown at 

all the evaluation points. 

_ The performances of the expanded queries obtained from the five estimation schemes 

are similar to benchmark-2. 

_ Clearly the reduced Rocchio formula (for only reweighting terms) performs poorer than 
our re~eighting function for scheme-4 and scheme-5. This indicates that our reweighting 

function is effective (see Table 8.3.1). 

Similarly, Tables 8.3.6-8.3.8 give the retrieval performances when t~e query exp~ns~on 
is applied to queries 351-400 (full-text, title+desc and title-only, respectively) for retnevmg 

collection FT. The experimental results demonstrate that: 

_ The five estimation schemes exhibit different average retrieval performances, but the 

differences are small. 

_ The rankings with the expanded queries obtained from the five estimation schemes 
achieve better performances than benchmark-i. The improvements are shown at almost 

all the evaluation points. 
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- Scheme-2 shows slight further performance improvements compared with benchmark-2 
for all the different parts of the queries. Scheme-4 shows a slight further performance 
improvement compared with benchmark-2 for the title-only queries. 

- The reduced Rocchio formula (for only reweighting terms) shows a poorer performance, 
for the full-text queries, compared with our reweighting function for scheme-2 (see Tables 
8.3.2-8.3.4). Also, for scheme-4, it performs less well than our reweighting function for 
all the different parts of queries. This indicates that our reweighting function is effectivE'. 

Table 8.3.5 Performances of the estimation schemes on TREC-4 (desc-only) 
benchmark-l benchmark-2 scheme-l scheme-2 scheme-3 scheme-4 scheme-5 

P@5 0.3667 0.3958 0.3917 0.3917 0.3917 [0.4000] 0.3917 
P@10 0.3167 0.3521 0.3521 [0.3542] 0.3521 0.3500 0.3500 
A-P 0.2682 0.2965 [0.3033] 0.2990 0.2993 0.2991 0.2923 
R-P 0.3041 0.3274 0.3191 0.3246 0.3174 [0.3310] 0.3173 

Table 8.3.6 Performances of the estimation schemes on TREC-7 (full-text) 
benchmark-l benchmark-2 scheme-l scheme-2 scheme-3 scheme-4 scheme-S I 

P@5 0.4542 0.4708 0.4708 [0.4792] 0.4750 0.4708 0.4708 
P@10 0.3604 0.3729 0.3729 [0.3771] 0.3750 0.3625 0.3667 
A-P 0.2697 0.2891 0.2844 0.2907 [0.2912] 0.2845 0.2902 
R-P 0.2925 0.3110 0.3123 [0.3136] 0.3126 0.3098 0.3128 

Table 8.3.7 Performances of the estimation schemes on TREC-7 (desc+title) 
benchmark-l benchmark-2 scheme-l scheme-2 scheme-3 scheme-4 scheme-5 

P@5 0.3583 0.3583 0.3625 [0.3792] [0.3792] 0.3708 0.3708 
P@10 0.2792 0.2896 0.2771 0.2813 0.2792 0.2852 [0.2854] 

A-P 0.2212 0.2361 0.2296 [0.2360] 0.2347 0.2345 0.2347 

R-P 0.2537 0.2718 0.2724 [0.2739] 0.2735 0.2704 0.2689 

Table 838 Performances of the estimation schemes on TREC-7 (title-only) .. 
benchmark-l benchmark-2 scheme-l scheme-2 scheme-3 scheme-4 scheme-5 

P@5 0.3106 0.3106 0.2979 0.3106 0.3106 [0.3234] 0.3191 

P@lO 0.2532 0.2532 0.2468 0.2574 0.2553 [0.2617] 0.2596 

A-P 0.1973 0.2198 0.2088 0.2211 0.2072 0.2263 [0.2287] 

R-P 0.2154 0.2411 0.2418 0.2452 0.2239 [0.2483] 0.2480 

8.4 Effects of the Different Probability Estimation Schemes 
(by Relevance Feedback) 

This section presents the results of experiments which use .releva.nce i~formation to ~sti­
mate the term probability distributions. As with the diSCUSSIOns .gIv:n m the last sectIOn, 
the selection of good terms uses function score;(t), and the reweIghtI~g of terms uses .tw.o 

f t · (t) and rew (t). The experiments may give the effectIve performance lImIt unc IOns rew If D Roc .. 

of our methods because they use the complete relevance mformatlOn. 

8.4.1 Weighting Terms of Expanded Query by Function rew1fD(t) 

From the experimental results in Tables 8.4.1-8.4.4, it can be seen that: 
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- The five estimation schemes obtain different average retrieval performances, and the 
differences are marked. It is clear that scheme-3 shows the best performance compared 
with others. 

- The rankings with the expanded queries generated using relevance information achieve 
dramatically better performances than benchmark-1. The improvements are shown at 
all the evaluation points, for all the different parts of the queries, for the five estimation 
schemes. 

- The performances of the expanded queries obtained from the five estimation schemes, 
using relevance information, are significantly better than benchmark-2. The further 
improvements are shown at all the evaluation points for all the different parts of the 
querIes. 

- The performances of the expanded queries obtained from scheme-3 are markedly better 
than benchmark-3. The further improvements are shown at all the evaluation points for 
all the different parts of the queries. The performances of the expanded queries obtained 
from the other four schemes, however, are not consistently better than benchmark-3. 

Table 8.4.1 Performances of the estimation schemes on TREC-4 (desc-only) 
benchmark-l benchmark-2 benchmark-3 scheme-l scheme-2 scheme-3 scheme-4 scheme-S 

P@5 0.3667 0.3958 0.6500 0.7261 0.7261 [0.7500] 0.6652 0.6708 
P@10 0.3167 0.3521 0.5604 0.5870 0.5870 [0.6146] 0.5239 0.5417 
A-P 0_2682 0.2965 0.5251 0.5124 0.5202 [0.5834] 0.4550 0.4968 
R-P 0.3041 0.3274 0.5311 0.5039 0.5193 [0.5808] 0.4856 0.5221 

Table 842 Performances of the estimation schemes on TREC-7 (full-text) .. 
benchmark-l benchmark-2 benchmark-3 scheme-l scheme-2 scheme-3 scheme-4 scheme-S 

P@5 0.4542 0.4708 0.5875 0.6522 0.6478 [0.6625] 0.6348 0.5792 
P@10 0.3604 0.3729 0.4646 0.5196 0.5196 [0.5458] 0.4826 0.4563 
A-P 0.2697 0.2891 0.3983 0.4300 0.4284 [0.4993] 0.3909 0.3803 
RP 0.2925 0.3110 0.4113 0.4385 0.4447 [0.5106] 0.4031 0.3830 

Table 843 Performances of the estimation schemes on TREC-7 (desc+title) .. 
benchmark-l benchmark-2 benchmark-3 scheme-l scheme-2 scheme-3 scheme-4 scheme-S 

P@5 0.3583 0.3583 0.6255 0.6791 0.7070 [0.7234] 0.6465 0.6213 

P@10 0.2792 0.2896 0.4915 0.5256 0.5326 [0.5809] 0.4930 0.4809 

A-P 0.2212 0.2361 0.4307 0.4016 0.4298 [0.5366] 0.3925 0.4049 

RP 0.2537 0.2718 0.4316 0.4091 0.4574 [0.5415] 0.4126 0.3967 

T bl 844 P rf ances of the estimation schemes on TREC-7 (title-only) a e .. e orm 
benchmark-l benchmark-2 benchmark-3 I scheme-l scheme-2 scheme-3 scheme-4 scheme-5 I 

P@5 0.3106 0.3106 0.6917 0.6829 0.6927 [0.7375] 0.6634 0.6128 

P@10 0.2532 0.2532 0.5583 0.5195 0.5366 [0.6062] 0.4780 0.4787 

A-P 0.1973 0.2198 0.5422 0.4260 0.4573 [0.5986] 0.3936 0.-13-11 

R-P 0.2154 0.2411 0.5575 0.4378 0.4744 [0.5894] 0.4135 0.4352 

In subsequent sections, all the experiments based on relevance feedback will uniformly use 

scheme-3 to estimate the term probability distributions. 
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8.4.2 Weighting Terms of Expanded Query by Formula rew (t) 
Roc 

As in Subsection 8:3.2, the performance results presented here are obtained by incorporating 
formula rewRoc (t) mto our methods for reweighting expanded query terms. The experimental 
results in Tables 8.4.5-8.4.8 demonstrate that: 

- The five estimation schemes exhibit different average retrieval performances, and some 
of the differences are marked. 

- The rankings with the expanded queries generated using relevance information achieve 
dramatically better performances than benchmark-l for the five estimation schemes. 

- The performances of the expanded queries obtained from the five estimation schemes, 
using relevance information, are significantly better than benchmark-2. 

- The performances of the expanded queries obtained from the five schemes are consis­
tently poorer than benchmark-3. The performance decreases are marked. 

- Obviously, the reduced Rocchio formula (for only reweighting terms) performs poorer 
than our reweighting function consistently for the five schemes (see Tables 8.4.1-8.4.4). 
This is the case at all the evaluation points for all the different parts of the queries. The 
performance decreases are significant. These demonstrate again that our reweighting 
function is effective. 

Table 845 Performances of the estimation schemes on TREC-4 (desc-only) .. 

benchmark-l benchmark-2 benchmark-3 scheme-l scheme-2 scheme-3 scheme-4 scheme-5 

P@5 0.3667 0.3958 0.6500 0.6208 0.6208 0.6417 0.6375 [0.6542) 
P@10 0.3167 0.3521 0.5604 0.4979 0.5125 [0.5458) 0.5188 0.5354 
A-P 0.2682 0.2965 0.5251 0.4452 0.4500 [0.5148) 0.4650 0.5075 
R-P 0.3041 0.3274 0.5311 0.4582 0.4647 0.5327 0.4757 [0.5328) 

Table 846 Performances of the estimation schemes on TREC-7 (full-text) .. 

I benchmark-l benchmark-2 benchmark-3 scheme-l scheme-2 scheme-3 scheme-4 scheme-5 

P@5 0.4542 0.4708 0.5875 0.5708 0.5667 0.5750 [0.5792) 0.5667 
P@10 0.3604 0.3729 0.4646 0.4333 0.4354 [0.4500) 0.4438 0.4438 
A-P 0.2697 0.2891 0.3983 0.3587 0.3580 0.3769 0.3612 [0.3870) 
RP 0.2925 0.3110 0.4113 0.3722 0.3731 0.3749 0.3689 [0.3957) 

Table 847 Performances of the estimation schemes on TREC-7 (desc+title) .. 

II benchmark-l benchmark-2 benchmark-3 II scheme-l scheme-2 scheme-3 scheme-4 scheme-5 

P@5 0.3583 0.3583 0.6255 0.5617 0.5574 0.5957 0.5617 [0.6043) 

P@10 0.2792 0.2896 0.4915 0.4234 0.4170 [0.4681] 0.4213 0.4660 

A-P 0.2212 0.2361 0.4307 0.3373 0.3383 0.3956 0.3388 [0.4019) 

RP 0.2537 0.2718 0.4316 0.3610 0.3648 0.4053 0.3642 [0.4164] 

T bl 848 P rf a ces of the estimation schemes on TREC-7 (title-only) a e .. e orm n 
benchmark-l benchmark-2 benchmark-3 II scheme-l scheme-2 scheme-3 scheme 4 scheme-5 

P@5 0.3106 0.3106 0.6917 0.5787 0.5745 [0.6500] 0.5617 0.6426 

P@10 0.2532 0.2532 0.5583 0.4404 0.4340 [0.5250] 0.4462 0.5043 

A-P 0.1973 0.2198 0.5422 0.3644 0.3653 0.52U 0.3654 [0.5216] 

R-P 0.2154 0.2411 0.5575 0.3848 0.3814 0.5278 0.3821 [0.5491] 
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8.5 Effects of the Different Discrimination Measures (by 
Pseudo-Relevance Feedback) 

In this section and the next, we investigate experimentally the effects on performance 
o~ a~pl~ing. 'relevance' discrimination measures to AQE. The investigation of 'dependence' 
dlscnmmatlOn measures is considered further work. 

Two strategies for scoring candidate terms will be considered in the experimental investi­
gations. One scores terms by using only the discrimination information. Another calculates 
term scores by incorporating query term weights into the scores. Two sets of experiments 
corresponding to the two strategies are presented. The following techniques are adopted in 
the experiments discussed in this section. 

• Experiments are carried out with pseudo-relevance feedback; 

• Term probability distributions are estimated using scheme-4; 

• Candidate terms are selected using two sets of functions 

- without considering query term weights: score;(t), score; (t), score~ (t) 

- considering query term weights: scoreI(t), scoreJ(t), scoreK(t); 

• Expanded query terms are reweighted using rew1jD (t). 

8.5.1 Without Considering Weights of Query Terms 

In the first set of experiments, we employ the strategy that scores terms using only the 
discrimination information without involving query term weights. That is, we use score;(t), 
score;(t) and score~(t) (see Example 3.6.2) to compute scores of the candidate terms. From 
the experimental results in Tables 8.5.1-8.5.4, it can be seen that: 

- score;(t) and score; (t) exhibit similar performances when used for the different parts 
of the queries. 

- The rankings with the expanded queries obtained from score;(t) and score;(t) achieve 
better performances than benchmark-1. The improvements are shown at all the evalu­
ation points for all the different parts of the queries. The ranking with the expanded 
queries obtained from score~ (t) achieves a better performance than benchmark-l at 
most evaluation points, with some exceptions. 

Of particular note is that improvements for the three score functions are most noticeable 
for precision at-5. This experimentally verifies that our query expansion methods are 

effective precision devices. 

_ The performances of the expanded queries obtained from score;(t) and score; (t) are 
similar to benchmark-2. This is the case at most evaluation points. However, the 
performance of the expanded queries obtained from score~ (t) is poorer than benchmark-

2 at most evaluation points. 
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Table 8.5.1 Performances of the score functions on TREC 4 (desc ani) - y 
bencnmark-l bencnmark-2 score;(t) score; (t) score: (t) 

P@5 0.3667 0.3958 [0.4167] [0.4167] 0.3917 
P@10 0.3167 0.3521 [0.3510] 0.3500 0.3458 
A-P 0.2682 0.2965 [0.3030] 0.3025 0.2871 
R-P 0.3041 0.3274 [0.3323] 0.3312 0.3008 

Table 8.5.2 Performances of the score functions on TREC-7 (full-text) 
bencnmark-l benchmark·2 score;(t) score* (t) score~ (t) I 

P@5 0.4542 0.4708 0.4792 [0.4833] 0.4542 
P@10 0.3604 0.3729 0.3646 0.3688 [0.3813] 
A-P 0.2697 0.2891 0.2849 0.2864 [0.2928] 
R-P 0.2925 0.3110 [0.3113] [0.3113] 0.3107 

Table 8.5.3 Performances of the score functions on TREC-7 (desc+title) 
bencnmark-l bencnmark-2 score;(t) score: (t) score~ (t) 

P@5 0.3583 0.3583 [0.3875] [0.3875] 0.3708 
P@10 0.2792 0.2896 [0.2917] [0.2917] [0.2917] 
A-P 0.2212 0.2361 0.2359 [0.2384] 0.2194 
R-P 0.2537 0.2718 [0.2792] 0.2791 0.2488 

Table 8.5.4 Performances of the score functions on TREC-7 (title-only) 

I II bencnmark-l I bencnmark-2 II score; (t) I score: (t) I score~ (t) I 
P@5 0.3106 0.3106 0.3362 0.3319 [0.3404] 

P@10 0.2532 0.2532 [0.2596] [0.2596] [0.2596] 
A-P 0.1973 0.2198 [0.2305] 0.2302 0.1917 
R-P 0.2154 0.2411 [0.2490] 0.2481 0.2111 

8.5.2 Considering Weights of Query Terms 

Table 8.5.5 Performances of the score functions on TREC-4 (desc-only) 
bencnmark-l bencnmark-2 scorer (t) scoreJ(t) score K (t) 

P@5 0.3667 0.3958 [0.4042] [0.4042] 0.3958 

P@10 0.3167 0.3521 0.3500 [0.3521] 0.3417 

A-P 0.2682 0.2965 [0.2985] 0.2983 0.2846 

R-P 0.3041 0.3274 [0.3254] 0.3252 0.2972 

Table 856 Performances of the score functions on TREC-7 (full-text) 

benchmark· 1 bencnmark-2 scorer (t) scoreJ(t) score K (t) ] 

P@5 0.4542 0.4708 [0.4667] [0.4667] 0.4542 

P@10 0.3604 0.3729 0.3667 0.3688 [0.3750] 

A-P 0.2697 0.2891 0.2808 0.2805 [0.2883] 

R-P 0.2925 0.3110 [0.3083] 0.3082 0.2964 

Table 857 Performances of the score functions on TREC-7 (desc+title) .. 
bencnmark-l bencnmark-2 scorer (t) scoreJ(t) score K (t) 

P@5 0.3583 0.3583 0.3875 [0.3917] 0.3625 

P@10 0.2792 0.2896 [0.2917] 0.2896 [0.2917] 

A-P 0.2212 0.2361 [0.2355] 0.2348 0.221-1: 

R-P 0.2537 0.2718 [0.2632] 0.2620 0.25-1: 7 
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Table 8.5.8 Performances of the score functions on TREC-7 (title-only) 

I II benchmark·! I benchmark·2 II score (t) I score (t) I score (t) \ I J K 

P@5 0.3106 0.3106 [0.3277] [0.3277] 0.3149 
P@10 0.2532 0.2532 [0.2702] 0.2681 0.2489 
A-P 0.1973 0.2198 [0.2240] 0.2227 0.2086 

R-P 0.2154 0.2411 [0.2515] 0.2499 0.2391 

In the second set of experiments, we use an alternative strategy which incorporates query 
term weights into the term scores. It combines the discrimination information with query 
term weights. That is, we employ scoreI(t), scoreJ(t) and scoreK(t) to compute scores of the 
candidate terms. From the experimental results in Tables 8.5.5-8.5.8, it can be seen that: 

_ scoreI(t) and scoreJ(t) exhibit different performances, but the differences are small. 

_ The rankings with the expanded queries obtained from the three score functions achieve 
better performances than benchmark-l at all the evaluation points. The ranking with 
the expanded queries obtained from scoreK (t) achieves a better performance than 
benchmark-l at most evaluation points, with some exceptions. 

_ The performances of the expanded queries obtained from the three score functions are 

poorer than benchmark-2 at many evaluation points. 

_ Clearly, the three functions scoreI (t), score J (t) and scoreK (t) perform consistently 
poorer than the corresponding three functions score; (t), score; (t) and score~ (t) (see 
Tables 8.5.1-8.5.4). This is the case at most evaluation points. 

8.6 Effects of the Different Discrimination Measures (by Rel­

evance Feedback) 

In this section, we continue to investigate experimentally the performances achieved by 
applying the 'relevance' discrimination measures to AQE. As in the last section, two strategies 
for scoring candidate terms will be considered, and two sets of experiments corresponding to 
these two strategies are carried out. The following techniques are adopted in the experiments 

given in this section. 

• Experiments are carried out with relevance feedback; 

• Term probability distributions are estimated using scheme-3; 

• Candidate terms are selected using two sets of functions 

_ without considering query term weights: score;(t), score; (t), score~(t) 
_ considering query term weights: scoreI(t), scoreJ(t), scoreK(t); 

• Expanded query terms are reweighted using rew I f D (t). 
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8.6.1 Without Considering Weights of Query Terms 

As in the first set of experiments (Subsection 8.5.1), we use only the discrimination informa­
tion, i.e., score;(t), score;(t) and score: (t), to compute scores of candidate terms. From the 
experimental results shown in Tables 8.6.1-8.6.4, it can be seen that: 

- score;(t) and score; (t) exhibit similar performances when used for the different parts 
of queries. On close inspection, score; (t) is slightly better than score; (t) for dese-only 
queries for AP90, whereas score;(t) is slightly better than score; (t) for all the different 
parts of the queries for FT. Both of them are much better than score: (t) at almost all 
the evaluation points. The three functions are consistently most effective when used for 
desc+title or title-only queries. 

- The rankings with the expanded queries generated using relevance information achieve 
dramatically better performances than benchmark-1. The improvements are shown at 
all the evaluation points, for all the different parts of the queries, for the three score 
functions. 

Of particular note is that improvements at high precision points are largely increased 
consistently for the three score functions. This experimentally verifies again that our 
query expansion methods are effective precision devices. 

- The performances of the expanded queries obtained from the three score functions, 
using relevance information, are significantly better than benchmark-2. The further 
improvements are shown at all the evaluation points, for all the different parts of the 
quenes. 

- The performances of expanded queries obtained from score;(t) and score; (t), using 
relevance information, are markedly better than benchmark-3. This is the case at all 
the evaluation points for all the different parts of the queries. The performance of 
expanded queries obtained from score: (t), using relevance information, is markedly 
better than benchmark-3 at almost all the evaluation points. 

Table 861 Performances of the score functions on TREC-4 (desc-only) .. 

IT benchmark-! benchmark-2 benchmark-3 score; (t) scor< (t) score: (t) 
P@5 0.3667 0.3958 0.6500 0.7500 [0.7625J 0.6708 

P@10 0.3167 0.3521 0.5604 0.6146 [0.6229J 0.5687 
A-P 0.2682 0.2965 0.5251 0.5834 [0.5853] 0.5421 
RP 0.3041 0.3274 0.5311 0.5808 [0.5825] 0.5413 

Table 8 62 Performances of the score functions on TREC-7 (full-text) .. 

benchmark-! benchmark-2 benchmark-3 score;(t) score* (t) score: (t) 

P@5 0.4542 0.4708 0.5875 [0.6625] 0.6542 0.6458 
P@10 0.3604 0.3729 0.4646 [0.5458] 0.5375 0.5000 

A-P 0.2697 0.2891 0.3983 [0.4993] 0.4950 0.4607 

RP 0.2925 0.3110 0.4113 [0.5106] 0.5019 0.4555 

T bl 863 P rf a e .. e orman ces of the score functions on TREC-7 (desc+title) 
benchmark-! benchmark-2 benchmark-3 score* (t) score: (t) score: (t) 

P@5 0.3583 0.3583 0.6255 [0.7234] 0.7149 0.6766 

P@10 0.2792 0.2896 0.4915 0.5809 [0.5851] 0.5553 

A-P 0.2212 0.2361 0.4307 [0.5366] 0.5339 0..1792 

RP 0.2537 0.2718 0.4316 [0.5415] 0.5391 0.-186-1 
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Table 8.6.4 Performances of the score functions on TREC 7 (title only) - -
benchmark-l benchmark-2 benchmark-3 score7 (t) score~ (t) score:'l t) 

P@5 0.3106 0.3106 0.6917 [0.7375] 0.7250 0.7333 
P@lO 0.2532 0.2532 0.5583 [0.6062] 0.6042 0.5937 
A-P 0.1973 0.2198 0.5422 [0.5986] 0.5937 0.5552 
R-P 0.2154 0.2411 0.5575 [0.5894] 0.5876 0.5450 

8.6.2 Considering Weights of Query Terms 

Analogously to the experiments described in Subsection 8.5.2, we incorporate query term 
weights into term scores, i.e., we use score! (t), scoreJ(t) and scoreK(t) to select good terms. 
From the experimental results in Tables 8.6.5-8.6.8, it can be seen that: 

- score! (t) and scoreJ (t) exhibit similar performances when used for the different parts of 
the queries. When compared with scoreK(t), both of them show significantly better per­
formances for desc-only queries for AP90, and better performances for full-text queries 
for FT overall. scoreK (t) works better for desc+title or title-only queries. The three 
score functions are consistently most effective when used for desc+title or title-only 
queries, at all the evaluation points. 

_ The rankings with the expanded queries generated using relevance information achieve 
dramatically better performances than benchmark-l for the three score functions. 

_ The performances of the expanded queries obtained from the three score functions, using 
relevance information, are significantly better than benchmark-2. 

_ The performances of expanded queries obtained from the three score functions, using 
relevance information, are markedly better than benchmark-3. This is the case at most 
evaluation points, except for the title-only queries. In contrast, they show consistently 

much poorer performances for the title-only queries. 

_ Obviously, the three functions score! (t), score J (t) and scoreK (t) perform consistently 
poorer than the corresponding three functions score; (t), score;(t) and score~(t) (see 
Tables 8.6.1-8.6.4). This is the case at all the evaluation points for all the different 
parts of the queries. Notice that the performance decreases are significant when used 

for desc+title or title-only queries. 

Table 865 Performances of the score functions on TREC-4 (desc-only) .. 

benchmark-l benchmark-2 benchmark-3 score] (t) scoreJ(t) score K (t) 

P@5 0.3667 0.3958 0.6500 0.7375 [0.7417] 0.6667 

P@10 0.3167 0.3521 0.5604 [0.6042] 0.6000 0.5521 

A-P 0.2682 0.2965 0.5251 [0.5688] 0.5647 0.5255 

RP 0.3041 0.3274 0.5311 [0.5759] 0.5727 0.5290 

Table 866 Performances of the score functions on TREC-7 (full-text) .. score K (t) 
benchmark-l benchmark-2 benchmark-3 score] (t) scoreJ(t) 

P@5 0.4542 0.4708 0.5875 0.5750 0.5833 [0.6083] 

P@10 0.3604 0.3729 0.4646 0.4563 [0.4604] 0.4583 

A-P 0.2697 0.2891 0.3983 [0.4290] 0.4288 0.4031 

RP 0.2925 0.3110 0.4113 OA-:13-:1 [OA-:173] 0.-:1127 
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Table 8.6.7 Performances of the score functions on TREC 7 (d esc+tlt e . I ) 

benchmark·l benchmark-2 benchmark-3 scorer (t) scoreJ(t) score K (t) 
P@5 0.3583 0.3583 0.6255 0.6417 0.6417 [0.6500] 

P@10 0.2792 0.2896 0.4915 0.5125 0.5167 [0.5396] 
A-P 0.2212 0.2361 0.4307 0.4776 0.4758 [0.5014] 
R-P 0.2537 0.2718 0.4316 0.4884 0.4909 [0.5183] 

Table 8.6.8 Performances of the score functions on TREC 7 (t"tl I ) I eon y 

lr benchmark-l benchmark-2 benchmark-3 II scorer (t) scoreJ(t) scoreK (t) 

P@5 0.3106 0.3106 0.6917 0.6458 0.6375 [0.6917] 
P@10 0.2532 0.2532 0.5583 0.4979 0.4937 [0.5417] 
A-P 0.1973 0.2198 0.5422 0.4929 0.4957 [0.5159] 
R-P 0.2154 0.2411 0.5575 0.5173 [0.5207] 0.5153 

8.7 Effects of Other Aspects on Performance 

. T~e retrieval effectiveness of AQE depends on several factors. This section experimentally 
mvestIgates two aspects: the optimal size of the sample set and, the optimal number of ex­
pansion terms. Two sets of experiments are given in this section, and the following techniques 

are adopted in the experiments. 

• Experiments are carried out with pseudo-relevance feedback; 

• Term probability distributions are estimated using scheme-4; 

• Candidate terms are selected using score; (t); 

• Expanded query terms are reweighted using rew If D (t). 

In order to simulate a realistic retrieval, we used the desc-only queries (201-250) and desc+title 

queries (351-400) in our experiments. 

8.7.1 The Size of Sample Set 

Considering the size of sample set as a factor may be useful for AQE. If, for instance, the 
number of sample documents is set too high, it will yield more candidate terms than is 
necessary and so waste subsequent processing effort. If the number is too low, the number of 
relevant documents may be insufficient to yield a good set of candidate terms. 

In many relevance feedback investigations, for instance, [72, 74, 76, 77, 180, 187, 188, 189, 
210], the number of top-ranked documents presented to the user has typically been around 10 
or 20. Of these documents only those judged relevant are used for the subsequent feedback 
iteration and query expansion search. Here, the sample size of interest is that of the set of 

documents judged relevant. 
Harper [76], Martin [125], White [217] and Efthimiadis [52] suggested a sample size of 

5 relevant documents. Sparck Jones [188] used a sample of 3-4 relevant documents, and in 
another experiment she used 1-3 relevant documents [189]. Harper suggested that at least one 
relevant document is needed [76]. These experiments showed that a small sample of relevant 
documents could be an adequate basis for reweighting terms. However, it is believed that the 
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larger the size of sample set, the better the probability estimation should be. The problem of 
selecting an optimal sample size is still an open IR research issue. 

In the absence of user assessment of document relevance, an alternative method which 
treats the top-ranked documents as relevant is used. The top-ranked documents then become 
the sample documents, on which reweighting terms is based. This technique is well known 
and has been used by Salton and Sparck Jones in early experiments and more recently in 
TREe [15, 19, 54]. 

We carried out some experiments in order to see how the retrieval performance was affected 
by changes in the size of sample set. In the results given in Tables 8.7.1 and 8.7.2, the size 
of the sample set varies from 3, 6 up to 100, and the maximum value of each measure is 
displayed in square brackets. The results show that the retrieval performance increases as 
the size increases from 3 to 10 on the whole, and tends to gradually drop when 50 or more 
documents are considered. It can easily be seen that the average performance is even poorer 
than that of the retrieval with the original queries at some evaluation points when 50 or more 
pseudo-relevant documents are used. 

Table 8.7.1 Performance VS. the size of sample set on TREC-4 (desc-only) 

I 3 I 6 I 10 I 20 I 30 I 50 I 80 I 100 
P@5 0.4125 0.4083 [0.4167] 0.4125 0.4083 0.3750 0.4000 0.3792 

P@10 0.3479 0.3354 [0.3510] 0.3396 0.3333 0.3271 0.3375 0.3229 
A-P 0.2981 0.2971 [0.3030] 0.2965 0.2953 0.2802 0.2789 0.2681 
R-P 0.3125 0.3189 0.3323 0.3200 [0.3303] 0.3140 0.3009 0.2983 

Table 8.7.2 Performance VS. the size of sample set on TREC-7 (desc+title) 

I 3 I 6 I 10 I 20 I 30 I 50 I 80 I 100 

P@5 [0.3875] 0.3750 [0.3875] 0.3833 0.3792 0.3708 0.3667 0.3583 
P@10 [0.3125] 0.2958 0.2917 0.2896 0.2833 0.2774 0.2688 0.2667 
A-P 0.2432 [0.2453] 0.2359 0.2302 0.2317 0.2210 0.2141 0.1940 

R-P 0.2739 0.2781 [0.2792] 0.2693 0.2605 0.2508 0.2456 0.2183 

8.7.2 The Number of Expansion Terms 

The number of expansion terms is also regarded as a factor affecting retrieval performance. 

Table 8.7.3 Performance VS. the number of expansion terms on TREC-4 (desc-only) 

I I 10 I 20 I 30 I 50 I 80 I 100 I 150 ! 200 ! 
P@5 0.4083 0.4083 [0.4167] [0.4167] 0.4125 0.4083 0.4042 0.4042 

P@10 0.3479 0.3479 [0.3521] 0.3500 0.3437 0.3458 0.3479 0.3511 

A-P 0.2994 0.3009 [0.3030] 0.3015 0.3024 0.3016 0.3024 0.3010 

RP [0.3366] 0.3245 0.3293 0.3159 0.3202 0.3222 0.3252 0.3243 

Table 8.7.4 Performance VS. the number of expansion terms on TREC-7 (desc+title) 

I 10 I 20 I 30 I 50 I 80 ! 100 ! 150 ! 200 

P@5 0.3708 0.3750 [0.3875] 0.3875 0.3792 0.3792 0.3750 0.3750 

P@10 0.2917 [0.2958] 0.2917 0.2917 0.2896 0.2917 0.2938 0.2938 

A-P 0.2322 0.2353 0.2359 0.2388 0.2399 0.2399 0.2403 [0.2410] 

0.2633 0.2685 0.2692 [0.2719] 0.2718 0.2711 0.2710 0.2713 
RP 

. . H ' . t [72 74] the performance increased as the number For Illstance, III arman s expenmen s , , d d . h t 1 
th adually degra e WIt 1(' of relevance feedback terms increased up to 20 terms, en gr 
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addition of further terms. In the experiments of Magennis & Van Rijsbergen [122], the peak 
performance came at only 6 terms and decreased gradually at higher numbers. Different 
results were reported by Buckley et al. [18]: the performance continued to increase as the 
number was increased, and never degraded. Some explanations for this difference are discussed 
in [19]. In some of their experiments, the number of expansion terms were set to 300 to 500 
[15, 19]. In Qiu's experiments [140], 400 expansion terms were used to generate the expanded 
queries. It is therefore difficult to predict how query expansion performance will vary with 
the cut-off in the context of feedback experiments. 

We performed some experiments in order to see how the retrieval performance was affected 
by changes in the number of expansion terms. As shown in Tables 8.7.3 and 8.7.4, the number 
of expansion terms varies from 10 to 200, and the maximum value of each measure is displayed 
in square brackets. On the whole, the performance appears slightly better in the range of 20 to 
50 expansion terms. However, the variations in performances with the numbers of expansion 
terms do not appear significant. 

8.8 Discussion of Experimental Results 

There are several interesting points to make about the experimental results given in this 

chapter. 

* It is interesting to observe that the score functions presented in this thesis and the 
reduced Rocchio formula generate different sets, Eq, of expansion terms. This difference 
indicates that these methods are not equivalent (i.e., the functions produce different 
candidate term orders). For example, consider query 211: 

How effective* are the driving* while intoxicated* (DWr) regulations*? Has the 
number of deaths* caused by DWI been significantly* lowered*? Why are not 

penalties* as harsh for D WI drivers* as for the sober* driver. 

First 'harsh' is dropped as it does not occur in any document in the collection (i.e., 
har sh tt. V). Set vq consists of those terms marked with an asterisk. The sets, sq = 

Eq U Vq (and Isql = IEql + IVql), of selected terms corresponding to each o~ these score 
functions are shown in Table 8.8.1. The set, Eq, of expansion terms conSIsts of those 

terms without asterisks (IEql = 30). 

Table 881 Th e sets 0 se ec e er 
scoreRoc(t) J score;(t) score* (t) score: (t) I 

f t d t ms for the different score functions 

drunken drunken drive* driver* 

drive* drive* driver* drive* 

intox* intox* drunken intox* 

driver* driver* test vehicl 

dwi* dwi* vehicl drunken 

hazelwood hazelwood judg car 

reprimand reprimand justic test 

checkpoint checkpoint arrest sign 

motorist clifford michigan judg 

clifford motorist motorist arrest 

sober* sober* stop regul* 
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scare; (t) scare* (t) 
1 scare* (t) II sc 

K areRoc (t) 
vehicl trooper suprem dwi* 

trooper vehicl trooper hit 
madson madson sober* sober* 

michigan michigan injuri alcohol 
sobrieti sobrieti hit requir 
privaci privaci ship convict 

test drunk argu william 
drunk test sign stop 
justic justic car drunk 
intrus intrus privaci struck 
prouti prouti refus motorist 
arrest crus ad truck direct 
crusad breathalyz wit fine 
jude arrest alcohol person 

suprem injuri direct result 
injuri suprem drunk school 

breathalyz argu prosecut wit 
argu jude passeng trooper 
stop aground violat hazelwood 

alcohol alcohol dismiss conduct 
aground prosecut rest note 
prosecut stop score safeti 
skipper skipper effect * refus 

hit score regul* feet 
effect * regul* lower* traffic 
regul* effect * death* lower* 
lower* lower* penalti* death* 

penalti* penalti* intox* effect * 
death* significantli * dwi* penalti* 

significantli * death* significantli * significantli * 

The expansion terms in this table are obtained from retrieving collection AP90 with 
respect to query 211; the experiments are carried out using pseudo-relevance feedback; 
the estimations of the term probability distributions use scheme-4. 

* An important feature of Rocchio's method is that it emphasizes those terms which 
have higher frequencies of occurrence in the sample documents. Particularly, when each 
sample document contains at least one query term, it in effect emphasizes those terms 
which have higher frequencies of co-occurrence with the query terms in the sample 

documents. 

However, all our methods consider not only the frequencies of co-occurrence of terms 
with the query terms in the sample documents as a feature inherent in Rocchio's method, 
but also the power of discrimination of terms by the divergence of the term probability 

distributions from one another. 

For instance, recall in Chapter 3 that we discussed the discrimination measure ifd [ (t) = 
P

3
(t) log ;~m (where t E V). Obviously, this measure is directly proportional to prob­

ability P3(t). Thus, it is clear that a greater probability P3(t) would result in a higher 
frequency of occurrence of term t and, further, result in a higher frequency of co­
occurrence of term t, with the query terms. Not only this, but measure ifd[ (t) also 
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~onsiders the diverge~ce ~f ?ro~ability PD(t) of term t from probability P=.(t). Thus, it 
mcor~orates more (dlscnmmatIon) information into function score; (t) = ifd I (t) than 
functIOn score Roc (t). The superiority of our methods over the Rocchio method is ap­
parent in our results. 

* For the five estimation schemes of the term probability distributions, when the weighting 
of expanded query terms uses our reweighting function, and 

- the experiments are carried out with pseudo-relevance feedback (see Tables 8.3.1-
8.3.4) : 

CD Scheme-2 shows a markedly better performance than benchmark-l for the full­
text queries. Scheme-4 shows better performances than benchmark-i for all 
the different parts of the queries, and the improvements at most evaluation 
points are marked. 

@ Scheme-2 shows a performance increase compared with benchmark-2 for the 
full-text queries. Scheme-4 shows performance increases for desc+title or the 
title-only queries. 

- the experiments are carried out with relevance feedback (see Tables 8.4.1-8.4.4): 

CD Scheme-3 achieves dramatically better performances than benchmark-i. This 
is the case at all the evaluation points for all the different parts of the queries. 

@ Scheme-3 obtains significantly better performances than benchmark-2. The 
further improvements are shown at all the evaluation points for all the different 
parts of the queries. 

@ Scheme-3 gains markedly better performances than benchmark-3. The further 
improvements are shown at all the evaluation points for all the different parts 
of the queries. 

* For the three score functions, when they are constructed based on the discrimination 
measures without incorporating query term weights, the weighting of expanded query 
terms uses our reweighting function, and 

- the experiments are carried out with pseudo-relevance feedback (see Tables 8.5.1-

8.5.4): 

CD score; (t) and score; (t) show better performances than benchmark-i at all the 
evaluation points. score~ (t) shows better performances than benchmark-i at 
most evaluation points, with some exceptions. 

@ score;(t) and score;(t) show similar performances to benchmark-2 at most 
evaluation points. score~ (t) shows poorer performances than benchmark-2 at 

most evaluation points. 

_ the experiments are carried out with relevance feedback (see Tables 8.6.1-8.6.4): 

CD The three score functions achieve dramatically improved performances com­
pared with benchmark-1. This is the case at all the evaluation points for all 

the different parts of the queries. 
@ The three score functions obtain significantly further improved performance~ 

compared with benchmark-2. This is the case at all the evaluation poillt~ for 

all the different parts of the queries. 
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Figure 8.1: Performances of the score functions (pseudo-relevance feedback) 

@ score; (t) and score; (t) gain markedly further improved performances com­
pared with benchmark-3 at all the evaluation points, for all the different parts 
of the queries. score~ (t) gains greatly further improved performances com­
pared with benchmark-3 at most evaluation points, with few exceptions. 

The experimental results of the three score functions are graphically shown with recall­
precision curves in Figure 8.1 and Figure 8.2 for pseudo-relevance and relevance feed­
backs, respectively. Also, only the curves for desc-only queries (201-250) and desc+title 
queries (351-400) are shown. 

* Of particular note is that the evaluation measures at high precision points are mainly 
responsible for the performance improvements obtained from the three score functions: 
the measures of precision at-5 and at-10 are greatly increased. This is readily under­
standable because our query expansion methods are both recall and precision devices. 
This experimentally verifies that our methods are effective in improving retrieval per­
formance. 

* An interesting finding in our experiments is that the three functions score; (t), score; (t) 
and score~ (t) exhibit consistently better performances compared with the correspond­
ing three functions score[ (t), score J (t) and score K (t). The performance increases are 
significant when they are used for desc+title or title-only queries on relevance feedback. 

The better performances lead us to think it might be inappropriate to incorporate query 
term weights into the term scores for selecting good terms. This is likely to be because 
the information of query terms has already been incorporated into the discrimination 
measures, and using the information repeatedly may result in the decreased perfor­
mances. 
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Figure 8.2: Performances of the score functions (relevance feedback) 

* Another interesting finding in our experiments is that there is an apparent performance 
difference in using the two reweighting functions. Weighting expanded query terms using 
rew1jD (t) works better than using rewRoJt) on pseudo-relevance feedback for scheme-4, 
and significantly better than using the formula on relevance feedback for scheme-3. 

The better performances suggest that treating the discrimination information of terms 
as an important factor in weighting expanded query terms, as is done by our reweighting 
function, may help increase retrieval performance. 

* Some past studies, [25, 94, 214] for instance, have shown that shorter queries may have 
greater performance gains. This is reinforced by our experimental results, particularly 
in the case of relevance feedback. 

As we know, the original queries formed from the TREe topics are normally long and 
detailed. They are generally formulated carefully and are more elaborate than the 
queries users usually provide to the systems. In a realistic retrieval situation, however, 
it is unlikely users formulate such queries [75, 191]. Thus, it is desirable that query 
expansion can be particularly effective for shorter queries. 

* It appears that the performance improvements arise from the information in the rele­
vant sample documents, and that shorter queries show relatively greater performance 
gains. These observations give rise to the suggestion that we might obtain improved 
performances even without using query term weights to reweight expanded query terms. 
In practice, the suggestion is not borne out. We carried out some experiments, which 
ignored the weights, Wq (t), of terms in our reweighting function rew I j D (t) in Eq. (8.1), 
and the retrieval performances were greatly decreased (the results are not shown in this 

thesis). 
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Figure 8.3: Performance vs. the size of sample set 
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Figure 8.4: Performance vs. the number of expansion terms 

* For the expanded queries derived from score; (t), score;(t) and score~(t) on relevance­
feedback, the title-only queries work markedly better than the desc+title queries, which 
in turn work markedly better than the full-text queries (see Tables 8.6.2-8.6.4). These 
contrast strongly with the corresponding results obtained from pseudo-relevance feed­
back (see Tables 8.5.2-8.5.4). It seems that the query expansions obtained from these 
three functions suits shorter queries on relevance feedback, whereas they are more ef­
fective for longer queries on pseudo-relevance feedback. 

* For the experimental investigation into the size of sample set, the results of Tables 8.7.1 
and 8.7.2 are graphically shown in Figure 8.3. This view of the data suggests that 5 to 
20 may be an appropriate range for the size of sample set for pseudo-relevance feedback. 

For the experimental investigation into the number of expansion terms, the results of 
Tables 8.7.3 and 8.7.4 are graphically shown in Figure 8.4. The graphs suggest that 
10 to 40 may be an appropriate range for the number of expansion terms used on 

pseudo-relevance feedback. 

It is worth mentioning that using a relatively small number of expansion terms may be 
important to reduce response time, especially for large document collections. Harman's 
experiments [72, 74] showed that adding only well-selected feedback terms (e.g., 20 



CHAPTER 8. EXPERIMENTAL RESULTS 176 

expansion terms) was better than adding all the candidate terms. She argued [74] that 
a large-scale system had a response time, and that the size of the collection had less 
impact on the response time than the number of query terms. The cost of adding 200 
rather than 20 terms is therefore significant in respect to the response time. 

* As some studies in earlier literature have shown, query expansion often has a nega­
tive effect on retrieval effectiveness, regardless of the source of candidate terms, unless 
relevance feedback is employed [153, 181]. 

Our experimental results demonstrate that relevance feedback with our score functions , , 
performs significantly better than pseudo-relevance feedback (even though the complete 
relevance information over the collection is not available). Thus, if partial relevance 
information over the sample set (with a reasonable size) is available, we believe that 
our query expansion methods will be able to produce performance improvement in a 
practical IR setting. 

* Any query expansion method, on pseudo-relevance feedback, may behave very differ­
ently depending on the performance of the initial retrieval run. There is ample evidence 
to indicate that improvement in retrieval effectiveness does not occur unless the sample 
set is a good one (including enough relevant documents). The negative effect of using 
a poor sample set for query expansion is well-known. 

A good initial performance will bring more relevant documents up to the top-ranked 
sample set. On pseudo-relevance feedback, there are enough relevant documents in the 
sample set for a good initial performance, which is likely to be further improved as 
a consequence of query expansion. Some studies, [23, 230] for instance, suggest that, 
rather than expanding all queries, one should only expand those which result in sufficient 
relevant documents in the sample set from the initial run. Thus, if we can know whether 
the sample set is a good one or not, we would be able to do a better job using query 
expansion on pseudo-relevance feedback. Further study of selective query expansion is 

needed. 



Chapter 9 

SUllllllary and Further Work 

This thesis is intended to give a unified account of the discrimination information of terms. 
It has demonstrated how the formal model LfD deals with some basic retrieval concepts, and 
how the mathematical analysis is supported by empirical evidence drawn from substantial 
performance experiments. In this chapter, we summarize the contributions of this thesis. 
Some suggestions for directions of further study are then made. Finally, conclusions are 
drawn in general. 

9.1 Summary 

We have described the basic principle and idea on which the measurement of discrimination 
information of terms and the judgement of good terms are based. Some outstanding problems 
of applying information measures to AQE have been discussed. A formal model, LfD, has 
been established. An AQE procedure has been designed and implemented, and evaluated on 
two standard TREe collections. We summarize some major points of our studies from the 
following four aspects: the exploration of discrimination measures, the definition of associa­
tion concepts, the construction of score functions and the establishment of an experimental 
environment. 

9.1.1 Explored Discrimination Measures 

ffi Put forward two criteria on the divergence measures. 

In Section 3.3, we put forward two criteria that underly the methodology introduced in 
this thesis. We pointed out that, in the context of IR, it is important for any divergence 
measure to satisfy these two criteria. Under these two criteria, the extent to which 
terms contribute to the expected divergences can be measured, and the divergence 
measures can be independent of the addition or removal of terms unrelated to the 
relevance classification. We stated that terms whose distribution is concentrated in the 
set of relevant sample documents make more contribution to the expected divergence 
and, therefore, should be interpreted as statistically containing more discrimination 

information than others. 

ffi Defined a relevance discrimination measure based on directed divergence. 

177 
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In Chapter 3, we studied the application of the basic concept of the directed diverlTence 
I(PR, PtJ to AQE. The discrimination factor i(Hl : H21t) was carefully exam~ned, 
and was regarded as a measure of the amount of information contained in term t for 
discrimination in favour of relevant hypothesis Hl against non-relevant hypothesis H . 
The discrimination measure ifdI(t), which forms a basis for the methods proposed i~ 
this thesis, was formally defined. Consequently, the amount of information of tenns was 
regarded as the power of terms to discriminate two opposite relevance hypotheses. 

ill Defined a relevance discrimination measure based on divergence. 

In Chapter 4, we discussed a formal method of AQE based on the basic concept of 
divergence J(PR, ptJ· We pointed out that a necessary condition that must be satisfied 
in application of the divergence is that the two term probability distributions PR(t) 
and Pfl.(t) should be absolutely continuous with respect to one another. Usually, the 
condition cannot be satisfied when we derive the distributions from different document 
sets. In fact, an open mathematical problem remained when applying divergence to 
query expansion. In Chapter 4, a possible way of solving the problem was suggested, and 
the solution was carefully discussed in a general form. Then, a modified discrimination 
measure was formally defined. Mathematical discussions on the existence of the modified 
discrimination measure were made by providing two typical methods of modifying the 
term probability distributions. 

ill Defined the relevance discrimination measure based on information radius. 

In Chapter 5, the basic concept of the information radius K (AI, A2; PR, Pfl.) was de­
veloped as a device for formalizing the discrimination measure for AQE. An easily 
understood account of the concept of information radius was given. The meaning of ap­
plying information radius to measure the amount of information of terms was analysed 
and interpreted. We pointed out that information radius was well-defined in compar­
ison with both I(PR,Pfl.) and J(PR,Pfl.), therefore, it might be effective to apply the 
information radius to query expansion in the situation where PR(t) « Pfl.(t) and/or 

Pfl.(t) « PR(t) do not hold. 

ill Discussed the appropriateness of using Jensen difference as a divergence measure. 

Chapter 6 studied the applications of the basic concept of entropy, or entropy increase, 
to AQE by introducing the more general concept of Jensen difference. Three typical 
entropy functions were discussed, and the appropriateness of using entropy functions as 
divergence measures were carefully investigated. We made the following claims. 

_ The concavity of HSh(P) is particularly useful in IR application: it provides a natu­
ral measure of the divergence between distributions PR(t) and Pfl.(t). The entropy 
increase JHs

h
(Al,A2;PR,Pfl.) turns out to be the.inf~r~ati~n radius ~(Al,A2; 

PR, Pfl.), and thus the expression of its items is the dlscnmmatIOn measure IfdK(t). 

_ The entropy increase measure JHRe (AI, A2; PR, Pfl.) does not possess Criterion 2, so 
it should not be an appropriate divergence measure of term distributions. 

_ The entropy increase measure JH
HC 

(AI, A2; PR, Pfl.) possesses ~riterion 2. However, 
the expression of its items might not be a suitable discriminatIOn measure of tC'rm~ 
since the expression cannot give the relationship between PR(t) and Pft(t) when. 

for instance, when a = 2. 
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ffi Defined the dependence discrimination measures based on expected mutual information. 

Chapter 7 focused on the formalism of the discrimination measures based on t he basic 
concept of the expected mutual information IE (6i, 6j). The amount of mutual informa­
tion contained in a term pair (ti' tj) was formally interpreted. Each of the discrimination 
measures was corresponded to a specific state value of occurrence of the term pair. Some 
relationships inherent in the measures, which are important in practical IR applications, 
were studied. The method proposed in Chapter 7 not only cover the method EMIM 
given in [206, 207] as a special case, but also suggest a unified formalism for defining and 
estimating the mutual information of terms within a general probabilistic framework. 

ffi Shown some important characteristics of the divergence measures. 

The divergence measures discussed in Chapters 3, 4 and 5 addressed, in different ways, 
the issue of how to make estimates of the apparent difference between the term prob­
ability distributions derived from the relevant and non-relevant document sets, respec­
tively. We showed that the strength of these divergence measures lies in their ability 
to provide rational estimates of the difference, and thus to capture semantic relations 
between terms. We claimed that the divergence measures have the following important 

characteristics. 

_ I(PR,PtJ, J(PR,PfJ and K(A1,A2;PR,Pfl) emph!,size the importance of those 
terms with variant probabilities within sets Rand R, and remove the dependence 
on terms with invariant probabilities over both Rand R, since the terms would 
not provide profitable information for the relevance classification. 

_ If two term distributions overlap over some sub-domain f C vRnvi?, i.e., PR(t) = 

Pfl(t) for all t E f, then values I(PR,Pfl), J(PR,Pfl) and K(A1,A2;PR,Pi?) 
drop sharply. If PR(t) = Pfl(t) for all t E V, then I(PR, Pi?) = J(PR, Pi?) = 

K(A1' A2; PR, Pfl) = O. 
_ When two term distributions PR(t) and Pfl(t) are completely disjoint, i.e., VR n 

V fl = 0, K(A1' A2; PR, Pfl) is reduced to the entropy of its a priori probability 

distribution. In this case, I (PR, Pfl) and J (PR, Pfl) do not exist. 

_ I(PR, Pfl) requires VR ~ V fl ; J(PR, Pfl) requires VR = V
fl

; K (~1' A2; PR, Pi?) 

does not place any requirement on the relation between V R and V R. 

In other words, I(PR,Pfl) must satisfy PR(t) « Pi?(t) for t E V; J(PR,Pi?) 
must satisfy PR(t) « Pfl(t) and Pfl(t) « PR(t) for t E V; it is unnecessary 
for K (A1' )..2; PR, Pfl) to satisfy the absolute continuity s~nce ~R(~) a~d Pi?(t) are 
both absolutely continuous with respect to the composIte dlstnbutlOn PE(t) = 

A1PR(t) + A2Pfl(t). 
_ I(PR : Pfl) is not symmetric in arguments PR(t) and P~(t); J(PR,Pi?) .is.sym­

metric in arguments PR(t) and Pfl(t); K(A1' A2; PR, Pi?) IS not sy~~etnc m ~r­
guments PR(t) and Pfl(t), nor in arguments A1.and A2 (a sym~etnc mformatlOn 

radius measure can be easily introduced by settmg A1 = A2 = 2)' 

_ In the application of K (A1' A2; PR, Pfl), a priori probability distribution PA. = 
{A1' )..2} must be provided beforehand. The ~ho~ce of P~ .dep~nd~ on. a specIfic 
model itself. There is no need to have an a prwn probablht~, dlstnbutlOn for the 

applications of I(PR, Pfl) and J(PR, Pfl) 
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ffi Investigated some properties of the relevance discrimination measures. 

We investigated the relevance discrimination measures and revealed some important 
relationships between them, which underpin the methods proposed in this thesis: 

- ifdI(t) can be positive or negative. 

- ifd](t) = ifdh2 (t) + ifdh1 (t) are always non-negative, and its two sub-items are 
opposite in sign, i.e., ifdh2 (t) . ifdh1 (t) < o. 

- ifdK(t) = AIifd1n;(t) + A2ifd1n;(t) can be positive or negative, and its two sub-
items are opposite in sign, i.e., ifd1n; (t) . ifdI2E (t) < o. 

We pointed out that whether term t supports positively the relevant hypothesis HI 
depends on the relationship between distributions PR(t) and Pfl(t), rather than on the 
sign of the discrimination measures (see also Table 6.3.1 in Section 6.3): 

- If PR(t) > Pfl(t), 

term t contributes quantity ifdI(t) > 0 for supporting HI; 

term t contributes quantity ifd](t) > 0 for supporting HI; 

and if ifdK(t) > 0, term t contributes ifdK(t) for supporting HI. 

- If PR(t) < Pfl(t), 

term t contributes quantity ifdI(t) < 0 for supporting HI; 

term t contributes quantity ifd](t) > 0 for supporting H2 ; 

and if ifdK(t) > 0, term t contributes ifdK(t) for supporting H2 . 

ffi Investigated some properties of the dependence discrimination measures. 

We formally defined the dependence discrimination measures corresponding to four state 
values of a term pair. Some relationships between the measures were revealed: 

- A single relation between JE(ti, tj) and 'l/JE(ti) . 'l/JE(tj) can entirely determine all 

signs of ifd~(tfi, t~j) for 6i, 6j = 1,0; 

- The signs of ifd~(ti' tj) and ifd~(ti' tj) are always the same, so are the signs of 

ifd~(ti' tj) and ifd~(ti' tj); 
- The signs ofifd~(ti' tj) and ifd~(ti' tj) are always opposite to the signs ofifdt-(ti, [j) 

• E -
and IfdM(ti, tj). 

We pointed out that whether term t supports positively the dependent hypothesis HI 
depends on the relation between JE(ti, tj) and 'l/JE(ti) . 'l/JE(tj), i.e., between PE(6i = 

1,6j = 1) and PE(6i = 1) - PE(6j = 1): 

- If PE(6i = 1, 6j = 1) > PE(6i = 1) -PE(6j = 1), 
state value (1,1) contributes quantity ifdft.(ti, tj) > 0 for supporting HI; 

state value (1,0) contributes quantity ifdft.(ti, tj) < 0 for supporting HI; 

state value (0,1) contributes quantity ifdft.(ti, tj) < 0 for supporting HI; 

state value (0,0) contributes quantity ifdft.(ti, tj) > 0 for supporting HI-
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- If PE(6i = 1, 6j = 1) < PE(6i = 1) . PE(6j = 1), 

state value (1,1) contributes quantity ifdft(ti, tj) ::; 0 for supporting HI; 

state value (1,0) contributes quantity ifdft(ti, tj) > 0 for supporting HI; 

state value (0,1) contributes quantity ifdft(ti, tj) > 0 for supporting HI; 

state value (0,0) contributes quantity ifdft(ti,tj) ::; 0 for supporting HI. 

ffi Studied the estimation of the relevance discrimination measures. 
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The estimation of the term probability distributions, such as P:=:+(t) and PD(t), is 
crucial for effectively identifying potentially good terms from many others. In Section 
3.7, some estimation methods were elaborated to embody the arguments of the relevance 
discrimination measures. 

We showed that the term probability distribution derived from some document set, say 
set 3+, can be estimated based on representation M:=:+, which in turn can be estimated 
based on the representation Md. Some factors should be combinatorially considered 
to form term weights for representing individual documents in the different documents 
sets of interest. The different combination schemes produce different estimations of the 
distributions. 

ffi Studied the estimation of the dependence discrimination measures. 

In Section 7.2, mathematical methods for estimating the term state distributions were 
developed, and three typical estimation examples were described. We pointed out that 

- The marginal state distributions can be estimated based on a non-negative func­
tion, which mayor may not be a term probability distribution. 

- For Method A, Pd(6i, 6j) is a probability distribution if it has Pd(ti) ~ Id(ti, tj) and 
Pd(tj) > Id(ti, tj) for ti, tj E yd. In IR applications, it should not be a problem to 
satisfy these two inequalities. 

_ For Methods Band C, Pd(6i,6j) is formalized by using conditional probabilities, 

it is naturally a probability distribution. 

More importantly, a unified expression was suggested for tackling a variety of estimations 
of the joint and marginal state distributions embodying the arguments of the dependence 

discrimination measures. 

ffi Analysed some properties of the estimation Methods A, Band C. 

Some properties of the state distributions derived from the estimation Methods A, B 

and C were analysed: 

_ With Methods A and B, the signs of the consistent mutual information are always 
positive, and the signs of the inconsistent mutual information are always non­
positive. Thus, their uses can assert that terms co-occurring in some document 

are more or less statistically dependent on one another. 

_ With Method C, the signs of the consistent mutual information are alwa!s oppositE' 
to the signs of the inconsistent mutual information. However, the SIgns of the 
consistent/inconsistent mutual information can be positive or negative. Therefore, 
if Method C is used, we cannot be sure that terms co-occurring in some sample 

set can be statistically dependent on each other. 



CHAPTER 9. SUMMARY AND FURTHER WORK 182 

- With Method C, a single relation between '=.+ (ti' tj) and ¢=.+ (td¢=.+ (tj) in the fir~t 
item of I=.+ (6i' 6j) can infer the signs of discrimination measures ifd='+ (tbi lj) for 
s: _. M t'J 
Ui, 6j ~ 1, .0, ~n~ then determme whether terms ti and tj are statistically dependent 
under Its mdividual state values. It is important to understand, however, that the 
inference and determination cannot be made from the relation between nand 

. hfi' f 11 n1.n.1 m t erst Item 0 emim=.+(6i,6j) since it is always non-positive. 

ffi Discussed dependence of terms in a broad/narrow sense. 

In Section 7.4, the notion of dependence of terms was discussed by clarifying the differ­
ence between broad and narrow dependence. We pointed out that a term very dependent 
on term tj may not imply that it is the one that we are definitely interested in, even 
though tj E V q is a unique good query term. 

We also pointed out that the implications of dependence for the individual measures 

ifd~ (tfi, t;i), where 6i,6j = 1,0, are very different. Each measure corresponds to a 
specific state value, and it is the state value that supports the dependence. 

ffi Demonstrated possible extensions to our methods. 

We pointed out that the general methods proposed in this thesis can be applicable to 
any quantitative document representations. This means that they can be applied either 
to a variety of representation schemes (i.e., the weighting functions), or to a variety of 
representation techniques (e.g., full-text, abstract, etc). They can also be applied to the 
different estimation methods of the probability distributions. 

We pointed out that all discussions given in Sections 7.5 and 7.6 may be applicable 
to a variety of information entities, such as, the sample set, local context, abstract, 
summary, passages, etc. All we need to do is to estimate the state distributions using 
the statistical data within the corresponding information entities. 

9.1.2 Defined Association Concepts 

ffi Put forward the Generalized Association Hypothesis. 

We argued that the Association Hypothesis given in [207] (p.134) is an important un­
derlying hypothesis in IR. Based on the Association Hypothesis, we put forward the 
Generalized Association Hypothesis. An essential difference between these two hypothe­
ses is that the latter requires the association of a term with a group of 'good' terms. 
We claimed that this generalization is necessary for almost all methods of query expan­
sion: an expansion term should be associated with all good query terms. We pointed 
out that query terms treated independently of the specific query context may cause a 
thorny problem in that expansion terms will be related to inappropriate meanings of 

query terms. 

ffi Defined the concepts of association of terms with the query. 

The association functions were defined as query-context-related in order to avoid in­
creasing 'query ambiguity' caused by the ambiguity of individual query terms. 

_ We defined the concepts of association of terms with the context of the query in the 
sense of directed divergence, atq[(t,q), in Section 3.5, in the sense of divergence. 
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atqJ~t,q), in Se~tion 4.4., and in the sense of information radius, atqK(t,q), in 
~ectIOn 5.4. WIth functIOn Q(t), the statistical information of terms appearing 
~n the releva~t sample documents (especially, that of all good query terms) was 
mcorporated mto the association functions. 

A typical problem in IR is that terms often have multiple meanings. We pointed 
out that an effective way of handling such a problem is to use the information 
contained in the relevant sample documents to automatically disambiguate the 
ambiguous query terms. This is because terms drawn from the relevant sample 
documents are likely to be more related to the query context than others. Thus, 
they will be capable of disambiguating the query and possessing the potential 
power of discrimination on relevance. 

- In Section 7.5, we defined the concepts of mutual association in the sense of 
mutual information of terms. The mutual association of a term with another 
term att M (tfi ) t;i), with the relevant sample set ats M (tfi ,3+), with the query 

atqM (tfi, q), was discussed, and the relationships were shown. With function Q(t), 
the statistical information contained in all good query terms was incorporated into 
the association functions. 

We pointed out that function atqM (ti, q) takes comprehensive consideration of the 
association of term ti with the context of query q. The consideration is based 
on the frequencies of co-occurrence of term ti with all important query terms. 
Consequently, when term ti is associated with a specific query term but not related 
to the query context, it is unlikely to be strongly associated with other query terms. 
Thus, the (total) association of term ti with the query should be rather low. In 
other words, other good query terms may help to avoid the selection of term ti as 
an expansion term. This may be an effective way of preventing some undesirable 
matches as it combinatorially considers all possible information contained in the 
query. 

9.1.3 Constructed Score Functions 

ffi Proposed a series of score functions. 

In Sections 3.6, 4.5 and 5.5, the constructions of score functions for selecting good 
terms were described. We showed the general form of score functions. The general form 
indicates that the mathematical definition of association scores involve three essential 
factors: the significance of a term concerning the query, the importance of a term con­
cerning the relevant sample set, and the discrimination information of a term concerning 

two opposite relevance hypotheses. 

In Section 7.6 two further score functions were proposed. One uses statistical in­
formation of c~-occurrence of terms, another is the same but incorporates statistical 

information of 'none-occurrence' of terms. 

We showed that all the score functions developed in this thesis have the following char­

acteristics: 

_ They are constructed based on the discrimination measures which are information­

theoretic in character. 
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- The~ ar~ ~ather consistent in form, and mathematically interpreted meaningfully 
and mtUltlvely. 

- They. co~sider two essential aspects: (a) the informativeness of terms and, (b) the 
assocIatIOn of terms with the query context. 

- The! are ca~able of revealing some semantic relations between terms even though 
the mformatlveness and association are derived statistically. 

- They mayor may not rely on the relevance assessments provided by the user, i.e., 
they can be applied to both relevance and pseudo-relevance feedback. 

- They are constructed dynamically during query processing and applied to enhance 
only the query. 

- They are constructed automatically. 

- They are implemented easily. 

- They are not expensive computationally. 

- They are effective experimentally. 

ffi Elaborated domain reduction of the score functions. 

As we have emphasized repeatedly, in order to speak of the discrimination information 
of terms, the arguments of the divergence measure, i.e., the term probability distribu­
tions, P3+(t) and PD(t) (in relevance feedback), P=.(t) and FD(t) (in pseudo-relevance 
feedback), should be defined over the same probability space. Thus, when the discrimi­
nation measures are defined on domain V, we cannot simply say that the contributions 
made by terms to divergence come only from terms t E V 3 + (or t E V='). 

However, in practice, we are indeed interested only in feedback terms. Thus, it is 
necessary to discuss the issue of domain reduction. In Sections 3.6, 4.5 and 5.5, we 
made a thorough analysis of the issue for functions scorel(t), scoreJ(t) and scoreK(t), 
respectively, and showed that it is reasonable for these three score functions to consider 
only feedback terms. 

ffi Analysed higher positive scores. 

We carefully analysed the signs of each score function. We made the following claims. 

_ A higher positive scorel (t) can immediately infer that term t is positively asso­
ciated with the query. This is because, when t E V='+ , a positive score always 
indicates that term t contributes quantity ifdI(t) > 0 for supporting H l · 

_ A higher positive scoreJ (t) cannot infer that term t is positively associated with 
the query. This is because, when t E V 3 +, ifdI21 (t) can be positive or negative. 
If ifdI21 (t) > 0 (and ifdh2 (t) < 0), then ifdJ(t) > 0 indicates that the algebraic 
sum is dominated by sub-item ifdI21 (t), and term t contributes quantity ifdJ(t) 

for supporting H2· 
_ A higher positive score K (t) cannot infer that term t is positively associated with 

the query. This is because, when t E V='+ n V='-, it may have ifdI2I::(~) > 0 
(and ifdln:(t) < 0), thus ifdK(t) > 0 indicates that ~he weighted.alg:bralc ~um 
is dominated by sub-item ifd1n::(t), and term t contnbutes quantity lfd[\-(t) for 

supporting H 2 · 
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We pointed ~~t that, in practical retrieval ~ituations, usually P=.+ (t) > P
D 

(t) for all 
terms t E V . Th~s, fo~ each term t E V- ,we have ifdI12 (t) > 0 (and ifd

h1 
(t) < 

0), and !or. terms ~Ith hIgher positive values scoreJ(t) can immediately be i~ferred 
to contam mformatIOn assoc~a;ed with the query. However, it may not be true that 
P=.+ (t) > P=.- (t) for t E V- when scoreK (t) is used. Therefore, both conditions 
P=.+ (t) > P=.- (t) and scoreK (t) > 0 have to be simultaneously verified for selecting 
good terms. 

ffi Examined the relationships of the score functions. 

- In Section 4.5, score J (t) = scoreI (t) + score (t) takes into account simultane-
. 12 121 

ously OpposIte relevance information contained in term t. In contrast, score (t) = 

scoreI12 (t), discussed in Section 3.6, offers only positive association of term~ with 
the query, but ignores negative association inherent in term t when it also appears 
in non-relevant documents. 

- In Section 5.5, scoreK(t) = .AlSCOreI (t) + .A2SCoreI (t) offers not only positive 
.. f IE 2E 

assocIatIOns 0 terms with the query, but also negative associations inherent in 
terms when they appear in non-relevant documents. 

- In Section 7.6, the relationship between scoreMI (t) and scoreM2 (t) was also anal­
ysed, which showed that they may not be equivalent. In contrast to score (t) 

Ml ' 
scoreM2 (t) incorporates both the consistent and inconsistent mutual information 
of terms into scores. 

9.1.4 Presented Experimental Results 

ffi Experimentally studied the effectiveness of estimating of term probability distributions. 

With pseudo-relevance feedback and with rewIjD (t), scheme-4 showed relatively stable 
and good performances compared with others. Also, it showed better performances 
than benchmark-1 for all the different parts of the queries, and better performances 
than benchmark-2 for desc+title or title-only queries. 

With relevance feedback and with rewIjD (t)(t) , scheme-3 showed the best performances 
compared with others. Also, it showed significantly better performances than benchmark-
1, benchmark-2 and benchmark-3 for all the different parts of the queries. 

ffi Experimentally investigated the effectiveness of the score functions. 

score; (t) and score; (t) exhibited similar performances. These two functions and score~ (t) 
were consistently most effective when used for desc+title or title-only queries. 

With pseudo-relevance feedback and with rewIjD (t), score;(t) and score; (t) showed 
markedly better performances than benchmark-1, and better performances than benchmark-
2; score~ (t) showed better performances than benchmark-1, but poorer performances 

than benchmark-2. 

With relevance feedback and with rewIjD (t), these three score functions showed signifi­
cantly better performances than benchmark-1 and benchmark-2. score;(t) and score; (t) 
gained markedly further improved performances compared with benchmark-3 at all the 
evaluation points; score~ (t) gained markedly further improved performances compared 

with benchmark-3 at most evaluation points. 
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The measure of precision at-5 was greatly increased by these three functions on pseudo­
relevance feedbac~; the measures of precision at-5 and at-lO were greatly increased by 
these three functIOns on relevance feedback. These experimentally verified that our 
methods are precision (and also recall) devices, and are effective in improving retrieval 
performance. 

ffi Proposed a reweighting function for expanded query terms. 

Our reweighting function, rew If D (t), emphasized both importance of query terms and 
association of selected terms with the query context. The weights of query terms and 
the scores of selected terms were properly adjusted and linearly combined to produce 
appropriate weights for expanded query terms. 

Experimental results showed that weighting expanded query terms using rew If D (t) per­
forms better than using rew Roc (t) on pseudo-relevance feedback with scheme-4, and 
significantly better than using the formula on relevance feedback with scheme-3. The 
better performances indicated that the incorporation of the discrimination information 
of terms into weights of expanded query terms is beneficial. 

ffi Experimentally showed relation between query length and feedback. 

For the expanded queries obtained from score; (t), score; (t) and score~ (t) using relevance­
feedback, title-only queries worked markedly better than desc+title queries, which in 
turn worked markedly better than the full-text queries. These contrast strongly with 
the corresponding expanded queries obtained from the three functions using pseudo­
relevance feedback: the full-text queries worked much better than desc+title queries, 
which in turn worked much better than title-only queries. 

Experimental results demonstrated that the query expansion obtained from the three 
functions suits shorter queries on relevance feedback, whereas it is more effective for 
longer queries on pseudo-relevance feedback. 

9.2 Further Work 

In IR information of terms for discrimination is a perennial subject, and query represen-, 
tation (i.e., formulation/reformulation) is one of the central issues. Based on the discussions 
given in this thesis, we suggest some directions for further study. 

ffi Choice of the discrimination measures. 

There may be some debate on the choice of a discrimination measure for comparing 
term probability distributions. In fact, a fairly large class of discrimination measures 
may lead to rather similar retrieval results. A choice of an appropriate measure f~r a 
particular application is needed. This is done by testing a range of measu~es agamst 
a set, whose complete relevance information is known. The measure that gives results 
most consistent with the available information may be chosen. Such a procedure has 
been followed in choosing one of the possible discrimination measures in our.studies .. In 
IR it is of some importance that the discrimination measure should reflect, m an eaSily 
int~rpretable way, the divergence/difference of term probability distributions. Further 
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theoretical and experimental investigations are necessary to obtain more insight into 
these problems. 

ffi Estimation of probability distributions. 

The estimation of probability distributions is crucial in determining retrieval perfor­
~an~e. ~he best way of achieving an effective estimation of either the term probability 
d~stnbutlon~, or the term state distributions, remains an open problem, and is a sig­
mficant subject for further study. We have established a theoretical framework for 
designing effective estimations. However, more estimation schemes/methods need to be 
considered. 

ffi Investigation of effectiveness of the score functions. 

Discrimination on mutual information of terms was formally discussed in Section 7.2. 
Three specific estimation methods of the term state distributions were presented. Fur­
ther experimental investigation into performance and comparison of the three methods 
need to be developed. Also, two score functions were proposed in Section 7.6, which 
apply the concept of query-based association. Further experiments need to be designed 
to test the two score functions, and find what retrieval performances can be obtained. 

ffi Segmentation of long documents. 

The effectiveness of estimation of the discrimination measures usually lies in how docu­
ments are indexed by terms. Usually, long (full-text) documents cover multiple topics. 
Breaking documents into short subdocuments (such as, passages or paragraphs) may 
avoid problems arising from using terms from unrelated parts of documents for query 
expansion. Consequently, when many long documents are involved, the discrimination 
measures may be improved by using on information entity with appropriate units. It 
would be worth attempting to automatically segment long documents into subdocu­
ments such that each of them covers only one topic. A further experimental investiga­
tion needs to be designed for estimating the discrimination measures and selecting good 
terms over the sample set of subdocuments. 

ffi Multiple representations of the query. 

The user information can be represented by multiple queries. Some experimental stud­
ies, [201] for instance, have shown that multiple query representations can produce 
better retrieval performance than the use of a single query representation. 

Hence, a further work is to attempt multiple query representations for the information 
need in the IiV framework. This can be achieved by using different score functions. 
Expanded queries obtained from different score functions can combinatorially be used 
to form new expanded queries for more effectively expressing the information need. An 
experimental study of such a combination method needs to be made. We want to test 
how these methods can work, and what levels of performance can be obtained. 

ffi Consideration of nouns and noun phrases. 

Past studies, [94] for instance, have shown that nouns and noun phrases may b: more 
informative than other types of terms and phrases. Thus, some further expenments 
need to be designed, which select only nouns and noun phrases as expansion terms for 

query expansIOn. 
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ffi Apply our methods to interactive environments. 

~n alte~native way to enhance queries is to interact with users. Our methods facilitate 
mteractIve query expansion for the user who is not a professional in retrieval. Once the 
~ser submits. his query, the system can perform an initial retrieval, and then output a 
lIst of potential good terms that are identified by using our methods. Based on the user's 
judgement, some of t~em are selected and others are discarded. Some further experi­
ments need to be deSIgned for testing the interactive query expansion with real users. 
We want to know how our methods can work in an interactive retrieval environment 
and what level of performance can be obtained. ' 

ffi Test larger collection of TREe. 

We anticipate that the I fV model can produce good results in a large-scale operational 
information retrieval environment. Having achieved good retrieval results in the exper­
iments, we are encouraged to implement an IR system for accessing commercial-scale 
collections containing millions of documents. 

9.3 Conclusions 

In this thesis, we have made a thorough study of the fundamental issue of measuring the 
power of discrimination of terms, and interpreted the meaning of the amount of information of 
terms rationally and explicitly. We have established the ItD model, and shown its ability to 
express a variety of term discrimination information. We have put forward the necessary cri­
teria for the divergence measures, and analysed the properties of the discrimination measures 
in the context of IR. We have defined the concepts of association of terms with the context of 
the query, and introduced the Generalized Association Hypothesis. We have proposed a series 
of methods for judging good terms, and elaborated on how they can be utilized in practical 
feedback procedures. We have implemented a basic environment for AQE, tested retrieval 
performance of our methods, and compared the different query expansion methods. 

We believe that the I fV model is potentially very powerful. As we have emphasized re­
peatedly, I fV is at a formal level. This makes it a complementary method to many methods 
in the literature, particularly, for those methods which attempt to treat terms as discrimi­
nators, and to regard the power of discrimination of terms to be essential. This also makes 
it possible to use T. fV as a common base, and incorporate other aspects of many different 

methods. 
In closing, we would like to say that the advantage and promise of I fV lie in it being 

an indispensable part of a textual retrieval system. Many studies of IR have shown strong 
interest in the issue of the power of discrimination of terms. It might be possible to have 
some better methodology which is capable of measuring the amount of information in terms, 
or it might turn out that the methodology is only a myth. But whatever the methodology is, 
it is most important that the IR community investigate (1) the representation of documents. 
(2) the representation of queries and, (3) the relevance decision over the representations. 

The representations should be formulated and reformulated based on the 
amount of information in terms for discrimination (ifd) on relevance. 



Chapter 10 

Some Mathematical Details 

In some of the earlier chapters, we promised to deal with certain mathematical details which 
we put off then so as not to disrupt the discourse. This chapter is divided into various 
independent sections, each of which deals with one of the topics mentioned earlier in the 
thesis. 

10.1 Proof of the First Inequality 

Let us now prove the first inequality for both Methods I and II of modifying the discrimination 
measure ifd~(t) discussed in Section 4.6. That is, we need to prove that P~+(t) and PiJ(t) can 
satisfy condition (C3), i.e., prove that ifd~(t) can satisfy the first inequality given in Eq.(4.3). 

10.1.1 Method I 

As mentioned in Section 4.6, for Method I, we need only to prove the first inequality given in 
Eq.(4.3). For such a purpose, we need to establish the following theorem. 

Theorem 4.6.1 Let term to be the argument minimum of ifdJ(t) over t E V:=:+. If P:=:+ (to) 2: 
PD(tO), then 

for all terms t E V:=:+ . 

) 
P,=+ (to) ( 

Proof. From P:=:+ (to) > PD (to), we have P:=:+ (to) - PD (to 2: 0, and log PD (to) > 0 since 

P2:+(to) > 1). Then the following inequality is easily seen: 
PD(tO) - , 

P,=+ (to) ) P:=:+ (to) 
ifdJ(to) = (P:=:+(to) - PD(tO)) log PD(to) > P:=:+ (to) (P:=:+(to) - PD(tO) log PD(tO) 

2 ) P:=:+ ( to) . fd' (t ) = (P:=:+(to) - P:=:+(tO)PD(tO) log PD(tO) = 1 J 0 

since 0 < P:=;+ (to) < 1. The proof is complete. 

In a real retrieval environment it should not be a problem for satisfying one constraint 

that P:=;+(to) > PD(tO) for to E VS+ in Theorem 4.6.1 (we have experimentally verified this 

189 
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viewpoint is co::;ct). Thus, for practical applications, we can make the assumption that, for 
all terms t E V::::' ,we have P=.+(t) > PD(t). 

10.1.2 Method II 

Recall that in the proof of the first inequality for Method I, we did not give any condition 
for factor f-L since it was fixed to f-L = P=.+ (to). However, in the proof of two inequalities for 
Method II, we have to give some extra conditions for factor f-L. In fact, the issue of proving 
two inequalities for Method II is that of finding conditions that f-L should satisfy. We here 
prove only the first inequality by Theorem 4.6.2, whereas we give the proof of the second 
inequality elsewhere [21). 

Theorem 4.6.2 Let term to be the argument minimum of ifdJ ( t) over t E V=.+. If P=.+ ( to) > 
PD ( to) then there exists a real number f-L satisfying 1 > f-L > 0 and f-LP=.+ ( to) ~ PD ( to), such 

that 
ifdJ(to) > ifd~(to), 

for all terms t E V='+ . 

Proof. If P=.+ (to) > PD (to), then 1 > :..!!}~~~). According to the theory of real numbers, there 

are a large amount of real numbers (n~n-numerally infinite) f-L in the real number interval 

[PD(tO) 1) i.e. 0 < PD(tO) < I/. < 1. Each of these non-numerally infinite f-L certainly satisfy 
P';;(to)" , P:t(to) - t-"' 

f-LP=.+(to) > PD(tO) and 1 > f-L > O. 
Then, from f-LP=.+ (to) > PD (to), we have 

Also, from 0 < f-L < 1, we have 

P=.+ ( to) > f-L P=.+ ( to) 
PD(tO) PD(tO) , 

On the other hand, we have 

l.e., 

Thus, we find that 

l.e., 

i.e., 

10 f-L P=.+ (to) > o. 
g PD(tO) -

P~+ (to) ) f-LP=.+ (to) 
( P=.+ (to) - PD ( to)) log ;D (to) > (f-LP=.+ (to) - PD (to) log PD (to) . 

The proof is complete. 

Notice that Theorem 4.6.2 requires P=.+(to) > PD(tO), rather than P=.+(to) ~ PD(tO) as 
. d· Th 4 6 1 in the first modification method. This is because P=.+ (to) = PD (to) 

reqUIre III eorem.. P (t ) 

would lead to contradiction 1 > f-L > 1 from 1 > f-L > Pt(t~) = 1. 



CHAPTER 10. SOME MATHEMATICAL DETAILS 191 

10.2 Discussion on Symmetric Discrimination Measure 

~et us now return to Section 5.3 and consider the symmetric discrimination meas . 
N t th t 

. 1·· h d. ure agam. 
o Ice a, specm lzmg t e lvergence measure K (A A· P p-) t \ - \ 1 

bt 
. 1 , 2, R, R 0 /\ 1 - /\2 = -2' we can 

o am 
1 1 

K(PR,Pfl) = K(2:' 2:;PR,Pfl) 

= L (~PR(t)lOg 1 PR(t) + ~P-(t)lo Pfl(t) ) 
tEV 2 2PR(t) + ~Pfl(t) 2 R g ~PR(t) + ~Pfl(t) 

= ~ L (PR(t) log 2 + Pfl(t) log 2 + ¢(t)) 
tEV 

= ~ L (PR(t) + Pfl(t) + ¢(t)), 
tEV 

which is symmetric with respect to PR(t) and Pfl(t), where 

A-.(t) - P (t) 1 PR(t) ( Pfl(t) 
'P - R og PR(t) + Pfl(t) + Pfl t) log PR(t) + Pfl(t)· 

It is worth mentioning that divergence K (PR, Pfl) cannot be reduced to 

q>(t) = L ¢(t) = L (¢l (t) + ¢2(t)) 
tEV tEV 

by considering 

K(PR, Pfl) = ~ L (PR(t) + Pfl(t) + ¢(t)) = ~ (L PR(t) + L Pfl(t) + L ¢(t)) 
tEV tEV tEV tEV 

1 1 
= 1 + 2: L ¢(t) = 1 + 2:<I>(t), 

tEV 

and eliminating coefficients 1 and ~ in the last expression. In fact, summation <I>(t) cannot 
service as a divergence measure. First, summation <I>(t) is non-positive. This is because, 
for each term t E V, two sub-items ¢l(t) and ¢2(t) in each item are both non-positive 
since PR(t), Pfl(t) < PR(t) + Pfl(t), and so is the item ¢(t) itself. Thus, the summation 
over individual items receives a non-positive value. We can also easily verify <I>(t) < 0 from 
o < K(PR,Pfl) = 1 + ~<I>(t) < 1 (we have shown 0 <K(Al,A2;PR,Pfl) ::; 1 for a general 
case). Second, summation q>(t) is dependent of the introduction or elimination of terms 

unrelated to the relevance classification. That is, its items 

PR(t) Pfl(t) 
¢(t) = PR(t) log PR(t) + Pfl(t) + Pfl(t) log PR(t) + Pfl(t) 

1 1 
= PR(t) log 2: + Pfl(t) log 2: = -PR(t) - Pfl(t) =I- 0 

do not vanish when PR(t) = Pfl(t) =I- O. Thus, <I>(t) does not possess Criterion 2. 
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10.3 Jensen Difference 

In Section 6.2, we discussed the definition of Jensen difference. We now derive the corre­
sponding Jensen difference for three entropy functions given in Section 6.1. 

10.3.1 Entropy Function HSh 

For Shannon's entropy, we have 
r r r 

HSh (L AkPDk) = - L ( (L AkPDk (t)) log (L AkPDk (t))) 
k=l tEV k=l k=l 

r 1 
= ~ (~ (AkPDk (t) log L:~l AkPD, (t) + AkPDk (t) log PDk (t) - AkPD, (t) log PDk (t))) 

r PDk(t) r 
= ~ ( ~ AkPDk (t) log L:~l AkPDk (t) - ~ AkPDk (t) log PD, (t) ) 

r PDk(t) r 

= LLAkPDk(t) log L:r A P () + LAkHSh(PDk)· 
tEV k=l k=l k Dk t k=l 

Then, the Jensen difference with respect to Shannon's entropy can be written as 
r r 

JHSh({Ad;{PDk}) = HSh(LAkPDk) - LAkHSh(PDk) 
k=l k=l 

"" ~ PDk (t) 
= D D AkPDk (t) log ~r A P (t)' 

tEV k=l L....-k=l k Dk 

which is the information radius defined by Sibson [177]. 

10.3.2 Entropy Function H Re 

For Renyi's entropy, when 0 < a < 1, the Jensen difference can be written as 
r r 

JHRe({Ak};{PDk}) =HRe(LAkPDk) - LAkHRe(PDk) 
k=l k=l 

= 1 ~ a log (Z= (i>kPDk (t)l") - t C \ log (Z=PD, (t))) 
tEV k=l k=l tEV 

r r 

= 1 log (Z= (Z=AkPDk(t)l") -1 1 IOg(n (Z=PDk(t))") 
1 - a tEV k=l a k=l tEV 

1 L:tEV (E~=l AkPDk (t) r:t 
--log A . 
1 - a rr~=l (EtEV PDk (t)) k 

Notice that, when a > 1, JHRJ {Ak}; {FDk}) may be negative since Renyi's entropy is not in 
general concave for a > 1. This appears to be a disadvantage of entropy H Re as a measure 

of diversity. 
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10.3.3 Entropy Function HHC 

For the entropy of Havrda and Charvat, when a > 0 (a ¥- 1), we have 

T T 

HHC(LAkPDk) = l_~l-a[l- L(LAkPDk(t)r~] 
k=l tEV k=l 
1 T T T 

= 1- 2
'
- 0 [1- 2: (2: .VDk(t)) + 2: (2: .VDk(t)) - 2: (2: ,VDk(t))"] 

tEV k=l tEV k=l tEV k=l 
1 T T T T 

= 1- 2
'
- 0 [(~>k) - 2: (2:.VDk (t)) + 2: ((2:.VDk (t)) - (2:,VDk(t))")] 

k-l k=l tEV tEV k=l k=l 
1 T T T 

= 1- 21- a [L Ak(l- LPVk(t)) + L ((LAkPVk(t)) - (LAkPDk(t))a)] 
k=l tEV tEV k=l k=l 

TIT T 

= LAkHHC(PDk ) + 1- 21- a L ((LAkPvJt)) - (LAkPDk(t)r). 
k=l tEV k=l k=l 

Then) the Jensen difference with respect to the entropy of Havrda and Charvat can be written 
as follows. 

T T 

JHHC({Ak};{PDk}) = HHC(LAkPDk) - LAkHHC(PDk ) 
k=l k=l 

1 T T 

= 1- 21- a L ((L AkPVk(t)) - (L AkPDk(t))a). 
tEV k=l k=l 

10.4 Proofs of Some Theorems 

This section proves a series of useful theorems which were put forward in Chapter 7. 

1004.1 Proof of Theorem 7.2.1 

We now prove that the estimation, in Method A, of Pd (6i, 6j) given in Eq.(7.5) constitutes a 
probability distribution over n x n by establishing the following theorem. 

Theorem 7.2.1 For arbitrary terms tj, tj E V d , and for the expression given in Eq.{7.5), we 
have: 

(1) Pd(ti) > fA (ti' tj) if and only if 

L fd(ti' )fd(tj') > fd(tj)!d(tj); 
i' <j'; t i , ,tj' EVd_{ tj} 

(2) Pd(tj) > fA (ti' tj) if and only if 

L fd(t i, )fd(tj') 2:: fd(ti )!d(ti). 
i'<J·'· t-, t -, EVd_{t-} , " , J t 
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Proof. We only prove (1). The proof of (2) is similar to (1). 
For document d, let V d = {till ti2' ... , tiJ ~ {tl, t2, ... , tn} = V, where 1 ~ i l < i2 < ... < 

is < n, and IVdl = s > 2. Without losing generality, let us suppose tj = til (Otherwise, 
let tj = tih' Notice the order of the elements in the set is unnecessary, so we can rewrite 
V d = {tit,ti2, ... ,tih_l'tih,tih+1' ... ,tis} by V d = {tih'tillti2' ... ,tih_l,tih+l.· .. ,tiJ. we thus 
have V d 

- {tj} = {tit,ti2,···,tih_l,tih+l'···' tis} with 1 ~ i l < i2 < ... < ih-l < i h - 2 < ... < 
is < n. So the discussion below still holds.) 

Denote the denominator of probability Pd(6i = 1, 6j = 1) by 

w= 
i'<J-'-t-, t-,EVd 

, t , J 

w = fd(tiJ [Jd(ti2) + fd(ti3) + ... + fd(tiJ] + fd(ti2) [Jd(ti3) + fd(ti4) + ... + fd(tiJ] 

+ ... + fd(ti s-2) [Jd(tis-l) + fd(tiJ] + fd(tis-l) [Jd(tiJ] 

= fd(tj) [lldll- fd(tj)] + fd(tiJ L fd(tj') + ... + fd(tis-l) L fd(tj') 
-, - -

J =23,---,2s j'=is 

Therefore, we have 

Wj = 

if and only if 

l.e., 

l.e., 

The proof is complete. 

10.4.2 Proof of Theorem 7.2.3 

We now analyse the absolute continuity of the estimation, in Metho~ C, ?f ~istr~bution 
P

s
+(6i,6j) with respect to the product, PS +(6i) . Ps+(6j), of the margmal dIstnbutlOns by 

proving the following theorem. 

V -:;-+ p (6 6')« p~+ (6 -) . p~+ ( 6) for 6i, 6 j = 
Theorem 7.2.3 For arbitrary terms ti, tj E -, s+ i, J :;. l :;. J 

1, O. 

d/ ,./, (t -) = 1 there are four rases to be 
Proof. According to whether ¢s+ (ti) = 1 an or 'f'S+ J ' 

considered, that is, 

(c1) 0 < ¢S+(ti) < 1 and 0 < ¢s+(tj) < 1, 
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(c2) ¢2+(ti) = 1 but 0 < ¢2+(tj) < 1, 

(c3) 0 < ¢2+(ti) < 1 but ¢2+(tj) = 1, 

(c4) ¢2+(ti) = 1 and ¢2+(tj) = 1. 

195 

We here prove only (c2). For (cl), see the discussion for the unified expression given in Section 
7.2. For (c3) and (c4), the discussion is similar to (c2). 

Suppose that we are given terms ti, tj E V 2+ satisfying F2+(ti) = 12+1 and F2+(tj) < 12+1 
(namely ti occurs in all relevant sample documents, but tj does not). In this case, it has 
¢2+ (ti) = 1 and 0 < ¢2+ (tj) < 1, and F2+ (tj) = F2+ (ti' tj). Therefore: 

(a) We have P2+(Oi = 1) . P2+ (OJ = 1) > 0 since P2+(Oi = 1) = 1, and 0 < P=:+(Oj = 1) < l. 
Thus, P2+(Oi = 1,0j = 1) «P2+(Oi = 1) ·P2+(Oj = 1) for (Oi, OJ) = (1,1). 

(b) We have P2+(Oi = 1) . P2+(Oj = 0) > 0 since P2+(Oi = 1) = 1 and 0 < P=:+(Oj = 0) < l. 
Thus, P2+(Oi = 1, OJ = 0) «P2+(Oi = 1) . P2+(Oj = 0) for (Oi, OJ) = (1,0). 

(c) We have P2+(Oi = 0)· P2+(Oj = 1) = 0 since P2+(Oi = 0) = 0 and 0 < P=:+(Oj = 1) < l. 
Also, we have P2+(Oi = 0, OJ = 1) = \i+\ [F2+(tj) - F2+(ti, tj)] = o. Thus, P=:+(Oi = 

O,Oj = 1)« P2+(Oi = 0)· P2+(Oj = 1) for (Oi' OJ) = (0,1). ( 

(d) We have P2+(Oi = 0)· P2+(Oj = 0) = 0 since P2+(Oi = 0) = 0 and 0 < P=:+(Oj = 0) < l. 
Also, we have P2+(Oi = O,Oj = 0) = \2

1+\[12+I-F2 +(ti) -F=:+(tj) +F2+(ti,tj)] = 

\2\\ [(12+1 - F2+(ti)) - (F2+(tj) - F2+(ti, tj))] = o. Thus, P=:+(Oi = 0, OJ = 0) « 
P2+(Oi = 0)· P2+(Oj = 0) for (Oi, OJ) = (0,0). 

Consequently, P2+(Oi, OJ) «P2+(Oi) . P2+(Oj) for Oi, OJ = 1, o. The proof is complete. 

10.4.3 Proof of Theorem 7.2.4 

Let us look at an interesting property of measure emim2+(Oi, OJ), discussed in Method C, by 

considering the following theorem. 

Theorem 7.2.4 For arbitrary terms ti,tj E V 2+, emim2+(Oi,Oj) < O. 

Proof. Let us prove that the individual items of emim2+(Oi, OJ) are non-positive. For this 

purpose, we need prove (1) n~.I~.1 < 1, (2) n~~.o < 1, (3) n:.~.1 :::; 1, and (4) n:o~.o :::; l. 

(1) From F2+(ti, tj) < F2+(ti) and F2+(ti, tj) < F2+(tj), we obtain immediately 

n ll = F2+(ti, tj) < 1. 
nl.n.1 F2+(ti)F2+(tj)-

(2) From F2+(ti) - F2+(ti,tj) < F2+(ti) and 

F2+(ti) - F2+(ti, tj) < 13+1- F2+(ti, tj) < 12+1- F=:+(tj), 

it follows n
lO 

F2+(ti) - F2+(ti, tj) ___ )<1. 
nIn.O - F2+(ti)(13+1- F=:+(tj) 

(3) The proof is similar to (2). 
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(4) Notice that 

13+ 1 - F=.+ (ti) - F=.+ (tj) + F=.+ (ti' tj) 

= 13+1- F=.+(ti) - [F=.+(tj) - F=.+(ti, tj)] ~ 13+1- F=.+(ti), 

13+1- F=.+(ti ) - F=.+(tj) + F=.+(ti' tj) 

= 13+1- F=.+(tj) - [F=.+(ti ) - F=.+(ti' tj)] < 13+1- F=.+(tj). 

From which we have 

noo = 13+~- F=.+(ti) - F=.+(tj) + F=.+(ti, tj) < l. 
no·n·o (1.:::+1- F=.+(ti)) (13+1- F=.+(tj)) -

The proof is complete. 

10.4.4 Proof of Theorem 7.2.5 

Let us prove Theorem 7.2.5, which reveals a property of measure I=.+ (6i' 6j) that, when it 
is estimated with Method C and one of the terms ti and tj occurs in all sample documents, 
terms ti and tj would not provide any information on relevance. 

Theorem 7.2.5 For arbitrary terms ti,tj E V='+, if F=.+(ti) = 13+1 then I=.+(6i,6j) = O. 

Proof. Let us prove that the individual items of I=.+(6i,6j) are zero. Notice that, from 
F=.+(ti) = 13+1, we have F=.+(tj) = F=.+(ti,tj), Thus, 

(1) for (6i' 6j) = (1,1), we have 

F=+ (ti ,tj) 
F=.+(ti,tj) 10 1='+1 = F=.+(ti,tj) 10 F=.+(ti,tj) = F=.+(ti ,tj)logl=O; 

13+1 g F=+(ti) F=+(tj) 13+1 g 1 x F=.+(tj) 13 +1 
1='+1 1='+1 

(2) for (6i,6j) = (1,0), we have 

F=+ (ti )-F=+ (ti ,tj) 
F=.+(ti) - F=.+(ti' tj) 10 - 1=.+1 

13+1 g F=+(ti) (1- Fs+(tj)) 
1='+1 1='+1 

F~+ (ti) - F=.+ (ti' tj) log F=.+ (ti) - F=.+ (ti, tj) 
13+1 1 x (13+1- F=.+(tj)) 

F=.+(ti) - F=.+(ti' tj) 10 13+1- F=.+(tj) 
13+1 g 13+1- F=.+(tj) 

_ F=.+ (ti) - F=.+ (ti, tj) log 1 = O. 
- 13+1 ' 

(3) for (6i' 6j) = (0,1), we have 
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o 0 0 
= j2+jlog 0 x F

3
+(tj) = o log 0 = 0; 

(4) for (6i' 6j) = (0,0), we have 

The proof is complete. 

10.4.5 Proof of Theorem 7.3.1 

In order to investigate the properties of the discrimination measures ifd £ (tti , t ~j) posed in 
Section 7.3, let us prove Theorem 7.3.1. Again, the signs of the inequalities we are about to 
prove in the theorem should be carefully noticed. 

Theorem 7.3.1 For arbitrary ti,tj EVE, suppose that I E(6i,6j) is estimated by using the 
unified expressions given in Eq.(7.15) and Eq.(7.16), we have 

(1) if IE (ti, tj) = 'l/JE(ti)'l/JE(tj) , then ifdft.(ti, tj) = 0, ifdft. (Ii , Ij ) = 0, ifd£(ti, Ij ) = 0 
• E -

and IfdM(ti, tj) = 0; 

(2) if IE(ti, tj) > 'l/JE(ti)'l/JE(tj), then ifdft.(ti,tj) > 0, ifdft.(Ii,tj) > 0, ifd£(ti,tj) ~ 0 

and ifdft.(Ii , tj) < 0; 

(3) if IE (ti' tj) < 'l/JE(ti)'l/JE(tj), then ifdft.(ti, tj) < 0, ifd£ (Ii , Ij ) < 0, ifd£(ti,tj) 2: 0 
• E -

and IfdM(ti, tj) > O. 

Proof. The proof of (1) is obvious. 

(2) From IE(ti, tj) > 'l/JE(ti)'l/JE(tj), we obtain the following inequalities: 

IE(ti, tj) > 'l/JE(ti)'l/JE(tj), 
'l/JE (ti) - IE (ti' tj) < 'l/JE (ti) - 'l/JE(ti)'l/JE (tj) = 'l/JE(ti) (1 - 'l/JE( tj)), 

'l/J E ( t j) - IE ( ti, t j) < 'l/J E ( t j) - 'l/J E ( ti) 'l/J E ( t j) = 'l/J E ( t j ) (1 - 'l/J E (ti ) ) , 

1 - 'l/J E ( ti) - 'l/J E (t j) + IE ( ti,t j) > 1 - 'l/J E (ti) - 'l/J E ( t j) + 'l/J E (ti) 'l/J E (t j ) , 
= (1 - 'l/JE(ti))(l- 'l/JE(tj)) , 

which correspond respectively to 

IE (ti ,t j ) > 1 
'l/J E ( ti ) 'l/J E ( t j ) , 

'l/J E ( ti) - IE ( ti ,t j ) < 1 
'l/J E (ti) (1 - 'l/J E (t j ) ) , 

'l/J E (ti) - 'E (ti 1 t j ) < 1 
'l/J E (ti) (1 - 'l/J E ( t j ) ) , 

1 - 'l/JE(ti) - 'l/JE(tj) + IE (ti. tj) > 1. 

(1 - 'l/J E ( ti) ) (1 - 'l/J E ( t j ) ) 
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On the other hand, notice that PE(6i,6j) is a probability distribution, and that 'l/JE(t) > 0 
and 1 - 'l/JE(t) > 0 for t EVE. Thus, from Eq.(7.17), we have 

, E ( ti, t j) > 'I/J E ( ti) 'l/J E ( t j) > 0, 

'l/J E ( ti) - , E (ti, t j) > 0, 

'l/J E (tj) - , E (ti, tj) > 0, 

1- 'l/JE(ti) - 'l/JE(tj) +'E(ti, tj) > (1- 'l/JE(td)(1 - 'l/JE(tj )) > O. 

Hence, by Eq.(7.18), we can see that the four inequalities in (2) hold. 

(3) From ,(ti, tj) < 'l/JE(ti)'l/JE(tj), we obtain the following inequalities: 

'E(ti, tj) < 'l/JE(ti)'l/JE(tj), 

'l/JE(ti) - 'E(ti, tj) > 'l/JE(ti) - 'l/JE(ti)'l/JE(tj), 

'l/J E (tj) - , E (ti' tj) > 'l/J E (tj) - 'l/J E (ti)'l/J E (tj ), 

1 - 'l/J E ( ti) - 'l/J E ( t j) + , E (ti, t j) < 1 - 'l/J E (ti) - 'l/J E (t j) + 'l/J E ( ti) 'l/J E ( t j). 

Hence, from Eq.(7.17) and Eq.(7.18), we can see that the four inequalities in (3) hold. The 
proof is complete. 

10.4.6 Proof of Theorem 7.5.1 

For the concept of the term-based association introduced in Section 7.5, we have the following 
theorem. 

Theorem 7.5.1 Given term ti E V 3+, we have 

Proof. Notice that, by Definition 7.3.2, ifd~(t1i, t;i) = 0 iftj ~ V d
. Thus, from Definitions 

7.4.1 and 7.4.2, we have immediately 

atsM (t1 i
, 3+) = L [ 1;+1 0 ifd~(t1i,t;i)] 

tjEV=:+ -{ti} dE.=.+ 

1 '"' ·fdd (t~i t~i) ';:;-+1 ~ 1 M t' J 

I~ tjEV=:+ -{t;};dE3+ 

1 

The proof is complete. 
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10.4.7 Proof of Theorem 7.6.1 

In order to understand the relationship between the two score functions discussed in Sect ion 
7.6, we need to show that order scoreM2 (td < score M2 (t2) may not guarantee the same order 
scoreMl (tl) < scoreMl (t2), that is, we need to prove the following theorem. 

Theorem 7.6.1 Given two terms tl, t2 E V:=:+ - V q, if scoreM2 (tl) :s; score M2 (t2), then there 

exists a function v(h, t2), such that 

where v(h, t2) may not be always equal to zero. 

Proof. To show V(tl' t2) = 0 is not always true, consider the definitions of the score functions. 
It follows that scoreM2 (tl) < scoreM2 (t2) if and only if 

< f q ( t j ) [ifd it ( t2, t j) + ifd it (t2' tj ) } , 

l.e., 

scoreM1 (tl) + L 
=+ (iI ,tj )d EUtl 

< scoreMl (t2) + L fq(tj)ifd~(t2' tj), 
=+ (t2,tj)dEUt2 

l.e., 

in which, 

=+ 
(t2,tj )dEUt2 

L fq(tj) [(1 - Pd(t2) - Pd(tj) + ld(t2, tj)) x 

1 - Pd(t2) - Pd(tj) + ld(t2, t j )] 
x log (1 _ Pd(t2)) (1 - Pd(tj)) 

fq(tj) [(1 - Pd(h) - Pd(tj) + ld(tl, tj)) x 
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It is clear that V(tl' t2) is a function of terms hand t2, and would not always be equal to 
zero. In fact, V(tl' t2) = 0 for all tl, t2 E V 3 + - vq if all relations 

=+ =+ 
Ut; = U~ , 

hold for all terms tl, t2 E V:=:+ - vq, which is unlikely. The proof is complete. 

10.5 A General Situation of Domain 

In Section 7.2, we concentrated on the study of the estimates of the term state distributions, 
which were determined by two functions IE (ti, tj) and 'l/JE(t). Recall that there the variables 
of 'E (ti' tj) were restricted to lie in a range of VEx V E ~ V X V and the variable of 'l/J E (t) was 
restricted to lie in a range of VE C V, where E was an given entity. Let us now consider the 
more general situation where these two functions are defined on V x V and V, respectively. 
It can be seen that the restrictions are immaterial, and that the extensions are very easy, but 
they can make some things simpler to explain. 

10.5.1 Extension of Domain 

Given an information entity E, based on the statistical data within E, introduce a non­
negative function 'If;E: V -+ [0,1) and 

{ 
> 0 

'l/JE(t) = 0 
when t E VE 
when t E V - V E , 

which may be or may not be a term probability distribution. 
Based on function 'If; E ( t), for each term t E V, define 

PE(b = 1) = 'If;E(t) and PE(b = 0) = 1 - 'l/JE(t) , 

which is a probability distribution over n = {1,0}. Thus, 0 < PE(b) < 1 for b = 1,0 when 
t EVE; PE(b = 1) = 0 and PE(b = 0) = 1 when t E V - V E. 

Also, introduce a non-negative function IE: V x V -+ [0,1] and 

when (ti' tj) E VE X VE 
when (ti' tj) E (V x V) - (VE x V E), 

PE(bi = 1, bj = 1) = IE(ti, tj), 

PE(bi = 1, bj = 0) = 'l/JE(ti) - IE(ti, tj), 

PE(bi = 0, bj = 1) = 'l/JE(tj) - IE (ti,tj), 

PE(bi = O,bj = 0) = 1-'If;E(ti) -'l/JE(tj) +'E(ti,tj), 

which is a probability distribution over n x n. 
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Obviously, when (ti' tj) E VE X VE and t EVE, functions fE(ti, tj) and 'l/JE(t) are 
identical with the ones introduced in the unified expressions in Section 7.2.4. Thus, the 
state distributions PE(Oi, OJ) and PE(O) defined here are completely the same as the ones 
defined in Eq.(7.16) and Eq.(7.15), respectively. The difference between the distributions 
given here and there are for those terms which take values outside V E . 

For instance, for the case where ti E VE but tj tj. VE (then (ti, tj) tj. VE X VE), we have 
fE(ti, tj) = 0 and 'l/JE(tj) = 0, and thus 

PE(Oi = 1, OJ = 1) = 0, 

PE(Oi = 1, OJ = 0) = 'l/JE(td, 

PE(Oi = 0, OJ = 1) = 0, 

PE(Oi = 0, OJ = 0) = 1 - 'l/JE(ti). 

Whereas for such a term pair, the joint distribution PE(Oi, OJ) given in Eq.(7.16) was not 
defined. It does not make sense to ask what happens to PE(Oi,Oj) when (ti' tj) tj. VE X VE 
for the estimation given Eq.(7.16). 

Because 'l/JE(t) = 0 when t E V - V E, we need thus analyse the absolute continuity of 
the joint state distribution with respect to the product of the marginal distributions. The 

following theorem is for this purpose. 

Theorem 7.2.6 For arbitrary terms ti, tj E V, PE(Oi, OJ) « PE(Oi) . PE(Oj) for Oi, OJ = 1, O. 

Proof. According to whether ti E VE and/or tj E V E, there are four cases that should be 

considered: 

(c1) ti,tj EVE, 

(c2) ti E VE but tj tj. V E, 

(c3) ti tj. VE but tj EVE, 

(c4) ti,tj tj. V E . 

And for each case, we need verify four distinct state values, respectively. 
For (c1): we have PE(Oi)· PE(Oj) i= 0 since 0 < PE(Oi),PE(Oj) < 1 for Oi,Oj = 0,1. Thus, 

PE(Oi, OJ) «PE(Oi) . PE(Oj), for Oi, OJ = 0,1. For (c2): 

(a) We have PE(Oi = 1) . PE(Oj = 1) = 0 since 0 < PE(Oi = 1) < 1 and PE(Oj = 1) = o. 
Also, we have PE(Oi = 1, OJ = 1) = fE(ti, tj) = O. Thus, PE(Oi = 1, OJ = 1) « PE(Oi = 

1) . PE(Oj = 1) for (Oi' OJ) = (1,1). 

(b) We have PE(Oi = 1) . PE(Oj = 0) i= 0 since 0 < PE(Oi = 1) < 1 and PE(Oj = 0) = l. 
Thus, PE(Oi = 1, OJ = 0) « PE(Oi = 1) . PE(Oj = 0) for (Oi' OJ) = (1,0). 

(c) We have PE(Oi = 0) . PE(Oj = 1) = 0 since 0 < PE(Oi = 0) < 1 and PE(Oj = 1) = o. 
Also, we have PE(Oi = 0, OJ = 1) = 'l/JE(tj) - fE(ti, tj) = O. Thus, PE(Oi = 0, OJ = 1) « 
PE(Oi = 0) . PE(Oj = 1) for (Oi' OJ) = (0,1). 

(d) We have PE(Oi = 0) . PE(Oj = 0) i= 0 since 0 < PE(Oi = 0) < 1 and PE(Oj = 0) = 1. 
Thus, PE(Oi = 0, OJ = 0) « PE(Oi = 0) . PE(Oj = 0) for (Oi' OJ) = (0,0). 

For (c3) and (c4), we have a similar discussion to (c2). The proof is complete. 
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10.5.2 An Alternative Way to View Pd (6i = 1, 6
j 

= 1) in Eq.(7.5) 

After extending the domains on which functions ry (t· t) and ,I. (t) d fi d h 
d' 'b . IE t, J 'f'E are e ne testate 

Istn utlOns Pd ( 6i, 6j) and Pd ( 6) can be given for arbitrary terms t· t· E V => T.r E Th 't 
Id b '. t, J _ ~. US, 1 

wou e now more convement for us to VIew what is intuitively meant b P (S:. = 1 s:. _ 1) 
. M th d A' . S Y d Ut 'UJ -m e 0 gIven m ection 7.2, through an n x n matrix. . 

More specifically, suppose that we are given a document d which is represented by jl
j 

= 
[wd(t)Lxn = [Jd(t)Lxn' Thus, from matrix M d, it follows that 

fd(td 
fd(t2) 

fd(tn) 

fd(t1)fd(t1) fd(tdfd(t2) '" fd(tdfd(tn)] 
fd(t2)fd(h) fd(t2)fd(t2) ... fd(t2)fd(tn) 

fd(tn)fd(td fd(tn)fd(t2) fd(tn)fd(tn) 

= [fd(ti)fd(tj)] = X [Xl h(ti)h(tj)] 
nXn nxn 

Pd(61 = 1,61 = 1) Pd(61 = 1,62 = 1) 
= X Pd(62 = 1,61 = 1) Pd(62 = 1,62 = 1) 

Pd (6n = 1,61 = 1) Pd (6n = 1,62 = 1) 

= X [Pd (6i = l,8j = 1)] . 
nxn 

Pd (61 = 1, 6n = 1)] 
Pd (62 = 1, 6n = 1) 

Pd (6n = 1,6n = 1) 

Thus, it shows that probability Pd(6i = 1,6j = 1), for i,j = 1, ... ,n, can be represented by an 
n x n matrix [Pd(6i = 1, 8j = l)J nxn with a scale factor w. Its numerator h(ti)!d(tj) char­
acterizes the co-occurrence frequencies of ti and tj in document d. Whereas its denominator 
w, the sum of all possible numerators fd(ti)fd(tj) for i < jj i, j = 1,2, ... , n, is a normalization 
factor for the probability. 

Matrix [Jd(tdfd(tj)Jnxn' which is symmetric, is called the co-occurrence frequency matrix 
of terms concerning d. Thus, from relation 

[Pd(8i = 1, 8j = 1)] = Xl [fd(ti)fd(tj)] , 
nxn nxn 

we can see that matrix [Pd(6i = 1,8j = 1)]nxn is in fact the normalized co-occurrence 
frequency matrix of terms concerning d. 

Notice that assumption IVdl > 2 ensures that at least one term pair can be drawn from 
document d, and thus there exists at least one non-zero element in matrix [Pd (8i = 1, 8j = 

l)J i.e. [Pd (8' = 1 6J' = 1)] ..../.. [0] . Notice also that, subject to the condition nxn" z, nxn I nxn ... 
that no two components of (ti' tj) can be the same, the cases where t =], correspondmg to 
elements Pd (8i = 1,8i = 1) for i = 1, ... , n, are not considered in our context. However. it is 
only for mathematical convenience in notation to include these cases. 

10.5.3 Appropriateness of Definition 7.3.2 

Given an entity E, for the case where ti, tj EVE, we have the general expressions of the 
discrimination measures given Eq.(7.18) as shown in Section 1,3. Now further. for the caSt' 
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where ti EVE but tj t/: V
E

, we have JE(ti, tj) = 0 and 'l/JE(tj) = O. Thus, from Eq.(7.18) we 
obtain immediately 

ifdft.(ti, tj) = Olog 0 = 0, 
'l/J E (ti) 0 

ifdft.(ti, tj) = ('l/JE(ti) - 0) log 'l/JE(ti ) - 0 = 0, 
'l/JE(ti) (1 - 0) 

• E - () 0-0 IfdM(ti , tj) = 0 - 0 log ( = 0, 
1 - 'l/JE(ti))O 

ifdE (f. to) = (1 - nl. (t-) - 0 + 0) 10 1 - 'l/JE(ti) - 0 + 0 = O. 
M t, J <j/ E t g (1 _ 'l/J E (td )( 1 - 0) 

That is, the contributions made by the individual state values to the expected mutual in­
formation are zero, and hence we have IE(bi , bj ) = O. Similar results can be obtained for 
the case where ti t/: VE but tj EVE, and the case where ti, tj t/: V E. Such mathematical 
results are consistent with our intuitive understanding: when one term appears in document 
d but another does not, these two terms should not be regarded as containing statistically 
mutual information concerning the entity, similarly for two terms neither of which appear 
in document E. Therefore, we believe that two terms contain mutual information, whether 
more or less, only when they at least co-occur in some entity. 

10.6 Examples 

Let us now give some examples to illustrate the computation involved in the method proposed 
in Chapter 7. Suppose that 3+ = {d1 , d2 , d3 } ~ D is the relevant sample set with respect to 
query q, and that their corresponding statistical data is shown below. 

ti 

fd 1 (td 
fd2 (ti) 
fd3 (td 

P(b--1) q t -

Pd1 (bi = 1) 
Pd2 (bi = 1) 
Pd2 (bi = 1) 

iI 

1 
2 

1 
~ 

10 

t2 t3 
1 

2 
1 

1 

~ 
s 

1 
10 

1 
4" 

t4 ts t6 t7 ts tn 
2 

1 1 1 2 
1 3 1 2 
2 1 

1. 1 1. ~ 

~ ~ ~ S 
2 

1~ 10 Ip 10 

4" 4" 

In the following three examples, we will calculate the scores of term tl using the score 
functions given in Sections 7.6 and 7.7 for the different estimations Methods. Example A 
corresponds to Method A, Example B corresponds to Method B and Example C corresponds 

to Method C. 

10.6.1 Example A 

For term tl E v:::: + , the association set of term tl with query q concerning set 3+ can be 

written as 
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From Eq.(7.6) and V d1 = {tl, t2, t4, ts, t6, tg}, it is easy to calculate w by 

L fd1 (tdfd1 (tj') =1 x (2 + 1 + 1 + 1 + 2) + 2 x (1 + 1 + 1 + 2)+ 
i'<J·'·t·, t·,EVdl , t , J 

1 x (1 + 1 + 2) + 1 x (1 + 2) + 1 x (2) = 26. 

L fd2 (ti' )fd2 (tj') =2 x (1 + 1 + 3 + 1 + 2) + 1 x (1 + 3 + 1 + 2)+ 
i' <J'" t·, t·, EVd 2 , t ) J 

1 x (3 + 1 + 2) + 3 x (1 + 2) + 1 x (2) = 40. 

2U--l 

Notice that we need not calculate w for d3 since tl rf. V d3 , and thus t1 will not co-occur with 
any terms in d3 . 

Then, from Eq.(7.5), we can estimate the joint state distribution for the corresponding 
element in the following table (the joint state distributions Pd ( 61, 6j) of the corresponding 

element (t1' tj)d E U~+ is listed in the column below the element). 

Pd(61 = 1, 6j = 1) 
Pd (61 = 1, 6j = 0) 
Pd (61 = 0, 6j = 1) 
Pd(61 = 0, 6j = 0) 

Then, for terms t1 and t2, for instance, it follows immediately that 

g s ~ 73 ~ 8 104 5 154 18 104 -1 104 
Id1 (61, 62) = 104 log k~ + 104 log k(1- ~) + 104 log (1- k)~ + 104 og (1- k) (1- ~) 

_ 1 32 ~ 20 ~ 72 73 10 292 
- 13 log 13 + 104 log 39 + 52 log 91 + 104 g 273 

~ 0.0769 log 2.4615 + 0.0481 log 0.5128 + 0.1731 log 0.7912 + 0.7019 log 1.0696 

~ 0.0769 x 0.9008 + 0.0481 x (-0.6679) + 0.1731 x (-0.2342) + 0.7019 x 0.0673 

~ 0.0693 - 0.0321 - 0.0405 + 0.0472 = 0.0439. 

As mentioned before, Id
1 

(61, 62) is expected over the state value space, and hence eac.~ of 
its items offset one another. Thus, we have, for instance, Id1 (61,62) ~ 0.0439 < 0.1 Hi.] ~ 

ifd~(t1' t2) + ifdir(ti , tj). 
~+ 

For term t1 E V'=' ,we have 
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~ 0.0769 log 2.4615 + 0.0769 log 2.4615 + 0.3000 log 2.5000 

~ 0.0769 x 0.9008 + 0.0769 x 0.9008 + 0.3000 x 0.9163 

~ 0.0693 + 0.0693 + 0.2749 = 0.4135 > 0.0000. 

scoreM2 (td = L fq(tj)[ifd~(t1' tj) + ifd~[([l' tj)] 
(it ,tj)d E ur

1
+ 

~ 0.4135 + [Jq(t2)ifd~1([1' [2) + fq(t5)ifd~([1' [5)] + [Jq(t5)ifd~}([1' [5)] 

73 .ll. 82 82 
= 0.4135 + 1 x -log /04 + 2 x _ log 154 

104 (1 - 8)(1 - ~) 104 (1 - ~)(1 - ~) 
13 13 

+ 2 x 20 log (1 - fa)( 1 _ -to) 
73 292 41 656 13 65 

= 0.4135 + 104 log 273 + 26 log 637 + 10 log 56 

~ 0.4135 + O. 7019 log 1.0696 + 1.5769 log 1.0298 + 1.3000 log 1.1607 

~ 0.4135 + 0.7019 x 0.0673 + 1.5769 x 0.0294 + 1.3000 x 0.1490 

~ 0.4135 + 0.0472 + 0.0464 + 0.1937 = 0.7008 > 0.0000. 

205 

Comparing two score functions, it is easily seen that the statistical information of the none­
occurrence of terms is equally as important as that of the co-occurrence of terms. • 

10.6.2 Example B 

Similar to Example A, we have the same association set of term t1 with query q concerning 
set 2+. Also, from Eq.(7.9), we can estimate the joint state distribution for the corresponding 
element in the table as follows. 

Pd(61 = 1, 6j = 1) 
Pd(61 = 1, 6j = 0) 
Pd(61 = 0, 6j = 1) 
Pd(61 = 0, 6j = 0) 

Then, for terms t1 and t2, for instance, it follows immediately that 

2 12 ~ 37 37 
2 56 12 56 ~ 56 -10 56 

Idl (61, 62) = 56 log i~ + 56 log ~(1- i) + 56 log (1 - ~)~ + 56 g (1 - ~)(1 - ~) 
1 8 3 48 5 20 37 148 

= 28 log "7 + 14 log 49 + 56 log 21 + 56 log 147 

~ 0.0357 log 1.1429 + 0.214310g 0.9796 + 0.0893 log 0.9524 + 0.6607 log 1.0068 

~ 0.0357 x 0.1336 + 0.2143 x (-0.0206) + 0.0893 x (-0.0488) + 0.6607 x 0.(lllt;8 

~ 0.0048 - 0.0044 - 0.0044 + 0.0045 = 0.0005 > 0.0000. 
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-+ For term tl E V=- ,we have 

( ) =+ h,tj dE UtI 

= [fq(t2)ifd~(tl' t2) + fq(ts)ifd~}(h, ts)] + [fq(ts)ifd~(tl' ts)] 
2.2 1 l 6 ..2.. 

= 1 x 56 log t~ + 2 x 56 log tl + 2 x -log 2
90

3 
88 88 90 1010 

1 8 1 8 2 10 
= 28 log 7 + 28 log 7 + 15 log 9 
~ 0.0357 log 1.1429 + 0.0357 log 1.1429 + 0.13331og 1.1111 

~ 0.0357 x 0.1336 + 0.0357 x 0.1336 + 0.1333 x 0.1054 

~ 0.0048 + 0.0048 + 0.0140 = 0.0236 > 0.0000. 

( ) =+ h,tj dEUtl 

~ 0.0236 + [fq(t2)ifd~(tl' t2) + fq(ts)ifd~(tl' ts)] + [fq(ts)ifd~(tl' ts)] 
37 37 43 43 

= 0.0236 + 1 x 56 log 1 S6 2 + 2 x - log 1 S6 1 
(1 - 8)(1 - 8) 56 (1 - 8)(1 - 8) 

51 SI 

+ 2 x 90 log (1 - fa)( 1 - fa) 
_ 37 148 43 344 171 85 
- 0.0236 + 56 log 147 + 28 log 343 + 15 og 84 

~ 0.0236 + 0.6607log 1.0068 + 1.5357 log 1.0029 + 1.1333 log 1.0119 

~ 0.0236 + 0.6607 x 0.0068 + 1.5357 x 0.0029 + 1.1333 x 0.0118 

~ 0.0236 + 0.0045 + 0.0045 + 0.0134 = 0.0460 > 0.0000. • 

10.6.3 Example C 

For term tl and t2, we have F:=;+(t l ) = 2, F:=;+(t2) = 2, F:=;+(tl, t2) = 1. Thus, 

1 2 1 2-1 2 _ 1 2-1 1 - - 3 3 

1:=;+(61,62) = 3 log ~3~ + -3- 1og ~ (1- D + -3- 1og (1 _ ~)~ 
3 - 2 - 2 + 1 3-232+1 

+ 3 log (1 - ~)( 1 - ~) 
13131 3 

= 3 log 4 + 3 log 2" + 3 log 2" + 0 log 0 

~ -0.0959 + 0.1352 + 0.1352 - 0.0000 = 0.1745. 
1 2-1 2-1 

emim:=;+(61, 62) = 1 x log 2 x 2 + (2 - 1) log 2 x (3 _ 2) + (2 - 1) log (3 - 2) x 2 

3-2-2+1 
+ (3 - 2 - 2 + 1) log (3 _ 2) x (3 - 2) 

111 0 
= log 4 + log 2" + log 2" + 0 log "1 
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~ -1.3863 - 0.6931 - 0.6931 - 0.0000 = -2.7725. 

For term t1 and t5, we have F:=:+(td = 2, F:=:+(t5) = 2, F:=:+(h,(s) = 2. Thus, 

_ 2 ~ 2 - 2 232 2 - 2 2-2 
1:=:+(61,65) - -log 22 + --log 2 2 + --log 3 

3 33 3 3(1- 3) 3 (l-~H 
3 - 2 - 2 + 2 3-2-2+2 

+ 3 log ( 2 )3( 2 1 - 3 1 - 3) 
231 

= "3 log "2 + 0 log 0 + 0 log 0 + "3 log 3 

~ 0.2703 - 0.0000 - 0.0000 + 0.3662 = 0.6365 . 

. (£ £) 2 2-2 2-2 
em~m:=:+ U1, U5 = 2 x log -- + (2 - 2) log + (2 - 2) log -:-----

2 x 2 2 x (3 - 2) (3 - 2) x 2 
3-2-2+2 

+ (3 - 2 - 2 + 2) log ( ) ( 3 - 2 x 3 - 2) 

1 
= 2 log "2 + 0 log 0 + 0 log 0 + log 1 

~ -1.3863 - 0.0000 - 0.0000 - 0.0000 = -1.3863. 

Next, for calculating the scores of term t1, we need write out the association set of term 

t1 with query q: 

Thus, from the score function given in Section 7.6, we have 

. = !q(t2)ifdX; (h, t2) + !q(t5)ifdX; (t1' t5) 

1 1 2 ~ 
= 1 x "3 log 2

3
2 + 2 x 3" log 2

3
2 

33 33 
~ 1 x (-0.0959) + 2 x 0.2703 

~ -0.0959 + 0.5406 = 0.4447 > 0.0000. 

score
M2 

(td = L !q(tj) [ifdX; (ti' tj) + ifdX; (ti' tj)] 

(ti,tj h+ E Uti 

~ 0.4447 + !q(t2)ifdX; (t1' t2) + !q(t5)ifdX; (t1' t5) 
3 - 2 - 2 + 1 3-23 2+1 

= 0.4447 + 1 x 3 log (1 _ ~)( 1 - ~) + 

3 - 2 - 2 + 2 3-23
2

+
2 

+ 2 x 3 log (1 _ ~)( 1 - ~) 

~ 0.4447 + 1 x 0.0000 + 2 x 0.3662 

~ 0.4447 + 0.0000 + 0.7324 = 1.1771 > 0.0000. • 
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