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Abstract

Recently, the use of Twitter data has become important for a wide range of real-

time applications, including real-time event detection, topic detection or disaster

and emergency management. These applications require to know the precise lo-

cation of the tweets for their analysis. However, approximately 1% of the tweets

are �nely-grained geotagged, which remains insu�cient for such applications. To

overcome this limitation, predicting the location of non-geotagged tweets, while

challenging, can increase the sample of geotagged data to support the applications

mentioned above. Nevertheless, existing approaches on tweet geolocalisation are

mostly focusing on the geolocation of tweets at a coarse-grained level of granular-

ity (i.e., city or country level). Thus, geolocalising tweets at a �ne-grained level

(i.e., street or building level) has arisen as a newly open research problem. In this

thesis, we investigate the problem of inferring the geolocation of non-geotagged

tweets at a �ne-grained level of granularity (i.e., at most 1 km error distance). In

particular, we aim to predict the geolocation where a given a tweet was generated

using its text as a source of evidence.

This thesis states that the geolocalisation of non-geotagged tweets at a �ne-

grained level can be achieved by exploiting the characteristics of the 1% of al-

ready available individual �nely-grained geotagged tweets provided by the Twit-

ter stream. We evaluate the state-of-the-art, derive insights on their issues and

propose an evolution of techniques to achieve the geolocalisation of tweets at a

�ne-grained level.

First, we explore the existing approaches in the literature for tweet geolocal-

isation and derive insights on the problems they exhibit when adapted to work

at a �ne-grained level. To overcome these problems, we propose a new approach

that ranks individual geotagged tweets based on their content similarity to a given
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0. ABSTRACT

non-geotagged. Our experimental results show signi�cant improvements over pre-

vious approaches.

Next, we explore the predictability of the location of a tweet at a �ne-grained

level in order to reduce the average error distance of the predictions. We postu-

late that to obtain a �ne-grained prediction a correlation between similarity and

geographical distance should exist, and de�ne the boundaries were �ne-grained

predictions can be achieved. To do that, we incorporate a majority voting algo-

rithm to the ranking approach that assesses if such correlation exists by exploit-

ing the geographical evidence encoded within the Top-N most similar geotagged

tweets in the ranking. We report experimental results and demonstrate that by

considering this geographical evidence, we can reduce the average error distance,

but with a cost in coverage (the number of tweets for which our approach can

�nd a �ne-grained geolocation).

Furthermore, we investigate whether the quality of the ranking of the Top-

N geotagged tweets a�ects the e�ectiveness of �ne-grained geolocalisation, and

propose a new approach to improve the ranking. To this end, we adopt a learning

to rank approach that re-ranks geotagged tweets based on their geographical

proximity to a given non-geotagged tweet. We test di�erent learning to rank

algorithms and propose multiple features to model �ne-grained geolocalisation.

Moreover, we investigate the best performing combination of features for �ne-

grained geolocalisation.

This thesis also demonstrates the applicability and generalisation of our �ne-

grained geolocalisation approaches in a practical scenario related to a tra�c inci-

dent detection task. We show the e�ectiveness of using new geolocalised incident-

related tweets in detecting the geolocation of real incidents reports, and demon-

strate that we can improve the overall performance of the tra�c incident detection

task by enhancing the already available geotagged tweets with new tweets that

were geolocalised using our approach.

The key contribution of this thesis is the development of e�ective approaches

for geolocalising tweets at a �ne-grained level. The thesis provides insights on

the main challenges for achieving the �ne-grained geolocalisation derived from

exhaustive experiments over a ground truth of geotagged tweets gathered from

two di�erent cities. Additionally, we demonstrate its e�ectiveness in a tra�c
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incident detection task by geolocalising new incident-related tweets using our

�ne-grained geolocalisation approaches.
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Chapter 1

Introduction

1.1 Introduction

Social media services enable users to connect across geographical, political or eco-

nomic borders. In particular, Twitter1 represents the most important microblog

service in the world with 336 million active users as of 20182. Twitter allows

users to share short messages instantaneously with the community discussing a

wide range of topics. In particular, through its users' messages, Twitter provides

a unique perspective of events occurring in the real world (Abbasi et al., 2012)

with �rst-hand reports of the people that are witnessing such events. Addition-

ally, users posting from mobile devices have the option to attach geographical

information to their messages in the form of GPS coordinates (longitude and lat-

itude). These characteristics of Twitter have gained increasing popularity within

several research communities, such as Computing Science and Social Science.

Researchers in such communities aim to exploit Twitter data as a new source of

real-time geotagged information for a broad range of applications, including real-

time event detection (Atefeh and Khreich, 2015), topic detection (Hong et al.,

2012b), and disaster and emergency analysis (Ao et al., 2014; Imran et al., 2015;

McCreadie et al., 2016).

As location knowledge is critical for such applications, virtually all the analy-

sis conducted in such tasks utilise geotagged Twitter data exclusively. However,

since only 1% of messages in the Twitter stream contain geographical information

1https://twitter.com/
2https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
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1. INTRODUCTION 1.1 Introduction

(Graham et al., 2014), the available sample size for analysis is quite limited. Fur-

thermore, Twitter users who publish geographical information have been found

to be not representative of the broader Twitter population (Sloan and Morgan,

2015). This limitation is particularly crucial to transportation applications, where

several new approaches have emerged to study transportation patterns, travel be-

havior and detect tra�c incidents using Twitter data (Cui et al., 2014; D'Andrea

et al., 2015; Gu et al., 2016; Kosala et al., 2012; Mai and Hranac, 2013; Schulz

et al., 2013b; Steiger et al., 2014). Thus geolocating (or geolocalising) new non-

geotagged tweets can increase the sample of geotagged data for these applications,

which can lead to an improvement in their performance.

Earlier studies on the geolocalisation of tweets have limitations in the precision

of the spatial resolution achieved; they are capable of geolocalise tweets at a

coarse-grained level (i.e., country or city level) (Eisenstein et al., 2010a; Han and

Cook, 2013; Kinsella et al., 2011; Schulz et al., 2013a). Therefore, the accuracy of

existing methods remains insu�cient for a wide range of applications that require

highly accurate geolocated data. In this thesis, we aim to bridge this gap and

investigate whether we can infer the geolocation of tweets at a �ne-grained level

(i.e., street or neighbourhood level). We advance the existing state-of-the-art

further by developing novel �ne-grained geolocalisation approaches, such that it

is possible to infer the geolocation of tweets at a reasonable �ne-grained level.

In particular, in this thesis, we aim to infer the most likely geolocation for

a given tweet using its text as a source of evidence. It is important to note

that, by doing this, we predict the geolocation encoded within the content of

the tweet, which does not necessarily correlates with the geolocation where the

user generated the tweet. For instance, when an event occurs, tweets describing

such events can be generated by users that are physically at the location of the

occurrence, or by users that are aware of such event but are physically located at

another location. This issue is not relevant for the tasks we aim to assist with the

methods developed in this thesis - i.e., tra�c incident detection or disaster and

emergency analysis-, where the ultimate goal is to detect and geolocate events

regardless of the geolocation where the user generated the tweet.

The essential argument made by this thesis is that the �ne-grained geolocalisa-

tion of tweets can be achieved by exploiting the characteristics of already available

3
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individual �nely-grained geotagged tweets. In particular, we exploit such relation

to infer the geolocation of non-geotagged tweets based on their similarity to other

geotagged tweets.

We address three main issues concerning the �ne-grained geolocalisation of

tweets and propose an evolution of techniques to tackle them. First, we investigate

the limitations of existing tweet geolocalisation approaches when working at �ne-

grained levels. Mainly, these approaches follow the strategy of creating a virtual

document to represent an area, which is generated by aggregating the texts of the

geotagged tweets belonging to that area. We show that this strategy leads to a

loss of important evidence and a�ects the geolocalisation at a �ne-grained level.

To alleviate such limitations, we use individual geotagged tweets instead of an

aggregation of them, and propose a new approach for �ne-grained geolocalisation

based on a ranking of such individual geotagged tweets. Then, we return the

location of the Top-1 geotagged tweet as the predicted location coordinates.

Second, we discuss the predictability of the location of tweets at a �ne-grained

level. We postulate that, in order to �nd a �ne-grained location for a given

non-geotagged tweet, we should �nd a correlation between its content similarity

and geographical distance to other geotagged tweets. To this end, we propose a

new approach that uses a majority voting algorithm to �nd such a correlation

by employing the geographical evidence encoded within the Top-N most similar

geotagged tweets to a non-geotagged tweet.

Finally, we investigate the e�ects of the quality of the ranking of geotagged

tweets on �ne-grained geolocalisation. In particular, we propose a learning to

rank approach to re-rank geotagged tweets based on their geographical proximity

to a given non-geotagged tweet, and propose multiple features tailored for the

�ne-grained geolocalisation of tweets. This approach can improve the ranking of

geotagged tweets and, therefore, lead to better �ne-grained geolocalisation.

Additionally, this thesis investigates the applicability and generalisation of our

�ne-grained tweet geolocalisation approaches in a practical application related to

the detection of tra�c incidents, which aims to use Twitter as a data-source for

detecting tra�c incidents occurring in a city. Existing approaches to the task

aim to detect an incident by identifying incident-related content in the geotagged

tweets. Then, the predicted location of the incident is given by the location of the

4
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incident-related geotagged tweets. We show how our �ne-grained geolocalisation

approaches are capable of inferring the geolocation of non-geotagged incident-

related tweets and e�ectively predict the location of the incidents. Moreover,

we show how tra�c incident detection is improved by adding new geolocalised

incident-related tweets to the sample of already available geotagged tweets that

is commonly used by existing tra�c incident detection approaches.

The remainder of this chapter presents the statement and contributions of

this thesis, as well as a roadmap of its structure.

1.2 Thesis Statement

This thesis states that the geolocalisation of non-geotagged tweets at a �ne-

grained level1 can be achieved by exploiting the characteristics of already available

individual �nely-grained geotagged tweets. We assume a relationship between

content similarity and geographical distance amongst tweets that are posted

within an area. Thus, if two tweets are similar to each other, then they are

likely to be posted within the same location. In order to validate our statement,

we formulate the following four main hypotheses that will be explored in our

three main contributions chapters. The �rst three hypothesis relates to the �ne-

grained geolocalisation problem. Besides, the fourth hypothesis aims to validate

the applicability and generalisation of our approaches.

• Hypothesis 1: By considering geotagged tweets individually we can pre-

serve the evidence lost when adapting previous approaches at a �ne-grained

level, and thus we can improve the performance of �ne-grained geolocalisa-

tion (Chapter 3).

• Hypothesis 2: The predictability of the geolocation of a tweet at a �ne-

grained level is given by the correlation between its content similarity and

geographical distance to �nely-grained geotagged tweets (Chapter 4).

• Hypothesis 3: By improving the ranking of geotagged tweets with respect
to a given non-geotagged tweet, we can increase the number of similar and

1Speci�cally, in this thesis, �ne-grained locations are de�ned as squared areas of size 1 km.

5



1. INTRODUCTION 1.3 Contributions

geographically closer geotagged tweets, and thus we can obtain a higher

number of �ne-grained predictions (Chapter 5).

• Hypothesis 4: By geolocalising non-geotagged tweets we can obtain a

more representative sample of geotagged data and, therefore, improve the

e�ectiveness of the tra�c incident detection task (Chapter 6).

1.3 Contributions

The key contributions of this thesis can be summarised as follows:

• An investigation into the performance issues of existing tweet geolocalisa-

tion approaches when applied to work at a �ne-grained level.

• A novel ranking approach that alleviates state-of-the-art issues and enables

�ne-grained geolocalisation of tweets.

• An study into what makes the geolocation of a tweet predictable at a �ne-

grained level. We explore the relationship between content similarity and

geographical distance to derive assumptions to improve the geolocalisation.

• A new model for �ne-grained geolocalisation based on a weighted majority

voting that combines the geographical evidence of the most similar geo-

tagged tweets.

• We demonstrate the e�ectiveness of the proposed geolocalisation approach

in the tra�c incident detection task. We expanded the sample of already

available geotagged data and study the improvements in performance in

detection rate.

1.4 Thesis Outline

In this thesis, we propose a geolocalisation approach for inferring the location of

non-geotagged tweets at a �ne-grained level. Initially, in the �rst chapters, we

focus on tackling the �ne-grained geolocalisation problem. Next, we evaluate the

e�ectiveness of the proposed approach in the context of a practical application

6
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(i.e., tra�c incident detection). The remainder of this thesis is organised as fol-

lows:

Part I: Introduction and Background

Chapter 2 introduces the concepts this thesis relies on. Firstly, we provide con-

cepts from classical IR such as retrieval, indexing and approaches for weighting

documents (including Vector Space Models and Probabilistic models) that we will

utilise through the work of this thesis. Secondly, we provide a literature overview

of previous research regarding the geolocalisation of Twitter data. This overview

includes reviews of the approaches proposed to tackle the two main problems

in the area: Twitter user and Tweet geolocalisation. Finally, we introduce the

problem of �ne-grained geolocalisation of non-geotagged tweets and motivate the

limitations of previous research for tackling this task.

Part II: Fine-Grained Geolocalisation of Tweets

Chapter 3 investigates the limitations of previous tweet geolocalisation ap-

proaches when working at �ne-grained levels. We show that the strategy of

existing approaches of aggregating geotagged tweets to represent a location leads

to a loss of important evidence for �ne-grained geolocalisation. To alleviate such

limitations, we propose to avoid such aggregation and propose an approach for

�ne-grained geolocalisation based on a ranking approach of individual geotagged

tweets. Finally, we experiment to demonstrate the e�ectiveness of our approach

and provide insights to understand the drawbacks of existing state-of-the-art

works.

Chapter 4 discusses the predictability of geolocation of tweets at a �ne-grained

level. We postulate that such predictability is given by a correlation between

content similarity and geographical distance to other geotagged tweets. We ex-

tend our ranking of individual geotagged tweets by adopting a weighted majority

voting algorithm to exploit the geographical evidence encoded within the Top-N

7
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geotagged tweet in the ranking.

Chapter 5 investigates the e�ects of the quality of the ranking on �ne-grained ge-

olocalisation. In particular, we propose a learning to rank approach that re-ranks

individual geotagged tweets based on their geographical proximity to a given non-

geotagged tweet. Moreover, we propose multiple features tailored for �ne-grained

geolocalisation of tweets and investigate the best performing combination of them.

Part III: Applicability of The Fine-Grained Geolocalisation Approach

Chapter 6 investigates the e�ectiveness of our proposed �ne-grained geolocalisa-

tion approaches when applied in a practical application. In particular, we study

the e�ectiveness of geolocalised tweets in the tra�c incident detection task, which

aims to detect real-time tra�c disruptions using messages posted in the Twitter

stream. We geolocalise new non-geotagged incident-related tweets and demon-

strate that, when comparing to a ground truth of real incidents, our approaches

can e�ectively infer their location. Moreover, we show how the overall e�ective-

ness of the tra�c incident detection task is improved when expanding the sample

of incident-related geotagged tweets with new geolocalised incident-related tweets,

compared to the performance when using geotagged tweets alone.

Part IV: Conclusions and Future Work

Chapter 7 provides conclusion remarks of the work undertaken in this thesis

and discusses the new research questions that this thesis opens to the research

community, and are worth to be investigated in the future.

1.5 Origin of The Material

The research material appeared in this thesis has been published in various journal

and conference papers during the course of this PhD programme:

8
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1. (Gonzalez Paule et al., 2017) �On �ne-grained geolocalisation of tweets�. IC-

TIR'17, pages 313-316.

2. (Gonzalez Paule et al., 2018b) �On �ne-grained geolocalisation of tweets and

real-time tra�c incident detection�. In Information Processing & Manage-

ment.

3. (Gonzalez Paule et al., 2018a) �Learning to Geolocalise Tweets at a Fine-

Grained Level �. CIKM'18, pages 1675-1678.

4. (Gonzalez Paule et al., 2019) �Beyond geotagged tweets: exploring the ge-

olocalisation of tweets for transportation applications�. In Transportation

Analytics in the Era of Big Data, Springer, pages 1�21.

In addition, the work undertaken during this PhD programme has lead to

the publication of other research papers that have contributed to the �elds of

Geographical Sciences and Social Sciences. In particular:

5 (Thakuriah et al., 2016) "Sensing spatiotemporal patterns in urban areas:

analytics and visualizations using the integrated multimedia city data plat-

form." Built Environment 42.3, pages 415-429.

6 (Sun and Gonzalez Paule, 2017). "Spatial analysis of users-generated rat-

ings of yelp venues." Open Geospatial Data, Software and Standards 2.1,

pages 5.
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Chapter 2

Background
and Related Work

2.1 Chapter Overview

In this chapter, we introduce the necessary concepts, de�nitions and methods that

will be used later in this thesis. In particular, we provide essential background for

understanding the methodologies used in Part II. Now we provide an overview of

the content of this chapter.

Firstly, in Section 2.2 we introduce the �eld of Information Retrieval (IR), that

allows users to e�ciently and e�ectively search for relevant information within

large collections of text documents by means of a query. Then, the documents

are ranked by the estimated relevance with respect to the user's query. We start

by describing the main components of an IR system and how text documents are

processed and indexed. Lastly, we describe how relevant documents are retrieved

using a retrieval model. Methods and techniques explained in this section will

be used later in our experiments. Therefore, we formalise and describe in detail

the state-of-the-art retrieval models that will be used in Part II of this thesis.

However, while IR systems rank documents based on relevance to a given query,

given the nature of our task (geolocalisation of a tweet), we aim to rank tweets

based on their geographical proximity to a given tweet as a query. The behaviour

of IR models in the context of this task will be explored in further experiments

in this thesis.

Next, in Section 2.3 we describe the challenges arisen when dealing with Twit-

ter data in an IR system, which is the data source used through this thesis. Twit-
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ter messages have particular characteristics, they are short documents and are

normally written in formal language. Because of this, state-of-the-art IR models,

that were initially tailored to work with large text documents, under-perform

when dealing with Twitter posts. For this reason, we introduce how the IR com-

munity have tackled this issue and the best ways to store and process Twitter

posts. These methods will be crucial for the experiments undertaken later in this

thesis.

Finally, in Section 2.4 we discuss related work regarding the geolocalisation of

Twitter data. We introduce the �eld and discuss the two main task tackled by the

research community: Twitter user geolocalisation and tweet geolocalisation. Since

this thesis aims to investigate the tweet geolocalisation task, we then describe

the main approaches that researchers have proposed in the past to address the

problem. Lastly, we motivate the problem of inferring the geolocalisation of tweets

at a �ne-grained level and motivate the work in this thesis.

2.2 Information Retrieval Background

The �eld of information retrieval (IR) deals with the representation, storage,

organisation of and access to information items (Baeza-Yates et al., 1999). The

discipline was developed to e�ciently and e�ectively access information contained

in large collections of text documents written in natural language. The process

of IR can be summarised as follows. Firstly, a user with an information need

introduces a text query using natural language into an IR system that stores a

collection of text documents. The collection is stored in the IR system using a

data structure called index, which allows e�cient access to the items. Secondly,

the IR system processes the query and assigns to each document a score that

represents an estimation of how the document matches the information need ex-

pressed by the user in the query, this is called relevance. Finally, the system

presents the documents as a ranked list ordered by their level of estimated rele-

vance.

The concept of relevance is key in IR. A depth of understanding of the decision

making processes occurring in the human brain is needed to understand user's

information need fully, and users normally express this poorly in their queries.
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Instead, the IR system usually estimates relevance by calculating the similarities

between the content of the query and the content of the documents. This is the

goal of the retrieval model, which is the core of any IR system. In this thesis,

we utilise retrieval models in order to assess the similarities between tweets for

geolocalisation. Thus, in this chapter, we introduce a general background of the

Information Retrieval (IR) concepts required to understand the topics explored in

this thesis. The rest of the chapter is organised as follows: Section 2.2.1 introduces

e�ective indexing strategies followed by retrieval systems. Section 2.2.2 discusses

the principles and formalisation of retrieval models. Section 2.2.3 details the

Learning to Rank framework that uses machine learning for information retrieval.

2.2.1 Indexing

In order to e�ectively search for relevant items within a collection of documents,

retrieval systems perform a process named indexing. During indexing, �rst text

documents are transformed into a bag-of-words representation and stored into an

e�cient data structure called index. In this section, we �rst describe how docu-

ments are transformed in Section 2.2.1.1 and discuss how the index is constructed

to e�ciently search the documents in Section 2.2.1.2.

2.2.1.1 Document Transformation

The �rst stage of the indexing process is transforming documents into a bag-of-

words representation in order to store them into the index. The �rst step of

document transformation is called tokenisation. In this process, documents are

�rst decomposed into terms by identifying the boundaries (or separator) between

tokens (or terms). All terms are lowercased, and all the punctuation is removed at

this stage. For instance, given the following document taken from Carroll (2011):

�Begin at the beginning�, the King said gravely, �and go on till you come to the
end: then stop.�

after tokenisation, the above document is transformed into:

begin at the beginning the king said gravely and go on till you come
to the end then stop
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According to Luhn (1957), the discriminative power of a term is normally

distributed with respect to the rank of its frequency in a collection. Moreover,

common terms (e.g., �the�) will occur in almost all documents. Such are typically

known as stopwords, and their informativeness in terms of the relevance of a

document is null. For this reason, stopwords are removed from the text.

In order to determine which terms are considered for removal, a list of pre-

compiled stopwords is used. Several stopwords lists have been proposed in the

literature (Van Rijsbergen, 1979), and typically consisting of prepositions, articles

and conjunctions. Also, other terms can be extracted automatically by determin-

ing the most frequent and less informative terms within a collection (Lo et al.,

2005). After stopword removal, the example document above is reduced to the

following:

begin beginning king said gravely you come end then stop

Usually, the term speci�ed in a query by the user is not in the same syntactic

variation as it is present in relevant documents (Baeza-Yates et al., 1999), which

prevents perfect matching between the query and the document. For example,

�I am living in Scotland� is a di�erent syntactical variation than �I have lived in

Scotland�. To overcome this issue, terms are transformed and reduced to their

stem using a Stemming algorithm. For example, the words �shing, �shed, and

�sher are transformed to the root word, �sh. The �rst stemming algorithm was

proposed by Lovins (1968), which then in�uenced the Porter Stemming algorithm

(Porter, 1980), which is the most popular. After applying stemming the example

document is reduced to the following:

begin begin king said grave you come end then stop

Finally, the resulting text is transformed into a bag-of-words representation by

counting the number of times a term occurs in the document. This set of terms in

a document with their frequencies is the �nal representation of a document-terms

list that is stored in the index data structured. The �nal document-terms list for

the example document is shown in Table 2.1.

13



2. BACKGROUND
AND RELATED WORK 2.2 Information Retrieval Background

Table 2.1: A bag-of-words representation of a document.

Document

Term Frequency
begin 2

king 1

said 1

grave 1

you 1

come 1

end 1

then 1

stop 1

2.2.1.2 Index Data Structures

After each document of a collection is transformed into a bag-of-words represen-

tation they are stored into the index as a document-terms list. However, in order

to score documents with respect to the terms in a query, the retrieval system is

forced to iterate through all of the document-terms list. This has a cost of O(N)

time complexity, where N is the total number of documents in the collection,

and this is not scalable to handle large collections. In order to e�ciently score

documents, an alternative data structure was proposed, called inverted index

(Van Rijsbergen, 1979). This data structure transposes the document-terms list

into a term-documents list. This way, the system only scores the subset of doc-

uments (Dq) that contain the terms of the query, which reduce time complexity

to O(Dp).

After the collection has been indexed, documents are ready for being ranked

in response to a query based on a probability score given by a retrieval model. In

the next section, we describe the traditional approaches for scoring and ranking

documents.

2.2.2 Retrieval Models

Given an indexed collection of documents, the primary goal of an IR system is

to rank documents based on their probability of meeting the information need of

the user, which is expressed as a query. In order to fully understand how humans
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judge relevance with respect to their information needs, it would be necessary to

understand the cognitive process of decision making that occurs in the human

brain. Instead, IR researchers have developed theoretical assumptions that aim to

capture how documents match information need given a query. These theoretical

assumptions are then formalised into a mathematical model, named retrieval

model. In the rest of this chapter, we detail the most well-known approaches for

retrieval, including the models that we will utilise in this thesis.

Fundamentally, a retrieval model estimates relevance as a quanti�cation of the

similarities between a document and a query. Thus, IR models assume that the

most similar documents to a given query are considered to be the most relevant to

the user information needs. This is typically done by a weighting the model using

statistical features of the document, the query and the collection. For this reason,

retrieval models are also known as document weighting models or IR weighting

models.

2.2.2.1 Boolean Model

One of the �rst models for document retrieval is the Boolean Model (Van Ri-

jsbergen, 1979). The boolean model is based on set theory and boolean logic.

Documents are considered as sets of terms with a binary weight to represent

whether they occur in the document or not. Moreover, the boolean model has

no information regarding term importance in the query, document or collection.

Queries are composed as a combination of terms and boolean logic operators such

as AND, NOT and OR, which state whether the presence of a term is required

or excluded in the document. Due to the boolean nature of the query, a boolean

relevance score is assigned to the documents; either TRUE or FALSE. Hence, the

Boolean Model is also named as exact-match retrieval since only documents that

match the query are retrieved. Because a binary relevance score is assigned to

the documents, there is no ranking per se and documents are often ordered by

other metadata information such as creation date or author.

The main drawback of the Boolean Model is that there is no partial matching

to the query, i.e. the model does not provide a degree of relevance. This has an

impact on e�ectiveness which mainly depends on how well the users formulate

the queries. Moreover, query formulation based on boolean logic is unnatural and
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presents a di�cult way for the user to express their information needs (Van Ri-

jsbergen, 1979). Despite these disadvantages, the boolean model is utilised in

several applications, such as patent search (Joho et al., 2010), due to its e�-

ciency.

2.2.2.2 Vector Space Model

The Vector Space Model (VSM) was the focus of IR research in the 1970s and

was proposed to overcome the limitations of the Boolean model. The main new

advantages of the VSM is to allow partial matching of the query and incorporate

estimations about the relevance of the documents (Dillon, 1983; Salton et al.,

1975). Therefore, the resulting list of matched documents can be ranked according

to their degree of relevance to a query. In order to do that, the VSM uses a n-

dimensional space of Euclidean geometry, where n is the number of terms in the

index (or collection), and each dimension represents the weight of the term.

Then, in the VSM, documents and queries are represented as vectors in the

above mentioned n-dimensional Euclidean space. In particular, a document di

is represented by a vector of terms ~V (di) = (di,1, di,2, ..., di,n), where di,j is the

weight of the j-th term in the document. Likewise, a query q is represented as a

vector of terms ~V (q) = (q1, q2, ..., qn), where qj is the weight of the j-th term in

the query. In the most simple form of the VSM, the weight of each term is the raw

count or term frequency (tf), which term provides a measure of the importance

of the term in a document. Nevertheless, other approaches for term weighting

has been explored. These approaches incorporate A new statistic named Inverse

Document Frequency (idf) that was proposed by Sparck Jones (1972). The idf

statistic calculates the number of documents over the entire collection where the

term occurs at least once, and re�ects the importance of a term in the entire

collection. Finally, the TF-IDF weighting scheme is the most commonly used

for weighting the vectors, thus the tf-idf of the term w in a document di can be

de�ned as:

tfi,w × idfw = tfi,w · log
N

dfw
(2.1)
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where N is the number of documents in the collection, tfi,w is the term frequency

of the term w in the document di, and dfw is the number of documents in the

collection where w appears at least once.

Once the document and the query vectors are constructed, the Euclidean dis-

tance can be used to compute the level of similarity (as an estimation of their

relevance). However, instead of calculating the distance (or dissimilarity) a simi-

larity measure is commonly employed to predict relevance. Therefore, documents

with the highest scores are considered the most similar and, therefore, should be

ranked at the top of the list.

Several similarity measures have been proposed in the literature (Van Rijsber-

gen, 1979). The most popular is known as the cosine similarity, which we utilise

in this thesis. The cosine similarity computes the cosine of the angle θ between

two vectors. Thus, the similarity between the document di and the query q is

calculated as the cosine of the angle θ between the document vector ~V (di) and

the query vector ~V (q) de�ned as:

similarity(di, q) = cosineθdi,q =
~V (q) · ~V (di)

|~V (q)| · |~V (di)|
(2.2)

2.2.2.3 Probabilistic Models: BM25

Previous retrieval models assessed relevance in di�erent ways. The Boolean model

determined relevance by a binary decision of the existence of the query terms in

the document. Then, in the Vector Space Model relevance is determined by the

cosine similarity of two weighted vectors in a Euclidean space representing the

document and the query. However, relevance can also be quanti�ed as a value that

measures the level of uncertainty that the content of a document is relevant to

the user's information need. This is the basic principle of Probabilistic Retrieval

Models, that are rooted by the Probability Ranking Principle (PRP) (Cooper,

1971; Robertson, 1977) and is based on the foundations of probability theory.

The PRP is stated as:

�If a reference retrieval system's response to each request is ranking of the

documents in the collections in order of decreasing probability of relevance to the
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user who submitted the request, where the probabilities are estimated as

accurately as possible on the basis whatever data have been made available of the

system for this purpose, the overall e�ectiveness of the system to its user will be

the best that is obtainable on the basis of those data.�

The PRP assumes that the probability of relevance of a document to a query

is independent of other documents. Based on this assumption, and applying the

Bayes Theorem, a new probabilistic weighting model for retrieval can be derived.

The most notable model is the Okapi BM25 (Robertson et al., 1995), which will

be used in this thesis. In the Okapi BM25 the probability of a document d to be

relevant to a given query q is de�ned as follows:

P(rel|d, q) ∝
∑
t∈q

log

(
N − dfi + 0.5

dfi + 0.5

)
· (k1 + 1) · tfi
k1((1− b) + b dl

avgdl
) + tfi

where tfi represents the frequency of the term in the document, dfi is the docu-

ment frequency of the term, and document length is represented as dl. Document

length is normalised by dividing the length of the document by the average docu-

ment length of the collection avgdl. The model is tuned using two parameters; k1

and b. By adjusting k1 we control the in�uence of term frequency tfi in the �nal

score, whereas adjusting b varies the in�uence of document length normalisation
dl

avgdl
.

2.2.2.4 Language Modelling

Statistical Language modelling has been applied to predict the next term given

an observed sequence of terms. Thus, a language model is a probability distri-

bution over sequences of terms (Manning et al., 1999). In the context of IR, a

language model represents, in essence, the probability of observing a term in a

document. Language modelling was introduced as a ranking approach in the late

1990s (Berger and La�erty, 2017; Hiemstra, 1998; Miller et al., 1999b; Ponte and

Croft, 1998). From a statistical perspective, language models (LM) are funda-

mentally di�erent to probabilistic models (PM) in Section 2.2.2.3. Probabilistic

models determine relevance for a document given a query, whereas language mod-

els calculate the probability of a query of being generated by a document.
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The Language Modelling (LM) approach attempts to model the process of

generating of a query (Ponte and Croft, 1998) given a document. The approach

assumes that a query q is generated by a probabilistic model based on observations

of terms in a document d. Thus, we aim to calculate the conditional probability

P (d/q). By applying Bayes' rule we obtain:

P (d|q) = p(q|d)p(d)
p(q)

∝ p(q|d)p(d) (2.3)

where p(d) is the prior belief that the document is relevant to any query, and

p(q|d) is the query likelihood given the document. Note that p(q) is ignored as it

is the same for every document in the collection, and therefore does not a�ect the

ranking of the documents in response to a query. The prior p(d) is mostly assumed

to be uniformly distributed (Berger and La�erty, 2017; Hiemstra, 1998; Ponte and

Croft, 1998), but many alternative priors has been also investigated in the past

(Miller et al., 1999a). In this thesis, we assume a uniform prior distribution.

After this simpli�cation, the model is reduced to the task of estimating p(q|d),
the probability of observing the query q given the document d. Thus, using a

multinominal unigram language model, the probability of generating the query

terms using document d is formalised as:

ScoreQLM(q, d) = p(q|d) ∝
∏
t∈q

p(t|θd)tft,q (2.4)

where p(t|d) is the probability of observing a term t of the query given the lan-

guage model θd for document d, and tft,q denotes the term frequency of the term t

in the query q. Note that, in order to calculate p(t|θd), a sparsity problem appears

as a term t in a query may not be present in the document d. This is called the

zero probability problem. To tackle the problem of zero probabilities for unseen

terms, the language model of the document is complemented with the collection

model, which has knowledge of any term in the entire collection. This technique

is known as smoothing, and various strategies for doing so have been proposed in

the literature (Zhai and La�erty, 2017): Jelinek-Mercer, Dirichlet and Absolute

discounting.
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In this thesis, we will deal with Twitter data as we explain later in Section

2.3. Experiments realised by Zhai and La�erty (2017) showed that Dirichlet

smoothing performs the best when using title queries, that are short queries

containing mostly two or three keywords. This is in line with the average query

length in Twitter search reported by Teevan et al. (2011) (1.64 words per query).

Additionally, language models with Dirichlet smoothing have been used as the

baseline retrieval models for the 2013 and 2014 instances of the microblog search

tracks (Lin and Efron, 2013; Lin et al., 2014) that we introduce in detail later in

Section 2.3. For these reasons, in our experiments, we apply the language model

approach that applies Dirichlet smoothing, which we will describe next.

Dirichlet Smoothing. For any language model, the general form for smooth-

ing is given by:

P (t|d) =

{
ps(t|d) if term t is seen,

αdp(t|C) otherwise
(2.5)

where ps(t|d) is the probability of a term in the document d, αp(t|C) is the

probability of a term in the entire collection C and αd is a coe�cient that controls

the probability assigned to unseen terms. In the Language Model with Dirichlet

smoothing, the prior distribution of terms in the collection is given by a Dirichlet

distribution with parameters (µp(t1|C), µp(t2|C), ..., µp(tn|C)). Thus, the model
is given by:

p(t|d) = tft,d + µp(t|C)∑
t tfw,d + µ

(2.6)

where tft,d is the frequency of the term t in the document d, and µ is the con-

trolling coe�cient for the smoothing.

2.2.2.5 Divergence From Randomness

Divergence From Randomness (DFR) is a probabilistic approach that works under

the assumption that the more the content of a document diverges from a random

distribution, the more informative the document is Amati (2003). Therefore, the
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most informative terms are distributed over an elite set of documents, whereas

the non-informative terms are randomly distributed over the entire collection

(Bookstein and Swanson, 1974; Damerau, 1965; Harter, 1975a,b). The underlying

hypothesis of DFR models is:

�The informative content of a term can be measured by examining how much the

term frequency distribution departs from [...] the distribution described by a

random process� (Amati, 2003)

Thus, to compute the importance of a given term t in a document d, the DFR

models calculate the distribution of its term frequency tf in the documents, and

compute its divergence from a distribution generated through a random process.

The standard DFR model, given a query q and a document d, is de�ned as:

ScoreDFR(d, q) =
∑
t∈q

wt,qwt,d (2.7)

where wt,q is the normalised frequency of term t in the query q, given by:

wt,q =
tft,q

maxti∈q tfti,q
(2.8)

and wt,d is the weight of a term t in a document d is given by:

wt,d = inf1inf2 (2.9)

The frequency of the term in the document wt,d is composed by inf1 =

− log2 p1(t|C) and inf2 = 1 − p2(t|d), which de�nes the informativeness of the

term t in the entire collection C and in a document d that contains the term,

respectively.

The component p1(t|C) is named the basic randomness model of the distri-

bution of term t in the entire collection C. The most used basic models are

21



2. BACKGROUND
AND RELATED WORK 2.2 Information Retrieval Background

the following1 (Amati, 2003): divergence approximation of the binomial (D), ap-

proximation of the binomial (P ), Bose-einstein distribution (Be), geometric ap-

proximation of the Bose-einstein (G), inverse document frequency model (I(n)),

inverse term-frequency model (I(F )), and inverse expected document frequency

model (I(ne)).

On the other hand, the p2(t|d) component de�nes the information gain of

observing the term t in the document d. This can be computed using two models:

Laplace (L) model:

L =

(
1

tft,d + 1

)
(2.10)

and the ratio of two Bernoulli's process (B):

B =

(
F

dft,c(tft,d + 1)

)
(2.11)

However, a third component is needed for DFR models. Because the amount

of information in a document is in proportion to its length, a document length

normalisation is needed, called Normalisation2, as de�ned bellow:

tfn = tf · log
(
1 + c · avgdl

dl

)
(2.12)

In this thesis, we experiment with di�erent combinations of the components

mentioned above, which con�gure di�erent DFR models. We now brie�y intro-

duce them as described in (Amati, 2003):

InB2: Inverse Document Frequent model with Bernoulli after-e�ect and normal-

isation 2.

wt,d =
F + 1

nt · (tfn+ 1)

(
tfn · log2

N + 1

nt + 0.5

)
(2.13)

1As described in the Terrier IR platform (Ounis et al., 2006) (http://terrier.org/docs/
v3.5/dfr_description.html)
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IneB2: Inverse Expected Document Frequent model with Bernoulli after-e�ect

and normalisation 2.

wt,d =
F + 1

nt · (tfn+ 1)

(
tfn · log2

N + 1

ne + 0.5

)
(2.14)

IFB2: Inverse Term Frequency model with Bernoulli after-e�ect and normalisa-

tion 2.

wt,d =
F + 1

nt · (tfn+ 1)

(
tfn · log2

N + 1

F + 0.5

)
(2.15)

InL2: Inverse Document Frequency model with Laplace after-e�ect and normal-

isation 2.

wt,d =
1

tfn+ 1

(
tfn · log2

N + 1

nt + 0.5

)
(2.16)

PL2: Poisson model with Laplace after-e�ect and normalisation 2.

wt,d =
1

tfn+ 1

(
tfn · log2

tfn

λ
+ (λ− tfn) · log2 e+ 0.5 · log2(2π · tfn)

)
with λ =

F

N
and F � N (2.17)

where tf is the within-document frequency of t in d, nt is the document frequency

of t, F is the term frequency of t in the whole collection, N is the number

of document in the whole collection, ne is the number of expected documents

containing the term according to the binomial law (See Amati (2003); Section

4.5.2).

2.2.3 Learning to Rank

The ranking approaches described in previous sections aim to capture the rele-

vance of a document for a given query. However, such models can be e�ective in

speci�c search scenarios, but it is improbable that they can also be e�ective in
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all search scenarios Zhai and Fang (2013). This issue is particularly true for Web

retrieval, due to the diversity in size and content of web pages and the variability

and complexity of the information needs of the users that search the web (Liu

et al., 2009). However, any single of such models can capture di�erent aspects of

the relevance of a document. Thus, by combining them as multiple features in a

machine-learned ranking function, we can potentially provide e�ective results in

multiple search scenarios. This is the aim of Learning To Rank (L2R) approaches.

In the basic form of L2R approaches, features are extracted from a set of

ranked documents to a given query to train a ranking function. This function is

then applied to re-rank unseen document rankings and increase the desire ranking

criteria (i.e., relevance in web retrieval) at the top documents in the list. Figure

2.1 present the general framework of learning to rank. As de�ned by (Liu et al.,

2009), in order to train the ranking function the learning to rank approach uses

an initial sample of ranked documents with respect to a query, called training

set. This sample of query-document pairs should have high-recall and should

have many relevant documents (Macdonald et al., 2013).

Figure 2.1: Learning to Rank Framework (Liu et al., 2009).

As a ranking function, many algorithms have been proposed in the litera-
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ture and can be categorised in three groups based on the number of documents

that are taken into account for learning: point-wise approaches (Breiman, 2001;

Friedman, 2001), pair-wise approaches (Burges et al., 2007; Wu et al., 2010) and

list-wise approaches (Metzler and Croft, 2007; Xu and Li, 2007). Point-wise

approaches consider each document in the sample ranking independently, pair-

wise approaches consider pairs of documents and list-wise approaches optimise

an information retrieval measure and consider the entire ranking list at one time.

Prior works have shown that list-wise approaches are the most e�ective (Liu et al.,

2009). However, this performance has not been investigated in the speci�c task

of this work (tweet geolocalisation). In Chapter 5, we experiment with several

types of L2R approaches and identify the best performing ones on our task.

2.3 Information Retrieval for Twitter

State-of-the-art Information Retrieval (IR) models are mainly tailored to provide

a relevance estimation score to large text documents. The most common applica-

tion of IR models is the search of web documents (Arasu et al., 2001), where the

issues of IR models to work with the speci�c characteristics of web pages have

been widely studied (Croft et al., 2010). However, with the appearance of Twit-

ter, it also appeared the necessity of searching for information in Twitter posts.

The task of information retrieval in the context of Twitter, where users issues

textual queries to a search engine to �nd relevant previously published tweets, is

named �Microblog Retrieval� in the literature.

Due to the social characteristics of the Twitter content, the way how and why

users search in Twitter di�ers from how users search the Web (Teevan et al.,

2011). Users' queries in Twitter search are shorter and are more repetitive to

track speci�c results about social events. On the other hand, Web queries are

more changing, and users develop more queries in order to �nd more information

about a topic.

In this section, we �rst discuss the speci�c structural characteristics of Twitter

documents and how they are preprocessed and indexed into the retrieval system.

Next, we discuss recent research on the applicability of IR models in the context

of a microblog search task.
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2.3.1 Tweet Indexing

Twitter documents di�er from web and traditional documents in many ways.

First, they are short documents with an initial maximum length of 140 characters

as 2016, but it was increased to 280 in 2017. In this thesis, we will experiment

with Twitter messages posted during 2016, so we will use 140 characters long

documents. Second, Twitter messages can contain informal and slang language

in their text; such as abbreviations (e.g., BRB for Be Right Back, or LOL for

Laughing Out Loud) or spelling errors. Third, Twitter provides users with ways

to interact with other users and propagate their messages into a topic discussion.

Users can use the called mentions, which are ways to mention other users in their

text. A mention consist of the character @ followed by a user name (e.g., @Salias

for mentioning the user �Salias�). Moreover, users have the possibility of adding

hashtags, consisting of the character # followed by a keyword, to specify the topic

of their tweet (e.g., #indyref for a tweet about the Scottish independence refer-

endum). Finally, Twitter messages can contain URLs or hyperlinks to external

websites (e.g., http://www.dcs.gla.ac.uk).

2.3.1.1 Tweet Document Transformation

Identical to the indexing process explained before in Section 2.2.1, tweets are

transformed into a bag-of-words representation before storing them in the index

structure. However, due to the singularities of Twitter data, extra preprocessing

steps are needed in order to remove the speci�c characteristics described above

to obtain a �nal representation.

• Emotion Removal: Remove words or symbols that express feeling or

emotions, such as lol, haha or xoxo

• Stopwords Removal: Due to the informal language of tweets, an ex-

tended stopword list is needed for this process. This extended list should

contain, apart from the common stopwords discussed in Section 2.2.1, in-

formal version of them such as gonna or ain't.

• HashTag, Mention and HyperLink Removal: Remove username

mentions, hashtags and links to external websites appeared in the text.
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The e�ects on retrieval e�ectiveness of di�erent combinations of the prepro-

cessing steps described above have been studied by Thomas (2012). The study

concluded that the best performing is achieved when all the preprocessing steps

were applied. Nevertheless, some speci�c combinations might be bene�cial de-

pending on the �nal objective of the task. Therefore, relevant information is

preserved. For example, avoiding emotion removal is essential for the sentiment

analysis task (Agarwal et al., 2011; Baucom et al., 2013; Kouloumpis et al., 2011;

Pak and Paroubek, 2010). In further experiments, we will explain and motivate

the most suitable preprocessing steps for the research undertaken in this thesis.

2.3.2 Microblog Retrieval

Due to the rising importance of Twitter documents, IR researchers have investi-

gated the challenges of searching Twitter posts. Since 2011, the TREC1 confer-

ence, sponsored by the National Institute of Technology (NIST) and the U.S. De-

partment of Defense, have organised a number of Microblog Retrieval Tracks (Lin

and Efron, 2013; Lin et al., 2014, 2015; Ounis et al., 2011; Soboro� et al., 2012)

to gather the IR research community and together address the problem. Conse-

quently, several participants attempted to improve the retrieval performance by

submitting their adapted retrieval techniques to the track; including document

expansion (Jabeur et al., 2013), query expansion (Aboulnaga et al., 2012; Ro-

driguez Perez et al., 2013; Yang et al., 2013) and learning to rank (L2R) (Gao

et al., 2013; Zhu et al., 2013).

The solutions proposed on the Microblog Retrieval Tracks focused on increas-

ing the performance of the retrieval of Twitter posts. However, they do not

provide an in-depth study of the behaviour of the state-of-the-art retrieval mod-

els in the context of microblog search (described in Section 2.2.2). This has been

the focus of recent research that has identi�ed the main problems a�ecting re-

trieval models in Twitter search. For example, Ferguson et al. (2012) and Naveed

et al. (2011) found that, due to the short length of tweets, using document nor-

malisation will a�ect the performance of the task negatively, and the bene�ts of

applying term frequency weighting are minor.

1http://trec.nist.gov/
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Moreover, more recently Rodriguez Perez and Jose (2015) and Rodriguez Perez

(2018) con�rmed these �ndings and performed an exhaustive investigation of the

problems of the state-of-the-art retrieval models in microblog search. Their �nd-

ings showed that models relying on term frequency and document normalisation

performed poorly compared to models relying only on document frequency infor-

mation. These observations are crucial to understanding the results obtained in

further experiments in this thesis.

In the remainder of this chapter, we discuss related literature regarding the

geolocalisation of Twitter data and motivate the work of this thesis.

2.4 Geolocalisation of Twitter Data

In recent years, social media services have gained increasing popularity within

the research community. Speci�cally, Twitter has become very popular since

their data is generated in real-time and geographical information is attached to

the posts. Such characteristics have provided new opportunities for a broad range

of real-time applications, such as real-time event detection (Atefeh and Khreich,

2015; Crooks et al., 2013; Sakaki et al., 2010; Walther and Kaisser, 2013; Watan-

abe et al., 2011; Xia et al., 2014; Zhang et al., 2016a)� that exploits such com-

bination of textual and geotagged information for their analysis. Geographical

information is attached to tweets in two ways: (i) the exact longitude and latitude

if the GPS location of the user device is activated; and (ii) as a suggested area

from a list that can be extrapolated to a polygon, that is available to the users

when sending a tweet. Despite such options being available, only a very small

sample of messages (around 1%) in the Twitter stream contains geographical in-

formation (Graham et al., 2014). In order to increase this sample, researchers

have tackled the challenge of inferring the geolocation of Twitter data.

There are two main objectives in the literature regarding geolocalisation on

Twitter data. First, some approaches have aimed to infer the home location of

Twitter users (Chang et al., 2012; Cheng et al., 2010; Eisenstein et al., 2010b; Han

and Cook, 2013), whereas other approaches aimed to infer the location where the

user posted a tweet, or the location the users are tweeting about (i.e., the location

of an individual tweet). This di�erentiation is important depending on the use
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case of the Twitter data. For example, for market research, the home location of

a user is important. On the other hand, in other applications, such as emergency

management (Ao et al., 2014; Imran et al., 2015; McCreadie et al., 2016), the

location of each individual tweet is relevant. In this thesis, we focus on the

geolocalisation of individual tweets and explore their applicability in the tra�c

incident detection task, which aims to use Twitter as a data source for detecting

tra�c incidents occurring in a city (see Chapter 6). In the next sections, we

provide an overview of the current state-of-the-art in tweet geolocalisation.

2.4.1 Tweet Geolocalisation

Many researchers have tackled the problem of geolocalising individual tweets

in the past. In order to infer the location of tweets, researchers have mainly

exploited the evidence gathered from the text of the tweet and its metadata. In

order to obtain a predicted location, three main strategies have been adopted

in the literature. Firstly, in Section 2.4.1.1 we describe existing approaches that

rely on external geographical databases, called gazetteer, in order to obtain the

location of place names mentioned in the text and the user pro�le. Second, in

Section 2.4.1.2 we describe more recent approaches that exploit the text of the

1% geotagged tweets available in the Twitter stream for geolocalising, which is

the strategy we follow in this thesis. Finally, in Section 2.4.1.3, we describe recent

work that uses neural networks for predicting the location label (i.e., country or

city) of tweets.

2.4.1.1 Using External Sources (Gazetteer)

Schulz et al. (2013a) extracted di�erent spatial indicators from the text and the

user pro�le. These spatial indicators are mapped into di�erent databases contain-

ing geospatial information using di�erent methods, such as DBpedia Spotlight1 or

Geonames2. Each of the methods produces a polygon that represents a geograph-

ical area. Moreover, each method is associated with a con�dence level that is then

added to the polygon as a third dimension (height of the polygon). Finally, all

the 3-D polygons obtained for a tweet are combined using a stacking algorithm

1https://wiki.dbpedia.org/
2http://www.geonames.org/
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that returns the overlapping area with the highest con�dence as the predicted

location.

The drawback of the above work is that the information in the user pro�le

is not always accurate. For instance, it is known that 34% of the users report

fake locations in their user pro�le as the location �eld (Hecht et al., 2011), which

can produce misleading predictions. On the other hand, Schulz et al. (2013a)

looked for place names in the text that matched with an entry in a geographical

database (gazzeter). However, place names in the text can be ambiguous. For

example, Glasgow may refer to a city in the UK or a city in the USA. The same

way, people do not always mention places using their formal names, for example,

the city of Barcelona (Spain) is also referred as Barna. The problem of resolving

this ambiguity is known as toponym recognition, and several models have been

developed to solve it (Ji et al., 2016; Li and Sun, 2014, 2017).

2.4.1.2 Exploiting Geotagged Tweets

Due to the ambiguity problem occurring when matching the text of a tweet

with geographical databases, it seems more convenient to do so using another

geotagged dataset that shares the same characteristics. Therefore, recent work

has used the small percentage of tweets that are already geotagged in the Twitter

stream (Graham et al., 2014) as training documents for their models. In order

to do that, these works have followed two di�erent approaches for dividing the

geographical space and mapping the textual information of the geotagged tweets.

The �rst approach used in the literature opted for representing the geograph-

ical space by clusters based on the density of geotagged tweets in di�erent areas.

Firstly, Eisenstein et al. (2010b) and Priedhorsky et al. (2014) applied Gaus-

sian Mixture Models (GMM) to generate geographic density estimates for all the

n-grams contained in the tweet. Then, the predicted location is given by the

weighted sum of all the density estimates obtained for a tweet. Lastly, Flatow

et al. (2015) adopted an iterative process that �ts a Gaussian model for a given

n-gram, using the coordinate points of the geotagged tweets that contain the n-

gram. An n-gram is geospeci�c if we can create an ellipse (using the Gaussian

model) that covers a prede�ned maximum area and contains at least a certain
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ratio of the total tweets. Then, the centre of the ellipse of the longest geospeci�c

n-gram contained in the test tweet is returned as the predicted location.

The last and most popular approach in the literature divided the geographical

space as a grid of prede�ned areas of a given size, and then modelled the language

for each area to perform the prediction (Hulden et al., 2015; Kinsella et al., 2011;

Paraskevopoulos and Palpanas, 2015; Roller et al., 2012; Wing and Baldridge,

2011). Next, these approaches calculate the probability of a tweet to be generated

in an area based on its similarity to the geotagged tweets in the area and return

the most similar area as the predicted location. In order to obtain the most

likely area, these approaches have adopted classi�cation and information retrieval

techniques.

An example of these works is the approach proposed by Hulden et al. (2015).

The authors divided the geographical area of the earth using a grid structure of

squared cells of size length 1o (≈111 kilometres). After aggregating the texts of

the tweets in each cell, they used a Multinomial Naive Bayes and Kullback-Leibler

divergence functions and incorporated words counts as features. Additionally, the

authors extended these functions by adding to each cell, instead of word counts,

a density measure estimated using a Gaussian Kernel.

On the other hand, Roller et al. (2012) used language models using an adaptive

grid that is created from the geotagged tweets using a kd-tree algorithm. The

kd-tree algorithm generates cells with size computed according to the density of

geotagged tweets in the area. This provides a �ner granularity in dense regions

and coarse granularity elsewhere. Additionally, Kinsella et al. (2011) also used

language models to compute the probability of a tweet being generated in a

geolocation. However, they divided the space into zip codes instead of squared

cells of a grid. Finally, Paraskevopoulos and Palpanas (2015) used a Vector Space

Model (VSM) with TF-IDF weighting to rank locations based on their content

similarity.

2.4.1.3 Using Neural Networks

More recently, another set of works used neural networks to predict the location

of a tweet. First, Huang and Carley (2017) proposed a Convolutional Neural

Network (CNN) using features extracted from the content and the user pro�le
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of the tweet. They trained the CNN to obtain high-level text features for pre-

dicting the location label (country or city) of tweets. Their approach achieved a

52% and 92% of accuracy on city-level and country-level prediction, respectively.

More recently, Kumar and Singh (2019) proposed to use CNN to extract loca-

tion information from the text of the text, such as place names or city names.

However, their method did not provide a predicted geographical location (i.e.,

longitude/latitude coordinate or geographical polygon).

On the other hand, another set of works have adopted word embeddings for

predicting the city of tweets. For instance, Miura et al. (2016) proposed an

ensemble approach that created vector representations of the words in the text,

location �eld or user description, that are then concatenated into a single vector

to compound a full tweet representation. A softmax function is �nally used to

select the most likely class. The authors evaluated their model in the context

of the W-NUT Twitter Geolocation Prediction Shared Task (Han et al., 2016),

achieving an accuracy of 47.6%. More recently (Miura et al., 2017), the authors

re�ned their approach by unifying the same vector representations through an

attention mechanism to avoid ensemble methods, increasing the accuracy in the

W-NUT dataset up to 56.7%.

2.4.2 From Coarse-Grained Level to Fine-Grained Level

Previous studies inferred the geolocation of tweet at a coarse-grained level of

granularity � i.e. zip codes to city or country level. In contrast, the problem

we aim to tackle in this thesis is the geolocalisation of Twitter posts at a �ne-

grained level � i.e. street or neighbourhood level. This is important for tasks that

require �ne-grained geolocated data, such as emergency management or the tra�c

incident detection task that we explore in Chapter 6. To this end, recent work has

attempted to tackle �ne-grained geolocalisation by adapting previous approaches

to work at that level of granularity. To do so, they reduced the granularity of

the cells of the grid that divides the geographical space. Firstly, Kinsella et al.

(2011) reduced each cell of the grid to a zip code area. Then, Paraskevopoulos

and Palpanas (2015) re�ned the work by Kinsella et al. (2011) by dividing the

geographical space into �ne-grained squares of size 1 km. However, their results

showed that reducing granularity also decreases accuracy and their approaches
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demonstrated to be limited in the context of �ne-grained geolocalisation. In this

thesis, we aim to improve the state-of-the-art further and enable e�ective �ne-

grained geolocalisation of tweets.

More recent work has been developed in parallel to this thesis. In their work

Ozdikis et al. (2018b) used Ripley's K function to �nd the co-occurrence distri-

butions of pairs of terms or bigrams, and compare them to the spatial patterns of

their unigrams to then identify clustering or dispersion tendencies between them.

Then, bigrams with a spatially signi�cant pattern with respect to their unigrams

are added as features for classifying the most likely location, which is represented

as cells of a grid. Another work by Ozdikis et al. (2018a) used Kernel Density

Estimations to obtain probability distributions of terms. Then, the probability

distributions of all the terms in a tweet are combined in an obtain the cell that

maximises the cumulative probability. Another work by Bakerman et al. (2018)

uses Gaussian Mixture Models and re�ned the work by Priedhorsky et al. (2014)

by combining textual features and information about the Twitter network.

Finally, Table 2.2 shows a summary of the existing approaches described in

this section. For each reference, we report their algorithmic technique (Inference

Model) and their strategy to represent the geographical space that corresponds

to:

• Grid for the approaches that divides the area into a grid,

• Density for models that use estimators to obtain a density area, or

• Gazzeter for models that utilise external geographical databases.

Also, we report the minimum granularity reported by the authors.

2.4.3 Tweet Geolocation Datasets

Several datasets from the literature have been published online for research pur-

poses. For instance, Eisenstein et al. (2010a) released their GEOTEXT1 dataset

which contains 377,616 messages collected over one week of March 2010 within the

1http://www.cs.cmu.edu/~ark/GeoText/
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Table 2.2: Summary of the state-of-the-art Tweet geolocalisation approaches.

Reference Year Geo. Division Inference Model Granularity

Eisenstein et al. (2010b) 2010 Density Topic Modelling Country and City level

Kinsella et al. (2011) 2011 Grid Language Model Zip Code and City level

Wing and Baldridge (2011) 2011 Grid Naive Bayes & Kullback-
Leibler

0.1o (≈ 11.13 km)

Roller et al. (2012) 2012 Adaptative Grid Language Model 0.1o (≈ 11.13 km)

Schulz et al. (2013a) 2013 Gazzeter Polygon Stacking City level

Priedhorsky et al. (2014) 2014 Density Gaussian Mixture Model City level

Hulden et al. (2015) 2015 Grid+Density Naive Bayes & Kullback-
Leibler

1o (≈ 111.31 km)

Paraskevopoulos and Palpanas (2015) 2015 Grid VSM (TF-IDF weighting) 1 km

Flatow et al. (2015) 2015 Density Gaussian model 2 km

Ozdikis et al. (2018b) 2018 Grid Multinomial Naive Bayes 1 km

Ozdikis et al. (2018b) 2018 Grid Kernel Density Mixture 1 km

Bakerman et al. (2018) 2018 Density Gaussian mixture models Country and City level

United States. Same way, Roller et al. (2012) published the UTGeo20111 com-

posed of 390 million tweets collected worldwide during September and November

2011. Moreover, Han et al. (2012a) used a similar dataset2 with 26 million geo-

tagged tweet that covers the entire globe collected during January 2014. More

recently, Hulden et al. (2015) released the WORLDTWEET3 dataset containing

over 4 million geotagged tweets distributed worldwide and generated during Jan-

uary 2014. Finally, the W-NUT 2016 tweet geolocation shared task (Han et al.,

2016) made available a global dataset of approximately 12.8 million geotagged

tweets collected from 2013 to 2016.

The works mentioned used the Twitter Public Stream4 to collect real-time

tweets, which provides a 0.95% sample of the complete public tweets (Wang

et al., 2015). Previous works collected these datasets for inferring the location of

a tweet at a coarse-grained level of granularity (i.e., country or city level) and,

thus, the authors used a broad spatial �lter5 on the Twitter stream to obtain

tweets from all over the globe, or from a speci�c country. However, in this work,

we aim to infer the locations of tweets at a �ne-grained level and, thus, we need

a representative sample of geotagged tweets belonging to a smaller region (i.e.,

city or metropolitan area). For this reason, we collect our datasets by applying a

1https://github.com/utcompling/textgrounder/wiki/RollerEtAl_EMNLP2012
2https://sites.google.com/a/student.unimelb.edu.au/hanb/research
3http://geoloc-kde.googlecode.com
4https://dev.twitter.com/streaming/public
5https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/

basic-stream-parameters#locations
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small spatial �lter covering two main USA cities. We describe our datasets later

in Chapter 3, Section 3.3.1.

2.5 Conclusions

In this chapter, we have presented a general background of the Information Re-

trieval (IR) �eld and techniques. First, we described how text documents are

e�ciently indexed to then be retrieved using a retrieval model that ranks docu-

ments in relevant order to the user query. We focused on describing the retrieval

models used in this thesis. Finally, we introduced how machine learning is applied

to IR in order to increase the e�ectiveness of a given retrieved ranking. This set

of techniques are called Learning to Rank.

Next, we discussed the current literature of microblog search where, due to

the inherent characteristics of Twitter posts, researchers have aimed to tackle

the problem of �nding approaches for searching Twitter posts e�ectively. We

discussed the TREC Microblog Search Tracks and more recent investigations of

the behaviour of state-of-the-art retrieval models in the context of Twitter search,

which are key for the understanding of the experiments undertaken later in this

thesis.

Finally, we presented an overview of the existing literature on the problem of

inferring the geolocation of Twitter data. We focused on the tweet geolocalisation

problem, which aims to infer the location where individual Twitter messages were

posted, or where such places are mentioned in the text. We described the three

main strategies followed in the literature to map the information in the tweet with

geographical information. Firstly, in Section 2.4.1.1, we described work that �nds

speci�c n-grams in the text and maps them with external databases to obtain an

associated geographical area. We discussed the ambiguity problem that these

approaches are facing and introduced the second strategy in the literature that

overcomes this issue. In the second strategy (Section 2.4.1.2), previous works ex-

ploited the similarities between a given tweet and the text of the geotagged tweets

available in the Twitter stream. The geographical space is divided into discrete

areas, and then each geotagged tweet is associated with their corresponding area.
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Additionally, we describe the techniques used in the literature to compute

the similarity between a tweet and the geotagged tweets in an area. Finally, we

discussed that when applied to work at a �ne-grained level, these approaches

showed a decrease in accuracy, which motivates the work in this thesis. Lastly, in

Section 2.4.1.3, we discussed recent work that adopted neural networks (i.e., word

embedding and deep learning) to predict the location label of tweets. Besides, in

Section 2.4.3, we provided an overview of the research datasets available in the

literature.

The remainder of this thesis is structured as follows. Firstly, Chapter 3 stud-

ies the limits of the tweet geolocalisation models when applied to work at a

�ne-grained level, and propose a novel approach based on a ranking of geotagged

tweets using IR retrieval models. Secondly, in Chapter 4 we improve the accu-

racy of the geolocalisation further by exploring the geographical evidence encoded

within the Top-N most similar geotagged tweets ranked using the approach in-

troduced in Chapter 3. Thirdly, in Chapter 5 we explore whether increasing

the e�ectiveness of the ranking can also improve geolocalisation at a �ne-grained

level, and propose a learning to rank approach to re-rank geotagged tweets based

on their geographical proximity. Finally, in Chapter 6 we explore the applicability

of our tweet geolocalisation approaches and study the e�ectiveness of geolocated

tweets in a real-world practical scenario � the tra�c incident detection task.
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Chapter 3

Enabling Fine-Grained
Geolocalisation

3.1 Introduction

As introduced in Chapter 2, Section 2.2, geolocalisation has been mainly ad-

dressed in the literature by exploiting the similarity between the content of non-

geotagged tweets and geotagged tweets, which are already available in the Twitter

stream. The �rst research e�orts achieved geolocalisation at a coarse-grained level

of granularity (i.e., zip codes to cities or countries). Examples of such works are

Hulden et al. (2015), Roller et al. (2012) and Wing and Baldridge (2011) were

they represent areas by dividing the geographical space into prede�ned coarse-

grained areas, and then concatenating (or aggregating) the texts of the tweets

posted within that area into a single document. After the aggregation process,

each area is represented as a bag-of-words vector extracted from the aggregated

document. Finally, a matching function returns the most likely area as the pre-

dicted location by computing the content similarity of each area with respect to

a given non-geotagged tweet.

On the other hand, more recent research attempted to achieve �ne-grained

geolocalisation (i.e., street or neighbourhood level) by adopting the approach

mentioned above. To this end, the authors reduced the size of the prede�ned

areas and represented them as zip code areas, in work by Kinsella et al. (2011),

and as a grid of squared areas of size length 1 km, in work by Paraskevopoulos

and Palpanas (2015). Moreover, as the matching function Kinsella et al. (2011)

adopted a language model approach and Paraskevopoulos and Palpanas (2015)
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opted for TF-IDF weighting model. However, when adapting such approach

to provide �ne-grained locations with the overall performance of the geotagging

system decreases compared to the performance at coarse-grained level.

In this chapter, we investigate the performance issues exhibited by existing ap-

proaches in the literature and propose a solution that enables the geolocalisation

at �ne-grained levels. Due to the morphology of Twitter documents (short texts

limited to 140 characters (Teevan et al., 2011)) when aggregating the tweets into a

single document, relevant information about discriminative words representative

of �ne-grained locations is lost, thus a�ecting the performance of geolocalisation

at �ne-grained levels of granularity. Therefore, The central hypothesis of this

chapter is that by considering geotagged tweets individually we can preserve the

evidence lost when adapting previous approaches at a �ne-grained level, and thus

we can improve the performance of �ne-grained geolocalisation (see Hypothe-

sis 1 in Section 1.2). To this end, we propose a new strategy which avoids the

aggregation of tweets, and utilises individual tweet documents, thus preserving

evidence otherwise lost in the aggregation process.

3.1.1 Research Questions

The main research goals in this chapter are to understand how the approach of

aggregating the tweets in an area is a�ecting the geotagging accuracy perfor-

mance, evaluate our proposed solution to alleviate the problem and enable the

�ne-grained geolocalisation of tweets. We contextualise the work of this chapter

in terms of the following research questions :

• RQ-3.1: Does consider geotagged tweets individually improve the perfor-

mance of �ne-grained geolocalisation?

• RQ-3.2: What is the e�ect of aggregating tweets within a prede�ned area

on accuracy when geolocalising tweets at a �ne-grained level?

In order to answer these research questions, we experiment to understand

the behaviour of aggregated and individual approaches utilising state-of-the-art

retrieval models.

The rest of the chapter is organised as follows. In Section 3.2 we describe our

two approaches to modelling the �ne-grained geolocalisation task. In Section 3.3
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we describe our experimental setup. Finally, Section 3.4 presents the experimental

results of our �ne-grained geolocalisation methods. We conclude with a discussion

of our main �ndings in Section 3.5.

3.2 Modelling Tweet Geolocalisation

Given a set of already available geotagged tweets and a non-geotagged tweet,

we model tweet geolocalisation in two main components. First, we represent

candidate locations using the text of the geotagged tweets belonging to that

location. Second, we select the most likely location based on their similarity to

the content of a given a non-geotagged tweet.

3.2.1 Representing Candidate Locations

We represent candidate locations in two ways. The �rst approach follows state-

of-the-art to represent a location as a vector that aggregates the texts of the

geotagged tweets posted within a prede�ned geographical area (Aggregated).

We consider this approach as our baseline in our experiments in Section 3.3. In

the second approach, we propose to represent a location as a vector that contains

the text of an individual geotagged tweet (Individual).

3.2.1.1 Aggregated Approach

In this approach, we represent candidate locations as a set of prede�ned areas

that are obtained by creating a grid that divides the geographical space of interest

into squares or cells. The size of the squares de�nes the granularity of the grid.

As mentioned in Section 3.1, this way of representing the geographical space is

widely adopted in state-of-the-art approaches for tweet geolocalisation (Hulden

et al., 2015; Kinsella et al., 2011; Paraskevopoulos and Palpanas, 2015). In order

to work at �ne-grained levels of granularity, we create prede�ned areas of size

length 1 km, following the work by Paraskevopoulos and Palpanas (2015).

Next, we associate each of the geotagged tweets with its corresponding area

based on its longitude and latitude coordinates. To represent a candidate location,

we generate a bag-of-words vector by concatenating (or aggregating) the texts of

the geotagged tweets associated with a given squared area.
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3.2.1.2 Individual Approach

In our second approach, instead of dividing the geographical space into prede-

�ned areas we utilise longitude and latitude coordinates attached to the already

available geotagged tweet as locations. Then, instead of aggregating the texts of

geotagged tweets we treat each geotagged tweet individually. This way, candidate

locations are represented as single documents containing the text of individual

tweets. Then, a bag-of-words vector is created from each document.

3.2.2 Predicting a Geolocation

Once we have obtained the vectors of the candidate locations, we can then es-

timate the probability of a non-geotagged tweet being posted in a location by

computing its content-based similarity to each vector. The most likely location

is then selected as the predicted location. There are two ways of approaching

this process: using IR techniques for ranking the locations Kinsella et al. (2011);

Paraskevopoulos and Palpanas (2015), or as a classi�cation task Hulden et al.

(2015). In this thesis, we use a ranking approach for selecting the predicted lo-

cation. We obtain the Top-N most likely candidate locations using a ranking

function and retrieve the most likely area (Top-1) as the predicted location. We

utilise several state-of-the-art retrieval models in our ranking function, which are

introduced further in Section 3.3.3.

Note that, depending on the approach, the predicted location is returned as

a longitude and latitude position representing: either the centroid of a squared

area, which is returned in Aggregated approach or the location of a geotagged

tweet, which is returned in Individual approach.

3.3 Experimental Setting

In this section, we describe the experimental setup that supports the evaluation

of our approaches for �ne-grained geolocalisation of tweets.

3.3.1 Data

Previous studies have shown that geotagged and non-geotagged data have the

same characteristics (Han et al., 2014). Thus, models built from geotagged data
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can potentially be generalised to non-geotagged data. Moreover, as we only use

geotagged data from speci�c cities, we assume that the city-level (or similar)

location of a tweet is known and focus on detecting their �ne-grained geolocation1.

Therefore, we experimented over a ground truth sample of English geotagged

tweets.

Table 3.1: North-east (NE) and south-west (SW) longitude/latitude coordinates
of the bounding boxes of the Chicago and New York datasets.

Longitude/Latitude Coordinates
NE SW

Chicago -87.523661, 42.023131 -87.940267, 41.644335

New York -73.700171, 40.917577 -74.259090, 40.477399

In Section 2.4.3, we describe other datasets from the literature that are avail-

able online. However, they were collected to evaluate coarse-grained geolocal-

isation methods using a wide spatial �lter on the Twitter Stream, that covers

global or country areas. Due to this �ltering approach, they do not provide a

representative sample of small geographical areas and, therefore, we collect our

datasets for evaluating the �ne-grained geolocalisation task. In total, we collect

two datasets containing geotagged tweets located in two di�erent cities from the

Twitter Public stream2. The tweets were posted on March 2016 in Chicago and

New York (USA) containing 131,757 and 153,540 geotagged tweets respectively.

We use a spatial �lter to collect geotagged tweets posted within an area de-

limited by a bounding box that covers the metropolitan areas of the city. We

create bounding boxes for Chicago and New York cities, which are de�ned with

a pair of longitude/latitude coordinates that represents the north-east (NE) and

south-west (SW) corners of the box (see Table 3.1).

The geographical distribution of geotagged tweets over the target cities is not

uniform. Figure 3.1 shows the distributions of geotagged tweets for the Chicago

and New York cities. We observe that some areas, such as the outlying districts of

the cities, contains low-density of tweets and thus are underrepresented. Besides,

other areas, such as the metropolitan area, contains high-density of tweets and

1The city-level location of tweets can be inferred by using approaches from previous works
(Cheng et al., 2010; Kinsella et al., 2011; Schulz et al., 2013a).

2https://dev.twitter.com/streaming/public
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Figure 3.1: Geographical distribution of geotagged tweets in Chicago (left) and
New York (right) during March 2016.

are overrepresented. It is important to note that, due to a bias towards the

high-density areas, this variation in the geographical distribution may a�ect the

inference.

3.3.1.1 Training, Testing and Validation Sets

To evaluate our approach, we divide each dataset into three subsets. We use the

�rst three weeks of tweets in our collection (i.e. the �rst three weeks of March and

September) as a training set. We then randomly divide the last week data into

validation and test sets to ensure that they have similar characteristics. Table 3.2

describes the distribution of tweets for the three datasets.

Table 3.2: Number of geotagged tweets distributed between training, validation
and testing sets of the Chicago and New York datasets.

Number of Geotagged Tweets
Dataset Collection Time Training Validation Testing

Chicago March 2016 99,418 16,061 16,278

New York March 2016 111,577 20,886 21,077
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3.3.2 Preprocessing and Indexing

As a preprocessing step, for each tweet, we remove punctuations, hyperlinks, stop-

words, tokenise (1-gram) and apply Porter Stemmer (Porter, 1980). Moreover, we

preserve retweets, usernames and hashtags as tokens in the dataset. The reason

behind preserving retweets is that when a user retweets a content, the geolocation

of the original tweets is not necessarily preserved.

Moreover, the similarity between a tweet and its retweet is high. Therefore

we can assign the location of the original tweet to the retweet. Finally, we index

every geotagged tweet in the training set using the Lucene platform1.

3.3.3 Models

In this section, we describe the baseline models, as well as the di�erent con�gu-

rations of our approach (Individual) that we use in our experiments.

3.3.3.1 Aggregated

We consider the models that use the Aggregated approach for representing can-

didate locations, described in 3.2.1.1, as the baselines models for our experiments

and comparison to our proposed approach, Individual. We implement two cat-

egories of approaches that use the aggregation of tweets that di�er in the way

they obtain the predicted geolocation for a given tweet, described in Section 3.2.2.

First, we implement the work by Kinsella et al. (2011) and Paraskevopoulos and

Palpanas (2015), that use a ranking approach. On the other hand, we adopt the

work by Hulden et al. (2015), that uses a classi�cation approach.

Moreover, the approaches by Kinsella et al. (2011) and Hulden et al. (2015)

work at a coarse-grained level of granularity, therefore, to adapt them to the

task of �ne-grained geolocalisation, for each city mentioned in Section 3.3.1, we

create a grid structure of squared areas with a side length of 1 km. For each of

the areas, we concatenate the text of the tweets associated with that area into

a document and index the document (see Section 3.3.1) which represents that

area. After indexing the documents, for each non-geo-tagged tweets, we retrieve

1https://lucene.apache.org/
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the most content-based similar document (Top-1) through a ranking function to

follow (Paraskevopoulos and Palpanas, 2015) and (Kinsella et al., 2011).

On the other hand, we follow the work by Hulden et al. (2015). Following

authors approach, we model each cell of the 1 km grid using Multinomial Naive

Bayes (denoted by NB) and Kullback-Leibler divergence (denoted by KL) using

words as features. We also report standard Naive Bayes and Kullback-Leiber

versions using kernel density estimation, denoted as NB+KDE and KL+KDE

respectively.

3.3.3.2 Individual

In this model, we implement the approach introduced in Section 3.2.1.2, where a

single geotagged tweet represents each location. Thus, we index each tweet as a

single document. We preprocess each tweet following the same steps explained in

Section 3.3.1. After indexing the tweets, we obtain the Top-N content-based most

similar geotagged tweets for each non-geotagged tweet using a ranking function.

We experiment with the same �ve retrieval models utilised in Approach 1 in our

ranking function. Finally, we return the longitude and latitude coordinates of the

Top-1 tweet as the predicted location.

3.3.4 Ranking Functions

For the models described above, Aggregated and Individual, we experimented

with the following retrieval models as the ranking function:

Vector Space Models (Dillon, 1983; Salton and Buckley, 1988; Salton et al.,

1975).

• TF-IDF weighting as described in Section 2.2.2.2.

• IDF weighting as described in Section 2.2.2.2.

Probabilistic Models

• LMD (Zhai and La�erty, 2017): Language Model with Dirichlet Smooth-

ing.
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• DFR (Amati and Van Rijsbergen, 2002): Divergence From Randomness

Framework, as introduced in Section 2.2.2.5. We utilise di�erent con�gura-

tions of the framework as described later in Section 3.3.5.

• BM25 (Robertson et al., 1995): As introduced in Section 2.2.2.3.

3.3.5 Parameter Tuning

We tune the parameters of the ranking function for Aggregated and Individual

approaches to optimise the average error distance (see Section 3.3.6) utilising the

validation sets for Chicago and New York described in Section 3.3.1. Note that

TF-IDF and IDF are parameter free, thus we optimise parameters for BM25,

LMD and DFR.

BM25: We experiment with a range of values for parameter k (0.0, 0.2, 0.5, 0.7,

1.0, 1.2, 1.5, 1.7, 2.0), and values for parameter b (0.0, 0.2, 0.5, 0.7, 1.0).

LMD: On the other hand, for LMD we experiment with values of µ (1, 5, 20, 50,

100, 500, 1000, 2500).

DFR: We test the following con�gurations of the DFR framework:

1. InB2 : Inverse Document Frequent model with Bernoulli after-e�ect and

normalisation 2.

2. IneB2 : Inverse Expected Document Frequent model with Bernoulli after-

e�ect and normalisation 2.

3. IFB2 : Inverse Term Frequency model with Bernoulli after-e�ect and nor-

malisation 2.

4. InL2 : Inverse Document Frequency model with Laplace after-e�ect and

normalisation 2.

5. PL2 : Poisson model with Laplace after-e�ect and normalisation 2.

The �nal optimised parameters for Aggregated and Individual on our two

datasets, Chicago and New York, are reported in Table 3.3.
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Table 3.3: Optimised parameters for the ranking functions used in Aggregated
and Individual approaches on our two datasets, Chicago and New York.

Chicago New York

LMD BM25 DFR LMD BM25 DFR

Aggregated µ=2500 k = 1.2 b = 0.0 InB2 µ=2500 k = 0.5, b = 0.2 InB2

Individual µ=1 k = 0.5, b = 0.7 IFB2 µ=1 k = 1.5, b = 0.5 InB2

3.3.6 Evaluation Metrics

Following previous works in the literature (Flatow et al., 2015; Kinsella et al.,

2011; Paraskevopoulos and Palpanas, 2015), to evaluate the e�ectiveness of the

approaches over the tweets in the test set Ttest the following metrics are reported:

Error distance (km): The fundamental measure for evaluating tweet geolocal-

isation approaches is the distance error d(l̂i, li) between the predicted location l̂i

and the real coordinates li of the tweet in the test set ti ∈ Ttest. To this end, we
use the Haversine distance (Robusto, 1957), which calculates distances on Earth,

to compute the error. For this metric, lower values represent better performance.

As described in Section 3.3.3, the output of our models can be either a tweet

or a squared area. When our prediction is a single tweet (Individual approach),

we compute the distance between two coordinates; when our prediction is an area

(Aggregated approach), the distance between the ground truth coordinate and the

centroid of the area is calculated. Moreover, to describe the distribution of the

error committed by the models we report the average andmedian error distance.

Accuracy@1km: In this thesis, we aim to geolocalise tweets at a �ne-grained

level (1 kilometre error or less). Therefore, we compute accuracy of the model

by determining the fraction of predicted locations that lie within a radius of 1

kilometre from the real location. For this metric, higher values represents better

performance. Accuracy@1km is formalised as follows:

Accuracy@1km =
|{ti ∈ GeoTweets | d(l̂i, li) ≤ 1km}|

|GeoTweets|
(3.1)
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where GeoTweets is the set of tweets in the test set for which the model �nds a

geolocation, l̂i is the predicted location and li is the real location of the test tweet

ti ∈ Ttest.

Coverage: We consider Coverage as the fraction of tweets in the test set Ttest

from which the model �nds a geolocation regardless of the distance error. Cov-

erage can be formalised as follows:

Coverage =
|GeoTweets|
|Ttest|

(3.2)

3.4 Results and Discussions

This Section presents our evaluation results and discusses the e�ectiveness of the

proposed approaches on �ne-grained geolocalisation. In particular, Tables 3.4 and

3.5 provide experimental results on the Chicago and New York datasets respec-

tively. We report results for the baseline models that performs an aggregation

of tweets (Aggregated) and our proposed approach that uses individual tweets

(Individual) compared to each other. Moreover, we present results when suing

di�erent functions for selecting the predicted location, described in Section 3.3.3.

In each table, we report the metrics described in Section 3.3.6: average error dis-

tance (AED), median error distance (MED), as well as accuracy at 1 kilometre

(Acc@1km).

Next, in each table, a paired t-test is used to assess if the di�erence in e�ective-

ness is statistically signi�cant, and are denoted by ∗ when a result is signi�cantly

di�erent (p<0.01) di�erent to the best baseline (Aggregated using LMD). Finally,

the best performing �ne-grained geolocalisation approach for each measure is

highlighted in bold.

In the following subsections, we address the research questions formulated

in Section 3.1.1. Particularly, Subsection 3.4.1 tackles RQ-3.1 and discusses

the e�ectiveness of the Aggregated and Individual approaches for representing

candidate location on �ne-grained geolicalisation; Subsection 3.4.2 addressesRQ-

3.2 and derives conclusions on why the aggregation of tweets underperforms with

respect to treating tweets individually.
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3.4.1 Aggregated Versus Individual

Comparing the performance across the two datasets presented in Tables 3.4 and

Table 3.5, we observe that the Individual approach generally outperforms Aggre-

gated in all the metrics reported, when using any of the prediction functions. For

instance, in the Chicago dataset Individual models signi�cantly (statistically) im-

prove performance with respect to the best performing baseline (Aggregated using

LMD); accuracy is increased from 46.97% to 55.20% using TF-IDF, and average

error distance (AED) is reduced from 6.162 km to 4.694 km using IDF. Addi-

tionally, median error distance (MED) is substantially reduced in all cases, which

explains the increment on accuracy as a higher number of tweets are predicted

at �ne-grained level (i.e., 1 km distance) using Individual.

Table 3.4: Evaluation results for the Chicago dataset. The table presents the Av-
erage Error Distance in kilometres (AED), Median Error Distance in kilometres
(MED), Accuracy at 1 kilometre (Acc@1km) and Coverage. Signi�cant (statisti-
cally) di�erences with respect to the best Baseline (Aggregated using BM25) are
denoted by ∗ (p<0.01).

Chicago Dataset
Model Function AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
Aggregated NB+KDE 7.340 2.445 29.63% 100.00%
Aggregated KL+KDE 7.501 2.828 25.24% 100.00%
Aggregated NB 6.233 0.817 50.79% 100.00%
Aggregated KL 7.051 1.351 48.15% 100.00%
Aggregated IDF 13.439 13.705 14.02% 99.40%

Aggregated TF-IDF 8.040 3.402 41.82% 99.40%

Aggregated DFR 6.250 1.333 47.06% 99.40%

Aggregated LMD 5.998 1.194 47.64% 99.40%

Aggregated BM25 4.806 0.906 50.67% 99.40%

Individual IDF 4.693∗ 0.100∗ 55.13%∗ 99.40%

Individual TF-IDF 4.714∗ 0.080∗ 55.20%∗ 99.40%

Individual DFR 4.802∗ 0.138∗ 54.58%∗ 99.40%

Individual LMD 4.853∗ 0.181∗ 54.10%∗ 99.40%

Individual BM25 4.923∗ 0.465∗ 52.74%∗ 99.40%

Lastly, we discuss the performance of the ranking functions against the clas-

si�cation approached for selecting the most likely location, described in Section
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Table 3.5: Evaluation results for the New York dataset. The table presents the
Average Error Distance in kilometres (AED), Median Error Distance in kilometres
(MED), Accuracy at 1 kilometre (Acc@1km) and Coverage. Signi�cant (statis-
tically) di�erences with respect to the best Baseline (Aggregated using BM25)
denoted by ∗ (p<0.01).

New York Dataset
Model Function AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
Aggregated NB+KDE 6.627 2.595 23.62% 100.00%
Aggregated KL+KDE 6.628 2.703 20.03% 100.00%
Aggregated NB 6.318 1.951 43.67% 100.00%
Aggregated KL 7.119 2.497 41.54% 100.00%
Aggregated IDF 12.536 11.842 13.82% 99.98%

Aggregated TF-IDF 7.308 2.620 41.08% 99.98%

Aggregated DFR 6.499 2.415 42.21% 99.98%

Aggregated LMD 6.873 2.873 42.03% 99.98%

Aggregated BM25 4.862 1.547 45.40% 99.98%

Individual IDF 5.041∗ 1.325∗ 47.98%∗ 99.98%∗

Individual TF-IDF 4.972∗ 1.251∗ 48.46%∗ 99.98%∗

Individual DFR 5.826∗ 2.769∗ 39.79%∗ 99.98%∗

Individual LMD 5.118∗ 1.377∗ 47.77%∗ 99.98%∗

Individual BM25 5.642∗ 1.936∗ 44.23%∗ 99.98%∗
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3.2.1.1. We observe that using a ranking approach performs better than using

classi�cation in most of the cases in terms of average error distance, indepen-

dently of using Aggregated or Individual. However, using Aggregated with IDF

and TF-IDF exhibits worst performance, which suggests that document frequency

information is not that informative when aggregation the tweets, as we will discuss

later in Section 3.4.2. Moreover, it is interesting to note that classi�cation ap-

proaches provides 100% Coverage compared to 99.40% and 99.98% of the ranking

approaches in Chicago and New York, respectively. This di�erence in Coverage

can be explained because classi�cation approaches provide inference for all the

tweets in the test set, whereas ranking approaches are not capable of �nding

similar geotagged tweets for some test tweets.

These results support the hypothesisRQ-3.1 introduced in Section 3.1, which

proposes using individual tweets instead of aggregated tweets within an area

would result in better performance for �ne-grained geolocalisation of tweets.

3.4.1.1 The BM25 case

Previously, we concluded before that treating tweets individually using our In-

dividual approach is the best performing strategy for �ne-grained geolocalisation

when using any of utilised retrieval models, however, we observe an interesting

behaviour when comparing BM25 in both Individual and Aggregated approaches

in Tables 3.4 and 3.5. Despite Individual is still the best performing, we note there

is not a high di�erence in the metrics. In particular, in the Chicago dataset, we

obtain an average error distance (AED) of 4.806 km using Aggregated approach

and 4.923 km using Individual approach, which represents a di�erence of 0.117

km.

The reason behind the similar performance of Individual and Aggregated using

BM25 can be explained by the inherent characteristics of the BM25 (Robertson

et al., 1995) model. The similarity of a document d to the query q is formalised

as follows:

BM25(q, d) =
∑
t∈q

log

(
N − dfi + 0.5

dfi + 0.5

)
· (k1 + 1) · tfi
k1((1− b) + b dl

avgdl
) + tfi

(3.3)
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where tfi represents the frequency of the term in the document, dfi is the docu-

ment frequency of the term, and document length is represented as dl. Document

length is normalised by dividing by the average document length of the collection

avgdl. The model is tuned using two parameters; k1 and b. By adjusting k1 we

control the in�uence of term frequency tfi in the �nal score, whereas adjusting b

varies the in�uence of document length normalisation dl
avgdl

.

In previous research, Ferguson et al. (2012) demonstrated that when k1 and b

parameters are close to zero, the performance of retrieval over Twitter documents

improves. This is due to the nature of tweets, which are short documents, and

the evidence encoded in terms of document length, and term frequency is lower

than longer documents (i.e., web documents). In Section 3.3.5 we the parameters

k1 and b are adjusted to the characteristics of short documents in the Individual

approach and long documents in the Aggregated, and therefore leads to similar

performance on �ne-grained geolocalisation. This behaviour suggests that doc-

ument frequency provides the strongest evidence for �ne-grained geolocalisation

in contrast to term frequency or document length. In the next Subsection 3.4.2

will address RQ-3.2 and derive an explanation of the e�ects that aggregating

tweets have on the evidence in terms of document frequency, which is a�ecting

geolocalisation at a �ne-grained level.

3.4.2 E�ect of Tweet Aggregation

In order to show the importance of document frequency for �ne-grained geolo-

calisation, we compute the distribution of the error distance over the similarity

scores given by the retrieval model to the document that represents the predicted

location (Top-1). Figure 3.2 shows the distribution of error distance for all the

models. We observe that generally, as the similarity increases, the error distance

of the predicted location decreases. However, Individual models show the low-

est error distances across all the values of similarity score. As indicated in the

�gure, the best performing con�guration is Individual_IDF. This observation is

consistent with the behaviour described before in Subsection 3.4.1.1 which shows

that the importance of document frequency over term frequency and document

length is higher when treating with short documents (Individual). On the other
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hand, when dealing with long documents (Aggregated), IDF performs the worst

and models that utilise in term frequency, and document length (LMD, DFR and

BM25 optimised) perform better, but still underperforms Individual models.

Figure 3.2: Distribution of error distance (y-axis) against similarity score (x-axis)
for the Chicago dataset.

Additionally, we statistically compare the error distance against the similar-

ity score by computing correlation coe�cients in terms of K.Tau, SP.Rho and

Pearson. Table 3.6 presents the correlation coe�cients for all the geolocalisa-

tion models. We observe that the best coe�cient is achieved by Individual_IDF,

which shows a signi�cant negative Pearson correlation of -0.350, K.Tau of -0.362

and SP.Rho of -0.504. On the contrary, we note that Aggregated_IDF shows to be

the model with the lowest correlation. This suggests the document frequency in-

formation is not discriminative enough when tweets are aggregated, but becomes

the most important evidence when tweets are treated individually.

In order to address our research question RQ-3.2 described in Section 3.1.1,

we now present a theoretical explanation of the e�ects of aggregating tweets on

�ne-grained geolocalisation, supported by the results obtained before. Based on

the results presented in Table 3.6 and Figure 3.2, we postulate that discrimina-

tive information about the query terms that manifests in the way of document

frequency when using individual tweets, is then transferred into term frequency
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Table 3.6: Correlations between error distance and retrieval score. Signi�cant
(statistically) di�erences are denoted by ∗ (p<0.01).

Model K.Tau SP.Rho Pearson
Aggregated_IDF 0.028∗ 0.041∗ -0.024∗

Aggregated_TF-IDF -0.127∗ -0.190∗ -0.125∗

Aggregated_DFR -0.253∗ -0.380∗ -0.214∗

Aggregated_LMD -0.250∗ -0.361∗ -0.241∗

Aggregated_BM25 -0.128∗ -0.189∗ -0.175∗

Individual_IDF -0.362∗ -0.504∗ -0.350∗

Individual_TF-IDF -0.361∗ -0.501∗ -0.348∗

Individual_DFR -0.293∗ -0.406∗ -0.258∗

Individual_LMD -0.300∗ -0.415∗ -0.267∗

Individual_BM25 -0.297∗ -0.412∗ -0.267∗

information when tweets are aggregated into a single document. Therefore, re-

trieval models that rely on document frequency capture strong evidence for geolo-

calisation and perform the best using the Individual approach, whereas retrieval

models that rely on term frequency still capture more of that evidence when

using the Aggregated approach. Nevertheless, the performance is still worst com-

pared to the Individual approach, which suggests that some evidence is lost in

the aggregation or retrieval models are not capable of capture such evidence.

The results presented in this section, related to the importance of document

frequency in �ne-grained geolocalisation, are in line with previous �ndings in

microblog search, introduced in Section 2.3. First, Ferguson et al. (2012) and

Naveed et al. (2011) observed that term-frequency information have little impact

on retrieval e�ectiveness and document length normalisation have a negative ef-

fect, as we also observed previously in Section 3.4.1.1. Finally, in Rodriguez Perez

(2018); Rodriguez Perez and Jose (2015) the authors performed an exhaustive in-

vestigation of the problem of retrieval models in microblog search. Their work

con�rmed previous �ndings (Ferguson et al., 2012; Naveed et al., 2011) and, in

line to our work, they observed that models relying on document frequency per-

formed signi�cantly better than others.
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3.5 Chapter Summary

Existing geolocalisation models in the literature utilised the content of already

available geotagged tweets to represent locations. Next, these models ranked

candidate locations based on their similarity to a given non-geotagged tweet using

a ranking function and returning as a prediction the most similar location (Top-

1). The �rst attempts to geolocalise tweets divided the geographical area into

prede�ned coarse-grained areas (i.e., country or city level), and represented each

area as a single document containing the texts of the geotagged tweets belonging

to that area. More recent works adapted the existing approach to work at a �ne-

grained level (i.e., squared areas of length size 1 km), which resulted in a decrease

in performance compared to coarse-grained predictions.

In this chapter, we hypothesised that by aggregating the texts of the geo-

tagged tweets to represent a location, important information about discrimina-

tive words that are representative of a �ne-grained location is lost, thus a�ecting

the performance of the geolocalisation. Based on this assumption, we postulated

that by representing locations as a single vector containing the text of individual

geotagged tweets, the performance of �ne-grained geolocalisation would improve.

The experiments in this chapter were focused to answer RQ-3.1 and RQ-

3.2 introduced in Section 3.1.1. To conduct our experiments, we collected two

datasets of English geotagged tweets located in two major cities in USA, Chicago

and New York. Next, we proposed a new approach that treats tweets individu-

ally, named Individual, and compared against the state-of-the-art approach that

aggregates the texts within prede�ned areas as the baseline, named Aggregated.

As the ranking function, we experimented with IR retrieval models including

Vector Space Models using TF-IDF and IDF weighting, and probabilistic models

such as BM25, DFR Framework and Language Model with Dirichlet smoothing

(LMD). We optimised the parameter of each retrieval model for both approaches,

Individual and Aggregated.

Our �rst experimental results showed that representing locations as individual

tweets signi�cantly (statistically) outperforms state-of-the-art strategies of aggre-

gating the tweets of an area (see Tables 3.4 and 3.5), which address RQ-3.1 and
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support our hypothesis that treating tweets individually will perform better for

�ne-grained geolocalisation.

Secondly, we addressed RQ-3.2 by analysing the performance of the di�erent

retrieval models when used in Individual and Aggregated approaches. We observed

that BM25 showed similar performance in both approaches (see Section 3.4.1.1).

This is because the parameters of the BM25, k1 and b, controls the in�uence

of term frequency and document length information and were adjusted to work

with short documents (Individual) and long documents (Aggregated). Based on

the BM25 formulation, this suggested us that evidence in terms of document

frequency is a strong signal for �ne-grained geolocalisation.

Inspired by the previous observation, we then addressedRQ-3.2 and derived a

theoretical explanation of the e�ects that aggregating tweets have on the evidence

in terms of document frequency, which is a�ecting geolocalisation at a �ne-grained

level. To this end, we computed the distribution of error distance committed by

Individual and Aggregated approaches against the similarity score given by the

di�erent retrieval models utilised (see Section 3.4.2). We identi�ed from Table 3.6

and Figure 3.2 that retrieval models that relies on term frequency and document

length (BM25, DFR and LMD) performed the worst when using Individual, and

performed the best when using Aggregated. On the other hand, we noted that

retrieval models that rely on document frequency (IDF and TF-IDF) performed

the best when using the Individual approach, and performed the worst when using

the Aggregated approach. This suggested us that document frequency information

is not discriminative enough when tweets are aggregated, but becomes the most

important evidence then tweets are treated individually. Additionally, the fact

the models relying on term frequency performed the best when aggregating the

tweets, suggested us that the evidence lost as document frequency information is

transformed into term frequency information and still captured by such models.

In this chapter, we demonstrated that our proposed approach of treating

tweets individually Individual is the best strategy for the �ne-grained geolocali-

sation task. In particular, our experimental results showed that evidence in the

form of document frequency information is the most discriminative. For this

reason, the IDF weighting model showed to be the best ranking function. Addi-

tionally, we provided a theoretical explanation of why aggregating the tweets is
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not convenient for �ne-grained geolocalisation. However, the average error dis-

tance achieved by our best performing model (4.693 km by Individual using IDF)

is still insu�cient for tasks that require �ne-grained geolocation levels de�ned as

the objective of this thesis work (i.e., located at 1 km or less).

So far, our approach returns the most similar location (Top-1) as the returned

prediction. However, having a Top-N ranking of individual geotagged tweets as

evidence allows us to explore ways to improve the performance of �ne-grained ge-

olocalisation further. In Chapter 4, we propose a new approach for �ne-grained

geolocalisation to increase the number of tweets geolocalised at 1 km error dis-

tance.
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Chapter 4

Majority Voting For Fine-Grained
Geolocalisation

4.1 Introduction

In Chapter 3 we enabled state-of-the-art methods to work at �ne-grained levels by

proposing a new approach that represents locations as documents generated from

individual geotagged tweets, instead of an aggregation of them. Then, a ranked

list of the most likely candidate locations is retrieved based on the similarity of

a given non-geotagged tweet to the documents. Thus, the most likely candidate

location (Top-1) is returned as the predicted location. However, the average error

distance (AED) of the predictions returned by such approach is still not su�cient

to reliably enable tasks that require high accurate geolocated data, such as the

tra�c incident detection we will explore in 6 � the best average error distance

is 4.693 km (Chicago) which represents a con�dence area of 69.19 km2. In this

thesis, we aim to reduce the average error to 1 km which represents a con�dence

area of 3.14 km2.

The main drawback of the approach derived in Chapter 3 is that only the

similarity dimension is contemplated to perform a prediction of the geographical

location of a tweet. Thus, the approach returns always the location of the most

similar geotagged tweet (Top-1). However, the similarity between two tweets is

not always su�cient evidence of their geographical location, and thus it can be

challenging to return a prediction in such cases. For example, two tweets about

a topic that is not related to any geolocation (i.e., a new album released by a

famous singer) are highly similar, but they are not necessarily be posted in the
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same location. Thus the predictability of the geolocation of such tweets is low.

In contrast, two tweets about an event occurring at speci�c geolocation (i.e., a

tra�c incident) are likely to be generated within the same area or include the

location name in the text. Thus the predictability of their location is high.

In this chapter, we hypothesise that the predictability of the geolocation of

tweets at a �ne-grained level is given by the correlation between their similarity

and geographical distance to other �nely-grained geotagged tweets (see Hypoth-

esis 2 in Section 1.2). We postulate that in some cases the similarity of the tweets

does not always correlate with geographical distance. Therefore, there may not

be su�cient evidence to return a �ne-grained prediction in such cases. We be-

lieve that by identifying such cases, we can increase the number of predictions at

a �ne-grained level.

In Figure 4.1, we illustrate the correlation between the content similarity

and the geographical distance of a tweet to other geotagged tweets. Red areas

represent high correlation whereas blue areas represent low correlation. In this

�gure, there are four areas of interest as we observe the corners. Firstly, the top

left corner represents the area of high similarity and low geographical distance.

This area is the most correlated with the hypothesis which links distance with

content similarity. Secondly, the top right corner represents an area of high

similarity yet high geographical distance. Thirdly, the bottom left stands for

an area of low similarity and low geographical distance. This area is not in

line with the hypothesis mentioned above, yet it is of interest as potentially

any prediction in this area should produce good results. Finally, the bottom

right corner describes an area of low similarity and high geographical distance.

Consequently, the area through the middle connecting the top left and bottom

right corners embodies the hypothesis linking similarity to geographical distance.

On the other hand, in Figure 4.2 we present the utility area for �ne-grained

predictions that is enclosed at the left of the line in the graph. The closer the line

is to the left, the lower is the geographical distance and, therefore, the better the

predictions. Note that this is happening regardless of the level of content simi-

larity. In line with this assumption, by analysing how dispersed in space are the

Top-N most similar geotagged tweets in the rank provides, we can obtain valuable

evidence of the geographical distance. Thus, we can identify the predictions that
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fall at the left of the line and reduce the average error distance (i.e., 1 km) for

better �ne-grained geolocalisation.

Figure 4.1: The �gure presents the correlation between the content similarity
and the geographical distance of a tweet to a set of Top-N geotagged tweets. Red
areas represent high correlation whereas blue areas represent low correlation.

Figure 4.2: Regardless of the content similarity, the space at the left of the line
represents the utility area for �ne-grained geolocalisation � the closer the line to
the left, the lower the geographical distance and the better the predictions.

In this chapter, we aim to explore the geographical evidence encoded within

the Top-N most similar geotagged tweets in order to obtain more reliable pre-

dictions. To combine evidence from the Top-N elements, we propose to model

�ne-grained geolocalisation as a voting process, where each candidate location is
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represented as a set of geotagged tweets. Using a ranked list of retrieved geo-

tagged tweets for a non-geotagged tweet, we propose to adopt a majority voting

algorithm to estimate the geographical location by collecting the geolocation votes

of the geotagged tweets in the rank. In the case that the voting process �nds a

location with a majority of the votes, it is indicative of low geographical dis-

tance, regardless of the content similarity, and we consider that there is su�cient

evidence for a �ne-grained prediction.

Additionally, we weighted the majority voting algorithm to alleviate the re-

strictive power of the voting process. The weight of each vote is calculated based

on the credibility of the user of the geotagged tweet and the degree of content

similarity to the non-geotagged tweet. The credibility of the user is calculated as

a score that represents the user's posting activity and its relevance to the physical

location they are posting from.

4.1.1 Research Questions

Based on previous assumptions introduced before, in this chapter we aim to

address the following research questions:

• RQ-4.1: Can we obtain �ne-grained predictions based on the geographical

evidence between the Top-N most similar geotagged tweets?

• RQ-4.2: What is the percentage of tweets we can predict at a �ne-grained

level?

The rest of the chapter is organised as follows. In Section 4.3 we describe our

majority voting model for �ne-grained geolocalisation of non-geotagged tweets.

Section 4.4 presents our experimental setup, followed by results and discussing in

Section 4.5. Finally, we provide concluding remarks and details of contributions

in Section 4.6.

4.2 Related Work

Obtaining The Most Fine-Grained Predictions Previous approaches in

the literature for �ne-grained geolocalisation approaches also considered to re-

turn prediction only if there is su�cient evidence. For example, Flatow et al.
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(2015) �rst identi�ed geospeci�c n-grams in the dataset by applying a clustering

approach using a Gaussian Kernel. The approach creates an ellipse that covers

the locations in which the n-gram appears is there are clustered in space. Then,

if a given non-geotagged tweet contains any of the geospeci�c n-grams, the cen-

tre of the generated ellipse is returned as a prediction. In contrast, the authors

considered that tweets that do not contain any of the geospeci�c n-grams are not

predictable. Another example of such works is the approach by Paraskevopoulos

and Palpanas (2015), which reports their metrics (precision) based on the num-

ber of tweets in the test set their approach managed to geolocalise. This number

corresponds to coverage but is not reported by the authors.

Majority Voting The majority voting algorithm is a well known, fast and

e�ective strategy widely adopted for prediction and re-ranking tasks (Chiang

et al., 2012; Mosbah and Boucheham, 2015; Rokach, 2010). However, to the

best of our knowledge, this is the �rst time the majority voting is considered to

tackle the geolocation of tweets. Considering the quality of sources to verify the

information generated from them is related to the truth discovery problem (Li

et al., 2016). Di�erent algorithms have been proposed to address the problem

(Yin et al., 2007). In this work, we have decided to apply a voting approach due

to its simplicity and e�ectiveness.

Credibility of Twitter Users Some works have attempted to measure the

veracity/credibility of the information derived from social media (Marshall et al.,

2016; Wang et al., 2016; Zhang et al., 2016b), and speci�cally for event detection

and disaster and emergency management (Castillo et al., 2011; McCreadie et al.,

2016). For example, McCreadie et al. (2016) considered the idea of assigning a

credibility score to measure the veracity of a tweet in the context of a disaster and

emergency detection task. They computed the credibility score using regression

models with text features and user information. This credibility score is utilised

to inform the user about the veracity/credibility of events derived from social

media.

In this chapter, we de�ne credibility di�erently to previous work. We aim

to assign a score to Twitter users that provide a measure of their trustworthi-
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ness/credibility for �ne-grained geolocalisation. To do that, we analyse their past

activity in Twitter and calculate how usually these users post similar content

related to other tweets in the same geolocation. The procedure to compute this

score is detailed later in Section 1. Moreover, in contrast to McCreadie et al.

(2016), we incorporate this score as a weight for each vote in our adopted major-

ity voting approach.

4.3 Voting For Fine-Grained Geolocalisation

Our proposed approach consists of three stages. First, following previous ap-

proaches in Chapter 3 we divide the geographical area of interest into a grid of 1

km squared areas and associate each geotagged tweet to an area based on its loca-

tion. Second, we obtain the Top-N content-based most similar geotagged tweets

to each non-geotagged tweet using a retrieval model (see Section 3.3.4). For the

ranking task, we follow the Individual approach proposed in Section 3.3.3, that

considers geotagged tweets as individual documents.

Finally, we combine the evidence gathered from the Top-N geotagged tweets

mentioned above by adopting a weighted majority voting algorithm, which we

introduce in the next Section.

4.3.1 Majority Voting

In order to combine evidence gathered from the Top-N content-based most simi-

lar geotagged tweets to a non-geotagged tweet tng, we adopt a weighted majority

voting algorithm (Blum, 1996; Boyer and Moore, 1991; Chiang et al., 2012; Lit-

tlestone and Warmuth, 1992; Mosbah and Boucheham, 2015; Rokach, 2010) as

follows. Each element of the Top-N tweets is represented as a tuple (ti, li, ui),

where li is the location associated with the geotagged tweet ti posted by the user

ui. Finally, we select the most frequent location within the Top-N set as the

inferred location for the non-geotagged tweet. We can formalise the majority

voting as follows:

Location(tng) = argmax
lj∈L

(
N∑
i=1

V ote(tlii , lj)

)
(4.1)
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where L is the set of unique locations (lj) associated with the Top-N geotagged

tweets, and tlii is the location of the i-th tweet in the ranking. Then, a vote is

given to the location lj by the tweet ti as follows:

V ote(tlii , lj) =

 1 tlii = lj

0 tlii 6= lj
(4.2)

4.3.2 Weighted Majority Voting

In addition to Equation 4.1, were the votes are considered equally, we consider a

weighted version of the majority voting formalised as follows:

Location(tng) = argmax
lj∈L

(
N∑
i=1

Wti(α, tng) ∗ V ote(t
li
i , lj)

)
(4.3)

were the vote from tweet ti is weighted by:

Wti(α, tng) = α · Credibility(ui) + (1− α) · Sim(ti, tng) (4.4)

where α ∈ [0, 1], and Credibility(ui) is the credibility of user ui that posted the

tweet ti (see Section 4.3.2.1). Sim(ti, tng) is the content-based similarity of the

geotagged tweet (ti) with the non-geotagged tweet (tng) given by a retrieval model

(see Section 4.3.2.2). Finally, the location lj that obtains the highest number of

weighted votes is returned as the �nal predicted geolocation for a given non-

geotagged tweet.

We chose to use a linear combination as our weighting function (Equation 4.4)

in order to study the e�ectiveness of each of the components (Credibility(ui)

and Sim(ti, tng)) together and separately. Therefore, when using α = 1 only

Credibility(ui) is considered, whereas Sim(ti, tng) is only considered when α = 0.

Likewise, when α = 0.5 both components are considered equally. Lastly, the

functions requires to normalise the values of the Sim(ti, tng) component between

0 and 1 to be equivalent to the values of the Credibility(ui) component.
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4.3.2.1 Extracting Credibility from a Tweet's User

We believe that some Twitter users tend to describe, more than others, the events

occurring in the geographical locations they visit. This means that the geotagged

tweets posted by such users are a valuable source of information for �ne-grained

geolocalisation. We aim to exploit this by computing, for each user, a score based

on their posting activity. Finally, we utilise this score to weight the vote of a

tweet in our adapted majority voting algorithm, as discussed above in Section

4.3.2. As discussed in Section 4.2, our concept of credibility di�ers from previous

literature (Castillo et al., 2011; McCreadie et al., 2016), which aimed to measure

the veracity of the information encoded in a tweet instead of the trustworthiness

of the user.

To obtain the credibility score, we use the training and validation sets in-

troduced in Section 3.3.1 of Chapter 3. The procedure to compute the score is

detailed in Algorithm 1 and works as follows. For each user ui in the training

set T , we compute the credibility score as follows. First, for each tweet in the

validation set (tvi) we obtain the Top-N most similar geotagged tweets (Top) from

the training set (T ) using a ranking approach. We collect the tweets (tui
) in the

Top-N that were generated by the user ui, along with their corresponding tvi ,

into a set named TN . After all the tweets in the validation set are processed, the

credibility of user ui is given by the ratio of all tweets in TN placed within less

than 1 km distance from their corresponding tvi tweet in the validation set.

Algorithm 1: Computes the credibility score for a user ui
Credibility (ui, N)

Data: Validation set V ; Training set T
Inputs : A user ui ∈ T ; Values of N for the Top-N ranking obtained

by the ranking function rank.
Output: The credibility score for user ui.

TN ← ∅;
foreach tvi ∈ V do

Top← rank(tvi, T,N);
TN ← {(tui

, tvi) ∈ Top}
end

C = |{tui∈TN | distance(tui,tvi)≤1km}|
|TN | ;

return C
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Figure 4.3 shows the distribution of credibility ratios when considering di�er-

ent cut-o� points for N across all users evaluated in the validation set for the city

of Chicago (see Section 3.3.1 of Chapter 3). As can be observed, an important

chunk of the user population exhibit a low ratio (≤ 0.01). We consider that this

set of users are less likely to post valuable information for geolocalisation, the

votes of their tweets will be less contributive. On the other hand, the rest of the

population is uniformly distributed except 0.46− 0.5 and 0.96− 1, where there is

a noticeably higher concentration of users. This is the set of users that are most

likely to post valuable information, and their votes will be more discriminative.

We observe similar patterns in all the cities considered in Section 3.3.1 of Chapter

3.

Figure 4.3: Distribution of Tweet Users' Credibility. The Figure presents the
number of Twitter users (y-axis) distributed over di�erent values of credibility
ratios (x-axis).

4.3.2.2 Similarity Score and Tweet Geolocation

Previous research (Grabovitch-Zuyev et al., 2007; Hong et al., 2012a) has shown

the correlation between the content of the tweets and their geographical location.

This is because highly similar tweets are often related to the same topic/event,

66



4. MAJORITY VOTING FOR FINE-GRAINED
GEOLOCALISATION 4.4 Experimental Setting

and therefore they are likely to be posted in the same location. Based on this

assumption, we believe that the level of content-similarity with the content of the

Top-N geotagged tweets is a strong indicator of the actual geolocation for a given

non-geotagged tweet.

For example, given the non-geotagged tweet �Welcome to my birthday party

at 7th avenue�, and the geotagged tweet �Amazing birthday party in a nightclub

at 7th avenue�, their contents are highly related as they refer to the same event

(birthday party at 7th avenue) and both contain two informative terms: birthday

and 7th avenue. Therefore, they will be associated with a high similarity score.

Assuming there is a signi�cant number of birthdays parties occurring in di�erent

areas, then it is very likely that both tweets were posted in the same geographical

locations.

However, we can observe some cases in which the level of similarity is not

su�cient to ascertain whether any two tweets share a geographical location. For

example, given the non-geotagged tweet �Happy Birthday to my friend David �,

and the geotagged tweet �Amazing birthday party in a nightclub at 7th avenue�,

their similarity score will be lower as both tweets contain only the term �birthday�,

but they are not referring to the same event. This indicates that although the

topics are related to a birthday event, they may or may not be referring to the

same event in the same location.

The intuition behind is that the vote given by a high similar geotagged tweets

contribute more in order to discriminate between locations. To this end, we

introduce the similarity score Sim(ti, tng) in Equation 4.4 in Section 4.3.2.

The contribution of the similarity component is adjusted by the value of an

α parameter. In particular, the lower the value of α the higher the contribution

of the content-based similarity score to the total weighting of each tweet vote.

4.4 Experimental Setting

In this section, we describe the experimental setup that supports the evaluation

of our proposed approach for �ne-grained geolocalisation tweets. We utilise the

same experimental settings described previously in Chapter 3:
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• We experiment over the two datasets of geotagged tweets described in Sec-

tion 3.3.1 (Chicago and New York).

• We preprocess and index each geotagged tweet following Section 3.3.2.

• We utilise the retrieval models in Section 3.3.4 as ranking functions for the

models detailed in Section 4.4.1.

• We report the metrics described in Section 3.3.6.

4.4.1 Models

In this section, we describe the baseline models, as well as the di�erent con�gu-

rations of our approach utilised in our experiments.

4.4.1.1 Baseline Models

We compare the performance of our majority voting model with the Aggregated

and Individual approaches explored before in Chapter 3, which perform �ne-

grained geolocalisation by always returning the most similar document to a given

non-geotagged tweet. The detailed implementations of the baselines are described

in Section 3.3.3. We select the best performing con�gurations obtained in Tables

3.4 and 3.5 for the Chicago and New York datasets respectively.

4.4.1.2 Majority Voting Model

We implement our proposed approach explained in Section 4.3 (denoted by �WMV�).

We use the same squared areas of the �ne-grained grid de�ned for the baseline

models. However, in WMV model, each of these de�ned squared areas is rep-

resented as multiple bag-of-word vectors where each vector represents a single

geotagged tweet associated with that area. By doing this, we index each tweet

as a single document for the retrieval task. We preprocess all tweets following

the same step explained in section 3.3.2. After indexing the tweets, we perform

a retrieval task to obtain the Top-N content-based most similar geotagged tweets

for each non-geotagged tweet using the Individual approach proposed in Chapter

3, con�gured to use the IDF weighting model. Finally, we use a majority voting
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algorithm to return the �nal predicted location as the prede�ned area that ob-

tains the majority of the votes. We build two majority voting models according

to the way of weighting the votes:

WMV: We apply our weighted majority voting algorithm on top of the re-

trieval task, as described in Equation 4.3. The weight of each vote is given by

Equation 4.4. In our experimental evaluation we considered the Top-N content-

based most similar tweets obtained from the retrieval task with values of N ∈
{3, 5, 7, 9, ..., 49}, and di�erent values of α (0.0, 0.25, 0.50, 0.75, 1.0) for the

weighting function. The components in the weighting function (See equation 4.4)

are normalised using min-max normalisation.

MV: We apply the majority voting version that does not weight the votes, as

described in Equation 4.1. In our experimental evaluation, we considered the

Top-N content-based most similar tweets obtained from the retrieval task with

N ∈ {3, 5, 7, 9, ..., 49}.

4.5 Experimental Results

To assess the proposed weighted majority voting approach for �ne-grained geolo-

calisation, we evaluate the models described in Section 4.4.1 using di�erent values

of N for the Top-N ranked geotagged tweets that are fed into the majority voting

algorithm. Moreover, we provide results varying the values of α, that controls

the in�uence of the similarity and user credibility components incorporated in

our weighting function (See Equation 4.4).

In particular, Tables 4.1 and Table 4.2 provide experimental result on the

Chicago and New York datasets respectively for each of the di�erent settings for

the weighted majority voting models (WMV@Top-N and α values). The tables

also present, as a remainder, results of the best performing baseline approaches

explored in Chapter 3 (Aggregated and Individual) that always return the Top-1

tweet as the predicted location. In each table, we report the following metrics

(see Section 3.3.6): average error distance (AED), median error distance (MED),

accuracy (Acc@1km), and coverage (Coverage). Lastly, for each measure and
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geolocalisation model setting, the best performing approach in each column is

highlighted in bold. Due to the di�erences in Coverage obtained by di�erent

con�gurations of MV and WMV models, the models returns a prediction for

di�erent subsets of the tweets in the test set. For this reason, we do not compare

(statistically) these results against our baselines.

In the following sections, we address the di�erent research questions relating

to the experimental results in the tables. Section 4.5.1 analyses the performance

and e�ectiveness of the weighted majority voting approach using di�erent values

of N and α; Section 4.5.2 discusses the contribution to geolocalisation of each of

the components in the weighting function formalised in Equation 4.4; Finally, we

provide concluding remarks in Section 4.6.

4.5.1 Performance of Fine-Grained Geolocalisation

We observe in Tables 4.1 and 4.2 that our weighted majority voting approach

(WMV@Top-N) obtained better predictions than the baselines in terms of accu-

racy and error distance, regardless of the value of N in all datasets. However, this

increase of accuracy and error distance is accompanied by the cost of a decrease

in coverage. Additionally, our �ndings show that, as the number of voting candi-

dates (i.e. Top-N) increases, our approach achieves lower average error distance

(AED), higher accuracy (Acc@1km), but lower coverage (Coverage). This suggest

that our majority voting approach is capable of identifying �ne-grained predic-

tions, according to Figure 4.1 and 4.2, which address the �rst research question

(RQ-4.1) described in Section 4.1.1. This observation is in line with the hypoth-

esis, introduced in Section 4.1, that in some cases the similarity of the tweets

does not always correlate with the geographical distance.

In both datasets, the best performing con�guration in terms of accuracy

(Acc@1km) and average error distance (AED), is obtained using the Top-9 tweets

in the ranking and a value of α = 0.0 (WMV@Top-9, α = 0.0). On the other

hand, the best performing con�guration regarding coverage is obtained using the

Top-3 tweets in the ranking and a value of α = 1.0 (WMV@Top-3, α = 1.0).

Therefore, we observe that the goal of maximising coverage con�icts with re-

ducing the average error distance. This set of observations answer the second

research question (RQ-4.2) introduced in Section 4.1.1.
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Table 4.1: Results for the Chicago dataset. The table presents the Average Error
Distance in kilometres (AED), Median of Error distance (MDE ), Accuracy at
1 kilometre (A@1km) and Coverage for our proposed approach (WMV ) using
the Top-N (@TopN ) elements in the rank and values of α, against the baselines.
Additionally, we present results of the best performing models of Chapter 3,
Aggregated and Individual.

Chicago
Model Con�g AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
Aggregated BM25 4.806 0.906 50.37% 99.40%
Individual IDF 4.694 0.100 54.80% 99.40%

Chicago
Model Con�g AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
MV@Top-3 No Weight 2.484 0.471 76.09% 63.15%

MV@Top-5 No Weight 1.907 0.471 81.47% 54.53%

MV@Top-7 No Weight 1.702 0.471 83.51% 49.99%

MV@Top-9 No Weight 1.639 0.471 84.00% 46.87%

WMV@Top-3 α = 0.0 3.488 0.471 67.21% 74.82%

WMV@Top-3 α = 0.25 3.549 0.473 66.51% 75.95%

WMV@Top-3 α = 0.5 3.692 0.481 65.20% 77.67%

WMV@Top-3 α = 0.75 4.020 0.503 62.01% 81.83%

WMV@Top-3 α = 1.0 4.365 0.532 58.88% 84.15%
WMV@Top-5 α = 0.0 2.134 0.471 79.68% 59.75%

WMV@Top-5 α = 0.25 2.178 0.471 79.21% 60.20%

WMV@Top-5 α = 0.5 2.310 0.471 77.79% 61.30%

WMV@Top-5 α = 0.75 2.709 0.471 73.69% 64.71%

WMV@Top-5 α = 1.0 3.829 0.498 63.24% 75.41%

WMV@Top-7 α = 0.0 1.748 0.471 83.65% 54.44%

WMV@Top-7 α = 0.25 1.767 0.471 83.34% 54.55%

WMV@Top-7 α = 0.5 1.863 0.471 82.25% 54.99%

WMV@Top-7 α = 0.75 2.128 0.471 79.54% 56.87%

WMV@Top-7 α = 1.0 3.117 0.471 69.80% 64.58%

WMV@Top-9 α = 0.0 1.602 0.471 85.14% 51.39%

WMV@Top-9 α = 0.25 1.647 0.471 84.60% 51.58%

WMV@Top-9 α = 0.5 1.712 0.471 83.90% 51.86%

WMV@Top-9 α = 0.75 1.897 0.471 81.92% 52.84%

WMV@Top-9 α = 1.0 2.730 0.471 73.50% 58.24%
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Table 4.2: Results for the New York dataset. The table presents the Average
Error Distance in kilometres (AED), Median of Error distance (MDE ), Accuracy
at 1 kilometre (A@1km) and Coverage for our proposed approach (WMV ) using
the Top-N (@TopN ) elements in the rank and values of α, against the baselines.
Additionally, we present results of the best performing models of Chapter 3,
Aggregated and Individual.

New York
Model Con�g AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
Aggregated BM25 4.862 1.547 45.40% 99.98%
Individual TF-IDF 4.972 1.251 48.46% 99.98%

New York
Model Con�g AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
MV@Top-3 No Weight 2.522 0.461 72.76% 55.31%

MV@Top-5 No Weight 1.878 0.428 79.85% 46.20%

MV@Top-7 No Weight 1.610 0.412 82.52% 41.67%

MV@Top-9 No Weight 1.448 0.405 84.00% 38.70%

WMV@Top-3 α = 0.0 3.949 0.556 58.86% 72.22%

WMV@Top-3 α = 0.25 4.011 0.567 58.13% 73.87%

WMV@Top-3 α = 0.5 4.174 0.602 56.69% 76.25%

WMV@Top-3 α = 0.75 4.459 0.668 53.89% 80.93%
WMV@Top-3 α = 1.0 4.567 0.703 52.56% 79.71%

WMV@Top-5 α = 0.0 2.264 0.444 76.03% 52.71%

WMV@Top-5 α = 0.25 2.310 0.447 75.30% 53.46%

WMV@Top-5 α = 0.5 2.504 0.457 73.33% 55.41%

WMV@Top-5 α = 0.75 3.127 0.485 66.85% 61.52%

WMV@Top-5 α = 1.0 4.392 0.642 55.00% 74.92%

WMV@Top-7 α = 0.0 1.687 0.417 81.73% 46.35%

WMV@Top-7 α = 0.25 1.712 0.418 81.35% 46.73%

WMV@Top-7 α = 0.5 1.817 0.424 80.22% 47.56%

WMV@Top-7 α = 0.75 2.209 0.441 75.75% 50.78%

WMV@Top-7 α = 1.0 3.931 0.545 59.53% 65.67%

WMV@Top-9 α = 0.0 1.490 0.412 84.09% 43.36%

WMV@Top-9 α = 0.25 1.499 0.412 83.63% 43.56%

WMV@Top-9 α = 0.5 1.586 0.412 82.90% 44.24%

WMV@Top-9 α = 0.75 1.889 0.424 79.90% 46.08%

WMV@Top-9 α = 1.0 3.229 0.488 65.57% 56.57%
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Additionally, Figures 4.4 and 4.5 show the distribution of the average error

distance (AED) and Coverage, respectively, in the Chicago across values of N ∈
{3, 5, 7, 9, ..., 49} for the Top-N for any of the α values considered (0.0, 0.25, 0.50,

0.75, 1.0). We observe a logarithmic decay of the error distance as the values of

N for the Top-N increases. Moreover, we identify a big jump when considering

the Top-5 and Top-10 tweets. This suggests that the Top-10 geotagged tweets are

the most informative concerning geographical evidence for geolocalisation. When

values of N are higher than 10, we observe that the decrease is gradually smaller,

which suggest that the rest of the tweets in the ranking are less informative.

Figure 4.4: Distribution of the Average Error Distance (AED) in the Chicago
dataset when considering values of N ∈ {3, 5, 7, 9, ..., 49} for the Top-N most
similar geotagged tweets.

4.5.2 E�ect of Weighting The Votes

The e�ects of Equation 4.4 of the weighted majority voting models (WMV) can be

observed in Table 4.1, Table 4.2 and Figure 4.4. As the values of alpha decrease,

our approach achieves higher accuracy (Acc@1km), and reduce the average error

distance (AED). This pattern can be observed for any of the investigated values

of N for the Top-N tweets in the rank. Additionally, compared to the majority

voting models (MV), the weights of the votes is capable of alleviating the decrease
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Figure 4.5: Distribution of the Coverage in the Chicago dataset when considering
values of N ∈ {3, 5, 7, 9, ..., 49} for the Top-N most similar geotagged tweets.

of coverage. In particular, WMV@Top-9 achieves better average error distance

while maintaining higher coverage than the best MV model (MV@Top-9).

This observation suggests that, in some cases, the majority voting alone does

not return predictions if any location within the Top-N geotagged tweets does not

accumulate the critic number of votes. Therefore, by pondering the importance

of the votes, the weighted majority voting is capable of discriminate a location

and �nd a �ne-grained prediction for such cases.

4.5.3 Comparing Behaviour Across Datasets

In this section, we explore the similarities and di�erences in behaviour of our ap-

proach across both datasets, Chicago and New York. In particular, our approach

exhibit two main patterns in both datasets.

First, as the number of values of N for the Top-N tweets increases, we observe

that the average error distance (AED) decreases, accuracy at 1 km (Acc@1km)

increases, and coverage (Coverage) decreases. Additionally, in Tables 4.1 and 4.2

we observe that, when considering the WMV@Top-9 and α = 0.0, our approach

is capable reducing AED and increasing Acc@1km while increasing the coverage

with respect to the best baseline (MV@Top-9). Second, we identi�ed in both
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datasets the pattern regarding the weighting of the votes, discussed in Section

4.5.2. As values of α for the weighting function (See Equation 4.4) are closer

to 0.0, we observe a decrease in AED, and increase in Acc@1km and a drop in

Coverage. On the other hand, we notice that, overall, we achieve higher coverage

and lower average error distance in the Chicago dataset compared to the New

York dataset. This variation can be explained by the di�erence in size between

datasets, reported in Section 3.3.1. Due to this, the ratio of tweets that our

approach is capable of �nding a prediction is lower in the New York dataset than

the Chicago dataset and, therefore, we obtain lower coverage and average error

distance.

Despite their geographical and cultural di�erences, our approach performs

similarly across the two cities investigated in our experiments, Chicago and New

York. Moreover, our approach is data-driven and does not require speci�c infor-

mation of the city to perform, such as location or place names. Therefore, the

consistency of behaviour observed in our two used datasets (Chicago and New

York) appear to support the generalisation of our approach and suggests that our

approach can be generalised and adapted to di�erent cities.

4.6 Chapter Summary

In Chapter 3 we demonstrated that �ne-grained geolocalisation could be achieved

by representing candidate locations as individual tweets. However, the average

error distance of the predictions returned by such approach is still not su�cient

to reliably enable tasks that require �ne-grained geolocated data, such as tra�c

incident detection � the best average error distance is 4.693 km (Chicago) which

represents a con�dence area of 69.19 km2, whereas we aimed to reduce the average

error to 1 km which represents a con�dence area of 3.14 km2. To achieve that,

we proposed a new approach to reduce the average error distance returned by the

geolocalisation method.

In this chapter, we hypothesised that in some cases the similarity of the tweets

does not always correlate with their geographical distance. Therefore, there may

not be su�cient evidence to return a �ne-grained prediction in such cases. These

cases are being considered by approaches derived in Chapter 3 as they always
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return the location of the most similar geotagged tweet (Top-1). We believe that

by identifying such cases, we can increase the quality of the predictions at a �ne-

grained level. Additionally, based on this assumption we developed a theoretical

framework illustrated in Figure 4.1, which presents the correlation between the

content similarity and the geographical distance of a tweet to other geotagged

tweets. Next, we identi�ed the utility areas in Figure 4.2 that we targeted in this

chapter to obtain the most �ne-grained predictions, and concluded that we could

achieve that by exploring evidence of the geographical distance between the Top-

N geotagged tweets, regardless of their content similarity to the non-geotagged

tweet.

To combine evidence from the Top-N geotagged tweets, we proposed to model

�ne-grained geolocalisation as a voting process, where each candidate location is

represented as a set of geotagged tweets. We adopted a majority voting algorithm

to estimate the geographical location by collecting the geolocation votes of the

geotagged tweets in the rank. In the case that the voting process �nds a location

with a majority of the votes, it is indicative of low geographical distance, and we

consider that there is su�cient evidence for a �ne-grained prediction.

We contextualised the work in this chapter into two research questions, intro-

duced in Section 4.1.1. In order to address them, we experimented with a set of

geotagged tweets collected from Chicago and New York, using the experimental

settings utilised in Chapter 3 (Section 3.3). Results were presented in Tables 4.1

and 4.2. Firstly, our experimental results showed that our weighted majority vot-

ing is capable of increasing the performance regarding accuracy (Acc@1km) and

average error distance (AED), in both cities, across all the investigated values of

N for the Top-N tweets. We identi�ed that the best performing con�guration in

terms of accuracy and error distance is obtained using the Top-9 tweets in the

ranking and a value of α = 0.0. This observation addressed research question

RQ-4.1.

Moreover, we observed that as the number of voting candidates (i.e., Top-

N) increases, our approach achieved lower error distance, higher accuracy but

lower coverage. We identi�ed that the best performing con�guration in terms

of coverage is obtained using the Top-3 tweets in the ranking and a value of

α = 1.0. Therefore, we observed that the goal of maximising coverage con�icts
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with reducing the average error distance. These results addressed the research

question (RQ-4.2).

Finally, we analysed the e�ect of the weighting in the majority voting al-

gorithm. We weighted the votes of each geotagged tweet in the Top-N using

information about the credibility of the user that posted the tweet (See 4.3.2.1),

and the content similarity to the non-geotagged tweet (See 4.3.2.2). We combined

the weights using Equation 4.4, and controlled the in�uence of the credibility and

the similarity by a parameter α ∈ [0, 1]. We observed that by weighting the

majority voting, we alleviated the decrease of coverage.

So far, our work is generating a ranking list of candidate locations using

retrieval models, being IDF weighting the best performing one. However, the

quality of the Top-N ranked elements can be improved further and thus the

performance of geolocalisation. In Chapter 5 we will explore how to integrate

Learning to Rank techniques into the �ne-grained geolocalisation task to improve

the ranking and, therefore, the performance of the task.
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Chapter 5

Learning to Geolocalise

5.1 Introduction

Previously, in Chapter 3, we introduced a ranking approach for �ne-grained geolo-

calisation and demonstrated that, in contrast to existing works in the literature,

considering geotagged tweets as individual documents lead to better performance,

regardless of the retrieval model utilised for ranking the documents. Also, we ob-

served that document frequency is the most discriminative feature and compared

the performance of di�erent retrieval models. Among the tested models, the IDF

weighting model showed to be the best for geolocalisation (see Section 3.4.1).

Next, in Chapter 4, we explored the geographical evidence encoded within the

Top-N most similar geotagged tweets by adopting a weighted majority voting

algorithm that collects the geolocation votes of the tweets in the ranking. We

achieved an average error distance of 1.602 km, which represents a con�dence

area of 8.06 km2 (See WMV@Top-9, α = 0.0 in Table 3.4). Nevertheless, as

introduced in Chapter 1 (Section 1.2), in this thesis we aim to obtain �ne-grained

predictions with an average error distance of 1 km, which represents a con�dence

area of 3.14 km2.

The approaches explored before in this thesis obtained the Top-N most similar

tweets using a retrieval model which computes the similarity based on document

frequency information (IDF weighting). However, considering only document

frequency to perform the ranking can limit the quality of the Top-N geotagged

tweets. In this chapter, we postulate that by improving the ranking component of

previous approaches will lead to an improvement in the performance of the �ne-

grained geolocalisation. According to Figure 4.2 in Chapter 4, which presents
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the correlation between similarity and geographical distance between tweets, the

set of �ne-grained predictions will fall within the area where high similarity yet

low geographical distance. Thus, we hypothesise that by improving the ranking

of geotagged tweets with respect to a given non-geotagged tweet, we can obtain

more similar and geographically closer geotagged tweets, and thus we can obtain

a higher number of other �ne-grained predictions (see Hypothesis 3 in Section

1.2).

In order to improve the ranking, instead of only considering document fre-

quency information, we aim to combine multiple indicators from the tweets to

learn a new ranking function. As introduced in Chapter 2 (Section 2.2.3), learn-

ing to rank approaches have the capacity of doing so by using machine learning

techniques in order to learn a more e�ective ranking function. Learning to rank

approaches have demonstrated to bene�t e�ectiveness in several retrieval tasks

using web documents or large text documents (Liu et al., 2009). Also, previous re-

search has demonstrated improvements in retrieval tasks using short documents,

such as Twitter posts (Cheng et al., 2012). Therefore, in this thesis, we adopt a

learning to rank approach to rank geotagged tweets for �ne-grained geolocalisa-

tion.

Our approach learns from the characteristics of pairs of geotagged tweets

posted within the same �ne-grained area (i.e., squared areas of length size 1 km),

and re-ranks geotagged tweets based on their geographical proximity. We propose

multiple types of features for geolocalisation and evaluate our proposed approach

using a ground truth of geotagged tweets gathered from two di�erent cities. Ad-

ditionally, we investigate the best type of features for �ne-grained geolocalisation.

We focus the work in this chapter towards addressing two research questions:

• RQ-5.1: What is the best performing learning to rank algorithm to improve

the ranking?

• RQ-5.2: Does improving the ranking of the geotagged tweets lead to better
�ne-grained geolocalisation?

• RQ-5.3: What set of features contributes the most to improve the accuracy

of �ne-grained geolocalisation?
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The remainder of the chapter is organised as follows. Section 5.2 introduces

our learning to rank approach for �ne-grained geolocalisation of tweets. Sec-

tion 5.3 describes our experimental setup and the evaluation of our proposed

approach. Section 5.4 presents and discusses our results. Lastly, we provide

concluding remarks in Section 5.5.

5.2 Learning to Geolocalise

As introduced in Section 5.1, we aim to use a learning to rank approach to

improving the ranking of the Top-N most content-based similar geotagged tweets

(denoted as a doc-tweet) to a given non-geotagged tweet (denoted as a query-

tweet), and thus improve the e�ectiveness of �ne-grained geolocalisation. To

this end, we aim to learn a ranking function to re-rank doc-tweets based on their

geographical proximity to the query-tweet. We experiment with di�erent learning

to rank algorithms in Section 5.3.2. Also, we propose a set of features to learn

our function. We extract these features from pairs of geotagged tweets posted

within the same �ne-grained area (i.e., 1 km squared area).

Our proposed approach consists of two main components. First, we use our

learned ranking function to re-rank doc-tweets based on their probability of being

posted in the same area as the query-tweet. Finally, we feed the Top-N doc-

tweets into a majority voting algorithm (as described in Section 4.3.1) to select

the predicted location - a squared area of size 1km - within the Top-N doc-tweets.

Next, in Section 5.3.2, we describe in detail our proposed features for features.

5.2.1 Feature Set For Fine-Grained Tweet Geolocalisation

For each pair of geotagged tweets, we extract a set of features to model �ne-

grained geolocalisation. We compute document features extracted from the doc-

tweet, query features extracted from the query-tweet, as well as query-dependent

features to model the relationship between query-tweets and doc-tweets. In total

we extracted 28 features, presented in Table 5.1. We describe and motivate each

feature next.
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Table 5.1: Features extracted for �ne-grained geolocalisation of tweets.

Features Description Total
Query Features and Document Features

Hashtags Number of hashtags in the text. 2

Mentions Number of mentions in the text. 2

Urls Number of urls in the text. 2

Entities Number of entities in the text. 2

Verbs Number of verbs in the text. 2

Adverbs Number of adverbs in the text. 2

Adjectives Number of adjectives in the text. 2

Checkin Whether the tweet is a Foursquare checkin. 2

Hour The hour of the day (0 to 24h) that the tweet was posted. 2

Weekday The day of the week (Monday to Sunday) that the tweet was posted. 2

User Ratio User credibility ratio (See Section 4.3.2.1). 2

Query-dependent Features

Hashtags Shared number of Hashtags. 1

Mentions Shared number of Mentions. 1

User Whether both tweets belong to the same user. 1

Hour Whether both tweets are posted the same hour of the day (0h to 24h). 1

Weekday Whether both tweets are posted same day of the week (Monday to Sunday). 1

IDF Similarity score given by the IDF weighting.

Total Features 28

5.2.1.1 Query Features and Document Features

We extract features from the query-tweet and the doc-tweet independently. We

categorise these features in two groups: content quality and geospeci�c features.

Content Quality Features. The more quality of the content of a tweet is, the

more valuable information it provides. Previous research has shown the usefulness

of content quality features of a tweet for learning to rank (Cheng et al., 2012;

Damak et al., 2013; Duan et al., 2010; Han et al., 2012b). Inspired by these

works, we modelled the quality of a tweet by extracting indicators of the richness

of its text. We extract a total of 8 di�erent features. First, we exploit the

characteristics of the Twitter social network by counting the number of hashtags,

the number of mentions and number of URLs of the tweet. Second, we utilise

natural language techniques to count the number of entities, verbs, adjectives,

nouns and adverbs in the text.

Geospeci�c Features. In addition to previous state-of-the-art features, we

added new features as signals for geolocalisation by extracting geospeci�c infor-

mation contained within the query-tweet and the doc-tweet. We compute a total

81



5. LEARNING TO GEOLOCALISE 5.2 Learning to Geolocalise

of 4 di�erent features. First, we check if the tweet corresponds to a Foursquare1

check-in. Foursquare is a social media network in which users can do check-ins at

venues when they visit them. Users have the option of generating a tweet sharing

this information with their followers along with the geolocation of the venue.

Second, following the weighting majority voting approach introduced in Chap-

ter 3 (Section 3.2), we compute a credibility score for the tweet which represents

the posting activity of the user that generated the tweet. A tweet posted by a user

with a high score is more likely to be indicative of a geolocalisation. The credibil-

ity score is based on the ratio of tweets posted by a user at a �ne-grained distance

(1 km) to other similar tweets (Top-N). We utilise the training and validation set

described in Section 5.3.1 to compute the score.

Finally, di�erent types of events tend to occur at di�erent hours of the day or

days of the week. For instance, people usually visit clubs at nights and weekends.

Thus, if two tweets were posted in the same time frame, their content is likely to

be related to the same type of events that are recurrent in the same location. To

model that, we add the hour of the day (0 to 24 hours) and the day of the week

(Monday to Sunday) as features.

5.2.1.2 Query-Dependent Features.

Query-dependent features aim to model the relationship between the query-tweet

and the doc-tweet. These set of features are presented in Table 5.1. The intuition

behind these features is that when people visit a certain location, they make use

of social media to describe their surroundings or events occurring in the location.

This means that many of the generated tweets will share the same characteristics.

Therefore, the similarities between the two tweets are a strong indicator of their

geolocalisation. Firstly, we model the similarities between the query-tweet and

the doc-tweet by computing their IDF similarity score. Second, we count the

number of common entities, mentions and hashtags, and check if the same user

posted both tweets. Finally, we calculate if the query-tweet and the doc-tweet

were generated in the same hour of the day or on the same day of the week.

1http://www.foursquare.com
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5.3 Experiments

In this section, we describe the experimental setup that supports the evalua-

tion of our proposed learning to rank approach for �ne-grained geolocalisation

tweets. In order to compare results with previous approaches, we utilise the same

experimental settings described previously in Chapter 3:

• We experiment using the two datasets of geotagged tweets described in

Section 3.3.1 (Chicago and New York).

• We preprocess and index each geotagged tweet following Section 3.3.2.

• We report the same metrics described in Section 3.3.6, namely average

error distance (AED), median error distance (MED), accuracy at 1 km

(Acc@1km) and coverage (Coverage).

5.3.1 Creating Training and Testing Sets for Learning to
Rank

In order to evaluate our learning to rank approach, we generate training and a

testing set for each of our datasets (Chicago and New York). First, we divide

the dataset following Section 3.3.1 and create three subsets. The �rst set (named

document set) contains the geotagged tweets from the �rst three weeks of March

2016, resulting in 100,176 geotagged tweets for Chicago and 111,292 for New York.

Second, we randomly divide the last week of March into background-queries set

and test-queries set to ensure the same characteristics. The background-queries

set consists of 16,262 geotagged tweets for Chicago, and 20,982 geotagged tweets

for New York. Finally, the test-queries set contains 16,313 geotagged tweets for

Chicago and 20,870 geotagged tweets for New York. It is important to note that

we preserve the same testing and training/document tweets from Chapter 3 and

Chapter 4 for comparison.

Training and Test: After dividing the datasets, we create our training set and

test sets for learning to rank as follows. First, we perform a retrieval task (using

IDF weighting model) with the geotagged tweets in the background-queries set

as query-tweets and the geotagged tweets in the document set as doc-tweets. We
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use the generated pairs of query-tweet and doc-tweet as a training set to train

our learning to rank approach. Finally, we perform the same task but using the

tweets in the test-queries set as query-tweets to build the test set for evaluating

our learning to rank approach.

Labelling: We label pairs of query-tweet and doc-tweet in the training and test

sets described above. As explained in Section 5.2 we re-rank doc-tweets based on

their geographical proximity to the query-tweet. Therefore, we �rst divide the

geographical space of interest into a grid of �ne-grained squared areas of size 1 km

and associate each geotagged query-tweet and doc-tweet to their corresponding

area based on their longitude/latitude location. Then, pairs of tweets posted in

the same area (i.e. distance 1 km or less) are labelled as positive. On the other

hand, pairs of tweets posted in di�erent areas (i.e. distance more than 1 km) are

labelled as negative.

5.3.2 Models

In total, we implement four version of our learning to rank approaches using four

di�erent subsets of features. As a baseline, we use the best performing ranking

approach (Individual) proposed in Chapter 3, and the majority voting version

(MV ) proposed in Chapter 4.

L2Geo and L2Geo+MV models

We implement our proposed learning to rank approach, described in Section 5.2.

We experiment with di�erent learning to rank algorithms as ranking functions for

our approach. We con�gure the ranking functions to re-rank the Top-100 most

similar geotagged tweets obtained by the baseline (IDF weighting), and optimise

NDCG@N with N values of 3, 5, 10, 20, 30, 40 and 50 during the training process.

After the ranking process, we return a predicted location in two ways:

• L2Geo: In this model we return the longitude/latitude of the Top-1 geo-

tagged tweet re-ranked by our learning to rank algorithm as the predicted

location, following the approach in Chapter 3.
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• L2Geo+MV: In this model, we feed the Top-N most similar geotagged

tweets into the majority voting algorithm described in Section 4.3.1.

Additionally, in order to assess the best set of features for �ne-grained geolo-

calisation, we built nine di�erent versions of our approaches that use di�erent

combinations of the features described in Section 5.2.1, denoted by:

• All: This model incorporates all the features.

• Common: This model uses only the set of query-dependent features.

• Query: This model incorporates features extracted only from the query-

tweet.

• Doc: This model incorporates features extracted only from the doc-tweet.

• Query_Doc: This model combines features extracted from the query-

tweet and the doc-tweet.

• Query_Common: This model uses the query-dependent features along

with features extracted from the query-tweet.

• Doc_Common: This model uses the query-dependent features along with
features extracted from the doc-tweet.

• Query_Content: This model utilises the set of content quality features

extracted only from the query-tweet.

• Doc_Content: This model utilises the set of content quality features

extracted only from the doc-tweet.

• Query_Geo: This model uses the set of geospeci�c features extracted

only from the query-tweet.

• Doc_Geo: This model uses the set of geospeci�c features extracted only

from the doc-tweet.
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5.4 Experimental Results

In this section, we present results �ne-grained geolocalisation as follows. First, we

evaluate the e�ectiveness of di�erent learning to rank algorithms in Subsection

5.4.1, and assess if the learning to rank approach is improving the ranking of geo-

tagged tweets at the Top-N positions compared to the baseline (IDF weighting).

Tables 5.2 (Chicago dataset) and 5.3 (New York dataset) compares the perfor-

mance of the ranking generated by di�erent learning to rank algorithms. We com-

pare the ranking performance against the baseline (IDF). We train the learning

to rank algorithms to optimise NDCG@3, @5, @10, @20, @30, @40 and @50. Fi-

nally, for each algorithm, we report NDCG@1, @3, @5 and @10. This results aim

to address research question RQ-5.1. Additionally, we conduct a Randomised

permutation test to asses statistical di�erences (p ≤ 0.01). In particular, we use:

• � results that are signi�cantly better than the baseline (IDF weighting),

• � to denote measures that are signi�cantly worse than the baseline, and

• = to denote no statistical di�erences.

Second, we evaluate whether improving the ranking leads to an increase in

performance of the �ne-grained geolocalisation. First, in Section 5.4.2, we use

the L2Geo model, described in Section 5.3.2, which returns always the Top-1

geotagged tweets as the predicted location. Moreover, we evaluate the quality

the geographical evidence encoded within the Top-N geotagged tweets obtained

by our learning to rank approach by applying the majority voting algorithm

(L2Geo+MV ). We report these results using the best performing learning to

rank algorithm from Section 5.4.1.

Tables 5.4 (Chicago dataset) and 5.5 (New York dataset) present the results

on �ne-grained geolocalisation for our learning to rank models using a ranking

approach returning the Top-1 geotagged tweets a the predicted location (L2Geo).

We compare this model against the best performing approach explored in Chap-

ter 3 (Individual). Moreover, Tables 5.6 and 5.7 present the performance of our

learning to rank models with the majority voting algorithm applied on the Top-

N most similar geotagged tweets (L2Geo+MV). In each of the tables mentioned
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above, we report the metrics described in Section 3.3.6, namely; average error dis-

tance (AED), median error distance (MED), accuracy (Acc@1km), and coverage

(Coverage). Due to the di�erences in Coverage obtained by di�erent con�gura-

tions of L2Geo+MV models, the models return a prediction for di�erent subsets

of the tweets in the test set. For this reason, we do not compare (statistically)

these results against our baselines. Finally, for each measure, we denote in bold

the best performing approach. This set o results aim to address research question

RQ-5.2, introduced in Section 5.1. Finally, we discuss the e�ects of the di�erent

types of features proposed in Section 5.2.1, which aims to answer the research

question RQ-5.3. Now we describe the presentation of the tables before the

analysis of the results.

The remainder of this section is as follows. In Section 5.4.1 we address RQ-

5.1 and compare di�erent learning to rank algorithms. Next, in Section 5.4.2 we

address RQ-5.2 and discuss the improvement of the ranking using learning to

rank and the impact on the e�ectiveness of �ne-grained geolocalisation. Section

5.4.2.1 analyses results when applying the majority voting algorithm to consider

geographical evidence within the Top-N most similar geotagged tweets. More-

over, we address RQ-5.3 and discuss the best type of features for �ne-grained

geolocalisation. Finally, we provide concluding remarks in Section 5.5.

5.4.1 Performance of Learning to Rank Algorithms

We �rst compare the ranking performance of state-of-the-art learning to rank

algorithms in order to whether we can improve the ranking of geotagged tweets

compared to the baseline (IDF weighting). We use the L2Geo model which incor-

porates all the features All, described in Section 5.2.1. As introduced in Section

2.2.3, learning to rank algorithms can be categorised in three groups: point-wise,

pair-wise and list-wise approaches. In total, we compare the performance of six

di�erent algorithms representing the three mentioned groups, namely:

• Point-wise: MART (Friedman, 2001) and Random Forests (Breiman,

2001).

• Pair-wise: RankNet (Burges et al., 2005).
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• List-wise: AdaRank (Xu and Li, 2007) and ListNet (Cao et al., 2007).

• Pair-wise/List-wise: LambdaMART (Wu et al., 2010) 1.

Tables 5.2 and 5.3 shows the performance for the Chicago and New York

datasets respectively. First, we do not observe di�erent behaviour when using

point-wise, pair-wise or list-wise algorithms. However, we observe that Lamb-

daMART shows the best performance overall, and signi�cant (statistical) improve

the baseline IDF. These results suggest that the LambdaMART algorithm is the

most suitable algorithm to improve the ranking, which answers RQ-5.1.

Also, we identify the best performance is obtained at the Top-1 geotagged

tweet (NDCG@1), but this performance decreases as more tweets of the Top-N

are considered (up to NDCG@10). On the other hand, for training the Lamb-

daMART algorithm, we identify that the best optimisation metric is NDCG@10

for the Chicago dataset and NDCG@30 for the New York dataset.

In this section, we demonstrate that our learning to rank approach can im-

prove the ranking over the baseline (IDF weighting). Next, we aim to asses

whether this improvement leads to better performance in �ne-grained geolocali-

sation. In the next section, we only report experimental results on �ne-grained

geolocalisation using the best performing con�gurations for each dataset. These

con�gurations are:

• LambdaMART optimising NCDG@10 for Chicago, and

• LambdaMART optimising NDCG@30 for New York.

5.4.2 E�ectiveness on Fine-Grained Geolocalisation

In order to assess the e�ectiveness on �ne-grained geolocalisation, we �rst perform

predictions returning always the Top-1 most similar geotagged tweets (L2Geo),

following the approach in Chapter 3. We compare the performance against the

best ranking approach in Chapter 3, Individual. The results are presented in

Tables 5.4 and 5.5 for the Chicago and New York dataset respectively.

1According to Wu et al. (2010), LambdaMART is both pair-wise and list-wise
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Table 5.2: Ranking performance for the Chicago dataset. The table presents
NDCG@1, @3, @5 and @10 for the learning to rank algorithms and the baseline
(IDF weighting). We run our experiment using all the features (All). A random-
ized permutation test was conducted to show signi�cant di�erences with respect
to the baseline (IDF), denoted by � (p<0.01) for better performance, � for
worse performance and = for no statistical di�erence.

NDCG
Ranking Optimisation @1 @3 @5 @10
IDF N/A 0.5513 0.5261 0.5136 0.5010

Mart NDCG@3 0.5787� 0.5631� 0.553� 0.5424�

Mart NDCG@5 0.5787� 0.5631� 0.553� 0.5424�

Mart NDCG@10 0.5787� 0.5631� 0.553� 0.5424�

Mart NDCG@20 0.5787� 0.5631� 0.553� 0.5424�

Mart NDCG@30 0.5787� 0.5631� 0.553� 0.5424�

Mart NDCG@40 0.5787� 0.5631� 0.553� 0.5424�

Mart NDCG@50 0.5787� 0.5631� 0.553� 0.5424�

Randomforest NDCG@3 0.5469� 0.5338� 0.5259� 0.5176�

Randomforest NDCG@5 0.5453� 0.5323� 0.5244� 0.5164�

Randomforest NDCG@10 0.5408� 0.5307� 0.5231� 0.5151�

Randomforest NDCG@20 0.5438� 0.5312� 0.5235� 0.516�

Randomforest NDCG@30 0.544� 0.532� 0.5247� 0.5168�

Randomforest NDCG@40 0.5442� 0.5318� 0.5243� 0.5163�

Randomforest NDCG@50 0.5431� 0.5328� 0.5247� 0.5169�

Ranknet NDCG@3 0.5521� 0.5261� 0.5131� 0.5001�

Ranknet NDCG@5 0.5521� 0.5261� 0.5131� 0.5001�

Ranknet NDCG@10 0.5521� 0.5263� 0.5132� 0.5003�

Ranknet NDCG@20 0.552� 0.5261� 0.5131� 0.5002�

Ranknet NDCG@30 0.5521� 0.5262� 0.5131� 0.5002�

Ranknet NDCG@40 0.5521� 0.5261� 0.5131� 0.5001�

Ranknet NDCG@50 0.552� 0.5261� 0.5131� 0.5002�

Lambda NDCG@3 0.6272� 0.6026� 0.589� 0.5732�

Lambda NDCG@5 0.6274� 0.6039� 0.5908� 0.5749�

Lambda NDCG@10 0.6273� 0.6045� 0.5915� 0.5757�

Lambda NDCG@20 0.6268� 0.6037� 0.5906� 0.5756�

Lambda NDCG@30 0.6268� 0.6046� 0.5906� 0.5754�

Lambda NDCG@40 0.6274� 0.6039� 0.5904� 0.5755�

Lambda NDCG@50 0.6263� 0.6050� 0.5913� 0.5755�

Adarank NDCG@3 0.5851� 0.5616� 0.5499� 0.5371�

Adarank NDCG@5 0.5928� 0.5686� 0.5554� 0.5423�

Adarank NDCG@10 0.587� 0.5642� 0.5527� 0.5395�

Adarank NDCG@20 0.5864� 0.5635� 0.5519� 0.5389�

Adarank NDCG@30 0.5865� 0.5635� 0.5518� 0.5389�

Adarank NDCG@40 0.5865� 0.5635� 0.5518� 0.5389�

Adarank NDCG@50 0.5865� 0.5635� 0.5518� 0.5389�

Listnet NDCG@3 0.5525� 0.5274� 0.5142� 0.5020�

Listnet NDCG@5 0.5524� 0.5273� 0.5148� 0.5019�

Listnet NDCG@10 0.5524� 0.5274� 0.5147� 0.5019�

Listnet NDCG@20 0.5527� 0.5273� 0.5148� 0.5017�

Listnet NDCG@30 0.5783� 0.5595� 0.5146� 0.5376�

Listnet NDCG@40 0.5525� 0.5274� 0.5148� 0.502�

Listnet NDCG@50 0.5524� 0.5273� 0.5148� 0.5019�
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Table 5.3: Ranking performance for the New York dataset. The table presents
NDCG@1, @3, @5 and @10 for the learning to rank algorithms and the baseline
(IDF weighting). We run our experiment using all the features (All). A random-
ized permutation test was conducted to show signi�cant di�erences with respect
to the baseline (IDF), denoted by � (p<0.01) for better performance, � for
worse performance and = for no statistical di�erence.

NDCG
Ranking Optimisation @1 @3 @5 @10
IDF N/A 0.4798 0.4613 0.4520 0.4458

Mart NDCG@3 0.4935� 0.4763� 0.4704� 0.4656�

Mart NDCG@5 0.4935� 0.4763� 0.4704� 0.4656�

Mart NDCG@10 0.4935� 0.4763� 0.4704� 0.4656�

Mart NDCG@20 0.4935� 0.4763� 0.4704� 0.4656�

Mart NDCG@30 0.4935� 0.4763� 0.4704� 0.4656�

Mart NDCG@40 0.4935� 0.4763� 0.4704� 0.4656�

Mart NDCG@50 0.4935� 0.4763� 0.4704� 0.4656�

Randomforest NDCG@3 0.4665� 0.4514� 0.4461� 0.4428�

Randomforest NDCG@5 0.4676� 0.4527� 0.4475� 0.444�

Randomforest NDCG@10 0.4649� 0.4505� 0.4456� 0.4424�

Randomforest NDCG@20 0.4667� 0.4521� 0.4471� 0.4433�

Randomforest NDCG@30 0.4655� 0.4512� 0.446� 0.4428�

Randomforest NDCG@40 0.466� 0.452� 0.4466� 0.4432�

Randomforest NDCG@50 0.4659� 0.4515� 0.4465� 0.4433�

Ranknet NDCG@3 0.4821� 0.4628� 0.4533� 0.4469�

Ranknet NDCG@5 0.4821� 0.4628� 0.4533� 0.4469�

Ranknet NDCG@10 0.4821� 0.4628� 0.4533� 0.4469�

Ranknet NDCG@20 0.4821� 0.4628� 0.4533� 0.4469�

Ranknet NDCG@30 0.4821� 0.4628� 0.4533� 0.4469�

Ranknet NDCG@40 0.4821� 0.4628� 0.4533� 0.4469�

Ranknet NDCG@50 0.4821� 0.4628� 0.4533� 0.4469�

Lambda NDCG@3 0.5424� 0.5216� 0.5100� 0.4997�

Lambda NDCG@5 0.5450� 0.5242� 0.5129� 0.5026�

Lambda NDCG@10 0.5461� 0.5265� 0.5151� 0.5053�

Lambda NDCG@20 0.5474� 0.5267� 0.5160� 0.5063�

Lambda NDCG@30 0.5478� 0.5274� 0.5164� 0.5068�

Lambda NDCG@40 0.5454� 0.5257� 0.5147� 0.5057�

Lambda NDCG@50 0.5469� 0.5266� 0.5157� 0.5058�

Adarank NDCG@3 0.5136� 0.492� 0.4832� 0.4758�

Adarank NDCG@5 0.5114� 0.4888� 0.48� 0.4725�

Adarank NDCG@10 0.5098� 0.487� 0.4784� 0.4714�

Adarank NDCG@20 0.5018� 0.4812� 0.4736� 0.4674�

Adarank NDCG@30 0.5013� 0.4809� 0.4735� 0.4673�

Adarank NDCG@40 0.5016� 0.4811� 0.4736� 0.4675�

Adarank NDCG@50 0.507� 0.4864� 0.4786� 0.4721�

Listnet NDCG@3 0.4824� 0.4641� 0.4549� 0.4487�

Listnet NDCG@5 0.4826� 0.4642� 0.4549� 0.4485�

Listnet NDCG@10 0.4828� 0.4645� 0.4552� 0.4488�

Listnet NDCG@20 0.4827� 0.4645� 0.4553� 0.4489�

Listnet NDCG@30 0.4827� 0.4642� 0.4549� 0.4484�

Listnet NDCG@40 0.5164� 0.4966� 0.4876� 0.4791�

Listnet NDCG@50 0.4827� 0.4646� 0.4553� 0.4489�
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Table 5.4: Fine-grained geolocalisation results for the Chicago dataset considering
only the Top-1. We compare our learning to rank approach (L2Geo) against the
baseline (Individual using IDF). We report average error distance (AED), median
error distance (MED), accuracy at 1 km (Acc@1km) and coverage (Coverage).
We use a paired t-test to assess signi�cant di�erences, denoted by � for better
performance, � for worse performance and = for no statistical di�erence.

Chicago
Model Features AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
Individual IDF 4.694 0.100 54.80% 99.40%

L2Geo All 3.835� 0.514� 62.27%� 99.40%=

L2Geo Common 4.173� 0.519� 60.51%� 99.40%=

L2Geo Query 4.893� 0.594� 54.90%� 99.40%=

L2Geo Doc 6.462� 3.126� 38.77%� 99.40%=

L2Geo Query_Doc 5.562� 1.426� 47.07%� 99.40%=

L2Geo Query_Common 4.157� 0.518� 60.58%� 99.40%=

L2Geo Doc_Common 3.847� 0.516� 62.01%� 99.40%=

L2Geo Geo_Query 4.893� 0.594� 54.90%� 99.40%=

L2Geo Geo_Doc 6.782� 3.609� 36.96%� 99.40%=

L2Geo Content_Query 4.893� 0.594� 54.90%� 99.40%=

L2Geo Content_Doc 6.897� 3.949� 36.05%� 99.40%=

Table 5.5: Fine-grained geolocalisation results for the New York dataset consider-
ing only the Top-1. We compare our learning to rank approach (L2Geo) against
the baseline (Individual using TF-IDF). We report average error distance (AED),
median error distance (MED), accuracy at 1 km (Acc@1km) and coverage (Cov-
erage). We use a paired t-test to assess signi�cant di�erences, denoted by � for
better performance, � for worse performance and = for no statistical di�erence.

New York
Model Features AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
Individual TF-IDF 4.972 1.251 48.46% 99.98%

L2Geo All 4.207� 0.668� 53.58%� 99.98%=

L2Geo Common 4.694� 0.760� 51.74%� 99.98%=

L2Geo Query 5.192� 1.356� 47.09%� 99.98%=

L2Geo Doc 6.287� 3.378� 34.20%� 99.98%=

L2Geo Query_Doc 5.797� 2.603� 38.73%� 99.98%=

L2Geo Query_Common 4.645� 0.727� 52.08%� 99.98%=

L2Geo Doc_Common 4.199� 0.671� 53.19%� 99.98%=

L2Geo Geo_Query 5.192� 1.356� 47.09%� 99.98%=

L2Geo Geo_Doc 6.416� 3.562� 32.77%� 99.98%=

L2Geo Content_Query 5.192� 1.356� 47.09%� 99.98%=

L2Geo Content_Doc 6.986� 4.281� 29.84%� 99.98%=
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We observe that the L2Geo model that incorporates all the features (All)

shows the best performance in terms of average error distance (AED) in the

Chicago dataset, achieving 3.835 km error. Similarly, the model that uses the

Doc_Common features shows to be the second best performing model with 4.157

km. On the other hand, in the New York dataset we observe the same behaviour

but, in this case, the model using Doc_Common features presents better perfor-

mance than the model using All features; 4.199 km and 4.207 km respectively.

Additionally, we also identify signi�cant improvements in every model that in-

corporates query-dependent features (Common, Query_Common and Doc_Com-

mon). On the other hand, features extracted from the query-tweet (Query) shows

better performance than features extracted from the query-doc (Doc).

Regarding the speci�c subsets of query-tweet and doc-tweet features, we ob-

serve that either geospeci�c features Geo and content quality features Content

show better average error distance (AED) when they are considered at query-

tweet level (Geo_Query and Content_Query) than when they are extracted at

doc-tweet level (Geo_Doc and Content_Doc). This is consistent with the pre-

vious observation of the higher impact of query-tweet features over doc-tweet

features. Next, we evaluate the performance when using the majority voting

algorithm for selecting a predicted geolocation (L2Geo+MV ).

5.4.2.1 Applying Majority Voting

In the previous section, we analysed the performance of the learning to rank

approach on �ne-grained geolocalisation when considering only the Top-1 most

similar geotagged tweets. However, as we described in Chapter 4, it is bene�cial

to exploit the correlation between similarity and geographical distance in order

to obtain better �ne-grained predictions. Thus we consider the geographical

evidence encoded within the Top-N geotagged tweets. Now, we apply the majority

voting algorithm described in Chapter 4, Section 4.3.1, on the Top-N geotagged

tweets re-ranked by our learning to rank approach. Results are presented in

Tables 5.6 (Chicago) and 5.7 (New York).

Out �rst observation is that our approach (L2Geo+MV ) is capable of re-

ducing the average error distance (AED) while maintaining coverage (Coverage)

when using query-dependent features (Common). For instance, in the Chicago
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Table 5.6: Fine-grained geolocalisation results for the Chicago dataset using the
majority voting algorithm. We compare our approach (L2Geo+MV) against the
baseline (MV) considering the Top-3, -5, -7 and -9 most similar geotagged tweets.
Table reports average error distance (AED), median error distance (MED), accu-
racy at 1 km (Acc@1km) and coverage (Coverage).

Chicago
Model Features AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
MV@Top-3 N/A 2.484 0.471 76.09% 63.15%

MV@Top-5 N/A 1.907 0.471 81.47% 54.53%

MV@Top-7 N/A 1.702 0.471 83.51% 49.99%

MV@Top-9 N/A 1.639 0.471 84.00% 46.87%

L2Geo+MV@Top-3 All 2.340 0.471 76.91% 72.24%
L2Geo+MV@Top-5 All 1.973 0.471 80.92% 63.81%

L2Geo+MV@Top-7 All 1.910 0.471 81.93% 59.32%

L2Geo+MV@Top-9 All 1.829 0.471 82.13% 55.28%

L2Geo+MV@Top-3 Query 2.484 0.471 76.09% 63.15%

L2Geo+MV@Top-5 Query 1.907 0.471 81.47% 54.53%

L2Geo+MV@Top-7 Query 1.702 0.471 83.51% 49.99%

L2Geo+MV@Top-9 Query 1.639 0.471 84.00% 46.87%

L2Geo+MV@Top-3 Doc 4.691 0.660 55.39% 62.72%

L2Geo+MV@Top-5 Doc 4.088 0.544 61.91% 53.19%

L2Geo+MV@Top-7 Doc 3.724 0.498 65.18% 48.65%

L2Geo+MV@Top-9 Doc 3.515 0.471 67.92% 45.00%

L2Geo+MV@Top-3 Common 2.192 0.471 78.65% 67.50%

L2Geo+MV@Top-5 Common 1.702 0.471 83.56% 58.58%

L2Geo+MV@Top-7 Common 1.519 0.471 85.53% 53.95%

L2Geo+MV@Top-9 Common 1.484 0.471 86.13% 50.21%

L2Geo+MV@Top-3 Query_Doc 3.273 0.489 67.90% 61.95%

L2Geo+MV@Top-5 Query_Doc 2.667 0.471 73.77% 53.14%

L2Geo+MV@Top-7 Query_Doc 2.420 0.471 76.99% 48.86%

L2Geo+MV@Top-9 Query_Doc 2.321 0.471 78.00% 45.88%

L2Geo+MV@Top-3 Query_Common 2.137 0.471 79.30% 67.47%

L2Geo+MV@Top-5 Query_Common 1.657 0.471 84.14% 58.80%

L2Geo+MV@Top-7 Query_Common 1.483 0.471 86.05% 54.08%

L2Geo+MV@Top-9 Query_Common 1.451 0.471 86.38% 50.47%

L2Geo+MV@Top-3 Doc_Common 2.364 0.471 76.50% 72.16%

L2Geo+MV@Top-5 Doc_Common 2.033 0.471 80.30% 63.73%

L2Geo+MV@Top-7 Doc_Common 1.957 0.471 81.41% 59.18%

L2Geo+MV@Top-9 Doc_Common 1.892 0.471 81.70% 55.31%

L2Geo+MV@Top-3 Geo_Query 2.484 0.471 76.09% 63.15%

L2Geo+MV@Top-5 Geo_Query 1.907 0.471 81.47% 54.53%

L2Geo+MV@Top-7 Geo_Query 1.702 0.471 83.51% 49.99%

L2Geo+MV@Top-9 Geo_Query 1.639 0.471 84.00% 46.87%

L2Geo+MV@Top-3 Geo_Doc 4.932 0.857 52.83% 64.05%

L2Geo+MV@Top-5 Geo_Doc 4.366 0.576 58.66% 54.75%

L2Geo+MV@Top-7 Geo_Doc 3.968 0.526 62.25% 49.96%

L2Geo+MV@Top-9 Geo_Doc 3.815 0.498 64.05% 47.52%

L2Geo+MV@Top-3 Content_Query 2.484 0.471 76.09% 63.15%

L2Geo+MV@Top-5 Content_Query 1.907 0.471 81.47% 54.53%

L2Geo+MV@Top-7 Content_Query 1.702 0.471 83.51% 49.99%

L2Geo+MV@Top-9 Content_Query 1.639 0.471 84.00% 46.87%

L2Geo+MV@Top-3 Content_Doc 4.089 0.529 60.56% 50.88%

L2Geo+MV@Top-5 Content_Doc 3.354 0.471 68.26% 42.81%

L2Geo+MV@Top-7 Content_Doc 3.064 0.471 72.09% 38.91%

L2Geo+MV@Top-9 Content_Doc 2.840 0.471 73.17% 36.57%
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Table 5.7: Fine-grained geolocalisation results for the New York dataset using the
majority voting algorithm. We compare our approach (L2Geo+MV) against the
baseline (MV) considering the Top-3, -5, -7 and -9 most similar geotagged tweets.
Table reports average error distance (AED), median error distance (MED), accu-
racy at 1 km (Acc@1km) and coverage (Coverage).

New York
Model Con�g AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
MV@Top-3 N/A 2.522 0.461 72.76% 55.31%

MV@Top-5 N/A 1.878 0.428 79.85% 46.20%

MV@Top-7 N/A 1.610 0.412 82.52% 41.67%

MV@Top-9 N/A 1.448 0.405 84.00% 38.70%

L2Geo+MV@Top-3 All 2.402 0.457 73.06% 64.17%
L2Geo+MV@Top-5 All 1.925 0.434 78.05% 54.79%

L2Geo+MV@Top-7 All 1.740 0.418 80.12% 49.74%

L2Geo+MV@Top-9 All 1.571 0.412 81.55% 46.30%

L2Geo+MV@Top-3 Query 2.522 0.461 72.76% 55.31%

L2Geo+MV@Top-5 Query 1.878 0.428 79.85% 46.20%

L2Geo+MV@Top-7 Query 1.610 0.412 82.52% 41.67%

L2Geo+MV@Top-9 Query 1.448 0.405 84.00% 38.70%

L2Geo+MV@Top-3 Doc 4.019 0.668 55.54% 52.30%

L2Geo+MV@Top-5 Doc 3.250 0.496 63.89% 43.05%

L2Geo+MV@Top-7 Doc 2.881 0.463 68.04% 38.94%

L2Geo+MV@Top-9 Doc 2.610 0.441 70.86% 36.56%

L2Geo+MV@Top-3 Common 2.305 0.446 75.22% 59.21%

L2Geo+MV@Top-5 Common 1.656 0.416 81.64% 49.55%

L2Geo+MV@Top-7 Common 1.495 0.412 83.50% 45.02%

L2Geo+MV@Top-9 Common 1.336 0.404 84.98% 41.60%

L2Geo+MV@Top-3 Query_Doc 3.222 0.506 63.91% 52.61%

L2Geo+MV@Top-5 Query_Doc 2.595 0.457 70.90% 43.64%

L2Geo+MV@Top-7 Query_Doc 2.256 0.434 74.60% 39.49%

L2Geo+MV@Top-9 Query_Doc 2.146 0.420 76.25% 37.20%

L2Geo+MV@Top-3 Query_Common 2.294 0.450 75.09% 59.48%

L2Geo+MV@Top-5 Query_Common 1.688 0.420 81.27% 50.02%

L2Geo+MV@Top-7 Query_Common 1.488 0.412 83.35% 45.25%

L2Geo+MV@Top-9 Query_Common 1.319 0.406 84.93% 41.85%

L2Geo+MV@Top-3 Doc_Common 2.358 0.456 73.53% 63.35%

L2Geo+MV@Top-5 Doc_Common 1.858 0.429 78.84% 53.86%

L2Geo+MV@Top-7 Doc_Common 1.674 0.414 80.87% 48.92%

L2Geo+MV@Top-9 Doc_Common 1.510 0.412 82.35% 45.27%

L2Geo+MV@Top-3 Geo_Query 2.522 0.461 72.76% 55.31%

L2Geo+MV@Top-5 Geo_Query 1.878 0.428 79.85% 46.20%

L2Geo+MV@Top-7 Geo_Query 1.610 0.412 82.52% 41.67%

L2Geo+MV@Top-9 Geo_Query 1.448 0.405 84.00% 38.70%

L2Geo+MV@Top-3 Geo_Doc 4.257 0.675 53.75% 52.87%

L2Geo+MV@Top-5 Geo_Doc 3.517 0.524 61.29% 43.33%

L2Geo+MV@Top-7 Geo_Doc 3.105 0.479 65.12% 38.96%

L2Geo+MV@Top-9 Geo_Doc 2.847 0.465 67.65% 36.78%

L2Geo+MV@Top-3 Content_Query 2.522 0.461 72.76% 55.31%

L2Geo+MV@Top-5 Content_Query 1.878 0.428 79.85% 46.20%

L2Geo+MV@Top-7 Content_Query 1.610 0.412 82.52% 41.67%

L2Geo+MV@Top-9 Content_Query 1.448 0.405 84.00% 38.70%

L2Geo+MV@Top-3 Content_Doc 3.785 0.568 58.76% 43.96%

L2Geo+MV@Top-5 Content_Doc 2.783 0.457 69.25% 34.24%

L2Geo+MV@Top-7 Content_Doc 2.369 0.430 73.79% 31.22%

L2Geo+MV@Top-9 Content_Doc 2.117 0.412 76.54% 29.31%
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dataset, when considering the Top-9 geotagged tweets, the average error dis-

tance is reduced from 1.639 km (MV@Top-9) to 1.484 km (L2Geo+MV@Top-9

using Common), and coverage is improved from 46.87% to 50.21%. Furthermore,

adding the query-tweet features to the query-dependent features (Query_Com-

mon) improve performance further. The average error distance (AED) is reduced

from 1.484 km to 1.452 km, and coverage is increased from 50.21% to 50.47%. In-

terestingly, when considering all the features (L2Geo using All) we achieve better

performance in terms of average error distance (AED) when using the Top-1 (see

Tables 5.4 and 5.5), but the average error distance (AED) is not reduced when

applying the majority voting on any of the Top-N geotagged tweets.

Table 5.8: Best performing models in terms of average error distance (AED) over
values of N ∈ {3, 5, 7, 9, 11, ..., 49} for the Top-N in the Chicago dataset.

Best Performing Models (Chicago)
Model Features AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
MV@Top-35 N/A 1.490 0.471 86.32% 31.88%

L2Geo+MV@Top-13 All 1.758 0.471 83.03% 50.39%

L2Geo+MV@Top-35 Query 1.490 0.471 86.32% 31.88%

L2Geo+MV@Top-47 Doc 2.285 0.471 80.48% 30.37%

L2Geo+MV@Top-21 Common 1.465 0.471 86.48% 40.16%

L2Geo+MV@Top-25 Query_Doc 1.955 0.471 82.02% 36.76%

L2Geo+MV@Top-13 Query_Common 1.441 0.471 86.53% 46.01%

L2Geo+MV@Top-13 Doc_Common 1.826 0.471 82.64% 50.40%
L2Geo+MV@Top-35 Geo_Query 1.490 0.471 86.32% 31.88%

L2Geo+MV@Top-49 Geo_Doc 2.175 0.471 80.30% 30.43%

L2Geo+MV@Top-35 Content_Query 1.490 0.471 86.32% 31.88%

L2Geo+MV@Top-49 Content_Doc 1.907 0.471 82.47% 26.53%

Regarding the best performing models, we present in Tables 5.8 (Chicago) and

5.9 (New York) the best performing con�gurations for our L2Geo+MV models

against the baseline (MV), across values of N ∈ {3, 5, 7, 9, 11, ..., 49}, for the

Top-N for the Chicago and New York datasets respectively. Consistently with

previous observations, Query_Common features exhibit the best performance in

terms of average error distance (AED) when using the Top-13 geotagged tweets in

Chicago and the Top-41 in New York. In both datasets, using Query_Common

features, our learning to rank approach is capable of reducing the average error

distance (AED) while increasing coverage, compared to the baseline (MV). This

suggests that by improving the ranking using our approach, we can increase the
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Table 5.9: Best performing models in terms of average error distance (AED) over
values of N ∈ {3, 5, 7, 9, 11, ..., 49} for the Top-N in the New York dataset.

Best Performing Models (New York)
Model Features AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
MV@Top-47 N/A 1.121 0.386 87.57% 23.97%

L2Geo+MV@Top-29 All 1.269 0.393 84.75% 33.41%
L2Geo+MV@Top-47 Query 1.121 0.386 87.57% 23.97%

L2Geo+MV@Top-49 Doc 1.613 0.391 81.85% 25.59%

L2Geo+MV@Top-47 Common 1.081 0.381 88.40% 25.33%

L2Geo+MV@Top-49 Query_Doc 1.515 0.392 82.41% 25.97%

L2Geo+MV@Top-41 Query_Common 1.080 0.381 88.42% 26.63%

L2Geo+MV@Top-29 Doc_Common 1.276 0.393 85.23% 33.02%

L2Geo+MV@Top-47 Geo_Query 1.121 0.386 87.57% 23.97%

L2Geo+MV@Top-49 Geo_Doc 1.696 0.392 81.08% 25.63%

L2Geo+MV@Top-47 Content_Query 1.121 0.386 87.57% 23.97%

L2Geo+MV@Top-49 Content_Doc 1.497 0.388 83.26% 22.78%

number of �ne-grained predictions, which supports the main hypothesis of this

chapter introduced in Section 5.1.

Furthermore, we observe in Tables 5.8 (Chicago) and 5.9 (New York) that, in

terms of median error distance (MED), the best performance is given by all the

models with 0.471 km in the Chicago dataset. Likewise, in the New York dataset

almost all the models achieve similar performance. Speci�cally, the median error

distance (MED) ranges between 0.381 km to 0.393 km. This behaviour can be

explained by the shape of the distribution of the error distance, which is skewed

towards the lowest error distances (i.e., less than 1 km). For example, this can

be noticed in Figure 5.1 which shows the error distance distributions of the best

performing model (L2Geo+MV@Top-13 model using Query_Common) and the

baseline (MV@Top-35).

In both distributions, most of the predictions fall within 0 km and 1 km er-

ror distance. However our learning to rank approach (L2Geo+MV@Top-13 using

Query_Common) is capable of predicting a higher number of �ne-grained predic-

tions (1 km or less) than the baseline (MV@Top-35) for the Chicago dataset. This

is re�ected in the trade-o� in performance between accuracy at 1 km (Acc@1km)

and coverage. For example, in the Chicago dataset, the L2Geo+MV@Top-13 us-

ing Query_Common model obtains 86.53% of accuracy and coverage of 46.01%,

whereas the baseline (MV@Top-35) achieves 86.32% but with lower coverage of
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Figure 5.1: Distribution of average error distance (AED) for the Chicago
dataset. The �gure presents the distribution of our best performing learning
to rank approach (L2Geo+MV@Top-13 using Query_Common) and the baseline
(MV@Top-47).

31.88%.

Additionally, in order to see the best performing con�guration we present the

performance of the models when considering the Top-N most similar geotagged

tweets with values of N ∈ {3, 5, 7, 9, 11, ..., 49}. We show the performance in

terms of average error distance (AED) and coverage (Coverage) respectively for

the Chicago dataset in Figures 5.2 and 5.3, and the New York dataset in Figures

5.4 and 5.5. Analysing such �gures, we identify that L2Geo using Common and

Query_Common outperforms every model (including the baseline, IDF weight-

ing) in average error distance while maintaining a better trade-o� with respect

to coverage than other models.

The set of results discussed above address research question RQ-5.2 and

supports the central hypothesis of this chapter, which states that by improving

the ranking we can also improve the performance of �ne-grained geolocalisation.

Now, we investigate the most useful features for �ne-grained geolocalisation using

our learning to rank approach.
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Figure 5.2: (Chicago Dataset) Distribution of average error distance (AED) over
the values of N ∈ {3, 5, 7, 9, 11, ..., 49} for the Top-N geotagged tweets considered
by the majority voting algorithm. Bold line represents the best performing model
(L2Geo using Query_Common)

Figure 5.3: (Chicago Dataset) Distribution of coverage (Coverage) over the val-
ues of N ∈ {3, 5, 7, 9, 11, ..., 49} for the Top-N geotagged tweets considered by
the majority voting algorithm. Bold line represents the best performing model
(L2Geo using Query_Common)
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Figure 5.4: (New York Dataset) Distribution of average error distance (AED) over
the values of N ∈ {3, 5, 7, 9, 11, ..., 49} for the Top-N geotagged tweets considered
by the majority voting algorithm. Bold line represents the best performing model
(L2Geo using Query_Common)

Figure 5.5: (New York Dataset) Distribution of coverage (Coverage) over the
values of N ∈ {3, 5, 7, 9, 11, ..., 49} for the Top-N geotagged tweets considered by
the majority voting algorithm. Bold line represents the best performing model
(L2Geo using Query_Common)
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5.4.2.2 Best Features for Fine-Grained Geolocalisation

In this section, we address research question RQ-5.3. First, we identify the best

performing subset of features. Next, we study the individual impact of each of

the features belonging to that subset.

Analysing Tables 5.8 and 5.9 for the Chicago and New York datasets respec-

tively, we conclude that the query-dependent features (Common), described in

Section 5.2.1.2, are the most impactful. We observe that all the models that incor-

porate Common features show improvements over the baseline (IDF ), and out-

performs other models that use any other subset of features. Besides, we observe

this behaviour in all the models that combines Common features; Query_Com-

mon, Doc_Common and All, being Query_Common features the best performing

one. On the other hand, features extracted from the query-tweet (Query) shows

better performance than features extracted from the the doc-tweet Doc, which

exhibit the worst performance overall.

Note that Query and Doc features are extracted at document and query level

alone. However, Common features models the relationship between the query

and the document. This suggests that the information shared between tweets is

the best indicator for �ne-grained geolocalisation, which means that high related

tweets are posted within the same �ne-grained area.

Table 5.10: Best performing models in terms of average error distance (AED)
over values of N ∈ {3, 5, 7, 9, 11, ..., 49} for the Top-N in the Chicago dataset. We
train single-feature model for each of the features belonging to the Common set,
described in Section 5.3.2, to study their predictive power.

Best Performing Models (Chicago)
Model Features AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
MV@Top-35 N/A 1.490 0.471 86.32% 31.88%

L2Geo+MV@Top-35 Common_Hashtags 1.535 0.471 85.61% 31.59%

L2Geo+MV@Top-23 Common_Hour 1.399 0.471 87.23% 34.69%

L2Geo+MV@Top-35 Common_Mentions 1.486 0.471 86.40% 32.02%

L2Geo+MV@Top-35 Common_Score 1.517 0.471 85.96% 31.99%

L2Geo+MV@Top-21 Common_User 1.475 0.471 86.67% 39.17%
L2Geo+MV@Top-35 Common_Weekday 1.350 0.471 87.23% 30.55%

To study the individual predictive power of the Common features, for each

of the features we train a single-feature model and evaluate its performance on

�ne-grained geolocalisation. Tables 5.10 and 5.11 present results for the best
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Table 5.11: Best performing models in terms of average error distance (AED)
over values of N ∈ {3, 5, 7, 9, 11, ..., 49} for the Top-N in the New York dataset.
We train single-feature model for each of the features belonging to the Common
set, described in Section 5.3.2, to study their predictive power.

Best Performing Models (New York)
Model Features AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
MV@Top-47 N/A 1.121 0.386 87.57% 23.97%

L2Geo+MV@Top-47 Common_Hashtags 1.167 0.386 87.04% 24.26%

L2Geo+MV@Top-21 Common_Hour 1.046 0.385 88.55% 29.13%
L2Geo+MV@Top-47 Common_Mentions 1.121 0.386 87.56% 24.00%

L2Geo+MV@Top-47 Common_Score 1.120 0.386 87.76% 23.96%

L2Geo+MV@Top-47 Common_User 1.127 0.386 87.57% 24.66%

L2Geo+MV@Top-29 Common_Weekday 0.973 0.380 89.70% 25.15%

performing con�guration of the models for the Chicago and New York dataset,

respectively. First, we observe that all the features contribute similarly. However,

we identify that Common_Hour and Common_Weekday provides slightly better

performance than other features in terms of average error distance (AED) and

accuracy (Acc@1km). This means that the posting time of the tweets is a good

indicator of its geolocation, which suggests that seasonal events are occurring in

certain locations. On the other hand, we observe that Common_Hashtags, Com-

mon_Mentions, Common_User and Common_Score also contribute positively

to �ne-grained geolocalisation, which indicates that tweets posted in a certain

geolocation share the same content.

The �ndings described above address RQ-5.2 and support our thesis state-

ment introduced in Chapter 1 (Section 1.2), and discussed in Chapter 4 (Section

4.1), that postulate an existing correlation between similarity and geographical

distance at a �ne-grained level.

5.4.3 Comparing Behaviour Across Datasets

In this section, we explore the similarities in the behaviour of our approach across

the two datasets, Chicago and New York. Particularly, we observe the same

patterns in behaviour observed in the Chapter 4 approach, and described in

Section 4.5.3.

In summary, we observe in Tables 5.6 and 5.7 that, as we increase the values

of N for the Top-N geotagged tweets, our approach is capable of decrease average
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error distance (AED) and accuracy at 1 km (Acc@1km), along with a decrease

in coverage (Coverage). Identically, in Tables 5.8 and 5.9, we note that our

approach can reduce AED and increase Acc@1km using the best con�guration

(L2Geo+MV@Top-9 using Query_Common features), while increasing Coverage

with respect to the baseline (MV@Top-9 ). Moreover, similarly to Section 4.5.3,

we also notice a variation in performance in terms of AED and Coverage in both

datasets, which can be explained by the di�erence in size between the Chicago

and New York datasets - where New York contains a bigger number of test tweets

than Chicago. Due to this, our approach is capable of predicting a location for

a lower ratio of tweets in the New York dataset, which can explain the lower

Coverage and AED achieved by our models.

In addition to previous observations, we observe in Tables 5.2 and 5.2, for

Chicago and New York respectively, that LambdaMART is the best learning to

rank algorithm for the ranking, outperforming other algorithms and the baseline

(IDF ). Moreover, Query_Common shows to be the most useful feature set for

�ne-grained geolocalisation in both datasets. This consistency in behaviour across

datasets suggests that our approach can be adapted to other cities, and supports

the generalisation of our approach.

5.5 Conclusions

In Chapter 4 of this thesis, we explored the correlation between similarity and

geographical distance between tweets in order to provide �ne-grained geolocali-

sation. First, we based our approaches on a ranking of the Top-N most similar

individual geotagged tweets to then exploit their geographical characteristics us-

ing a majority voting algorithm. However, this ranking is performed taking into

account only the document frequency of terms (IDF weighting), which may limit

the quality of the tweets in the ranking. Speci�cally, the quality of the Top-N

geotagged tweets that are fed into the majority voting. In this chapter, we hy-

pothesised that by improving the ranking of geotagged tweets, we could improve

performance and obtain a higher number of �ne-grained predictions. In order to

improve the ranking, we adopted a learning to rank approach (see Section 5.2)

and proposed a set of features for �ne-grained geolocalisation. Our learning to
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rank models are trained based on the probability that a pair of tweets are posted

within the same �ne-grained area (i.e., squared areas of size length 1 km). We

focused the work in this chapter on three research questions RQ-5.1, RQ-5.2

and RQ-5.3, introduced in Section 5.1.

In order to asses the e�ectiveness of our learning to rank approach, we created

training and testing sets for learning to rank by labelling as positive instances

pairs of tweets that are located at 1km distance from each other. On the other

hand, pairs of tweets that are posted at more than 1km distance from each other

are labelled as negative instances. Then, we extracted features, described in

Section 5.2.1, at document level (doc-tweet), query level (query-tweet) and query-

dependent features that model the relation between the query-tweet and the doc-

tweet. The full list of features is presented in Table 5.1.

Firstly, we experiment with di�erent algorithms for our learning to rank ap-

proach for improving the ranking of the Top-N geotagged tweets, which aimed

to answer research question RQ-5.1. We experimented with a set of algorithms

that covers the three main state-of-the-art categories: point-wise, pair-wise and

list-wise approaches. In total, we compared six di�erent algorithms, including:

MART (Friedman, 2001), Random Forests (Breiman, 2001), RankNet (Burges

et al., 2005), LambdaMART (Wu et al., 2010), AdaRank (Xu and Li, 2007) and

ListNet (Cao et al., 2007). We trained each algorithm optimising NDCG@3, @5,

@10, @20, @30, @40 and @50, and evaluate performance at the Top-N geotagged

tweets in the rank with N values of 1 (NDCG@1), 3 (NDCG@3), 5 (NDCG@5)

and 10 (NDCG@10). Tables 5.2 and 5.3 shows the performance of the algorithms.

As a result of this experiment, we identi�ed LambdMART, trained at NDCG@10

in the Chicago dataset and NDCG@30 in the New York dataset, as the best

performing learning to rank algorithm for ranking.

Secondly, we compared the e�ectiveness on �ne-grained geolocalisation of our

learning to rank approach when always returning the Top-1 most similar geo-

tagged tweet (L2Geo) as the predicted location, against the baseline explored

in Chapter 3 (Individual). Results are presented in Tables 5.4 and 5.5. We ob-

served that the learning to rank approaches that incorporate the query-dependent

features (Common) signi�cantly outperformed the baseline. Overall, the best per-
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forming model in terms of average error distance (AED) combines all the features

(L2Geo using All).

Furthermore, in Section 5.4.2.1 we assessed the e�ectiveness of our learning

to rank approach in terms of the quality of the geographical evidence within

the Top-N re-ranked geotagged tweets by applying a majority voting algorithm

(L2Geo+MV) with values of N ∈ {3, 5, 7, 9, ..., 49}. We compared against the

baseline proposed in Chapter 4 (MV). These results are presented in Tables 5.6

and 5.7. We observed that, as the values of N increased, we achieved a lower

average error distance (AED) with improved coverage (Coverage) compared to

the baseline. Additionally, in Figures 5.2 and 5.3 for Chicago, and Figures 5.4

and 5.5 for New York, we identi�ed that our learning to rank approach using

query-dependent features combined with features extracted from the query-tweet

(L2Geo+MV) using Query_Common) outperforms every model (included the

baseline) in average error distance. Moreover, combining all the features led to a

lower performance regarding average error distance (AED) when considering the

Top-N geotagged tweets, in contrast to results when considering only the Top-1

geotagged tweet. These results address research question RQ-5.2 and support

the hypothesis that by improving the ranking of the Top-N most similar geotagged

tweets (L2Geo), the performance of �ne-grained geolocalisation is also improved.

Finally, observing the behaviour of our learning to rank models over previous

results, we concluded that query-dependent features along with features extracted

from the query-tweet (Query_Common) are the most informative for �ne-grained

geolocalisation, which address research question RQ-5.3.

In summary, in this chapter, we have demonstrated that by improving the

ranking of the Top-N geotagged tweets leads to a better performance of �ne-

grained geolocalisation, and we can obtain a higher number of �ne-grained pre-

dictions. We achieved an average error distance (AED) of 1.441 km in Chicago

(Table 5.8), and 1.080 km in New York (Table 5.9), which improves previous

approaches explored in this thesis. Also, we aimed to reduce the average error

distance along with an increase of coverage. These results support the main hy-

pothesis of this chapter (introduced in Section 5.1). Also, we have contributed

with an approach that is capable of predicting a high number of tweet at a �ne-
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grained level, with an 86.56% of accuracy (Acc@1km) in Chicago and 88.42% of

accuracy in New York (See Tables 5.8 and 5.9).

In the remainder of this thesis, we demonstrate the applicability of our �ne-

grained geolocalisation approach, developed throughout this thesis, in a practical

application � tra�c incident detection. Lastly, we provide concluding remarks of

our work and present, future works and discusses the new research lines that this

work opens to the community in Chapter 7.
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Chapter 6

E�ectiveness of Fine-Grained
Geolocalised Tweets

6.1 Introduction

In the previous chapters, we tackled the problem of inferring the geolocalisation

of tweets at a �ne-grained level of granularity. As a result of our research, we

developed a �ne-grained geolocalisation method that is based on a learning to

rank approach for ranking geotagged tweets, and a majority voting algorithm to

exploit the geographical evidence of the geotagged tweets. Our experimental re-

sults showed that our approach is capable of predicting the location of tweets at

almost 1 km distance (See Tables 5.6 and 5.7), which represents an approximate

area of 3.14 km2. On the other hand, several real-world applications use geo-

tagged Twitter data for their analysis. In this chapter, we use the tra�c incident

detection task as a case study, which aims to use Twitter as a data source for the

detection of tra�c incidents occurring in a city.

There are currently several examples of the use of Twitter data for tra�c

incident detection (Cui et al., 2014; D'Andrea et al., 2015; Gu et al., 2016; Kosala

et al., 2012; Mai and Hranac, 2013; Schulz et al., 2013b; Steiger et al., 2014).

These works focused on scrutinising the Twitter stream to obtain tweets with

content containing information about tra�c conditions and disruptions. However,

tra�c incidents occur in very �ne-grained areas: roads or highways. Thus, it is

not only essential to identify tra�c incident-related content in a tweet, but also

it is crucial to know the precise location of the tweets in order to acknowledge

an incident reliably. However, as mentioned in Chapter 1 only 1% of the Twitter
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data is �nely-grained geotagged (Graham et al., 2014), so that the sample sizes

are quite limited for real-time incident detection.

In this chapter, we hypothesise that by geolocalising non-geotagged tweets

we can obtain a representative sample of geotagged data and, therefore, improve

the e�ectiveness on the tra�c incident detection task (see Hypothesis 4 in

Section 1.2). In this chapter, we aim to explore the usefulness of our �ne-grained

geolocalisation method when applied in the tra�c incident detection pipeline

and provide evidence of whether the task can be improved by enhancing the

geographic details of non-geotagged data, compared to what would be supported

by geotagged data alone. In this chapter, we aim to answer the following research

questions:

• RQ-6.1What is the e�ectiveness of the geolocalised tra�c incident-related

tweets on the tra�c incident detection task?

• RQ-6.2 Does expanding the sample of geotagged tweets with new geolo-

calised data improve the performance of the tra�c incident detection task?

The chapter is organised as follows: in Section 6.2, we discuss the main issues

motivating our research approach. In Section 6.3, we describe the datasets used

for testing the tra�c incident detection task. Section 6.4 we build and evaluate

a text classi�er to identify tra�c incident-related content in tweets. Next, in

Section 6.5 we evaluate our �ne-grained geolocalisation method and select the best

con�gurations to apply in the tra�c incident detection pipeline. In Section 6.6,

we describe the tra�c incident detection pipeline that integrates our �ne-grained

geolocalisation method and discuss the evaluation metrics of the task. Finally,

in Section 6.7 we present our experimental results and describe the performance

of the tra�c incident detection task with the enhanced sample of geolocalised

tweets. Finally, we provide concluding remarks in Section 6.9.

6.2 Background

Popular social media such as Twitter and other sources can reveal not only histor-

ical travel patterns but also real-time tra�c incidents and events. The unstruc-

tured nature of the data and the level of noise involved in inferring knowledge can
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pose signi�cant challenges to their routine use in transportation operations. One

major area of interest in the transportation community is automated incident de-

tection on roadways. This task depends on a wide variety of �xed sensors (induc-

tive loop detection systems, CCTV) and moving-object sensors (probe vehicles,

transit vehicles, cellphone users) and primarily covers the detection of events that

disrupt e�cient tra�c operations. Typically in urban areas, roadways tend to be

instrumented by �xed sensors, while lower level arterial and side streets which are

not as well equipped with infrastructure-based sensors are monitored by moving

objects and other ad-hoc sources. This detection infrastructure is expensive and

does not cover the road network completely; thus there are areas where real-time

detection is not possible. Additionally, the sensors provide information about an

anomaly in a road, but can not provide any context information about the event.

Because Twitter data is ubiquitous and provide �rst-hand real-time reports of

the events provided by the users, it has attracted the attention of transportation

managers to be used as an alternative data source for transportation operations

(tra�c incident detection) (Gu et al., 2016; Mai and Hranac, 2013). Detecting

small-scale road incidents using Twitter data has now been studied by many re-

searchers, but the problems of detection rates are pertinent research issues. In the

early days of using georeferenced tweets in the detection of tra�c events, only

geotagged tweets are used due to high spatial granularity. Nevertheless, only

about 1% of tweets are geotagged, and geotagged tweets are much more hetero-

geneously distributed than the overall population (Graham et al., 2014). This

means that an extremely limited number of georeferenced tweets are potentially

useful in the detection of tra�c events with �ne-grained occurrence locations.

To detect tra�c events by exploiting social media, some studies used both

geotagged tweets and geolocalised tweets and found more tweets than using geo-

tagged tweets alone (Cui et al., 2014; D'Andrea et al., 2015; Gu et al., 2016;

Kosala et al., 2012; Mai and Hranac, 2013; Schulz et al., 2013b; Steiger et al.,

2014). Most of earlier studies on geolocalisation of tweets had limitations in either

the precision of the spatial resolution recovered or the number of non-geotagged

tweets for which location is estimated. Some studies geolocalised tweets at the

nation or city level (Eisenstein et al., 2010a; Han and Cook, 2013; Kinsella et al.,

2011; Schulz et al., 2013a). Thus, a more precise geolocalisation method is needed
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to provide new �ne-grained geolocalised data. In this chapter, we aim to inte-

grate our �ne-grained geolocalisation approach and understand its e�ectiveness

into the tra�c incident detection pipeline using Twitter data.

One approach to addressing the above problems is to increase the sample size

of tweets with precisely known geographical location. Having a larger sample

of geographically located tweets would help in exploring the overall representa-

tiveness and event coverage associated with geotagged data. In this chapter, we

try to retrieve new �nely-grained geolocalised incident-related tweets by using

the �ne-grained geolocalisation approaches proposed in this thesis. Then we use

both these geolocalised tweets as well as the geotagged tweets to assess their

comparative performance in the detection of tra�c incidents in a metropolitan

area.

6.3 Data

In this chapter, we study the Chicago metropolitan region. The area is de�ned

by a bounding box with the following longitude/latitude coordinates: -86.8112,

42.4625, -88.4359, 41.2845. We show this area later in Figure 6.1. To conduct

our experiments, we collected Twitter data and tra�c incident data for a period

of study of a month (July 2016).

6.3.1 Twitter Data

We collect Twitter data from the Twitter Public Streaming API 1. Spatial �ltering

can be applied to obtain tweets from a speci�c area. Geographical information is

attached to tweets in two ways: (i) exact longitude and latitude if the GPS loca-

tion reporting of the user device is activated (geotagged); and (ii) as a suggested

area (bounding box) from a list that can be extrapolated to a polygon, when send-

ing a tweet (geobounded). In this work, we use geotagged and geobounded tweets

for our experiments (see Table 6.1). The geobounded data provides a coarse-

grained location but not the spatial precision (�ne-grained level) needed for the

types of applications considered in this chapter. We perform the geolocalisation

on geobounded tweets. Since this work explores a practical way to go beyond

1https://dev.twitter.com/streaming/overview
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geotagged data, we use geobounded tweets for exempli�cation of the limitations

of using geotagged tweets alone.

Table 6.1: Number of geotagged tweets and geobounded tweets (July 2016).

Total Tweets
Geotagged Tweets 160,634

Geobounded Tweets 1,888,683

Next, in order to build our �ne-grained geolocalisation method and evaluate

the tra�c incident detection task, we divide the dataset into three subsets. First,

we obtain the tweets posted during the �rst four weeks of July 2016 for training

(1st July to 25th July), denoted by Training Period, and randomly divide the

last week (25th July to 1st August), denoted by Testing Period, into validation

and testing. Also, we obtain the geobounded tweets posted during the testing

period as an example of non-geotagged tweets for applying our �ne-grained ge-

olocalisation approaches. Table 6.2 shows the number of tweets for each subset.

Table 6.2: Number of geotagged and geobounded tweets distributed between
training, validation and testing.

Training Period Testing Period
Training Validation Testing

Geotagged Tweets 120,503 20,169 19,962

Geobounded Tweets - - 459,233

For convenience and reference, we now introduce basic terminology that will

be used in the rest of this chapter:

• Geotagged: we refer to the set of tweets with longitude/latitude GPS

coordinates attached. This set is already available in the Twitter stream

and represents approximately 1% of the whole stream (Graham et al., 2014).

• Geobounded: we refer to the set of tweets available in the Twitter

stream that are not �nely-grained located, but instead a bounding box that

represents at a coarse-grained area is attached to them.
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• Geolocalised: we refer to the set of tweets with attached geolocation that

has been inferred using one of our geolocalisation approaches (see Section

6.5).

• Georeferenced: we refer to the set of tweets that have geographical

information available. This set represents the union of geotagged tweets

and geolocalised tweets.

6.3.2 Tra�c Incident Data

Both geotagged and geolocalised tweets were compared against a ground truth

dataset containing tra�c crashes within the City of Chicago limits reported by

the Chicago Police Department (CPD). The dataset is publicly available at the

City of Chicago open data portal1. Speci�cally, we extract tra�c crashes which

occurred in Chicago during the Testing Period of study (25th July to 1st August

2016), presented before in Table 6.2.

Figure 6.1: Geographical distribution of tra�c crashes (N=886) in the city
Chicago during the testing period (25th July to 1st August 2016).

1https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/
85ca-t3if
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In total, we obtain 886 tra�c crashes that occurred within the city of Chicago

during the testing period de�ned in the previous section (25th July to 1st August).

Each tra�c crash provides information about the incident and the vehicle, but

for the purpose of this chapter, we only consider the location of the incident

(longitude and latitude point) and the time of the event. Figure 6.1 shows a

map with the locations of the 886 tra�c crashes that occurred during the testing

period (25th July to 1st August 2016).

6.4 Classi�cation of Incident-Related Tweets

In this section, we introduce our approach for identifying tra�c crash related

tweets from the Twitter dataset. Inspired by previous work (D'Andrea et al.,

2015; Gu et al., 2016; Schulz et al., 2013b), we build a text classi�er to determine

whether the content of the tweets is related to a tra�c crash or not. Firstly,

we describe our ground truth of human labelled tra�c crash tweets on which

we build our classi�er. Then, we present the performance of di�erent classi�ers

using di�erent algorithms and select the best performing one for application on

the tra�c incident detection task.

6.4.1 Incident-Related Twitter Dataset

We use a gold standard dataset1 generated by Schulz et al. (2013b, 2017), that

contains human labelled tweets from a wide range of cities. In particular, we use

the available tweets from Chicago for building our incident-related tweet classi�er.

Originally, the dataset is composed of 1,483 tweets posted from January 2014 to

March 2014 in a 15 km radius around the city centre of Chicago. The tweets

are annotated by humans and labelled as �crash� for tweets about tra�c crashes,

��re� for tweets about �res in buildings, �shooting� for crime incidents involving

guns shooting, and �NO� for tweets that are not about any incident.

As we aim to identify tra�c crashes, we only extract �crash� tweets as positive

instances and �NO� tweets as negative instances. In total, we obtain 129 tweets

labelled as �crash�, and 1,269 tweets annotated as �NO�. Finally, we balance the

distribution of positive and negative instances by randomly reducing the number

1http://www.doc.gold.ac.uk/~cguck001/IncidentTweets/
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of negative instances to 129 tweets. In order to evaluate our incident-related

tweet classi�er, we randomly divided our ground truth dataset into training and

test sets, containing 80% and 20% of the data respectively. Table 6.3 presents the

total number of positive (�Crash�) and negative instances (�NO�) in the training

and test sets.

Table 6.3: Number of positive instances (Crash) and negative instances (NO) in
the training and testing datasets for our tweet incident classi�er.

Crash NO
Training 104 107

Testing 25 22

Total 129 129

6.4.2 Evaluation

Next, we experiment with three di�erent algorithms for classi�cation: Multinom-

inal Naive Bayes (Zhang, 2004), Random Forest (Breiman, 2001) and Decision

Trees (Breiman, 1984; Friedman et al., 2001) as implemented in the Sckit-Learn

python package1. As a baseline, we use a Random classi�er that generates predic-

tions uniformly at random. We run a McNemar's test (Dem²ar, 2006) to assess

statistic signi�cance between our classi�ers and the baseline

We preprocess each tweet following the procedure described before in Section

3.3.2: remove punctuations, hyperlinks, stopwords, tokenise (1-gram) and apply

Porter Stemmer. As features, we use a TF-IDF representation of the words in

the document. Lastly, we train the models in the training set and evaluate their

performance in the test set. For measuring the performance of classi�cation, we

report precision, recall, F1-score and accuracy formalised as follows:

Precision =
TP

TP + FP
(6.1)

Recall =
TP

TP + FN
(6.2)

1http://scikit-learn.org/
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Accuracy =
TP + TN

TP + TN + FP + FN
(6.3)

F1− Score = 2 · Precision ·Recall
Precision+Recall

(6.4)

where TP = True Positives, TN = True Negatives, FP = False Positives, and FN

= False Negatives.

Table 6.4 present results for the incident-related tweet classi�cation task. The

best performing result for each metric is highlighted in bold. We observe that the

Random Forest classi�er outperforms the rest of the models in terms of precision,

recall and F1-score. The Random Forest achieves a precision of 0.85, recall of

0.82, an F1-Score of 0.82 and an accuracy of 0.83. This performance is consistent

with previous work on the classi�cation of tra�c tweets (D'Andrea et al., 2015;

Gu et al., 2016; Schulz et al., 2013b).

Table 6.4: Results for the tra�c incident-related tweet classi�cation task. We
report Precision (Prec.), Recall (Rec.), F1-Score (F1) and Accuracy (Acc.) for
each of the classi�ers evaluated. We run a McNemar's test to assess statistical
signi�cance with respect to the baseline (Random).

Model Prec. Rec. F1 Acc.
Ramdom 0.51 0.49 0.49 0.49

MultinomialNB 0.73∗∗ 0.73∗∗ 0.73∗∗ 0.72∗∗

Decision Trees 0.80∗∗ 0.80∗∗ 0.80∗∗ 0.80∗∗

Random Forest 0.85∗∗ 0.82∗∗ 0.82∗∗ 0.83∗∗

As a result of this experiment, we select the trained Random Forest classi�er to

identify incident-related tweets in the tra�c incident detection pipeline described

next in Section 6.6.

6.5 Fine-Grained Geolocalisation

In this section, we build our �ne-grained geolocalisation models following the

approaches developed in Chapters 3, 4 and 5 of this thesis. We incorporate these

models into the tra�c incident detection pipeline described next in Section 6.6.
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According to previous research, the majority of tra�c incidents occur in road

intersections (Hakkert and Mahalel, 1978; Thomas, 1996). Additionally, tra�c

congestions and secondary incidents are caused by tra�c incidents and have an

e�ect on up to 1-2 miles (1.6-3.2 km) from the incident location (Khattak et al.,

2009). Moreover, the data about the transportation network in Chicago1 shows

that the majority of the majority of the roads segments have a length of 0.5-

0.6 miles (approximately 0.8-1 km). Therefore, we con�gure our �ne-grained

geolocalisation models to use pre-de�ned squared areas of size length 1 km.

For evaluating the models, we use the Chicago Twitter dataset described in

Section 6.3.1 and select, for each of them, two con�gurations that will be applied

later in Section 6.7. In this section, we only report the performance of the se-

lected con�gurations, however, for completeness, we present more detailed result

in Appendix A. Now, we describe the evaluation of the models for each of the

chapters:

Chapter 3 models. For models based on Chapter 3 approach, we use the Ag-

gregated and Individual approaches introduced in Section 3.2. Then, we evaluate

the models following the experimental setting described in Section 3.3. Table A.3

presents detailed results of the experiments. Finally, we use the following models

for the experiments in this chapter:

• C3-Agg: In this model we use the best performing con�guration for the

Aggregated approach, which uses BM25 as retrieval model.

• C3-Indv: In this model we use the best performing con�guration fo the

Individual approach, which uses TF-IDF as retrieval model.

Chapter 4 models. For models based on Chapter 4 approach, we follow the

experimental settings described in Section 4.4. We evaluated the models that uses

the weighted majority voting approach introduced in Section 4.3. We present

complete evaluation results in Table A.2. Finally, we select the following models

for rest of the experiments in this chapter:

1The data is available in https://support.office.com/en-us/article/
create-a-histogram-in-excel-85680173-064b-4024-b39d-80f17ff2f4e8
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• C4-HA: In this model we use the WMV@Top-39 with α = 0.0 con�gura-

tion, which provides the highest accuracy but also low coverage.

• C4-HC: In this model we use theWMV@Top-1 with α = 1.0 con�guration,

which provides the highest coverage but also low accuracy.

Chapter 5 models. For building the models based on Chapter 5 approach,

we select the learning to rank approach proposed in Chapter 5 that uses Lamb-

daMART as the ranking function, trained to optimise NDCG@10. Moreover, we

compute the set of Query_Common features described in 5.2.1, as they showed

to be the best performing one for geolocalisation according to experiments in

Chapter 5. We present the complete set of results in Table A.3. Finally, we select

the following models for the rest of the experiments in this chapter:

• C5-HA: In this model we use the L2Geo+MV@Top-17 con�guration, which

provides the highest accuracy but also low coverage.

• C5-HC: In this model we use the L2Geo con�guration, which provides the

highest coverage but also low accuracy.

Lastly, we present the performance of each of the models selected above on

�ne-grained geolocalisation. Table 6.5 presents the metrics described in Section

3.3.6 for each of the models, namely average error distance (AED), median error

distance (MED), accuracy at 1 km (Acc@1km) and coverage.

6.6 Tra�c Incident Detection

In this section, we introduce the tra�c incident detection task, which aims to

identify tra�c incident-related tweets from the Twitter stream. In order to eval-

uate the tra�c incident detection task, we link the incident-related tweets to a

ground truth of tra�c crashes events reported by the Chicago Police Depart-

ment (See Section 6.3.2). Previous work (D'Andrea et al., 2015; Gu et al., 2016;

Schulz et al., 2013b) have used the already available set of geotagged tweets to

perform the task. However, in this chapter, we aim to expand the sample of �ne-

grained geotagged incident-related tweets by applying our �ne-grained geolocali-

sation approaches, presented in Section 6.5, for inferring the geolocation of new
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Table 6.5: Results on �ne-grained geolocalisation of the models selected for the
experiments in this chapter, which follow the approaches introduced in Chapters
3, 4 and 5. We report the average error distance (AED), median error distance
(MED), accuracy at 1 km (Acc@1km) and coverage.

Chicago (25th July to 1st August)
Model AED(km) MED(km) Acc@1km Coverage
C3-Agg 4.496 1.074 48.96% 99.96%

C3-Indv 1.717 0.000 82.07% 100.00%
C4-HA 1.404 0.471 87.86% 35.54%

C4-HC 3.993 0.563 58.75% 85.50%

C5-HA 1.108 0.435 90.55% 49.00%

C5-HC 1.578 0.435 86.03% 100.00%

non-geotagged incident-related tweets. To this end, we integrate a �ne-grained

geolocalisation process within the tra�c incident detection pipeline, illustrated

in Figure 6.2.

The remainder of the section is as follows. First, we present the output of

the tra�c incident classi�cation process of the pipeline. Second, we discuss the

performance of the �ne-grained geolocalisation process using the geolocalisation

models evaluated in Section 6.5. Finally, we link the resulting geolocalised and

geotagged tra�c incident-related tweets to our ground truth of tra�c crashes

events, and assess the performance of the tra�c incident detection pipeline.

6.6.1 Identifying Tra�c Incident-Related Tweets

The �rst process in the tra�c detection pipeline, illustrated in Figure 6.2, aims to

identify tweets whose content is related to a tra�c crash incident. To this end, we

integrate the incident-related tweet classi�er that we built previously in Section

6.4. Our classi�er processes the set of geotagged tweets as well as the set of

geobounded tweets described in Section 6.3.1. The classi�er processes each tweet

and �lters out those messages predicted as �NO�. Then, messages predicted as

�Crash� are retained as candidate tra�c incident-related tweets for tra�c incident

detection.

Table 6.6 presents the �nal number of tweets that our classi�er predicts as

incident-related for each of the sets considered: geotagged and geobounded. In

total, we obtain 705 tra�c incident-related geotagged tweets, and 6,524 tra�c
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Figure 6.2: Tra�c Incident Detection Pipeline. We integrate our �ne-grained
geolocalisation apporach to infer the geolocation of non-geotagged tra�c tweets.

Table 6.6: Number of tra�c incident-related tweet identi�ed out of the sets of
geotagged tweets and the set of geobounded tweets. We also report the total
number of tra�c incident-related tweets available.

Total Tweets Incident-Related
Geotagged Tweets 19,962 705

Geobounded Tweets 459,233 6,524

Total Tweets 479,196 7,229
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incident-related geobounded tweets. In the next step, we feed the geobounded

(non-geotagged) incident-related tweets into our geolocalisation models to predict

�ne-grained geolocation for them.

6.6.2 Applying Fine-Grained Geolocalisation

We integrate the �ne-grained geolocalisation process into the tra�c incident de-

tection task, as illustrated in Figure 6.2, in order to increase the sample of �nely-

grained geolocated tra�c incident-related tweets. As geolocalisation models, we

use the �ne-grained geolocalisation models that we built before in Section 6.5.

We apply our geolocalisation models to infer a �ne-grained geolocation for the

6,671 tra�c incident-related tweets identi�ed by our classi�er in Section 6.6.1.

Table 6.7 present the �nal number of �ne-grained geolocalised tra�c incident-

related tweets obtained by geolocalisation models.

Table 6.7: Number of tweets geolocalised by our geolocalisation models out of
the total geobounded tra�c incident-related (I-R) tweets (N=6,671).

I-R Tweets
C3-Agg 6,497

C3-Indv 6,494

C4-HA 407

C4-HC 4,804

C5-HA 465

C5-HC 6,494

As a result of the geolocalisation process, we observe that models that provide

higher coverage (i.e., C3-Agg, C3-Indv, C4-HC and C5-HC) are capable of �nding

a geolocation for a higher number of incident-related tweets. On the other hand,

models that provide lower coverage but higher accuracy (i.e., C4-HA and C5-

HA) are capable of geolocalise a smaller number of incident-related tweets. These

results are consistent with the behaviour observed in our experiments in Section

6.5.

Additionally, we show in Table 6.8 the number of incident-related tweets

that are already available in the set of geotagged tweets (Geotagged), as well

as the �nal number of incident-related tweets we obtain as a result of expand-

ing the sample of geotagged incident-related tweets. For instance, when adding
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the 465 incident-related tweets geolocalised using the C5-HA to the initial 705

geotagged incident-related tweets, we obtain a �nal set of 1,170 incident-related

�nely-grained georeferenced tweets.

Table 6.8: Number of incident-related geotagged tweets (Geotagged), and �nal
number of georeferenced tweets, after adding new incident-related (I-R) tweets
geolocalised using the models described in Section 6.5.

I-R Tweets
Geotagged 705

Geotagged + C3-Agg 7,202

Geotagged + C3-Indv 7,199

Geotagged + C4-HA 1,112

Geotagged + C4-HC 5,509

Geotagged + C5-HA 1,170

Geotagged + C5-HC 7,199

After the �ne-grained geolocalisation process, we next link in Section 6.6.3

the resulting geolocalised tra�c incident-related tweets to the incidents from the

Chicago Police Department tra�c crashes dataset (See 6.3.2). Finally, we ob-

tained the tra�c incident-related tweets that are located at 1 km distance or

less.

6.6.3 Spatial Linking to Tra�c Incidents

To evaluate the e�ectiveness of the tra�c incident detection task, we perform a

linking process that associates tra�c incident-related tweet with tra�c crashes

reported by the Chicago Police Department in the same period of time (testing pe-

riod), described in Section 6.3.2. Our linkage strategy is based on spatial matching

criteria between tweets and incidents and returns pairs of tweet-incidents that are

placed between each other at 1 km distance or less.

6.6.4 Evaluation Metrics

After the linking process, we compute the following metrics to evaluate the per-

formance of the tra�c incident detection pipeline.

• Accuracy: We de�ne accuracy as the percentage of tra�c incident-related

tweets that are linked to an incident. In this chapter, we consider that a
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tweet is linked to an incident is it is placed within a 1 km distance of it.

Higher values represent better performance.

• Detection Rate: We de�ne detection rate as the percentage of incidents

that are covered by the tra�c incident-related tweets. An incident is covered

if it contains at least one tra�c-related tweet within 1 km distance. Higher

values represent better performance.

6.7 Experimental Results

In this section, we present and discuss our experimental results on the tra�c

incident detection task. First, in Section 6.7.1 we evaluate the tra�c incident

detection pipeline, described in Section 6.6, using the new incident-related tweets

that are geolocalised using our �ne-grained geolocalisation models, described in

Section 6.5. This experiment aims to address the research question RQ-6.1,

that investigates the e�ectiveness of our geolocalisation approaches on the tra�c

incident detection task.

Additionally, in Section 6.7.2 we evaluate how the detection of tra�c incidents

is improved when using an expanded sample of georeferenced tra�c incident-

related tweets. This georeferenced set consists of the geotagged incident-related

tweets expanded with the new geolocalised incident-related tweets obtaining dur-

ing the �ne-grained geolocalisation process of the pipeline, as described in Section

6.7. This experiment aims to assess whether our �ne-grained geolocalisation ap-

proaches can e�ectively expand the sample of �nely-grained geolocated incident-

related data and, therefore, bene�ts the overall performance of the tra�c incident

detection.

For each of the experiment mentioned above, we report the metrics described

in Section 6.6.4, which aim to measure the number real incident we can cover

with tra�c incident-related tweets (detection rate), and what percentage of these

tra�c incident-related tweets are located at 1 km or less to the real locations

of the incidents (accuracy). We compute these metrics when considering tweets

generated at 1 to 30 minutes after the incident.
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We present results in Figures 6.3 and 6.4 for experiments in Section 6.7.1, and

Figures 6.5 and 6.6 for experiments in Section 6.7.2. For completeness, we report

detailed experimental results in Tables B.1 and B.2 in Appendix B.

The remainder of this section is as follows. In Section 6.7.1 we addressRQ-6.1

and evaluate the e�ectiveness of the geolocalised tra�c incident-related tweets for

tra�c incident detection. Next, in Section 6.7.2 we address RQ-6.2 and evaluate

whether the tra�c incident detection is improved by enhancing the set of tra�c

geotagged tweets with geolocalised tra�c tweets. Finally, we provide concluding

remarks in Section 6.9.

6.7.1 E�ectiveness of Geolocalised Tweets

We �rst evaluate the performance of tra�c incident detection when considering

only the tra�c incident-related tweets geolocalised by our �ne-grained geolocali-

sation approaches. We compute accuracy and detection rate (See Section 6.6.4)

for the geolocalisation models described in Section 6.7.

Figure 6.3: Accuracy (y-axis) for 1 minute to 30 minutes after the incident (x-
axis) for the tra�c incident-related geolocalised tweets using our �ne-grained
geolocalisation approaches.
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Figure 6.4: Incident Detection Rate (y-axis) for 1 minute to 30 minutes after
the incident (x-axis) for the tra�c incident-related geolocalised tweets using our
�ne-grained geolocalisation approaches.

We observe in Table B.1 that models that provide high accuracy of geolocal-

isation (i.e., C4-HA and C5-HA) also achieve higher accuracy of detection over

the geolocalisation models that provide high coverage (i.e., C3-Agg, C3-Indv, C4-

HC and C5-HC). On the other hand, we observe in Figure 6.4 that models that

provide high coverage models achieve a higher detection rate compared to mod-

els that provide high accuracy. This means that high accurate geolocalisation

models cover a lower percentage of the incidents, but they are capable of accu-

rately detecting their geographical location (1 km distance). In contrast, models

that provide high coverage can identify a larger number of incidents, but the

geographical location of them are not accurately predicted (1 km distance).

This is the expected behaviour considering the geolocalisation performance

the models, observed in Section 6.5, and this behaviour is consistent with the

behaviour observed thought Chapters 3, 4 and 5 in this thesis. These results

address the research question RQ-6.1 and demonstrate the e�ectiveness of our

�ne-grained geolocalisation approach on the tra�c incident detection task.

Besides, the observed behaviour of our �ne-grained geolocalisation approaches
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evaluated in a new dataset (Chicago July 2016), presented in Section 6.5, and

the consistency shows the generalisation of out �ne-grained geolocalisation ap-

proaches.

6.7.2 Expanding The Sample of Geotagged Tweets

In this section, we aim to address research question RQ.6.2, which aims to as-

sess whether the tra�c incident detection is improved by enhancing the sample

of already available tra�c incident-related geotagged tweets with a new set of

geolocalised tra�c incident-related tweets. To this end, we compare the perfor-

mance of the detection when considering the geotagged tweets alone (Geotagged),

and when considering the set the geotagged tweets expanded with the incident-

related tweets geolocalised using our �ne-grained geolocalisation models described

in Section 6.5.

Figure 6.5: Accuracy (y-axis) for 1 minute to 30 minutes after the incident (x-
axis) for the tra�c incident-related geotagged tweets (Geotagged), and the ex-
panded samples using tweets geolocalised using our �ne-grained geolocalisation
approaches.

We observe in Figure 6.5 that the overall performance of the tra�c incident

detection task is improved when the sample of geotagged tra�c tweets is expanded

over using geotagged incident-related tweets alone (Geotagged). In particular,
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Figure 6.6: Incident Detection Rate (y-axis) for 1 minute to 30 minutes after the
incident (x-axis) for the tra�c incident-related geotagged tweets (Geotagged), and
the expanded samples using tweets geolocalised using our �ne-grained geolocali-
sation approaches.

accuracy is improved when adding the tweets geolocalised using the models that

provides high accuracy of geolocalisation (i.e., Geotagged + C4-HA and Geotagged

+ C5-HA), whereas detection rate is improved when expanding using the tweets

geolocalised using the models that provide high coverage (i.e., Geotagged + C3-

Agg, Geotagged + C3-Indv, Geotagged + C4-HC and Geotagged + C5-HC).

These results address the research question RQ-6.2 and show that the traf-

�c incident detection is improved when considering new incident-related tweets

geolocalised using our �ne-grained geolocalisation approaches. This supports the

hypothesis, introduced in Section 6.1, that states that by enhancing the set of

already available geotagged tweets with geolocalised tweets we can improve the

performance of the tra�c incident detection task.

6.8 Recommendations to Transportation Managers

Previous research de�nes incident duration as the period between an incident

occurs, and the time the incident is cleared. This period is divided into three main
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phases, illustrated in Figure 6.7: detection/reporting time, response time and

clearance time (Nam and Mannering, 2000). According to Nam and Mannering

(2000), the average times of each of the phases are 12.2 minutes for the detection

time phase, 26.2 for the response time phase and 136.8 minutes for the clearance

time phase.

Figure 6.7: The phases of incident duration (Nam and Mannering, 2000).

On the other hand, information about the context of the incidents (i.e., num-

ber of vehicles involved, type of vehicles, injuries or �re) showed to be helpful

for predicting the duration of an incident (Pereira et al., 2013). For this rea-

son, the content of the tweets associated with the occurrences can provide crucial

information to transportation managers.

The tra�c incident information from the tweets becomes more decisive as it is

extracted during the detection/reporting time, and closer to the time the incident

occurs. Therefore, managers should aim for more accurate models as the location

of the event is still unknown, and the emergency services have not veri�ed the

occurrence yet. In contrast, after detection time, the location of the incident, and

emergency services are in place. Thus, accuracy is not crucial for this phase.

Besides, during the response and clearance time phases, information reported

by users in real-time about the evolution of the incident, or other events occurring
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in its surrounding (i.e., congestions, subsequent events), can be helpful to manage

the incident until the road is completely cleared e�ciently. Therefore, managers

should consider a model that provides high coverage in these phases, and thus

maximise the amount of information extracted from the Twitter messages.

Finally, according to our results in Figure 6.5 and Table B.2 in Appendix B,

and considering the average time of the detection phase reported in the literature

(12.2 minutes), we suggest the following models, described in Section 6.5, for the

di�erent phases of the incident: C5-HA or C4-HA for detection/reporting time,

and C3-Indv for response and clearance time.

6.9 Conclusions

The use of Twitter data as a complementary data source for the detection of

tra�c incidents have attracted the attention of transportation researchers. The

reason is that Twitter data is ubiquitous and provides �rst-hand reports of the

incidents. To perform the task, researchers have developed several machine learn-

ing approaches that aim to identify content related to tra�c incidents in the

tweets. However, once the content is identi�ed, it is crucial for predicting the

location of the incident from the evidence in the tweets. So far, researchers have

used the set of already available geotagged tweets, which represents only 1% of

the Twitter stream. This means that transportation managers rely on a very

small sample of geotagged tweets to do their analysis. Thus, in this chapter,

we explored whether by expanding the sample of geotagged tweets by inferring

the geolocation of new non-geotagged tweets we can improve the performance

of the tra�c incident detection task. We used our �ne-grained geolocalisation

approaches developed previously in Chapters 3, 4 and 5 in this thesis, and ex-

plored the usefulness of integrating the �ne-grained geolocalisation process into

the tra�c incident detection task.

We collected Twitter data from the city of Chicago during July 2016 to build

our �ne-grained geolocalisation approaches (tweets from 1st July to 25th July)

and determined a period of study of a week (25th July to 1st August) as a testing

period. Also, to evaluate the detection of tra�c incidents we collected a dataset
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of tra�c crashes reported by the Chicago Police Department occurred during the

same period of study.

We present the tra�c incident detection pipeline, illustrated in Figure 6.2, and

consists of the following stages. First, we used a text classi�er to identify whether

the content of a tweet is about a tra�c crash or not. To build our classi�er, we use

a gold standard dataset generated by Schulz et al. (2013b, 2017) (See Section 6.4).

Then, we used the built classi�er to obtain tra�c incident-related tweets from

the set of geotagged tweets as well as from the set of geobounded tweets (not

�ne-grained geotagged). Second, we passed the non-geotagged tra�c incident-

related tweet through the �ne-grained geolocalisation process, which incorporates

our �ne-grained geolocalisation approaches developed in Chapters 3, 4 and 5

(See Section 6.5). Finally, we compared the obtained �ne-grained geolocalised

incident-related tweets to the real tra�c crashes reports from the Chicago Police

Department. As metrics, we reported accuracy and detection rate, described in

Section 6.6.4.

Our experimental results in Table B.1 showed that the incident-related tweets

geolocalised using geolocalisation models that provide high coverage (i.e., C3-

Agg, C3-Indv, C4-HC and C5-HC) detected a large number of incidents (higher

detection rate), but in contrast they were not capable of accurately predicts

their geolocation (accuracy). In comparison, incident-related geolocalised tweets

using geolocalisation models that provide high accuracy (i.e., C4-HA and C5-

HA) detected a lower number of incidents, but their geolocations are predicted

accurately at a distance of 1 km or less (accuracy). These results address the

research question RQ-6.1 which aims to assess the usefulness of geolocalised

data on tra�c incident detection. Besides, the consistency these results with the

behaviour of geolocalisation observed thought this thesis shows the generalisation

of out �ne-grained geolocalisation approaches.

Finally, when expanding the sample of tra�c incident-related geotagged tweets

with the new �ne-grained geolocalised tra�c incident-related tweets the overall

performance of the tra�c incident detection is improved (regarding accuracy and

detection rate). These results support the central hypothesis of this chapter (see

Hypothesis 4 in Section 1.2) and address research question RQ-6.2, which
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states that by expanding the sample of geotagged tweets we can improve the

performance of the tra�c incident detection task.

In the next chapter, we provide concluding remarks of the work in this thesis

as well as discussing new open research question and future research directions.
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Chapter 7

Conclusions and
Future Work

This thesis investigated the problem of inferring the geolocation of individual

tweets at a �ne-grained level of granularity (i.e., 1 km error distance). We ar-

gued that, by exploiting the characteristics of individual �nely-grained geotagged

tweets that are already available in the Twitter stream, we could achieve the

geolocalisation of non-geotagged tweets at a �ne-grained level. We postulated

a correlation between the content similarity and geographical distance between

tweets that are posted within a �ne-grained area. Therefore, if two tweets con-

tain similar content, then it is very likely that they were generated in the same

location.

Across all the chapters in this thesis, we have addressed the problem of

whether geolocalisation can be achieved using the content of tweets, and pro-

posed novel approaches that advance the existing literature further by providing

highly accurate geolocalisation of Twitter posts. The experiments undertaken in

this thesis showed the e�ectiveness of our �ne-grained geolocalisation approaches,

so it is possible to infer the geolocation of tweets at a �ne-grained level. Addi-

tionally, we investigated the e�ectiveness of our proposed approach in a practical

application by incorporating our �ne-grained geolocalisation approach into the

tra�c incident detection pipeline. In this chapter, we summarise the main con-

tributions of this thesis and discuss the �ndings and conclusions of our research.

The remainder of this chapter is as follows. We �rst summarise the main

contributions of this thesis in Section 7.1. Next, we discuss the main conclusions
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and achievements of this thesis in Section 7.2. Finally, we discuss future research

directions in Section 7.3.

7.1 Contributions

The main contributions of this thesis are as follows:

• In Chapter 3, we investigated the limitations of the state-of-the-art tweet

geolocalisation approaches when they are adapted to work at a �ne-grained

level. We provided insights to understand the drawbacks of existing re-

search and proposed a ranking approach that alleviates such limitations,

thus enabling the geolocalisation of tweets at a �ne-grained level.

• In Chapter 4, we discuss the predictability of the geolocation of tweets at a

�ne-grained level. We postulated a correlation between content similarity

and geographical distance in �ne-grained predictions. Based on this, we

proposed a novel approach that incorporates a weighted majority voting

algorithm, which exploits the geographical evidence encoded within the

Top-N most similar geotagged tweets.

• In Chapter 5, we investigated whether improving the ranking of the geo-

tagged tweets can lead to a better performance in �ne-grained geolocal-

isation. We proposed a learning to rank-based approach that re-ranks

geotagged tweets based on their geographical proximity to a given non-

geotagged tweet. Additionally, we proposed a set of features for geolocali-

sation and investigated the best performing combination of them.

• In Chapter 6, we demonstrated the usefulness of our proposed �ne-grained

geolocalisation approach in the tra�c incident detection task. We incorpo-

rated our geolocalisation method into the tra�c incident detection pipeline

to infer the geolocalisation of non-geotagged tweets, and expand the sam-

ple of �nely-grained geolocated tra�c related tweets. We then showed the

improvements in tra�c incident detection by evaluating the pipeline over a

ground truth of o�cial incidents reports.
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7.2 Findings and Conclusions

The main �ndings and conclusions of this thesis are that �ne-grained geolocalisa-

tion of tweets can be achieved by exploiting the characteristics of already available

geotagged tweets and, in doing so, it is important to consider the following:

• (Chapter 3) When performing �ne-grained geolocalisation using a ranking

approach, representing an area as a document containing the text of an

individual tweet performs signi�cantly better than aggregating the texts of

the geotagged tweets from a pre-de�ned area into a virtual document. We

increased accuracy at 1 km (Acc@1km) from 50.67% to 55.20% in Chicago

(Table 3.4) and from 45.40% to 48.46% in New York (Table 3.5).

• (Chapter 3) Document frequency information is lost when aggregating the

tweets into a single document, and this evidence is transformed into term

frequency information. Moreover, document frequency information has

been shown to be the most discriminative feature for �ne-grained geolo-

calisation, and it is e�ectively exploited when using individual tweets to

represent locations (see Figure 3.2), increasing the performance over mod-

els using the aggregation of tweets.

• (Chapter 4) The predictability of tweets at a �ne-grained level is derived

by the correlation between their content similarity and the geographical

distance to other geotagged tweets. By ranking geotagged tweets based on

content similarity and exploiting the geographical evidence encoded within

the Top-N tweets in the ranking, we can �nd reduce the average error

distance of the predicted tweets from 4.694 km to1.602 km in Chicago and

4.972 km to 1.448 in New York (see Tables 4.1 and 4.2).

• (Chapter 5). The quality of the ranking of geotagged tweets is crucial

for �ne-grained geolocalisation. By improving the ranking using a tailored

learning to rank approach, we can decrease the average error distance of

our predictions from 1.602 km to 1.451 km in Chicago and from 1.448

km to 1.319 km in New York (see Tables 5.6 and 5.7). Moreover, we are
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capable of increase the number of tweets for which we can �nd a �ne-grained

geolocation.

Additionally, we demonstrated the applicability of the �ne-grained geolocali-

sation approach developed in this thesis in a practical scenario. To this end, we

incorporated our approach into the pipeline of the tra�c incident detection task.

Our �ndings are the following.

• (Chapter 6) We demonstrated the e�ectiveness of tra�c incident-related

tweets that are geolocalised using our �ne-grained geolocalisation approach.

The geolocation inferred for such tweets has been shown to be closer to the

location of real incidents occurring in the same period.

• (Chapter 6) The consistency of the behaviour of our �ne-grained geolocal-

isation approaches observed through the chapters of this thesis and their

applicability on the detection of tra�c incidents, supports the generalisation

of our approaches.

• (Chapter 6) Expanding the already available geotagged tweets with new

geolocalised tweets increases the overall performance of the tra�c incident

detection task.

In the rest of this section, we elaborate each of the �ndings in detail.

7.2.1 Limitations of State-of-The-Art Geolocalisation Ap-
proaches

First, in Chapter 3 we investigated the limitations of existing work when perform-

ing geolocalisation at a �ne-grained level of granularity. To existing approaches

divide the geographical area into areas of a pre-de�ned size. Then, each area is

represented as a document that contains the aggregated texts of the geotagged

tweets belonging to the area. However, when performing such an aggregation pro-

cess, important information about discriminative words that are representative

of �ne-grained locations is lost. Therefore, we hypothesised that by considering

geotagged tweets individually we could preserve the evidence loss when adapting
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previous approaches at a �ne-grained level, and thus we can improve the perfor-

mance of �ne-grained geolocalisation (see Hypothesis 1 in Section 1.2). To test

our hypothesis, we answered the following research questions:

• RQ-3.1: Does consider geotagged tweets individually improve the perfor-

mance of �ne-grained geolocalisation?

• RQ-3.2: What is the e�ect of aggregating tweets within a prede�ned area

on accuracy when geolocalising tweets at a �ne-grained level?

In order to answer these research questions, we analysed the behaviour of the

existing state-of-the-art approaches in the context of �ne-grained geolocalisation

and compared them with our proposed solution of considering geotagged tweets

individually (See Section 3.3).

The �rst outcome of our experiments, reported in Section 3.4.1, addressed

research question RQ-3.1 and showed that our proposed solution of using in-

dividual geotagged tweets is capable of predicting the highest number of tweets

at a �ne-grained level (i.e., 1 km distance), and the average error distance is

signi�cantly (statistically) reduced (See Tables 3.4 and 3.5).

Second, we observed an interesting behaviour when using the BM25 retrieval

model in both approaches; aggregating the tweets and using individual tweets.

We noted that there is not a high di�erence in performance. In Section 3.4.1.1,

we concluded that due to the nature of tweets (short documents) and the inherent

characteristics of the BM25 model, formalised in Equation (3.3), information in

terms of term frequency and document length is low. This suggested that docu-

ment frequency provides the strongest evidence for �ne-grained geolocalisation.

Following the previous �nding, we then answered RQ-3.2 and derived a the-

oretical explanation of the e�ects that aggregating tweets have on the evidence

in the form of document frequency, which is a�ecting geolocalisation at a �ne-

grained level. In Section 3.4.2, we computed the distribution of error distance

committed by both approaches. Results were presented in Tables 3.4 and 3.5 for

our two datasets, Chicago and New York respectively.

We found that retrieval models that rely on document frequency (IDF and TF-

IDF) performed signi�cantly (statistically) the best when using individual tweets,
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but in contrast performed signi�cantly (statistically) worst when aggregating the

tweets. We concluded that document frequency is the less discriminative infor-

mation when aggregating the tweets, but becomes the most important evidence

when using individual tweets.

On the other hand, retrieval models that rely on term frequency and docu-

ment length performed the best within all the models that use the aggregation of

tweets. This �nding suggests that the evidence encoded in the form of document

frequency information is transformed into term frequency information when is

aggregating the text of the tweets into a virtual document, and such models still

capture it.

7.2.2 Predictability of the Geolocation of Tweets at a Fine-
Grained Level

In Chapter 4, we explored the predictability of tweets at a �ne-grained level. The

ranking approach proposed previously in Chapter 3 achieved an average error dis-

tance of approximately 4.693 km, which represents a con�dent area of 69.19 km2

(see Table 3.4). This is not su�cient for tasks that require data geolocated at a

�ne-grained level as de�ned in this thesis; 1 km error distance, which represents

3.14 km2. In this chapter, we hypothesised that the predictability of the geolo-

cation of tweets at a �ne-grained level is given by the correlation between their

content similarity and geographical distance to �nely-grained geotagged tweets

(see Hypothesis 2 in Section 1.2). We postulate some cases the content similar-

ity of the tweets does not always correlate with their geographical distance. These

cases are being considered by the ranking approach proposed in Chapter 3 which

leads to an increase in the average error distance of the predictions. By identifying

such cases, we can increase the quality of the predictions at a �ne-grained level.

To this end, we proposed to exploit the geographical evidence encoded within

the Top-N geotagged tweets in the ranking using a majority voting algorithm,

described in Section 4.3.

We discussed the predictability of the geolocation of tweets and postulated

a correlation between similarity and geographical distance, illustrated in Figure

4.1. In the context of such postulate, we validated our hypothesis by answering

the following research questions.
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• RQ-4.1: Can we obtain �ne-grained predictions based on the geographical

evidence between the Top-N most similar geotagged tweets?

• RQ-4.2: What is the percentage of tweets that we can predict at a �ne-

grained level?

In Section 4.5.1, we demonstrated that by exploiting the geographical evidence

within the Top-N most similar geotagged tweets in the ranking, we were capable

of identifying the cases of low correlation between similarity and geographical

distance (see Tables 4.1 and 4.2). Therefore, we reduced the average error distance

of the predictions, which answered the research question RQ-4.1. However, we

observed a trade-o� between error distance and coverage (number of tweets for

which we can �nd a prediction). We found that as we considered higher values of

N of the Top-N geotagged tweets, we achieved lower average error distance but

also lower coverage, which answered RQ-4.2. However, we observed that this

e�ect could be alleviated by weighting the votes in our majority voting algorithm

(see Section 4.3.2).

7.2.3 Improving The Quality of The Ranking for Fine-Grained
Geolocalisation

In Chapter 5, we explored whether the quality of the ranking of the Top-N geo-

tagged tweets is a�ecting the performance of the geolocalisation at a �ne-grained

level. We hypothesised that by improving the ranking of geotagged tweets (de-

noted as doc-tweets) with respect to a given non-geotagged tweet (denoted as

query-tweet), we can obtain more similar and geographically closer geotagged

tweets, and thus we can obtain a higher number of other �ne-grained predictions

(seeHypothesis 3 in Section 1.2). To improve the ranking, we proposed a learn-

ing to rank approach that re-ranks geotagged tweets based on their geographical

proximity and introduced multiple features for the task.

To validate the hypothesis presented in this chapter, we addressed the follow-

ing research questions.

• RQ-5.1: What is the best performing learning to rank algorithm to improve

the ranking?
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• RQ-5.2: Does improving the ranking of the geotagged tweets lead to better
�ne-grained geolocalisation?

• RQ-5.3: What set of features contributes the most to improve the accuracy

of �ne-grained geolocalisation?

Firstly, in Section 5.4.1 we addressed RQ-5.1 and evaluated di�erent learning

to rank algorithms to determine the best suitable for the �ne-grained geolocal-

isation. We compared six algorithms representing the three main categories in

the literature: point-wise, pair-wise and list-wise algorithms. We observed in

Tables 5.2 and 5.3 that LambdaMart (Wu et al., 2010) was the best performing

algorithm compared to the others.

Next, we evaluated our learning to rank approach in �ne-grained geolocalisa-

tion compared to our previous approaches developed in Chapter 3 and Chapter

4, which used the Vector Space Models using IDF weighting to perform the rank-

ing. In Tables 5.4 and 5.5, we observed that our learning to rank approach

outperformed previous models, answering RQ-5.2 and supporting the central

hypothesis that by improving the ranking we can also improve the performance

of �ne-grained geolocalisation. Moreover, we observed in Tables 5.6 and 5.7 that

we can decrease the average error distance with a small decrease in coverage,

compared to the approach in Chapter 4.

Finally, we observed that features extracted from the query-tweet, combined

with the features that model the relation between the query-tweet and the doc-

tweet (see Section 5.2.1), provided the best performance for �ne-grained geolo-

calisation, which addressed research question RQ-5.3.

7.2.4 E�ectiveness of The Fine-Grained Geolocalisation for
Tra�c Incident Detection

In Chapter 6, we investigated the applicability of the �ne-grained geolocalisation

approaches developed in this thesis in a practical scenario. We used the tra�c

incident detection task as a case study, which aims to use Twitter as a data

source for detecting tra�c incidents occurring in a city. We hypothesised that by

geolocalising non-geotagged tweets we could obtain a more representative sample

of geotagged data and, therefore, improve the e�ectiveness of the tra�c incident
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detection task (see Hypothesis 4 in Section 1.2). To this end, we integrated our

�ne-grained geolocalisation approach into the tra�c incident detection pipeline,

as illustrated in Figure 6.2. To validate our hypothesis, we answered the following

research questions:

• RQ-6.1: What is the e�ectiveness of geolocalised tra�c incident-related

tweets on the tra�c incident detection task?

• RQ-6.2: Does expand the sample of geotagged tweets with new geolocalised

data improves the performance of the tra�c incident detection task?

In order to evaluate the tra�c incident detection task, we compare the location

reported by the tra�c incident-related tweets (identi�ed using a state-of-the-art

text classi�er) to the real locations of o�cial reports of incidents occurring in the

same period of time. We geolocalised new tra�c incident-related tweets using

di�erent con�gurations of the geolocalisation approaches developed in Chapter 2,

Chapter 4 and Chapter 5. Based on previous evaluations of the geolocalisation

approaches (see Section 6.5), we selected two con�gurations of each approach that

provides di�erent trade-o�s between accuracy and coverage. Approaches that

provided high error distance and high coverage (denoted as HC), and approaches

that provided low error distance and low coverage (denoted as HA).

In Section 6.7.1, we evaluated the e�ectiveness in tra�c incident detection (see

Section 6.6.4) of new tra�c incident-related tweets geolocalised using the above

mentioned geolocalisation approaches. We observed that the new geolocalised

tweets were geographically closer to the real incidents. Moreover, in line with the

evaluation of the geolocalisation approaches, HC models were capable of detect-

ing a higher number of incidents, but most of their locations were not accurately

predicted (at 1 km distance or less). In contrast, most of the geolocalised tweets

using HA models were capable of predicting the location of the incidents accu-

rately, but in contrast, this model detected a lower number of incidents. These

results addressed the research question RQ-6.1 and demonstrated the e�ective-

ness of our �ne-grained geolocalisation approach. Additionally, such consistency

in behaviour between the geolocalisation evaluation and the tra�c incident de-

tection of tweets supports the generalisation of our �ne-grained geolocalisation

approaches.
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Finally, in order to address research question RQ-6.2, in Section 6.7.2 we

enhanced the already available tra�c incident geotagged tweets with the new

tweets geolocalised using our approaches and evaluated the overall performance

of the tra�c incident detection task. We observed an increase in performance

when using the enhanced sample against using the geotagged sample alone.

The previous results support the central hypothesis that by geolocalising non-

geotagged tweets and expanding the sample of already available geotagged tweets,

we can improve the performance of the incident detection task. Moreover, we

demonstrated the e�ectiveness of our �ne-grained geolocalisation approach in a

practical application.

7.3 Future Research Directions

This thesis has opened several interesting research directions to be investigated in

the future. The �rst research direction is to investigate the e�ect of the temporal

aspect of tweets in our model. It is known that time is an important feature to

take into account to improve geolocalisation (Dredze et al., 2016). Currently, our

model does not take temporal characteristics into account. Also, in this thesis,

we have evaluated our approaches using a period of a month (three weeks for

training and one week for testing). It would be interesting to investigate how the

stability of our model is a�ected by varying the size of the time windows for the

training and testing periods.

The second research direction could investigate the drawbacks of using grids in

our approach. The strategy of dividing the geographical space into �xed-size cells

su�ers from the data sparsity problem since some cells may not have su�cient

data points, and thus might be under-represented. It could be interesting to test

the performance of our geolocalisation approach when using di�erent strategies

of dividing the geographical space. There are several alternatives to discretise

the geographical space that can tackle the data-sparsity problem. For example,

an adaptive grid can be created by using a k-d tree data structure (Bentley,

1975), which provides high granularity (smaller areas) in dense regions and coarse

granularity (bigger areas) elsewhere. Another option could be to use a density-

based clustering algorithm, such as DBSCAN (Ester et al., 1996; Sander et al.,
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1998), to �nd dense, �ne-grained regions and use them as candidate locations.

The third research direction could be to investigate the e�ect of location name

disambiguation in our model. For example, given the word �7th avenue�, it may

refer to the 7th avenue in New York or the 7th avenue in Chicago. This ambiguity

issue can a�ect the accuracy of our model. Especially, the ambiguity problem can

be a signi�cant issue when dealing with non-geotagged tweets from the Twitter

stream, which can originate anywhere in the world. So far, we have evaluated

our approach in the context of a limited geographical area, which means that

the �ne-grained geolocalisation can be applied at the end of a pipeline that has

previously used a coarse-grained geolocalisation method to infer the location at

the city level. Therefore, it could be interesting to investigate the e�ect that the

ambiguity issue has on the e�ectiveness of �ne-grained geolocalisation, so we can

incorporate the best techniques to alleviate this problem in our approaches. This

can lead to the creation of a more generalised model that can be applied directly

to the Twitter stream.

Finally, it could be interesting to evaluate the e�ectiveness of our �ne-grained

geolocalisation approach in other practical applications, and how it can improve

their performance. Examples of alternative applications that require precise ge-

olocated Twitter data are real-time event detection (Atefeh and Khreich, 2015;

Crooks et al., 2013; Sakaki et al., 2010; Walther and Kaisser, 2013; Watanabe

et al., 2011; Xia et al., 2014; Zhang et al., 2016a), sentiment analysis (Agarwal

et al., 2011; Baucom et al., 2013; Kouloumpis et al., 2011; Pak and Paroubek,

2010), urban planning Frias-Martinez et al. (2012), topic detection (Hong et al.,

2012b), and disaster and emergency analysis (Ao et al., 2014; Imran et al., 2015;

McCreadie et al., 2016).
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Appendix A

Fined-Grained Geolocalisation
Models for Tra�c Incident
Detection

This appendix contains the evaluation results for the �ne-grained geolocalisation

approaches speci�ed in Chapter 6, Section 6.5. Fine-grained geolocalisation ap-

proaches are evaluated over a dataset of geotagged tweet collected in Chicago

during July 20126, as described in Section 6.3.1.

We report the geolocalisation evaluation metrics presented in Section 3.3.6,

namely Average Error Distance in kilometres (AED), Median Error Distance in

kilometres (MED), Accuracy at 1 kilometre (Acc@1km) and Coverage. The fol-

lowing tables are presented:

• Table A.1 presents resutls for the approaches discussed in Chapter 3.

• Table A.2 presents resutls for the approaches discussed in Chapter 4.

• Table A.3 presents resutls for the approaches discussed in Chapter 5.
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Table A.1: Evaluation results for the Chapter 3 models. The table present the
Average Error Distance in kilometres (AED), Median Error Distance in kilometres
(MED), Accuracy at 1 kilometre (Acc@1km) and Coverage. Signi�cant (statisti-
cally) di�erences with respect to the best Baseline (Aggregated using LMD) are
denoted by ∗ (p<0.01).

Chicago (25th July to 1st August)
Model Function AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
Aggregated BM25 4.496 1.074 48.96% 99.96%

Aggregated IDF 14.044 14.201 10.40% 99.96%

Aggregated TF_IDF 8.132 4.063 41.54% 99.96%

Aggregated DFR 6.325 1.966 46.00% 99.96%

Aggregated LMD 6.588 2.501 44.49% 99.96%

Individual BM25 1.762 0.000 81.70% 100.00%
Individual IDF 1.735 0.000 81.87% 100.00%
Individual TF_IDF 1.717 0.000 82.07% 100.00%
Individual DFR 1.767 0.000 81.64% 100.00%
Individual LMD 1.765 0.000 81.77% 100.00%
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Table A.2: Evaluation results for the Chapter 4 models. The table presents the
Average Error Distance in kilometres (AED), Median of Error distance (MDE),
Accuracy at Grid (A@Grid), Accuracy at 1 kilometre (A@1km) and Coverage for
our proposed approach (WMV) using the Top-N (@TopN) elements in the rank
and values of α.

Chicago (25th July to 1st August)
Model Con�g AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
WMV@Top-3 alpha = 0.0 3.379 0.474 67.01% 70.37%

WMV@Top-3 alpha = 1.0 3.993 0.563 58.75% 85.50%
WMV@Top-5 alpha = 0.0 2.240 0.471 78.34% 56.56%

WMV@Top-5 alpha = 1.0 3.681 0.520 62.00% 78.44%

WMV@Top-7 alpha = 0.0 1.850 0.471 82.49% 50.95%

WMV@Top-7 alpha = 1.0 3.110 0.471 67.92% 68.20%

WMV@Top-9 alpha = 0.0 1.719 0.471 84.29% 48.03%

WMV@Top-9 alpha = 1.0 2.651 0.471 72.49% 61.73%

WMV@Top-15 alpha = 0.0 1.566 0.465 86.60% 43.86%

WMV@Top-15 alpha = 1.0 2.216 0.471 77.47% 51.96%

WMV@Top-19 alpha = 0.0 1.533 0.470 86.45% 42.25%

WMV@Top-19 alpha = 1.0 2.080 0.471 78.86% 48.58%

WMV@Top-25 alpha = 0.0 1.505 0.471 87.03% 39.69%

WMV@Top-25 alpha = 1.0 2.031 0.471 79.68% 45.69%

WMV@Top-29 alpha = 0.0 1.444 0.471 87.42% 38.52%

WMV@Top-29 alpha = 1.0 2.010 0.471 79.58% 44.26%

WMV@Top-35 alpha = 0.0 1.424 0.471 87.75% 36.52%

WMV@Top-35 alpha = 1.0 2.024 0.471 79.28% 42.66%

WMV@Top-39 alpha = 0.0 1.404 0.471 87.86% 35.54%

WMV@Top-39 alpha = 1.0 2.007 0.471 79.40% 41.73%

WMV@Top-45 alpha = 0.0 1.408 0.471 87.93% 34.35%

WMV@Top-45 alpha = 1.0 1.970 0.471 79.29% 40.74%

WMV@Top-49 alpha = 0.0 1.423 0.471 87.74% 33.90%

WMV@Top-49 alpha = 1.0 1.940 0.471 79.47% 39.90%
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Table A.3: Evaluation results for the Chapter 5 models. We present results for
our learning to rank approaches (L2Geo) and (L2Geo+MV) considering the Top-
3, to Top-49 most similar geotagged tweets. Table reports average error distance
(AED), median error distance (MED), accuracy at 1 km (Acc@1km) and coverage
(Coverage).

Chicago (25th July to 1st August)
Model Features AED(km)↓ MED(km)↓ Acc@1km↑ Coverage↑
L2Geo Query_Common 1.578 0.435 86.03% 100.00%
L2Geo+MV@Top-3 Query_Common 1.221 0.434 89.36% 73.47%

L2Geo+MV@Top-5 Query_Common 1.127 0.435 90.34% 65.15%

L2Geo+MV@Top-7 Query_Common 1.111 0.435 90.61% 60.29%

L2Geo+MV@Top-9 Query_Common 1.123 0.435 90.63% 56.97%

L2Geo+MV@Top-11 Query_Common 1.127 0.435 90.63% 54.26%

L2Geo+MV@Top-13 Query_Common 1.122 0.435 90.61% 52.32%

L2Geo+MV@Top-15 Query_Common 1.113 0.435 90.62% 50.67%

L2Geo+MV@Top-17 Query_Common 1.108 0.435 90.55% 49.00%

L2Geo+MV@Top-19 Query_Common 1.126 0.436 90.29% 47.69%

L2Geo+MV@Top-21 Query_Common 1.152 0.439 90.12% 46.53%

L2Geo+MV@Top-23 Query_Common 1.194 0.440 89.84% 45.47%

L2Geo+MV@Top-25 Query_Common 1.191 0.442 89.74% 44.79%

L2Geo+MV@Top-27 Query_Common 1.233 0.447 89.43% 43.99%

L2Geo+MV@Top-29 Query_Common 1.262 0.449 89.08% 43.14%

L2Geo+MV@Top-31 Query_Common 1.252 0.450 89.12% 42.37%

L2Geo+MV@Top-33 Query_Common 1.244 0.451 89.14% 41.71%

L2Geo+MV@Top-35 Query_Common 1.246 0.458 88.97% 41.33%

L2Geo+MV@Top-37 Query_Common 1.251 0.465 88.94% 40.73%

L2Geo+MV@Top-39 Query_Common 1.257 0.468 88.86% 40.26%

L2Geo+MV@Top-41 Query_Common 1.255 0.468 88.87% 39.69%

L2Geo+MV@Top-43 Query_Common 1.253 0.470 88.77% 39.06%

L2Geo+MV@Top-45 Query_Common 1.266 0.471 88.55% 38.62%

L2Geo+MV@Top-47 Query_Common 1.246 0.471 88.61% 38.14%

L2Geo+MV@Top-49 Query_Common 1.253 0.471 88.46% 37.80%
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Detailed Results for Tra�c Incident
Detection

B.1 E�ectiveness of Geolocalised Tweets

Table B.1: Accuracy and Detection Rate at 5, 10, 15, 20, 25 and 30 minutes after
the incident (TAI) of geolocalised tra�c incident-related tweets. We present re-
sults for tweets geolocalised by the geolocalisation approaches described in Section
6.6.1.

Accuracy↑
TAI 5 min 10 min 15 min 20 min 25 min 30 min

C3-Agg 1.42% 2.49% 3.68% 4.62% 5.65% 6.71%

C3-Indv 1.00% 1.80% 2.68% 3.33% 4.08% 4.84%

C4-HA 2.70% 3.93% 5.41% 6.88% 8.11% 8.85%
C4-HC 1.27% 1.94% 2.87% 3.58% 4.58% 5.29%

C5-HA 2.80% 3.87% 4.95% 6.45% 7.96% 8.82%

C5-HC 1.14% 1.94% 2.63% 3.42% 4.16% 4.87%

Detection Rate↑
TAI 5 min 10 min 15 min 20 min 25 min 30 min

C3-Agg 6.43% 8.92% 10.95% 12.08% 12.87% 14.11%

C3-Indv 6.32% 10.50% 14.33% 16.25% 17.83% 19.41%
C4-HA 1.13% 1.35% 2.03% 2.60% 3.39% 3.61%

C4-HC 5.87% 8.35% 11.17% 12.87% 14.90% 16.03%

C5-HA 1.35% 1.69% 2.26% 2.82% 3.50% 3.50%

C5-HC 6.66% 9.59% 12.08% 14.11% 16.82% 17.83%
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B.2 Expanding The Sample Of Geotagged Tweets

Table B.2: Accuracy and Detection Rate at 5, 10, 15, 20, 25 and 30 minutes
after the incident (TAI) of tra�c crash geotagged tweets expanded with tra�c
incident-related geolocalised tweets. We present results for the geotagged tweets
alone (Geotagged compared to the expanded sample using crash-realated tweets
geolocalised using the geolocalisation approaches described in Section 6.6.1.

Accuracy↑
TAI 5 min 10 min 15 min 20 min 25 min 30 min

Geotagged 1.84% 3.40% 4.11% 5.11% 6.10% 7.52%

Geotagged+C3-Agg 1.46% 2.58% 3.72% 4.67% 5.69% 6.79%

Geotagged+C3-Indv 1.08% 1.96% 2.82% 3.50% 4.28% 5.10%

Geotagged+C4-HA 2.16% 3.60% 4.59% 5.76% 6.83% 8.00%

Geotagged+C4-HC 1.34% 2.12% 3.03% 3.78% 4.77% 5.57%

Geotagged+C5-HA 2.22% 3.59% 4.44% 5.64% 6.84% 8.03%
Geotagged+C5-HC 1.21% 2.08% 2.78% 3.58% 4.35% 5.13%

Detection Rate↑
TAI 5 min 10 min 15 min 20 min 25 min 30 min

Geotagged 1.69% 2.93% 3.50% 3.84% 4.51% 5.53%

Geotagged+C3-Agg 7.45% 10.38% 12.42% 13.77% 14.67% 15.91%

Geotagged+C3-Indv 7.67% 11.96% 15.46% 17.49% 19.30% 20.88%
Geotagged+C4-HA 2.82% 4.18% 5.30% 5.87% 7.22% 8.01%

Geotagged+C4-HC 7.11% 9.93% 12.42% 13.77% 16.03% 17.04%

Geotagged+C5-HA 3.05% 4.51% 5.53% 6.32% 7.34% 8.01%

Geotagged+C5-HC 7.79% 11.29% 13.32% 15.46% 18.28% 19.41%
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