
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Abdul-Rahman, Alias (2000) The design and implementation of a two
and three-dimensional triangular irregular network based GIS.

PhD thesis

http://theses.gla.ac.uk/4069/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4069/

The Design and Implementation of a Two and Three-Dimensional
Triangular Irregular Network based GIS

Volume I

Alias Abdul-Rahman

July, 2000

A thesis submitted for the degree of Doctor of Philosophy

UNIVER.SITY
of

GLASGOW

Department of Geography & Topographic Science
University of Glasgow

If the sea were ink
For the words of my Lord,

the sea would be spent
before the Words of my Lord are spent.

Qur' an. The Cave 18:109

In Loving Memory of My Mother
Kalthom Ismail

1985

Abstract

Abdul-Rahman, A. (2000). The design and implementation of a two and three-dimensional

triangular irregular network based GIS. PhD Thesis

Keywords: spatial data (2D, 3D), data representations, object-oriented (00) or object

orientation, distance transformation (DT), Voronoi tessellations, Delaunay triangulation,

triangular irregular network (2D TIN), 3D TIN or tetrahedral network (TEN),

algorithms, data structures, data modelling, database, GIS (2D, 3D), 00 GIS, TIN-based

GIS, display user interface.

It has long been realised in the GIS community that most 2D GISs are capable of

handling 2D spatial data efficiently, but systems have had less success with 3D spatial

data. This is reflected in the current GIS market place where systems which can handle

3D data are hardly available - due to several impediments in implementing such

systems. This thesis attempts to address some of the impediments. The impediments

which relate to spatial data especially data representation, data structuring and data

modelling using object-oriented (00) techniques are the foci of this thesis. 00

techniques are utilized because they offer several advantages over the traditional (i.e.

structural) techniques in software development. In the aspect of spatial representation,

several major representations are investigated, which then lead to identifying an

appropriate representation both for 2D and 3D data, that is triangular irregular network

(TIN) data structures. 2D data is represented by a 2D TIN, and 3D data is represented

by a 3D TIN (also called a tetrahedral network or TEN). Several algorithms were

developed for the construction of the data structures where procedures such as distance

transformation (DT) and Voronoi tessellations were utilized. Besides standard Delaunay

triangulations, constrained triangulations were also developed, thus the inclusion of

real world objects in the spatial data modelling can be facilitated. Four classes of real

Abstract

world objects are identified (i.e., point, line, surface, and solid objects). For the purpose

of spatial data modelling of the four types of objects, a formal data structure (FDS) is

utilized. An 00 database development is also investigated. This is done via a

commercial system called POET 00 DBMS where spatial data query and retrieval can

be performed. Further, two application programs are developed, namely contouring

and volume computation. All the developed algorithms and methods were tested using

real data sets. To facilitate the output of the developed methods and algorithms,

software called TinSojt, which is a Windows-based Multiple Document Interface

software was developed in this research.

ii

Preface

This thesis is about the design and implementation of GIS using two types of data

structures, namely 2D TIN and 3D TIN (or TEN). This research work is in two volumes,

Volume I covers eight chapters reports on the research, while Volume II present the

software code developed in this work.

The relationships of this work with the existing knowledge in the universal GIS domain

may be summarised as follows (i.e. in terms of originality and derivation). Ideas which

came from literature are categorised as I derived', whereas loriginal' indicates the

contribution of the author.

Chapter 1 Introduction

1.1 Introduction

1.2 Background to the Research Problem

1.3 Research Objectives

1.4 Research Scope

1.5 Research Approach and Methodology

1.6 Structure of the Thesis

1.7 Commercial Tools

1.8 Summary

Chapter 2 An Overview of 3D GIS Development

2.0 Introduction

2.1 GIS Functions

2.23D GIS

2.3 Who needs 3D GIS

2.4 Recent Progress Made on 3D GIS

2.5 Commercial Systems Towards 3D GIS

2.6 Why is 3D GIS Difficult to Realise?

2.7 Discussion

iii

Derived and Original

Derived and Original

Original

Original

Derived and Original

Original

Original

Original

Derived and Original

Derived

Derived and Original

Derived and Original

Derived and Original

Derived

Original

Original

Preface

Chapter 3 2D and 3D Spatial Data Representations

3.1 Introduction

3.2 Classes of Object Representations

3.3 GIS Applicability of the Representations

3.4 The Selection Criteria

3.5 Vector and Raster Representation

3.6 Summary

Derived and Original

Derived and Original

Original

Original

Original

Original

Chapter 4 Fundamental Aspect of Spatial Data Modelling and GIS

4.1 Introduction

4.2 Spatial Data

4.3 Spatial Data Modelling

4.4 Spatial Data Structuring

4.5 Relational Database Model

4.6 Object-Oriented Database Model

4.7 Object-Oriented Subsystems for GIS

4.8 Database Management Systems (DBMS)

4.9 Geographic Information Systems (GIS)

4.10 The 00 TIN GIS

4.11 Summary

Chapter 5 Object Orientation of TIN Spatial Data

Derived and Original

Original

Derived and Original

Original

Derived and Original

Derived and Original

Original

Derived

Derived and Original

Original

Original

5.1 Introduction Derived and Original

5.2 Object-Oriented Concepts Derived and Original

5.3 Object-Oriented TIN Tessellations Original

5.4 Object-oriented TINs Spatial Data Modelling Original

5.5 Object-oriented TIN Spatial Database Dev. Derived and Original

5.6 Object-Oriented TIN-based Subsystems for GIS Original

5.7 Summary Original

iv

Preface

Chapter 6 The Supporting Algorithms

6.1 Introduction

6.2 Distance Transformation

6.3 Voronoi Tessellations

6.4 Triangulations

6.5 Visualization

6.6 3D Distance Transformation

6.7 3D Voronoi Tessellations

6.8 Tetrahedron Network (TEN) Generation

6.9 Constrained Triangulations

6.10 Contouring Algorithm

6.11 Summary

Chapter 7 The Implementation and Test

7.1 The Study Area

7.2 The Interface

7.3 The Triangulations: 2D TIN and 3D TIN

7.4 The Applications

7.5 Height Interpolation for 3D Objects

7.6 Input and Output File Formats

7.7 Discussion

Chapter 8 Conclusions and Future Research

8.1 Summary

8.2 Discussion

8.3 Conclusions

8.4 Future Research

Volume II (for entire sections)

v

Derived and Original

Original

Original

Original

Original

Original

Original

Original

Original

Original

Original

Original

Original

Original

Derived and Original

Original

Original

Original

Original

Original

Original

Original

Original

Acknowledgements

I would like to express my sincere thanks especially to the supervision of Dr. Jane

Drummond who always in position to guide and give advice to the right direction in

pursuing this research work. Contribution from John Shearer is also gratefully

acknowledged especially at the early stage of the work. I must admit that the

knowledge gained from Dr. Ron Poet of the Computer Science Department, Glasgow

University on the subject of object-oriented (00) programming was very invaluable.

He also helped generously on aspects of C++ programming in the first and second year.

Technical advice received from Prasad Jeevanigi of POET.com USA was very helpful.

Hints and advice from Ian Spencer who authored the book called Teach Yourself OWL

Programming in 21 days was also great. To a former colleague at ITC (The

Netherlands), Dr. Morakot Pilouk who is now in ESRI California with whom I

communicated at the early stage of the research especially on the aspect of software

development is gratefully acknowledged.

To other people at the Topographic Science Section of the Geography and Topographic

Science Department such as Anne Dunlop who supplied field survey data sets, Brian

Black and Stephen McGinley who were always there whenever my computer got

trouble are also acknowledged for their excellent IT support. Also, to secretary Amy

McNeill for her excellent job at the department's main office.

Thanks to my current employer, the Universiti Teknologi Malaysia (UTM) who provides

the study leave and all the related fund to carry out this research work in the University

of Glasgow. I also would like to thank my colleague and also friend, Assoc. Prof Ghazali

Desa (my current Head, Department of Geoinformatics at UTM) for his support and

encouragement. The same level of support received from Prof. Dr. Ayob Sharif (Dean

of Faculty) is also acknowledged.

Again, to Dr. Jane Drummond, I greatly owed her marvellous and kindness in all aspect

of life (socially and academically). This in fact, no doubt gives a tremendous strength

to me as well as to my family. Her support for one week accommodation near Loch

Alsh, north-west Scotland in the first year data collection exercise was brilliant. Various

supports from her pushed away the misery of a research period and brought a wee bit

vi

Acknowledgements

of sunshine to our years of wet Glasgow life.

An understanding and continuos support from my family is greatly appreciated

especially my wife, Faridah Mustapha, my three kids, Anwar, Farah, and Diyana and

including my mother-in-law who always spare time with the kids while my wife and

I were at our universities.

Last and not least, the encouragement and prayers to The Almighty (day and night)

from my father back home in Malaysia is touching and wonderful.

To those whose contributions I have neglected to note here from sheer failure of

memory or character, please accept my apologies. lowe you all a great debt.

Alias Abdul-Rahman

rt. July, 2000

vii

Contents

Abstract .. i

Preface ... iii

Acknowledgements .. VI

Contents .. : viii

List of Figures Xlll

List of Tables ... xvii

Acronyms ... xviii

1 Introduction .. 1

1.1 Introduction .. 1

1.2 Background to the Research Problem. .. 3

1.3 Research Objectives .. 4

1.4 Research Scope .. 5

1.5 Research Approach and Methodology .. 5

1.6 Structure of the Thesis .. 7

1.7 Commercial Tools ... 8

1.8 Summary ... 9

2 An Overview of 3D GIS Development 10

2.0 Introduction ... 10

2.1 GIS Functions ... 10

2.2 3D GIS .. 11

2.3 Who needs 3D GIS .. 12

2.4 Recent Progress Made on 3D GIS .. 13

2.5 Commercial Systems and 3D GIS .. 15

2.5.1 ArcView 3D Analyst 15

viii

Contents

2.5.2 Imagine VirtualGIS 16

2.5.3 GeoMedia Terrain 17

2.5.4 P AMAP GIS Topographer 18

2.6 Why is 3D GIS Difficult to Realise? 20

2.7 Discussion ... 20

3 2D and 3D Spatial Data Representations 21

3.1 Introduction ... 21

3.2 Classes of Object Representations 22

3.2.1 Grid ... 23

3.2.2 Shape model. .. 24

3.2.3 Facet model ... 25

3.2.4 Boundary Representation (B-rep) 27

3.2.5 3D Array .. 29

3.2.6 Octree ... 30

3.2.7 Constructive Solid Geometry 32

3.2.8 3D TIN (Tetrahedral network, TEN) 33

3.3 GIS Applicability of the Representations 35

3.4 The Selection Criteria .. 36

3.4.1 Representation of Object Primitives 36

3.4.2 Topology of spatial objects: simplexes and complexes 39

3.5 Vector and Raster Representation 40

3.6 Summary .. 41

4 Fundamental Aspects of Spatial Data Modelling and GIS 43

4.1 Introduction ... 43

4.2 Spatial Data .. 44

4.3 Spatial Data Modelling 44

4.4 Spatial Data Structuring ... 49

4.4.1 Raster structure ... 50

4.4.2 Vector structure .. 51

4.5 Relational Database Model .. 55

4.6 Object-Oriented Database Model 56

4.7 Object-Oriented Subsystems for GIS 57

ix

Contents

4.8 Database Management System (DBMS) .. 58

4.9 Geographic Information System (GIS) 59

4.10 The 00 TIN GIS. .. 61

4.11 Summary ... 63

5 Object-Orientation of TIN Spatial Data 64

5.1 Introduction ... 64

5.2 Object-Oriented Concepts. .. 65

5.2.1 The abstraction mechanisms 65

5.2.2 The programming language. .. 67

5.3 Object-Oriented TIN Tessellations 68

5.3.1 Classes for 2D TIN tessellations. .. 68

5.3.2 Classes for 3D TIN tessellations 71

5.4 Object-Oriented TIN Spatial Data Modelling. .. 72

5.4.1 The class schema .. 72

5.5 Object-Oriented TIN Spatial Database Development 78

5.5.1 The POET 00 DBMS. .. 78

5.5.2 The POET database schema 79

5.5.3 The POET database browser 79

5.5.4 POET database query 80

5.6 Object-Oriented TIN-based Subsystems for GIS .. 81

5.6.1 The subsystems .. 81

5.7 Summary .. 82

6 The Supporting Algorithms 84

6.1 Introduction ... 84

6.2 Distance Transformation. .. 84

6.3 Voronoi Tessellations ... 90

6.4 Triangulations (TINs) ... 95

6.4.1 TINs topological data structuring 100

6.5 Visualization. .. 103

6.6 3D Distance Transformation. .. 103

6.7 3D Voronoi Tessellation .. 108

6.8 Tetrahedron Network (TEN) Generation .. 112

x

Contents

6.9 Constrained Triangulations 114

6.9.1 The line rasterization 115

6.9.2 The construction of the constrained TINs 117

6.10 Contouring Algoritlun .. 121

6.10.1 Data structures for contouring 121

6.10.2 The algorithm .. 123

6.10.3 The contour visualization 125

6.11 Summary .. 126

7 The Implementation and Test 128

7.1 The Study Area. .. 128

7.2 The Interface .. 129

7.2.1 The multiple document interface 129

7.2.2 The single document interface .. 131

7.4 The Applications .. 133

7.4.1 Contouring .. 133

7.4.2 Tetrahedral-based volume 135

7.5 Height Interpolation for 3D Objects 135

7.6 Input and Output File Formats 137

7.7 Discussion .. 137

8 Conclusions and Future Research 139

8.1 Summary .. 139

8.2 Discussion .. 141

8.3 Conclusions ... 144

8.4 Future Research ... 146

References and Bibliography 148

Appendix A 2D and 3D Rasterization 159

Appendix B Class Definitions .. 163

Appendix C Class Definitions for POET Database Schema 181

xi

Contents

Appendix D File Formats .. 187

Appendix E The 3D Raster Image Visualization via A VS™ 191

Appendix F TEN-based Volume 192

Appendix G Class Definitions for MDI Windows Interface 193

Appendix H Curriculum Vitae " 202

Appendix I Additional Papers .. 204

xii

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

list of Figures

Page

The 3D Analyst (shown on top of the extension's box) within Arc View

system ... 16

The VirtualGIS component (shown on top of the Add-on module's

box) in the Imagine system architecture. 17

The Terrain component within the GeoMedia system 18

The Topographer within the P AMAP GIS system 19

The two categories of spatial object representations. 22

Grid representation of surfaces (orthogonal & perspective views). 23

An example surface determination using shape model (after Rongxing

Li, 1994) ... 24

2D TIN model .. 25

An example of terrain points (acquired by ground survey) 27

An example of TINs facet representation of terrain surfaces for points

as depicted in Figure 3.5 27

Planar polygon representation of B-rep 28

Examples of surface-based representations 29

An example of 3D array representation for solid object 30

An example of octree representation of object 31

Simple object from CSG simple primitives solids 32

An example of 3D TIN (TEN) model .. 33

An example of simulated boreholes. .. 34

An example of 3D TIN representation for the boreholes 34

Examples of the volume-based representations. 35

The tetrahedron (3D TIN) primitives. .. 37

Example of simplices (0, 1, 2, and 3 simplex) 40

The spatial data components 44

A typical spatial data 45

TINs representations for spatial objects 46

A spatial model (after Molenaar, 1991) 47

The TIN-based spatial data model (after Fritsch, 1996a) 48

Two geometric structures of spatial objects 50

xiii

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

List of Figures

Page

An example of the pixel locations of the rasterized points and several

edges or arcs. Tables on the right represent the coordinates and the

arc files. .. 51

TIN model with the related topological data (i.e. tables of XYZ, TIN,

and TIN neighbours) 53

The TEN model with two adjacent TENs. 54

Major software components of a GIS (after Burrough and McDonnell,

1998) .. 60

The proposed system for the TIN-based spatial data 62

The classes hierarchy for the 2D and 3D TIN tessellations. 69

The class diagram (using the Booch notation) 73

The POET database development flow .. 79

The POET Developer which was used to develop the TIN 00 database

and support database retrieval(query) 80

The proposed system for the TIN-based spatial data 81

The 2D and 3D TIN tessellations 83

Several kernel points (or object points) 86

The DT image of the several points as shown in Figure 6.1. 86

Masks for the DT operations .. 87

Example of Voronoi polygons represented by several data points (after

Fortune (1992). . .. 90

DT computation and Voronoi image generation during the forward

pass ... 92

DT and Voronoi tessellation parallel computation 93

Several kernel points 94

The generated Voronoi polygons of the points as shown in Figure 6.7

... 94

The rasterised kernel 94

The generated Voronoi polygons of the kernel points. 94

Six non-overlapped triangles of 7points created by the Delaunay

triangulation technique 95

xiv

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 6.17

Figure 6.18

Figure 6.19

Figure 6.20

Figure 6.21

Figure 6.22

Figure 6.23

Figure 6.24

Figure 6.25

Figure 6.26

Figure 6.27

Figure 6.28

Figure 6.29a

Figure 6.29b

Figure 6.29c

Figure 6.29d

Figure 6.30

Figure 6.31

List of Figures

Page

The two possible triangles formation 96

Mask (2 x 2) for TIN topology detection .. 97

Triangle topology detection 98

The Voronoi polygons and its dual product (i.e. the triangles) .. 100

The detected TINs from the Voronoi tessellated image 100

The TIN neighbour data structure 102

The link of XYZ coordinates and the TINs 102

The visualization of TINs generated using digitized contours data sets.

.. 103

The 3-4-5 mask for the 3D DT .. 104

Slice of images (along the Z or level direction) for the 3D DT and 3D

Voronoi tessellation 105

An example of a 3D distance transformation image of four points

shown as a cross-section of a 3D space (visualized via the A VS

software) ... 106

An example of 3D Voronoi tessellation of four points shown as a cross-

section of 3D space (visualized via the AVS software) 109

The six non-overlapping TENs .. 112

TEN data structure .. 113

An example of TEN visualization 114

Screen shot of the rasterised nodes and arcs (Note: the nodes

purposely made bigger to show the location of the nodes) 116

An example of the pixel locations of the rasterised points and several

edges or arcs. The left side is the corresponding coordinates and arc

files .. 117

The DT image of the rasterised kernel points. 118

The Voronoi image for the kernel points of Figure 6.29a 118

The DT image with the edges and points 118

The Voronoi image of the corresponding edges and points of Figure

6.29c .. 118

The generated unconstrained triangulation 119

The generated constrained triangulation 119

xv

Figure 6.32

Figure 6.33

Figure 6.34

Figure 6.35

Figure 6.36

Figure 6.37

Figure 6.38

Figure 6.39

Figure 6.40

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5a

Figure 7.5b

Figure 7.6a

Figure 7.6b

Figure 7.6c

Figure 7.7

Figure 7.8

List of Figures

Page

The rasterised points and lines .. 120

The DT image of the area. 120

The Voronoi image .. 120

The generated TINs 120

An example of 6 TINs with 7 nodes, and 12 sides or edges 121

The TRS and SID structure 123

An example of contours with 35 m interval using 6 TINs with 7 nodes,

and 12 sides or edges 124

The generated contours from the simulated datasets (6 TINs) .. 126

The generated contours of 4-m interval using photogrammetrically

datasets (Drumbuie, Kyle of Lochalsh, north-west Scotland) ... 126

The study area (orthophoto image) from which points and lines were

extracted using 3D digitizing (with stereo mate) 129

An example of the MDI of the TinSoft program. The left view shows

the triangles and the derived contours of digitized datasets; the right

view only illustrates the triangles using simulated data. 130

An example of the SDI interface for 3D viewing (perspective). It shows

the triangles, 3D objects (buildings, trees), linear features, and derived

contours draped on top of the TIN surface. 131

An example of the MDI interface of the 2D TIN for the three data sets

(photogrammetrically, digitized contours, and field survey). . .. 132

An example of the SDI interface of the simulated boreholes ... 133

Another example of the SDI interface of the simulated boreholes with

different direction of perspective view 133

Contours of 4-m interval 134

Contours of 5-m interval 134

Contours of 10-m interval 134

Point-in-triangle test and height interpolation for building roof points

.. 135

Some examples of TINs with the generated derived contours at

different intervals. .. 138

xvi

List of Tables

Table 1 Software documentation 144

xvii

O-D O-dimensional

1-D 1-dimensional

2-D 2-dimensional

3-D 3-dimensional

GIS Geographical Information Systems

2D GIS 2-dimensional Geographical Information Systems

3D GIS 3-dimensional Geographical Information Systems

B-rep Boundary Representation

Acronyms

CAD / CAM Computer Aided Design/ Computer Aided Manufacturing

CSG Constructive Solid Geometry

DT Distance Transformation

DTM Digital Terrain Modelling

FDS Formal Data Structure

ID Identifier

MDI Multiple Document Interface

00 Object-Oriented/ Object Orientation

00 DBMS Object-Oriented Database Management System

xviii

OQL

OWL

PC

POET

SDI

SQL

TEN

TIN

Acronyms

Object Query Language

Object Windows Library

Personal Computer

Persistent and Obje~t Extended Technology

Single Document Interface

Structured Query Language

Tetrahedral Network

Triangular Irregular Network

xix

Chapter 1

Introduction

1.1 Introduction

Geographical Information Systems (GISs) represent a powerful tool for capturing,

storing, manipulating, and analysing geographic data. This tool is being used by

various geo-related professionals, for example surveyors, cartographers,

photogrammetrists, civil engineers, physical planners, rural developers, geologists, etc.

They use the tool for analysing, interpreting, and representing the real world and

understanding the behaviour of the spatial phenomena under their respective

jurisdictions. Almost all of the systems used by the geoinformation community to date

are based on two-dimensional (2D) or two-and a half-dimensional (2.5D) spatial data.

In other words, one may find difficulty processing and manipulating spatial data of

greater dimension than 2 in the existing systems, resulting in inaccurate or at least very

incomplete information. Furthermore, manipulating and representing real world objects

in 2D GIS with relational databases are no longer adequate because new applications

demand and increasingly deal with more complex hierarchical spatial data than

supported by the relational model. It has been suggested in the literature that the

abstraction of complex spatial data could be handled more effectively in an object­

oriented rather than in a relational database environment (Egenhofer and Frank, 1989;

and Worboys, 1995).

The limitations of the current 2D GISs, especially in geoscience, have been reported in

the literature by such as Jones (1989), Raper and Kelk (1991), Rongxing Li (1994),

Houlding (1994), Bonham-Carter (1996), and Wei Guo (1996). The limitations mentioned

relate to data dimensionality and data structures. Single valued z-coordinate data such

as a point (x, y coordinates) with the z-coordinate representing height presents no data

1

Chapter 1 Introduction

handling difficulty in such systems, but it is inadequate for data with multiple z-values

(Bonham-Carter, 1996; and Raper and Kelk, 1991) such as ore bodies and other

important three-dimensional real world entities. A major impediment to establishing

3D GISs is associated with inappropriate spatial data structures, as reported in the Jones

(1989) and Rongxing Li's (1994) papers. These two authors have proposed voxel data

structures for 3D data as a solution to the data structuring problem, but no real

operational system was developed based on the structure. The problem has also been

highlighted in the geological field as reported by Houlding (1994). True representations

of spatial information, for example sub-surface 3D objects, could not be successfully

achieved with 2D systems. 3D visualisation tools alone (for example Advanced

Visualization System (AVS), Voxel Analyst from Intergraph and other Digital Terrain

Model (DTM) packages) were not able to truly manage such data as demanded. For

example Wei Guo (1996) experimented with the 3D modelling of buildings by using

Molenaar's (1992) formal data structure in the relational database environment together

with AutoCad as a 3D visualization tool; AutoCad was used to generate the building

models. In the literature, a common suggestion has been that the existing GISs were

able to handle most of the 2D spatial data, but had difficulty in handling 3D spatial data

and beyond, therefore, an extension of the existing systems to at least a third-dimension

(3D) is one of the solutions suggested by GIS researchers.

Another observation is that the literature cites no implemented work on three­

dimensional GIS coupled with object-oriented technology; given that the weakness of

conventional off-the-shelf 2D or 2.5D GISs are revealed when three-dimensional real

world entities are considered, it is surprising that object-orientation and three­

dimensionality have not apparently been jointly considered. Some work has focussed

on the 3D issue, e.g. Fritsch and Schmidt (1995), Kraus (1995), Pilouk (1996), and Fritsch

(1996a). But all of these attempts were based on the relational database environment.

Therefore, this research looks at both 2D and 3D spatial data modelling and the

development of a geoinformation system using an object-oriented technology to attempt

2

Chapter 1 Introduction

to solve the 3D problem in the GIS environment.

The key foci of this research are 2D and 3D spatial data, spatial data modelling, spatial

data construction, databasing, and object orientation converging to a 3D object-oriented

GIS.

1.2 Background to the Research Problem

In geomatics we consider real world objects to exist in 3D, so it is desirable to have a

system which is able to store, handle, manipulate, and analyse objects in the 3D

environment. As mentioned in the previous section, current popular GIS software

handles, manipulates, and analyses geographic data in 2D or 2.5D, thus if we use this

kind of system to manipulate our 3D data full (particularly multiple Z coordinates)

information about the objects cannot be achieved. Therefore 2D GIS (or 2.5D GIS) needs

to be extended, i.e. to 3D GIS. Only within the last decade, has 3D GIS begun to be

discussed in the GIS research community (Raper and Kelk, 1991; and Rongxing Li, 1994).

It seems the development of this particular GIS approach has been relatively slow due

to a lack of proper spatial data models and data structures, and a lack of a

comprehensive theory of object relationships and data basing for the 3D environment

(Wei Guo, 1996). As implied attempts have been made to develop 3D GIS; the attempts

can be found in Rongxing Li et al. (1996), Pilouk (1996), and Qingquan Li and Deren Li

(1996). The two Lis used an octree approach for 3D subsurface geological modelling,

Pilouk used a 3D TIN approach for regular features on the terrain, and a combination

of octree/tetrahedron was also proposed by Qingquan Li and Deren Li (1996). Others

used Constructive Solid Geometry (CSG) and Boundary-representation (B-rep)

approaches (Cambray, 1993; Cambray and Yeh, 1994; Brie, 1993; Bric et aI, 1994; and

Zeitouni and Cambray, 1995). All of this work was based on regularly shaped objects,

which were man-made, and relational data basing. On the other hand, there appears

very little published work on the modelling of 3D objects including natural objects, e.g.

forests, plants, water bodies, and other natural subsurface features using the object-

3

Chapter 1 Introduction

oriented (00) approach. Recent research (Rongxing Li, 1994; and more recently Fritsch,

1996b) in this domain has suggested that 3D spatial data modelling, structuring and

data basing with object-orientation leads to better 3D GIS. This suggestion seems mainly

to arise from the complexity of 3D spatial data, as well as some positive features of

object-orientation where every physical or spatial object of the real world can be defined

during software development. It therefore seems imperative to investigate the

practicality of a means to improve, in 3D, the representation of natural objects and to

manage them in an object-Oriented GIS.

1.3 Research Objectives

Based on the foregoing, the objectives of the research reported in this thesis have been

to:

• Review various methods of 3D object representation.

• classify the methods of representation,

• develop criteria for choosing the most appropriate representation,

• based on developed criteria, assess representations with regard to objects

in the natural environment and choose the most appropriate.

• Develop the means to incorporate widely available digital data (2D data, DTM data,

borehole data and 3D photogrammetric data) into the representations.

.• Develop algorithms and implement the chosen representations of 2D and 3D spatial

objects for geospatial databases in the object-oriented environment.

• Develop example GIS applications (e.g. query, display and terrain analysis

programs).

• Test and assess the adapted approaches of representation and present them using

an appropriate object-oriented graphical user interface.

4

Chapter 1 Introduction

1.4 Research Scope

The main intentions of this research are to carry out an investigation of 2D and 3D

spatial data representation, to develop a geoinformation system based on the most

appropriate spatial data representation and to execute some GIS tasks and functions.

The study includes spatial data modelling and data structuring for terrain features. The

research also looks into the use of object-orientation technology for the data modelling

and geospatial databasing. Specifically, it focuses on the development of a system based

on triangular and tetrahedral data structures or 2D and 3D TIN (or TEN) data structures

(in this thesis, the term 3D TIN and TEN are used interchangeably). The approaches are

tested through a software package developed in this research, but also some aspects of

object-oriented databasing utilising a commercial object-oriented database management

system (OODBMS), called POET are investigated.

Furthermore, besides using simulated data, an attempt is also made to incorporate real

data in very commonly available digital forms, namely:

i) 2D data + heights (i.e., 2.5D), and

ii) 3D photogrammetric digitised data.

This research does not develop a fully operational 3D GIS system; it is not an intention

of this study to deal with and develop a full range of GIS operations such as data

capture, data input, data manipulation, databasing, and visualization. What is intended

is to find an appropriate 3D data model for natural and man made real world entities

and to propose a GIS environment which accesses that model. Thus, as can be read in

section 8.4 (Future Research) it is hoped that the way is now well paved for future

developments towards effective 3D object-oriented GIS.

1.5 Research Approach and Methodology

This research follows a top down view of the GIS software construction. It begins by

investigating the relevant 2D and 3D spatial object representations and then pursues

5

Chapter 1 Introduction

implementation of the spatial GIS concepts, including data modelling and construction

of the models. This utilises object-oriented technology.

The framework of this research follows:

• A review of 3D GIS development including systems offered by major GIS

vendors.

• A review of 3D object representations presented in the literature.

The representations of the objects are then classified.

• For each selected representation, an investigation of how it can

represent the spatial object primitives point, line, surface, and solid

features.

• A review of 00 concepts and important terms such as

encapsulation, inheritance, abstract data type, and polymorphism.

• An investigation of how 00 concepts and the chosen 3D object

representations can be fused to represent 3D spatial data.

• A development of computer programs for structuring each chosen

representation. The programs will be used to establish basic data

structures and also relationships between the primitives (i.e.

topology) of the data sets. Some supporting computer programs,

for example display programs, will be developed.

• A translation of the chosen 3D object representations into the

object-oriented environment.

Populating the databases by incorporating existing 2D data, and

3D data, e.g. digitized contours and photogrammetric datasets.

• Developing some GIS application programs by using an available

C++ programming language and 00 database management

software.

Developing the means to test the applicability of the populated

database.

6

Chapter 1 Introduction

• Testing the developed computer programs by using the test area

data sets and perform some fundamental GIS operations such as

database retrieval (i.e. queries) and display.

1.6 Structure of the Thesis

This thesis consists of eight chapters based on the above proposed research framework.

Chapter 1, as being discussed, highlights the research problem, research objectives, scope

of the research, research approach and methodology and the thesis structure. It

introduces the 'what' and 'why' of the research.

Chapter 2, overviews the development of 3D GIS. This includes a discussion of the needs

of such a system. This chapter is devoted to a discussion of previous work on the

problem, and how this research contributes to the whole problem domain.

Chapter 3, discusses technical aspects of spatial data. Two-dimensional (2D) and three­

dimensional (3D) models of spatial data representations such as vector, raster, surface­

based, and volume based are discussed where 2D and 3D Triangular Irregular Network

(TIN) structures are discussed in greater detail.

Chapter 4, discusses spatial data modelling and GIS. The contribution of fundamental

and conceptual aspects of data modelling towards geo information system development

is the focus of this chapter. Discussions on data models, modelling steps such as

conceptual, logical, and physical spatial data modelling are included. Two pertinent

spatial database schemas for spatial data, i.e. relational, and object-oriented are

described.

Chapter 5, presents the development of an 00 TIN-based data model. The chapter

begins with the 00 basic concepts, the use of 00 for the TIN spatial data modelling.

7

Chapter 1 Introduction

00 database development is also discussed.

Chapter 6, presents major algorithm developments for the construction of 2D and 3D TIN

data structures. The algorithms cover several tasks, such as Distance Transformation

(DT), Voronoi Tessellations, and triangulation data structuring tasks. This chapter also

covers the development of other tasks, particularly GIS applications.

Chapter 7, presents the implementation of the proposed approaches. All the tests of the

algorithms and the computer programs developed in the research are carried out using

a data set of the study area. This includes the development of the user interface, and the

application of the approaches.

Chapter 8, concludes and summarises the findings of the research. Some suggestions for

further improvement to the investigated issues and problems in this research are

highlighted.

1.7 Commercial Tools

The following summarises the commercial software used in this work. These are used

mainly for the purpose of visualising the output of the computation involved.

• ILWIS version 2.2, is a desk-top based raster and vector GIS/Remote Sensing

software developed by ITC (The Netherlands). It is worth mentioning that now

it is being marketed jointly by PCI Geomatic Inc. company. A raster image

display module helps to display generated raster files developed in this work.

Chapter 6 elaborates the use of this display routine.

• AVS Release 4.1, is a general purpose 3D visualization package developed by

Advanced Visualisation Sytems Ltd (the U.K). It is a multi-platform system. It

can be used to display 3D raster files. Chapter 6 elaborates the use of this display

8

Chapter 1 Introduction

routine.

• PO ET, is an 00 DBMS package which runs under Windows95 operating system.

It is used for an object database development. Chapter 5 elaborates the use of this

tool.

• Borland C++ 5.0, is a C++ programming compiler used for the development of all

software developed in this work.

1.8 Summary

This research proposes an 00 approach to represent, model, construct and manipulate

2D and 3D spatial terrain objects within a geoinformation system. The following

outcomes may be considered the main contribution of this research to GIS knowledge:

• Defining a suitable structure for representing 2D and 3D spatial terrain and

subsurface objects in a geoinformation system.

• Developing and implementing algorithms for 2D Triangular Irregular Networks

(TINs) and 3D TIN (or Tetrahedral Networks or TENs) with an extension for

constrained triangulations so that terrain features such as lines (i.e. arcs or edges),

and polygons can be handled in the system developed in this research.

• Designing and implementing object-oriented TIN-based spatial data models for

the proposed subsystems of a geoinformation system.

• Implementing an object-oriented TIN-based spatial data model with a

commercial 00 DBMS package.

• Validating all the developed algorithms and other GIS tasks and applications by

the development of a software package in a multiple document interface (MDI)

windows environment.

9

Chapter 2

An Overview of 3D GIS Development

2.0 Introduction

In the previous introductory chapter,'the importance and some of the problems of 3D

spatial data modelling, developing an information system based on the 3D spatial data

have been introduced. In this chapter, further discussions of several types of two­

dimensional (2D) GIS systems which are related to the development of 3D GIS will be

conducted. Some well established systems which are currently available in the market

are also reviewed. Since data structures, data modelling and database management are

important aspects of system development, all the discussions and the system overview

will focus on these. A discussion on major GIS functions follows.

2.1 GIS Functions

Any GIS system should be able to provide information about geospatial phenomena.

Principally, the following tasks represent some functions of a GIS system. The tasks or

the functions of a GIS (Raper and Maguire, 1992) are: (1) capture, (2) structuring, (3)

manipulation, (4) analysis, and (5) presentation, and can be summarised as follows.

• Capture is inputting spatial data to the system. Many different techniques and

devices are available for both geometric and attribute data. The devices in

frequent use for collecting spatial data can be classified as manual, semiautomatic

or automatic and the output either vector or raster format. Detailed discussion

on data capture is not covered here.

• Structuring is a crucial stage in creating a spatial database using a GIS. This is

because it determines the range of functions which can be used for manipulation

and analysis. Different system may have different structuring capabilities

10

Chapter 2 An Overview of 3D GIS Development

(simple or complex topology, relational or object-oriented).

• Manipulation, among important manipulation operations are generalisation and

transformation. Generalisation is applied for smoothing spatial data and

includes line simplification, etc. Transformation includes coordinate

transformation to a specified map projection and scaling, etc.

• Analysis, is the core of a GIS system. It involves metric and topological

operations on geometric and attribute data. Primarily, analysis in GIS concerns

operations on more than one set of data which generates new spatial information

on the data. Terrain analYSis (e.g. intervisibility), geometric computations

(volume, area, etc), overlay, buffering, zoning are among typical analysis

functions in GIS.

• Presentation, is a final task in GIS. That is to present all the generated information

or results such as in the form of maps, graphs, tables, reports, etc.

Ideally, a 3D GIS should have the same functions as 2D GIS. However, such 3D systems

are not available due to several impediments, as discussed in this chapter.

2.2 3D GIS

In this section, some problems and related issues in 3D GIS software development are

reviewed and discussed. Firstly, what is 3D GIS? This type of system should be able to

model, represent, manage, manipulate, analyse and support decisions based upon

information associated with three-dimensional phenomena (Worboys, 1995). The

definition of 3D GIS is very much the same as for 2D system. In GIS, 2D systems are

common, widely used and able to handle most of the GIS tasks efficiently. The same

kind of system may not be able to handle 3D data if more advanced 3D applications are

demanded (Raper and Kelk, 1991; Rongxing Li, 1994) - such as representing the full

11

Chapter 2 An Overview of 3D GIS Development

length, width and nature of a borehole (some examples of 3D applications areas are

listed in section 2.3). 3D GIS very much needs to generate information from such 3D

data. Such a system is not just a simple extension by another dimension (i.e. the 3rd

dimension) on to 2D GIS. To add this third dimension into existing 2D GIS needs a

thorough investigation of many aspects of GIS including a different concept of

modelling, representations and aspects of data structuring. Existing GIS packages are

widely used and understood for handling, storing, manipulating and analysing 2D

spatial data. Their capability and performance for 2D and for 2.5D data (that is also

DTM) is generally accepted by the GIS community. A GIS package which can handle

and manipulate 2D data and DTM cannot be considered as a 3D GIS system because

DTM data is not real 3D spatial data. The third dimension of the DTM data only

provides (often after interpolation) a surface attribute to features whose coordinates

consist only of planimetric data or x, y coordinates. GIS software handling real 3D

spatial data is rarely found. Although the problem has been addressed (as mentioned

in Chapter 1) by several researchers such as Raper and Kelk (1991), Cambray (1993),

Rongxing Li (1994), Pilouk (1996), and Fritsch (1996a), some further aspects particularly

spatial data modelling using 00 techniques need to be investigated. This modelling

issue is addressed in Chapter 4. The demand (or the need) for this kind of system is

discussed in the next section.

2.3 Who needs 3D GIS

As in the popular 2D GIS for 2D spatial data, 3D GIS is for managing 3D spatial data.

Raper and Kelk (1991), Rongxing Li (1994), Forstner (1995), and Bonham-Carter (1996)

present some of the three dimensional application areas in GIS, including:

.. ecological studies

.. environmental monitoring

.. geological analysis

.. civil engineering

12

.. mining exploration

.. architecture

.. automatic vehicle navigation

.. 3D urban mapping

Chapter 2 An Overview of 3D GIS Development

• landscape planning • archeology

The above applications may produce much more useful information if they were

handled in a 3D spatial system, but it appears that 3D spatial objects on the surface and

subsurface demand more complex solutions (e.g. in terms of modelling, analysis, and

visualization) than the existing systems can offer.

Another possible application of 3D GIS analysis is for the marine biologist. 3D survey

systems, in the form of multi-beam echosounders can be used to detect and locate sea­

bed surfaces, and underwater objects such as fish shoals and vegetation clusters. This

detection cannot be carried out simultaneously but the resulting 3D data could be stored

in a GIS. 3D overlay analysis (if it existed) would be, e.g. for a marine biologist, whether

the fish shoal was above, below or within the vegetation cluster. 2D overlay analysis

could not distinguish between these positions, while at the same time retaining the

concept of the fish shoal or vegetation cluster as specific objects.

The next section reviews the modelling and data structure research carried out in the

GIS research community towards the development of 3D GIS. This will be followed by

consideration of the offerings from major representatives of the GIS commercial sector.

2.4 Recent Progress Made on 3D GIS

Some recent research efforts by the GIS community has focussed on how to develop 3D

systems; data structures and data models are major aspects of GIS system development.

These efforts are summarised below.

Much previous work done on 3D data modelling concentrated on the use of voxel data

structures (Jones, 1989). This particular approach does not address spatial modelling

aspects (that is also topological aspect of the data), it is only useful for the reconstruction

13

Chapter 2 An Overview of 3D GIS Development

of 3D solid objects and for some basic geometric computations. Another of the problems

with this data model is that it needs very large computer space and memory.

Carlson (1987) proposed a model called the simplicial complex. He used the term 0-

simplex, I-simplex, 2-simplex, and 3-simplex to denominate spatial objects of node, line,

surface, and volume. His model can be extended to n-dimensions.

Cambray (1993) proposed CAD models for 3D objects combined with DTM as a way to

create 3D GIS, that is a combination of Constructive Solid Geometry (CSG) and

Boundary representation (B-rep).

Other attempts to develop 3D GIS can be found in Kraus (1995), Fritsch and Schmidt

(1995), and Pilouk (1996). These attempts were based on the TIN data structure to

represent 3D terrain objects but no reports exist on the any related aspects of using 00

techniques for modelling and data structure.

Data modelling and structuring of 3D spatial objects in GIS has not been as successfully

achieved as in CAD (Rongxing Li, 1994). Data modelling in GIS is not only concerned

with the geometric and attribute aspects of the data, but also the topological

relationships of the data. The topology of spatial data must be available so that the

neighbours and connectedness of objects can be determined. There are a number of

mathematical possibilities for the determination of the topolOgical description of objects.

Within the TIN approach developed in this research determination of the neighbouring

triangles has been developed. The information gained from the generated TIN

neighbours is useful for further spatial analysis and applications. Topological

relationships for linear objects as represented by TIN edges can be established. One

edge is represented by a start node and an end node. From this edge topology, a chain

of edges or arcs could be easily established. For TIN data, another approach is the

simplicial complex developed by Carlson. A TIN's node is equivalent to O-simplex,

14

Chapter 2 An Overview of 3D GIS Development

TIN's edge is equivalent to 1-simplex, a TIN surface (area) is equal to 2-simplex, and 3-

simplex is equivalent to a 3D TIN (tetrahedron). The simplicial complex technique

checks the consistency of generated TIN structures by Euler's equality formulae, see

Carlson (1987) for a detailed discussion. An 00 TIN approach is described in Chapter

4.

2.5 Commercial Systems and 3D GIS

There are few systems available in the market which can be categorised as a system

which attempts to provide a solution for 3D representation and analysis. Four systems

are chosen for detailed consideration. They were chosen because they constitute a large

share of the GIS market and provide some 3D data processing functions. The systems

are the 3D Analyst of ArcView (from Environmental System Research Institute or ESRI

Inc.), Imagine VirtualGIS (from ERDAS Inc.), GeoMedia Terrain from Intergraph Inc.

and PAMAP GIS Topographer. The following review is based on available literature

and Web-based product reviews.

2.5.1 ArcView 3D Analyst

The 3D Analyst (3DA) is one of the modules available in ArcView GIS. In ArcView

these modules are known as extensions. The system's extensions and the main GIS

module, that is ArcView itself, is shown in Figure 2.1. ArcView is designed to provide

stand alone and corporate wide (using client-server network connectivity) integration

of spatial data (Maguire, 1999). The 3DA can be used to manipulate 3D data such as 3D

surface generation, volume computation, draping for other raster images (such Landsat

TM, SPOT, GeoSPOTV images, aerial photos or scanned maps), and other 3D surface

analysis functions such as terrain intervisibility from one point to another (ESRI, 1997).

15

Chapter 2 An Overview of 3D GIS Development

r---
1
1 GIS

1 Functions

1'-------'
I 1
I I
I I
I Spatial 1

I Core system : L _____________ _

-Spatial Analyst

Image Analysis I
Tracking Analyst I

ntemet Map Server

Business Analyst

Network Analyst

Street Map

Street Map 2000

ArcPress

Extensions

Figure 2.1 The 3D Analyst (shown on top of the extension's box)
within ArcView system.

The system runs mainly on personal computers and accepts several operating system

such Windows 95/98/2000 and Windows NT 4.0 as well as wide range of UNIX

platforms (ESRI, 2000). The system works mainly with vector data. Although raster

files can be incorporated into 3DA, but only for improving the display of vector data

(e.g. by draping vector data with aerial photo images). (In this particular system, raster

files are used to enhance the vector data.)

In summary 3DA can be used to manipulate 3D data especially for visualization

purposes. Thus, ArcView is very much a 2D GIS system, but 3DA supplies 3D

visualization and display (e.g. of data with x, y,z coordinates). 3D GIS analysis is not

achieved. It is worth noting that 3DA supports the triangular irregular network (TIN)

data structure.

2.5.2 Imagine VirtualGIS

It is worth mentioning that the Imagine system was originally developed for remote

sensing and image processing tasks. Recently, the system has provided a module for

16

Chapter 2 An Overview of 3D GIS Development

GIS. The Imagine system is one of the GIS solutions developed by ERDAS Inc (ERDAS,

2000). The GIS module is called VirtuaIGIS. It is a module that provides three­

dimensional visual analysis tools. The system runs under various computer systems

ranging from personal computers to workstations such as DEC computers, IBM personal

computers, Hewlett Packard, SunSparc and IBM RISC machines. Currently the system

works with operating systems such as Windows98j2000, Windows NT and various

UNIX systems. It is a system which has an emphasis on dynamic visualisation and real­

time display in the 3D display environment. Besides various and extensive 3-D

visualizations, the system also provides fly -through capabilities (Limp, 1999). Figure 2.2

shows the system overview of the VirtualGIS with its core Imagine system.

r
1.--__ ---,
I
I
I
I Image
I Core system

I
Processing

I Spatial

I Database I
I I

Vector

NITF

I ATCOR21
~ _____________ ...J

Add-on Module

Figure 2.2 The VirtualGIS component (shown on top of the Add­
on module's box) in the Imagine system architecture.

As with 3DA this system also centres around 3D visualization with true 3D GIS

functions hardly available.

2.5.3 GeoMedia Terrain

GeoMedia Terrain is one of the subsystems that work under the GeoMedia GIS system

17

Chapter 2 An Overview of 3D GIS Development

developed by Integraph Inc. The system runs under the Windows operating systems

(including NT 4.0 system). The Terrain system performs three major terrain tasks,

namely, terrain analysis, terrain model generations, and fly-through (Integraph, 2000).

In general the Terrain serves as DTM module for the GeoMedia GIS as with the other

systems mentioned in the previous sections where true 3D GIS capabilities are hardly

offered by software vendors. Figure 2.3 shows the Terrain subsystem within the

GeoMedia core system.

r-----
1.....------.
I
1 GIS

I Functions

I
I
1'--------

I Spatial
1 Core system 0 tab

a ase I
I I L _____________ ...l

Add-on Module

Figure 2.3 The Terrain component within the GeoMedia system.

2.5.4 PAMAP GIS Topographer

This GIS system is one of PCI Geomatics Inc.' s products. It runs under Windows95/ 98

and NT operating systems. P AMAP GIS is a raster and vector system (Geomatics, 2000).

Besides its 2D GIS functions, the system has a module for handling 3D data, called

Topographer as in Figure 2.4. Four main GIS modules are offered, they are Mapper,

Modeller, Networker and Analyser which form the core system. For 2D data handling,

the system performs GIS tasks as in the systems mentioned earlier. For 3D data, most

of the 3D functions in the Topographer work as by any DTM packages, for example

terrain surface generation, terrain surfaces analysis (e.g. calculation of area, volume) and

18

Chapter 2 An Overview of 3D GIS Development

3D visualisation (such as perspective viewing). This system also has no solution for 3D

GIS such as 3D overlay.

r--------------
: I Mapper I
I I Modeller I
I
I I Networked

I I Analyser I Spatial
I Database I
I Core system I L- ____________ _

TQPographer
,>''':' ,', i ,

Figure 2.4 The Topographer within the PAMAP GIS system

In summary, all the systems revealed little provision of 3D GIS functionality but most

of them can handle 3D data efficiently in the aspect of 3D visualization. A fully

integrated 3D GIS solution has yet to be offered by any general purpose GIS vendor.

There are a few prototype 3D GIS systems and one of them is developed by the

Fraunhofer Institute (Germany). This system utilises a CAD modeller which can

generate 3D objects (such as buildings) on top of the terrain (Rimscha, 1997). Another

prototype system which was developed by an Austrian company Grintec has tested the

system within urban objects. The system, called GO-3DM also used CAD and DTM for

the management of the city of Graz's 3D objects (mainly buildings) as reported by

Rimscha. Despite some exciting developments in 3D visualization and the possibility

of incorporating them within GIS, true 3D GIS solutions remain to be realised. This

indicates that 3D GIS has far from arrived and needs further investigation.

19

Chapter 2 An Overview of 3D GIS Development

2.6 Why is 3D GIS Difficult to Realise?

The difficulties in realising 3D GIS or 3D geo-spatial systems result from:

• Data structures: although there are several data structures available for the 2.5 D

and 3D data, each of them has its own strong and weak points in representing

spatial objects; and

• Data models: spatial data can be modelled in different ways. Any spatial data

model should be able to describe relationships between data in such a way that

topological information can be generated from them.

This thesis attempts to address these two major issues by investigating the possible uses

of several data structures (including some 2D structures), the construction of these data

structures, the utilisation of these structures in spatial modelling, the development of

a database from the spatial data and the implementation of them in the form of a

software package which can be seen as a component of GIS.

2.7 Discussion

From the foregoing discussions the problem of data structuring and data modelling for

3D data in analytical GIS environment remains unsolved. The only near solutions

offered concentrate on the visualisation aspect as indicated in section 2.4. This gap in

GIS functionality needs to be investigated. The effort carried out in this research work

focuses on spatial data structuring and data modelling with emphasis on developing

software which will contribute towards 3D GIS. To do this, several existing pertinent

data structures are investigated which can handle 2D as well as 3D data. This effort is

realised in the form of software development which covers aspects of data structuring,

relevant algorithms' development, data modelling using object-oriented techniques and

a simple front-end 00 interface.

These are elaborated and implemented in the following six chapters.

20

Chapter 3

20 and 3D Spatial Data Representations

In the geoinformation domain, two-dimensional (2D) and three-dimensional (3D) spatial

data are commonly available. There is no doubt that 2D data are utilised much more

than 3D. This situation is attributable to several factors including difficulty in 3D data

structuring - particularly topological data structuring (Raper, 1992; and Rongxing Li,

1994). These problems need to be investigated so that it can be seen how feasible it is to

have a system capable of handling both 2D and 3D data types. This chapter focusses on

the subject of spatial data representation in an attemptto contribute to an understanding

of how spatial data could be utilised for a geoinformation system. The chapter's aim is

to review some of the pertinent spatial data representations and adopt suitable

structures for a geoinformation system capable of handling 2D and 3D spatial data.

3.1 Introduction

Geospatial data can be represented in three clearly distinct Euclidean dimensional

contexts: 2D defines location by measurements on the XY axes; 2.5D defines location in

2D space with a dimensional attribute value attached to the XY location; for instance

elevation above datum (Z coordinate) may act as the attribute value; 3D defines location

extending through 3D space described by X, Y, and Z axes (Raper, 1992). These

locations position real-world spatial objects which could be regular or irregular in shape.

Man-made objects, e.g. buildings are examples of regular objects. Terrain surfaces,

forests, sea floors, trees and vegetation clusters are examples of irregular objects. All of

these real world objects are three-dimensional (3D). How can we retrieve elegantly

these 3D objects from a system where information regarding the state, behaviour and

the topological relationships of the objects with their neighbours are represented? No

straightforward answer to this question exists. In GIS, spatial objects are represented

in the form of points, lines, and surfaces. These primitives work well for two-

21

Chapter 3 2D and 3D Spatial Data Representations

dimensional (2D) objects as described by Peucker and Chrisman (1975), but these

authors did not consider 3D objects at all. As the demand from GIS applications in the

3D environment is increasing, the basic forms (e.g. single z-value for an xy location) of

data representation are no longer adequate (Raper and Kelk, 1991). As a result, work

has emerged attempting to solve the problem, but much has focussed on regular objects

(Cambray, 1993 and Bric et al., 1994) such as buildings, houses, etc.

Representing non regular objects need different data representations so that the general

shape of objects can be represented. The following sections look into several existing

types of representation that can be used for 2D and 3D data.

3.2 Classes of Object Representations

As an initial classification, object representations may be described as surface-based and

volume-based (Rongxing Li, 1994). Li called an object a surface-based representation if

the object was represented by surface primitives. It is volume-based if an object's

interior is described by solid information. Figure 3.1 shows the two categories of spatial

object representations.

Spatial object
representation

Surface-based

Figure 3.1 The two categories of spatial object
representations.

The surface-based representations are: grid, shape model, facet model, and boundary

representation (b-rep). The volume-based representations are: 3D array, octree,

22

Chapter 3 2D and 3D Spatial Data Representations

constructive solid geometry (CSG) and 3D TIN (or TEN). Some ofthese representations

are common in computer-aided design (CAD) systems but not in GIS, however they are

referred to in later sections of this chapter.

The following sections describe the surface-based representations.

3.2.1 Grid

A grid is a widely used method for surface representation in GIS, digital mapping and

digital terrain modelling (DTM). It is a structure that specifies height values at regular

locations, see Figure 3.2. Many DTMs and terrain surface packages are based on this

representation for generating surfaces as reported in Petrie and Kennie (1990). This

structure has several advantages, e.g. is simple to generate, furthermore topology

information (in terms of neighbour pixels) is implicitly defined (Peucker, 1978). (In this

structure, the topology of grid points can be easily determined since each grid point is

relative to other points). The structure may be considered as an array structure in

computer programming. Each array element represents the XY locations of the grid.

y
y

,T,lT 1C .~:~~
egular grids

A
)'

z

~
x x

Figure 3.2 Grid representation of surfaces (orthogonal and
perspective views).

The relative positions (i.e. the topology of which are the neighbouring points) of the grid

points are easily defined, and it could be regular or irregular. Although excellent

23

Chapter 3 2D and 3D Spatial Data Representations

terrain surfaces can be derived with this structure, it not helpful for surfaces of multiple

heights, e.g. vertical walls or overhangs (Heitzinger and Pfeifer, 1996). In fact, this is one

of the major drawbacks of the structure. Although it can represent surface points well,

incorporating other terrain objects or terrain breaklines such as linear, polygonal, and

even more complex features needs extra geometric computations and interpolations

with the grid points. It is therefore the case that a better model than a grid is desirable.

3.2.2 Shape model

A shape model describes an object surface by using surface derivatives (e.g. slopes) of

surface points (Rongxing Li, 1994) as shown in Figure 3.3. In this model, each grid point

has slope value instead of Z value. With known slopes, a normal vector of a grid point

can be defined and used to determine the shape of the surface. An experiment reported

by Rongxing Li (1994) showed that the structure has an application in surface model

reconstruction especially for sea bed surfaces mapping.

1 • • • • • • • • • • . : • • •••• • • • •

Figure 3.3 An example surface determination using
shape model (after Rongxing Li, 1994)

The technique is now used for sea bed surface mapping and the usage of such a

technique for land surface mapping may need to be investigated especially for data

capture techniques involving very large number of points such as LIDAR. In this

technique, slopes of grid points are determined by using calculation common in image

processing (details can be found in Rongxing Li (1994». This model works with regular

24

Chapter 3 2D and 3D Spatial Data Representations

or irregular XY locations as with the grid approach, and thus it has the same surface

mapping capability as for the grid (discussed in section 3.2.1).

3.2.3 Facet model

A facet model describes an object's surface by planar surface cells which can be of

different shapes and sizes. One of the most popular facet models uses triangle facets,

sometimes known as a triangular irregular network (TIN). A surface can be described

by a network of triangle facets. Each facet consists of three triangle nodes which have

a set of x, y, z coordinates for each node, see Figure 3.4.

x
Figure 3.4 2D TIN model

Figure 3.5 shows a distribution of points on the real world. The triangle structure is

widely used in DTM and other terrain surface software mainly because of its structural

stability and terrain feature adaptability (Midtb0, 1996), data interpolation simplicity

(Abdul-Rahman, 1992) and also for object visualization (Kraak, 1992). Triangles or TINs

as illustrated in Figure 3.6 can be constructed in the raster or the vector domain, where

most of the triangulations techniques are based on the Delaunay triangulations. The

reader should refer to Chapter 6 (the Supporting Algorithms) for detailed discussion on

the technique implemented in this work.

Briefly, one way to generate triangles in the raster domain is first by rasterising all

25

Chapter 3 2D and 3D Spatial Data Representations

surface points. (These rasterised points are sometimes known as kernel points in raster

data processing.) Then utilise a distance transformation (DT) technique to each kernel

point. The DT calculates distances of each point to the neighbouring points. Eachkernel

point has its dual image, that is a Voronoi polygon of surface points. Then, from three

neighbouring Voronoi polygons, a Delaunay triangle can be established (i.e. three points

represent one triangle). Thus, a set of triangles can be established from a set of Voronoi

polygons.

The shapes and sizes of the triangles vary, depending on the original distribution of the

data sets. One of the advantages of this representation is that the original observation

data are preserved, that is, all surface points are used for surface representation. An

illustration in Figure 3.6 shows an example of TINs generated from random distributed

points. The points were acquired using ground land survey technique (as part of a field

survey data acquisition exercise carried out by students from the Topographic Science

Section, University of Glasgow). It shows (in Figure 3.6) that terrain surfaces in the form

of random distributed points can be represented by these planar facets (i.e. 2D TIN).

26

Chapter 3 2D and 3D Spatial Data Representations

~ TlNSott ver. 1 0 R~E3

!npulfi1es Bedr.w ~bout

li:31~I~ M 21
.: .!?~ ..

N

. · .. : . :· :·' : ; .:i\>~;~~';.
! : ... ":) ~.: .)·~"!'.~.~i ' ~" '-': ..

~ -'-';' ~tEJ~

Figure 3.5 An example of terrain
points (acquired by ground survey)

~ TlNSoft ver 1 0 R~E3

Figure 3.6 An example of TINs facet
representation of terrain surfaces for
points as depicted in Figure 3.5

TIN facets using digitized contours and photograrnmetrically acquired data sets were

also generated and are presented in Chapter 7 (the Implementation and Test chapter).

The next category of surface representation is called Boundary representation (or known

as B-rep).

3.2.4 Boundary Representation (B-rep)

Boundary representation (B-rep) represents an object by a combination of predefined

primitives of point, edge, face, and volume. Examples of point elements are individual

points, contour points and other auxiliary points which approximate a curve or a face.

Examples of edges are straight lines, arcs and also circles. Examples of faces are polygon

27

Chapter 3 2D and 3D Spatial Data Representations

planes and other spatial object faces such as arced faces, cone and cylinder faces.

Volumes are an extension of surface elements for representing volume characteristics

in B-rep. They may consist of boxes, cylinders, cones and other combinations. To

represent an object by this model, an element of B-rep needs to have a geometric data

element, an identification code of element and its relationship to other elements

(Rongxing Li, 1994). Figure 3.7 shows a simple B-rep representation of a polygon object.

Here, the key element of constructing an object is primitive combinations, i.e. a

combination of points to form an edge, combination of edges to form a planar surface.

3

Object boundary

Face, f (1)

Edge, e (4)

Vertex (4)

Figure 3.7 Planar polygon representation of B-rep

For non-planar surfaces, smooth surfaces functions such as a Bezier surface or B-spline

functions could be incorporated in the surface generation, and this normally involves

a considerable amount of geometric and complex computation. Although B-rep is

popular in a computer-aided design/ computer-aided manufacturing (CAD / CAM), due

to computational complexity and inefficient Boolean operations, it has been suggested

that B-rep is only suitable for regular and planar objects (Mantyla, 1988; and Rongxing

Li,1994). In GIS, the use of B-rep for representing spatial objects is very limited because

28

Chapter 3 2D and 3D Spatial Data Representations

the model needs to be modified in such a way that the three fundamental spatial data

elements, i.e. geometric, attribute, and object identification data can be stored together

with the related topological data.

The following figure (Figure 3.8) illustrates a summary of the surface-based

representation of 2D objects.

Surface-based

Figure 3.8 Examples of surface-based representations

The following sections describe the volume representations of 3D objects.

3.2.5 3D Array

This is perhaps the most simple data structure in the 3D domain. The structure is easy

to understand and to implement, but may not be efficient for some tasks, for example

if many array elements are occupied with the same values, it creates a huge but

unnecessary demand for computer storage space and memory. Thus, its less suitable

29

Chapter 3 2D and 3D Spatial Data Representations

for representing objects at higher resolution. Storage and memory increases with higher

resolution.

Figure 3.9 An example of 3D array representation for solid object.

In the 3D array shown in Figure 3.9, the size of the array elements is equal and each

occupies the same amount of computer space although the voxel size can be specified

and controlled by a program. 3D arrays need huge computing power and that is one

of the reasons this kind of representation is seldom used in practice (Feng Dong, 1996).

A much better way of representing 3D objects is by varying the size of the voxel, that is

the octree technique.

3.2.6 Octree

The term octree refers to a hierarchical data structure that specifies the occupancy of

cubic regions of the object space. These cubic regions are often called voxels. This

representation has been used extensively in image processing and computer graphics

(Samet, 1984). It is a data structure that describes how the objects in a scene are

distributed throughout the three-dimensional space occupied by the scene. It is simply

a three-dimensional generation of a quadtree. Conceptually, the area of interest is

enclosed by a cube represented by voxels (Mark and Cebrian, 1986). As in the quadtree

30

Chapter 3 2D and 3D Spatial Data Representations

structure, the octree is based on recursive decomposition, and can be used to encode 3D

objects (Meagher, 1982; Jones, 1989; Chen, 1991; Brunet, 1992; Rongxing Li, 1994; and

Feng Dong, 1996). In the octree approach, each node is terminal or has eight

descendants. The tree divides the space of the universe into cubes which are inside or

outside the object. The root of the tree represents the universe, a cube with an edge of

length 2n
. This cube is divided into eight identical cubes, called octants with an edge

length of 2 n-l. Each octant is represented by one of the eight descendants of the root.

If an octant is partially full of solid, it is termed a " grey node", and it is divided into

another eight identical cubes which are represented as descendants of the octants in

question. This process is repeated recursively until octants are obtained which are either

totally inside the solid ("black nodes") or totally outside it ("white nodes"), see Figure

3.10. A minimum octant size (i.e. a threshold) which determines the number of

subdivisions of the octants is one of the important factors in octree processing. Meagher

(1982) also reported that one of the advantages of the octree approach is its simplicity

for Boolean operation and visualization rendering algorithms, but it has a drawback in

terms of storage space.

o 2 3 4 5 6 7

A
70 71 72 73 74 75 76 77

Figure 3.10 An example of octree representation of object

31

Chapter 3 2D and 3D Spatial Data Representations

To represent detailed objects, a large amount of storage space and more processing

power are needed. One way to overcome this problem is by using an octree model

called the 'vector octree' as proposed by Samet (1984) and also reported in Jones (1989).

In the vector octree, three types of octree nodes are introduced, namely, face node, edge

node and vertex node. These extra nodes are used to represent object surfaces, and

reduce the degree of subdivision. They, thus require less storage. Rongxing Li (1994)

also reported that the octree approach is very efficient in spatial analysis, Boolean

operations, and database management because of their hierarchical data structure.

3.2.7 Constructive Solid Geometry

Constructive solid geometry (CSG) represents an object by a combination of predefined

simple primitives called geometric primitives, see Figure 3.11. The primitives are, for

example, spheres, cubes, cylinders, cones, or rectangular solid and they are combined

using Boolean set operators and linear transformations as discussed in Mantyla (1988).

CSG is commonly used in solid modelling such as CAD/CAM because object creation

can be completed interactively with a simple modelling language (Raper, 1990). This

representation is also widely used in engineering and architectural visualization because

to construct primitives or solid geometries is usually straightforward (Feng Dong, 1996).

u

an object

simple solid 2

Figure 3.11 Simple object from CSG Simple primitives
solids

32

Chapter 3 2D and 3D Spatial Data Representations

The primitives of CSG are regularly shaped volumetric instances and can be combined

by using geometric transformation and Boolean operations. The geometric

transformations normally involve translation, rotation and scaling and Boolean

operations normally involve union, intersection and subtraction (or differencing). The

storage space of CSG increases as the number of primitives increases (Samet, 1990).

Previous research works suggested that CSG is only suitable for describing regularly

shaped objects (Cambray 1993, and Rongxing Li 1994) because the primitive

combinations of regular objects to form irregularly shaped volumetric instances needs

considerable computing effort. Thus, it is therefore considered that CSG is not well

suited at the moment to irregular objects.

3.2.8 3D TIN (Tetrahedral network, TEN)

Basically 3D TIN is an extension of 2D TIN, sometimes called TEN (short for a

Tetrahedral Network). An object is described by connected but not overlapping

tetrahedra. Similar to 2D TIN, TEN has many advantages in manipulation, display and

analysis. A TEN is made of tetrahedra of four vertices, six edges, and four faces. This

representation has been considered a useful data structure in earth sciences by

researchers for some time (Raper and Kelk, 1991). It can be generated using the same

techniques as for 2D TIN. If we build a 2D TIN from 2D Voronoi processing, then 2D

Voronoi processing can be extended to 3D. 3D TIN can be constructed from 3D Voronoi

polyhedrons (Qingquan Li and Deren Li, 1996) by using a 3D TIN detection algorithm,

see Section 6.8.

Other techniques of

generating TEN

can be found in

Midtb0 (1996).

z

y

x

Figure 3.12 An example of 3D TIN (TEN) model

33

Chapter 3 2D and 3D Spatial Data Representations

advantages over other solid structures. The advantages are: it is the simplest data

structure that can be reduced to point, line, area and volume (solid) representations; it

supports fast topological processing; and also it is convenient for rapid visualization.

Work on tetrahedra for GIS is very limited. A screen shot illustration in Figure 3.14

shows an example of 3D TINs generated from simulated boreholes datasets of Figure

3.13. Each borehole has several height locations with the same XY coordinates, as the

colours show.

This particular example indicates that TEN can be used to manipulate underground 3D

objects such as boreholes. Volume computation of lithologies between boreholes is one

of the possible 3D modelling tasks. Other applications such as iso-surface generation

is also possible as demanded in Earth Science applications.

"" "Uti idlt.i1ftti!5 _Iql x l

Figure 3.13 An example of simulated boreholes

i$ii" &WdI§N

Figure 3.14 An example of 3D TIN
representation for the boreholes

Iplx!

The visualization of 3D TIN could be made much clearer by introducing a hidden line

removal module. The module has not been included in the software development.

Figure 3.15 illustrates the summary of the volume-based representations that can be

used for 3D objects.

34

Chapter 3 2D and 3D Spatial Data Representations

Volume-based

Figure 3.15 Examples of the volume-based representations

3.3 GIS Applicability of the Representations

From the foregoing discussion, it can be seen that surface-based representations describe

the geometric characteristics of objects by surface entities. Grids, shape models, and

facet models are suitable for describing irregular object surfaces, while the B-rep model

is more for the exact surface geometry of regular shapes. For volume-based

representation, 3D array, octree, and 3D TIN (or TEN) can be used for irregular objects.

The 3D TIN and octree models can be used for volume objects. Compared to 3D TIN,

octrees are an approximate representation and a very detailed representation of objects

may be hard to achieve; furthermore with octrees, storage space increases rapidly as

does the processing overhead with resolution increase. Although the storage is less of

an issue these days, there is little evidence of success in using the model for spatial data

representation despite the convenience in volume computation and visualization as

reported by Turner (1992a).

35

Chapter 3 2D and 3D Spatial Data Representations

Considering TEN (3D TIN), it is suggested that the model is able to represent objects

accurately, describe complicated spatial topological relations and is able to maintain the

original observations (Qingquan Li and Deren Li, 1996). Thus, we can initially assume

that irregular objects can best be represented by 3D TIN and octrees. To make a choice

between these two representations for irregular objects is a difficult task. The next

section attempts to define some means for selecting the most appropriate representation.

3.4 The Selection Criteria

Based on the discussion and summaries of the previous sections, two representations

stand out as suitable for irregular objects, they are TEN (or 3D TIN) and octree. Between

the two, what is the most appropriate one? Two major items that should be considered

when selecting the representation are:

•

•

The ability to represent (or to be converted to) object primitives, e.g. points,

lines, surfaces, areas and volume.

The ability to integrate topology and attributes so that geospatial database

queries, and data retrieval can be performed.

The association of these two properties within the tetrahedral (3D TIN) and octree

approaches is described in the next section.

3.4.1 Representation of Object Primitives

In the real world the points, lines and areal features with which we have traditionally

populated our cartographic databases do not really exist and are in fact solid (body).

These representations are the simplified version of the solid objects. Some types of

points and lines appear to exist as real world features but these are abstract features,

such as road centre lines, boundaries, and survey control points. Furthermore surfaces

as they are represented in spatial databases are a reduced description of real world

36

Chapter 3 2D and 3D Spatial Data Representations

objects - being a representation of a part of the object described locationally with respect

to a surface such as mean sea level or a spheroid. In reality all objects, as we perceive

them and should use them at the level of detail supported by a 'typical' GIS, are

irregular and

three-dimensional having more or less well defined bounding surfaces separating them

from other such irregular three-dimensional objects; they are not points, lines, areas and

surfaces.

4 vertices
4 facets
6 edges

3 edges per
facet, and

3 edges per
vertex.

Figure 3.16 The tetrahedron (3~ TIN) primitives

Given that real world objects are all irregular and three dimensional and can all be

adequately represented using either the TEN or octree approaches nevertheless for

reasons of efficiency or convenience the chosen data may be processed in a more

primitive form (i.e. as points, lines, areas or surfaces). A GIS processing example is route

selection. Thus, a consideration is needed whether either or both TEN and octree

representations can be reduced to the object primitives and which representation can

more easily be reduced to the required object primitives.

Figure 3.16 shows a tetrahedron, the fundamental building unit of the TEN approach.

For purposes of illustration, let us consider a city, data relating to which is to be

processed as if the city were a point entity. Within a city are buildings, streets and other

37

Chapter 3 2D and 3D Spatial Data Representations

utilities, trees, street furniture, waterways, etc. Each of these real world objects can be

represented using the TEN approach; each tetrahedron's description includes vertices

and attributes. All objects belonging to the city will be appropriately attributed and

retrievable, the mean of the x, y coordinates of all the vertices of these retrieved objects

can provide an x, y coordinate pair to allow representation of the city as a point feature.

Considering a particular street represented by tetrahedra, for each tetrahedron at least

one facet will represent the street surface, and the vertices of this facet will be points

along the street. A centre-lining procedure can generate a line from the set of vertices

from all the surface facets of the street's tetrahedra.

Considering as an object a piece of undeveloped land within a city represented using the

TEN approach, some tetrahedron edges will be the edges between two 'undeveloped

land' tetrahedra, and some will be the edges between undeveloped and land of another

category. Those edges representing change in categories are the edges of the

undeveloped land, and the x, y coordinates of their vertices represent the bounding

polygon (or 'area') of the undeveloped land.

Finally considering the surface of the city itself, if this has been described by a series of

tetrahedra, as with the street some facets will be surface facets and their vertices describe

an irregular DTM. It is possible that the coordinate system used to describe vertices'

locations is not appropriate for the DTM (e.g. with respect to an inappropriate datum).

An appropriate coordinate transformation will need to be introduced.

Octree works with 3D raster data sets. It is therefore the case that all object entities have

to be converted into 3D raster for further processing. These objects then need to be

decomposed into point, line, surface, and solid primitives if they are to be used in a GIS,

for example. A number of authors have reported on the use of octree for GIS, but most

of them have focussed on visualization and volume computation tasks (Chen, 1991;

38

Chapter 3 2D and 3D Spatial Data Representations

Mark and Cebrian, 1986; Meagher, 1982). Work on octrees with the related aspect of

spatial data modelling is little reported. Much research work on octrees was for solid

modelling and visualization purposes as reported in Turner (1992b).

From the foregoing discussion it can be seen that because little successful work has been

done on representing primitives in the octree environment and the potential for data

degradation arising from the need to interpolate the raw data to generate the octree

structure, TEN representation provides a more promising model for 3D spatial object

representation than octree.

3.4.2 Topology of spatial objects: simplexes and complexes

In GIS, besides geometric and attribute data, topology has a vital role in spatial

information. Topology is used to determine the connection relationships of objects in

space. For example, in the case of a point object, one may need to know its relationship

with neighbouring objects (where it could be with points, lines, areas, or solid objects).

The same holds for lines, areas, and solid objects. A number of researchers have looked

into this topological problem, including Frank and Kuhn (1986) and Worboys (1995).

These particular researchers use the terms complex and simplex for describing the

topological relationships of planar objects. In the 2D case, triangular irregular network

structures can be regarded as simplicial complexes in a Euclidean plane. Here, a 0-

simplex is the set of a single point in the Euclidean plane. A i-simplex is a straight line

segment. A 2-simplex is a set of all the points on the boundary and in the interior of a

triangle whose vertices are not collinear. These simplices are well represented in the

facet model of representation (see section 3.2.3) where a TIN node is topologically

equivalent to O-simplex, the edge of a TIN is topologically equivalent to i-simplex, and

a TIN area (surface) is topologically equivalent to 2-simplex. Since this simplicial

complex theory is extendable to n-dimension, then we could also represent TEN

primitives using the same principle. That is a 3-simplex is a volume which is a

tetrahedron; see Figure 3.17 for an illustration.

39

Chapter 3 2D and 3D Spatial Data Representations

2-simplex
(area)

O-simplex

(P:nt) /

... ----1-simplex
(line)

3-simplex
(volume)

Figure 3.17 Example of simplices (0, 1, 2, and 3 simplex)

Simplices are the building blocks of a larger structures, the simplicial complexes.

Complexes are built from simplices. If we recall the TIN representation (see Figure 3.4),

a simplicial complex can be formed (i.e. two-dimensional complexes). This concept of

simplicial complex provides a sound framework for analysis of the topology of a

mixture of points and edges in a plane and is workable for the TIN representation of

spatial objects (both 2D and 3D) as cited in Worboys (1995).

3.5 Vector and Raster Representation

Geoinformation data may come in vector form, raster form, or in both forms. Spatial

objects are said to be in vector form if they are represented by one of the basic discrete

entities such as points, lines, and areas (polygons) which are spatially referenced by a

Cartesian coordinate system (Burrough and McDonnell, 1998). The same spatial object

entities can be represented in raster form if they can be decomposed into pixels. Each

pixel is referenced by row and column positions. Representing spatial objects as raster

or vector has advantages and disadvantages. Vector representation easily offers better

representation over raster because entities are represented by exact coordinates in space

and do not have their locations generalized to a pixel. Thus, raster may give more

approximate locations for the represented entities. But one must bear in mind that this

is not always the case, it depends on several factors e.g. data collection techniques,

resolution. Further comparisons of these two representations, such as based on handling

40

Chapter 3 2D and 3D Spatial Data Representations

topology, reveal topology is explicitly described in the vector form and therefore this

form is good for tasks such as network analysis. Geometric data processing such as

coordinate transformation is difficult in raster (requiring resampling) but easy to

perform in vector form (Burrough and McDonnell, 1998). A further debate on these two

representations can also be found in (Antenucci et al (1991) and Chou (1996)).

The choice between the two representations depends on factors such as processing

speed, level of difficulty, etc. In this research we used the raster form as a means of data

processing for 2D and 3D TIN model construction and also for the related data

structuring. That is due to the simplicity of raster data processing. The discussion in

section 3.2.3 indicated that TINs could be constructed using rasterised datasets. The

simplicity of raster data processing for the two object representations is also examined

in Chapter 6 (the Supporting Algorithms chapter).

3.6 Summary

From the foregoing discussion of 2D object representations, 2D TIN has been shown to

have several advantages over the other models of the same category (i.e. the grid, shape,

and the B-rep.). The model's promise relies on the fact that it can be used to construct

a generic data structure (including topological relationships). Other models such as

grid, shape, and B-rep require further structure modifications before they can be

utilised, and thus they lead to expensive modelling in the digital environment.

Since 2D TIN can be extended to 3D TIN and have similar geometric properties, 3D TIN

can represent 3D spatial objects. An important property of the model (or the structure)

is that simple object primitives are aggregatable into a larger object. The aggregation

of features into more complex features is perhaps the most important feature in spatial

data modelling. Models other than 3D TIN have some drawbacks in this task, e.g. they

require huge computing effort. For example, real world spatial objects are complex in

nature and it is obvious that tremendous decomposition operations are involved if one

41

Chapter 3 2D and 3D Spatial Data Representations

dealt with them as octrees. Although the octree approach is widely used in the solid

geometry visualization community, difficulty in spatial data structuring and the related

topology entails limited practicality in GIS.

The pertinent spatial object representations have been described and TINs (2D and 3D)

have been identified as the most appropriate representations for the 2D and 3D spatial

objects. Thus, these structures become the major focus for the development of a geo

information system in this research.

The modelling and other relevant aspects of the geoinformation system are discussed

in the next chapter.

42

Chapter 4

Fundamental Aspects of Spatial Data Modelling and

GIS

4.1 Introduction

In general, a GIS can be considered to have several components such as spatial,

graphical, numerical, and textual components (Worboys, 1995). These system

components have several important building blocks such as data modelling, data

structures, and types of applications. However Molenaar (1996a) reported that it is the

process of spatial data modelling alone which leads to the development of a complete

geoinformation system. This chapter introduces the fundamental concepts of spatial

data modelling and GIS. As well as the concept of modelling spatial data being

investigated, the construction, manipulation and management of spatial data within the

development of a GIS system are also investigated; in particular the concepts of spatial

data, modelling of spatial data, construction, manipulation and management of spatial

data in the domain of the triangular irregular networks (TINs) data structure are foci of

this chapter. The aim is to describe major processes and steps involved in the

development of a system which is based on TIN spatial data. Although this system is

far from complete (since it does not contain, for example a temporal aspect), most of the

major components and the related building blocks for the system are considered.

Relevant temporal aspect of GIS are addressed in Langran (1992) and Wachowicz

(1999).

The layout of the proposed TIN-based system is presented at the end of this chapter,

following the discussions on spatial data, spatial data modelling, data structuring,

database models and the related database management systems (DBMS).

43

Chapter 4 Fundamental Aspects of Spatial Data Modelling and GIS

4.2 Spatial Data

Figure 4.1 shows the basic components of spatial data. Principally, there are three

spatial data components that need to be stored for GIS data, they are geometric data,

thematic data and a link identification (ID) for the geometric and the thematic

component. The illustration in Figure 4.1 shows the link between the geometric

component (it deals with the location of the data by means, for example, of a reference

coordinate system) and the thematic component (it provides the attribute values of the

data, e.g. names, and other identifiers (IDs) of the data). Object or feature needs to be

geometrically and thematically described (Longley et ai, 1999; Laurini and Thompson,

1991). The basic components of spatial data (TINs) can be used to describe real world

terrain objects, whether natural or man-made; thus we have TIN-based spatial objects.

Spatial data

~---..,"'~

Figure 4.1 The spatial data components

4.3 Spatial Data Modelling

Spatial data modelling is a process of describing real world spatial objects so that these

objects as perceived by us can be represented in a form or notation we understand and

use. There are several techniques for perceiving the real world (Burrough and Frank,

1995). These techniques have different descriptive models for different levels of

complexity of perception of the real world. If we would like to have these models

represented and operational in a geo-information system, then they have to be mapped

into data and processing models that can be handled by computers. Figure 4.2

44

Chapter 4 Fundamental Aspects o/Spatial Data Modelling and GIS

illustrates a general view of three stages of spatial data modelling that one may apply

in information system development.

Figure 4.2 A typical spatial data
modelling steps.

A data model is a notation for describing data. It is a meta concept defining the content,

structure, and meaning of data. The model also provides concepts to describe the

structure and contents, for example, of a database, and the goal is similar to that of the

data types (either basic data types or the Abstract Data Type (ADT)) used in

programming languages to describe data within programs. Data models can be

classified into the conceptual data model (or high level model), the logical data model

(or implementation model), and the physical data model (or low-level model) as shown

in Figure 4.2. Conceptual data models provide easy to perceive high-level concepts.

They are used in the early stages of system development to communicate between end­

users and system designer. Physical data models provide low-level concepts to describe

how data are stored and accessed in the computer. The logical data model bridges the

gap between the conceptual data model and the physical data model. It is sometime

known as an implementation data model. It is used by database management system

to implement reality in computerised databases. The illustration in Figure 4.2 shows the

45

Chapter 4 Fundamental Aspects ojSpatial Data Modelling and GIS

steps in typical database design and also serves as a basic means to model terrain spatial

objects.

In the case of terrain spatial objects, they need to be divided into several classes. For

example, we may classify them as point features, linear features, area features or body

or solid features. Each of these classes of object has geometric and thematic components

with their corresponding object identifiers (IDs). Terrain objects could be represented

by several techniques as discussed in Chapter 3 where it was shown that TIN data have

some promising structures and provide a fundamental framework for modelling spatial

objects in this study; see Chapter 6 (the Supporting Algorithms) for the construction of

the structures.

The following section describes the conceptual modelling of spatial objects with TIN

data structures. The structure has been widely utilised for terrain surfaces modelling

in popular DTM and GIS software. Figure 4.3 shows a simple relationship between real

world objects (spatial objects) and the TIN primitives (i.e. node, edge, surface, and body

(3D TIN)). The spatial objects could be divided into four basic entities. They are point

entities, line entities, area entities, and solid entities.

Solid objects

1 1 t t
L ~ • • •

TIN node TIN edge TIN surface 3D TIN (body)

Figure 4.3 TINs representations for spatial objects

Figure 4.3 shows the relationships between the four classes of objects and the TINs

46

Chapter 4 Fundamental Aspects o/Spatial Data Modelling and GIS

primitives of node, edge, triangle, and tetrahedron. Here, the term /I object" represents

the real world object, not the /I object" that is used to describe an instance of a class in an

00 programming language. The word /I entity" is frequently used for this type of

/I object". Principally, a TIN triangle has 3 nodes and 3 edges (or lines). The figure also

shows that point objects are represented by TIN's nodes. Linear objects are represented

by TIN edges, area objects represented by the triangles, and solid objects are represented

by 3D TINs (i.e. tetrahedra). These four classes of object need to be put in a model so

that the relationships between them can be established. Molenaar (1989) introduced

such a spatial model, shown in Figure 4.4. This model does not address 3D space.

Figure 4.4 A spatial model (after Molenaar, 1991)

This model consists of:

• three object types, namely Point object, Line object and Area object are classified

according to the geometric description of spatial objects; and

• three geometric data types (or geometric primitives). They are node, arc, and

also including the coordinate. The /I Coordinates" is only used to store all the

coordinated points.

47

Chapter 4 Fundamental Aspects a/Spatial Data Modelling and GIS

The model represents point objects using nodes and line objects using arcs. Area objects

are represented with chains of arcs. The model also assumes that an arc is represented

by a straight line of two end nodes (i.e. begin and end nodes). The same assumption is

made in this work, that is an edge is represented by two end points, and a polygon is

formed by a series of edges. In the above model, the relationship between geometric

and thematic aspects of objects is indicated by arrows. That is to say the arrows between

(the" Arc", the "Node", and the" Coordinates") ellipses and (the "Line object", the

" Area object", and the "Point object") ellipses. That is the links between the second and

the third row of the ellipses. By using the above model, further links and rules

controlling the relationship between these features could be established.

Figure 4.5 The TIN-based spatial data model (after Fritsch, 1996a)

To handle 3D objects the model attributed to Molenaar (1996) and Fritsch (1996a) is

adapted, shown in Figure 4.5. This model is an extension of the model illustrated in

Figure 4.4. In this 3D formalisation model, 3D objects are represented by 3D TIN

primitives (i.e. tetrahedra). TIN nodes represent point objects, TIN edges represent area

objects, TIN surfaces (triangles) represent area objects and 3D TINs represent solid

objects. In the research reported in this thesis, the 3D TIN primitive is used, for example

to represent a region bounded by a series of boreholes, as indicated in Chapter 3 (section

48

Chapter 4 Fundamental Aspects a/Spatial Data Modelling and GIS

3.2.8). The topology of the primitives in the model is clearly shown, that is by the

indication of "begin" and "end" arrows of TIN node to TIN edge ellipses. The "left" and

"right" arrows of TIN edge to TIN surface (area) ellipses. The same applies to the 3D

TIN, it involves left and right topology indicators from the previous TIN surface ellipse.

The topology of the primitives (e.g. left or right) in relation to other primitives has been

implemented as described in Chapter 6 (section 6.4.1, section 6.10.1). The model does

not support the" inside" topology of the TEN. By" inside" topology of the TEN is meant

relationships of the features or objects inside of the TEN e.g. fault lines through an ore

body. It can handle the "outside" topology of the TEN by a combination of several

structures implemented in Chapter 6.

The adapted data model has to be translated into a workable data structure by the DDL

(dynamic data linking) of the DBMS as discussed in Chapter 5.

4.4 Spatial Data Structuring

Spatial data structuring has a crucial role in spatial modelling. It organizes spatial data

into a form suitable for computers. It sometimes can be regarded as being intermediate

between the data model and a file format. Any adopted data structure eventually leads

to the provision of relationships and linkages between data components in a system

such that useful spatial information on objects can be generated. Spatial data structuring

is also known as physical modelling where the adopted model is implemented in the

form of computer programs. In the foregoing the two most common data structures

used in GIS, raster and vector, have been briefly mentioned. Different structures are

used for different tasks, depending which are the most efficient and suitable. In this

section the data structures used for the software development in this work and which

are also in the form of raster and vector data structures are described. In this work, for

visualization purposes, two commercial GIS packages file formats ILWIS and Arc/Info

and the A VS package for 3D visualization were adopted.

49

Chapter 4 Fundamental Aspects ojSpatial Data Modelling and GIS

Figure 4.6 shows the two geometric structures of spatial objects, namely the raster and

the vector structure and these are discussed in the next section.

vector geometry raster geometry

@", ,; , ..

:".,.,','"'.,".,.",,,'."
;". ".,' :"," ..

Figure 4.6 Two geometric structures of spatial
objects (after Molenaar (1996b))

4.4.1 Raster structure

The raster data structure is sometimes known as the row and column data structure.

Spatial objects are divided into rows and columns of some specified size depending on

the resolution of the original datasets or the required smallest pixel size. In this work

a raster data structure has been used only for rasterization, distance transformation, and

Voronoi tessellations. Although, in principle the structure can be used to generate a

spatial information system, it has not been utilised further in this work. The raster

structure shown in Figure 4.7 is only used for constrained triangulation purposes

(detailed discussion is provided in Chapter 6, section 6.9.2).

50

Chapter 4 Fundamental Aspects of Spatial Data Modelling and GIS

00 ",11 1 1

. ..
XYZfiIe MCftle

UU

Figure 4.7 An example of the pixel locations of the
rasterized points and several edges or arcs. Tables
on the right represent the coordinates and the arc
files.

The vector data structure is another type of structure that can be used for developing a

spatial information system. There are several types of vector structure, they can be

categorised into the spaghetti model, the topological model and the TIN-based (2D and

3D) type. They are considered in the next section.

4.4.2 Vector structure

Spaghetti model

The spaghetti model represents a simple object configuration, for example a polygon is

represented by a series of straight lines and points. There is no explicit representation

of the topological relationships of the configuration, such as adjacency relationships

between lines and points to form polygons or other neighbouring objects. The model

provides basic connectivity of objects such as a line is formed by two nodes. Some forms

of geometric computation may be required in order to obtain more advanced object

relationships. In this work, a spaghetti model has been used to store point and line

objects. A simple connectivity of points form an arc and connections of arcs form a

polygon. Although the model is less efficient in terms of storage space because of

duplication of points stored more than once around a polygon, it served its purpose in

51

Chapter 4 Fundamental Aspects o!Spatial Data Modelling and GIS

this work. The model is also useful for simple geometric operations where topological

relationships are not required. Other mapping tasks that may benefit from such a model

are, for example, automated cartography and digital mapping when complex spatial

relationship searching is not required.

A more useful model than the spaghetti model (the topological model) is described in

the next section.

Topological model

The topological model is considered a much better model over the spaghetti model for

several reasons. This model is able to handle topological relationships between spatial

objects; for example - what is on the left and what is on the right of an object? This

particular topological relationship between objects gives further useful information

about an object. Most of the operational GIS packages utilise this model. Although

different topological models may be implemented in different GIS systems, each model

should be able to establish the relationship between objects in the spatial domain for the

generation of connectivity information. Without topology, a system contains limited

spatial information. In this work, the topological relationships between object primitives

are generated by the creation of several structures. These structures give the geometric

information on the objects. Attribute information on the objects are stored in different

files. The attribute information can be linked to their geometric parts by 00

encapsulation techniques as discussed in Chapter 5.

The data structure for the TIN model is described below. The structure can be

considered as one of topological vector structures.

2DTIN model

The 2D TIN model is another type of topological model. Different TIN models can be

generated, Figure 4.8 is one of the possibilities for structuring such spatial data. A

program for establishing TIN neighbour information which is part of the topology has

52

Chapter 4 Fundamental Aspects of Spatial Data Modelling and GIS

also been developed (section 6.4.1 of Chapter 6). Neighbouring triangles can be

determined for any given triangle. This topological information is useful for TIN-based

data structure applications.

XYZ coordinate TIN TIN Neighbours

X Y Z Tri# Node1 Node2 Node3 Tri# NumofNbr Nbr1 Nbr2 Nbr3

1 T1 1 2 4 T1 2 2 5 -
2 T2 2 3 4 T2 2 1 3 -
3

4

5

Figure 4.8 TIN model with the related topological data (Le. tables of XYZ, TIN, and TIN
neighbours)

In the above diagram, a triangle, say T1 has three nodes (i.e. Node1, Node2, and Node3).

The Node1 represented by 1, Node2 represented by 2, and Node3 represented by node

4 (in T1). This triangle T1 has two neighbouring triangles (i.e. T2 and T5). Their

corresponding nodes for these triangles are clearly shown in the diagram. The third

table (called TIN Neighbours) shown on the right gives details about the neighbouring

triangles (indicated by Nbrl, Nbr2, Nbr3) and how many neighbours a particular

triangle has (i.e. NumofNbr), as indicated in the diagram. Detailed explanation of these

tables is provided in Chapter 6 (the Supporting Algorithms chapter). However it can

be stated that the model has the following tables: a list of xyz coordinates, a list of a

triangle's three nodes and a list of a triangle's (maximum) three neighbours. An arc's

table is also created. It is a list of arc# and two nodes of an arc (a start node and an end

node for each arc). The arc's table enables linear features to be incorporated into the

modelling of spatial objects. The functionality of the TIN model developed in this work

is demonstrated by translating it to a spatial database schema and implementing GIS

53

Chapter 4 Fundamental Aspects a/Spatial Data Modelling and GIS

and terrain surface analysis applications. Applications related to terrain surface analysis

include such as such as contouring, slope and aspect of surfaces, hidden-line removal

in perspective plots and surface shading. Applications which are related to GIS include

the area computation of a region covered by several TINs, object retrieval from a

database and display.

There are several ways of storing TIN topology, Figure 4.8 shows one of the possibilities.

Here, a triangle is the basic spatial object and each has three nodes. These nodes have

numbers corresponding to nodes number (i.e. node#) of the coordinated points in a

separate file. A topological link to the neighbouring (adjacent) triangles completes the

description of the TIN structure. An algorithm to generate this topological information

is discussed in Chapter 6.

3D TIN (or TEN) model

The 3D TIN model is an extension of the 2D TIN model. Similar techniques could be

used to construct the 3D model as the 2D could. 3D spatial objects could be represented

by 3D TIN as it has been described in section 3.2.7. In this model, a tetrahedron where

each has four triangles is the basic spatial object. The model has its topology based on

a list of four nodes for each tetrahedron. A list of three nodes for each of the four

triangles of the TEN, and a list of coordinated points for the corresponding nodes

provides the geometry of the model as illustrated in Figure 4.9.

4

TEN table TINtable

Nd1 Nd2 Nd3 Nd4 # Nd1 Nd2 Nd3

1 1 2 3 4 1 1 2 3

2 2 3 4 5 2 2 3 4
3 1 2 4

4 1 3 4

Figure 4.9 The TEN model with two adjacent
TENs

54

Chapter 4 Fundamental Aspects a/Spatial Data Modelling and GIS

The modelling 3D spatial objects such as ore bodies from borehole data, in a way useful

for data manipulation in the Earth Sciences community could be performed as

illustrated in Chapter 3 (section 3.2.8). Surface (e.g. underground surfaces) generation

is also possible by using this model.

The next section introduces two pertinent database schema for spatial objects. A

database is used to store spatial objects which have been modelled by the techniques as

discussed in the previous sections.

4.5 Relational Database Model

The relational model introduced by Codd in the late 1960's has been implemented by

many commercial database management systems such as DBase, EMPRESS, INFORMIX,

INGRES, ORACLE, POSTGRES, SYBASE, SYSTEM R, and UNIFY (Schrefl and Bichler,

1995). It represents data in a database as a collection of relations. A relation can be

thought of as a table of values representing a set of similar real world objects and their

relationships. The rows of a table, called tuples, define real world objects or

relationships between real world objects. The columns of a table represent attributes

and contain attribute values. The ability to define operations on relations whose results

are again relations and support for powerful declarative languages such as SQL

(Structured Query Language) are the main reasons for the popularity of the relational

model. Although this model is well accepted in the non-spatial community, it has

drawbacks for the handling of large and complex spatial data sets in GIS. In

geoinformation practice, the pure relational geospatial model has not up to now been

widely adopted because of its unacceptable performance limitations (Healey, 1991).

Problems arise because of: (1) slow retrieval due to multiple joins required of spatial

data in relations; (2) inappropriate indexes and access methods which are provided

primarily for 1-dimensional data types by general-purpose relational systems; and (3)

lack of expressive power in SQL for spatial queries (Worboys, 1999). The first problem

(slow retrieval) arises due to the complexity of spatial data as mentioned before, that is

55

Chapter 4 Fundamental Aspects of Spatial Data Modelling and GIS

for example, if we take a polygon - it is made up of chains of edges, and the edges are

made of series of points. It is thought that this problem is much better handled in an

object-oriented model (or also in an object-relational model). The second problem,

related to indexes of different types of spatial data, are much better handled in the

extended relational model. The third problem, the limitations of SQL, has been apparent

for some time in a number of fields such as CAD/CAM, GIS, multi media databases,

and other non-spatial databases (Worboys, 1999).

The relational model approach for spatial data has been thoroughly researched by

Pilouk (1996). This previous work makes use of the relational modelfor modelling TIN­

based spatial data. The work was based on several relational tables to describe spatial

data relationships between data types in the domain. Eight relational tables were

constructed for the modelling purposes. Although the approach works for such TIN

data, the modelling is thought to be better handled using the 00 approach. One of the

reasons was due to the problem (1) as mentioned in the previous section, that is the

problem of the multiple joins required for spatial data relations.

Recent developments in computing especially in object-oriented technology have begun

to influence the way spatial data is organised in GIS. These are discussed it in the next

section.

4.6 Object-Oriented Database Model

The drawbacks of the relational database management system in GIS have encouraged

consideration of a new solution: an object-oriented GIS. The emergence of 00 databases

has been stimulated by problems of redundancy and sequential search in the relational

structure. In GIS their use has been stimulated by the need to handle complex spatial

entities. GIS demands more intelligent spatial data handling than that required by

simple point, line, and polygon primitives. The problems of database modifications

especially when analytical operations such as polygon overlay are carried out (Burrough

56

Chapter 4 Fundamental Aspects a/Spatial Data Modelling and GIS

and McDonnell, 1998) need addressing. The object-oriented approach is applied

increasingly in a number of fields, although what exactly this means can be difficult to

answer as there are many different definitions, formalisms and models amongst the

computing community, as been reported in Worboys (1995). In fact, the term 'object­

oriented' seems quite nebulous. In the relational structure, each entity is defined in

terms of its data records and the logical relations that can be elucidated between the

attributes and their values, whereas in object-oriented databases, data are defined in

terms of a series of unique objects which are organized into groups of similar

phenomena (known as object classes) according to any natural structuring.

Relationships between different objects and different classes are established through

explicit links. Once the data have been encapsulated in the database the way to change

them or to query them is to send a request, known as a message, to carry out one of its

operations (Burrough and McDonnell, 1998).

Data used in object-oriented databases need to be clearly definable as belonging to

unique entities. Given that, these databases (as with their network and hierarchical

counterparts) provide very efficient structures for organizing hierarchical, interrelated

data. Establishing the database is obviously time-consuming as the objects must be

defined explicitly and their various links need to be established. Once this is finished,

the database provides a very efficient structure for querying, especially with reference

to specific objects (Worboys,1995).

In this study, an attempt is made to utilise object-oriented database functions provided

in a commercial 00 DBMS for TIN spatial data handling and manipulations. The

implementation of this approach for spatial data are described in Chapter 5.

4.7 Object-Oriented Subsystems for GIS

Object-oriented GIS may be defined as a spatial system which is based on object­

oriented technique being implemented in the system's major components. The

57

Chapter 4 Fundamental Aspects ojSpatial Data Modelling and GIS

components are built by 00 techniques. That is to say there may exist an 00 data input

module, 00 data processing, 00 database management, etc. Although there is no

standard definition of 00 GIS and it is still open to discussion, the term 00 GIS is

introduced in this work because the subsystems are constructed based on 00

techniques. Among the reasons why the term 00 GIS is used in this work are the

following:

•

•

•

•

Object-oriented software engineering (design);

Object-oriented programming;

Object-oriented database design and development;

Object-oriented user interface

are employed in the system development. A ybet(1992) suggests that the application of

these four justifies the use of the term object-oriented. Several aspects of 00 software

engineering and programming are discussed in Chapter 5 (section 5.2). However,

briefly, class, method, encapsulation, instances, inheritance and polymorphism provide

00 benefits to the users of any implemented system.

Based on the above simple justification for using the term 00, the 00 subsystems of a

GIS are examined in this work. The developments of these 00 subsystems are

discussed in Chapter 5.

4.8 Database Management System (DBMS)

A database management system (DBMS) is the software used to interact with the stored

data in a database. A database user can perform several common tasks with the data

such as display, retrieve, update and manipulate. In general, the aims of a DBMS for the

stored datasets are to have the following: links between datasets, data consistency, ease

of data access, data security, data sharing, data independency, control and ease of

administration (Delobel et al, 1995). Links between datasets are established through an

58

Chapter 4 Fundamental Aspects of Spatial Data Modelling and GIS

adopted data model. The data model links various datasets in the stored database so

that the user can perform the required tasks. Data stored in the database must be

consistent with reality as they exist in the real world. How this could be done? A set of

rules for maintaining the database is important.

Some 00 DBMS features are implemented in this study, namely data retrieval and data

query. Populating the database with TIN data and the related data modelling is the

main concern of the study. Investigation into other aspects of DBMS (such as updating)

can be found in Kufoniyi (1995).

Certain aspects of GIS software components are discussed in the next section.

4.9 Geographic Information System (GIS)

GIS software may have several components as illustrated in Figure 4.10. The possible

components are data input, the geo-database, transformation, user interface, display and

reporting.

Data input covers all aspect of transforming data captured in the form of, for example,

existing maps, text documents, field observations, aerial photographs and satellite

images into a compatible digital form (Burrough and McDonnell, 1998). An example

operation that was developed in this work is rasterization. The rasterization converts

vector data into raster. Format conversions also play an important role in the data

input where existing digital data could be converted into a specific format for a

particular GIS system.

59

Chapter 4 Fundamental Aspects of Spatial Data Modelling and GIS

.- - --- -- ------- - - - - - - - - - - - - - -
data
input

user I---{>I d b .---t-f>l interface geo- ata ase 1-----.

display &K~-----'------t
reporting

L __ _

Figure 4.10 Major software components of a GIS (after Burrough and
McDonnell, 1998)

A geo-database can be considered to be the digital form of a geo-spatial model which

is a replica of some aspects of some portion of the earth's surface. It concerns the way

in which data about location, topology, and attributes of geo elements such as points,

lines, surfaces and other complex entities are structured and organized. Databases are

central to GIS. Data in a database is organized (defined) and manipulated by software

known as a Database Management System (DBMS), or more specifically by the Data

Definition and Data Manipulation languages within that software.

Display and Reporting (or data output) concerns the way data are displayed and how

the results of analyses are reported to the users. Text, tables, maps, and figures are the

most common forms of data output. Maps are the most common output from spatial

databases, and could be presented either on hardcopy (paper) or softcopy (computer

screen) media.

Transformation deals with two categories of operations (Burrough and McDonnell,

1998): (a) operations needed to remove errors from the data or to bring them up to date

60

Chapter 4 Fundamental Aspects a/Spatial Data Modelling and GIS

or to match them to other data sets, and (b) the large arrays of analysis methods that

may be applied to the data in order to achieve answers to the questions asked of a GIS

(i.e. queries). Examples of typical transformation operations include geometric

computation, map overlay, network analysis, map projection, logical data retrieval,

calculation of areas and perimeters. Other kinds of manipulation may be extremely

application-specific and their incorporation into a particular GIS may be only to satisfy

the particular users of that system (Burrough and McDonnell, 1998). In this study the

geometric computations and interpolations on TIN data structures which have been

developed may be regarded as operations of data transformation.

A user-interface in GIS supports the interaction of users with the system. In recent

years, this aspect has received a considerable amount of attention in GIS research and

development. The simplest forms of user-interface for GIS are menu-driven commands

that can be selected by simply pointing and clicking with a mouse, and this is an efficient

way of providing complex functionality for ordinary users (Burrough and McDonnell,

1998). Other types of user-interface could be in the form of bit-mapped displays,

windows, menus, dialog boxes, icons, direct-manipulation, document-centric metaphor

(Khoshafian and Abnous, 1995). Many new concepts and techniques exist, and more are

becoming available such as Windows, Multi Document Interface, Document/View,

Tools-bar, Status-bar, and Icons. Frameworks for creating these user interfaces are

available in almost all major programming languages. In this study, an OWL

framework of the Borland C++ compiler, called Object Window Library (OWL) has been

utilised to create a simple interface.

4.10 The 00 TIN GIS

00 TIN GIS is based on several fundamental concepts and aspects of spatial data which

have been discussed in the previous sections and chapters. The basic components in the

system are data input processing, TIN data construction, TIN database, transformation

operations, data output, and user-interface. The system takes the components in Figure

61

Chapter 4 Fundamental Aspects o/Spatial Data Modelling and GIS

4.10. In this study rasterization forms the major operation in the data input module.

Figure 4.11 shows the other major components of the proposed system which includes

the use of other commercial software, i.e. IL WIS and A VS. These two packages are used

for display purposes only. Some of the operations such as rasterization and other TINs

data construction computations are validated visually. In this study a simple user

interface as part of the software development was also built.

r-----------------------------

user
_ interface

display &

rasterization

TINs
database

(for display)

transformation
- interpolation
- contouring
- geometric calculation reporting 1<1------'-----1

(areas, volumes)
I ---- -------------------------

Figure 4.11 The proposed system for the TIN-based spatial data

Beside the programs developed in this work for databasing purposes, a commercial

database package, called POET OODBMS has been utilised. The DBMS package is used

for the development of 00 TIN spatial data. Detailed discussion on the implementation

of these components and the related functions are discussed in the Supporting

Algorithm chapter (Chapter 6), and also in the Implementation and Test chapter

(Chapter 7).

62

Chapter 4 Fundamental Aspects of Spatial Data Modelling and GIS

4.11 Summary

This chapter introduces the 00 TIN GIS, a system based on the object-oriented approach

and TIN spatial data. Spatial data modelling for TIN data, the relevant aspect of data

structuring, databasing for such data and the user interface have been described. These

all become part of the major building blocks for a geo information system. Several

fundamental concepts and aspects of spatial data modelling and how they contribute

to the development of geo information system software (i.e. from concepts to a system)

have been discussed. All these concepts are implemented and described in chapters 5,

6 and 7.

63

Chapter 5

Object-Orientation of TIN Spatial Data

5.1 Introduction

The capabilities of object-oriented (00) techniques have in recent years presented a very

promising tool for the development of information systems, especially those requiring

the implementation of complex data modelling. 00 programming techniques are now

being applied widely. 00 programming has tremendous potential; GIS is one example.

00 techniques of programming and design promise to produce more easily maintained

software for less effort and expense (Ross et aI, 1992). Conventional software

development suffers from a number of drawbacks such as endless lines of code, while

00 programming allows programmers to build an application program by using

existing or easy-to-build entities called objects (object - the term used in 00

programming for an instance of a constructed class). Therefore, it seems natural to

apply 00 techniques for geo-scientific computations such as TIN spatial data modelling.

'This chapter provides descriptions of TIN tessellations and spatial data modelling using

00 techniques. 00 concepts are discussed in section 5.2. 00 design for TIN

tessellations is discussed in section 5.3. A discussion on the development of TIN spatial

data modelling is provided in section 5.4, and the POET 00 DBMS development is in

section 5.5. The development of 00 TIN-based systems for GIS is discussed in section

5.6 and then followed by a summary of this chapter. Brief descriptions of the classes are

provided in this chapter whereas the detail of each class is presented in Appendix B and

C. The implementation of 00 techniques for TIN data tessellations has been further

discussed in Abdul-Rahman (1999). Further implementation using an 00 database

management system (DBMS) is described in Abdul-Rahman and Drummond (2000).

64

I

Chapter 5 Object-Orientation o/TIN Spatial Data

5.2 Object-Oriented Concepts

Object-oriented conceptual modelling is now widely utilised in many fields including

GIS. The concepts of 00 such as object classification, encapsulation, inheritance, and

polymorphism are able to ease the modelling of complex real world objects. As

mentioned above the object-oriented approach is now being promoted as the most

appropriate method for modelling c;omplex situations that are concerned with real­

world phenomena, and thus applicable to GIS. Object-oriented concepts are considered

more flexible and powerful than the traditional structural programming and other major

database models such as the relational or entity-relationship model. Object-oriented

concepts contribute to modelling as follows:

(a) Considering objects and abstraction mechanisms (classification,

generalisation, aggregation and association), these aspects of 00 can be used

for modelling real world phenomena, e.g. modelling of spatial data for

geoinformation systems; and

(b) Considering inheritance, propagation, encapsulation, persistence, Abstract

Data Type (ADT), polymorphism and overloading, these aspects of 00 can

be used to construct and implement the model discussed in (a).

The usefulness of these concepts in spatial modelling is explained below.

5.2.1 The abstraction mechanisms

Data abstraction is a method of modelling data. Object-oriented design uses four major

abstraction mechanisms: (1) classification, (2) generalization, (3) inheritance, and (4)

polymorphism. In object-oriented programming, any physical or logical entity in the

model is an "object". The definition of a type of object is called a "class", and each

particular object of that type known as an" instance" of the class. Once a class has been

defined, it can, potentially be reused in other programs by simply including the class

definition in the new program. However, it is not necessary for the programmer who

65

Chapter 5 Object-Orientation of TIN Spatial Data

uses a class to know how it works, they simply need to know how to use it. The

definition of operations on or between objects are called" methods" , and the invocation

of methods is referred to as "passing a message". Recent research in software

engineering has promoted an object-oriented design method by which real world objects

and their relevant operations are modelled in a program which is more flexible and

better suited to describe complex real world situations (Khoshafian and Abnous, 1995).

Object orientation also may be considered as a particular view of the world which

attempts to model reality as closely as possible (Webster, 1990). Details of all relevant

00 concepts (object, abstraction, data types, class hierarchy, inheritance, classification,

aggregation, generalization and association) can be found in the 00 literature such as

Booch (1990), Bhalla (1991), and Stroustrup (1997). The following are some 00 terms:

Classification

Classification can be expressed as the mapping of several objects (instances) onto a

common class. In the object-oriented approach, every object is an instance of a class (a

class is a fundamental building block in an 00 language). It describes common features

of a set of objects with the same characteristics; a class also defines nature of a state and

behaviour, while an object records the identity and state of one particular instance of a

class. Abstract Data Type (ADT) is the name of the mechanism to create a class of spatial

objects or any class in a domain of objects. An object is a basic run-time entity in an

object-oriented system. This entity includes data and procedures that operate on data.

Viewed from a programming stand point, objects are the elements of an 00

programming system sending and receiving messages.

Generalisation

Generalisation in 00 provides for the grouping of classes of objects, which have some

operations in common, into a more general superclass. Objects of superclass and

subclass are related by an "is a" - relation, since the object of a subclass also "is-a" (an)

instance of a superclass.

66

Chapter 5 Object-Orientation of TIN Spatial Data

Inheritance

Inheritance allows the building of a hierarchy of types or classes that best describes the

real world situation in the application field. Each class can take all or part of the

structural or behavioural features from other classes, which are its parents. In turn, the

newly defined class is a child of the classes from which it has inherited its features.

Inheritance helps in deriving application-oriented classes without starting every

definition from scratch. Also, it makes it easier to create logically complex classes from

simpler classes.

Polymorphism

Polymorphism is a mechanism to define the different actions of the same named

function on different classes. It is implemented by inheriting some functions from

parent classes and overriding or modifying part of them. Usually, the newly created

class has similar but not the same behaviour as its parents for that functional aspect.

Polymorphism provides great flexibility in class derivation, for example, the

calculate....perimeter operation may have different implementations for different classes

such as class "area", class "triangle", class "polygon", etc. Each class performs the

calculate perimeter operation differently although it has the same function name.

5.2.2 The programming language

Object-oriented concepts were originally developed in early programming languages

such as Simula in 1960's. Other 00 programming languages such as Smalltalk, C++ and

Java have also been developed since then. Although Java is said to be widely used for

the Internet or distributed computing environment these days, the C++ language is

much more widely used and offers more 00 concepts than other languages (Stroustrup,

1997). There are several C++ compilers available from major software/compiler

vendors for a wide variety of computer systems. Most of these compilers are meant for

a wide variety of scientific computing tasks, including for instance geoinformation

67

Chapter 5 Object-Orientation of TIN Spatial Data

modelling and computations. In the work reported in this thesis, the Borland™ C++

compiler was utilised for all the software development.

5.3 Object-Oriented TIN Tessellations

00 TIN tessellation software has been developed for the construction of 2D and 3D TIN

data structures. The algorithms are described in Chapter 6. The descriptions of the 00

TIN tessellations follow (section 5.3.1).

5.3.1 Classes for 2D TIN tessellations

Using the above 00 mechanisms, the spatial tessellations are designed as shown in

Figure 5.1. In this design, the Booch (1990) notation was used to represent the hierarchy

of the classes. Booch has provided one of the techniques for designing class hierarchy.

Other possible techniques are notations such as those of Rumbaugh and the Unified

Modelling Language (UML). In the two-dimensional (2D) spatial tessellation, four

major classes have been recognised, the classes are TDistanceTransformation (TDT) class,

TVoronoiTessellation (TVor) class, TTinGeneration (TTinGen) class, and TTinView

(fTinView) class, see Figure 5.1. The TDT class is used to calculate and generate a

distance transformed image of given object pixels. The TVor class is used to generate the

Voronoi image of the object pixels. The corresponding TIN of the object pixels can be

determined by using the TTinGen class, and the TIN viewing is handled by the

TTin View class.

In this work, not all 00 mechanisms were used. The two most useful mechanisms are

classification, and inheritance. The following sections describe all the relevant classes

associated with spatial tessellations.

The Class TDistanceTransformation generates a distance transformed image from a given

rasterised data set. Operations or methods in this class are: SetBackground,

GetUpperMask, GetLowerMask, ForwardPass, and BackwardPass. The details of these

68

Chapter 5 Object-Orientation o/TIN Spatial Data

methods or procedures were fully described in Abdul-Rahman and Drummond (1998,

1999). Here, only their relationships with other classes in the class hierarchy are

described. The details (class headers which includes all the related attributes and

methods) for each class are represented in Appendix B.

Svmbol:

(inheritance)

....

2D TIN Tessellations 3D TIN Tessellations

Figure 5.1 The classes hierarchy for the 2D and 3D TIN tessellations

The following class TVoronoiTessellation generates a Voronoi image from a given

distance transformed data set. The major methods in this class are ForwardVoronoi and

BackwardVoronoi. These two operations were to generate the tessellated image in two

passes. The forward pass begins from the top left corner of the image while the

backward pass works reversely (i.e. from the bottom-right pixel to the top-left pixel).

The class mentioned above, TTinGeneration produces a TIN from a given Voronoi image

data set. The ScanlinesUp and ScanlinesDown methods are to detect the TIN's triangles

69

Chapter 5 Object-Orientation o/TIN Spatial Data

from the Voronoi images. After having generated the TIN then, the next task is to

display (visualize) them. The visualization make uses of the Borland's C++ compiler

predefined class TApplication, that is the superclass for the TIin View

• The following gives the definitions of the 2D TIN classes:

class DistanceTransform
{

public:
II member data
typedef struct MpiStruct
{
short Nscanlines;
short Npixels;

} MpiType;

II member functions
DistanceTransformO; II constructor

II declaration of the DT class which contains
the data structure, and several
methods associated with the DT
operations.

void SetBackground(lmagePPtr Pixel, int Bg, int Fg);
void GetUpperMask(int r, int c, ImagePPtr Pixel, Mask& MaskPix);
void GetLowerMask(int r, int c, ImagePPtr Pixel, Mask& MaskPix);
void DistancePassOne(lmagePPtr Pixel);
void DistancePassTwo(lmagePPtr Pixel);
void ForwardDistanceO;
void BackwardDistanceO;
-DistanceTransformO; II destructor
};

class TVoronoiTessellation : public TDistanceTransform
{
public:

/I Function members
void Copylmage(lmagePPtr, ImagePPtr&);
void SetBackground(lmagePPtr, int, int);
void GetUpperMaskDist(int, int, ImagePPtr, Mask&);
void GetLowerMaskDist(int, int, ImagePPtr, Mask&);
void GetUpperMaskVoronoi(int, int, ImagePPtr, Mask&);
void GetLowerMaskVoronoi(int, int, ImagePPtr, Mask&);
void ForwardPass(lmagePPtr, ImagePPtr);
void BackwardPass(lmagePPtr, ImagePPtr);
void ForwardVoronoiO;
void BackwardVoronoiO;
};

class TINGeneration
{
public:
typedef struct MpiStruct

70

Chapter 5 Object-Orientation o/TIN Spatial Data

{
short Nscanlines; 1/ no. of image rows
short Npixels; 1/ no. of image columns

} MpiType;

typedef struct VertexStruct
{
DataType N1;

} TVertex;

typedef struct TsNodeStruct
{
short x;

} TsNode;

1/ function members
void GetMask(int, int, ImagePPtr, Mask&);
void GetSublmage(int, int, ImagePPtr, Mask&);
void ScanlinesUp(Mask);
void ScanlinesDown(Mask);
void Scanlines(lmagePPtr);
void MakeTINO;

};

5.3.2 Classes for 3D TIN tessellations

The tessellations of the 3D TIN have been developed; their class hierarchies are very

similar to the 2D TIN version. The only difference is the computation dimension (the

additional third dimension), and the way to visualize the generated 3D tessellation files.

The 3D tessellations also have four major classes. The classes are

TDistanceTransformation3D (TDT3D), TVoronoi3D (TV or3D), TTinGeneration3D

(TIinGen3D), and TTin View3D (TIin V3D), recalling Figure 5.1. Detailed definitions of

each class are presented in Appendix B.

For purpose of displaying the DT and the Voronoi images, the ILWISTM (1996) and

A VSTM (1997) packages have been utilised. The latter package is for the 3D images

whereas the former package is for the 2D images.

71

Chapter 5 Object-Orientation o/TIN Spatial Data

5.4 Object-Oriented TIN Spatial Data Modelling

In this section we provide a discussion of the 00 TIN spatial data modelling techniques.

The general modelling steps (recalling Figure 4.2 of section 4.3) can be considered to

describe TIN spatial data modelling. That is, the three-step approach, namely the

conceptual, the logical and the physical steps. In this work, the conceptual step is

implemented by utilising TIN as a method to represent spatial objects. Spatial objects

are perceived as TINs. Then, by having the TINs data constructed, a model to describe

the objects (i.e. their connectedness between objects) can be established. The description

of the objects and how they relate to each other, for example from TIN nodes to TIN

surfaces is the logical step. All the 00 techniques created classes (Node, Edge, Area and

Body) are then physically modelled in the 00 database environment.

The class schema for spatial data modelling are described below.

5.4.1 The class schema

The schema is based on several classes, they are Spatial Objects (the super class), and

four major subclasses which are Node, Edge, Polygon, and Solid.

Spatial objects

The spatial object class is a general class of the real world objects. It is the super class in

the class hierarchy. In this work, an assumption is made that all other objects are

derived from the superclass (TSpatial object), see Figure 5.2. All terrain objects could

be categorised into several sub classes such as points, lines, areas, and solids (volume)

features. In 00 modelling, these feature types are the classes in the modelling

hierarchy.

72

Chapter 5 Object-Orientation of TIN Spatial Data

. Figure 5.2 The class diagram (using the Booch notation)

Node

A node can be considered as the most basic geometrical unit in spatial data modelling.

It may represent point entities or point objects at a particular mapping scale. Examples

of point objects are wells, terrain spot heights, and the like. In geoinformation, we may

represent these objects by a class called a node class. The coordinates of the nodes

(including the nodes represent edges) are held by a coordinates container class, called

XYZContainer class.

Edge

An edge can be represented by one node at each end (i.e., a start node and end node).

In this study we consider two end points make a straight edge. This edge type can be

used to represent linear features. The arc container class, called ARC Container holds

all the arcs. The arc containers also serve any other class which requires arcs data in

their operations, for example the polygon class needs the arcs in order to form polygons.

Polygon

A polygon (sometimes known as a surface) is used to represent area features such as

73

Chapter 5 Object-Orientation o/TIN Spatial Data

lakes, ponds, etc. A polygon may be constructed by chains of closed edges.

Solid (or Body)

A solid is a representation for solid or body features such as buildings, trees. A chain

of points, lines and surfaces form body objects. A 3D TIN can be represented by a series

of triangle nodes and edges as mentioned in the previous chapter.

The class schema in Figure 5.2, depicted using Booch (1990) notation is the

representation of the TIN spatial data model. The schema has four geometric classes

namely TNode, TEdge, TPoly, and TSolid and two types of containers: geometry and

attribute. The geometric containers contain the XYZ locations (held by the

XYZContainer) and the ARCContainer whereas the attribute containers are for the

thematic values, e.g. names. The attribute information is held by the NodeAttrbute, the

EdgeAttribute, PolyAttribute, and SolidAttribute.

The following gives the definitions of the classes as presented in Figure 5.2. In Booch

notation, each class is represented by a "cloud-look" diagram. It contains data and

methods for a particular class. The arrow shows the link between a class with another

classes. More detailed class definitions are given in Appendix C.

• The geometric classes (written in C++ style) are:

class TNode
{
public:

struct XYZContainer

{
double x;
double y;
double z;
};

XYZContainer POint[maxpoint];

struct NodeAtrContainer
{

74

II this is the XYZContainer struct

II this is the NodeAtrContainer struct

Chapter 5 Object-Orientation of TIN Spatial Data

int NodeNum;
string NodeName;
};
NodeAtrContainer NodeAtr[maxnodename];

void GetXYZCoordinatesO;
void Get2NodeO;

1/ the methods for the class follows

void NodeAttributeO;
};

The class TNode describes the structure for the XYZContainer, the NodeAtrContainer
as indicated by the 'struct' keyword. The class also has several methods such as
GetXYZCoordinates(), Get2NodeO, and NodeAttributeO.

The following TEdge class has several methods as indicated after the keyword void, int
and float.

class TEdge
{
public:

};

ARCContainer Arc[maxarc];

EdgeNameContainer- EdgeAtr[maxarcname];

void ReadARCsO;

void GetArcLengthO;
void GetArcAttributeO;
int CheckQuadrant(float, float);
float Bearing(float, float, float, float);
float GetArcAzimuth(float, float, float, float);
void EdgeAttributeO;

II the declaration for the
containers follows.

II the associated methods
follows.

For the class TPoly, it has TINContainer structure, TEN Container structure, and several
related methods for the polygon (areal) objects.

class TPoly
{
public:
struct TINContainer

{

};

int Node1;
int Node2;
int Node3;

TINContainer Triangle[maxtriangle];

75

II the declaration for the
TINContainer struct.

Chapter 5 Object-Orientation o/TIN Spatial Data

struct TENContainer

{
int TriNum;
int NumofNbr;
int Nbr1;
int Nbr2;
int Nbr3;
};

TEN Container TINNbr[maxtriangle];

void ReadTINsO;

void GetTINNeighbourO;
void GetTINNodes(int,

double&, double&, double&,
double&, double&, double&,
double&, double&, double&);

float GetTINArea{);
void GetPolyArea(int, int, double&);
};

/I the declaration for the
TENContainer struct.

/I the associated methods
follows.

Whereas the class TSolid contains TENContainer struct, TINContainer struct, and the
associated methods for the operation on the solid objects. Their corresponding
declaration in C++ follows:

class TSolid
{
public:
struct TEN Container

{
int Node1;
int Node2;
int Node3;
int Node4;
};

TENContainer TEN[maxtriangle];

void ReadTENsO;

void Get3TINNodes(int,
double&, double&, double&,
double&, double&, double&,
double&, double&, double&,
double&, double&, double&);

float GetVolume(double, double, double,
double, double, double,
double, double, double,
double, double, double);

};

II the declaration for the
TENContainer struct.

/I the associated methods for
the class TSolid.

The schema also describes several classes of geometric containers. The classes are
XYZContaner, TINContainer, TENPolyContainer, TENContainer, ARCContainer. The

76

Chapter 5 Object-Orientation a/TIN Spatial Data

declaration of these classes follows:

class XYZContainer
{
public:
double x;
double y;
double z;

XYZContainerO {}
-XYZContainerO {}
};

class TINContainer
{
public:
int Node1;
int Node2;
int Node3;
};

class TENPolyContainer

{
public:
int TriNum;
int NumofNbr;
int Nbr1;
int Nbr2;
int Nbr3;
};

class TEN Container
{
public:
int Node1;
int Node2;
int Node3;
int Node4;
};

class ARCContainer
{
public:
int StartNode;
int End Node;

ARCContainerO;
-ARCContainerO;
};

/I the class contains (x, y, z) coordinates

/I the class contains the 3 nodes of the TIN.

/I it contains the neighbouring topology for the
TIN.

II it contains the 3D TIN's 4nodes.

/I the two end nodes for arcs.

The following describes the two classes for the attribute data. The classes are
EdgeNameContainer, NodeNameContainer.

77

Chapter 5 Object-Orientation of TIN Spatial Data

• The attribute classes are:

class EdgeNameContainer
{
public:
int EdgeNum;
char EdgeName[30];
};

class NodeNameContainer
{
public:
int NodeNum;
char NodeName[30];
};

5.5 Object-Oriented TIN Spatial Database Development

This section explains the development of an 00 database for TIN data using a

commercial database management system, that is POET 00 DBMS.

5.5.1 The POET 00 DBMS

The POET (Persistence Object and Extended Technology) DBMS is utilised in this work

as part of the 00 spatial data modelling. The package works under Windows 95

operating system for the PC environment, that is the major computing environment

adopted in this work. The package is also chosen due to it economic reason, it cost less

and can work with the Borland C++ programming language, the language adopted by

the author for the entire software development in this work. The database package is

said to have the following capabilities (POET, 1996) including:

a. Encapsulation;

b. Inheritance; and

c. User-defined data types.

Which are among important 00 features of POET that can be useful for the TIN spatial

data modelling purposes.

78

Chapter 5 Object-Orientation of TIN Spatial Data

5.5.2 The POET database schema

The DBMS is used to generate the 00 database from the constructed TIN spatial data.

In this work the schema needs to be modelled according to the POET database model

(POET, 1996), that is it is required that all the C++ classes are constructed as classes

which POET can understand. In this case, all the classes in the schema have to be

compiled by the POET PTXX compiler as shown in Figure 5.3. The PTXX compiler maps

all the normal C++ classes into the several relevant PTXX schema files which in turn are

used for writing application programs (running under the normal C++ compiler) as well

as for populating the database. The PTXX compiler also generates the 00 database

from the schema.

Classes

00 Database

Reporting I
Figure 5.3 The POET database development flow

5.5.3 The POET database browser

In POET, once the database schema has been properly compiled, then the generated

database can be inspected by using the built-in browser. All generated objects can be

examined for further database operations. Figure 5.4 illustrates the screen shot of the

POET Developer module where the TIN database is developed.

79

Chapter 5 Object-Orientation of TIN Spatial Data

examined for further database operations. Figure 5.4 illustrates the screen shot of the

POET Developer module where the TIN database is developed.

:: POET Oeveloper IIII~ 13
~uilder Op~ons Workspaces O.!l.L l1!indow Help

ii Workbook [LOCAL) c \tmp\workbook IIII~ 13

(0:0-1291154671. 1 (; 11 08v4)
(O:0-1301155297.1(;1102v3)
10:0-1311155420.1 d 11 05v4)
10:0-1321159824_ 1 (i 11 08v4)
10:0-1331160450. 1 (i 11 02v3)
10:0-1341160573. 1 (; (1 05v4)
10:0-1351164977.1dI108v4)
(0:0-1361165603.1 (i 11 02v3)
10:0-1371165726.1qI105v4)
10:0-1381170130. 1 (;(108v4)

00 ARCAtrContainer

00 ARCContainer

00 NodeAtrContainer(2)

00 TENContainer

00 TENPolyContainer

00 TIN Container
10:0-1391170756. 1 d 11 O2v3)
10:0-1401170879. 1 (i (1 05v4)

define extent allTNode for TNode

00 XYZContainer -I~10;;;:0~-1 4,;;1,;;;1I7~52;;;8;;3.,,;;1 (~; (1;;0;;8v;;;4)~==-,T ~~~~c~o~~d~n allTNode
T D biecis: 1 68

~E=:::!?Jj[ic~==C~:::====:I~~Where Node.NodeNal1Ie = "(0*"

!31 Databaselphysical)' c:\bc5iemp\dbase\base

!31 Client Name: POET Workbench

!31 DaiabaseVersion: 12

!31 POET Version: 0

!31 Daie Created: 18:34:3008/03/2000

!31 Authori,ation enabled: NO

~ Dictionary Host: LO C6.L

~ Dictionary Physical Host: LOCAL

~ Dictionary: c:\bc5temp\dbase\dict

~ Dictionary(logical): diet

~ DictionarYlphysical): c:\bc5iemp\dbase\dici

Execute DQL query on opened database.

x,yzcontolner hcd
tincontainer.hcd
noden~mecontainer.

Path

100

10:01:021 A

12:57:481
17:27:401
10:38:341
17:14:120
13:47:080
19:23:3~21 T
11=;·nn·nI=:1

•

Figure 5.4 The POET Developer which was used to develop the TIN 00 database and
support database retrieval(query).

5.5.4 POET database query

The generated database can be queried by using a built-in database query facility within

the POET Developer module. This built-in technique is adopted for this work. A query

language similar to structured query language (SQL) can be utilised. The language is

called Object Query Language (OQL) and detailed syntax of the language can be found

in POET(1996). The following is an example of a query which can be performed from

the database:

defined extent aliTEdge for TEdge;

select Edge

from Edge in aliTEdge

80

Chapter 5 Object-Orientation o/TIN Spatial Data

developed. Ibis program runs under the normal Borland C++ compiler but it makes

use of the files which were generated by the POET PTXX compiler. Appendix J 01 olume

II of this thesis) gives a detailed listing of the POET-compatible program.

5.6 Object-Oriented TIN-based Subsystems for GIS

5.6.1 The subsystems

The 00 TIN GIS is based on several fundamental concepts and aspects of spatial data

which have been discussed in the previous sections. Basic components of the system are

data input processing, TIN data construction, TIN database, transformation operations,

data output and user-interface. Rasterization forms a major operation in the data input

component. Figure 5.5 shows the other major component of the proposed system -

visualization, which uses the commercial software, i.e. IL WISTM (Integrated Land and

Water Information System) and AVSTM (Advanced Visualization System). These two

packages are only used for display purposes, more especially for validating the output

from the rasterization process. A simple user-interface as part of the software

development is also developed. Besides the programs written by the author for

databasing purposes, a commercial database package is also utilised, called POETTM

OODBMS as mentioned. The DBMS package is for the development of the 00 TIN

spatial database.

transformation
- interpolation
- contouring

&<1---....1...----1 _ geometric calculation I

L..---r----' (areas, volumes)

Figure 5.5 The proposed system for the TIN-based spatial data

81

Chapter 5 Object-Orientation of TIN Spatial Data

5.7 Summary

This chapter introduced the implementation of object-oriented techniques for TIN (2D

and 3D) spatial data. The chapter revealed the usefulness of a commercial 00 DBMS

package to develop TIN spatial database schema as described in section 5.5. The

software development which has been implemented in this chapter could be applied to

a much larger system built from those subsystems.

2D and 3D TIN tessellation is one of the major components of this research. These

tessellations are shown to work perfectly in the 00 environment. The approach which

was implemented in this chapter can be used for developing a TIN-based GIS system.

The graphic output of the tessellations shown in Figure 5.6 clearly demonstrates the

workability of the 00 technique. More results of the implemented subsystems are

presented in Chapter 6.

82

Chapter 5 Object-Orientation of TIN Spatial Data

2D tessellations output 3D tessellations output

1--------

Distance

Transformation
/

1,,',11

I I I I ,

I I 'AI I I' . .. :

II • • . 1, 1

/
TINs tessellations

L _______ _

ifM§'hiff!!
pi .. !

Figure 5.6 The 2D and 3D TIN tessellations

83

Chapter 6

The Supporting Algorithms

6.1 Introduction

This chapter introduces several major algorithms for TIN spatial data structuring and

constructions. Data structuring for terrain surfaces has been investigated for several

decades. The main concern of the earlier investigations was the suitability and the

adaptability of data structures for representing terrain surfaces. In the late 1970's a

triangular irregular network (TIN) data structure was presented (Peucker et al.,1978).

Several methods and techniques have emerged for the construction of TIN structures

(McCullagh and Ross, 1980; Watson, 1981; Mirante and Weingarten, 1982). Most of the

techniques were attributed to Delaunay (1934) and known as Delaunay triangulation.

TINs could be constructed either in the vector or in the raster domain. In this research

a raster technique for the construction of the TINs (2D and 3D) is used.

In this chapter the algorithms for the construction of 2D TIN and 3D TIN spatial data are

introduced. These algorithms have the names: Distance Transformation (DT), Voronoi

Tessellations, Triangulations, and Triangulations Data Structuring. In this work

visualization and rendering routines for 2D and 3D data have also been developed, as

have rasterization programs for TIN data construction purposes. Each algorithm is

explained in detail together with its C++ pseudo-code. Detailed codes are presented in

Appendix J (in Volume II).

6.2 Distance Transformation

Originally, the term distance transformation (DT) was used by Rosenfeld and Pfaltz

(1966) and later by Borgefors (1986). The DTwas used to describe an operation of

84

Chapter 6 The Supporting Algorithms

converting binary images to a grey-level image where all pixels have a value

corresponding to the distance to the nearest feature (or object) pixel. The same principle

had also been applied in other areas of interest such as raster-based GIS and remote

sensing (Gorte and Koolhoven, 1990). The DT provides a method for calculating the

distance from every non-object element in a two-valued raster data set to the nearest

object element of a set of object elements. The Borgefors DT technique was a

fundamental step in this raster-based TIN development. The transformed image can be

used to generate a Voronoi tessellated image, and then a set of triangles can be

generated from that Voronoi tessellated image. Triangles generated from Voronoi

polygons are sometimes known as the dual product of the Voronoi polygons (Fortune,

1992). Borgefors (1986) investigated several types of DTs. These were known as City

block, Chessboard, Octagonal, Chamfer 3-4, Chamfer 5-7-11, and Euclidean. Each DT

produces different output images and requires a different computation time. Borgefors

suggested that Chamfer 3-4 can be used for generating distance transformed images due

to its processing simplicity. Description of other DTs can be found in Borgefors (1986).

It is not the intention of this section to compare all the DTs but rather to explain them

and then use the most appropriate one (i.e. that which is relatively easy to implement);

a detailed explanation of the DT which was used in the TIN development is described

later in this section.

Distance Transformation (DT) is a technique used in the image processing community

for a range of applications, one example is zone mapping (Borgefors, 1986). A zone of

accumulated distances could be mapped from a rasterised point. This DT concept is

used in this research and the technique is one of the fundamental steps in the

construction of the triangulation. The task is to generate a distance-transformed image

of object pixels. In a raster image, object pixels could be in the form of random points,

digitized points, digitized lines, etc.

85

Chapter 6 The Supporting Algorithms

Figure 6.1 shows an example of several points whereas the DT image of the points are

illustrated in Figure 6.2 .

•
•

•
• •

•
•

•
Figure 6.1 Several kernel points
(or object points).

Figure 6.2 The DT image of the
several paints as shown in
Figure 6.1.

In Figure 6.2, the darkest spots represent the location of the kernel points. In the DT,

each kernel point is used to generate distance image from neighbouring kernel points.

Distances accumulate from the centre of kernel points. In the above example, the centre

of kernel points get the value zero (darkest) and the distances gradually increase from

the centre (indicated with brighter images) as shown in Figure 6.2. To perform the DT

to an image of rasterised points for example, a mask (or a window of 3 x 3 pixels) is

required as shown in Figure 6.3(a). The mask has 9 pixels (3 x 3 pixels). This mask is

divided into two, called upper mask, and lower masks, as shown in Figure 6.3(d).

86

0

3

6

1 2

4 5

7 8

Numbering
(a)

~
~
~
~

(d)

Chapter 6 The Supporting Algorithms

Upper mask

Lower mask

r-1,c-1 r-1,c r-1,c+

r,c-1 r,C ',c+1

r+1 ,e- r+1 ,e r+1 ,e

Indexing
(b)

r,c ',c+1

r+1,c-1 r+1 ,e r+1,c+1

(e)

+4 +3 +4

+3 C +3

+4 +3 +4

Distance approximation
(e)

+4 +3 +4

(I)

Figure 6.3 Masks for the DT operations

The algorithm works with two passes of the entire image. The first pass (or scan) uses

the upper mask while the lower mask is used for the second pass. Each pixel in the

mask is indexed according to Figure 6.3(b) where the centre pixel of the mask represents

the image pixel then being scanned.

In this algorithm, the DT works as follows: all object pixels are changed to zero (i.e. a

value 0) and the rest of the pixels (i.e. the background pixels) to the highest possible

value e.g. an integer value of 32767 (of 16-bit data type architecture). The entire image

is scanned in two passes using the Chamfer 3-4 mask of the Borgefors DT (Borgefors,

1986) as illustrated in Figure 6.3(c). The first pass (scans with upper-mask) begins from

the first pixel (i.e. the top-left pixel) and goes to the last pixel of the image. In the first

pass, all the pixels which are covered by the mask get a new value. Each pixel's value

has added to it either a value of 3 or 4 depending on its direct or indirect neighbour

relationship with the centre pixel (C). Then, the minimum value is determined from the

five possible candidates and assigned to the current pixel location. The mask is then

moved to the next pixel location. At this next location, the minimum value for this pixel

87

Chapter 6 The Supporting Algorithms

is again determined and assigned. This process continues to the last pixel location (i.e.

the bottom-right pixel) of the image. The result of the first pass operation is used for the

second pass which operates in reverse order (i.e. from the last pixel to the first pixel of

the image). It is a recursive operation. Finally, a DT image is generated after these two

passes are carried out. In this DT image, all pixels contain the approximate distance to

the nearest kernel points (object pixels).

The following pseudo-code describes the DT algorithm:

/I Procedure to Set the background image

void set backgroundO

{

Set loop for rows (first row to last row)

{

Set loop for columns (first column to last column

if (Pixel value not equal to background)

Set Pixel value to zero;

else

Set Pixel value to background (highest possible value);

}

}

}

/I Procedure to assign the Upper Mask

void GetUpperMaskO

Assign the Mask[O] to Mask[4] to the corresponding pixel locations,

e.g., Mask Pixel[O] = Pixel at [row-1][column-1];

}

/I Procedure to assign the Lower Mask

void GetLowerMaskO

Assign the Mask[4] to Mask[8] to the corresponding pixel locations,

e.g., Mask Pixel[4] = Pixel at [row][column];

88

Chapter 6 The Supporting Algorithms

1/ Procedure to compute distance in forward pass

void ForwardPassO

{

Set loop for row(first row to last row)

Set loop for (first col to last col)

{

GetUpperMaskO;

If Mask has odd index add 4 to the Mask value;

else

Add 3 to the Mask value;

Get the minimum value of Mask[O] to Mask[4] and assign to this pixel;

}

}

1/ Procedure to compute distance in backward pass

void BackwardPassO

{

Set loop for row(from last row to first row)

{

Set loop for col(last col to first col)

{

GetLowerMaskO;

If Mask has odd index add 4 to the Mask value;

else

Add 3 to the Mask value;

Get the minimum value of Mask[O] to Mask[4] and assign to this pixel;

}

The above steps then combined as follows into one main DT routine as follows:

1/ Procedure to compute the distance using forward and backward

void Forward&BackwardO

Reads the input Image;

Set the Background;

Compute distance using the FirstPass;

Compute distance using the Second Pass;

Write and save the transformed image to file;

89

Chapter 6 The Supporting Algorithms

An image of a DT for a number of points within a data set (kernel points) is illustrated

in Figure 6.2. The darkest spots in the image represent the kernel points, and it

gradually brightens outward from the points. The DT algorithm appears to work well.

6.3 Voronoi Tessellations

Voronoi polygons are also known as Thiessen or Dirichlet polygons. They have been

considered one of the fundamental structures in computational geometry and other

fields such as GIS. Voronoi polygons are often used in GIS as a method for analysing

points data, for example for finding nearest neighbours (Burrough and McDonnel, 1998).

In Voronoi polygons, one centroid point represents one polygon. The extent of each

polygon indicates the influence of the centroid point with respect with the neighbouring

points.

Figure 6.4 Example of Voronoi polygons
represented by several data points (after
Fortune (1992)).

This type of polygon is useful in GIS as mentioned, e.g. for zone mapping or for

determining the region of influence of a phenomenon or buffering (Gold et al, 1997).

Figure 6.4 shows Voronoi polygons where each is represented by a centroid point.

From the generated DT image of kernel points as described in section 6.2, Voronoi

polygons of these points can be constructed. The generation of the polygons can be

90

Chapter 6 The Supporting Algorithms

done either in parallel or in stages. In this algorithm, the tasks were carried out in

parallel. If the DT generation as described in section 6.2 is re-examined, it is seen to

involve three steps. First, change the object pixel value to zero (i.e. 0) and the

background image to the highest possible value. Second, determine the minimum value

of the current pixel location among five possible candidates of the upper mask. Third,

assign the minimum value to the current pixel location. In other words, the pixel value

represents a distance value of the pixel calculated from the nearby object pixels.

To generate the Voronoi-tessellated image parallel with DT operation, two output files

are needed. That is one for the DT image and the other for the Voronoi image.

Computing the DT image according to the algorithm describe in section 6.2 involves the

following steps at a particular pixel [i, j]: First the mask is "put" on the pre-processed

image, the mask centre (having the value 0) at [i, j] of the pre-processed image. Secondly

the values of the mask are added to the values pixels that are being covered. Thirdly,

the minimum of the 5 resulting values is determined and assigned to [i, j] of the current

distance transform image. Before continuing to the next pixel, for which the distance

is to be computed, the value for the second output image, the Voronoi tessellation

image, at [i, j] has to be assigned. This is done by determining the location of the pixel

where the minimum value was found just before, e.g. at [i, j-l]. The pixel value of the

original image at [i, j] is then taken and assigned to [i, j] of the Voronoi tessellation image

(see Figure 6.5 and also Figure 6.6). This method of computing the Voronoi and DT in

parallel was also suggested by Borgefors (1986) with the following quote "the

computing of the Voronoi tessellation image can be done by first computing distance

transformation from an object pixel while at the same time keep track from which pixel

the distance is computed".

91

~
8T

Mask indexing

FF FF FF I
00 FF FF

Preprocessed image

Chapter 6 The Supporting Algorithms

00 00 00 I
88 00 00

Input image

+4 +3 +4 I
+3 +0

Mask values

. . .

Mask Ele.

0

1

2

3

4

FF FF

00 03 ...,
.'

Preprocessed + Mask

88+4=92

88 + 3 = 91

88+4=92

0+3=13"-,
'- -

88+0=88

, .-'

. .

· · · ·
,­

"

FF I 00

FF
. . , 88

Input image

00

00

00

(88 ~-.

00 . .

00 00 I
~8 00

.. ... - _ .. - ..
Distance image Voronoi image

Figure 6.5 DT computation and Voronoi image generation during the forward pass.

A more complete picture for the parallel process of the DT and Voronoi tessellation

implementation is illustrated in Figure 6.6 where the outcome of the first pass and the

second pass applied to the input pixels is clearly illustrated.

92

Chapter 6 The Supporting Algorithms

00 00 00 00 00 00 00 FF FF FF FF FF FF FF
00 00 00 00 00 00 00 FF FF FF FF FF FF FF
00 00 00 00 00 00 00 FF FF FF FF FF FF FF
00 01 00 00 00 00 00 FF 00 FF FF FF FF FF
00 00 00 00 00 00 00 FF FF FF FF FF FF FF
00 00 00 00 00 00 00 FF FF FF FF FF FF FF
00 00 00 00 00 00 00 FF FF FF FF FF FF FF
00 00 00 00 02 00 00 FF FF FF FF 00 FF FF
00 00 00 00 00 00 00 FF FF FF FF FF FF FF
00 00 00 00 00 00 00 FF FF FF FF FF FF FF
00 00 00 00 00 00 00 FF FF FF FF FF FF FF
00 00 03 00 00 00 00 FF FF 00 FF FF FF FF
00 00 00 00 00 00 00 FF FF FF FF FF FF FF
00 00 00 00 00 00 00 FF FF FF FF FF FF FF

Input image +4 +3 +41 Preprocessed image

+3 0

~r FF FF FF FF FF
FF FF FF FF FF FF FF
FF FF FF FF FF FF FF mo

00 00
00 00

FF 00 03 06 09 12 FF
FF 03 04 07 10 13 FF
FF 06 07 08 11 14 FF
FF 09 10 11 12 15 FF
FF 12 13 14 00 03 FF
FF 15 16 04 03 04 FF
FF 18 08 07 06 09 FF
FF 12 11 10 09 10 FF
FF 15 00 03 06 09 FF
FF 04 03 04 07 10 FF
FF FF FF FF FF FF FF

FF FF FF FF FF FF FF
FF 06 07 08 13 14 FF
FF 03 04 09 10 13 FF
FF 00 03 06 09 12 FF
FF 03 04 07 09 10 FF
FF 06 07 07 06 07 FF
FF 09 07 04 03 04 FF

1st. Pass

FF 09 06 03 00 03 FF 2nd. Pass
FF 10 07 04 03 04 FF
FF 07 06 07 06 07 FF
FF 04 03 04 07 10 FF
FF 03 00 03 06 09~F
FF 04 03 04 07 10 FF
FF FF FF FF FF FF FF

1+4

0 +3

+3 +4

00 01
00 01
00 01
00 01
00 01
00 01
00 01
00 02
00 02
00 03
00 00

00 00
00 01
00 01
00 01
00 01
00 01
00 01
00 02
00 02
00 03
00 03
00 03
00 03
00 00

00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
01 01 01 01 00
01 01 01 01 00
01 01 01 01 00
01 01 01 01 00
01 01 02 02 00
01 02 02 02 00
02 02 02 02 00
02 02 02 02 00
03 03 03 03 00
03 03 03 03 00
00 00 00 00 00

00 00 00 00 00
01 01 01 01 00
01 01 01 01 00
01 01 01 01 00
01 01 02 02 00
01 02 02 02 00
02 02 02 02 00
02 02 02 02 00
02 02 02 02 00
03 02 02 02 00
03 03 03

~JU 03 03 03 03 00
03 03 03 03 00
00 00 00 00 00

Figure 6.6 DT and Voronoi tessellation parallel computation

The algorithm is tested by using several simulated digitized datasets (Figure 6.7) as well

as photogrammetrically captured datasets (Figure 6.9).

93

Chapter 6 The Supporting Algorithms

1

•

•
7

3

•

• 2

• 6

4

•

.5
Figure 6.7 Several kernel points Figure 6.8 The generated

Voronoi polygons of the points as
shown in Figure 6.7

The Voronoi polygons in Figure 6.8 are clearly delineated. Different image tones

represent different polygons as depicted in Figure 6.10 where their kernel points are

shown in Figure 6.9.

Figure 6.9 The rasterised kernel
points of the photog ram metric data
sets.

94

Figure 6.10 The generated
Voronoi polygons of the kernel
points (Figure 6.9).

Chapter 6 The Supporting Algorithms

6.4 Triangulations (TINs)

Descriptions of triangulations associated with digital terrain modelling (DTM) and

surveying can be found in texts such as Petrie and Kennie (1990). A more specific

discussion of TIN algorithms for visualization aspect can be found in (van Kreveld,

1997). In this section basic Delaunay triangulation will be described (this method of

constructing triangles was attributed to Delaunay (1934)).

The principle of Delaunay triangulation is that the circumscribing circle of any triangle

does not contain any point of the data set inside it, see Figure 6.11.

/~---~ Ar-----------_"
, , , , , ,

I \
\ \

1 \

.;",
-~~

, ,
, ,

\
\
I
I
I
I
f

f
f

f ,

Figure 6.11 Six non-overlapped triangles of 7points created by
the Delaunay triangulation technique

A number of triangulation algorithms were developed based on Delaunay

triangulations and widely implemented in terrain surface modules in a number of GIS

and DTM packages. In such packages, the triangulation is normally known as a

triangular irregular network (TIN). Each triangle in a TIN connects three neighbouring

points so that the plane of the triangle fits the surface sufficiently. The TIN structure

was designed by Peucker and co-workers (Peucker et al., 1978) for digital terrain

modelling. As mentioned in the foregoing discussion (recalled section 3.2.3), a TIN is

a terrain model that uses a sheet of continuous, connected facets based on a Delaunay

triangulation of irregularly spaced nodes or observation points. TIN is considered

95

Chapter 6 The Supporting Algorithms

to provide a better structure for surface modelling than other structure such as grids

(grid for example may not retain the original data). It is not the intention of this section

to describe fully the advantages of the structure but rather to briefly mention the TIN

primitives instead. The primitives are nodes, lines, and surfaces which were considered

the fundamental building blocks for spatial information. This is an interesting

consideration from which to develop and implement the TIN package discussed in this

work. In two-dimensional space, the 2D TIN can be used for developing a spatial

information system, this is because the structure contains spatial data primitives, namely

node, line, and surface primitives.

At this point unconstrained triangulations have been developed; that is no other terrain

features are incorporated such as breaklines or any linear features except terrain points.

A much better triangulation, that is constrained triangulation capable of incorporating

such terrain features is discussed in section 6.9. As was mentioned earlier, the triangles

in this work are generated using Delaunay triangulation; three kernel points of the

neighbouring Voronoi polygons need to be known to form a triangle as shown in Figure

6.12. If there are more than three neighbouring polygons, for example 4 polygons, then

there will be two possibilities for triangle formation, see Figure 6.12.

Voronoi poly Voronoi poly

'IrL---+-_ 4
I

Voronoi poly
Voronoi poly

Figure 6.12 The two possible triangles formation

In this work, the triangles are properly constructed, that is the triangles are formed

according to the Delaunay technique where there are no ambiguous triangles created.

96

Chapter 6 The Supporting Algorithms

In other words a correct TIN topology is established. A correct triangle formation can

be achieved by searching 3 Voronoi polygon neighbours. In order to find a unique set

of 3 points from a Voronoi-tessellated image, a 2 x 2 mask is used (as illustrated in

Figure 6.13). The mask is designed to detect only two specific situations where 3 or 4

different pixel values fall inside the mask at a time. These different pixels correspond

to the neighbouring Voronoi polygons and the kernel points of these polygons were

used to form the triangle. Figure 6.13 shows the mask for detecting the triangle

topology.

Muklndoxing (2 x 2)

~
IT]

Figure 6.13 Mask (2 x 2) for TIN topology
detection

The mask is separated into two parts with the aim of avoiding the overlapping

(crossover) triangles, as overlapping triangles are not allowed in the Delaunay

triangulation. The mask (2 x 2) is designed to work using a matching operation. The

pseudo code for the upper-part mask as follows:

if (mask[O] not equal to mask[1]) and

(mask[1 J not equal to mask[2]) and

(mask[2] not equal to mask[O]) then

}

increase(number of triangles);

node[O] = mask[O];

node[1] = mask[1];

node[2] = mask[2];

whereas below is the matching condition for the lower-part of the mask:

97

Chapter 6 The Supporting Algorithms

if (mask[1] not equal to mask[2]) and

(mask[2] not equal to mask[3]) and

(mask[1] not equal to mask[3]) then

}

increase(number of triangles)

node[O] = mask[1];

node[1] = mask[2];

node[2] = mask[3];

The triangle detection also works with two passes of operations as for the previously

discussed DT and Voronoi tessellation operations. The upper-part mask is used to scan

the V oronoi image from the first pixel to the last pixel. A triangle is found if four

different pixels match either one of the matching conditions imposed by the mask, see

Figure 6.14. (Note: the shape of Voronoi polygons do not represent the exact shape. The

purpose is to show the concept of triangle detection from generated polygons). The

figure illustrates how triangles could be detected.

Mask indexing

rn rn
Use 2 diagonals

ffitB
··:···:::1
: ',' .
2:": :·:.:3

4 different pixels

Crossing topology

tE-_-;,b
, " , '
II I

c"- - d

Use only 1 diagonal Non-crossing topology

8fj' ... :'-' ...

2.':-: .. 3

Figure 6.14 Triangle topology detection

98

Topology scan
on Voronoi polygons

4 crossing triangles

non-crossing triangles

Chapter 6 The Supporting Algorithms

The above topology matching condition works only if non-adjacent rasterised points are

found in the data set. In other words, two adjacent pixels of rasterised points produce

incorrect topology (i.e. a very narrow polygon creates crossing triangles). This situation

can happen if one choses an inappropriate pixel size at the rasterising stage of the data

sets. Thus to incorporate overcoming this problem, a few lines of conditions were added

to the previous matching conditions. The matching condition is as follows:

if (mask[O] not equal to mask[3]) and

if (mask[O] not equal to mask[1]) and

(mask[1] not equal to mask[2]) and

(mask[2] not equal to mask[O]) then

{

increase(number of triangles);

node[O] = mask[O];

node[1] = mask[1];

node[2] = mask[2];

Add triangle to the list;

}

if (mask[O] not equal to mask[3]) and

if (mask[1] not equal to mask[2]) and

(mask[2] not equal to mask[3]) and

(mask[1] not equal to mask[3]) then

{

increase(number of triangles)

node[O] = mask[1];

node[1] = mask[2];

node[2] = mask[3];

Add triangle to the list;

}

99

Chapter 6 The Supporting Algorithms

Figure 6.15 The Voronoi
polygons and its dual product (i.e.
the triangles).

Ii!! TlNSofl vel 1 0 I!I~Ei

lnputFiles B.edraw Bbout

Figure 6.16 The detected TINs
from the Voronoi tessellated
image.

The triangle detection algorithm implementation works. Figure 6.15 and Figure 6.16

indicate the workability of the algorithm.

6.4.1 TIN topological data structuring

A program has been developed for establishing TIN neighbour information (i.e. TIN

topology). With this one could determine the neighbours (neighbouring triangles) of

given triangles. This is very useful for some applications using the TIN data structure.

The algorithm to establish the neighbour triangles is based on the following concept: a

triangle neighbour is found if two common nodes of the triangles are encountered. One

triangle may have a maximum of three different neighbours. Below is the pseudo-code

for the algorithm, where == means logical equality, ++ means increment and && means

lOgical AND:

loop (from triangle(t) = 1 to last)

loop (from triangle(tt) = 1 to last && num of neighbour <= 3)

if (t == It) continue;

100

Chapter 6 The Supporting Algorithms

set CommonNode = 0;

}

loop (from node = 0 to < 3) && (Common Node <= 2)

}

CheckNode = (tri[t] -> Node[i] == tri[tt] -> Node[O]) II
(tri[t]-> Node[i] == tri[tt] -> Node[1]) II
(tri[t] -> Node[i] == tri[tt] -> Node[2]);

if (CheckNode == true)

{

}

CommonNode ++;

if (Common Node == 2)

{

NumofNbr ++;

Nbr[NumofNbr] = tt;

/I increase the common node

/I increase the number of neighbour

/I this triangle

TotalNeighbour = NumofNbr + 1;/1 set total neighbours for a triangle

}

}

The input is a TIN file (an ascii file of three triangle nodes; Node1, Node2, Node3), and

the output is anNBRfile (a file of triangle number, number of neighbour, Neighbour[l]

or (Nbrl), Neighbour[2] or (Nbr2), and Neighbour[3] or (Nbr3)), see Figure 6.17. The

links of the dotted circles show that the triangle T1 and the triangle T2 are neighbouring

triangles.

101

Chapter 6 The Supporting Algorithms

5 2 3 TIN file
Node1 Node2 Noda3

T1 ~ .. !)\ (2}.: 4
...... : (i .. ·/ T2 i 1 }r' •.......

3 2 3 4

T4 4 6

6
NBR file

Num_Nbrs Nbr1 Nbr2 Nbr3

T1 3 T2 T3 T4

T2 1 T1 - -

T3 1 T1 - -
T4 1 T1 - -

Figure 6.17 The TIN neighbour data structure

Full neighbouring information for the triangles is well described in the NBR file, and the

link of the XYZ coordinates with the TIN file (Figure 6.18) facilitates other tasks such as

visualization.

X'fZ coordinate file TIN file

• X Y Z Triangle No. Node1 Node2 Node3

1 T1 1 2 ,
- 2 12 , 3 ,
- 3

,
5

Figure 6.18 The link of XYZ coordinates and the TINs

102

Chapter 6 The Supporting Algorithms

6.5 Visualization

It has been claimed by de Berg (1997) that the visualization of TINs is one of the major

issues in TIN development. In this work only a simple display program for visualizing

the generated TINs has been developed. One of the fundamental tasks of any GIS or

DTM package is to visualize data. Figure 6.20 shows a simple TIN visualization.

Figure 6.19 The visualization of TINs generated using digitized contours data
sets.

The visualization program takes two input files, a XYZ coordinate file, and the TIN table

file. The triangles three nodes (i.e. Node1, Node2, and Node3) can be linked to the

corresponding XYZ coordinate table for the nodes with the appropriate pointers. Based

on values in the XYZ file, triangles could be shaded according to slope, elevation etc.,

for further visualization

6.6 3D Distance Transformation

Digital distance transformations in 3D have been considered for more than a decade not

only in medical imaging but also in other areas (Borgefors, 1996). In this work, the DT

technique was used to generate a DT image, a Voronoi image and tetrahedra. The 2D

DT algorithm discussed in previous sections can be extended to the third dimension

103

Chapter 6 The Supporting Algorithms

relatively straightforwardly due to the nature of the raster data structure. Thus, the

same DT principle is utilised for the 3D TIN development. A 3D mask of dimension 3

x 3 x 3 was used as proposed by Borgefors (1996) known as Chamfer 3-4-5 mask, see

Figure 6.20. Other types of masks are also applicable such as the Chessboard mask and

the City-block mask (Borgefors, 1996).

r··· i>
5 4 5 5 4 5

~ r······································.. :
4 3 4 4 3 4

5 4 5 5 4 5 . ! , :

: [\YfO 0 v~' Lower-part

..... : 3 0 :!: 0 3

................. ::~::::::;.:::.::::::). 4 3 4
3x3x3 mask

Figure 6.20 The 3-4-5 mask for the 3D DT

The Chamfer 3-4-5 mask is used due to its computational simplicity and its ability to

generate quite accurate distance images. Each voxel in the mask is assigned a local

distance either with a value 3, 4 or 5, depending on the voxellocation, again see Figure

6.20. The centre voxel of the mask is surrounded by 26 other voxels in x, y, z directions,

where each voxel has three types of voxel neighbours. They are called face neighbours,

edge neighbours and node or vertex neighbours. The face neighbour voxels are

assigned the value 3, the edge voxels the value 4, and the vertex voxels the value 5.

104

Row

II
5x5x5Voxctl
cubicspac:e

Level 1

0 o 0 o 0
o 0 o 0 0
o 0 o 0 0

o 0 o 0 0
o 0 o 0 0

F F F F F
F F F F F

F F F F F
F F F F F
F F F F F

F F F F F
F F F F F

F F F F F
F F F F F
F F F F F

10 9 8 9 10

9 8 7 8 9
8 7 6 7 B
9 8 7 8 9
10 9 8 9 10

24 4 242424
2424 242424

2424 242424
24 4 242424
24 4 2424 '"

25 5 252525
25 5 252525

~25 252525
25 5 25 25 25
5 5 252525

Chapter 6 The Supporting Algorithms

Level 2 Level 3 Level 4 LevelS

o 0 000 0 o 0 o 0 o 0 o 0 0 0 o 0 o 0
o 0 o 0 0 o 0 o 0 0 o 0 o 0 0 o 0 o 0 0
o 0 o 0 0 o 0 25 0 0 o 0 o 0 0 o 0 o 0 0
o 0 o 0 0 o 0 0 o 0 o 0 o 0 0 o 0 o 0 0
o 0 o 0 0 o 0 000 o 0 o 0 0 o 0 o 0 0

F
F
F F F F F F F OFF F F F F F F F F F F
F
F

F F F F F F F F F F F F F F F 10 9 8 9 10

F F F F F F F F F F F 5 458 9 8 789

F F F F F F F o 3 6 5 4 3 4 7 8 7 678

F F F F F F 4 3 4 7 8 5 4 5 8 9 8 7 8 9
F F F F F 8 7 678 9 8 7 8 9 10 9 8 9 10

9 8 789 8 7 678 9 8 7 8 9 10 9 8 9 10
8 5 4 5 8 7 4 3 4 7 8 5 4 5 8 9 8 7 8 9
7 • 3 4 7 6 3 o 3 6 7 4 3 4 7 8 7 6 7 8
8 7 4 5 8 7 4 3 4 7 8 5 4 5 8 9 8 7 8 9
11 8 789 8 7 6 7 8 9 8 7 8 9 10 9 B 9 10

24 4 242424 4 4 242424 2525 252525

42' 242424 24 4 242424 25 25 252525
2424 24 2-4 24 24 4 25 25 25 25 25 252525
242" 242424 24 5 25 25 25 25 5 252525
24 4 242424 25 5 252525 2525 252525

25 5 252525 25 252525 25 5 252525 25 5 252525

5 5 252525 525 252525 5 252525 25 25 25 25

2525 252525 2525 252525 2525 252525 2525 25 25 25

25 252525 25 252525 2525 252525 25 5 25 25 25
525 2525 5 5 252525 5 5 25 2525 2525 25 25 25

a} Input image

25 is object voxel

b) Preprocessed image

Value 0 is aSSigned for object
voxel, and F is background image

c) Forward pass (3D DT)

d) Backward pass (3D DT)

e) Forward pass

(3D Voronoi tessellation)

f} Backward pass
(3D Varonoi tessellation)

Part of the polyhedron with ID 25

Figure 6.21 Slice of images (along the Z or level direction) for the 3D DT and 3D Voronoi tessellation

Figure 6.21 shows how the voxel values are accumulated within a (5 x 5 x 5) voxel space

in the DT and Voronoi operations. To generate a distance image of a 3D raster image,

the first step is to set the voxel background image to the highest integer value (F) and

the object voxels to zeros (i.e. 0), see b. The image is then scanned in two passes, i.e.

forward and backward passes. The forward pass (using the upper-part mask) begins

from the first voxel to the last voxel. At this stage, the voxels surrounding the object

voxels will get new values. The new value is the minimum distance from the 14 possible

voxel candidates (see c). The result of the first pass is taken into account for the second

pass. This time, the image is scanned with the lower-part mask (i.e. the backward pass)

beginning from the last voxel and moving to the first voxel, again see Figure 6.21 for the

105

Chapter 6 The Supporting Algorithms

accumulated distance of a 5 x 5 x 5 cubic space (see d). A 3D distance-transformed

image is formed after the two passes are carried out (see Figure 6.22). The Figure 6.22

shows the graphic output of the 3D DT of several random points in 3D space.

Figure 6.22 An example of a 3D distance
transformation image of four pOints shown as
double cross-sections of a 3D space (visualized
via the AVS software) in the x, y and x, z planes.

The algorithm for the 3D DT in a pseudo-code follows:

II Procedure to set the background image

void set background()

loop from first row to last row

loop from first column to last column

Set loop for (first level to last level

if (Pixel value not equal to background)

Set Pixel value to zero;

else

Set Pixel value to background (highest possible value);

106

Chapter 6 The Supporting Algorithms

}

}

}

/I Procedure to assign the Upper Mask

void GetUpperMaskO

Assign the Mask[O] to Mask[4] to their corresponding pixel locations,

e.g. Mask[O] = Pixel[row-1][column-1];

/I Procedure to assign the Lower Mask

void GetLowerMaskO

Assign the Mask[4] to Mask[8] to their corresponding pixel locations,

e.g. Mask[4] = Pixel[row][column];

}

/I Procedure to compute distance in forward pass

void ForwardPassO

{

loop from first row to last row

loop from first col to last col

{

GetUpperMaskO;

If Mask has odd index add 4 to the Mask value;

else

Add 3 to the Mask value;

}

Get the minimum value of Mask[O] to Mask[4] and assign to this pixel;

/I Procedure to compute distance in backward pass

void BackwardPassO

{

loop from last row to first row

{

loop from last column to first column

GetLowerMaskO;

If Mask has odd index add 4 to the Mask value;

else

Add 3 to the Mask value;

}

107

Chapter 6 The Supporting Algorithms

Get the minimum value of Mask[O] to Mask[4] and assign to this pixel;

}

}

and finally we need to combine the above steps into the following step:

/I Procedure to compute the distance using forward and backward

void Forward&BackwardO

Reads the input Image;

Set the Background;

Compute distance using the ForwardPass;

Compute distance using the BackwardPass;

Write and save the transformed image to file;

}

6.7 3D Voronoi Tessellation

A Voronoi image is generated from the DT image. Again, these two images are

generated in parallel. The task also involves three steps. First, cover the image with the

mask. Second, the values of the mask are added to the value of the voxels being covered

by the mask. Third, a minimum value from the 14 voxel candidates is determined and

assigned to the current voxellocation. The original voxel value of the current voxel

location is taken, assigned, and written to the 3D Voronoi file. This is done prior to the

mask being moved to the next voxellocation. The process continues until the last voxel

of the image is reached. Again, the result of this forward pass is taken into account in

the backward pass which begins from the last voxel and proceeds to the first voxel of

the image. Figure 6.21 (e and f) shows how the 3D Voronoi polygons (i.e. polyhedrons)

were generated from one object voxel with ID = 25. In other words, a polyhedron of the

voxels with ID 25 was created. Visualization of the 3D DT and 3D Voronoi images or

polyhedrons can be achieved by a true 3D viewing package as provided by the A VSTM

software, see Figure 6.23. Basic operations for visualizing these 3D images via the A VS

is provided in the Appendix E.

108

Chapter 6 The Supporting Algorithms

Figure 6.23 An example of 3D Voronoi
tessellation of four points shown as double cross­
section of 3D space (visualized via the AVS
software)

The algorithm for the above 3D Voronoi tessellation in pseudo-code can be written as:

/I Procedure: SetBackground

void SetBackground(Voxel3D Voxel, unsigned char Bg, unsigned char Fg)

loop from first level to last level

loop from first row to last row

}

}

loop from first column to last column

if (Voxel[l][row][col] == 0)

Voxel[l][row][col] = Bg;

else

if (Fg > 0)

Voxel[l][row][col] = Fg;

/I Procedure: GetUpperMaskDist

void GetUpperMaskDist(int I, int r, int c, Voxel3D Voxel, Mask& MaskPix)

109

Chapter 6 The Supporting Algorithms

Assign the MaskPix[O] to MaskPix[13] to their corresponding Voxellocations.

e.g. MaskPix[O] = Voxel[I-1][r-1][c-1];

}

/I Procedure: GetLowerMaskDist

void GetLowerMaskDist(int I, int r, int c, Voxel3D Voxel, Mask& MaskPix)

Assign the MaskPix[13] to MaskPix[26] to their corresponding Voxellocations.

e.g. MaskPix[13] = Voxel[l][r][c];

}

/I Procedure: GetUpperMaskVoronoi

void GetUpperMaskVoronoi(int I, int r, int c, Voxel3D VoxelVor, Mask& MaskPixVor)

Assign the MaskPixVor[O] to MaskPixVox[13] to their corresponding Voxellocations,

e.g. MaskPixVox[O] = VoxeIV0r[1-1][r-1][cj;

}

II Procedure: GetLowerMaskVoronoi

void GetLowerMaskVoronoi(int I, int r, int c, Voxel3D VoxelVor, Mask& MaskPixVor)

{

Assign the MaskPixVor[13] to MaskPixVox[26] to their corresponding Voxellocations,

e.g. MaskPixVox[13] = VoxeIVor[l][r][c];

}

/I Procedure: ForwardPass

void ForwardPass(Voxel3D Voxel, Voxel3D VoxelVor)

{

loop from first level to last level

{

loop from first row to last row

loop from first column to last column

{

GetUpperMaskDist(l, r, c, Voxel, MaskPix);

GetUpperMaskVoronoi(l, r, c, VoxelVor, MaskPixVor);

for(k = 0; k < 13; k ++)

if «k == 0) 1\ (k == 2) 1\

(k == 6) \I (k == 8»

MaskPix[k] = MaskPix[k] + 5;

if «k == 1) \I (k == 3) \I
(k == 5) \I (k == 7) \I
(k == 9) \I (k == 11»

MaskPix[k] = MaskPix[k] + 4;

110

}

Chapter 6 The Supporting Algorithms

if«k==4) II (k== 10) II (k== 12»

MaskPix[k] = MaskPix[k] + 3;

}

if (MaskPix[13] != 255)

MaskPix[13] = 0;

Voxel[l][r][c] = MaskPix[MinBylndex(O, 13)];

VoxelVor[l][rJ[c] = MaskPixVor[MinBylndex(O, 13)];

}

/I Procedure: BackwardPass

void BackwardPass(Voxel3D Voxel, Voxel3D VoxelVor)

{

loop from last level to first level

{

loop from last row to first row

{

loop from last column to first column

GetLowerMaskDist(l, r, c, Voxel, MaskPix);

GetLowerMaskVoronoi(l, r, c, VoxelVor, MaskPixVor);

for (k = 26; k> 13; k --)

{

}

if «k == 18) II (k == 20) II
(k == 24) II (k == 26»

MaskPix[k] = MaskPix[k] + 5;

if «k == 19) II (k == 21) II
(k == 23) II (k == 25) II
(k == 15) II (k == 17)

MaskPix[k] = MaskPix[k] + 4;

if «k == 14) II (k == 16) II (k == 22»

MaskPix[k] = MaskPix[k] + 3;

Voxel[l][r][c] = MaskPix[MinBylndex(13, 26)];

VoxeIVor[l][r][c] = MaskPixVor[MinBylndex(13, 26)];

}

111

Chapter 6 The Supporting Algorithms

/I Procedure: ForwardVoronoi

void ForwardVoronoi()

ReadVoxellmage(Voxel);

CopyVoxel(Voxel, VoxeIVor);

SetBackground(Voxel, 255, 0);

ForwardPass(Voxel, VoxeIVor);

}

/I Procedure: BackwardVoronoi

void BackwardVoronoi()

BackwardPass(Voxel, VoxelVor);

}

6.8 Tetrahedron Network (TEN) Generation

Using the same principle as for the 2D TIN, the algorithm for the 3D TIN utilised a mask

of 2 x 2 X 2, see Figure 6.24. It has 8 voxel elements. It provides a unique way of

establishing tetrahedra. In order to obtain non-overlapping tetrahedra, several

predefined conditions have to be imposed during voxel scanning. There are 6 possible

non-overlapping tetrahedra that we can get from the mask shown in Figure 6.24.

TEN 1

2x2x2mask

TEN 3

TENS

Detail view of the mask

6 non-ove~apping TENs (or 3D TINs)

11
··~··@5

'!zr"J,
2' .. ""

................ 3

•.. , 5

:b.~1; I,

Figure 6.24 The six non-overlapping TENs

112

Chapter 6 The Supporting Algorithms

The mask is then used to scan the voxel's Voronoi tessellated-image once. In order to

detect non-overlapping TEN, several conditions has to be imposed during the voxel

scanning. The imposed conditions follows:

For TEN 1: 0 *2 *3 *4, For TEN 2: 0 *1 *3 *4

For TEN 3: 2 *3 *4 *6, For TEN 4: 1 *3 *4 *5

For TEN 5: 3 *4 *5 *7, For TEN 6: 3 *4 *6 *7

Once a tetrahedron was detected (based on the imposed conditions), it is then written

to a file. The file contains a record of tetrahedra where each record has 4 nodes, it is an

ASCII file and structured as in Figure 6.25. Thus, it is one way of establishing a simple

tetrahedral data structure. The data structure together with a table of nodes'

coordinates provide a means for further manipulation of the data, e.g. visualization.

The algorithm was implemented and tested by using simulated 3D raster data sets. This

data set was generated by the 3D point-to-raster program developed in this work. A

wireframe display program was also developed for visualizing the TENs, see Figure 6.26

for the output display.

Points table TENs table

X Y Z # Node1 Node2 Node3 Node4

0 Xc Y, Z, 1 0 2 3 4
1 x, Y, Z, 2 0 1 3 4
2 X, Y, Z, 3 2 3 4 6
3 x, Y, Z, 4 1 3 4 5
4 x, Y, Z, 5 3 4 5 7

Figure 6.25 TEN data structure (for TEN 1 as shown in Figure 6.24).

/I The main program has the following routines

void mainO

{

GetVPlfile(VPI);

GetVPDfile();

113

AliocateMemoryO;

Get3DTINftleO;

Make3DTINO;

DealiocateMemoryO;

P;ii,i'MMMM
lnpulFi$. BodzOlOl 6bcxJ:

~lgl~ !!l Ll

Chapter 6 The Supporting Algorithms

Figure 6.26 An example of TEN visualization

6.9 Constrained Triangulations

_Iolxl

N""

Constrained triangulation development is meant to accommodate linear features, e.g.

terrain breaklines, drainage lines, faults and other linear features such as roads,

railways, etc. Previously, this triangulation only worked with points as discussed in

section 6.4, but now a new feature is introduced in this work, that is the capability of

handling linear features. In a constrained triangulation, these lines or linear features

become part of the triangle edges. Since the triangulation in this work is based on raster

data, then also further development of the rasterization routine has been necessary so

that it can accommodate straight lines.

The next section discusses the line rasterization algorithm and the results of constrained

triangulation.

114

Chapter 6 The Supporting Algorithms

6.9.1 The line rasterization

Line rasterization is used to rasterise a series of lines - as input to the constrained

triangulation. In this, a line has a start node and an end node. Thus, the rasterization

is simply a process of calculating the position of the pixels between these two end nodes

of a line. Line rasterization was successfully implemented for the constrained

triangulation by incorporating several concepts, including the concept of the line

equation, y = mx + C (where m is a slope of a line), the concepts of the Bresenham line

plotting algorithm and the concept of the Tang (1992) algorithm. The m (slope of a line)

is used only to detect the type of a line or arc in the data file rather than to do the

rasterization of points of a line. A line or an arc could have a slope of (0 < m < 1), or (m

> 1), or (-1 < m < 0), or (m < -1) or is vertical or it could be horizontal. This approach

can handle all cases of lines, i.e. in all quadrants. The Bresenham algorithm is used to

speed up the operation (see below), and Tang's algorithm is for the constrained

triangulation where the edge or arcs can be accommodated in the Voronoi and the

triangulation process. This approach of line rasterization is fast and produces well

rasterised lines. It is fast because it does not involve a divisional operation during the

pixel increment along the line. The Bresenham line algorithm can be found described

in computer graphics texts such as Foley et al (1996), and Farrell (1994). Below is the line

rasterization pseudo-code (only the first quadrant is presented). (The rest of the

quadrants are attached in the Appendix J (Volume II)).

void LineRasterizationO

{

GetXYZFileO;

GetArcFileO;

loop from first arc to last arc

{

GetXYZforArcNodes(t, xstart, ystart, xend, yend, sNd, eNd);

Calculate the m for each line (m = (yend - ystart) f (xend - xstart»;

GetMiddleXY for each line;

Detect the slope of a line, it could be (m > 0) && (m < 1), or

(m > 1), or (m < 0) && (m > -1), or (m < -1), or

115

Chapter 6 The Supporting Algorithms

vertical, or horizontal line;

if (m > 0) && (m < 1) do the following

Swap the coodinates of the two nodes so that the operation begins

with the lower position node;

Calculate the dx, dy;

Calculate the (2 * dx) and (2 * dy);

Calculate the pixel location, Le. the row, and col of the pixel location;

if swap the nodes is true

Assign the pixel location with the correct value, Le. the correct node number;

else

Assign the pixel location with the correct value, Le. the correct node number;

Initialise the Bresenham error of a line (that is the difference of a pOint to the true position, see

Bresenham algorithm for detail.

Increase the xstart (Le., xstart ++)

while (xstart < xend)

{

If the error> 0

else

error = error + (2*dy - 2*dx);

ystart ++;

error = error + (2*dy);

Calculate the row and col of the pixel location;

Assign the correct pixel value to this location;

Increase the xstart (Le., xstart ++);

and do the rest of the line cases (Le. for the other quadrants).

This line rasterization algorithm produces the

following result as tested with several simulated

nodes, and arcs, as shown in Figure 6.27.

.
o 0

. ... -
o .
o
'0 • .

Figure 6.27 Screen shot of the
rasterised nodes and arcs (Note: the
nodes purposely made larger to
show the location of the nodes).

116

Chapter 6 The Supporting Algorithms

6.9.2 The construction of the constrained TINs

In order to generate the constrained triangulation, rasterised points and rasterised lines

are needed as an input. This constrained triangulation is based on the concept presented

by Tang (1992). Here, the constrained edges were represented by a series of pixels

whose values were based on the edge node IDs (identifiers). In other words, half of a

line was represented by the pixels of the start node, and the other half by the pixel

values of the end node, see Figure 6.28.

XYZ file ARC file

3 •
Z 2 2 3 •

2 3 • •
2 • EJEJ

,2 ••
2 •• •

" 5 • ARC file , .5 7
f 5

Arr::# StartNode EndNode

" S 7 • 1 1 2

• 7 9 2 2 3
"f 1- 8 • 7 9

0' 6'. 7 9

• 7 9

3 3 4

4 4 5 , 9 • 5 5 6
0101 t111 1. 1 n

111' 11' .111

121212
• 2" 2 XYZfile ,. 12 2,3

5 # X Y Z

5 "616 6 ,3, 1

", 16161717 2
, , 2 2 2 1711 .7.

• • fSis- 3
243 3 18 1S18 19

3 .. 1b"t9 , • 4 ,9,
• :.cS45

• 9 • '5 n • 6 7 0 .' '. ~ •
Figure 6.28 An example of the pixel locations of the rasterised pOints and
several edges or arcs. The left side is the corresponding coordinates and
arc files.

The above figure also shows the propagation of the pixel values of the start node to the

end node of each arc. This approach also conforms with the Voronoi tessellation

concept where two kernel points have two corresponding Voronoi zones separated by

a boundary which happens to be located in the middle of the two kernel points.

The illustrations Figure 6.29a to Figure 6.29d show the result of the DT and the Voronoi

tessellation implemented for the constrained edges.

117

Chapter 6 The Supporting Algorithms

Figure 6.29a The DT image of the
rasterised kernel points

Figure 6.29c The DT image with the
edges and points

Figure 6.29b The Voronoi image for
the kernel points of Figure 6.29a

Figure 6.29d The Voronoi image of
the corresponding edges and points
of Figure 6.29c

It is clearly shown that the edges or arcs can be accommodated as a constrained feature

in the distance transformation and Voronoi tessellation. A constrained edge is

represented by the thick black lines as in Figure 6.29c and the respective polygons are

shown in Figure 6.29d.

118

Chapter 6 The Supporting Algorithms

Further, all the points and the edges are then triangulated, and the results are the

constrained triangulations, see Figure 6.31.

lnputFie: Bed/ow About

~I~I II .2J 2.J

Figure 6.30 The generated
unconstrained triangulation

lnoutfle> Bedr... /!bOUt

~1~1 11 ~2.l

Figure 6.31 The generated
constrained triangulation

In this particular example, the edges are part of the features on the terrain and also form

part of the triangle edges. The results indicate that the constrained triangulation works.

The development provides useful data structuring mechanisms for TIN-based spatial

data modelling and the related applications. The fundamental GIS data types, i.e. node,

arc, surface and volume are generated with this approach. Their related spatial

modelling were discussed in Chapter 5.

The technique was also tested using photogrammetrically acquired data (Drumbuie,

119

Chapter 6 The Supporting Algorithms

Kyle of Lochalsh, north-west Scotland) - see the results in the following Figures 6.32 to

Figure 6.35.

.-" . : . : :: .. \~l

.....
~----","--,-

"' "/ ' .~ .
. . . :- :

. . " : . . ' .,

Figure 6.32 The rasterised points and
lines.

Figure 6.34 The Voronoi image

120

Figure 6.33 The DT image of the
area.

!ll TlNSolI ve. 1 0 1!I~E3

Figure 6.35 The generated TINs

Chapter 6 The Supporting Algorithms

6.10 Contouring Algorithm

Contouring is one of the GIS applications that has been developed for this work. This

section describes the development of the data structures for the contouring and the

contouring algorithm. A suitable file format for the above application is also developed,

so thatit could be imported to other commercial GIS software, e.g. Arcl Info, and IL WIS.

6.10.1 Data structures for contouring

This is one of the important components where the data storage and data's accessibility

influence the behaviour and performance of the software. In this it should be noted that,

besides the two TINs structures, namely, the three-nodes table (TRI) and the triangle

neighbour (NBR), two other data structures were developed. These two TIN topological

structures are a triangles' edge and right and left triangles (TRS), and a triangles' three

sides (SID). The file format of these structures is shown in the Appendix D.

2

6

Figure 6.36 An example of 6 TINs with 7 nodes,
and 12 sides or edges

Figure 6.36 shows a simple configuration of 6 TINs with 7 nodes, and 12 triangle sides.

121

Chapter 6 The Supporting Algorithms

To facilitate the contouring application, a program is developed to generate two more

data structures. Thus, from TRI (Triangle # and 3 nodes) and NBR (Triangle

neighbours), TRS and SID structures are generated. The TRS contains Triangle sides and

Right-Left triangles while the SID structure contains Triangle # and the 3 sides or edges

(see the Appendix D for the file formats).

The algorithm for converting the TRI and NBR structures to TRS and SID structures is

based on the following concept: a triangle side has two nodes, and each side only has

either a right triangle or a left triangle, see Figure 6.36. The software has the following

routines:

Read the triangles

Read the triangles neighbours, and

MakeTRSandSID structure.

The MakeTRSandSID has the following sub procedures, the ExistingSide and the DoSide

functions, and the algorithms are described below in pseudo-code, where:: means scope

resolution operator between class name and methods in the class:

ConvertStruct :: bool ExistingSides(int n1, int n2, int& s)

do

found = (n1 == Node1) && (n2 == Node2);

if (! found)

s ++.

} while «! found) && (s <= nsid));

return found;

void ConvertStruct :: DoSide(int t, int n1, int n2, int snbr)

if (n1 > n2)

{

h = n1;

122

Chapter 6 The Supporting Algorithms

n1 = n2;

n2= h;

}

if (ExistingSides(n1, n2, s»

{

TriSides[s]->RightTri = t;

Tri3Sides[t]->Side[snbrj = s;

}

else

nsid ++;

TriSides[nsidj = new tsid;

TriSides[nsidj->Node1 = n1;

TriSides[nsid]->Node2 = n2;

TriSides[nsidj->LeftTri = t;

TriSides[nsidj->RightTri = 0;

Tri3Sides[tj->Side[snbrj = nsid;

}

}

TRS structure

Node1 Node2 RightTri
s1 1 2 T1
s2 2 3 T1
s3 1 3 T6
s4 3 4 T3
s5 2 4 T2
s6 4 5 T3

s7 3 5 T4

s8 5 6 0
59 3 6 T9
s10 6 7 T5

LeftTri SID structure

0 # Side1
T2 T1 51

T1 T2 52

T2 T3 54

0 T4 57

0 T5 s9
T3 T6 53
T4
T4
0

Figure 6.37 The TRS and SID structure

6.10.2 The algorithm

Side2 Side3
52 53

s4 55
56 57
58 s9

510 s11

s11 512

The contouring program makes use of two TIN data structures, namely the TRS and SID

structure plus the coordinates, and it is based on linear interpolation. The contouring

123

Chapter 6 The Supporting Algorithms

program performs the following routines:

Read the input data (coordinates, TINs structure ofTRS, and SID tables).

Open the output file for the interpolated data.

Get the min and max of the XYZ input coordinates, then perform

MakeContouring.

The algorithm can be described as follows. MakeContouring has several sub methods or

procedures, they are CheckSide, FindFirstTri, Interpolate, FindOtherSide, FindNextTri, and

GetContours. The CheckSide is to check the side of a triangle and whether or not it can be

interpolated with the user requested contour heights. The FindFirstTri is used to get the

first triangle which contains the requested contour height. FindOtherSide is to get the

other side of a triangle, whereas the FindNextTri is to get the next triangle in the list. The

Interpolate is to compute the interpolated point once a triangle's side satisfies the

imposed conditions. Then all these sub procedures are combined as the GetContours

function performs the subsequent major task - the contouring. Thus the GetContours

behaves as follows.

void MakeContouring :: GetContours(int Hreq)

{

do

while (FindFirstTri(t, s) != 0)

ii ++;

SegNr= ii;

startt = t;

starts = s;

done = false;

secondpart = false;

do

{

Interpolate(s, SegNr, Hreq);

FindOtherSide(t, s, nexts);

FindNextTri(t, nexts, nextt);

if (nextt == startt)

124

2

Figure 6.38 An example of contours with
35 m interval using 6 TINs with 7 nodes,
and 12 sides or edges

Chapter 6 The Supporting Algorithms

/I found closed contours

Interpolate(nexts, SegNr, Hreq);

done = true;

}

else if (nextt == 0)

/I hit border

Interpolate(nexts, SegNr, Hreq);

if (second part)

done = true;

else

FindNextTri(startt, starts, t);

if (t == 0)

else

done = true;

else

}

s = starts;

secondpart = true;

t = nextt;

s = nexts;

} while (! done);

} while (! ((t == 0) II (s == 0) II (z != prevH))) ;

6.10.3 The contour visualization

The contour algorithm has been tested using real terrain data sets. Figure 6.39 and

Figure 6.40 illustrate the generated contours from the simulated and digitized contours

datasets with different contour intervals. Format conversion programs for contours

display in other popular GIS packages are also developed, for example PC Arc/Info

125

Chapter 6 The Supporting Algorithms

(.LIN format) and ILWIS packages (.sEG format). Figure 6.40 shows one of the

examples of derived contours output from photogrammetrically acquired data sets.

~ TIN 10 Conlnws v e l 1 0 1!!I~f3

1~.. fi"'ow 8bout

~1~1 1I 2:J~

Figure 6.39 The generated contours from the
simulated datasets (6 TINs)

6.11 Summary

~I TlN - lo- Conlou,s veL 1 0 1!!I~13

!npulFiles Bed,~ Aboul

Figure 6.40 The generated contours of
4-m interval using photogrammetrically
datasets (Orumbuie, Kyle of Lochalsh,
north-west Scotland)

Several important algorithms for TIN s (2D and 3D) constructions have been introduced,

namely the DT, the Voronoi tessellations, triangulations (including constrained

triangulations), constrained line rasterisation. In this thesis, constrained 3D rasterization

and constrained 3D TIN have not been dealt with. This author, along with others

working in the area in other institutions, have so far found the mathematical,

126

Chapter 6 The Supporting Algorithms

and constrained 3D TIN have not been dealt with. This author, along with others

working in the area in other institutions, have so far found the mathematical,

geocomputational, and computer science input to addressing constrained 3D TIN so

challenging that little has been achieved (Zlatanova,2000). It is envisaged that the

constrained features will provide research opportunities for some time. The 3D

TINbased information system will generate much useful information by having this 3D

constrained capability e.g. the handling of subsurface fault lines. One of the GIS

application algorithms was also introduced, that is contouring. The chapter also

described other major tasks, that is the data structuring and the topological structuring

for 2D TIN and 3D TIN (TEN).

The next chapter discusses the graphical user interface and represents the

implementation and test of the methods developed in this work.

127

Chapter 7

The Implementation and Test

The algorithms which were described in chapter 6 need to be tested on real data. This

is done using a user display interface, called TinSoft, which was developed in this work.

It is a graphical user interface, developed to test the concepts, procedures, and

algorithms in this work. It can be described in three parts:

• the interface,

• the triangulations, and

• the applications.

This chapter describes how TinSoft was constructed, and how it can be used to test the

algorithms. It is mainly used for the visualization of the output from the algorithms

developed in this work.

7.1 The Study Area

In this work, a real photogrammetrically acquired data set of a village and a simulated

borehole data set were used for testing the algorithms and sub programs. The village

(Drumbuie) is near Kyle of Lochalsh, north-west Scotland as shown in Figure 7.1 (an

orthophoto image). The photogrammetric data were gathered by stereo digitising; for

the building the roof line were gathered, the trees were represented by crown points and

some points around a tree's perimeter, both sides of tracks and river centre lines. The

borehole data is typical of many 3D data sets which become available particularly to

natural scientist as they increasingly use 3D data.

128

1.2 The Interface

Figure 7.1 The study area (orthophoto image) from which
points and lines were extracted using 3D digitizing (with stereo
mate)

7.2.1 The multiple document interface

The interface of a program is to provide a means of communication between a computer

system and its users. TinSoft uses the Windows platform as it provides a "standard"

interface for manipulating windows, menus, icons, dialogue windows, messages, etc.

For the interface construction, Borland's Object Windows Library (OWL) component

available in the Borland C++ version 5.02 compiler was utilised (Borland, 1996). It is a

Multiple Document Interface (MDI) environment where multiple windows of

documents and other views can be displayed at once. An area where all the views are

129

Chapter 7 The Implementation and Test

documents and other views can be displayed at once. An area where all the views are

displayed is sometime known as the client area.

A number of functions have been .developed to facilitate the user display operations

which include operations for input files, arranging window layouts, view redisplay,

exiting the program and status bar messaging. Figure 7.2 shows the graphical interface

for the developed program.

1M TINSolt vel. 1.0 I!IIiU3
Eile ~indow tlelp

'00 5 ercomb I!lIiI f3 __ D~

Figure 7.2 An example of the MOl of the TinSoft program. The left view shows the triangles (blue)
and the derived contours (red) of the digitized datasets; the right view only illustrates the triangles
using simulated data.

130

Chapter 7 The Implementation and Test

7.2.2 The single document interface

A single document interface (SDI) has also been developed in this work. Although this

type of interface has less capability than the MDI type it has been adopted in this work

for the purpose of 3D viewing for such as perspective views as well as for other display

purposes as illustrated in Chapter 6. This interface has several functions such as input

files and view redisplay. For ideal 3D viewing purposes, this interface needs to have an

interactive viewing facility so that users could have several viewing choices; thus

represents a future development recommended for this interface (see section 8.4).

Figure 7.3 shows the SDI 3D viewing interface. For details of the perspective view

procedure, see Appendix J (3D Viewing section) in the Volume II.

~3D Viewing (wire-frame) 1!I~13

!nputFiles Redraw e,bout

Figure 7.3 An example of the SOl interface for 3D viewing (perspective). It shows the triangles, 3D
objects (buildings in blue and trees in red), linear features (roads and river centre-line with white),
and derived contours (yellow) draped on top of the TIN surface.

131

Chapter 7 The Implementation and Test

7.3 The Triangulations: 20 and 30 TIN

Algorithms for the 2D and 3D TIN were developed as discussed in Chapter 6. Here,

tests of the algorithms were made using several data sets, namely: simulated data;

digitized contours; and, digital photogrammetric data. These algorithms can process

several thousand terrain points. The result is shown in Figure 7.4 for 2D TIN and

Figure 7.5 depicts the 3D TIN of the points along the simulated boreholes.

m1 TlNSelt ver. 1.0 Il!!lIiII3
file Yiindew Help

iil. S erred2 II!!I~ 13 -. -. ,,"
"0 °

0

Figure 7.4 An example of the MDI interface of the 2D TIN for the three data sets
(photogrammetrically derived data, digitized contours, and field survey).

132

-~- ----- -- - -- -- ----- - -----

Chapter 7 The Implementation and Test

~ 3D VIewing (wile hame) 1!!I~13

!nputFiles Bedrllw About

Figure 7.5a An example of the SDI
interface of the simulated boreholes

7.4 The Applications

7.4.1 Contouring

Figure 7.5b Another example of the SDI
interface of the simulated boreholes with
different direction of perspective view.

The contouring algorithm is tested using different contour intervals. The result of these

tests is graphically depicted in Figure 7.6a, b, and c.

133

Chapter 7 The Implementation and Test

~ TIN 10 Contours V el 1 0 1!!!!I~E3

Figure 7.6a Contours of 4-m
interval

~ TIN -10 Contours ver 1 0 III!] E3

Figure 7.6b Contours of 5-m
interval

~ lIN ·lo-ContoUl ! veil 0 I!!I~EJ

Figure 7.6e Contours of 10-m
interval

134

.--~~:-: ______ 0 _____________ ~

Chapter 7 The Implementation and Test

7.4.2 Tetrahedral-based volume

Volumes in a region which can be represented by a series of tetrahedra can be easily

computed. The generated TEN structure allows such computation. Detailed formulae

for the volume computation is presented in Appendix F. This application is useful for

calculating volume of 3D objects which can be represented by TEN.

7.5 Height Interpolation for 3D Objects

An interpolation program was developed to facilitate the determination 0 fheightsin3D

objects such as buildings so that building's footprints (an area of a building sitting on

the terrain surface) could be determined. The following gives the procedure for this

interpolation (more detailed explanation is presented in Appendix J (Vol. II).

The purpose of the interpolation is to get the height of the building roof points on the

ground surface, i.e. its footprint on the DTM. The interpolation is done by using a point­

in-triangle test and a line-triangle plane intersection as illustrated in Figure 7.7.

building roof

z

node

node

Figure 7.7 POint-in-triangle test and
height interpolation for building roof
pOints

The procedure for the interpolation follows:

void Interpolation :: MakelnterpolationO

135

{

}
}

Chapter 7 The Implementation and Test

II loop from 1 st. triangle to last triangle
for (int t = 1; t < maxtin; t ++)

}

{
Get3Nodes(t, xNd1, yNd1, xNd2, yNd2, xNd3, yNd3);

if ((xroof >= Min3(xNd1, xNd2, xNd3)) &&
(xroof <= Max3(xNd1, xNd2, xNd3)) &&
(yroof >= Min3(yNd1, yNd2, yNd3)) &&
(yroof <= Max3(yNd1, yNd2, yNd3)))

{
II point-in-triangle test
POintlnTriangleTest(xroof, yroof, intri);

if (intri == true)
{

GetPlane(xNd1, yNd1,
xNd2, yNd2,
xNd3, yNd3,
zNd 1, zNd2, zNd3,
a, b, c, d);
II to calculate the interpolated height on the TIN surface (Le. DTM)

zint = ZlnTri(xroof, yroof, xNd1, yNd1, zNd1,
xNd2, yNd2, zNd2,
xNd3, yNd3, zNd3);

Element.xi = xroof;
Element. yi = yroof;
Element.zi = zint;

II write the interpolated heights to a file
AddZtoFile(Element);
}

This procedure takes a triangle file (.TIN), nodes file (.xYZ) file, and a building's roof

coordinates which are also in the form of XYZ format. The building's corner points or

other features can be easily acquired using the available 3D digital photogrammetric

software (the Helava-Leica's Socet Set) in a photogrammetric workstation. The

procedure produces an ASCII file of the interpolated heights for the object's footprints.

The same technique is also applied to trees when only photgrammetric data are

available. The result of the procedure is illustrated in the 3D perspective view as shown

in Figure 7.3.

136

Chapter 7 The Implementation and Test

These newly interpolated footprints coordinates of the buildings will contribute to the

creation of 3D TINs. Each TIN can represent a building object. 3D GIS procedures such

as volume computation will then be executed.

7.6 Input and Output File Formats

In this work, several file formats were constructed and adopted. The constructed

formats are " .XYZ", " . TIN", " .NBR", ". CON", ".5EG", " .ARC", " .ATR". All of these are

ASCII files. These are the format for the data input and as well as data output from the

developed subsystems as discussed in the foregoing chapters. Adopted file formats are

mainly formats which related to the use of the commercial packages such as IL WIS,

A VS, and PC Arc/Info. These file formats have the suffix with the three-characters such

as" .MPD", ".MPI", ".DAT", and" .LIN". 3D version of raster data and information file

for ILWIS also been developed (called .VPD, and .VPI). Detailed description of these

formats are given in Appendix D.

7.7 Discussion

The test described in this chapter demonstrates the applicability and workability of the

algorithms and other computation tasks (including the tasks discussed in Chapter 6).

The display interface both MDI and SDI types work within the specified data input

format. Further works are needed to look into:

• improving the types of documents that can be work with.

• having more interface functions such as advance dialogue menu.

• interactive perspective viewing.

• on-the-fly image or document editing.

137

Chapter 7 The Implementation and Test

ill TlNSoft veL 1_0 I!!lIiII3
file Window Help

Figure 7.8 Some examples of TINs with the generated derived contours at different intervals_

138

Chapter 8

Conclusions and Future Research

This chapter provides a general review of the work carried in this research, draws

conclusions, and indicates aspects for further research and development of the work

investigated in this thesis.

8.1 Summary

First and foremost this work has shown that a GIS can be built using the 2D and 3D TIN

(TEN) structures which will correctly represent 2D and 3D objects which fall on and

within the earth's surface. Furthermore these representations can be manipulated to

provide new information - a requirement of any information system. In more detail the

purpose of the research output in this thesis is to improve the handling of 2D and

particularly 3D in GIS based on the 2D Triangular Irregular Network (TIN) and 3D TIN

(TEN) data structures. The data structuring and the use of an object-oriented technique

are the major concern of this work, that is to sayan attempt to solve the related research

problems as discussed.

Several important aspect of 2D and 3D spatial data structures, data modelling, data

construction, database development, and user interface development have been studied

and discussed in the last six chapters which include:

.. the main problem which lead to the absence of real 3D spatial system in GIS;

.. the suitable data structures for 2D and 3D spatial data;

.. the relevant aspect of spatial data modelling which contributes to the

development of geo information system;

.. the modelling of the selected data structures using an object-oriented technique;

139

Chapter 8 Conclusions and Future Research

• the development of algorithms for the construction of the data structures, and

also the relevant applications;

• the implementation and test of the algorithms; and

• graphical user interface.

In chapter I, a general overview of the problem of 3D data structuring, spatial data

modelling and building an information system for 3D spatial data was described. The

focus was on using object-oriented techniques for the construction of TIN data

structures.

Chapter 2 presented an overview of the 3D GIS development which includes a review

of current GIS systems. Four systems from leading software vendors in the GIS market

were described. Initially, the chapter also summarised some important functions of a

GIS. Major issues in 3D GIS development and it relation to the work carried out in this

work are highlighted.

Chapter 3 presented problems related to 2D and 3D spatial data representations.

Pertinent data structures were reviewed with an emphasis on selecting the most suitable

data structures for the development of a spatial information system. Two types of

structures were investigated, the surface-based and the volume-based. Two structures

were selected for further work, they were the 2D TIN and 3D TIN (TEN) data structures.

Chapter 4 discussed aspects of fundamental spatial data modelling and how this

contributes to spatial information system development. Aspects such as data modelling

and spatial database development were also described with emphasis on TIN data

where relational database was briefly discussed. GIS and 00 TIN-based GIS was also

described.

In chapter 5, TIN-based spatial data modelling using object-oriented techniques was

140

Chapter 8 Conclusions and Future Research

described. The usefulness of the object-oriented approach is discussed. It was not the

intention of this chapter to discuss other aspects of object-oriented techniques, for

example analysis and design aspects, but rather use them for testing the workability of

the developed algorithms. The chapter also provided a possible technique for

developing an object-oriented database for TIN data structures using the POET

commercial 00 DBMS.

Chapter 6 described all the algorithms developed in this research work. There are two

main categories of algorithms: for the construction of 2D TIN; and algorithms for the 3D

TIN (or TEN). Detailed descriptions of all the functions and methods for the algorithms

are provided. Algorithm for TIN-based application is also described, namely

contouring. Other applications, that is 3D TIN-based volume computation are described

in Chapter 7 with detail formulae in Appendix F. The TIN algorithms were also

developed in such a way that linear features which normally exist in the real world can

be incorporated. These constrained features extend the type of spatial data in the data

modelling, for example a polygon can be generated from the chain of arc (or edge)

primitives. Although most of the tests to the algorithms are carried out in this chapter,

some other tests are also implemented in Chapter 7.

Chapter 7 described the implementation and test of the algorithms and other spatial

computation tasks. The development of user interfaces in a Windows platform is a

major concern; the interfaces developed are for the handling multiple views as well as

single views. It is not the intention of this work to implement fully a user interface for

a GIS, but the development is rather for testing the output of the algorithms as discussed

in the previous chapter and to I set the scene' for subsequent development.

8.2 Discussion

Current research and industrial efforts for solving 3D spatial data information system

appears to focus mainly on the non object-oriented approach, that is to say procedural

141

Chapter 8 Conclusions and Future Research

(structured) techniques and the relational database. This thesis tackles an area of

research which utilizes object-oriented techniques for the development of TIN-based

spatial data subsystems. The proposed subsystems work as described in chapter 6 and

7. The subsystems represent several of the major components that any GIS would

have, that is from data input to a display or visualization subsystem via an analysis

subsystem. Although each of the proposed subsystems work and generate good results

but they do not operate together as o'ne fully operational system. Aspects of computing

such as system integration need to be further considered for this full integration.

All the developed algorithms work and provide a good framework for spatial system

development. The performance of the algorithms in terms of computing yard sticks

such as speed and data volume is not part of this work.

The following gives the list of the software developed in this work. The software can

be categorised into several groups, and their brief operations are summarised in Table

1. Detailed coding of the software is presented in Appendix J (Volume II).

• rasterization module,

• 2D TIN,

• 3D TIN,

• 2D Viewing,

• 3D Viewing,

• POET Database Compatible,

• TIN-based applications, and

• User-interface program.

142

Chapter 8 Conclusions and Future Research

Table 1 Software documentation

• 2D Point file (.XYZ) Raster files (.MPI,
Rasterization .MPD)

• Constrained Point file (.xYZ) and Raster files (.MPI,
Rasterization arc file (.ARC) .MPD)

• 2D Distance Raster files of points Raster file of DT image
Transformation and lines (.MPI, (.MPI, .MPD)

.MPD).

• 2DVoronoi Raster files of DT Raster files of Voronoi
Tessellations images (.MPI, .MPD). images (.MPI, .MPD).

• 2DTINData Raster Voronoi images Triangle file (.TIN)
Structuring (.MPI, .MPD)

• 3D Point file (.xYZ) Raster files (.VPI,
Rasterization .VPD). Includes the

A VS (.DAT) format.

• 3D Distance Raster file (.VPI, .VPD) Raster 3D DT images
Transformation (.VPI, .VPD). Includes

(.DAT) of AVS format.

• 3DVoronoi Raster 3D DT images Raster 3D Voronoi
Tessellations (.VPI, .VPD). tessellated images

(.VPI, .VPD). Includes
(.DAT) of AVS format.

• 3D TIN Data Raster 3D Voronoi ASCII 3D TIN file
Structuring tessellated images (.TEN)

(.VPI, .VPD).

• 2DViewing ASCII files of (.XYZ, Windows based
ARC,.CON) softcopy (orthogonal

view).

• 3D Viewing ASCII files of (.xYZ, Windows based
.TIN, .TEN) softcopy (perspective

view).

• TIN Data ASCII file of triangles ASCII file of sides
Restructuring (.TIN) (.sID), and triangles

sides TRS)

143

Chapter 8 Conclusions and Future Research

• TIN Topology ASCII file of triangles ASCII file of TIN
(.TIN) neighbours (.NBR)

• 3D Objects 3D objects height 3D objects footprint
Heights-to- above terrain coords. coords. (on the terrain)
Terrain file (X, Y, Z). file (X, Y, Z).
Interpolation

• Line Segment ASCII file of segment ASCII file of Arc/Info
to Arc/Info (.SEG) format (.LIN)
Conversion

• POET Database Database schema files Console-based softcopy
Compatible (TNode, TEdge, TPoly,

TSolid classes)

• Contouring ASCII file of (.xYZ, ASCII file of contours
. TIN segments (.sEG)

• User Interface ASCII file of Windows-based
(MDI) coordinates, triangles, softcopy (Multiple

contours. views).

8.3 Conclusions

Based on the research reported in the last seven chapters, the following conclusions can

be drawn:

• Data structures of type 2D TIN and 3D TIN (TEN) are able to support several

important spatial data primitives for the development of a spatial system. The

primitives of node, edge, polygon and solid (body) form important aspects of

spatial data modelling. The 2D TIN data structure proved to be useful for

representing point, linear, and area features. These spatial data representations

have nodes, and edges as been described in Chapter 3.

• The usefulness of the 2D TIN data structure is improved by the development and

implementation of constrained triangulations. Various types of terrain features

can be incorporated into the spatial data base by having this constrained feature

144

Chapter 8 Conclusions and Future Research

in the triangulation subsystem. The two subcomputations for the triangulation

proved to work, namely distance transformation (DT), and Voronoi tessellations.

• Although few applications have been completed, the generated 3D TIN (or TEN)

data structure can be used to handle 3D data for example nodes surveyed during

boreholing. The relationship between nodes along several boreholes can be

represented by the TEN structure to provide a representation of solids (e.g. ore

bodies). Volume using the TEN structure for underground regions can be

determined by executing the POET compatible program developed in this thesis

(see Vol. 2, "POET Database Compatible Program").

• Object-orientation plays a useful role in data modelling. The facilities provided

in an 00 programming language, such as inheritance, classification and

encapsulation are useful tools for system design and implementation. The object­

oriented approach for 2D and 3D TIN proved beneficial especially in the Ire-use'

capability thus reducing programming effort. Existing methods associated with

a class of a domain, for example the Voronoi tessellation program can utilise

some of the methods developed for other classes such as the DT class.

• The generated data structures can be use to define several important GIS data

types: point, line, polygon and solid. These GIS data types form the four major

classes of the 00 spatial data modelling and 00 database development.

• The POET 00 database management system can be used for the development of

the TIN-based database. The generated database can be browsed and queried

using the built-in object query language (OQL).

• The tests on the algorithms clearly indicate that all of the proposed subsystems

functioning and providing promising output. The user interfaces also

145

Chapter 8 Conclusions and Future Research

functioning and their usefulness is illustrated.

• Application programs such as contour derivation and volume computation

function. More related applications (particularly 3-dimensional) can be

investigated in the future to diversify the usefulness of the subsystems developed

in this research work.

8.4 Future Research

As described in the last sections, this research has covered a number of aspects of 2D

and 3D spatial data structuring, data modelling, database populating, application

development and user interface for a GIS. An important component of this research is

the software that can be used for the development of an operational GIS system. Key

aspects and problems were identified and have been implemented and tested, thus it can

be concluded that the objectives set out in Chapter 1 have been achieved. However,

there are still other related issues that need to be investigated further and considered for

future development. The following is a summary for future work:

• Implementing the constrained 3D TIN; incorporating 3D constrained features

will extend data handling and provide more spatial information.

• Further developing and formalising 3D spatial data. This is an important task for

describing the relationships and links between data and is the next logical step

in the modelling process.

• Integrating 2D and 3D TIN data structures into one common subsystem. In this

work, they were constructed separately.

• Developing and implementing a graphic file format for the DT and Voronoi

tessellation images, avoiding the use of external packages.

146

Chapter 8 Conclusions and Future Research

• Redesigning the 00 spatial data model using object-oriented data analysis and

design tools such as UML (United Modelling Language) to accommodate more

complex situations.

• Developing and implementing spatial operators for spatial database

manipulations.

• Constructing an advanced graphics user interface as the front-end program.

Simple display interfaces have been developed. Although they were able to

perform the tasks further work needs to be considered.

And finally,

• Investigating an optimal integration between the developed subsystems with an

object-oriented database management system (00 DMBS) as a database engine

for facilitating 2D and 3D TIN-based GIS.

It is hoped that the author will be able to address some of these topics in his future

research on his return to his own academic department in Malaysia.

147

References and Bibliography

References and Bibliography

1. ABDUL-RAHMAN, A (1992). Triangular irregular networks in digital terrain relief

modelling. M.Sc. Thesis, lTC, Enschede, The Netherlands, 80 p

2. ABDUL-RAHMAN, A (1999). Spatial tessellations using an object-oriented approach.

Proceedings of GIS Research UK (GISRUK' 99), April, Southampton, England.

3. ABDUL-RAHMAN, A, and DRUMMOND, J. E. (1998). Raster-based algorithms for 2D

and 3D TINs generations. Proceedings of International Conference of Spatial Information

Science and Technology (SIST' 98), December, Wuhan, China, 9 p

4. ABDUL-RAHMAN, A, DRUMMOND,J. E.,andSHEARER,J. w. (1998). Representation

of 3D Spatial Objects, American Congress on Surveying and Mapping (ACSM) Annual

Conference and Exhibition, 2-4 March, Baltimore, USA.

5. ABDUL-RAHMAN, A, and DRUMMOND,J. E. (1999). The deveiopmentof2D and 3D

triangular irregular networks computer programs. Proceedings of American Congress

on Surveying and Mapping (A CSM) Conference and Exhibition, Portland, Oregon. 13-17

March, pp. 38-49.

6. ABDUL-RAHMAN, A, and DRUMMOND, J. E. (2000). The implementation of object­

oriented TIN-based subsystems for GIS. Proceedings of International Society of

Photogrammetry and Remote Sensing (ISPRS) Congress, Vol. IV, CD ROM 1, July,

Amsterdam, The Netherlands.

7. ANTENUCCI, J. c., BROWN, K., CROSWELL, P. L., KEV ANY, M. L., ARCHER, H. (1991).

Geographic information systems, a guide to the technology. New York, Van

Nostrand Reinhold, 301 p

8. AVS (1997). Advance Visualization System. Version 3.1.

(http://www.avs.com)

148

References and Bibliography

9. AYBET, J. (1992). Object-oriented GIS: what dose it mean to GIS users. Proceedings of

European Geographic Information Systems (EGIS), Session 50, pp. 1279-1287.

10. BERG, M. de (1997). Visualization of TINs, In: Algorithmic Foundations of Geographic

Information Systems, Lecture Notes in Computer Science, No. 1340, (eds.) van Kreveld,

M., Nievergelt, J., Roos T., and Widmayer P., Springer, pp. 79-97.

11. BHALLA, N. (1991). Object-oriented data models: a perspective and comparative

review. Journal of Information Science, Vol. 17, pp. 145-160.

12. BONHAM-CARTER, G. F. (1996). Geographic information systems for geoscientists:

modelling with GIS. Computer Methods in the Geosciences, Vol. 13, Pergamon

Publications, 398 p

13. BOOCH, G. (1990). Object oriented analysis and design with applications. 2nd
. Edition,

Addison-Wesley, 589 p

14. BORGEFORS, G. (1986). Distance transformations in digital images. Computer Vision,

Graphics, and Image Processing (CVGIP), Vol. 34, Academic Press, pp. 344-371.

15. BORGEFORS, G. (1996). On digital distance transformations in three dimensions.

Computer Vision and Image Understanding (formally known CVGIP), Vol. 64, No.3, pp.

368-376.

16. BORLAND. (1996). Borland™ Object Windows version 5.0 programmers guide.

Borland International Inc., 538 p

17. BRIC, V. (1993). 3D vector data structures and modelling of simple objects in GIS. M.

Sc. Thesis, lTC, Enschede, The Netherlands, 107 p

18. BRIC, V., PILOUK, M., and TEMPFLI, K. (1994). Towards 3D-GIS: Experimenting with

a Vector Data Structure. Proceeding of the Symposium on Mapping and Geographic

Information Systems, Georgia, USA, ISPRS Archives Vol. 30, Part 4, pp. 634-640.

19. BRUNET, P. (1992). 3D structures for encoding of geometry and internal properties.

149

References and Bibliography

In: Three-Dimensional Modelling with Geoscientific Information Systems (eds.) A. K.

Turner, NATO ASI Series, Vol. 354, pp. 159-188.

20. BURROUGH, P. A and FRANK, A (1995). Geographic objects with indeterminate

boundaries. Taylor & Francis, GISDATA 2 Series, 345 p

21. BURROUGH, P. A, and McDONNELL, R. A (1998). Principles of geographical

information systems. Oxford University Press, 333 p

22. CAMBRAY, de B.(1993). Three-dimensional (3D) modelling in a geographical

database. Proceedings of AutoCarto 11, Minneapolis, USA, pp. 338-347.

23. CAMBRAY, de B., and YEH, T. S. (1994). A multidimensional (2D, 2.5D, and 3D)

geographical data model. International Conference on Management of Data

(COMAD'94), Bangalore, India, Tata Mc Graw-Hill, pp. 317-336.

(http://www.prism.uvsq.fr/rapports/19941)

24. CARLSON, E. (1987). Three dimensiponal conceptual modelling of subsurface

structures. Technical Papers of ASPRSjACSMAnnual Convention, Vol. 4, Baltimore, pp.

188-200.

25. CHEN, H. W.(1991). The implementation of simultaneous octree generation for

handling 3D geographic region information in a GIS. M. Sc. Thesis, lTC, Enschede,

The Netherlands, 43 p

26. CHOU, Y. H. (1996). Exploring spatial analysis in geographic information systems.

Onword Press, Santa Fe. USA. 474 P

27. DELAUNA Y, B. (1934). Sur la sphere vide. Bulletin of the Academy of Science if the

USSR, Classe. Sci. Mat., pp. 793-800.

28. DELOBEL, c., LECLUSE, c., and RICHARD, P. (1995). Databases: from relational to

object-oriented systems. International Thomson Computer Press, London, 382 p

29. DONG, FENG (1996). Three-dimensional models and applications in subsurface

150

References and Bibliography

modelling. M. Sc. Thesis, University of Calgary, Canada, 93 p

30. EGENHOFER, M. and FRANK, A. U. (1989). Object-oriented modelling in GIS:

inheritance and propagation. Proceedings of AutoCarto 9, Baltimore, pp. 588-598.

31. ERDAS (2000). IMAGINE VirtualGIS. ERDAS Inc. publication, USA.

(http://www.erdas.com)

32. ESRI (1997). Using ArcView 3D Analyst. Environmental System Research Institute

(ESRI) Publication, Redlands, California, USA, 118 P

33. ESRI (2000). ArcView GIS. Environmental System Research Institute (ESRI)

Publication, Redlands, California, USA.

(http://www.esri.com)

34. FARRELL, J. A. (1994). From pixels to animation: an introduction to graphics

programming. AP Professional, 676 p

35. FOLEY,J. D, van DAM, A., FEINER,S. K.,andHUGHES,J.F. (1996). Computer graphics:

Principles and Practices, 2nd
• Edition in c., Addison-Wesley Publishing, 1174 p

36. FORSTNER, W. (1995). GIS - the third dimension. Workshop "Current Status and

Challenges of Geoinformation Systems", IUSM Working Group on LIS/GIS,

University of Hannover, Germany, pp. 65-72.

37. FORTUNE, S. (1992). Voronoi diagrams and Delaunay triangulations. In: D. Z. Du

and F. Hwang (eds.), Computing In Euclidean Geometry, Lecture Notes Series on

Computing - Vol. 1, World Scientific Publishing, pp.193-233.

38. FRANK, A. U, and KUHN, W. (1986). Cell graphs: a provable correct method for the

storage of geometry. Proceed. of2nd
• International Symposium on Spatial Data Handling,

Seattle, Washington, USA., pp. 411-436.

39. FRITSCH, D. (1996a). The integration of spatial object models and DTM, 2.5D and 3D

models. International Society of Photog ram me try and Remote Sensing (ISPRS) Congress

151

References and Bibliography

Tutorial, Vienna Technical University, Austria.

40. FRITSCH, D. (1996b). Three-dimensional geographic information systems - status and

prospects. International Archives of Photogrammetry and Remote Sensing (IAPRS), Vol.

31, Part 4, K. Kraus and P. Waldhausl (eds.), XXXI International Congress of

Photograrnmetry and Remote Sensing, Vienna, Austria, pp. 215-221.

41. FRITSCH, D. and SCHMIDT, D. (1995). The object-oriented DTM in GIS. Proceedings of

Photogrammetric Week, Stuttgart, pp. 29-34.

42. GEOMATICS. (2000). PMAP GIS Product. PCI Geomatics Group.

(http://www.pcigeomatics.com)

43. GOLD, C. M., REMMELE, P. R., and ROOS, T. (1997). Voronoi methods in GIS. In: M.

van Kreveld, J. Neivergelt, T. Roos, and P. Widmayer (eds.), Algorithmic Foundations

of Geographic Information Systems, Lecture Notes in Computer Science, No. 1340,

Springer-Verlag, Berlin, pp. 21-35.

44. GORTE, B., and KOOLHOVEN, W. (1990). Interpolation between isolines based on the

Borgefors distance transform. ITC Journal, 1990-3, pp. 245-247.

45. GUO, WEI. (1996). Three-dimensional representation of spatial object and topological

relationships, International Archives of Photogrammetry and Remote Sensing (IAPRS),

Vol. XXXI, Part B3, Commission 3, K. Kraus and P. Waldhausl (eds.), XXXI

International Congress of Photograrnmetry and Remote Sensing, Vienna, Austria,

pp. 273-278.

46. HEALEY, R. G. (1991). Database management systems. In: Maguire D. J., Goodchild

M. F., Rhind D, W. (eds.) Geographical Information Systems: Principles and Applications,

Longman/New York, John Wiley & Sons Inc, Vol. 1, pp. 251-267.

47. HEITZINGER, D, and PFEIFER, N. (1996). A new approach to modelling 3D surfaces.

In: Advanced DTM Technology, ISPRS Congress Tutorial, Technical University of

Vienna, Austria.

48. HOULDING, S. W. (1994). 3D geoscience modelling: Computer techniques for

152

References and Bibliography

geological characterization. Springer-Verlag, Berlin, 309 p

49. IL WIS, (1996). Integrated Land and Watershed Information System. Version 2.1, ITC.

The Netherlands .

.(http:j jwww.itc.nljilwis)

50. INTERGRAPH (2000). GeoMedia Product. Intergraph Inc.

(http://www.intergraph.com)

51. JONES, C. B.(1989). Data structures for three-dimensional spatial information systems

in geology. International Journal of Geographic Information System (IJGIS), Vol. 1, no. 3,

pp.15-31.

52. KHOSHAFIAN, S. and ABNOUS, R. (1995). Object orientation: concepts, analysis and

design, languages, databases, graphical user interfaces, and standards. 2nd
• Edition,

John Wiley & Sons Inc., 504 p

53. KRAAK,M.J. (1992). Working with triangulation-based data in 3D space. ITC Journal,

1992-1, pp. 20-24.

54. KRAUS, K. (1995). From digital elevation model to topographic information system.

45th.Photogrammetric Week, D. Fritsch and D. Hubbie (eds.), Stuttgart, pp. 277-285.

55. KUFONIYI, o. (1995). Spatial coincidence modelling, automated database updating

and data consistency in vector GIS. ITC Publication No. 28, Enschede, The

Netherlands, 201 p

56. LANGRAN, G. (1992). Time in geographic information systems. Taylor & Francis

Publication, 189 p

57. LAURINI, R., and THOMPSON, D. (1991). Fundamentals of spatial information

systems. Academic Press, 680 p

58. U, QINGQUAN. and U, DEREN (1996). Hybrid data structures based on octree and

tetrahedron in 3D GIS. International Archives of Photogrammetry and Remote Sensing

153

References and Bibliography

(IAPRS), Vol. XXXI, Part B, Comm. 4, ISPRS Congress, Vienna, pp. 503-507.

59. LI, RONGXING (1994). Data structures and application issues in 3D geographic

information systems. Geomatica, Vol. 48, No.3, pp. 209-224.

60. LI, RONGXING, CHEN, Y., DONG, F., QIAN, L., and HUGHES, J. D. (1996). 3D data

structures and applications in geological surface modelling. International Archive of

Photogrammetrry and Remote Sensing (IAPRS), Vol. XXXI, Part B4, K. Kraus and P.

Waldhausl (eds.), pp. 508-513.

61. LIMP, W. F. (1999). ERDAS Imagine VirtualGIS 8.4. Adams Business Media Inc.

(http://www.gw.geoplace.com/bg/1999 /productreview / 499qt.asp)

62. LONGLEY, P.A., GOODCHILD, M. F., MAGUIRE, D. J., and RHIND, D.W. (1999).

Geographical information systems: principles and technical issues. (Vol. 1.). 2nd
.

Edition, John Wiley & Sons, 580 p

63. MAGUIRE, D. J. (1999). GIS customisation. In: Geographical Information Systems:

principles and technical issues, Vol. 1, (eds.) Paul A. Longley, M. F. Goodchild, D. J.
Maguire, D. W. Rhind, pp. 359-369.

64. M.ANTYLA, M.(1988). Introduction to solid modelling. Computer Science Press,

Maryland, USA, 401 P

65. MARK, D. M. and CEBRIAN, J. A. (1986). Octrees: a useful data-structure for

processing of topographic and sub-surface data. Technical Papers of A CSM-ASPRS

Annual Convention, Vol. 1 (Cartography and Education).

66. McCULLAGH, M. J., and ROSS C. G. (1980). Delaunay triangulation of a random data

set for isorithmic mapping. The Cartographic Journal, Vol. 17, No.2, pp. 93-99.

67. MEAGHER, D.(1982). Geometric modelling using octree encoding. Computer Graphics

and Image Processing, Vol. 19, pp. 129-147.

68. MIDTB0, T.(1996). Spatial modelling by delaunay networks of two and three

154

References and Bibliography

dimensions. Dr. Ing. Thesis, Norwegian Institute of Technology, University of

Tronheim, Norway.

(http://www.iko.unit.no/tmpl)

69. MIRANTE, A., and WEINGARTEN, N. (1982). The radial sweep algorithm for

constructing triangulated irregular networks. IEEE Transaction on Computer Graphics

and Applications, Vol. 2, No.3, pp. 11-21.

70. MOLENAAR, M. (1989). Single valued vector maps - a concept in GIS. Geo­

Information-Systeme, Vol. 2, No.1, pp. 18-26.

71. MOLENAAR, M. (1991). Terrain objects, data structures and query spaces. In:

Geoinformatik (eds. P. A. SchiIcher), Siemens-Nixdorf Informationssyteme A.G.,

Munchen, Germany, pp. 53-70.

72. MOLENAAR, M. (1992). A topology for 3D vector maps. ITC Journal, 1992-1, pp. 25-

33.

73. MOLENAAR,M. (1996a). An introduction to theory of spatial object modelling for GIS.

Taylor & Francis Publication, London, 246 p

74. MOLENAAR, M. (1996b). Spatial data modelling for geographic information systems.

International Society of Photog ram me try and Remote Sensing (ISPRS) Congress Tutorial,

Vienna Technical University, Austria.

75. PETRIE, G. and KENNIE, T. J. M. (1990). Terrain modelling in surveying and civil

engineering. Whittles Publishing, Glasgow, 351 p

76. PEUCKER, T. K., R. J. FOWLER, R. J., LITTLE, J. J., and MARK, D. M. (1978). The

triangulated irregular network. Proceedings of Digital Terrain Modelling (DTM)

Symposium, American Society for Photogrammetry (ASP), St. Louis, Missouri, pp. 516-

540.

77. PEUCKER, T. and CHRISMAN, N. (1975). Cartographic data structures. The American

Cartographer, Vol. 2, No.2, pp. 55-69.

155

References and Bibliography

78. PEUCKER, T. (1978). Data structures for digital terrain models: discussion and

comparison.]St. International Advanced Study Symposium on Topological Data Structures

for Geographical Information Systems, Harvard Paper on GIS, (edt.) by G. Dutton, Vol.

5.

79. PILOUK, M. (1996). Integrated modelling for 3D GIS. PhD Thesis, Wageningen

Agricultural University and lTC, Publication No. 40, lTC, Enschede, The

Netherlands, 200 p

80. POET. (1996). POEP Release 4. Manual, POET Inc., 560 p.

(http://www.poet.com)

81. RAPER, J. (1990). The 3-dimensional geoscientific mapping and modelling system: a

conceptual design. In: Three Dimensional Applications in Geographic Information

Systems, J. Raper (ed.), Taylor & Francis, pp. 11-19.

82. RAPER, J. (1992). Key 3D modelling concepts for geoscientific analysis. In: Three

Dimensional Modelling with Geoscientific Information Systems, (ed. A. K. Turner), Series

C: Mathematical and Physical Sciences, Vol. 354, Kluwer Academic Publishers, The

Netherlands, pp. 251-232.

83. RAPER, J. and MAGUIRE, D. J (1992). Design models and funtionality in GIS.

Computers & Geosciences, Pergamon Press, Vol. 18, No.4, pp. 387-394.

84. RAPER, J. and KELK, B. (1991). Three-dimensional GIS. In: Geographical Information

Systems: Principles and Applications. D. J., Maguire, M. Goodchild and D. Rhind

(edts.), Longman Geoinformation, pp. 219-317.

85. RIMSCHA, M. V. (1997). 3d or not 3d? GIS Europe, Pearson Professional Ltd

Publication, Issue 10 (October), pp.20-21.

86. ROSENFELD, A., and PFALTZ, J. (1966). Sequential operations in digital picture

processing. Association of Computing Machine (ACM) Journal, Vol. 13, pp.471-494.

87. ROSS, T. J., WAGNER, L. R., and LUGER, G. F. (1992). Object-oriented programming for

156

References and Bibliography

scientific codes: thoughts and concepts. Journal of Computing in Civil Engineering, Vol.

6, No.4, pp. 480-514.

88. SAMET, H. (1984). The quadtree and related hierarchical data structures. ACM

Computing Surveys, Vol. 16, No.2, pp. 187-260.

89. SAMET, H. (1990). Applications of spatial data structures. Addison-Wesley, 507 p

90. SCHREFL, M., and BICHLER, P., (1995). Modelling reality in spatial information

system. In: Geographic Information Systems -Materials for a Post-Graduate Course, Dept.

of Geoinformation, Technical University of Vienna (ed. A. Frank), pp. 35-89.

91. STROUSTRUP, B. (1997). The C++ programming language. 3rd
. Edition. Addison­

Wesley, 910 p

92. TANG, L. (1992). Raster algorithms for surface modelling. International Archives of

Photogrammetry and Remote Sensing (IAPRS), Vol. XXIX, Cornrn. 3. Washington D.C.,

pp.566-573.

93. TURNER, A. K. (1992a). Report of closing discussions. Workshop on Three­

Dimensional Modelling with Geoscientific Information Systems. NATO ASI Series

C (Vol. 354), pp. 401-410.

94. TURNER, A. K. (1992b). Three-dimensional modelling with geoscientific information

systems. NATO ASI Series C (Vol. 354),443 P

95. van KREVELD, M. (1997). Digital elevation models and TIN algorithms, In:

Algorithmic Foundations of Geographic Information Systems, (Eds.) M. van Kreveld, J.
Nievergelt, T. Roos, andP. Widmayer, Lecture Notes in Computer Science, No. 1340,

Springer, Berlin, pp. 37-78.

96. WACHOWICZ, M. (1999). Object-oriented design for temporal GIS. Taylor & Francis,

118 p

97. WATSON, D. F. (1981). Computing the n-dimensional Delaunay tessellation with

application to Voronoi polytopes. The Computer Journal, Vol. 24, No.2, pp. 167-172.

157

References and Bibliography

98. WEBSTER, C. (1990). The object-oriented paradigm in GIS. International Archive of

Photogrammetry and Remote Sensing (IAPRS), Vol. 28, Part 3/2, Comm. III, Wuhan,

China, pp. 947-984.

99. WORBOYS, M. F. (1995). GIS: a computing perspective. Taylor and Francis

Publication, 376 p

100. WORBOYS, M. F, (1999). Relational databases and beyond. In: Geographical

Information Systems, Vol. 1, 2nd
• Edition, (eds. P.A. Longley, M. F. Goodchild, D. J.

Maguire, and D. W. Rhind), John Wiley, pp. 373-384.

101. ZEITOUNI, K., and CAMBRA Y, B. de. (1995). Topological modelling for 3D GIS. 4th.

International Conference on Computers in Urban Planning and Urban Management,
Melbourne, Australia.

102. ZLATANOVA, S. (2000). 3D GIS for urban development, PhD thesis,ITC (The
Netherlands) and Technical University of Graz (Austria).

158

Appendix A

20 and 3D Rasterization

A1.0 Introduction

Spatial data can be categorized as vector and raster. Each data type has its own

advantages and disadvantages as mentioned in various cartography and GIS textbooks.

To ease some spatial data processing and manipulation tasks, a conversion of data from

one form to the other is needed. The conversion from vector to raster is called

rasterization. Rasterizationis usually a process of converting a world coordinate image,

vector to grid form. The devices could be computer screen, plotter, scanner, and others.

To facilitate the development of 2D and 3D TIN, two rasterization programs have been

developed. The output of the programs is input to 2D and 3D distance transformation,

Voronoi tessellation and triangulation.

A2.0 The rasterization formulae

Two steps are involved in rasterization. The steps are scaling and translation. It is like

a conformal transformation. In order to use all the nodes in the data sets, every point

needs to be rasterised and each point represented by one raster cell. To ensure no nodes

are the same or in adjacent pixels the minimum distance between two nodes has to be

known before rasterization. Then, a scale factor for the rasterization should be

determined by taking a ratio of lover the smallest distance between the two nodes, see

Figure Ai.i. The distance may be determined either by computing from the data sets

or by visualizing and measuring on a screen with an appropriate module.

159

Appendix A

y
Dx Nl

.......... : .• P <Dx=Dy=Dmin/ J2

~?., Dy s = I /P

x

N2

r
. 1"

: .
: :
;,. p ~

Figure A1.1 Scale factor determination for rasterization

This measure will eliminate the possibility of having duplicated nodes in one pixel cell

or two in adjacent cells. Figure Al.l shows how we could determine the scale factor for

the rasterization.

Having determined the scale factor, then the array dimensions for pixels, i.e. the extent

of rows and columns can be determined as follows:

DiII\ = (~-~) *5

Diffiy = (Ymax -Y~ *5

DiII\ = (Zmax - Zmin) * 5

where,

D~, Diffiy, and DiII\ are array dimensions for X, Y, and Z respectively,

~, Y max' Zmax are the maximum extents for the X, Y, Z coordinates from data sets,

and
Xmm, Ymin, Zmin are the minimum extents for the X, Y, and Z coordinates from the

same data sets.

160

Appendix A

In the case of 2D, the (X, Y) coordinates were used, and the transformation formulae in

the form of a matrix may be written as follows:

[~] = [all a21][X] + [Ti]
J a21 a22 Y Tj

where,

i, j = indices of the array,

~ = elements of transformation matrix,
X, Y = world coordinate tuple, and
Ti, Tj = translation vector.

During the rasterization, all the (X, Y) world coordinates need to be translated to the

origin (0, 0) and this is done by subtracting the ~ and Y min values of the data sets from

the coordinates. Since the origin of the device (i.e. a computer screen) is located at the

top left corner, then all the Y coordinates need to be multiplied with negative 1 so that

the positive y-direction from top to bottom can be facilitated. Thus, give the following

equation for the rasterization:

[i] ([Sx 0][X -X min]) [1]
j = truncate 0 -Sy Y - Y min + j max+ 1

where,

Sx' Sy = scale factor for X and Y respectively,
~, Y min = minimum coordinate from data sets,
jrnax = maximum row of the raster image.

After having calculating the index for every X, Y of the nodes, then the next task is to

assign the identification code (id) for every point that is being transformed. The id of

the points thus assigned to the nodes are as follows:

A(i, j) = id of P(X, Y)

161

For the 3D (i.e. nodes with X Y, Z coordinates), a similar technique is applied. The

corresponding matrix form for the transformation follows:

1 an a12 a13 X

J = a21

k a31

where,

a22 a23 Y + Tj

a32 a33 Z Tk

i, j, k = indices of the array,
amn = elements for the transformation matrix,
X, Y, Z = the world coordinates tuple, and
Ti, Tv Tk = translation vector.

As in the case of 2D, the (X, Y, Z) coordinates need to be translated to the origin of the

devices (i.e. 0,0,0). This could be done by subtracting from the coordinates the~,

Y min' and Zmin values of the data sets. Then, the corresponding rasterization formulae

for 3D rasterization could be written as follows:

1 Sx 0 0 X-Xmin 1

J = truncate 0 5y 0 Y - Y min + 1

k 0 0 -Sz Z- Zmin kmax+ 1

where,

5x, 5y' 5z = scale factor for X, Y, Z respectively,
~, Y min' Zmin = minimum coordinates of data sets, and
kmax = maximum dimension of the array for the third dimension's rows.

After having determined the array indexes for every point, the identifier (id) is then

assigned to this array element by

e.g. V(i, j, k) = id of point(X, Y, Z).

162

Appendix B

Class Definitions

The following are the definitions of the classes used for the 2D TIN data construction.

The Distance Transformation (DT) class:

//**/1

/I /I

II An Object-Oriented Program: Distance Transformation (DT) II
II Input: MPD and MPI file (rasterised points files) /I

II Output: MPD and MPI file(DT raster files) II
/I II
1/**/1

II File: TDistanceTransform.h

#include <iostream.h>

#include <stdlib.h>

#include <stdio.h>

#include <fstream.h>

#include <io.h>

#include <iomanip.h>

#include <malloc.h>

#include <conio.h>

#include <Iimits.h>

#include <stddef.h>

#define masksize 8

class TDistanceTransform

{
public:

II member data
typedef struct MpiStruct

{
short Nscanlines;

short Npixels;

short Pvmin;

short Pvmax;

163

AppendixB

short Maptype;

short Patch;

short Scale;

short Crdtype;

float a11;

float a12;

float a21;

float a22;

float b1;

float b2;

} MpiType;

typedef short Image;

typedef Image"' ImagePtr;

typedef ImagePtr* ImagePPtr;

typedef short Mask[9];

MpiType MPI, MpiOut;

Mask MaskPix;

int row;

intcol;

int r;

ImagePPtr Pixel;

int maxrow;

int maxcol;

FILE"' MPlfile;

FILE* MPDfile;

FILE* MPlofile;

FILE* MPDofile;

II member functions

void GetMPlinputFileO;

void GetMPDlnputFileO;

void Readlmage(lmagePPtr& Pixel);

void PrintPixel(lmagePPtr Pixel);

void WriteMPIOutputFileO;

void WriteMPDOutputFileO;

void SetBackground(lmagePPtr Pixel, int Bg, int Fg);

void GetUpperMask(int r, int c, ImagePPtr Pixel, Mask& MaskPix);

void GetLowerMask(int r, int c, ImagePPtr Pixel, Mask& MaskPix);

int MinBylndex(int from, int to);

int Min5(int a, int b, int c, int d, int e);
void DistancePassOne(lmagePPtr Pixel);

void DistancePassTwo(lmagePPtr Pixel);

164

};

vOid ForwardDlstanceO;

void BackwardDistanceO;

void PressAnyKeyO;

void TitleO;

Appendix B

TDistanceTransformO; 1/ constructor

- TDistanceTransformO; 1/ destructor

The Voronoi Tessellation class:

1/***/1

/I

1/

1/

II

A Voronoi Tesselation program for 2D TIN

Input : MPI and MPD files of DT program

Output: MPI and MPD files

II
1/

II

II

1/***//

II File: TVoronoi.h

#include <iostream.h>

#include <stdlib.h>

#include <stdio. h>

#include <fstream.h>

#include <io.h>

#include <iomanip.h>

#include <dos.h>

#include <alloc.h>

#include <malloc. h>

#include <conio.h>

#include <Iimits.h>

#include <stddef.h>

#include ITDistanceTransform.h"

#define masksize 8 II Mask size

class TVoronoiTesseliation : public TDistanceTransform

{
public:

TVoronoiTesseliationO;

- TVoronoiTesseliationO;

Mask MaskPixV;

1/ constructor

1/ destructor

165

};

FILE* MPDfile;

FILE* MPDodfile;

FILE* MPDovfile;

FILE* MPlodfile;

FILE* MPlovfile;

ImagePPtr PixelV;

/I Function members

void GetMPDlnputFileO;

void Readlmage(lmagePPtr&);

Appendix B

void Copylmage(lmagePPtr, ImagePPtr&);

void GetMPllnputFileO;

void WriteMPIOutputFileDistO;

void WriteMPDOutputFileDistO;

void WriteMPIOutputFileVoronoiO;

void WriteMPDOutputFileVoronoiO;

void SetBackground(lmagePPtr, int, int);

void GetUpperMaskDist(int, int, ImagePPtr, Mask&);

void GetLowerMaskDist(int, int, ImagePPtr, Mask&);

void GetUpperMaskVoronoi(int, int, ImagePPtr, Mask&);

void GetLowerMaskVoronoi(int, int, ImagePPtr, Mask&);

int MinBylndex(int, int);

void ForwardPass(lmagePPtr, ImagePPtr);

void BackwardPass(lmagePPtr, ImagePPtr);

void ForwardVoronoiO;

void BackwardVoronoiO;

void PressAnyKeyO;

void TitleO;

The TINGeneration class:

1/***//

II
/I

/I

/I

Object-Oriented Voronoi-to-TIN program

Input : MPI and MPD file of DT program

Output: MPI and MPD files

/I

/I

/I

/I

1/***/1

#include <iostream.h>

#include <stdlib.h>

166

Appendix B

#include <stdio.h>

#include <fstream.h>

#include <io.h>

#include <iomanip.h>

#include <dos.h>

#include <alloc.h>

#include <malloc.h>

#include <conio.h>

#include <limits.h>

#include <stddef.h>

#include ITVoronoLh"

II#include ITDistanceTransform.h"

/I Constant section

#define masksize4 4 /I 2 x 2 Mask size

class TTinGeneration : public TVoronoiTesseliation
{

public:

TTinGenerationO;

- TTinGenerationO;

/I constructor

/I destructor

typedef short DataType;

typedef struct VertexStruct

{
DataType N1;

DataType N2;

DataType N3;

} TVertex;

typedef struct TsNodeStruct

{
short x;

short y;

} TsNode;

/I data members

typedef short Image;

typedef Image* Imageptr;

typedef ImagePtr* ImagePPtr;

typedef short Mask[4];

I/MpiType MPI;

167

Mask MaskPix;

ImagePPtr Pixel;

FILE* MPDfile;

FILE* MPlfile;

FILE* TINfile;

int i, r;

int NTri;

TVertex Element;

TsNode TsPnt;

bool FoundTri;

II function members

void GetMPDfileO;

void Readlmage(lmagePPtr&);

void GetMPlfileO;

void GetTINfileO;

AppendixB

bool Less(DataType, DataType);

boo I Greater(DataType, DataType);

void Swap(DataType&, DataType&);

void NodeOrder(DataType&, DataType&, DataType&);

void AddTritoFile(TVertex);

void GetMask(int, int, ImagePPtr, Mask&);

void GetSublmage(int, int, ImagePPtr, Mask&);

void ScanlinesUp(Mask);

void ScanlinesDown(Mask);

void Scanlines(lmagePPtr);

void MakeTINO;

void TitleO;

void PressAnyKeyO;

};

The TINView class:

//**/1

/I A Windows program for TIN display /I
/I Input: XYZ coordinates and TIN file /I

/I Output: TINs in Windows environment /I
1/**/1

#include <owllpch.h>

#include <owl/applicat.h>

#include <owl/framewin.h>

168

Appendix B

#include <owl/decframe.h>

#include <owl/statusba.h>

#include <owl/controlb.h>

#include <owl/buttonga.h>

#include <owl/gdiobjec.h>

#include <owl/chooseco.h>

#include <owl/inputdia.h>

#include <owl/opensave.h>

#include <owl/dc.h>

#include <mem.h>

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>
#include <stddef.h>

#include <string.h>

#include "tinwin2d.rh"

#define maxtriangle 20000

#define maxpoint 8000

#define maxarc 200

class TTINDrawApp: public TApplication

{
public:

TTINDrawAppO : TApplicationO {} /I call base class constructor

void InitMainWindowO;

};

class TTINWindow : public TWindow

{
public:

TTINWindow(TWindow* parent = 0)

: TWindow(parent) {}

struct Point

{
float x;

float y;
float z;

};

169

AppendixB

struct Triangle

{
int Node1;

int Node2;

int Node3;

};

Point* pnt_ptr[maxpoint];

Triangle* trLptr[maxtriangle];

struct Polygon

{
int Snode;

int Enode;

};

Polygon"' poILPtr[maxarc];

FILE* XYZfile;

FILE* TINfile;

FILE"' ARCfile;

TOpenSaveDialog :: TData fileData;

int k, i, t, ii;

float xmin, xmax, ymin, ymax;

float zmin, zmax;

float xlength, ylength;

int npnt, ntri, narc;

int MaxX, MaxY;

float scaleX, scaleY;

void ReadXYZO;

void ReadTINO;

void ReadARCO;

void GetMinMax(float&, float&,

f1oat&, f1oat&,

float&, f1oat&);

void Paint(TDC& dc, bool, TRect&);

void EvSize(uint, TSize&);

void CmlnputFilesltem10;

void CmPopupltem10;

void CmFileExitO

{PostQuitMessage(O);}

void CmClearO;

void CmAboutO;

170

AppendixB

DECLARE_RESPONSE_ TABLE(TTINWindow);

};

DEFINE_RESPONSE_ TABLE1 (TTl NWindow, TWindow)

EV_WM_SIZE,

EV _ COMMAND(CM_INPUTFILESITEM1, CmlnputFilesltem1),

EV _COMMAND(CM_POPUPITEM1, CmPopupltem1),

EV _COMMAND(CM_ABOUT, CmAbout),

EV _ COMMAND(CM_FILEEXIT, CmFileExit),

EV_COMMAND(CM_CLEAR, CmClear),

END _RESPONSE_TABLE;

The 3D TIN Generation class:

1/***/1

/I Object-Oriented 3D Distance Transformation (DT) program for 3D TIN II
II Input : 3D array format II
II Output: 3D array ILWIS look-like file format II
/I /I
//***//

#include <iostream.h>

#include <stdlib.h>

#include <stdio.h>

#include <fstream.h>

#include <io.h>

#include <iomanip.h>

#include <dos.h>

#include <malloc.h>

#include <conio.h>

#include <limits.h>

#include <stddef.h>

II Constant section

#define masksize 27 II Mask size

class DistanceTransform3D

{

public:

DistanceTransform3DO;

171

AppendixB

-Dlstancefransform3DO;

/I Data members

/I VPI input file structure

typedef struct VpiStruct

{

short Nscanlines;

short Npixels;

short Nlevels;

short Pvmin;

short Pvmax;

short Maptype;

short Patch;

short Scale;

short Crdtype;

float a11;

/I no. of image rows

/I no. of image cols

/I no. of image levels

II voxel's minimum value

/I voxel's maximum value

II m~p type

II patch type

II image scale factor

II coordinate type

/I transformation cooefficient (3 x 3 matrix)
II
/I

II
/I

/I

/I

II
II

"

float a12;

float a13;

float a21;

float a22;

float a23;

float a31;

float a32;

float a33;

float b1;

float b2;

float b3;

II translation vector (3 x 1 matrix)

II "
/I "

} VpiType;

VpiType VPI, VPIOut;

typedef short Image;

typedef Image* VoxelRow;

typedef VoxelRow* Voxel2D;

typedef Voxel2D* Voxel3D;

typedef short Mask[masksize];

II Global variables

Mask MaskPix;

FILE* VPDifile;

FILE* VPDofile;

FILE"' VPlifile;

FILE* VPlofile;

172

};

AppendixB

Voxel3D Voxel;

int maxrow;
/I variable for voxels

int maxcol;

int maxlevel;

float scale;

int row, col, level;

int r, I;

/I Function members

void GetVPDlnputFileO;

void GetVPllnputFile(VpiType& VPI);

void ReadVoxelimage(VoxeI3D&);

void PrintVoxel(VoxeI3D);

void WriteVPDOutputFileO;

void WriteVPIOutputFileO;

void SetBackground(VoxeI3D, int, int);

void GetUpperMask(int, int, int, Voxel3D, Mask&);

void GetLowerMask(int, int, int, Voxel3D, Mask&);
int MinBylndex(int, int);

int Min5(int, int, int, int, int);

void DistancePassOne(VoxeI3D);

void DistancePassTwo(VoxeI3D);

void ForwardDistanceO;

void BackwardDistanceO;

void DisplayVoxel(VoxeI3D);

void PressAnyKeyO;

void TitleO;

The 3D Voronoi Tessellations class:

//***//

II Object-Oriented 3D Distance Transformation (DT) and /I

/I Voronoi Tessellation program for 3D TIN /I

/I /I

/I Input : 3D array format /I

/I Output: 3D array ILWIS look-like file format /I

/I (i.e . .vPD, and .vPI) /I

/I /I
1/***//

173

AppendixB

#include <iostream.h>

#include <stdlib.h>

#include <stdio.h>

#include <fstream.h>

#include <io.h>

#include <iomanip.h>

#include <dos.h>

#include <malloc.h>

#include <conio.h>

#include <limits.h>

#include <stddef.h>

#include ITDistanceTransform3D.h"

/I Constant section

#define masksize 27 /I Mask size

class lVoronoi3D : public TDistanceTransform3D
{

public:

lVoronoi3DO;

-lVoronoi3DO;

/I constructor

/I destructor

typedef short Mask[masksize];

II Global variables

Mask MaskPixVor;

FILE* VPDifile;

FILE* VPDodfile;

FILE* VPDovfile;

FILE* VPlifile;

FILE* VPlodfile;

FILE* VPlovfile;

II variable definition

Voxel3D Voxel, VoxelVor; II variable for voxels

II Functions Prototype;

void GetVPDlnputFileO;

void GetVPllnputFile(VpiType& VPI);

void ReadVoxelimage(VoxeI3D&);

174

AppendixB

void CopyVoxel(VoxeI3D, VoxeI3D&);

void PrintVoxel(VoxeI3D);

void WriteVPDOutputFileDistO;

void WriteVPIOutputFileDistO;

void WriteVPDOutputFileVoronoiO;

void WriteVPIOutputFileVoronoiO;

void SetBackground(VoxeI3D, int, int);

void GetUpperMaskDist(int, int, int, Voxel3D, Mask&);

void GetLowerMaskDist(int, int, int, Voxel3D, Mask&);

void GetUpperMaskVoronoi(int, int, int, Voxel3D, Mask&);

void GetLowerMaskVoronoi(int, int, int, Voxel3D, Mask&);

int MinBylndex(int, int);

};

int Min5(int, int, int, int, int);

void ForwardPass(Voxel3D, VoxeI3D);

void BackwardPass(VoxeI3D, VoxeI3D);

void ForwardVoronoiO;

void BackwardVoronoiO;

void PressAnyKeyO;

void TitleO;

The 3D TIN View class:

1/**/I

/I A Program to View TIN with arcs and edges on screen /I

II A Program to Display 3D TINs Using OWL /I

I/Input : (.xYZ) , (.TIN), and (.ARC) files /I

/I Output : Windows display

/I /I

/I

//**/1

#include <owl/pch.h>

#include <owl/applicat.h>

#include <owl/framewin.h>

#include <owl/dc.h>

#include <owl/decframe.h>

#include <owl/statusba.h>

#include <owl/controlb.h>

#include <owl/buttonga.h>

#include <owl/gdiobjec.h>

175

Appendix B

#include <owllchooseco.h>

#include <owllinputdia.h>

#include <owl/opensave.h>

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

#include <stddef.h>

#include <math.h>

#include <mem.h>

#include <string.h>

#include "view3d.rh"

1/ constants for maxpoints, tins, and arcs

const int maxtin = 2000;

const int maxpoint = 700;

const int maxarc = 200;

const int maxsegment = 1000;

1/ view parameters constants

const double theta = -60.0; 1/ was -60.0

const double phi = 60.0;

const double ViewPlaneDist = 2000.0; 1/500 for the trylake

1/ the bigger the ViewPlaneDist

II -> larger view

const double rho = 2500.0; 111500 for the trylake

class TView3DWindowApp : public T Application

{
public:

TView3DWindowAppO : TApplicationO {} II call base class constructor

void InitMainWindowO;

};

class TView3D : public TWindow

{

public:

TView3D(TWindow* parent = 0)

: TWindow(parent) {}

176

typedef double Matrix[4][4];

struct Vector

{
double x, y, z;

};

struct Point

{
double x, y, z;

};

struct Pointt

{
float x, y, z;

};

struct TIN

{
int Node1, Node2, Node3;

};

struct TIN2

{
int Node1, Node2, Node3;

};

Point* pnt[maxpoint];

Pointt* pntt[maxpoint];

TIN* tin[maxtin];

TIN2* tinn[maxtin];

struct Polygon

{

int Snode;

int Enode;

};

Polygon* poILPtr[maxarc];

struct Roof Arc

{

int Snode;

int Enode;

};

RoofArc* roofarc[maxarc];

Appendix B

177

AppendixB

FILE* ARCfile;

FILE* ARCRooffile;

1/ struct for trees

struct TreePoints

{
double x;

double y;

double z;

};

TreePoints* treepnts[maxpoint];

struct TreeArcs

{

intSnode;

int Enode;

};

TreeArcs* treearc[maxarc];

1/ file for the tree points and arcs

FILE* Treepntfile;

FILE"' Treearcfile;

struct Segment

{
double x;

double y;

int Hreq;

int SegNr;

};

Segment* Seg[maxsegment];

int i, t, tt, k;

int npnt, ntin, narc, n;

int npntt, ntinn, narcr;

int ntree, narct;

string charNode1, charNode2, charNode3;

double xmin, xmax, ymin, ymax;

double zmin, zmax;

double xlength, ylength, zlength;

double startx, starty;

double nextx, nexty;

int SegNr, nextSegNr, prevSegNr;

double x, y;

178

AppendixB

int h, nexth;

double MaxX, MaxY;

double xmid, ymid;

double screen_x, screen-y;

double scaleX, scaleY, scaleZ;

double sin_theta;

double cos_theta;

double sin_phi;

double cos_phi;

double ","--view, Lview, z_view;

Matrix viewT;

Vector VecWorld, VecView;

double DotProduct(Vector, Vector);

double Magnitude(Vector);

void Transform(int, f1oat&, f1oat&);

void Normalize(Vector, Vector&);

void SetZeroMatrix(Matrix&);

void SetldentityMatrix(Matrix&);

void VectorMatrix(Vector, Matrix, Vector&);

void SetViewTransformationMatrix(Matrix);

void SetViewVariables(double&, double&, double&);

void ReadXYZO;

void ReadXYZ20;

void ReadTINO;

void ReadTIN20;

void ReadARCO;

void Read RoofArcO;

void ReadTreeXYZO;

void ReadTreeArcO;

void ReadSegmentO;

void DealiocateMemoryO;

void GetMinMax(double&, double&, double&, double&, double&, double&,

double&, double&, double&);

void Perspective(double, double, double, double&, double&);

double InRadians(double);

void Paint(TDC& dc, bool, TRect&);

void EvSize(uint, TSize&);

void CmlnputFilesltem10;

void CmPopupltem1 0;
void CmFileExitO

{PostQuitMessage(O);}

void CmClearO;

179

Appendix B

vOid CmAboutO;

-lView3DO {}

DECLARE_RESPONSE_ TABLE(lView3D);

};

DEFINE_RESPONSE_ TABLE1 (lView3D, TWindow)

EV_WM_SIZE,

EV _COMMAND(CM_INPUTFILESITEM1, CmlnputFilesltem1),

EV _COMMAND(CM_POPUPITEM1, CmPopupltem1),

EV _ COMMAND(CM_ABOUT, CmAbout),

EV _COMMAND(CM_FILEEXIT, CmFileExit),

EV_COMMAND(CM_CLEAR, CmClear),

END _RESPONSE_TABLE;

180

AppendixC

Class Definitions for POET Database Schema

The following are definitions of the classes implemented under POET 00 DBMS
software (header files which are compatible with the POET environment).

The TNode class:

//*************************************/1

/I The database with POET /I

/I Alias Abdul-Rahman (c) March, 2000 /I

/I /I
//*************************************/1

II#include <iostream.h>

II#include <stdio.h>

II#include <stdlib.h>

#include "ptstring.hxx"

#include "xyzcontainer.hcd"

class NodeAtrContainer

{
public:

int NodeNum;

PtString NodeName;

};

#define maxpoint 10000

#define maxnodename 100

perSistent class TNode

{
public:

XYZContainer Point[maxpoint];

NodeAtrContainer NodeAtr[maxnodename];

int npnt;

TNodeO;

-TNodeO;

void GetXYZCoordinatesO;

181

AppendixC

};

void GetBoreholeCoordinatesO;

void Get2NodeO;

void NodeAttribute(};

void PressAnyKeyO;

The TEdge class:

//*************************************//

/I The database with POET II
/I Alias Abdul-Rahman (c) March, 2000 II
/I /I
//*************************************//

#include "ptstring.hxx"

#include "arccontainer. hcd"

#include "xyzcontainer.hcd"

#define maxarc 500

#define maxarcname 100

persistent class TNode;

persistent class TEdge

{

public:

friend persistent class TN ode;

int narc;

ARCContainer Arc[maxarc];

ARCAtrContainer EdgeAtr[maxarcname];

TEdgeO;

-TEdgeO;

void ReadARCsO;

void GetOneArcO;

void GetArcLengthO;

void GetArcAttributeO;

int CheckQuadrant(f1oat, float);

float Bearing(f1oat, float, float, float);

182

Appendix C

float GetArcAzimuth(float, float, float, float);

void EdgeAttributeO;

void PressAnyKeyO;

friend XYZContainer;

};

class ptOnDemand;

typedef Iset<ondemand<TEdge» TedgeSet;

The TPoly class:

//*************************************/1

/I The database with POET /I
/I Alias Abdul-Rahman (c) March, 2000 II
/I /I
1/*************************************//

#include "tincontainer. hcd"

#define maxtriangle 1000

persistent class TNode;

persistent class TEdge;

persistent class TPoly

{

public:

double xNd1, yNd1, zNd1;

double xNd2, yNd2, zNd2;

double xNd3, yNd3, zNd3;

friend persistent class TNode;

friend persistent class TEdge;

TINContainer Triangle[maxtriangle];

TEN PolyContainer TI N Nbr[maxtriangle];

TPolyO;

-TPolyO;

void ReadTINsO;

void GetTINNeighbourO;

void GetTINNodes(int,

double&, double&, double&,

183

AppendixC

double&, double&, double&,

double&, double&, double&);

float GetTINArea(double, double,

double, double,

double, double);

void GetPolyAreaO;

void PressAnyKeyO;

};

The TSolid class:

1/*************************************//

/I The database with POET /I

II Alias Abdul-Rahman (c) March, 2000 /I

/I /I
1/*************************************//

#include "tincontainer. hcd"

#include "xyzcontainer. hcd"

#define maxtriangle 10000

persistent class TNode;

persistent class TSolid

{
public:

double xNd 1, yNd 1, zNd 1 ;

double xNd2, yNd2, zNd2;

double xNd3, yNd3, zNd3;

double xNd4, yNd4, zNd4;

TENContainer TEN[maxtriangle];

TSolidO;

-TSolidO;

void ReadTENsO;

void Get3TINNodes(int,

double&, double&, double&,

double&, double&, double&,

double&, double&, double&,

double&, double&, double&);

184

AppendixC

double ComputeTENVolume(double, double, double,

double, double, double,

double, double, double,

double, double, double);

};

void GetVolumeO;

friend persistent class TNode;

void PressAnyKeyO;

The TIN Neighbour class:

class Neighbour

{
public:

};

int TriNum;

int TotalNeighbour;

int Nbr[3];

NeighbourO

{
TriNum = 0;

TotalNeighbour = 0;

Nbr[O] = Nbr[1] = Nbr[2] = 0;

};
-NeighbourO{};

class Tin Neighbour

{

public:

II structure for the TINs

struct ThreeNodes

{
int Node[3];

};

ThreeNodes* tri[maxtriangle];

II some global variables

FILE* TINfile;

185

};

FllE* NBRfile;

int t;

int ntri;

boo I isTriangleNode;

II some operations

TinNeighbourO;

- TinNeighbourO;

void GetTINfileO;

void GetNeighbourfileO;

boolless(int a, int b);

bool Greater(int, int);

void Swap(int&, int&);

void NodeOrder(int&, int&, int&);

void AddNbrtoFile(Neighbour);

void MakeTinNeighbourO;

void PressAnyKeyO;

AppendixC

186

Appendix D

File Formats

The following gives detailed descriptions of the file formats developed in this work.

Three formats were adopted from commercial software, namely Arc/Info, ILWIS and

A VS visualization software.

These are the physical structures of the files. The files have the following three

characters (suffix):

TRI, NBR, XYZ, TRS, SID, SEG, and LIN formats.

The commercial formats are:

.MPD, .MPI file format of the ILWIS package, and also the volume data file

format of the AVS package (i.e., the .DAT file).

• The TRI file format (triangles' three-nodes):

Triangle# Node1 Node2 Node3

EOF

• The NBR file format (triangles' neighbours):

Triangle# Number_oCNeighbour Neighbour1 Neighbour2 Neighbour3

EOF

187

AppendixD

• The IRS file format (triangles' edge and the right and left triangles):

SideS# Node1 Node2 RightTriangle LeftTriangle

EOF

• The SID file format (triangles' three sides):

Triangle# Side1 Side2 Side3

EOF

• The SEG file format (contour segments):

x Y ContourHeights Segment#

EOF

• The XYZ file format (coordinates):

XYZ

EOF

188

Appendix D

• The UN Arc/Info file format:

Code
XY

END

END
END

• The MPI IL WIS file format:

File with raster map information. It occupies 40 bytes of disk space, and
containing the following information:
1..2 bytes
3 . .4 bytes
5 .. 6 bytes
7 .. 8 bytes
9 .. 10 bytes

11 .. 12 bytes

13 .. 14 bytes

15 .. 16 bytes

17 . .32 bytes
33 . .40 bytes

number of lines in map (integer)
number of columns of in map (integer)

minimum value in map (integer)
maximum value in map (integer)
map type (integer)
0: bit map; 1: bytes map; 2: integer map
Patch map indication (integer)
0: no patch map; 1: patch map
scale power (integer)
scale factor represents 10 power multiplication factor
coordinate system type (integer)
0: coordinates; 1: metric; 2: geographic
Multiplication matrix (2 x 2 float numbers)
Translation vector (2 x float numbers)

• The MPD IL WIS file format

File with raster map data. The data is stored line by line, pixel by pixel.

For example for a byte map with 480 lines and 640 column:

189

AppendixD

• 1 Sf. pixel of the 1 Sf. line

• 2nd
• pixel of the 1st. line

• 640th. pixel of the rt.lme
• rt. pixel of the 2nd

• line

307200:

• The DAT file format of the Advance Visualization System (AVS)

Contains the file header of number of row, columns and the level (3rd
.

dimension) of the data sets. Then followed by the actual data sets for each

row, column, and level. It is a binary file.

190

Appendix E

The 3D Raster Image Visualization via AVSTM

The following gives the general flow for displaying the 3D raster images (i.e. DT images

and Voronoi tessellations images) in the AVS Visualization/Express software.

The figure shows six rectangles of operations (i.e. input file to images display). The

ReadVolume is for inputting the 3D raster files (.DAT files). The downsize rectangle is

for reducing the size of the raster file (normally to speed up the process). The bound is

for generating the boundary of the view. The orthoslice and slice plane are for the cross

section views. The Uviewer3D is for the general 3D display on screen.

191

Appendix F

TEN-based Volume

This type of volume is particularly, useful because it is often possible to split more

complicated solids into tetrahedra and to add up the volumes of those tetrahedra to find

the total volume of the solid. The volume of a tetrahedron is found by forming a

determinant from the three vectors obtained by subtracting one vertex (or node) from

other three and dividing by 6 (Bowyer and Woodwark, 1983).

K

N

M

L

Figure F.1 The four nodes of a tetrahedron

From the four nodes (each has X, Y, Z coordinates) of a tetrahedron, it volume can be

formulated as follows.

192

Appendix G

Class Definitions for MOl Windows Interface

The Main Application class:

1/***/1

1/ Project: MDI for 2D/3D TINs

1/

1/

1/ SUBSYSTEM: Graphing Application

1/ FILE: graphingapp.h

1/
1/ OVERVIEW

1/ --------

1/

1/

1/

1/ Class definition for GraphingApp (TApplication).

1/ 1/
1/ Author: Alias Abdul-Rahman (c) 1999

1/

1/

1/

1/

1/

1/

1/
1/***/1

#if !defined(graphingapp_h) 1/ Sentry, use file only if it's not

#define graphingapp_h 1/ already included.

#include <owllcontrolb.h>

#include <owlldocking.h>

#include <owllprinter.h>

#include <owllrcntfile.h>

#include "graphingmdiclient.h"

#include "graphingapp.rh" 1/ Definition of all resources.

I/{{TApplication = GraphingApp}}

class GraphingApp : public TApplication, public TRecentFiles {

private:
void SetupSpeedBar(TDecoratedMDIFrame* frame);

public:

GraphingAppO;

virtual -GraphingAppO;

193

AppendixG

void CreateGadgets(TOockableControlBar* cb, boo I server = false);
THarbor* ApxHarbor;

TGraphingMOIClient* MdiClient;

II Public data members used by the print menu commands

II and Paint routine in MOl Child.

II

II Printer support. TPrinter*

int

Printer;

Printing; /I Printing in progress.

public:

virtual void InitMainWindowO;

protected:

void EvNewView(TView& view);

void EvCloseView(TView& view);

void CmHelpAboutO;

void EvWinlniChange(char far* section);

void EvOwlOocument(TOocument& doc);

int32 CmFileSelected(uint wp, int32 Ip);

OECLARE_RESPONSE_ TABLE(GraphingApp);

}; II{{GraphingApp}}

#endif II graphingapp_h sentry.

The Document class:

//***//

II Project: MOl for 20/30 TINs

II II
/I /I

II

II SUBSYSTEM: graphing.apx Application /I

II FILE: graphdocument.h II
II /I

II OVERVIEW II

II -------- /I

II Class definition for GraphOocument (TFileOocument).

/I /I

194

II

Appendix G

1/ Author: Alias Abdul-Rahman (c) 1999 1/
1/***/1

#if !defined(graphdocument_h) 1/ Sentry. use file only if it's not already

#define graphdocument_h 1/ included.

#include <owllfiledoc.h>

#include ngraphingapp.rhn

#include <list>

1/ Definition of all resources.

#include <vector>

struct Point

{

float x;

float y;

float z;

int operator ==(const Point& p)

const

{
return x == p.x &&

Y == p.y &&
z == p.z;

}

int operator «const Point& p)

const

{
return x < p.x &&

Y < p.y &&

z< p.z;

}
};

struct Triangle

{
int node_1;

int node_2;

int node_3;

int operator ==(const Triangle& t)

const

{
return node_1 == t.node_1 &&

node_2 == t.node_2 &&

195

AppendixG

node 3 == t.node 3· - -'
}

int operator «const Triangle& t)

const

{

return node_1 < t.node_1 &&

node_2 < t.node_2 &&

node_3 < t.node_3;

}

};

struct Segment

{
float x;

float y;

int Hreq;

int SegNr;

int operator ==(const Segment& seg)

const

{
return x == seg.x &&

}

y == seg.y &&

Hreq == seg.Hreq &&

SegNr == seg.SegNr;

int operator «const Segment& seg)

const

};

{

return x < seg.x &&

y < seg.y &&

Hreq < seg.Hreq &&

SegNr < seg.SegNr;

}

class GraphDocument : public TFileDocument {

public:

GraphDocument(TDocument* parent = 0);

virtual -GraphDocumentO;

public:

void GetXYZ_TINO

196

{
if (!lsOpen())

Open(ofRead) ;

}

Appendix G

virtual bool Open(int mode, const char far* path=O);

II Use STL containers to make life easier for

II points, triangles, contour segments, etc.

std: :vector<Point> points;

std::list<Triangle> triangles;

std::list<Segment> contours;

float xmin, ymin, xmax, ymax, zmin, zmax;

}; II{{GraphDocument}}

#endif II graphdocument_h sentry.

The View class:

1/***/1

II Project: MDI for 2D/3D TINs

II
II
II SUBSYSTEM: Graphing Application

II FILE: graphingwindowview.h

II
II OVERVIEW

II --------

II
II

II
II

II

II

II
II

II Class definition for TGraphingWindowView (TWindowView). II

II II

II Author: Alias Abdul-Rahman (c) 1999 II
1/***/1

#if !defined(graphingwindowview_h) II Sentry, use file only if it's not

#define graphingwindowview_h II ... already included.

#include <owl/docview.h>

#include "graphingapp.rh" II Definition of all resources.

class TGraphingWindowView : public TWindowView {

public:

TGraphingWindowView(TDocument& doc, TWindow* parent = 0);

virtual - TGraphingWindowViewO;

197

AppendixG

public:

virtual void Paint(TDC& dc, boot erase, TRect& rect);

protected:

void EvGetMinMaxlnfo(MINMAXINFO far& minmaxinfo);

void EvSize(uint sizeType, TSize& size);

DECLARE_RESPONSE_ T ABLE(TGraphingWindowView);

}; I/{{TGraphingWindowView}}

#endif 1/ graphingwindowview_h sentry.

The Client class:

1/***//

1/ Project: MDI for 2D/3D TINs

1/

1/

1/ SUBSYSTEM: Graphing Application

1/ FILE:

1/

graphingmdiclient.h

1/ OVERVIEW

1/ --------

1/

1/

1/

1/

1/
1/ Class definition for TGraphingMDIClient (TMDIClient).

1/ 1/
1/ Author: Alias Abdul-Rahman (c) 1999

1/

1/

1/

1/
//***/1

#if !defined(graphingmdiclient_h) 1/ Sentry, use file only if it's not

#define graphingmdiclient_h 1/ already included

#include "graphingapp.rh" 1/ Definition of all resources.

class TGraphingMDIClient : public TMDIClient {

public:

int ChildCount; 1/ Number of child window created.

TGraphingMDIClient(TModule* module = 0);

virtual - TGraphingMDIClientO;

void OpenFile(const char* fileName = 0);

protected:

virtual void SetupWindowO;

198

1/

protected:

void CmFilePrintO;

void CmFilePrintSetupO;

void CmFilePrintPreviewO;

AppendixG

void CmPrintEnable(TCommandEnabler& tce);

DECLARE_RESPONSE_ TABLE(TGraphingMDIClient);

}; //{{TGraphingMDIClient}}

#endif // graphingmdiclient_h sentry.

The Child class:

1/***/1

// Project: MDI for 2D/3D TINs

//

//

// SUBSYSTEM: Graphing Application

// FILE: graphingmdichild.h

//

// OVERVIEW

1/ --------

//

//

//

//
// Class definition for TGraphingMDIChild (TMDIChild).

// //

// Author: Alias Abdul-Rahman (c) 1999

//

//

//

//

//
1/***/1

#if !defined(graphingmdichild_h)

#define graphingmdichild_h

#include "graphingapp.rh"

// Sentry, use file only if it's not

// not alraedy included

// Definition of all resources.

class TGraphingMDIChild : public TMDIChiid {

public:

TGraphingMDIChild(TMDIClient& parent, const char far* title,

TWindow* clientWnd, bool shrinkToClient = false,

TModule* module = 0);

virtual - TGraphingMDIChildO;

}; //{{TGraphingMDIChild}}

#endif // graphingmdichild_h sentry.

199

//

Appendix G

The AboutDialog class:

//***/1

1/ Project: MDI for 2D/3D TINs 1/
1/ 1/
1/ 1/

1/ SUBSYSTEM: Graphing Application 1/
1/ FILE: graphingaboutdlg.h II
1/ 1/
II OVERVIEW II

II -------- II
II Class definition for GraphingAboutDlg (TDialog). II
II II
II Author: Alias Abdul-Rahman (c) 1999 II
1/***/1

#if !defined(graphingaboutdlg_h) II Sentry, use file only if it's not

#define graphingaboutdlg_h II already included.

#include <owl/static.h>

#include "graphingapp.rh" II Definition of all resources.

class GraphingAboutDlg : public TDialog {

public:

GraphingAboutDlg(TWindow* parent, TResld resld = IDD_ABOUT,

TModule* module = 0);

virtual -GraphingAboutDI90;

public:

void SetupWindowO;

}; II{{GraphingAboutDlg}}

class TProjectRCVersion {

public:

TProjectRCVersion(TModule* module);

virtual - TProjectRCVersionO;

boof GetProductName(LPSTR& prod Name);

bool GetProductVersion(LPSTR& prodVersion);

bool GetCopyright(LPSTR& copyright);

bool GetDebug(LPSTR& debug);

protected:

uint8 far* TransBlock;

200

I

'I

Appendix G

void far* FVData;

private:

TProjectRCVersion(const TProjectRCVersion&);

TProjectRCVersion& operator = (const TprojectRCVersion&);
};

#endif 1/ graphingaboutdlg_h sentry.

201

Appendix H

Curriculum Vitae

The following gives a brief curriculum vitae of the author of this thesis, Alias Abdul­
Rahman. He was born in Malaysia in January 1962. Received education in Malaysia,
England, The Netherlands, and currently in Scotland, U.K.

Education

•
•

•

•

•

Diploma in Land Surveying (UTM), Malaysia (1980-1983).
B.Sc (Hons.) in Surveying and Mapping Sciences, Univ. of East London,
formerly known North East London Polytechnic (NELP) (1984-1987).
Post. Grad. Dipl. in Integrated Map and Geoinformation Production (lTC,
The Netherlands) (1990-1991).
M.Sc in Integrated Map and Geoinformation Production (lTC, The
Netherlands) (1991-1992).
PhD in GIS (University of Glasgow) (October1996 -September 2000).

Employment

•
•
•

Assistant Lecturer at Universiti Teknologi Malaysia (UTM) (1987-1990)
Lecturer at UTM (1992 till present).
Head, Department of Geoinformatics (UTM) (1993-1995).

Computing Skills

Highly competent in Object-Oriented (00) programming particularly C++ as well as
structural programming with Turbo Pascal. Also competent in Windows-based
programming with Object Windows Library (OWL).

Awards

Excellent Academic Staff Award, UTM (1995).

202

Curriculum Vitae

Publication and Conference Presentations

ABDUL-RAHMAN, A., and DRUMMOND, J. (2000). The Implementation of
Object-Oriented TIN-based Subsystems for GIS. International Society of
Photogrammetry and Remote Sensing (ISPRS) Congress, Amsterdam, The
Netherlands, July, Commission 4, CD 1.

ABDUL-RAHMAN, A. (1999). Spatial tessellations using an object-oriented
approach. Proceedings of GIS Research UK rh. Annual Conference (GISRUK '99),
Southampton, U.K, 14-16th. April, pp. 13-23.

ABDUL-RAHMAN, A., and DRUMMOND, J. (1999). The development of 2D
and 3D triangular irregular networks computer programs. Proceedings of American
Congress on Surveying and Mapping (ACSM) Conference and Exhibition, Portland,
Oregon, USA. 13-17 March, pp. 38-49.

ABDUL-RAHMAN,A.,andDRUMMOND,J.(1998).Raster-basedalgorithmsfor
2D and 3D TINs generations. Proceedings of International Conference of Spatial
Information Science and Technology (51ST' 98), December, Wuhan, China.

ABDUL-RAHMAN, A., DRUMMOND, J., and SHEARER, J. W. (1998).
Representation of 3D Spatial Objects, American Congress on Surveying and Mapping
(ACSM) Annual Conference and Exhibition, 2-4 March, Baltimore, USA.

ABDUL-RAHMAN, A., and DESA, G. (1996). Identification of Developable Land
Using TIN-based Digital Terrain Modelling, International Archives of
Photogrammetry and Remote Sensing, Vol. XXXI, Part B4, Commission 4, Vienna,
Austria, pp. 7-11.

ABDUL-RAHMAN, A. (1995). Digital Terrain Modelling Using Contour and GPS
Data, Proceedings of the rt. Joint European Conference and Exhibition on Geographic
Information, Den Haag, The Netherlands, Vol. 2, pp. 216-218.

ABDUL-RAHMAN, A. (1994). Design and Evaluation of TIN Interpolation
Algorithms, Proceedings of the 5th

• European Conference and Exhibition on Geographic
Information Systems, Paris, France, Vol.l, pp. 328-343.

ABDUL-RAHMAN, A., KUNARAK, and ROKHY ADI. (1993). Digital
Topographic Database for GIS and Digital Mapping: A Case Study of Luberon
National Park, Southern France, Proceedings of 13th

• Annual ESRI User Conference,
Palm Springs, California, USA. Vol. 1, pp. 243-260.

203

Appendix I

Additional Papers

Two papers are presented in the following pages. The first paper was presented at the
American Congress of Surveying and Mapping (ACSM) Conference and Exhibition,
March, 1999, Portland, Oregon, USA. The second paper is for the International Society
of Photogrammetry and Remote Sensing (ISPRS) Congress, Amsterdam, The
Netherlands, July 2000. This particular paper has been published in the ISPRS Archive
2000 for Commission 4, CD 1.

204

The Development of 2D and 3D Triangular Irregular Network Programs

Abstract

Alias Abdul-Rahman and Jane E. Drummond
Department of Geography and Topographic Science

University of Glasgow
Glasgow G12 8QQ
United Kingdom

Email:
alias@geog.gla.ac.uk

jdrummond@geog.gla.ac.uk

This paper concentrates on a development of two-dimensional (2D) and three­
dimensional (3D) Triangular Irregular Network (TIN) in raster domain. Two programs
for generating the 2D TIN and 3D TIN were presented. Fundamental concepts involved
in the program development, i.e. the concept of Borgefors Distance Transformation (DT),
and Voronoi tessellations were highlighted. We demonstrated the application of the
algorithms using rasterized data sets generated by our 2D and 3D rasterizing programs.
Examples of the 2D and 3D TIN were given. Finally, the paper discusses the possibility
of using the generated TIN data structures for future development of 3D spatial
information system.

1.0 Introduction
Data structuring for terrain surface data has been studied and investigated since the late
seventies (Peucker et al.,1978), when the suitability and the adaptability of data
structures for terrain surface representation were considered. Then a triangular
irregular network (TIN) data structure was established. Several methods and techniques
have emerged for TIN generation since then (McCullagh and Ross, 1980; Watson, 1981;
Mirante and Weingarten, 1982). Most of the developments were in the vector-based
domain and computationally complex (de Berg, 1997). An alternative to the vector­
based algorithm, a raster approach, was proposed (Pilouk, 1992; Chen et aI, 1994; Pilouk,
1996). Since the alternative approach provides for far less complex computation, we
adapted this approach in our 2D and 3D TIN development with an intention of
developing a 3D spatial information system. The 2D and 3D TIN are part of the ongoing
research and they form the major discussion of this paper.

We will describe the development of the 2D TIN program in the second section, and the
3D TIN program follows in the third section. The programs involve three major tasks;
distance transformation, Voronoi or Dirichlet tessellations, and triangulations. The end
result of each development is presented graphically in the form of a wireframe
visualization. The remainder of the paper is devoted to the discussion on the possibility
of further development of the TINs programs in object-oriented (00) environment with
a 3D GIS prototype in mind.

2.0 The 2D TIN Program
The program consists of three tasks. The tasks are:

.. Distance transformation,

.. Voronoi tessellation, and

.. Triangulation.

Distance transformation CDT)
The task of DT is to generate a distance-transformed image of object pixels. Object
pixels of a raster image may be in the form of random points, digitized points, digitized
lines, etc. In this algorithm, the DT works as follows: all object pixel's are changed to
zero (i.e. a value 0) and the rest of the pixels (i.e. the background pixels) to the highest
possible value. In this case, the highest integer value of 32767 could be used. Second,
scan the image in two passes (i.e. forward and backward passes) using a 3 x 3 mask of
Chamfer 3-4 of the Borgefors DT (Borgefors, 1986), see Figure 1.

0 1 2 r-1,e-1 r-i,e r-1,c+

3 4 5 r,o-1 r,c r,e+1

6 7 8 1'+1,1> r+1,C r+1,C+

Numbering Indexing

Upper mask

r,c-1 r,e

i
Lower mask ~ J

r,c+1 ',e

The forward pass (scans with
upper-mask) begins from the
first or top-left pixel and goes
to the last pixel of the image.
During the forward pass, all
the pixels which were covered
by the mask get a new value.
Each pixel's value was added
either to 3 or 4 depending on
the pixel location. Then, the
minimum value is determined
from the five possible
candidates and assigned to the

~
~
~
~ 1r+1.0-1 r+1,c r+1,C+

current pixel location. The Figure 1 Masks for the DT

mask is then moved to the

+4 +3 +4

+3 C +3

+4 +3 +4

Distance approximation

~
~

C +3

next pixel location. At this next location, the minimum value for this pixel is again
determined and assigned. This process continues to the last pixel location (i.e. the
bottom-right pixel) in the image. The result of the forward operation is used for the
second pass which operates in reverse (from the last pixel to the first pixel). It is a
recursive operation. Finally, a DT image is created after these two passes were carried
out. Thus, all pixels will contain the approximate distance to the nearest object pixel.

Voronoi tessellation
The Borgefors DT and Voronoi tessellation tasks could be performed in parallel or in
stages. In this algorithm, we carried out the tasks in parallel. If we re-examined the DT
as described in the previous section, it involved three steps, first, change the object pixel
value to zero (i.e. 0) and the background image to the highest possible value. Second,
determine the minimum value of the current pixel location among five possible
candidates of the upper mask. Third, assign the minimum value to the current pixel
location. In other words, the pixel value represents a distance value of the pixel as
calculated from the nearby object pixels. To obtain the Voronoi-tessellated image in
parallel, the value of an original pixel needs to be assigned to the current pixel location

and written to a different output file. Figure 2 shows the parallel process for the DT and
Voronoi tessellation.

In the Voronoi
tessellation task, the
result of the forward
pass is used as an
input for the
backward pass. We
tested the algorithm
by using digitized
contours. Figure 3
and Figure 4 show the
DT image and the
corresponding
Voronoi tessellation
image.

\anl rn-
Mask indexing

FF FF FFI

00 FF FF

Preprocessed imag~

00 00 00 I
88 00 00

Input image

Mask values

MukElo. Preproce.sed + Mask Input Image

0

1

2

3

4

FF FF

00 03

.

88+4=92

88+3=91

88+4= 92

0+3=t: 3,-,
'- -

88+0=88

........ ' _ .. --

FF I
FF

Distance image

00

00

00

{88 ~-,
,

00 : ,

.. "";,, ..

00 00 00 I
88

J8
00

Voronoi image

Figure 2 DT computation and Voronoi image generation during the
forward pass.

Figure 3 DT image of digitized points Figure 4 The corresponding Voronoi image of
the digitized points

2D Triangulation
In this development, triangles were generated based on the Delaunay triangulation
principle and attributed to Delaunay (1934). As shown in Figure 5, basically we need
three kernel points of the neighbouring Voronoi polygons to form a triangle. If we have
more than three neighbouring polygons, say 4 polygons, then there will be two
possibilities for triangles formation.

A correct TIN topology must be established,
and this is done by searching 3 Voronoi
polygon neighbours. In order to find a unique
set of 3 points from a Voronoi-tessellated
image, a 2 x 2 mask is used. The mask is
designed to detect only two specific situations
where 3 or 4 different pixel values fall inside
the mask at a time. These different pixels
correspond to the neighbouring Voronoi
polygons and the kernel points of these Figure 5 The two possible triangles
polygons were used to form the triangle. formation

Figure 6 shows the mask for detecting the
triangle topology.

A triangle is found if the four different pixels
match either of the imposed matching
conditions. The mask was separated into two
parts with the aim of avoiding overlapping
(crossover) triangles, a situation not allowed in
the Delaunay triangulation criteria.

_Indexing (2 x 2)

~
[EJ

The next task in the pipeline is to establish the Figure 6 Mask (2 x 2) for TIN topology
triangle's attributes so that one could make use detection

of the generated triangles, e.g. for queries and
visualization purposes. For query purposes, a more complicated structure needs to be
established. Some of the issues in TIN data structuring were studied by Abdul-Rahman
(1992). However, in this development, a simple structure is devised where the purpose
is only for visualizing the TINs; see Figure 7 for the structure.

XYZ coordinate fUe TINfil.

• X Y Z Triangle No. Nodel Nod.2 Nodo3

1 T1 1 2 •
,..; 2 T2 2 3 •
-c 3

•
5

Figure 7 The link of XYZ coordinates and the TINs

TINs visualization
It has been claimed in de Berg (1997) that visualization of TINs is one of the major issues
in TIN development. In this paper we have only developed a simple display program
for visualizing
generated TINs. One
of the fundamental
tasks of any GIS or
DTM package is to
perform the
visualization of data.

Figure 8 shows a
simple TIN
visualization output
developed in this
process. The
program takes two
input files, a XYZ
coordinate file, and
the TIN table file.
The triangles three
nodes (i.e. Node1,
Node2, and Node3)
can be linked to the
corresponding XYZ

Figure 8 2D TIN visualization

coordinate table for the nodes with the appropriate pointers as shown in Figure 7. Based
on values in the XYZ file triangles could be shaded according to slope, elevation etc., for
further visualization.

3.0 The 3D TIN Program

3D Distance transformation
Digital distance transformations in 3D have been considered for more than a decade and
the technique has been applied in a number of scientific fields such as image processing
(Borgefors, 1996). In this paper, we utilised the DT technique to generate a DT image,
a Voronoi image, and tetrahedrons. The previous 2D DT algorithm can be extended to
the third dimension relatively straightforwardly by due to the nature of the raster data
structure. Thus, the same DT principle is utilised for the 3D TIN development. We used
a 3D mask of dimension 3 x 3 x 3 as proposed by Borgefors (1996) known as Chamfer
3-4-5, see Figure 9. Other types of mask are also applicable such as the Chessboard
mask, and the City-block mask (Borgefors, 1996).

The Chamfer mask is used due to its
computational simplicity and is capable of
generating quite accurate distance images.
Each voxel in the mask is assigned a local
distance either with a value 3, 4 or 5,
depending on the voxellocation, see Figure
9. The centre voxel is surrounded by 26
other voxels in x, y, z directions, where each
voxel has three types of neighbours. They

:

5 4 5

4 3 4

5 4 5

Lower-part

are called face neighbours, edge neighbours, Figure 9 The 3-4-5 mask for the 3D DT

and node or vertex neighbours. The face
neighbour voxels are assigned the value 3, the edge voxels the value 4, and the vertex
voxels the value 5.

Row

II
5x5x5Voxel
cublcspacc

Level 1

o 0 o 0 0
o 0 o 0 0
o 0 o 0 0
o 0 o 0 0
o 0 o 0 0

F F F F F
F F F F F
F F F F F
F F F F F
F F F F F

F F F F F
F F F F F
F F F F F
F F F F F
F F F F F

10 9 B 9 10
9 B 7 B 9
B 7 6 7 B
9 B 7 B 9
10 9 B 9 10

204 24 242424
2424 242424-

2424 2424204

24 • 242424
242. 242424

Level 2

o 0 000
o 0 o 0 0
o 0 o 0 0
o 0 o 0 0
o 0 000

F F F F F
F F F F F
F F F F F
F F F F F
F F F F F

F F F F F
F F F F F
F F F F F
F F F F F
F F F F F

9 B 7 B 9
B 5 • 5 8
7 • 3 4 7
B 7 4 5 B
11 B 7 B 9

24 • 242424
2424 242 .. 24
242 242424
24 4 242424
24 4 2424 ..

25 252525
2525 252525
2525 25 25 25
25 25 25 25
25 25 25 25

Level 3

o 0 o 0 0
o 0 o 0 0
o 0 25 0 0
o 0 o 0 0
o 0 o 0 0

F F F F F
F F F F F
F F OFF
F F F F F
F F F F F

F F F F F
F F F F F
F F o 3 6
F • 3 4 7
8 7 6 7 B

B 7 6 7 B
7 4 3 4 7
6 3 o 3 6
7 • 3 4 7
8 7 6 7 B

4 4 2424 4
2424 24242 ..
4 4 25 2525

24 5 252525
2525 252525

2525 252525
2525 252525
2525 252525
25 5 25 25 25
2525 252525

Level 4

o 0 o 0 0
o 0 o 0 0
o 0 o 0 0
o 0 o 0 0
o 0 o 0 0

F F F F F
F F F F F
F F F F F
F F F F F
F F F F F

F F F F F
F 5 4 5 8
5 • 3 • 7
B 5

• 5 8
9 B 789

9 8 7 8 9
8 5

• 5 8
7 4 3 4 7
8 5

• 5 8
9 B 7 8 9

25 5 252525
25 5 252525
25 25 25 25
25 25 25 25
2525 252525

LevelS

o 0 000
o 0 000
o 0 000
o 0 o 0 0
o 0 o 0 0

F F F F F
F F F F F
F F F F F
F F F F F
F F F F F

10 9 8 9 10
9 8 7 8 9
B 7 878
9 8 7 8 9
10 9 8 9 10

10 9 8 9 10
9 8 7 B 9
B 7 6 7 8
9 8 7 8 9
10 9 8 9 10

125

/25
/25

25 5 252525
2525 252525
2525 252525
25 252525
2525 252525

Input image

25 is object voxel

Preprocessed image

Value 0 is assigned for object
voxel, and F is background image

Forward pass (3D OT)

Backward pass (3~ OT)

Forward pass (3~ Voronoi tessellation)

Backward pass (3~ Voronoi tessellation)

Part of the polyhedron with 10 25

Figure 10 Slice of images (along the Z or level direction) for the 3D DT and 3D Voronoi tessellation

To generate a distance image of a 3D raster image, the first step is to set the voxel
background image with highest integer value and the object voxels with zeros (i.e. 0).
The image is then scanned in two passes, i.e. forward and backward passes. The
forward pass (using the upper-part mask) begins from the first voxel to the last voxel.
At this stage, the voxels surrounding the object voxels will get new values. The new

value is the minimum distance from the 14 possible voxel candidates. The result of the
first pass is taken into account for the second pass. This time, the image is scanned with
the lower-part mask (i.e. the backward pass) beginning from the last voxel and moving
to the first voxel, see Figure 10 for the accumulated distance of the 5 x 5 x 5 cubic space.
Finally, a 3D distance-transformed image is formed after the two passes were carried
out.

3D Voronoi tessellation
A Voronoi image is generated from the DT image. Again, we generated these two
images in parallel. The task also involves three steps: First, cover the image with the
mask. Second, the values of the mask are added to the value of the voxels being covered
by the mask. Third, a minimum value from the 14 voxel candidates is determined and
assigned to the current voxellocation. The original voxel value of the current voxel
location is taken, assigned, and written to the 3D Voronoi file. This is done prior to the
mask being moved to the next voxellocation. The process continues until the last voxel
of the image is reached. Again, the result of this forward pass is taken into account in
the backward pass which begins from the last voxel proceeds to the first voxel of the
image. Figure 10 shows how the 3D Voronoi polygons (i.e. polyhedrons) were
delineated from one object voxel with ID = 25. In other words, a polyhedron of the
voxels with ID 25. Visualization of the 3D DT and 3D Voronoi images or polyhedrons
can be by a true 3D viewing package.

Tetrahedron Network (TEN) Generation
Using the same principle as for the 2D TIN, the algorithm for the 3D TIN utilised a mask
of 2 x 2 x 2, see Figure 11. It has 8 voxel elements. It provides a unique way of
establishing a tetrahedron. In order to obtain non-overlapping tetrahedrons, several
predefined conditions have to be imposed during voxel scanning. There are 6 possible
non-overlapping tetrahedrons that we can get from the mask. The mask is then used to
scan the voxel's Voronoi tessellated-image once.

Once the tetrahedron was detected (based on the imposed conditions), it is then written
to a file. The file contains a record of tetrahedrons where each record has 4 nodes, it is
an ASCII file and structured as in Figure 12. Thus, it is one way of establishing a simple

tetrahedron data
structure. This
data structure
together with a
table of point
coordinates
provide a means
for further
manipulation of
the data, e.g.
visualization.

We imple­
mented the
algorithm and
tested it by
using simulated

6 non.overtapplng TENs (or 3D TINs)

2x2x2mask

:w ""."" ... "~ffIJ. ·
'PT~' I
I jiD "-t-" @ 1

,~" ... """."""" ,,~
Detail view of the mask

Figure 11 The six non-overlapping TENs

3D raster data sets. This data set was generated by our 3D point-to-raster program. We
also developed a wireframe display program for visualizing the TENs, see Figure 13 for
the output display.

Points table TENs table

Node1 Node2 Node3 Node4

Figure 12 TEN data structure

Figure 13 The TENs visualization

4.0 Object-Oriented Design of TIN-based Modelling
A data model in an information system is a collection of conceptual tools for describing
data, data relationships, data semantics, data constraints and operations on data. In this
section, a data model based
on an object-oriented
technique is described. The
model realised the object­
oriented concepts such as
objects, encapsulation,
classification, generalisation
and inheritance, and
aggregation. These 00 terms
are not described here, but the
reader can consult them from
literatures and various 00
textbooks, e.g. Khoshafian
and Abnous (1995), Isadale
and Lee (1996), and
Stroustrup (1997).
Furthermore, 00 data models have been considered to satisfy many aspects of the data
modelling requirements of GIS (Worboys et al., 1990; Webster, 1990). If we consider our
previous 2D and 3D TIN modelling programs as object classes then we may relate them
with other spatial domain as shown in Figure 14. Basically, a spatial object may be
described by its geometric and thematic data. Then, these two data (i.e. geometric and
thematic) types could be subdivided into several spatial primitives, e.g. node, edge,
surface, and solid. See Figure 14 for the derivation of objects. We say a node represents
point feature, an edge for line (contains at least two points), a surface for area feature
(i.e. polygon), and a solid for volumetric feature. In this figure, the "Spatial object" is
the base class, and two were derived classes, namely, "Geometric" and "Thematic" class.
Several other classes were derived from the geometric class. Four classes were derived
from the thematic class, they are "Forest", "River", "Faultlines", and "Boreholes". As
for an example, the following are some definitions of the prominent classes:

class2D TIN:
parent class: Geometric.
methods: e.g. 2D DT, 2D Voronoi, TIN table generation, visualization.

class Node:
parent: 2D TIN, 3D TIN
methods: e.g. create, delete, show identifier, GetCoordinates, etc.

class Edge:
parent: 2D TIN, 3D TIN
methods: e.g. create, delete, show edge, etc.

The implementation of this 00 modelling including the development of the database
and spatial operations become our next research task of proto typing a 3D GIS system.

The 3D GIS System
Traditionally, two-dimensional spatial data can be efficiently handled by existing GIS
systems. However, the need for 3D systems is
acknowledged by the GIS research community
as reported in Raper (1990) and Houlding
(1994). Indeed the fields of photogrammetry,
simulation and modelling, mining, geology,
hydrology, geo-engineering, urban and rural
planning are likely to benefit from such system.
The call for better geo spatial data management
also provides an initiative for this so called 3D
GIS. Undoubtedly, the need for such a system
has been discussed in various geo-related

Object database

'-----\ TINs data + Attribute data
+ Topology data

research communities. Concepts contributing Figure 15 The possible components for 3D

to the development of this system have been GIS system

addressed in Weibel and Heller (1990), Fritsch
(1996), Bruenig (1996), and Pilouk (1996). We propose the following scheme for the 3D
GIS system (Figure 15):

1.a module supporting the user-interface
2.a module supporting 2D and 3D TIN modelling
3.a module supporting the object database, and
4.a module supporting the spatial operators.

The user interface provides a means of interaction between user and system. The 3D
modelling component contains two sub-components, 2D TIN and 3D TIN. TINs have
been considered as a useful data structure in 3D GIS by many researchers (Raper, 1990).
Others such as Qingquan and Deren (1996) indicated that the structure was considered
a powerful vector structure for 3D GIS. The structure of TEN could be organized in
various ways. Figure 12 shows one of the possible structures for TEN which was
developed in this research. The proposed TEN structure should be able to define the
topological relationships among the primitives, i.e. point, line, surface, and solid. These
TIN programs are used to generate 3D data structure from the given input of 3D
datasets. The spatial operator module provides a means for spatial manipulations and
analysis, e.g. 3D visualization, geometric transformation, etc. The object database is for
the management of TINs data together with their attribute and topological data.

5.0 Discussion and Outlook
We have implemented and demonstrated the two programs for generating 2D and 3D
triangular irregular networks. The graphics output of the TINs suggests that the
algorithms work for random points in two and three-dimensional space. We also
described the possible development of the TINs in object-oriented environment. The
later development in 00 stimulates us for further research on establishing a prototype
of 3D GIS system.

References

Abdul-Rahman, A., 1992. Triangular irregular network in digital terrain relief
modelling, M.Sc thesis, lTC, Enschede, The Netherlands, 80 p.

Borgefors, G., 1986. Distance transformations in digital images, Computer Vision,
Graphics, and Image Processing, Vol. 34, pp. 344-371

Borgefors, G., 1996. On digital distance transformations in three dimensions, Computer
Vision and Image Understanding, Vol. 64, No.3, pp. 368-376

Bruenig, M., 1996. Integration of spatial information for geo-information systems,
Lecture Notes in Earth Sciences No. 61, Springer, Berlin. 171 p.

Chen, X., K. Ikeda, K. Yamakita, and M. Nasu, 1994. Raster algorithms for generating
delaunay tetrahedral tessellations, Int. Archives of Photogrammetry and Remote
Sensing (ISPRS), Munich, Vol. 30, Part 3/1, pp. 124-131

Delaunay, B., 1934. Sur la sphere vide, Bulletin of the Academy of Science if the USSR,
Classe. Sci. Mat., pp. 793-800

de Berg, M., 1997, Visualization of TINs, In: Algorithmic Foundations of Geographic
Information Systems, Lecture Notes in Computer Science No. 1340, (eds.) van Kreveld,
M., Nievergelt, J., Roos T., and Widmayer P., Springer, pp. 79-97

Fritsch, D., 1996. Three dimensional geographic information systems: status and
prospects, International Archive of Photogrammetry and Remote Sensing, Vol. XXXI,
Part B3, Vienna, pp. 215-221

Houlding, S. W., 1994. 3D geoscience modelling: computer techniques for geological
characterization, Springer, Berlin. 309 p.

Isdale, M., and Y. c., Lee, 1996. An object-oriented modelling framework for geographic
information, International Archive of Photogrammetry and Remote Sensing, Vol. XXXI,
Part B4, pp. 754-758.

Khoshafian, S., and R. Abnous, 1995. Object orientation: concepts, analysis and design,
languages, databases, graphical user interfaces, and standards. John Wiley, New York,
504p.

McCullagh, M. J., and C. G. Ross, 1980. Delaunay triangulation of a random data set for
isorithmic mapping, The Cartographic Journal, Vol. 17, No.2, pp. 93-99

Mirante, A., and N. Weingarten, 1982. The radial sweep algorithm for constructing
triangulated irregular networks, IEEE Transaction on Computer Graphics and
Applications, Vol. 2, No.3, pp. 11-21

Peucker, T. K., R. J. Fowler, J. J. Little, and D. M. Mark, 1978. The triangulated irregular
network, Proceedings of Digital Terrain Modelling (DTM) Symposium, American
Society for Photogrammetry (ASP), St. Louis, Missouri, pp. 516-540

Pilouk, M., 1992. Fidelity improvement of DTM from contours, M.Sc. thesis, ITC,
Enschede, The Netherlands, 99 p.

Pilouk, M., 1996. Integrated modelling for 3D GIS, PhD thesis, ITC Publication No. 40,
200p.

Qingquan, L., and L. Deren, 1996. Hybrid data structure based on octree and
tetrahedron in 3D GIS, Int. Archives of Photogrammetry and Remote Sensing, Vol.
XXXI, Part B4, Vienna, pp. 503-507

Raper, J., 1990. Three dimensional applications in geographic information systems,
Taylor and Francis, London. 189 p.

Stroustrup, B., 1997. The C++ programming language 3rd
. Edition, Addison Wesley, 910

p.

Watson, D. F., 1981. Computing the n-dimensional Delaunay tessellation with
application to Voronoi polytopes, The Computer Journal, Vol. 24, No.2, pp.167-172

Webster, c., 1990. The object oriented paradigm in GIS, International Archive of
Photogrammetry and Remote Sensing, Vol. XXVIII, Part 3/2, Wuhan, pp. 947-984

Worboys, M., H. Hearnshaw, and D. J. Maguire., 1990. Object-oriented data modelling
for spatial databases, International Journal of Geographical Information Systems, Vol.
4, No.4, pp. 369-383

THE IMPLEMENTATION OF OBJECT-ORIENTED TIN-BASED SUBSYSTEMS FOR GIS

Alias Abdul-Rahman and Jane E. Drummond
Dept. of Geography and Topographic Science

University of Glasgow
Glasgow, GI2 8QQ

Scotland, U.K

alias@geog.gla.ac.uk
jdrurnrnond@geog.gla.ac.uk

Working Group IV

KEYWORDS: TIN, Spatial Data Modelling, Object-Oriented, and GIS

ABSTRACT

This paper focuses on the development of an object-oriented Triangular Irregular Networks (TINs) subsystems for
GIS. It reviews the current development of3D GIS which includes a discussion of the needs, demands, and related
modelling and structures for a system. In the third section of the paper, we discuss the concept of object-oriented
modelling and specific modelling for the TIN approach. The TIN structures are based on Delaunay triangulation
which utilises the concepts of digital image transformation and Voronoi diagrams. The generated structures are used
as the core data structures in the spatial modelling. The relevant aspects of TIN-based object-oriented modelling are
introduced in section 4. Section five presents the implementation of the above concepts of the TIN-based spatial data
in subsystems for the proposed object-oriented system in which a commercial OODBMS package is utilised. The
subsystems are tested using photogrammetrically digitized datasets and presented visually by the display interface
that we developed (called TINSoft). We also developed some GIS applications, e.g. contouring. Finally, we discuss
some challenges and improvements needed for this kind of GIS system.

1. INTRODUCTION

The object-oriented (00) approach is now being utilised in various fields including GIS. In GIS, 00 techniques are
used for various tasks including spatial data modelling, databasing, and system development. A research trend
involving a shift from structural to 00 techniques is very much in evidence in the GIS community. This trend is
mainly due to the strength of the 00 approach over the traditional structural technique of programming and system
development (Egenhofer and Frank, 1989; and Worboys, 1995), that is 00 modelling only requires representation
much closer to the real world than are needed in the more abstract structured approach. Complex spatial data
handling as required in GIS also contributes to this paradigm shift (Webster, 1990) as traditional relational databases
could not handle efficiently such complex spatial data. It is the subject of this paper to further investigate the use
of an 00 system where TIN spatial data is the data structure of concern. Other work carried out by the first author
is also investigating the use ofTEN (tetrahedral networks) data structures.

This paper discusses some 3D GIS issues, the needs of the system, and the related problems of modelling and data
structuring in section 2. 00 conceptual modelling is discussed in section 3. We discuss TIN spatial data modelling
in section 4, and the TIN-based subsystems for an information system in section 5. Finally, we present suggestions
to improve the proposed subsystems in the summary.

2. 3D GIS

In this section we review and discuss some problems and related issues in 3D GIS software development. In GIS,
2D systems are common, widely used, and able to handle most of the GIS tasks efficiently. The same kind of system
may not be able to handle 3D data as more advanced 3D applications are demanded (Raper and Kelk, 1991; Li, 1994)
such as representing the full length and width ofa borehole. Some examples of3D applications areas are listed in
section 2.1. 3D GIS is very much needed to generate information from such 3D data. The system is not a simple
extension of another dimension (i.e. the 3rd dimension) on t02D GIS. To add this third dimension into existing 2D
GIS needs a thorough investigation of many aspects of GIS including a different concept of modelling, representation,

and aspects of data structuring. Existing GIS packages are widely used and understood for handling, storing,
manipulating, and analysing 2D spatial data. Their capability and performance for 2D and for 2.5D data (DTM) is
generally accepted by the GIS community. Should we consider a GIS package which can handle and manipulate 2D
data and DTM data as a 3D GIS system? The answer is no because DTM data is not real 3D spatial data. The third
dimension of the DTM data only provides a surface attribute to the planimetric data of x, y coordinates. In fact, we
hardly find any current GIS software to be in a position to handle real 3D spatial data. Although the problem has
been addressed by several researchers such as Raper and Kelk (1991), Cambray (1993), Li (1994), Pilouk (1996),
and Fritsch (1996), some further aspects particularly spatial data modelling using 00 techniques need to be
investigated. This modelling issue is addressed in this paper, see section 3 and section 4. The demand for this kind
of system is discussed in the next section.

2.1 Who needs 3D GIS

As in the popular 2D GIS for 2D spatial data, 3D GIS is for managing 3D spatial data. Raper and Kelk (1991), Li
(1994), Forstner (1995), and Bonham-Carter (1996) described some of the three dimensional applications in GIS,
including:

• ecological studies • architecture
• environmental monitoring • automatic vehicle navigation
• geological analysis • archeology
• civil engineering • 3D urban mapping
• mining exploration • landscape planning

The above applications may produce much better information if they were handled in a 3D spatial system. It appears
that complex 3D spatial objects on the surface and subsurface demand better solutions (e.g. in terms of modelling,
analysis, and visualization) than the existing systems can offer.

The next section reviews the modelling and data structures contributing to 3D GIS.

2.2 Modelling and Data Structuring

Much previous work done on 3D data modelling concentrated on the use ofvoxel data structures (Jones, 1989). This
particular approach does not address spatial modelling aspects, it is only useful for the reconstruction of 3D solid
objects and for some basic geometric computations. One of the problems with this model is that it needs very large
computer space and memory.

Carlson (1987) proposed a model called simplicial complex. He used the term O-simplex, I-simplex, 2-simplex, and
3-simplex to denominate spatial objects of node, line, surface, and volume. His model can be extended to n­
dimensions.

While Cambray (1993) proposed CAD models for 3D objects combined with DTM as away to create 3D GIS, that
is a combination of Constructive Solid Geometry (CSG) and Boundary representation (B-rep).

Other attempts to develop 3D GIS can be found in Kraus (1995), Fritsch and Schmidt (1995), and Pilouk (1996).
These attempts were based on the TIN data structure to represent 3D terrain objects but no reports exist on the any
related aspects of 00 technique for the modelling and data structure.

Data modelling and structuring of 3D spatial objects in GIS has not been as successfully achieved as in CAD (Li,
1994). Data modelling in GIS is not only concerned with the geometric and attribute aspects of the data, but also
the topological relationships of the data. Topology of spatial data must be available so that the neighbouring objects
can be determined. There are a number of mathematical possibilities for the determination of the topological
description of objects. Within the TIN data structure, we have developed a program to determine the neighbouring
triangles. The information gained from the generated TIN's neighbours is useful for further spatial analysis and
applications. We also established topological relationships for linear objects as represented by TIN edges. One edge
is represented by a start node and an end node. From this edge topology, a chain of edges or arcs could be easily
established. For TIN data, another approach is the simplicial complex developed by Carlson. A TIN's node is
equivalent to O-simplex, TIN's edge is equivalent to I-simplex, a TIN surface (area) is equal to 2-simplex, and 3-
simplex is equivalent to a 3D TIN (tetrahedron). The simplicial complex technique checks the consistency of
generated TIN structures by Euler's equality formulae, see Carlson (1987) for a detailed discussion. We explain our
00 TIN approach in section 4 after elaborating 00 conceptual modelling.

3. OBJECT-ORIENTED CONCEPTUAL MODELLING

Object-oriented conceptual modelling is now widely utilised in many fields including GIS. The concepts of 00 such
as object classification, encapsulation, inheritance, and polymorphism are able to ease the modelling of complex real
world objects.

3.1 Object-Oriented Concepts

As mentioned above the object-oriented approach is now being promoted as the most appropriate method for
modelling complex situations that are concerned with real-world phenomena, and thus applicable to GIS. Object­
oriented concepts are considered more flexible and powerful than the traditional structural programming and other
major database models such as the relational or entity-relationship model. Object-oriented concepts contribute to
modelling as follows:

Objects and abstraction mechanisms (classification, generation, aggregation, and association). These
aspects of 00 can be used for modelling real world phenomena, e.g. modelling of spatial data for
geoinformation systems.
Inheritance, propagation, encapsulation, persistence, Abstract Data Type (ADT), polymorphism, and
overloading. These aspects of 00 can be used to construct and implement the model discussed in (a).

The usefulness of these concepts in spatial modelling are explained below.

3.2 The Abstraction Mechanisms

Data abstraction is a method of modelling data. Obj ect -oriented design uses four maj or abstraction mechanisms: (1)
classification, (2) generalization, (3) inheritance, and (4) polymorphism. In object-oriented programming, any
physical or logical entity in the model is an "object". The defmition of a type of object is called a "class", and each
particular object of that type known as an "instance" of the class. Once a class has been defmed, it can, potentially
be reused in other programs by simply including the class definition in the new program. However, it is not necessary
for the programmer who uses a class to know how it works, they simply need to know how to use it. The definition
of operations on or between objects are called "methods", and the invocation of methods is referred to as "passing
a message". Recent research in software engineering has promoted an object-oriented design method by which real
world objects and their relevant operations are modelled in a program which is more flexible and better suited to
describe complex real world situations (Khoshafian and Abnous, 1995). We may also consider object-orientation
as a particular view of the world which attempts to model reality as closely as possible (Webster, 1990). Details on
all relevant 00 concepts (object, abstraction, data types, class hierarchy, inheritance, classification, aggregation,
generalization and association) can be found in the 00 literature such as Booch (1990), Bhalla (1991), and Stroustrup
(1997). The following are some 00 terms:

Classification
Classification can be expressed as the mapping of several objects (instances) onto a common class. In object-oriented
approach, every object is an instance ofa class (a class is a fundamental building block in 00 language). Class
describes the common features of a set of objects with the same characteristics; it also defines the nature of the state
and behaviour, while an object records the identity and state of one particular instance of a class. Abstract Data Type
(ADT) is a mechanism to create a class of spatial objects or any class in a domain of objects. An object is a basic
run-time entity in an object-oriented system. This entity includes data and procedures that operate on data. Viewed
from a programming stand point, objects are the elements of an 00 programming system sending and receiving
messages.

Generalization
Generalization in 00 provides for the grouping of classes of objects, which have some operations in common, into
a more general superclass. Objects of superclass and subclass are related by an "is a" - relation, since the object of
a subclass is also an instance of a superclass.

Inheritance
Inheritance allows the building a hierarchy of types or classes that best describes the real world situation in the
application field. Each class can take all or part of the structural or behavioural features from other classes, which
are its parents. In turn, the newly defined class is a child of the classes from which it has inherited its features.

Inheritance helps in deriving application-oriented classes without starting every definition from scratch. Also, it
makes it easier to create logically complex classes from simpler classes.

Polymorphism
Polymorphism is a mechanism to define the different actions of the same named function on different classes. It is
implemented by inheriting some functions from parent classes and overriding or modifying part of them. Usually,
the newly created class has similar but not the same behaviour as its parents for that functional aspect. Polymorphism
provides great flexibility in class derivation, for example, perimeter operation may have different implementations
for different classes such class "area", class "triangle", class "polygon", etc. Each class performs the perimeter
operation differently although it has the same function name.

4. OBJECT-ORIENTED TIN SPATIAL DATA MODELLING

In this section we provide a discussion of the 00 TINs spatial data
modelling techniques. Conceptually, the general modelling steps as
depicted in Figure I could be used for TIN spatial data modelling. That
is, the three-step approach, namely the conceptual, the logical, and the
physical steps. The class schema for spatial data modelling are
described below.

4.1 The Class Schema
The schema is based on several classes, they are Spatial Objects (the
super class), and four major subclasses which are Node, Edge, Polygon,
and Solid.

PhYSical
model

Spatial objects Figure 1 A typical spatial data modelling
The spatial object class is a general class of the real world objects. It is steps
the super class in the class hierarchy. We assume that all other objects
are derived from this super class, see Figure 3. All terrain objects could be categorised into several sub classes such
as points, lines, areas, and solids (volume) features. In 00 modelling, these feature types are the classes in the
modelling hierarchy.

Node
A node can be considered as the most basic geometrical unit in spatial data modelling. It may represent point entities
or point objects at a particular mapping scale. Examples of point objects are wells, terrain spot heights, and the like.
In geoinformation, we may represent these objects by a class called a node class. The coordinates of the nodes
(including the nodes represent edges) are held by a coordinates container class, called XYZContainer class.

•
TIN's node

• •
TIN·sedge TIN·s surface 3D TIN's (body)

Figure 2 TINs representations for spatial objects

Edge
An edge can be represented by two nodes at
each end (i.e., a start node and end node). In
this study we consider two end points make a
straight edge. We used this edge type to
represent linear features. The arc container
class, called ARCContainer holds all the arcs.
The arcs container also serve any other class
which requires arcs data in their operations
for example the polygon class needs the arcs
in order to form polygons.

Figure 3 The class diagram (using the Booch
notation)

Polygon
A polygon (sometimes known as a surface) is used to
represent area features such as lakes, ponds, etc. A
polygon may be constructed by chains of closed edges.

Solid (or Body)
This is a representation for solid or body features such as
buildings, trees. A chain of points and lines form body
objects for example, 3D TIN can be represented by a
series of triangle nodes and edges as indicated in Figure
2.

The class schema in Figure 3, depicted using Booch
(1990) notation is the representation of the TIN spatial
data model. The schema has: four geometric classes
namely (TNode, TEdge, TPoly, and Tsolid); two types of

containers (geometry and attribute). The geometric containers contain the XYZ locations whereas the attribute
containers are for the thematic values, e.g. names.

4.2 The POET 00 Database Development
The DBMS is used to generate the 00 database from the
constructed TIN spatial data. In this work the schema
needs to be modelled according to the POET database
model (pOET, 1996), that is it is required to construct all
the e++ classes as classes which POET can understand. In
this case, all the classes in the schema have to be compiled
by the POET PTXX compiler. The PTXX compiler maps
all the normal e++ classes into the several relevant PTXX
schema files which in turn are used for writing application
programs (runs under normal e++ compiler) as well as for
populating the database. The PTXX complier also
generates the 00 database from the schema, see Figure 4.
For database query, the OQL (Object Query Language)

Classes

syntax is used, see POET (1996) for the details of the Figure 4 The POET database development flows
language. An example of a query which can be performed
from the database is:

defined extent aliTEdge for TEdge;
. select Edge

from Edge in allTEdge
where Edge.EdgeAtr.EdgeName = "River*"

5. OBJECT-ORIENTED TIN-BASED SUBSYSTEMS
FOR GIS

5.1 The Subsystems

The 00 TIN GIS is based on several fundamental concepts
and aspects of spatial data which have been discussed in
the previous sections. Basic components in the system are
data input processing, TIN data construction, TINs
database, transformation operations, data output, and user­
interface. Rasterization forms a major operation in the data
input component. Figure 5 shows the other major
components of the proposed system which includes the use
of other commercial software, i.e. IL WISTM (Integrated

transformation
- interpolation
- contouring

1<1----'-----1 - geometric calculation
L.-oor-...J (areas, volumes)

Figure 5 The proposed system for the TIN-based
spatial data

Land and Water Information System) and A VSTM (Advanced Visualization System). These two packages are only
for display purposes especially for validating the output from the rasterization process. We also developed a simple
user interface as part of the software development. Besides our own written programs for databasing purposes, we
also used a commercial database package, called POETTM OODBMS as mentioned. The DBMS package is for the
development of the 00 TIN spatial database.

5.2 The Test and Results

We tested the subsystems (or their components) by using photograrnmetrically digitized datasets (other types of
datasets such as data acquired by field survey, or by map digitizing are also possible as input to the subsystems).
Figure 6 shows the study area (Drumbuie, near Kyle of Lochash, north-west Scotland). Other diagrams visually
illustrate some of the output from the subsystems.

Figure 6 The study area
(orthophoto image) from where
points and lines were extracted
using 3D digitizing (with stereo
mate)

Figure 8 The distance transform
(OT) image of the area

.:': ::' .. 0. .
..... .. "

""-"------. ..

· ... ,. :::?~~
: .. : ::.. :.\;,.: . :
...... '.;:;>:::'.~ .

.. : >': ':z~~
• " •.• ..? · -.

... ~.

~ ~~

.,' -: .. '.-

Figure 7 The rasterised points and
lines of selected features

Figure 9 The generated TINs
incorporated with constrained
edges.

Figure 7 shows the output from the rasterization component. Figure 8 is the intermediate process of2D TIN data
construction component, that is the distance transformation computation output. The generated TINs are in Figure
9 whereas Figure 10, the simple display interface, illustrates the perspective view of the 3D objects such as buildings
and trees sitting on top of the TIN surfaces. Contours of the terrain surfaces could also be derived from the TIN
database as clearly draped on the terrain surface.

Figure 10 Perspective view of 3D objects (buildings) and trees draped on TINs
surfaces with the derived contours (4-metre intervals).

6. SUMMARY

We have introduced several subsystems for 00 TIN-based GIS. The generated products (i.e. the output) from the
subsystems indicate the workability of these components. Although the system is not yet complete as one whole GIS
system, but the results produced from the components are promising. An integration of the subsystems with the
commercial OODBMS needs to be investigated so that seamless integration could be achieved. Thus, from the
perspective of GIS software development, the object-oriented TIN data modelling can be used to develop a geo
information system.

ACKNOWLEDGEMENTS

Thanks are due to the following organisations which have contributed one way or another in our research work, they
are LH System Inc. (Helava-Leica) for the digital photogrammetric software, Advanced Visualization Systems Inc.,
(A VS) for 3D raster data visualization package, and POET Inc. The generous assistance from Dr. Ron Poet of
Glasgow University's Department of Computer Science and Mr. Prasad Jeevanigi on POET's compiler error
messages must also be acknowledged.

REFERENCES

Bhala, N., 1991. Object-oriented data models: a perspective and comparative review. Journal ofInformation Science,
Vol.17,pp.145-160.

Bonham-Carter, G. F., 1996. Geographic information systems for geoscientists: modelling with GIS. Computer
Methods in the Geosciences, Vol. 13, Pergamon Publications, 398 p.

Booch, G., 1990. Object oriented analysis and design with applications. 2nd
• Edition, Addison-Wesley, 589 p.

Bric, V., 1993. 3D vector data structures and modelling of simple objects in GIS. M. Sc. Thesis, lTC, Enschede, The
Netherlands, 107 p.

Cambray, de B., 1993. Three-dimensional (3 D) modelling in a geographical database. Proceedings of AutoCarto 11,
Minneapolis, USA, pp. 338-347.

Egenhofer, M. and Frank, A. U., 1989. Object-oriented modelling in GIS: inheritance and propagation. Proceedings
of AutoCarto 9, Baltimore, pp. 588-598.

Forstner, W., 1995. GIS - the third dimension. Workshop on Current Status and Challenges of Geoinformation
Systems, IUSM working group on LIS/GIS, University of Hannover, Germany, pp. 65-72.

Fritsch, D., 1996. Three-dimensional geographic information systems - status and prospects. International Archives
of Photo gramme try and Remote Sensing (ISPRS), Vienna, Austria, Vol. 31, Part 4, pp. 215-221.

Fritsch, D. and Schmidt, D., 1995. The object-oriented DTM in GIS. Proceeding of 45th
• Photogrammetric Week,

Stuttgart, pp. 29-34.

Jones, C. B., 1989. Data structures for three-dimensional spatial information systems in geology. International Journal
of Geographic Information System (IJGIS), Vol. 1, no. 3, pp. 15-31

Khoshafian, S., and Abnous, R., 1995. Object orientation: concepts, analysis, languages, databases, graphical user
interfaces, standards, Second Edition, John Wiley, 504 p.

Kraus, K., 1995. From digital elevation model to topographic information system. Proceeding of
45 th.Photogrammetric Week, D. Fritsch and D. Hubbie (eds.), Stuttgart, Germany, pp. 277-285.

Li, R., 1994. Data structures and application issues in 3D geographic information systems. Geomatica, Vol. 48, No.
3, pp. 209-224.

Pilouk, M., 1996. Integrated modelling for 3D GIS. International Institute of Aerospace Survey and Earth Sciences
(lTC), Publication No. 40, Enschede, The Netherlands, 200 p.

POET, 1996. POEFM C++ programmer's guide. Release 4, 560 p.
http://www.poet.com

Raper, J. and Kelk, B., 1991. Three-dimensional GIS. In: Geographical Information Systems: Principles and
Applications. D. J., Maguire, M. Goodchild and D. Rhind (edts.), Longman Geoinformation, pp. 219-317.

Stroustrup, B., 1997. The C++ programming language, 3rd
• Edition. Addison-Wesley, 910 p.

Webster, C., 1990. The object-oriented paradigm in GIS. International Archive of Photo gramme try and Remote
Sensing (IAPRS), Vol. 28, Part 3/2, Comm. III, Wuhan, China.

Worboys, M. F., 1995. GIS: a computing perspective. Taylor and Francis Publication, 376 p.

	366141_vol1_0001
	366141_vol1_0002
	366141_vol1_0003
	366141_vol1_0004
	366141_vol1_0005
	366141_vol1_0006
	366141_vol1_0007
	366141_vol1_0008
	366141_vol1_0009
	366141_vol1_0010
	366141_vol1_0011
	366141_vol1_0012
	366141_vol1_0013
	366141_vol1_0014
	366141_vol1_0015
	366141_vol1_0016
	366141_vol1_0017
	366141_vol1_0018
	366141_vol1_0019
	366141_vol1_0020
	366141_vol1_0021
	366141_vol1_0022
	366141_vol1_0023
	366141_vol1_0024
	366141_vol1_0025
	366141_vol1_0026
	366141_vol1_0027
	366141_vol1_0028
	366141_vol1_0029
	366141_vol1_0030
	366141_vol1_0031
	366141_vol1_0032
	366141_vol1_0033
	366141_vol1_0034
	366141_vol1_0035
	366141_vol1_0036
	366141_vol1_0037
	366141_vol1_0038
	366141_vol1_0039
	366141_vol1_0040
	366141_vol1_0041
	366141_vol1_0042
	366141_vol1_0043
	366141_vol1_0044
	366141_vol1_0045
	366141_vol1_0046
	366141_vol1_0047
	366141_vol1_0048
	366141_vol1_0049
	366141_vol1_0050
	366141_vol1_0051
	366141_vol1_0052
	366141_vol1_0053
	366141_vol1_0054
	366141_vol1_0055
	366141_vol1_0056
	366141_vol1_0057
	366141_vol1_0058
	366141_vol1_0059
	366141_vol1_0060
	366141_vol1_0061
	366141_vol1_0062
	366141_vol1_0063
	366141_vol1_0064
	366141_vol1_0065
	366141_vol1_0066
	366141_vol1_0067
	366141_vol1_0068
	366141_vol1_0069
	366141_vol1_0070
	366141_vol1_0071
	366141_vol1_0072
	366141_vol1_0073
	366141_vol1_0074
	366141_vol1_0075
	366141_vol1_0076
	366141_vol1_0077
	366141_vol1_0078
	366141_vol1_0079
	366141_vol1_0080
	366141_vol1_0081
	366141_vol1_0082
	366141_vol1_0083
	366141_vol1_0084
	366141_vol1_0085
	366141_vol1_0086
	366141_vol1_0087
	366141_vol1_0088
	366141_vol1_0089
	366141_vol1_0090
	366141_vol1_0091
	366141_vol1_0092
	366141_vol1_0093
	366141_vol1_0094
	366141_vol1_0095
	366141_vol1_0096
	366141_vol1_0097
	366141_vol1_0098
	366141_vol1_0099
	366141_vol1_0100
	366141_vol1_0101
	366141_vol1_0102
	366141_vol1_0103
	366141_vol1_0104
	366141_vol1_0105
	366141_vol1_0106
	366141_vol1_0107
	366141_vol1_0108
	366141_vol1_0109
	366141_vol1_0110
	366141_vol1_0111
	366141_vol1_0112
	366141_vol1_0113
	366141_vol1_0114
	366141_vol1_0115
	366141_vol1_0116
	366141_vol1_0117
	366141_vol1_0118
	366141_vol1_0119
	366141_vol1_0120
	366141_vol1_0121
	366141_vol1_0122
	366141_vol1_0123
	366141_vol1_0124
	366141_vol1_0125
	366141_vol1_0126
	366141_vol1_0127
	366141_vol1_0128
	366141_vol1_0129
	366141_vol1_0130
	366141_vol1_0131
	366141_vol1_0132
	366141_vol1_0133
	366141_vol1_0134
	366141_vol1_0135
	366141_vol1_0136
	366141_vol1_0137
	366141_vol1_0138
	366141_vol1_0139
	366141_vol1_0140
	366141_vol1_0141
	366141_vol1_0142
	366141_vol1_0143
	366141_vol1_0144
	366141_vol1_0145
	366141_vol1_0146
	366141_vol1_0147
	366141_vol1_0148
	366141_vol1_0149
	366141_vol1_0150
	366141_vol1_0151
	366141_vol1_0152
	366141_vol1_0153
	366141_vol1_0154
	366141_vol1_0155
	366141_vol1_0156
	366141_vol1_0157
	366141_vol1_0158
	366141_vol1_0159
	366141_vol1_0160
	366141_vol1_0161
	366141_vol1_0162
	366141_vol1_0163
	366141_vol1_0164
	366141_vol1_0165
	366141_vol1_0166
	366141_vol1_0167
	366141_vol1_0168
	366141_vol1_0169
	366141_vol1_0170
	366141_vol1_0171
	366141_vol1_0172
	366141_vol1_0173
	366141_vol1_0174
	366141_vol1_0175
	366141_vol1_0176
	366141_vol1_0177
	366141_vol1_0178
	366141_vol1_0179
	366141_vol1_0180
	366141_vol1_0181
	366141_vol1_0182
	366141_vol1_0183
	366141_vol1_0184
	366141_vol1_0185
	366141_vol1_0186
	366141_vol1_0187
	366141_vol1_0188
	366141_vol1_0189
	366141_vol1_0190
	366141_vol1_0191
	366141_vol1_0192
	366141_vol1_0193
	366141_vol1_0194
	366141_vol1_0195
	366141_vol1_0196
	366141_vol1_0197
	366141_vol1_0198
	366141_vol1_0199
	366141_vol1_0200
	366141_vol1_0201
	366141_vol1_0202
	366141_vol1_0203
	366141_vol1_0204
	366141_vol1_0205
	366141_vol1_0206
	366141_vol1_0207
	366141_vol1_0208
	366141_vol1_0209
	366141_vol1_0210
	366141_vol1_0211
	366141_vol1_0212
	366141_vol1_0213
	366141_vol1_0214
	366141_vol1_0215
	366141_vol1_0216
	366141_vol1_0217
	366141_vol1_0218
	366141_vol1_0219
	366141_vol1_0220
	366141_vol1_0221
	366141_vol1_0222
	366141_vol1_0223
	366141_vol1_0224
	366141_vol1_0225
	366141_vol1_0226
	366141_vol1_0227
	366141_vol1_0228
	366141_vol1_0229
	366141_vol1_0230
	366141_vol1_0231
	366141_vol1_0232
	366141_vol1_0233
	366141_vol1_0234
	366141_vol1_0235
	366141_vol1_0236
	366141_vol1_0237
	366141_vol1_0238
	366141_vol1_0239
	366141_vol1_0240
	366141_vol1_0241
	366141_vol1_0242
	366141_vol1_0243
	366141_vol1_0244
	366141_vol1_0245
	366141_vol1_0246

