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Abstract

Parameter estimation in expensive computational models is a problem that commonly

arises in science and engineering. With the increase in computational power, mod-

ellers started developing simulators of real life phenomena that are computationally

intensive to evaluate. This, however, makes inference prohibitive due to the unit

cost of a single function evaluation. This thesis focuses on computational models of

biological and biomechanical processes such as the left-ventricular dynamics or the

human pulmonary blood circulatory system. In the former model a single forward

simulation is in the order of 11 minutes CPU time, while the latter takes approxi-

mately 23 seconds in our machines. Markov chain Monte Carlo methods or likelihood

maximization using iterative algorithms would take days or weeks to provide a result.

This makes them not suitable for clinical decision support systems, where a decision

must be taken in a reasonable time frame.

I discuss how to accelerate the inference by using the concept of emulation, i.e. by

replacing a computationally expensive function with a statistical approximation based

on a finite set of expensive training runs. The emulation target could be either the

output-domain, representing the standard approach in the emulation literature, or the

loss-domain, which is an alternative and different perspective. Then, I demonstrate

how this approach can be used to estimate the parameters of expensive simulators.

First I apply loss-emulation to a nonstandard variant of the Lotka-Volterra model

of prey-predator interactions, in order to assess if the approach is approximately

unbiased. Next, I present a comprehensive comparison between output-emulation

and loss-emulation on a computational model of left ventricular dynamics, with the

goal of inferring the constitutive law relating the myocardial stretch to its strain.

This is especially relevant for assessing cardiac function post myocardial infarction.



The results show how it is possible to estimate the stress-strain curve in just 15

minutes, compared to the one week required by the current best literature method.

This means a reduction in the computational costs of 3 orders of magnitude.

Next, I review Bayesian optimization (BO), an algorithm to optimize a computa-

tionally expensive function by adaptively improving the emulator. This method is

especially useful in scenarios where the simulator is not considered to be a “stable

release”. For example, the simulator could still be undergoing further developments,

bug fixing, and improvements. I develop a new framework based on BO to estimate

the parameters of a partial differential equation (PDE) model of the human pul-

monary blood circulation. The parameters, being related to the vessel structure and

stiffness, represent important indicators of pulmonary hypertension risk, which need

to be estimated as they can only be measured with invasive experiments. The results

using simulated data show how it is possible to estimate a patient’s vessel properties

in a time frame suitable for clinical applications.

I demonstrate a limitation of standard improvement-based acquisition functions

for Bayesian optimization. The expected improvement (EI) policy recommends query

points where the improvement is on average high. However, it does not account

for the variance of the random variable Improvement. I define a new acquisition

function, called ScaledEI, which recommends query points where the improvement

on the incumbent minimum is expected to be high, with high confidence. This new

BO algorithm is compared to acquisition functions from the literature on a large set

of benchmark functions for global optimization, where it turns out to be a powerful

default choice for Bayesian optimization. ScaledEI is then compared to standard

non-Bayesian optimization solvers, to confirm that the policy still leads to a reduction

in the number of forward simulations required to reach a given tolerance level on the

function value. Finally, the new algorithm is applied to the problem of estimating

the PDE parameters of the pulmonary circulation model previously discussed.
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Chapter 1

Introduction

Mathematics has always been considered as an abstraction and rationalization of

concepts and hypotheses based on experimental observations. However, by the con-

struction of models, mathematics started to be seen as an investigative tool, to gain

insight into a system of interest. In this approach, standard constructs typical of math-

ematics (equations, functions, ...) are being related to each other on the basis of the

available knowledge on that system and assumptions which are often experimentally

based. The combination of mathematical abstraction and experimentally-validated

hypotheses gives rise to mathematical models. In 2004, J. E. Cohen published a

thought-provoking article on the synergy between mathematics and biology, claiming

that “mathematics is biology’s next microscope, only better”, and that mathematics

is transforming biology in the same way it shaped physics in the previous centuries

(Cohen, 2004). Now, almost fifteen years later, it is time to include statistics, and in

particular modern computational statistics, in this synergy. Mathematics is providing

powerful new tools to describe biological systems and processes in a more rigorous

and quantitative manner, with parameters often representing interpretable quantities

of interest which might be hard to measure experimentally. This opens up new

challenging problems related to parameter inference, model selection and systems

identification. To put it differently, mathematical contributions to biology have

dealt with the forward (modelling) problem, while statistics aims to tackle the more

challenging inverse (inference) problem.

This thesis is concerned with the latter problem of parameter estimation in mecha-

5



CHAPTER 1. INTRODUCTION 6

nistic models of biological systems. Chapter 2 formally defines a mathematical model

as a simulator of a real world process. Typically, macro-level models are a complex

combination of smaller scale models and involve multiple layers of differential equa-

tions, making the numerical solution computationally expensive to obtain. Parameter

estimation requires many evaluations of the simulator for different parameter settings,

hence it quickly becomes prohibitive considering the generic non-convexity of the

estimation problem. To overcome this limitation, the mathematical model (simulator)

is replaced by a statistical approximation of it, called emulator. Any inference based

on the emulator will be an approximate, but computationally feasible, solution to

the original problem. Chapter 3 reviews the type of statistical approximation most

commonly used in the emulation literature: the Gaussian process. In Chapter 4, I

show how emulation can be used to estimate the parameters of a nonlinear ordinary

differential equation (ODE) known as the Lotka-Volterra model, without requiring at

each likelihood evaluation step a numerical solution of the ODE for a given parameter

setting. In Chapter 5, I estimate the parameters of a soft tissue mechanical model of

the left ventricle of the heart, whose computational costs for a single output are in

the order of 11 minutes CPU time1. Chapter 6 is a review of Bayesian optimization

(BO): an estimation method where the emulator, instead of being fixed, is updated

iteratively. Chapter 7 presents an application of BO to estimate the parameters of

a partial differential equation (PDE) model of the human pulmonary circulation.

Chapter 8 introduces a new acquisition function for Bayesian optimization and

compares it with state-of-the-art algorithms from the BO literature on a large set

of benchmark functions for global optimization. It then quantifies the reduction in

function evaluations compared to standard global optimization solvers. The novel

acquisition function is then used to estimate the parameters of the human pulmonary

circulation PDE model described in Chapter 7. Finally, Chapter 9 summarizes the

work done.
1Intel Xeon CPU, 2.9GHz, 32 cores and 32GB memory.
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Notation

I conclude with a few words about the notation used throughout this thesis. Lowercase

Latin and Greek letters denote ordinary scalar variables or functions. No distinction

is made in the notation between variables and random variables, but the meaning

should be clear from the context. Following Gentle (2009) I denote n-vectors either

as

x =


x1
...

xn

 (1.1)

or

x = (x1, . . . , xn). (1.2)

I make no distinction between the notations (1.1) and (1.2) as they represent the

same entity. When used in combination with matrices, a vector is considered an

n× 1 column matrix:

x =


x1
...

xn

 ,
and by transposing the vector x using the superscript > we obtain a row matrix

of size 1 × n. Matrices are denoted using uppercase bold italic letters and square

brackets: A = [aij ]. Sometimes it is useful to highlight the rows of an n×d matrix as

follows: X = [x1, . . . ,xn]>, where each xi ∈ Rd for i = 1, . . . , n. If A = [a1, . . . ,ad]

is an n× d matrix with columns aj (n× 1), the vectorization of A is the nd-vector:

vec(A) = (a>1 , . . . ,a
>
d ). (1.3)

Uppercase calligraphic Latin letters such as D,X ,Y, usually denote sets; while

blackboard bold style letters such as R are used for spaces. The letter L is used to

denote the likelihood function, while L denotes the log likelihood. Throughout the

text, a lowercase script ` denotes a generic loss function.



Part I

Emulation
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Chapter 2

Simulators and Emulators

The main goal of this chapter is to introduce the concepts of simulator of a real

world process (Section 2.1) and emulator of a computationally expensive simulator

(Section 2.3). We overview the problem of estimating the parameters of a simulator

in Section 2.2. This can be done by direct minimization of a loss function measuring

the distance between the model output and experimental data; however this approach

involves an expensive simulation at every iteration. To reduce the computational

costs of the minimization problem we discuss two paradigms for approximate inference

that, after an initial set of training runs, avoid further expensive simulations by

predicting the desired value from a statistical emulator. The first approach involves

emulating the simulator’s output (Section 2.3.1), while the second entails direct

emulation of the distances between the model output and the experimental data

(Section 2.3.2). Section 2.4 discusses how to design the training runs.

2.1 Simulators

Modelling is the art of capturing the main features of a real world system or process

and translating them into a mathematical or algorithmic form, the model or simulator.

A model strips away the unnecessary low-level details by looking for regularity in the

natural variability of things, in order to reach a more generic and widely applicable

abstraction. Simulators are used to recreate the original system in silico, or to gain a

deeper understanding of its constitutive elements and their interaction. Furthermore,

9



CHAPTER 2. SIMULATORS AND EMULATORS 10

a simulator typically enjoys important features that are not present in the original

process: it is easier to control, to reproduce, and less costly to observe. Simulators

can be empirical or mechanistic models. The latter comprise models that encode

a deep understanding about the system under investigation. However, mechanistic

models include functional forms and parameters which are empirically determined.

In the last decades, with the increase in computational power, scientists started

developing more complex simulators of real life processes. For example, by switching

from linear to nonlinear differential equations (DEs), adding more layers of them, and

interfacing many micro-level models in order to simulate macro-level phenomena. This

research direction led to powerful multiscale computational models of entities that

could not be described mathematically before, such as soft tissue mechanical models

of the human heart (Wang et al., 2014) and the double-sided human pulmonary

circulation (Qureshi et al., 2014). The downside of this, however, is that the cost

of a single simulation (obtaining a model output) is the direct summation of the

cost of simulating from each individual component, effectively making the simulation

process computationally expensive. For example, a single simulation from the model

presented by Wang et al. (2014) takes approximately 11 minutes CPU time1.

Simulators are usually implemented as computational models spanning numerous

lines of code and involving many tunable parameters, collected in a vector q ∈ Q ⊂ Rd,

which have a direct influence on the output. A simulator, m, can be thought of as a

function taking a vector of inputs q and returning a possibly multivariate output

y = m(q) ∈ Rk. We call m(q) the simulation at q, and it represents the model’s

prediction of the real life phenomenon. Only this input-output relationship needs to

be exploited in order to perform parameter estimation, hence the simulator can be

effectively thought of as a black-box function. In this thesis we will only deal with

deterministic simulators which will return the same output if run with the same

input multiple times. On the other hand, stochastic simulators would return different

outputs if run with the same input twice. Stochasticity is an inherent feature of

natural phenomena, but stochastic simulators are substantially more complicated than

deterministic ones, with added computational complexity. The likelihood function
1Intel Xeon CPU, 2.9GHz, 32 cores and 32GB memory.
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for stochastic differential equation (SDE) models typically needs to be approximated

as the transition density is often not available in closed-form, except in a few cases

(Iacus, 2008). On top of that, we also have to run the inferential algorithm, e.g.

maximum likelihood estimation, which iteratively calls for an approximation of the

likelihood. Under certain conditions, deterministic models have proven to be a useful

approximation to stochastic processes.

2.2 Estimation

Given experimental data yobs, assumed to come from the same generative model m,

the goal is to find the optimal parameter vector q̂ leading to a prediction m(q̂) as

close as possible to the data yobs. Let the target loss2 be the non-negative function

`m(q) = d
(
m(q),yobs

)2
, (2.1)

where d(·, ·) is a metric measuring the distance between the simulation at q and the

experimental data. The estimate q̂ is the value of q that minimizes the loss (2.1):

q̂ = arg min
q∈Q

`m(q). (2.2)

For any yi,yj ∈ Rk , possible choices for d(·, ·) are the Euclidean distance:

d2(yi,yj) = ‖yi − yj‖ =

[
k∑
t=1

(yit − yjt)2
]1/2

, (2.3)

or, more generally, the Minkowski distance of order p:

dp(yi,yj) =

[
k∑
t=1

|yit − yjt|p
]1/p

. (2.4)

2In this context, the word loss does not carry the same meaning as in decision theory. The

target loss represents a generic real-valued function measuring the distance between the observed

data and the simulation at q, and hence it should be considered as an error measure. It is used to

unify the notation and make it consistent across the thesis for different distance functions d(·, ·).

Small values of the target loss are preferred to large values and mean that the input q gives rise to

simulated data which is close or similar to the observed data, hence the value of q is plausible.
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If the outputs are correlated and coming from a distribution with covariance Σ, a

possible choice is represented by the Mahalanobis distance:

dM(yi,yj) =
[
(yi − yj)>Σ−1(yi − yj)

]1/2
. (2.5)

If the data yobs are assumed to come from a Gaussian distribution centred at the true

simulation with variance σ2I, minimizing the squared Euclidean distance corresponds

to maximizing the log likelihood. Each evaluation of the objective function `m(q)

involves a costly forward simulation m(q), hence we wish to use as few queries as

possible. If the unit cost for a simulation is t seconds, the total waiting time to

estimate q̂ will be nmax× t, with nmax being the total number of function evaluations

required by the optimization algorithm. Many global optimization algorithms have

been proposed in the literature, such as genetic algorithms, multistart and simulated

annealing methods (Locatelli and Schoen, 2013). However, these methods require

many function evaluations and are hence designed for functions that are cheap to

query. The computational complexity of the problem also rules out any Markov

chain Monte Carlo (MCMC) based inference method. In real-time decision making,

such as in-clinic decision support systems, reservoir management and monitoring

of volcanic activity, a decision has to be taken quickly. The unit cost of a single

simulation m(q) sets a computational limit on the number of function evaluations

allowed, effectively calling for a careful selection of each query point in order to

maximize the information gained.

2.3 Emulators

In order to reduce the computational burden brought by the increasing complexity

of the developed simulators, lots of attention has been drawn to the concept of

emulation (Kennedy and O’Hagan, 2001; O’Hagan, 2006). An emulator m̂, also

known as surrogate model ormetamodel, is a statistical approximation of the black-box

function m based on a set of costly training runs :

D = {qi,yi = m(qi)}ni=1. (2.6)
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real world system or 
process model or simulator

emulator
(statistical model of the 

simulator)

Figure 2.1: Diagram illustrating the concepts of simulator and emulator.

A simulator approximates the real world system (solid arrow). At the same time, an

emulator is an approximation to the simulator, hence the solid arrow. Being a double

approximation, the emulator indirectly models the real world system (dashed arrow).

The training simulations should be obtained by exploiting the fact that all n runs

used to fit the surface can be done in parallel, even before seeing any experimental

data. Whenever a simulation from the black-box function is needed at a point

which has not been run before, the costly value m(q) is replaced by a fast prediction

from the surrogate model m̂(q). Figure 2.1 shows a diagram representing the

concepts of simulator and emulator. The solid arrows indicate that a simulator is an

approximation to a real world process. At the same time, an emulator is a statistical

approximation of the simulator. The dashed arrow, instead, shows the indirect effect

of the emulator which, being a double approximation, indirectly models the real world

system. More details about the type of statistical model used in the literature, called

Gaussian process, can be found in Chapter 3. Section 2.3.1 and 2.3.2 discuss two

different approaches to estimate q̂ while substantially decreasing the computational

costs required to solve the minimization problem in (2.2).

2.3.1 Output Emulation

Output emulation represents the strategy of directly emulating the model output, i.e.

replacing m(q) by m̂(q). Different strategies have been considered in the literature
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for emulating simulators which return a multivariate output (see Conti and O’Hagan

(2010) for a review):

1. Ensemble of single-output emulators (MS)

2. Multivariate-output Gaussian processes (MO)

3. Input augmentation (IA)

Each strategy has some advantages over the others, either in terms of computational

efficiency or modelling flexibility.

If the model is multivariate, i.e. m = (m1, . . . ,mk), the first approach (MS) fits k

independent real-valued emulators m̂j(q) of yj = mj(q) for j = 1, . . . , k, and considers

the multivariate surrogate model as the vector m̂ = (m̂1, . . . , m̂k). A prediction from

m̂(q) is then obtained by predicting from each univariate component m̂j(q) for

j = 1, . . . , k. If multiple cores are available on the machine, it is possible to take

advantage of the parallel nature of the fitting and prediction tasks by fitting (or

predicting from) a univariate emulator on each core and obtaining k emulators (or

predictions) at the cost of one.

The second strategy (MO), discussed in Conti et al. (2009) and Conti and O’Hagan

(2010), involves using a k-dimensional Gaussian process as the multivariate emulator

of m. However, this comes with additional issues that make the inferential problem

more challenging: the covariance model becomes more costly, there are frequent

numerical instabilities3, and a larger number of hyperparameters (full matrices) have

to be inferred. Furthermore, starting from a k-dimensional Gaussian process prior
3As an example, consider a given number of points uniformly covering a sphere in a d-dimensional

Euclidean space. As we increase the dimensionality of the space, the points tend to move more

and more towards the outer shell. In higher dimensions, most of the volume is contained on the

surface. The data now lie on a lower-dimensional submanifold, leading to rank deficiency and lots

of eigenvalues near zero. For Gaussian processes, the issue resides in the inversion of the training

covariance matrix. When the points are highly correlated, the condition number of the matrix is

high, meaning that the solution of a linear system involving that matrix is highly sensitive and

prone to numerical errors. This leads to numerical issues in the inversion of the covariance matrix.

A common solution to improve the condition number is to add a small value, e.g. 10−6, to the

diagonal of the matrix.
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on m, the conditional posterior distribution of m given the kernel hyperparameters

and the data is a k-dimensional t-process instead of a Gaussian process.

Input augmentation, discussed by Roberts et al. (2012), considers the output

label j as an extra input, where yj = mj(q) is represented as y = m∗(q, j), with

j = 1, . . . , k. Instead of building a multivariate-output emulator of the simulator

y = m(q), this approach builds a single-output emulator of m∗(·, ·) with domain

Q× {1, . . . , k}. A similar approach was tried in the MSc project by Huang (2016),

which I co-supervised, where the label j = 1, . . . , k was replaced by an ordering

induced by the location along the first principal component of the multivariate

data matrix. However, the results were not encouraging. This might be due to the

information loss incurred by mapping the outputs to a linear subspace. Rather then

trying non-linear variants of PCA, like self-organizing maps or generative topographic

maps, it was decided to pursue the simpler approach of fitting independent univariate

emulators. We further remark that the application presented in Figure 17 of Roberts

et al. (2012) uses a dataset with large intervals of missing data. While in that scenario

there is a clear benefit in sharing information between the multiple outputs, especially

when predicting future values of time series over a left-bounded and right-unbounded

interval, in our work we will only deal with compact sets, i.e. closed and bounded,

where the inputs are fairly regularly spaced and dense. In this scenario independent

real-valued Gaussian processes work well as any test point will always have at least

one training point in a sufficiently small neighbourhood. Furthermore, because MS

fits separate independent emulators of each output variable, the Gaussian process

hyperparameters are allowed to be different across the k models, hence allowing

for more flexibility. On the contrary, MO and IA assume sharing of the kernel

hyperparameters for all j = 1, . . . , k. In general, we have no reason to believe that all

the k responses to changes of a given input will share the same smoothness behaviour.

The estimation problem in (2.2) can be approximated by replacing any query

to the expensive simulator m(q) by a call to the surrogate model m̂(q). This leads

to a loss function which does not involve any further costly simulations and can be

optimized using standard optimization algorithms found e.g. in Locatelli and Schoen
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(2013). The surrogate-based loss, given a metric d(·, ·), is the positive function:

`m̂(q) = d
(
m̂(q),yobs

)2
. (2.7)

The estimate

q̂ = arg min
q∈Q

`m̂(q)

represents an approximate, but computationally feasible, solution to the minimization

of the target loss (2.2).

Emulating the output has two drawbacks: (1) the multivariate emulator m̂

requires fitting k independent emulators m̂j. If the outputs are correlated, this

approach clearly does not use any of the information from the other variables; (2)

each evaluation of `m̂ involves predicting from k univariate emulators. If the computer

does not have enough cores, ideally k, the cost for a prediction from m̂ will be the

sum of the cost of predicting from each m̂j for j = 1, . . . , k.

2.3.2 Loss Emulation

Recall that the final goal is to estimate the vector of parameters by minimizing

the expensive-to-evaluate objective function `m, defined in (2.1), using only a few

costly simulations. Loss emulation overcomes both problems mentioned at the end of

Section 2.3.1 by reducing the dimensionality of the outputs in D. It entails emulating

the real-valued objective function `m(q) instead of the multivariate output y = m(q).

This requires an additional postprocessing step of the simulations in D. This step

reduces the dimensionality of the training outputs from kD to 1D, using the mapping

m(qi) ∈ Rk 7→ `m(qi) ∈ R, (2.8)

which does not involve any further expensive simulations. Then, instead of fitting a

multivariate emulator of the outputs y1, . . . , yk, the target of the emulation is the

univariate loss `m(q). The statistical approximation of the data D = {qi, `m(qi)}ni=1,

is denoted by ˆ̀
m(q) and will be called emulated or surrogate loss. It is worth noting

that emulation of the surrogate-based loss `m̂(q), instead, would be meaningless as it

would entail approximating a quantity which is already fast to query.
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2.4 Training Runs

We are now left with the discussion on how to design the inputs of the training data

(2.6) which are used to fit the emulator. Because of the computational complexity of

each simulation, we aim to pick each training input qi in order to cover the whole

parameter domain Q as effectively as possible. Let q = (q1, . . . , qd) denote a generic

element of Q. The simplest approach involves defining a grid gk ∈ RG between a

lower and upper bound for each coordinate qk (k = 1, . . . , d):

gk : lbk = qk1 < · · · < qkG = ubk.

The total number of points qi at which a simulation is required equals Gd, which

quickly becomes prohibitive. For example, for G = 100 the number of required

forward simulations would become one million for a simple 3D Euclidean space.

Another possibility would be drawing samples from a uniform distribution in

the d-dimensional domain. However, this can easily lead to points being clustered

together. In the emulation point of view, unlike Monte Carlo theory, this would be a

sub-optimal design choice. Computer codes are often deterministic, i.e. by running

the code with the same inputs twice we get the same output, and furthermore the

outputs at inputs which are close together are often similar, hence implying some sort

of correlation based on the distance between the inputs (Jones et al., 1998). In light

of these observations, once we have waited for a lengthy computation and observed

an output at qi, we would not gain much information on the function behaviour

by adding another evaluation in a small neighbourhood of qi. It would be rather

more informative querying in areas that have been less explored. The emulation

literature suggests the use of Latin hypercube designs or Sobol sequences, see Jones

et al. (1998); Santner et al. (2003) and Fang et al. (2006).

Figure 2.2 shows a comparison of four different choices for the inputs q1, . . . , qn.

The plots show 100 points in the 2D Euclidean space [0, 1]2 using (from top left to

bottom right) a grid-based approach, uniform random points, a Latin hypercube

design and points from the Sobol sequence. The grid points cover the space very

regularly, without clustering of points. The resolution of the grid depends on the

number of points to be generated, and vice versa. A grid-based approach is mostly
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Figure 2.2: A comparison of different design choices for the training

inputs. The plots show 100 points {qi} in the 2D space [0, 1]2 using different design

choices.
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efficient in low dimensional Euclidean spaces as the number of gridpoints increases

exponentially with the space dimensionality, limiting the applicability of this method

when each simulation is expensive. Sampling from a uniform distribution (top right

panel) can lead to points that are next to previously run ones, hence not using

the computational time efficiently to explore the whole domain. In contrast, better

approaches that scale to high dimensions are represented by Latin hypercubes and

Sobol sequences. They both try to cover the space more thoroughly by using a lower

number of points compared to uniform random samples. Latin hypercube sampling

and Sobol sequences are widely used in the emulation literature, but with different

goals. The advantage of the Sobol sequence is that it can be easily extended by adding

more points to the shorter sequence. This happens in cases when, once the emulator

has been fitted, the estimation is very poor and hence more information about the

underlying computer algorithm is needed. However, this is not so straightforward

for Latin hypercubes. For the same space dimensionality d and random number

generator seed, if we need to go from n to n+m points, we need to generate a new

Latin hypercube from scratch and the newly generated n+m points do not include

as a subset the first n ones (Santner et al., 2003). The Sobol sequence is widely used

in the emulation literature (Santner et al., 2003), while the Latin hypercube design is

the standard choice in the Bayesian optimization literature (Jones et al., 1998), where

the emulator instead of being fixed is updated iteratively. Both are valid space-filling

design choices. Furthermore, Bayesian optimization (discussed in Part 2) is used

when the simulator is not considered as fixed, but is undergoing developments. In

that scenario it would be sub-optimal spending months, computational power and

electricity to generate training runs for a given computer code when a new version of

the code is due to be released soon as the fitted emulator would not be an image of

the improved mathematical simulator.

When the bottleneck is obtaining outputs from the simulator, also compressive

sampling (Candès and Wakin, 2008) could be considered. This is based on the

observation that signals could have a sparse representation in a suitable basis. Then,

by only recording as measurements random linear combinations of the signal, it is

possible to reconstruct the original signal with far less samples than those required
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by the Nyquist–Shannon sampling theorem.

2.5 Summary

This chapter defined the concepts of simulator of a real-world process and emulator of

a computationally expensive simulator. The problem of estimating the parameters of

an expensive simulator was discussed, and two alternative strategies to approximate

and speed up the inference have been described. Output emulation (strategy 1)

involves fitting a statistical model to the simulator’s output. Loss emulation (strategy

2) entails direct emulation of the distances between the training runs and the

experimental data. Either emulation strategy can be used to accelerate the inference

as when a simulation (or the loss) is requested at a point that is not part of the

training runs, the value is predicted by the corresponding statistical model.



Chapter 3

Gaussian Processes

This chapter reviews nonparametric regression using Gaussian processes (GPs), which

represents the type of emulator commonly used in the literature. Section 3.1 shows

that the conditional expectation function (CEF) is the best predictor, hence we

will consider the prediction from the emulator to be the CEF of the predictive

distribution. Section 3.2 summarizes the simple Bayesian linear regression model

and its generalization using basis functions in order to model nonlinear input-output

relationships. Section 3.3 explains the link between Bayesian linear regression and

GPs. Section 3.4 gives the definition of a stochastic process and Section 3.5 formally

introduces GPs, which are completely specified by a mean and a covariance function.

Section 3.6 describes the classes of covariance functions commonly used in the

literature. Section 3.7 illustrates how to sample from a Gaussian process prior over

functions, while Section 3.8 discusses how to update the prior in light of the data.

Section 3.9 shows how to obtain samples from the posterior GP, while estimation of

the model hyperparameters is discussed in Section 3.10. For a general introduction to

GPs see Roberts et al. (2012), while for more details refer to the book by Rasmussen

and Williams (2006). The mathematically-oriented reader interested in the link

between Gaussian processes and reproducing kernel Hilbert spaces can also look at

Appendix E for a short description or, for more details, at Chapter 6 in Rasmussen

and Williams (2006) and Wahba (1990, 1999).

21
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3.1 Best Predictor

Suppose that we are interested in a phenomenon involving several observable variables.

The goal of supervised learning is to learn a mapping from a vector of d inputs

x ∈ X to an output y ∈ Y , using a set of training data D = {(x1, y1), . . . , (xn, yn)}.

The learned mapping is then used to predict (estimate) the value of the response

y from given values of the regressors x = (x1, . . . , xd). Depending on the nature

of the response variable, the problem is called regression if the outcome variable is

continuous or classification if the response is categorical.

A predictive model is a relationship linking the output y to the input x according

to the generative model:

y = f(x) + ε, E(ε | x) = 0. (3.1)

The term ε represents a random error which is not observable and makes sure that

to a given value of x corresponds a variety of values of y. Equation (3.1), along

with the zero conditional mean assumption on the error, implies that f(x) = µ(x),

where µ(x) = E(y | x) is known as the conditional expectation function (CEF).

In regression, f(·) predicts the average value of y when the observed value of the

independent random variables equals x. In a binary classification problem, i.e.

y ∈ {0, 1}, the function f(·) is interpreted as f(x) = E(y | x) = P(y = 1 | x).

Knowing f(·) means being able to predict the probability of y belonging to class 1

(success), when the observed value of the independent variables is x.

The estimation of f(·) is performed using n observations for which the values of

all the variables in the problem are known: D = {(x1, y1), . . . , (xn, yn)}. The

estimated function f̂(x) will be used to predict the value of y when only the

value of the independent variables x is known. There are two approaches to the

problem. The parametric one assumes that f belongs to a given family of functions

{fw(·)}w∈W with functional form depending on a number of unknown constants w,

called parameters. In this case the estimation of the regression function involves

estimating the parameters: f̂w(·) = fŵ(·). The nonparametric approach does not

put any major structural constraints on the functional form of f(·), and its shape is

informed by the data only. In this approach there are no such structural parameters
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w to estimate, but rather f(x) will have to be estimated pointwise for all x.

A predictor is any function f(x) of the independent variable x. Define the

prediction error to be y − f(x) and quantify the magnitude of the error in terms of

the mean squared prediction error (MSPE): E[y − f(x)]2 .

Theorem 3.1. The CEF µ(x) = E(y | x) is the best predictor of y for a given value

of the independent variables x. Any other predictor f(x) will have a higher MSPE:

E[y − f(x)]2 ≥ E[y − µ(x)]2. (3.2)

Proof. If E[y − f(x)]2 <∞, then:

E[y − f(x)]2 = E[y − µ(x) + µ(x)− f(x)]2

= E[y − µ(x)]2 + E[µ(x)− f(x)]2 + 2E {[y − µ(x)][µ(x)− f(x)]}

= E[y − µ(x)]2 + E[µ(x)− f(x)]2 + 2E {[µ(x)− f(x)]E[y − µ(x) | x]}

= E[y − µ(x)]2 + E[µ(x)− f(x)]2 + 2E {[µ(x)− f(x)]0}

= E[y − µ(x)]2 + E[µ(x)− f(x)]2

≥ E[y − µ(x)]2.

Because of Theorem 3.1, whenever a prediction of y is required for a given value of

the independent variables x, this will be taken to be the value of the conditional

expectation function.

3.2 From Bayesian Linear Models to Gaussian Pro-

cesses

This section focuses on the regression problem, where the outputs yi are assumed to

be noisy realizations of a latent function fw(xi), with w = (w1, . . . , wd) representing

unknown structural parameters of f(·). Equation (3.2) shows that the best predictor

is the CEF; any other f(·) will have a higher MSPE. The CEF is often a complex
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nonlinear function of x, but in some applications it can be approximated with a

linear function of both inputs and parameters:

fw(x) = x>w, y = fw(x) + ε,

where ε is assumed to be an additive, independent and identically distributed N(0, σ2)

noise term. The linearity in the inputs, however, imposes a significant limitation to

the model. If the true generative model is not linear in the inputs, this would lead

to poor predictive power.

To overcome this problem, a solution is to map the d-dimensional input to a

p-dimensional feature space, where usually p ≥ d, using a fixed set of basis functions

φ = (φ1, . . . , φp). Now, by replacing x with the feature vector φ(x), it is possible to

model nonlinear relationships between input and output variables while still having a

functional form for f(·) which is linear in the (now p-dimensional) parameter vector

w = (w1, . . . , wp):

fw(x) = φ(x)>w =

p∑
j=1

wjφj(x).

As an example, if x is univariate, the set of basis functions φ(x) = (1, x, x2, . . . , xp)

leads to polynomial regression. Usually the first basis function is φ1(x) = 1 in order

to allow for an intercept term in the model.

A fully Bayesian treatment of the linear regression model

y = φ(x)>w + ε, ε ∼ N(0, σ2) independently, (3.3)

requires assuming a prior on the regression weights; for example a multivariate

Gaussian:

w ∼ N(µ,Σ). (3.4)

Given data D = {(xi, yi)}ni=1 , we need to obtain the posterior distribution w | D

in order to find the predictive distribution of an outcome y given the data. Let

X = [x1, . . . ,xn]> denote the n× d matrix of training inputs, y = (y1, . . . , yn) the



CHAPTER 3. GAUSSIAN PROCESSES 25

n-vector of training outputs, and Φ the n× p matrix of feature vectors:

Φ =


φ(x1)

>

...

φ(xn)>

 =


φ1(x1) · · · φp(x1)

... . . . ...

φ1(xn) · · · φp(xn)

 .
The linear model (3.3) at the training inputs becomes:

y = Φw + ε, ε ∼ N(0, σ2I). (3.5)

Define f = (fw(x1), . . . , fw(xn)) = Φw. Being a linear transformation of w, its

distribution is again Gaussian:

f |X ∼ N(Φµ,ΦΣΦ>).

The marginal distribution of y is obtained by integrating over f :

p(y |X) =

∫
p(y | f)p(f |X)df . (3.6)

Since p(f | X) is a Gaussian marginal distribution and p(y | f) a conditional

Gaussian distribution with mean being a linear function of f and variance independent

of f (see 3.5), we can apply standard results found e.g. in (2.115) of Bishop (2006):

y |X ∼ N(Φµ,ΦΣΦ> + σ2I).

This shows that y = f + ε, being the sum of two independent multivariate Gaussian

random variables, inherits randomness from both of them, and the variances are

simply added because of the independence assumption.

The covariance between y and w is:

Cov(y,w) = Cov(Φw + ε,w)

= ΦCov(w,w) + Cov(ε,w)

= ΦΣ,

from the properties of the covariance and the independence between the noise ε and

w. Using the quantities derived above, the joint distribution of y and w is:y
w

 |X ∼ N

Φµ

µ

 ,
ΦΣΦ> + σ2I ΦΣ

ΣΦ> Σ

 .
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The posterior distribution of w given D is obtained by applying the conditioning

formulas for multivariate Gaussians, see Appendix C.2 in Davidson (2000):

w | D ∼ N(ŵ,Sw)

ŵ = µ+ ΣΦ>
(
ΦΣΦ> + σ2I

)−1
(y −Φµ)

Sw = Σ−ΣΦ>
(
ΦΣΦ> + σ2I

)−1
ΦΣ.

Conditioning on D = {X,y} is equivalent to conditioning on y, since X is assumed

to be given and fixed.

Let X∗ = [x∗1, . . . ,x
∗
m]> denote an m × d matrix of test inputs. We wish to

predict the unseen values of the response variable y at X∗ using our model:

f ∗ =


fw(x∗1)

...

fw(x∗m)

 =


φ(x∗1)

>

...

φ(x∗m)>

w = Φ∗w.

The posterior distribution of the regression function at the test inputs (predictive

distribution) is:

f ∗ | D ∼ N(f̂ ∗,Sf∗) (3.7)

f̂ ∗ = Φ∗ŵ = Φ∗µ+ Φ∗ΣΦ>
(
ΦΣΦ> + σ2I

)−1
(y −Φµ)

Sf∗ = Φ∗SwΦ>∗ = Φ∗ΣΦ>∗ −Φ∗ΣΦ>
(
ΦΣΦ> + σ2I

)−1
ΦΣΦ>∗

and corresponds to integrating out the parameters w, i.e. averaging the prediction

p(f ∗ | w) for a given value of the parameters w over the posterior p(w | D):

p(f ∗ | D) =

∫
p(f ∗ | w)p(w | D)dw.

In (3.7) the inputs enter only through the inner products ΦΣΦ>, Φ∗ΣΦ>, ΦΣΦ>∗ ,

and Φ∗ΣΦ>∗ , which have as generic (i, j)th entry an inner product of the form

φ(xi)
>Σφ(xj). Since Σ is the covariance matrix of w, it is a symmetric and positive

semidefinite matrix. By applying the Spectral theorem, we can find a decomposition

Σ = QDQ>, with Q orthogonal and D diagonal with nonnegative entries, so that

the matrix square root is Σ1/2 = QD1/2Q>. Let γ(x) = Σ1/2φ(x) and define the

function:

k(xi,xj) = φ(xi)
>Σφ(xj) = γ(xi)

>γ(xj). (3.8)
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Then, the posterior distribution of the regression function becomes:

f ∗ | D ∼ N(f̂ ∗,Sf∗) (3.9)

f̂ ∗ = m∗ +K>∗
(
K + σ2I

)−1
(y −m) (3.10)

Sf∗ = K∗∗ −K>∗
(
K + σ2I

)−1
K∗, (3.11)

where m∗ = Φ∗µ represents the prior mean of f ∗, the vector m = Φµ is the prior

mean of f , K∗∗ = [k(x∗i ,x
∗
j)]

m
i,j=1 is the m ×m covariance matrix of f at the test

points, K∗ = [k(xi,x
∗
j)]

n,m
i=1,j=1 is the n×m covariance between f at the training and

test points and K = [k(xi,xj)]
n
i,j=1 is the n× n covariance matrix of f .

This section showed that the Gaussian prior (3.4) onw induces a prior distribution

on the regression function fw(·) = φ(·)>w which is still Gaussian, with mean and

covariance:

E[fw(x)] = φ(x)>E[w] = φ(x)>µ (3.12)

Cov[fw(xi), fw(xj)] = φ(xi)
>Cov[w,w]φ(xj) = φ(xi)

>Σφ(xj). (3.13)

In vector notation, the prior distribution of f = (fw(x1), . . . , fw(xn)) is f | X ∼

N(m = Φµ,K = ΦΣΦ>). The variance-covariance matrix of f is the square and

symmetric matrix K = [γ(xi)
>γ(xj)]

n
i,j=1, where γ(x) = Σ1/2φ(x). The predictive

distribution was derived in (3.9) and shows that the feature vectors enter in the

formulas only through inner products.

3.3 The Kernel Trick

Instead of going through the process of defining a set of p features φ = (φ1, . . . , φp),

computing the feature vectors φ(x), and then calculating their inner products, the

kernel trick directly defines the covariance between the random variables f(xi)

and f(xj) in terms of a generic positive definite function k(xi,xj) called kernel

or covariance function. The kernel trick states that we are not restricted to the

functional form in (3.8), which is specific for the Bayesian linear regression model

(3.3) with weight prior (3.4), but we can choose any covariance function k(·, ·) that

satisfies the following conditions:
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1. Symmetry : k(xi,xj) = Cov[f(xi), f(xj)] = Cov[f(xj), f(xi)] = k(xj,xi)

2. Positivity : for all n, indices x1, . . . ,xn ∈ X and a = (a1, . . . , an) ∈ Rn:
n∑
i=1

n∑
j=1

aiajk(xi,xj) ≥ 0. (3.14)

Let K = [k(xi,xj)]
n
i,j=1, then (3.14) corresponds to requiring that a>Ka ≥ 0, i.e.

K is a positive semidefinite matrix. In particular, by setting a = (0, . . . , 1, . . . , 0)

we obtain k(xi,xi) = Cov[f(xi), f(xi)] = V[f(xi)] ≥ 0.

Definition 3.1. (Kernel function). A kernel function is any real-valued function of

two inputs that corresponds to an inner product in some feature space F :

(x,x′) ∈ X × X 7→ k(x,x′) = φ(x)>φ(x′) ∈ F ,

where φ maps an input x ∈ X ⊂ Rd to an element φ(x) of an inner product feature

space F ⊂ Rp.

The Bayesian linear regression kernel, shown in (3.8), satisfies this definition. In

Section 3.2 we followed the parametric approach to the estimation of the regression

function f . After (1) specifying a structural form for f which is linear in the

parametersw, (2) assuming a Gaussian prior on the regression weights, (3) integrating

out the weights; we obtained a prior distribution on the unknown predictor fw(·) which

is still Gaussian. Instead of assuming a given parametric form for the regression

function, the nonparametric approach lets the data only guide its shape. This

means, however, that the function needs to be estimated pointwise, for all x ∈ X ,

hence the number of parameters grows to infinity. Section 3.5 discusses a widely

used nonparametric model, called the Gaussian process, which directly specifies a

distribution on the unknown regression function f(·) and uses a kernel function, as

discussed in Section 3.3, to define the covariance between the random variables f(xi)

and f(xj) for any xi,xj ∈ X .

3.4 Stochastic Processes

Probability deals with univariate random variables (RVs) and finite sets of RVs

y = (y1, . . . , yp) known as random vectors. In principle, there is no reason why this
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should be limited to finite sequences. The theory of stochastic processes (SPs) deals

with infinite sequences of random variables, which include as special cases the ones

mentioned above.

Let (E, E) be a measurable space and T an arbitrary set, countable or uncountable.

For each t in T , let yt be a random variable defined on the measurable space (Ω,H)

and taking values in (E, E). The collection of random variables y = {yt}t∈T is a

stochastic process with state space (E, E) and index or parameter set T . For a fixed

outcome ω ∈ Ω, the function t 7→ yt(ω) is called trajectory or sample path, and

represents a realization of the random process. For a given index t ∈ T , the function

ω 7→ yt(ω) is just a random variable. For fixed index t and outcome ω, the quantity

yt(ω) is a number.

In summary, a stochastic process can be interpreted as:

1. a random function, when both t and ω are variables;

2. a single function (sample path), for fixed ω;

3. a random variable, for fixed index t;

4. a single number, when both t and ω are fixed.

When the parameter set T is discrete, e.g. the set of natural numbers N, a common

notation is {yn}n∈N. When dealing with continuous parameter spaces, such as subsets

of higher-dimensional Euclidean spaces, the stochastic process is usually denoted by

{y(x)}x∈X , where X is a subset of Rd.

3.5 Gaussian Processes

Definition 3.2. (Gaussian Process). A stochastic process f = {f(x)}x∈X is said to

be a Gaussian process (GP) if the RVs f = (f(x1), . . . , f(xn)) are jointly normal for

any n and inputs x1, . . . ,xn:

f ∼ N(m,K),

where m = (m(x1), . . . ,m(xn)) is the mean n-vector and K = [k(xi,xj)]
n
i,j=1

represents the n× n variance-covariance matrix of f .



CHAPTER 3. GAUSSIAN PROCESSES 30

Similarly to a Gaussian distribution, which is parametrized by a mean vector

and a covariance matrix, a GP is fully specified by a mean function m : X → R and

a covariance function k : X 2 → R+ returning the mean m(x) = E[f(x)] and the

covariance k(x,x′) = Cov[f(x), f(x′)] of the random variables f(x) as function of

the index only. If f is a Gaussian process, this is denoted f ∼ GP(m, k). A Gaussian

process is a nonparametric model in that the cardinality of the parameter set X is

uncountable.

3.6 Covariance Functions

Many kernels are function of the difference between the inputs only, so that k(x,x′) =

kS(x − x′). These are known as stationary kernels because they are invariant

to translations in the input space (Bishop, 2006). Another type of covariance

functions is the homogenous or radial basis function (RBF) kernels, which depend

on the magnitude of the distance (typically Euclidean) between the inputs, so that

k(x,x′) = kRBF(r), where r = ‖x− x′‖.

A commonly used RBF kernel is the isotropic (ISO) Squared Exponential (SE)

covariance function, which depends on two parameters, the lengthscale λ and the

signal standard deviation or amplitude σf :

kSE(r) = σ2
f exp

(
− r2

2λ2

)
, r = ‖x− x′‖. (3.15)

The mean and kernel functions are the parameters of the GP; so the parameters of

the kernel are called hyperparameters and collectively denoted by θ. The left panel

of Figure 3.1a shows a plot of the SE covariance function, kSE(r), vs the distance

between the inputs, r = ‖x−x′‖, for different values of the lengthscale. On the right

panel are shown samples from a GP prior using the corresponding kernel from the

left panel. With a small lengthscale, the correlation between the random variables

f(x) and f(x′) decreases quickly, hence allowing the GP to model more erratic

functions. By increasing the lengthscale, the GP can model smoother processes. In

Figure 3.1b a similar plot is shown, but varying the amplitude parameter. From

the left panel it is possible to see that σ2
f represents the marginal variance of a RV
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(a) The SE kernel (left) and GP samples (right) for varying lengthscales λ.
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(b) The SE kernel (left) and GP samples (right) for varying amplitudes σf .

Figure 3.1: The Squared Exponential Kernel.

f(x). If r = 0, then k(r) = k(x,x) = V[f(x)] = σ2
f . The right panel shows that

by increasing the amplitude, the GP can model processes having a larger y-axis

variation. A Gaussian process with the Squared Exponential covariance function

gives rise to sample paths which are infinitely differentiable. The Fourier transform

of the SE kernel is a Gaussian spectral density:

S(s) = (2πλ2)d/2 exp(−2π2λ2s2), (3.16)

see Section 4.2.1 in Rasmussen and Williams (2006). This effectively means that

the SE kernel does not model high-frequency functions because its spectral density

places most of its support on low frequencies.

Another choice is the Matérn class of kernel functions with positive hyperparame-
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ters θ = (λ, σf ). It also depends on an extra parameter, the degree ν:

kν(r) = σ2
f

21−ν

Γ(ν)

(√
2νr

λ

)ν

Kν

(√
2νr

λ

)
.

The degree gives rise to a wide class of functions ranging from quickly decaying

correlations to almost linear relations. Here Kν represents a modified Bessel function

of the second order. The most interesting kernels of this class for nonlinear regression

are represented by special cases for rational ν values (Rasmussen and Williams,

2006):

1. Exponential kernel or Ornstein-Uhlenbeck process (for ν = 1/2):

k1/2(r) = σ2
f exp (−r/λ) ; (3.17)

2. Matérn 3/2 (for ν = 3/2):

k3/2(r) = σ2
f

(
1 +

√
3r

λ

)
exp

(
−
√

3r

λ

)
; (3.18)

3. Matérn 5/2 (for ν = 5/2):

k5/2(r) = σ2
f

(
1 +

√
5r

λ
+

5r2

3λ2

)
exp

(
−
√

5r

λ

)
. (3.19)

This class of functions converges to the Squared Exponential kernel as ν →∞, as

shown in Figure 3.2. For the same hyperparameter values, by increasing the degree

ν it is possible to model smoother processes. Let dνe denote the ceiling of ν, i.e.

the smallest integer that is greater than or equal ν. A Gaussian process having

a Matérn covariance function with degree ν gives rise to sample paths which are

almost surely dνe−1 differentiable. Hence, the degree ν is also called the smoothness

parameter of the Matérn class (Santner et al., 2003). In particular, the Matérn

5/2 kernel leads to twicely-differentiable paths, which is the standard assumption

required, for example, by the Quasi-Newton methods. Recall that the SE kernel

has a Gaussian spectral density (3.16). The Wiener-Khintchine theorem states that

kernels and spectral densities are Fourier duals of each other, see Rasmussen and

Williams (2006). Hence, we can also build a kernel starting from a spectral density.
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Figure 3.2: Convergence of the Matérn class to the SE kernel. Decay in

correlation over the input distance (left) and samples from a GP prior (right) using

the corresponding kernel from the left panel. Hyperparameters fixed to λ = 1, σf = 1.

Instead of a Gaussian, consider a heavier-tailed distribution for S(s), such as a

t-spectral density, in order to give more weight to higher frequencies. By taking the

inverse Fourier transform we recover the Matérn class. It is also worth remarking

the link between a Gaussian distribution and the t-distribution. Consider a random

variable x ∼ N(µ, σ2) with unknown variance, and place an Inverse Gamma prior

on the variance: σ2 ∼ InverseGamma(a = ν/2, b = νσ2/2). By integrating out σ2,

the marginal distribution of x is a t-distribution with parameters (µ, σ2, ν). In a

similar way, the SE and the Matérn kernels are related as the spectral density of the

Matérn kernel can be obtained by assuming a Gamma prior on the lengthscale of

the Gaussian spectral density of the SE kernel.

The Rational Quadratic class with amplitude σf , lengthscale λ and exponent α

is defined as (see (3.14) in Roberts et al. (2012)):

kRQ(r) = σ2
f

(
1 +

r2

2αλ2

)−α
. (3.20)

This class converges to the SE kernel as α→∞, as shown in Figure 3.3a. Low values

of α lead to higher tails and hence a correlation which decays more slowly. Figure 3.3b

shows different kernels (left) and GP samples (right) from a RQ covariance function

with α = 1/2, σf = 1 and varying lengthscales. From the left panel we can see

that given any two inputs at distance r = ‖x− x′‖, their correlation decreases by

decreasing the lengthscale. The right panel shows that the samples from the GP
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(a) Convergence of the RQ kernel with λ = 1, σf = 1 to the SE kernel for different values of α.
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(b) RQ kernel (left) and GP samples (right) for α = 1/2, σf = 1 and different values of λ.

Figure 3.3: The Rational Quadratic kernel.

prior get smoother by increasing the correlation, i.e. by increasing the lengthscale.

The RQ kernel can be obtained as a mixture of SE kernels with varying lengthscales

distributed according to a Gamma density. Define τ = λ−2, with prior p(τ | α, β) ∝

τα−1 exp(−ατ/β). It can be shown that (Rasmussen and Williams, 2006):

kRQ(r) =

∫ ∞
0

kSE(r | τ)p(τ | α, β)dτ

∝ σ2
f

(
1 +

r2

2αλ2

)−α
,

where we defined β−1 = λ2.

A generalization of the isotropic SE kernel is the ARD Squared Exponential

covariance function:

kSE(x,x′) = σ2
f exp

{
−1

2

d∑
i=1

(xi − x′i)2

λ2i

}
. (3.21)
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The acronym ARD stands for automatic relevance determination, and it refers to

kernels that allow for a different lengthscale parameter λi (i = 1, . . . , d) in each

dimension. When an input dimensionality has a large lengthscale, the function is

effectively flat along that direction, meaning that the input is not relevant. The

isotropic SE kernel (3.15) can be obtained by setting λi = λ for i = 1, . . . , d.

Also the Matérn class can be extended to have a different lengthscale in each

dimension:

1. ARD Exponential kernel:

k1/2(x,x
′) = σ2

f exp (−r) , r =

√√√√ d∑
i=1

(xi − x′i)2
λ2i

;

2. ARD Matérn 3/2 kernel:

k3/2(x,x
′) = σ2

f

(
1 +
√

3r
)

exp
(
−
√

3r
)
, r =

√√√√ d∑
i=1

(xi − x′i)2
λ2i

;

3. ARD Matérn 5/2 kernel:

k5/2(x,x
′) = σ2

f

(
1 +
√

5r +
5

3
r2
)

exp
(
−
√

5r
)
, r =

√√√√ d∑
i=1

(xi − x′i)2
λ2i

.

(3.22)

Similarly, the Rational Quadratic class can be extended to the ARD case as follows:

kRQ(x,x′) = σ2
f

(
1 +

1

2α
r2
)−α

, r =

√√√√ d∑
i=1

(xi − x′i)2
λ2i

.

Among those, the ARD Squared Exponential and ARD Matérn 5/2 kernels are the

most commonly used in the emulation literature.

When modelling nonstationary functions, common choices for the kernel are the

Neural Network covariance function or, if there is evidence of periodicity, the Periodic

kernel; see (4.29) and (4.31) in Rasmussen and Williams (2006) respectively.

As discussed in Jones et al. (1998), deterministic simulators (representing the

focus of this thesis) typically return similar values for inputs which are close together

in the domain. Given the usually small number of training samples due to the fact
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that each simulation is expensive, for example in Bayesian optimization we start

with n = 10× d training samples, it is hard to understand if the underlying process

is periodic or highly erratic. In order to assess periodicity, we would need lots of

training data. In the emulation of expensive computer codes literature, a common

prior assumption is to use the SE kernel. This takes into account the correlation

between the outputs of computer simulators for inputs which are close together.

Furthermore, a GP with a SE kernel is known as a universal approximator : for

enough training data it can approximate any function arbitrarily well (van der Vaart

and van Zanten, 2009).

Regarding the mean function, in the GP literature it is common to assume a

zero-mean process after standardizing the training data. We prefer to use a constant

mean function, whose constant value is inferred jointly with the remaining GP

hyperparameters. In practice, it is hard to specify a prior mean function for the

same reason described above: limited training data. Considering that we work in

compact spaces, i.e. closed and bounded, the choice of the mean function is also

not very substantial. On the other hand, for prediction beyond the training data, it

would play a rather substantial role as, with lack of data, the GP tends to go back

to the prior.

3.7 Sampling From a Gaussian Process Prior

Let {x1, . . . ,xn} be a set of n points from X . In order to generate a sample from a

GP prior f ∼ GP(m, k):

Algorithm 3.1. Sampling from a Gaussian process prior.

1. Calculate the mean vectorm = (m(x1), . . . ,m(xn)) and the covariance matrix

K = [k(xi,xj)]
n
i,j=1 by pointwise evaluation of the mean function m(·) and

kernel function k(·, ·) respectively.

2. Obtain the Cholesky decomposition of K = U>U .

3. Generate a sample z1, . . . , zn independently from z ∼ N(0, 1) and let z =

(z1, . . . , zn).
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4. Return f = m+U>z.

Figure 3.4 uses n = 1000 linearly spaced points between 0 and 10. Each panel uses

the prior mean function m(x) = 0 for all x ∈ X and shows, for a given kernel, three

samples from a GP prior (blue lines), the prior mean m (red line), and in gray the

approximate 95% confidence interval m(x)± 2
√
k(x,x) for all x ∈ X .

3.8 Posterior Gaussian Process

Until now we have shown how to specify a Gaussian process prior over functions.

This section shows how to update the prior distribution in light of the data, in order

to make predictions at unseen cases.

Given observations D = {(x1, y1), . . . , (xn, yn)}, assumed to come from the

generative model

y = f(x) + ε, ε ∼ N(0, σ2) independently, (3.23)

the goal is to predict y at an unseen point x.

In matrix form, the model is y = f + ε, with ε ∼ N(0, σ2I). Similarly to (3.6),

the marginal distribution of y is:

y |X ∼ N(m,K + σ2I). (3.24)

Hence, the joint distribution of y and f(x) is: y

f(x)

 ∼ N

 m

m(x)

 ,
K + σ2I k(x)

k(x)> k(x,x)

 .

Here, K = [k(xi,xj)]
n
i,j=1 is the n × n covariance matrix of f evaluated at the

training inputs, k(x) = (k(x1,x), . . . , k(xn,x)) is the column n-vector containing

the covariances between f at each training input and the test point x, while m =

(m(x1), . . . ,m(xn)) represents the prior mean at the training inputs.

Using the formulas for the conditional distribution of a Gaussian random vector,

see Appendix C.2 in Davidson (2000), we obtain the predictive distribution of f(x)
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(c) Matérn 1/2 kernel with λ = 1, σf = 1.

Figure 3.4: Samples from a GP prior.
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given data D:

f(x) | D ∼ N(f̂(x), s2(x)) (3.25)

f̂(x) = m(x) + k(x)>
[
K + σ2I

]−1
(y −m)

s2(x) = k(x,x)− k(x)>
[
K + σ2I

]−1
k(x).

As mentioned before, conditioning on D = {X,y} is equivalent to conditioning on y

only, since X is assumed to be given and fixed. This can be easily generalized to

obtain the posterior Gaussian process:

f(x) | D ∼ GP(f̂(x), s(x,x′)) (3.26)

f̂(x) = m(x) + k(x)>
[
K + σ2I

]−1
(y −m)

s(x,x′) = k(x,x′)− k(x)>
[
K + σ2I

]−1
k(x′).

For simplicity, assume that the prior mean is zero: m(x) = 0 for all x ∈ X . We

collectively denote by θ all model hyperparameters: mean, kernel and noise standard

deviation σ. Figure 3.5 shows the process of updating the GP prior by conditioning

on the observed data.

It is worth noting that the predictive mean can be written in two different but

equivalent ways:

f̂(x) = k(x)>
[
K + σ2I

]−1
y

= k(x)>a (3.27)

= b>y, (3.28)

where a = [K + σ2I]
−1
y and b = [K + σ2I]

−1
k(x). The predictive mean is a

linear combination of n kernel functions k(x) = (k(x1,x), . . . , k(xn,x)), see (3.27).

The other identity, (3.28), is often referred to by saying that the mean is a linear

predictor, in the sense of being a linear combination of the observations in y.

3.9 Sampling From the Posterior

The process of sampling from the posterior essentially follows the same steps described

in Algorithm 3.1, but using the mean and covariance function of the posterior process.

Let {x∗1, . . . ,x∗m} be a set of unseen cases to predict.
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(c) Samples from the GP posterior.

Figure 3.5: Conditioning the GP on data.
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Algorithm 3.2. Sampling from a Gaussian process posterior.

1. Compute the m-vector f̂ ∗ = (f̂(x∗1), . . . , f̂(x∗m)) and the m × m covariance

matrix S∗ = [s(x∗i ,x
∗
j)]

m
i,j=1 by pointwise evaluation of the predictive mean f̂(·)

and covariance function s(·, ·) respectively.

2. Obtain the Cholesky decomposition of S∗ = U>U .

3. Generate a sample z1, . . . , zm independently from z ∼ N(0, 1) and let z =

(z1, . . . , zm).

4. Return f ∗ = f̂ ∗ +U>z.

Figure 3.6 shows samples from the posterior process (3.26) in blue, the predictive

mean in red, and in gray the approximate 95% confidence interval f̂(x)± 2s(x) for

all x. The chosen test points {x∗1, . . . , x∗m} were m = 1000 linearly spaced points

between 0 and 10. Each panel shows samples from the posterior for a different level

of the noise standard deviation σ ∈ {0, 0.1, 0.5}. In Figure 3.6a it is interesting that

the GP model also works in the noise-free scenario, unlike most parametric methods

that can not interpolate the training data exactly.

3.10 Training a Gaussian Process

Section 3.8 showed how to update the Gaussian process prior in the light of the data

D to obtain a posterior distribution. Then, Section 3.9 discussed how to sample from

the posterior GP. This approach is feasible only if you have a strong prior knowledge

about the data generating process (DGP), as it requires fully specifying a mean and

covariance function (including the hyperparameters).

Typically we only have vague prior information and, in order for the method

to be of practical use, we need to be able to choose between different mean and

covariance functions in light of the data. We refer to this process as training or

fitting the Gaussian process. In practice, by looking at the data it is possible to select

a parametric family of mean and kernel functions. This corresponds to specifying

a hierarchical prior where the mean and covariance functions are parametrized
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Figure 3.6: Samples from the posterior GP with the SE kernel.
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by some hyperparameters and the ultimate goal of the training is to infer these

hyperparameters from the data. The hyperparameters correspond, as shown in

Section 3.6, to how fast the correlation decays, the amplitude, and the noise.

As an example, if the data show that the DGP is very smooth, good choices for the

covariance function are the SE or the Matérn 5/2 kernels. If, instead, the pattern is

very erratic and rough, a better choice would be the Matérn 1/2 (Ornstein-Uhlenbeck)

kernel. As remarked above, choosing the kernel allows us to specify our vague prior

information easily. However, we still allow for the data to guide the selection of the

kernel hyperparameters.

Let C = K + σ2I denote the covariance of the noisy outputs y. From (3.24) we

can obtain the log marginal likelihood :

L(θ) = log p(y |X,θ) = −1

2
log |C| − 1

2
(y−m)>C−1(y−m)− n

2
log(2π), (3.29)

where the name “marginal” is due to the marginalization over the unknown function

values:

p(y |X,θ) =

∫
p(y | f)p(f |X)df

=

∫
N(y | f , σ2I)︸ ︷︷ ︸

i.i.d. noise

N(f |m,K)︸ ︷︷ ︸
GP prior

df

= N(y |m,K + σ2I).

The partial derivatives of the log marginal likelihood with respect to the model

hyperparameters are (Rasmussen, 2004):

∂

∂θm
L(θ) = −(y −m)>C−1

∂

∂θm
m (3.30)

∂

∂θk
L(θ) =

1

2
tr

(
C−1

∂C

∂θk

)
+

1

2
(y −m)>

∂C

∂θk
C−1

∂C

∂θk
(y −m),

where θm and θk represent the hyperparameters of the mean and kernel function

respectively.

Estimation of the kernel hyperparameters can be done by selecting the θ that

maximizes the log marginal likelihood given in (3.29), with partial derivatives (3.30),

using for example the Quasi-Newton method, see Givens and Hoeting (2012). This

is the approach used throughout the thesis, where the Quasi-Newton method stops
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iterating when either the tolerance on the log marginal likelihood value is less than

10−6, the tolerance on the θ value is less than 10−12 or the maximum number of

iterations exceeds 10000, see Appendix A for more details.

Define the following summaries of the observed data D = {(xi, yi)}ni=1:

ȳ =
1

n

n∑
i=1

yi

sy =

√√√√ 1

n− 1

n∑
i=1

(yi − ȳ)2

x̄j =
1

n

n∑
i=1

xij

sxj =

√√√√ 1

n− 1

n∑
i=1

(xij − x̄j)2.

As intelligent starting guesses for the optimization of the model hyperparameters I

recommend the following settings which, from experience, work well in practice:

• Constant mean function m(x) = c for all x ∈ X : c0 = ȳ;

• ARD lengthscales: λ0j = sxj for j = 1, . . . , d;

• ISO lengthscale: λ0 = 1
d

∑d
j=1 sxj ;

• Signal standard deviation: σ0
f = sy;

• Noise standard deviation: σ0 = σ0
f/
√

2 or lower for noise-free data, e.g. 10−3.

The initial value for the noise standard deviation is equal to the signal standard

deviation divided by
√

2, i.e. the noise variance is initialized to half of the signal

variance. This is because, intuitively, the noise should be smaller in magnitude than

the variation in function range.

The log marginal likelihood (3.29) would make it easy for the predictive mean

to fit the data exactly: this happens by setting σ = 0. However, the first term,

−1
2

log |C|, is a penalty on the complexity of the model and balances the second

term representing a measure of data fit. Indeed, the second term is the only one

depending on the training outputs. The last term is a log normalization constant.
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From (3.29) it is clear that the tradeoff between data-fit and model complexity is

automatic and there is no need to estimate an additional regularization parameter,

for example using generalized cross validation, as in penalized regression splines. The

hierarchical specification of the GP prior also allows the user to set hyperpriors on

the GP hyperparameters if they wish. The estimation of θ could then be performed

for example by maximum a posteriori (MAP).

Figure 3.7 shows, for the same set of training data, the posterior GP for different

hyperparameter settings, along with their respective log marginal likelihood score.

Figure 3.7a appears to be the best fit, while the GP in Figure 3.7b is just tracking

the noise. The log marginal likelihood criterion chooses as the best vector of

hyperparameters the first one, which has the highest score.

The problem of model selection, i.e. selecting the type of covariance function, can

be done by sampling hyperparameters from the posterior and then using advanced

information criteria like WAIC or WBIC (Watanabe, 2010, 2013).

3.11 Summary

This chapter discussed nonparametric regression using Gaussian processes: a powerful

regression method that, unlike parametric models, is also able to interpolate the

training data exactly. It then established the link between Bayesian linear regression

models and GPs using the kernel trick. A GP is completely specified by a mean and

a covariance function; so Section 3.6 discussed several families of covariance functions

and the effect they have on the sample paths. Next, it showed how the GP prior on

functions can be updated in light of data, to obtain the posterior Gaussian process.

Finally, Section 3.10 discussed how to train a GP model, i.e. how to estimate the

model hyperparameters from the observed data. The Gaussian process represents

the statistical model that will be used in the next chapters to build emulators of

expensive simulators or of their functions.
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(b) θ = (λ, σf , σ) = (1/3, 2, 1/20) L(θ) = −47.8

Figure 3.7: Two posterior GPs and the corresponding log marginal likeli-

hood scores.



Chapter 4

Parameter Estimation in Nonlinear

ODEs

Inference in nonlinear ordinary differential equations (ODEs) is challenging due to

the many numerical integrations at different parameter settings required by global

optimization algorithms or MCMC schemes. In this chapter I explore an emulation-

based approach for approximating the likelihood, based on Gaussian processes, with

the objective to reduce the number of numerical integration steps. This is a different

approach from the standard emulation literature, which entails direct emulation of the

output (Kennedy and O’Hagan, 2001; O’Hagan, 2006). The viability of the scheme

is assessed on a nonstandard variant of the Lotka-Volterra model of predator-prey

interactions.

Notes This chapter is adapted from: Noè, U., Filippone, M., and Husmeier, D.

(2015). Emulation of ODEs with Gaussian processes. In Proceedings of the 30th

International Workshop on Statistical Modelling, pages 191–194.

4.1 Motivation

Ordinary Differential Equations (ODEs) arise in the study of several areas of science

and engineering. They describe the evolution over time of a set of state variables

of a system of interest in a concise and elegant manner while providing means for

47
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interpreting the underlying dynamics of the system. However, carrying out parameter

inference is challenging for a number of reasons. First, the likelihood can be highly

multimodal. Second, direct numerical integration of ODEs for several settings of the

parameters can be prohibitively expensive to be feasible. Motivated by encouraging

results reported in Wilkinson (2014), I explore the feasibility of emulation based on

Gaussian processes (GPs) for accelerated inference in ODEs such that an explicit

numerical solution is only required for a comparatively small set of parameters. I

report an experimental evaluation of the proposed emulation approach on a two-

parameter Lotka-Volterra (LV) model where it is possible to gain insights into the

potential and the limitations of the considered approach.

4.2 Numerical Solution of Differential Equations

A general continuous-time dynamical system described by the interaction of S state

variables can be modelled by a functional equation of the form:

du(t)

dt
= g(u(t), t; q), u(t0) = given, q ∈ Q ⊆ RD,

where the S states at time t are u(t) = (u1(t), . . . , uS(t)), g = (g1, . . . , gS) is the

vector-valued function describing their evolution over time, and q is a vector of

parameters.

If the state-space form of the differential equation can be expressed as du(t)/dt =

G(t)u(t) + L(t)w(t), where w(t) represents a forcing function, then it is called

linear differential equation and it belongs to a class of differential equations that

can be solved analytically unlike general nonlinear ones. If the forcing term is not

present, the differential equation is said to be homogeneous. In order to solve linear

time-invariant homogeneous differential equations we recall the separation of variables

method for the scalar case and the series based approach (matrix exponential) in the

multivariate case. Inhomogeneous linear time-invariant ODEs can be solved using

the integrating factor method and the Fourier transform. The integrating factor

method can also be used in the case of linear time-varying homogenous differential

equations.
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For nonlinear ODEs having the form du(t)/dt = g(u(t), t; q), u(t0) = given,

there is no general rule to find an analytic solution, but we can approximate it

numerically using e.g. Euler’s method, Heun’s method or Runge-Kutta methods, see

Särkkä and Solin (2018). Getting an approximate solution can be computationally

expensive for ODEs describing complex systems which comprise high dimensional

parameter vectors.

4.3 GP Emulation for ODEs

Let U (q) ∈ RT×S denote the numerical solution of the ODE at times t = (t1, . . . , tT )

for a given parameter vector q. Assume that the data matrix Y comes from the

data generating process U(·), corrupted by additive i.i.d. Gaussian noise:

Y = U(q∗) +E, [E]ij ∼ N(0, σ2) independently.

Any optimization or inference scheme for the ODE parameters would entail repeatedly

solving the ODE for different parameter configurations. Consider, as discussed in

Chapter 2, the squared Euclidean loss function measuring the distance between a

numerical solution U(q) and the data Y :

`(q) = rss(q) = ‖vec(Y )− vec(U(q))‖2. (4.1)

The residual sum of squares (RSS) function is the one which is most often used

empirically, see for example the DREAM challenges1. The RSS function in output-

space also corresponds to the negative log likelihood under the i.i.d. noise assumption.

Each evaluation of ` involves an explicit numerical solution of the ODE, hence direct

minimization of `(q) might not be feasible. The goal is to estimate the parameters by

numerically solving the ODE only at a limited number of parameter configurations.

Unlike the standard emulation literature, which focuses on emulating the outputs

(Kennedy and O’Hagan, 2001; O’Hagan, 2006), let us explore an emulation of

the loss approach based on GPs as follows. Consider N parameter configurations

Q = [q1, . . . , qN ]>. For each of the N parameter configurations, compute the
1http://dreamchallenges.org/

http://dreamchallenges.org/
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corresponding numerical solution U (qn) of the ODE. Then compare these numerical

solutions with the data Y using the squared Euclidean loss (4.1), obtaining the

vector ` = (`(q1), . . . , `(qN)). The next step involves fitting a GP to the training

data D = {Q, l} = {(qn, ln)}Nn=1, where l is the normalized RSS vector `. The nth

component of l is:

ln =
`n − ¯̀

s`
, ¯̀=

1

N

N∑
n=1

`n, s` =

√√√√ 1

N − 1

N∑
n=1

(`n − ¯̀)2.

This way we can infer the optimal ODE parameters relying on the GP emulator

rather than numerically integrating the ODE every time we are interested in the

plausibility of a different combination of parameters q /∈ Q.

The regression model ln = l(qn) + εn assumes the training outputs as observations

from a latent function l(q), which is given a Gaussian process prior, corrupted by

additive i.i.d. N(0, σ2
l ) noise. The loss function is deterministic, but allowing for

a small noise value can improve the conditioning number of the GP kernel matrix.

We collectively denote all model hyperparameters (mean, kernel and noise standard

deviation) by θ. The proposed hierarchical nonparametric Bayesian model makes

use of the ARD Squared Exponential kernel2 (3.21) and is given by:

l | l(Q), σ2
l ∼ N(l(Q), σ2

l I)

l(q) ∼ GP(m(q), k(q, q′))

k(q, q′) = σ2
f exp

{
−1

2

D∑
d=1

(qd − q′d)2

λ2d

}
,

(4.2)

where q, q′ ∈ Q, the latent values are l(Q) = (l(q1), . . . , l(qN )) and, as a consequence

of normalization, we assume that m(q) = 0 for all q ∈ Q. The hierarchical model in

(4.2) consists of 2 levels of randomness:

1. A Gaussian likelihood: p(l | l(Q), σ2
l ) = N(l | l(Q), σ2

l I);
2A Gaussian process with the SE kernel gives rise to sample functions which are infinitely-

differentiable. However, it is important to notice that finite-order ODEs can have infinitely-

differentiable solutions. For example, the solution of du/dt = −u is u(t) = c × exp(−t), which

is clearly infinitely-differentiable. Then, taking the L2 loss, we still have a function which is

infinitely-differentiable.
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2. A GP prior on the regression function: p(l(Q) | Q) = N(l(Q) | 0,K).

The GP formulation yields predictions for the normalized RSS score l(q) corre-

sponding to any ODE parameters q ∈ Q using standard properties of GPs, see

(3.26):

l(q) | Q, l ∼ GP(l̂(q), s(q, q′))

l̂(q) = k(q)>[K + σ2
l I]−1l

s(q, q′) = k(q, q′)− k(q)>[K + σ2
l I]−1k(q′),

(4.3)

where k(q) = (k(q1, q), . . . , k(qN , q)) is the N -vector of kernels between each training

input and the test input, and K = [k(qi, qj)]
N
i,j=1 is the N ×N training covariance

matrix.

In the case of observations vec(Y ) assumed to be distributed as a Gaussian

centred at the solution of the ODE with variance σ2I, we can interpret this approach

as emulating a negative tempered log likelihood. The log likelihood of the model is:

L(q) = log p(D | q) = const− 1

2σ2
`(q), (4.4)

and from l(q) = {`(q)− ¯̀}/s` follows that `(q) = ¯̀+ s` × l(q). Substituting in the

log likelihood equation we get:

L(q) = const− 1

2σ2
`(q)

=

(
const−

¯̀

2σ2

)
− s`

2σ2
l(q)

= const− s`
2σ2

l(q).

(4.5)

This means that modelling the normalized RSS score l(q) corresponds to modelling

the negative logarithm of a power of the likelihood of the model. The approach

discussed above is in spirit different from the Latent Force Models by Álvarez

et al. (2009) and Särkkä et al. (2017). It is important to stress that instead of

modelling the output Y , or latent variables F which are linearly related to the

output (Y = FW +E) as in Álvarez et al. (2009), we instead focus on emulating

the residual sum of squares function.
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4.4 Experimental Evaluation

In this section I explore the performance of the approach discussed above on a

non-standard variant of the Lotka-Volterra (LV) system, introduced by Mingari

Scarpello and Ritelli (2003). The ODE describing the evolution over time of the

S = 2 states is: x
′
1(t) = x1(t) [a− bx2(t)]

x′2(t) = x2(t) [−c+ dx1(t)] .

(4.6)

Let us define u1(t) := log
[
d
c
x1(t)

]
u2(t) := log

[
b
a
x2(t)

]
,

obtaining the following reparametrization of (4.6):u
′
1(t) = a [1− exp{u2(t)}]

u′2(t) = −c [1− exp{u1(t)}] .
(4.7)

Here the components of u = (u1, u2) represent the populations of “log preys” and

“log predators” respectively, but for simplicity the word “log” is considered as implicit.

In all the experiments that follow, the initial conditions are fixed to u(0) = (0, 1).

Assume that the true population parameters are q∗ = (a∗, c∗) = (2, 1), and let U (q∗)

denote the numerical solution at T = 50 linearly spaced times t = (t1, . . . , t50) with

t1 = 0 and t50 = 20. The simulated data Y are obtained by adding i.i.d. Gaussian

noise to U(q∗) with signal-to-noise ratio SNR = 10. Figure 4.1 shows the two

columns of the data matrix Y , which represent the observed preys and the observed

predators, as well as the underlying true signal for preys and predators.

As discussed in Section 2.4, in order to fit a GP emulator to the normalized RSS

scores, we need a set of training runs (2.6). Given the low-dimensionality of the

parameter space (D = 2), consider a grid of G = 20 values for each parameter in

[0.75, 5]. The N×D matrixQ = [q1, . . . , qN ]> contains all the possible N = G2 = 400

configurations of the parameters (a, c), and is given by:

Q =

a1 . . . a1 a2 . . . a2 . . . aG . . . aG

c1 . . . cG c1 . . . cG . . . c1 . . . cG

> .
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Figure 4.1: The true numerical solution of the two-parameters LV model for

t ∈ [0, 20], and T = 50 linearly spaced observations.

The GP hyperparameters θ are set by maximizing the log marginal likelihood starting

from the initial values discussed in Section 3.10. In particular, the initial value for the

noise standard deviation is set to 10−3 as the function to be emulated is deterministic.

Given the GP posterior mean l̂(q) from (4.3), the emulated log likelihood and the

emulated likelihood are transformations of l̂(q), see (4.5). Furthermore, the emulated

log likelihood and the emulated likelihood are scaled, for plotting purposes, to have

a maximum equal to zero and one respectively:

const + L̂(q) = − s`
2σ2

l̂(q)−max[− s`
2σ2

l̂(q)]

const× L̂(q) = exp{const + L̂(q)}.

Figure 4.2 (a) shows the emulated log likelihood and (b) the emulated likelihood for

the data in Figure 4.1. Using multiple cycles leads to very spiky likelihood landscapes,

as also found by other authors (see e.g. Lazarus et al. (2018)).

We can estimate the ODE parameters by maximizing the emulated log likelihood

or, equivalently, by minimizing the Gaussian process predictive mean l̂(q). In

formulas:

q̂ = arg min
q∈Q

l̂(q) (4.8)

s.t. q ∈ [m,M ]2

where we assumem = min({ag}Gg=1) = min({cg}Gg=1) = 0.75 andM = max({ag}Gg=1) =
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(a) (b)

Figure 4.2: The emulated log likelihood (a) and the emulated likelihood (b) for the

T = 50 linearly spaced observations shown in Figure 4.1.

max({cg}Gg=1) = 5. From the properties of GPs, we have an analytical form for the pre-

dictive mean l̂(q), its gradient ∇l̂(q), and the Hessian H(q), see Appendix B. Hence,

the minimization problem in (4.8) can be solved using the trust-region-reflective al-

gorithm (Byrd et al., 1988; Branch et al., 1999) implemented in MATLAB’s fmincon

function, which requires up to the second order derivatives.

The training inputs Q represent a fixed and pre-specified design. Consider

generating K = 1000 different datasets {Y k}Kk=1, using different random number

generator seeds, from the true signal U(q∗). To each dataset Y k corresponds a

vector of training normalized RSS scores lk which, together with the pre-specified

design Q, form the GP training data Dk = {Q, lk}. The posterior Gaussian process,

given data Dk, has predictive mean l̂k(q). Minimize each function l̂k(q) using a set

of 50 starting points designed as follows. The starting points should include the

training inputs q(1), q(2), q(3) ∈ Q giving rise to the three lowest training RSS scores

in lk. Next, include 12 randomly sampled points from a N(q(i), 0.12I), for i = 1, 2, 3.

Finally, add 11 points sampled from a uniform distribution on [0.75, 5]2 in order to

explore the domain.

A local solver is run from each starting point, and the best minimum is kept,

discarding the remaining ones. The optimal value is denoted q̂k and represents the

optimal parameter vector for the kth dataset Y k. The sample of optimal parameters
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for the K = 1000 datasets is denoted {q̂k}Kk=1.

In order to understand more clearly the distribution of {q̂k}Kk=1, consider a

multivariate kernel density estimator (KDE):

p̂(q) =
1

K|H|

K∑
k=1

κ
(
H−1(qk − q)

)
,

where κ(·) is the standard Gaussian kernel function κ(q) = (2π)−D/2 exp{−1
2
q>q},

H = diag(h1, . . . , hD) is the diagonal matrix having the bandwidth parameters as

diagonal elements and in our case D = 2. The bandwidth parameters are chosen

according to the Normal reference rule (Bowman and Azzalini, 1997):

hd = σd

{
4

(D + 2)K

} 1
D+4

,

where σd represents the standard deviation of dimension d, which is replaced by a

sample estimate.

The optimization results are shown in Figure 4.3. Panel (a) is a scatterplot of the

optimal parameters for the 1000 different datasets (red dots) and the truth q∗ (black

diamond). The distribution of the optimal parameters is not scattered around the

true value, suggesting some sort of bias. However, the true value is not distant from

the cluster of optimal parameters, suggesting a good reconstruction in function-space.

We notice that for one dataset (corresponding to the random seed 301) the estimated

parameter vector q̂301 lies outside of the bulk of the distribution. Panel (b) shows the

kernel density estimate along with the truth (black diamond). In order to assess the

performance in function-space, Panel (c) displays in black the true underlying signal

and in red the solution U(qKDE) using the parameter vector which maximizes the

KDE. We can see that the reconstruction of the true signal in function-space is very

accurate even though the distribution in parameter-space is not centred around q∗.

Figure 4.4 analyzes in more detail the dataset Y k giving rise to the outlier q̂k,

which happens for k = 301. Panel (a) shows the underlying true signal U(q∗) and

the two columns of Y 301, representing the observed preys and predators respectively.

Panel (b) plots the emulated log likelihood and (c) the emulated likelihood. We can

see how the GP, trying to predict between the training data, generated ripples which

have a higher value than the training outputs. Hence, when exponentiating the log
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Figure 4.3: (a) The optimal parameters from 1000 different datasets (red circles)

and the true parameter vector (black diamond); (b) the kernel density estimate of the

sample of optimal parameters; (c) the true signal (in black) and the ODE solution

for qKDE = arg maxq p̂(q) (in red).
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likelihood, we obtain a higher spurious peak. Panel (d) shows the solution U(q̂301)

using the parameter vector corresponding to the spurious likelihood peak in red, and

the true signal in black. We see that the estimate of the predators signal is accurate,

while the preys signal is less satisfactory.

As a benchmark, we also consider direct minimization of the true loss function

`(q), defined in (4.1), which does not involve emulation, but rather a numerical

solution of the ODE at every evaluation. Minimization is performed using the same

initial design strategy on the same 1000 datasets {Y k}. The distribution of the

sample of optimal parameters is displayed in Figure 4.5. Panel (a) shows a scatterplot

of {q̂k} as red circles, along with the truth q∗ as a black diamond. The distribution

is scattered around the true value, proving that this approach is unbiased. Panel (b)

plots the kernel density estimate of the sample of optimal parameters. In Panel (c) we

notice that the solution U (qKDE) for the parameter vector which maximizes the KDE

(shown in red) is a very accurate estimate of the true signal U (q∗) (shown in black).

The computational costs required to obtain the 1000 optima by direct minimization

of the true loss function are in the order of 1 hour CPU time3, while minimization

of the GP predictive mean required 20 minutes only. Because minimization of the

residual sum of squares (RSS) between the numerical solution of the ODE and the

data (4.1) is an unbiased estimator of the true parameter vector, we can argue that

the RSS function (L2 loss) is not only the most commonly used loss measure, but

also an appropriate measure for this task due to the unbiasedness of the procedure.

The sample of optimal parameters in Figure 4.3 (a) is not centred on the true

parameter vector q∗. This might be due to the fact that the Lotka-Volterra system

gives rise to very rugged likelihood landscapes when considering multiple cycles,

see Lazarus et al. (2018) for more examples. Therefore, the GP might be slightly

smoother than the underlying likelihood landscape and, while interpolating the

training points, the GP can lead to ripples having a higher predicted value than the

maximum of the training data.

Let us decrease the number of cycles explored by the numerical solution of the

ODE by considering the time interval t ∈ [0, 5]. This leads to an exploration of the
3On a MacBook Pro with a 2.6GHz 6-core Intel Core i7 processor.
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Figure 4.4: (a) The dataset Y 301 giving rise to the outlier q̂301 in Figure 4.3; (b)

the emulated log likelihood for this dataset; (c) the emulated likelihood; (d) the true

signal (in black) and the estimated signal U(q̂301) (in red) .
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Figure 4.5: (a) The sample of optimal parameters obtained by direct minimization

of the true RSS function (no emulation involved) for 1000 different datasets (red

circles) and q∗ (black diamond); (b) the kernel density estimate of the sample of

optimal parameters; (c) the ODE solution for qKDE = arg maxq p̂(q) in red and the

true signal in black.
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first cycle of the ODE. We study two different T and SNR settings:

S1 High uncertainty: T = 5 and SNR = 1;

S2 Low uncertainty: T = 50 and SNR = 10.

In this new experiment we consider K = 5000 different datasets {Y k} for each setting,

and we still minimize the set of predictive means {l̂k(q)} using the 50 starting points

discussed beforehand. This leads to two samples of optimal parameters {q̂k}5000k=1 , one

for each scenario. Figure 4.6 (a) plots the first dataset from scenario S1, while (b)

the first dataset from scenario S2.

Figure 4.7 shows that the emulated (log) likelihood for a particular dataset is

characterized by many local optima in the case of higher uncertainty (S1) while in

the latter scenario (S2) we find a more pronounced peak. By optimizing the emulated

log likelihood for different datasets, we obtain a distribution of optimal parameters

scattered around the true configuration q∗ = (2, 1). A multivariate kernel density

estimator is shown in Figure 4.7 (centre right). The argument that maximizes the

density estimate in the first scenario is qKDE = (2.18, 0.96) and qKDE = (1.98, 1.01)

in the last. This allows us to make a comparison in the parameter space with the true

configuration q∗ = (2, 1). In order to compare the estimates with the true parameter

in the function space instead, Figure 4.7 (right) plots the solution of the ODE for

each qKDE (in red) and the true signal using q∗ (in black). It is worth remarking that

the inference using only T = 5 timepoints shown in the top right panel of Figure 4.7

is based on qKDE. This is the parameter having the highest kernel density estimate in

the sample of optimal parameters from 5000 different datasets. We would not expect

such a good reconstruction of the original signal with just one dataset comprising 5

noisy observations only.

From the distribution of the optimized parameters shown in Figure 4.8 (a) we can

see that the maximum emulated likelihood is an approximately unbiased estimator of

the true ODE parameter vector. Panel (b) shows the optimal parameters obtained by

direct minimization of the true RSS function. While solving the 500, 000 optimization

tasks (2 different T and SNR settings, 50 starting points and 5000 datasets) using
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Figure 4.6: The underlying true signal for one ODE cycle and one observed dataset.

Panel (a) shows the high uncertainty scenario S1, while Panel (b) the low uncertainty

scenario S2.
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Figure 4.8: (a) The sample of optimal parameters obtained by minimizing the GP

predictive mean in 5000 different datasets. (b) The optimal parameters obtained by

direct minimization of the true RSS on the same 5000 datasets.

the emulated RSS took 1 hour and a half4, in order to solve the same problem with

the true RSS (4.1) we needed 5 hours and a half.

We now compare the performance of GP emulation over brute-force grid search.

In other words, we are interested in quantifying the gain obtained by fitting a GP

and then minimizing the posterior mean, as opposed to considering as q̂ the training

input qn giving rise to the lowest training ln score; gain which, of course, depends

on the resolution of the grid, G. I ran a simulation study with 4 different T and

SNR settings, 4 different grid sizes in each dimension and varying the true parameter

configuration q∗ as the interest is not in the inference of the true parameter vector

anymore. Given the training data D = {(qn, ln)}Nn=1, define qG = arg min(l1, . . . , lN )

and q̂ = arg min l̂(q). Figure 4.9 shows the differences of the norms ‖qG − q∗‖2

and ‖q̂ − q∗‖2, where q∗ represents the true parameter vector. The plots show that

emulation outperforms grid search in the scenarios of many timepoints in the solution

of the ODE and small grid resolutions, see Panel (c) and (d). Hence, emulation turns

out to be of particular importance in problems with high-dimensional parameter

spaces, where a dense grid would be computationally too onerous to evaluate. In
4On a MacBook Pro with a 2.6GHz 6-core Intel Core i7 processor.
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higher dimensional spaces, the density of the grid would be comparable to the

scenarios presented in the first two boxplots of Panel (c) or (d). When increasing

the resolution of the grid, as expected, the difference becomes not significant. In the

cases of few timepoints (Panel (a) and (b)) the value 0 is included in the boxplots,

showing a non significant improvement in optimizing the GP posterior mean rather

than doing grid search, due to the very low amount of information available. For this

particular application, considering the low-dimensionality of the parameter space and

the high number of gridpoints (N = G2 = 400), we see no significant gain by going

from grid search to GP emulation. However, as previously discussed, the importance

of emulation becomes much clearer as the dimensionality of the parameter space

increases.

In retrospect, it is worth investigating what would have happened in the problem

considered at the beginning of Section 4.4, i.e. for t ∈ [0, 20] and T = 50, if the ARD

Matérn 5/2 kernel (3.22) had been used. Would the estimates be centred around

the true parameter vector q∗? As we can see in Figure 4.10, this is not the case.

The only difference lies in one point being in the bulk of the distribution instead of

being an outlier. However, since a change in the kernel only affected one out of 1000

points, we do not consider this as a strong evidence to re-run the whole analysis with

the ARD Matérn 5/2 kernel. Furthermore, the reconstruction in function space is

identical when either using the ARD Squared Exponential or the ARD Matérn 5/2

kernel, see Panel (c) of Figures 4.3 and 4.10 respectively.

4.5 Summary

In this chapter, I investigated an emulation approach based on GPs to estimate

ODE parameters by numerically solving the differential equations only at a small

pre-selected set of parameter configurations. The emulation entails fitting a GP to

a normalized version of the RSS between the observed data and the finite set of

explicit ODE numerical solutions.

Working with a GP-based emulator of the normalized RSS has strong advantages

over direct numerical integration of the ODEs. The GP formulation leads to analytical
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Figure 4.9: Boxplots of the differences of the norms ‖qG − q∗‖2 and ‖q̂ − q∗‖2,

representing the distance of the grid-based approach estimate to the true parameter

vector and the distance of the emulation-based approach estimate to the true param-

eter vector respectively. Here qG = arg min(l1, . . . , lN), q̂ = arg minq l̂(q) and q∗ is

the true parameter configuration. In the figure, “Grid - Emulation” is a reminder

that we subtract the distance of the emulation-based approach estimate to the true

parameter vector from the distance of the grid-based approach estimate to the true

parameter vector. If the difference is positive, emulation outperforms the grid-based

approach.
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Figure 4.10: Using the ARD Matérn 5/2 kernel: (a) the sample of optimal param-

eters from 1000 different datasets (red circles) and the true parameter vector (black

diamond); (b) the kernel density estimate of the sample of optimal parameters; (c)

the ODE solution for qKDE = arg maxq p̂(q) in red and the true signal in black.
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predictive formulas, along with gradients and Hessians, and the computational time

was reduced. To solve the same problem by minimizing the true RSS I needed 5 hours

and a half, while in only 1 hour and a half I solved half a million optimization tasks

which involved fitting 10,000 different GPs. The Lotka-Volterra system, however,

is not very computationally expensive to integrate numerically, hence this chapter

represents a proof-of-concept study done in my first year of PhD in order to get

familiar with Gaussian processes and emulation.

The grid-based approach turns out to be as effective as emulation in low-

dimensional parameter spaces, when the number of gridpoints can be high. However,

covering higher dimensional Euclidean spaces as effectively with a grid would be diffi-

cult, and these are the scenarios where GP emulation is of particular help. The results

in Figure 4.7 show that the parameter configuration that has the highest estimated

density of the optimized parameters is a very good estimate of the true parameter

vector, and the estimator appears to be approximately unbiased (Figure 4.8).

In the next chapter, I demonstrate how GP emulation can be used to estimate

the parameters of a soft tissue mechanical model of the left ventricular dynamics,

where a single output takes approximately 11 minutes CPU time5. That application

promises more substantial savings in terms of computational time.

5Intel Xeon CPU, 2.9GHz, 32 cores and 32GB memory.



Chapter 5

Fast Inference in a Computational

Model of the Left Ventricle Using

Emulation

A central topic in biomechanics is modelling of the human left ventricle (LV). From

a personalized model of the LV it is possible to estimate properties of the cardiac

soft tissues using in-vivo clinical measurements. These properties aim to provide

insight into heart function or dysfunction without the need for invasive measurements.

However, finding a solution to the differential equations which mathematically describe

the myocardium through numerical integration can be computationally expensive.

In order to provide estimates in a time frame suitable for clinical decision support

systems, in this chapter we use the concept of emulation (discussed in Section 2.3)

to infer the properties of the cardiac muscle of a healthy volunteer from non-invasive

magnetic resonance imaging (MRI) data. We compare and contrast two emulation

targets: (1) emulation of the computational model output and (2) emulation of the

loss between the observed data and the computational model output. Both strategies

are tested with two different statistical approximations, as well as with two different

loss functions. The best combination of methods is found by comparing the accuracy

of the parameter inference on simulated test data for which the true parameters are

known. Finally, the best method is used to estimate the material parameters for a

healthy volunteer. The best approach provides accurate parameter inference in both

68
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simulated and clinical data, with a reduction in the computational costs of about 3

orders of magnitude compared to numerical integration of the differential equations

using finite element discretization techniques.

Notes This chapter is adapted from Davies et al. (2018), in submission. Vinny

Davies and I are joint first authors of the paper, but the project is the cumulative effort

of different people. Hao Gao and Xiaoyu Luo are the authors of the computational

model of the left ventricle. Dirk Husmeier overviewed all of the statistics work

packages which follow. Benn Macdonald focused on the reparametrization of the LV

model, designed the training simulations and carried out the numerical solution of the

differential equations for the space-filling training inputs by massive parallelization.

I fitted the local Gaussian process emulators of the training runs. Once the best

strategy was found, I estimated the myocardial parameters from real data of a healthy

volunteer. I take full responsibility for the results of this method only. Vinny Davies

independently carried out another study fitting low rank Gaussian processes using the

R package mgcv by Wood (2017). His results are reported side-by-side for comparison

only, and to check for agreement. Alan Lazarus is extending the work to generic

left ventricular geometries by investigating the dimensionality reduction approaches

discussed in Section 5.7. All members participated in discussions.

5.1 Motivation

Computational modelling of cardiac biomechanics, when integrated with in vivo

imaging, can provide means to understand cardiac function for both healthy and

diseased individuals (Smith et al., 2011; Wang et al., 2015; Chabiniok et al., 2016).

Recent mathematical studies have demonstrated that passive myocardial stiffness is

higher in diastolic heart failure patients compared to healthy volunteers (Xi et al.,

2014). Similarly, patients who had a heart attack (myocardial infarction) need their

heart muscle to contract more than healthy people. This is to compensate for the

damage in their heart (Gao et al., 2017). Myocardial passive properties not only

affect left ventricular (LV) diastolic filling, but also influence the heart pumping
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function during systole through the Frank–Starling law: the relationship between

stroke volume and end diastolic volume (Widmaier et al., 2016). From recent studies

it is recognised that myocardial passive stiffness provides diagnostic information for

patient risk stratification (Xi et al., 2014; Gao et al., 2017). Therefore, it is helpful

to quantify passive myocardial stiffness in order to assess LV function. Traditionally,

myocardial properties are determined by a series of ex vivo or in vitro experiments

(Dokos et al., 2002). The Holzapfel–Ogden (HO) constitutive law (Holzapfel and

Ogden, 2009), widely used in the biomechanics literature, gives a detailed description

of the myocardial response, including the effects of fibre structure. However, to be of

practical use for clinical applications, the model requires specifying the values of the

material parameters. This is challenging due to the need for invasive experiments

(Dokos et al., 2002). The biomechanical model considered in this chapter describes

the LV dynamics during the diastolic filling process, starting from early-diastole and

finishing at end-diastole (the point of maximum LV expansion). Both early and late

diastolic states can be measured by magnetic resonance imaging (MRI). We can

therefore estimate the parameters non-invasively by formulating an inverse problem

and matching the individual measurements of a healthy volunteer to the output of

the biomechanical model (Gao et al., 2015).

Many studies have demonstrated that it is possible to estimate the constitutive

material parameters from in vivo measurements even with very complex constitutive

equations (Guccione et al., 1991; Remme et al., 2004; Sermesant et al., 2006; Sun

et al., 2009). However, because of complex interdependencies among the material

parameters and sparse noisy data, the formulated inverse problem is highly nonlinear

(Xi et al., 2011; Gao et al., 2015). Determining the unknown parameters is very

time consuming, with the direct inference process taking days or weeks to converge,

even on a modern multi-core workstation (Gao et al., 2015; Nikou et al., 2016). The

primary reason for this is the high computational cost of a single simulation from

the biomechanical model (approximately 11 minutes CPU time1) and the thousands

of steps required to optimize the loss function, each step involving an expensive

simulation from the LV model. Direct estimation of the myocardial properties
1Intel Xeon CPU, 2.9GHz, 32 cores and 32GB memory.
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using the simulator is not suitable for real-time clinical diagnosis, hence calling for

emulation approaches.

This chapter presents a proof-of-concept study that aims to demonstrate how

emulation can be used to successfully to learn the myocardial properties of a healthy

volunteer from non-invasive in vivo MRI data only. To this end, we use a simplified

simulator which is limited in applicability to a single patient, rather than being a

general tool, and at this stage we focus on developing the statistical methodology

in this simplified setting which can then be applied to more complex tasks in the

future. The considered biomechanical model uses a fixed LV geometry from a healthy

volunteer and assumes a fixed population-based value for the end-diastolic pressure

of 8mmHg as in Gao et al. (2015) to set the mathematical boundaries. Additionally,

we consider a reduced parametrization of the HO law in the biomechanical model

presented by Gao et al. (2015). The main focus of this chapter is not in having

the most general simulator or emulator, but rather on testing on simulated data

different statistical emulation strategies, comparing different loss functions, as well

as interpolation methods. The best strategy is then used to estimate the myocardial

properties of a healthy volunteer for which the MRI data and the LV geometry are

available, to assess its ability to estimate the material properties in a time frame

suitable for clinical decision support systems.

5.2 The Left Ventricle Model

The LV biomechanical model describes the diastolic filling process from early-diastole

to end-diastole. Different models have been proposed in the literature, and a review

is given by Chabiniok et al. (2016). In this chapter we consider the model used

in Wang et al. (2013a) and Gao et al. (2015), which assumes that the stress-strain



CHAPTER 5. FAST INFERENCE IN A LEFT-VENTRICLE SIMULATOR 72

constitutive equation is given by the Holzapfel–Ogden law:

Ψ =
a

2b
{exp[b(I1 − 3)]− 1}

+
∑
i∈{f,s}

ai
2bi
{exp[bi(I4i − 1)2]− 1}

+
afs
2bfs

[exp(bfsI
2
8fs)− 1]

+
1

2
K(J − 1)2,

(5.1)

where, among other quantities, a, b, af , bf , as, bs, afs, bfs are the eight non-negative

unknown material parameters to be estimated. For the purpose of statistical inference,

the simulator is considered as a black-box function taking as input a vector of

parameters (a, b, af , bf , as, bs, afs, bfs) and returning a multivariate output y ∈ R25

which includes a prediction of the LV chamber volume and 24 predicted strain

measurements along the chamber wall. For more details about the other quantities

in the law, see Wang et al. (2013a).

Gao et al. (2015) performed sensitivity analysis and found that the 8 parameters

of the HO law are strongly correlated, hence their identification from limited and

noisy in vivo measurements is challenging. For example, an increase in a can be

compensated by decreasing b or the remaining correlated parameters. They further

demonstrated that myofibre stiffness, the final quantity of interest, can be estimated

well by considering a reduced parametrization. Similarly to Gao et al. (2015), we

group the eight parameters of (5.1) into four, so that:

a = q1 a0 b = q1 b0 (5.2)

af = q2 af0 as = q2 as0

bf = q3 bf0 bs = q3 bs0

afs = q4 afs0 bfs = q4 bfs0

where q = (q1, . . . , q4) ∈ [0.1, 5]4 are the parameters to be inferred from in vivo data,

and the reference values a0 = 0.224 kPa, b0 = 1.62, af0 = 2.427 kPa, bf0 = 1.83,

as0 = 0.556 kPa, bs0 = 0.775, afs0 = 0.391 kPa, bfs0 = 1.695 are the estimated

parameters from the multi-stage approach of Gao et al. (2017).

The black-box function can be considered as the input-output relationship y =

m(q) ∈ R25 for q = (q1, . . . , q4) and fixed reference values a0, . . . , bfs0. Equation (5.2)
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assumes that the ratio between a and b is constant. This is motivated by the fact

that a and b represent the isotropic response of the myocardium, or the extracellular

matrix, and are assumed to be similar for different healthy subjects. The ratio

between afs and bfs is also fixed due to the general low mechanical response of the

fibre-sheet cross-link (Dokos et al., 2002). Then, as the two terms involving af and

as both describe collagen structures with different types, we further assume af and

as share the same scale from the original values, and similarly for bf and bs. However,

the assumptions in (5.2) may be only applicable to a sub-population of healthy

volunteers, i.e. the same age group with similar ventricular size and blood pressure.

A simulation m(q) from the computational model without using parallelization

takes about 15 minutes in our local Linux workstation2, or around 11 minutes with

parallelization on 6 CPUs. Note that the 15 or 11 minutes are required to obtain

just a single (multivariate) output from the simulator.

5.3 Comparative Study

The goal of this section and the next one is to compare the performance of different

emulation strategies on simulated test data. The simulated data are obtained by

considering the LV computational model, using the left ventricular geometry of a

healthy volunteer, as a generative model. The best strategy is then used in Section 5.5

to infer the myocardial parameters of a healthy volunteer for which observed data

are available.

In order to fit any emulator we need a set of training runs D = {(qi,yi)}ni=1. The

training inputs Q = [q1, . . . , qn]> represent n = 10, 000 points from a Sobol sequence

in [0.1, 5]4. The corresponding outputs have been obtained by Benn Macdonald

using massive parallelization, solving the LV model for each input: yi = m(qi)

for i = 1, . . . , n. In addition to the n = 10, 000 training points, he also generated

m = 100 additional test points by extending the Sobol sequence and simulating from

the model at each of the test inputs. The test points are used as an out-of-sample

dataset to test the performance of the different emulation strategies.
2Intel Xeon CPU, 2.9GHz, 32 cores and 32GB memory.
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We compare different types of statistical approximation: Local GP and Low-Rank

GP ; two different emulation targets: emulation of the model output (output emulation)

vs emulation of the loss between a simulation and the data (loss emulation); as well as

two different loss functions: Euclidean and Mahalanobis with Σ = Cov(y1, . . . ,yn).

The methods using Local GPs were run by myself, while Low-Rank GPs by Vinny

Davies as part of a joint paper. Because of the large number of training data

(n = 10, 000) and the O(n3) computational complexity of standard GP regression

which is due to the inversion of the n× n training covariance matrix K, we can not

apply exact GP regression as in (3.26). The statistical models considered in this

study are Local Gaussian processes, also discussed by Gramacy and Apley (2015),

and Low-Rank GPs as described in Wood (2017).

5.3.1 Local Gaussian Processes

When the sample size n is large, it is not feasible to use exact GP regression on the

full dataset as described in Section 3.5, due to the O(n3) computational complexity of

the n×n training covariance matrixK inversion. A possible approach is to use sparse

GPs as in Titsias (2009), or the more recent approaches by Gal and Turner (2015)

and Hensman et al. (2018). Titsias (2009) considers a fixed number of m inducing

variables u = (u1, . . . , um), with m� n, corresponding to inputs Z = [z1, . . . ,zm]>.

The locations of the inducing points and the kernel hyperparameters are chosen by

maximizing using variational inference methods the evidence lower bound (ELBO),

i.e. a lower bound on the log marginal likelihood. The ELBO can be derived by

applying Jensen’s inequality:

log p(y) = log

∫ ∫
p(y,f ,u)dudf

= log

∫ ∫
q(f ,u)

p(y,f ,u)

q(f ,u)
dudf

≥
∫ ∫

q(f ,u) log
p(y,f ,u)

q(f ,u)
dudf︸ ︷︷ ︸

F(q(u))

.

The computational costs of this approach are O(nm2). I initially tried sparse GPs

with 100, 500 and 1000 inducing points but, using the code accompanying the paper
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by Titsias (2009), the prediction time was between 0.5 and 0.6 seconds for 100

inducing points, around one second for 500, and in the order of a few seconds for

1000 inducing points3. This means that minimization of the surrogate-based loss

(2.7) would still be slow as approximately 1 second is required for a single evaluation.

The optimization time would exceed two and a half hours for 500 inducing points

when using 10, 000 function evaluations. Consider now the variational sparse GP

model using 100 inducing points only, which was the fastest between the three

cases considered, taking approximately 0.5 seconds for a prediction at a given input.

Figure 5.1 shows the predictive accuracy of the sparse GP model on the test data.

In other words, each plot shows the true test outputs vs the prediction of the sparse

GP at the test inputs. We can see that the fit on some variables like the LV chamber

volume and Strains 17, 19, 20, 21, 22 and 23 are slightly off the perfect prediction

line. The predictive accuracy improves by increasing the number of inducing points,

but at the cost of a slower prediction time.

Keeping in mind the goal of the project: real-time in-clinic decision making,

a local Gaussian process approach based on the K-nearest-neighbours was used

instead (Gramacy and Apley, 2015). This method uses the standard GP prediction

formulas described in Chapter 3, but subsetting the training data. Whenever we

require a prediction at a given input, we find the training inputs representing the

K-nearest-neighbours in input-domain, which will form the local set of training

inputs, and the corresponding outputs will represent the local training outputs. Note

that every time we ask for a prediction at a different input, the training sets need to

be re-computed and the GP needs to be trained again. However, because of the small

number of neighbours K � 1000 usually selected, this method is computationally

fast and accurate, see Gramacy and Apley (2015) for a discussion.

Gramacy and Apley (2015) further discuss adding a fixed number of distant points

in order to help in the estimation of the lengthscale parameters, but this comes with

extra computational costs required by the iterative choice of which point to add to

the set of neighbours. Given the time limitations required by our goal (real-time

clinical decision support systems) we do not pursue this approach. Furthermore, this
3Dual Intel Xeon CPU E5-2699 v3, 2.30GHz, 36 cores and 128GB memory.
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Figure 5.1: True vs predicted test outputs using Output Emulation with

variational sparse GPs and K = 100 inducing points.
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is mostly relevant when the interest lies in building predictive models able to make

good predictions when the training data are distant from each other. Since we are

working on a compact set which is very densely covered by the Sobol sequence, this

is not necessary. For generic training data D = {(x1, y1), . . . , (xn, yn)} = {X,y}, we

can summarize the algorithm as follows:

Algorithm 5.1. Predicting from a local Gaussian process at x∗:

1. Find the indices N (x∗) of the points in X having the K smallest Euclidean

distances from x∗;

2. Training inputs: XK(x∗) = {x′1, . . . ,x′K} = {xi : i ∈ N (x∗)};

3. Training outputs: yK(x∗) = {y′1, . . . , y′K} = {yi : i ∈ N (x∗)};

4. Train a GP using the data DK(x∗) = {XK(x∗),yK(x∗)};

5. Predictive mean: f̂(x∗) = m(x∗) + k(x∗)
>[K + σ2I]−1(yK(x∗)−m);

6. Predictive variance: s2(x∗) = k(x∗,x∗)− k(x∗)
>[K + σ2I]−1k(x∗).

In the algorithm above, the K ×K training covariance matrix K = [k(x′i,x
′
j)]

K
i,j=1,

the K × 1 vector of covariances between the training points and the test point is

k(x∗) = (k(x′1,x∗), . . . , k(x′K ,x∗)) and m = (m(x′1), . . . ,m(x′K)) is the K × 1 prior

mean vector. We consider a constant mean function m(x) = c and the ARD Squared

Exponential kernel as used in the emulation of computer codes literature, see Santner

et al. (2003); Fang et al. (2006). The model hyperparameters are estimated by

maximizing the log marginal likelihood using the Quasi-Newton method, as described

in Section 3.10, with σ initialized to 10−2 since we are modelling deterministic

computer code.

The CPU time required to get a prediction from the local Gaussian process is

approximately 0.18 seconds4 using the K = 100 nearest neighbours of a given point.

The number of neighbours K needs to be selected on the basis of the computational

time allowed to reach a decision in a viable time frame, but keeping in mind that
4Dual Intel Xeon CPU E5-2699 v3, 2.30GHz, 36 cores and 128GB memory.
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K also controls the accuracy of the emulation. In our experiments we found that

K = 100 was sufficiently fast. Next, we evaluated the predictive accuracy of the

chosen local GP approach (K = 100) on the test data. Figure 5.2 shows that, unlike

the fastest sparse GPs approach, local GP regression using the K = 100 nearest-

neighbours leads to very accurate predictions at the test inputs, as the predicted and

true test outputs all lie on the perfect prediction line y = x.

Given the LV training runs D = {(qi,yi)}ni=1, Output Emulation consists in

fitting a multivariate emulator m̂ = (m̂1, . . . , m̂25) which comprises 25 local GPs

estimated in parallel on 25 CPU cores. For data yobs, the estimated parameter vector

q̂ is obtained by minimizing the surrogate-based loss (2.7):

`m̂(q) = d
(
m̂(q),yobs

)2
,

which does not involve any further expensive simulation from m. Loss Emulation

(Section 2.3.2), instead, entails fitting a single real-valued local GP to the data

D = {(qi, `m(qi))}ni=1, and estimation is performed by minimizing the surrogate or

emulated loss, i.e. the predictive mean of the GP: ˆ̀
m(q).

In this work, the surrogate-based loss and the emulated loss are optimized using

the Global Search algorithm by Ugray et al. (2007), implemented in MATLAB’s

Global Optimization toolbox5, with 2000 trial points and 400 stage one points. In

order to describe the Global Search algorithm, we need to define the concept of basin

of attraction first. Consider running a local solver from a given starting point q0,

ending up at the point of local minimum q̂. The basin of attraction corresponding

to that minimum is defined as the sphere6 centred at q̂ and having radius equal to

‖q0 − q̂‖. All starting points falling inside the sphere are assumed to lead to the

same local minimum q̂, hence no local solver is run and they are discarded.

The Global Search algorithm requires as inputs: the function f(·) to be minimized,

a starting point q0, and a set of constraint violation functions ci(·), i = 1, . . . ,m.

The first step involves running an interior-point local solver (Byrd et al., 2000) from

the user-provided starting point q0, ending up at the minimizer q̂0. The distance

between the initial point and the minimizer is recorded in order to construct a basin
5https://uk.mathworks.com/products/global-optimization.html
6The basins of attraction are assumed to be spherical in the Global Search algorithm.

https://uk.mathworks.com/products/global-optimization.html
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of attraction at q̂0 with radius ‖q0 − q̂0‖. The algorithm also records the value of

the score function

Score(q) = f(q) + γ

m∑
i=1

ci(q),

which is the sum between the objective function and a multiple of the sum of the

constraint violations. This means that a feasible point, i.e. one that satisfies the

constraints, must have Score(q) = f(q). The parameter γ is initially set to 1000 but

it is updated during the algorithm. The next step involves generating a set of trial

points using the scatter search algorithm (Glover, 1998). They represent potential

start points. The score function is evaluated at a subset of the trial points called the

“stage one” points. The point with the lowest score, q1, is taken as the next starting

point. A local solver is run from this point, ending up at a new minimizer q̂1 and

leading to another basin of attraction. The “stage one” points are removed from the

list of points to be examined, and the remaining trial points are called the “stage

two” points. Global Search then examines each remaining trial point q from the list,

running a local solver from q if:

1. ‖q − q̂i‖ > φ× ‖qi − q̂i‖, where i runs over the number of basins of attraction

and φ = 0.75 is a parameter of the algorithm. This can be interpreted as

running a local solver from q if the point does not fall inside any existing basin

of attraction.

2. Score(q) < min{Score(q̂0), Score(q̂1)}.

If a local solver is run from q, ending at the minimizer q̂, then the solution is accepted

if all distances ‖q̂− q̂i‖ > InputTolerance and |f(q̂)− f(q̂i)| > OutputTolerance. If

accepted, the new basin of attraction is added to the list of previously found basins

of attraction. If, while examining the “stage two” points, a local solver is not run

for many consecutive times, the algorithm makes sure to do more exploration by

reducing the radii of the basins of attraction in order to run more local solvers.

5.3.2 Low-Rank GPs

Along with local GPs based on the K-nearest-neighbours, described in Section 5.3.1,

we report results for another type of statistical approximation: low-rank GPs, as
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Figure 5.2: True vs predicted test outputs using Output Emulation with

Local GPs and K = 100 nearest neighbours.
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described in Section 5.8.2 of Wood (2017), whose main ideas are summarized here

for generic training data D = {(x1, y1), . . . , (xn, yn)} = {X,y}.

Let C = K + σ2I be the n × n covariance matrix of y and consider its eigen-

decomposition C = UDU> with eigenvalues |Di,i| ≥ |Di+1,i+1|. Denote by U k the

submatrix consisting of the first k eigenvectors of U , corresponding to the top k

eigenvalues in D. Similarly, Dk is the diagonal matrix containing all eigenvalues

greater than or equal Dk,k. Wood (2017) considers replacing C with the rank k

approximation U kDkU
>
k obtained from the eigen-decomposition. Now, the main

issue is how to find U k and Dk efficiently enough. A full eigen-decomposition

of C requires O(n3) operations, which somewhat limits the applicability of the

rank-reduction approach. A solution is to use the Lanczos iteration method to

find U k and Dk at the substantially lower cost of O(n2k) operations, see Section

B.11 in Wood (2017). Briefly, the algorithm is an adaptation of power methods to

obtain the truncated rank k eigen-decomposition of an n× n symmetric matrix in

O(n2k) operations. However, for large n, even O(n2k) becomes prohibitive. In this

scenario the training data are randomly subsampled by keeping nr inputs and an

eigen-decomposition is obtained for this random selection with O(n2
rk) computational

cost.

This algorithm has been independently run by Vinny Davies as part of a joint

collaboration for a paper (Davies et al., 2018) of which I am joint first author. His

results are reported in this chapter for a comparison only. He used the implementation

found in the R package mgcv by Wood (2017), with the following settings: nr = 2000

(the package default), k = 2000 for Output Emulation, while k = 1000 for Loss

Emulation. The kernel used was an isotropic Matérn 3/2 kernel, with lengthscale set

to the default of Kammann and Wand (2003): λ = maxij ‖xi − xj‖. The remaining

model hyperparameters are estimated by maximizing the log marginal likelihood.

Minimization of the surrogate-based loss `m̂(·) and the emulated loss ˆ̀
m(·) is

performed by the Conjugate Gradient method implemented in the R function optim

(Nash, 1990), with maximum number of iterations set to 100. To avoid being trapped

in local minima, 50 different starting points from a Sobol sequence were used. The

best minimum found was kept as the estimate, discarding the remaining 49 optima.
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5.4 Comparison Results

The Local GP and Low Rank GP methods, described in Section 5.3.1 and Section 5.3.2,

are applied to both Output Emulation (see Section 2.3.1) and Loss Emulation (see

Section 2.3.2). We also compared different metrics d(yi,yj): the Euclidean (2.3) and

the Mahalanobis (2.5) distances. In summary, the competing methods are as follows:

M1 Output Emulation using Local GPs, and a Euclidean loss function;

M2 Output Emulation using Local GPs, and a Mahalanobis loss function;

M3 Euclidean Loss Emulation using Local GPs;

M4 Mahalanobis Loss Emulation using Local GPs;

M5 Output Emulation using Low-Rank GPs, and a Euclidean loss function;

M6 Output Emulation using Low-Rank GPs, and a Mahalanobis loss function;

M7 Euclidean Loss Emulation using Low-Rank GPs;

M8 Mahalanobis Loss Emulation using Low-Rank GPs;

where M1-M4 were run by myself and M5-M8 by Vinny Davies as part of a joint paper.

Let D = {(qi,yi)}ni=1 denote the n = 10, 000 training runs and Dtest = {(qt,yt)}n+mt=n+1

denote the m = 100 test data which are not used to fit the GP models. For each

test output yt ∈ Dtest we estimate the corresponding parameter vector q̂t using the

8 methods summarized above. We now compare the estimated q̂t to the known test

input qt using the mean squared error (MSE) score7:

MSEt =
1

d

d∑
k=1

(q̂tk − qtk)2,

obtaining a sample of 100 MSEt scores for each method. Table 5.1 reports the

median MSE, along with the 1st and 3rd quartiles, for the 8 different approaches,
7We can not compare the methods using the log likelihood score, as it is an inherent feature of

this model to have an intractable and computationally expensive likelihood. The goal of the project

is to avoid evaluating the likelihood as it takes approximately 15 minutes CPU time for a single

evaluation.
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Table 5.1: Comparison of the different emulation strategies. Median, 1st

and 3rd quartiles of the mean squared error distribution for the out-of-sample points.

In bold is highlighted the method with the lowest median MSE: Output Emulation

using Local GP and the Euclidean metric.

Abbrev.
Statistical Emulation

Distance
MSE

approximation target Median (1st, 3rd) quartiles

M1 Local GP Output Euclidean 0.0001 (0.0000,0.0003)

M2 Local GP Output Mahalanobis 0.0009 (0.0003,0.0022)

M3 Local GP Loss Euclidean 0.2201 (0.0588,0.6777)

M4 Local GP Loss Mahalanobis 0.0013 (0.0002,0.0063)

M5 Low-Rank GP Output Euclidean 0.0048 (0.0012,0.0107)

M6 Low-Rank GP Output Mahalanobis 0.0030 (0.0011,0.0062)

M7 Low-Rank GP Loss Euclidean 0.6814 (0.2222,1.5234)

M8 Low-Rank GP Loss Mahalanobis 0.0113 (0.0041,0.0377)

and highlights in bold the best combination found. The table represents a summary

of Figure 5.3 using three of Tukey’s five numbers. Furthermore, we present the

1st and 3rd quartiles separately, as reporting plus or minus the IQR can lead to

the misinterpretation of a negative MSE. The table shows that the best method

involves emulating the simulator’s output using a Local GP and then minimizing the

surrogate-based Euclidean loss (M1). In Figure 5.3 we show the distribution of the

100 MSEt scores for each method using boxplots. Panel (a) shows the original y-axis

scale, while Panel (b) shows a reduces y-axis scale to focus on the lowest MSE scores.

From Table 5.1 we see that, for the same emulation target and distance, Local

GPs always outperform Low-Rank GPs. For each statistical approximation strategy,

we find that emulating the output always leads to a lower MSE than emulating the

loss. Hence, by summarizing the 25D output into a scalar loss score we lose too much

information. Furthermore, in all methods but the best, using a Mahalanobis distance

leads to a lower MSE than using the Euclidean metric. Similarly, in Figure 5.3 we see

that the MSE distributions in the first two boxplots (for Local GPs) are lower than

boxplots 5-6 for the Low-Rank GP approach. This is also true for boxplots 3-4 vs
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Table 5.2: The literature gold standard and the recovered 8D estimates from q̂.

a b af bf as bs afs bfs

Literature 0.2245 1.6215 2.4267 1.8269 0.5562 0.7747 0.3905 1.6950

Estimated 0.2246 1.6224 2.4109 1.8414 0.5526 0.7809 0.4115 1.7860

7-8, where Local GP outperforms Low-Rank models. The fact that Low-Rank GPs

do not perform as well as Local GPs could be due to a variety of reasons, such as the

value of k chosen for the rank k eigen-approximation, the number nr of subsampled

training inputs and the sampled inputs too.

In summary: (1) the Local GP model outperforms the Low-Rank GP model and

is therefore the better of the two types of statistical approximations; (2) emulating

the output leads to a lower MSE than emulating the loss; (3) the best strategy

involves emulating the simulator’s output using Local GPs, and then minimizing the

surrogate-based Euclidean loss function. This strategy is used in the next section to

estimate the HO law parameters using MRI data of a healthy volunteer.

5.5 Application to Real Data

From Table 5.1 we found that the best strategy is represented by method 1: Out-

put Emulation using Local GPs, followed by minimization of the surrogate-based

Euclidean loss function (M1, in short).

In this section I apply M1 to estimate the parameter vector q for a healthy volun-

teer for which MRI data, LV chamber volume and circumferential strain measurements

are available. With circumferential strains only, and not strain measurements in all

directions, we can not recover all eight parameters, hence the reduced parametrization.

The estimated parameter vector is given by q̂ = (1.0006, 0.9935, 1.0080, 1.0537). Since

the components are close to one, if we recover the 8D parametrization by applying

(5.2), we will be close to the literature gold standard method by Gao et al. (2015),

see Table 5.2. The MSE between the literature gold standard and the estimated

parameters using emulation is MSE = 0.0012.

The ultimate quantity of interest in biomechanics papers is the stress-strain
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Figure 5.4: Plots of the Cauchy stress against the stretch along (a) the

sheet direction and (b) the myocyte. The current best estimate (i.e. the

literature gold standard) from Gao et al. (2017) is reported as a dashed black line.

Estimates of the curves using the best emulation approach (M1) are given as a blue

solid line. The error bars show plus or minus one standard deviation, obtained by

using the sampling methods described in Section 5.5.

curve, representing the constitute law of the material. Figure 5.4 shows in black the

myofibre stress-stretch relationship for the healthy volunteer, where stretch is strain

+ 1, from the literature gold standard method by Gao et al. (2017). In their paper,

the estimated parameters are obtained by direct minimization of the expensive full 8

parameters target loss, where a single evaluation takes 11 minutes CPU time8, with

convergence in a week time. The plot additionally shows, as a solid blue line, the

estimated myofibre stress-stretch relationship corresponding to the parameter vector

q̂ estimated using the best emulation strategy: Output Emulation with Local GPs,

followed by minimization of the surrogate-based Euclidean loss function (M1). In

order to obtain an indication of the uncertainty of our inference, we numerically

estimated the Hessian H(q̂) at the point of minimum of the surrogate-based loss,

q̂. Its inverse represents a lower bound on the variance-covariance matrix. The

68% confidence interval can be obtained by sampling 1000 parameter vectors from
8Intel Xeon CPU, 2.9GHz, 32 cores and 32GB memory.



CHAPTER 5. FAST INFERENCE IN A LEFT-VENTRICLE SIMULATOR 87

a N(q̂,H(q̂)−1) distribution9. To every sampled parameter vector corresponds a

Cauchy stress-stretch curve. In Figure 5.4 we report the stress-stretch curve for q̂ (in

blue) plus or minus the pointwise standard deviation of the sample of 1000 Cauchy

stress-stretch curves.

From Figure 5.4 we can see that the emulation approach can accurately estimate

the stress-stretch relationship for the healthy volunteer, with the gold standard

lying inside the 68% confidence intervals. In particular, the Cauchy stress against

the stretch along the myocyte, shown in Figure 5.4b, matches the gold standard

almost exactly. It is also important to point out that the agreement between the

stress-stretch curves from the literature gold standard method and the emulation

approach is good even if the emulation has been carried out in a 4D subspace of

the parameter space. This confirms the findings in Gao et al. (2015), where a good

estimate of the curve can be obtained also with a reduced parametrization. We also

notice that the uncertainty bands are not very tight, suggesting some sort of inflation

in the uncertainty intervals due to the Gaussian approximation described above. To

illustrate the concept in more detail, Figure 5.5 presents an illustration of the Laplace

approximation. Panel (a) shows a right skewed density (in yellow) and its Laplace

approximation (in red). If the true density is skewed, by approximating it with a

Gaussian centred at the mode with precision matrix equal to the negative Hessian at

the mode, we obtain a misleading approximation which can lead to an overestimation

of the uncertainty at the point of maximum. Panel (b) presents the same concept

but for the negative logarithm of the corresponding density from Panel (a).

The estimate q̂ giving rise to Figure 5.4 was obtained with a reduction in

computational time of 3 orders of magnitude (1 week to 15 minutes). This makes

emulation suitable for real-time decision support systems. When a patient comes

into the clinic, it would be possible to estimate his or her myocardial stiffness in

just 15 minutes. Then clinicians can make informed diagnoses on the basis of the
9The Laplace Approximation (LA) approximates at the mode, hence it’s a local match. An

alternative would be to use Variational Bayes methods or Expectation Propagation, which return

global matches, but more analytical derivations are required. We prefer this simpler approach which

is fast and returns an estimate of the uncertainty around the estimate.
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Figure 5.5: The Laplace Approximation. Left: the normalized density p(z) ∝

exp(−z2/2)σ(20z + 4) (in yellow), where σ(z) = 1/(1 + exp(−z)), and the Laplace

approximation centred at the mode (in red). Right: the negative logarithm of the

corresponding densities from the left panel. Source: Figure 4.14 of Bishop (2006).

estimated myocardial properties. This is an important first step to open the path

towards personalized diagnosis, prevention and informed treatment.

5.6 Summary

In this chapter we compared different emulation strategies by considering:

• different statistical approximations: Local GPs vs Low-Rank GPs;

• different emulation targets: Output Emulation vs Loss Emulation;

• different loss functions: Euclidean vs Mahalanobis.

We tested their accuracy in estimating the inputs for held-out test data for which the

true inputs are known. The method incurring in the lowest MSE is given by emulating

the output using Local GPs, and then minimizing a surrogate-based Euclidean loss,

see Table 5.1.

The best strategy is then applied to real MRI data from a healthy volunteer,

where the interest lies in estimating his myocardial properties (the parameters of

the HO law). The estimated parameter vector q̂ can be used to obtain the final

quantities of interest: the stress-strain curves along the sheet direction and the
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myocyte. Comparing the estimated curves in Figure 5.4 with the current gold

standard from the literature (Gao et al., 2015), we see a good agreement, with the

gold standard being inside the 68% confidence interval. However, we suspect some sort

of overestimation of the uncertainty bands because of the Gaussian approximation.

The estimates in Gao et al. (2015) were obtained by direct minimization of the

expensive target loss (2.1) using a multi-step approach, taking a week to converge.

The emulation-based approach, instead, reaches almost identical solutions in only

15 minutes CPU time. This demonstrates the applicability of emulation-based

methods to accelerate the estimation of indicators useful to support clinicians in

their diagnostic work.

5.7 Future Work

One of the future goals for this project is to allow the emulator to estimate the

material parameters of arbitrary patients having LV geometries on which the emulator

has not been directly trained on. At the current stage, the computational model

(simulator) requires the patient’s left ventricular geometry as a fixed input, i.e. not

to be optimized.

A possible solution is to simulate different datasets from the computational model

for different LV geometries, given as inputs to the simulator. The next step involves

finding a low-dimensional representation of each training geometry, which can then

become an input to the emulator. Upon arrival in clinic, we can record the left

ventricular geometry of the patient and then obtain its low-dimensional representation

which can be included into the loss function.

Different approaches can be considered for reducing the dimensionality of the

LV geometries, starting from principal component analysis (PCA) or independent

component analysis (ICA) (Roberts and Everson, 2001). However, the limitation

of PCA lies in the restriction to linear subspaces. Suppose that the training set

of left ventricular geometries lies on a non-linear manifold of a higher dimensional

space, then this approach would not be optimal. Many nonlinear extensions to

PCA have been proposed in the literature, such as kernel PCA or autoencoder feed-



CHAPTER 5. FAST INFERENCE IN A LEFT-VENTRICLE SIMULATOR 90

forward neural networks. In the latter, the LV geometries represent the input layer

of the neural network, which are then passed through a bottleneck layer, and finally

reconstructed at the output layer. Once trained, the bottleneck layer represents the

low-dimensional representation of the left ventricular geometry.



Part II

Bayesian Optimization
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Introduction to Part II

Part 1 focused on emulating the simulator’s output or the inferential objective function.

Both types of emulators are based on a set of training runs D = {(qi,yi)}ni=1 for a

given computational model y = m(q). Hence, the emulator is model-specific. The

training runs are obtained by simulating from the expensive computational model at

the training inputs using massive parallelization. This is a substantial, a priori, time

investment and is best done when the research group is confident that the model will

not be changed for some time. Any update to the computational model would imply

that the emulator is out-of-date and reflects a model which is no longer believed to

be true.

When the simulator is undergoing further investigation and improvements, the

substantial time invested in running the training simulations becomes wasted as soon

as the version under development is released. The issue of model comparison is not

the topic of this thesis which, instead, focuses on how to estimate the parameters

of a chosen computationally expensive model. In order to do model selection with

expensive simulators, a possibility involves emulating the posterior distribution and

running Markov chain Monte Carlo on the predictive mean. The posterior samples

can then be used to estimate the model marginal likelihood using, for example,

Chib’s method (Chib and Jeliazkov, 2001), bridge sampling (Meng and Wong, 1996)

or thermodynamic integration (Friel and Pettitt, 2005; Grzegorczyk et al., 2017).

The model with the highest marginal likelihood should be the one used for further

inference.

Part 2 discusses how to estimate the inputs of an expensive simulator which is not

deemed to be a “stable release” using Bayesian optimization (BO). In this scenario,

we focus on emulating the objective function using a smaller set of training runs,
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as a large number is not considered to be a wise time investment. However, the

emulator of the objective function is iteratively improved by adding new training

data using an adaptive strategy. While the goal is to use the algorithm to optimize

a loss function for inference, `(q), the algorithm is more general and can be used

to optimize a generic expensive-to-evaluate function f(x). For this reason, the BO

algorithm is presented in its most generic form.



Chapter 6

Bayesian Optimization

Many real-life applications such as parameter estimation and decision making in

science, engineering and economics require solving an optimization problem. Tradi-

tionally the aim has been to minimize a function which is fast to query at any given

point and where the gradient information is readily available or easy to estimate.

More recently, new research directions involve complex and multiscale computational

models that do not meet these requirements. They typically are computationally

expensive, perhaps without an exact functional form, the gradient information might

not be available and outputs could be corrupted by noise. Examples of these applica-

tions include parameter estimation in robotics (Calandra et al., 2016; Lizotte et al.,

2007), automatic tuning of machine learning algorithms (Hutter et al., 2011; Snoek

et al., 2012; Wang et al., 2013b; Kotthoff et al., 2017), environmental monitoring

and sensor placement (Garnett et al., 2010), soft tissue mechanical models of the

pulmonary circulation (Noè et al., 2017) and more (Shahriari et al., 2016).

Bayesian optimization (BO) is a class of algorithms designed to solve these

complex optimization tasks. It is not a recent field as it dates back to the 1970–1980s,

when the Lithuanian mathematician Jonas Mockus published a series of papers and

a book on the topic (Mockus, 1975, 1977, 1989), but it increased in popularity only

recently due to the advances in computational resources.

With the increase in computational power, modellers started developing more

complex simulators of real life phenomena. For example, by switching from linear to

nonlinear differential equations, adding more layers of them, and interfacing many

94
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micro-level models in order to recreate in silico macro-level phenomena. Simulators

typically involve many tunable parameters. Setting these parameters by hand would

be cumbersome, hence the need for an automated and principled framework to deal

with them. In these models standard likelihood based inference is not straightforward

due to the time required for a single forward simulation. This could involve, for

example, the numerical solution of a system of nonlinear partial differential equations,

hence calling for an iterative procedure. Furthermore, the maximum likelihood

equations may not have an analytical solution and need to be solved iteratively,

adding another level of computational complexity to the problem. Usually the

likelihood landscape is highly multimodal, calling for multiple restarts, and effectively

making the problem NP-hard.

This chapter reviews Bayesian optimization. Section 6.1 states the generic prob-

lem, while Section 6.2 recalls the main formulas of Gaussian processes, which were

introduced in Chapter 3, that will be used throughout the chapter. Section 6.3

introduces Bayesian optimization and summarizes the popular classes of acquisition

functions found in the literature, emphasizing the line of thought that led to their de-

velopment. Finally, Section 6.4 demonstrates the BO algorithm on a one-dimensional

objective function.

6.1 Problem Statement

Suppose that the task is to minimize globally a real-valued function f(x), called

objective function, over a compact domain X ⊂ Rd and that observing f(x) is costly

due to the need to run long computer simulations or physical experiments. The

global minimum is denoted fglobal = minx∈X f(x), which is attained at xglobal. Here

we will focus on the minimization problem as the conversion of a maximization

problem into a minimization one is trivial. Many global optimization algorithms

have been proposed in literature, e.g. genetic algorithms, multistart and simulated

annealing methods (Locatelli and Schoen, 2013), but these algorithms require many

function evaluations and hence are designed for functions that are cheap to query.

Bayesian optimization (BO), instead, is an algorithm designed to optimize expensive-
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to-evaluate functions by keeping the number of function evaluations as low as possible,

hence saving computational time. To do so, BO uses all of the information collected

so far (function values and corresponding locations) to internally maintain a model

of the objective function. This is used to learn about the location of the minimum,

and the model is continuously updated as new information arrives. The objective

function f is approximated by a surrogate model or emulator, which is usually given a

Gaussian process (GP) prior, see Rasmussen and Williams (2006). The values of the

objective function are generally modelled according to the additive decomposition

yi = f(xi) + εi, where εi are i.i.d. N(0, σ2) errors and f ∼ GP(m, k) is the GP prior

on the regression function.

6.2 Gaussian Processes Refresher

A random process {f(x), x ∈ X} is said to be Gaussian if and only if every finite

dimensional distribution is a Gaussian random vector. Similarly to a multivariate

Normal, parametrized by a mean vector and a covariance matrix, a Gaussian process

is completely specified by a mean and a covariance function, denoted by m(x) and

k(x,x′) respectively. They return the mean E[f(x)] = m(x) and the covariance

Cov(f(x), f(x′)) = k(x,x′) as function of the index only. A GP prior on the random

function f is denoted f(x) ∼ GP(m(x), k(x,x′)). We use a constant mean function:

m(x) = c, where c represents a constant to be estimated. The covariance functions

considered are the ARD Matérn 5/2 kernel:

k5/2(x,x
′) = σ2

f

(
1 +
√

5r +
5

3
r2
)

exp
(
−
√

5r
)
, r =

√√√√ d∑
i=1

(xi − x′i)2
λ2i

,

and the ARD Squared Exponential (SE) kernel:

kSE(x,x′) = σ2
f exp

{
−1

2

d∑
i=1

(xi − x′i)2

λ2i

}
,

see Section 3.6 for more details. The model hyperparameters, θ = (c, λ1, . . . , λd, σf , σ),

are estimated by maximizing the log marginal likelihood as discussed in Section 3.10.

A GP with the ARD Squared Exponential kernel models infinitely differentiable
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functions, while the ARD Matérn 5/2 kernel gives rise to sample paths which are

only twice differentiable. Because of the computational complexity of the objective

function, only a few training data are available. With very little information on the

unknown function, it is hard to discover any kind of periodicity or unreasonable

behaviour. To that end, we would need many training points. For this reason, the

standard prior assumption in the literature is to use a SE kernel or the Matérn class

(Jones et al., 1998; Kennedy and O’Hagan, 2001; Santner et al., 2003).

After having collected n data points, Dn = {(x1, y1), . . . , (xn, yn)}, the predictive

distribution of f is again a GP with mean f̂(x) and covariance s(x,x′):

f(x) | Dn ∼ GP(f̂(x), s(x,x′)) (6.1)

f̂(x) = m(x) + k(x)>[K + σ2I]−1(y −m)

s(x,x′) = k(x,x′)− k(x)>[K + σ2I]−1k(x′),

where K = [k(xi,xj)]
n
i,j=1 is the n × n covariance matrix at the training inputs,

k(x) = [k(x1,x), . . . , k(xn,x)]> is the column vector of size n × 1 containing the

covariances of the process at each of the training inputs and the test point x, while

m = [m(x1), . . . ,m(xn)]> represents the mean at the training inputs. The posterior

variance is readily obtained as s2(x) = s(x,x) = Cov(f(x), f(x)).

It is worth remarking that we are not bound to GPs in order to build an emulator

of the objective function. Shahriari et al. (2016) also discuss random forests (RFs),

which scale better than GPs for large n. However, random forests underestimate

the uncertainty, while GPs give an adequate representation of it, which is essential.

This, together with the analytical formulas for the Gaussian process model, make

the derivations needed for BO much easier. Furthermore, random forests lead to

discontinuous and non-differentiable surrogate models, meaning that we could not

make use of gradient based optimization algorithms.

6.3 Bayesian Optimization

The strength of BO lies in the following problem shift. Instead of directly optimizing

the expensive objective function f , the optimization is performed on an inexpensive
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Algorithm 6.1 Bayesian optimization.
1: Inputs:

Initial design: Dninit
= {(xi, yi)}ninit

i=1

Budget of nmax function evaluations

2: for n = ninit to nmax − 1 do

3: Update the GP: f(x) | Dn ∼ GP(f̂(x), s(x,x′))

4: Compute the acquisition function: an(x)

5: Solve the auxiliary optimization problem: xnext = arg max
x∈X

an(x)

6: Query f at xnext to obtain ynext

7: Augment data: Dn+1 = Dn ∪ {xnext, ynext}

8: end for

9: Return:

Estimated minimum: fmin = min(y1, . . . , ynmax)

Estimated point of minimum: xmin = arg min(y1, . . . , ynmax)

auxiliary function which uses the available information in order to recommend the

next query point xnext, hence it is referred to as acquisition function. Optimization

algorithms propose a sequence xn of points that aim to converge to a global optimum

xglobal. In order to propose such a sequence, BO algorithms start by evaluating the

objective function f at an initial design: Dninit
= {(xi, yi)}ninit

i=1 . Jones et al. (1998)

recommend to use a space filling Latin hypercube design of ninit = 10 × d points,

with d being the dimensionality of the input space. Then iterate until the maximum

number of function evaluations nmax is reached: (1) obtain the predictive distribution

of f given Dn; (2) use the distribution of f given Dn to compute the auxiliary

function an(x); (3) solve the auxiliary optimization problem xnext = arg max an(x);

(4) query f at the recommended point xnext and update the training data: Dn+1 =

Dn ∪ {xnext, ynext}. For a pseudocode-style algorithm, see Algorithm 6.1.

Different BO algorithms vary in the choice of the acquisition function. These

can be grouped into three main categories: optimistic, improvement-based and
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information-based (Shahriari et al., 2016). Many acquisition functions can be seen,

according to the Bayesian decision-theoretic framework, as an expected utility arising

from the evaluation of f at x. Then, we usually select the point leading to the

highest expected utility. All acquisition functions try to balance to a different extent

the concepts of exploitation and exploration. The former indicates evaluating where

the emulator predicts a low function value, while the latter means reducing our

uncertainty about the model of f by evaluating at points of high predictive variance.

Optimistic policies (class 1) handle exploration and exploitation by being opti-

mistic in the face of uncertainty, in the sense of considering the best case scenario

for a given probability value. The approach of Cox and John (1997) was to consider

a statistical lower bound on the minimum, LCB(x) = −{f̂(x) − κs(x)}, where

the minus sign in front is needed as the acquisition function is maximized. This

acquisition function is known as the lower confidence bound (LCB) policy. Here, κ

is a parameter managing the trade-off between exploitation and exploration. When

κ = 0, the focus is on pure exploitation, i.e. evaluating where the GP model predicts

low function values. On the contrary, a high value of κ emphasizes exploration by

inflating the model uncertainty, i.e. recommending to evaluate at points of high

predictive uncertainty. For this acquisition function there are strong theoretical

results on achieving the optimal regret derived by Srinivas et al. (2012).

The next group (class 2) of acquisition functions are improvement-based. Define

the current best function value at iteration n to be fmin = min(y1, . . . , yn)1, and

recall that f(x) | Dn ∼ N(f̂(x), s2(x)) from the marginalization property of GPs.

By standardization, z(x) = {f(x)− f̂(x)}/s(x) has a standard normal distribution.

This class of functions is based on the random variable Improvement:

I(x) = max{fmin − f(x), 0}. (6.2)

Intuitively, I(x) assigns a reward of fmin − f(x) if f(x) < fmin, and zero otherwise.

Kushner (1964) proposed to select the point that has the highest probability of

improving upon the current best function value fmin. This effectively corresponds to

maximizing the probability of the event {I(x) > 0} or, equivalently, of {f(x) < fmin}.
1If the function values are corrupted by noise, fmin = min f̂(x).
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Lemma 6.1. The Probability of Improvement (PI) acquisition function is:

PI(x) = Φ

(
fmin − f̂(x)

s(x)

)
. (6.3)

Proof. From f(x) | Dn ∼ N(f̂(x), s2(x)) follows that:

PI(x) = P{I(x) > 0}

= E1{f(x)<fmin}

= P{f(x) < fmin}

= P

{
f(x)− f̂(x)

s(x)
<
fmin − f̂(x)

s(x)

}

=

∫ fmin−f̂(x)

s(x)

−∞
φ(z)dz

= Φ

(
fmin − f̂(x)

s(x)

)
.

In the following, φ(x | µ, σ2) and Φ(x | µ, σ2) denote the probability density function

(pdf) and the cumulative distribution function (cdf) of a N(µ, σ2) random variable.

For brevity, when µ = 0 and σ2 = 1 we will simply write φ(x) and Φ(x). The PI

acquisition function corresponds to the expectation of the utility u(x) = 1{f(x)<fmin},

which is u(x) = 1 when f(x) < fmin and 0 otherwise. In other words, the utility

assigns a reward of 1 when we have an improvement, irrespective of the magnitude

of this improvement, and 0 otherwise. It might seem naive to assign a reward

always equal to 1 every time we improve on fmin, irrespectively of the value. An

acquisition function that accounts for the magnitude of the improvement is obtained

by averaging over the utility u(x) = fmin − f(x) when f(x) < fmin and 0 otherwise,

hence u(x) = I(x). Define u = {fmin − f̂(x)}/s(x).

Lemma 6.2. The Expected Improvement (EI) acquisition function (Mockus et al.,

1978; Jones et al., 1998) corresponds to the expectation of the random variable I(x)

and is equal to:

EI(x) = E{I(x)}

= {fmin − f̂(x)}Φ(u) + s(x)φ(u). (6.4)
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Proof. Using property (C.1) from Appendix C:

EI(x) = E[I(x)]

= E[max{fmin − f(x), 0}]

= E
[
{fmin − f(x)}1{f(x)<fmin}

]
=

∫ ∞
−∞
{fmin − y}1{y<fmin}φ(y | f̂(x), s2(x))dy

=

∫ fmin

−∞
{fmin − y}φ(y | f̂(x), s2(x))dy

=

∫ u

−∞
{fmin − (f̂(x) + s(x)z)}φ(z)dz

=

∫ u

−∞
{fmin − f̂(x)− s(x)z}φ(z)dz

= {fmin − f̂(x)}
∫ u

−∞
φ(z)dz − s(x)

∫ u

−∞
zφ(z)dz

= {fmin − f̂(x)}Φ (u) + s(x)φ (u)

= s(x) {uΦ(u) + φ(u)} .

This policy recommends to query at the point where we expect the highest im-

provement score over the current best function value. The EI is made up of two

terms. The first term is increased by decreasing the predictive mean f̂(x), the second

term is increased by increasing the predictive uncertainty s(x). This shows how EI

automatically balances exploitation and exploration.

Recent interest has focused on information-based acquisition functions (class 3).

Here, the core idea is to query at points that can help us learn more about the location

of the unknown minimum rather than points where we expect to obtain low function

values. The main representatives of this class are Entropy Search (ES) (Hennig and

Schuler, 2012), Predictive Entropy Search (PES) (Hernández-Lobato et al., 2014) and,

more recently, Max-Value Entropy Search (MES) (Wang and Jegelka, 2017). Both

ES and PES focus on the distribution of the argmin, p(xglobal | Dn), which is induced

by the GP prior on f . These two policies recommend to query at the point xnext

leading to the largest reduction in uncertainty about the distribution p(xglobal | Dn).

This can be expressed as selecting the point {x, y} conveying the most information
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about xglobal in terms of the mutual information I({x, y},xglobal | Dn). The Entropy

Search acquisition function is

ES(x) = H[xglobal | Dn]− E{H[xglobal | Dn,x, y]},

where H is the entropy and the expectation is taken with respect to the density

p(y | Dn,x). PES, instead, uses the symmetry of mutual information in order to

obtain the equivalent formulation:

PES(x) = H[y | Dn,x]− E{H[y | Dn,x,xglobal]},

where the expectation is with respect to p(xglobal | Dn). This distribution is ana-

lytically intractable, and so is its entropy, hence calling for approximations based

on a discretization of the input space, which incurs a loss of accuracy, and Monte

Carlo sampling, which is computationally expensive. Furthermore, the point at

which the global minimum is attained might not be unique. Instead of measuring

the information about xglobal, which lies in a multidimensional space X , Wang and

Jegelka (2017) propose to focus on the simpler gain in information between y and

the minimum value fglobal, which lies in a one-dimensional space. The acquisition

function hence becomes

MES(x) = I({x, y}, fglobal | Dn)

= H[y | Dn,x]− E{H[y | Dn,x, fglobal]},

with expectation with respect to p(fglobal | Dn). The expectation is approximated

with Monte Carlo estimation by sampling a set of function minima. In summary the

methods in this class involve (1) hyperparameters sampling for marginalization and

(2) sampling global optima for entropy estimation. Step 2 substantially increases the

computational cost of information-based acquisition functions, especially in the case

of ES and PES, which sample in a multidimensional space.

For global convergence proofs of Bayesian optimization see the work of Bull

(2011), which shows that under a fixed prior the Expected Improvement converges

on the minimum of any function and also presents convergence rates. In practice, it

is common to sequentially update the GP prior as new information arrives. However,
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this might not converge in some cases, and Bull (2011) also demonstrates how to

obtain estimators that reach the same convergence rates.

Li et al. (2016) show that, on a comprehensive benchmark including 117 datasets,

Bayesian optimization is often outperformed by random search with twice as many

iterations. Ahmed et al. (2016) also state that “for some specific problems BO does in

fact handily beat random and we know that under certain smoothness assumptions

BO can be exponentially faster than random, see Theorem 5 in Bull (2011)”. To

that end, Ahmed et al. (2016) present a first “harmless” BO algorithm that aims

to always be no worse than random search. Furthermore, for situations where BO

already outperforms random search, they show how to use gradient information in

order to gain an even faster convergence.

6.4 Illustration

This section illustrates the Bayesian optimization algorithm with the EI acquisition

function and the ARD Squared Exponential kernel, as commonly used in the literature

(Jones et al., 1998; Santner et al., 2003).

In this thesis, the maximization of the acquisition function is performed by

evaluating it at 104 uniform random points in the input domain. The inputs are then

ranked by their acquisition function values, and the 10 points having the highest

score are found. A Nelder-Mead (Lagarias et al., 1998) local solver is run starting

from each of these 10 points, until each solver reaches a relative tolerance on the

function value of 10−3. Among the 10 returned maximizers, the next evaluation point

xnext is the one having the maximum acquisition function value, while the remaining

9 points are discarded.

Using Bayesian optimization, we minimize the “Cosine Sine” (CSF) objective

function, defined as

f(x) = cos(5x) + 2 sin(x), (6.5)

over the compact space X = [0, 10] with a budget of nmax = 20 function evaluations

of which ninit = 10 are used for the initial design.

The objective function is shown in Figure 6.1a along with the derived initial
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Figure 6.1: The objective function and the derived initial design.

design comprising 10 points in Figure 6.1b. Given the initial design Dninit
and the

budget of function evaluations nmax, the BO algorithm proceeds by first fitting the

GP emulator of f , shown in Figure 6.2a, given the available data (black dots). The

red line represents the GP predictive mean, while the shaded grey area is the 95%

confidence interval. The dotted black function is the objective function f(x), which

is usually not plottable due to the cost of each single pointwise evaluation. From

the GP model of f we derive the EI acquisition function, shown as a green line in

the bottom panel of Figure 6.2a. The acquisition function is then maximized to

find the next query point xnext, shown in Figure 6.2b as a blue diamond. The costly

objective function f is queried at the point xnext to obtain ynext and the training

data are updated: D11 = D10 ∪ {xnext, ynext}. The new GP model given D11 is

shown in Figure 6.2c, along with the derived EI function and the next query point

xnext. The algorithm proceeds along the same steps, giving rise to Figure 6.2d for 12

function evaluations, Figure 6.2e for 13 queries, and finally terminating at the budget

nmax = 20 as in Figure 6.2f. Note that in Figure 6.2c the EI policy recommends to

evaluate at a point of high predictive variance, in order to improve the emulator.

Figure 6.3 shows the objective minimum trace, i.e. the incumbent minimum

fmin = min(y1, . . . , yn) vs the iteration number n. Note that the true global minimum

(shown as a dashed red line) is found in less than 20 function evaluations, even if

the function has many local optima. On the contrary, traditional conjugate gradient

methods usually get stuck in one of the local minima depending on the initial point

and typically require a higher number of function evaluations. This issue is discussed
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in more detail in Section 8.5, where the performance of BO is compared to standard

global optimization algorithms.

6.5 Summary

This chapter presented a review of Bayesian optimization, an algorithm to minimize

expensive-to-evaluate objective functions. The objective functions are typically black-

box functions, i.e. not available in analytical form and without gradient information.

After discussing the generic problem, I reviewed the main formulas from GPs, and

defined the mean and covariance functions considered for Bayesian optimization.

Then I discussed the generic BO algorithm, which relies on the choice of an acquisition

function. Different acquisition functions define different point selection policies. I

presented the three main classes of policies found in the literature: optimistic (class

1), improvement-based (class 2) and information-based (class 3). Finally, I illustrated

BO on a simple 1D objective function, where the iterations can be plotted.
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Figure 6.2: Illustration of the BO algorithm using the EI acquisition

function.
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Chapter 7

Application to In Silico Medicine

Chapter 6 discussed Bayesian optimization, a method to optimize a costly objective

function by using a limited number of function queries, hence a reduced computational

time to solve the minimization problem. This chapter presents an application of BO

to precision medicine, where the interest lies in the estimation of parameters of a

partial differential equations (PDEs) model of the human pulmonary blood circulation

system. Once inferred, these parameters can help clinicians in diagnosing a patient

with pulmonary hypertension without going through the standard invasive procedure

of right heart catheterization, which can lead to side effects and complications (e.g.

severe pain, internal bleeding, thrombosis).

Section 7.1 introduces the problem and outlines our goals, while Section 7.2

describes the considered PDE model of the human pulmonary circulation. Section 7.3

discusses how to extend the BO algorithm to handle simulation failures for some

parameter settings, due to violations of the assumptions in the mathematical model.

The BO algorithm with the EI acquisition function is then used in Section 7.4 to

infer the parameters of the pulmonary circulation PDE model, with the ultimate

goal to pave the way towards autonomous in silico diagnosis and prognosis.

Notes This chapter is adapted from: Noè, U., Chen, W., Filippone, M., Hill, N.,

and Husmeier, D. (2017). Inference in a Partial Differential Equations Model of

Pulmonary Arterial and Venous Blood Circulation Using Statistical Emulation. In

Bracciali, A., Caravagna, G., Gilbert, D., and Tagliaferri, R., editors, Computational

108
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Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2016. Lecture Notes

in Computer Science, volume 10477, pages 184–198. Springer, Cham, Switzerland.

7.1 Motivation

Chronic pulmonary arterial hypertension (PH), i.e. high blood pressure in the

pulmonary circulation, is often referred to as a “silent killer” and is a disease of

the small pulmonary arteries. It can lead to irreversible changes in the pulmonary

vascular structure and function, increased pulmonary vascular resistance, and right

ventricle hypertrophy leading to right heart failure (Allen et al., 2014; Rosenkranz

and Preston, 2015).

For diagnosis and ongoing treatment and assessment, clinicians measure blood

flow and pressure within the pulmonary arteries. As opposed to blood pressure in

the systemic circulation, measured using a sphygmomanometer, blood pressure in

the pulmonary circulation can only be measured using invasive techniques such as

right heart catheterization. Invasive techniques can lead to complications (internal

bleeding, severe pain, thrombosis, etc.), for that reason, it is desirable to predict the

blood pressure indirectly based on quantities that can be measured non-invasively.

Furthermore, data about healthy patients are not available due to ethical reasons.

This chapter uses a partial differential equations (PDEs) model of the pressure and

flow wave propagation in the pulmonary circulation under normal physiological and

pathological conditions, introduced by Qureshi et al. (2014) and also studied by Noè

et al. (2017). The goal is to use the Bayesian optimization algorithm with the EI

acquisition function, see (6.4), and the pulmonary circulation model cited above to

infer indicators of pulmonary hypertension risk which could be used by clinicians to

inform their diagnosis instead of taking invasive measurements.

The PDEs depend on various physiological parameters, related e.g. to blood vessel

geometry, vessel stiffness and fluid dynamics. These parameters, which would give

important insights into the status of a patient’s pulmonary circulatory system, can

typically not be measured in vivo and hence need to be inferred indirectly from the

observed blood flow and pressure distributions. In principle, this is straightforward.
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Under the assumption of a suitable noise model, the solutions of the PDEs define

the likelihood of the data, and the parameters can then be inferred in a maximum

likelihood sense. However, a closed-form solution of the maximum likelihood equations

is not available, which calls for an iterative optimization procedure. Since a closed-

form solution of the PDEs is not available either, each optimization step requires a

numerical solution of the PDEs. This is computationally expensive, especially given

that the likelihood function is typically multi-modal, and the optimization problem

is NP-hard. Minimization of the residual sum of squares (negative log likelihood)

hence calls for Bayesian optimization in order to reduce the computational costs of

the inference. The estimated parameters of the PDEs will give clinicians insights

into the patient-specific vessel structure that would not be obtainable in vivo such as

vessel stiffnesses, a primary indicator of hypertension.

7.2 The Pulmonary Circulation Model

In the model of the pulmonary circulation by Qureshi et al. (2014), seven large

arteries and four large veins are modelled explicitly, while the smaller vessels are

represented by structured trees (Figure 7.1). A magnetic resonance imaging (MRI)

based measurement of the right ventricular output provides the inlet flow for the

system.

The large arteries and veins are modelled as tapered elastic tubes, and the

geometries are based on measurements of proximal and distal radii and vessel lengths.

The cross-sectional area averaged blood flow and pressure are predicted from a non-

linear model based on the incompressible Navier–Stokes equations for a Newtonian

fluid. The small arteries and veins are modelled as structured trees at each end of

the terminal large arteries and veins to mimic the dynamics in the vascular beds.

With a given parent vessel radius rp, the daughter vessels are scaled linearly with

radii rd1 = αrp and rd2 = βrp, where α and β are the scaling factors. The vessels

bifurcate until the radius of each terminal vessel is smaller than a given minimum

rmin. The radius relation at bifurcations is:

rξp = rξd1 + rξd2 , 2.33 ≤ ξ ≤ 3.0, (7.1)
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Figure 7.1: Schematic of the pulmonary circulation consisting of large

arteries, arterioles, venules and large veins from Qureshi et al. (2014).

Seven large arteries are considered in this model, i.e. the main pulmonary artery

(MPA), the left (LPA) and right (RPA) pulmonary arteries, the left interlobular

artery (LIA), the left trunk artery (LTA), the right interlobular artery (RIA), and

the right trunk artery (RTA). The four terminal arteries LIA, LTA, RIA, and RTA

are connected to four large veins, i.e. the left inferior vein (LIV), left superior vein

(LSV), right inferior vein (RIV), and right superior vein (RSV), via structured trees

of resistance vessels.

where the exponent ξ = 2.33 corresponds to laminar flow, ξ = 3.0 corresponds to

turbulent flow (Olufsen, 1999), p represents the parent vessel, and d1 and d2 represent

the daughter vessels. Given the area ratio η = (r2d1 + r2d2)/r
2
p and the asymmetry ratio

γ = (rd2/rd1)
2, the scaling factors α and β satisfy α = (1 + γξ/2)−1/ξ and β = α

√
γ.

The parameters, ξ, γ, rmin and a given root radius r0, determine the size and density

of the structured tree. The cross-sectional area averaged blood flow and pressure

in these small arteries and veins are computed from the linearized incompressible

axisymmetric Navier–Stokes equations (Qureshi et al., 2014).

For each large vessel, the pressure and flow are modelled as the solution of the one

dimensional Navier–Stokes equation (Olufsen et al., 2012). It comprises two equations

which ensure conservation of volume and momentum, and a third equation of state,
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linking pressure and cross-sectional area. Let x denote the distance along a given

vessel, t represent time, p(x, t) the pressure, q(x, t) the volumetric flow along any

given vessel, A(x, t) the corresponding cross-sectional area, ρ a constant representing

the density of the blood, ν a constant representing kinematic viscosity, δ (constant)

the boundary layer thickness, and r(x, t) the radius of the given vessel. Conservation

of volume and momentum is satisfied by:

∂q

∂x
+
∂A

∂t
= 0,

∂q

∂t
+

∂

∂x

(
q2

A

)
+
A

ρ

∂p

∂x
= −2πνr

δ

q

A
. (7.2)

The constitutive law linking pressure and cross sectional area is given by:

p(x, t)− p0 =
4

3

Eh

r0

(
1−

√
A0

A

)
, (7.3)

where p0 denotes the external pressure, E is Young’s modulus, h the vessel wall

thickness and r0 the vessel radius when p(x, t) = p0. The unstressed vessel area is

obtained as A0 = πr20. The term Eh/r0 in (7.3) describes the elastic properties of a

vessel’s wall, and hence represents a parameter that controls the system compliance.

This will be simply denoted by fL in the large vessels and by fS in the small vessels.

In the small vessels, similarly to the large ones, three equations determine the

flow, pressure and area of each vessel in the structured tree. Olufsen et al. (2012)

however, notice that in small vessels the nonlinear effects are small, effectively

allowing for linearization of the constitutive equations. The full system of PDEs

is presented in Qureshi et al. (2014), and its numerical solution, which depends

on various physiological parameters, will henceforth be referred to as simulation.

Figure 7.2 shows the simulated pressure (left) and flow (right) curves over time at

three different locations in the main pulmonary artery (MPA).

Particular interest lies in the estimation of the parameter ξ, because low values

are indicative of the clinically relevant problem of vascular rarefaction, which is a

well-known finding in patients suffering from pulmonary hypertension, and represents

the condition of having fewer blood vessels per tissue volume (Feihl et al., 2006).

Estimation of ξ is performed in the range 2.33 ≤ ξ ≤ 3, as given in (7.1). Other

relevant parameters of interest for clinical diagnosis are the stiffness parameters in the

large and small vessels, fL and fS respectively, with bounds fL ∈ [1.33×105, 5.33×105]
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Figure 7.2: Simulated pressure (left) and flow (right) over time, at three

different locations along the main pulmonary artery (MPA).

and fS ∈ [2.66 × 104, 1.066 × 105] as in Noè et al. (2017). The bounds have been

obtained from joint discussions with clinicians and the mathematical model developers.

Increased vessel stiffness is a major cause of pulmonary hypertension. During systole,

a compliant artery expands to accommodate for the inflow, while it recoils during

diastole to promote forward flow. As the capacity of an artery is limited, the pressure

increases during systole and is partially maintained during diastole by the rebounding

of the expanded arterial walls. When the stiffness is increased, the cushioning function

of the vessel is compromised, leading to a higher systolic and a lower diastolic pressure.

We focus on the estimation of the main clinically relevant parameters q = (fL, fS, ξ),

while all remaining model parameters are fixed to biologically relevant values from

the literature as in Qureshi et al. (2014).

7.3 Bayesian Optimization with Hidden Constraints

Mathematical models often rely on simplifying assumptions about the underlying

system. When these assumptions do not hold, the model can return a failure instead of

a numerical simulation. In the considered model of the human pulmonary circulation,

for some specific settings of the PDE parameters this is indeed the case. However,

the regions in the parameters space that lead to failures are unknown a priori. A

problem is said to contain hidden constraints if a requested function value may turn

out not to be obtainable. This is different from the case where an output value is
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obtained but deemed not valid.

7.3.1 Assigning a High Objective Function Score

In principle, one could assign an arbitrary high objective function score to any failed

simulation. In our case, the objective function corresponds to the loss or residual

sum of squares `(q), see (2.1), and a high loss indicates a low likelihood area. We can

however show that handling hidden constraints using this naive method inherently

misspecifies the GP surrogate of the RSS objective, leading to unrealistic and biased

estimates of the parameters, as well as no improvement in the objective minimum

trace, as the wrong emulator fails to suggest points which actually improve on the

incumbent minimum from the initial design.

Consider, for example, assigning `(q) = 1010 to a failed simulation at q. For

visualization purposes, Figure 7.3a shows the training data (black dots) and the

GP emulator, i.e. the predictive mean (in red), for the 2D parameters fL and ξ.

Figure 7.3b shows the EI acquisition function derived from the GP model, while

Figure 7.3c shows the incumbent minimum trace vs n. The fact that the optimization

algorithm fails to improve the estimate and the excessive multimodality of the derived

EI function are direct consequences of a non-representative metamodel shown in

Figure 7.3a. The flattened area of the GP and the non-improvement in the minimum

trace are both pathologies due to the high-frequency oscillations induced by the high

RSS values, leading to the kernel lengthscale being driven towards very small values.

This produces a surrogate model, used to inform the optimization sequence, which is

not a good representation of the true RSS. Compare instead Figure 7.3c to the trace

in Figure 7.9e, which is obtained from a good model of the objective.

The problems mentioned above are even more evident when focusing just on the

1D estimation of the exponent ξ. Figures 7.4, 7.5 and 7.6 show the GP emulator and

the derived EI acquisition function when the score for a failed simulation is `(q) = 105,

1010 and 1020 respectively. Setting a priori the failure loss score is very hard. It could

happen that the chosen value is lower than or very similar to the objective function

minimum, see Figure 7.4a. The choice of the failure loss score also deeply affects

the emulator quality and the multimodality of the derived acquisition function. By
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Figure 7.3: Assigning a high loss, `(q) = 1010, for a failed simulation at q.
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Figure 7.4: Estimating ξ by assigning `(q) = 105 for a failed simulation.
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Figure 7.5: Estimating ξ by assigning `(q) = 1010 for a failed simulation.

increasing the loss score for a failed simulation to 1010, we find in Figure 7.5a a

completely misspecified GP emulator, similarly to Figure 7.3a, with high frequency

oscillations due to the kernel lengthscale being driven to small values. The derived EI

acquisition function is highly multimodal, making the auxiliary optimization problem

in Figure 7.5b challenging. This is also found by setting the error loss score to 1020

in Figure 7.6.

7.3.2 Building a Model of the Simulation Failures

In the case of unknown hidden constraints, i.e. unknown regions in the parameter

domain leading to a simulation failure, the optimization of the function must be

performed hand-in-hand with a sequential learning of the domain areas leading to
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Figure 7.6: Estimating ξ by assigning `(q) = 1020 for a failed simulation.

numerical failures. This requires a modification of Algorithm 6.1, as in Gelbart et al.

(2014). The idea is that, along with each function evaluation yi = f(xi), we also

keep track of the failure or success of the query in an auxiliary variable hi = h(xi).

The convention I use for the binary variable h(x) is to take the value 1 in case of a

failure and −1 for a successful evaluation. Hence, we name h ∈ {−1, 1} the failure

indicator. The initial design will consist of triples (xi, yi, hi) for i = 1, . . . , ninit. The

next step consists in obtaining two GP models:

(a) a GP model of the objective function, using the (xi, yi) pairs;

(b) a GP model of the failures, using the (xi, hi) pairs.

Model (a) represents a standard GP regression as described in Chapter 3, while

model (b) requires predicting the posterior class probabilities of h for a new input

x, given a set of training data. For the GP classification with logit or probit link

function, the class posterior probability is analytically intractable, see (6.76) in Bishop

(2006). Different approximations have been proposed in order to predict binary-

valued outcomes, for example iterative procedures like Expectation Propagation

(EP), Laplace approximation (LA) or the simpler label regression (LR) approach.

Following the experiments and recommendations of Kuss (2006), which suggest

that label regression works surprisingly well in practice and with a lower error rate

than the competing methods in high dimensions, we apply LR in order to build

a model of the simulation failures, ignoring the binary nature of the variable h in
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favour of a quicker runtime and a closed-form posterior. Any approximation involving

extra iterative procedures could cause the modelling and point selection time to be

higher than simply evaluating the objective function. In other words, we would spend

more time in modelling the function rather than evaluating it. While this can be

arguably acceptable for really expensive simulators, it would not be computationally

optimal for the presented application. A discussion of the computational costs of the

pulmonary circulation model under study can be found in Section 7.4.

Denote the failure indicator model as h(x) ∼ GP(ĥ(x), sh(x,x
′)), obtained by

applying the formulas summarized in Section 6.2 to the {(xi, hi)} data. By the

marginalization property of GPs, at point x the random variable h(x) follows a

N(ĥ(x), s2h(x)) distribution. As failures are labelled as 1 and successful evaluations

as −1, by taking the probability of the Gaussian random variable being less than 0

we obtain an indication of the probability of a successful evaluation (no failure):

P{h(x) = −1} = Φ(0 | ĥ(x), s2h(x)). (7.4)

This probability can then be used to weight the score that any acquisition function

assigns to a point in the domain as follows (Gelbart et al., 2014):

a∗n(x) = an(x)× P{h(x) = −1} (7.5)

= an(x)× Φ(0 | ĥ(x), s2h(x)).

We refer to a∗n(x) as the hidden-constraints-weighted acquisition function. The

algorithm then proceeds normally by choosing the next query point as the point

maximizing a∗n(x). A pseudocode summary can be found in Algorithm 7.1. From

(7.5) we see that both models (a) and (b) are required in order to compute the hidden-

constraints-weighted acquisition function at each iteration of the BO algorithm.

At termination, the learned failure GP model can be used to obtain insights into

the regions in the parameter domain leading to failure. For plotting purposes, in

Figure 7.7 we show the probability of a successful evaluation (no failure), P{h(x) =

−1} = Φ(0 | ĥ(x), s2h(x)), for the 2D parameter space q = (fL, ξ). The figure

shows how it is possible to have regions of failure inside a larger area of successful

simulations.
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Algorithm 7.1 Bayesian optimization with hidden constraints.
1: Inputs:

Initial design and corresponding failure labels: Dninit
= {(xi, yi, hi)}ninit

i=1

Budget of nmax function evaluations

2: for n = ninit to nmax − 1 do

3: Update the objective GP: f(x) | Dn ∼ GP(f̂(x), s(x,x′))

4: Update the failure GP: h(x) | Dn ∼ GP(ĥ(x), sh(x,x
′))

5: Compute the acquisition function: a∗n(x) = an(x)× Φ(0 | ĥ(x), s2h(x))

6: Solve the auxiliary optimization problem: xnext = arg max
x∈X

a∗n(x)

7: Query f at xnext to obtain ynext and hnext

8: Augment data: Dn+1 = Dn ∪ {xnext, ynext, hnext}

9: end for

10: Return:

Estimated minimum: fmin = min(y1, . . . , ynmax)

Estimated point of minimum: xmin = arg min(y1, . . . , ynmax)

7.4 Estimation of the Model Parameters

In the computational model of the pulmonary circulation, denoted by m, a forward

simulation for fixed parameters takes around 23 seconds of CPU time1. The data

collected by clinicians typically include pressure and flow measurements only from

the midpoints of the 11 large vessels. In light of this, we refer to a simulation as

the 22-dimensional vector y = m(q) containing pressure and flow measurements

at the midpoint location of each of the 7 large arteries and 4 large veins, for a

given vector of PDE parameters q. Given the costs of a single function evaluation,

parameter estimation comes at substantial computational demands as standard global

optimization algorithms require a large number of forward simulations. Motivated

by real-time decision making, we want to reduce the computational time required to
1On a Dell Precision R7610 workstation with dual 10core Intel Xeon CPU, hyper-threading and

32GB RAM.
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Figure 7.7: Learned probability of a successful simulation in the PDEs

model of the human pulmonary circulation. A score near 1 indicates a high

chance of a successful simulation, while a score near 0 indicates a high probability of

failure.

estimate the PDE parameters by keeping the number of function evaluations as low

as possible. To do so, we tackle this problem by using Bayesian optimization with

hidden constraints and the EI acquisition function (6.4).

Let q = (fL, fS, ξ) denote the three parameters of relevance for the diagnosis of

pulmonary hypertension. The simulated pressure and flow data yobs are obtained

by a forward simulation of the computational model at the vector of parameters

q∗ = (2.6× 105, 5× 104, 2.76), assumed to be the underlying truth, and the data are

then corrupted by i.i.d. additive Gaussian noise with a signal-to-noise ratio (SNR)

of 10db. Pretending that the true parameter vector q∗ is unknown, interest lies in

its estimation from the noisy observations yobs. This is to present a proof-of-concept

study carried out on simulated data, for which it is possible to assess the inference as

the gold-standard is known, but with the objective to ultimately apply it to real data

and move it into the clinic. For i.i.d. additive Gaussian noise, the residual sum of
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squares is proportional to the negative log likelihood. Hence, the objective function

considered in this study is the squared L2 loss, or residual sum of squares, between a

simulation m(q) and the data yobs:

`(q) = ‖m(q)− yobs‖2. (7.6)

Since each evaluation of the squared loss ` involves an expensive forward simulation

from the PDE modelm(q), also each evaluation of ` will be expensive. We estimate the

parameters q = (fL, fS, ξ) by minimizing the squared loss using Bayesian optimization

with hidden constraints and the EI acquisition function, with the following notational

correspondence in Algorithm 7.1:

• Objective function: f(x) ≡ `(q);

• Input: xi ≡ qi;

• Output: yi ≡ `i.

Following Snoek et al. (2012) we use the ARD Matérn 5/2 kernel. We first consider

the 1D estimation of ξ, then the 2D problem of jointly estimating fL and ξ, and

finally the 3D problem fL, fS, ξ, using the bounds discussed in Section 7.2. This

allows us to visualize the GP emulator of the loss, the acquisition function and the

failure GP model. For the 1D estimation problem we set a priori the maximum

budget of function evaluations to nmax = 30. For the 2D and 3D problems, instead,

we set it to nmax = 60. The optimization of ` is repeated five times using different

random number seeds.

7.5 Results

Table 7.1 reports a summary of the results, calculated over five independent design

instantiations having different random number generator seeds. The first column

shows the problem dimensionality, while the second column shows the parameters

that have been inferred simultaneously. The 3rd column contains the underlying

truth for the parameters. In the fourth column we find the estimated parameters:

the average and the standard error over the five runs. The final column reports
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Dim Parameters Truth Estimate Budget

d q q∗ Mean Std. Err. nmax

1 ξ 2.76 2.7601 < 0.0001 30

2
fL 2.6× 105 2.5989× 105 98

60
ξ 2.76 2.76 < 0.0001

3

fL 2.6× 105 2.6178× 105 948

60fS 50000 49737 78

ξ 2.76 2.7597 0.0016

Table 7.1: Inference results for the pulmonary circulation model. Averages

and standard errors over five design instantiations with different random number

generator seeds.

the total number of RSS evaluations allowed, i.e. the a priori budget of function

evaluations and time allocated to the numerical experiment. With the settings shown

in the last column, we required a solution in at most 12 minutes for the 1D problem,

and approximately 23 minutes for the 2D and 3D problems.

In the 1D inference problem we find a good estimate of ξ, with a very high

confidence in the inferred value. Figure 7.8a shows how, by handling the errors

correctly, the RSS function has a quadratic-like shape. Figure 7.8b shows the hidden-

constraints-weighted EI acquisition function. Figure 7.8c shows the simulation

failure GP model that is used to derive the probability of a successful simulation in

Figure 7.8d according to (7.4), introduced above. Figure 7.8e shows the incumbent

minimum trace vs the iteration number. We see a fast convergence in less than 20

function evaluations, where the value is not changing for the next iterations, but just

improving the last decimals. Similar considerations can be done for Figure 7.9 and

Figure 7.10. It is worth remarking that the plotted GP models refer to one of the

five repetitions, while Table 7.1 presents an overall summary of the five independent

runs. In the 2D case, the estimation of ξ is still accurate, and we also obtain a good

estimate of the stiffness in the large vessels, with a small standard error in just 60

function evaluations. The full 3D estimation is still accurate for the exponent ξ, and

satisfactory for the remaining two parameters.
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It is worth comparing in particular the GP model of ` obtained by properly

handling hidden constraints, Figure 7.9a, and the one obtained by assigning a high

loss score at failed simulations, Figure 7.3a. At the final iteration, we can equivalently

plot the learned probability of no failure (Figure 7.9d) as a contour plot in order to

obtain insight into the regions in the parameter domain which violate the assumptions

of the mathematical model (Figure 7.7).

In this chapter, we estimated the GP hyperparameters by maximizing the log

marginal likelihood, as discussed in Section 3.10. Osborne et al. (2009), instead,

marginalize the hyperparameters using Bayesian Monte Carlo (Rasmussen and

Ghahramani, 2003). Without integrating them out, we underestimate the uncertainty.

However, this does not seem to be critical because of the low-dimensionality of the

parameter space and the inspection of the results shows that BO works well for

this task. Marginalization of the hyperparameters or estimation by maximizing

the log marginal likelihood only affects the exploration-exploitation trade-off. The

current results show that the method considered, while potentially underestimating

the uncertainty, is still adequate. Furthermore, our goal is building real-time decision

support systems, and hyperparameter marginalization using the Bayesian Monte

Carlo method would add another layer of computational complexity to every iteration

of the BO algorithm. For this reason, we prefer the simpler optimization approach.

7.6 Summary

In this chapter I studied how to perform inference in a computationally expensive

and novel model of the combined arterial and venous pulmonary blood circulation.

The parameters of interest are fL, fS and ξ. The exponent ξ governs the vessel

parent-to-daughter radius relation (7.1), with low values indicating vascular problems

of clinical interest. As ξ increases, the number of vessels in the structured tree will

also increase; similarly, as it decreases, the number of vessels will also decrease,

simulating the vascular rarefaction clinical condition. The stiffness parameters in

large, fL, and small vessels, fS, are also of particular interest because stiffening of

these vessels is a primary cause of pulmonary arterial hypertension which leads to
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Figure 7.8: Estimation of the exponent ξ. Figures for one of the five repetitions.
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(a) GP model of ` (b) Derived EI acquisition function

(c) GP model of the failure indicators (d) Derived probability of no failure
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Figure 7.9: Estimation of the stiffness parameter in the large vessels fL

and the exponent ξ. Figures for one of the five repetitions.
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Figure 7.10: Estimation of the 3 parameters of primary clinical interest.

Objective minimum trace for one of the five repetitions.

right heart failure.

In previous studies with state-of-the-art non-emulation-based global optimization

solvers, like Genetic Algorithms or Global Search methods (Ugray et al., 2007), we

found that the number of required function evaluations was between 103 and 104

for 1D problems, and even exceeded 104 function evaluations for simple 2D or 3D

scenarios. Given that the computational costs of a single forward simulation are

about 23 seconds of CPU time, the total computational costs would be in the order of

13 hours for 1D inference tasks and could reach two and a half days for 3D inferential

problems. The results in Figures 7.8e, 7.9e and 7.10, show that the considered

emulation-based approach achieves a substantial reduction in the number of forward

simulations, effectively converging to a very good estimate of the parameters in less

than the allowed budget of function evaluations (last column in Table 7.1), while

spending the remaining iterations refining the last decimals. In the 1D scenario it

reached convergence in less than 11 minutes, while for the 2D and 3D scenario in

about 23 minutes or less. This corresponds to a total reduction of the computational

complexity by two orders of magnitude. Two and a half days is not a suitable time
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period for real-time clinical decision support systems. A period of roughly 20 minutes

would mean that the patient could get a diagnosis from the clinician, informed by the

inferred indicators of pulmonary hypertension, after a short wait, while the clinician

examines the case.



Chapter 8

On a New Improvement-Based

Acquisition Function for Bayesian

Optimization

Chapter 6 reviewed Bayesian optimization (BO), a popular algorithm for solving

challenging optimization tasks. It is designed for problems where the objective func-

tion is expensive to evaluate, perhaps not available in exact form, without gradient

information and possibly returning noisy values. Different versions of the algorithm

vary in the choice of the acquisition function, which recommends the point to query

the objective at next. Initially, researchers focused on improvement-based acquisi-

tions, while recently the attention has shifted to more computationally expensive

information-theoretical measures. This chapter presents two major contributions

to the literature. First, I propose a new improvement-based acquisition function

that recommends query points where the improvement is expected to be high with

high confidence. The proposed algorithm is evaluated on a large set of benchmark

functions from the global optimization literature, where it turns out to perform

at least as well as current state-of-the-art acquisition functions, and often better.

This suggests that it is a powerful default choice for BO. The novel policy is then

compared to widely used global optimization solvers in order to confirm that BO

methods reduce the computational costs of the optimization by keeping the number

of function evaluations small. The second main contribution represents an application

128
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of the novel acquisition function to precision medicine, where the interest lies in the

estimation of parameters of the partial differential equations model of the human

pulmonary blood circulation system introduced in Chapter 7.

In Section 8.1 I derive the variance of the improvement quantifier and use it to

define a new acquisition function. It improves the literature ones by accounting

for another layer of uncertainty in the problem, namely the uncertainty in the

improvement random variable. Section 8.2 presents a visual comparison of the novel

policy and the widely used EI acquisition function. Sections 8.3 and 8.4 compare

the newly introduced acquisition function with state-of-the-art acquisition functions

from the Bayesian optimization literature on a large set of test functions for global

optimization. Section 8.5 confirms that Bayesian optimization reduces the number

of function evaluations required to reach the global optimum to a certain tolerance

level, compared to standard global optimization algorithms. The proposed algorithm

is then used in Section 8.6 to infer the parameters of the partial differential equations

(PDEs) model of the human pulmonary blood circulation system introduced in

Chapter 7, with the ultimate goal of real-time in silico diagnosis and prognosis.

Notes This chapter is adapted from: Noè, U. and Husmeier, D. (2018). On a

New Improvement-Based Acquisition Function for Bayesian Optimization. eprint

arXiv:1808.06918.

8.1 Scaled Expected Improvement

In Chapter 6 it was shown that the widely used Expected Improvement (EI) acquisition

function automatically balances exploitation and exploration. What it does not

account for, however, is the uncertainty in the improvement value I(x). This might

not be “orthogonal” to the uncertainty in the model of f , but it nevertheless represents

an important source of information about our belief in the quality of a candidate

point x. Ideally, to avoid unnecessary expensive function evaluations, we hope to

evaluate at points where, on average, the improvement is expected to be high, with

high confidence. This is to avoid expensive queries at points where the improvement
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is high, but the variability of this value is also high, effectively meaning that the

improvement score I(x) could be low, and thus we would evaluate at a sub-optimal

point x. In order to reach such a goal, we derive the variance of the improvement

quantifier I(x).

Lemma 8.1. The variance of the random variable Improvement is:

V[I(x)] = s2(x){(u2 + 1)Φ(u) + uφ(u)} − {EI(x)}2, (8.1)

where, again, u = {fmin − f̂(x)}/s(x).

Proof. Using properties (C.1) and (C.2) of Gaussian pdfs from Appendix C:

V[I(x)] = E[I2(x)]− {E[I(x)]}2

= E[max{fmin − f(x), 0}2]− {EI(x)}2

=

∫ fmin

−∞
{fmin − y}2φ(y | f̂(x), s2(x))dy − {EI(x)}2

=

∫ u

−∞
{fmin − f̂(x)− s(x)z}2φ(z)dz − {EI(x)}2

=

∫ u

−∞
{[fmin − f̂(x)]2 + z2s2(x)

− 2zs(x)[fmin − f̂(x)]}φ(z)dz − {EI(x)}2

= {fmin − f̂(x)}2
∫ u

−∞
φ(z)dz

+ s2(x)

∫ u

−∞
z2φ(z)dz

− 2s(x){fmin − f̂(x)}
∫ u

−∞
zφ(z)dz − {EI(x)}2

= {fmin − f̂(x)}2Φ(u) + 2s(x){fmin − f̂(x)}φ(u)

+ s2(x)

∫ u

−∞
(z2 − 1)φ(z)dz

+ s2(x)

∫ u

−∞
φ(z)dz − {EI(x)}2

= {fmin − f̂(x)}2Φ(u) + 2s(x){fmin − f̂(x)}φ(u)

− s2(x)uφ(u) + s2(x)Φ(u)− {EI(x)}2.
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From the definition of u = {fmin − f̂(x)}/s(x), we obtain:

V[I(x)] = [{fmin − f̂(x)}2 + s2(x)]Φ(u)

+ s(x){fmin − f̂(x)}φ(u)− {EI(x)}2

= s2(x){(u2 + 1)Φ(u) + uφ(u)} − {EI(x)}2.

I now define a new acquisition function called the Scaled Expected Improvement

(ScaledEI).

Definition 8.1. The Scaled Expected Improvement (ScaledEI) acquisition function

is defined as the expectation of I(x) divided by the standard deviation of I(x):

ScaledEI(x) = E[I(x)]/{V[I(x)]}1/2. (8.2)

Selecting the next query point by maximizing this acquisition function corresponds

to selecting query points where the improvement score is expected to be high with

high confidence.

For every x in the domain X , we have a random variable I(x). The Scaled

Expected Improvement, E[I(x)]/{V[I(x)]}1/2, effectively corresponds to the mean

per unit of variance and is a dimensionless quantity. This is a desirable feature for

an acquisition function and is also shared by the Probability of Improvement, but

not by the Expected Improvement.

One may wonder if the proposed division of the Expected Improvement by its

standard deviation is accounting for the uncertainty twice. As is seen from (6.4), the

expression of the Expected Improvement E[I(x)] already includes the variance of

the interpolant f(x) at the argument x, coming from the distribution defined by

the Gaussian process. So why do we have to account for the variance again? To

clarify this issue, note the difference between the variance of the interpolant f(x)

and the variance of the Improvement random variable I(x). The Gaussian process

defines a distribution over functions f(x). Since I(x) is a transformation of f(x),

this induces a distribution over I(x). However, the acquisition function reduces this

distribution to its expectation value, E[I(x)]. In doing so, we lose the information
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about the dispersion of I(x). Recall that the expectation value is the first moment

of the distribution, whereas uncertainty quantification requires the knowledge of

higher-order moments.

For comparison, consider a random variable Z with a normal distribution, p(z) =

N(z | 0, σ2). If we know σ2, we know everything about the variable’s distribution1.

Now consider the transformation f(z) = z2. Since E[f(Z)] = σ2, knowing σ2 implies

that we know the function’s expectation value. However, we know nothing else.

In particular, we have no explicit knowledge of the transformed random variable’s

dispersion despite the fact that we know the original random variable’s variance.

As a second example, consider a random variable Y (x) drawn from a product of

normal distributions, p(y) ∝ N1(y | µ1(x), σ2
1(x))N2(y | µ2(x), σ2

2(x)). This so-called

“product of experts” model is widely used in control theory as a “fuzzy” logical AND

operation. It is straightforward to show that the expectation of Y (x) is given by

E[Y (x)] =
µ1(x)σ2

1(x) + µ2(x)σ2
2(x)

σ2
1(x) + σ2

2(x)
.

So, the expectation of Y (x) depends on the variances σ2
1(x) and σ2

2(x) of both

components of the product, i.e. it takes the uncertainty of both “experts” into account.

However, this does not quantify the uncertainty of Y (x) itself. We emphasize again

that uncertainty quantification requires knowledge of higher-order moments of a

distribution.

In the same vein, the expression for the Expected Improvement E[I(x)] depends

on the uncertainty of the interpolant at x, as quantified by the Gaussian process.

However, this does not quantify the uncertainty of the Improvement random variable

I(x) itself.

For that reason, we have generalized the established improvement-based acquisi-

tion function and explicitly derived an expression for the variance of I(x), to take

both the expectation of I(x), E[I(x)], and its standard deviation,
√

V[I(x)], into

account. It is this standard deviation that we need to quantify the uncertainty of

I(x) at the lowest possible order.
1The notation N(x | µ, σ2) denotes the probability density function of a N(µ, σ2) random variable

evaluated at x.



CHAPTER 8. SCALED EXPECTED IMPROVEMENT 133

8.2 Visual Comparison

It is interesting to visually compare the two different acquisition functions EI and

ScaledEI, in order to see which areas of the domain each policy emphasizes. Consider

again optimizing the “Cosine Sine” (CSF) function f(x) = cos(5x) + 2 sin(x) over

X = [0, 10], using BO with the ARD Squared Exponential kernel. Figure 8.1

shows the EI (blue) and the ScaledEI (orange) policies, for different initial designs.

Figure 8.1a, using ninit = 5, shows that ScaledEI is slightly more conservative than

EI, proposing a point nearer to the incumbent minimum. A similar behaviour for

ScaledEI is found in Figure 8.1b, while still allowing for sufficient exploration. In

Figure 8.1c, however, we notice how the EI policy puts more emphasis on exploration,

rather than improving the decimals of the incumbent minimum. ScaledEI suggests a

much better point, while still giving enough weight to exploration (see the second

mode). Finally, Figure 8.1d shows how ScaledEI correctly focuses on refining the

already found minimum, while EI suggests to step away from the best location found.

Figure 8.2 shows the iterations of the BO algorithm using the ScaledEI acquisition

function, which can be directly compared to Figure 6.2 obtained for the EI policy.

Notice how in this scenario ScaledEI does not evaluate at the domain boundaries,

since the relative score given to the left boundary is smaller than EI, see Figure 6.2c.

Figure 8.3, similarly to Figure 6.3, shows the corresponding objective minimum trace

vs n. It shows how the ScaledEI algorithm finds the global minimum already at

n = 13, while for the EI this happens at n = 19 only.

8.3 Benchmark Study

We test the performance of the acquisition function introduced in (8.2) and the

ones from the BO literature (summarized in Section 6.3) on an extensive test set of

objective functions taken from the global optimization literature. The set of test

functions for global optimization is summarized in Table 8.1. This comprehensive

test set includes benchmark functions found in leading global optimization articles

such as Jones et al. (1993) and Huyer and Neumaier (1999), with the addition of the

1D Cosine Sine (CSF) test function, which we defined as f(x) = cos(5x) + 2 sin(x).
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Figure 8.1: Visual comparison of EI and ScaledEI.
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Figure 8.2: Illustration of the BO algorithm using the ScaledEI acquisi-

tion function.
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Figure 8.3: Objective minimum trace for the CSF function using the

ScaledEI policy. The incumbent minimum fmin vs the iteration number n. The

true global minimum fglobal is shown as a dashed red line.

These optimization problems are challenging due to the presence of multiple local

minima, the sharp variation in the y-axis, and symmetries with the presence of

multiple points at which the global minimum is attained. Figure 8.4 shows a plot of

the 1D test function CSF and the contours of the 2D objective functions along with

the global optima.

Let fglobal denote the globally optimal function value known from the literature

and denote by fmin the best function value at iteration n. To check for convergence

to the global minimum fglobal we report the log10 distance, defined as follows:

log10 distance = log10 |fmin − fglobal|,

where the dependency of the distance on n comes through fmin.

The established acquisition functions that we compared with the proposed new

acquisition function, ScaledEI, are LCB, representing the optimistic policies (class

1); PI and EI from the improvement-based ones (class 2) and MES representing

the information-theoretic measures (class 3), which has been shown to outperform

ES and PES; see Wang and Jegelka (2017). We also include as benchmarks two

naive approaches: RND(x) and MN(x). The first corresponds to random search
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Table 8.1: Key characteristics of the test functions.

Number of Number of Number of

Test function Abbrev. dimensions local minima global minima

Cosine Sine CSF 1 8 1

Rosenbrock ROS 2 1 1

Branin RCOS BRA 2 3 3

Goldstein and Price GPR 2 4 1

Six-Hump Camel CAM 2 6 2

Two-Dimensional Shubert SHU 2 760 18

Hartman 3 HM3 3 4 1

Shekel 5 SH5 4 5 1

Shekel 7 SH7 4 7 1

Shekel 10 SH10 4 10 1

Hartman 6 HM6 6 4 1

Rastrigin RAS 10 1110 1

(Bergstra et al., 2011; Bergstra and Bengio, 2012), which proposes a point from a

uniform distribution within the bounded domain X . The second corresponds to

iteratively maximizing the negative GP predictive mean, MN(x) = −f̂(x), and is

the extreme case of focusing only on exploitation while ignoring uncertainty. The

GP model uses the ARD Squared Exponential kernel and a constant mean function.

The model hyperparameters are estimated at each iteration by maximizing the log

marginal likelihood using the Quasi-Newton method as described in Section 3.10,

while maximization of the acquisition function was discussed in Section 6.4. For

all experiments we set a priori the maximum budget of function evaluations to be

nmax = 1000, and an upper bound on the computational runtime for the computer

cluster2 of 2 weeks. The maximum budget is usually set by the analyst, considering

the unit price for a single evaluation. It could be an actual monetary price, if the

experiment involves materials and trained staff, or computational resources. The
2The computer cluster used in this work includes eight CentOS 7 machines with 24 cores and

32GB RAM each.
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code for the acquisition function MES has been cloned as of July 2017 from Wang and

Jegelka (2017) first author’s GitHub repository3. Since July 2017 the authors have

not made significant changes to the core functionality apart from some documentation

updates. For the experiments, the settings have been kept the same as in Wang and

Jegelka (2017) in terms of GP mean and kernel choice. For optimal performance and

a fair comparison with the other methods, the GP hyperparameters were updated at

every iteration instead of their default choice of every 10 iterations. Most importantly,

between the two versions of MES presented by the authors (MES-R and MES-G), we

chose the version that in their paper was shown to perform best, namely the MES-G

acquisition function with fglobal sampled from the approximate Gumbel distribution.

The choice was also motivated by the statement in Wang and Jegelka (2017) that

MES-R is better for problems with only a few local optima, while MES-G works

better in highly multimodal problems as more exploration is needed. As the set

of test functions used is characterized by high multimodality and the presence of

multiple points at which the global minimum is attained, we present results for the

MES-G policy, which will be simply denoted as MES. The number of fglobal sampled

was set to 100 as in the experiments of Wang and Jegelka (2017). For the LCB

acquisition function, representing the class of optimistic policies, we set κ = 2 as

commonly used, see for example Turner and Rasmussen (2012). We ran Bayesian

optimization using each of the acquisition functions on every benchmark function,

and we repeated each optimization five times using different random number seeds

for the initial design.

8.4 Benchmark Results

This section empirically shows that the proposed acquisition function performs as

well as or better than the state-of-the-art methods reviewed in Section 6.3, using

an extensive set of benchmark problems from the global optimization literature

(Jones et al., 1993; Huyer and Neumaier, 1999). Figure 8.5 shows the log10 distance

in function space to the global optimum as a function of the objective function
3https://github.com/zi-w/Max-value-Entropy-Search

https://github.com/zi-w/Max-value-Entropy-Search
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Figure 8.4: Plot of the 1D function CSF and contours of the 2D test

functions. The red circles represent the global optima.

evaluations n. Each trace represents the average log10 distance of a given algorithm

over the 5 different initial design instantiations, and the error bars show the standard

error of the mean for the whole spectrum of iteration numbers. For two of the

problems, CAM and SHU, the Max-Value Entropy Search method did not reach the

maximum budget nmax in the allowed computational time (2 weeks)4. In these cases

the log10 distance in function space is shown up to the latest iteration.

The results in Figure 8.5 show that the RND policy is consistently outperformed

by the improvement-based acquisition functions. In the 1D scenario (CSF) RND is

the worst method, followed by MN, which has huge variation in the results. The

best methods include improvement-based policies and MES, but there does not

seem to be a significant difference between them. For most of the 2D functions

(ROS, GPR, CAM, SHU) it appears that improvement-based policies outperform

the information-theoretic one. In three of these functions the proposed ScaledEI
4This is based on using the software implementation accompanying the paper by Wang and

Jegelka (2017). Note that for the two problems where MES did not converge, the log10 distance to

the optimum is still very far from the other competing algorithms. This suggests that, even if we

were to add more iterations, the results would still be not satisfactory.
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Figure 8.5: Comparison of the log10 distances (in function space) to the

global optimum. Each panel represents a given benchmark function. The traces

show the average distance over the five design instantiations for the whole spectrum

of iterations, while the error bars show plus or minus one standard error of the mean.
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Table 8.2: Statistical test for the significance in the mean difference of

the final log10 distances. The ScaledEI acquisition function was tested against

all remaining acquisition functions using a paired t-test with significance level 0.05.

Codes: 0 indicates a non significant difference and 1 (-1) indicates that ScaledEI

performed better (worse), i.e. it has a significantly lower (higher) average distance.

ScaledEI vs

Test function RND MN LCB PI EI MES

CSF 1 0 0 1 0 0

ROS 1 0 0 1 0 1

BRA 1 0 0 0 1 0

GPR 1 0 0 0 0 1

CAM 1 0 0 1 1 1

SHU 1 0 0 0 0 1

HM3 1 0 0 0 1 0

SH5 1 1 1 0 0 0

SH7 1 0 0 0 0 0

SH10 1 0 0 0 0 0

HM6 1 0 0 1 0 0

RAS 1 0 0 0 0 0

Same 0% 92% 92% 67% 75% 67%

Better 100% 8% 8% 33% 25% 33%

Worse 0% 0% 0% 0% 0% 0%
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outperforms all others. In the BRA function, MES seems to be the best, but by

a small margin compared to the evident gap in the other 2D scenarios. In the 3D

problem (HM3) EI is outperformed by the other methods, except for RND. However,

the proposed method, ScaledEI, is the best, emphasizing the power of the proposed

adjustment. Even in the 4D, 6D and 10D test functions the ScaledEI policy appears

to be one of the most competitive methods, while its information-based competitor

MES suffers from highly variable results.

In order to facilitate the interpretation of the results, we test in Table 8.2 the

significance of the difference in means of the final log10 distances5 for ScaledEI vs

each of the remaining acquisition functions, using a paired t-test6 with significance

level 0.05. We remark that the choice of performing a t-test on the log distances

at the final iteration is only for summary purposes, and Figure 8.5 shows the full

spectrum of performance scores for all function evaluations ranging from n = 100

to 1000. In most cases, the log distance curves are fairly flat between 300 and 1000,

so the table presented here is representative of the majority of the choices of n. In

general we would not get the true optimum at a high degree of accuracy with only

200 function evaluations. Nevertheless, we have carried out the statistical hypothesis

tests for n = 600 and n = 200 as well, and the results can be found in Tables 8.3 and

8.4. A score of 0 indicates that the null hypothesis of equal average log10 distance

is not rejected. Both 1 and -1 indicate the rejection of the null hypothesis, where

a score of 1 indicates that the proposed method, ScaledEI, achieves a significant

improvement, while a score of -1 shows that ScaledEI is significantly worse.

The proposed acquisition function ScaledEI consistently outperforms the naive

RND policy. Compared with the established acquisition functions, ScaledEI nearly

always achieves equal (67-92%) or significantly better (8-33%) performance, without
5These are the distances at the last iteration, where either the pre-defined budget or the maximum

CPU time was exceeded.
6One could also use the nonparametric Wilcoxon signed-rank test. However, the test is based on

only five data points. We believe that any inference based on five points only is hopeless without

any kind of structural assumption. The t-test, being parametric, can provide more statistical power

to detect a significant difference. Furthermore, the t-test is a mere summary of Figure 8.5, which

contains the full spectrum of results and can be inspected for more information.
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being significantly outperformed by the competitors. One third of the times, ScaledEI

is significantly better than PI and the information-theoretic competitor MES. This

is corroborated in Figure 8.5, where for the benchmark functions ROS, GPR, CAM,

SHU the information-theoretic policy does not come close to the minimum. Then

follow EI and LCB, which are outperformed 25% and 8% of the times, and MN,

which is, surprisingly, outperformed only 8% of the times. This finding provides

reassurance for conservative BO strategies, as in Wang et al. (2013b). However, the

summary table based on hypothesis tests incurs a loss of information. From the

t-test it is not evident that the MN policy suffers from huge variations in the results

(see Figure 8.5). The fact that for some random number seeds MN performs well

is due to the initial design generating a point near the global minimum by chance.

Then, by emphasizing exploitation only, this point will be fine-tuned to the global

optimum. ScaledEI never appears to be significantly worse than its competitors, and

in particular the widely applied EI method. Our results suggest that the proposed

acquisition function, ScaledEI, which combines high expected improvement with

high confidence in the improvement being high, performs as well as or better than

state-of-the-art acquisition functions. This makes ScaledEI a good default choice for

standard BO applications.

As already mentioned above, we would not expect the algorithms to fine-tune the

returned optimum in only n = 200 steps. However, for representational completeness

we have carried out the statistical hypothesis tests for n = 600 and n = 200

nevertheless. These are shown in Tables 8.3 and 8.4 respectively.

Table 8.3 shows that at 600 iterations the results are consistent with Table 8.2,

which uses the full budget of function evaluations. ScaledEI is always significantly

better than RND, but only 8% of the times better than MN. Again, this is due to

the random generation of an initial design point near a global minimum by chance,

which is fine-tuned by focusing on exploitation only. However, this approach carries

substantial variations in the results, and the success of the MN method depends

entirely on the initial design choice, making it a non-optimal policy. For the remaining

methods, ScaledEI is significantly better than each competitor 17-42% of the times,

and in the remaining cases the methods are not significantly different. One third of
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the times it is better than the widely used EI method and the information-theoretic

MES. Furthermore, ScaledEI is never significantly outperformed by its competitors,

including MES. We finally report in Table 8.4 the same kind of test but stopping

at n = 200 iterations only. In this scenario, ScaledEI performed significantly better

than PI and EI, 17% and 42% of the times respectively, while in the remaining cases

the two were not significantly different. Comparing ScaledEI and the information

theoretic strategy (MES), 50% of the time the two are not significantly different, but

33% ScaledEI is performing significantly better, and it is outperformed by MES in

two benchmark functions only: HM3 and RAS.

As remarked in Section 6, different BO algorithms vary in the choice of the

acquisition function. The proposed one, ScaledEI, was tested against literature

methods on a set of 12 benchmark functions having different functional characteris-

tics. According to the no-free-lunch theorem, we do not expect to see one method

consistently outperforming all the remaining algorithms on all benchmark functions

and for any arbitrary choice of function evaluations n. However, our results, shown

in Figure 8.5 and Tables 8.2 to 8.4, suggest that ScaledEI tends to perform as well

as or better than the alternative methods, and hence constitutes a powerful default

choice for Bayesian optimization.
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Table 8.3: Statistical test for the significance in the mean difference of

the log10 distances at n = 600. The ScaledEI acquisition function was tested

against all remaining acquisition functions using a paired t-test with significance

level 0.05. Codes: 0 indicates a non significant difference and 1 (-1) indicates that

ScaledEI performed better (worse), i.e. it has a significantly lower (higher) average

distance.

ScaledEI vs

Test function RND MN LCB PI EI MES

CSF 1 0 0 1 0 0

ROS 1 0 0 1 0 1

BRA 1 0 0 1 1 0

GPR 1 0 0 0 0 1

CAM 1 0 0 1 1 1

SHU 1 0 0 0 1 1

HM3 1 0 0 1 1 0

SH5 1 1 1 0 0 0

SH7 1 0 0 0 0 0

SH10 1 0 0 0 0 0

HM6 1 0 0 0 0 0

RAS 1 0 1 0 0 0

Same 0% 92% 83% 58% 67% 67%

Better 100% 8% 17% 42% 33% 33%

Worse 0% 0% 0% 0% 0% 0%
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Table 8.4: Statistical test for the significance in the mean difference of

the log10 distances at n = 200. The ScaledEI acquisition function was tested

against all remaining acquisition functions using a paired t-test with significance

level 0.05. Codes: 0 indicates a non significant difference and 1 (-1) indicates that

ScaledEI performed better (worse), i.e. it has a significantly lower (higher) average

distance.

ScaledEI vs

Test function RND MN LCB PI EI MES

CSF 1 0 0 0 0 0

ROS 1 0 0 1 1 1

BRA 1 0 0 1 1 0

GPR 0 0 0 0 0 1

CAM 1 0 0 0 1 1

SHU 0 0 0 0 1 1

HM3 1 0 0 0 1 -1

SH5 1 0 0 0 0 0

SH7 1 0 0 0 0 0

SH10 1 0 0 0 0 0

HM6 1 0 0 0 0 0

RAS 1 0 0 0 0 -1

Same 17% 100% 100% 83% 58% 50%

Better 83% 0% 0% 17% 42% 33%

Worse 0% 0% 0% 0% 0% 17%
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8.5 Comparative Study with Standard Global Opti-

mization Solvers

The goal of BO is to reduce the computational costs required to optimize an expensive-

to-evaluate function f , by reducing the number of function queries. This section

corroborates the claim by presenting a proof-of-concept study recording the number

of function evaluations required to reach a log10 distance to the true global optimum

equal to −6. In this experiment we used the objective function CSF, defined in (6.5)

and shown in the top left panel of Figure 8.4, and compared ScaledEI with a range

of algorithms widely used, for example, by applied mathematicians and engineers:

1. Genetic Algorithm (Goldberg, 1989; Conn et al., 1991, 1997);

2. Global Search (Ugray et al., 2007);

3. Simulated Annealing (Ingber, 1996);

4. Particle Swarm (Mezura-Montes and Coello Coello, 2011; Pedersen, 2010);

5. Multi Start (10 random starting points) (Ugray et al., 2007; Glover, 1998);

6. Pattern Search (Audet and Dennis, 2002; Abramson et al., 2009).

We use the implementation found in MATLAB’s Global Optimization Toolbox7, with

the default automatic settings for each algorithm. Each optimization was repeated

15 times, using different random number generator seeds.

Figure 8.6 shows, for each optimization algorithm, the average number of function

evaluations (over the 15 random number seeds) required to reach a log10 distance of

−6, while the error bars show plus or minus one standard error of the mean.

The Genetic Algorithm, requiring between 103 and 104 function evaluations, is

the least suitable algorithm for expensive objective functions. Then follow Global

Search, which requires in the order of 103 evaluations, Simulated Annealing and

Particle Swarm, both requiring between 102 and 103 evaluations. The Multi Start

and Pattern Search solvers rank as the most efficient ones, in terms of the number
7https://uk.mathworks.com/products/global-optimization.html

https://uk.mathworks.com/products/global-optimization.html
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Figure 8.6: Number of function evaluations required to reach a log10

distance to the true global optimum (in function space) equal to −6.

of function evaluations, but they are clearly outperformed by ScaledEI. This comes

as no surprise as, by construction, BO algorithms use all the information available

from previous function evaluations to internally maintain a surrogate model of the

objective function and infer its geometric properties in order to recommend the next

candidate point.

In summary, Bayesian optimization reduces the computational costs required to

optimize (6.5) by 2 orders of magnitude compared to the Genetic Algorithm, and

more than 1 order of magnitude compared to Global Search, Simulated Annealing

and Particle Swarm methods. This makes non-Bayesian optimization methods not

suitable for clinical decision support systems or personalized medicine, where the

unit cost of a single function query for soft tissue biomechanical models is usually

high.
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Figure 8.7: Optimization of the squared L2 loss for the pulmonary cir-

culation model using the ScaledEI algorithm. The plot shows the minimum

observed squared L2 loss trace, averaged over the 15 Latin hypercube design instan-

tiations, plus or minus one standard error, as function of the number of function

evaluations.

8.6 Application to the Pulmonary Circulation Model

This section applies the novel ScaledEI Bayesian optimization algorithm introduced in

(8.2) to the problem of estimating the parameters of the human pulmonary circulation

PDE model described in Chapter 7. The goal is to infer indicators of pulmonary

hypertension risk for clinical decision support systems, without the need for invasive

measurements.

In this experiment we set a priori the maximum budget of function evaluations

to nmax = 500. We repeated the optimization of ` using fifteen different random

number seeds. Let `min = min(`1, . . . , `n) denote the minimum observed objective

(current best function value) at iteration n.

Figure 8.7 shows the average objective minimum trace `min, over the fifteen designs,

as function of the number of function evaluations n (n = 1, . . . , nmax). The error

bars represent plus or minus one standard error of the mean. When the maximum

budget of function evaluations is exceeded, the BO algorithm stops by returning the

estimated objective minimum, `min, and the point qmin at which the minimum is
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Table 8.5: The PDE parameters underlying the simulated data (Truth)

and the estimated parameters (Estimate) using BO with the ScaledEI

acquisition function. Mean and standard error over the 15 design instantiations.

Truth
Estimate (n = 500) Estimate (n = 100)

Mean Std. Err. Mean Std. Err.

fL 2.6× 105 2.6005× 105 189 2.599× 105 287

fS 50000 50003 35 50038 56

ξ 2.76 2.7603 0.0002 2.76 0.0004

attained. The vector qmin represents the estimate of the true but unknown q∗.

Table 8.5 shows the average and standard error, over the 15 repetitions, of the

estimated point of minimum qmin at iteration n = nmax, next to the truth q∗ used to

generated the data. Considering that the data were corrupted by noise, the estimation

(Mean) is accurate, and with reasonably small uncertainty (Std. Err.) given the

scale of each parameter. Furthermore, each element of the true parameter vector

q∗ lies inside the 95% confidence interval obtained as the Mean plus or minus two

Std. Err. in Table 8.5. We notice that the curve in Figure 8.7 is approximately flat

after 100 function evaluations. For this reason, we could have effectively stopped at

approximately between 100 and 200 iterations, without a substantial loss in accuracy,

while reducing the overall computational time from 3 hours to less than 1 hour. In

Table 8.5 we also report the estimated parameters stopping at n = 100 function

evaluations only, where one run of the optimization takes approximately 30 minutes,

compared to the 3 hours required for n = 500. These timings can be used for

in-clinic decision support systems of practical relevance. However, for a standard

optimization algorithm requiring, for example, 104 function evaluations, one run of

the algorithm would have taken approximately 3 days, making traditional algorithms

not suitable for in-clinic applications. We remark that if everybody had access to

a high-performance computer (HPC), then emulation would not be needed at all.

However, the whole field of emulation was born because not everybody has access

to an HPC, perhaps due to not enough funding to maintain one. This can also be

seen as a matter of prioritizing computer power and time. Is it better to use the
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Table 8.6: The PDE parameters underlying the simulated data (Truth)

and the estimated parameters (Estimate) using BO with the EI acquisi-

tion function. Mean and standard error over the 15 design instantiations.

Truth
Estimate (n = 500) Estimate (n = 100)

Mean Std. Err. Mean Std. Err.

fL 2.6× 105 2.6004× 105 236 2.6082× 105 595

fS 50000 50024 27 49983 81

ξ 2.76 2.7604 0.0001 2.7595 0.0007

high-performance computer cluster for this task or another one? One could free up

space in the HPC cluster by relegating one task to the emulation approach.

We also report in Table 8.6 similar results, but obtained using the EI acquisition

function. In most cases, using ScaledEI we get a lower standard error than the

estimates obtained using EI. However, in one case we get a higher standard error,

but a lower bias.

8.7 Summary

In this chapter I proposed a new acquisition function for Bayesian optimization (BO)

which falls into the class of improvement-based policies (class 2), summarized in

Chapter 6. It is based on a random variable, called Improvement, defined in (6.2),

which quantifies the improvement on the incumbent optimum. I discussed that the

established Expected Improvement acquisition function (6.4) does not account for

the uncertainty in the Improvement random variable, which conveys information

about our confidence in its value. To overcome this problem I derived the variance of

Improvement in (8.1) and used it to define a new acquisition function, referred to as

ScaledEI, which is the ratio of the Expected Improvement and the standard deviation

of Improvement, see (8.2). The proposed acquisition function accounts for another

source of uncertainty, and the scaling factor plays a role in both exploitational and

explorational moves. By selecting the point that maximizes the ScaledEI policy

we effectively select a point for which we expect, on average, a high degree of
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improvement at high confidence.

I evaluated the performance of the proposed acquisition function on an extensive

set of benchmark problems from the global optimization literature. The test suite

includes problems of different dimensionality, varying from 1D to 10D, having multiple

local minima and, additionally, symmetries corresponding to multiple equivalent

global minima.

The performance was evaluated in terms of the log10 distance (in function space)

to the global optimum. The results indicate that ScaledEI tends to perform as well

as or better than the representative set of state-of-the-art methods from the BO

literature included in our study. This suggests that by adopting a new search strategy

that explicitly combines the expected improvement with its estimated uncertainty,

we obtain a better trade-off between exploration and exploitation. The result is a

new competitive search strategy that does not only compare favourably with other

improvement-based alternatives (class 2), but also with optimistic (class 1) and

information-theoretic (class 3) strategies.

Next, I presented a proof-of-concept study that confirms the reduction in the

number of function evaluations required to optimize the CSF function. The proposed

ScaledEI algorithm was compared to a set of widely used global optimization solvers,

by reporting the number of function evaluations required to reach a given tolerance

on the f value. The plot in Figure 8.6 confirms that Bayesian optimization with the

proposed ScaledEI acquisition function has indeed the lowest number of function

evaluations, since it uses a surrogate model of the objective function to inform the

next evaluation.

Finally, I used the proposed ScaledEI algorithm for the proof-of-concept study

based on a PDE fluid dynamics model of the human pulmonary circulation presented

in Chapter 7. This is potentially relevant to precision medicine and non-invasive

real-time diagnosis. The aim was to use the PDE model in order to give clinicians

three clear indicators of pulmonary hypertension, without going through the invasive

procedure of right heart catheterization. The three indicators (large vessels stiffness,

small vessels stiffness and density of the structured tree, representing vascular

rarefaction) are derived from the parameters of the constitutive equations of the soft
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tissues, which give pathophysiological insights that are very difficult to obtain in vivo.

I showed how to estimate the three parameters using the proposed ScaledEI method,

introduced in Section 8.1. In particular, the estimates were obtained in a time frame

that is suitable for in-clinic diagnosis and prognosis. As seen from Figure 8.6, this goal

would be more challenging to achieve with conventional non-Bayesian optimization

routines. Hence, the combination of the new ScaledEI method with the fledgling fluid

dynamics model of the human pulmonary blood circulation system is an important

first stepping stone on the pathway to an autonomous in silico clinical decision

support system.



Chapter 9

Conclusions

This thesis focused on how to accelerate parameter estimation in expensive compu-

tational models using the concept of emulation, with the ultimate goal of real-time

decision making and personalized diagnosis. Traditional likelihood-based estimation

methods typically require running an iterative optimization procedure to maximize

the log likelihood function. However, each likelihood evaluation involves a query

to the computationally-expensive simulator, effectively meaning that the total time

required to obtain an estimate is equal to the number of iterations times the unit

cost of a single simulation.

To speed up the inference, we considered the concept of emulation, reviewed in

Chapter 2. It entails replacing a computationally expensive function by a surrogate

model, i.e. a statistical approximation of it based on a set of training runs. I

considered two emulation targets: the simulator output and the inferential loss

function. Chapter 3 reviewed the type of statistical model commonly used in

the emulation literature: the Gaussian process. The approximate unbiasedness

of emulating the loss was studied in Chapter 4 for a nonstandard variant of the

Lotka-Volterra model of prey-predator interactions. Chapter 5 instead compared

and contrasted the two emulation targets (output vs loss) in a computational model

of the left ventricle. In that application we found that emulation methods lead to

a reduction in the computational costs of the inference by 3 orders of magnitude,

highlighting the strength of this approach.

Instead of keeping the emulator fixed, Chapter 6 described the Bayesian opti-

154
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mization algorithm, which iteratively updates an emulator of the loss function using

an adaptive strategy. This method is recommended in scenarios where the simulator

is not considered to be a “stable release”, but is going through some revisions and

changes, and it is known that a new version is going to be released soon. It was

discussed how simulating many training points, even if using massive parallelization

on a computer cluster, would be computationally not optimal, since the emulator is

model-specific and it would be obsolete as soon as the incumbent simulator version

is made available.

Bayesian optimization relies on the choice of the adaptive strategy (the acquisition

function). Section 6.3 reviewed the commonly used policies from the literature. The

acquisition functions were grouped into three main classes: optimistic, improvement-

based and information-based. Chapter 7 presented an application where BO with

the EI policy was used to infer indicators of pulmonary hypertension risk from

a PDE model of the human pulmonary blood circulation. The estimates were

obtained in a time frame suitable for in-clinic decision support systems, not exceeding

approximately 20 minutes. On the contrary, standard global optimization solvers

which do not rely on emulation would need two and a half days.

Chapter 8 focused on a limitation of improvement-based policies, namely that

they do not account for the uncertainty in the random variable Improvement, defined

in (6.2). The Expected Improvement policy recommends points where on average

the improvement is high. However, it does not account for the fact that the random

variable Improvement also has variability. A point having a high expected improve-

ment but high variability would effectively be suboptimal. If we were to query at

that point, we would be evaluating an expensive simulator at a point where the

improvement has a high chance of being low. In order to address this issue I derived

the Variance of Improvement (VI) in (8.1) and used it to define a new acquisition

function that I called ScaledEI, see (8.2). This policy recommends query points

where the improvement is on average high, with high confidence. ScaledEI was tested

in Section 8.3 against the three main classes of policies from the BO literature, where

it turned out to be a powerful default choice for the BO algorithm. It performs

at least as well as, or better, than its competitors on a wide range of benchmark
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functions for global optimization having different dimensionality, sharp variation in

the y-axis, multiple local minima and symmetries corresponding to multiple inputs at

which the global minimum is attained. Next, the novel algorithm was compared to

standard global optimization solvers, to make sure that ScaledEI leads to a reduction

in the required number of function evaluations, as Bayesian optimization algorithms

should do. Finally, the ScaledEI algorithm was used to infer indicators of pulmonary

hypertension risk using the PDE model of the human pulmonary circulation presented

in Chapter 7. The estimates obtained using the novel ScaledEI acquisition function

are compared to those from the EI policy, where it turns out that the estimates from

ScaledEI are more precise.



Appendix A

Detecting Convergence in Numerical

Optimization Algorithms

Given a real-valued function f(x) having domain X ⊆ Rd, the goal is to find a

minimizer xglobal such that

f(xglobal) = min
x∈X

f(x).

Iterative methods start with an initial guess x0 and produce a sequence of points

x1,x2, . . . that aim to get closer to the minimizer xglobal. It is not a requirement of

these methods that the point xn+1 must be better than xn. Hence, the best value

should be considered as x̂ = arg min(f(x0), f(x1), f(x2), . . . ).

Most iterative optimization algorithms stop and return a point x̂ when at least

one of the following stopping criteria is met:

• Upper bound on the number of iterations exceeded:

n > nmax;

• Relative step difference smaller than tolerance (convergence in domain):

max
i=1,...,d

∣∣∣∣xn+1
i − xni
xni

∣∣∣∣ < xtol;

• Relative function value difference smaller than tolerance (convergence in range):∣∣∣∣f(xn+1)− f(xn)

f(xn)

∣∣∣∣ < ftol;
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• If f is differentiable, maximum norm of the gradient less than tolerance:

max
i=1,...,d

∣∣∣∣ ∂∂xif(x)

∣∣∣∣
∣∣∣∣∣
x=xn

< ∇tol.



Appendix B

Derivatives of Linear Combinations

of Kernels

The estimation problem in (4.8) is a constrained optimization of the GP posterior

mean. The GP formulation has three major advantages: the posterior mean, its

gradient with respect to the input, and the Hessian are all available in closed form.

Optimization solvers should exploit this fact and avoid numerical approximations of

the gradient or the Hessian matrix.

In this chapter I derive analytical formulas for the gradient and the Hessian of

the predictive mean for two classes of kernels: the ARD Squared Exponential and

the Periodic kernel.

B.1 Supervised Learning

Let us briefly recall what a supervised regression problems consists in. The goal is

to infer a mapping f(·) from a vector of input variables x to an output y in light

of training data D = {(xn, yn)}Nn=1. The function output at a training input might

be different from the corresponding training target due to measurement error or

others sources of noise. Given an unseen test input xN+1, we aim to get a prediction

f̂(xN+1), plus confidence intervals, for the corresponding output f(xN+1). The

Bayesian framework involves specifying a prior p(f) over the hypothetical functions

that might have generated the data and a likelihood p(D | f) that gives the plausibility
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with which each function f could be the generative model of the observed data. In

this case a widely used prior over the input-output mappings f is the Gaussian

process, reviewed in Chapter 3.

B.2 The Predictive Mean

Consider the supervised regression problem for a datasetD = {X,y} = {(xn, yn)}Nn=1.

Assuming a zero-mean GP prior, the posterior distribution of the latent function

p(f | D) is obtained by conditioning on the training data and is again a GP:

f(·) | D ∼ GP(f̂(·), s(·, ·)).

Define k(xN+1) = (k(x1,xN+1), . . . , k(xN ,xN+1)) and K = [k(xi,xj)]
N
i,j=1. The

analytical expression for the mean prediction f̂(xN+1) = E (f(xN+1) | D) of the

value of the function f(·) at an unseen point xN+1 ∈ X is:

f̂(xN+1) = k(xN+1)
> [K + σ2I

]−1
y (B.1)

=
N∑
n=1

hn(xN+1)yn (f̂ as a linear predictor)

=
N∑
n=1

ank(xn,xN+1) (f̂ as a linear combination of kernel functions)

where a = [K + σ2I]
−1
y ∈ RN and h(xN+1) = [K + σ2I]

−1
k(xN+1) is a vec-

tor function (called weight function) which specifies the weights to apply to tar-

gets y. The posterior covariance function has the form s(x, x̃) = k(x, x̃) −

k(x)> [K + σ2I]
−1
k(x̃) for all x, x̃ ∈ X .

B.3 The ARD Squared Exponential Kernel

This section considers the Squared Exponential (SE) kernel with Automatic Relevance

Determination (ARD), discussed in Section 3.6. The covariance function has the

following analytical expression for x = (x1, . . . , xD), x̃ = (x̃1, . . . , x̃D) ∈ X ⊆ RD:

k(x, x̃) = σ2
f exp

{
−1

2

D∑
d=1

(xd − x̃d)2

λ2d

}
. (B.2)
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If we define the D ×D diagonal matrix

L = diag(λ−21 , λ−22 , . . . , λ−2D ) =


λ−21 0 · · · 0

0 λ−22 · · · 0
...

... . . . ...

0 0 · · · λ−2D

 ,

we can rewrite equation (B.2) in the compact matrix form

k(x, x̃) = σ2
f exp

{
−1

2
(x− x̃)>L(x− x̃)

}
. (B.3)

B.3.1 The Predictive Mean Using the SE Kernel

If we substitute in (B.1) the analytical expression of the SE kernel (B.3), we get:

f̂(x̃) =
N∑
n=1

ank(xn, x̃)

= σ2
f

N∑
n=1

an exp

{
−1

2
(xn − x̃)>L(xn − x̃)

}
,

(B.4)

where again xn = (xn1, xn2, . . . , xnD) ∈ RD for n = 1, . . . , N .

B.3.2 Gradient of the Predictive Mean

The gradient of the predictive mean (B.4) can be easily derived using Einstein’s

notation where a double index means a summation over its possible range. To get

an analytical expression for the gradient we first focus on the quadratic form that

appears in the exponential:

∂

∂x̃h
(xnk − x̃k)[L]kl(xnl − x̃l) = −δhk[L]kl(xnl − x̃l)− δlh[L]kl(xnk − x̃k)

= −[L]hl(xnl − x̃l)− [L]kh(xnk − x̃k)

= −[L]hl(xnl − x̃l)− [L]hk(xnk − x̃k) as L = L>

= − [L(xn − x̃)]h − [L(xn − x̃)]h

= − [2L(xn − x̃)]h .

(B.5)
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So,

∇x̃

{
(xn − x̃)>L(xn − x̃)

}
= −2L(xn − x̃). (B.6)

This can be used to easily obtain the gradient of f̂(x̃) as in the following:

∇x̃

{
f̂(x̃)

}
= −σ2

f

N∑
n=1

an2L(xn − x̃)

(
−1

2

)
exp

{
−1

2
(xn − x̃)>L(xn − x̃)

}

= σ2
f

N∑
n=1

anL(xn − x̃) exp

{
−1

2
(xn − x̃)>L(xn − x̃)

}

= σ2
fL

N∑
n=1

(xn − x̃)an exp

{
−1

2
(xn − x̃)>L(xn − x̃)

}
.

(B.7)

If we define the matrix Z ∈ RN×D as Z> = [x1 − x̃, . . . ,xN − x̃], the vector b with

nth element bn = exp

{
−1

2
(xn − x̃)>L(xn − x̃)

}
and the vector c with nth element

cn = an × bn, we can now rewrite equation (B.7) more concisely as

∇x̃

{
f̂(x̃)

}
= σ2

fLZ
>c. (B.8)

B.3.3 Hessian of the Predictive Mean

By taking again the gradient wrt x̃ of (B.7) and recalling (B.6) we obtain:

H x̃ = −σ2
fL

N∑
n=1

an exp

{
−1

2
(xn − x̃)>L(xn − x̃)

}
+

σ2
f

N∑
n=1

anL(xn − x̃)(xn − x̃)>L exp

{
−1

2
(xn − x̃)>L(xn − x̃)

}
. (B.9)

Let U> = [a1b1(x1 − x̃), . . . , aNbN(xN − x̃)]. Then we can write the Hessian at x̃

more concisely as

H x̃ = −σ2
fLa

>b+ σ2
fLZ

>UL.

B.4 The Periodic Kernel

If the data present hints of periodicity, the Periodic kernel is a better choice than the

ARD Squared Exponential. For x, x̃ ∈ X ⊂ RD it has functional form (Vanhatalo
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et al., 2012, 2013):

k(x, x̃) = σ2
f exp

{
−

D∑
d=1

2 sin2(π/γ(xd − x̃d))
λ2d

}

with γ controlling the inverse length of the periodicity and λd, as in the SE kernel,

controlling the correlation decay in dimension d. With this particular choice of kernel

function the posterior mean (B.1) of the GP has the following functional form:

f̂(x̃) =
N∑
n=1

ank(xn, x̃)

= σ2
f

N∑
n=1

an exp

{
−

D∑
d=1

2 sin2(π/γ(xnd − x̃d))
λ2d

}
.

(B.10)

B.4.1 Gradient of the Predictive Mean

Let us focus on the following derivative first:

∂

∂x̃h

{
−

D∑
d=1

2 sin2(π/γ(xnd − x̃d))
λ2d

}
= −

D∑
d=1

∂

∂x̃h

{
2 sin2(π/γ(xnd − x̃d))

λ2d

}

= −
D∑
d=1

1

λ2d
× 2× ∂

∂x̃h

{
sin2

(
π

γ
(xnd − x̃d)

)}

= −
D∑
d=1

2

λ2d
× 2 sin

(
π

γ
(xnd − x̃d)

)
×

cos

(
π

γ
(xnd − x̃d)

)(
−π
γ
δdh

)
=

D∑
d=1

2

λ2d

π

γ
sin

{
2
π

γ
(xnd − x̃d)

}
δdh

= 2
π

γ

D∑
d=1

1

λ2d
sin

{
2
π

γ
(xnd − x̃d)

}
δdh

= 2
π

γ

1

λ2h
sin

{
2
π

γ
(xnh − x̃h)

}
.

(B.11)

Using the previous result we can derive

∂

∂x̃h
f̂(x̃) = σ2

f

N∑
n=1

an
π

γ

2

λ2h
sin

{
2
π

γ
(xnh − x̃h)

}
exp

{
−

D∑
d=1

2 sin2(π/γ(xnd − x̃d))
λ2d

}
.
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B.4.2 Hessian of the Predictive Mean

The Hessian of f̂(·) at x̃ has generic hkth element equal to

[H x̃]hk =

σ2
f

N∑
n=1

an
2

λ2h

π

γ
(−δhk)

2π

γ
cos

{
2
π

γ
(xnh − x̃h)

}
exp

{
−

D∑
d=1

2 sin2(π/γ(xnd − x̃d))
λ2d

}

+ σ2
f

N∑
n=1

an

[
2

λ2h

π

γ
sin

{
2
π

γ
(xnh − x̃h)

}][
2

λ2k

π

γ
sin

{
2
π

γ
(xnk − x̃k)

}]
×

exp

{
−

D∑
d=1

2 sin2(π/γ(xnd − x̃d))
λ2d

}

= σ2
f

N∑
n=1

an
4

λ2h

π2

γ2
×[

−δhk cos

{
2
π

γ
(xnh − x̃h)

}
+

1

λ2k
sin

{
2
π

γ
(xnh − x̃h)

}
sin

{
2
π

γ
(xnk − x̃k)

}]
×

exp

{
−

D∑
d=1

2 sin2(π/γ(xnd − x̃d))
λ2d

}
.
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Derivatives of the Gaussian Density

Let φ(z) = (
√

2π)−1 exp(−z2/2) be the probability density function (pdf) of a N(0, 1)

random variable. Then,

φ′(z) =
d

dz
φ(z)

= φ(z)×
(
−1

2
× 2z

)
(C.1)

= −zφ(z).

The second derivative of the standard Gaussian pdf is:

φ′′(z) =
d

dz
φ′(z)

=
d

dz
{−zφ(z)} (C.2)

= −φ(z) + (−z)(−zφ(z))

= (z2 − 1)φ(z).
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Appendix D

ScaledEI with the ARD Matérn 5/2

Kernel

This section presents similar results to Section 8.4, but using a Gaussian process

with the ARD Matérn 5/2 kernel. The only exception is represented by the MES

policy, whose code, provided by Wang and Jegelka (2017), only allows for the ARD

Squared Exponential kernel. Figure D.1 shows the full spectrum of log10 distances

(in function space) to the global optimum, for all function evaluations ranging from

n = 100 to 1000.

Tables D.1, D.2 and D.3 test the significance of the difference in means of the log10

distances at n = 1000, 600, 200 respectively, for ScaledEI vs each of the remaining

acquisition functions, using a paired t-test with significance level 0.05. Table D.1

shows that ScaledEI always outperforms the simple RND policy, and often performs

as well as (50-83%) or significantly better (17-50%) than the competing algorithms,

with only one exception. ScaledEI is half of the time better than PI, followed by the

information theoretic competitor MES, where ScaledEI performs significantly better

33% of the times. Then follow LCB and EI, both outperformed 25% of the times

and finally the conservative MN policy, outperformed only 17% of the times. Due

to the information loss inherent in reducing an entire graph to a single number, the

huge variations in the results of MN get lost, but they are clear in Figure D.1. By

chance a point in the initial Latin hypercube design can be near the global optimum,

and this will be fine-tuned because of the excessive exploitative strategy. ScaledEI
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appears to be worse than EI in only one test function. By inspecting in Figure D.1

the trace of the log10 distance for that function, SH10, we see that both algorithms

are among the best performing methods, and the difference, even if significant, is

marginal in absolute terms. Similar conclusions can be obtained from Tables D.2

and D.3.

We now compare Table D.1, obtained using the ARD Matérn 5/2 kernel and

Table 8.2, for the ARD Squared Exponential. ScaledEI performed always significantly

better than the RND policy. Using the Squared Exponential kernel, ScaledEI is

only once significantly better than MN while this happens twice using the Matérn

kernel. For the Squared Exponential kernel, the ScaledEI method has a significantly

better performance in only one of the benchmark functions, compared to LCB, while

in the Matérn one this happens three times. Using the Matérn kernel, half of the

time ScaledEI is better than PI, while using the infinitely-differentiable kernel, this

happens only one third of the times. The comparison with EI is of particular interest.

The column of t-test results are the same, apart from one function: SH10. Using the

Squared Exponential kernel, there is not significant difference between ScaledEI and

EI, while for the Matérn one the conclusion is that ScaledEI performed significantly

worse. For both kernels, ScaledEI is significantly better than EI 25% of the times.

We recall that the code of MES is only available for the Squared Exponential kernel.

ScaledEI using either a Squared Exponential or Matérn 5/2 kernel is 33% of the times

significantly better then MES with Squared Exponential kernel, and the remaining

67% of the times they are not significantly different.

Overall, 81% of the hypothesis test labels in Tables 8.2 to 8.4 versus Tables D.1

to D.3 agree between the two kernels, while in 19% of the cases they are different.

This suggests that the two kernels lead to similar results.
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Figure D.1: Comparison of the log10 distances (in function space) to the

global optimum. Each panel represents a given benchmark function. The traces

show the average distance over the five design instantiations for the whole spectrum

of iterations, while the error bars show plus or minus one standard error of the mean.

These results use the ARD Matérn 5/2 kernel.
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Table D.1: Statistical test for the significance in the mean difference of

the final log10 distances. The ScaledEI acquisition function was tested against

all remaining acquisition functions using a paired t-test with significance level 0.05.

Codes: 0 indicates a non significant difference and 1 (-1) indicates that ScaledEI

performed better (worse), i.e. it has a significantly lower (higher) average distance.

These results use the ARD Matérn 5/2 kernel.

ScaledEI vs

Test function RND MN LCB PI EI MES

CSF 1 0 0 0 0 0

ROS 1 0 0 0 0 1

BRA 1 0 0 1 1 0

GPR 1 0 1 1 0 1

CAM 1 1 1 1 1 1

SHU 1 0 1 0 0 1

HM3 1 0 0 0 1 0

SH5 1 1 0 1 0 0

SH7 1 0 0 1 0 0

SH10 1 0 0 1 -1 0

HM6 1 0 0 0 0 0

RAS 1 0 0 0 0 0

Same 0% 83% 75% 50% 67% 67%

Better 100% 17% 25% 50% 25% 33%

Worse 0% 0% 0% 0% 8% 0%
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Table D.2: Statistical test for the significance in the mean difference of

the log10 distances at n = 600. The ScaledEI acquisition function was tested

against all remaining acquisition functions using a paired t-test with significance

level 0.05. Codes: 0 indicates a non significant difference and 1 (-1) indicates that

ScaledEI performed better (worse), i.e. it has a significantly lower (higher) average

distance. These results use the ARD Matérn 5/2 kernel.

ScaledEI vs

Test function RND MN LCB PI EI MES

CSF 1 0 0 0 0 0

ROS 1 0 0 1 0 1

BRA 1 0 0 1 1 0

GPR 1 0 0 0 0 1

CAM 1 1 1 1 1 1

SHU -1 0 0 0 0 0

HM3 1 0 0 0 1 0

SH5 1 0 0 0 0 0

SH7 1 0 0 0 0 0

SH10 1 0 0 1 0 0

HM6 1 0 0 0 0 0

RAS 1 0 0 0 0 0

Same 0% 92% 92% 67% 75% 75%

Better 92% 8% 8% 33% 25% 25%

Worse 8% 0% 0% 0% 0% 0%
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Table D.3: Statistical test for the significance in the mean difference of

the log10 distances at n = 200. The ScaledEI acquisition function was tested

against all remaining acquisition functions using a paired t-test with significance

level 0.05. Codes: 0 indicates a non significant difference and 1 (-1) indicates that

ScaledEI performed better (worse), i.e. it has a significantly lower (higher) average

distance. These results use the ARD Matérn 5/2 kernel.

ScaledEI vs

Test function RND MN LCB PI EI MES

CSF 1 0 -1 0 -1 -1

ROS 1 1 0 1 0 1

BRA 1 1 1 1 1 0

GPR 1 0 1 0 0 1

CAM 1 1 1 1 1 1

SHU 0 0 0 0 0 0

HM3 1 0 0 0 1 0

SH5 1 0 0 0 0 0

SH7 1 0 0 0 0 0

SH10 1 0 0 0 0 0

HM6 1 0 0 0 0 0

RAS 1 0 0 0 0 0

Same 8% 75% 67% 75% 67% 67%

Better 92% 25% 25% 25% 25% 25%

Worse 0% 0% 8% 0% 8% 8%
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Reproducing Kernel Hilbert Spaces

This chapter summarizes the link between Gaussian processes (GPs) and reproducing

kernel Hilbert spaces (RKHS). The presentation is based on lecture notes by Sayan

Mukherjee1 and Chapter 6 of Rasmussen and Williams (2006). More details can be

found in Wahba (1990). The standard regression setting applies: we have n i.i.d.

data D = {(x1, y1), . . . , (xn, yn)} from a joint distribution Px,y and our goal is to

build an accurate predictive model y = f̂(x). In Chapter 3 we followed the Bayesian

recipe: starting from a GP prior over a functional space, we obtained a posterior GP

given data D. The predictive mean represents the predictor f̂(·) and we also have a

measure of the predictive uncertainty given by the posterior GP variance.

A related approach is given by regularization. In this framework, the prior

assumptions on the underlying function are specified in terms of a penalization term

that prefers simpler (smooth) functions, which is considered along with a data fit

term. Without any regularization, we would end up overfitting the (noisy) data. At

the same time, very simple models might not fit the data at all. The tradeoff between

the two terms is controlled by a regularization parameter λ > 0. The estimation

problem is then reduced to the following minimization over the space of candidate

functions H:

f̂ = arg min
f∈H

1

n

n∑
i=1

L(f(xi), yi) + λ‖f‖2H, (E.1)

where L(·, ·) is a loss function measuring the cost we incur when predicting yi by
1https://www2.stat.duke.edu/~sayan/561/2015/stat_ml.pdf
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f(xi), and ‖ · ‖H is the norm of the space H.

We are now left with characterizing what is a suitable space of functions for the

task at hand and, to do so, we need a few definitions.

Hilbert spaces. A Hilbert space H is an infinite-dimensional linear space of

functions, which is complete, separable, and has an inner product 〈·, ·〉H. In the

following, the norm is considered to be ‖f‖H =
√
〈f, f〉H.

An example is the space L2[a, b] of square-integrable functions on the interval

[a, b], with the inner product

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

This space, however, has the issue that it also includes functions which can take any

arbitrary value at a finite number of points. In order to estimate smooth predictive

models, this is not a desirable feature. We therefore need to consider functional

spaces with elements that are “better behaved”: reproducing kernel Hilbert spaces.

Evaluation functionals. An evaluation functional over H is a linear functional

Fx : H → R returning the pointwise evaluation of each function at x ∈ X :

Fx[f ] = f(x) for all f ∈ H.

Reproducing kernel Hilbert spaces. A reproducing kernel Hilbert space (RKHS)

is a Hilbert space H with bounded evaluation functionals, i.e. there exists an M > 0

such that

|Fx[f ]| = |f(x)| ≤M‖f‖H for all f ∈ H.

Note that the evaluation functional in the L2[a, b] space (which is not a RKHS)

is the delta function

δ(x) =

+∞ x = 0

0 x 6= 0,

since f(x) =
∫ b
a
f(u)δ(u− x)du. Furthermore, the delta function is not in L2[a, b].

On the contrary, for a RKHS H, the bounded evaluation functionals are also elements

of H.
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Kernel functions. A kernel is a function k : X × X → R that is:

1. symmetric, i.e. k(xi,xj) = k(xj,xi);

2. positive definite, i.e.
∑n

i=1

∑n
j=1 aiajk(xi,xj) ≥ 0 for any n ∈ N, indices

x1, . . . ,xn ∈ X and a1, . . . , an ∈ R.

Relationship between RKHS and kernels. Let H be a Hilbert space of real-

valued functions on some domain X . It can be proved that H is a RKHS if and only

if there exists a function k : X × X → R such that:

1. for every x ∈ X , the function k(x, ·) ∈ H;

2. for every f ∈ H, 〈f(·), k(x, ·)〉H = f(x).

The last property is called the reproducing property of k. The function k is the

reproducing kernel of H, and it is unique and positive definite. Because both functions

k(x, ·) and k(x′, ·) are in H, we further have that 〈k(x, ·), k(x′, ·)〉H = k(x,x′), from

which the name reproducing kernel arises.

Moore–Aronszajn theorem. To every positive definite function k(·, ·) on X ×X

corresponds a reproducing kernel Hilbert space (RKHS) and vice versa (Aronszajn,

1950).

This characterization is important because it lets us define a RKHS directly from

a reproducing kernel, rather than trying to derive the kernel from the definition of

the function space. Furthermore, for every positive definite k(·, ·) on X × X there

exists a zero-mean Gaussian process having k(·, ·) as covariance function, see Wahba

(1990, 1999).

Representer theorem. The representer theorem (Kimeldorf and Wahba, 1971)

shows that the minimizer f̂(·) of (E.1) over the RKHS H has the form:

f̂(x) =
n∑
i=1

aik(xi,x),

for some (a1, . . . , an) ∈ Rn. In other words, the solution to the regularization problem

is a linear combination of the reproducing kernel evaluated at the training inputs.
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This means that the optimization over the infinite dimensional space effectively boils

down to a minimization over Rn. We immediately notice the correspondence between

the Gaussian process posterior mean derived in (3.27), which can also be written as

a linear combination of kernels:

f̂(x) = k(x)>
[
K + σ2I

]−1
y

= k(x)>a,

where k(x) = (k(x1,x), . . . , k(xn,x)) and a = [K + σ2I]
−1
y. The same result can

be obtained by solving the regularization problem for a squared error term:

f̂ = arg min
f∈H

1

2σ2

n∑
i=1

(yi − f(xi))
2 +

1

2
‖f‖2H,

see Section 6.2.2 in Rasmussen and Williams (2006). However, unlike the Bayesian

approach, the regularization approach does not return an estimate of the predictive

uncertainty, nor it specifies a method to compute the log marginal likelihood, a useful

quantity for selecting the kernel hyperparameters or for model comparison.
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