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Abstract

Computational Fluid Dynamics (CFD) modelling has been widely used within the 

automotive environment for areas such as the enhancement of the external aerodynamic 

performance of automobiles and the optimisation of the combustion process. More 

recently, however, the study of vehicle thermal management systems (VTMS), an area 

which encompasses the cooling, air conditioning and underhood airflow of vehicles, has 

embraced the use of CFD in an attempt to refine designs. Additionally, with continuing 

emphasis being placed on noise, vibration and harshness (NVH), engine design has 

tended towards neater, more integrated packages with a minimum of mechanical 

ancillaries; such as brackets. One of the significant aspects of this design philosophy is 

that there is now a proliferation of electronics in modern vehicles. One of the solutions 

to increasingly complex wiring harnesses has been to decentralize and migrate control 

units to the engine and the powertrain. This development has had consequent effects on 

environmental factors related to the powertrain control unit (PCU) itself. As increasingly 

strict legislation limits the kind of design solutions which may be employed to overcome 

these effects, the underhood area has had to be researched thoroughly.

For the work described herein, a CFD package and associated pre- and post-processors 

was used to assess the underhood flow characteristics with a view to determine the 

optimum positioning of these component packages. A further goal arose from the 

opportunity to check if the CFD package would be suitable for a non-specialist operator 

to use.

To achieve these goals, the underhood volume of a vehicle was modelled both 

numerically and experimentally. The experiments were carried out using a physical 

instrumented model in the smooth controlled flow of the Department's tiandley Page 

wind tunnel. This provided the analogue model for a generic car, against which the



numerical results could be compared. The numerical modelling was performed using the 

commercial CFD package FLUENT 5.5.

It was envisaged that the data gained from the two models could be used to enhance 

current design procedures and influence future design methodologies in engine 

compartment layout, with regard to the placement of electronic devices. It may also 

serve to validate the integration of data provided by simulation and experiment.

It must be noted that the work was essentially an assessment of the usefulness of the 

methodology. Albeit the comparisons between CFD and experiment appear to possess 

significant differences, this early work illustrates the potential of the procedure and 

suggests the “follow-on” research that is required.
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Acronyms and Abbreviations

ACIS -  Native file format used by AutoCAD. Used in the course of this work for 
exchange between CAD (Computer Aided Draughting) package and CFD 
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BATHfp -  Univrsity of Bath cooling system simulation program 

DRAG4D - Nissan CFD Software
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1. Introductory

1.1. Motivation

This project was first discussed with Kelvin International Solutions Ltd. (KIS) (1999) 

and, in collaboration with them, it was intended to develop a methodology for the proper 

placement of the engine control unit (ECU) in the automobile underhood environment. 

The importance of the environment to the ECU is manifest in the strict emissions 

requirements. It was envisaged that such a control unit would be tested in situ within a 

current production automobile and separately in environmental chambers. The 

experimental facility, located at the former National Engineering Laboratory Engine 

Test Division, would have allowed for the study of power fluctuations in an engine 

under load during predetermined duty cycles.

Over the first year, problems encountered with the set-up of this facility and subsequent 

developments within the company dictated a radical restructuring of the project. 

Nevertheless, the motivating factors which originally drove the project remained valid 

and the research contained herein reflects the need to develop an independent, 

inexpensive and efficient method of providing useful data for the road vehicle 

underbonnet thermal environment. This has become a major area of interest because of 

current environmental legislation. In addition, the proliferation of electronic devices 

demanded by recent consumer trends also has a significant effect on design in the 

underbonnet region.

The advent of strict environmental legislation, in particular the Clean Air Acts in the U.S 

that were introduced by the 1970s, in response to growing concern over the increasing 

level of industrial pollutants in the atmosphere, necessitated significant developmental 

changes in engine technology (Frank et a l  1998). The Clean Air Act of 1990 effectively



imposed the use of computerised diagnostics on all subsequently produced road vehicles 

in the U.S. In Europe, legislation pertaining to vehicle emissions was progressively 

introduced in the form of increasingly stringent EURO emissions laws. This has, 

consequently, affected vehicle under bonnet design (Emmelman and Berneburg, 1990).

In addition, consumer-driven computer technology increased the workload of the engine 

control systems. In many industrial applications controllers tend to be basic 8-bit 

microprocessors. In the automotive industry, however, 32-bit Reduced Instruction Set 

Computing (RISC) based controllers are now used routinely to handle the increased 

throughput of data (Frank et a l  1998).

As a consequence of the constraints imposed by the above major considerations and, to a 

lesser extent, ‘sound pollution’ issues, the packaging of electronic components, and their 

associated mechanical components in the engine compartment, became tighter. This was 

because more electronic subsystems and fixtures were introduced to meet consumer 

demands or to satisfy legislation.

Finally, engine compartment research was rarely pursued outwith commercial 

organisations and usually only as part of a major vehicle development programme. It 

was considered beneficial, therefore, to develop a test rig where research could be 

carried out independently within the confines of an academic research department. The 

design of such a rig and the placement of instrumentation is dependent on the airflows 

and the thermal effects around the engine components. This was a significant goal of the 

present work and the basic methodologies were developed, albeit further work is 

required.



1.2. Aims and Objectives

The work contained herein concerns the use of computational fluid dynamic (CFD) 

software and wind tunnel testing in the development of thermal modelling of car 

underhood flows. The main aim of the work was to create a design methodology for 

assessing underbonnet thermal conditions, to assist the placement of powertrain control 

units in such a way as to avoid any adverse effects on their performance. These PCU 

systems are an increasingly important constituent of vehicles and may contribute up to 

35% of the vehicle’s cost (Frank et a l  1998). Current trends, where some of the PCU 

functions are migrated onto the engine and transmission (DeVos and Helton, 2000), are 

motivated by a need for efficiency in manufacture and lower costs. It becomes apparent, 

therefore, that the placement of electronic components in the engine bay is an important 

design consideration and may even be critical.

The all-embracing term Vehicle Thermal Management Systems (VTMS) has come into 

general use for a range of areas, the two most significant of these are:-

passive cooling by harnessing the aerodynamic effects of the underhood 

geometry;

thermal effects imposed on automotive electronics and any associated 

performance degradation.

To assist in the assessment of the underhood environment, CFD has become an 

important tool. As CFD evolved, its application areas expanded to encompass a number 

of automotive flows where complex geometries would previously have been too 

expensive to compute in terms of computational hardware and/or time.



This work, therefore, complements several studies, which, in the recent past, have been 

carried out within the burgeoning field of VTMS research. These are discussed in detail 

in section 1.3.

For the project considered herein, the initial design, the subsequent development of the 

physical engine compartment and the placement of instrumentation was guided by the 

use of an industrial CFD software package, FLUENT 5.5. Solid models were created 

with a Computer Aided Draughting (CAD) package, AutoCAD, and these were exported 

to the FLUENT preprocessor, GAMBIT, for CFD grid generation. The grids were 

subsequently refined on the basis of results gained by use of FLUENT. FLUENT was 

chosen to ascertain whether a general engineering practitioner with no specialisation in 

fluid dynamics could produce reasonable results with a general purpose CFD package. 

This research, and the models created for it, formed part of a series of projects rarely 

pursued outwith industry. The integrated design methodology is specifically aimed at 

simplifying problems and reducing cost.

Equally important to this work was the use of the University’s large section low speed 

wind tunnel facilities. The Department has the rare advantage of access to these facilities 

which can be employed to test models at an appropriate scale. In this case, the engine 

compartment was to have been incorporated into a 30% scale car model and tested in the 

Department’s 2.65m x 2.04m 'Argyll' wind tunnel. However, for reasons discussed later, 

it was tested outwith the car body in the Department’s 2.13m x 1.61m Handley Page 

wind tunnel. Further details on these facilities can be found in appendix 8.

Although the thrust of much CFD research relegates wind tunnel testing to the 

acquisition of data suitable for validating results, the aim herein was to combine the two 

technologies into one methodology within the development process. Both CFD and 

Experimental Fluid Dynamics (EFD) have advantages and limitations and, by taking



cognisance of these factors, it was hoped that a seamless development of the 

methodlogy, both physical and numerical, could be achieved so that design refinement, 

between development phases, could be rapidly implemented.

Although the inclusion of the engine compartment within a complete car model, 

developed for aerodynamic studies (Campbell et al. 2002) was originally proposed, it 

was decided that, due primarily to computational hardware limitations, the generic 

engine compartment would be tested sepaiately. Although it is generally accepted that 

problems of this type cannot be treated in isolation, the combined use of EFD and CFD 

allows them to be decomposed, to some extent, so that data obtained from one part of 

the experiment can be used to set up boundary conditions for another which can then be 

examined in greater detail.



1.3. Literature Review

In a contemporary review of automotive CFD, Dhaubhadel (1996) provided a 

comprehensive summary of work done in the field and clearly illustrated the then state 

of the art. A more recent review by Bauer (2001), dealing with the computerized design 

process at Daimler Chrysler, served to illustrate subsequent progress over the 

intervening period as have the proceedings of the five Vehicle Thermal Management 

Systems (VTMS) conferences between 1993 and 2001. These references represent the 

reporting of the main developments in automotive CFD.

This literature review is hereafter subdivided into six sections: - 

Fluid Dynamic Studies 

Cooling Studies

Electronics - General Automotive 

Electronics - PCU Specific

Material Properties and Thermal Recording Studies 

Other Computer Studies

1.3.1. Fluid Dynamic Studies

In addition to the 1996 review by Dhaubhadel, other work within the Ford Motor 

Corporation, was reviewed and documented by the same author. Dhaubhadel and Shih 

(1996), presented studies for the validation of CFD. The latter of these dealt with a 

project based around a physical model of a simplified engine compartment within a 

simplified generic car. This project, called BOXCAR (figure 1-1), was used for the 

analyses and assessment of CFD codes. This simplified geometry was chosen because, 

as the author stated, “complex geometries are prohibitively expensive”.
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Figure 1-1 BOXCAR Project

This project also forms the basis o f works by Paschal et al. (1996) and Shack et al. 

(1995). Both of these works were concerned with the experimental methods to acquire 

the appropriate data for CFD validation. It was noted, however, that despite the 

simplified generic engine compartment, the flows encountered were complex and highly 

three dimensional. This work was largely concerned with the velocity fields which were 

then subjected to experimental verification. There was, however, additional data from 

thermal studies, although the paper does not make clear if these were, or could have 

been, verified.

Both papers considered visualisation methods, in particular, particle image velocimetry 

(PIV) and laser doppler velocimetry (LDV) and reported good correlation between 

results obtained from these and the numerical analogues.

Earlier work, within Ford, dealt with the level of agreement between computational and 

experimental results (Hajiloo et al. 1990). This was found to be good for differing mesh 

densities. The paper served as background material to further work at Ford which 

specifically dealt with underhood airflow. Interestingly, that work used water tank



models to obtain the test data. The paper also discussed the factors that require 

consideration when using scale models as per Williams et al. (1991). Also at Ford, Li et 

al. (1993) presented experiments based on the ducting of underhood airflow, both under 

steady-state and transient conditions, and an unnamed method of representing this 

numerically. The work also made reference to the use of the EEC-IV^ engine 

management module as a data gathering device in association with a datalogger. This is 

a particularly effective method of monitoring the ECU and would likely have been the 

preferred additional method for the present work had the project remained as originally 

envisaged. This type of monitoring should certainly be included for any future work 

which involves ECU placement.

Winnard et al. (1995) presented differing strategies for thermal management by 

underhood airflow control and investigated several operating conditions that may be 

experienced by a light truck including the case of power take-off to machinery such as 

farm implements. Although this is unlikely to be encountered in the operation of a car, 

an awareness of extreme and disparate duty cycles, such as these, is essential as many 

components are common throughout a vehicle range from a single manufacturer or 

associated group. It was concluded that, in typical operation, airflow management was 

sufficient but in extreme cases forced air cooling would be required.

The most recent work referenced from Ford, Ghani et al. (1999), dealt with water 

ingress and simulated environmental conditions (airborne moisture) by use of the 

commercial codes FLUENT and RAMPANT. A simple generic car geometry was used 

as a bluff body to validate results obtained in an environmental wind tunnel.

Research carried out by General Motors (GM) encompassed work by Opel and 

Pininfarina in Europe, Isuzu in Japan and Chevrolet/Pontiac in the US. Another

EEC-IV is a standaid engine control unit developed by Ford



significant division of GM involved was the computer services supplier. Electronic Data 

Systems (EDS). Aoki et al. (1990) dealt with the use of the 3D heat and flow analysis 

software package, STREAM, at GM Isuzu and gave a good description of numerical 

methods. More recently, however, Dohi et al. (1998) outlined the evolution of codes for 

CFD analysis and presented details of other packages, e.g StarCD, in addition to 

STREAM.

Focussing primarily on computer codes, work also emerged from the EDS division of 

GM. Ashmawey et al. (1993) described the lumped parameter method in CFD analysis. 

As it concerned the design of an actual production car, the 1993 Opel Vectra, he had to 

consider, due to stringent legislation, the practical implications on exhaust design of 

added underhood components (underbody cover, noise baffles, etc.). The study, while 

specific to this car, highlighted the tradeoffs in design when considering the positioning 

of components. Berneburg and Cogotti (1993) dealt with the effect of the drag 

coefficient (Cj) of underhood components and the effect that this had on the overall Cd 

of the vehicle. Experimental methods included the use of a newly designed test radiator 

and the control of underhood air vanes by stepper motor. Test data were obtained in the 

form of velocity fields by the used of LDV.

Emmelman and Berneburg (1990) discussed the impact of forthcoming legislation and 

presented the compromises involved in accommodating aerodynamic designs for low 

fuel consumption, environmental legislation and consumer driven trends in design.

The creation of a CFD model for a porous flow method using VINE-3D, one of the 

packages outlined in Ashmawey et al. (1993), was described by Han and Skynar (1992) 

together with a discussion on the selection of boundary conditions. Han et al. (1996) 

presented a more generalised discussion of computational versus experimental methods 

and concluded that, even in simple geometries, the CFD results benefit from denser



meshes but this increases the computational overhead. He also noted that ‘the issue of 

turbulence models used for the computations is one that defies simple conclusions’. The 

complexity of the underhood geometry makes it difficult to decide on the most 

appropriate turbulence model.

As with General Motors, the package STREAM was also employed at Daihatsu along 

with other software tools to simulate 3D flow and heat transfer in an engine 

compartment (Katoh et a l  1991)

At Mercedes Benz, there were a number of studies carried out on in the field of CFD. 

The key area of interest to them was the computational platform since the work had its 

origins in the BUROPORT‘ CFD project. Bauer et a l  (1995, 1996) dealt with the use of 

STAR-CD in underhood analyses and then addressed the scaleability of STAR-HPC 

over a number of processors using existing models. The work gave a good appraisal of 

the problems which can be encountered in using newly released codes on parallel 

systems. Reister and Ross (1997) dealt with the design of a cooling fan and emphasised 

the critical assumptions made in the development of a Multiple Reference Frame (MRF) 

model. The magazine Fluent News (Spring 1997) described an underhood thermal 

simulation carried out by Chrysler using Fluent/UNS in such a way so as to yield data 

for scalability on multi-processor platforms. The apparent similarity between this and 

the work of Bauer et a l  (1996) suggests that the two activities might well be integrated 

since Daimler Benz and Chrysler have merged. This fan modelling is a useful area to 

consider as it was originally envisaged as part of the current project and should be 

included in any future work.

At Nissan, Minegishi et a l  (1993) addressed the practicalities of the modelling process 

using the package DRAG4D but the observations made are applicable to other packages.

* ELTROPORT -  R esearch  carried  out by  G erm an H igh  Perform ance C om puting  C entre
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In this work, experiments were described that considered the collection of data in engine 

idle and shutoff conditions. Good agreement between numerical solutions and test data, 

at the majority of test positions, was obtained for all cases. Further work was carried out 

on an upwind differencing scheme that was used to consider the effects of flow around a 

vehicle and through its engine compartment (Ono 1992). They also created a test model, 

of a prototype vehicle, with simplified geometry. This was used to consider such details 

as the licence plate and it was concluded that these seemingly minor details tended to 

have a significant effect on the flow simulation. Joint work between Nissan and NEC 

was described on the NEC supercomputing applications website describing details of a 

full body aerodynamic simulation comprising 12,000,000 elements (figure 1-2). This 

work dates from 1998 and illustrated the contemporary state of the art at Nissan before 

the merger with Renault.

Figure 1-2 Nissan Full Body Simulation (ref. NEC)

Gilliéron et al. (1999) created a 2,300,000 element model, where the computational 

domain comprised the wind tunnel up to central pillar of a car. Results from this 

simulation were compared with results for actual car in Pininfarina wind tunnel. They 

concluded that the greatest errors found in a simplified model o f an actual car were 

found in the most geometrically complex areas.

11



Shimonosono et al. (1993) described the use of an acrylic glass (PMMA) model to 

observe the effects of flow control devices. This was done in conjunction with a CAD 

modelled mesh of approximately 250,000 nodes. It was observed that temperatures were 

up to 10°C lower at the rear of the engine and concluded that thermal flow analysis was 

useful in engine compartment design, although it was stated, “in actuality, it is 

impossible to create a grid fine enough to reproduce an actual engine precisely”. This 

reflects the complexity associated with the geometries in the underhood area and 

underlines the importance of simplified generic models when validating results.

Stevens et al. (1999) carried out work addressing the difficulties associated with 

improving underhood aiiflow prediction using the software codes VECTIS CFD and 

Imageware RPM (Rapid Prototyping Module). They also considered the interaction of a 

1-D thermal model and a 3-D aiiflow model. The experimental technique used EDA and 

they provided a discussion of probe placement. This wide ranging study also considered 

the inclusion of louvres in the vehicle undertray to improve airflow while retaining 

sound deadening performance. They concluded that their numerical solutions were 

validated by LDA but added that accuracy would be improved when details such as the 

layout of the wiring loom and the behaviour of the unpowered fan were taken into 

account.

Software and experimental methods were described by Kataoka et al. (1991) for work 

considering the effects of different aerodynamic devices such as spoilers and underbody 

covers.
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Figure 1-3 CAD Data Transfer to CFD Data (ref Kataoka 1991)

Foremost amongst the methods described was the use of a computational grid-generation 

system whereby the CAD model of a car body was converted, via two stage process, to a 

grid for use in a CFD code (figure 1-3). They concluded that the data derived from 

numerical simulations was satisfactory for practical use, that the complex shapes of 

aerodynamic devices could be modelled accurately and that by using a quick grid 

generating system, ‘aerodynamic prediction by calculation becomes much faster than 

experiment’. This work was subsequently extended and reviewed by Sakai (1993).

Draper and Haidar (1999), in work carried out for Daewoo, investigated the effect of 

bumper design on the cooling of a van and presented a detailed appraisal of the software 

used, primarily STAR-CD.

At the University of Tokyo, the use of the ‘SIMPLE’ (Semi-Implicit Method for 

Pressure-Linked Equations) algorithm for the construction of simplified-shape models 

was explored in an attempt to significantly reduce CPU time (Taniguchi et al. 1991). 

Albeit modern computer power is far greater than that used in their study, it is still a 

relevant concern today. This is addressed in their findings where, although results almost
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agree between numerically simulated and experimentally derived data, there is difficulty 

in simulating flow separation at small angular steps. They also noted that the Reynolds 

Stress Model may have to be adopted when dealing with strong vortices.

1.3.2. Cooling System Studies

Saunders and Udvary (1991), at the Royal Melbourne Institute of Technology, carried 

out a feasibility study which dealt with the main environmental conditions associated 

with thermal management, namely ram-air and heat soak. Particularly interesting in their 

paper was the use of a truncated car with an external coolant supply. This, they stated, 

was used to counteract blockage problems in their wind tunnel facility. They concluded 

that their experimental method was valid and would reduce the time for wind tunnel and 

heat soak testing. They also considered the number plate size and location and 

concluded that it was a significant factor in the cooling airflow; as was had been the case 

in the numerical simulations of Ono (1992).

Ishikawa et aL (1999) dealt with the determination of engine component temperatures 

and considered ways in which changes to component layout could be assessed, by 

computer modelling, and so improved. Similarly, Shibata et al. (1993) used a 

numerically simulated engine compartment to aid the design of a new cooling system.

Couetouse and Gentile (1992) at Renault dealt specifically with the cooling system using 

a useful experimental method that had remote data sensing. This study indicated that 

underhood airflow management significantly affects the cooling system and, if well 

conditioned, has associated performance benefits in terms of fuel efficiency.
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Blisset and Austin (1999) used FLOWMASTER software to predict the thermal 

behaviour of individually customisable components and considered the effects of the 

cooling system fluids from startup. Directly relevant to the project herein is the 

description of the generation of a PTMU (PowerTrain Management Unit) component 

(i.e. PCU). An outcome of this work was a case study in the application of 

FLOWMASTER which they made available on the company’s website. They concluded 

that this application would be of use to non-expert users when considering operating 

conditions dictated by legislation.

Ap et a i  (1999), at Valeo, devised a simulated engine cooling model from which he was 

able to propose a new radiator cooling coefficient. The coefficient, which was found to 

be a useful parameter, was formulated in terms of the cooling system components. 

During his experiments he made use of micropropellors and fan shrouds. Also at Valeo, 

earlier work by Smith (1993) outlined the development of software for predicting 

cooling module performance using models of various cooling related components.

Sidders and Tilley (1997), University of Bath, modelled the cooling system through a 

‘lumped parameter’ computer simulation using the BATHfp code. This method was 

described as using a library of conditions.

Jurng et al. (1991), Korea Institute of Technology, investigated the detrimental effect on 

engine cooling from front end designs of modern vehicles and considered the selection 

of equations and velocity measuring points during their experiments. They concluded 

that, while a fast method for generating data, ‘2D computation may not be an efficient 

tool for the accurate prediction of flow field inside the engine compartment’.
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1.3.3. Electronics Studies (General Automotive)

A report from Toyota by Igarishi (1986) on contemporary sensor technology lists a 

number of sensors which, although at the time were novel, are now widely used. For 

example, the particular focus of this work, which has influenced the aims of the present 

project, is the outlining of the extremes of inertial and thermal conditions encountered in 

automotive applications. Table 1-1 reproduced from this paper outlines the predicted 

requirements in sensor applications.

Reliability Self-diagnosis. 
Automatic detection 
of correction

Change with time 
Deterioration

Standard (time) -t- 
sensors, Memory + 
sensors

Safety Detection of 
abnormality 
Self-diagnosis 
Detection of 
obstacies

Impossible to drive 
(functional deterioration or 
breakdown of major part.) 
Electromagnetic interference 
Road condition 
Object recognition

(Engine / Drive train -  
Overall). Tyre pressure. Brake 
pressure,
Intensity of electrolysis. 
Ultrasound, laser, infrared, 
electro-magnetic wave

Lowering fuel 
consumption

Optimum A/F ratio 
controi (ignition 
timing, exhaust gas), 
Lean combustion

Theoreticai A/F ratio 
A/F ratio (real-time) 
Knocking 
Drive train

A/F, 02, N O -, CO 
Plow rate (air, fuel)
Pressure (absolute, gauge, 
atmospheric)
Knock, vibration, acceleration, 
torque
Displacement, angle. 
Revolution

Comfort Quantitative, display 
of ride, comfort, Sun- 
visor and interior 
temperature 
Humidity control 
Fatigue detection

Vibration and noise around 
seats, Width of vision, 
Amount of total sunlight 
Room environment.
Relation between fatigue and 
physiological parameters

Speed, acceleration, hardness 
of seats. Amount of light. Skin 
temperature. Mean room 
temperature (multipoints) 
Humidity, dew-point 
Odor, pulse, blood pressure, 
breathing, oxygen 
concentration in blood

Table 1-1 Sensors required for autom obiles iu the future (from Igarishi 1986)

Similarly, Kobayashi (1996), at Nissan, presented an assessment of the properties of 

sensor materials. He concluded that the distinctive nature of sensor materials had to be 

considered in their selection when applied in diverse environmental conditions.

Matsuda (1991), also dealt with sensor properties, and presented a useful discussion of 

the harshness of the underhood environment and included not only thermal and 

mechanical factors but also the decline in functionality of sensors via the corrosive
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effects of chemical processes. One of the conclusions outlined in this work was that 

passive heat management was not useful in heat soak conditions. This work is 

particularly relevant when one considers that Sumitomo Wiring submitted a United 

States patent (US5789704) in 1998 describing a housing for automotive electronic 

components specifically designed to deal with the harsh environmental conditions 

encountered in the engine compartment.

Kern and Ambros (1997) at Behr discussed the use of sensors and actuators to provide 

active engine cooling and presented actuator control strategies to effect a number of 

desired goals. These were mostly concerned with improving fuel consumption and 

enhancing the reliability of components. They concluded that active thermal 

management provides significant benefits particularly in commercial vehicles.

1.3.4. Electronics Studies (Powertrain Control Unit)

At Visteon, a subsidiary of Ford, work was carried out to evolve a methodology for the 

optimum placement of electronic components within a powertrain control unit, the EEC- 

IV, by bespoke software and commercially available code (Torossian and Lanphear 

1990). Also at Visteon, Luettgen (1998) discussed the transient thermal analysis of 

power electronics and predicted the behaviour of heat sinks by reference to their thermal 

properties. The importance of the positioning of individual components within the PCU 

was addressed by Delphi Electronics (DeVos and Helton, 2000). This work outlined the 

typical underhood conditions that a powertrain control unit will be subject to, because of 

modern design considerations that are necessitating the migration of these units away 

from the bulkhead and onto the powertrain. The studies were concerned with such 

aspects of the underhood environment as temperature, NVH and moisture. Figure 1-4,
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reproduced from this paper, shows typical temperatures likely to be experienced in the 

engine compartment.

Engine Compartment 
Close to Engine 120“C

Engine Compartment 
Remote from Engine 106X

129*C Ignition 
Surface 150X Alternator 

Surface

\  Engine 140 °C

Exhaust 
System 587X

Exterior - Accessible 
to Splash, etc. 70X Engine Oil 148*C 

Trarrsmission Oil 140*C

Road Surface 66“C

Figure 1-4 Typical Surface Temperatures (DeVos and Helton, 2000)

This diagram was also made available on the DuPont company website where it was 

used in a presentation illustrating the use of ceramic materials within the automotive 

industry. This additional source gave a broad overview of the hostile environments 

encountered in the underhood area, namely, ‘temperature extremes, vibration, shock, 

exposure to dirt and contaminants, moisture, chemicals, radiation and gases.’ In 

addition the hardware changes brought about by the following system changes are 

outlined.

Tougher emission standards
More complex diagnostics
Direct injection
Higher temperature operation
Improved fuel economy
Electromechanical evolving to solid state
Functional/component integration
Mechatronics (example: electromagnetic valve actuation)
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Figure 1-5, also from DeVos and Helton (2000), shows two strategies for the placement 

of underhood powertrain control modules. The integrated strategy, where there is a 

single site selected for one overall controller is shown on the left of the figure. In 

contrast, the distributed strategy is shown on the right and clearly illustrates the 

migration of dedicated controllers to specific areas on the powertrain.

PCM 
-Engine Control 
-Transmission Control 
-Throttle Control

ECM
-Engine Control

ETC 
-Electronic 
Throttle Control

PCM 
-Engine Controi 
-Transmission Controi 
Throttle Control

TCM
-Transmission Control

Figure 1-5 PCU Placement Strategies (De Vos and Helton, 2000)

The aforementioned information regarding the likely environmental operating conditions 

at specific points within the engine compartment were of use in the development of this 

project. The temperature rating of components was discussed with regard to cost factors 

when these are used in volume. Another significant issue which was addressed was the 

physical size of some uprated components. Other issues which may arise, due to the 

individual temperature rating of components within the PCU, were addressed and 

included the current carrying capacity of pin connections. As the main emphasis was on 

the PCU placement strategies themselves, the conclusion was that a hybrid 

distributed/integrated strategy would be the most beneficial. It was noted, however, that 

there was a significant design time overhead. Similarly, the temperature rating of 

individual components, comprising typical automotive electronics, was addressed within 

a review by Berger (2002). In that review much emphasis was placed on the uprating of 

components. Typically qualification of semiconductors based on junction temperatures 

had risen from 150°C in the 1980s to I75°C currently, with a further rise to 200°C 

envisaged. In this case, liquid cooling systems may be added to electronic modules.
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Although it was noted that actual unit costs would be increased, this would be offset by 

the reduction in time of the expensive design process.

Agai'wal and Gschwend (1997) investigated the thermal effects, both steady state and 

transient, on a powertrain control module. Their experiments provided data for the 

validation of a numerical simulation. The test technique included the use of infra-red 

(IR) sensing. Krishna (1997) referred to the environmental effects on a car audio system 

and described the experimental methods (thermal stickers were used in addition to more 

traditional thermocouples) and their correlation with cases simulated with the package, 

FLOTHERM. From a number of cases dealing with venting patterns and the use of 

forced and natural convection, they concluded that the package FLOTHERM could be 

used with confidence.

The review by Frank et al. (1998), also referred to in section 1.1 discussed the role of 

semiconductors in powertrain control and outlined the background to the subject matter 

in addition to presenting statistics regarding market growth. This work presented 

information regarding I/R measurement and data on the ZYTEK PCU design.

Brandt et al. (1993) dealt with power dissipation in a PCU and models were created 

using SPICE (Simulation Program Integrated Circuit Emphasis) and ANSYS. In 

addition, problems relating to air conditioning were outlined. Although this paper is 

concerned with the use of FEA (Finite Element Analysis) and power modelling, the 

vehicle test methods employ both environmental chambers and chassis dynamometer. 

As this was the initially proposed test method for the current project, and there are 

similarities between the data logging methods used in the initial tests, the experimental 

method they presented is highly relevant. Additionally, there is a good description of a 

traditional PCU placement and the severity of thermal conditions due to restricted
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airflow. The summary suggests, however, that there are limitations in the thermal 

modelling methods available when considering packaging of the PCU

1.3.5. Material Properties and Thermal Recording Studies

Hartsock et al. (1997) were concerned with devising a standardised test procedure for 

evaluating heat shield materials and associated designs. They presented a discussion of 

the problems associated with the thermal properties of multi-modal materials used in 

instrumentation. Their experiments used a custom test rig featuring ‘Fire Rods’ (trade 

name for heating element) in a manner similar to the present project. They concluded 

that tests should be carried out for worst case emissivity and at higher temperatures 

similar to typical operating conditions. This is a significant conclusion especially for the 

present work which has strong similarities.

Pierson and Johnson (1993), although specifically concerned with the behaviour of 

automotive batteries, provided a good account of the procedures required for controlled 

temperature experiments that could be applied to any electronic system. Specifically, the 

use of environmental chambers for accurate analyses of the number of test cycles until 

component failure. A discussion regarding heat management during engine-off high 

temperature conditions was useful as it highlighted the effects of the hostile engine 

environment in the operating life of components. Again, as the paper is concerned with 

the longevity of the battery, there is a very specific focus, but the observations, regarding 

passive/active cooling methods and the financial cost of repositioning components, are 

applicable to any study concerned with engine compartment thermal mangement.

Selow et al. (1997) gave a contemporary review of techniques that could be employed in 

the construction of a virtual vehicle for thermal analysis. Using the system
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FLOWMASTER an overview was given of the crucial parameters to be observed; 

subsystem interaction was also discussed. They concluded that it was feasible to model 

the thermal actions in vehicle sub-systems and planned to incorporate CFD into their 

work for modelling interior and underhood cabin flows. As they note . .[this] is seen to 

be of great importance due to the need for improving underhood thermal management.”

Zhao et al. (1992) illustrated the use of I/R imaging for the Ricardo Hydra experimental 

cylinder head as a means of thermal sensing during the engine warm-up phase. Data 

were derived by computer analyses of the video images and were deemed to be 

‘invaluable in the development of engine heat-transfer and warm-up models’. There was 

some discussion of the problems associated with heat transfer to the silicon viewing 

window but as this study dealt with combustion temperatures in the range of lOOÔ ’C 

these problems would be mitigated in the study of underhood areas.

Gupta (1993), University of Michigan, Flint, reviewed the trends in materials used in 

automotive thermal management. He noted that as modern designs forced underhood 

temperatures to rise, there was not only a consequent risk of corrosion and oxidation of 

cast iron and ferrous components, but also the risks of softening, melting and 

flammability of plastic and elastomeric components. They concluded that to alleviate the 

need for more expensive production materials, both spark ignition (SI) and compression 

ignition (Cl) engines would require thermal management to eliminate 'hot-spots'.

1.3.6. Other Material Reviewed

This section summarises work primarily associated with layout and packaging of 

underhood components. In addition, it contains detail regarding factors affecting 

decision-making during the design process.
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Banerjee (1993), University of Illinois, presented an ‘agent-based-systems’ (ABS) 

method for the rapid analysis of underhood design with regard to component shape. It 

also discussed the information required for the weighting of solutions with regard to the 

interdependence of components, design for manufacture and assembly (DFMA) and the 

need for access during maintenance. Although this study did not specifically refer to 

underhood environmental conditions, it brought to light other issues pertaining to the 

placement of components and concluded that the ABS method offered rapid evaluation 

of component packaging in comparison to traditional manual methods.

Hyslop et al. (1999), University of Loughborough, presented a review of computer tools 

for the packaging of electro-mechanical systems and also noted that ABS methods were 

a powerful and flexible tool for data transfer between design tools. Although this paper 

was primarily concerned with military and aerospace products it is included in this 

review as it considers environmental problems more fully than Banerjee (1993) and 

includes parameters such as electromagnetic and radio frequency interference in addition 

to space constraints and thermal management. One of the conclusions to emerge from 

this review, however, was that the complexity of decoupling some solutions dictated that 

some systems could not be considered in isolation.

Rubin et al. (1997), University of Wisconsin Powertrain Control Research Lab, dealt 

with the hierarchy of components in computer models of the powertrain. They included 

examples of the use of simulated data being read by the ECU during the experimental 

phase. The use also of simulated data from the ECU to the engine was discussed and 

they concluded that the use of powertrain modelling as a ‘hardware-in-the-loop’ tool 

would reduce the design cycle cost.
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In addition to the descriptions of work in the papers noted above, a number of other 

sources were used for background information. Primarily, articles and editorials from 

Automotive Engineering and Electronics Cooling magazines and a number of WWW 

based presentations noted below:-

• Argonne National Laboratories: web presentation contained a good deal of 

background material in the use of CFD for the development of Hybrid Electric 

Vehicles, where, arguably, cooling is even more crucial than in more traditional 

SI and Cl engined vehicles.

• Du Font Industries: Although primarily concerned with ceramic materials this 

site contained a good discussion of underhood conditions and concluded that 

thermal problems pose the greatest challenge.

• Europort: This site presented a good deal of background on Daimler Chrysler’s 

involvement with the German supercomputing facility.

• COMPAQ: Similarly, the COMPAQ site includes some background into the 

use of the CFD packages Fluent and AVL-Fire by PSA Peugeot Citroën on high 

performance computers.
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1,4, Conclusions

The studies described above provided the background for this research. The disparate 

nature of the disciplines outlined serves to illustrate the significance of the project.

Many papers amongst those reviewed illustrated the variety of experimental methods 

employed, either in the confirmation of CFD results or for the purposes of data 

gathering. As a whole, much of the literature reviewed, highlighted the practicalities of 

each experiment and the trade-offs that have to be accepted in the realisation of projects 

through the design phase and onto manufacturing.

An appreciation of various aspects outlined such as the economic factors involved in the 

product design cycle and the issues of manufacturability and serviceability is essential in 

research which hopes to be applicable to practical, ‘real-world’ situations.

In addition, the use of high performance, parallel architectures for CFD studies is 

becoming the accepted method when considering complex geometries. Finally, the 

increasing use of an algorithmic approach to the placement of components may herald 

an integrated approach to vehicle underhood design.
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2. Experimental Investigations

2.1. Introduction

This section deals with the development of the experimental parts of the project from 

initial power and thermal tests on road cars at the premises of KIS Ltd. to the 

development of a model engine compartment and its associated instrumentation for wind 

tunnel testing.

The placement of the instrumentation shown in this chapter is described in section 3.5.4 

and was based on the initial CFD investigations of section 3.5.3. It will be appreciated 

that there was simultaneous development of the experimental test rig and the subsequent 

CFD simulations.

2.2. Initial Investigations and Testing

During the period spent with KIS Ltd. at East Kilbride (October 2000 -  July 2001), the 

process of recommissioning test equipment from the former National Engineering 

Laboratory's Engine Research Centre was undertaken so that full scale automotive 

testing could begin. This equipment had been decommissioned on a previous closure of 

the facility and, although the equipment around the chassis dynamometer remained in- 

situ, many other items had been disconnected and placed in storage.

This equipment consisted of gas analysers, thermocouple rigs and engine or chassis 

dynamometer that could either be used independently or in unison, depending on the 

desired test type. It was intended to use the gas analysis equipment and so institute an
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integrated testing regime. This was not to be, however, because the only remaining 

member of the original NEL research group, whose specialism was in chemistry, and in 

particular the gas analysers, left. For the purposes of this study, therefore, only the 

thermocouple rig and chassis dynamometer were used simultaneously.

The initial experiments considered the power requirements during transient performance 

testing of the vehicle. To this end, the chassis dynamometer and thermocouple rig were 

employed to gather torque and temperature data. These data were collected in 

anticipation of the planned testing of in situ PCUs and of PCUs in environmental 

chambers.

2.2.1. Chassis Dynamometer

Figure 2-1, below, shows the chassis dynamometer room at KIS Ltd. The boom to the 

left of the door is part of the 16 channel thermocouple rig.

Figure 2-1 Chassis Dynamometer
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The dynamometer was originally built to the specification of NEL and consisted of a 

Telma electric absorber employing a Cansine Dynamics controller. During initial 

testing, this controller was found to intermittently select the failsafe mode. This had the 

unfortunate effect of leaving the rollers either in the raised or lowered position. As a 

consequence of this, the controller was subsequently decoupled, though still usable, and 

a second controller (Ricardo TA3000) was employed. This latter controller was used for 

torque measurement whilst the original controller was used only for roller positioning at 

the stait of each test. By using this method the failsafe mode could not be activated.

As noted above, the chassis dynamometer was used for a number of tests and it was 

investigated as to whether it would be of use in evaluating transient power fluctuations. 

The power fluctuations of interest were those of the engine. In other words, the transient 

power available at the flywheel. The dynamometer, however, simply measures the 

power at the driving wheels. It is essential, therefore, to have a means by which flywheel 

torque could be derived from the that measured at the wheels.

Traditionally, UK and US automotive engineering states the measure of torque in ft/lbf, 

with the power, as HorsePower (HP), given by

H P = T iL
5252

where T = torque (in ft/lbf) and N=revolutions per minute.

The dynamometer returned the HP of the wheel drive axle and hence the axle torque 

could be calculated from the equation above. Torque could then be converted from ft/lbf 

to Nm by a conversion factor of 1.356. To relate this torque to that available at the 

flywheel it is normal to use a semi-empirical formulation. Jones (1999) offers the 

following formula:

T a  =  T f R , c  R,gr Rfgr  +  L</
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where Ta = axle torque and 7} = flywheel (or flexplate) torque, Rtc ~ torque converter 

effective torque multiplication ( 1 for manual ), 7?,̂ , = transmission gear ratio ( e.g. 3 for 

a 3:1 ratio ), Rfg,. -  final drive gear ratio and Lii= drivetrain torque losses due to friction 

in transmission, rear end, wheel bearings, torque converter slippage, etc.

The drivetrain losses, rather than having a discreet value as noted above, can be 

otherwise described as a proportion of the overall power and the following formula 

(Jones 1999) can be obtained.

T f={\ ~̂ Ld)T fRcRtgtRfgr

This can be arranged in terms of flywheel torque as

T \ ) (  I
1"̂ LdXRlcRlgrRfgr J

which is more in keeping with the SAE (Society of Automotive Engineers) standard for 

deriving flywheel torque from a known axle torque, wherein a constant of 85%is used to 

represent drivetrain losses in a rear wheel drive car with manual transmission.

The calculation method used at KIS Ltd. was similarly derived and a 15% efficiency co

efficient was used to give the following equation, in which the torque converter term is 

not included as all cars tested were manual transmission models.

T .
R .rR

Ta, in turn, being derived from the torque measured at the rollers by way of the 

following formula.:
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1 6 .8 1 ( t ,„ r ,6 0
 ̂ " 5280

Where Tn- is torque at the rollers, 0 *  is the wheel circumference in feet and 16.81 is an 

empirical constant used to derive true road speed from roller rpm.

Initial tests with this equipment showed a good correlation with published torque figures 

over a wide range of vehicles tested. For the purposes of the research, however, it did 

not give a resolution which could adequately monitor performance fluctuations caused 

by the electronics. The reasons for this were threefold:

1. Wheel torque, in general, is considerably greater than flywheel torque and 

increases in lower gears. Typically, a midrange gear would be used on the 

chassis dynamometer to allow for a broader engine rpm range (this is simply 

because of an upper speed restriction of lOOmph on the dynamometer). This 

requires the chassis dynamometer controller to be set to a fairly coarse 

resolution, in this case, 0.51bft (0.678Nm) at the wheels.

2. Extended testing on the chassis dynamometer was not practical. The manual for 

this particular facility instructed that the maximum session time should be no 

more than 20 minutes; due to overheating in the retarder. In practice when 

vehicles were generating close to the maximum specified torque of 1250Nm, 

retarder efficiency was noticeably impaired as overheating occurred and, in 

these cases, test sessions had to be limited to less than 10 minutes.

3. Another problem that affected the chassis dynamometer was the fact that 

flywheel torque was calculated from wheel torque. There are a number of 

common standards used to assess the flywheel torque. A typical example being 

SAE J1349. There are a number of other methods in common use including 

those conforming to ISO (International Standards Organisation) and DIN 

(Deutsche Industrie Norm) standards. The common feature of these standards is 

the requirement of a reference air temperature and barometric pressure. Other
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factors can include humidity and altitude. These factors do not simply affect the 

engine, they affect all fluids within the vehicle and the interaction between the 

tyre and the roller. The deformation of the tyre can also be accommodated by 

estimates and, more importantly, drivetrain efficiency is frequently represented 

by an estimated percentage. So, while results for flywheel torque are repeatable, 

they are fundamentally notional and not suited to examination of a device which 

will only produce small, but significant, fluctuations; except in the case of 

component failure.

This caused the author to conclude that the proposed methodology was tending to an ill- 

conditioned experiment. Nonetheless, work continued for a short while until the 

abovementioned chassis dynamometer was conclusively demonstrated as inappropriate 

for the intended research. Whilst a better engine dynamometer could have been used, the 

basic difficulties would have remained resulting in a complex and expensive 

undertaking. A few of these difficulties are discussed in more detail in Chapter 5.

2.2.2, Thermocouple Rig

Combined tests were earned out to gain torque and temperature values on a Morgan Plus 

8. As the car belonged to client of KIS Ltd., testing which would have required 

alterations to the bonnet section was decided against. The system had the capacity to 

record 16 channels of data, however, only the temperatures at the following positions 

were recorded:-

1. sensor 1 Engine temperature front
2. sensor 2 Exhaust manifold right bank central
3. sensor 3 Engine temperature rear @ bulkhead
4. sensor 4 Exhaust temperature rear pipe right bank
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no fan 550°C 75°C
fan @ 3ft 530°C 40°C 184°C

Condition
Sensor number

fan @15ft

Table 2-1 Recorded Temperatures for Morgan Plus 8

Typically, however, in production testing, a more thorough test would include 

measurement of the following areas:

Oil temp at sump
Oil temp at oil cooler
Air temp at air intake / before turbo inlet
Air temp at intake manifold
Air temp in test cell (Ambient)
Air temp before/after air cooler if fitted 
Exhaust temp at exhaust outlet pipe 
Exhaust temp at exhaust 
Fuel temp at fuel return line 
Water In (usually before water pump)
Water out ( after thermostat - returning to radiator / header tank)

Figure 2-2 shows temperature testing on a Morgan Plus 8. During this test, although not 

obvious from the figure, the car was being run on the chassis dynamometer with the rear 

wheels on the rollers.

Figure 2-2 Morgan Plus 8 Data Acquisition
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It should be noted that the small fan shown here was not intended to provide accurate 

airflow, it was simply there to provide an air draught for cooling purposes.

2.3. Revised Approach to the Problem

A review of the project became necessary when access to a full scale vehicle and, more 

importantly, the facility’s availability became problematic then unavailable. It was, 

therefore, decided that testing would continue within the University on a generic 30% 

scale model. It was hoped that thermal testing of PCUs in environmental chambers 

would be undertaken by KIS Ltd. and the results obtained from this could be 

incorporated into the wind tunnel experiments carried out on a new engine compartment. 

This also became impracticable due to extended contract negotiations and company 

restructuring.

The focus of the project, therefore, shifted to a consideration of the flow patterns and 

temperature profiles inside an engine compartment. The project eventually became one 

of assessing the ability of a commercial CFD package to predict the underbonnet 

environment and so its value to the design process and the placement of the PCU’s 

components. This goal was achieved by designing, incrementally (as discussed in 

Chapter 3) a generic engine compartment, including an engine block and exhaust pipe 

modelling, and then testing it in a wind tunnel. The data collected would then be 

compared with the CFD prediction both preliminary, and adjusted to meet the new flow 

conditions of the wind tunnel. If the CFD could adequately predict the measured data 

then the entire flow field information would be available to guide the PCU placements.
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2.3.1. Some Basic Considerations

The revised approach required the placement of a scaled car model and associated 

engine compartment within the Argyle wind tunnel. Of particular relevance was the 

engine compartment and its contents. This required careful consideration of the CFD 

limitations and the actual thermofluid dynamics of the internal flows.

The resultant engine compartment was designed to accomodate a generic engine block 

and exhausts. These last two components are illustrated by the CAD drawing in figure 

2-3. The results of the earlier work, carried out at KIS Ltd., indicated that the 

temperatures of the engine block and exhausts should be broadly similar to those 

reported by other authors in chapter 1. That is, 400K and 800K, respectively.

Accordingly, the preliminary CFD simulations (chapter 3) were conducted using these 

temperatures and were used to guide the transducer placement.

Although, when the wind tunnel tests were conducted, the difficulties experienced in 

maintaining the above temperatures resulted in the use of 600K and 360K temperatures, 

it was considered that the predominant aspects of the flow would remain. As such, only 

the magnitudes of the temperature contours would alter. The transducer placement 

would still be acceptable.

As noted above, the work was to employ a 30% scale car model, with an instrumented 

engine compartment, mounted and tested in the Department's Argyle wind tunnel. Time 

and resource constraints, however, further curtailed the work to such an extent that only 

the engine compartment was mounted on the models chassis and tested in the 

Department’s smaller Handley Page wind tunnel. A fortuitous consequence of this.
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however, was that the engine compartment’s insulation, to protect the model car body, 

would also act as an insulator from the internal to the external flow. For the numerical 

simulation no flow existed over the engine compartment.

It was assumed, initially, that the downpipe temperature would be the most critical but 

after further consideration it was decided that the cowl (figure 2-3) should also be 

monitored, as this was an area most likely to exhibit substantial variance.

insulation 
\ clamped

element

Figure 2-3 CAD 3D Representation of Engine Block (Exploded View)

2.4. Car Model

The car model, as originally envisaged (see appendix 3 for details), was to have included 

a realistic fibreglass front section to mount the engine compartment within. Although a 

model was constructed, with the help of the present author, and successfully tested in a 

different series of experiments (Sheng 2(X)3, Bisset 2(X)2), time constraints dictated that 

that the engine compartment be tested, mounted only on the car model’s baseplate.
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Taking into account the assumptions outlined above, however, the actual geometry of 

this model was considered not to be too significant.

2.4.1. Generic Engine Compartment

The design of the engine compartment (drawings are given in appendix 3) was based 

around the geometry used for the car model. The model itself comprised a foam body 

and it was envisaged that a front section in fibreglass would house the engine 

compartment.

Figure 2-4 Physical Model of Engine Compartment

The engine compartment model derived from the CAD models shown in the following 

chapter in figures 3-14 and 3-15 was fashioned from 6mm aluminium plate. Two views 

are presented here in figure 2-4. The cutaways shown in the panels were originally 

designed with a view to using acrylic glass panels to carry out thermal imaging (see 

section 5.4.1). To this end, the possibility of mounting an IR camera within the cowling
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of the wind tunnel balance was investigated. Although acrylic glass is less opaque to the 

IR spectrum than conventional glass it was subsequently deemed inappropriate to use it 

in an experiment where it would have been not only a less than ideal viewing medium, 

but also a possible fire risk. As the same would also have been true for less IR opaque 

PMMA formulations and the fabrication of a panel in an IR transmissible glass such as 

silicon or germanium dioxide would have been prohibitively expensive, for the purposes 

of this research, it was deemed appropriate to use more conventional methods. The 

cutaways were thereafter used to mount replaceable instrumentation panels.

The engine compartment model was attached to an aluminium baseplate / chassis as 

shown in figure 2-5. In this figure, the front of the model is to the right hand side and the 

obvious cutaway represents the open outflow for the engine compartment. The car body, 

that would have been used, is shown in figure2-6 and the access for fixing the baseplate 

can be clearly seen along the lower outside edge, as can the cutaway for the connecting 

strut to the support gantry.

Figure 2-5 Car Chassis Showing Strengthening Rihs and Cutaway
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Figure 2-6 Car Body in Foam

The physical simulation of the exhaust heat source was by the use of a 2kW flexible 

heater fashioned into a realistic pattern as shown in green in figure 2-3. This was a 

similar method to that described by Hartsock (1997), although in that case the heater 

element was not open to the air. As the heater element has a diameter of 7.9 mm and this 

equates to around 26mm at the full scale, it was decided that enclosing the element as 

described in that research would bring it too far out of scale and would also cause 

manufacturing problems

Figure 2-7 illustrates the engine block, cowling and exhaust pipes mounted on the 

baseplate, all in place inside the wind tunnel working section. The block was heated by a 

single 1.5kW heating element and controlled thermostatically to 107°C (380K), 

reproducing the constant temperature boundary condition for this area which was used in 

the initial CFD investigations.
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The possibility of uneven temperature contours was overcome by filling the block with 

granular material in a similar fashion to a storage heater thus providing a large constant 

temperature heat sink/source. This, however, required that the engine block be heated 

and brought up to temperature prior to the experiment taking place. The exhaust element 

was attached to the engine block as shown schematically in figure 2-3. This assembly 

was then mounted on the baseplate. This is clearly shown in figure 2-7.

5 K-type thermocouples (appendix 4) were used on the inner surfaces of the engine 

block to monitor temperature and provide feedback to an IR32 industrial temperature 

controller, which incorporated a compensated thermocouple cold junction.

K-type thermocouples were also used used on the cowl and downpipe to provide 

feedback for a similar controller.

Figure 2-7 Engine Block and Element in situ (without engine compartment)
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2.4.2. Wind Tunnel

Although the companion series of experiments that concerned the external flow over and 

under the car models were carried out in the Argyll wind tunnel (Sheng 2(X)3), the 

engine compartment specific experiments were carried out in the Handley Page wind 

tunnel. This was not as originally planned but occurred due to the constraints mentioned 

above. The differences between these two facilities are primarily size and the lack of a 

moving ground in the latter tunnel. Further details on these and other facilities are 

available in appendix 8. Fortunately, the work of Sheng (2(X)3) clearly indicated that the 

lack of a moving ground would not be detrimental to the present authors work.

2.4.3. Thermal Instrumentation

The thermal instrumentation consisted of series of 31 thermistors arranged as shown in 

figure 2-8.

^Thermistor’
%rray^and
a s s o i ^ e d
elQOtrdnlcs

Figure 2-8 Thermistor Array and Circuitry
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Their placement is not clear as the figure predominantly illustrates the position of the 

circuit boards and associated wiring. The thermistor positions can be more clearly seen 

in figure 2-9 as dark dots on the top and back of the engine compartment.

thermistor
locations

Figure 2-9 Sensor Positioning in Physical Model

The top panel sensors are more discernible than the rear panel. The front section of the 

engine block is also shown in this figure but its mounted configuration on the baseplate 

is more clearly seen in figure 2-7.

A clearer indication of positioning is given in figures 2.11, 2.12 and 2.13 and tables 2.2 

and 2.3. The detail and reasoning behind the transducer location is based on initial CFD 

investigations for geometry based on the drawings for this model and is dealt with in 

sections 3.53 and 3.5.4 of the following chapter. The following chapter 3 deals primarily
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with the development of the CFD work for this project. It will be appreciated that after 

the initial CFD work was used to guide the placement of the transducers that, 

subsequently, there was simultaneous development of both the experimental rig and the 

further, more detailed, CFD work.

co-ordinate(mm)
L - . X ......... r z

jco-ordinate(mm)

! X........ . .T z
back 01 491 155 -152 back 09 491 105 -152
back 02 491 205 -152 back 10 491 80 -152
back 03 491 225 -152 back 11 491 65 -152
back 04 491 155 -130 back 12 491 50 -152
back 05 491 155 -110 back 13 491 80 -130
back 06 491 155 -70 back 14 491 80 -110
back 07 491 155 0 back 15 491 80 -70
back 08 491 80 0

Table 2-2 Rear Sensor Positions

ROW 2 >  #

ROW 3 »  ■ 
a

z—*

R 0 W 1

—

5  4

1 5  1 4  1 3

Figure 2-10 Orthogonal View (looking forward) of Rear Sensors Numbered and Showing
Engine Block Position
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co-ordinate(min) co-ordinate(mm)
X » z X y z

top 01 370 213.8 -118 top 09 415 219.6 -152
top 02 370 213.8 -152 top 10 450 223.9 -152
top 03 330 208.8 -152 top 11 415 219.6 -137
top 04 330 208.8 -118 top 12 415 219.6 -118
top 05 300 205 -152 top 13 450 223.9 -118
top 06 275 202.4 -152 top 14 415 219.6 -105
top 07 300 205 -118 top 15 415 219.6 -85
top 08 275 202.4 -118 top 16 415 219.6 -63

Table 2-3 Top Sensor Positions

ROW 3

: # 1 * ^
♦ 15?

r
I  ;

1**1 9  *  ! m
! 2 \

t

ROW 2 

R0W1

4

rear front
Figure 2-11 Orthogonal View of Top Sensors Numbered and Showing Engine Block

Position
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Figure 2-12 3D View of Sensor Positions

G-type thermistors (appendix 4) were chosen because of their low cost, availability and 

accuracy within the temperature range anticipated. Data were acquired using LabView 

(appendix 6) routines. Correction co-efficients for the thermocouples were included 

within these routines and were verified by experiment. Data acquired in this manner was 

then saved in Excel format for comparison with results obtained from the CFD 

simulations.

As noted in section 2.4.1, K-type thermocouples were used to provide feedback for the 

control of both heat sources although as wind tunnel velocity increased it was found that 

the flexible heating element cooled to such an extent that power was effectively constant 

at the maximum level in these cases. The values recorded from the thermocouples at the 

top of the engine block, the cowl and the downpipe were also saved to file.

As noted in the previous chapter, the full body was not available for this experiment and 

so only the engine compartment mounted on the baseplate was used as shown below in 

figure 2-13.
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Figure 2-13 Engine Compartment and Baseplate

The whole configuration was then mounted in the Handley Page wind tunnel, as shown 

in figure 2-14, where the geometric blockage was 4.1%. (i.e model’s frontal area as a 

percentage of the tunnel’s working section’s cross-sectional area)

Figure 2-14 Model in Handley Page Wind Tunnel
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2.5. Experimental Method

2.5.1. Wind Tunnel Procedure

Before each test, the engine block and exhausts were monitored to ensure that the 

desired temperature had been achieved. Readings from thermocouples and thermistors 

were taken for a range of airspeeds of 5ms ' to 20ms ' at 2.5ms ' increments. These 

represented full scale speeds from 18 to 72 km/h assuming that the kinematic viscosity 

of air for both the full scale car and model were the same.

When airspeed had stabilised, temperatures for the thermocouples located at the 

downpipe, cowl and engine block locations were visually monitored and recorded 

manually. Airspeed was also recorded manually. A picture of the instrumentation used 

to monitor the experiment is given in Figure 2-15.

Figure 2-15 Monitoring Instrumentation

In this figure (A) denotes a switchable meter used to monitor the thermocouples within 

the engine block so that any temperature differentials could be noted and (B) shows the 

paired IR32 controllers used for the control of the heating elements used to represent the 

engine block and downpipes. These instruments are shown below in greater detail in 

figure 2-16. (C) indicates wind tunnel temperature and (D) indicates wind tunnel speed
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via pressure readings within the tunnel. Output from (B) was recorded automatically to 

file, (C) and (D) were manually recorded and readings from (A) were used only to 

monitor and confirm the state of the engine block temperatures.

Figure 2-16 Temperature Controllers

Thermistor readings were recorded automatically as described in section 2.5.2.

2.5.2. Data Collection

Again, when the airspeed had stabilised, the Lab view data acquisition program logged 

the thermistor data across 16 channels at lOOHz for 1 second. Separate files of data were 

created for the top and rear groups of sensors. A schematic of the control and data 

acquisition for the experiment is shown below in figure 2-17.

47



Rear Thermistor output To Labview

Top

Thermocouple 
I output

Power
output

Thermocouple
output

Power
output

Wind Tunnel 
Speed

Wind Tunnel 
Temperature

Cowl/ downpipe 

heating element

Engine block 

heating element

E ng ine  c o m p a rtm e n t

Labview

Figure 2-17 Schematic of Experiment

The manually recorded data for airspeed temperatures data for engine block, manifold 

and downpipe temperatures were saved to file along with the

2.5.3. Data Processing

Data files were imported into Excel for data reduction. Data were visually checked for 

anomalies and, for each sensor, an average reading of the 100 samples was used. Only 6 

readings from 21700 were more than 0.5“C different to the adjacent reading and none of 

the recorded data showed more than 2.1°C variance.

To illustrate this, consider the two longitudinal banks and one lateral bank of sensors on 

the top surface as illustrated in figure 2-11 for a flow speed of 5ms '. Figures 2-18 to 2- 

20 demonstrate the consistent nature of the data; the legend represents the sensor
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number. These illustrate the thermistor readings for the 5ms * case. This case has been 

chosen to illustrate the worst single data ‘spike’ and this, when averaged out, was 

deemed to be insignificant. For the sensors chosen, their precise location is unimportant 

as the data are intended to show the nature of the data recorded.

SensorsTop • OanlreiinB (5itb>1)
47-,

g 4 4
g)43

:  40

100

sample rtarter

Figure 2-18 Thermistor Raw Data - 5ms - Top Centreline

Similar data were recorded for the other upper surface sensors thermistors as depicted in 

figures 2-19 and 2-20. Once again there are no gross temperature fluctuations which 

would invalidate the averaging process and subsequent discussions.
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SensorsTop • 34nrn Offset (5ms-1)48-,

***“ 11111......  f t t t i t f n r - iiin"' »*«»i>i«»ii m i 111H i»t<«

100

Figure 2-19 Thermistor Raw Data - 5ms ' - Top Offset 34mm

SensorsTop • Normal to Oeiffreline (Smel)42 1

t̂ ijî iîTîl'J! »ii* ' *ÉÉiiii

40-

100

sanple n u ite r

Figure 2-20 Thermistor Raw Data - 5 ms - Top Lateral
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2.6. Experimental Results

Experimental data presented in this section were derived from reduction of raw data as 

described in section 2.5.3.

2.6.1. Rear Surface of Engine Compartment

This section presents the measured data taken from the thermistors on the rear face of 

the engine compartment. Whilst the distribution of, and primary row locations, are 

illustrated in figures 2-10 and 2-11, their precise locations (tables 2.2 and 2.3) are again 

given in tables 2-4 to 2-6 for ease of reading. Each table is for a specific row of sensors 

and their associated numbering is shown.

flow
direction

Figure 2-21 Wireframe of CAD Model Showing Data Origin and Flow Direction

The co-ordinate system origin is located at the bottom left of the entrance to the engine 

compartment and for clarity it is illustrated above in figure 2-21.
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Whilst the following tables contain the quantitative data in numeric form, they are 

presented graphically in figures 2-23 to 2-25. To assist with the visualisation of the 

sensor positions, the schematic in figure 2-22 is used hereafter. As this represents the 

sensor positions as viewed from the rear of the engine compartment, the axes are offset 

for clarity.

c e n t r e l i n e

Figure 2-22 Schematic Showing Offset Axes

The data are most interesting for they indicate well defined but different trends. For 

example, for all three rows of sensors, as the tunnel speed increases the temperatures 

fall; as is to be expected. Also noticeable is the decrease in temperature at the very top of 

the rear panel. This suggests that there may be some form of stagnant flow in the region 

into which the hot air from the manifold does not penetrate. The overall variation, 

however, appears to be smooth.
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S a W f p(M»dinate(mm) at varying velocities (5ms*  ̂to 20ms'*)

t s m m ■ ■
491 50 -152 312.3 311.1 309.8 308.5 307.2 305.9 304.9

491 65 -152 312.3 310.7 309.6 308.2 307.1 305.7 304.9

491 80 -152 312.4 311.0 309.9 308.7 307.6 306.2 305.4

491 105 -152 313.7 312.5 311.4 310.2 308.8 307.4 306.5

491 155 -152 314.0 313.9 313.3 312.5 311.3 309.9 308.8

491 205 -152 314.7 315.0 314.7 313.9 312.7 311.4 310.2

491 225 -152 312.0 313.0 313.2 312.8 311.9 310.8 309.7

Table 2-4 Results (Rear Sensors: row 1 -  Vertical)

sensor group
onentaoon

 S.QftlS'  ̂ T.Sms ' IQ.QmS'̂  12.5ms-  ̂ ------15.0m: 1 -----17.5ms 1 ------ 20.0ms 1
3160

314.Ü

3120
s

I 3060

306.0

bottom

0 50 100 150 200 250

y  co-o rd iruc*  (m m )

Figure 2-23 Results (Rear Sensors: row 1 -  Vertical)

Figure 2-23 referred to the vertical line of sensors on the model centreline. Figures 2-24 

and 2-25, however, refer to data associated with the horizontal variation at position of 

y= 155mm and 80mm respectively.
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se n so r

number

bcHudlinate(mm) (K) at varying velocities (5ms'* to 20ms"*)

■■
491 155 -152 314.0 313.9 313.3 312.5 311.3 309.9 308.8

491 155 -130 314.2 313.9 313.0 312.0 310.7 309.4 308.2

491 155 -110 314.3 313.8 312.8 311.7 310.4 309.0 307.9

491 155 -70 313.5 312.7 311.6 310.5 309.3 307.9 307.0

491 155 0 309.3 308.0 306.8 305.8 304.8 303.7 303.1

fr -

Table 2-5 Results (Rear Sensors: row 2 -  Horizontal at y=155mm)

sensor group 
orientation

 5.0ms'1 -----7 . 5 m s 1 0  0ms 1 —  12 5 m s  15 0ms 1 ------ 17 5ms 1  20.0ms

csntraHn«>>1S3mm

100 -80 -80 

2co-ordlnat* (mm)

Figure 2-24 Results (Rear Sensors: row 2 -  Horizontal at y=155mm)

54



T G ^^«dïnâi5m 5B (K) at varying velocities (Sms'* to 20ms'*)

lumber,
■ ■

491 80 -152 312.4 311.0 309.9 308.7 307.6 306.2 305.4

491 80 -130 310.6 309.3 308.2 307.1 306.0 304.8 304.0

491 80 -110 308.9 308.0 307.0 306.0 305.0 303.9 303.2

491 80 -70 307.1 306.3 305.4 304.5 303.6 302.7 302.1

491 80 0 304.1 303.1 302.4 301.7 301.1 300.5 300.1

Table 2-6 Results (Rear Sensors: row 3 -  Horizontal at y=80nun)

 5.0ms 1  75ms 1 lO.Oms'^ 12 5ms 1 -- 1 5 .0 m s--------- 17 5ms 1  20.0ms 1
314.0

3120

310.0

308 0

306 0

g 304,0

sensor group 
onentation

3020

300.0
-I5 îm m

2980
-160 -120-140 -100 -00

z co-ordinac* (mm)

-80

Figure 2-25 Results (Rear Sensors: row 3 - Horizontal at y=80mm

Once again there is obvious monotonie variation associated with the sensor location 

from z=-152mm to z=Omm. The most noticeable difference between the two rows, 

however, is that at y= 155mm the temperatures exhibit a slower spatial reduction 

between z=-152mm and z=-l 10mm compared to that out to z=Omm; whilst at y=80mm 

the drop off is fairly consistent over the entire range of z values. Both plots/rows, like 

the vertical row (figure 2-23) exhibit the obvious, and understandable, temperature 

reduction with increased tunnel speed.
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It may be observed that, aside from small differences to the temperature profile for the 5 

and 7.5ms-1 cases, the general trend shows regular cooling at the higher velocities; as 

may be expected. Also there is obvious smooth gradation between sensors.

In common with the previous set o f results for the vertical row of sensors, these figures 

demonstrate a regular cooling pattern as the velocity increases with only a slight 

deviation for the 5ms-1 case.

2.6.2. Top Surface of Engine Compartment

As was shown in figure 2-11 the sensors were placed on two longitudinal rows and one 

lateral row. Of the two longitudinal rows one was on the centreline o f the model (z=- 

152mm) and the other offset by 34mm (z=-118mm). The lateral row was positioned at 

x=415mm. The locations of the individual transducers in these rows are given in tables 

2-7 to 2-9. The sensor number corresponds to that on figure 2-11.

Table 2-7 to 2-9 also include the averaged measured data from each of the transducers at 

all the chosen tunnel speeds. These measured data are presented in graphical form in 

figure 2-26 to 2-28. Both the longitudinal sensor rows display similar trends in as much 

as the temperature decreases as the flow progresses toward the rear. Once again the 

temperature drops with increasing tunnel speed. The initial rise in temperature is 

accentuated at the lower speeds.
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bchoiüinateCmm) Waperature (K) at varying velocities (5ms** to 20ms'*)

■ ■
275 202.4 -152 327.1 323.0 322.9 323.8 322.4 320.2 318.6

300 205.0 -152 331.1 328.8 327.5 325.7 323.7 321.1 319.4

330 208.8 -152 327.4 327.1 326.2 324.9 323.0 320.6 318.9

370 213.8 -152 324.2 324.4 323.9 322.7 320.8 318.8 317.2

415 219.6 -152 321.1 321.0 320.4 319.2 317.7 315.9 314.4

450 223.9 -152 318.5 317.9 317.1 316.0 314.5 312.9 311.7

Table 2-7 Table of Results (Top Sensors: row 1 -  Centreline)

7.5ms-1 IQ.Ome-̂  — 12.5me-T  IS.Oins-^ IZ.Sms ' ----- 20.0ms l
336.0

330.0

g  325 0

320.0

sensor group 
orientation 315.0

front
310.0

250 275 300 325 350 375 425 450 475

X co -o rdn it*  (mm)

Figure 2-26 Results (Top Sensors: row 1 -  Centreline)
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inate(mm) (K) at varying velocities (5ms** to 20ms‘̂ )

■ ■
275 202.4 -118 332.3 325.6 325.5 326.0 324.2 321.3 319.5

300 205.0 -118 333.2 330.4 328.4 326.4 324.1 321.2 319.1

330 208.8 -118 328.3 327.7 326.4 324.8 322.7 320.1 318.2

370 213.8 -118 324.9 325.3 324.1 322.8 320.8 318.3 316.6

415 219.6 -118 322.2 322.2 320.9 320.0 318.0 315.8 314.4

450 223.9 -118 319.2 318.6 317.3 316.3 314.7 313.0 311.6

Table 2-8 Results (Top Sensors: row 2 -  34mm Offset from Centreline)

 S.Omg 1 ------ 7 .5 m :-1 lO.Otnt'^ — 12.5ms~^ -------- 15.0m : ̂ --------- 17 .Sm f^   20.0m« 1
336.0 ------------------------------------------------------------------------------------------------ :

330,0

S  326.0r
320.0

sensor group 
orientation 316.0

front
310.0

250 275 300 325 350 375
xco-or d irat*  ^ m )

400 425 450 47£

Figure 2-27 Results (Top Sensors: row 2 -  34mm Offset from Centreline)

In figure 2-27, at the points in line with the exhaust downpipe, one would have expected 

slightly higher temperatures. At the lower speeds this is certainly the case but the 

temperature diminishes as the tunnel speed increases. For the transverse series of 

transducers (row 3, table 2-9, figure 2-28) the above trend is obvious and particularly so 

for the highest tunnel speed.
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nate(mm) ' (K) at varying velocities (Sms'* to 20ms'‘)

■ ■
415 219.6 -152 321.1 321.0 320.4 319.2 317.7 315.9 314.4

415 219.6 -137 320.8 321.0 320.3 319.1 317.7 315.8 314.3

415 219.6 -118 322.2 322.2 320.9 320.0 318.0 315.8 314.4

415 219.6 -105 322.5 322.4 320.9 319.7 317.8 315.6 314.1

415 219.6 -85 322.1 321.8 320.0 318.7 316.8 314.4 313.1

415 219.6 -63 320.3 319.8 317.7 316.4 314.4 312.1 311.0

Table 2-9 Results (Top Sensors: row 3 -  Normal to Centreline at x=415mm)

5  Omg 1 -------7.5mt~1 10.0m«‘1  12 .5m : 1  15.0ms )  17.5ms 1  20.Qfns~^

sensor group
onentaoon

52mm

-160 -150 -MO -130 -120 -110 -100 - 90 -00 - 70
zco-or<linat*(nim)

Figure 2-28 Results (Top Sensors: row 3 -  Normal to Centreline at x=415mm)

As with the vertical row of sensors at the rear, there appears to be slightly different 

characteristics in the temperature profile for the lower velocities which are eliminated as 

the velocity increases to produce a more regular cooling effect. Once again, the 

temperature distribution, for increasing speed, predominantly reduces. At the lower 

speed there is a clear enhancement of the temperature drop at the most forward 

transducers.
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This set of results shows similar results for the two lower velocity cases (5 and 7.5ms’') 

which, in fact, overlap at points, A more regular cooling profile emerges as the velocities 

increase.

Again, despite the configuration of this row of sensors being normal to those in the 

previous two cases, the 5 and 7.5ms ' cases produce similar results.

2.7. Concluding Remarks

Overall the various compromises have resulted in an experiment far simpler than at first 

envisaged. There was no thermal imaging, no external car body and it was carried out in 

a smaller wind tunnel. Nonetheless, the instrumentation used and the entire rig 

performed well, resulting in well behaved and believable data.

It is unfortunate that the engine block and exhausts temperature could not be the same 

for all tunnel speeds. Perhaps improvement could be made here. Nonetheless, the 

resulting data and trends are such that they can be compared to with CFD predictions. 

These comparisons are described in Chapter 4.
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3. CFD Simulation

3.1. Introduction and Background

As will have already been noted from chapter 2, the initial aim of the project was to 

model an actual car. With regard to the CFD simulation, this was, from the early tests 

refined to the modelling of a model car and engine compartment within a wind tunnel. 

Whilst the car and the wind tunnel working section was to be modelled by Sheng (2003), 

the engine compartment was originally envisaged to run within the model and be a 

complementary component. Had the project progressed as originally envisaged, after 

using an actual car had been abandoned, this work would have been a complementary 

and necessary contribution.

Whilst reading this chapter, it is hoped that the reader will follow, what may seem 

unnecessary work, through to the simple generic engine compartment that was 

eventually modelled and wind tunnel tested.

Nonetheless, the initial aim of assessing CFD for powertrain control module position 

remained intact. This was through an experiment, described in chapter 2, and the 

associated CFD modelling (using the commercial package FLUENT 5.5) which is the 

subject of the present chapter. Both the CFD and the physical wind tunnel modelling 

were to be complementary in that they were both analogues of the same flow state. As 

alluded to above, this would have involved full wind tunnel CFD modelling of a model 

car including an engine compartment. This was not possible during the present work.

Another major feature of the work was to assess the use of a CFD package by a non

specialist in fluids; as the author is. This was an important activity since the 

commercially available codes are regularly used by non-specialists in industry; in a
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similar way to Finite Element codes are used for stress analysis. Although the author is a 

non-specialist, a brief description of the process is provided including reasons for 

particular choices of, for example, the turbulence model.

3.1.1. Initial Modelling

Early tests with FLUENT 5,5 considered the flow around typical but relevant shapes, the 

purpose of which was twofold. First, a familiarisation process and, second, an 

assessment of what the limitations of the facilities would be. This led to the development 

of a computer model based on work done by Ford during the ‘BOXCAR’ project 

(Dhaubhadel and Shih, 1996) where a basic ‘Y’ configuration was taken as the engine 

shape and no other components were included. This was as the present work started and 

then, gradually, complexity was added. Such was the complexity achieved that the 

engine compartment shape was from a photogrammetric study of an actual car 

transferred into a computer aided draughting (CAD) package. Once completed, an 

attempt was made to run the Fluent program. It seemed that this would take far too long 

(up to and in excess of a week) even if it did actually converge, and so a generic 

approach was adopted.

As resources such as computer overheads and time constraints impinged, the complexity 

of the model was reduced in stages until a grid which gave a solution within a 

reasonable time (<18 hours) was created. The final arrangement of the engine 

compartment resulted from a compromise between computing power and the need to 

have a realisable wind tunnel model. Accordingly a number of features, including some 

of the engine components and inner wing profiles, were discarded. Hence, both the CFD 

and wind tunnel model were mutually interactional.
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A further limitation occurred when a large cell count resulted in a significant increase in 

time taken for gambit to generate the mesh (<20 minutes to >2 hours). The computers 

used for this project within the University were IRIX 6.5 based SGI 02s running on a 

shared user system. A typical haidware profile for these would be a 180MHz MIPS 

R5000 CPU with 256Mb of RAM.

It was empirically concluded that, when the cell count was limited to between 150000 -  

180000 cells, acceptable generation times were achievable. For cell counts more than 

190000, the unacceptable increase in execution time was attributed to computer memory 

allocation problems. This was concluded after many failed jobs, attempting to use larger 

cell counts, reported errors of this type.

3.1.2. Modelling Constraints

In all engine compartments, the hot elements radiate heat. Whenever one wishes to 

compute or model a physical flow field then, dependent on the complexity and nature of 

the problem, modelling constraints are always required.

The inlet of the model used was 0.304x0.039 (see appendix 3), giving an inlet area of

0.0011586, from this P (wetted area) is derived as:

=  0 . 6 8 6 m

Dn (notional diameter of a inegular shape) as:

^  4 x 0 , O i l  8 5 6 ^  

0.686
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Transition to turbulent flow is at

R eiD „ ) ̂ 2 0 0 0

or

P v D r  ^ 2 0 0 0
M

thus

^  =  2 0 0 0 x 1 .8 x 1 0 - ^ 0 ^ 3 ^ ^ .  

1.225x0.069

SO flow is turbulent a t  0.43ms '. As this is the case, a turbulence model was required for 

the simulation. The choice of turbulence model is dealt with in section 3.2.3.

Although the inclusion of thermal radiation models was considered for the present work, 

they were eventually not incorporated. The main reason for this was the results from a 

series of tests which showed that the more complex the radiation model, the greater the 

overhead in computer time. Although this is to be expected, testing using a grid with a 

simple geometry was found to take less than seven hours to converge without a radiation 

model but that the same setup including a radiation model would take over 3 days to 

converge. It should be noted here that these runs were for very simple flows such as an 

isolated heated pipe.
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3.1.3. Engine Compartment Model Considered

The physical rig to be modelled (see section 2.4.1) consisted of a generic engine 

compartment fabricated in aluminium. It had been designed in AutoCAD and so was 

available for export to GAMBIT (the FLUENT preprocessor). The engine block had a 

steady temperature of 380K (107°C) and the manifold (replicated in the rig by a high 

temperature flexible element) varied between temperatures of 420K(147°C) and 

630K(357°C) dependent on the airflow velocity. These temperatures do not replicate 

those of the car initially tested (see section 2.4.3) as this would have been difficult to 

reproduce safely and consistently in this model.

The data obtained through this simulation, however, was used to guide the positioning of 

the temperature transducers. Simulation indicated that the variation in underbonnet 

pressures across a range of gauge pressures at the outlet would be very low and so no 

attempt was made to measure these.

This allowed resources, both in terms of project budget and fabrication time, to be 

focused on the acquisition of temperature data. Output from FLUENT was 

postprocessed to highlight given ranges so that detailed examination of temperature 

contours would be used to determine the position and type of the temperature probes. A 

range of 295K(22”C) to 360K(87"C) suggested the use of thermistors. By the same 

process, pressure and velocity contours were examined but were deemed to be of little 

significance in the placement of the thermistors.
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3.1.4. Summary of Results

This chapter considers how the generic underhood model can be computed using 

FLUENT; even when used by a non-specialist. The quality of the computed data is such 

that it was used to revise, and hence guide, the placement of the transducers in the wind 

tunnel model.

3.2. Packages Used

This section deals with the software packages used to can-y out the creation of meshes 

for the CFD simulation, the simulation itself and feedback into the design process 

derived from preliminary results. It covers a number of approaches explored before a 

final methodology was chosen.

Throughout the early part of the project, consideration was given to the package which 

would be used thereafter and a process of CFD familiarization was carried out using 

AVL-Fire and FLUENT under the auspices of Kelvin International Systems (KIS Ltd.) 

of East Kilbride. FLUENT was chosen as the package for expediting the project as it is 

widely used throughout industry and was, at the time, available both within the 

University and onsite at East Kilbride.

In addition, AutoCAD was employed for the initial geometry creation since it was found 

to be considerably easier to make changes to the geometry than with GAMBIT. This 

approach, however, caused some problems which are described later in this chapter.
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3.2.1. CFD Preprocessor

The native preprocessor used for the Fluent suite was GAMBIT 1.2. Although it is a 

very powerful package, the performance on the shared-user system computers within the 

Aerospace Engineering department was limited in comparison to the dedicated machines 

available at KIS Ltd. Developing a model in this environment was difficult and, at times, 

dictated that model geometry had to be manually entered as the graphical editing 

interface did not respond in realtime. It was decided to create the basic geometry outwith 

the package in a dedicated CAD package and import it for mesh generation. GAMBIT 

was used, therefore, to define regions and boundaries and to create a mesh in the MSH 

mesh format for use with the FLUENT solver.

3.2.2. CAD Package

Typically, in problems where there is a simple, well-defined geometry, it is enough to 

use the preprocessor supplied with the CFD package. It quickly became apparent with 

this model, however, that 3D CAD modelling and the export of the geometry for 

meshing would have to be undertaken to provide the rapid creation of models required 

when making geometric changes. Even allowing for some problems which resulted in 

the creation of very small gaps (approx 10-30 pm) in the geometry that held up the grid 

generation, it was felt that generating these models in the native preprocessor would 

have been more time consuming.

AutoCAD was chosen as it was readily available within the university and has industry

wide acceptance. Some problems which arose with data exchange in various file formats 

may have been more easily handled by other packages. After discussion with other
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experienced CAD users, no definitive answer as to whether or not this would have been 

the case, was discernable.

3.2.3. CFD Solver

Fluent is a general purpose RANS (Reynolds Averaged Navier-Stokes) based CFD 

solver. It typically uses unstructured grids created in TGRID and GAMBIT and can be 

used in 2D or 3D, single or double precision modes. For the purposes of this study the 

3D single precision option was chosen. Further information on the preparation of cases 

in Fluent is given in appendix 7.

3.2.3.1 Segregated Solver

The FLUENT solver can be utilised in both segregated and coupled modes.

Typically the evolution of the segregated solver came about through low speed 

incompressible problems and the coupled solver by high-speed compressible problems. 

Currently, both models have evolved to a point where either can be used to solve both 

types of problem but the advantage of the segregated mode, for low speed 

incompressible flows, is that the memory requirement is between 1.5 and 2 times less 

than that for coupled mode applications. As noted earlier, memory and processor use 

throughout the project was a prime consideration and so the segregated solver was 

chosen.

3.2.B.2 Viscous Model (Turbulence Model)

The basic equations used for turbulent flow require a closure hypothesis; more 

commonly known as a turbulence model. Turbulence modelling is a specialist field and
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so the author has simply employed that which is widely used in industry. That is the 2 

equation k-epsilon model. Whilst other models are available, and would, in future, make 

useful comparisons, none was used.

Turbulence models are highly empirical and are required to model a wide range of 

flows. Close to solid surfaces, however, special treatment is required. This is because the 

nature of turbulence varies rapidly as walls are approached and also because of the 

nature of the flow immediately adjacent to the surface. For example, large re

circulations or boundary layer type flow. With the above in mind, and with restricted 

time, the author simply employed the standard wall functions available. Like the 

turbulence model, however, future work should consider these in more detail.

3.2.3.3 Materials

The default materials for this work were air for the fluid, and aluminium for a solid. 

These were chosen because the engine compartment and the engine block are largely 

fashioned in aluminium although the downpipes themselves are incolloy (iron, nickel, 

copper alloy) and there is some use of steel in the cowl.

3.2.3.4 Radiation modelling

Although some radiation modelling would have been beneficial, the processor demands 

for this option were particularly heavy and so mitigated against such a refinement. Some 

preliminary tests to assess the viability of using radiation modelling were carried out by 

considering a model of a solid heated sphere within a cuboid of fluid. These tests were 

not conclusive with results differing widely for the different models available. 

Convergence also took between 4 and 6 times longer than for no radiation modelling. 

Extrapolating this figure to the more complex engine compartment geometry, which
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itself could take upwards of 18 hours to converge without radiation modelling, meant 

that results may have taken upwards of 4 days to complete. For these reasons, radiation 

modelling was not included in this study although it should be considered in any future 

work. A possible improvement was the introduction of the Surface to Surface (S2S) 

model in FLUENT 6. S2S radiation modelling is considerably faster than the widely 

used Discrete Transfer Radiation Modelling (DTRM) and has been used elsewhere for 

underhood solutions (FLUENT 2001).

3.3. Preliminary Work

Preliminaiy work was carried out in conjunction with KIS Ltd. at their offices in East 

Kilbride. The main thrust of the project, at this stage, was to have been based on the 

power testing of PCU modules in situ and to this end a number of avenues were 

explored during the process of CFD familiarisation. The creation of a stylised engine 

compartment, based on a Morgan Plus 8 car (section 2.2) and engine block was 

undertaken using GAMBIT and resulted in the mesh illustrated in figure 3-1.
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Figure 3-1 Geometry for Basic Engine Compartment Shape

What this figure shows is only the internal surfaces of the mesh and on the surface of the 

engine block. The front o f the compartment is to the left where one may observe the air 

intake simply by the lack of surface elements. Similarly the bottom o f the compartment 

is open. It should also be noted that only half o f the compartment has been meshed as 

permitted by the assumption o f symmetry along the longitudinal or x-axis.

At this time there was no particular emphasis on absolute results as there was no specific 

data to compare against, but the options available for setting boundary conditions were 

explored. Solutions for the case shown in figure 3-2 were obtained using the boundary 

conditions detailed below.
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Figure 3-2 Velocity Vectors (x velocity component)

Figure 3-2 is densely detailed, which hampers rapid assessment, but has been included to 

provide a qualitative illustration o f the computed x component of velocity. It may, 

therefore, be observed that as expected, all the red and yellow coloured vectors (positive 

u) are at the front of the engine and the reversed flow (blue vectors) at the rear.

In this particular case, the boundary conditions were

1. Manifold at 600K

2. Engine block at 400K

3. Freestream at 300K

4. X Velocity at Inlet 35ms '

Three of these are illustrated in figure 3-3 in which the hot manifold area is taken to be 

at constant temperature and the uniform velocity inflow and constant pressure outflow 

are highlighted in blue
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Figure 3-3 Initial tests using energy enabled solver

The engine block modelled above has been significantly simplified. The author, 

however, had available scale drawings of the Rover V8 engine used in the Morgan. 

These were scanned in and an AutoCAD basic three dimensional model digitised model 

created in AGIS format (figure 3-4)

ÜU m

Figure 3-4 Engine Model Created from V8 Extents

The main purpose of this was to assess (for later use) the AC IS format for input to the 

mesh creating GAMBIT pre processor.
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Accordingly the AutoCAD file was imported into GAMBIT and a mesh bounded by a 

cuboid was successfully generated. The suitability of this procedure was tested by 

running the FLUENT code to ensure that it would converge to a reasonable conclusion. 

The boundary conditions were simply those of uniform flow at the upstream and 

tangential flow on the longitudinal surfaces. The exit was defined as a pressure outlet.

The ensuing predictions are illustrated in figure 3-5 and this is included simply to show 

that, as expected from the problem setup, the flow accelerates around the engine and 

slows down as it exits the computational domain. The figure depicts contours of velocity 

magnitude at various transverse sections. In this case, the X velocity was set at 60ms ' 

and no temperature conditions were defined.
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Figure 3-5 Fluid Flow  round V8 M odel

The intention was that, due to the success o f the procedure, the engine could be 

incorporated into a very accurate model of the Morgan’s engine compartment. The 

Morgan Car Company seemed, at first, to be very enthusiastic; but the necessary 

drawings were not passed on. Presumably, company confidentiality intervened.
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Additionally, it became apparent at this time, though, that there would not be 

unrestricted access to the Morgan and that the planned testing of in situ PCUs for a 

client of KIS Ltd. was subject to contract negotiations and the likely delay would 

impinge severely on the project. The decision was taken to develop a generic car model 

within the University. This in turn would be constructed as a physical model for the 

acquisition of experimental data.

As both the physical and CFD work was proceeding together and, as mentioned in 

Chapter 2, the final model was a simplified generic compartment tested in isolation, the 

work leading up to that final choice is described here. This is because the geometry was 

so closely linked to the FLUENT modelling and meshing.

Having forsaken the KIS Ltd. Facilities with fixed geometry vehicles, the author was 

free to adapt geometries to the restrictions of both CFD and wind tunnel requirements.

3.4. First Approach (Eagle Talon Model)

With the demise of the Morgan work, the project became that of producing a wind 

tunnel model of a car that included an instrumented engine compartment. The question 

to answer was, of course, what car. As will be anticipated, the initial desires were 

gradually simplified and, although the engine compartment was made and tested, it was 

not inserted into the car model. Nonetheless, much effort was expended designing the 

complete model and this was done in two stages. First, a model of a production car and 

then a generic design.
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The model details were sourced in DXF format from Kaizen Tuning, a company 

specializing in the race preparation of the Eagle Talon / Mitsubishi Eclipse and which 

had created the model for publicity purposes. The extremely detailed model was created 

by photogrammetry and consists of the entire bodywork, minus the engine block, in 66 

DXF format files. On request, they gave their permission to use the model for the project 

(SINGH 2001).

3.4.1. Creating Solid Geometry

The front end geometry was assembled from the DXF files as shown in figure 3-6.

Figure 3-6 Eagle Talon Front End Geometry.

One of the problems encountered was that the model, although complete, consisted only 

of surface geometry and there were no solid objects which could be exported to 

GAMBIT. This lack of 3D data involved the processing of the data in the following 

manner.

Any surfaces that were capable of extrusion were extruded to a depth of 0.(X)3m creating 

a group of solids. This process produced extremely large and unwieldy files, typically
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>50MB. Sections through this created geometry were taken at 0.025m intervals, except 

at the nose and air intake where the intervals were taken at 0.01m (figure 3-7) 

Thereafter, the sections were extruded and edited by Boolean operations to give the 

closest possible approximation to the original geometry in solid form.

Figure 3-7 Sample Sections from Geometry (white lines)

The geometry was only created as far as the A-Pillar (figure 3-8) because, as noted in 

Srinavasan et al. (2000), the effect o f including the entire car geometry affects the front- 

end cooling by less than 0.5%. As may be seen in figure 3-8, there were numerous 

sections used. Although a rather cluttered figure, it does depict clearly the overall 

intensity of the sectioning.

This procedure was extremely labour intensive and time-consuming. It was abandoned 

when the practicalities of creating a physical scale model based on this geometry were 

examined. The level of detail would also have required a very fine mesh to have been 

created and the processor overheads in solving a fine mesh would have been excessive.
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Figure 3-8 Sliced Geometry with Original Radiator

At this point, the image processing software package Surfdriver was investigated and 

attempts were made to extrude the sections from bitmaps generated by AutoCAD. This, 

however, was found to be an equally laborious method, exacerbated by the limitations of 

the trial version of the software.

3.4.2. Initial CFD Modelling based on Eagle Talon

Having obtained the geometry of the engine compartment and placed within it an engine 

block based on the Rover VS, a radiator and simplified fan. A CFD model was then 

created

For the initial simulations only the radiator was included and this was modelled as a 

solid. The intention at this stage was to refine the model later, with the radiator being set 

as a porous material and the fan model employed. The boundary conditions were defined 

as before in the simplified Morgan engine compartment model.
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A typical prediction (figure 3-9) illustrates the static pressures within the simplified 

compartment. Again, the figure is a little cluttered but shows static pressure as a vector 

field throughout the engine compartment and contours of the same data at three specific 

sections within the compartment. It is included simply to illustrate, however, that the 

process had been successful with a converged solution. The convergence history for this 

case is shown in figure 3-10. It should be noted that in this case there were no thermal 

conditions set and that convergence has taken place in a much shorter time than the 

cases described later.
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Figure 3-9 Static Pressure Results for Simplified Talon Geometry
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Figure 3-10 Convergence History for Simplified Talon Geometry

Overall the whole model was somewhat unwieldy and the use of the Talon model was 

abandoned for a car body shape already available in FLUENT tutorials (see figure3-l 1)

Figure 3-11 Sedan Geometry from FLUENT Tutorial Exercise 

It had been hoped to retain the then current engine compartment model in a simplified 

form. One of the reasons for this was that when the drawings were imported to 

GAMBIT the CAD model proved to be very difficult to mesh.
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Figure 3-12 Angular Engine Compartment

Initially, this was thought to be a problem with the now very angular geometry as 

illustrated in figure 3 -12b. Figure 3 -12a shows the outer shape of the Eagle Talon with 

the outline of the engine compartment drawn in dark red. That compartment is shown 

more clearly in figure 3 -12b. Consequently, a more rounded version was created (figure 

3-13).

Gno Nov 29.2001
FLUENT 6 5 (3d. segrcgitcd. I«m)

Figure 3-13 Rounded Geometry

This latter assumption proved to be incorrect as the problem was eventually traced to 

very small anomalies in the CAD geometry. Although there is an option in GAMBIT for 

cleaning up anomalies when importing the geometry into GAMBIT (and this was 

utilised), objects extruded along an arc and joined by Boolean operation could
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occasionally be found to be unconnected at various points. On inspection, there were 

found to be gaps of less than 20 microns between sections of the downpipe geometry. 

These went undetected by the geometry cleaning routine as this scans for edges rather 

than gaps. This created miniscule spaces which GAMBIT attempted to mesh 

unsuccessfully and which caused a large number of errors. The difficulty was resolved 

by either creating small sections of geometry to fill the gaps or extruding the geometry 

further using a complementary geometry to remove the excess with a further Boolean 

operation.

3.5. Second Approach (Generic Model)

As noted in the previous section, the development of the model based on the third party 

geometry was abandoned due to the manner in which the given data had to be processed 

and the availability of a suitable vehicle geometry readily available in a FLUENT 

tutorial exercise (figure 3-11). On the basis of other concurrent projects within the 

department, namely an undergraduate study on vehicle drag (Bisset 2002) and a PhD 

study into wind tunnel effects which required a reasonably large model (Sheng 2003), 

the decision was taken to make a scale model based on the geometry from the FLUENT 

suite’s tutorial exercises. Original drawings from Bisset’s project are reproduced in 

appendix 2.

At this stage it was still intended to embed the engine compartment within the overall 

car model and test it in the Argyll wind tunnel. Accordingly, the author was fully 

involved in all aspects of the model design. That design would dictate the overall shape 

of the final engine compartment (as may be seen in appendix 3)
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3.5.1. CAD Modelling

It was quickly established that the engine block could be placed within the new model 

but that the compartment would have to change radically. Figure 3-14 shows the 

arrangement of the engine compartment geometry as it was to be mounted on the 

model’s baseplate.

Air Intake <304mm)

Engine Compartment 
In 6mm AlumMum

Figure 3-14 CAD Model of Engine Mounted on Baseplate

The intended configuration of the engine compartment within the bodywork can be seen 

in figure 3-15 where the CAD design o f the engine compartment is placed within the 

original geometry imported from GAMBIT into AutoCAD.

Figure 3-15 Engine Compartment within Bodywork
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3.5.2. Initial Results -  Truncated Region

Since the engine compartment did not require to be a scale model o f a real car’s 

compartment, it could be executed far faster than a more complex shape. In addition, the 

current work used a symmetric model which again simplified mesh generation. In 

addition, two computational volumes were used and are depicted in figure 3-16.

Figure 3-16 Full and Truncated Fluid Regions Derived from CAD Geometry

Shown on the left o f this figure is a half section of the engine compartment. This was 

used for all the main calculations. To the right is a second, truncated volume employed 

during initial exploratory work. The computational domain is shown in blue. Although 

the downpipes are not shown in the figure, they were included in the domain, as may be 

seen in figure 3.18

The preliminary work considered the truncated domain and typical surface meshing by 

GAMBIT may be seen in figure 3.16. The inlet is coloured blue and had boundary 

conditions of

• X velocity of 15ms ';

• Freestream temperature of 300K.
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The red surface is the flow exit to atmosphere and gauge pressure was set to O.OPa, ie 

case was atmospheric pressure only. Along the side walls (yellow) the boundary was set 

as a symmetry. It will be appreciated that this does not create a truly three dimensional 

case as there is no flow around the sides of the engine block. This option was used 

simply to extend the fluid region to model a more realistic flow at the downpipe region 

than would have been the case with a single section. The remaining surfaces were 

treated as solids with a constant temperatures. It may also be noted that these initial tests 

on the truncated section contained a single downpipe (exhaust).

This allowed a series of cases to be explored while refinements were carried out in the 

meshing of the full fluid region.

Figure 3-17 Relative Mesh Density

Figure 3-I7shows a typical mesh refinement. In this case, the density of the unadapted 

mesh at the symmetry of the truncated region (=58000 cells) used for the initial 

investigations described is represented in figure 3-17a. The adapted mesh of the engine 

compartment (=170000 cells) used for later work is shown as figure 3-17b.
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Figure 3-18 Mesh of Truncated Fluid Region

Figure 3-19 illustrates the resultant velocity magnitude contours in the x-y plane for a 

case using the truncated fluid region at a freestream velocity of 15ms ’ with boundary 

conditions as noted above. There is clearly a large jet that passes through the grille and 

subsequently impinges on the engine wall. A large re-circulation can be observed in the 

upper part of the compartment.
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Figure 3-19 Velocity Magnitude (Range ; 0-15ms ‘)
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Figure 3-20 Velocity Magnitude (Range : 0 to 4.8ms'*)

In an attempt to highlight greater detail outside in the area behind the engine block, fig 

3.18 shows the same data as the previous figure but with velocity vectors values now 

limited to those within the range 0 to 4.8ms'*.

The large re circulation alluded to above is now most prominent since the main jet like 

structure is outside the contour range and simply appears as a white area. Additionally, 

there may be observed a distinct flow over the top of the engine block and down. This 

could be an important observation since the bulkhead of the engine compartment is a 

common location for electronics.

Whilst informative, however, for this particular work, no temperature profiles were 

calculated. These were done using the geometry created for half of the engine 

compartment.
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3.5.3. Initial Results -  Engine Compartment

Further development of the mesh with the fluid region representing half of the engine 

compartment included the addition of the temperature data. The simulation in FLUENT 

was undertaken for a range of speeds with the temperatures of the engine elements set 

as:

• free stream = 300K

• engine block = 400K

• manifold =700K

• downpipes = 800K

based on tests done on the Morgan and from data found in a number a number of studies 

described in chapter 1.

These were the standard wall functions advised and used by FLUENT. Essentially, they 

model the heat transfer from the surface to or from it into or out of the fluid. The validity 

of this method is governed by the fluid conductivity and, when the mesh is not resolved 

down to the wall, accuracy of the wall function. In figure 3-21, the predicted temperature 

contours (in 3 dimensions) on the compartment surfaces can be clearly seen. In this case, 

the downpipes and manifold were set to the temperatures noted above. As the range set 

for data output was 300 to 400 K, it can be clearly seen that these heated surfaces are 

outwith the range by the absence of temperature data.
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Figure 3-21 Temperature Contours Derived from FLUENT

3.5.4. Deriving Sensor Position from Temperature Contour Output

The initial findings clearly indicated that the FLUENT solver, with the associated 

computational grid, converged to what appeared to be a reasonable prediction. This was 

assumed since the flow exhibited plumes of hot fluid, from the downpipes, travelling up 

and over the engine block. This is clearly illustrated in figure 3-22 and shows 

temperature contour data on the upper surface of the fluid region.
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Figure 3-22 Illustration of Hot Plume from Downpipes

Figure 3-22 contains a number of sizeable dots both white and black. The white dots 

represent the originally proposed transducer locations (see appendix 5). The black dots 

were the revised locations. Clearly the CFD had been of much help in the experiment 

design and the number of sensors was increased (for the back and top plates) from 9 to 

31. The position and numbering of the sensors is illustrated clearly in the previous 

chapter in figure 2-11.

Figure 3-23 illustrates the temperature contours of the fluid at the back plate and the new 

sensor locations. It can be seen that the choice of sensor location has been made to 

capture the salient features of the flow.

There is a row of sensors on the top plane offset by 34mm (z=-118mm) from the 

centreline which is in line with an exhaust downpipe. Sensors were not placed in line 

with the downpipe offset at 102mm (z=-50mm) as placement would have proved 

problematical due to their being at the edge of the viewing panel. On the basis of the 

initial results, which show a well-defined plume close to the centreline this, was not 

considered at the time to be a significant omission.
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Figure 3-23 Rear Sensor Positions

Again, referring to a figure from the previous chapter, figure 2-10, shows both the layout 

and numbering of the sensors.

Sensor availability had been finalised before the positions at the rear of the engine 

compartment were considered and a rectilinear arrangement similar to that of the top 

sensors was adopted. Placement of a row of sensors vertically and a row of sensors 

horizontally (at a height of 155mm) were again selected to highlight salient features of 

the flow.

A second row of sensors at a height of 80mm was also added where the temperature 

appears to be fairly consistent across the majority of positions. It can be seen in figure 3- 

23 that only 15 sensor positions are employed. This was due to the originally proposed 

position being fouled by the strut balance mounting. To overcome this, a resistor was 

placed in the circuit to mimic the thermistor.
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Figure 3-24 CAD 3D Views of Sensor Positions

Figure 3-24 is output from a CAD drawing of the engine compartment model and 

illustrates the position o f the sensors, as guided by the CFD results, in relation to the 

fluid region and the engine block. The size of the sensors is exaggerated for clarity.

As noted above, initial sensor placement was derived from a modelled case using the 

approximate range of temperatures encountered on a real car model. It soon became 

apparent that it would be difficult to raise the experimental rig to these temperatures, and 

more importantly, sustain them for the course of the experiment. Figures 3-25 to 3-27 

show the comparison between results from a FLUENT model using the envisaged car 

temperatures (hot) and the subsequently lowered engine block and manifold 

temperatures (initial) which more closely mimic the safe temperatures achievable in the 

experimental rig. These data confirmed that the sensor placements were satisfactory and 

that similar trends were obtained for various tunnel speeds.
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From left to right in figures 3-25 to 3-27, the sensor banks are as follows:-

• Back : vertical at symmetry line, ie row 1 figure 2-10 starting at b l2

• Back : horizontal at y = 155mm, ie row 2 figure 2-10 starting at bOl

• Back ; horizontal at y = 80mm, ie row 3 figure 2-10 starting at blO

• Top longitudinal at symmetry line, ie row 1 figure 2-11 starting at t06

• Top longitudinal at z=-l 18mm, ie row 2 figure 2-11 starting at tOS

• Top normal to symmetry line at x=415mm, ie row 3 figure 2-11 starting at t09

For clarity, the corresponding sensor banks are indicated on figure 3-25 but not 

thereafter on figures 3-26 and 3-27.
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Figure 3-25 Computed Results across Sensor Banks using Hot and Initial Temperatures for
Sms'*
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Figure 3-27 Computed Results across Sensor Banks using Hot and Initial Tem peratures for
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One of the results of this set of simulations is the notably higher temperatures generated 

for the bank of sensors on the top symmetry line for the case at 12.5ms"'.

It is also noticeable that the general trend is decreasing temperature with increasing 

speed. These particular data have been presented to re-assure the reader that the CFD 

clearly indicated that the final positioning of the sensors was acceptable for the lower 

temperatures of the experiment. The comprehensive predictions, with boundary 

conditions corresponding to the experiment are contained in table 3-1 to 3-6 and shown 

from figure 3-28 to figure 3-33. These show predictions for cases between 5 and 20ms ' 

These are presented in a similar fashion to the initial computed results. Temperatures are 

presented in Kelvin.

The convention of showing the sensor positions with offset axes is carried forward from 

figure 2-22.
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Number X y z 5 7.5 10 12.5 15 17.5 20
bl2 491 50 -152 348.5 335.9 331.8 328.3 321.0 322.0 313.7
b l l 491 65 -152 348.5 339.6 338.9 334.9 328.5 329.1 318.3
blO 491 80 -152 348.1 339.3 339.1 339.2 334.7 334.0 322.0
b09 491 105 -152 347.8 339.1 339.0 340.3 336.9 335.5 323.3
bOl 491 155 -152 347.1 338.6 338.6 341.3 338.2 335.3 323.8
b02 491 205 -152 346.0 337.9 337.7 338.9 337.5 333.8 321.3
b03 491 225 -152 345.5 338.1 337.0 329.7 336.5 332.7 316.1

Table 3-1 Computed Results for Back Sensors (vertical centred) at Varying Velocities

sensor group 
orientation
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Figure 3-28 Computed Results for Back Sensors (vertical centred) at Varying Velocities

In figure 3-28, it is evident that not only, as mentioned before, the temperature drops 

with tunnel speed but also that the flow cools as it approaches the base of the model.
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Number X y z 5 7.5 10 12.5 15 17.5 20
bOl 491 155 -152 347.1 338.6 338.6 341.3 338.2 335.3 323.8
b04 491 155 -130 347.4 338.9 339.0 330.7 327.1 332.0 320.5
b05 491 155 -110 349.3 340.1 338.4 315.0 316.4 317.1 313.8
b06 491 155 -70 352.5 341.9 318.5 308.7 308.8 308.6 307.1
b07 491 155 0 315.9 312.2 309.1 306.5 305.8 305.3 304.6

Table 3-2 Computed Results for Back Sensors (y=155mm) at Varying Velocities

sensor group 
orientation
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Figure 3-29 Computed Results for Back Sensors (y=155mm) at Varying Velocities
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Number X y z 5 7.5 10 12.5 15 17.5 20
blO 491 80 -152 348.1 339.3 339.1 339.2 334.7 334.0 322.0
bl3 491 80 -130 349.1 340.0 332.1 317.1 312.3 311.9 308.8
bl4 491 80 -110 350.8 339.3 322.8 309.1 308.0 307.4 305.9
bl5 491 80 -70 347.0 339.8 322.2 308.8 307.6 305.8 306.0
b08 491 80 0 315.9 312.5 308.9 306.8 306.2 305.8 305.1

Table 3-3 Computed Results for Back Sensors ( y=80mm) at Varying Velocities

sensor group 
orientation
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Figure 3-30 Computed Results for Back Sensors ( y=80mm) at Varying Velocities

Figures 3-29 and 3-30 are more interesting for they are the two horizontal rows on the 

rear panel, at differing heights, and exhibit similar trends. More important, however, is 

the clear change at 10ms ' where the inner parts temperature fell off rapidly rather than 

being held constant, to a first order. There is a definitive change in flow patterns and 

these can be observed more effectively in figure 3-34.
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Number X y z 5 7.5 10 12.5 15 17.5 20
t06 275 202.4 -152 320.7 316.1 315.8 318.7 312.8 310.7 311.1
t05 300 205.0 -152 326.1 320.8 319.7 323.6 315.0 312.4 312.6
t03 330 208.8 -152 342.1 334.1 334.8 353.9 328.4 324.9 323.7
t02 370 213.8 -152 342.9 335.2 335.8 353.8 330.3 326.7 325.3
t09 415 219.6 -152 344.3 336.3 336.7 352.4 332.6 328.8 326.9
tio 450 223.9 -152 345.1 337.0 337.4 349.9 335.0 331.2 328.3

Table 3-4 Computed Results for Top Sensors (Centreline) at Varying Velocities

top  ce n tre lin e

Velocity

1 7 5

12.5
BACK

sensor group 
orientation

FRONT

nior potiUon on

Figure 3-31 Computed Results for Top Sensors (Centreline) at Varying Velocities
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1mum immm̂ H
Number X y Z 5 7.5 10 12.5 15 17.5 20

t08 275 202.4 -1 18 321.6 316.7 316.7 318.2 319.0 316.8 321.3

t07 300 205.0 -1 18 328.6 322.9 3220 320.6 326.4 324.1 327.2

t04 330 208.8 -1 18 339.2 332.3 332.7 335.0 342.7 338.8 333.5

toi 370 213.8 -1 18 342.4 335.0 335.8 338.7 340.0 338.1 334.6

t l 2 415 219.6 -1 18 347.0 339.4 340.3 340.0 341.2 339.5 338.7

t o 450 223.9 -1 18 345.5 337.2 338.1 332.3 335.0 333.6 334.3

Table 3-5 Computed Results for Top Sensors (offset at z=34mm) at Varying Velocities

#
sensor group 
orientation

top  o ffaet z 34mm

Velocity
350

17.5

12.5BACK

320
7 5

FRONT
310

200
300 320 340 350 300 400 420

intor pofition on x*»xif(mm )

Figure 3-32 Computed Results for Top Sensors (offset at z=34mm) at Varying Velocities

Unlike the backplate, both the top longitudinal rows exhibit the same trends for all 

speeds. That of temperatures increasing along the x axis. This is hardly surprising as the 

fluid is convecting over a hot engine.
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Sensor Position (mill) Velocity (ins' )
Number X y z 5 7.5 10 12.5 15 17.5 20
ro 9 415 219.6 -152 344.3 336.3 336.7 352.4 332.6 328.8 326.9
T il 415 219.6 -137 346.8 339.5 339.9 347.7 341.3 337.9 333.0
T12 415 219.6 -118 347.0 339.4 340.3 340.0 341.2 339.5 338.7
T14 415 219.6 -105 346.0 337.6 338.7 329.4 330.7 329.9 332.2
T15 415 219.6 -85 346.6 337.4 338.8 319.2 320.0 320.0 317.3
T16 415 219.6 -63 350.9 341.4 333.1 319.7 319.9 319.9 318.7

Table 3-6 Computed Results for Top Sensors (Normal at x=415mm) at Varying Velocities

sensor group 
orientation

to p  n o rm a l at x415m m
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Figure 3-33 Computed Results for Top Sensors (Normal at x=415mm) at Varying
Velocities

Figure 3-33 displays the prediction of the lateral temperatures and, like the 

corresponding profiles for the rear wall, displays a significant change in form from low 

to higher speeds. Here, however, the change in flow state occurs at 12.5ms This is 

characterised by a rise in the centreline temperatures well above all others and then, for 

the higher speeds, a rise at the outside and a decrease at the centre to almost level 

profiles.
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3.6. DISCUSSION

From the computed data, there appears to be a broadly consistent cooling trend for the 

sensors at the back of the engine compartment. It is notable, however, that there is no 

clearly discernible trend for the longitudinally placed sensors and two distinct trends for 

the laterally placed sensors, with a transition occurring at 12.5ms '. This is shown clearly 

in figure 3-34, in which the formation of the plume behind the downpipe at the 34mm 

(z=-118mm) offset is apparent. At 10ms ' and below, the formation o f this plume is not 

apparent and there appears to be significant activity behind the downpipe offset at 

102mm (z=-50mm). This region was not chosen for monitoring, however, as the original 

design (ie including a viewing panel) militated against placing sensors in this region.

Figure 3-34 Effect of Increasing Speeds on Thermal Field
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Note that the plume at the 34mm offset from the centreline (z=-l 18mm, shown in figure 

for 17.5ms"' and 20ms"' cases) only develops at the higher speeds. Sensor placement at 

the rear appears to be reasonably accurate, although more sensors would be beneficial at 

the top of the engine compartment. As noted earlier in this section, the inclusion of a 

viewing panel made it difficult to site sensors even at the 102mm offset (z=-50mm) of 

the second downpipe, although from the results at this early stage it would appear that 

this would be beneficial (see section 5,4.2)

3.7. CONCLUSIONS

This chapter has indicated the various “steps and turns” that the author has made to 

finally formulate an engine compartment that was successfully meshed and used by 

FLUENT to predict the flow within it. The data obtained were used to guide the 

placement of sensors within the physical engine compartment.

On further investigation, the number of sensors at the rear were found to be sufficient 

but for the top sensors, more configurations would be required. These initial pre

experiment temperature settings, against which initial measured data were compared 

were chosen as freestream=295K, engine block=400K manifold =500K and downpipes 

= 600K. Due to the envisaged difficulties in maintaining the higher temperatures 

typically associated with a car engine compartment while using the experimental rig, and 

the consequent risks involved in using such high temperatures within the wind tunnel.
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4. Comparison with Measured and Simulated Results 

4.1. Introduction

Experimental data presented in this section were derived from reduction of raw data as 

described in section 2.5,3.

This chapter presents the comparisons between the measured and the predicted 

temperatures on the surfaces of the engine compartment. It may be recalled (section 

2.4.3) that the final placement of the thermistors was guided by the predictions of the 

suitably configured FLUENT CFD package. That configuration required a few initial 

values to be chosen such as free stream temperatures together with those of the engine 

block, manifold and down-pipe temperatures. As an estimate of what these should be the 

author was guided by the earlier work on the Morgan (section 2.2.2) carried out at the 

premises of KIS.

When the wind tunnel experiments were carried out, these initial temperatures were 

higher than those in the wind tunnel and so a new revised set of FLUENT predictions 

was made. The revised values were taken from that which was measured and also 

included atmospheric temperature, etc.. In other words, the revised calculations 

mimicked the experiments.

This chapter presents a comparison of both the initial and revised predictions with the 

data measured during the wind-tunnel experiments.
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The initial and revised temperatures are given below in table 4.1

r  295.0K 380K 520K 600K
1  294.5K 379K 537K 621K
1  294.4K 387K 542K 501K
1  294.7K 383K 524K 421K

Table 4-1 Initial and Revised Temperatures

From the presented data, it is clear that the large disagreement between the initial 

predictions and the measured data has been greatly reduced. This is particularly so for 

the back-plate data where the revised data are in good agreement with with the 

measurements. The comparable agreement for the top surface is much poorer and indeed 

displays anomalies that will require further investigation as part of any continued 

improvements.
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4.2. Comparisons of Temperature on Rear Surface

In this section, the convention of showing the sensor positions with offset axes is carried 

forward from figure 2-22.

sensor group 
orientation

Rear Sensors• VeiHcal

356
360
346
340

Initial CFD Experim ental D ata R evised  CFD

50 100 150 200 25C

Displacement (mm) Iny-axis

Figure 4-1 Measured and Simulated Data at Rear (Vertical) at 5ms '

In the case shown in figure4-l, at 5ms ‘, values from the initial simulation are much 

higher than the measured data, albeit there is a downward trend. Between the actual 

measured data and the revised simulation there is a more pronounced similarity, both in 

terms of temperature and trend and indeed may be said to be in reasonable agreement.
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Rear Sensors • Horizontal at ̂ SOnnm

sensor group 
orientation

Initial CFD Experim ental D ata R ev ised  CFD

-160 -140 -120 -100 -00 -60 -40 -20 0 20

Displacement (mm) In z-axis

Figure 4-2 Measured and Simulated Data at Rear (Horizontal at ySO) at Sms'

Again, values from the initial simulation are much higher than the measured data and the 

downward trend away from the centre of the engine compartment is very pronounced. 

The actual measured data and the revised simulation are in good agreement. Perhaps a 

perplexing trend, however, is the greatly reduced variation in the revised prediction. A 

relatively small difference in the initial temperature has resulted in a much flatter profile.

7#
sensor group 

orientation

Rear Sensors- Hortzorlal at y=1SSmm

—*— Initial CFD — Experimental  D ata — Revi sed CFD

i— A * -

" — __________2

-160 -140 -120 -100 -80 -60 -40 -20 0 20

Displacement (mm) In z-axIs

Figure 4-3 Measured and Simulated Data at Rear (Horizontal at y 155) at 5ms '
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The differences between the two simulations and the measured data are of a similar 

order to the previous data for rear sensors at 5ms '.

I r..

sensor group 
orientation

Rear Sensors • Vertical

Initial CFD Experim ental D ata R evised  CFD

50 100 150 200

Displacement (mm) iny-axis

25C

Figure 4-4 Measured and Simulated Data at Rear (Vertical) at 12.5ms '

Initial values have a pronounced ‘rise and fall’ moving from front to back in the engine 

compartment. Revised values show a similar rise but no corresponding fall. Measured 

data are very close at both ends of the sensor bank but show a steady increase and thus 

diverge significantly from the revised data. Nonetheless, the temperature data are in 

much better agreement with the measured data than those of the initial values.
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Figure 4-5 Measured and Simulated Data at Rear (Horizontal at y80) at 12.5ms '

Here there is very little similarity between trends for revised and initial values although 

there is a general downward trend. Measured data again shows a steady change over the 

length of the sensor bank and temperatures are similar to that of the revised simulation, 

apart from a divergence at z=-70mm (sensor B06). This divergence also occurs, for this 

sensor bank, in the 20ms ' case.

#
sensor group 
orientation

Rear Sensors • Horizontal at y=1S6mm
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345 
340 
335 

g  330 
g 325 
I  320 
I  315
I  310

306
300
296

-60 -10-160 -110

Qsplaœmerl (mm) In z-axis

Figure 4-6 Measured and Simulated Data at Rear (Horizontal at y 155) at 12.5ms
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Again, there is a steep downward trend for the initial data. There is a less pronounced 

downward trend for the revised data, although it must be noted that this is steeper than 

that of the measured data and, hence, has a higher temperature at the centre o f the engine 

compartment and a lower value towards the outer edge. The agreement between the 

measured and revised prediction remains good.

Rear Sensors - Vertical

/ ■ '

sensor group 
orientation

325

320

315

310

305

300

Initial CFD — Experimental  D ata R evised  CFD

50 100 150 200 25d

dqxKement (mm) In y axis

Figure 4-7 Measured and Simulated Data at Rear (Vertical) at 20ms '

Temperature range for revised data is within the range for observed data but there is 

little similarity in trend. This may be due to the choice of turbulence model which will 

affect the flow prediction when the flow is swirling. Note the similarity between all three 

cases and the corresponding ones for 12.5ms ‘. Once again, there appears to be a large 

sensitivity of FLUENT to the stated temperature inputs.
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orientation

R e a r  S e n s o r s  - H o r i z o n ta l  a t  y = 8 0 m m
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Figure 4-8 Measured and Simulated Data at Rear (Horizontal at y80) at 20ms '

A gain , trends for all three sets o f  data is markedly sim ilar to results for the 12.5m s ' 

case. R evised  data sim ilar trend and temperature range discrepancies around z=-70m m .

R e a r  S e n s o r s  - H o r i z o n ta l  a t  y = 1 5 5 m m

Initial CFD Experim ental D ata R ev ised  CFD

325

320

315

310

306
sensor group 

orientation 300

296
-160 -110 -60

d ^ a œ m e r t  (rrm) In z-axis

-10

Figure 4-9 Measured and Simulated Data at Rear (Horizontal at y 155) at 20ms '

U ncharacteristically, the in itial, actual and the revised data all exhib it good  agreem ent at 

about 50m m  from  the ed ge o f  the com partm ent. The revised and the measured profiles
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are in reasonable agreem ent. R evised  data exhibits a sim ilar d ivergence from  measured  

data at z= -70m m  to the sensor bank at z=80m m  for both 12.5m s ' and 20m s ' cases.

4.3. Top Surface of Engine Compartment

m

sensor group 
orientation

360 
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g 3 3 6  
330
325
320
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Top Sensors- Lon^tudinal at z= -152mm (centre)

Initial CFD Experim ental D ata R evised  CFD

2 6 0 2 8 0 3 0 0 3 2 0 3 4 0 3 6 0 3 8 0 4 0 0  420 44046C

Displacement (mm) in x-axis

Figure 4-10 Measured and Simulated Data at Top (Centre) at 5ms '

Initial and revised data show  a slight correlation, but the degree o f  change in the revised  

data from the initial is much less then that observed for the rear o f  the compartment. 

Actual data appear to have a dow nward and, hence, opposite temperature trend from  

front to back to that o f  the revised profile. In this case, w hen com pared to the 

experim ental data, the revised data is in equally poor agreem ent with the initial results.
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Figure 4-11 Measured and Simulated Data at Top (z34) at 5ms '

Again, data from both simulation have a similar trend but a significantly different range 

o f values. All agreement is poor.
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Figure 4-12 Measured and Simulated Data at Top (x415) at 5ms
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In this case, there is, at least a similar trend between revised and actual data although 

temperature ranges are still considerably different. Initial and revised, however, differ 

widely in both temperature range and trend.

sensor group
onentanon

Top Sensors - Longitudinal at z- -162mm (centre)
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Figure 4-13 Measured and Simulated Data at Top (Centre) at 12.5ms '

Again, (figure 4-13) these are typical results for top of engine compartment. No 

particular correlation between observed and either revised or initial data, although there 

are slight similarities in trend between initial and revised simulations.
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Figure 4-14 Measured and Simulated Data at Top (z34) at 12.5ms '

No discernible correlation between observed data and that from either case in figure 4- 

14. Similarities in trend are evident between the two simulations again, albeit the 

temperature ranges are very different.
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Figure 4-15 Measured and Simulated Data at Top (x415) at 12.5ms '
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In figure 4-15, there is reasonable agreement between the revised and measured data. 

The temperature ranges for the measured and revised data, it should be noted, are much 

closer for the lateral sensor bank than for the longitudinal sensor banks. Nonetheless, 

FLUENT again displays large disparities between the initial and revised profile.

sensor group 
orientation

Top Sensors - Lon^tucflnal at z= -isa rm  (centre)

250 310 360 410

Displacement (mm) In x-axIs

—«— Initial CFD — Experimental  D ata  R evised  CFD

46C

Figure 4-16 Revised Values at Top (Centre) at 20ms '

In figure 4-16, neither of the computed trends are akin to the measurements and are 

largely in poor agreement. Both simulations, however, exhibit similar trends but for very 

different temperature ranges.
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Figure 4-17 Measured and Simulated Data at Top (z34) at 20ms '

In figure 4-17, the comments of that for figure 4-16 are valid, both simulations exhibit 

similar trends but very different temperature ranges.
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Figure 4-18 Measured and Simulated Data at Top (x415) at 20ms

In figure 4-18, no particular correlation between simulations but the agreement between 

the revised and measured data is reasonable, but only just.

117



4.4. Discussion and Conclusions

The data from the rear panel sensors have, in general, been in reasonable agreement with 

the revised computed values. The same comparisons on the top of the compartment, 

however, were poor. So much so, that sensor numbering was re-examined thoroughly 

and found to be correct.

Whilst these top surface data show poor correlation, in terms of absolute temperature the 

differences are of the order of 5%. To highlight these differences in an alternative 

format, the actual values of the sensor output have been plotted on the simulation output 

in the appropriate and corresponding colours in figures 4-19 to 4-24. This gives a more 

compact visual appreciation of the resulting comparison.

Values at the rear bulkhead (figure 4-19 to 4-21), while not corresponding exactly, are 

broadly satisfactory and occasionally require the sensor data to be highlighted to 

distinguish it from the background colour. The comparison of data across several 

velocities (table 2-4 to 2-9), in the initial simulations, exhibited considerably different 

temperature contours to those measured experimentally. For the measured data, the 

trends at each sensor configuration were similar, whereas the initial simulated data 

exhibited a significant change between the lower and higher velocities.

Top sensor placement was based on a well-defined plume evident, at higher velocities, 

on initial simulations. Although there are similarities in trends between the revised data 

and initial data, the formation of the plume is not as pronounced in the revised 

simulations and the changes in temperature contour appear similar to those found in the 

lower speed initial simulations (table 2-4 to table 2-9). This suggests that although the 

cooling effect is regular in reality, it is considerably harder to model than first envisaged.
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It should be noted that the values at the top of the engine compartment show, as 

expected, little or no correlation (figure 4-22 to 4-24). The reason for this is unknown at 

present but may be associated with the effect of the insulation which was added to allow 

for the absence of the car body. Also, the simulation was on an exact copy of the 

experiment.
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Figure 4-19 Simulated Temperature Contours at 5 ms Back Panel
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Figure 4-20 Simulated Temperature Contours at 12.5 ms Back Panel
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Figure 4-22 Simulated Temperature Contours at 5 ms ' Top View
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Figure 4-23 Simulated Temperature Contours at 12.5 ms ' Top View
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5. Conclusion and Further Work

5.1. Overall Main Conclusions

It appears from the comparisons of Chapter 4 that the assumptions for using the model 

engine compartment on the chassis but without the bodyshell may have been 

inappropriate and that the engine compartment, when placed in the wind tunnel may not 

have been suitable for direct comparison with CFD prediction and vice versa. This then 

suggests the CFD simulation should perhaps have included external flow as well as the 

internal volume considered. Further, had sufficient computing power been available, 

then the CFD simulation could have included the model and wind tunnel. This would 

have highlighted the true disparities between the data sets.

Accordingly, most evident from this work is the conclusion that isolating a complex 

geometry such as the engine compartment from its overall environment is not a 

particularly efficient methodology for tackling this type of problem. It is undoubtedly a 

better strategy to include as much of the suiTOunding geometry as is permissible by 

computing power, ideally a full body simulation. As noted in chapter 2, however, these 

tend to require several million mesh elements. The trend within the industry has been to 

exploit computer power as it becomes available rather than break down a problem into 

component parts. This research tends to confirm that this will remain the most valid 

strategy for numerical simulations for some time.

Adaption of the mesh also proved to be a problem in that adapted meshes in FLUENT 

could not be used with a number of radiation models. Most significantly, the S2S model 

could not be used when it became available without complete remeshing. It was decided 

not to incorporate this model. Additionally, running the associated simulations thereafter
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would also take considerably longer than those without radiation modelling. In cases 

where radiation models are to be employed, therefore, the mesh quality has to be 

addressed at the outset. This may have to take place by considering the design of the 

mesh on the basis of a number of initial simulations.

Experimental results simply did not correlate with simulated data at the top of the 

compartment whereas those data at the rear of the engine compartment were, in many 

cases, very encouraging. This appears to show that the assumptions made were valid in 

some cases and not others. This certainly shows that an iterative approach to design 

using simulated and experimental data is a viable strategy.

CFD will no doubt become, as CAD has, a reasonably priced desktop tool for the 

engineer, but experimental methods remain the most tangible and, often, acceptable 

source of data. The combination of both methods, where the expense of experimental 

testing is alleviated by creating test models based on initial simulations and then 

enhancing the simulation by use of measured data is an idealised situation. A facility 

incorporating dedicated computing hardware and a wind tunnel facility where rapid 

turnaround of results is possible would certainly be desirable.

5.2. Design Considerations

As noted earlier, the design was affected greatly by changing commercial circumstances 

within the original sponsor company, KIS Ltd. This necessitated that the project became 

effectively independent within the university. It soon became apparent that a very 

complex geometry based on an actual production car would severely impinge on the 

computing facilities available and that a simplified generic solution would have to be 

adopted,

123



As the intention was to then integrate this work with the work of Sheng (2003), it also 

became apparent that modelling the engine compartment within the full car model would 

be limited by the available computer resources. Consequently, Sheng’s work, to which 

the author contributed, comprised modelling the closed body car model within the 

working section of the Argyll wind tunnel, whilst this work concentrated on the airflow 

within the engine compartment itself.

5.2.1. Modelling

AGIS modelling was chosen, as noted previously, because of the ability to create models 

and alter them within a short space of time using a CAD package. The dedicated 

meshing program, GAMBIT, was not used for geometry generation because of the poor 

real-time response of the visual interface on the computing facilities available. This was 

a problem to such a degree that it was found that using the command line interface could 

be more efficient. As this requires the user to define all geometry and the operations on 

it manually, it is easy to appreciate how time-consuming the process could be. This is 

not an insurmountable problem where simple geometries are concerned but more 

complex ones require a great deal of attention.

Sheng’s work was completed largely in GAMBIT but this involved modelling the fairly 

regular geometries of the working section and importing the car geometry in from IGES 

format. Additional geometries were, as with this work, created as ACIS models and 

imported.

With greater computing power, these deficiencies would be alleviated and all geometry 

could be directly created in GAMBIT. This would certainly be preferable, as the 

dedicated nature of the software would alleviate some of the problems encountered, such
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as the creation of contiguous boundaries. The main advantage of the CAD package, the 

creation of engineering drawings, is not an issue, in this case, as ACIS models can be 

imported from GAMBIT for this purpose.

5.3. Experimental Considerations

It was decided to run the experiments without the car body for two reasons. As noted 

earlier, the originally proposed wind tunnel facility was not available and there was also 

a perceived fire risk. For safety reasons, this latter concern greatly influenced the 

decision.

Insulation was originally added to the engine compartment to protect the car body but, in 

the configuration that was eventually adopted, this was assumed to be an insignificant 

factor due to the airflow directly over the compartment. This, however, may have been 

one of the major factors affecting the results at the top of the compartment.

5.3.1. Viewing Panels

The panel at the top of the engine compartment was incorporated as the use of IR 

imaging, rather than direct sensing, was envisaged at the outset. In the final model, 

however, this was not possible and so sensors were mounted on an aluminium plate 

which was fitted in the same configuration as the viewing panel. As noted above, sensor 

position area was dictated by the position of this panel at the top of the engine 

compartment and restricted their placement to some extent. The detailed placement 

within this area was, of course, guided by the CFD.
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The viewing panel at the side of the compartment was not used for sensors and was 

simply sealed with a blanking plate.

5,4. Further Development of Test Rig

5.4.1. Viewing Panel

It was considered that interchangeable panels would be useful for general experiments 

incorporating visualisation techniques and thermal studies using IR cameras but, as there 

is no facility for IR viewing becoming available, or could be borrowed within the 

department, it would be reasonable to reconstruct the top section of the model without 

the viewing panels. Ideally, if this work is to be continued in some form, two engine 

compartments could be created, one for visualisation and another for direct sensing. In 

this case, positioning of instrumentation would not be dependent on the need for 

transparent sections and the consequent problem with fouling would be negated.

5.4.2. Sensors

For temperature sensing within the ranges observed, the arrangement of thermistors 

performed well. The thermistors were calibrated to work within a given range and it was 

observed that they could go out of range when there was no airflow and before the 

engine block had cooled. It is not unreasonable, therefore, to suggest that for 

experiments which investigate wider temperature ranges that sensors could be arranged 

in discrete banks for different areas with wider variation in temperature gradients.

The positioning and density of the sensors can also be addressed. The linear positioning 

of banks of sensors was chosen due to the perceived time benefit in deriving simulation
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data in this form rather than individual data points. In the final analysis, as the data 

points do not alter for different cases, there is no particular advantage to this method for 

as few as 32 sensors. The initial approach of targeting the areas with the most extreme 

gradients could be adopted more precisely (see section 3.5.4). The number of sensor 

positions, though, could be increased twofold or fourfold and the instrumentation 

extended to the front and sides of the model. In this case, the original decision to place 

the sensors in a linear arrangement would be justified but future work with a limited 

number of sensors should address them as individual points in space.

5.4.3. Additional Sensors

As sensor positioning at the top of the engine compartment was determined primarily by 

the removable panel, there was no consideration given to other types of sensors, which 

could be mounted. The addition of pressure sensors would be a welcome addition to the 

CFD validation process simulations. The original view that the engine compartment 

could be multifunctional militated against using a larger number of sensors than were 

actually used. If, as suggested above, a second engine compartment were constructed 

purely for non-visual experiments, this would allow the engine compartment to be fully 

instrumented with pressure and velocity sensing at appropriate points.

As noted earlier, there was some interest in using the engine compartment model for IR 

studies. This was deemed impractical due to the cost of sourcing the appropriate material 

for a viewing panel of this size. If, as suggested below, there could be a redesign of the 

front end of the car model to a more simplified configuration then it could incorporate a 

circular viewing panel in an IR transmissible glass or acrylic glass. In this case the IR 

camera could be mounted say within the instrument fairing in the Argyll tunnel. The 

instrumentation is shown below in figure 5-1 with the fairing removed.
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Figure 5-1 Car Model in Argyll Wind Tunnel

5.4.4. Heated Sections

It was originally envisaged that heating elements would be cast to the exact shape of the 

engine block. Again, this was deemed to be too expensive and the mixed medium 

solution was adopted. In the event o f future research using this rig, this would be a 

desirable upgrade, as the power handling to the elements would be more controllable 

and the data available from the manufacturers would allow more accurate values to be 

incorporated into the simulations.

The surface temperatures in an actual vehicle would be less variable with airflow than 

those observed and controlling the elements to a given temperature and/ or a given 

power level would be welcomed. This would allow the use of the rig for temperature 

ranges which are not necessarily likely but which would allow general trends to be 

observed.
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5.4.5. Insulation

It is to be hoped that the engine compartment will be incorporated into the full car body 

model at some stage but, as discussed in the previous chapter, much greater 

consideration has to be given in the modelling of insulated areas.

5.4.6. Simplifying Car Model

The motivation for creating a model around the car body shape, given in the FLUENT 

tutorial files, was to have a realistic model in the wind tunnel experiment. It would 

certainly be more convenient to construct a generic front end (up to A post) from 

aluminium for further experiments. The chassis extending from the back of this section 

should not adversely affect the experiment but flow visualisation should be used at an 

early stage in its development to confirm this. This arrangement would alleviate the 

problems caused by considering insulation materials in construction, test and simulation.

5.5. CFD C onsiderations

5.5.1. Mesh Generation

Ideally, when practical, the modelling should be completed entirely in GAMBIT rather 

than importing files from a CAD package. As greater computational facilities become 

available, all but the most complex geometries can be readily created in this manner.

Although care was taken to accommodate the properties of differing materials in and 

around the engine compartment, future work should address these in greater depth or, as 

noted in the previous section, incorporate a new generic front-end model.
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Initiai models of the simplified engine compartment based on actual car geometry 

(section 3.4.1) show clearly that the inner wings and fan were initially considered. 

Although the generic engine compartment itself is now complete, there is still scope for 

the inclusion of additional components geometry within it and it would be useful to 

model the fan. This would allow for the FLUENT fan model to be incorporated to some 

useful effect.

The assumption was made, on the basis of initial simulations, that the main area of 

interest would be in the immediate vicinity of the engine block. Results have shown that 

the area further forward in the engine compartment is of interest. This suggests that the 

meshing should have been finer throughout the engine compartment although this was 

not a realistic prospect at the time.

Initial tests with energy models showed no significant improvement on the basic cases 

other than smoother temperature gradients and broadly lower temperatures. This 

certainly suggests that the radiation model can be left to be incorporated at a later stage 

of development. The surface to surface (S2S) radiation model was made available late in 

the lifecycle of this project and would have required a very considerable effort to 

incorporate into the cases already completed but it would be hoped that it could be 

incorporated into future work given the claim that it is up to 4 times less processor 

intensive than the DTRM model.

5.5.2. Boundary Conditions

Although temperatures were measured at various positions around the engine block and 

engine compartment, the anomalies at the top of the engine compartment suggests that 

the airflow encountered in that area was not as predicted. In retrospect, the use of airflow
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measurement should have been incorporated into the experimental model to provide 

feedback for modelling the inlet and outlet more accurately.

In addition the modelling of these areas, specifically the outlet, should, in future, be 

modelled as contiguous sections rather than as a single area.

5.5.3. Radiation Modelling

As noted in previous chapters, there were limitations in the use of radiation modelling 

due to the computing power available at the time. This has since been addressed and the 

S2S model should be incorporated.

5.6, Alternative Development Paths

As noted in the introductoiy chapter, this project was originally driven by the problem of 

positioning of electronic components in the underhood environment. To some extent, 

since the research was first undertaken, this has become less of an issue. However, if the 

other suggestions in this section are incorporated into future work, it would still be 

reasonable to include scaled component housings with one of the following properties 

either:

• Temperature sensing; using thermistors or thermocouples. This, however has the 

added problem of cabling;

• Pass / Fail test : including a grid of temperature sensitive materials within the 

housing and studying deformations after experiment.
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Transient testing was discussed at the outset of the project and this was the basis of the 

chassis dynamometer testing. Although this was a crude tool for the type of experiments 

that would have been required there was some discussion of the use of engine 

dynamometers and environmental chambers and the combination of data from different 

series of experiments. This avenue of testing was effectively closed down by the 

company’s liquidation but is still there to be explored. A more esoteric (and expensive) 

approach to this type of testing would be to mount an engine dynamometer within a 

modified car body shell and take measurements from the transmission rather than the 

wheels. The torque forces of the dynamometer and engine could be balanced within the 

rig by electro-rheological suspension units. This would allow the experimental rig to be 

tested in a full-scale wind tunnel. Of course, a project on this scale would be 

prohibitively expensive and would require the involvement of a manufacturer but, again, 

it is still a possible avenue for research and would be a single solution rather than 

requiring the integration of data from various experiments.

5.7. Commercial Exploitation

The project had its origins in the commercial automotive environment. That motivation 

is still there. The generic test model and the FLUENT simulation illustrate that the 

process is very complex and will require much skill in its proper interpretation. As such 

the importance of the work to commerce has increased over the original assessment.

A possible development path, which was briefly explored in the early work at KIS Ltd., 

was the integration of this type of work with ID engine simulations. A method for 

exploring more realistic simulations of actual temperatures based on factors such as 

engine load under differing conditions would be welcome but may be prohibitively 

costly in terms of man/hours.
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Another factor which impinges on the commercial worth of this work is the recent 

interest in alternative fuel vehicles and hybrid electric vehicles (HEVs). Due to 

comparatively greater engine compartment temperatures in HEVs, in particular, there 

has been a general trend to increase the temperature rating of electronic components. 

Similarly uprated components are, consequently, now being adopted in IC engines 

(BERGER 2002) and may affect the placement of components further still.

5.8. Conclusion

As shown in chapter 4, the data derived from the top of the model showed little 

coiTelation either in temperature range or trends. The possibility that the sensor numbers 

were in error was considered briefly but they are confirmed to be as per the design. This 

would tend to suggest that the shape of the entire car body is very much more significant 

to the underbody pressure than previously thought and that the flow at the top of the 

engine compartment may be considerably greater than suggested by initial simulations. 

It was also assumed that the insulation applied to the engine compartment would not be 

significant as it was applied mainly to protect the car body from the engine 

compartment. It was also assumed originally that there could be a problem with cooling 

due to insufficient insulation and this was certainly not the case, the area in question 

being considerably warmer than data derived from either the initial or revised 

simulations

Further simulations where heat generation terms were grossly overestimated made no 

significant difference to the simulated results. Use of the PI radiation model also had 

little effect on the results. The simulations for the top of the engine compartment should 

therefore be attempted again with the engine compartment and car body geometry fully
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integrated as the problem in this area has been too complex to decompose. Both the 

simulations and the experiments must be closely scrutinised and improved.

Full car body simulations show a very slight pressure differential below the car when it 

is at a comparable height to the ones used for this experiment. When these pressures 

were substituted into early cases they showed very slight differences, as might be 

expected, from the cases where a neutral pressure was incorporated. It was also assumed 

that the lack of a moving ground would also be insignificant, given the ground clearance 

of the model, but this may prove not to be the case. Without pressure sensors, it is 

difficult to tell but results suggest there is suction from the engine compartment at the 

front and that there may be a significant positive to negative pressure gradient rather 

than a neutral area, as assumed in the engine compartment simulation, or an overall 

negative pressure area, albeit a very slight one, as seen from the full car body 

simulations.

As noted above, the ability to model contiguous boundaries would prove useful in 

allowing an iterative approach to defining boundary conditions based on experiments. 

The poor results for the top of the engine compartment would appear to confirm the need 

for an iterative simulation and experimental approach.

The results show an acceptable coiTelation, however, between experimentally derived 

and simulated data at the rear of the engine compartment. This would also tend to 

suggest that the combined use of CFD and wind tunnel facilities in an iterative design 

strategy can be used to ‘fine tune’ a solution.
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Appendix 2. Initial Sketches of Chassis

The design for the model used in the experiment was derived from Gordon Bisset’s Honours 

year final project (2002). The original sketches hom which are reproduced here. All 

dimensions are in mm.

Figure Appendix 2-1 Plan View of Chassis
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Figure Appendix 2-2 Side View of Chassis
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Figure Appendix 2 3 Sections Through Car Model
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F igure Appendix 2-4 Front View of Chassis

Figure A ppendix 2-5 Section A-A

Figure Appendix 2-6 Section B-B

172



y
Figure A ppendix 2-7 Section C-C
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Figure Appendix 2-8 Section D-D
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Figure Appendix 2-9 Section E-E
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Figure Appendix 2-10 Section F-F

Figure Appendix 2-11 Section G-G
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Figure Appendix 2-12 Section H-H
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Figure Appendix 2-13 Section I-I
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Figure Appendix 2-14 Section J-J
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Appendix 3. CAD Drawings

The engine compartment referred to in the text was designed to abut onto the chassis created 

for carry the car body as used in the work of both Bissett (2002) and Sheng (2003). The 

original drawings are for the car body are shown in this appendix. The drawings herein 

concentrate specifically on the engine compartment.

Note that the rake on the downpipes as shown in figures 3-8 to 3-10 was reduced in the final 

model due to difficulties in meshing and also the possibility of fractures to the element.

F R O N T
VIEW

top  view panel.

476

Figure Appendix 3-1 Front Elevation of Engine Compartment
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VIEW
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Figure Appendix 3-2 PlanView of Engine Compartment
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R I G H T
E L E V

Figure Appendix 3 3 Right Elevation of Engine Compartment
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Figure Appendix 3-4 Wireframe CAD Model of Engine Compartment on Chassis (SE View)

Figure Appendix 3-5 Shaded CAD Model of Engine Compartment on Chassis (SE View)
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Figure Appendix 3-6 Shaded CAD Model of Engine Compartment on Chassis (NE View)

Figure Appendix 3-7 Rendered CAD Model of Engine Compartment

179



Figure Appendix 3-8 Downpipe (element) dimensions

Figure Appendix 3-9 Downpipe (element) Dimensions
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Figure Appendix 3-10 Downpipe and Engine Block within Compartment

Figure Appendix 3-11 Rendered CAD Model of Downpipes in situ
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Appendix 4. Thermistor and Themocouple Data Sheets

m.MATERIAL TYPE: G
AVAILABLE PRODUCTS:
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Figure Appendix 4-1 Thermistor Data Sheet

182



Pack C Issu ed  N ovam tKir 2005 1502400070

Data Sheet
Thermocouples
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Figure Appendix 4-2 ThermocoupleData Sheet
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Appendix 5. Drawings - Thermistor Placement

Thermistors were placed in areas of interest determined by initial results. Revised values were 

chosen for ease of manufacture.

Figure Appendix 5-1 Original Sketch for Probe Positions in Top Panel

3̂25-
-303-

-60-
(optional)

I
E0

1

^  tÎ5-*-  43 -L 4 0 ^ —3

side view

-303 -

Figure Appendix 5-2 CAD Drawing for Revised Positions on Top Panel
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3.69e+02 
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3 60B+02 
3 57e+C2 
3.53e+02 
3508+02 
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3418+02 
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3.358+02 
3 328+02 
3.298+02 
3268+02 
3238+02 
3.208+02 
3.168+02 
3.138+02 
3.108+02 
3 078+02 
3048+02 
3 018+02 
2 908+02 X-

Figure Appendix 5-3 Comparison of Top Panel Original Positions with Revised Positions

Figure Appendix 5-4 Original Sketch for Probe Positions on Rear Face
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Jia. JUL

(optional)

Figure Appendix 5-5 CAD Drawing for Revised Positions on Rear Face

i
75e+02
72e+02
69e+02
66e+02
63e+02
60e+02
57e+02
53e+02
50e+02
47e+02
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350+02
320+02
290+02
260+02
230+02
20O+02
160+02
130+02
IOe+02
07O+02
04O+02
01O+02
900+02^'

Figure Appendix 5-6 Rear Panel Revised Positions
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Appendix 6. Data Acquisition

Data acquisition programs were written in Labview by the Aerospace Department’s 

Research Technologist, Robert Gilmour. Figures 1 and 2 show the user interface for the 

two programs Datarun and Datasave. Datarun was used to verify the temperatures for 

the experiment and Datasave was used to capture sample data for analysis.

A r D .ilii R u n  vt

£ÉI f l p t t *  loot* B>ow— tfwdow

lu.uu luuu jo 00 Ju.oo U.UU

Top Panel

=1P

lu.uu |onoU.UÜ

Back Panel

Figure Appendix 6-1 DataRun.vi User Interface

Figure Appendix 6-2 DataSave vi User Interface
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Figure Appendix 6-3 DataRun.vi Functional Schematic
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■MMTb -Wif *

Figure Appendix 6-4 DataSave.vi Functional Schematic
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Appendix 7. Fluent Setup

The typical parameters for the jobs carried out in this study were entered in the following 
manner

1. Solver selected. Segregated has lower computer overhead than coupled. Other 
parameters are default values.

Solver Fonnulatlen

Segiegated
- , 
^  Implicit 1

^  Coupled r* Explicit 1

Space nme
1 r  70 : ^  S teady

Axisymmetric Swirl 
30

Vrt»dtv  FoimwWlen
Absolute 

r* Relative

OK I [ € â n ^  Help

2 .

Figure A ppendix 7-1

Viscous (turbulence) model selected. Standard k-epsilon model chosen as this is 
adequate for most industrial applications (FLUENT Training materials)

Mi
m .  .

«* Uwnlmi
f  (I ton)
rr IrapsUu P  ail*} 
r  Irama## (* isn | 
f  RaynaW* Skcaa |f  a#n| 
r* La«|a E Wy SWalaSan 

..
rr staaSaid 
r  RNC 
<* HtaHiaNa

N*tr¥MTin«Miil ^_______
rr Staadafd Wall FaacSana 
<“ NairEduMkflumWaSFaacllana 

! C Eahaacad WaH TraalaienI

f t .  19

CW taSaa

TKE Wumbet

F
uttrOtatts rtMkM
T i t i l l a i  VlacaaOy

r  Vlaaaaa HaaOa# ;

OK I iCawcall Ma#

Figure A ppendix 7-2

3. Energy equation enabled. Needed for simulations involving thermal solutions.

EüüBL
P  Energy Equation 

OK I JC s n w jl Help

Figure Appendix 7-3

190



4. Radiation Model. In this case, the radiation model was turned off as the computer 
overhead for most models was too great for. This screen, reproduced from Fluent 6, 
shows S2S model is available. Future simulations should employ this model but the 
task of remeshing for the existing simulations would have been excessively time- 
consuming.

Iloiliation Model

o«
f '  R o sse lan d  
r  PI

D iacrele T ransfer (DTRM| 
r* S urface to S urface (S2S) 

D iscrete O rdinates

Figure Appendix 7-4

5. In this case solution has been computed from all zones and has a single velocity 
component. Other parameters have default values

CsmsaW Frem
^  R e l a S v c  t o  C e l l  Z e m e  

r  A b e s l i i t a

Gauge meaaa«e jpeaeell j j

X V alec lly lin |a l|r

YValacNyWeirr
ZVetoci«y»afa|[ï 

toll I React I AasVl Claac | Help

Figure Appendix 7-5

6. The case is ready to iterate. Here, only a single iteration has been set. This is so that 
case specific data can be saved for a job to be run in the background or overnight. 
This is achieved by creating a small script file which instructs Fluent to use data from 
one case file, iterate a number of times and save the results of the run in an updated 
file. Typically a value of around 400 iterations would be entered if a job was to be run 
overnight.

N u m b e r  o f  H e r a l l o n s  | i  '  ^  |

H e p a r t i n g  t o t o i v a l  [ i  '  ^  j

U D F  P r o f i l e  U p d a t e  t o l e r v a l  f ï  '  ^  j

Figure Appendix 7-6
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Appendix 8. Research Facilities

Details on the two wind tunnels referred to in the text are reproduced here from 

http://www.aero.gla.ac.uk/Research/LowSpeedAero/facilities.htm. This web location also provides 

details on additional departmental research facilities

A8.1. Argyll Wind Tunnel

Figure Appendix 8-1

The 2.65m * 2.04m 'Argyll' wind tunnel (Figure Appendix 8-1) is a closed-retum wind tunnel with 

a maximum operating speed of 76 m/s.

Features include:

>  Two interchangeable working sections.
>  A 3.75m long by 1.9m wide moving ground that has been designed to operate at 60 m/s.
>  A yawing capability o f up to 10 degrees is included in the design.
> Rotary vortex generator for helicopter rotor wake simulation.
>  Rig can be used for studies of tip vortex structure, interaction experiments and blade tip 

geometry effects.
>  A mechanical six-component balance.

A8.2. Handley-Page Wind Tunnel

The 2.13m * 1.61m 'Handley-Page' wind tunnel is a closed-retum facility with a maximum 

operating speed of 60 m/s.

Features include:

>  Three-strut hydraulic actuation system for dynamic testing o f pitching wings and aircraft 
planforms

>  Hydraulically actuated two dimensional dynamic stall testing rig. This rig can provide a 
wide range of motion types from high/low frequency, low amplitude to high/low 
frequency, high amplitude

>  Helicopter main rotor blade vortex interaction test rig.
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