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Abstract

Queries submitted to a web search engine are typically short and often

ambiguous. With the enormous size of the Web, a misunderstanding

of the information need underlying an ambiguous query can misguide

the search engine, ultimately leading the user to abandon the origi-

nally submitted query. In order to overcome this problem, a sensible

approach is to diversify the documents retrieved for the user’s query.

As a result, the likelihood that at least one of these documents will

satisfy the user’s actual information need is increased.

In this thesis, we argue that an ambiguous query should be seen as

representing not one, but multiple information needs. Based upon this

premise, we propose xQuAD—ExplicitQuery AspectDiversification,

a novel probabilistic framework for search result diversification. In

particular, the xQuAD framework naturally models several dimen-

sions of the search result diversification problem in a principled yet

practical manner. To this end, the framework represents the possible

information needs underlying a query as a set of keyword-based sub-

queries. Moreover, xQuAD accounts for the overall coverage of each

retrieved document with respect to the identified sub-queries, so as to

rank highly diverse documents first. In addition, it accounts for how

well each sub-query is covered by the other retrieved documents, so as

to promote novelty—and hence penalise redundancy—in the ranking.

The framework also models the importance of each of the identified

sub-queries, so as to appropriately cater for the interests of the user

population when diversifying the retrieved documents. Finally, since

not all queries are equally ambiguous, the xQuAD framework caters

for the ambiguity level of different queries, so as to appropriately

trade-off relevance for diversity on a per-query basis.



The xQuAD framework is general and can be used to instantiate sev-

eral diversification models, including the most prominent models de-

scribed in the literature. In particular, within xQuAD, each of the

aforementioned dimensions of the search result diversification problem

can be tackled in a variety of ways. In this thesis, as additional contri-

butions besides the xQuAD framework, we introduce novel machine

learning approaches for addressing each of these dimensions. These in-

clude a learning to rank approach for identifying effective sub-queries

as query suggestions mined from a query log, an intent-aware approach

for choosing the ranking models most likely to be effective for esti-

mating the coverage and novelty of multiple documents with respect

to a sub-query, and a selective approach for automatically predicting

how much to diversify the documents retrieved for each individual

query. In addition, we perform the first empirical analysis of the role

of novelty as a diversification strategy for web search.

As demonstrated throughout this thesis, the principles underlying the

xQuAD framework are general, sound, and effective. In particular, to

validate the contributions of this thesis, we thoroughly assess the ef-

fectiveness of xQuAD under the standard experimentation paradigm

provided by the diversity task of the TREC 2009, 2010, and 2011 Web

tracks. The results of this investigation demonstrate the effectiveness

of our proposed framework. Indeed, xQuAD attains consistent and

significant improvements in comparison to the most effective diversifi-

cation approaches in the literature, and across a range of experimental

conditions, comprising multiple input rankings, multiple sub-query

generation and coverage estimation mechanisms, as well as queries

with multiple levels of ambiguity. Altogether, these results corrobo-

rate the state-of-the-art diversification performance of xQuAD.
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Chapter 1

Introduction

Search engines have become the primary mechanism for information retrieval (IR)

on the World Wide Web. In particular, the leading web search engine has recently

reported to be answering a total of 100 billion queries each month, and to be

tracking over 30 trillion unique URLs (Cutts, 2012). Nevertheless, the enormous

scale at which content is produced and consumed on the Web is not the only

challenge faced by current web search engines. An equally challenging task, which

is of particular interest to this thesis, is understanding the information needs

underlying the queries submitted by web search users (Spärck-Jones et al., 2007).

Queries submitted to a web search engine are typically short (Jansen et al.,

2000) and often carry some degree of ambiguity (Song et al., 2009). On the one

hand, at least 16% of all queries submitted to a web search engine are genuinely

ambiguous, in that they allow for multiple interpretations of the user’s under-

lying information need to be drawn (Song et al., 2009). For instance, a user

issuing the query “bond” could mean the financial instrument for debt security,

the classical crossover string quartet “Bond”, or Ian Fleming’s secret agent char-

acter “James Bond”. On the other hand, even those queries with a single, clearly

defined interpretation—and, arguably, every query to some extent—may still be

underspecified, in that it is not clear which aspect of this interpretation the user

is actually interested in (Clarke et al., 2008). For example, a user searching for

“james bond” may be interested to learn about the actors that played the secret

agent character in the various films of the series, or when the next film will be

released, or simply where to buy the entire film collection.
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1. Introduction

The most trivial approach to tackle the ambiguity of a query could be to

simply ignore it. Alternatively, a search engine could focus the retrieval process

on documents satisfying the most plausible (e.g., the most popular) aspect1 of the

query. In both cases, there is an inherent risk of leaving the user unsatisfied, if

none of the retrieved documents matches the actual information need underlying

the query. A more diligent approach could be then to ask the users for feedback on

what they actually mean (Baeza-Yates et al., 2004). However, it is unreasonable

to expect that a user will always be willing to provide such feedback (Hearst,

2009). When a (usually short) query is the only evidence of the user’s information

need available to the search engine, a more sensible approach is to diversify the

documents retrieved for this query (Clarke et al., 2008). By doing so, the search

engine can maximise the chance that the user will find at least one of these

documents to be relevant to their information need (Chen & Karger, 2006).

Diversifying the search results usually involves a departure from the indepen-

dent relevance assumption underlying the well-known probability ranking princi-

ple in IR (Cooper, 1971; Robertson, 1977). Indeed, it is arguable whether users

will still find a given document relevant to their information need once other doc-

uments satisfying this need have been observed. Therefore, a search engine should

consider not only the relevance of each document, but also how relevant the doc-

ument is in light of the other retrieved documents (Goffman, 1964). By doing

so, the retrieved documents should provide the maximum coverage and minimum

redundancy with respect to the aspects underlying a query (Clarke et al., 2008).

Ideally, the covered aspects should also reflect their relative importance, as per-

ceived by the user population (Agrawal et al., 2009). In its general form, this is an

NP-hard problem (Carterette, 2009). Most previous approaches to this problem

deploy a greedy approximation, inspired by the notion of maximal marginal rele-

vance (Carbonell & Goldstein, 1998). In common, they seek to promote diversity

by comparing the documents retrieved for a given query to one another, in order

to iteratively select those that are the most relevant to the query while being the

most dissimilar to the documents already selected. Therefore, these approaches

implicitly assume that similar documents cover similar aspects of the query, and

should hence be demoted, in order to achieve a diversified ranking.

1Unless otherwise noted, we will refer to “aspects” and “interpretations” indistinctly.
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Alternatively, the broad topic underlying an ambiguous or underspecified

query can be usually decomposed into its constituent sub-topics. As a result, we

can explicitly account for the different aspects of the query, in order to produce

a diverse ranking of documents. In this thesis, we introduce a novel framework

for search result diversification that exploits such an intuition. In particular, our

Explicit Query Aspect Diversification (xQuAD) framework uncovers different

aspects underlying the original query in the form of sub-queries, and estimates

the relevance of the retrieved documents with respect to each identified sub-query.

Hence, we can take into account both the variety of aspects covered by a single

document, as well as the novelty of this document in face of the aspects already

covered by the other retrieved documents. Moreover, the relative importance of

each identified sub-query can be directly incorporated within our framework, so

as to guide the diversification process towards more plausible aspects of the initial

query. This thesis thoroughly evaluates the proposed framework as well as several

strategies for instantiating its various components, both analytically as well as

empirically. Results using data from the diversity task of the TREC 2009, 2010,

and 2011 Web tracks (Clarke et al., 2009a, 2010, 2011b) attest the effectiveness

of the proposed framework in contrast to the current state-of-the-art.

1.1 Thesis Statement

The statement of this thesis is that an effective diversification performance can be

attained by explicitly representing the multiple possible information needs under-

lying a query as sub-queries. In particular, by inferring the relative importance of

each sub-query, the retrieved documents can better cater for the needs of the user

population. Moreover, by maximising the relevance of the retrieved documents

with respect to multiple sub-queries, a high coverage of these sub-queries can be

achieved. Furthermore, by estimating the relevance of the retrieved documents to

already well covered sub-queries, a high novelty can also be attained. Finally, by

inferring the level of ambiguity of different queries, a balance between promoting

relevance or diversity can be effectively attained.
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1.2 Thesis Contributions

The key contributions of this thesis can be summarised as follows:

1. We approach the diversification problem from a user-centric perspective, by

explicitly attempting to identify the multiple information needs that may

underlie an ambiguous query, based upon past reformulations of this query.

Traditional diversification approaches in the literature exploit intrinsic features

of the retrieved documents (e.g., their constituent terms) as surrogates for these

documents’ coverage of the actual information needs underlying a query. In

this thesis, we show that a representation that explicitly aims to model these

information needs as sub-queries is more effective. To this end, we exploit query

suggestions mined from the query logs of web search engines as sub-queries.

2. We introduce a novel probabilistic framework for search result diversifica-

tion that is both principled, general, and effective.

The explicit representation of query aspects as sub-queries leads to several ranking

criteria that intuitively capture the requirements of the diversification problem,

namely, that the search results should have maximum coverage of the possible

information needs underlying the query with minimum redundancy, that differ-

ent information needs may be more or less probable given the query, and that

different queries may require different amounts of diversification. We model all

these requirements as components of a probabilistic framework, which lays the

foundation for a general and effective approach to search result diversification.

3. We thoroughly evaluate all the components of the proposed framework and

their impact on the performance of the framework as a whole.

Our thorough experiments validate the aforementioned contributions in compar-

ison to state-of-the-art diversification approaches from the literature. Moreover,

we meticulously investigate alternative instantiations for the various components

of our proposed framework. As a result, we further contribute effective solutions

to the related problem of identifying effective query aspects from a query log,

as well as the problem of diversifying the search results in light of query aspects

with different intents, or in light of queries with different levels of ambiguity.
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1.3 Origins of the Material

Most of the material presented in this thesis has previously appeared in several

journal and conference papers published in the course of this PhD programme:

• Chapter 3 describes a taxonomy for diversification approaches in the litera-

ture, as initially proposed by Santos et al. (ECIR, 2010e) and later extended

by Santos et al. (IRJ, 2012b). A discussion of one of the approaches de-

scribed in this chapter—orthogonal to the one introduced in this thesis

and focusing on efficiency issues—previously appeared in the works by Gil-

Costa, Santos, Macdonald & Ounis (SPIRE, 2011) and Gil-Costa, Santos,

Macdonald & Ounis (JDA, 2013).

• Chapter 4 provides motivations for a user-centric diversification, as initially

advocated by Santos & Ounis (DDR, 2011). In addition, this chapter also

identifies the key requirements for an effective diversification performance,

as first discussed by Santos et al. (ECIR, 2010e), and describes a probabilis-

tic diversification framework that fulfils these requirements, as originally

introduced by Santos et al. (WWW, 2010a).

• Chapter 5 markedly extends the empirical evaluation conducted by San-

tos et al. (WWW, 2010a), in order to validate the proposed framework in

contrast to the current state-of-the-art.

• Chapter 6 extends the work by Santos et al. (IRJ, 2013) on identifying

effective query suggestions for an ambiguous query as sub-queries.

• Chapter 7 extends the investigations by Santos et al. (SIGIR, 2011d) on

effective estimations of document coverage and novelty.

• Chapter 8 builds upon the simulation analysis conducted by Santos et al.

(IRJ, 2012b) on the role of novelty for search result diversification.

• Chapter 9 builds upon the work by Santos et al. (CIKM, 2010b) on diver-

sifying the search results for queries with different levels of ambiguity.
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• Chapter 10 includes future directions inspired by Santos et al. (ICTIR,

2011a) on search result diversification across multiple search verticals, such

as news, images, and product search, as well as motivations for a unified

machine learning approach to explicitly diversify web search results, based

upon the findings reported by Santos et al. (SIGIR, 2011e).

During the course of this PhD programme, the approaches introduced in this

thesis have also been evaluated in the context of the two major international

forums for research on web search result diversification: the Text REtrieval Con-

ference (TREC),2 run by the US National Institute of Standards and Technology

(NIST), and the Workshop on Evaluation of Information Access Technologies

(NTCIR),3 run by the Japanese National Institute of Informatics (NII). The for-

mer forum evaluates diversification approaches for English queries (Clarke et al.,

2009a, 2010, 2011b, 2012), while the latter is concerned with diversification for

the Chinese and Japanese Web (Song et al., 2011a). In addition to the aforemen-

tioned publications, some of the approaches introduced in this thesis have been

described in the following TREC and NTCIR reports:

• McCreadie, Macdonald, Ounis, Peng & Santos (2009), Santos et al. (2010d),

McCreadie, Macdonald, Santos & Ounis (2011), and Limsopatham, Mc-

Creadie, Albakour, Macdonald, Santos & Ounis (2012) describe our partic-

ipations in the diversity task of the TREC 2009-2012 Web tracks.

• Santos et al. (2011f) describe our participation in the NTCIR-9 Intent task.

In our participations in the diversity task of the TREC Web track, the frame-

work proposed in this thesis attained the top performance among the participant

groups (best “category B” submission in TREC 2009 and TREC 2010, best over-

all submission in TREC 2011 and TREC 2012) (Clarke et al., 2009a, 2010, 2011b,

2012), attesting to its effective diversification performance. In our participation

in the NTCIR-9 Intent task, our proposed framework ranked second among the

participant groups (Song et al., 2011a), showing that the ideas underlying the

framework are sound and can generalise effectively to non-English data.

2http://trec.nist.gov/
3http://research.nii.ac.jp/ntcir/
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1.4 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2 describes background material on ranking for IR on the Web,

from the basics of a web search engine, to classical approaches for query-

dependent and query-independent ranking, to more recent ones that auto-

matically learn an effective ranking model given a set of training queries.

The chapter ends with a discussion about retrieval evaluation in IR, laying

the foundations for the several experiments conducted in this thesis.

• Chapter 3 begins by describing search result diversification from a historical

perspective, as a natural generalisation of relevance-oriented ranking. The

diversification problem is then formalised as an optimisation problem, and

its computational complexity is analysed. In addition, the chapter organises

and describes related approaches to search result diversification. Lastly, the

discussion about retrieval evaluation initiated in Chapter 2 is extended to

encompass the evaluation of approaches that aim to promote diversity.

• Chapter 4 introduces the xQuAD framework, including its motivation from

a user-centric perspective. The framework’s optimisation objective is then

formalised in probabilistic terms, as a mixture of the probabilities that a re-

trieved document is relevant to the query and that this document is diverse

given the possible information needs underlying the query. The various

components that naturally emerge in the formulation of these two proba-

bilities are then described, and an example application of the framework is

provided. Lastly, the commonalities and differences between the proposed

framework and related approaches from the literature are discussed.

• Chapter 5 is the first of a series of chapters reporting on the experimental

evaluation of the xQuAD framework. In this chapter, the experimental

methodology that serves as the basis for the experiments in the subsequent

chapters of the thesis is also described. The framework is then thoroughly

validated in comparison to effective representatives of the various families

of diversification approaches in the literature.
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• Chapter 6 evaluates the sub-query generation and sub-query importance

components of the xQuAD framework. In particular, the chapter introduces

a novel machine learning approach for generating effective sub-queries from

a limited sample of the query log of a commercial web search engine, in

contrast to sub-queries generated by this search engine itself and by a state-

of-the-art query suggestion mechanism from the literature.

• Chapter 7 evaluates the document coverage component of xQuAD. To this

end, a novel machine learning approach is introduced to leverage the au-

tomatically detected intent of each sub-query in order to choose the most

effective ranking model to be applied for this sub-query.

• Chapter 8 further evaluates the role played by novelty as a diversification

strategy in comparison to and in combination with coverage. In particular,

through a simulation analysis, we uncover the limitations of novelty and its

role at differentiating between documents with similar coverage.

• Chapter 9 evaluates xQuAD’s diversification trade-off component, in order

to determine not only when to diversify the search results, but also by how

much. To this end, the chapter introduces a supervised approach to auto-

matically adapt the trade-off for queries with different levels of ambiguity.

• Chapter 10 closes this thesis by providing a summary of the contributions

and the conclusions made throughout the chapters. Several future direc-

tions are then presented, regarding alternative approaches for estimating

the several components of the framework, as well as modelling directions

for extending the framework for other search scenarios.
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Chapter 2

Web Information Retrieval

Information retrieval (IR) deals with the representation, storage, organisation of,

and access to information items (Baeza-Yates & Ribeiro-Neto, 2011). The overall

goal of an IR system can be stated as to provide items that are relevant to a

user’s information need. In the context of text retrieval, which is the focus of this

thesis, information items typically correspond to unstructured or semi-structured

documents, while information needs are represented as natural language queries.

The key challenge faced by an IR system is to determine the relevance of a

document given a user’s query (Goffman, 1964). Since relevance is a prerogative

of the user, the IR system can at best estimate it. This task is further aggravated

by the fact that both queries and documents are semantically ambiguous expres-

sions of information in natural language. Such an inherent ambiguity precludes

a precise match between information needs and items, as would be the case in

a data retrieval system, such as a relational database (Codd, 1970). In order to

be able to effectively answer a user’s query, an IR system must be able to first

understand the information need underlying this query. In turn, this informa-

tion need may convey distinct user intents, from a general search for information

about a topic, to a search for a particular website (Broder, 2002).

The primary application of interest for this thesis is web search. With this in

mind, Section 2.1 describes the basic retrieval process of a web search engine and

introduces the main components in this process. Section 2.2 further describes

several approaches devoted to ranking documents in a web search setting. Lastly,

Section 2.3 describes current approaches for web search evaluation.
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2.1 Web Search Engines

Web search engines are arguably the most popular instantiation of an IR system.

A recent report revealed that at least 100 billion searches are conducted on the

leading commercial web search engine each month, amounting to over 3.3 billion

searches each day (Cutts, 2012). Besides understanding the information needs

of such a mass of users with varying interests and backgrounds, web search en-

gines must also strive to understand the information available on the Web. In

particular, the decentralised nature of content publishing on the Web has led to

the formation of an unprecedentedly large repository of information, comprising

over 30 trillion uniquely addressable documents (Cutts, 2012). While the lack of

a central control is key for the democratisation of the Web, it also results in a

substantial heterogeneity of the produced content, from its language and writing

style, to its authoritativeness and trustworthiness (Arasu et al., 2001).

Another distinctive characteristic of the Web compared to traditional infor-

mation repositories is its interconnected nature. Indeed, not only do web authors

publish massive amounts of information, but they also create links (also known

as hyperlinks) between the published information (Berners-Lee, 1989). As a re-

sult, the Web can be viewed as a directed graph, with documents represented as

nodes, and hyperlinks between documents represented as directed edges (Klein-

berg et al., 1999). Understanding the web graph is crucial for understanding the

structure and dynamics of the Web itself, but it also plays a fundamental role in

designing effective and efficient web search engines (Broder et al., 2000).

The massive-scale, heterogeneous, and interconnected nature of theWeb makes

it a particularly challenging environment for search (Arasu et al., 2001). To cope

with this challenge, web search engines are typically designed with three core com-

ponents: crawler, indexer, and query processor. Figure 2.1 provides a schematic

view of these components. In particular, a crawler browses the Web in order to

collect documents into a local corpus. This corpus is processed by an indexer,

which produces data structures for efficient access to the contents of the corpus.

The resulting structures are then used by the query processor, in order to produce

a ranking of documents that are likely to be relevant to a user’s query. In the

remainder of this section, we briefly describe each of these components.
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Query 

Processor
Query 

Processor

IndexerIndexer

CrawlerCrawler

World Wide Web

Corpus

Crawler

Indexer

Query 

Processor

Index IndexIndex

Figure 2.1: Schematic view of a web search engine.

2.1.1 Crawling

Crawling is the process by which search engines collect documents from the Web

into a local corpus. Such a corpus can be then processed by the search engine in

order to allow users to efficiently locate information. The overall goal of crawling

is to build a corpus as comprehensive as possible, in as little time as possible (Pant

et al., 2004). To this end, a web crawler must maximise its crawling rate, while

making efficient use of its own resources (Castillo, 2004), as well as the resources

of the servers that host the desired documents (Thelwall & Stuart, 2006).

Crawling the Web can be seen as a graph traversal problem (Broder et al.,

2000). As shown in Figure 2.2, at all times, the crawler maintains a list of URLs to

be visited, the so-called crawling frontier, which is initially filled with a few seed

URLs. While the frontier is not empty, the next URL to be visited is removed

from it and downloaded by a fetcher module, after a DNS resolver translates the

URL domain into an IP address. The fetched document is processed by the crawl

controller and the extracted contents are stored locally for indexing, as will be

discussed in Section 2.1.2. The URLs extracted from this document—and the

document’s own URL, for continuous crawls—are inserted back into the frontier,

so that they can be visited by the crawler at a later time (Manning et al., 2008).
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Figure 2.2: Schematic view of a crawler.

Not all content on the Web can be crawled directly. On the one hand, the

surface Web comprises content that is reachable by following hyperlinks be-

tween documents in the web graph. On the other hand, the deep Web com-

prises content that is generated dynamically, typically in response to a user ac-

tion (e.g., after submitting information through a form, or entering a password-

protected area). As a result, the deep Web is orders of magnitude larger than the

surface Web (Bergman, 2001),1 and can only be sampled with special-purpose

crawlers (Raghavan & Garcia-Molina, 2000). Nevertheless, the surface Web is

itself massive (Cutts, 2012), making crawling a challenging task.

While new documents are created and existing ones are modified at a massive

scale, the resources available for crawling—notably, storage and bandwidth—are

limited. To make crawling scalable, web crawlers must consider carefully which

URLs to visit, and how often to revisit each URL (Castillo, 2004). The decision of

which URLs to visit depends on the predicted usefulness of each URL regardless of

any particular query. Such a decision could be based on the global importance of

the document referred to by the URL or its perceived quality, as will be discussed

in Section 2.2.2. However, in practice, it has been shown that a simple breadth-

first search is an effective traversal strategy, as it identifies important pages early

in the crawling process (Cho et al., 1998; Najork & Wiener, 2001).

1Strictly speaking, the deep Web can be infinitely large, as some web applications can
generate content indefinitely (e.g., a calendar with “previous” and “next” hyperlinks).
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The decision of how often to revisit a particular URL can be even more in-

volved. With the dynamic nature of the Web, by the time a web crawler has

finished crawling its frontier, many events could have happened. These events

can include the creation, update, or deletion of documents. Moreover, different

documents evolve at different rates (Fetterly et al., 2004). For instance, docu-

ments related to news, sports, and personal pages tend to change more frequently

than those hosted in educational or governmental domains (Adar et al., 2009).

At the extreme, recent years have witnessed the emergence of social media, which

encourage real-time publishing on collaborative projects, blogs, microblogs, social

networking sites, and virtual game worlds (Kaplan & Haenlein, 2010). To provide

access to the wealth of information on the Web, a crawler must be able to adapt

itself to the publishing patterns of such heterogeneous outlets, e.g., by crawling

more often those pages that change more often (Edwards et al., 2001; Ntoulas

et al., 2004). As will be discussed in the next section, these considerations are

also important for deciding how to efficiently index the crawled content.

2.1.2 Indexing

The overall goal of indexing is to create a representation of the documents in the

local corpus suitable for automatic processing by a search engine (Baeza-Yates

& Ribeiro-Neto, 2011). The devised document representations are then stored in

appropriate data structures for efficient access by the query processor.

Given a corpus of documents (e.g., crawled from the Web), each document

is indexed following the general process illustrated in Figure 2.3. Initially, a

parser extracts the textual content from each document. The extracted content

is then processed by a tokeniser, which splits the raw text into individual tokens.

An analyser performs multiple text operations on individual tokens and records

their occurrences in each document. In this process, two main data structures

are created, which are at the core of modern indexing architectures (Dean, 2009).

The first of these is a lexicon, which stores information for all unique terms in the

corpus, such as their total number of occurrences and the number of documents

where they occur. The second structure is an inverted file, which stores, for each

term in the lexicon, a posting list, comprising information on the occurrence

13
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of the term in different documents, such as the frequency of the term in each

document. To enable efficient storage and retrieval, both structures are typically

compressed (Witten et al., 1999). Indexing may be performed in a single batch,

in which case the whole corpus must be re-indexed when there is an update, or

incrementally, through small atomic operations (Peng & Dabek, 2010).

Corpus

Parser

Tokeniser

Analyser

Lexicon
Inverted 

Index

Lexicon
Inverted 

Index

Lexicon
Inverted 

Index

Figure 2.3: Schematic view of an indexer.

Parsing web documents can be a complex task. With the global and demo-

cratic nature of the Web, web documents can have a variety of content types

and character encodings, which may not be immediately identifiable from the

document itself (in an HTML header) or from its provider (in an HTTP re-

sponse header) (Croft et al., 2009). Even pure textual content may contain noise.

Indeed, web documents typically comprise irrelevant content besides their core

topic, such as advertisements, client-side scripting code, and frequently a whole

HTML template structure. Such a noisy content can hurt not only the effec-

tiveness of a search engine, but also its efficiency, since more content needs to

be stored and processed. In order to remove noise and extract cleaner content

for indexing, “boilerplate removal” algorithms can be applied (e.g., Vieira et al.,

2006; Chakrabarti et al., 2007; Evert, 2008; Kohlschütter et al., 2010).

Tokenisation is a relatively trivial task for most western languages, in which

tokens can be separated by a whitespace or a punctuation character. On the other

hand, languages such as German do not separate compound words. In the ex-

treme, East Asian languages such as Chinese, Japanese, and Korean have no word

boundaries at all. A similar problem, common to all languages, is the segmenta-
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tion of queries and URLs (Risvik et al., 2003; Tan & Peng, 2008). An effective

approach to this problem is word segmentation based on prior knowledge, by de-

ploying machine-learned sequence models, such as hidden Markov models (Zhang

et al., 2003). For East Asian languages, a simple yet effective alternative is to

split the textual stream into fixed-length character sequences (typically, two char-

acters long), which can capture the semantics of most individual syllables without

having to rely on lexical resources (Manning et al., 2008).

Not all identified tokens are directly useful for search. For this reason, each

token can be analysed and transformed through a series of text operations before

being indexed. For instance, a search engine can choose not to index too common

terms. Such terms, known as stopwords, possess little discriminative power for

deciding which documents should be retrieved in response to a query. In addition,

their presence can also impact efficiency, since their posting lists can be almost

as long as the number of documents in the corpus. Besides stopword removal,

another common text operation is stemming, a process that reduces multiple

words to their common grammatical root, so as to increase the chance of retrieving

documents that contain a different variant of the query terms (Porter, 1980). For

instance, after stemming, the terms “retrieval”, “retriever”, and “retrieving” can

be all reduced to their common root, “retriev”. Alternatively, the search engine

may choose to index all the identified tokens in their original form, in which case

text operations are delayed until the query processing stage. As will be discussed

in Section 2.1.3, this choice is more flexible, as it allows for text operations to be

deployed only when they are predicted to be helpful (Peng et al., 2007a).

Different information about terms, documents, and the occurrence of terms

in documents can be indexed. The most basic information, which is one of the

pillars for query-dependent ranking, as will be discussed in Section 2.2.1, is the

frequency of a term in a document (Luhn, 1957). Recording the position where

each term occurs in each document can also help improve the effectiveness of a

search engine (Zobel & Moffat, 2006). For instance, the terms “information” and

“retrieval” appearing next to each other can be a strong indicator of the relevance

of a document for the query “information retrieval”. In addition, term frequency

and positional information can be recorded for different fields of a document,

such as its title, URL, or body (Zaragoza et al., 2004). Another valuable source
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of evidence, which conveys how a document is described by the rest of the Web,

is the anchor text of the incoming hyperlinks to this document (Craswell et al.,

2001). Finally, several other features that can help infer the prior relevance of

a document regardless of any query can be computed and stored at indexing

time (Das & Jain, 2012). Various such features will be discussed in Section 2.2.2.

2.1.3 Query Processing

Query processing is the component responsible for answering users’ queries (Arasu

et al., 2001). As illustrated in Figure 2.1, when a user poses a query, the search

engine examines its index structures to locate the most relevant documents for this

query. Given the size of the Web (Alpert & Hajaj, 2008) and the short length of

typical web search queries (Jansen et al., 2000), there may be billions of matching

documents for a single query. In order to be effective, a search engine must be

able to rank the returned documents, so that the most relevant documents are

presented ahead of less relevant ones (Baeza-Yates & Ribeiro-Neto, 2011).

Query processing consists of three basic operations, as illustrated in Figure 2.4.

Initially, the search engine receives a query, as a typically short and often under-

specified representation of the user’s information need (Song et al., 2009). This

query may go through a series of query understanding operations, aimed to over-

come the gap between the user’s information need and the ill-defined representa-

tion of this need in the form of a query (Li, 2010). This stage is important, since

misinterpreting the user’s information need implies that relevant documents may

never be returned, regardless of how sophisticated the subsequent retrieval is.

Once a suitable representation of the user’s query has been created, a matching

process retrieves the indexed documents that contain the query terms. Lastly, to

ensure that the user is presented with the most likely relevant documents for the

query, the retrieved documents are scored and sorted by a ranking process.

Query understanding aims to derive a representation of the user’s query that

is better suited for a search engine (Li, 2010). Typical query understanding op-

erations include refinements of the original query (Huang & Efthimiadis, 2009),

such as spelling correction (Ahmad & Kondrak, 2005; Li et al., 2006), acronym

expansion (Jain et al., 2007), stemming (Porter, 1980; Peng et al., 2007a), term
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Figure 2.4: Schematic view of a query processor.

deletion (Kumaran & Allan, 2008; Kumaran & Carvalho, 2009), query segmen-

tation (Risvik et al., 2003; Bergsma & Wang, 2007), and named entity recogni-

tion (Guo et al., 2009). Other common query understanding operations are query

topic classification, aimed to restrict the scope of the retrieved documents (Beitzel

et al., 2005; Shen et al., 2006), and query expansion, aimed to enhance the query

representation with useful terms from the local corpus (Rocchio, 1971; Lavrenko

& Croft, 2001; Zhai & Lafferty, 2001; Carpineto & Romano, 2012), or from ex-

ternal resources, such as a query log (Cui et al., 2002) or a knowledge base such

as Wikipedia (He & Ounis, 2007; Li et al., 2007; Xu et al., 2009).

Users typically expect instant responses from a web search engine (Silverstein

et al., 1999). This makes it inefficient to fully score all documents matching the

query terms. Hence, scoring is typically performed as a multi-layer process (Cam-

bazoglu et al., 2010). In the first layer, matching documents from the entire corpus

are returned as an unordered set using a standard boolean retrieval approach (Gu-

divada et al., 1997). The second layer deploys an unsupervised query-dependent

ranking approach, such as those described in Section 2.2.1, in order to provide an

overall ordering of the initially matched documents at a low cost. This cost can

be made even lower by deploying efficient matching techniques, so as to short-

circuit the examination of the posting lists of documents that will not make the

final ranked list (e.g., Turtle & Flood, 1995; Macdonald et al., 2012c). Finally,

in the third layer, machine-learned ranking can be deployed to integrate ranking

evidence from multiple features, as will be discussed in Section 2.2.3.
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2.2 Web Search Ranking

The enormous size of the Web most often results in an amount of documents

matching a user’s query that by far exceeds the very few top ranking positions

that the user is normally willing to inspect for relevance (Silverstein et al., 1999).

While users may have high expectations regarding the quality of the documents

returned by a search engine, they often provide the search engine with a very lim-

ited representation of their information need, in the form of a short query (Jansen

et al., 2000). In such a challenging environment, effectively ranking the returned

documents becomes of utmost importance for satisfying the needs of search users.

Ranking is normally applied on the subset of the indexed documents that

matches the user’s query, according to, for instance, a boolean retrieval approach,

as discussed in Section 2.1.3. A ranking function f(q, d) takes as input a query

q, as a representation of the user’s need, and a document d, initially matched for

this query. As an output, it returns a list Rq of documents in decreasing order

of their estimated relevance to q. Different ranking functions can be thought of

as different features (or signals) of the estimated relevance of a document to a

query. In particular, depending on the evidence it leverages from the query q and

the document d, a ranking feature can be categorised into one of three classes:

• query-dependent document features score a document according to its esti-

mated relevance to the query;

• query-independent document features score the relevance of a document a

priori, regardless of any particular query;

• query features depend solely on the query, and can be used to adaptively

score the relevance of all documents for each individual query.

Query features are addressed in the specific contexts of Chapters 6, 7, and 9.

In the remainder of this chapter, Sections 2.2.1 and 2.2.2 introduce several ap-

proaches for query-dependent and query-independent ranking, respectively, which

are used as document ranking features in various experiments throughout this the-

sis. In Section 2.2.3, we introduce a machine learning framework for automatically

constructing ranking functions that leverage multiple features. The evaluation of

the effectiveness of different ranking approaches is discussed in Section 2.3.
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2.2.1 Query-dependent Ranking

A standard boolean retrieval is typically insufficient in a web search scenario, and

its use is often restricted to producing an initial set of documents that match the

query (Cambazoglu et al., 2010; Li & Xu, 2012). From this set, more sophisti-

cated approaches can be deployed to produce a ranking of documents likely to be

relevant to the user’s information need. To this end, it is of utmost importance

that the deployed ranking function be able to appropriately score the occurrences

of the query terms in each document. From this perspective, ranking can be seen

as the problem of appropriately counting frequencies (Salton & Buckley, 1988).

There are two fundamental frequencies of interest for ranking documents:

term frequency and document frequency. The term frequency (tft,d) represents

the number of occurrences of a term t in a document d, and denotes the impor-

tance of the term in the document. The intuition is that a document with more

occurrences of a query term is more likely to be relevant to the query (Luhn,

1957). The document frequency (nt) represents the number of documents where

the term t occurs in the corpus. This quantity is related to the ability of the term

to discriminate between documents. Intuitively, a document that contains a rare

query term is more likely to be relevant than a document that contains a com-

mon query term (Spärck Jones, 1972). This notion leads to the so-called inverse

document frequency (idft). In its simplest form, given the document frequency,

nt, and the total number of documents in the corpus, n, it can be defined as:

idft = log
n

nt

. (2.1)

A third important quantity for ranking is the document length (ld). This

quantity denotes the likelihood that a document will match any query term,

regardless of its relevance to the query. As a result, if two documents contain the

same number of occurrences of a term, the shorter document should be preferred.

Different definitions of document length can be considered (Singhal et al., 1996).

A basic working definition is the following:

ld =
∑

t∈d

tft,d . (2.2)
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Term frequency, inverse document frequency, and document length are at

the heart of the most prominent query-dependent ranking approaches in the

literature. These approaches can be broadly categorised as either algebraic or

probabilistic, depending on their underlying mathematical basis (Baeza-Yates &

Ribeiro-Neto, 2011). Algebraic approaches represent both the query q and each

document d as vectors in the space of all unique terms ti ∈ V, such that:

q = (wt1,q,wt1,q, . . . ,wtv ,q) and d = (wt1,d,wt1,d, . . . ,wtv,d), (2.3)

where wt,• is the weight of t in either the query q or the document d, as assigned by

a term weighting model, and v = |V| is the number of unique terms in the lexicon

V. The most prominent approach in this family is the vector space model (VSM;

Salton et al., 1975), which scores a document vector d by its similarity to the

query vector q, as given by the cosine between q and d, according to:

fVSM(q, d) = cos(q,d) =
q · d

‖q‖ ‖d‖
=

∑v

i=1 wti,q wti,d
√

∑v

i=1 w
2
ti,q

√

∑v

i=1 w
2
ti,d

. (2.4)

In a classical formulation, the VSM adopts tf-idf weights, such that wt,• = tft,• idft

for both queries and documents (Salton et al., 1975). A simple document length

normalisation is automatically performed by dividing the dot product between

the query and document vectors by the product of their norms. Alternative

formulations have been further investigated by Salton & Buckley (1988). In

particular, an unnormalised version of Equation (2.4) with binary weights wt,•

leads to the simple yet effective coordination level matching (CLM):

fCLM(q, d) = q · d =
v

∑

i=1

wti,q wti,d . (2.5)

Different from algebraic approaches, probabilistic approaches leverage proba-

bility theory to model the relationship between queries and documents. In the fol-

lowing, we describe approaches from the three major families of probabilistic rank-

ing in the literature: probabilistic relevance modelling (Section 2.2.1.1), language

modelling (Section 2.2.1.2), and divergence from randomness (Section 2.2.1.3).
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2.2.1.1 Probabilistic Relevance Modelling

The literature on probabilistic ranking dates back to 1960, with the seminal work

by Maron & Kuhns (1960) on probabilistic indexing and retrieval in a library set-

ting. The field experienced intensive development in the 1970s and 1980s (Cooper,

1971; Harter, 1975a,b; Robertson & Spärck Jones, 1976; Robertson, 1977; Robert-

son et al., 1981), culminating in some of the most effective ranking functions used

by current IR systems (Robertson et al., 1994, 2004; Zaragoza et al., 2004).

Probabilistic relevance modelling explicitly accounts for relevance as an in-

tegral part of the ranking process. Although relevance is an unknown variable

to a retrieval system, properties of the query and the document may provide

probabilistic evidence of the relevance of the document to the information need

expressed by the query. The probability of relevance of a given document to a

given query is central in the formalisation of the well-known probability ranking

principle (PRP) in IR (Cooper, 1971; Robertson, 1977):

“If a reference retrieval system’s response to each request is a ranking

of the documents in the collection in order of decreasing probability of

relevance to the user who submitted the request, where the probabilities

are estimated as accurately as possible on the basis of whatever data

have been made available to the system for this purpose, the overall

effectiveness of the system to its user will be the best that is obtainable

on the basis of those data.”

The PRP provides a general framework for ranking functions:

fPRP(q, d) = p(Gq|q, d) (2.6)

≈
∑

t∈q

wt,d,

where Gq is the set of documents relevant to the query q, in which case p(Gq|q, d)

denotes the probability of relevance given the query q and the document d. As an

abstract principle, the PRP does not prescribe how the probability of relevance

should be estimated. Nonetheless, after a series of order-preserving transforma-

tions, its general formulation is typically stated as a summation over individual
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term weights wt,d (Robertson & Zaragoza, 2009). This simplification makes the

estimation of the probability of relevance tractable, by assuming independence

among the query terms conditioned on the observation of relevant (and non-

relevant) documents. To estimate the individual term weights, there have been

two major directions, depending on whether the presence or the actual frequency

of terms in a document is considered. The resulting models, respectively, binary

independence and best matching, are discussed next.

Binary Independence Model One of the first instantiations of the PRP was

the binary independence model (BIM; Robertson & Spärck Jones, 1976). This

model assumes a presence-absence scenario, where absence is the complementary

event to presence. Under this assumption, tft,d is a binary variable, denoting

whether or not the term t occurs in the document d. It is further assumed

that tft,d provides evidence of the relevance of the document d for the term t,

independently of other terms. The general formulation of the PRP under these

particular assumptions leads to the following definition:

wBIM
t,d = log

p(tft,d |Gq)(1− p(tft,d |Ḡq))

(1− p(tft,d |Gq)) p(tft,d |Ḡq)
, (2.7)

where Gq is the relevance set for q and tft,d is either 0 or 1. In the presence of

actual relevance data (e.g., from the user’s feedback), replacing the probabili-

ties in Equation (2.7) with their equivalent proportions leads to the well-known

Robertson / Spärck Jones (RSJ) formula (Robertson & Spärck Jones, 1976):

wRSJ
t,d = log

(n∗
t + 0.5)(n− n∗ − nt + n∗

t + 0.5)

(nt − n∗
t + 0.5)(n∗ − n∗

t + 0.5)
, (2.8)

where nt is the total number of documents in the corpus that contain the term t,

n∗
t is the number of such documents that were judged relevant, and n∗ is the total

number of documents judged relevant. The introduced factor of 0.5 makes the

resulting estimation more robust compared to using a simple ratio (Robertson

& Spärck Jones, 1976). In a usual scenario, in the absence of relevance data,

n∗ = n∗
t = 0, in which case the individual term weights in Equation (2.8) closely

approximate the idf formulation in Equation (2.1).
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Best-Matching Models The binary independence model estimates the use-

fulness of different terms at identifying relevant documents for a given query.

Such estimates can be iteratively refined with relevance feedback from the users,

resulting in an overall improved model. On the other hand, this model cannot

differentiate between documents that contain the same query terms, regardless

of the extent to which these documents are about these terms.

To overcome the deficiencies of the BIM, Robertson et al. (1981) introduced a

non-binary term frequency component to the framework of probabilistic relevance

modelling. In order to adequately model term frequency distributions, Robertson

et al. (1981) built upon the notion of eliteness proposed by Harter (1975a,b).

As conceived by Harter, for each term, there exists a set of documents, known

as the elite set, which is assumed to be somehow relevant to the term.2 As a

result, the frequency of a term can be described as a mixture of two Poisson

distributions (Poisson, 1837): the first distribution describes the frequency of the

term in the elite set, whereas the second describes the term frequency in the

non-elite set, comprised by the rest of the documents in the corpus.

These distributional assumptions are at the core of Harter’s 2-Poisson model

for estimating the probability that a document is relevant to a single term (Har-

ter, 1975a,b). In order to extend Harter’s idea of eliteness to multi-term queries,

Robertson et al. (1981) initially proposed to model the relationship of the elite

sets associated with individual query terms and the relevance set associated with

the query. Estimating the various parameters that emerge from this formula-

tion turned out to be intractable, since there was no directly useful evidence for

performing this task, primarily because eliteness is a hidden variable.

As an alternative, Robertson et al. (1993) proposed a simple yet effective

approximation of the 2-Poisson model, by investigating the model’s qualitative

behaviour as a function of tft,d, i.e., wt,d(tft,d). In particular, they noted that this

function had the following properties (Robertson & Walker, 1994):

(a)wt,d(0) = 0 (b)wt,d(tft,d) ∝ tft,d (c) lim
tft,d→∞

wt,d(tft,d) = wBIM
t,d . (2.9)

2Strictly speaking, term frequency is assumed to be dependent on eliteness, which is in turn
assumed to be dependent on relevance (Robertson & Zaragoza, 2009, page 352).
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The first property follows by design. The second property emphasises the

monotonically increasing behaviour of wt,d as a function of tft,d. The last property

was denoted saturation, and reflects the observation that the contribution of a

term to a document cannot exceed an asymptotic limit. This limit corresponds to

the weight given by the BIM, as defined in Equation (2.7). A simple parametric

function that satisfies all these properties is the following:

wSATU
t,d =

tft,d
k + tft,d

, (2.10)

where k > 0 is the saturation parameter. For high k values, increments in tft,d

continue to contribute to the overall weight, whereas for low k values, this con-

tribution tails off quickly (Robertson & Walker, 1994).

Harter’s 2-Poisson model relies on the assumption that all documents have

the same (constant) length. While this assumption was arguably plausible in the

scenario originally addressed by Harter (1975a,b), where abstracts rather than

the full text of documents were considered, it is unlikely to hold in a general text

retrieval setting, particularly on the Web (Fetterly et al., 2004). To cope with

documents of different lengths, Robertson et al. (1993) proposed the following

parametrised length normalisation scheme:

wNORM
t,d = (1− b) + b(ld /̄l), (2.11)

where ld and l̄ are the length of document d and the average length of all docu-

ments in the corpus, respectively, with the parameter b, 0 ≤ b ≤ 1, controlling

the strength of the normalisation. In particular, b = 0 results in no normalisa-

tion, whereas b = 1 results in a full length normalisation. A carefully chosen

setting can help balance the normalisation, so as to penalise long documents that

are verbose without harming those that genuinely include extra relevant con-

tent (Robertson & Zaragoza, 2009). Applying this scheme to normalise the tf

component of Equation (2.10) results in the following saturation function:

wnSATU
t,d =

tft,d
kwNORM

t,d + tft,d
. (2.12)
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Finally, by combining the normalised term frequency saturation function of

Equation (2.12) with the asymptotic maximum of Equation (2.9), which can be

approximated by Equation (2.8), we arrive at the definition of the well-known

BM25 ranking function (Robertson et al., 1994):

fBM25(q, d) =
∑

t∈q

wnSATU
t,d wRSJ

t,d . (2.13)

BM25 is the latest of the original family of best-matching (BM) probabilistic

models proposed by Robertson et al. (1993, 1994). Variants of the model, includ-

ing different correction factors for document length normalisation, as well as with

parameters for controlling the term frequency saturation in the query itself, are

discussed by Robertson & Zaragoza (2009, page 361).

2.2.1.2 Language Modelling

Language modelling is the task of predicting the next term given a previously ob-

served sequence of terms. This task has been extensively investigated in contexts

such as automatic word completion, speech, handwriting and optical character

recognition (OCR), spelling correction, and statistical machine translation (Man-

ning & Schütze, 1999). Early developments date back to Markov’s work on

modelling character sequences in Russian literature (Markov, 1913), as well as

Shannon’s work on modelling sequences of symbols, which helped lay out some

of the basic elements of modern information theory (Shannon, 1948).

A language model is a probability distribution over sequences of terms (Man-

ning & Schütze, 1999). Formally, let ζ represent some sample text (e.g., a query,

a document, a set of documents). A language model θζ is a function that assigns

a probability to a sequence of terms t1, · · · , tv given ζ , such that:

θζ = p(t1, · · · , tv|ζ) =
v
∏

i=1

p(ti|t1, · · · , ti−1, ζ), (2.14)

where the right-hand expansion follows from the chain rule.

A language model permits generating sequences of terms following the model’s

distribution, or estimating the probability that a given sequence is generated by
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the model. As apparent from Equation (2.14), language modelling aims to predict

the next term given the previously observed terms. However, conditioning this

prediction on the entire history of observed terms is often infeasible, as evidence

of the occurrence of longer sequences is sparser than that of shorter ones (e.g., the

observation of a sequence of terms implies the observation of its subsequences, but

the opposite is not necessarily true). To counteract sparsity problems, a typical

solution is to limit the history of considered terms to the previous o − 1. This

simplification leads to an ngram language model of order o, i.e., θ
(o)
ζ :

θ
(o)
ζ ≈

v
∏

i=1

p(ti|ti−(o−1), · · · , ti−1, ζ). (2.15)

An ngram language model of order o corresponds to a Markov model (Markov,

1954) of order o−1, where future observations (i.e., the next term) depend solely

on the present state (i.e., the immediately preceding o−1 terms). Typical ngram

language models are the unigram (o = 1) and bigram (o = 2) models, which

instantiate Equation (2.15) respectively as follows:

θ
(1)
ζ ≈

v
∏

i=1

p(ti|ζ), (2.16)

θ
(2)
ζ ≈

v
∏

i=1

p(ti|ti−1, ζ). (2.17)

Despite its prominent usage in other fields, it was only in the late 1990s

that language modelling was introduced as a ranking approach for IR (Ponte &

Croft, 1998; Hiemstra, 1998; Berger & Lafferty, 1999; Miller et al., 1999). While

probabilistically equivalent to the classical models described in Section 2.2.1.1,

the language modelling approaches are fundamentally different from a statistical

perspective. In particular, probabilistic relevance modelling constructs a model

for relevant (and non-relevant) documents given a query, while language modelling

constructs a model for relevant queries given a document (Zhai, 2008). The latter

choice allows language modelling approaches to estimate effective ranking models

without having to make parametric assumptions regarding the distribution of

terms in predefined relevance classes (Ponte & Croft, 1998).
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Query Likelihood Departing from an explicit account of relevance, the most

basic language modelling approach attempts to model the query generation pro-

cess (Ponte & Croft, 1998). Starting from the probability p(d|q) of observing a

document d given the query q and applying Bayes’ rule, we have:

p(d|q) =
p(q|d) p(d)

p(q)
∝ p(q|d) p(d), (2.18)

where the latter expression is obtained by ignoring p(q), which is the same for

every document d. The document prior p(d) can be estimated in order to em-

phasise distinctive characteristics of different documents, such as their authority

or quality, as will be discussed in Section 2.2.2. Alternatively, this probability is

commonly assumed to be uniformly distributed across all documents, in which

case it can also be ignored. After these simplifications, ranking is reduced to

the task of estimating the probability p(q|d) of observing the query q given the

document d. This model, denoted the query likelihood model (QLM), estimates

the probability that the query q is generated by the document language model

θd. Under a unigram assumption, it can be stated as follows:

f
(1)
QLM(q, d) =

∏

t∈q

p(t|θd)
tft,q , (2.19)

where p(t|θd) denotes the probability of observing the term t given the language

model θd, and tft,q denotes the frequency of this term in the query q.

Higher-order ngram language models have been deployed with some success

in the literature, as a means to reward the occurrence of the query terms in close

proximity. For instance, Song & Croft (1999) proposed to interpolate unigram

and bigram language models. Srikanth & Srihari (2002) relaxed the sequential

nature of bigrams and exploited unordered term pairs. Gao et al. (2004) extended

unigram models to cater for term dependence in both the query and the retrieved

documents using identified syntactic structures. Alternatively, Cao et al. (2005)

leveraged term relationships derived from a thesaurus. Recently, Lv & Zhai

(2009) proposed to build multiple language models for different positions within

each document, while Zhao & Yun (2009) proposed to refine the estimation of

unigram models based upon the centrality of each query term in a document.
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A particularly effective approach to exploit term dependence was proposed

by Metzler & Croft (2005). Their approach models term dependence in the

language modelling framework via Markov random fields (MRF), an undirected

graph structure commonly used to model joint distributions. Within this frame-

work, they proposed to model two types of dependence: sequential dependence,

capturing relationships between pairs of neighbouring query terms, and full de-

pendence, capturing relationships between all pairs of query terms. These two

models were linearly interpolated with a unigram model, according to:

fMRF(q, d) = αu

∑

ti∈q

log p(ti|θd)

+ αs

∑

ti∈q

∑

tj∈q
j=i+1

log p(〈ti, tj〉ω|θd)

+ αf

∑

ti∈q

∑

tj∈q
j 6=i

log p(〈ti, tj〉ω|θd), (2.20)

where the parameters αu, αs, and αf control the weights of the unigram, sequen-

tial, and full dependence models in the linear combination, respectively, and the

parameter ω defines the length (in tokens) of the sliding window for counting

occurrences of the pair 〈ti, tj〉 in the document d.

Document Likelihood By modelling the language of documents rather than

the query language, traditional language modelling approaches are able to lever-

age more data for inferring the relevance of a document to a given query. On the

other hand, it is unclear how to enhance the query representation for improved

retrieval, since the query is assumed to be a random sample of the document

language model (Zhai & Lafferty, 2001). To overcome this limitation, one could

instantiate the language modelling framework to produce a ranking function or-

thogonal to the query likelihood model. Analogously to Equation (2.19), under

a unigram assumption, we can define a document likelihood model (DLM) as:

f
(1)
DLM(q, d) =

∏

t∈d

p(t|θq)
tft,d. (2.21)
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Directly deploying this ranking function would likely be ineffective, given the

sparse evidence available for estimating θq from the query q alone. Nevertheless,

the query language model can be enhanced by leveraging feedback information,

either directly from users, in the form of relevance judgements, or automati-

cally, by assuming that the top retrieved documents for the query are relevant.

The latter scenario is denoted pseudo-relevance feedback (Rocchio, 1971). Ef-

fective alternatives for constructing improved query language models include the

relevance-based language modelling approach of Lavrenko & Croft (2001), as well

as the model-based feedback approach of Zhai & Lafferty (2001).

Unified Likelihood While there exist effective approaches for modelling both

the query and the document generation processes, an even more effective approach

is to combine both query and document language models in a unified formulation.

In particular, Lafferty & Zhai (2001) proposed a risk minimisation approach for

document ranking within the language modelling framework. In their approach,

the risk of returning documents with a language that does not fit the query

language is quantified by the Kullback-Leibler (KL) divergence between the query

and document language models, θq and θd, respectively, according to:

fKL(q, d) = −KL(θq‖θd)

= −
∑

t∈q

p(t|θq) log
p(t|θq)

p(t|θd)
, (2.22)

where p(t|θq) and p(t|θd) denote the probability of observing the term t given the

query and document language models, respectively. This formulation has been

shown to be effective across many ranking scenarios, and represents the current

state-of-the-art in language modelling for IR (Zhai, 2008).

Language Model Estimation A key issue for the effectiveness of language

modelling approaches is the estimation of a language model (Zhai & Lafferty,

2004). Given some text ζ (a query or a document), one of the most simple

and widely used mechanisms to estimate the language model θζ = p(t|ζ) is the

maximum likelihood estimation (MLE; Fisher, 1922), defined as:
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pMLE(t|ζ) =
tft,ζ
lζ

, (2.23)

where tft,ζ denotes the raw frequency of the term t in the sample of text ζ , whereas

lζ denotes the length of this text, measured in tokens.

A central problem when estimating language models is that the majority of the

terms in a lexicon typically appear very sparsely in limited text samples such as

queries and documents. For example, in a query likelihood scenario, some query

terms may not appear at all in a document. If the document language model is

estimated as in Equation (2.23), the document will be assigned a zero probability

of generating the query, unless it contains all query terms. In addition, even when

a query term is present in the document, its associated generation probability

tends to be overestimated via maximum likelihood (Manning et al., 2008). To

overcome these limitations, an effective approach is to smooth the probabilities

when estimating a language model (Zhai & Lafferty, 2004).

A simple smoothing approach consists in interpolating a query or document-

specific language model with the language model of a large background corpus.

Typically, the target document corpus C is used for this purpose. The result-

ing model, pα(t|ζ), is referred to as a linear interpolation language model (or a

language model with Jelinek-Mercer smoothing), and is estimated as follows:

pα(t|ζ) = α pMLE(t|ζ) + (1− α) pMLE(t|C), (2.24)

where 0 ≤ α ≤ 1 is the interpolation parameter. A particularly effective alter-

native to linear interpolation is Bayesian smoothing with a Dirichlet prior with

parameter µ (Mackay & Peto, 1994), defined according to:

pµ(t|ζ) =
tft,ζ +µ pMLE(t|C)

lζ +µ
. (2.25)

It can be shown that Equation (2.25) is a special case of Equation (2.24), with

a length-dependent interpolation parameter, i.e., α = µ/(lζ +µ). This observation

explains the state-of-the-art performance of Dirichlet smoothing (Zhai, 2008).
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2.2.1.3 Divergence from Randomness

A different probabilistic approach to query-dependent ranking is based on the

notion of divergence from randomness (DFR; Amati, 2003). DFR models build

upon the intuition that the more the content of a document diverges from a

random distribution, the more informative the document is. Similarly to the

best-matching approaches discussed in Section 2.2.1.1, DFR models are inspired

by Harter’s 2-Poisson model (Harter, 1975a,b), which assumes that the informa-

tiveness of a term in a corpus can be inferred by analysing its distribution in

different subsets of the corpus. Nonetheless, different from best-matching and

other probabilistic relevance models, DFR models have no explicit account of

relevance. Instead, these models exploit the statistical distribution of terms in

documents, in which they resemble the language modelling approaches described

in Section 2.2.1.2. However, different from language models, DFR models are an

example of frequentist rather than Bayesian inference models (Amati, 2006).

The relationship between the informativeness of a term and its distribution in

a corpus of documents has been recognised early (Damerau, 1965; Bookstein &

Swanson, 1974; Harter, 1975a,b). As discussed in Section 2.2.1.1, non-informative

terms tend to be randomly distributed over the document corpus, whereas infor-

mative terms appear more densely in a few elite documents. In particular, the

frequency of a non-informative term can be modelled by a Poisson distribution

with a mean proportional to the average frequency of the term in the corpus. Un-

der this assumption, inferring the informativeness of a term reduces to measuring

the deviation of the term’s frequency distribution from a random distribution.

Harter’s 2-Poisson model and the family of best-matching models derived from

it perform this inference by parametrising the occurrence of informative terms as

a second Poisson distribution (Harter, 1975a,b). As discussed in Section 2.2.1.1,

estimating the parameter of this distribution for each query term is problematic,

since eliteness is a hidden variable (Robertson & Zaragoza, 2009).

To overcome this limitation, DFR models assume that the elite set of a term

is simply the set of documents that contain the term (Amati & van Rijsbergen,

2002). In particular, the basic hypothesis underlying DFR models is that “the

informative content of a term can be measured by examining how much the term
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frequency distribution departs from a ‘benchmark’ distribution, that is, the distri-

bution described by a random process” (Amati, 2003). To quantify this hypothesis,

a prototypical DFR model can be defined as follows:

fDFR(q, d) =
∑

t∈q

wt,q wt,d, (2.26)

where wt,q and wt,d represent the weight of each term t in the query q and in

the document d, respectively. The former weight is typically computed as the

normalised frequency of t in q, according to:

wt,q =
tft,q

maxti∈q tfti,q
. (2.27)

In turn, the weight wt,d is computed as:

wt,d = inf1 inf2, (2.28)

where inf1 = − log2 p1(t|C) and inf2 = 1 − p2(t|d) define the informativeness of

the term t in the corpus C and in a document d that contains t, respectively. As

a result, the weight wt,d of each query term t in a document d is a decreasing

function of both probabilities p1(t|C) and p2(t|d). In particular, the probability

p1(t|C) defines a basic randomness model of the distribution of t in the corpus C,

whereas p2(t|d) defines the information gain of observing the term t in the docu-

ment d. As the amount of information in a document is directly proportional to

its length, a third component is introduced to perform a term frequency normali-

sation. Different distributional assumptions for estimating the basic randomness

model and the information gain conveyed by the occurrence of a term in a docu-

ment, as well as different term frequency normalisation schemes, lead to a variety

of effective DFR models (Amati, 2003). In the following, we describe examples of

models that are used in the experimental part of this thesis. These include both

parametric and non-parametric models that assume term independence, as well

as an extended non-parametric model that exploits term dependence, in order to

promote documents where the query terms occur in close proximity.
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Parametric Models Several effective ranking functions can be derived by com-

bining different models of randomness, information gain, and term frequency nor-

malisation (Amati, 2003). While DFR was originally conceived as a framework

of non-parametric models (Amati & van Rijsbergen, 2002), subsequent studies

have shown that the effectiveness of these models could be further improved by

parametrising the term frequency normalisation component for the characteristics

of different corpora or for different query lengths (He & Ounis, 2003).

One of the most prominent parametric models in the DFR framework is

PL2 (Amati, 2003). This model deploys the Poisson distribution (Poisson, 1837)

and Laplace’s law of succession (Laplace, 1814) as models of randomness and in-

formation gain, respectively. In particular, the Poisson distribution is a limiting

case of a binomial process, expressing the probability p1(t|C) of observing tft,d

occurrences of a term t in a randomly selected document d from the corpus C.

After tft,d occurrences have been observed, the probability p2(t|d) of observing a

further occurrence of t in d—the so-called aftereffect of future sampling (Feller,

1968)—is proportional to the number of already observed occurrences, according

to Laplace’s law of succession. Intuitively, while an informative term may be

relatively rare in the corpus, the frequency of this term tends to be high in the

documents where it occurs. PL2 instantiates Equation (2.28) as:

wPL2
t,d =

1

tf
(2)
t,d +1

(

tf
(2)
t,d log2

n tf
(2)
t,d

tft,C
+

(

tft,C
n
− tf

(2)
t,d

)

log2 e+ 0.5 log2(2π tf
(2)
t,d )

)

,

(2.29)

where n is the number of documents in C, tft,C is the frequency of the term t in

the corpus, and tf
(2)
t,d is given by the so-called normalisation 2, according to:

tf
(2)
t,d = tft,d log2

(

1 + γ
l̄

ld

)

, (2.30)

where tft,d is the raw term frequency in d, ld and l̄ are the length of d and the

average length of all documents in the corpus, respectively, and γ a is a param-

eter controlling the amount of normalisation. This model has been shown to be

particularly effective for web search (Plachouras & Ounis, 2004).
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Non-Parametric Models Although provably effective, PL2 and several other

models derived from the DFR framework require tuning the parameter γ in Equa-

tion (2.30) (Amati, 2003). Parameter tuning also plays an important role for term

frequency normalisation in probabilistic relevance models and for smoothing in

language models, as discussed in Sections 2.2.1.1 and 2.2.1.2, respectively. To

alleviate the need for extensive tuning while attaining an effective retrieval per-

formance for corpora and queries with different characteristics, Amati (2006)

introduced a series of non-parametric DFR models. Such models deploy a hyper-

geometric distribution (Feller, 1968) as the basic randomness model. Similarly

to the binomial distribution (or its previously discussed Poisson approximation),

the hypergeometric distribution expresses the probability p1(t|C) of observing

tft,d occurrences of a term t in a corpus C. Unlike the binomial, the hypergeo-

metric distribution assumes that samples are drawn without replacement, i.e., in

a non-independent fashion. As a practical consequence, this randomness model

naturally incorporates an inherent non-parametric term frequency normalisation

mechanism, hence precluding any need for further parameter tuning.

Of the family of non-parametric DFR models, DPH (Amati et al., 2007) has

been shown to perform effectively across a variety of web search tasks (McCreadie

et al., 2009; Santos et al., 2010d; McCreadie et al., 2011). Moreover, as it requires

no parameter tuning, it is also efficient from a deployment perspective. Besides

using a hypergeometric randomness model, DPH estimates the information gain

of observing a term inspired by the notion of informative content of a theory in-

troduced by Popper (1934) and extensively studied by Hintikka & Suppes (1970).

The weighting scheme of DPH is formulated as:

wDPH
t,d =

tft,d
(

1−
tft,d
ld

)2

tft,d +1
log2

(

tft,d
l̄n

ld tft,C

)

+ 0.5 log2

(

2π tft,d

(

1−
tft,d
ld

))

.

(2.31)

Once again, as normalisation is inherent in the model, DPH provides an effec-

tive and efficient alternative to other models. For these reasons, it will be used

extensively in the experimental part of this thesis, both as a baseline ranking on

its own as well as a strong basis for building additional baseline rankings.
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Extended Models All previously described DFR models assume that the

query terms occur in a document independently of one another. To relax this

assumption, Peng et al. (2007b) introduced the pBiL DFR model to exploit

higher-order term dependence for ranking documents. Similarly to the MRF

model of Metzler & Croft (2005), described in Section 2.2.1.2, pBiL can model

different modes of term dependence, such as sequential and full dependence. As

Peng et al. (2007b) have shown, full dependence generally outperforms sequential

dependence, and is hence the mode used in our experiments. Assuming a full

dependence mode, the pBiL weighting scheme can be defined as:

wpBiL
t,d = αu wt,d

+ αf

∑

ti∈q
ti 6=t

1

tf〈t,ti〉,d+1

(

− log2 (ld−1)! + log2 tf〈t,ti〉,d!

+ log2(ld−1− tf〈t,ti〉,d)!

− tf〈t,ti〉,d log2(1/(ld−1))

− (ld−1− tf〈t,ti〉,d) log2((ld−2)/(ld−1))
)

, (2.32)

where the parameters αu and αf control the linear interpolation between the

unigram and full dependence weights, respectively. The unigram weight, wt,d,

can be computed using any of the aforementioned DFR models, such as PL2

(Equation (2.29)) or DPH (Equation (2.31)). The term dependence weight com-

bines the binomial randomness model with the Laplace model of information gain

to measure the informativeness of occurrences of pairs 〈t, ti〉 of query terms in

each document d. The resulting factorials in Equation (2.32) can be efficiently

computed using Lanczos’ approximation of the Gamma function (Lanczos, 1964).

Different from other probability distributions, such as the Poisson and hyper-

geometric distributions used by PL2 and DPH, respectively, the binomial distri-

bution does not consider the total frequency of each pair 〈t, ti〉 in a corpus, which

would be computationally expensive to estimate given the combinatorial number

of possible pairs. Instead, the informativeness of the pair in the document d is

solely dependent on the frequency tf〈t,ti〉,d of the pair in the document and on

the length ld of the document. As a result, pBiL is also an efficient approach for

exploiting term dependence (Peng et al., 2007b; Macdonald & Ounis, 2010).

35



2. Web Information Retrieval

2.2.2 Query-independent Ranking

The previous section described query-dependent ranking approaches, which infer

the extent to which a document is about the topic of the user’s query. While

topicality is essential for inferring the relevance of a document (Boyce, 1982),

there may be too many documents with relatively similar topicality scores for

the same query. In addition, some queries may be better answered by sources

that fulfil a specific quality criterion, such as authoritativeness, credibility, or

trustworthiness, particularly when the user is searching for a specific information

provider (Kraaij et al., 2002; Bendersky et al., 2011). To distinguish between

documents with similar topicality, and also to address queries that explicitly

seek for quality content, several query-independent ranking approaches have been

proposed in the literature. In this section, we describe two broad classes of such

approaches, which are used in the experimental part of this thesis. In particular,

Section 2.2.2.1 describes approaches that infer the a priori quality of a document

based upon evidence in the document itself, whereas Section 2.2.2.2 focuses on

approaches that infer quality from sources external to the document.

2.2.2.1 On-Document Evidence

A typical assumption underlying query-dependent ranking approaches is that all

documents in a corpus are equally relevant a priori (Kraaij et al., 2002). While

this assumption may hold when retrieving from curated corpora such as newswire

documents, it may be unrealistic in an environment such as the Web (Bendersky

et al., 2011). In particular, web documents are produced independently by au-

thors with various motives and backgrounds, leading to a vast heterogeneity in

content quality, ranging from high quality sources, such as online encyclopedias,

to adversarial content, such as spam (Castillo & Davison, 2011).

Kraaij et al. (2002) were among the first to analyse the usefulness of the a priori

evidence of the quality of documents for web search. To this end, they investigated

the effectiveness of several features for estimating the document prior p(d) in a

query likelihood model, as described in Section 2.2.1.2. Among these, URL-

based features were shown to be particularly effective for identifying homepages,

a classical web search task (Broder, 2002). For instance, the URL type feature
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was introduced to distinguish between URLs containing different components,

such as a domain name (a “root” URL), a domain followed by a subdirectory

(a “subroot” URL), a deeper directory (a “path” URL), or a filename (a “file”

URL). In particular, homepages tend to be mainly of type “root” (Kraaij et al.,

2002). Given some relevance data G, this feature can be quantified as:

fUT(q, d) =
|{di ∈ G | type(ud) = type(udi)}|

|{di ∈ C | type(ud) = type(udi)}|
, (2.33)

where type(ud) defines the type of the URL ud of document d. A simpler feature,

capturing the intuition that shorter URLs are preferred is the URL depth (UD),

which counts the number of components in the document’s URL:

fUD(q, d) = | parts(ud, ‘/’)|, (2.34)

where parts(ud, ‘/’) denotes the set of forward slash-separated substrings of ud,

excluding its protocol (e.g., “http://”). Yet another similar feature counts the

number of characters ςud
in the URL, and is denoted URL length (UL):

fUL(q, d) = ςud
. (2.35)

Another class of query-independent ranking features used in the experimental

part of this thesis exploits the textual content of each document, in order to

measure its overall readability. The underlying intuition is that documents that

are easier to read are more likely to be perceived as relevant by search users.

For instance, Kanungo & Orr (2009) investigated a series of features for the task

of generating readable document summaries to be displayed in response to a

query (Tombros & Sanderson, 1998). Of these, we use the average term length

(ATL) in a document as a simple measure of readability, according to:

fATL(q, d) =
1

ld

∑

t∈d

tft,d ς t . (2.36)

where ς t denotes the length in characters of the term t. The intuition here is that

longer terms would reflect a more thoughtful, and hence readable writing style.
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Additional readability features have been recently proposed by Bendersky

et al. (2011). For instance, they proposed to use the entropy H(θd) of a document’s

language model θd as a measure of topic cohesiveness (TC), according to:

fTC(q, d) = H(θd) = −
∑

t∈d

p(t|d) log p(t|d), (2.37)

where p(t|d) was computed using a maximum likelihood estimation, as described

in Equation (2.23). Other readability features proposed by Bendersky et al.

(2011) include the document’s fraction (SF) and coverage (SC) of stopwords,

computed as the ratio of terms in the document that are stopwords and the ratio

of all stopwords that are covered in the document, respectively, according to:

fSF(q, d) =
|{ti ∈ d} ∩ Vs|

|{ti ∈ d}|
, (2.38)

fSC(q, d) =
|{ti ∈ d} ∩ Vs|

|Vs|
, (2.39)

where Vs is a list of stopwords. Both SF and SC are intended as simple estimators

of the divergence between the document and the corpus language models, and are

positively correlated with the document informativeness (Zhou & Croft, 2005).

Another readability feature used in the experimental part of this thesis is the

fraction of terms in the document that appear in tables. The underlying intuition

here is that documents comprising mostly tabular content are less readable. Let

Td comprise the textual content appearing within tables in the document d. The

table text (TT) feature (Bendersky et al., 2011) can be estimated according to:

fTT(q, d) =

∑

t∈d tft,Td
ld

. (2.40)

At the lower end of the quality spectrum, the Web is severely affected by

spam. Spam documents typically include automatically generated content tar-

geting popular search queries, or even human-generated content plagiarised from

legitimate sources, so as to deceive search engines and attract larger audiences,

which can ultimately result in increased advertisement revenue for the spam-

mer (Castillo & Davison, 2011). In particular, spam documents typically have
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abnormally long titles, a total length that deviates from the average length of non-

spam documents, a proportionally higher ratio of raw text per HTML markup,

and a high redundancy, which is typically a sign of automatic “keyword stuffing”.

Inspired by the latter observation, Ntoulas et al. (2006) proposed a simple feature

for spam detection, denoted compression ratio (CR), and defined as:

fCR(q, d) =
ςz(d)
ςd

, (2.41)

where z(d) denotes a compressed representation of document d, produced by any

standard data compression algorithm (Salomon, 2007), whereas ςz(d) and ςd are

the size (in bytes) of the compressed and uncompressed representations of d. The

higher the compressed size ςz(d) and consequently the compression ratio fCR(q, d),

the less redundant, and hence the less likely the document d is to be spam.

A more sophisticated spam detection feature was devised by Cormack et al.

(2011). In particular, using a gradient-descent logistic regression classifier (Good-

man & tau Yih, 2006) with training data combining manually labelled documents,

as well as documents highly ranked for “honey pot” queries (popular queries that

are commonly targeted by spammers), they estimated the probability that a doc-

ument contains harmful or malicious content. Taking the complement event,

the probability that a document d is not spam can be used to compute a ham3

likelihood (HL) score as a log-odds estimate, according to:

fHL(q, d) = log
p(η|d)

p(η̄|d)
, (2.42)

where η and η̄ denote the observation of ham and spam content, respectively.

2.2.2.2 Off-Document Evidence

The analysis of the content of a document provides valuable evidence about the

quality of this document. On the other hand, such evidence is prone to manip-

ulation by the document author. Indeed, as previously discussed, much of the

content produced on the Web is intended to maliciously deceive search engines in

order to increase revenue for spammers. While analyses based on off-document

3In the jargon of the spam detection community, “ham” is an antonym of “spam”.
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evidence, such as hyperlinks (Kleinberg et al., 1999) or clicks (Joachims, 2002),

are certainly not immune from spammers (Castillo et al., 2007), they provide an

arguably more unbiased assessment of the quality of a document, by relying not

on the document author, but on other web authors or on web search users.

The view of the Web as a graph of hyperlinked documents brings various

opportunities for improving web search. A particularly prominent use of the web

graph is for inferring the global importance—or, in graph theorists’ terms, the

centrality (Newman, 2003)—of each document in the graph. In the context of web

search, the centrality of a document in the web graph is considered as a measure

of authority, as perceived by the entire Web, which has been extensively used for

improving the quality of document rankings (e.g., Kleinberg, 1998; Page et al.,

1999; Plachouras et al., 2005). A simple measure of the centrality of a document

d is its indegree (ID), defined as the cardinality of the set Bd of documents linking

to d (i.e., the document’s backlinks) in the web graph, according to:

fID(q, d) = |Bd|. (2.43)

An analogous measure to the indegree of a document is its outdegree. Different

from the indegree, however, the outdegree of a document is not considered as

a measure of global authority. On the contrary, a document with abnormally

high outdegree often serves malicious purposes, by inflating the indegree of other

documents, a spamming technique known as a link farm (Castillo & Davison,

2011). The outdegree (OD) of a document d is defined as the cardinality of the

set Fd of documents linked to from d (i.e., the document’s forward links):

fOD(q, d) = |Fd|. (2.44)

One of the most well-known link analysis algorithms—and one that is used

in our experiments—is PageRank (Page et al., 1999). The PageRank algorithm

estimates the global importance of a document based on the number of other

documents that link to it and also on the importance of these documents. To

this end, the algorithm iteratively performs a random walk on the web graph, so

that the score assigned to a document when the algorithm converges can be seen
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as the probability of that document being visited by the random walker. The

PageRank (PR) of a document d in a graph with n documents is given by:

f
(i+1)
PR (q, d) =

1− γ

n
+ γ

∑

dj∈Bd

f
(i)
PR(q, dj)

fOD(q, dj)
, (2.45)

where f
(i)
PR(q, d) is the PageRank of d at the i-th iteration, with f

(1)
PR(q, d) = (1/n)

for all d, Bd is the set of documents linking to d, fOD(q, dj) is the outdegree

of dj ∈ Bd, given by Equation (2.44), and γ is a damping factor, which can

be interpreted as the probability that a random walker will stop following the

chain of hyperlinks and “jump” to a randomly selected document. The algorithm

iterates until the computed PageRank scores stabilise within a given threshold or

until a predefined number of iterations is performed (Brin & Page, 1998).

An alternative, rich source of off-document ranking evidence is based on the

quality of a document as perceived by web search users rather than other web

authors. In particular, a web search engine can record in a query log a variety of

signals describing the interaction of search users during their search tasks. One

class of such signals is click evidence. While not all searches lead to clicks—

for both positive and negative reasons (Li et al., 2009; Stamou & Efthimiadis,

2010)—a click on a document ranked in response to a query can be seen as an

implicit judgement of the relevance of this document, of the non-relevance of the

documents ranked ahead of it that were skipped or, more generally, of the user’s

preference for the clicked document over the skipped ones (Joachims, 2002).

A simple query-independent feature can also be derived by leveraging click

evidence. In particular, given the sets of documents displayed (Rqi) and clicked

(Kqi) for each query qi in a query log L, the click likelihood (CL) of a document

d models the probability that d will receive a click regardless of any particular

query (Richardson et al., 2007), according to:

fCL(q, d) =

∑

qi∈L
1Kqi

(d)
∑

qi∈L
1Rqi

(d)
, (2.46)

where the indicator functions 1Kqi
(d) and 1Rqi

(d) determine whether the docu-

ment d belongs to each of the aforementioned sets for each query qi in the log.
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2.2.3 Machine-learned Ranking

The previous sections have introduced several approaches for ranking documents

in response to a query. Regardless of these approaches’ relative effectiveness

when compared to one another, it is extremely unlikely that any single one of

them will be effective in all search scenarios (Zhai, 2011). This is particularly

true for web search, given the massive size and heterogeneity of the Web and the

increasingly complex information needs of web search users (Liu, 2009). On the

other hand, each of these approaches can potentially capture a different dimension

of the relevance of a document for the user’s query. As a result, combining

these approaches as multiple features of a unified ranking function emerges as a

promising direction for effectively searching the Web (Fuhr, 1989). The automatic

construction of such functions is the goal of a branch of machine learning denoted

learning to rank, which is the focus of this section. In particular, Section 2.2.3.1

introduces the general framework of learning to rank, whereas Section 2.2.3.2

describes the three main families of approaches that adhere to this framework,

including the approaches that will be used in the experiments in this thesis.

2.2.3.1 Discriminative Learning Framework

A learning to rank process can be specified within the general framework of

discriminative learning (Liu, 2009). In particular, the ultimate goal of learning

to rank is to automatically construct a ranking function:

fLTR(q, d) ≡ h : X → Y , (2.47)

where X and Y represent the input and output space of learning, respectively.

The input space X comprises learning instances, typically represented as feature

vectors x = Φ(q, d), where Φ is a feature extractor. Each dimension φ(q, d) of

the feature vector could correspond, for instance, to one of the various ranking

functions described in the previous sections. The output space Y defines the target

of the learning task, which could be either a continuous or a discrete distribution

over the learning instances, or simply an overall ordering of these instances. The

class of functions h that map from the input to the output space is denoted the
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hypothesis space H. Lastly, the loss incurred by the predicted output for the input

learning instances compared to these instances’ expected output is quantified by

a loss function ∆, which is used to guide the learning process towards improved

ranking functions, for instance, by iteratively minimising the observed loss.

As a supervised or semi-supervised learning task, learning to rank requires

some form of training (Macdonald, Santos & Ounis, 2013). As illustrated in

Figure 2.5, the training data comprises a sample {(xij, yij)}
nqi

j=1 for each training

query qi, including a feature vector representation xij and an output label yij for

each of the top nqi documents retrieved for qi, typically by using one of the query-

dependent ranking approaches described in Section 2.2.1. The training samples

are used by a learner module to produce a ranking function h with optimal effec-

tiveness on the training queries, as measured by the loss function ∆. To reduce

the possibility that the learned function is overfitted to the training data, and

hence generalises poorly to unseen queries, separate validation samples may be

used to guide the learner. Finally, given a test query q with a sample {(xj, ?)}
nq

j=1

sharing the same feature space with the training and validation samples, a ranker

module applies the learned function h in order to produce an ideally more effective

permutation of the documents in the initial sample.

Learner Ranker

q1 : {(x1j,y1j)}, j = 1, …, nq1

q2 : {(x2j,y2j)}, j = 1, …, nq2

...

qm : {(xmj,ymj)}, j = 1, …, nqm

q1 : {(x1j,y1j)}, j = 1, …, nq1

q2 : {(x2j,y2j)}, j = 1, …, nq2

...

qm : {(xmj,ymj)}, j = 1, …, nqm

h

q : {(xj,?)}, j = 1, …, nq

q : {(xj,h(x))}, j = 1, …, nq

Training 

samples

Validation 

samples

Test sample

Predicted ranking

Ranking model

Figure 2.5: Discriminative learning framework.
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2.2.3.2 Learning to Rank Approaches

Depending on their choice for implementing each of the input space, output space,

hypothesis space, and loss function components, learning to rank approaches can

be classified as pointwise, pairwise, or listwise (Liu, 2009). Pointwise approaches

consider an input space comprising feature vectors built for individual documents,

and an output space comprising a single numeric score for each document vector.

In this case, learning to rank is reduced to a standard regression task, namely, that

of predicting the relevance score of each query-document pair. As a result, a range

of existing regression approaches—and classification approaches, for discretised

scores—can be directly leveraged for learning to rank (Witten et al., 1999).

Different from pointwise approaches, pairwise approaches have an input space

comprising pairs of document vectors and an output space covering binary val-

ues {−1, 1}, which denote a preference for one of the two documents in the

pair over the other. Accordingly, the hypothesis space covers bivariate functions

h(x1,x2), which can be transformed using a scoring function f(x) for simplic-

ity, i.e., h(x1,x2) = 2 [1(f(x1) > f(x2))] − 1. As their loss function, pairwise

approaches minimise the average number of swaps in the ranking (Li, 2011).

A limitation of both pointwise and pairwise approaches is that they ignore the

fact that some (pairs of) documents are related to the same query. To overcome

this limitation, listwise approaches extend their input space to include the entire

sample for each query. Accordingly, their output space comprises either a full per-

mutation of the sample, or numeric scores for all documents in the sample. In the

latter case, a scoring function f(x) can be used to produce the output, by serving

as a sorting criterion, i.e., h({xj}) = sortf(x){xj}. The output space also deter-

mines the choice of a loss function. In particular, if the output is a permutation,

the prediction loss can be estimated as the difference between the ground-truth

and the predicted permutations. Otherwise, with ground-truth labels for all doc-

uments, a standard metric for retrieval evaluation can be used to estimate the

loss. The latter option has the additional benefit of directly accounting for the

actual effectiveness of the ranking—as measured by any standard metric for re-

trieval evaluation, as will be described in Section 2.3—instead of resorting to an

intermediate function as a proxy for retrieval effectiveness (Liu, 2009).
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In the experimental chapters of this thesis, we use two learning to rank al-

gorithms: AFS (Metzler, 2007) and LambdaMART (Wu et al., 2008). AFS is a

listwise learning to rank algorithm that incrementally builds a hypothesis h({xj})

as a linear combination of single-feature hypotheses ĥ, selected iteratively, in a

greedy fashion (Metzler, 2007). In particular, at the i-th iteration, AFS selects the

single-feature hypothesis ĥ(i) that most improves the current hypothesis h(i−1),

according to a loss function ∆. The selected single-feature hypothesis ĥ(i) is then

weighted proportionally to the improvement it brings, with the resulting weight

w(i) used to combine it with the current hypothesis h(i−1), according to:

h(i)({xj}) = h(i−1)({xj}) + w(i) ĥ(i)({xj}), (2.48)

where h(i) is the resulting hypothesis at the i-th iteration. Metzler (2007) has

shown that the greedy learning strategy deployed by AFS suffices for most prac-

tical cases, with little benefits observed when retraining all individual weights

w(i) after each iteration. Indeed, despite its simplicity, AFS has been shown to

perform effectively in a web search setting (Santos et al., 2011d).

Besides AFS, we use LambdaMART (Wu et al., 2008), which represents the

current state-of-the-art in learning to rank (Chapelle & Chang, 2011). Lamb-

daMART is a listwise learning to rank algorithm that falls into the general frame-

work of boosting (Kearns, 1988; Schapire, 1990). A boosting algorithm aims to

iteratively build a strong hypothesis by combining multiple weak hypotheses. In

particular, given an input sample {xj}, a strong hypothesis (or an ensemble)

h({xj}) of weak hypotheses ĥ({xj}) can be iteratively built according to Equa-

tion (2.48), where h(i)({xj}) now represents the resulting ensemble at the i-th

iteration, whereas ĥ(i)({xj}) and w(i) represent the learned weak hypothesis and

its associated weight at the same iteration, respectively. Different from AFS,

LambdaMART models ĥ(i)({xj}) as a multi-feature regression tree, with leaves

representing possible prediction outcomes and inner nodes representing decision

points that lead to a particular outcome, depending on the conjunction of feature

values in the chosen path. An example of such a tree is illustrated in Figure 2.6,

with UL (Equation (2.35)), HL (Equation (2.42)), PR (Equation (2.45)), DPH

(Equation (2.31)), and pBiL (Equation (2.32)) serving as decision points.
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fUL(q,d) > 20

fDPH(q,d) > 25

2.3

0.2fPR(q,d) > 3

5.2fDPH(q,d) > 10

0.5

fpBiL(q,d) > 25

3.52.2

fHL(q,d) > 45

1.9

YESNO

YESNO

YESNO

YESNO

YESNO

YESNO

Figure 2.6: Example regression tree with query-independent (URL length (UL), ham
likelihood (HL), and PageRank (PR)) and query-dependent (DPH and pBiL) features.

Both AFS and LambdaMART optimise an information retrieval evaluation

metric, such as the several metrics introduced in Section 2.3.3, as their loss func-

tion ∆. Nevertheless, most such metrics are non-continuous and non-differentiable

and hence cannot be optimised directly (Burges et al., 2006). In order to over-

come this limitation, AFS leverages an evaluation metric indirectly, as a criterion

for selecting the best performing feature at each iteration. LambdaMART, on the

other hand, uses the gradient of an evaluation metric (Burges et al., 2006)—as op-

posed to the metric itself—as a loss function. In particular, in order to learn both

a regression tree ĥ(i)({xj}) and its weight w(i) at each iteration, LambdaMART

performs a gradient descent optimisation (Friedman, 2001).
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2.3 Retrieval Evaluation

Retrieval evaluation is crucial for assessing and improving search technologies.

In particular, both the effectiveness and the efficiency of a search engine can be

evaluated. While effectiveness concerns the ability of the search engine to retrieve

and rank documents that are relevant to the users’ information needs, efficiency

is concerned with the speed with which such a ranking is produced. As this thesis

is primarily concerned with improving the satisfaction of the users’ information

needs, in this section, we focus on the evaluation of retrieval effectiveness. In

Section 2.3.1, we overview the most prominent methodologies for web search

evaluation. In Section 2.3.2, we discuss the particular methodology that underlies

all experiments in this thesis. Lastly, in Section 2.3.3, we introduce some of the

most prominent metrics for assessing the effectiveness of ranking approaches.

2.3.1 Evaluation Methodologies

Evaluating the effectiveness of web search ranking is an open challenge. Not only

is relevance an ill-understood concept per se (Mizzaro, 1997), but it can also

span multiple dimensions (Borlund, 2003), particularly in light of the complex

information needs of web search users (Broder, 2002; Rose & Levinson, 2004).

Alternative evaluation methodologies have been proposed and tested throughout

the years, based upon both implicit and explicit user feedback on the relevance

of the documents ranked in response to a query (Sanderson, 2010).

Implicit feedback approaches typically rely on the observation of web search

users’ interactions with the ranking, such as the documents they click on or the

time they spend examining a clicked document (Kelly & Teevan, 2003). Treating

implicit feedback as an absolute judgement of relevance has important limitations

though. On the one hand, clicks are significantly biased by the presentation order

of the ranked documents (Craswell et al., 2008). On the other hand, the absence

of a click does not necessarily reflect a poor ranking. For instance, the user may

leave the search page without clicking on any document, simply because relevant

information appears in the snippet of some document (Li et al., 2009; Stamou

& Efthimiadis, 2010). A more sensible approach in this situation is to treat the

user’s feedback as a preference judgement between pairs of documents (Joachims,
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2002; Joachims et al., 2005), or even between entire rankings produced by dif-

ferent approaches, presented either side-by-side (Thomas & Hawking, 2006) or

interleaved (Radlinski et al., 2008b; Chapelle et al., 2012).

A different evaluation methodology relies on the users’ explicit feedback on

the effectiveness of ranking approaches. This can be achieved, for instance, by

observing real users interacting with the ranking (Saracevic, 1995; Borlund &

Ingwersen, 1997). Such a methodology enables the assessment of relevance in

context (Ingwersen & Järvelin, 2005), which can contribute to understanding its

multiple dimensions (Borlund, 2003). However, this methodology is often costly

and therefore limited to small-scale studies. An alternative methodology recently

introduced to enable gathering users’ feedback at a larger scale is crowdsourc-

ing (Alonso et al., 2008). In particular, crowdsourcing platforms, such as Ama-

zon’s Mechanical Turk,4 provide a marketplace where researchers can hire a large

number of human judges for a relatively small cost. Nevertheless, the limited

knowledge of these judges’ background and motivations makes it a challenging

task to assure the quality of the evaluation (Carvalho et al., 2011). Another al-

ternative methodology relies on expert judges to produce a benchmark against

which multiple ranking approaches can be tested, as we discuss next.

2.3.2 Evaluation Benchmarks

One of the most established retrieval evaluation methodologies abstracts away

from the specificities of individual users, instead relying on the relevance assess-

ment of expert judges to produce an evaluation benchmark (Voorhees, 2007).

Such a methodology was pioneered by Cleverdon (1967) at the College of Aero-

nautics, Cranfield, UK, in their experiments to assess the effectiveness of multiple

indexing approaches. While the so-called Cranfield paradigm may limit the as-

sessment of relevance in context (Teevan et al., 2007), it dramatically improves

the reproducibility of the resulting evaluation, by allowing multiple ranking ap-

proaches to be tested on a common benchmark (Voorhees & Harman, 2005).

Moreover, it is estimated that such a methodology has fostered around one third

of all improvement in web search ranking from 1999 to 2009 (Rowe et al., 2010).

4http://www.mturk.com

48

http://www.mturk.com


2. Web Information Retrieval

The Text REtrieval Conference (TREC), one of the major forums for research

in information retrieval (Voorhees & Harman, 2005; Voorhees, 2007) can be seen

as a modern instantiation of the Cranfield paradigm. In particular, TREC was in-

troduced in 1992 in a co-sponsorship between the National Institute of Standards

and Technology (NIST) and the Defense Advanced Research Projects Agency

(DARPA), both U.S. government agencies. Since its inception, the conference

has witnessed a substantial increase in the number of participant groups working

on several different search scenarios (known as tracks in the TREC jargon).

The overall aim of TREC is to support information retrieval research by pro-

viding the necessary infrastructure for the evaluation of retrieval techniques on a

common benchmark, known as a test collection. A test collection comprises three

components: a corpus of documents, a set of stated information needs (called

topics), and a set of relevance assessments, which function as a mapping between

each topic and the documents deemed as relevant for this topic. A prototypical

TREC track works as follows (Voorhees, 2007). Firstly, a document corpus is

built so as to serve as a common testbed for experimentation in the particular

search scenario addressed by the track, such as web search. Secondly, NIST pro-

vides the participants with a set of topics representing realistic information needs

for the search scenario under consideration. Thirdly, in order to build a ground-

truth for evaluating the participants’ approaches as to the extent to which they

are able to retrieve the relevant documents in the corpus for the devised topics

ahead of irrelevant ones, a process called pooling (Spärck Jones & van Rijsbergen,

1975) is usually employed. This process consists of building a pool of documents

for each of the considered topics as the union of the top documents retrieved for

that topic by all the participant systems. These document pools are then sampled

and submitted to manual relevance assessment. Finally, the participant groups

submit the document rankings (known as runs) generated by their different re-

trieval approaches for each of the considered topics. These document rankings

are then scored based on the produced relevance assessments according to several

standard evaluation metrics, such as those discussed in Section 2.3.3. By evalu-

ating the participants’ approaches using this common benchmark, TREC allows

for the direct comparison of their deployed ranking techniques, hence identifying

which techniques work best for the retrieval scenario under consideration.
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2.3.3 Evaluation Metrics

Several metrics have been proposed in the literature to evaluate the effectiveness

of ranking approaches using a benchmark test collection (Sanderson, 2010). Given

a query q and a cutoff κ, the goal of an evaluation metric is to quantify how well

the top κ documents from a ranking Rq, produced by some ranking approach,

cover the documents Gq judged relevant for q. Since different queries may have

different numbers of relevant documents, the evaluation score for a given query

is typically normalised by the maximum attainable score for this query, which is

equivalent to the score assigned by the metric to an ideal ranking.

Perhaps the most basic metrics associated with retrieval effectiveness are pre-

cision (P) and recall (R) (Cleverdon & Keen, 1966). While precision measures

the fraction of retrieved documents that are relevant, recall measures the fraction

of relevant documents that are retrieved. These metrics are defined as:

P(q, κ) =
|Gq ∩R

(κ)
q |

|R(κ)
q |

and R(q, κ) =
|Gq ∩ R

(κ)
q |

|Gq|
, (2.49)

where R(κ)
q is the set of top κ documents retrieved for q and Gq is the set of

documents relevant to this query. As observed by Cleverdon & Keen (1962), pre-

cision and recall often have an inverse relationship, as illustrated in Figure 2.7.

For instance, precision-improving approaches, such as term dependence weight-

ing (Metzler & Croft, 2005; Peng et al., 2007b), typically lead to reduced recall,

as relevant documents that do not contain the query terms in close proximity are

demoted. Conversely, recall-improving techniques, such as query expansion (Roc-

chio, 1971; Lavrenko & Croft, 2001; Zhai & Lafferty, 2001), typically incur some

topic drift, potentially promoting non-relevant documents.
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Figure 2.7: Example precision vs. recall graph.
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A clear limitation of set-based metrics such as precision and recall is that they

are insensitive to ranking swaps above the rank cutoff where these metrics are

computed (Robertson, 2008). For instance, two approaches retrieving the same

amount of relevant documents in the top 10 positions will receive exactly the same

precision and recall scores at cutoff 10, regardless of how well each approach ranks

these documents. One of the first metrics to address the limitation was average

precision (AP; Harman, 1993). It is defined according to:

AP(q, κ) =

∑κ

i=1 P(q, i) gi
|Gq|

, (2.50)

where P(q, i) denotes the ranking precision at the i-th position, according to Equa-

tion (2.49), whereas gi denotes whether or not the i-th document in the ranking

Rq is relevant. Indeed, as originally conceived, average precision assumes that

relevance is a binary quantity, an assumption that also underlies the probabilistic

relevance modelling approaches described in Section 2.6.

While a binary assumption simplifies the processes of both assessing and infer-

ring the relevance of documents, such an assumption is arguably limiting. Indeed,

in a large and heterogeneous corpus such as the Web, different documents are

likely to be relevant to the same query to different extents (Teevan et al., 2007).

To account for a non-dichotomous notion of relevance, Järvelin & Kekäläinen

(2002) considered a scenario where the relevance of a document is assessed using

a graded scale, from less relevant to more relevant. In addition, they proposed

to use a log-based discount factor to model the fact that relevant documents

ranked high are preferred over lower ranked ones. The resulting metric, denoted

discounted cumulative gain (DCG), is defined as:

DCG(q, κ) =
κ

∑

i=1

2gi − 1

log2(i+ 1)
, (2.51)

where gi now denotes a non-binary relevance grade associated with the document

ranked at the i-th position. In a typical web search scenario, five relevance grades

are used (Burges et al., 2005). In addition, different logarithm bases can be used

to simulate smaller or larger discounts (Järvelin & Kekäläinen, 2002).
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The formulation of DCG assumes that the probability of a user inspecting

a particular document depends only on the position of this document in the

ranking. Moffat & Zobel (2008) argued that different users may not have the

same willingness to inspect documents at lower ranks. To cater for such a varying

user behaviour, they introduced the rank-biased precision (RBP) metric, a graded

relevance metric with a parameter p denoting the (fixed) probability that a user

will inspect a further document. The higher the value of p, the more persistent

the user. The RBP metric can be defined by incorporating this probability into

a geometric discount function, according to:

RBP(q, κ) = (1− p)
κ

∑

i=1

gi p
i−1, (2.52)

where gi is as defined for the DCG metric in Equation (2.51).

Although having different discount factors, both DCG and RBP assume that

the probability that the user will inspect a given document does not depend on the

documents previously inspected. In practice, such an independence assumption

does not fit well the users’ observed click behaviour. In particular, Craswell et al.

(2008) observed that the probability that a user will click on a given document

diminishes as higher ranked documents are clicked. Intuitively, according to this

cascade browsing model, once a user has found the desired information, the need

for inspecting further documents is reduced. As a result, this model tends to

favour rankings that contain novel information, as will be discussed in Chapter 3.

Chapelle et al. (2009) quantified the effectiveness of a ranking according to this

model into the expected reciprocal rank (ERR) metric, defined as:

ERR(q, κ) =

κ
∑

i=1

1

i

i−1
∏

j=1

(1− pj) pi, (2.53)

where pi denotes the probability that the i-th document is relevant to the query,

in which case
∏i−1

j=1(1 − pj) denotes the probability that none of the documents

ranked higher than the i-th document is relevant. In practice, pi is defined as a

function of the relevance grade gi of the i-th document, i.e., pi = (2gi−1)/2gmax−1,

where gmax is the maximum grade considered.
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2.4 Summary

In order to lay out the foundations for the work contributed in this thesis, this

chapter provided a comprehensive and up-to-date background on web information

retrieval in general, and on web search ranking in particular.

Starting with an overview of the typical operation of a web search engine,

in Section 2.1, we described the processes of crawling, indexing, and query pro-

cessing. Within the scope of the latter, in Section 2.2, we provided a contextu-

alised background on over 50 years’ worth of literature on ranking in information

retrieval. This encompassed classical approaches to query-dependent ranking

in Section 2.2.1, including the three main families of probabilistic ranking ap-

proaches. In addition, in Section 2.2.2, we described several query-independent

ranking approaches, which emerged with the advent of the Web. The framework

of learning to rank was introduced in Section 2.2.3 as a sound mechanism for in-

tegrating multiple ranking approaches as individual features of a strong ranking

model. Lastly, in Section 2.3, we reviewed different methodologies for retrieval

evaluation, with a further look into the most established metrics for assessing the

adhoc retrieval effectiveness of a ranking approach.

In common, all ranking approaches described in this chapter assume that a

query submitted to a web search engine represents a single, well-defined informa-

tion need. In the next chapter, we will discuss the limitations of this assumption

in a complex search environment such as the Web, and the new ranking problem

that results from abandoning such an assumption.
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Search Result Diversification

Ranking in IR has been traditionally approached as a pursuit of relevant informa-

tion, under the assumption that the users’ information needs are unambiguously

conveyed by their submitted queries (Spärck-Jones et al., 2007; Sanderson, 2008).

While such an assumption may have arguably held in the library setting where

the early studies of relevance-oriented ranking were conducted (Maron & Kuhns,

1960; Cooper, 1971; Harter, 1975a,b; Robertson, 1977), it does not hold in gen-

eral (Gordon & Lenk, 1992), and it is unlikely to hold for web search in particular.

Web search queries are typically short, ranging from two to three terms on

average (Jansen et al., 2000). While short queries are more likely to be ambiguous,

even longer queries can show some degree of ambiguity (Song et al., 2009), which

in turn can substantially affect the effectiveness of web search engines (Sanderson,

2008). In order to identify relevant information under the uncertainty posed by

query ambiguity, an effective approach is to diversify the search results. By doing

so, the search engine can minimise the chance of wrongly guessing the users’ needs,

which might cause the users to abandon their queries (Chen & Karger, 2006).

In this chapter, we describe the search result diversification problem. In par-

ticular, Section 3.1 discusses how query ambiguity manifests in web search, as a

motivation for diversifying the search results. Section 3.2 starts with a historical

perspective on the diversification problem, before providing a formal definition

and an analysis of the complexity of the problem. Section 3.3 describes several

related approaches for diversifying the search results. Lastly, Section 3.4 extends

the discussion initiated in Section 2.3 with an emphasis on diversity evaluation.
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3.1 Query Ambiguity

As an inherently limited representation of a more complex information need, every

query can be arguably considered ambiguous to some extent (Cronen-Townsend

& Croft, 2002). Nevertheless, in the query understanding literature, query am-

biguity is typically classified into three broad classes (Clarke et al., 2008; Song

et al., 2009). At one extreme of the ambiguity spectrum, genuinely ambiguous

queries can have multiple interpretations. For instance, it is generally unclear

whether the query “bond” refers to a debt security certificate or to Ian Fleming’s

fictional secret agent character.1 Next, underspecified queries have a clearly de-

fined interpretation, but it may be still unclear which particular aspect of this

interpretation the user is interested in. For instance, while the query “james

bond” arguably has a clearly defined interpretation (i.e., the secret agent char-

acter), it is unclear whether the user’s underlying information need is for books,

films, games, etc. Finally, at the other extreme, clear queries have a generally

well understood interpretation. An example such query is “james bond books”.

Sanderson (2008) investigated the impact of query ambiguity on web search.

In particular, he analysed queries from a 2006 query log of a commercial web

search engine that exactly matched a Wikipedia disambiguation page2 or a Word-

Net3 entry. Ambiguous queries from Wikipedia showed a larger number of senses

on average than those from WordNet (7.39 vs. 2.96), with the number of senses

per ambiguous query following a power law in both cases. The average length

of an ambiguous query was also similar across the two sources, with the pre-

dominance of single-word queries. In contrast to previous works, which assumed

that multi-word queries were relatively unaffected by ambiguity, he found that

ambiguous queries with more than one term were also numerous. Importantly, he

observed that ambiguous queries comprised over 16% of all queries sampled from

the query log, with Wikipedia queries being more frequent than WordNet ones,

particularly among popular queries. Finally, through a simulation, he showed

that current search systems underperform for ambiguous queries.

1As a matter of fact, Wikipedia’s disambiguation page for “bond” lists over 100 possible
meanings for this particular entry: http://en.wikipedia.org/wiki/Bond.

2http://en.wikipedia.org/wiki/Wikipedia:Disambiguation
3http://wordnet.princeton.edu
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Song et al. (2009) analysed the ambiguity of web search queries through a

user study. In their study, five assessors manually classified 60 queries sampled

from the log of a commercial search engine from August 2006 as either ambigu-

ous, underspecified, or clear queries. While a high assessor agreement (90%) was

observed for judging whether a given query was ambiguous or not, distinguish-

ing between underspecified and clear queries turned out to be substantially more

difficult. Nonetheless, based on the demonstrated feasibility of the former case,

they proposed a binary classification approach to automatically identify ambigu-

ous queries. Based on the learned classification model, they estimated that 16%

of the queries in their entire query log sample were ambiguous.

Another log analysis of query ambiguity was performed by Clough et al.

(2009). In their analysis, a total of 14,909 unique queries that satisfied mini-

mum frequency criteria were selected from a one-month sample of the query log

of a commercial search engine from 2006. Of the sample queries, 18% had a high

click entropy, which quantified the spread of each query’s clicked documents. Such

queries were mostly informational, whereas queries with a low entropy were pre-

dominantly navigational (Broder, 2002). Analysing the subset of queries with an

exact match among Wikipedia disambiguation pages, they found no significant

correlation between click entropy and the number of suggested interpretations on

Wikipedia. However, they observed that queries with a dominant interpretation

on Wikipedia had a higher entropy. Such queries tended to be underspecified,

with clicks covering a range of aspects of the dominant interpretation. In particu-

lar, they found a significant correlation between the entropy of these queries and

the total length of the corresponding articles on Wikipedia, suggesting that they

indeed covered broad topics. Finally, considering both queries with high entropy

and those with at least one reformulation in the query log, they estimated that

from 9.5% to 16.2% of all queries in their sample were ambiguous.

The aforementioned studies characterised query ambiguity from different per-

spectives. In common, all studies reached the surprisingly consensual figure that

around 16% of all user queries are ambiguous, while many more can be under-

specified to some degree. In the next section, we will discuss how query ambiguity

can pose challenges to traditional ranking approaches, and how search result di-

versification can be deployed to address such challenges.
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3.2 Ranking under Uncertainty

Throughout the years, the probability ranking principle (PRP; Cooper, 1971;

Robertson, 1977), discussed in Section 2.2.1.1, has served as a general policy for

ranking in IR (Gordon & Lenk, 1991). However, the development of probabilistic

ranking has been permeated by simplifying modelling assumptions that are often

inconsistent with the underlying data (Gordon & Lenk, 1992; Cooper, 1995).

Gordon & Lenk (1991, 1992) analysed the optimality of the PRP under the

light of both decision and utility theories (von Neumann & Morgenstern, 1944).

In the context of document ranking, while decision theory assigns a cost to retriev-

ing each document independently of other documents, utility theory considers the

overall benefit of retrieving a set of documents. Besides the definitional assump-

tion that probabilities are well-calibrated,4 Gordon & Lenk (1991) discussed two

key assumptions underlying probabilistic ranking approaches in IR:

A1. The probability of relevance is estimated with certainty, and is provided as

a single point estimate, with no associated measure of risk.

A2. The probability of relevance is estimated for a query-document pair inde-

pendently of the estimated probability of relevance of the other documents.

As Gordon & Lenk (1991) demonstrated, the PRP attains the greatest ex-

pected utility compared to any other ranking policy under the aforementioned

assumptions. However, when at least one of these assumptions fails to hold, the

principle is suboptimal (Gordon & Lenk, 1992). In general, neither A1 nor A2 are

realistic assumptions. Regarding A1, uncertainty arises naturally from the fact

that the probability of relevance is estimated based upon limited representations

of both information needs and information items (Turtle & Croft, 1996). The

former is particularly the case in complex search environments such as the Web,

where queries are often ambiguous, as discussed in Section 3.1.

Regarding A2, the limitation of assuming that documents are conditionally

independent given the query was early recognised. In his note on relevance as a

measurable quantity, Goffman (1964) pointed out that “the relationship between

4According to the definition of Gordon & Lenk (1991), a well-calibrated IR system is one
that predicts an accurate probability of relevance for each document.
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a document and a query is necessary but not sufficient to determine relevance.”

Intuitively, once a document satisfying the user’s information need has been ob-

served, it is arguable whether other documents satisfying the same need would

be deemed relevant. This intuition has been empirically corroborated in recent

years with the analysis of users’ browsing behaviour from click logs. Indeed, as

discussed in Section 2.3.3, users’ clicks on the ranked documents are better ex-

plained by a cascade model (Craswell et al., 2008), in which the probability of

clicking on a given document diminishes as higher ranked documents are clicked.

3.2.1 The Search Result Diversification Problem

The aforementioned assumptions, A1 and A2, generally do not hold in a realistic

search scenario, such as web search. While A1 is challenged by ambiguity in

the user’s query, A2 is challenged by redundancy in the ranking. In order to

overcome these limitations, search result diversification has been proposed as a

generalisation of the standard ranking problem, where ambiguity and redundancy

are no longer ruled out by simplifying assumptions (Bennett et al., 2008).

Departing from these assumptions requires viewing an ambiguous query as

representing not one, but multiple information needs (Spärck-Jones et al., 2007).

Under this view, query ambiguity can be tackled by ensuring a high coverage5

of the possible information needs underlying the query. In turn, redundancy

can be tackled by ensuring a high novelty with respect to the covered needs.

Analogously to the traditional single-need ranking problem, coverage and novelty

can be seen as a generalisation of recall and precision, respectively, as introduced

in Section 2.3.3. Just as it happens with recall and precision, coverage and novelty

can also be conflicting goals (Gollapudi & Sharma, 2009). Indeed, a ranking with

maximum coverage may not attain maximum novelty (e.g., although covering all

information needs, the ranking may place all documents covering a particular need

ahead of documents covering other needs). Conversely, a ranking with maximum

novelty may not attain maximum coverage (e.g., although covering each need as

early as possible in the ranking, not all possible needs may be covered).

5Clarke et al. (2008) refer to this concept as “diversity”. We call it “coverage” to emphasise
the fact that it is one component of the broader search result diversification problem.
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Coverage and novelty can be combined to define the search result diversifi-

cation problem. Informally, the problem can be stated as that of producing a

ranking with maximum coverage and maximum novelty with respect to the pos-

sible information needs underlying a query, as illustrated in Figure 3.1. The figure

also contrasts a diversity-oriented ranking from a traditional relevance-oriented

ranking, which assumes that a single information need underlies the query.

maximum 

relevance

maximum 

coverage

maximum 

novelty

Relevant to η
1

Relevant to η
2

Relevant to η
3

Not relevant

cutoff τ

maximum 

diversity

Figure 3.1: Relevance-oriented ranking and the often conflicting goals of diversity-
oriented ranking, namely, to attain maximum coverage and maximum novelty.

Formally, let Rq denote the ranking produced for the query q by a relevance-

oriented ranking approach, such as those described in Section 2.2. Moreover,

let Nq and Nd denote the sets of information needs for which the query q and

each document d ∈ Rq are relevant, respectively. The goal of the search result

diversification problem is to find a subset Dq ∈ 2Rq , such that:

Dq = argmax
D′

q∈2
Rq

∣

∣

∣
∪d∈D′

q
Nq ∩Nd

∣

∣

∣
, s.t. |D′

q| ≤ τ, (3.1)

where τ > 0 is the diversification cutoff, denoting the number of top documents

from Rq to be diversified, and 2Rq is the power set of Rq, comprising all subsets

D′
q of Rq, with 0 < |D′

q| ≤ τ , to be considered as candidate permutations of Rq.

The permutation with the maximum number of covered information needs up to

the cutoff τ is chosen as the optimal diversified ranking Dq.
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3.2.2 Complexity Analysis

The search result diversification problem, as formalised in Equation (3.1), is an

instance of the maximum coverage problem, a classical NP-hard problem in com-

putational complexity theory (Hochbaum, 1997), which can be stated as:

Given a universe of elements U , a collection of potentially overlapping

subsets W ∈ 2U , and an integer τ , select a set of subsets M ⊆ W,

with |M| ≤ τ , with maximum coverage of the elements from U .

To show that the diversification problem is also NP-hard, we can reduce the

maximum coverage problem to it (Agrawal et al., 2009). In particular, we map the

universe of elements U to the possible information needs Nq underlying the query

q. Likewise, we map the collection of candidate subsets W to the documents in

Rq, initially retrieved for q, in which case each document d ∈ Rq can be seen as

a subset of the information needs η ∈ Nq for which this document is relevant. As

a result, it can be easily verified that a set of subsets M ⊆ W, |M| ≤ τ , has

maximum coverage of the elements in U if and only if a permutation Dq ⊆ Rq,

|Dq| ≤ τ , has maximum diversity with respect to the information needs in Nq.

Since the diversification problem is NP-hard, we must look for a polynomial-

time approximate solution. An important observation to this end is that the

maximisation objective in Equation (3.1) shows a submodular structure (Vohra

& Hall, 1993). In particular, given arbitrary sets Γ1,Γ2 ⊆ U , with Γ1 ⊆ Γ2, and

an element γ ∈ U \ Γ2, a set function f : 2U → R is called submodular if and

only if f(Γ1 ∪ {γ}) − f(Γ1) ≥ f(Γ2 ∪ {γ}) − f(Γ2). In other words, adding a new

element γ to Γ1 causes an equal or higher increment in f compared to adding

γ to Γ1’s superset Γ2. Intuitively, a submodular function captures the notion

of decreasing marginal utility, a fundamental principle in economics (Samuelson

& Nordhaus, 2001). In the context of search result diversification, the marginal

utility of selecting a further document relevant to an information need diminishes

the more this need is satisfied by the documents already selected.

A greedy algorithm can be used to solve the submodular function optimisation

in Equation (3.1). As described in Algorithm 3.1, this greedy approach takes as

input a query q, the initial ranking Rq, with |Rq| = nq, and the diversification

cutoff τ ≤ nq. As its output, the algorithm produces a permutation Dq ⊆ Rq,
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with |Dq| = τ . Such a permutation is initialised as an empty set in line 1 and

iteratively constructed in lines 2–6 of Algorithm 3.1. In line 3, the submodular

objective function f(q, d,Dq) scores each yet unselected document d ∈ Rq \ Dq in

light of the query q and the documents already in Dq, selected in the previous

iterations of the algorithm. The highest scored document, d∗, is then removed

from Rq and added to Dq in lines 4 and 5, respectively. Finally, in line 7, the

produced diverse permutation Dq of the initial ranking Rq is returned.

Diversify(q,Rq, τ)

1 Dq ← ∅
2 while |Dq| < τ do
3 d∗ ← argmaxd∈Rq\Dq

f(q, d,Dq)
4 Rq ←Rq \ {d∗}
5 Dq ← Dq ∪ {d∗}
6 end while
7 return Dq

Algorithm 3.1: Greedy search result diversification.

The asymptotic cost of Algorithm 3.1 is the product of two factors: the cost

̟i of evaluating the function f in line 3 at the i-th iteration, and the number Λτ

of such evaluations required by the algorithm to identify the τ most diverse doc-

uments. The unitary cost ̟i varies for different approaches, as will be discussed

in Section 3.3. For approaches adhering to the greedy strategy in Algorithm 3.1,

the number of evaluations Λτ performed up to (and including) the i-th iteration

can be modelled as a recurrence relation. In particular, at the first iteration (i.e.,

i = 1), the most diverse document is trivially selected as the one with the highest

estimated relevance to the query, independently of the other documents, since

Dq = ∅ at this point. At the i-th iteration, with i > 1, the function f is evaluated

for each document d ∈ Rq \ Dq, which amounts to a total of nq − (i − 1) docu-

ments. These two observations can be modelled as the base and recursion steps

of a first-order linear recurrence, respectively, according to:

Λ1 = 0, (3.2)

Λi = nq − i+ 1 + Λi−1. (3.3)
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To obtain the total number of evaluations Λτ required to select the τ most

diverse documents from Rq, we can iteratively expand the recursion step (Equa-

tion (3.3)) through telescoping (Cormen et al., 2001), until we finally arrive at

the base step (Equation (3.3)), according to:

Λτ = nq − τ + 1 + Λτ−1, (3.4)

Λτ−1 = nq − τ + 2 + Λτ−2, (3.5)

. . .

Λ2 = nq − τ + (τ − 1) + Λ1. (3.6)

Replacing Equation (3.2) into (3.6), and back-replacing Equations (3.5)-(3.6)

up into Equation (3.4), we can derive a closed form for Λτ , as follows:

Λτ =
τ

∑

i=2

(nq − τ + i) + Λ1

=

τ
∑

i=2

(nq − τ) +

τ
∑

i=2

i+ 0

=
1

2
(2τnq − τ 2 − 2nq + τ). (3.7)

With τ ≤ nq, it follows from Equation (3.7) that Λτ = O(τnq). As τ → nq,

we have Λτ = O(n2
q). An important non-approximability result is known for this

polynomial-time algorithm, which stems from the submodular structure of the

objective function f. In particular, Nemhauser et al. (1978) have shown that such

a greedy algorithm achieves an approximation factor of (1− 1/e) ≈ 0.632 of the

optimal solution to the maximum coverage problem. Feige (1998) has further

demonstrated that, for any ǫ > 0, the optimal solution cannot be approximated

within a ratio of (1 − 1/e) + ǫ, unless P = NP. This result was independently

confirmed under a weaker assumption by Khuller et al. (1999), who proved that no

approximation algorithm with ratio better than (1−1/e) exists for the maximum

coverage problem, unless NP ⊆ DTIME(n
O(log log nq)
q ). Given the approximation

guarantee offered by Algorithm 3.1, this algorithm underlies most diversification

approaches in the literature, as will be described in Section 3.3, as well as the

framework introduced in this thesis, which we will describe in Chapter 4.
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3.3 Related Approaches

Most diversification approaches in the literature differ by how they implement the

objective function f(q, d,Dq) in Algorithm 3.1. In this thesis, we propose to organ-

ise these approaches according to two complementary dimensions, as described in

Table 3.1: aspect representation and diversification strategy (Santos et al., 2010e,

2012b). An aspect representation determines how the information needs underly-

ing a query are represented as multiple aspects of this query.67 In particular, an

implicit representation relies on features intrinsic to each document in order to

model different aspects, such as the terms contained in the document (Carbonell

& Goldstein, 1998), or those derived from different language models (Zhai et al.,

2003), topic models (Carterette & Chandar, 2009), or clusters (He et al., 2011)

built from the initial ranking. In turn, an explicit representation seeks to directly

approximate the possible information needs underlying a query, by relying on fea-

tures derived from the query itself, such as its associated clicks (Radlinski et al.,

2008a), reformulations (Santos et al., 2010a), or categories (Agrawal et al., 2009).

Given a particular aspect representation, a diversification strategy determines

how to achieve the goal of satisfying the different query aspects. Coverage-based

approaches achieve this goal by directly estimating how well each document covers

each aspect of the query, regardless of the other retrieved documents. Depending

on the underlying aspect representation, coverage can be estimated in terms of

classification confidence (Agrawal et al., 2009), topicality (Carterette & Chan-

dar, 2009), and relevance (Santos et al., 2010a,e). In contrast, novelty-based

approaches directly compare the retrieved documents to one another, regardless

of their covered aspects, in order to promote novel information. For instance, doc-

uments can be compared in terms of content dissimilarity (Carbonell & Goldstein,

1998), divergence (Zhai et al., 2003), or relevance score correlation (Rafiei et al.,

2010; Wang & Zhu, 2009). Finally, the advantages of both coverage and novelty

can be combined into a hybrid diversification strategy (Santos et al., 2012b).

6Unless otherwise noted, we will refer to query interpretations and aspects indistinctly.
7While both queries and aspects are representations of information needs, we find the fol-

lowing distinction helpful: a query is a potentially ambiguous representation of an information
need in the classical “single-need” view of ranking, whereas an aspect is an unambiguous rep-
resentation of one need when multiple needs are considered, as discussed in Section 3.2.1.
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Table 3.1: Representative diversification approaches in the literature, organised into
two complementary dimensions: diversification strategy and aspect representation.

Diversification
strategy

Aspect representation

Implicit Explicit

Novelty

Carbonell & Goldstein (1998)

Santos et al. (2012b)

Zhai et al. (2003)
Chen & Karger (2006)
Zhu et al. (2007)
Wang & Zhu (2009)
Rafiei et al. (2010)
Zuccon & Azzopardi (2010)
Gil-Costa et al. (2011, 2013)

Coverage

Radlinski & Dumais (2006)
Carterette & Chandar (2009) Radlinski et al. (2008a)
He et al. (2011) Capannini et al. (2011)

Santos et al. (2012b)

Hybrid
Yue & Joachims (2008) Agrawal et al. (2009)
Santos et al. (2010e) Santos et al. (2010a)
Raman et al. (2012) Slivkins et al. (2010)

3.3.1 Novelty-based Approaches

Novelty-based approaches have the longest history in the search result diversifi-

cation literature, stemming from research on identifying novel sentences for text

summarisation (Carbonell & Goldstein, 1998). The definitional characteristic of

such approaches is their account for dependences between the ranked documents,

and consequently their strict adherence to the formulation in Algorithm 3.1.

The novelty-based diversification approaches in the literature typically dif-

fer according to their estimation of document dependence. As highlighted in

Table 3.1, the vast majority of these approaches adopts an implicit aspect repre-

sentation, typically comprising the space of unique terms in a document corpus.8

For such approaches, at the i-th iteration, an evaluation of the objective function

f(q, d,Dq) would have a cost ̟i ∝ v(i−1), where v is the number of unique terms

8To enable the assessment of the effectiveness of novelty as a diversification strategy in
isolation from the aspect representation dimension, in Chapter 8, we introduce the first explicit
novelty-based diversification approaches in the literature.
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in the lexicon. Nonetheless, in reality, the function f must only be evaluated with

respect to the last document added to Dq (as opposed to the entire set Dq), since

the yet unselected documents in Rq \ Dq would have already been compared to

the documents added to Dq in the previous iterations. As a result, complement-

ing the explanation in Section 3.2.2, the total cost incurred by a novelty-based

diversification approach can be expressed as
∑Λτ

i=1̟i =
∑O(τnq)

i=1 v = O(vτnq).

The first novelty-based diversification approach in the literature was intro-

duced by Carbonell & Goldstein (1998), with applications to text retrieval and

summarisation. In particular, their maximal marginal relevance (MMR) method

scored a candidate document d ∈ Rq \ Dq as the document’s estimated relevance

with respect to the query q, discounted by the document’s maximum similarity

with respect to the already selected documents in Dq, according to:

fMMR(q, d,Dq) = λ f1(q, d)− (1− λ) max
dj∈Dq

f2(d, dj), (3.8)

where f1(q, d) and f2(d, dj) estimate the relevance of d to the query q and its simi-

larity to the documents already in Dq, respectively. A balance between relevance

(i.e., f1) and redundancy (i.e., max f2, the opposite of novelty) is achieved through

an appropriate setting of the linear combination parameter λ.

Inspired by the formulation of MMR, Zhai et al. (2003) proposed a novelty-

based diversification approach within a risk minimisation (RM) framework for

language modelling (Zhai & Lafferty, 2006). In particular, given a query q and

a candidate document d, their approach estimated the score of the document

model θd with respect to the query model θq, as well as a reference model θDq
,

comprising the documents already selected, according to:

fRM(q, d,Dq) = f1(θq, θd)(1− λ− f2(θd, θDq
)), (3.9)

where f1(θq, θd) was estimated using the KL ranking function, as described in

Equation (2.22). Six methods were proposed in order to estimate f2(θd, θDq
),

based on either the divergence between θd and θDq
or a mixture of the reference

model θDq
and an English background model. Similarly to Equation (3.8), the

parameter λ controls the penalisation of redundancy.
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A related risk-aware approach was proposed by Chen & Karger (2006). In

particular, they argued that maximising the probability of relevance could lead

to a complete retrieval failure when ranking under uncertainty. Instead, they

proposed to maximise the chance of retrieving at least one relevant document in

the ranking. To this end, they instantiated the objective function in Algorithm 3.1

to estimate the conditional relevance (CR) of a document d, under the assumption

that none of the already selected documents Dq were relevant, according to:

fCR(q, d,Dq) = p(gr(d) | ḡ1, · · · , ḡ|Dq|, d1, · · · , d|Dq|, d), (3.10)

where r(d) denotes the ranking position of document d, and gi and ḡi denote the

events in which the document at the i-th position is relevant and non-relevant,

respectively. Intuitively, this formulation promotes novelty by considering the

already selected documents as a form of negative relevance feedback.

Wang & Zhu (2009) introduced a diversification approach9 inspired by the

portfolio theory in finance (Markowitz, 1952). In particular, the selection of doc-

uments for a ranking involves a fundamental risk, namely, that of overestimating

the relevance of individual documents, analogously to the risk involved in select-

ing financial assets (e.g., stocks) for an investment portfolio. In both the finance

and the retrieval scenarios, diversifying the selected items can maximise the ex-

pected return (mean) while minimising the involved risk (variance) of a particular

selection. Wang & Zhu (2009) proposed to deploy such a mean-variance analysis

(MVA) as a diversification objective, according to:

fMVA(q, d,Dq) = µd − bwi σ
2
d − 2 b σd

∑

dj∈Dq

wj σdj ρd,dj , (3.11)

where µd and σ2
d are the mean and variance of the relevance estimates associated

with document d, respectively, with the summation component estimating the

redundancy of d in light of the documents in Dq. Documents are compared in

terms of the Pearson’s correlation ρd,dj of their relevance estimates. The weight

wi assigns a discount to the document at the i-th ranking position. A balance

between relevance, variance, and redundancy is achieved with the parameter b.

9A very similar approach was proposed independently by Rafiei et al. (2010).
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Building upon the formalism of quantum mechanics (Dirac, 1930), Zuccon &

Azzopardi (2010) proposed the quantum probability ranking principle (QPRP).

In contrast to the classic PRP (Cooper, 1971; Robertson, 1977), introduced in

Section 2.2.1.1, the QPRP prescribes that not only the estimated relevance of each

document should be considered as a ranking criterion, but also how it interferes

with the estimated relevance of the other documents. In particular, in the quan-

tum formalism, interference refers to the effect of an observation on subsequent

observations. This notion was quantified into the following objective:

fQPRP(q, d,Dq) = p(Gq|q, d) +
∑

dj∈Dq

̺d,dj , (3.12)

where p(Gq|q, d) denotes the probability of observing the relevant set Gq, given the

query q and the document d, which corresponds to the classic formulation of the

PRP in Equation (2.6). The estimation of the interference ̺d,dj between d and

each document dj ∈ Dq involves operations with complex numbers. In practice, it

can be approximated as ̺d,dj ≈ −2
√

p(Gq|q, d)
√

p(Gq|q, dj) f(d, dj), where f(d, dj)

can be any function measuring the similarity between the two documents.

Zhu et al. (2007) approached the diversification problem as an absorbing ran-

dom walk (ARW) with transition probabilities pij = (1 − λ) p(dj|q) + λ p(dj|di),

where p(dj|q) and p(dj|di) denoted the estimated relevance of dj and its similarity

to di, respectively, with the parameter λ balancing between the two scores. An

absorbing random walk is a Markov chain with reachable absorbing states i, such

that pij = 1 if i = j, and 0 otherwise (Kemeny & Snell, 1960). In their formu-

lation, each already selected document dj ∈ Dq was represented as an absorbing

state, in which case candidate documents were scored according to:

fARW(q, d,Dq) = ϑ(d,Dq), (3.13)

where ϑ(d,Dq) denotes the expected number of visits to document d before ab-

sorption by the states in Dq. While this computation would incur an inversion of

the underlying transition matrix at every iteration, in practice, such an inversion

can be computed only once and reused subsequently to update the portion of the

matrix corresponding to the states in Rq \ Dq (Woodbury, 1950).
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Gil-Costa, Santos, Macdonald & Ounis (2011, 2013) explored the properties

of the metric space induced from the ranking produced for a query in order

to identify novel documents. To this end, they deployed different techniques

to partition the initial ranking Rq into zones Zq, with each zone comprising

documents similar to each other and dissimilar from documents in the other zones.

Since |Zq| ≪ |Dq|, they were able to drastically reduce the number of document

comparisons required to promote novelty, by comparing each candidate document

d ∈ Rq\Dq to each identified zone centre z ∈ Zq, instead of all previously selected

documents dj ∈ Dq. While such centres could be directly returned as a diverse

selection of documents, Gil-Costa et al. (2011) introduced a scoring function to

perform what they called a sparse spatial selection diversification (SSSD):

fSSSD(q, d,Dq) = (1− λ) f1(q, d) + λ
(

1−max
z∈Zq

f2(d, z)
)

, (3.14)

where f1(q, d) and f2(d, z) estimate the relevance of d to the query q and its

similarity—as given by a metric distance—to each zone centre z, with the pa-

rameter λ controlling the trade-off between the two scores.

3.3.2 Coverage-based Approaches

Different from novelty-based approaches, coverage-based approaches do not ac-

count for dependences between the ranked documents. Instead, they attempt to

maximise the coverage of multiple query aspects by each independently selected

document, regardless of the aspects covered by the other documents. As a result,

these approaches do not adhere to the greedy formulation in Algorithm 3.1.

Although such an independence assumption breaks the effectiveness guaran-

tees offered by the greedy approximation, it improves the efficiency of the result-

ing diversification. In particular, while novelty-based approaches evaluate the

objective function f(q, d,Dq) a total of O(τnq) times, only O(nq) evaluations are

required by coverage-based approaches. The cost of a single evaluation, in turn,

depends on the total number of represented aspects k, i.e., ̟i = O(k). Similarly

to the analysis conducted for novelty-based approaches, we can express the total

cost incurred by coverage-based approaches as
∑Λτ

i=1̟i =
∑O(nq)

i=1 k = O(knq).
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Carterette & Chandar (2009) proposed a probabilistic approach for maximis-

ing the coverage of multiple “facets”, representing different aspects of a query.

Such facets were generated by constructing either relevance models (Lavrenko &

Croft, 2001) or topic models (Blei et al., 2003) from the top retrieved documents

for the query. Three strategies were proposed to re-rank the initially retrieved

documents Rq with respect to their coverage of the identified facets. In particu-

lar, the best performing of these strategies selected the highest scored document

d for each facet z ∈ Zq in a round-robin fashion. Such a facet modelling (FM)

approach can be formalised into the following objective function:

fFM(q, d,Dq) =







p(d|q) if ∃zi ∈ Zq | p(d|zi) > 0 ∧ i = |Dq| mod |Zq|,

0 otherwise,
(3.15)

where Zq is the set of facets identified for the query q, p(d|zi) denotes the like-

lihood of observing each document d given the facet zi ∈ Zq. The modulus

operation ensures a round-robin selection from a total of |Zq| facets. Since the

probabilities p(d|zi) are not comparable across facets, the documents selected in

the round-robin process are ultimately ordered by their likelihood given q.

A similar approach was investigated by He et al. (2011), by partitioning the

documents initially retrieved for a query into non-overlapping clusters using topic

modelling (Blei et al., 2003). In their approach, each cluster c ∈ Zq received a

score p(c|q), given by the cluster’s likelihood of generating the query q. As a

result, the diversification problem was reduced to the task of selecting documents

with a high coverage of highly scored clusters. Of the selection strategies in-

vestigated, a weighted round-robin selection (WRR) performed the best. This

selection strategy can be formalised according to:

fWRR(q, d,Dq) =



















p(d|q) if ∃ci ∈ Zq | d ∈ ci ∧ i = |Dq| mod |Zq|

s.t. p(c1|q) ≥ p(c2|q) ≥ · · · ≥ p(cZq||q),

0 otherwise,

(3.16)

where the probability p(ci|q) imposes a total ordering over the clusters ci ∈ Zq,

essentially biasing the round-robin selection towards highly scored clusters.
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Radlinski & Dumais (2006) proposed to diversify the documents retrieved for

a query according to these documents’ coverage of multiple reformulations of the

query, mined from a query log. In particular, given a query q, they selected the k

queries most likely to follow q across multiple sessions in a query log as a set Sq of

query reformulations. In order to select the τ most diverse documents from the

rankingRq, they enforced a proportional coverage of the identified reformulations.

According to this proportional coverage (PC) policy, each reformulation s ∈ Sq

could be represented by at most τ/k documents, which essentially filtered out

documents covering already well covered reformulations, according to:

fPC(q, d,Dq) =







f(q, d) if ∃s ∈ Sq | d ∈ Rs ∧ |Rs ∩ Dq| < τ/k,

0 otherwise,
(3.17)

where Rs is the set of documents that match the reformulation s. Despite ensur-

ing a proportional coverage of different reformulations, the selected documents

are still ranked by their estimated relevance to the initial query, f(q, d).

In a similar vein, Capannini et al. (2011) proposed to mine query specialisa-

tions (i.e., queries with a more specific representation of the user’s information

need compared to the initial query (Boldi et al., 2009b)) from a query log in

order to guide the diversification process. In particular, they selected the τ most

diverse documents from Rq according to each document’s weighted proportional

coverage (WPC) of the identified specialisations s ∈ Sq. More precisely, their

approach can be formalised into the following objective function:

fWPC(q, d,Dq) =







f(q, d) if ∃s ∈ Sq | d ∈ Rs ∧ |Rs ∩ Dq| < p(s|q) τ,

0 otherwise,
(3.18)

where p(s|q) τ is the proportion of the final ranking dedicated to documents

matching each specialisation s ∈ Sq, given each specialisation’s likelihood p(s|q).

For documents matching a not well represented specialisation s, f(q, d) denotes

each document’s utility, such that f(q, d) ∝
∑

s∈Sq
p(s|q)

∑

dj∈Rs

1−f(d,dj)

r(dj ,Rs)
, where

Rs is a ranking produced for each specialisation s and f(d, dj) measures the sim-

ilarity between d and each document dj ∈ Rs, ranked at position r(dj,Rs).
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Radlinski et al. (2008a) proposed an online learning approach to maximise the

coverage of clicks for a given query. Their intuition was that users with different

information needs would click on different documents for the same query. In

their formulation, the choice of the next document to be selected for a query was

seen as a multi-armed bandit (MAB) problem (Berry & Fristedt, 1985). A MAB

models the process of selecting one of many possible strategies or “arms”, trading

off the exploitation of existing knowledge and the acquisition (or exploration) of

new knowledge. In the context of the diversification problem, each candidate

document d ∈ Rq \ Dq for the next ranking position of a query q was considered

as an “arm”, with existing knowledge µ
(i)
d at time i denoting the likelihood of the

document being clicked when ranked at that position for the query. Precisely,

their ranked-armed bandits (RAB) objective can be described as:

fRAB(q, d,Dq) =







1 if d = MABj(Rq, µ
(i)
• ),

0 otherwise,
(3.19)

where MABj(Rq, µ
(i)
• ) is a MAB instance specifically trained to select a document

d∗ ∈ Rq for the j-th ranking position, with j = |Dq| + 1, balancing exploration

and the exploitation of the expected reward µ
(i)
d∗ at time i.

3.3.3 Hybrid Approaches

Hybrid search result diversification approaches combine the benefits of both cov-

erage and novelty-based approaches. On the one hand, they try to certify that

multiple aspects of the initial query are covered in the ranking. On the other hand,

they strive to ensure that the covered aspects are novel with respect to the aspects

covered by the other documents. As an inherited characteristic of novelty-based

approaches, hybrid approaches also account for dependences between the ranked

documents. As a result, hybrid approaches also strictly adhere to the greedy for-

mulation in Algorithm (3.1). In addition, the account of document dependences

gives hybrid approaches a total cost of
∑Λτ

i=1̟i =
∑O(τnq)

i=1 k = O(kτnq). Com-

pared to the O(vτnq) cost incurred by pure novelty-based approaches, hybrid

approaches are more efficient, since typically k ≪ v.

71



3. Search Result Diversification

Yue & Joachims (2008) proposed a hybrid diversification approach within the

framework of supervised machine learning. As training data, they considered a

pair (Rqi,Nqi) for each query qi, where Rqi and Nqi denoted the initially ranked

documents and the manually labelled information needs possibly underlying qi,

respectively. Since the actual needs Nqi are unknown in a real scenario, these

were implicitly represented using the words covered by each document. In order

to learn a function f to identify a set Dqi ⊆ Rqi with maximum coverage of Nqi,

they employed structural support vector machines (SVMs; Tsochantaridis et al.,

2005). In particular, their weighted word coverage (WWC) approach considered

linear functions f , parametrised by a weight vector w, according to:

fWWC(q, d,Dq) = wTΦ(Rq,Dq ∪ {d}), (3.20)

where the feature extractor Φ(Rq,Dq ∪ {d}) measures the extent to which the

words in Rq are covered by each candidate selection Dq ∪ {d}.

A supervised learning approach similar to the one of Yue & Joachims (2008)

was introduced by Raman et al. (2012), but within an online learning setting.

In particular, at a given time i, their approach presented the user with a diverse

ranking Dq, produced by the following objective:

fDP(q, d,Dq) = wT
i Φ(Rq,Dq ∪ {d}), (3.21)

where wi denotes the weight vector learned by a diversification perceptron (DP),

based upon the evidence accumulated up to time i, and Φ(Rq,Dq∪{d}) is defined

in terms of word coverage, similarly to Equation (3.20). To update the vector wi,

the feedback received from the user in the form of pairwise preferences is used

to produce an improved (in expectation) ranking D̂q. In particular, the updated

vector is defined as wi+1 = wi +Φ(Rq, D̂q)−Φ(Rq,Dq).

Hybrid approaches based on explicit aspect representations have also been

proposed. For instance, Slivkins et al. (2010) introduced a hybrid diversification

approach within the multi-armed bandits (MAB) framework. In particular, they

extended the click coverage maximisation approach of Radlinski et al. (2008a),

described in Section 3.3.2, to account for the context in which clicks are observed.
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To this end, they proposed to condition the expected reward µ
(i)
d|Dq

of each docu-

ment d at time i on the documents Dq selected ahead of d. This can be formalised

into the following objective function, denoted ranked context bandits (RCB):

fRCB(q, d,Dq) =







1 if d = MABj(Rq, µ
(i)
•|Dq

),

0 otherwise,
(3.22)

where, similarly to Equation (3.19), the instance MABj(Rq, µ
(i)
•|Dq

) selects a doc-

ument d∗ ∈ Rq for the j-th ranking position, with j = |Dq|+1, but instead using

the conditional reward µ
(i)
d∗|Dq

at time i, by correlating the clicks on d∗ to those ob-

served for the documents dj ∈ Dq. To reduce the number of required correlation

computations, they modelled the reward function µ• as a Lipschitz-continuous

function in the metric space induced by the documents in Rq (Searcóid, 2006),

which dramatically improved the efficiency of the proposed approach.

Agrawal et al. (2009) sought to diversify a document ranking in light of a tax-

onomy T of query intents, represented as different categories from the Open Di-

rectory Project (ODP).10 Given the classification of both queries and documents

in light of this taxonomy, they proposed an intent-aware selection (IA-Select)

mechanism, instantiating the objective function in Algorithm 3.1 as:

fIA-Select(q, d,Dq) =
∑

c∈T

f(c|q,Dq) f(d|q, c), (3.23)

where, for each category c ∈ T , f(d|q, c) denotes the extent to which the document

d covers c, while f(c|q,Dq) denotes the marginal utility of c given the query q and

the documents already in Dq. Intuitively, an already well covered category is

deemed less useful, which contributes to the promotion of novel documents.

The search result diversification framework introduced in this thesis also falls

into the family of hybrid approaches. In Chapter 4, we will discuss how particular

choices for explicitly representing the query aspects and for estimating the diver-

sity of the retrieved documents with respect to each aspect lead to a principled,

effective, and flexible solution to the diversification problem. Before that, in the

remainder of this chapter, we will introduce approaches for diversity evaluation.

10http://www.dmoz.org/
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3.4 Diversity Evaluation

A diverse ranking is one that satisfies the multiple information needs possibly

underlying an ambiguous query—be these needs from different users or from the

same user in different contexts. While traditional web search evaluation is chal-

lenging, departing from the assumption that a single information need underlies

each query arguably renders the evaluation of diversity even more complex. In

this section, we review the literature on diversity evaluation. In particular, Sec-

tion 3.4.1 extends the discussion in Section 2.3.2 with an emphasis on diversity

evaluation benchmarks. In turn, Section 3.4.2 describes diversity evaluation met-

rics, as an extension of the traditional metrics introduced in Section 2.3.3.

3.4.1 Evaluation Benchmarks

As discussed in Section 2.3.2, search systems have greatly benefited from the

controlled evaluation offered by benchmark test collections. On the other hand,

query ambiguity has been largely ignored by early test collections, similarly to

how traditional ranking approaches have ignored query ambiguity, as discussed in

Section 3.2. In practice, the assumption that the user’s query represents a single

information need reduces the complexity of the underlying evaluation, ensuring

that different systems are evaluated with respect to an unambiguously defined

information need (Cleverdon, 1991). However, as pointed out by Spärck-Jones

et al. (2007), this assumption is far from holding in the real world, particularly

with the high incidence of short an ambiguous queries. As discussed in Section 3.1,

such queries can negatively impact search effectiveness (Sanderson, 2008).

In order to address such a limitation of the established evaluation paradigm,

Spärck-Jones et al. (2007) argued for the development of test collections that

explicitly account for queries with different levels of ambiguity. In particular, they

claimed that such a test collection should consider each query as representing an

ensemble of information needs, as opposed to a single need. In turn, such needs

should reflect the interests of the population of users that could have issued the

query. Finally, the relevance of each ranked document should be judged separately

for each information need, so as to enable the assessment of the effectiveness of

the whole ranking at satisfying the multiple needs.
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Analogously to the instantiation of diversification approaches, discussed in

Section 3.3, diversity evaluation is typically operationalised by representing the

possible information needs underlying a query as multiple query aspects.11 Early

attempts to build a test collection for diversity evaluation were made at the TREC

6-8 Interactive tracks (Over, 1997, 1998; Hersh & Over, 1999). The investigated

task, called “aspect retrieval”, involved finding documents covering as many dif-

ferent aspects of a given query as possible. In this evaluation campaign, a total

of 20 topics were adapted from the corresponding years of the TREC Ad hoc

tracks (Voorhees & Harman, 1997, 1998, 1999). Each topic included from 7 to 56

aspects, as identified by TREC assessors, with relevance assessments provided at

the aspect level. Figure 3.2 illustrates one of such topics, 353i, along with some

of its identified aspects, denoted “sub-topics” in the TREC jargon.

<topic number="353i">

<query> antarctic exploration </query>

<description>

Identify systematic explorations and scientific investigations of

Antarctica, current or planned.

</description>

<subtopic number="1"> mining prospection </subtopic>

<subtopic number="2"> oil resources </subtopic>

<subtopic number="3"> rhodium exploration </subtopic>

<subtopic number="4"> ozone hole / upper atmosphere </subtopic>

<subtopic number="5"> greenhouse effect </subtopic>

...

</topic>

Figure 3.2: TREC-7 Interactive track, topic 353i and its sub-topics.

By relying on expert judges to identify query aspects from the retrieved doc-

uments (Lagergren & Over, 1998), the TREC Interactive track test collection

arguably lacks in plausibility and completeness in light of the actual information

needs of the population of users issuing a query (Radlinski et al., 2010b). In

order to overcome this limitation, Radlinski et al. (2010a) proposed to identify

realistic query aspects for diversity evaluation from the query and click logs of a

commercial search engine. In their approach, candidate aspects were selected as

queries that frequently co-occurred with the initial query across multiple sessions

11Note that the aspect representation adopted by a diversification approach does not neces-
sarily reflect the ground-truth aspect representation adopted for evaluation purposes.
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in the query log. Candidates with a low transition probability after a two-step

random walk on the bipartite query-document click graph (Craswell & Szummer,

2007) were filtered out. The remaining candidates were then clustered using a

graph partitioning algorithm (Blondel et al., 2008). The highest-scoring aspects

from different clusters were shown to better reflect real user needs compared to

aspects proposed by expert judges (Radlinski et al., 2010a,b). As a result, these

aspects served as the basis for a new test collection, developed in the context of

the TREC 2009-2012 Web tracks (Clarke et al., 2009a, 2010, 2011b, 2012).

The diversity task of the TREC 2009-2012 Web tracks currently provides the

largest publicly available test collections for diversity evaluation. As of 2011,12

these test collections comprised a total of 150 topics, with 2 to 8 associated

aspects each (Clarke et al., 2009a, 2010, 2011b). As such, these collections are

chosen as benchmarks for the experiments conducted in this thesis. An example

TREC Web track topic, along with its identified aspects, is shown in Figure 3.3.

In contrast to the short description provided by the TREC Interactive track test

collection, the TREC Web track aspects include a natural language description

of the information need represented by each aspect. Moreover, each aspect is

further classified as either informational (“inf”) or navigational (“nav”) by TREC

assessors, depending on the intent of its underlying need (Broder, 2002).

<topic number="1">

<query> obama family tree </query>

<description>

Find information on President Barack Obama’s family history, including

genealogy, national origins, places and dates of birth, etc.

</description>

<subtopic number="1" type="nav">

Find the TIME magazine photo essay "Barack Obama’s Family Tree".

</subtopic>

<subtopic number="2" type="inf">

Where did Barack Obama’s parents and grandparents come from?

</subtopic>

<subtopic number="3" type="inf">

Find biographical information on Barack Obama’s mother.

</subtopic>

</topic>

Figure 3.3: TREC 2009 Web track, topic 1 and its sub-topics.

12The TREC 2012 Web track is ongoing at the time of writing.
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Another test collection for the evaluation of web search result diversification

was recently introduced as part of the NTCIR-9 Intent task (Song et al., 2011a).13

Initiated in 1999, NTCIR is a series of evaluation workshops designed to assess

information retrieval on Asian languages, as well as across different languages. For

the NTCIR-9 Intent task, two test collections were developed, aimed at evaluating

search result diversification on the Chinese and the Japanese Web. In particular,

the Chinese collection comprised 100 topics, with 4 to 15 associated aspects each.

For Japanese, another 100 topics were developed, each with 3 to 22 aspects. An

example Chinese topic (translated to English) is shown in Figure 3.4.

<topic number="0015">

<query> mozart </query>

<subtopic number="1" probability="0.241379310344828">

mozart’s music download

</subtopic>

<subtopic number="2" probability="0.241379310344828">

mozart’s biography

</subtopic>

<subtopic number="3" probability="0.241379310344828">

works by mozart

</subtopic>

<subtopic number="4" probability="0.126436781609195">

mozart’s concerts

</subtopic>

...

</topic>

Figure 3.4: NTCIR-9 Intent task (Chinese), topic 0015 and its sub-topics.

Different from the diversity task of the TREC 2009-2011 Web tracks, the

NTCIR-9 Intent task included graded (i.e., non-binary) relevance assessments

at the aspect level. In addition, as shown in Figure 3.4, the identified aspects

were assigned non-uniform probabilities, estimated through assessor agreement,

in order to place more emphasis on popular aspects during the evaluation (Sakai

& Song, 2012). While these extensions certainly introduce interesting nuances for

diversity evaluation, in order to ensure a consistently uniform experimental setup

throughout this thesis, we opted not to use these test collections. Nonetheless,

an evaluation of the framework introduced in this thesis on both NTCIR-9 Intent

task test collections was conducted by Santos et al. (2011f).

13The NTCIR-10 Intent task is also ongoing at the time of writing.
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3.4.2 Evaluation Metrics

Several metrics have been proposed in recent years to evaluate the diversification

effectiveness of a document ranking. Given a query q and a cutoff κ, a diversity

evaluation metric quantifies the extent to which the top κ documents in a ranking

Rq cover the aspects Aq, representing the information needs Nq underlying q.

The most straightforward metric for diversity evaluation is perhaps sub-topic

recall (SC; Zhai et al., 2003). Also known as intent recall (Sakai et al., 2010),

this metric quantifies the amount of unique aspects Aq of the query q that are

covered by the top κ ranked documents d ∈ R(κ)
q , according to:

SR(q, κ) =
∪
d∈R

(κ)
q
|Aq ∩ Ad|

|Aq|
, (3.24)

where Ad is the set of aspects for which the document d ∈ R(κ)
q is relevant.

A limitation of sub-topic recall is that it does not take into account the prob-

ability of different aspects given the submitted query. Ideally, this probability

should reflect the fraction of the user population that is interested in the infor-

mation need represented by each aspect. Two evaluation frameworks that take

into account the (potentially non-uniform) probability of different aspects have

been proposed in the literature. In common, these frameworks generate diversity-

oriented metrics as a natural extension of relevance-oriented evaluation metrics

in the presence of multiple query aspects. The first of these frameworks, de-

noted “intent-aware”,14 was introduced by Agrawal et al. (2009). In particular,

they defined an intent-aware (IA) metric Eval-IA(q, κ) as the expected value of

its counterpart relevance-oriented metric Eval(a, κ), with a ∈ Aq, according to:

Eval-IA(q, κ) =
∑

a∈Aq

p(a|q)Eval(a, κ), (3.25)

where p(a|q) is the probability of observing the aspect a given the query q, and

Eval(a, κ) is computed by assuming that a is the only relevant aspect of q.

14Agrawal et al. (2009) use “intent” in the sense of “information need”. Throughout this
thesis, we adopt the traditional definition of “intent” as a property of an information need (e.g.,
informational, navigational), in the sense proposed by Broder (2002) and Rose & Levinson
(2004), and instead generally refer to the information needs underlying a query as “aspects”.
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An alternative to the intent-aware framework of Agrawal et al. (2009) was

proposed by Sakai et al. (2010), as an extension to traditional metrics based

upon graded relevance, such as discounted cumulative gain (DCG; Järvelin &

Kekäläinen, 2002), described in Equation (2.51). In particular, instead of com-

puting the expected value of one such metric across each of the multiple aspects

Aq underlying the query q, as in Equation (3.25), they proposed to extend this

metric to leverage the expected gain over multiple aspects—as opposed to the

raw gain with respect to the query q only. The introduced family of diversity

metrics, denoted “D” metrics, can be formalised according to:

D-Eval(q, κ) = Eval(Aq, κ), (3.26)

where Eval(Aq, κ) denotes a traditional graded relevance metric, with the gain

of the i-th document computed by aggregating the aspect-specific gains gi|a, ac-

cording to gi =
∑

a∈Aq
p(a|q) gi|a. One basic advantage of this framework over the

intent-aware framework of Agrawal et al. (2009) is that the metric Eval(Aq, κ) is

computed for a single rather than for multiple separate rankings.

A limitation of both the IA and the D evaluation frameworks is that they

do not enforce a high coverage of multiple query aspects by design. As a result,

some metrics generated by these frameworks, such as DCG-IA (Agrawal et al.,

2009) or D-DCG (Sakai et al., 2010), may completely ignore aspects with a low

probability p(a|q). In the extreme case, these metrics may end up maximally

rewarding a ranking that covers only a single yet dominant aspect. In order to

overcome this limitation, Sakai et al. (2010) proposed to linearly interpolate a

D metric with sub-topic recall (SR), defined in Equation (3.24). The resulting

metric, which they called a “D♯” metric, can be defined according to:

D♯-Eval(q, κ) = γ SR(q, κ) + (1− γ)D-Eval(q, κ), (3.27)

where the parameter γ controls the balance between the SR(q, κ) and D-Eval(q, κ)

metrics. Typically, this parameter is set as γ = 0.5, as it was shown to have

little impact in the final value of D♯-Eval(q, κ), primarily because SR(q, κ) and

D-Eval(q, κ) are highly correlated with each other (Sakai et al., 2010).
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Another option to enforce the coverage of multiple aspects is to instantiate ei-

ther the IA or the D framework by computing the expected value (for IA metrics)

or the expected gain (for D metrics) of a cascade metric (Clarke et al., 2011a). As

discussed in Section 2.3.3, cascade metrics penalise redundancy, by modelling the

behaviour of a user who stops inspecting the ranking once a relevant document

is observed (Craswell et al., 2008). As an indirect result, these metrics encourage

the coverage of multiple, non-redundant query aspects. One such metric is ex-

pected reciprocal rank (ERR; Chapelle et al., 2009), described in Equation (2.53).

This metric can be extended into its intent-aware counterpart, ERR-IA (Chapelle

et al., 2011), according to:

ERR-IA(q, κ) =
∑

a∈Aq

p(a|q)ERR(a, κ), (3.28)

where ERR(a, κ) is computed separately for each aspect a ∈ Aq, under the as-

sumption that none of the other query aspects is of interest.

Instantiations of the D framework using cascade metrics are also possible.

For instance, Clarke et al. (2008) proposed to extend the traditional discounted

cumulative gain (DCG) metric (Järvelin & Kekäläinen, 2002), described in Equa-

tion (2.51), with the gain at a given ranking position defined in order to reward

a high coverage of the query aspects while penalising excessive redundancy with

respect to the aspects covered by documents at higher ranks. More precisely,

they introduced the α-DCG metric according to:

α-DCG(q, κ) =
κ

∑

i=1

∑

a∈Aq
gi|a(1− α)

∑i−1
j=1 gj|a

log2(i+ 1)
, (3.29)

where gi|a is the (binary) relevance grade of the i-th ranked document with respect

to each query aspect a ∈ Aq. As a result, (1 − α)
∑i−1

j=1 gj|a penalises redundancy

by diminishing the value of covering the aspect a, according to how much this

aspect is already covered by the documents ranked ahead of the i-th document.

The parameter α ∈ [0, 1) controls the amount of penalisation: α → 1 results in

the maximum penalisation, whereas α = 0 reduces to the standard DCG, with

the number of covered aspects
∑

a∈Aq
gi|a used as the gain at rank i.
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Extended metrics have also been proposed in recent years, accounting for di-

mensions of the diversification problem not addressed by the metrics described

thus far. For instance, Clarke et al. (2009b) proposed a metric that explicitly

distinguishes between aspects related to different interpretations of the user’s

query. Their basic intuition was that, while a user may be interested in multiple

aspects of a given interpretation, only one such interpretation should be of in-

terest. To exploit this intuition, they extended the rank-biased precision (RBP)

metric (Moffat & Zobel, 2008), described in Equation (2.52), with a discount

factor that penalises redundancy, similarly to α-DCG (Clarke et al., 2008). The

resulting metric, novelty- and rank-biased precision (NRBP), was defined as:

NRBP(q, κ) =
(1− (1− α)β)

β

κ
∑

i=1

βi
∑

ϕ∈Ωq

p(ϕ|q)

|Aϕ|

∑

a∈Aϕ

gi|a(1− α)
∑i−1

j=1 gj|a , (3.30)

where Ωq is the set of possible interpretations of the query q, and Aϕ is the set of

aspects associated with each interpretation ϕ ∈ Ωq, in which case gi|a denotes the

(binary) relevance grade of the i-th document with respect to the aspect a ∈ Aϕ.

Interpretations follow a non-uniform distribution p(ϕ|q), whereas the distribution

of aspects for a given interpretation is assumed to be uniform. Analogously to

α-DCG in Equation (3.29), (1− α)
∑i−1

j=1 gj|a penalises the coverage of already well

covered interpretation-aspect pairs, with the parameter α controlling the amount

of penalisation. The extra parameter β models users with different patience levels,

similarly to the standard RBP metric in Equation (2.52).

Sakai (2012) proposed to extend the IA and D frameworks, in order to account

for the intent of different aspects. For the extended D framework, he computed

the gain at rank i by distinguishing between informational and navigational as-

pects, according to gi =
∑

a∈Aq
p(a|q) gi|a(1 − 1Anav

q
(a) 1∪i−1

j=1Adj
(a)), where the

indicator functions 1Anav
q

(a) and 1∪i−1
j=1Adj

(a) denote whether the aspect a ∈ Aq

is navigational and whether it is covered by any document ranked ahead of the

i-th. His assumption was that redundancy should be penalised for navigational

aspects, but not for informational ones. An analogous extension was proposed

for the IA framework, by interpolating the expected value of informational- and

navigational-oriented metrics over the corresponding subsets of aspects.
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In addition to developing diversity evaluation metrics, much effort has been

invested in validating such metrics. For instance, Clarke et al. (2011a) analysed

the discriminative power of diversity metrics, a property that reflects the extent

to which a metric can distinguish between pairs of rankings. Using the runs sub-

mitted to the TREC 2009 Web track (Clarke et al., 2009a), they observed that

sub-topic recall (Equation (3.24)) has the highest discriminative power compared

to the other considered diversity metrics. Intent-aware and cascade metrics, on

the other hand, showed a discriminative power inferior to that observed for aver-

age precision (Equation (2.50)), a relevance-oriented metric.

Ashkan & Clarke (2011) analysed the informativeness of diversity metrics,

which reflects the extent to which a metric predicts the actual distribution of

relevant documents. Using the maximum entropy method to estimate the most

plausible relevance distribution according to a given metric (Aslam et al., 2005),

they found that intent-aware cascade metrics (which reward coverage and novelty)

are more informative than their pure cascade counterpart (which only rewards

novelty), with ERR-IA (Chapelle et al., 2011), described in Equation (3.28),

showing the highest informativeness among all considered metrics.

Sanderson et al. (2010) investigated the predictive power of diversity metrics,

in terms of the extent to which these metrics correlate with the behaviour of

actual users. In their study, 296 subjects were hired through crowdsourcing to

express their preference between pairs of runs submitted to the TREC 2009 Web

track (Clarke et al., 2009a). The runs in each pair were also evaluated according

to multiple diversity metrics. Their analysis showed a high agreement between

the prediction of several diversity metrics and the users’ preferences, with no

significant difference in predictive power between the considered metrics.

Carterette (2009) analysed the optimality of the normalisation component of

cascade metrics. In particular, producing an ideal ranking for normalising such

metrics is an NP-hard problem, as discussed in Section 3.2.2. Since the ideal

ranking is typically computed using the greedy approximation in Algorithm 3.1,

a natural question is whether the produced evaluation scores are affected by a sub-

optimal normalisation. Fortunately, an analysis of real and simulated topic sets

and aspect relevance assessments showed that the greedy and optimal evaluation

normalisations agree in 93% and 85% of the cases, respectively.
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3.5 Summary

This chapter introduced the search result diversification problem as a departure

from the traditional view of ranking as the problem of satisfying a single infor-

mation need expressed by the user’s query, which was the focus of Chapter 2.

In Section 3.1, we described several studies that quantified the occurrence

of ambiguous queries in real web search logs, as a motivation for diversifying

the search results. In Section 3.2, we discussed the simplifying assumptions un-

derlying traditional probabilistic ranking approaches and the limitation of such

assumptions in a real search scenario. This discussion led to the formal definition

of the diversification problem and the analysis of its complexity. In Section 3.3,

we described the most prominent diversification approaches in the literature, or-

ganised according to the complementary dimensions of diversification strategy

and aspect representation. Lastly, in Section 3.4, we extended the discussion in

Section 2.3 with an emphasis on the evaluation of diversification effectiveness,

including a description of the existing evaluation benchmarks and metrics.

As a complement to Chapter 2, this chapter consolidates our account of the

related literature on web search ranking, and particularly on diversity-oriented

ranking. In the next chapter, we will introduce a novel framework for search result

diversification, which exploits the strengths and weaknesses of past research in

order to deliver a flexible and effective solution for diversifying the search results.
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Chapter 4

The xQuAD Framework

Several approaches have been recently proposed to diversify the documents re-

trieved for an ambiguous or underspecified query. In common, we argue that

none of these approaches addresses the multiple information needs underlying

a query in a principled manner. As discussed in Section 3.3, on the one hand,

implicit diversification approaches rely on an aspect representation derived from

the retrieved documents, as opposed to the query or the possible information

needs that it represents. On the other hand, existing explicit approaches rely on

arbitrary surrogates or on heuristics to exploit multiple information needs.

In this thesis, we claim that an effective diversification should be explicitly

driven by the perspective of the search users, as opposed to the perspective of

the retrieved documents. Moreover, such an explicit representation should reflect

the multiple information needs that may have motivated the query (Spärck-Jones

et al., 2007). In order to formalise this view, we propose a probabilistic objective

for search result diversification, which is at the core of the Explicit Query Aspect

Diversification (xQuAD) framework introduced in this thesis.

The remainder of this chapter describes the xQuAD framework. In particu-

lar, Section 4.1 discusses our view towards a user-driven diversification and the

requirements involved in pursuing this view. Section 4.2 formalises xQuAD’s

probabilistic ranking objective, which fulfils the identified requirements in a prin-

cipled yet practical manner. A complete example of the operation of the proposed

framework is provided in Section 4.3. Lastly, a parallel to approaches that in-

spired the development of xQuAD is drawn in Section 4.4.
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4.1 User-driven Diversification

Early diversification approaches typically built an implicit representation of the

query aspects based upon some property of the retrieved documents, such as their

raw content (Carbonell & Goldstein, 1998), their language models (Zhai et al.,

2003), their relevance scores with respect to the initial query (Wang & Zhu, 2009;

Rafiei et al., 2010), or their coverage of latent topics (Carterette & Chandar,

2009) or clusters (He et al., 2011; Gil-Costa et al., 2011, 2013). As illustrated in

Figure 4.1, these approaches differ from more recent ones that derive an explicit

aspect representation driven by the query itself. On the other hand, existing

explicit approaches either rely on arbitrary properties of the query, such as its

classification according to a fixed taxonomy (Agrawal et al., 2009), or on heuristic

diversification strategies, aimed at achieving a proportional coverage of multiple

query aspects in the ranking (Radlinski & Dumais, 2006; Capannini et al., 2011).

η
2

η
1

η
3

q

document-driven 

diversification

query-driven 

diversification

information 

needs

Figure 4.1: Query- vs. document-driven diversification.

We argue that the existing approaches have three key limitations:

L1. The ranking produced by a document-driven approach can be only as di-

verse as the aspects identified from the documents retrieved for the initial

query, which may be biased (Mowshowitz & Kawaguchi, 2002). As a result,

important aspects (from the user population perspective) may be overlooked

simply because they are not well represented among the initial documents;

conversely, marginally important aspects may be overemphasised.
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L2. The query aspects identified arbitrarily based on either document or query

properties are a loose surrogate for the actual information needs that may

have motivated different users to issue the query in the first place. For in-

stance, documents that cover different topics or categories—or documents

that are just dissimilar from each other—can feasibly meet the same infor-

mation need, in which case they would be deemed redundant.

L3. Heuristic ranking strategies may not cater for all dimensions of the diver-

sification problem. For instance, as discussed in Section 3.3.2, ensuring a

proportional coverage of multiple aspects is arguably ineffective if these as-

pects do not represent likely information needs; even when the likelihood

of different aspects is appropriately estimated, aiming for a proportional

coverage regardless of the incurred redundancy voids the approximation

guarantees known for this problem (Nemhauser et al., 1978; Feige, 1998).

In this thesis, we overcome limitation L1 by adopting an explicit aspect repre-

sentation, which is driven by the query as opposed to the retrieved documents. In

turn, limitation L2 is overcome by ensuring that this representation is meaning-

fully driven towards modelling multiple users’ information needs, rather than any

arbitrarily defined query properties. Finally, in order to overcome limitation L3,

we propose a probabilistic framework that accommodates the different dimensions

of the search result diversification problem in a principled yet practical manner.

In particular, the proposed framework should account for the overall coverage of

each retrieved document with respect to the identified information needs, so as

to rank highly diverse documents first. Moreover, it should account for how well

each information need is covered by the other retrieved documents, so as to avoid

promoting redundant documents. Additionally, the framework should be able to

infer how much emphasis should be placed on each of the identified information

needs, since there may be dozens of possible information needs underlying the

query. Finally, since not all queries are equally ambiguous, the framework should

also cater for the ambiguity levels of different queries, so as to infer how much to

diversify the retrieved documents on a per-query basis. Our proposed framework,

which fulfils all the above requirements, is introduced in the next section.
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4.2 Explicit Query Aspect Diversification

The diversification problem, formally defined in Section 3.2.1, can be naturally

stated as a trade-off between finding relevant and diverse information:

Given an initial ranking Rq produced for a query q, find a re-ranking

Dq that has (1) the maximum relevance to q, and (2) the maximum

diversity with respect to the different aspects underlying q.

As discussed in Section 3.2.2, this bi-criterion optimisation problem can be

reduced from the maximum coverage problem (Hochbaum, 1997), which makes

it NP-hard (Agrawal et al., 2009). Fortunately, there is a well-known greedy ap-

proximation to this problem, as described in Algorithm 3.1, which forms the basis

of most of the approaches to search result diversification presented in Section 3.3,

and is also the basis for our proposed diversification framework.

In order to solve this optimisation problem, we introduce the Explicit Query

Aspect Diversification (xQuAD) framework. In particular, inspired by Spärck-

Jones et al. (2007), we argue that an ambiguous query should be seen as represent-

ing an ensemble of possible information needs. Accordingly, within xQuAD, we

model an ambiguous query as comprising a set of sub-queries, with each sub-query

representing one of the possible information needs underlying the initial query.

While different sub-query instantiations are certainly possible, in this thesis, we

adopt a keyword-based representation. As we will show in Chapter 6, not only

is this representation consistent with the one adopted for the initial query, but

it also enables the exploitation of past users’ queries as effective representations

of multiple information needs. Moreover, such a representation allows xQuAD to

tackle search result diversification as an optimisation of the expected relevance

of a ranking in light of multiple needs. As a result, our framework can directly

leverage a plethora of traditional ranking approaches, such as those introduced

in Chapter 2, as we will demonstrate in Chapters 7 and 8. Lastly, by recognising

that different queries may have different levels of ambiguity, we explicitly model

the trade-off between promoting relevance and diversity within xQuAD, as will

be discussed in Chapter 9. In the remainder of this section, we describe a proba-

bilistic formulation that accommodates all these characteristics into a principled

ranking objective for search result diversification.
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4.2.1 Probabilistic Objective

As limited representations of information needs and information items, respec-

tively, queries and documents naturally incur an uncertainty to the estimation of

relevance. By adding to these the representation of multiple information needs,

the estimation of diversity exacerbates the problem. In order to leverage an appro-

priate groundwork for reasoning under uncertainty, we devise a ranking objective

for search result diversification in light of probability theory (Good, 1950).

Recalling the greedy approximation in Algorithm 3.1, given a query q and a

ranking Rq of documents retrieved for this query, our goal is to iteratively build

a new ranking Dq, with |Dq| ≤ τ , by selecting, at each iteration, the highest

scored document d ∈ Rq \ Dq. To this end, we devise xQuAD’s scoring function

according to the following probability mixture model:

fxQuAD(q, d,Dq) = (1− λ) p(d|q) + λ p(d, D̄q|q), (4.1)

where p(d|q) models the probability of observing the document d given the query

q, and p(d, D̄q|q) models the probability of observing d but none of the documents

already in Dq, selected in previous iterations, given q. These probabilities can be

interpreted as estimations of the relevance and the diversity of d, respectively,

with the parameter λ controlling the balance between the two.

The probability of relevance, p(d|q), is defined in general terms, without any

assumption regarding the underlying statistical mechanism used for estimation.

In fact, any ranking approach can be used for this estimation, including the

probabilistic ranking approaches as well as the machine-learned approaches in-

troduced in Section 2.2, provided that they produce probabilistic scores. In turn,

the probability of diversity, p(d, D̄q|q), models the contribution of a document

d towards answering the query q, when d is provided jointly with the already

selected documents in Dq, which are assumed to be non-relevant. In practice,

this formulation models the marginal utility of the document d in light of the

documents Dq, selected in the previous iterations of the greedy algorithm. As

a result, maximising the probability p(d, D̄q|q) increases the chance that at least

one relevant document is retrieved in response to the query, even when different

users have different perceptions of this relevance (Sanner et al., 2011).
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While estimating p(d|q) is comparatively simpler, the estimation of p(d, D̄q|q)

requires further development. To this end, it is useful to consider a sample space

comprising features (e.g., terms) representing the information carried by the doc-

uments in Rq, initially retrieved for q. As a result, d, Dq, and q can be seen as sets

of such features or, equivalently, events in this sample space. In order to derive

p(d, D̄q|q), we further partition the sample space into a set of pairwise disjoint

sub-queries Sq = {s1, s2, · · · , sk}, with each sub-query s ∈ Sq representing one of

the possible information needs underlying q. The resulting probability space is

illustrated by the Venn diagram in Figure 4.2 for k = 4 sub-queries.

q
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s
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s
3

s
4

D
q

d

R
q

Figure 4.2: Sample space partitioned by sub-queries.

In Figure 4.2, we can identify the three events of interest, denoting the ob-

servation of the query q, the document d, and the already selected documents in

Dq. The thicker line in the figure restricts the sample space given the observation

of q. As a result, the intersection between this region and the region covered by

the observation of a document can be seen as a measure of the probability that

the document is relevant to the query. In particular, the intersection between

the events d and q is highlighted in different shades: the darkest shade denotes

the information represented by d that is also covered by the documents already

selected in Dq; the lighter shades denote the novel information covered by docu-

ment d, split across the considered sub-queries. Our goal is then to estimate the

probability associated with the event (d \ Dq) ∩ q or, equivalently, p(d, D̄q|q).
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After defining our target probability space, we can derive the probability of

diversity, p(d, D̄q|q), in a series of steps, according to:

p(d, D̄q|q) =
∑

s∈Sq

p(d, D̄q, s|q) (4.2)

=
∑

s∈Sq

p(s|q) p(d, D̄q|q, s) (4.3)

≈
∑

s∈Sq

p(s|q) p(d|q, s) p(D̄q|q, s) (4.4)

≈
∑

s∈Sq

p(s|q) p(d|q, s)
∏

dj∈Dq

p(d̄j|q, s) (4.5)

=
∑

s∈Sq

p(s|q) p(d|q, s)
∏

dj∈Dq

(1− p(dj |q, s)). (4.6)

In order to derive Equation (4.2), we apply the sum rule and marginalise the

probability p(d, D̄q|q) over the sub-queries s ∈ Sq. Equation (4.3) follows trivially

from the product rule (Good, 1950). The resulting probability p(s|q) can be seen

as modelling the importance of the sub-query s with respect to the other sub-

queries in Sq. This notion could reflect, for instance, users’ preferences or the

context of their search (Clarke et al., 2008; Agrawal et al., 2009).

In order to derive p(d, D̄q|q, s) in Equation (4.3), we assume that the observa-

tion of the document d is independent of the observation of the documents already

selected in Dq (and, by extension, of D̄q), conditioned on the observation of the

query q and the sub-query s. While this assumption is also present in the formu-

lation of other diversification approaches in the literature (e.g., Agrawal et al.,

2009; Carterette & Chandar, 2009), in reality, the knowledge of the documents

that have already been selected affects the selection of the next document. On the

other hand, this knowledge affects all candidate documents d ∈ Rq \ Dq equally,

since Dq is fixed at each iteration. As a result, it seems plausible to refactor the

probability p(d, D̄q|q, s) into a more tractable form. Note, however, that such a

refactoring does not at all imply that redundancy is ignored in our formulation.

Instead, it results in separate models of the coverage of each document d with

respect to the sub-query s, i.e., p(d|q, s), and its novelty in light of how poorly

this sub-query is covered by the already selected documents in Dq, i.e., p(D̄q|q, s).
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The conditional independence assumption in Equation (4.4) has a subtle but

important implication: it turns the computation of novelty from a direct compari-

son between documents into an estimation of themarginal utility of any document

satisfying each sub-query. In other words, instead of comparing a document d

to all documents already selected in Dq, as implicit novelty-based diversification

approaches would do (see Section 3.3.1), we estimate the utility of any document

satisfying the sub-query s, as the probability that none of the already selected

documents in Dq satisfy this sub-query. Although we achieve the same goal of

promoting novelty, we do so in a much more efficient way. In particular, our

approach does not require looking up all the terms contained in all documents

from the initial ranking Rq, so as to enable their direct comparison. Instead, we

just need to update the novelty estimation of a given sub-query, based on the es-

timation of how much this sub-query is already covered by the documents in Dq.

In contrast to implicit approaches, this estimation only incurs a few additional

inverted file lookups for the documents matching each of the sub-query terms.

In order to derive p(D̄q|q, s) in Equation (4.4), we make a second conditional

independence assumption. In particular, we assume that the documents already

selected in Dq are independently relevant to the sub-query s. This assumption

seems reasonable, since novelty is estimated as the probability of the entire set

Dq (as opposed to any particular document in Dq) not satisfying s. Lastly, for

convenience, Equation (4.5) is derived into Equation (4.6), by replacing p(d̄j|q, s)

with its complementary probability, subtracted from 1, i.e., 1 − p(dj |q, s). It is

interesting to observe that this simple algebraic transformation emphasises the

similarity of the probabilities p(d|q, s) and p(dj|q, s), which must be estimated as

part of the computation of each document’s coverage and novelty, respectively.

The derivation of xQuAD’s relevance and diversity components in Equa-

tion (4.1) is further illustrated by the graphical models in Figures 4.3(a) and (b),

respectively. Finally, by replacing Equation (4.6) into (4.1), the final diversifica-

tion objective of xQuAD can be expressed according to:

fxQuAD(q, d,Dq) = (1− λ) p(d|q)

+ λ
∑

s∈Sq

p(s|q) p(d|q, s)
∏

dj∈Dq

(1− p(dj|q, s)). (4.7)
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Figure 4.3: xQuAD’s graphical models of (a) relevance and (b) diversity, which are
mixed for the selection of a document d ∈ Rq \Dq at the i-th iteration of Algorithm 3.1.

4.2.2 Framework Components

Several dimensions of the diversification problem are naturally modelled as in-

dividual probabilities in Equation (4.7). In practice, these probabilities are esti-

mated by different components of the xQuAD framework, namely:

1. document relevance, p(d|q);

2. document diversity, p(d, D̄q|q), ∀s ∈ Sq:

(a) sub-query importance, p(s|q);

(b) document coverage, p(d|q, s);

(c) document novelty,
∏

dj∈Dq
1− p(dj |q, s).

Further components of the framework include the actual mechanism that gen-

erates the set of sub-queries Sq, as well as the mechanism that computes the

diversification trade-off λ for a given query q. Each of these components can be

instantiated in a variety of ways, essentially generating different diversification

models within the xQuAD framework. As we will show in Chapters 5 through 9,

not only do these components add to the flexibility of xQuAD, but they also

provide multiple opportunities to devise effective diversification models.
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4.3 Example Application

In order to illustrate the execution of xQuAD, we introduce a toy example. In par-

ticular, consider an unidentified user who issues the query q = “james bond”, for

which a search engine retrieves a ranking of documents Rq = {d1, d2, d3, d4, d5}.

Also consider that, based upon an analysis of its log of the interactions of pre-

vious users who issued the query q, the search engine infers that this query is

reformulated 50% of the time. In addition, of all reformulations of q, 60% reflect

an underlying information need for “films”, with the remaining 40% denoting an

information need for “books”. As a result, these inferred needs are represented

as two sub-queries, i.e., Sq = {s1, s2}, with s1 = “films” and s2 = “books”.

The execution of xQuAD towards iteratively producing a diverse ranking Dq ⊆

Rq can be illustrated in terms of basic matrix operations. In particular, let R

be a 5 × 1 matrix representing the distribution of relevance probabilities p(d|q),

for all d ∈ Rq. Similarly, let C be a 5× 2 matrix representing the distribution of

coverage probabilities p(d|q, s), for all d ∈ Rq and all s ∈ Sq. Lastly, let I be a

2 × 1 matrix representing the distribution of importance probabilities p(s|q), for

all s ∈ Sq. In line with the scenario described above, a hypothetical definition of

these matrices could be given according to:

R =

















0.70

0.50

0.30

0.20

0.10

















, C =

















0.30 0.40

0.70 0.60

0.20 0.30

0.70 0.80

0.40 0.20

















, I =

[

0.60

0.40

]

, (4.8)

where, for instance, R21 = 0.50 is the probability of relevance of d2; C21 = 0.70

and C22 = 0.60 denote the coverage probabilities of this document with respect

to the sub-queries s1 and s2, respectively; in turn, the importance of these sub-

queries is given by I11 = 0.60 and I21 = 0.40, respectively. Still in line with

the above example, assuming that the number of times a query is reformulated

provides a rough indication of the ambiguity of this query, we can further infer

that λ = 0.5 provides a reasonable setting for effectively balancing the trade-off

between promoting relevance and diversity in Equation (4.1).
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With the example definitions of the R, C, and I matrices, we can illustrate

the computation of xQuAD’s objective in Equation (4.1) according to:

X(i) = (1− λ)R+ λD(i−1), (4.9)

where X(i) denotes the distribution of probabilities computed by xQuAD at the

i-th iteration, as a linear mixture of the distributions of relevance and diversity

probabilities, R andD(i−1), respectively. The latter distribution is further defined

as D(i−1) = CN(i−1), where N(i−1) is a 2× 1 matrix, denoting the novelty of any

document satisfying each of the sub-queries s1 and s2. This matrix is initialised

as N(0) = I, indicating that satisfying either s1 or s2 has an initial benefit pro-

portional to the relative importance of each of these sub-queries. According to

this formulation, the first iteration of xQuAD can be expressed as:

X(1) = (1− 0.5)

















0.70

0.50

0.30
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0.10

















+ 0.5

















0.30 0.40

0.70 0.60

0.20 0.30

0.70 0.80

0.40 0.20

















[

0.60

0.40

]

=

















0.52

0.58

0.27

0.47

0.21

















(d1)

(d2)

(d3)

(d4)

(d5)

, (4.10)

in which case d2 is selected as the highest scoring document.1 Since this docu-

ment covers sub-queries s1 and s2 with probabilities 0.70 and 0.60, respectively,

the novelty of any document that covers either sub-query should be diminished

proportionally to these probabilities. In general terms, letting r = argmaxj X
(i)
j1

denote the index of the highest scoring document according to xQuAD at the

i-th iteration, the novelty matrix N can be updated according to:

N(i) = diag(1−Cr)N
(i−1), (4.11)

where 1 is a row vector composed of ones, Cr is the r-th row of the coverage matrix

C, corresponding to the selected document, and diag(1 − Cr) is the diagonal

matrix whose diagonal entries are given by the input vector 1−Cr.

1Note that, in contrast to most of the approaches described in Section 3.3, xQuAD does not
enforce that the first selected document be the one with the highest estimated relevance p(d|q).
Instead, the objective function in Equation (4.7) applies consistently to all iterations.

94



4. The xQuAD Framework

Given the formulation in Equation (4.11), we can compute the updated novelty

matrix N(1) after the first iteration according to:

N(1) =

[

1.00− 0.70 0.00

0.00 1.00− 0.60

][

0.60

0.40

]

=

[

0.18

0.16

]

. (4.12)

Fixing the highest scored document in the first iteration, d2, and replacing

the updated novelty vector from Equation (4.12) back into Equation (4.9), we

can select the second most diverse document, according to:

X(2) = (1− 0.5)


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
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]

=
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



(d1)

(d3)
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where document d1 is selected as the next best document. By updating the

novelty vector at the end of each iteration using Equation (4.11), and re-scoring

the yet unselected documents using Equation (4.9) with the updated novelty

estimations, we can iteratively select the next documents, according to:

X(3) = (1− 0.5)


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X(4) = (1− 0.5)

[
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[
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]

=
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(d3)

(d5)
, (4.15)

X(5) = (1− 0.5)
[

0.10
]

+ 0.5
[

0.40 0.20
]

[

0.03

0.01

]

=
[

0.06
]

(d5). (4.16)

At the end of the 5-th iteration, Dq = {d2, d1, d4, d3, d5} is selected by xQuAD

as a diverse permutation of the initial ranking Rq. Importantly, the probabil-

ities computed by xQuAD are guaranteed to be monotonically non-increasing,

since the estimations of novelty cannot increase and everything else is held fixed

as the diversification progresses. As a result, the final ranking induced by the

probabilities computed by xQuAD is stable across multiple iterations.
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4.4 Relation to Other Approaches

The development of xQuAD aimed for an effective and general ranking objective

for search result diversification, by encompassing successful features of past re-

search in a principled manner. In particular, the explicit aspect representation

adopted by xQuAD was inspired by the proportional coverage (PC) approach

of Radlinski & Dumais (2006). As formalised in Equation (3.17), their approach

seeks to balance the coverage of multiple reformulations of the initial query among

the documents ranked in response to this query. Although query reformulations

provide a meaningful alternative for representing the multiple possible informa-

tion needs underlying a query as sub-queries, our framework caters for several

dimensions of the diversification problem, which are not addressed by the ap-

proach of Radlinski & Dumais (2006), such as the relative importance of different

sub-queries and the redundancy of covering already well covered sub-queries.

As a matter of fact, xQuAD can emulate the approach of Radlinski & Dumais

(2006) as well as other coverage-based approaches, by assuming that the identified

sub-queries do not lose their utility as more documents that cover these sub-

queries are selected. In practice, as will be discussed in Section 8.2.2, this can be

achieved by dropping xQuAD’s novelty component, p(D̄q|q, s), from the expanded

formulation in Equation (4.4). Furthermore, a proportional coverage of sub-

queries, similar to the one deployed by approaches like PC (Equation (3.17)) and

WPC (Equation (3.18)), can also be enforced within xQuAD, by conditioning the

scoring of documents that cover a particular sub-query s on the total number of

documents already covering this sub-query, such that:

p(d|q, s) =







p(d|q, s), if
[

∑

dj∈Dq
1(p(dj|q, s) > 0)

]

< p(s|q) τ,

0, otherwise,
(4.17)

where 1 is the indicator function, returning 1 if p(dj|q, s) > 0 (i.e., if the docu-

ment dj covers the sub-query s), or 0 otherwise. On the right-hand side of the

inequality, p(s|q) and τ denote the importance of s and the diversification cutoff,

respectively, in which case the product p(s|q) τ determines the fraction of the

final ranking that should be dedicated to the sub-query s.
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With respect to its diversification strategy, the xQuAD framework can be seen

as a generalisation of the IA-Select approach of Agrawal et al. (2009). As defined

in Equation (3.23), this hybrid approach seeks to maximise the overall utility

of the ranked documents in light of the multiple categories associated with the

query. In particular, Agrawal et al. (2009) proposed to approximate the marginal

utility f(c|q,Dq) of any document covering each category c, given the query q,

and the already selected documents in Dq, according to:

f(c|q,Dq) ≈ f(c|q)
∏

dj∈Dq

(1− f(dj|q, c)). (4.18)

Contrasting Equation (4.18) with the definition of xQuAD in Equation (4.7),

we note the similarity between the components in the right-hand side of Equa-

tion (4.18) with xQuAD’s sub-query importance and novelty components, respec-

tively. In particular, with xQuAD, not only do we provide a formal probabilistic

argument for maximising the utility of a ranking, but we also devise this for-

malisation in light of an aspect representation that better reflects the multiple

information needs—as opposed to multiple categories—underlying the query.

Besides formalising the notion of utility in probabilistic terms, we extend this

notion to cater for queries with different levels of ambiguity, by mixing rele-

vance and diversity estimates through the diversification trade-off λ, as described

in Equation (4.1).2 The resulting mixture is in turn inspired by the maximal

marginal relevance (MMR) approach of Carbonell & Goldstein (1998), described

in Section 3.3.1. As we will show in Chapter 9, our generalised formulation enables

a selective diversification approach, which automatically adapts itself to diversify

more or less aggressively, given the predicted ambiguity of each query. However, a

fundamental difference from MMR is our adoption of an explicit aspect represen-

tation, enabling the combination of coverage and novelty into a hybrid strategy,

which outperforms the pure novelty-based strategy deployed by MMR, as we will

show in Chapter 8. Also note that an implicit version of xQuAD can be trivially

derived by adopting a document-oriented aspect representation, e.g., by letting

Sq = V, where the lexicon V comprises all unique terms in the underlying corpus.

2In fact, IA-Select can be directly instantiated by deploying xQuAD with λ = 1.
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4.5 Summary

This chapter introduced a novel approach to the search result diversification prob-

lem, described in Chapter 3. The proposed ExplicitQueryAspectDiversification

(xQuAD) framework models multiple dimensions of the diversification problem

in a principled manner, under the formalism of probability theory.

In Section 4.1, we identified three limitations of different families of related

approaches from the literature, in terms of their reliance solely on the docu-

ments initially retrieved for a query, their arbitrarily defined representation of

the multiple information needs underlying this query, and their heuristic rank-

ing objectives. In order to overcome these limitations, Section 4.2 introduced the

xQuAD framework with the goal of pursuing a diversification driven by the users’

information needs. Besides formalising xQuAD’s ranking objective in probabilis-

tic terms, we introduced the several components that naturally emerge from this

formulation. A complete example of the operation of the framework was pro-

vided in Section 4.3, where its underlying computations were defined in terms

of basic matrix operations. Finally, Section 4.4 highlighted the key features of

related approaches from the literature that inspired the development of xQuAD.

In particular, the framework can be seen as a principled generalisation of the

most prominent representatives of the three families of diversification approaches

described in Section 3.3, namely, novelty-based, coverage-based, and hybrid.

At this stage, perhaps the most distinguishing feature of the xQuAD frame-

work is its generality, as a result of modelling all dimensions of the diversification

problem, as introduced in Chapter 3. An immediate advantage of such a general

formulation is the possibility of instantiating each of the components of the frame-

work in different ways, with each instantiation having the potential to contribute

to an overall effective diversification performance. Experimenting with multiple

such instantiations will be the goal of the next chapters. In particular, Chapter 5

will thoroughly assess the xQuAD framework by contrasting it to state-of-the-

art representatives of the various families of diversification approaches described

in Section 3.3. Chapter 6 will introduce a novel learning to rank approach for

generating effective sub-queries, mined as query suggestions from a query log. In

turn, Chapter 7 will introduce a supervised approach to predict the effectiveness
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of multiple intent-aware ranking models for estimating the coverage of each doc-

ument with respect to each sub-query, as well as the novelty of the document,

given the sub-queries covered by the already retrieved documents. The role of

novelty as a diversification strategy will be further analysed in Chapter 8. Lastly,

Chapter 9 will introduce a supervised mechanism for selectively diversifying the

retrieved documents, by automatically adapting the diversification trade-off given

the predicted ambiguity level of each individual query.
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Chapter 5

Framework Validation

As introduced in Chapter 4, the xQuAD framework provides a principled and

general formulation for tackling the search result diversification problem. Indeed,

different components of the framework model different dimensions of this prob-

lem, such as the identification of multiple query aspects and the estimation of

the relevance of each retrieved document with respect to each identified aspect.

Naturally, the effectiveness of the framework depends on the effectiveness of the

particular choices for instantiating each of these components. Before introducing

effective alternative instantiations for each of these components in the subse-

quent chapters, in this chapter, we validate the xQuAD framework as a whole,

by contrasting it to the current state-of-the-art in search result diversification.

The goals of this chapter are twofold. Firstly, in Section 5.1, we introduce the

basic experimental methodology that is used throughout the experimental part

of this thesis, which comprises this chapter and Chapters 6 through 9. Secondly,

in Section 5.2, we thoroughly validate the effectiveness of the xQuAD framework

in comparison to state-of-the-art representatives of different families of diversifi-

cation approaches in the literature. In addition, we break down this evaluation

along the complementary dimensions of aspect representation and diversification

strategy, as introduced in Section 3.3. The results of this evaluation not only

attest the effectiveness of xQuAD when compared to the current state-of-the-art,

but they also validate our option for a hybrid, user-driven diversification.
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5.1 Experimental Methodology

The unlimited number of possible instantiations of each component of xQuAD

precludes an exhaustive experimentation in this thesis. In order to conduct a

thorough yet feasible investigation, in this thesis, we adopt a fractional factorial

design (Box et al., 2005), by evaluating a limited number of instantiations (factor

levels) of each framework component (factor) that are both potentially effective

and feasible for a practical deployment. As part of the validation of xQuAD in

this chapter, Section 5.2 investigates alternative instantiations of the document

relevance component. In turn, Chapter 6 will investigate multiple instantiations

of the sub-query generation and importance components, while Chapter 7 will

investigate the document coverage and novelty components. A deeper look into

the role of the novelty component will be the focus of Chapter 8. Lastly, Chapter 9

will investigate alternative regimes for estimating the diversification trade-off.

While different chapters of this thesis have different experimental setups, in

the remainder of this section, we describe the basic experimental methodology

that is common to all these chapters. In particular, Section 5.1.1 describes the test

collections used in our experiments, including their associated document corpus,

queries, and relevance assessments, while Section 5.1.2 describes the procedures

for training and evaluating all approaches investigated in this thesis.

5.1.1 Test Collections

Our experiments are based on the evaluation paradigm provided by the TREC

2009, 2010, and 2011 Web tracks (Clarke et al., 2009a, 2010, 2011b), henceforth

denoted WT09, WT10, and WT11, respectively. The TREC Web track provides

test collections for the assessment of adhoc and diversity search approaches in a

web setting. As a document corpus, it uses the ClueWeb09 dataset,1 a web crawl

comprising over 1.2 billion documents in different languages. In our experiments,

we use two subsets of ClueWeb09, as used in TREC: the ClueWeb09 A corpus

(CW09A), comprising the English portion of ClueWeb09, with 500 million doc-

uments; and the ClueWeb09 B corpus (CW09B), a subset of CW09A with 50

1http://boston.lti.cs.cmu.edu/Data/clueweb09/
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million documents, aimed to represent the first tier of a commercial search en-

gine index (Santos et al., 2011b). We index these corpora using the Terrier IR

platform2 (Ounis et al., 2006; Santos et al., 2011g; Macdonald et al., 2012a), after

applying Porter’s weak stemmer (Porter, 1980) and without removing stopwords.

As of 2011,3 the TREC Web track provides a total of 150 queries, sampled

from the query log of a commercial search engine. In our experiments, we discard

the queries numbered 20, 95, 100, 112, and 143, as they do not have any document

in the ClueWeb09 B corpus judged relevant for either the adhoc or the diversity

task. The statistics of the resulting test collections with a total of 145 queries are

provided in Table 5.1. As described in Section 3.4.1, for each query, TREC as-

sessors identified multiple sub-topics, representing different aspects of the query,

with relevance assessments conducted at the sub-topic level (Clarke et al., 2009a,

2010, 2011b). In some of our experiments, these sub-topics will be used as an ora-

cle aspect representation. While alternative representations will be proposed and

investigated in both Section 5.2 and Chapter 6, this oracle provides a controlled

environment for evaluating the effectiveness of different diversification approaches

while isolating the impact of any particular aspect representation.

Table 5.1: Statistics of the test collections used in this thesis. Relevance assessment
figures are broken down by corpus (CW09A or CW09B) and task (adhoc or diversity).

WT09 WT10 WT11

#queries 49 48 48
#sub-topics 228 194 158

C
W

09
A adhoc

#judged 23,205 23,898 18,362
#relevant 6,858 5,233 3,157

diversity
#judged 25,833 46,553 1,9381
#relevant 4,895 6,553 5,030

C
W

09
B adhoc

#judged 12,859 15,130 12,132
#relevant 4,002 3,090 1,662

diversity
#judged 14,951 43,960 12,599
#relevant 3,026 3,960 2,764

2http://terrier.org
3The TREC 2012 Web track is ongoing at the time of writing.
4The total number of judged documents for WT10 is not available.
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5.1.2 Training and Evaluation

Several supervised machine learning approaches—including learning to rank, clas-

sification, and regression approaches—are deployed in this thesis, which require

some form of training data. A natural direction for producing training examples

from the test collections described in Section 5.1.1 is to partition the available

queries into training and test sets. In our experiments, two alternative regimes

are considered. In particular, the experiments in this chapter as well as those in

Chapters 6 and 9 deploy a cross-validation regime, mixing together the available

queries and randomly splitting these queries into multiple folds. In each of the

cross-validation rounds, we organise the available queries into training (60%),

validation (20%), and test (20%) queries. As discussed in Section 2.2.3.1, the use

of validation data reduces the possibility that the learned parameters are overfit-

ted to the training data. Our second training regime is used for the experiments

in Chapters 7 and 8, where we deploy a cross-year validation, with the avail-

able queries split into year-oriented folds, as opposed to randomly. To ensure a

fair evaluation with a complete separation from training and test, all results in

this thesis are reported as an average across the test queries from the different

cross-validation (or cross-year) rounds. A breakdown of the corpus, queries, and

training regime used in each experimental chapter is provided in Table 5.2.

Table 5.2: Corpus, queries, and training regime used in each chapter.

Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Corpus CW09B CW09A CW09B CW09B CW09B

Queries
WT09 WT09

WT09 WT09
WT09WT10 WT10

WT10 WT10
WT11 WT11

Training
5-fold 5-fold 2-fold 2-fold 5-fold

cross-valid. cross-valid. cross-year cross-year cross-valid.

To evaluate the various approaches investigated in this thesis, we deploy the

two primary metrics used in the diversity task of the TREC Web track (Clarke

et al., 2009a, 2010, 2011b): ERR-IA (Equation (3.28)) and α-nDCG (Equa-

tion (3.29)). As discussed in Section 3.4.2, these metrics implement a cascade
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model (Craswell et al., 2008), which penalises redundancy across multiple query

aspects, by assuming a diminishing probability that the users will continue to

examine the ranking once they find relevant information (Clarke et al., 2011a).

Following the standard TREC setting, both metrics are reported at rank 20, re-

flecting web searchers’ interest for documents at early ranks (Jansen et al., 1998).

Lastly, in order to ensure that our findings are not a mere reflection of

chance, all results reported in this thesis are validated statistically. As a sta-

tistical hypothesis test, we use Student’s t-test to contrast pairs of ranking ap-

proaches (Sanderson & Zobel, 2005; Smucker et al., 2007). In particular, through-

out this thesis, we use the symbols △ (▽) and N (H) to denote a statistically

significant increase (decrease) at the p < 0.05 and p < 0.01 levels, respectively,

while the symbol ◦ is used to denote no significant difference. The baseline against

which significance is reported will be made clear in each case. In addition, we

report the number of queries negatively affected (−), positively affected (+), and

unaffected (=) by each tested approach compared to this baseline.

5.2 Experimental Evaluation

In Chapter 4, we introduced the xQuAD framework for search result diversi-

fication, building upon two fundamental pillars: (1) an explicit query aspect

representation, aimed to reflect multiple users’ information needs and (2) a hy-

brid diversification strategy, formulated as a principled and general probabilistic

objective. In this section, we thoroughly validate the xQuAD framework and the

impact of these two pillars on the effectiveness of the framework as a whole. As

a result, we investigate the first claim from our thesis statement:

“The statement of this thesis is that an effective diversification perfor-

mance can be attained by explicitly representing the multiple possible

information needs underlying a query as sub-queries.”

In order to address this claim, the experiments in this chapter aim to answer

three main research questions:

Q1. How does xQuAD compare to the state-of-the-art?
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Q2. How effective is xQuAD’s diversification strategy?

Q3. How effective is xQuAD’s aspect representation?

In the following, Section 5.2.1 details the specific setup that supports our

investigations, while Section 5.2.2 analyses our results.

5.2.1 Experimental Setup

In addition to the general methodology adopted in all experiments of this thesis,

as described in Section 5.1, in this section, we describe the specific experimental

setup that underlies the investigations in this chapter.

5.2.1.1 Retrieval Baselines

The most straightforward baseline for any diversification approach is arguably a

ranking approach that does not perform any diversification at all. With this mind,

we evaluate the effectiveness of different diversification approaches in this chapter

at re-ranking the documents retrieved by a relevance-oriented baseline. In partic-

ular, we consider two such baselines. The first of these is the DPH model (Amati

et al., 2007). As described in Section 2.2.1.3, DPH is a non-parametric ranking

model from the divergence from randomness framework (Amati, 2003). As such,

it provides an effective retrieval performance without requiring any training.

Besides DPH, we consider a machine-learned ranking model produced by

LambdaMART (Wu et al., 2008), a state-of-the-art learning to rank algorithm.

As described in Section 2.2.3.2, this listwise learning algorithm falls into the gen-

eral framework of boosting (Kearns, 1988; Schapire, 1990): given some training

data, the algorithm iteratively learns an ensemble of boosted regression trees,

with the gradient of a standard evaluation metric used as a loss function. In or-

der to instantiate this approach, we use nDCG@1000 (Equation (2.51)) as a loss

function. As a learning sample for each query, we use the top 5,000 documents re-

turned by DPH. This setup has been shown to be particularly effective for learning

to rank for web search (Macdonald, Santos & Ounis, 2013). Lastly, as ranking

features, we consider a total of 45 features commonly used in the learning to

rank literature (Qin et al., 2010; Liu, 2009), including both query-dependent and
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query-independent ones. These features are described in Table 5.3, along with a

reference to their corresponding definition in Section 2.2.1. In particular, query-

dependent features are computed separately for four different document fields,

namely, title, URL, body, and anchor-text of incoming hyperlinks, as well as for

the four fields combined as a full representation of the document. The exceptions

are the Markov random fields (MRF; Equation (2.20)) and pBiL (Equation (2.32))

proximity features, which are only computed on the full representation. In order

to compute the click likelihood (CL; Equation (2.46)) query-independent feature,

we use the MSN 2006 query log,5 a one-month log with 15 million queries sub-

mitted by US users to MSN Search (now Bing) during spring 2006.

Table 5.3: Document features used in this chapter. The top half of the table includes
query-dependent features, while the bottom half includes query-independent ones.

Feature Description Equation Total

Q
u
er
y
-d
ep

en
d
en
t CLM Full and per-field CLM score (2.5) 5

BM25 Full and per-field BM25 score (2.13) 5
LM Full and per-field LM score (2.25) 5
MRF Full MRF score (2.20) 1
PL2 Full and per-field PL2 score (2.29) 5
DPH Full and per-field DPH score (2.31) 5
pBiL Full pBiL score (2.32) 1

Q
u
er
y
-i
n
d
ep

en
d
en
t

ld Full and per-field length (2.2) 5
UT URL type (2.33) 1
UL URL length (2.35) 1
ATL Average term length (2.36) 1
TC Topic cohesiveness (2.37) 1
SF Stopword fraction (2.38) 1
SC Stopword coverage (2.39) 1
TT Table text ratio (2.40) 1
CR Compression ratio (2.41) 1
HL Ham (non-spam) likelihood (2.42) 1
ID Indegree (2.43) 1
OD Outdegree (2.44) 1
PR PageRank (2.45) 1
CL Click likelihood (2.46) 1

Grand total 45

5http://research.microsoft.com/en-us/um/people/nickcr/wscd09
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On top of DPH and LambdaMART, we contrast the effectiveness of xQuAD to

state-of-the-art representatives of the three families of diversification approaches

introduced in Section 3.3. In particular, as a novelty-based approach, we use

MMR (Equation (3.8)), which promotes documents with a low similarity to other

documents (Carbonell & Goldstein, 1998). As a coverage-based approach, we use

PC (Equation (3.17)), which enforces a proportional coverage of multiple query

reformulations in the ranking (Radlinski & Dumais, 2006). Lastly, as a hybrid

approach, we use IA-Select (Equation (3.23)), which maximises the marginal

utility of the ranking in light of a taxonomy of categories (Agrawal et al., 2009).

To ensure all approaches leverage probabilistic scores, the raw scores produced

by either DPH or LambdaMART are normalised by the sum of the scores of all

documents returned for the initial query and each of its identified aspects. The

same score normalisation procedure is performed consistently for all approaches

investigated in the remaining chapters of this thesis.

5.2.1.2 Training Procedure

While PC (Equation (3.17)) and IA-Select (Equation (3.23)) are non-parametric

approaches, both MMR (Equation (3.8)) and xQuAD (Equation (4.7)) have one

parameter to train, namely, the diversification trade-off λ, which controls the

balance between promoting relevance or diversity. Using the standard 5-fold cross

validation setup described in Section 5.1.2, we optimise λ for both approaches.

To this end, we perform a simulated annealing optimisation (Kirkpatrick et al.,

1983) to maximise ERR-IA@100 (Equation (3.28)) on the training queries, and

use the identified λ setting on the corresponding test queries in each round.

5.2.1.3 Aspect Representations

While MMR uses an implicit aspect representation in the space of the unique

terms covered by each document, both xQuAD and the other diversification

baselines introduced in Section 5.2.1.1 leverage explicit aspect representations,

as discussed in Section 3.3. To instantiate the latter approaches, we use three

alternative explicit representations: ODP categories (DZ), Bing suggestions (BS),

and the official TREC Web track sub-topics (WT). These representations are ex-
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emplified in Table 5.4, while their statistics are summarised in Table 5.5 in terms

of the mean number of aspects per query, the mean length (in tokens) of each

aspect, and the mean overlap between each aspect and the initial query, measured

as the fraction of unique query terms covered by the aspect. As a reference for

comparison, the mean length of the initial queries is also shown.

Table 5.4: Example aspects for ambiguous (query #6: “kcs”) and underspecified
(query #10: “cheap internet”) queries, leveraged from ODP categories (DZ), Bing
suggestions (BS), and the official TREC Web track sub-topics (WT).

query #6: “kcs” (ambiguous)

DZ BS WT

1 business kanawha county schools kansas city southern railroad
2 computers klinicki centar srbije kansas city southern railroad jobs
3 games union pacific kanawha county schools west virginia
4 health kcs railroad knox county school system tennessee
5 home kcs energy kcs energy petrohawk merger

query #10: “cheap internet” (underspecified)

DZ BS WT

1 business cheap high-speed internet low-cost broadband providers
2 computers cheap dsl internet dial up internet providers
3 games cheap internet no phone line cable television bundle
4 health cheap internet service vonage homepage
5 home cheap broadband free wireless providers

The first of our considered representations, DZ, models different query aspects

as different top-level categories from the Open Directory Project6 (ODP): adult,

arts, business, computers, games, health, home, news, recreation, reference, re-

gional, science, shopping, society, and sports. In turn, the BS representation

exploits query reformulations produced by a web search engine in order to model

multiple query aspects. In particular, using the Bing Suggestion API,7 we obtain

a set of suggestions for each of the 145 TREC Web track queries. Lastly, as an

oracle aspect representation, we consider the official TREC Web track sub-topics

(WT). As discussed in Section 5.1.1, these sub-topics were identified by TREC

6http://www.dmoz.org
7http://msdn.microsoft.com/en-us/library/dd251072.aspx
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Table 5.5: Statistics of the explicit aspect representations used in the experiments in
this chapter: ODP categories (DZ), Bing suggestions (BS), and the official TREC Web
track sub-topics (WT). On the left: average query length and number of aspects per
query. On the right: average aspect length and query-aspect overlap.

WT09 WT10 WT11

Mean query length

2.122 1.979 3.396

Aspects per query

DZ 15.000 15.000 15.000
BS 8.653 8.479 6.979
WT 4.837 4.312 3.333

WT09 WT10 WT11

Mean aspect length

BS 3.000 2.862 3.786
WT 3.772 3.769 5.049

Mean query-aspect overlap

BS 0.678 0.684 0.628
WT 0.711 0.670 0.817

assessors as representing the actual information needs underlying each query. As

such, they enable a direct comparison of explicit diversification approaches re-

gardless of the impact of any particular aspect representation. Since TREC only

provides a natural language description for each sub-topic, we obtain a shorter,

keyword-like version using Amazon’s Mechanical Turk.8 This step was necessary

to make these sub-topics better resemble real web search queries, which facili-

tates the query classification tasks performed in Chapters 7 and 9. Note that

this procedure by no means interfere with our conclusions, as these keyword-like

sub-topics are uniformly deployed for all tested diversification approaches.

In order to instantiate PC (Radlinski & Dumais, 2006), as defined in Equa-

tion (3.17), we uniformly redistribute the top 100 documents retrieved by the

relevance baseline among the k aspects (i.e., query categories or suggestions)

identified for the initial query, in which case both the query itself and each aspect

are covered by at most 100/(k + 1) documents in the final ranking. For both

IA-Select and xQuAD, the probability that a document satisfies each aspect is

directly incorporated as an estimation of coverage, as defined in Equations (3.23)

and (4.7), respectively. In particular, following Agrawal et al. (2009), we esti-

mate the probability that a document satisfies a particular category by deploying

a Rocchio classifier (Manning et al., 2008), with the centroid that represents the

category comprising 3,000 documents randomly selected from the ClueWeb09 B

8http://www.mturk.com
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corpus and that belong exclusively to this category in ODP. As for both the BS

and WT aspect representations, the probability that a document satisfies a given

suggestion or sub-topic is computed as the estimated relevance of the document

with respect to this suggestion or sub-topic. For consistency, this probability is

estimated by the same mechanism used to produce the initial relevance baseline,

namely, DPH or LambdaMART, as introduced in Section 5.2.1.1.

5.2.2 Experimental Results

In the following sections, we analyse the results of our investigations concerning

the three research questions stated in Section 5.2. In particular, Section 5.2.2.1

addresses research question Q1, by validating the effectiveness of the xQuAD

framework in light of the current state-of-the-art in search result diversification.

Section 5.2.2.2 addresses Q2, by validating the hybrid diversification strategy im-

plemented by our probabilistic ranking objective. Lastly, Section 5.2.2.3 addresses

Q3, by validating our choice for a user-driven aspect representation.

5.2.2.1 Framework Validation

In this section, we address research question Q1, by validating the xQuAD frame-

work in light of the current state-of-the-art in search result diversification. To this

end, we contrast the diversification effectiveness of the framework to that attained

by both relevance and diversification baselines, as described in Section 5.2.1.1.

Regarding the diversification baselines, they are instantiated in this experiment

as per their original description. In particular, MMR (Equation (3.8)) is de-

ployed using cosine as a similarity metric (Carbonell & Goldstein, 1998). For

PC (Equation (3.8)), we use Bing suggestions (BS in Table 5.5) as alternative

query reformulations (Radlinski & Dumais, 2006). In turn, IA-Select is deployed

using ODP categories (DZ in Table 5.5) as a taxonomy of query intents (Agrawal

et al., 2009). In order to instantiate our xQuAD framework, we also use Bing

suggestions as alternative sub-queries, as it naturally adheres to our view of a

user-driven diversification, as discussed in Section 4.1

Table 5.6 shows the results of this investigation, in terms of both ERR-IA@20

and α-nDCG@20. For each diversification approach, a first significance symbol
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denotes a statistically significant difference (or lack thereof) from the relevance

baseline, namely, DPH or LambdaMART. As described in Section 5.1.2, for each

evaluation metric, we also report the number of queries negatively affected (−),

positively affected (+), and unaffected (=) with respect to these baselines. In

addition, a second significance symbol, when present, denotes a significant differ-

ence from the best performing approach in each group, which is underlined. The

overall best approach in each column is highlighted in bold.

Table 5.6: Diversification performance of the xQuAD framework compared to MMR,
PC, and IA-Select, as prominent representatives of novelty-based, coverage-based, and
hybrid diversification approaches, respectively.

Sq
ERR-IA α-nDCG

@20 − = + @20 − = +

DPH 0.253 0.364

+MMR 0.253◦◦ 55 30 60 0.367◦▽ 56 28 61
+PC BS 0.256N◦ 25 58 62 0.375N▽ 29 55 61
+IA-Select DZ 0.250◦◦ 67 12 66 0.356◦▽ 70 12 63
+xQuAD BS 0.281◦ 40 24 81 0.402N 37 24 84

LambdaMART 0.337 0.464

+MMR 0.338◦◦ 69 20 56 0.466◦◦ 69 20 56
+PC BS 0.339N◦ 27 52 66 0.472N◦ 32 45 68
+IA-Select DZ 0.217HH 93 13 39 0.329HH 98 13 34
+xQuAD BS 0.351△ 43 24 78 0.479N 42 23 80

From Table 5.6, we first observe that xQuAD is the best performing of all con-

sidered approaches in terms of both ERR-IA@20 and α-nDCG@20, with gains

of up to 11% on top of DPH, and 4% on top of LambdaMART. These results

show that, while a high performing relevance baseline improves the overall diver-

sification performance, it also leaves less room for improvement. Nevertheless,

significant improvements compared to these relevance baselines are observed in

all cases, except for ERR-IA@20 when xQuAD is deployed on top of DPH.

Compared to the diversification baselines, significant improvements are ob-

served in many cases, particularly on top of DPH for α-nDCG, when MMR, PC,

and IA-Select are all significantly outperformed. Indeed, not only does xQuAD

perform consistently better on average, but it also compares favourably to all
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diversification baselines in terms of the number of affected queries. In particular,

MMR improves almost as many queries as it hurts on top of DPH, and even hurts

more queries than it improves on top of the stronger LambdaMART baseline. In

contrast, PC performs more consistently, always improving more queries than it

hurts, on top of both DPH and LambdaMART. Nonetheless, it has the lowest im-

pact among all considered diversification approaches, showing the highest number

of unaffected queries. IA-Select, on the other hand, shows an unstable behaviour,

consistently hurting more queries than it improves. The reasons for such an in-

stability will be further discussed in Sections 5.2.2.2 and 5.2.2.3. Lastly, xQuAD

shows the highest number of improved queries and the second lowest number of

hurt queries, behind only PC. These results are consistent for both ERR-IA@20

and α-nDCG@20, and on top of both DPH and LambdaMART.

Overall, the magnitude and consistency of the results in Table 5.6 attest the

effectiveness of xQuAD and answer research question Q1, regarding the perfor-

mance of the framework in light of the current state-of-the-art in search result di-

versification. In particular, these results validate our proposed framework, show-

ing that it compares favourably to effective novelty-based, coverage-based, and

hybrid diversification approaches from the literature. In the remainder of this

section, we analyse the reasons for such an improved effectiveness in terms of the

aspect representation and the diversification strategy deployed by xQuAD.

5.2.2.2 Diversification Strategy

As discussed in Section 3.3, the various diversification approaches in the liter-

ature differ essentially according to two dimensions: aspect representation and

diversification strategy. While the aspect representation defines the underlying

view of the retrieved documents in light of multiple query aspects, the diversifica-

tion strategy defines how these documents should be ranked given the considered

aspect representation. In Section 5.2.2.1, we evaluated the xQuAD framework

in contrast to three representative diversification approaches from the literature,

namely, MMR, PC, and IA-Select. Although this investigation served the pur-

pose of validating xQuAD in light of the current state-of-the-art, it is unclear

where the observed superior performance of the framework comes from, mostly
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because the considered approaches, instantiated in their originally proposed form,

deployed different aspect representations and diversification strategies.

In order to better understand the role of the complementary dimensions of

aspect representation and diversification strategy on the overall effectiveness of

xQuAD, in this and the next section, we evaluate each of these dimensions sepa-

rately. In particular, in this section, we address research question Q2, by assessing

the effectiveness of xQuAD’s hybrid diversification strategy, based upon a proba-

bilistic mixture of relevance and diversity estimates, as defined in Equation (4.7).

To this end, we contrast the strategies deployed by PC, IA-Select, and xQuAD,9

while holding their underlying aspect representation fixed. In addition to ODP

categories and Bing suggestions (the DZ and BS aspect representations in Ta-

ble 5.5, respectively), in this experiment, we also consider the official TREC Web

track sub-topics (WT in Table 5.5) as an oracle aspect representation.

The results of this investigation are shown in Table 5.7. In particular, the

strategies deployed by PC, IA-Select, and xQuAD are tested across each of the

DZ, BS, and WT aspect representations, on top of both the DPH and Lamb-

daMART relevance baselines. As in the previous section, for each diversification

approach, a first significance symbol denotes a statistically significant difference

(or lack thereof) with respect to the relevance baseline. A second such symbol,

when present, denotes significance with respect to the best performing diversifi-

cation approach for each aspect representation, which is underlined in the table.

The overall best approach in each column is highlighted in bold.

From Table 5.7, we first observe that the hybrid diversification strategy de-

ployed by xQuAD is consistently the most effective across all three considered

aspect representations. In particular, regarding the DZ aspect representation,

the coverage-based strategy deployed by PC consistently hurts more queries than

it improves. As for the hybrid strategy deployed by IA-Select, despite having

been originally proposed to leverage a taxonomy of query categories as an aspect

representation, it also hurts more queries than it improves. This is partly due

to the fact that IA-Select’s formulation, as defined in Equation (3.23), does not

explicitly incorporate a notion of relevance. As a result, many irrelevant docu-

9MMR is left out of this experiment, as it cannot directly leverage an explicit aspect repre-
sentation. The role of novelty as a diversification strategy is investigated in Chapter 8.
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ments can be inadvertently promoted when trying to achieve a high coverage of

multiple categories. This effect is particularly exacerbated on top of the stronger

LambdaMART baseline, in which case a mishandled diversification may signifi-

cantly hurt an otherwise effective ranking. This problem is overcome by xQuAD’s

strategy that trades off relevance and diversity in the ranking, as defined in Equa-

tion (4.7). Indeed, xQuAD is the only approach that can significantly improve

upon both DPH and LambdaMART using the DZ representation.

Table 5.7: Diversification strategy performance for fixed aspect representations.

Sq
ERR-IA α-nDCG

@20 − = + @20 − = +

DPH 0.253 0.364

+PC DZ 0.253◦H 20 113 12 0.367◦H 20 113 12
+IA-Select DZ 0.250◦H 67 12 66 0.356◦H 70 12 63
+xQuAD DZ 0.312N 49 12 84 0.425N 52 12 81

+PC BS 0.256N◦ 25 58 62 0.375N▽ 29 55 61
+IA-Select BS 0.267◦◦ 55 9 81 0.382◦▽ 55 9 81
+xQuAD BS 0.281◦ 40 24 81 0.402N 37 24 84

+PC WT 0.253◦H 7 114 24 0.369NH 7 113 25
+IA-Select WT 0.330N◦ 46 9 90 0.446N◦ 46 10 89
+xQuAD WT 0.331N 42 11 92 0.448N 39 11 95

LambdaMART 0.337 0.464

+PC DZ 0.338◦▽ 50 73 22 0.466◦◦ 50 73 22
+IA-Select DZ 0.217HH 93 13 39 0.329HH 98 13 34
+xQuAD DZ 0.359△ 55 21 69 0.476◦ 55 20 70

+PC BS 0.339N◦ 27 52 66 0.472N◦ 32 45 68
+IA-Select BS 0.343◦◦ 61 17 67 0.470◦◦ 58 17 70
+xQuAD BS 0.352△ 43 24 78 0.479N 42 23 80

+PC WT 0.338△H 6 119 20 0.469△H 8 116 21
+IA-Select WT 0.373N◦ 48 18 79 0.503N◦ 48 17 80
+xQuAD WT 0.376N 42 19 84 0.506N 36 17 92

Regarding the BS aspect representation, all approaches improve compared to

the relevance baselines, with significant gains observed for both PC and xQuAD.

Nevertheless, although effective, this representation may not accurately represent
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the exact information needs underlying each query. As a result, aggressive di-

versification strategies such as the one deployed by IA-Select10 may be unsafe.

Indeed, as observed from Table 5.7, IA-Select hurts a higher number of queries

compared to PC and xQuAD, ultimately precluding a more pronounced perfor-

mance in terms of ERR-IA@20 and α-nDCG@20. Once again, xQuAD overcomes

this problem by appropriately balancing relevance and diversity in the ranking.

Lastly, we contrast the diversification strategies deployed by the considered

approaches using the official TREC Web track sub-topics as an oracle aspect rep-

resentation. In particular, the WT representation enables a direct comparison of

the diversification strategies deployed by PC, IA-Select, and xQuAD at their full

potential. Indeed, in this scenario, both IA-Select and xQuAD excel, attesting

to the effectiveness of their deployed strategies. On the other hand, even under

these idealised conditions, the mixture model implemented by xQuAD helps re-

duce the risk of an overly aggressive diversification, further improving compared

to IA-Select in terms of ERR-IA@20 and α-nDCG@20, as well as in terms of the

total number of queries positively and negatively affected.

Overall, the results in Table 5.7 answer research question Q2, regarding the

effectiveness of xQuAD’s hybrid diversification strategy. In particular, this strat-

egy was shown to be significantly more effective than those deployed by both PC

and IA-Select, as state-of-the-art representatives of coverage-based and hybrid

diversification approaches, respectively. Furthermore, besides being effective, the

diversification strategy deployed by xQuAD was also shown to be more robust,

consistently improving more queries than it hurts for all the considered aspect

representations, as a result of appropriately balancing the trade-off between pro-

moting relevance or diversity in different scenarios. As we will show in Chapter 9,

such a robustness can be improved even further, by automatically adapting this

trade-off according to the level of ambiguity of each individual query.

5.2.2.3 Aspect Representation

The results in the previous section attested the effectiveness of xQuAD’s diversi-

fication strategy compared to those deployed by PC and IA-Select across multiple

10As discussed in Section 4.4, IA-Select can be reduced to a special case of xQuAD, with
λ = 1, indicating the maximum emphasis on promoting diversity rather than relevance.
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aspect representations. In order to address research question Q3, in this section,

we perform the complementary investigation, by assessing the effectiveness of

xQuAD’s user-driven aspect representation. To this end, we contrast the DZ, BS,

and WT aspect representations, described in Table 5.5, while holding the diversi-

fication strategy fixed. In particular, as discussed in Section 4.1, we hypothesise

that a representation that explicitly aims to reflect the possible information needs

underlying a query, such as BS and WT, is more effective.

The results of this investigation are shown in Table 5.8, which provides a

complementary view of the results in Table 5.7. In particular, each of the DZ,

BS, and WT aspect representations are tested across the diversification strate-

gies implemented by PC, IA-Select, and xQuAD, on top of both the DPH and

LambdaMART relevance baselines. As in the previous sections, for each diver-

sification approach and a given aspect representation, a first significance symbol

denotes a statistically significant difference (or lack thereof) with respect to the

relevance baseline. A second such symbol, when present, denotes significance with

respect to the best performing aspect representation for each approach, which is

underlined. The overall best approach in each column is highlighted in bold.

From Table 5.8, we observe a few trends, depending on the deployed diver-

sification strategy. In particular, for the coverage-based strategy deployed by

PC, BS is the most effective of the considered aspect representations. Indeed, on

top of DPH, this representation significantly outperforms both the DZ and even

the oracle WT representation. On top of the stronger LambdaMART relevance

baseline, BS is also the best performing representation for PC, although not sig-

nificantly. Interestingly, the WT representation results in the lowest impact of

PC, with most of the queries unaffected when leveraging this representation.

A different situation is observed for the hybrid strategies deployed by IA-Select

and xQuAD. As discussed in the previous section, since IA-Select does not directly

incorporate a notion of relevance, it performs better for aspect representations

that are somewhat correlated with relevance. In particular, as keyword-based rep-

resentations of the possible information needs underlying a query, BS and WT

often comprise aspects (i.e., query suggestions or sub-topics) that share common

terms with the query, as previously shown in Table 5.5 in terms of overlap. As

a result, these aspect representations are able to at least partially convey an es-
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Table 5.8: Aspect representation performance for fixed diversification strategies.

Sq
ERR-IA α-nDCG

@20 − = + @20 − = +

DPH 0.253 0.364

+PC DZ 0.253◦H 20 113 12 0.367◦H 20 113 12
+PC BS 0.256N 25 58 62 0.375N 29 55 61
+PC WT 0.253◦H 7 114 24 0.369N▽ 7 113 25

+IA-Select DZ 0.250◦H 67 12 66 0.356◦H 70 12 63
+IA-Select BS 0.267◦H 55 9 81 0.382◦H 55 9 81
+IA-Select WT 0.330N 46 9 90 0.446N 46 10 89

+xQuAD DZ 0.312N◦ 49 12 84 0.425N◦ 52 12 81
+xQuAD BS 0.281◦H 40 24 81 0.402NH 37 24 84
+xQuAD WT 0.331N 42 11 92 0.448N 39 11 95

LambdaMART 0.337 0.464

+PC DZ 0.338◦◦ 50 73 22 0.466◦◦ 50 73 22
+PC BS 0.339N 27 52 66 0.472N 32 45 68
+PC WT 0.338△◦ 6 119 20 0.469△◦ 8 116 21

+IA-Select DZ 0.217HH 93 13 39 0.329HH 98 13 34
+IA-Select BS 0.343◦▽ 61 17 67 0.470◦H 58 17 70
+IA-Select WT 0.373N 48 18 79 0.503N 48 17 80

+xQuAD DZ 0.359△◦ 55 21 69 0.476◦▽ 55 20 70
+xQuAD BS 0.352△▽ 43 24 78 0.479NH 42 23 80
+xQuAD WT 0.376N 42 19 84 0.506N 36 17 92

timation of the relevance of a given document with respect to the initial query,

significantly outperforming the DZ representation, which notably lacks this prop-

erty. As also observed in the previous section, while xQuAD is able to perform

effectively even for aspect representations seemingly uncorrelated with relevance,

like DZ, representations such as BS and WT improve the overall robustness of the

framework. Indeed, on top of both relevance baselines, BS consistently results

in more improved and fewer hurt queries compared to DZ, with the oracle WT

representation significantly outperforming both representations in most cases.

Recalling research question Q3, on the effectiveness of a user-driven aspect

representation, while different approaches seem to benefit more from different
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representations, leveraging query reformulations as a representation of the mul-

tiple possible information needs underlying a query is a consistently effective

alternative, at least for hybrid diversification approaches. This observation is

corroborated by the significantly higher performance attained by the oracle WT

representation for both IA-Select and xQuAD, which conveys a representation of

the actual needs underlying each query. Further approaches aimed to achieve an

effective user-driven aspect representation will be the focus of Chapter 6.

5.3 Summary

The previous chapter introduced xQuAD as general framework for search result

diversification, aimed at maximising the satisfaction of the multiple possible infor-

mation needs underlying a query. In this chapter, we have thoroughly validated

the effectiveness of the framework, by contrasting it to the current state-of-the-art

in search result diversification, as introduced in Chapter 3.

In Section 5.1, we have detailed the basic methodology that underlies all the

experiments conducted in this thesis. In particular, in Section 5.1.1, we have

described the test collections used in our experiments, based upon the evaluation

paradigm provided by the TREC 2009, 2010, and 2011 Web tracks (Clarke et al.,

2009a, 2010, 2011b). In Section 5.1.2, we have further detailed the procedures

for training and testing the several approaches investigated in this thesis, with a

view towards ensuring a fair and thorough evaluation.

In Section 5.2, we have instantiated the aforementioned experimental method-

ology in order to validate the xQuAD framework. In particular, in Section 5.2.2.1,

the diversification performance of xQuAD was contrasted to that of effective

representatives of the three families of diversification approaches introduced in

Section 3.3, namely, novelty-based, coverage-based, and hybrid approaches. Our

proposed framework was shown to consistently outperform these diversification

approaches under multiple experimental conditions and according to multiple

evaluation metrics. Indeed, we have shown that not only does xQuAD bring

larger improvements on top of two effective relevance-oriented baselines, but it

also performs more robustly than the considered diversification approaches, in

terms of the number of queries positively and negatively affected.
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The reasons for such a superior performance were further investigated in Sec-

tions 5.2.2.2 and 5.2.2.3, by breaking down the evaluation in Section 5.2.2.1 across

the complementary dimensions of diversification strategy and aspect representa-

tion, as introduced in Section 3.3. By methodically combining multiple instanti-

ations of each dimension, we validated both the diversification strategy deployed

by xQuAD, which appropriately mixes relevance and diversity estimates in a

probabilistic ranking objective, as well as its user-driven aspect representation,

based upon an explicit account of multiple information needs as sub-queries.

In particular, in Section 5.2.2.2, we showed that xQuAD’s hybrid diversifica-

tion strategy consistently outperforms the strategies deployed by the considered

diversification approaches across multiple (fixed) aspect representations. In addi-

tion, in Section 5.2.2.3, we showed that, while different diversification approaches

benefit more or less from different aspect representations, the user-driven repre-

sentation adopted by xQuAD based on query suggestions is consistently effective

for all the considered approaches. Moreover, in contrast to other diversification

approaches, by incorporating a probability of relevance as part of its ranking ob-

jective, xQuAD is able to successfully leverage aspect representations that have

no apparent bearing on topical relevance, such as query categories.

After validating the framework in light of the current state-of-the-art, in the

subsequent chapters, we will experiment with each of its components in turn.

As a starting point, Chapter 6 will introduce an effective and efficient approach

for identifying sub-queries from the query logs of a web search engine. In turn,

Chapter 7 will describe a supervised approach for predicting the possible intents

underlying each sub-query in order to effectively estimate their coverage among

the retrieved documents. Chapter 8 will deeply analyse the role of novelty as

a diversification strategy, both in isolation as well as when combined with cov-

erage. Lastly, Chapter 9 will introduce a selective approach for automatically

determining how much to diversify the retrieved documents on a per-query basis.
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Chapter 6

Sub-Query Generation

One of the pillars of the xQuAD framework, as discussed in Section 4.1, is an

aspect representation that reflects real users’ information needs. In particular,

xQuAD represents the multiple possible information needs underlying a query

as a set of sub-queries. As shown in the previous chapter, our framework can

successfully leverage the sub-queries produced by different mechanisms.

Of the investigated mechanisms, the query suggestions produced by a com-

mercial web search engine were shown to be particularly effective. On the other

hand, such a mechanism operates as a black box, which precludes a deeper un-

derstanding of how such an effective sub-query set could be generated in practice.

To further our understanding of the characteristics of effective sub-queries, in this

chapter, we investigate alternative mechanisms to generate and score the relative

importance of sub-queries. To this end, we propose a learning to rank approach

that identifies query suggestions from a query log as sub-queries. Moreover, we

introduce a framework for the quantitative evaluation of query suggestions, both

on their own, as well as when used as a resource for diversification.

In the remainder of this chapter, Section 6.1 provides background on query

suggestions for web search. Sections 6.2 and 6.3 introduce our approaches for

ranking and evaluating query suggestions, respectively. The results of our thor-

ough experiments are discussed in Section 6.4, and attest the effectiveness of our

proposed learning to rank approach in comparison to suggestions produced by

a state-of-the-art approach from the literature, as well as by a commercial web

search engine, even for queries with little or no past usage in a query log.

120



6. Sub-Query Generation

6.1 Query Suggestions in Web Search

Web search queries are typically short, ill-defined representations of more complex

information needs (Jansen et al., 1998). As a result, they can lead to unsatisfac-

tory retrieval performance. Query suggestions have been introduced as a mecha-

nism to alleviate this problem. Such a mechanism builds upon the vast amount

of querying behaviour recorded by search engines in the form of query logs, in

order to suggest related queries previously issued by other users with a similar

information need (Silvestri, 2010). The mined suggestions can be exploited in a

variety of ways. For instance, a suggestion identified with high confidence can

be considered for automatically rewriting the user’s initial query (Jones et al.,

2006). Alternatively, a few high quality suggestions can be offered to the user as

alternatives to the initial query (Baeza-Yates et al., 2004), or to help diversify

the documents retrieved for this query, as we will show in Section 6.4.

6.1.1 Query Suggestion Approaches

Several approaches have been proposed in recent years to infer the importance of

a candidate suggestion for a given query based on these queries’ textual similarity,

their co-occurrence in common sessions, or their common clicked URLs (Silvestri,

2010). For instance, Jones et al. (2006) proposed to generate candidate sug-

gestions from co-session queries with a common substring. The strength of the

relationship between the query and each candidate suggestion was further esti-

mated by leveraging various similarity features, such as the edit distance and the

mutual information between these queries. Analogously, Wang & Zhai (2008)

proposed to mine term association patterns from a query log. Their approach

analysed the co-occurrence of terms in multi-word co-session queries and built a

translation model in order to mine query suggestions.

A session-based approach was proposed by Fonseca et al. (2003). In particular,

they deployed an association rule mining algorithm in order to identify query

pairs with sufficient co-occurrence across multiple sessions. Such association rules

were then used as the basis for identifying query suggestions from a query log.

Relatedly, Zhang & Nasraoui (2006) exploited the sequence of queries in a query

log session. In particular, their approach created a graph with queries as nodes,
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and with edges connecting consecutive queries in each session, weighted by these

queries’ textual similarity. A candidate suggestion for a given query was then

scored based on the length of the path between the two queries, accumulated

across all sessions where the query and the suggestion co-occurred.

A click-based approach was proposed by Baeza-Yates et al. (2004). In par-

ticular, they proposed to cluster queries represented using the terms present in

the URLs clicked for these queries. Given an input query, candidate suggestions

from the same cluster as the query were then weighted based on their similarity

to the query and their success rate, as measured by their fraction of clicked doc-

uments in a query log. Relatedly, Mei et al. (2008) exploited random walks on

a bipartite query-click graph. To this end, they weighted a candidate suggestion

for a query based on its “hitting” time (i.e., the time it took for the node repre-

senting this query suggestion to be visited for the first time) for a random walk

starting from the input query. Similarly, Boldi et al. (2009a) proposed to weight

candidate suggestions by performing a short random walk on different slices of a

query-flow graph, a query transition graph with edges classified as generalisations,

specialisations, error corrections, or parallel moves (Boldi et al., 2008).

6.1.2 Query Suggestion under Sparsity

Random walk approaches are generally regarded as the state-of-the-art in the

literature dedicated to the query suggestion problem (Silvestri, 2010). Despite

their relative success, most of these approaches share a common shortcoming. In

particular, they underperform and can even fail to produce any relevant sugges-

tion for queries with sparse or no past usage in a query log, which amount to

a substantial fraction of the web search traffic (Downey et al., 2007). In order

to overcome this issue, Szpektor et al. (2011) proposed the notion of query tem-

plate, a generalisation of a query in which entities are replaced with their type.

By enriching the query-flow graph (Boldi et al., 2008) with query templates, their

approach was able to effectively generate suggestions for long-tail queries. A dif-

ferent approach aimed at tackling query sparsity was proposed by Broccolo et al.

(2012). In particular, they proposed to index each query in a query log as a vir-

tual document comprising the terms in the query itself and those of other queries
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from common sessions. As a result, they cast the query suggestion problem as

an efficient search over the inverted index of virtual documents.

In Section 6.2, we will build upon the query representation strategy proposed

by Broccolo et al. (2012), which was shown to perform at least as effectively as

the state-of-the-art query-flow graph approach of Boldi et al. (2009a) for head

queries, while consistently outperforming it for queries with little or no past ev-

idence (Broccolo et al., 2012, Section 4.4). Inspired by this approach, we devise

a structured virtual document representation, by treating terms from different

sources as distinct fields. In particular, besides the candidate suggestion itself

and its co-session queries, we also leverage evidence from queries that share at

least one click with the suggestion. This enriched representation provides mul-

tiple criteria for ranking suggestions with respect to a query, which we encode

as query-dependent features in a unified ranking model automatically learned

from training data. To further improve this model, we propose several query-

independent features as quality indicators for a candidate suggestion.

In this vein, Dang et al. (2010) proposed a machine learning approach to iden-

tify effective terms from a query log to be appended to an input query. More

recently, Song et al. (2011b) proposed a learning approach to produce diverse

suggestions in response to a query. While also employing learning to rank, our

approach differs from the aforementioned approaches in two fundamental ways.

In particular, while Dang et al. (2010) identified effective expansion terms, we are

interested in the more general problem of query suggestion. As for the approach

of Song et al. (2011b), instead of relying on the human assessment of suggestion

effectiveness, which can be misleading (Hauff et al., 2010), we explicitly incorpo-

rate the observed retrieval effectiveness (in terms of adhoc and diversity search)

of a set of candidate suggestions in order to guide the learning process.

6.2 Learning to Rank Query Suggestions

With the abundant usage data available to commercial web search engines, query

suggestion has traditionally been approached as a data-driven problem, as ex-

emplified by the various approaches described in Section 6.1. While different

approaches have exploited such rich data with more or less success, we argue that
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the importance of a suggestion with respect to a query cannot be fully explained

by a single criterion. Instead, we propose to estimate this importance by lever-

aging multiple ranking criteria within a supervised learning to rank setting. As a

result, not only do we move beyond the traditional approaches to query sugges-

tion, but we make it possible to leverage these otherwise successful approaches

as additional features in a robust query suggestion model.

In the following, Section 6.2.1 discusses alternatives for producing a sample

of candidate suggestions for learning to rank. Section 6.2.2 describes our learn-

ing approach deployed to re-rank the produced samples. Lastly, Section 6.2.3

describes our proposed features to represent a candidate suggestion for ranking.

6.2.1 Sampling Query Suggestions

As discussed in Section 2.2.3, learning to rank approaches typically operate on

top of a sample of documents retrieved by a standard ranking model (Liu, 2009),

such as BM25 (Equation (2.13)) or DPH (Equation (2.31)). The documents in

this sample are then used by the learning approach to produce a feature-rich

ranking model, which will be later used to rank the documents retrieved for

unseen queries. An effective sample should have high recall, in order to increase

the number of relevant examples from which to learn (Liu, 2009). In the case of

query suggestions, such a high-recall sample can be obtained by exploiting the

rich information about a user query contained in a query log. In particular, we

can describe a query log L as a set of records 〈uj, qi, bi,Rqi,Kqi〉, where qi is a

query issued by user uj at timestamp bi. For this query, the user was shown a set

of documents Rqi and clicked on the subset Kqi ⊆ Rqi. Typically, queries issued

by the same user within a short timeframe (say, 30 min) are further grouped into

a logical session, ideally reflecting a cohesive search mission (Silvestri, 2010).

Most query suggestion approaches in the literature exploit the co-occurrence

of queries in a session or their clicks in a common document in order to produce

effective suggestions. However, as discussed in Section 6.1.2, these approaches

generally underperform for rare or unseen queries (Silvestri, 2010). In the former

case, there is little evidence of the query’s co-occurrence with potential sugges-

tions in the query log. In the latter case, the initial query itself cannot even be
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located in the log. To tackle this data sparsity problem, Broccolo et al. (2012)

proposed to represent queries in a query log as virtual documents. This bag-

of-words representation comprises not only the words in the query itself, but

also those present in other queries with a common session in the log. Such a

representation combats data sparsity, since even previously unseen queries (i.e.,

queries without an exact match in the query log) will likely have at least one of

their constituent words present in the log, which in turn may occur frequently

in the virtual document representation of a relevant suggestion. Additionally,

this representation enables the suggestion problem to be efficiently tackled as a

standard search over an inverted index, with the potential to scale to extremely

large query logs (Dean, 2009). On the other hand, this representation lacks a

more fine-grained treatment of the multiple evidence available for ranking. In

particular, it does not distinguish between words from different sources.

In order to address this issue and to produce an effective sample of candidate

suggestions for learning to rank, we improve upon the bag-of-words representa-

tion proposed by Broccolo et al. (2012) by considering each available source of

evidence as a separate field in a structured virtual document.1 As a result, words

that appear in a query suggestion can be weighted differently from those that

appear in related queries with a common session. Moreover, we integrate an ad-

ditional source of evidence as a third field in our structured virtual document

representation. In particular, for each candidate suggestion, we also store words

from queries with at least one common click in the query log. As an illustrative

example, Figure 6.1 shows an excerpt of the structured virtual document repre-

senting “metallica” as a candidate suggestion, highlighting this query itself (Q),

co-session queries (S), and queries with a common click (C) as separate fields.

Also note the “count” attribute for each entry (E) in Figure 6.1, which denotes

the frequency with which this entry co-occurs with “metallica” in the entire query

log (e.g., the queries “metallica” and “james hetfield” have 60 common clicks).

During indexing, the term frequency tft,s of each term t in a suggestion s is com-

puted as the sum of the “count” values across all entries of s where t occurs.

1An analogy to the document ranking problem can be made in which field-based models,
such as BM25F (Zaragoza et al., 2004), leverage evidence from fields such as the title, body,
URL, or the anchor text of incoming hyperlinks in order to score a document.
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<DOC>

<DOCNO> metallica </DOCNO>

<Q> metallica </Q>

<S> <E count="1"> metalica </E>

<E count="1"> queensryche </E>

<E count="1"> ac dc </E>

<E count="1"> pantera </E>

... </S>

<C> <E count="4"> history of mettalica </E>

<E count="1"> metallica concerts </E>

<E count="18"> metclub </E>

<E count="60"> james hetfield </E>

... </C>

</DOC>

Figure 6.1: Virtual document representation for the suggestion “metallica”.

When retrieving a sample of suggestions for a given query, there are multi-

ple choices regarding which of the available fields to use: different choices lead to

different samples for the same query (e.g., a sample of suggestions built by search-

ing the Q field will probably be different from a sample based upon the S or C

fields). A more fundamental question is which sessions should contribute candi-

date suggestions. In particular, satisfactory sessions are those with at least one

click in the last query in the session (Broccolo et al., 2012). Figure 6.2 provides

an illustration of unsatisfactory and satisfactory 3-query sessions.
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Figure 6.2: Unsatisfactory (#1 to #4) and satisfactory (#5 to #8) sessions with
suggestions s1, s2, and s3. Queries with clicks in each session are shaded.
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In their approach, Broccolo et al. (2012) used only queries that ended a sat-

isfactory session (i.e., s3 in sessions #5 to #8 in Figure 6.2). Arguably, non-

satisfactory sessions (i.e., sessions with no clicks, such as session #1, or without

clicks on the last query in the session, such as sessions #2 to #4) can also con-

tribute relevant suggestions. Moreover, non-final queries (queries s1 and s2 in

Figure 6.2) in both satisfactory and non-satisfactory sessions may also be use-

ful. In Section 6.4.2, we will investigate multiple structured virtual document

representations based on different combinations of the available fields (i.e., Q, S,

and C), as well as on different sampling criteria (i.e., whether to index queries

from all sessions or from only satisfactory sessions, and whether to index all or

only the last query in each of these sessions). A breakdown of these alternative

representations in terms of the storage overhead incurred by each of them is pro-

vided in Table 6.1. Percentage figures denote the incurred overhead compared to

storing only the query string (Q) of each suggestion. The total number of queries

indexed for different representations is shown in the bottom row of the table.

Table 6.1: Space requirements for storing each of the seven considered structured
virtual document representations: Q, S, C, QS, QC, SC, QSC.

Sessions All Satisfactory

Queries All Last All Last

U
n
co
m
p
re
ss
ed

Q 141.7 78.3 86.4 44.2
S 513.4 (+262%) 92.7 (+18%) 322.4 (+273%) 62.1 (+41%)

C 278.8 (+97%) 210.5 (+169%) 256.2 (+196%) 201.2 (+356%)

QS 655.1 (+362%) 171.0 (+118%) 408.8 (+373%) 106.3 (+141%)

QC 420.5 (+197%) 288.8 (+269%) 342.6 (+296%) 245.3 (+456%)

SC 792.2 (+459%) 303.2 (+287%) 578.6 (+570%) 263.2 (+496%)

QSC 933.9 (+559%) 381.5 (+387%) 665.0 (+670%) 307.4 (+596%)

C
om

p
re
ss
ed

Q 56.0 32.0 33.4 16.8
S 139.3 (+149%) 34.1 (+7%) 95.3 (+185%) 22.8 (+35%)

C 56.6 (+1%) 44.5 (+39%) 52.7 (+58%) 42.7 (+154%)

QS 195.3 (+249%) 66.1 (+107%) 128.7 (+285%) 39.7 (+135%)

QC 112.6 (+101%) 76.5 (+139%) 86.1 (+158%) 59.6 (+254%)

SC 195.9 (+250%) 78.6 (+146%) 145.0 (+343%) 65.5 (+289%)

QSC 251.9 (+350%) 110.6 (+246%) 181.4 (+443%) 82.4 (+389%)

# suggestions 6,382,973 3,484,172 4,075,725 2,118,571
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Firstly, restricting the index to comprise only satisfactory sessions or only

the last query in each session naturally reduces the required storage space, since

fewer queries are considered as candidate suggestions. More interestingly, com-

pared to a suggestion representation based upon the query string (Q) only, a

representation enriched with co-session (S) and co-clicked (C) queries does not

affect the asymptotic space complexity of our approach. Indeed, all increases in

space requirements stay within an order of magnitude of the space required to

store the query alone. In particular, the most space-consuming representation

(QSC) requires only 6.7 times more storage space (4.4 times after compression

with gzip2) compared to the least space-consuming one (Q).

6.2.2 Learning a Query Suggestion Model

Given a query q and an indexed query log L, we can now define query sugges-

tion as the problem of retrieving a list of queries Sq ⊆ L, in decreasing order of

importance p(s|q), ∀s ∈ Sq. The retrieved suggestions could help the user better

specify the information need originally expressed by q, or to diversify the doc-

uments retrieved for this query, in the hope of providing at least one relevant

document for each of the possible information needs underlying the query.

In order to estimate the importance p(s|q) of a suggestion s given a query q,

we must learn an optimal ranking function h : X → Y , mapping the input space

X to the output space Y . In particular, we define the input space X of the query

q as comprising a sample x = {xj}
nq

j=1 of nq suggestions mined for q, as discussed

in the previous section. Each element xj = Φ(q, sj) in the sample is a vector

representation of a candidate suggestion sj, according to the feature extractor Φ.

In Section 6.2.3, we will describe the various query suggestion features used in

our investigation, including query-dependent and query-independent ones.

The output space Y for our learning problem contains a set of ground-truth

labels y = {yj}
nq

j=1. In order to target the learning process towards identifying

effective query suggestions, each label yj is automatically defined based on the

observed retrieval effectiveness ej of the document ranking produced for the query

suggestion sj. Precisely, we defined the label yj as:

2http://www.gnu.org/software/gzip
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yj =































3 : if ej > e,

2 : if ej = e,

1 : if ej > 0,

0 : otherwise,

(6.1)

where e = ∆r(Rq|q, κr) and ej = ∆r(Rsj |q, κr) denote the retrieval performance

at rank κr (given by any standard evaluation metric ∆r, such as nDCG@10 or

any of the metrics in Section 2.3.3) attained by the ranking R• produced by a

reference retrieval system for a given input (i.e., the query q or its suggestion sj).

Lastly, we must define a loss function to guide our learning process. In partic-

ular, we define ∆s(Sq|q, κs) as the loss at rank κs of retrieving the suggestions Sq

in response to the query q. Note that, different from the document ranking eval-

uation metric ∆r used to define our ground-truth labels in Equation (6.1), this

metric is used to evaluate rankings of query suggestions. Our experimental setup

choices for the sample size nq, labelling function ∆r and cutoff κr, loss function

∆s and cutoff κs, and learning algorithms are fully described in Section 6.4.1.3.

6.2.3 Query Suggestion Features

Having discussed alternative approaches for sampling candidate suggestions from

a query log and how to learn an effective ranking function for a given sample,

we now describe the features used to represent each suggestion in the learning

process. As summarised in Table 6.2, we broadly organise all query suggestion

features used by our approach as either query-dependent or query-independent,

according to whether they are computed on-the-fly at querying time or offline at

indexing time, respectively. While the considered query-dependent features are

standard features commonly used in the literature for learning to rank for web

search (Liu, 2009), the query-independent ones are specifically proposed here to

estimate the quality of different candidate suggestions.

Given a query q, the query-dependent features are directly computed by scor-

ing the occurrences of the terms of q in each field of each candidate suggestion.
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Table 6.2: Features used in this chapter for each candidate suggestion sj.

Feature Description Equation Total

Q
u
er
y
-d
ep

en
d
en
t CLM Full and per-field CLM score (2.5) 4

BM25 Full and per-field BM25 score (2.13) 4
LM Full and per-field LM score (2.25) 4
MRF Full MRF score (2.20) 1
PL2 Full and per-field PL2 score (2.29) 4
DPH Full and per-field DPH score (2.31) 4
pBiL Full pBiL score (2.32) 1

Q
u
er
y
-i
n
d
ep

en
d
en
t

Tokens Full and per-field token count 4
Terms Fraction of unique terms in sj 1
Chars Number of characters in sj 1
RepChars Presence, number, fraction of repeated characters in sj 3
Digits Number and fraction of digits in sj 2
Punctuation Number and fraction of punctuation characters in sj 2
Badwords Mean, s.d., and median number of swearing words in sj 3
UrlFragments Whether sj contains a URL 2
Clicks Number of clicked documents for sj 1
Sessions Number of sessions with sj 1
SessionClicks Mean, s.d., and max number of clicks on sj per session 3
SessionLength Mean, s.d., and max number of queries in sessions with sj 3
SessionPosition Mean, s.d., and max position of sj per session 3
SessionSuccess Fraction of successful sessions with sj 1

Grand total 52

To this end, we leverage multiple query-dependent ranking approaches, including

standard weighting models, such as BM25 (Equation (2.13)), language modelling

with Dirichlet smoothing (LM; Equation (2.25)), the DFR DPH (Equation (2.31))

and PL2 (Equation (2.29)) models, and a simple coordination level matching

(CLM; Equation (2.5)). Additionally, we use term dependence models based

on Markov Random Fields (MRF; Equation (2.20)) and the DFR framework

(pBiL; Equation (2.32)), which highly score suggestions where the query terms

co-occur in close proximity. All query-dependent features are efficiently computed

at querying time with a single pass over the posting lists for the query q in the

index of structured virtual documents (Macdonald, Santos & Ounis, 2013).

As for the query-independent features, they are all computed at indexing

time. In particular, we consider features that can be directly estimated from the
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query log itself, so as to draw insights regarding which query log evidence can

be helpful for ranking query suggestions. The considered features include quality

signals, such as the length of the query suggestion in tokens and characters (too

long suggestions may denote robot-submitted queries) and the presence of digits,

punctuation, and swearing (which usually indicate low-quality or adult-oriented

queries). Additionally, we also derive features that quantify the popularity of a

query suggestion in terms of number of sessions and clicks, as popular sugges-

tions arguably indicate higher quality a priori. Finally, we consider features that

summarise the profile of a suggestion across the sessions where it occurs. These

include the number of clicks received, the total number of queries and the ratio

of clicked queries, and the suggestion’s relative position in each session.

6.3 Evaluating Query Suggestions

The effectiveness of a query suggestion mechanism is typically assessed qualita-

tively, based on user studies (Silvestri, 2010). On the other hand, Hauff et al.

(2010) have shown that users are not good at predicting the retrieval performance

of query suggestions. At the same time, it seems natural to assess the performance

of a suggestion in terms of how much it helps the users satisfy their information

need. More precisely, we argue that the effectiveness of a query suggestion mech-

anism should be assessed as to whether its suggested queries help the users satisfy

the information need expressed by their query. With this in mind, we formalise

a framework for the quantitative evaluation of query suggestions that directly

builds upon existing retrieval evaluation efforts. In particular, we envisage two

scenarios, depending on whether or not the user’s initial query is ambiguous.

The first scenario assumes that the user’s query is unambiguously defined. In

this scenario, given a query q and a ranking of suggestions Sq produced for this

query, our goal is to evaluate these suggestions in terms of their retrieval perfor-

mance when used as a replacement for q. In particular, we introduce s-evalΨ(•)

for query suggestion evaluation as the counterpart of a standard retrieval evalu-

ation metric eval(•) (e.g., nDCG in Equation (2.51)), according to:
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s-evalΨ(Sq|q, k, κ) = Ψk
j=1

[

eval(Rsj |q, κ)
]

, (6.2)

where k is the number of top suggestions to be evaluated (the suggestion eval-

uation cutoff), κ is the number of top documents to be evaluated for each sug-

gestion (the retrieval evaluation cutoff), Rsj is the ranking produced for the

query suggestion sj by a reference retrieval system, and Ψ is a summary statistic.

In Section 6.4.2, we report both the maximum (Ψ = “max”) and the average

(Ψ = “avg”) retrieval performance attained by the top k suggestions. For in-

stance, with nDCG (Equation (2.51)) used as a document ranking evaluation

metric eval(•), Ψ = “max”, k = 1, and κ = 10, we can instantiate Equation (6.2)

in order to have s-nDCGmax@1,10 as a query suggestion evaluation metric. This

metric quantifies the effectiveness (in terms of the nDCG@10 performance of

the resulting document ranking) of a query suggestion mechanism at providing

a single suggestion. Such a suggestion could be used, e.g., for automatically re-

formulating the initial query. With Ψ = “avg”, k = 8, and κ = 10, we can

have s-nDCGavg@8,10, which models a typical application of query suggestion,

as seen on the search box of modern web search engines. Note that both the

Ψ = “max” and Ψ = “avg” summary statistics consider the top k suggestions as

an unordered set, regardless of how these suggestions were ranked with respect to

each other. Although rank-based summary statistics are certainly possible, this

would imply assuming that users prefer the top ranked suggestion over the others.

Since, to the best of our knowledge, there is no empirical study supporting this

assumption, we opted for a set-based evaluation in our investigations.

The query suggestion evaluation metrics generated by Equation (6.2) assume

that the query q unambiguously expresses the user’s information need. Indeed,

both q and the suggestion sj are evaluated with respect to the information need

represented by q. In practice, however, the queries submitted to a web search

engine are often ambiguous (Song et al., 2009), with the same query being used

by different search users to represent different information needs (Spärck-Jones

et al., 2007). In this situation, providing a diverse list of suggestions could not

only help the users better specify their need, but would also enable an effec-
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tive diversification of the retrieved documents, as mentioned in Section 6.1. To

cater for query ambiguity, we formulate a second scenario within our evaluation

framework to quantitatively assess the diversity of the suggestions produced by

a given mechanism. Analogously to the definition in Equation (6.2), we intro-

duce s-deval(•) for query suggestion evaluation as the counterpart of a diversity

evaluation metric deval(•) (e.g., α-nDCG in Equation (3.29)), according to:

s-deval(Sq|q, k, κ) = deval(Dq,Sq,k|q, κ), (6.3)

where Dq,Sq,k is the document ranking produced by a reference diversification

system for the query q using the top k produced suggestions from Sq, and κ is the

depth at which this ranking should be evaluated. For instance, s-α-nDCG@8,10

measures the diversification performance (in terms of α-nDCG@κ, with κ = 10)

of the top k = 8 suggestions produced by a given mechanism, when used as input

to a diversification approach, such as xQuAD, as introduced in Chapter 4.

With the proposed evaluation framework, using a fixed reference retrieval

system, we can quantitatively compare the suggestions produced by different

mechanisms with respect to one another, as well as with respect to the retrieval

effectiveness attained by the initial query alone (i.e., eval(Rq|q, κ)). Likewise, we

can also contrast the diversification performance of different suggestion mecha-

nisms in contrast to one another, as well as in comparison to the diversification

performance of the initial query (i.e., deval(Rq|q, κ)). In the next section, we

will leverage this framework to assess the effectiveness of our proposed learn-

ing to rank approach as well as of state-of-the-art query suggestion baselines at

providing query suggestions for both adhoc and diversity search.

6.4 Experimental Evaluation

In this section, we address the second claim from our thesis statement:

“By inferring the relative importance of each sub-query in the con-

text of the initial query, the retrieved results can better cater for the

information needs of the user population.”

133



6. Sub-Query Generation

In order to address this claim, we experiment with our proposed learning to

rank approach to produce query suggestions that are effective both on their own

as well as when used as sub-queries within our xQuAD diversification framework.

In particular, we aim to answer the following research questions:

Q1. How effective is our query suggestion approach for adhoc search?

Q2. How effective is our query suggestion approach for diversity search?

Q3. How robust to data sparsity is our query suggestion approach?

Q4. Which features (from Table 6.2) are useful for ranking query suggestions?

Q5. How robust to missing relevance assessments is our evaluation framework?

In the following, Section 6.4.1 details the experimental setup that supports

the investigation of these questions in Section 6.4.2.

6.4.1 Experimental Setup

In the remainder of this section, we describe the test collections and retrieval

baselines used in our investigation, as well as the training procedure carried out

to enable our proposed learning to rank approach for query suggestion.

6.4.1.1 Test Collections

Our experiments use the WT09, WT10, and WT11 test collections, described

in Table 5.1, comprising 148 queries from the TREC 2009, 2010, and 2011 Web

tracks (Clarke et al., 2009a, 2010, 2011b). To retrieve candidate suggestions for

each query, we use the MSN 2006 query log, a one-month log with 15 million

queries submitted by US users to MSN Search (now Bing) during spring 2006.3

We index the structured virtual documents produced from this log using Ter-

rier (Macdonald et al., 2012a) with positional information, so as to enable the

extraction of proximity features, as discussed in Section 6.2.3. In particular, we

apply Porter’s weak stemming and do not remove stopwords. Finally, sessions

are determined using a standard 30 min timeout. In addition, sessions with more

3http://research.microsoft.com/en-us/um/people/nickcr/wscd09
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than 50 queries are discarded, as they are likely produced by robots (Silvestri,

2010). Salient statistics of the MSN 2006 query log are provided in Table 6.3.

Table 6.3: Salient statistics of the MSN 2006 query log.

#queries 14,921,285
#unique queries 6,623,635
#sessions 7,470,915
#clicks 12,251,067

Candidate suggestions are evaluated with respect to their performance at

ranking documents from the category A portion of the ClueWeb09 corpus, de-

scribed in Section 5.1.1. To this end, we use the Bing Search API as the reference

adhoc retrieval system, by directly evaluating its returned URLs against those

judged relevant in this corpus.4 While using the Bing API provides a state-of-

the-art reference retrieval system and is efficient enough to enable the large-scale

evaluation conducted in this chapter, the rankings produced by using this API

should be seen as a crude approximation of what Bing could achieve if restricted

to searching only the ClueWeb09 corpus in the first place (Santos et al., 2011c).

Nonetheless, Clarke et al. (2009a, 2010) have shown that rankings produced by

a commercial search engine outperform almost all submitted runs in the TREC

2009 and 2010 Web tracks. Finally, as the reference diversification system, we

employ our xQuAD framework, so as to assess the effectiveness of our produced

suggestions when used as sub-queries for search result diversification.

6.4.1.2 Query Suggestion Baselines

To answer our first three research questions, we compare our proposed approach

to two query suggestion baselines. The first of these is the approach of Broccolo

et al. (2012), which inspired the suggestion representation adopted in this work,

as described in Section 6.2.1. As discussed in Section 6.1, their approach was

shown to perform at least as effectively as the state-of-the-art query-flow graph

approach of Boldi et al. (2009a) for head queries, while consistently outperforming

it for queries with little or no past evidence in the MSN 2006 query log. Hence, it

4All rankings were obtained in February 2012 using Bing API v2.0.
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is used here as a representative of state-of-the-art query suggestion mechanisms.

Additionally, we compare both our approach and that by Broccolo et al. (2012)

to the query suggestions produced by the Bing Suggestion (BS) API.5 While

Bing can suggest queries not present in our test query logs (and arguably has

suggestion models built from much larger query logs), this provides a reference

performance for an industrial-strength query suggestion mechanism.

6.4.1.3 Training and Evaluation Procedures

To enable our learning approach, following the scheme formalised in Equation (6.1),

we automatically label a pool of 105,325 suggested queries, comprising the union

of all suggestion samples in Section 6.2.1 (e.g., suggestions retrieved based on

different fields, or those that come from satisfactory sessions). For the labelling

function ∆r in Equation (6.1), we use nDCG@10, which is a typical target in a

web search setting (Jansen et al., 1998). For our learning setup, following com-

mon practice (Qin et al., 2010), we consider a sample of nq = 1000 suggestions

retrieved for a given query using BM25 (Equation (2.13)). As a loss function, we

use nDCG@100, in order to provide a more informative guidance to our learn-

ing process, by capturing swaps between relevant and non-relevant documents

beyond our target evaluation cutoff (κ = 10) (Robertson, 2008). As learning al-

gorithms, we employ the listwise AFS and LambdaMART algorithms, introduced

in Section 2.2.3.2, by performing a 5-fold cross validation. To this end, we split

the available queries into training (60%), validation (20%), and test (20%) sets.

Accordingly, our results are reported on the test queries across all folds.

6.4.2 Experimental Results

In this section, we assess the effectiveness of our proposed learning to rank ap-

proach for the query suggestion problem, with applications to both adhoc and

diversity search. To this end, Sections 6.4.2.1 through 6.4.2.5 address each of the

five research questions stated in Section 6.4.1 in turn.

5All query suggestions were obtained in February 2012 using Bing API v2.0.

136



6. Sub-Query Generation

6.4.2.1 Adhoc Retrieval Performance

In order to address research question Q1, regarding the effectiveness of our query

suggestion approach for adhoc search, we analyse both the impact of different

criteria for producing an initial sample of candidate suggestions, as well as the

improvements brought by our learning to rank approach.

Sampled Suggestions Before evaluating our learning approach to query sug-

gestion, we assess the alternative choices introduced in Section 6.2.1 for producing

suggestion samples. In particular, we analyse this question in light of three or-

thogonal dimensions. The first dimension concerns the sessions from which to

mine candidate suggestions: all sessions vs. satisfactory sessions (i.e., those with

a click on the last query). The second dimension concerns the queries from a

given session to be indexed as candidate suggestions: all queries vs. the last one.

Finally, the third dimension relates to the sources of evidence to index as fields

for each candidate suggestion: the suggestion itself (Q), its co-session queries (S),

its queries with a common click (C), or any combination of these three fields.

To assess the full potential of these sampling alternatives, Table 6.4 sum-

marises their performance in terms of the number of relevant suggestions retrieved

at maximum recall depth (i.e., RelRet@1000). For this investigation, relevance

labels are defined as per Equation (6.1).6 The significance symbols introduced

in Section 5.1.2 are used to denote a significant difference compared to the best

result in each column, which is highlighted in bold. From the table, regarding our

first dimension of interest, we observe that indexing only queries from satisfac-

tory sessions (as opposed to all sessions) leads to improved recall for BM25(Q),

BM25(S), BM25(C), and BM25(QS). This corroborates the findings of Broccolo

et al. (2012), by showing that such sessions are more likely to contain effective sug-

gestions. However, for the remaining variants, namely, BM25(QC), BM25(SC),

and BM25(QSC), using all sessions performs slightly better.

Regarding our second considered dimension, we observe that indexing only

the last query in a session, as proposed by Broccolo et al. (2012), substantially

6Note that suggestions with a relevance label 1 (i.e., with a positive yet lower retrieval
effectiveness than that attained by the initial query) are also considered, as they may bring
useful evidence for the diversification scenario addressed in Section 6.4.2.2.
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Table 6.4: Performance of different sampling strategies at ranking effective suggestions
in terms of RelRet@1000, with suggestion relevance labels defined as per Equation (6.1).
The representation used by Broccolo et al. (2012) is marked with a † symbol.

Sessions All Satisfactory

Queries All Last All Last

BM25(Q) 73H 68H 76H 69H

BM25(S) 68H 55H 72H 58H

BM25(C) 60H 59H 61H 60H

BM25(QS) 96H 91H 102H †94◦

BM25(QC) 92H 85H 91H 83H

BM25(SC) 104H 84H 105H 82H

BM25(QSC) 115 101 117 98

decreases performance, regardless of whether this session is satisfactory or not.

Lastly, regarding our third dimension of interest, we observe an increase in recall

as we combine more fields together, with QSC being the overall best combination.

This shows that click evidence further improves the QS combination used by

Broccolo et al. (2012). However, taking into account the performance of individual

fields can also be beneficial. As shown in Table 6.4, the Q field is the most

effective, with S and C showing a similar performance. Recalling research question

Q1, on the effectiveness of our approach for adhoc search, we conclude that mining

suggestions among all queries in satisfactory sessions, and considering a multi-field

representation (i.e., QSC), particularly with the added click evidence, provides

the most effective sampling for learning to rank query suggestions.

Learned Suggestions After investigating alternative strategies for building an

initial sample of suggestions for a query, we analyse whether this sample can be

further improved by our learning to rank approach. In particular, we focus on

the most promising samples identified in our previous experiment, namely, those

comprising all queries from satisfactory sessions (the penultimate column in Ta-

ble 6.4). For this investigation, we instantiate our proposed evaluation framework

described in Section 6.3 and report our results in terms of s-nDCGΨ@k,10—i.e.,

the summary (“max” or “avg”) document retrieval performance (in terms of the

standard nDCG@10) attained by the top k ranked suggestions. As discussed in
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Section 6.3, we test two values of k, representing two distinct scenarios. In the

first scenario, we set k = 1, which assesses the effectiveness of each query sugges-

tion mechanism at providing a single suggestion that could be used, e.g., for an

automatic reformulation of the initial query. In the second scenario, we set k = 8,

which is the maximum number of suggestions retrieved by the Bing Suggestion

API as well as by the search interfaces of current commercial web search engines,

and hence represents a typical application of query suggestion.

Table 6.5 shows the results of this investigation. In each cell, up to three

symbols are used to denote statistically significant differences. For all sugges-

tion mechanisms (i.e., BS, BM25, AFS, and LambdaMART), a first symbol de-

notes significance with respect to the initial query. For BM25, AFS, and Lamb-

daMART, a second symbol denotes significance compared to the suggestions pro-

duced by BS. Lastly, for each of the considered samples (i.e., Q, S, C, QS, QC,

SC, and QSC), a third symbol denotes whether AFS and LambdaMART differ

significantly from the unsupervised BM25 baseline of Broccolo et al. (2012). The

best performance on top of each sample is underlined, whereas the best overall

performance across all samples is highlighted in bold.

From Table 6.5, we first observe that, compared to the BM25 variants, our

learning approach using either AFS or LambdaMART consistently improves in

all considered scenarios (k = 1 and k = 8 with both Ψ = “max” and Ψ = “avg”),

with significant gains in most cases. Moreover, when retrieving multiple sugges-

tions (i.e., k = 8), the suggestions produced by our approach are comparable to

those provided by BS. Still compared to BS, significant gains are observed for

the task of returning exactly one suggestion for automatically reformulating the

initial query (i.e., k = 1). As discussed in Section 6.4.1.2, this is a remarkable

result, particularly since the Bing API is not constrained to returning candidate

suggestions from our one-month-long query log, instead arguably making use of

much larger query logs. Lastly, compared to the initial query, no query suggestion

mechanism improves for the task of finding a single effective suggestion (k = 1)—

this is the case even for BS. Indeed, as denoted by the number of affected queries,

all approaches harm substantially more queries than they improve, showing that

an automatic reformulation of the initial query using the top suggestion would

be risky. However, when the best performing suggestion among the top 8 is used
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Table 6.5: Adhoc performance (in terms of s-nDCGmax@1, 10, s-nDCGmax@8, 10, and
s-nDCGavg@8, 10) attained by the suggestions produced by various mechanisms.

s-nDCGmax@k,10 s-nDCGmax@k,10 s-nDCGavg@k,10

k = 1 − = + k = 8 − = + k = 8 − = +

Query 0.115 0.115 0.115

BS 0.048H 110 14 24 0.119◦ 60 12 76 0.045H 126 9 13

BM25(Q) 0.064H◦ 79 59 10 0.106◦◦ 44 54 50 0.039H◦ 129 10 9
+AFS 0.022HHH 111 32 5 0.043HHH 99 27 22 0.014HHH 130 11 7
+LambdaMART 0.074HN◦ 65 74 9 0.112◦◦◦ 31 63 54 0.045H◦△ 127 11 10

BM25(S) 0.020HH 125 12 11 0.071HH 94 23 31 0.018HH 132 10 6
+AFS 0.067H△N 68 65 15 0.103◦◦N 50 45 53 0.038H◦N 129 8 11
+LambdaMART 0.057H◦N 91 45 12 0.096▽▽N 57 46 45 0.035H▽N 126 10 12

BM25(C) 0.045H◦ 114 21 13 0.081HH 70 29 49 0.032HH 128 12 8
+AFS 0.072HNN 64 74 10 0.097◦◦N 46 49 53 0.039H◦N 126 10 12
+LambdaMART 0.063H◦N 73 62 13 0.095▽▽N 45 49 54 0.039H◦N 126 10 12

BM25(QS) 0.043H◦ 114 26 8 0.091HH 69 38 41 0.030HH 131 9 8
+AFS 0.090HNN 50 82 16 0.114◦◦N 35 57 56 0.048H◦N 127 9 12
+LambdaMART 0.074HNN 67 62 19 0.113◦◦N 36 57 55 0.046H◦N 124 10 14

BM25(QC) 0.048H◦ 110 24 14 0.091▽▽ 59 36 53 0.038H◦ 129 10 9
+AFS 0.086HNN 52 83 13 0.112◦◦N 36 58 54 0.045H◦N 127 9 12
+LambdaMART 0.077HNN 63 71 14 0.109◦◦△ 38 56 54 0.046H◦N 127 11 10

BM25(SC) 0.046H◦ 109 24 15 0.084HH 68 32 48 0.034H▽ 127 12 9
+AFS 0.082HNN 59 75 14 0.108◦◦N 41 57 50 0.043H◦N 128 10 10
+LambdaMART 0.066H△N 78 57 13 0.105◦◦N 42 54 52 0.045H◦N 125 11 12

BM25(QSC) 0.050H◦ 105 28 15 0.098▽◦ 58 38 52 0.038H◦ 128 9 11
+AFS 0.085HNN 53 83 12 0.117◦◦N 35 55 58 0.047H◦N 128 8 12
+LambdaMART 0.078HNN 67 64 17 0.110◦◦N 39 55 54 0.046H◦N 128 12 8

(i.e., k = 8 and Ψ = “max”), both BS as well as one of the variants of our learning

approach (namely, BM25(QSC)+AFS) are able to outperform the initial query,

although not significantly. Still in light of research question Q1, the results in

this section attest the effectiveness of our learning to rank approach compared to

the state-of-the-art query suggestion approach of Broccolo et al. (2012) as well

as to the industrial-strength suggestion mechanism provided by the Bing API.
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6.4.2.2 Diversification Performance

In this section, we address research question Q2, by assessing the effectiveness of

our produced suggestions when used for diversifying the retrieved documents. As

discussed in Section 6.3, for this evaluation, we use two different instantiations of

the s-deval metric defined in Equation (6.3), by leveraging the primary metrics for

diversity search evaluation used in the TREC Web track (Clarke et al., 2011b):

ERR-IA (Equation (3.28)) and α-nDCG (Equation (3.29)). In particular, we

consider the scenario where a user would inspect the top κ = 20 documents,

diversified by the xQuAD framework (as the reference diversification system)

using the top k suggestions provided by each query suggestion mechanism as a

set of sub-queries Sq. As baselines for this investigation, we consider the initial

query, as well as the suggestions produced by Bing (BS) and BM25(QSC), as the

best performing unsupervised variant from Table 6.4. Table 6.6 shows the results

of this investigation, with significance symbols defined as in Table 6.5.

Table 6.6: Diversification performance (in terms of both s-ERR-IA@8,20 and s-α-
nDCG@8,20) attained by the suggestions produced by various mechanisms.

Sq
s-ERR-IA s-α-nDCG

@8,20 − = + @8,20 − = +

Bing (Query) 0.382 0.502

+xQuAD BS 0.406N 33 27 90 0.524N 35 23 92

BM25(QSC) 0.403△◦ 42 32 76 0.521N◦ 41 30 79
+AFS 0.404N◦◦ 41 21 88 0.522N◦◦ 38 22 90
+LambdaMART 0.412N◦△ 44 15 91 0.527N◦△ 47 14 89

From Table 6.6, we first observe that both the unsupervised approach of Broc-

colo et al. (2012) using BM25 as well as our learning to rank approach using AFS

and LambdaMART significantly improve upon the initial query, attesting the

suitability of mining effective sub-queries from a query log to diversify a ranking

of documents. Moreover, the performance attained by these approaches does not

differ significantly from that attained by the suggestions produced by the Bing

API. Once again, this is a remarkable result, given the substantially larger amount

of data available to Bing compared to our one-month query log snapshot. Finally,
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we observe that our approach consistently outperforms the strong baseline sug-

gestion mechanism of Broccolo et al. (2012), with significant improvements when

using LambdaMART. Overall, this answers research question Q2, by showing

that our learning approach is also effective at providing query suggestions to be

used for search result diversification.

6.4.2.3 Performance under Sparsity

An inherited characteristic of the query suggestion representation adopted by

our approach is its resilience to sparse data. As discussed in Section 6.2.1, most

existing query suggestion approaches suffer when there is limited session or click

information for a given query. Instead, by indexing candidate suggestions at the

term level, our approach improves the chance of identifying at least one of these

suggestions as a potentially relevant match for even an unseen query, provided

that the query and the suggestion share at least one term. In order to analyse

the impact of query sparsity on the effectiveness of our proposed learning to

rank approach for the query suggestion problem, Figure 6.3 breaks down the

performance of our approach, as well as the approach of Broccolo et al. (2012),

for input queries with different frequencies in the MSN 2006 query log.

Figure 6.3: Suggestion adhoc effectiveness (in terms of s-nDCGavg@8,10) for queries
with various frequencies in the MSN 2006 query log. Query frequencies are split into
exponentially-sized bins, so that the number of queries in each bin is roughly balanced.
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As shown in the figure, both of our learning to rank variants as well as the

approach of Broccolo et al. (2012) are able to provide effective suggestions even

for completely unseen queries (i.e., queries with a zero frequency in the query

log, such as “wedding budget calculator”). While this resilience to sparsity comes

mostly from the structured virtual document representation inspired by the ap-

proach of Broccolo et al. (2012), it is interesting to note that our learning variants

further improve on top of their approach for almost the entire range of query fre-

quencies. Recalling research question Q3, these results attest the robustness of

our learning approach in light of data sparsity, and further corroborate the find-

ings in Sections 6.4.2.1 and 6.4.2.2 regarding the effectiveness of our approach.

6.4.2.4 Feature Analysis

Besides breaking down the analysis of our approach for queries with different

frequencies in a query log, in this section, we address research question Q4, by

analysing which of the features in Table 6.2 are effective for learning to rank

query suggestions. To this end, we measure the predictive power of each of these

features individually. In particular, Table 6.7 lists the top 10 query-dependent

and top 10 query-independent features, selected according to their correlation

(Pearson’s ρ) with the training labels, as defined in Equation (6.1).

Table 6.7: Top 10 query-dependent and query-independent features for learning to
rank suggestions, ranked by their correlation (Pearson’s ρ) with the learning labels.

Query-dependent features Query-independent features

Rank Feature ρ Rank Feature ρ

1 CLM(QSC) 0.166 5 Tokens(Q) 0.078
2 BM25(QSC) 0.148 6 Chars 0.072
3 DPH(QSC) 0.104 18 Tokens(C) 0.029
4 PL2(QSC) 0.090 20 Clicks 0.022
7 PL2(S) 0.065 22 SessionClicks (s.d.) 0.021
8 pBiL(QSC) 0.063 23 SessionLength (mean) 0.020
9 CLM(C) 0.058 25 Digits (fraction) 0.019

10 CLM(S) 0.057 26 Terms 0.019
11 DPH(C) 0.054 29 SessionLength (s.d.) 0.015
12 BM25(C) 0.051 30 Badwords (presence) 0.014
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From Table 6.7, we observe that 8 of the overall top 10 features are query-

dependent. This observation highlights both the topical nature of the query sug-

gestion task, as well as the benefit of leveraging evidence from multiple sources

in a query log (i.e., the Q, S, and C fields), with an aggregation of all available

evidence (i.e., the QSC combination) performing the best. Interestingly, CLM

(Equation (2.5)) is the best feature, emphasising the importance of covering mul-

tiple terms from the input query. As for the top query-independent features, our

learned suggestion models generally benefit from lexical features, such as the sug-

gestion length in tokens or characters. In addition, features based on past usage

behaviour, including session and click information, are also effective.

6.4.2.5 Robustness to Missing Relevance Assessments

As discussed in Section 6.3, our evaluation framework leverages document rel-

evance assessments from the adhoc and diversity test collections of the TREC

Web track (Clarke et al., 2009a, 2010, 2011b). As a result, the robustness of the

framework directly depends on its ability to reuse the relevance assessments from

these test collections. In particular, in our evaluation framework, the diversity

document relevance assessments produced for a given query are directly reused to

evaluate a different document ranking produced for the same query, namely, the

ranking produced by using query suggestions as input to a reference diversification

approach, such as xQuAD. On the other hand, the adhoc relevance assessments

for a query are reused to assess the effectiveness of a ranking produced for differ-

ent queries, i.e., each of the suggestions produced for the initial query. The latter

scenario explicitly assumes a user with a clearly specified information need, hence

considering query suggestion as the task of identifying effective replacements for

the user’s original query. However, the effectiveness of such replacement queries

may be underestimated in our evaluation framework, simply because they can

retrieve documents that were not judged at all for the initial query.

In order to address research question Q5, Table 6.8 shows the extent to which

missing relevance assessments impact the reusability of the TREC 2009, 2010,

and 2011 Web track assessments within our evaluation framework. In particular,

we consider both the number of judged (J@10) and relevant (P@10) documents
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among the top 10 documents retrieved for each suggestion in the BM25(QSC)

sample, which served as the basis for most of the query suggestion mechanisms

investigated in Sections 6.4.2.1 through 6.4.2.4. The per-query figures are sum-

marised by multiple statistics and broken down according to the considered adhoc

(k = 1 and k = 8) and diversity (k = 8) search scenarios. As a baseline for mea-

suring the reusability of the TREC Web track relevance assessments, these figures

are compared to a BM25 ranking for the initial query, which represents a typical

use case of reuse of the TREC Web track assessments for evaluation. In addition,

we also include a ranking produced by Bing, which was used as the reference

retrieval system in this chapter, as discussed in Section 6.4.1.1.

Table 6.8: Ratio of judged (J@10) and relevant (P@10) documents among the top 10
documents retrieved by Bing for each of the suggestions produced by BM25(QSC).

Suggestions Adhoc Diversity

BM25(QSC) k=1 k=8 k=8

Ψ = “max” Ψ = “max” Ψ = “avg”

J@10 P@10 J@10 P@10 J@10 P@10 J@10 P@10

average 0.034 0.021 0.506 0.312 0.227 0.132 0.565 0.393
median 0.000 0.000 0.500 0.300 0.200 0.075 0.600 0.400
std. dev. 0.137 0.096 0.277 0.264 0.179 0.144 0.234 0.235
minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
maximum 0.900 0.900 0.900 0.900 0.775 0.687 0.900 0.900

Query Adhoc Diversity

J@10 P@10 J@10 P@10

Bing 0.589 0.340 0.563 0.398
BM25 0.329 0.097 0.249 0.090

From the bottom half of Table 6.8 (the “Query” half), we observe that, despite

not targeting the ClueWeb09 corpus exclusively, Bing attains a much higher cover-

age of judged (J@10) and relevant (P@10) documents than BM25 (adhoc: Bing’s

J@10 = 0.589, P@10 = 0.340 vs. BM25’s J@10 = 0.329, P@10 = 0.589; diversity:

Bing’s J@10 = 0.563, P@10 = 0.398 vs. BM25’s J@10 = 0.249, P@10 = 0.090).

This highlights the importance of having a high performing reference retrieval

system for evaluating the effectiveness of query suggestions in large web corpora
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such as ClueWeb09. Moreover, it corroborates our choice in Section 6.4.1.1 for

using the API of a commercial web search engine for this purpose.

Next, with specific regards to research question Q5, on the robustness of our

proposed evaluation framework to missing document relevance assessments, from

the top half of Table 6.8 (the “Suggestions” half), we observe that most of the

considered search scenarios show a reasonable coverage of the relevance assess-

ments leveraged from the TREC 2009, 2010, and 2011 Web tracks. In particular,

the evaluation of the effectiveness of a set of query suggestions (adhoc scenario,

k = 8) shows a high robustness to missing assessments, with a coverage of judged

(J@10) and relevant (P@10) documents that compares favourably to that at-

tained by a standard BM25 ranking produced for the initial query (average J@10

up to 0.506 vs. BM25’s 0.329; average P@10 up to 0.312 vs. BM25’s 0.097). The

diversity scenario, in turn, shows an even higher reuse of the underlying document

relevance assessments, with average figures of J@10 = 0.565 and P@10 = 0.393.

Such a higher coverage is due to the fact that this scenario evaluates the effective-

ness of a set of suggestions with respect to their impact in diversifying the ranking

for the initial query, as opposed to evaluating each suggestion individually. The

only exception is the adhoc search scenario that considers only the top ranked

suggestion (k = 1) for evaluation (e.g., for automatically reformulating the user’s

original query), which exhibits a low reuse of the TREC Web track assessments,

with an average fraction of judged and relevant documents of 0.034 and 0.021,

respectively. The evaluation in this specific scenario could be made more robust

by incorporating alternative evaluation methodologies that take into account as-

sessment sparsity (Carterette et al., 2006, 2009a), and by conducting additional

relevance assessments, e.g., through crowdsourcing (Alonso et al., 2008). Alter-

natively, the effectiveness of a set of suggestions could be evaluated based upon

their combined ability to improve the adhoc performance of the original query,

in a similar fashion to our conducted diversity evaluation, as defined by Equa-

tion (6.3). This could be achieved by diversifying the initial ranking, e.g., using

the xQuAD diversification framework, in the same manner as we did for the di-

versity search scenario. Alternatively, one could simply enrich the initial ranking

with documents retrieved for different query suggestions (Sheldon et al., 2011).

We leave these investigations as directions for future work.

146



6. Sub-Query Generation

6.5 Summary

In this chapter, we have addressed the second claim from our thesis statement,

by showing that an effective mechanism for generating sub-queries positively im-

pacts the diversification performance of our xQuAD framework, introduced in

Chapter 4. To this end, we proposed a learning to rank approach to score the

relative importance of sub-queries, identified as multiple query suggestions mined

from a sample of the query log of a commercial web search engine.

In Section 6.1, we provided an overview of existing approaches for the query

suggestion problem, in order to lay the ground for our proposed learning to rank

approach, introduced in Section 6.2. In particular, our approach represents can-

didate suggestions from a query log as structured virtual documents comprising

terms from related queries with common clicks, in addition to those from com-

mon sessions, as proposed by previous research. Besides helping overcome data

sparsity, this enriched representation enables multiple query-dependent features

to be computed for each candidate suggestion. We have also proposed several

query-independent features specifically targeted to identify quality suggestions.

Finally, we have integrated all these features in order to automatically learn ef-

fective models for ranking candidate suggestions in response to a user’s query.

To evaluate our approach, in Section 6.3, we introduced an evaluation frame-

work that directly leverages document relevance assessments from existing web

search evaluation campaigns, hence requiring no extra assessment efforts. In

Section 6.4, we deployed this framework for quantitatively evaluating the ef-

fectiveness of query suggestions for two practical search scenarios, namely, to

provide effective alternatives to the initial query, or to help diversify the docu-

ments retrieved for this query. Under this framework, we contrasted our learning

approach to a state-of-the-art query suggestion baseline from the literature. In

Sections 6.4.2.1 and 6.4.2.2, we showed that our approach significantly outper-

forms this baseline in both scenarios. For the diversification scenario, in Sec-

tion 6.4.2.2, our produced suggestions were also statistically comparable to those

produced by a commercial web search engine. This is a remarkable achievement,

given that commercial search engines arguably use much larger query logs than

the one-month log snapshot available to our approach.
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As demonstrated in Section 6.4.2.3, another benefit of our approach is its

resilience to data sparsity. Indeed, our approach is able to produce effective

suggestions even for a previously unseen query, provided that this query shares

at least one term with relevant suggestions (or other queries related to these

suggestions) in the log. Regarding the representation of candidate suggestions,

our investigation in Section 6.4.2.4 showed that features dependent on the input

query (computed using terms from the suggestion itself, as well as those from

other queries with a common session or click with the suggestion) are the most

effective descriptors of effective suggestions, denoting the topical nature of this

task. Nevertheless, query-independent features reflecting lexical characteristics

of a suggestion (e.g., its length) or its usage history (e.g., the amount of clicks

it received across sessions) were also effective. Finally, a comprehensive analysis

in Section 6.4.2.5 showed the robustness of our proposed evaluation methodology

for quantifying suggestion effectiveness in light of missing relevance assessments.

After introducing an effective mechanism for generating sub-queries, in the

next chapter, we will discuss an effective mechanism for estimating the coverage

of each retrieved document with respect to each identified sub-query. To this

end, we will exploit the intent underlying each sub-query as a means to select the

most appropriate ranking model to perform such estimations.

148



Chapter 7

Document Coverage

Chapter 6 highlighted the importance of identifying effective sub-queries in order

to achieve an improved diversification performance. Another pillar for effectively

instantiating the xQuAD framework is an accurate estimation of the relevance

of each retrieved document with respect to each identified sub-query. From the

perspective of a document, such an estimation gives a measure of coverage; from

the perspective of a sub-query, this estimation gives a measure of novelty.

In this chapter, we hypothesise that the more refined xQuAD’s underly-

ing estimation of the relevance of a document with respect to multiple sub-

queries, the more effective its diversification performance. To test this hypothesis,

we exploit the intent underlying each sub-query—e.g., informational or naviga-

tional (Broder, 2002; Rose & Levinson, 2004)—which has been previously shown

to affect the estimation of relevance (e.g., Kang & Kim, 2003; Geng et al., 2008;

Peng et al., 2010). In particular, we introduce a classification approach to pre-

dict the effectiveness of multiple intent-aware ranking models for estimating the

relevance of the retrieved documents to each identified sub-query. As a result of

this prediction, we can either select the ranking model most likely to be effective,

or merge multiple models by taking into account their predicted effectiveness.

In the remainder of this chapter, Section 7.1 describes the use of intents in web

search. Section 7.2 introduces our intent-aware approach to search result diversi-

fication, which is thoroughly evaluated in Section 7.3. The results not only attest

the effectiveness of our approach, but also show that an improved estimation of

coverage and novelty leads to a significantly improved diversification.
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7.1 Intents in Web Search

Not all information needs have the same underlying intent. In particular, Broder

(2002) proposed a taxonomy of information needs in web search, categorising

their intent according to three classes: navigational, denoting a need to find a

specific document; informational, denoting a need for information about a topic,

which may be covered on one or more documents; and transactional, denoting a

need to perform a web-mediated activity. This taxonomy was later extended by

Rose & Levinson (2004), who devised a hierarchy of intents stemming from the

three broad classes proposed by Broder (2002). Nevertheless, Broder’s taxonomy

remains the most widely adopted in the literature (Calderón-Benavides, 2011).

Several ranking approaches have benefited from exploiting the intent under-

lying web search queries. Such intent-aware approaches can be categorised as

to whether they rely on the classification of queries into predefined intents. For

instance, query intent detection approaches classify a query with respect to a pre-

defined set of intents. A ranking model trained for the predicted intent is then

applied to rank documents for the query. In this vein, Kang & Kim (2003) showed

that queries of distinct intents can benefit from intent-aware ranking models. A

major shortcoming of this family of approaches, however, is the limited accuracy

of existing intent detection mechanisms (Craswell & Hawking, 2004).

Instead of classifying a query into a predefined target intent, an alternative is

to identify similar queries from a training set, and then apply a ranking model

appropriate for this set. This approach has an advantage over a classification of

queries based on a fixed set of intents, as queries of the same intent often benefit

from different ranking models (Craswell & Hawking, 2004). For example, Geng

et al. (2008) proposed an instance-based learning approach using k-nearest neigh-

bour (k-NN) classification (Aha et al., 1991) to improve web search effectiveness.

In their approach, a k-NN classifier was used to identify training queries simi-

lar to an unseen query. A ranking model was then learned using the identified

neighbouring queries and applied to the unseen query. A more general approach

was proposed by Peng et al. (2010). In their work, multiple ranking functions

were chosen from a pool of candidate functions, according to their retrieval per-

formance on training queries similar to an unseen query.
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Our intent-aware approach, introduced in the next section, is similar in spirit

to the approaches of Kang & Kim (2003), Geng et al. (2008), and Peng et al.

(2010). On the other hand, while these approaches focused on inferring the intent

of a query, we aim to infer the intent of different sub-queries underlying this query.

Besides this difference in granularity, our intent-aware approach tackles a different

search scenario, namely, search result diversification.

7.2 Intent-aware Search Result Diversification

As discussed in Section 4.1, in order to diversify the documents retrieved for a

query, we must be able to estimate the relevance of each document with respect

to the multiple possible information needs underlying this query. In Chapters 5

and 6, we have experimented with both unsupervised as well as supervised ranking

models in order to perform such estimations. Nonetheless, in both cases, the same

ranking model was applied uniformly for all sub-queries.

In this chapter, we argue that the relevance of a document to the informa-

tion need underlying a particular sub-query may depend on the intent of this

sub-query. Additionally, different sub-queries can feasibly represent information

needs with different intents. For instance, consider the query “led zeppelin”. Also

assume that, using a sub-query generation mechanism, such as the learning ap-

proach introduced in Chapter 6, we identify the following sub-queries for this

query: “led zeppelin website”, “led zeppelin downloads”, and “led zeppelin biog-

raphy”. Arguably, these sub-queries represent navigational, transactional, and

informational needs underlying the initial query, respectively.

Queries with different intents have been shown to benefit from intent-aware

ranking models, as discussed in Section 7.1. Likewise, we hypothesise that an

explicit diversification of the retrieved documents may benefit from taking into

account the intents of different sub-queries. For instance, relevance estimations

computed with respect to the “led zeppelin website” sub-query could arguably be

improved by applying a ranking model suitable for navigational queries, while

“led zeppelin biography” and “led zeppelin downloads” could benefit from models

suitable for informational and transactional queries, respectively.
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7.2.1 Covering Multiple Intents

Given a query q, our ultimate goal is to maximise the diversity of the retrieved

documents with respect to the multiple information needs underlying this query.

For explicit diversification approaches—such as those introduced in Section 3.3—

at the heart of this goal lies an estimation of how well each document satisfies

each of these information needs. For xQuAD, as formalised in Section 4.2.1,

this equates to estimating the probability p(d|q, s) of observing the document d

given the query q and the sub-query s. In this section, we propose a supervised

learning approach to perform this estimation, by predicting the appropriateness

of multiple intent-aware ranking models for each identified sub-query.

In order to formalise our approach, we further derive the probability p(d|q, s),

by marginalising it over a target set of intents I, according to:

p(d|q, s) =
∑

ι∈I

p(ι|s) p(d|q, s, ι), (7.1)

where p(ι|s) is the probability that the sub-query s ∈ Sq conveys the intent ι.

Accordingly, p(d|q, s, ι) denotes the relevance of the document d given the query

q, the sub-query s, and the intent ι. As a consequence, in order to estimate the

probability p(d|q, s), our task becomes two-fold:

1. Infer the probability p(ι|s) of each intent ι given the sub-query s;

2. Learn an intent-aware model p(d|q, s, ι) for each predicted intent ι.

In Section 7.2.2, we propose a classification approach for the first task. For

the second task, as we will show in Section 7.2.3, we resort to learning to rank.

7.2.2 Inferring Sub-Query Intents

In order to infer the probability of multiple intents for a sub-query, we propose

a linear classification approach. In particular, given a sub-query s, our goal is to

estimate the probability of an intent ι ∈ I as:

p(ι|s) = f(w · xs), (7.2)

152



7. Document Coverage

where xs is a feature vector representing the sub-query s, andw is a weight vector,

learned from labelled training data. The function f maps the dot product of the

weight and feature vectors into the desired prediction outcome. In Section 7.2.2.1,

we propose two classification regimes to instantiate this function. Section 7.2.2.2

describes our choices for labelling training data. Lastly, Section 7.2.2.3 describes

the sub-query features used in this classification task.

7.2.2.1 Classification Regimes

We propose two regimes for instantiating the function f in Equation (7.2): model

selection and model merging. The model selection regime performs a hard clas-

sification (Witten & Frank, 2005), by assigning each sub-query a single (i.e., the

most likely) intent. For instance, for a target set of intents I = {ι1, ι2, ι3}, a pos-

sible model selection outcome could be: p(ι1|s) = 1, p(ι2|s) = 0, p(ι3|s) = 0. In

this example, the sub-query s would be associated with its most likely intent, ι1,

and only the ranking model p(d|q, s, ι1) would have an impact on the estimated

relevance of document d to the sub-query s. This regime resembles the selective

ranking approaches described in Section 7.1, except that the most appropriate

model is selected at the sub-query level, as opposed to the query level.

Our second regime, model merging, provides a relaxed alternative to model

selection. In particular, it deploys a soft classification approach, in order to obtain

a full probability distribution over the considered intents (Witten & Frank, 2005).

For the above example, a possible outcome of this classification regime could be

p(ι1|s) = 0.6, p(ι2|s) = 0.3, p(ι3|s) = 0.1. In this case, the relevance of a document

d to the sub-query s would be estimated by a linear combination:

p(d|q, s) = 0.6× p(d|q, s, ι1)

+ 0.3× p(d|q, s, ι2)

+ 0.1× p(d|q, s, ι3).

Different classifiers can be used to implement both the model selection and

model merging regimes. Further details about the specific classifiers that enable

both regimes in our investigation are provided in Section 7.3.1.3.
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7.2.2.2 Classification Labels

In order to determine the ground-truth intent of each sub-query, we investigate

two alternative labelling strategies. The first one, denoted judg, relies on a

manual classification performed by TREC assessors for the sub-topics underlying

a query, as discussed in Section 3.4.1. Nevertheless, the differences between these

sub-queries may go beyond their apparent characteristics. For instance, sub-

queries with the same judged intent could still benefit from leveraging different

ranking models (Craswell & Hawking, 2004). Additionally, judging the intent of

different sub-queries may be costly for large training datasets.

To overcome these limitations, we propose a second labelling strategy, denoted

perf, aimed to automatically label training sub-queries. In particular, given

a training query q with sub-queries Sq, |Sq| = k, and a set of target intents

I, we devise an oracle selection mechanism. According to a target evaluation

metric, such a mechanism always chooses the most effective out of the |I|k possible

selections of the available models to be leveraged by a reference diversification

approach for the k sub-queries underlying q. In our investigation in Section 7.3, we

use ERR-IA@20 (Equation (3.28)) as the target evaluation metric, and xQuAD

as the reference diversification approach. Although estimating this oracle may

be infeasible for large values of k, it can be easily estimated for most practical

settings. For instance, the maximum number of sub-topics per query in the

TREC 2009, 2010, and 2011 Web tracks is k = 8. Moreover, if many more sub-

queries were available for a particular query, less plausible ones could be discarded

without much loss. Indeed, this is precisely what leading web search engines

do when displaying only the top suggestions for a user’s query, as discussed in

Chapter 6. To avoid training xQuAD’s diversification trade-off λ for evaluating

each selection of intents, we instantiate xQuAD with a fixed λ = 1, which equates

to the formulation of IA-Select (Equation (3.23)), as discussed in Section 4.4.

Finally, it is worth noting that the entire labelling process is conducted offline.

7.2.2.3 Classification Features

In order to enable our investigation in Section 7.3, we restrict the space of target

intents to navigational and informational ones, since the TREC test collections
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used in our experiments have query aspects labelled with one of these intents,

as described in Section 3.4.1. Based on this representation of intents, and in-

spired by research on related query analysis tasks, we devise a large feature set

for classifying the intent of each sub-query, including features computed from the

words in the sub-query itself, as well as from the top documents retrieved for

this sub-query. These features are summarised in Table 7.1, and organised into

four groups, as described in the remainder of this section. In total, we devise 838

features, computed as variants of 28 different feature classes, as highlighted in the

penultimate column (the “variants” column) of Table 7.1. For instance, retrieval-

based features are computed using five distinct ranking models (denoted “m” in

the “variants” column), namely, CLM (Equation (2.5)), BM25 (Equation (2.13)),

DPH (Equation (2.31)), PL2 (Equation (2.29)), and LM (Equation (2.25)). Ad-

ditionally, these features are estimated at six rank cutoffs (denoted “c”): 1, 3,

5, 10, 50, and 100. Entity-oriented features are computed for up to four entity

types (denoted “t”): persons, organisations, products, and locations.1 Finally,

distributional features (e.g., number of entities per document) are summarised

with three statistics (denoted “s”): mean, standard deviation, and maximum.

Query Concept Identification (QCI) Navigational information needs typ-

ically seek more clearly defined targets, such as a particular website (Broder,

2002). To quantify the extent to which a given sub-query has a clearly defined

target, we compute the number of distinct entities in the sub-query. Our intu-

ition is that sub-queries mentioning multiple entities are less likely to be navi-

gational. For named entity recognition, we employ an efficient dictionary-based

approach (Santos et al., 2010c), backed up by a dictionary of entity names built

from DBPedia 3.3,2 with additional person names from the 1990 US Census.3

Likewise, we compute the number of ambiguous entries in the ranking, repre-

sented by Wikipedia disambiguation pages, as such pages represent ambiguous

concepts and their associated senses or interpretations (Sanderson, 2008).

1Locations are only used for the EntityCount feature.
2http://dbpedia.org
3http://www.census.gov
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Table 7.1: Sub-query features used for intent detection.

Feature Description Variants Total

Q
C
I DisambCount Number of disamb. pages 5m × 6c 30

DisambSenses Number of disamb. senses 5m × 6c × 3s 90
EntityCount Number of entities in the query 4t 4

Q
L
M

QueryFrequency Number of occurrences 1
ClickEntropy URL-level click entropy 1
HostEntropy Host-level click entropy 1
ResultCount Examined documents per session 3s 3
ClickCount Clicked documents per session 3s 3
ReformCount Reformulations per session 3s 3
SessionDuration Session duration (in sec.) 3s 3

Q
P
P

AvICTF Pre-retrieval predictor 1
AvIDF Pre-retrieval predictor 1
AvPMI Pre-retrieval predictor 1
EnIDF Pre-retrieval predictor 1
Gamma1 Pre-retrieval predictor 1
Gamma2 Pre-retrieval predictor 1
QueryScope Pre-retrieval predictor 1
Terms Pre-retrieval predictor 1
Tokens Pre-retrieval predictor 1
ClarityScore Post-retrieval predictor 5m × 6c 30
QueryDifficulty Post-retrieval predictor 5m × 6c 30
QueryFeedback Post-retrieval predictor 5m × 6c 30

Q
T
C

CategoryCosine Cosine over categories 5m × 6c × 3s 90
CategoryCount Number of categories 5m × 6c 30
CategoryEntropy Category entropy 5m × 6c 30
ConceptCosine Concept cosine 5m × 3t × 6c × 3s 270
ConceptCount Number of concepts 5m × 3t × 6c 90
ConceptEntropy Concept entropy 5m × 3t × 6c 90

Grand total 838

Query Log Mining (QLM) Query logs provide valuable evidence for dis-

criminating between informational and navigational intents. In order to exploit

such evidence, we compute several sub-query features based on the MSN 2006

query log, previously described in Section 6.4.1.1. For instance, we count the raw

frequency of sub-queries, as navigational sub-queries are generally more popular

than informational ones. Likewise, informational sub-queries intuitively require
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more effort from the users while inspecting the retrieved results. We quantify

this intuition in terms of the number of retrieved documents examined and the

time spent in doing so. In addition, we compute the click entropy (Clough et al.,

2009), as a measure of the variability of clicks on the documents retrieved for the

sub-query, as another indicator of an informational intent.

Query Performance Prediction (QPP) The intent of a sub-query may be

reflected not only on the sub-query itself, but also on the documents retrieved

for this sub-query. For instance, a low coherence of the top-retrieved documents

could indicate a sub-query with an informational intent. This, in turn, can re-

flect on the performance of this sub-query when used in a retrieval system. To

exploit this intuition, we build upon a large body of research on query perfor-

mance prediction (Carmel & Yom-Tov, 2010) and leverage both pre- and post-

retrieval predictors as sub-query features. In particular, pre-retrieval predictors—

e.g., AvICTF, AvIDF, AvPMI, EnIDF, Gamma, and QueryScope (He & Ou-

nis, 2006)—are solely based on statistics of the sub-query terms. In turn, post-

retrieval predictors—e.g., ClarityScore (Cronen-Townsend et al., 2002), Query-

Difficulty (Amati et al., 2004), and QueryFeedback (Zhou & Croft, 2007)—also

leverage information from the documents retrieved for the sub-query.

Query Topic Classification (QTC) Informational needs intuitively involve

broader concepts than navigational ones. To quantify this intuition, we devise

several features based on concepts from two taxonomies derived from Wikipedia:

categories and named entities. For the latter, we consider people, organisations,

products, and locations. In particular, we represent the documents retrieved

for each sub-query in the space of the concepts from either taxonomy. From

this representation, we compute various distributional features, considering the

number of concepts per document, the distance between pairs of documents, and

the concept entropy of the entire ranking (Song et al., 2009).
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7.2.3 Learning Intent-aware Ranking Models

In Section 7.2.2.1, we proposed two regimes for inferring an intent distribution

p(ι|s) for each sub-query s. In this section, we propose a learning to rank approach

for producing suitable intent-aware ranking models for each intent of s.

7.2.3.1 Model Learning

In order to produce an intent-aware model p(d|q, s, ι) for each intent ι under-

lying the sub-query s, we once again resort to machine learning. In particular,

we deploy a large set of document features, and leave it to a learning to rank

algorithm to generate ranking models optimised for different intents. To achieve

this goal, each model is learned using the entire feature set, but with a different

training set of queries for each target intent. Given the intents considered in our

investigation (i.e., informational and navigational), we use two intent-targeted

query sets from the TREC 2009 Million Query track (Carterette et al., 2009b).

The first set contains 70 informational queries and the second set contains 70

navigational queries, as judged by TREC assessors. As a learning algorithm, we

use AFS (Metzler, 2007), as described in Section 2.2.3.2. In our experiments, it

is deployed to optimise mean average precision (MAP; Equation (2.50)).

7.2.3.2 Document Features

To enable the generation of effective intent-aware ranking models, we deploy

a total of 60 document features, summarised in Table 7.2. Besides the query-

dependent features previously described in Table 5.3, we include field-based exten-

sions of BM25 and PL2, namely, BM25F (Zaragoza et al., 2004) and PL2F (Mac-

donald et al., 2006). As additional query-independent features, we include URL

features—UD and UW, denoting the number of digits in the URL of the document

and whether this URL comes from Wikipedia, respectively—and link analysis

features—ER (Becchetti et al., 2006), denoting the likelihood that the outlinks of

the document are reciprocated, and the score produced by the Absorbing Model

(AM, Plachouras et al. (2005)), a link analysis algorithm based on absorbing

Markov chains (Kemeny & Snell, 1960). In particular, each feature is computed

for a sample of 5000 documents retrieved by DPH (Equation (2.31)).
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Table 7.2: Document features used for learning intent-aware ranking models.

Feature Description Equation Total

Q
u
er
y
-d
ep

en
d
en
t CLM Full and per-field CLM score (2.5) 5

BM25 Full, per-field, and field-based BM25 score (2.13) 6
LM Full and per-field LM score (2.25) 5
MRF Full MRF score (2.20) 8
PL2 Full, per-field, and field-based PL2 score (2.29) 6
DPH Full, and per-field DPH score (2.31) 5
pBiL Full pBiL score (2.32) 8

Q
u
er
y
-i
n
d
ep

en
d
en
t

UC Presence of host, domain, path, and query string (2.33) 4
UL Length of URL host, path, and query string (2.35) 3
UD Number of digits in the host and domain 2
UW Whether the URL is from Wikipedia 1
HL Ham (non-spam) likelihood (2.42) 1
ID Indegree (2.43) 1
OD Outdegree (2.44) 1
PR Original and transposed PageRank score (2.45) 2
AM Absorbing Model score 1
ER Edge reciprocity score 1

Grand total 60

Table 7.3 lists the top 10 features as they were selected by AFS for each

of our produced intent-aware models. For each feature, we show its attained

performance in terms of MAP when combined with the features selected before

it. From the table, we observe that the top features are generally intuitive. For

instance, DPH (which is used to generate the learning sample) is the top feature

for both models. Likewise, as expected, various URL and link analysis features

(e.g., UW, UL, AM, PR, IL) are ranked high in the navigational model. Besides

producing intuitive intent-aware models, we believe that our data-driven approach

based on a large set of features provides a more robust alternative to hand-picking

features traditionally associated with each intent. Lastly, it is worth noting that,

although the choice of appropriate feature sets naturally depends on how learning

instances (i.e., sub-queries) and labels (i.e., intents) are represented, our approach

is agnostic to these representations. Indeed, while instantiating it for a different

aspect representation or a different set of intents may require devising different

features, no modification to the approach itself would be necessary.
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Table 7.3: Top 10 document features in the informational and navigational models.

Informational Navigational

Feature MAP Feature MAP

1 DPH 0.261 DPH 0.211
2 UD 0.275 MRF (body) 0.227
3 PL2 (title) 0.282 BM25 (title) 0.241
4 BM25 (field-based) 0.291 UW 0.252
5 pBiL (body) 0.296 CLM 0.259
6 pBiL (anchor) 0.298 UL 0.263
7 ER 0.300 AM 0.267
8 LM (title) 0.301 PR (transposed) 0.269
9 CLM (body) 0.302 IL 0.272
10 CLM 0.303 pBiL (body) 0.274

7.3 Experimental Evaluation

In this section, we address the third claim from our thesis statement:

“By maximising the relevance of the retrieved documents to multiple

sub-queries, a high coverage of these sub-queries can be achieved.”

To address this claim, we evaluate the effectiveness of our intent-aware ap-

proach to improve the coverage estimates leveraged by the xQuAD framework.4

In particular, we aim to answer the following research questions:

Q1. Can we improve diversification performance with ourmodel selection regime?

Q2. Can we improve diversification performance with ourmodel merging regime?

In the following, Section 7.3.1 details the experimental setup that supports the

investigation of these questions, including the test collections, the diversification

baselines, and the classification approaches used by the two regimes, as well as

the procedure carried out for training and evaluating all approaches. The results

of this investigation are discussed in Section 7.3.2.

4While the estimated relevance of a document with respect to a sub-query also impacts
xQuAD’s estimation of novelty, we leave the analysis of this component to Chapter 8.
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7.3.1 Experimental Setup

In this section, we describe the specific setup that supports our investigation in

Section 7.3.2, as an extension of the general methodology described in Section 5.1.

7.3.1.1 Test Collections

Our analysis is based on the WT09 and WT10 test collections, described in

Table 5.1, comprising 49 and 48 queries from the diversity task of the TREC

2009 and 2010 Web tracks (Clarke et al., 2009a, 2010), respectively. For each of

these 97 queries, we consider both the TREC Web track sub-topics (WT) as well

as query suggestions provided by Bing (BS) as alternative sub-query sets. Both

the WT and BS sub-query sets are described in Section 5.2.1.3. In particular,

as discussed in Section 7.2.2.2, the WT sub-query set provides judged intent

labels for each sub-query, which can be contrasted to our performance-oriented

labelling of training data. Finally, as a document corpus, we consider the category

B portion of ClueWeb09, as described in Section 5.1.1.

7.3.1.2 Diversification Baselines

As diversification baselines for the experiments in Section 7.3.2, we consider two

deployments of our xQuAD framework. Each of these deployments uniformly ap-

plies one of the informational (Uni(inf)) or the navigational (Uni(nav)) models

described in Section 7.2.3.1 for all sub-queries, regardless of the intent of each sub-

query. Using either the Uni(inf) or the Uni(nav) model, xQuAD is deployed

to diversify the top 1000 documents retrieved by the DPH ranking model (Equa-

tion (2.31)), which serves itself as a non-diversification, relevance-only baseline.

7.3.1.3 Classification Approaches

In Section 7.2.2, we introduced two regimes for exploiting the inferred intents of

different sub-queries: model selection and model merging. The model selection

regime builds upon a hard classification of intents. To enable a thorough eval-

uation, we consider variants of this regime of the form Sel(c,l), where c and

l denote a classifier and a set of classification training labels, respectively. In
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particular, c can be one of three classifiers: an oracle (ora), which simulates a

perfect classification of the intent of each sub-query, a support vector machine

(svm) classifier with a polynomial kernel (Platt, 1998), and a multinomial lo-

gistic regression (log) with a ridge estimator (le Cessie & van Houwelingen,

1992). Regarding the classification labels l, as described in Section 7.2.2.2, we

consider both human judgements (judg) as well as the selection with best di-

versification performance (perf) on the training data. In all cases, the single

most likely intent is chosen for each sub-query, in a typical selective fashion. To

enable our second regime, model merging (Mrg(c,l)), we fit the output of the

SVM classifier to a logistic regression model, hence obtaining a full probability

distribution over intents for each aspect underlying the query (Witten & Frank,

2005). To cope with the high dimensionality of our sub-query feature set, clas-

sification is performed after a dimensionality reduction via principal component

analysis (Pearson, 1901). All classification tasks are performed using Weka.5

7.3.1.4 Training and Evaluation Procedure

Our evaluation ensures a complete separation between training and test settings.

In particular, we use the WT09 and WT10 queries interchangeably, in a cross-

year evaluation fashion (i.e., we train on WT09 and test on WT10, and vice

versa), in order to train the classification approaches described in Section 7.3.1.3.

As described in Section 5.1.2, diversification performance is reported in terms

of ERR-IA (Equation (3.28)) and α-nDCG (Equation (3.29)), with the symbols

defined in that section denoting significance as verified by a paired t-test.

7.3.2 Experimental Results

In the remainder of this section, we evaluate our intent-aware diversification ap-

proach, in order to answer the two research questions stated in Section 7.3. In

particular, Section 7.3.2.1 evaluates our model selection regime, whereas Sec-

tion 7.3.2.2 evaluates our model merging regime.

5http://www.cs.waikato.ac.nz/ml/weka/
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7.3.2.1 Intent-aware Model Selection

In order to address Q1 from Section 7.3, we assess the effectiveness of our model

selection regime, introduced in Section 7.2.2.1, in contrast to the uniform regimes

described in Section 7.3.1.2. To this end, Table 7.4 compares the diversification

performance of xQuAD using the aforementioned regimes with the WT and BS

sub-queries. For all deployments of xQuAD, a first significance symbol denotes

a significant difference (or lack thereof) compared to the DPH baseline. For

deployments using our model selection regime (Sel(•,•)), two additional symbols

denote significance with respect to the informational (Uni(inf)) and navigational

(Uni(nav)) uniform regimes, respectively. The best variant for each classification

label (i.e., judg and perf) is underlined. The best overall variant is in bold.

Table 7.4: Diversification performance of xQuAD using informational (inf) or navi-
gational (nav) models uniformly (Uni) or selectively (Sel).

Sq p(d|q, s)
ERR-IA α-nDCG

@20 − = + @20 − = +

DPH 0.178 0.282

+xQuAD WT Uni(inf) 0.215△ 35 9 53 0.331N 31 9 57
+xQuAD WT Uni(nav) 0.247N 32 6 59 0.358N 29 6 62

+xQuAD WT Sel(log,judg) 0.241N◦◦ 31 6 60 0.354N◦◦ 31 6 60
+xQuAD WT Sel(svm,judg) 0.244N◦◦ 32 6 59 0.357N◦◦ 30 6 61
+xQuAD WT Sel(ora,judg) 0.244N△◦ 34 7 56 0.362N△◦ 31 7 59

+xQuAD WT Sel(log,perf) 0.269NN△ 26 6 65 0.382NN△ 27 6 64
+xQuAD WT Sel(svm,perf) 0.265NN◦ 26 6 65 0.380NN△ 27 6 64
+xQuAD WT Sel(ora,perf) 0.304NNN 21 5 71 0.425NNN 22 5 70

+xQuAD BS Uni(inf) 0.202◦ 34 12 51 0.308◦ 37 11 49
+xQuAD BS Uni(nav) 0.235N 27 7 63 0.343N 28 7 62

+xQuAD BS Sel(log,perf) 0.240N△◦ 27 6 64 0.354NN◦ 27 6 64
+xQuAD BS Sel(svm,perf) 0.241NN◦ 25 6 66 0.355NN◦ 29 6 62
+xQuAD BS Sel(ora,perf) 0.292NNN 20 6 71 0.414NNN 18 6 73

From Table 7.4, we first note that Uni(inf) and Uni(nav) provide a strong

baseline performance, with significant gains compared to the non-diversified DPH

baseline in almost every setting. To see whether our model selection regime can
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improve upon these strong baselines, we first look at the performance of this

regime using human-judged intents as classification labels, i.e., the Sel(•,judg)

variants. As observed from Table 7.4, no instance of Sel(•,judg) can signif-

icantly outperform both Uni(inf) and Uni(nav). This is the case even for

Sel(ora,judg), which deploys an oracle classifier. This observation demon-

strates that human judgements provide a suboptimal labelling criterion. As

discussed in Section 7.2.2.2, this further confirms our intuition that the appro-

priateness of an intent-aware retrieval model for a given sub-query cannot be

effectively judged purely on the basis of the apparent characteristics of this sub-

query. On the other hand, the variants that use performance-oriented labels, i.e.,

Sel(•,perf), bring consistent and substantially larger improvements. Indeed,

our model selection regime using both logistic regression (i.e., Sel(log,perf))

and support vector machines (i.e., Sel(svm,perf)) always improves compared

to a uniform regime, often significantly. For instance, considering the WT sub-

queries, compared to the stronger Uni(nav) baseline, improvements for the

Sel(log,perf) variant are as high as 8.9% (0.269 vs. 0.247) in terms of ERR-

IA@20, and 6.7% (0.382 vs. 0.358) in terms of α-nDCG@20. Similar improve-

ments for the Sel(svm,perf) variant are also consistently observed. When the

BS sub-query set is considered, although the observed improvements are less pro-

nounced, they are consistent and can still be significant.

Overall, the results in this section answer research question Q1, by showing

that diversification performance can be significantly improved by our model se-

lection regime, which chooses the most appropriate intent-aware ranking model

for each sub-query. The variants of this regime using performance-oriented labels

(i.e., the Sel(•,perf) variants) are particularly effective, significantly improving

upon strongly performing uniform regimes trained on informational and navi-

gational queries. Furthermore, the consistency of our observations for multiple

evaluation metrics attests the robustness of the model selection regime. In the

next section, we will contrast this regime against the model merging regime.
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7.3.2.2 Intent-aware Model Merging

After demonstrating the effectiveness of selecting a single ranking model for each

sub-query with our model selection regime, in this experiment, we address re-

search question Q2 from Section 7.3, by investigating whether deploying our

model merging regime could bring further improvements. As discussed in Sec-

tion 7.3.1.3, both regimes are based on the predictions given by an SVM clas-

sifier. In particular, the model merging regime is enabled by fitting the SVM

predictions to a logistic regression model. For this particular investigation, we

focus our attention to the WT sub-queries, as they allow for assessing the ef-

fectiveness of our merging regime across the two proposed training labelling al-

ternatives, judg and perf. The results based on BS sub-queries using perf

labels lead to identical conclusions and are hence omitted for brevity. In particu-

lar, Table 7.5 shows the diversification performance of xQuAD under the model

merging regime (Mrg(svm,perf)), in contrast to its performance under the

model selection regime (Sel(svm,perf)). Once again, a first significance sym-

bol for both regimes denotes a significant difference (or lack thereof) compared

to DPH. A second symbol for Mrg(svm,perf) denotes significance compared to

Sel(svm,perf), which serves as a further baseline for this investigation.

Table 7.5: Diversification performance of xQuAD using informational (inf) or navi-
gational (nav) models selectively (Sel) or through merging (Mrg).

Sq p(d|q, s)
ERR-IA α-nDCG

@20 − = + @20 − = +

DPH 0.178 0.282

+xQuAD WT Sel(svm,judg) 0.244N 32 6 59 0.357N 30 6 61
+xQuAD WT Mrg(svm,judg) 0.255N◦ 29 6 62 0.368N◦ 28 6 63

+xQuAD WT Sel(svm,perf) 0.265N 26 6 65 0.380N 27 6 64
+xQuAD WT Mrg(svm,perf) 0.268N◦ 26 6 65 0.381N◦ 27 6 64

+xQuAD BS Sel(svm,perf) 0.241N 25 6 66 0.355N 29 6 62
+xQuAD BS Mrg(svm,perf) 0.237N◦ 24 6 67 0.352N◦ 27 6 64

From Table 7.5, we observe that the model merging regime can improve upon

the model selection regime in most cases. In particular, when using judg labels,

165



7. Document Coverage

we observe improvements of 4.3% (0.255 vs. 0.244) in terms of ERR-IA@20, and

3.1% (0.368 vs. 0.357) in terms of α-nDCG@20. With perf labels, lower and in-

consistent differences are observed, with the merging regime performing slightly

better for the WT sub-queries and the selection regime performing better for

BS sub-queries. Nevertheless, the observed differences between the two regimes

are not statistically significant. These results answer research question Q2, by

showing that merging multiple intent-aware ranking models can be at least as

effective as selecting the single most effective model. Moreover, we believe that

the merging regime can offer additional benefits for an intent-aware diversifica-

tion. For one, it can help attenuate the harm of selecting the wrong model for

a particular sub-query. Additionally, it provides a natural upper-bound for the

selection regime. Indeed, model selection is a special instance of model merging,

with a mutually exclusive probability distribution of intents p(ι|s).

7.4 Summary

In this chapter, we have addressed the third claim of our thesis statement, by

showing that an improved estimate of the relevance of a document with respect

to each sub-query leads to an improved coverage of this sub-query. In turn,

an improved coverage of multiple sub-queries leads to an improved diversifica-

tion performance, as demonstrated using our xQuAD framework, introduced in

Chapter 4. As a means to improve coverage estimates, we built upon previous

research on query intent detection for web search. In particular, we proposed to

leverage ranking models that estimate the relevance of a document with respect

to each sub-query by taking into account the intent of this sub-query.

In Section 7.1, we provided background on the categorisation of intents in

web search, and described ranking approaches from the literature that success-

fully exploited intent information in order to improve search effectiveness. In

Section 7.2, we proposed two classification regimes for leveraging intent-aware

ranking models according to the predicted intent of each sub-query: model selec-

tion, which applies a single model given the most likely intent of each sub-query,

and model merging, which combines relevance estimates produced by multiple

models proportionally to the likelihood of each intent for a particular sub-query.

166



7. Document Coverage

The model selection and model merging regimes were thoroughly evaluated

in Section 7.3. In particular, in Section 7.3.2.1, our experiments showed that the

model selection regime, choosing between an informational and a navigational

ranking models on a per-sub-query basis, significantly outperforms each of these

models when applied uniformly for all sub-queries, regardless of their predicted

intent. In addition, in Section 7.3.2.2, we showed that the model merging regime,

which mixes the scores produced by the informational and the navigational mod-

els, performs at least as effectively as the model selection regime.

Arguably, refined relevance estimates with respect to a sub-query could pro-

vide not only an improved estimate of the coverage of a document that satisfies

this sub-query, but also an improved estimate of the novelty of any further doc-

ument satisfying this sub-query, given the previously ranked documents. Hence,

it is not clear whether the gains in diversification performance observed in this

chapter are merely due to an improved estimation of coverage, or whether novelty

also plays a role. Investigating this question is the purpose of the next chapter.
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Document Novelty

The previous chapter showed that an improved diversification can be achieved

by improving the estimation of the relevance of each retrieved document with

respect to each identified sub-query. For hybrid diversification approaches, such

as xQuAD, this estimation can be leveraged to compute both the coverage and

the novelty of a document. Nevertheless, it is not clear how coverage and novelty

interplay, or what the role of novelty is when diversifying the search results.

In this chapter, we challenge the common view of novelty as an intuitive diver-

sification strategy, and thoroughly assess the impact of this strategy in contrast

to and in combination with coverage. To this end, Section 8.1 briefly recaps on

our definitions of aspect representation and diversification strategy, as introduced

in Section 3.3. Section 8.2 proposes a unifying methodology to enable the direct

comparison of existing diversification approaches across these two dimensions.

Following the proposed methodology, in Section 8.3, we thoroughly investigate

the role of novelty as a diversification strategy, through both an empirical evalu-

ation as well as through simulations. Our results show that existing approaches

based solely on novelty cannot consistently improve upon a non-diversified base-

line ranking. Moreover, when deployed as an additional component by hybrid

approaches, we show that novelty does not bring significant improvements, while

adding considerable efficiency overheads. Finally, through a comprehensive anal-

ysis with simulated rankings of various quality, we demonstrate that, although

inherently limited by the performance of the initial ranking, novelty plays a role

at breaking the tie between documents with similar coverage scores.
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8.1 Diversification Dimensions

The most prominent diversification approaches in the literature can be organ-

ised according to two orthogonal dimensions, as proposed in Section 3.3: aspect

representation and diversification strategy. The aspect representation determines

whether the possible information needs underlying a query are represented ex-

plicitly, based upon properties of the query itself (e.g., query reformulations or

categories), or implicitly, based upon properties of the retrieved documents (e.g.,

the terms comprised by each document). In turn, the diversification strategy

determines how a particular aspect representation is leveraged to diversify the

retrieved documents. In particular, novelty-based approaches achieve this goal

by comparing the retrieved documents to one another, in order to promote those

that carry new information. In contrast, coverage-based approaches directly esti-

mate how well each document covers the identified query aspects. Finally, hybrid

approaches combine the goals of coverage and novelty into a unified strategy.

Unfortunately, the prevalence of different aspect representations has precluded

a direct comparison between coverage and novelty. As a result, it remains unclear

whether the striking difference in performance commonly observed between cover-

age and novelty-based approaches is due to their underlying aspect representation

(explicit vs. implicit) or to their diversification strategy (coverage vs. novelty).

It is also unclear how much novelty actually contributes to the effectiveness of

hybrid approaches, while penalising their efficiency. Although intuitive, novelty

has yet to be shown effective for diversifying web search results. In particular,

existing evidence of the effectiveness of novelty as a diversification strategy is

based on either qualitative studies (Carbonell & Goldstein, 1998) or on curated

corpora, such as Wikipedia (Rafiei et al., 2010) or newswire (Wang & Zhu, 2009).

To allow a thorough investigation of the role of novelty for search result di-

versification, in the next section, we adapt two existing novelty-based approaches

to leverage explicit query aspect representations. Likewise, we produce coverage-

only versions of two approaches that deploy a hybrid of coverage and novelty,

including our xQuAD framework. By doing so, we bridge the gap between the

diversification approaches in the literature and enable their evaluation in terms

of the aspect representation and the diversification strategy dimensions.
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8.2 Bridging the Gap

Although having the same goal of producing a diverse ranking, coverage and

novelty-based approaches pursue this goal in rather distinct manners. In partic-

ular, purely coverage-based approaches ignore the set of already selected docu-

ments when scoring a given document. In turn, purely novelty-based approaches

ignore the possible information needs underlying a query when comparing the con-

tents of the retrieved documents. In practice, the distinct aspect representations

leveraged by the existing approaches renders coverage and novelty not directly

comparable. In this section, we describe our methodology to bridge the gap be-

tween these approaches and enable their direct comparison. Besides evaluating

novelty in contrast to and in combination with coverage, our goal is to isolate

these strategies from their underlying aspect representation, so as to provide a

controlled setting for our investigation. To this end, in Section 8.2.1, we propose

adaptations of two implicit novelty-based diversification approaches to leverage

explicit aspect representations. Additionally, in Section 8.2.2, we deconstruct two

explicit hybrid approaches to deploy a coverage-based strategy only.

8.2.1 Explicit Novelty-based Diversification

Existing novelty-based diversification approaches rely on an implicit aspect rep-

resentation to estimate the diversity of a document with respect to the other

retrieved documents (e.g., Carbonell & Goldstein, 1998; Zhai et al., 2003; Wang

& Zhu, 2009). As a result, these approaches compare documents purely on the

basis of their content, rather than based on how these documents satisfy the pos-

sible information needs underlying the query. Moreover, the resulting document

representation (e.g., in the term-frequency space of a given corpus) is usually

high-dimensional, which negatively impacts both the effectiveness and the effi-

ciency of these approaches (Witten & Frank, 2005, Section 7.1). To counter these

limitations and—more importantly for the investigation in this chapter—to en-

able a direct comparison of existing diversification approaches across both the

aspect representation and the diversification strategy dimensions, we propose to

leverage explicit aspect representations for estimating novelty. Besides providing

a more expressive account of the relationship between documents and the aspects
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they cover, this representation also has a considerable impact on efficiency, since

the feature space is reduced from the size of the corpus vocabulary (millions) to

the number of aspects underlying a query (around a dozen).

Given a query q with a set of aspects A, with |A| = k, we explicitly represent

each retrieved document d ∈ Rq as a k-dimensional vector d over the aspects A.

In particular, the i-th dimension of the vector d is defined as:

di = f(d, ai), (8.1)

where the function f estimates how well the document d satisfies the aspect ai ∈ A.

As discussed in Section 5.2.1.3, different measures of the document-aspect associ-

ation can be used, depending on how the aspects underlying the query are identi-

fied, e.g., based on reformulations mined from a query log or on categories derived

from a classification taxonomy. Regardless of the particular mechanism used to

identify the aspects of a query, an explicit representation of documents with re-

spect to these aspects can be seamlessly integrated into existing novelty-based

diversification approaches. In particular, to enable our analysis in Section 8.3,

we derive explicit versions of two well-known novelty-based approaches in the

literature, namely, Maximal Marginal Relevance (MMR; Carbonell & Goldstein,

1998) and Mean-Variance Analysis (MVA; Wang & Zhu, 2009).

Both MMR and MVA deploy the greedy diversification approach formalised

in Algorithm 3.1. As discussed in Section 3.3.1, given an initial ranking Rq for

the query q, these approaches iteratively build a diverse re-ranking Dq. To this

end, at each iteration, MMR (Equation (3.8)) instantiates the objective function

f(q, d,Dq) in Algorithm 3.1 by estimating the similarity between each candidate

document d ∈ Rq \ Dq and its most dissimilar document dj ∈ Dq. Likewise, we

devise xMMR (Explicit Maximal Marginal Relevance) to estimate novelty over

explicit representations of the retrieved documents, according to:

fxMMR(q, d,Dq) = λ f1(q, d)− (1− λ) max
dj∈Dq

f2(d,dj), (8.2)

where f1(q, d) and f2(d,dj) estimate the relevance of d with respect to the query

q and its similarity to the documents already in Dq, respectively. A balance be-
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tween relevance (i.e., f1(q, d)) and redundancy (i.e., maxdj
f2(d,dj), the opposite

of novelty) is achieved through an appropriate setting of λ, as will be described in

Section 8.3.1.3. In our experiments, f1(q, d) is estimated by a standard retrieval

model. In order to estimate f2(d,dj), we compute the cosine between explicit

representations of d and dj over the set of aspects A.

Analogously to MMR, MVA (Equation (3.11)) instantiates the objective func-

tion f(q, d,Dq) in Algorithm 3.1 by trading off relevance and redundancy. How-

ever, instead of computing the similarity between documents, MVA estimates the

redundancy of a document based on how its relevance scores correlate to those

of the other documents. Accordingly, we devise xMVA (Explicit Mean-Variance

Analysis) to estimate these correlations based on how well the documents sat-

isfy the explicitly represented query aspects. The objective function of xMVA is

defined according to the following equation:

fxMVA(q, d,Dq) = µd − bwi σ
2
d − 2 b σd

∑

dj∈Dq

wj σdj ρd,dj
, (8.3)

where µd and σ2
d are the mean and variance of the relevance estimates associated

to document d, respectively, while the summation component estimates the re-

dundancy of this document given the documents in Dq. In particular, documents

are compared in terms of their correlation ρd,dj
. A balance between relevance,

variance, and redundancy is achieved through the parameter b. Following Wang

& Zhu (2009), µd is estimated by a standard retrieval model, with relevance scores

normalised to yield a probability distribution, while σd is set as a constant for

all documents. In our experiments, both σ and b are set through training, as

will be described in Section 8.3.1.3. Finally, ρd,dj
is estimated as the Pearson’s

correlation between explicit representations of d and dj over the aspects A.

8.2.2 Explicit Coverage-based Diversification

Besides making coverage and novelty directly comparable by introducing ex-

plicit novelty-based diversification approaches (i.e., xMMR and xMVA), we want

to be able to assess the effectiveness of novelty when combined with coverage.

To this end, we deconstruct two hybrid diversification approaches, namely, IA-
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Select (Agrawal et al., 2009) and our xQuAD framework, introduced in Chapter 4.

Our ultimate goal is to produce directly comparable versions of these approaches,

which should deploy coverage as their only strategy.

IA-Select (Equation (3.23)) was originally proposed to diversify the retrieved

documents according to a predefined taxonomy, such as the one provided by the

Open Directory Project (ODP). As a measure of novelty, IA-Select estimates

the marginal utility f(ai|q,Dq) of each query aspect ai ∈ A, represented by a

taxonomy category, given the query q and the documents already in Dq. The

function f(ai|q,Dq) incorporates both the relative importance of the aspect ai in

light of all aspects A, as well as the utility of ai, in light of the aspects already

covered by the documents in Dq. In essence, this function emulates a novelty

component, by estimating how much the already selected documents satisfy each

aspect of the query. To produce a coverage-only version of IA-Select, we assume

that the query aspects do not lose their utility even if they are already covered by

the documents in Dq. In practice, this is achieved simply by dropping the term

Dq in the marginal utility f(ai|q,Dq), according to:

fIA-Select∗(q, d,Dq) =
∑

ai∈A

f(ai|q) f(d|q, ai), (8.4)

where f(ai|q) denotes the relative importance of the aspect ai given the query q,

and f(d|q, ai) denotes the extent to which this aspect is covered by the document

d. To emphasise its difference from the standard formulation of IA-Select in

Equation (3.23), we refer to this coverage-only version as IA-Select∗.

Different from IA-Select, xQuAD (Equation (4.1)) implements the objective

function f(q, d,Dq) in Algorithm 3.1 as a mixture of two probabilities: the proba-

bility p(d|q) of the document d being relevant, and the probability p(d, D̄q|q) of d

being diverse. The novelty component of xQuAD can be exposed by further ex-

panding the latter probability, as demonstrated in Equations (4.2) through (4.6).

In particular, xQuAD estimates the novelty of any document satisfying a given

aspect ai ∈ A, represented as a sub-query, as the probability p(D̄q|q, ai) that none

of the already selected documents in Dq is relevant to this aspect. Analogously to

our adaptation of IA-Select, we introduce a coverage-only version of xQuAD by

assuming that all query aspects retain their utility, regardless of the documents
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previously selected in Dq. In practice, this is achieved simply by dropping the

probability of novelty p(D̄q|q, ai) from Equation (4.7), which produces xQuAD∗:

fxQuAD∗(q, d,Dq) = (1− λ) p(d|q)

+ λ
∑

ai∈A

p(ai|q) p(d|q, ai), (8.5)

where, similarly to IA-Select∗, p(ai|q) and p(d|q, ai) denote the relative impor-

tance of the aspect ai and the extent to which this aspect is covered by d, re-

spectively. Note that, without a novelty component, the coverage-only objective

functions of both IA-Select∗ (Equation (8.4)) and xQuAD∗ (Equation (8.5)) no

longer require an iterative, greedy diversification strategy. In practice, as dis-

cussed in Section 3.3.2, in order to diversify the top τ documents from a ranking

of nq documents, we reduce the number of required evaluations of the objective

function f(q, d,Dq) in Algorithm 3.1 from O(τnq) to O(nq).

In the next section, we assess the role of novelty as a diversification strategy

for search result diversification. In particular, by contrasting the novelty-based

diversification approaches introduced in Section 8.2.1 to the coverage-based ap-

proaches introduced in Section 8.2.2, we test novelty in comparison to coverage.

By contrasting the coverage-based approaches introduced in Section 8.2.2 to their

original hybrid formulation, we test novelty in combination with coverage.

8.3 Experimental Evaluation

In this section, we address the fourth claim from our thesis statement:

“By estimating the relevance of the retrieved documents to already

well covered sub-queries, a high novelty can be attained.”

To address this claim, we investigate the role of novelty when deployed in

isolation, as well as when combined with coverage in a hybrid strategy, by thor-

oughly evaluating all the approaches introduced in Section 8.2 under controlled

settings. In particular, we aim to answer the following research questions:

Q1. Is novelty an effective diversification strategy?
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Q2. How does novelty perform in comparison to coverage?

Q3. How does novelty perform in combination with coverage?

Q4. What is the role of novelty as a diversification strategy?

We address the first three research questions in Section 8.3.2. To answer Q1,

we fix the diversification strategy to novelty, in order to evaluate the impact of

different aspect representations. Conversely, to tackle Q2 and Q3, we measure

the effectiveness of novelty in comparison to and in combination with coverage,

respectively, across multiple aspect representations, which are held fixed. Finally,

to provide further insights into the role of novelty as a diversification strategy,

in Section 8.3.3, we address Q4, by thoroughly evaluating this strategy with

simulated rankings of various quality. In the remainder of this section, we describe

the experimental setup that supports the investigation of these questions.

8.3.1 Experimental Setup

In this section, we describe the setup that supports our investigation. In partic-

ular, we describe the test collections, the retrieval approaches, and the training

procedure carried out for the experiments in Sections 8.3.2 and 8.3.3.

8.3.1.1 Test Collections

Our experiments are based on the WT09 and WT10 test collections. As described

in Table 5.1, these test collections comprise 49 and 48 queries from the diversity

task of the TREC 2009 and 2010 Web track (Clarke et al., 2009a, 2010), re-

spectively. As a document corpus, we use the category B portion of ClueWeb09,

described in Section 5.1.1. We index this corpus with Terrier (Macdonald et al.,

2012a), after applying Porter’s stemmer and removing stopwords.

8.3.1.2 Retrieval Approaches

To verify the consistency of our results, we experiment with several retrieval

approaches and aspect representations. Firstly, as an adhoc retrieval approach,

which does not perform diversification, we use the DPH model (Equation (2.31))
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from the divergence from randomness framework. As discussed in Section 2.2.1.3,

DPH is a parameter-free probabilistic model, and hence requires no training.

On top of DPH, we experiment with diversification approaches representative

of the novelty and coverage strategies. In particular, as novelty-based approaches,

we use MMR (Equation (3.8)) and MVA (Equation (3.11)), as well as their explicit

variants, xMMR (Equation (8.2)) and xMVA (Equation (8.3)), introduced in Sec-

tion 8.2.1. As coverage-based approaches, we consider our variants IA-Select∗

(Equation (8.4)) and xQuAD∗ (Equation (8.5)), from Section 8.2.2. Their stan-

dard versions, namely, IA-Select (Equation (3.23)) and xQuAD (Equation (4.7)),

are used as hybrid approaches. To cope with the quadratic pairwise comparisons

performed by novelty-based approaches (Gil-Costa, Santos, Macdonald & Ounis,

2011, 2013), both novelty, coverage, and hybrid approaches are deployed to diver-

sify the top 100 documents retrieved by DPH. To analyse the impact of different

aspect representations, in addition to a traditional implicit representation of doc-

uments in the space of the terms in the ClueWeb09 B corpus, we consider three

explicit aspect representations. As described in Section 5.2.1.3, these representa-

tions include ODP categories (DZ), Bing suggestions (BS), and the official TREC

Web track sub-topics (WT). The availability of relevance assessments for the WT

aspects enables the evaluation of coverage and novelty using diversity estimates

of various simulated quality, as we will show in Section 8.3.3.

8.3.1.3 Training and Evaluation Procedure

Most of the retrieval approaches considered in our investigation require some pa-

rameter tuning. The exceptions are DPH, IA-Select, and IA-Select∗, which are

parameter-free. In order to train the parameters of the other approaches (i.e.,

MMR and xMMR’s λ, MVA and xMVA’s b and σ, and xQuAD∗ and xQuAD’s λ),

we use the WT09 and WT10 queries as training and test sets, in a cross-year

fashion—i.e., we train on WT09 and test on WT10, and vice versa. All param-

eters are optimised through simulated annealing (Kirkpatrick et al., 1983), in

order to maximise ERR-IA@100 on the training queries. Accordingly, our results

are reported on the union of the test queries from WT09 and WT10, using the

evaluation metrics and significance symbols described in Section 5.2.1.2.
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8.3.2 Experimental Results

In this section, we address the first three research questions stated in Section 8.3.

In particular, Section 8.3.2.1 addresses Q1, in order to assess the effectiveness

of novelty-based approaches across implicit and explicit aspect representations.

Sections 8.3.2.2 and 8.3.2.3 address Q2 and Q3, by investigating how novelty

performs in comparison to and in combination with coverage, respectively.

8.3.2.1 Implicit vs. Explicit Novelty

In order to answer research question Q1, we assess the effectiveness of novelty-

based diversification approaches based on implicit and explicit aspect representa-

tions. In particular, we aim to investigate not only whether existing novelty-based

approaches can be improved with a more refined aspect representation, but also

whether any of these representations can improve over a standard, non-diversified

baseline. Table 8.1 shows the diversification performances of MMR and MVA (as

implicit novelty-based approaches), as well as their explicit counterparts (xMMR

and xMVA, respectively) in terms of ERR-IA and α-nDCG. The latter approaches

are deployed with the three explicit representations described in Section 5.2.1.3:

ODP categories (DZ), Bing suggestions (BS), and the official TREC Web track

sub-topics (WT). The performance of DPH is provided as a non-diversified base-

line. Significance is verified using a paired t-test, as described in Section 5.1.2.

In particular, for each diversification approach, a first significance symbol de-

notes a statistically significant difference (or lack thereof) compared to DPH.

For explicit novelty-based approaches (i.e., xMMR and xMVA), a second symbol

denotes significance with respect to their implicit counterpart (i.e., MMR and

MVA, respectively). The best performing approach in each group is underlined,

whereas the best overall approach is highlighted in bold.

From Table 8.1, we first observe that neither MMR nor MVA can consistently

improve upon the non-diversified ranking produced by DPH. Indeed, as demon-

strated by the number of affected queries, the positive impact observed for some

queries is offset by the negative impact on other queries. These results corrob-

orate our observations in Section 8.1, regarding the lack of empirical validation

of novelty-based approaches for diversifying web search results in the literature.
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Table 8.1: Diversification performance of novelty-based approaches with implicit (for
MMR and MVA) and explicit (for xMMR and xMVA) aspect representations.

Sq
ERR-IA α-nDCG

@20 − = + @20 − = +

DPH 0.169 0.270

+MMR 0.166◦ 22 47 28 0.270◦ 22 47 28
+xMMR DZ 0.167◦◦ 17 69 11 0.269◦◦ 17 69 11
+xMMR BS 0.169◦◦ 24 49 24 0.272◦◦ 22 50 25
+xMMR WT 0.180◦△ 33 20 44 0.290△△ 36 19 42

+MVA 0.160▽ 35 39 23 0.250H 39 37 21
+xMVA DZ 0.169◦△ 24 55 18 0.272◦N 25 54 18
+xMVA BS 0.150◦◦ 46 19 32 0.235▽◦ 45 19 33
+xMVA WT 0.170◦◦ 39 14 44 0.274◦◦ 44 13 40

With respect to the different aspect representations, we observe that both xMMR

and xMVA can significantly outperform their implicit counterparts in some set-

tings, particularly when WT aspects are used for MMR, and DZ aspects are used

for MVA. Nevertheless, xMMR and xMVA still cannot significantly improve upon

DPH, which suggests that an explicit representation per se cannot guarantee an

effective performance for novelty-based approaches. Recalling research question

Q1, on the effectiveness of novelty as a diversification strategy, these results show

that this strategy is generally ineffective when considered in isolation.

8.3.2.2 Explicit Coverage vs. Explicit Novelty

The observations in Section 8.3.2.1 suggest an inherent limitation of novelty as a

diversification strategy, regardless of any particular aspect representation. To ad-

dress Q2, we contrast the effectiveness of novelty and coverage-based approaches

using the same representations. To this end, in Table 8.2, we compare the diver-

sification performance of xMMR and xMVA (novelty-based) to that of IA-Select∗

and xQuAD∗ (coverage-based) across the DZ, BS, and WT explicit aspect rep-

resentations. As in Table 8.1, a first significance symbol denotes significance

compared to the DPH baseline. For IA-Select∗ and xQuAD∗, two additional

symbols denote significant differences from xMMR and xMVA, respectively.
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Table 8.2: Diversification performance of novelty (xMMR and xMVA) and coverage-
based (IA-Select∗ and xQuAD∗) approaches for various explicit aspect representations.

Sq
ERR-IA α-nDCG

@20 − = + @20 − = +

DPH 0.169 0.270

+xMMR DZ 0.167◦ 17 69 11 0.269◦ 17 69 11
+xMVA DZ 0.169◦ 24 55 18 0.272◦ 25 54 18
+IA-Select∗ DZ 0.169◦◦◦ 40 14 43 0.263◦◦◦ 43 15 39
+xQuAD∗ DZ 0.197△△△ 35 13 49 0.297◦◦◦ 37 14 46

+xMMR BS 0.169◦ 24 49 24 0.272◦ 22 50 25
+xMVA BS 0.150◦ 46 19 32 0.235▽ 45 19 33
+IA-Select∗ BS 0.201△△N 41 14 42 0.299◦◦N 40 14 43
+xQuAD∗ BS 0.205NNN 40 13 44 0.305△△N 36 13 48

+xMMR WT 0.180◦ 33 20 44 0.290△ 36 19 42
+xMVA WT 0.170◦ 39 14 44 0.274◦ 44 13 40
+IA-Select∗ WT 0.231NNN 36 10 51 0.344NNN 31 10 56
+xQuAD∗ WT 0.227NNN 32 10 55 0.340NNN 28 10 59

From Table 8.2, we observe that both coverage-based approaches substantially

outperform the novelty-based ones in almost all settings, often significantly. The

only exception is IA-Select∗ using the DZ aspect representation, which slightly

underperforms, yet not significantly. As previously observed in Section 5.2.2.3,

IA-Select (and, by extension, IA-Select∗) tends to underperform when leverag-

ing aspect representations that are uncorrelated with relevance, such as the DZ

representation. Nevertheless, xQuAD∗ still outperforms both xMMR and xMVA

in this scenario. Considering the other aspect representations, both xMMR and

xMVA are significantly outperformed when using the BS (except for IA-Select∗

in terms of α-nDCG@20) and WT representations. In all cases, coverage-based

approaches affect substantially more queries than do novelty-based approaches.

Of the affected queries, in contrast to novelty-based approaches, coverage-based

ones tend to improve more queries than they harm. Recalling Q2, on the effec-

tiveness of novelty in comparison to coverage, these results show that, whenever

the underlying aspect representation is held fixed, coverage provides an often

significantly superior diversification strategy compared to novelty.
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8.3.2.3 Explicit Coverage vs. Explicit Coverage+Novelty

The results in Section 8.3.2.2 show that novelty cannot improve against a pure

coverage-based strategy. To address Q3, we investigate whether novelty can be

effective in combination with coverage. To this end, Table 8.3 shows the diversifi-

cation performance of IA-Select and xQuAD, which deploy hybrid diversification

strategies, compared to their coverage-only versions, IA-Select∗ and xQuAD∗,

respectively. Once again, a first significance symbol denotes a statistically signif-

icant difference compared to DPH. For IA-Select and xQuAD, a second symbol

denotes significance compared to IA-Select∗ and xQuAD∗, respectively.

Table 8.3: Diversification performance of coverage (IA-Select∗ and xQuAD∗) and
hybrid (IA-Select and xQuAD) approaches for various explicit aspect representations.

Sq
ERR-IA α-nDCG

@20 − = + @20 − = +

DPH 0.169 0.270

+IA-Select∗ DZ 0.169◦ 40 14 43 0.263◦ 43 15 39
+IA-Select DZ 0.174◦◦ 41 13 43 0.270◦◦ 42 14 41
+xQuAD∗ DZ 0.197△ 35 13 49 0.297◦ 37 14 46
+xQuAD DZ 0.193◦◦ 35 15 47 0.295◦◦ 37 15 45

+IA-Select∗ BS 0.201△ 41 14 42 0.299◦ 40 14 43
+IA-Select BS 0.209N◦ 35 14 48 0.311N◦ 31 14 52
+xQuAD∗ BS 0.205N 40 13 44 0.305△ 36 13 48
+xQuAD BS 0.204N◦ 40 13 44 0.305△◦ 36 13 48

+IA-Select∗ WT 0.231N 36 10 51 0.344N 31 10 56
+IA-Select WT 0.228N◦ 32 11 54 0.340N◦ 28 11 58
+xQuAD∗ WT 0.227N 32 10 55 0.340N 28 10 59
+xQuAD WT 0.228N◦ 29 9 59 0.341N◦ 26 9 62

From Table 8.3, despite generally harming fewer queries, we note that neither

IA-Select nor xQuAD significantly improve upon their coverage-only versions.

Recalling Q3, on the effectiveness of novelty in combination with coverage, this

result shows that novelty does not significantly contribute to the effectiveness of

hybrid approaches. Along with the results in Sections 8.3.2.2 and 8.3.2.3, this

result raises further questions regarding the role of novelty as a diversification

strategy, and the conditions (if any) under which this strategy could be effective.
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8.3.3 Simulation Results

The results in Section 8.3.2 show that novelty performs ineffectively in comparison

to and in combination with coverage, and even when compared to a non-diversified

adhoc retrieval baseline. What remains unknown is why this is the case. Hence, in

this section, we address research question Q4, by investigating the role of novelty

as a diversification strategy. In particular, our ultimate goal is to identify the

conditions (if any) under which novelty could be deployed effectively. To this

end, we perform two complementary simulations. In Section 8.3.3.1, we analyse

the impact of simulated relevance and diversity estimates on the effectiveness of

novelty-based diversification approaches. In Section 8.3.3.2, we investigate how

novelty is affected by the presence of non-relevant documents.

8.3.3.1 Relevance vs. Diversity

To address Q4 and ascertain the role of novelty as a diversification strategy,

we analyse the effectiveness of novelty, coverage, and hybrid diversification ap-

proaches over a range of simulated relevance and diversity estimation perfor-

mances. The first scenario (simulated relevance) simulates the application of

these approaches over baseline rankings of various quality. The second scenario

(simulated diversity) has different interpretations for different diversification ap-

proaches. For coverage-based and hybrid approaches, it represents a refined

estimation of how well a document covers different aspects (i.e., p(d|q, ai) in

Equations (8.5) and (4.7)). For explicit novelty-based approaches, it equates to

a refined document representation in the space of the considered aspects (see

Equation (8.1)), which allows for an improved identification of novel documents.

Following the procedure proposed by Turpin & Scholer (2006), we produce a

range of relevance estimation performances by simulating re-rankings of the top

1000 documents retrieved by DPH for each query. In particular, each re-ranking

seeks a different target query average precision (AP), by iteratively swapping

randomly chosen pairs of relevant and irrelevant documents. For this simulation,

we use the relevance assessments for the adhoc task of the TREC 2010 Web

track (Clarke et al., 2010).1 A similar procedure is used to simulate diversity

1The adhoc and diversity tasks share the same queries.
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estimates. For this simulation, we use the TREC Web track sub-topics (WT in

Table 5.5) as an aspect representation. As discussed in Section 8.3.1.2, this is the

only available aspect representation with relevance assessments (i.e., those from

the diversity task of the TREC 2010 Web track). Based on these “ground-truth”

aspects and their corresponding relevance assessments, our simulation iteratively

re-ranks the top 1000 documents retrieved by DPH for a given query with respect

to each sub-topic of this query, until a target aspect AP performance is achieved.

As target relevance (for queries) and diversity (for query aspects) estimation

performances, we split the range of possible AP values (i.e., [0, 1]) into 20 equally

sized bins (i.e., each bin has size 0.05). Within the range of each bin, we ran-

domly select 20 target AP values, making up a total of 400 simulated relevance

and diversity estimation performances per query. To enable a comprehensive

yet controlled analysis, we focus on xMMR, xQuAD∗, and xQuAD as representa-

tive explicit novelty-based, coverage-based, and hybrid diversification approaches,

respectively. These approaches are particularly suited for this analysis, as they

tackle search result diversification as a bi-criterion optimisation problem, namely,

that of balancing the trade-off between promoting relevance or diversity. As a

result, they allow for a controlled experimentation, by varying relevance and di-

versity as two independent components. To avoid any bias towards either of these

components, all approaches are applied with the standard setting of λ = 0.5.
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Figure 8.1: Diversification performance of novelty (xMMR), coverage (xQuAD∗), and
hybrid (xQuAD) approaches for a range of (a) relevance and (b) diversity performances.
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The diversification performance of xMMR, xQuAD∗, and xQuAD is shown in

Figure 8.1(a) for a range of relevance estimation performances. Relevance perfor-

mance (the x axis) is measured by mean average precision (MAP@100). Diversi-

fication performance (the y axis) is measured by α-nDCG@100 with α = 1.0, so

as to penalise redundancy the most heavily. Since all approaches are applied to

diversify the top 100 documents, evaluation at rank cutoff 100 ensures that any

observed improvements are due to removing redundancy with respect to the as-

pects already covered, rather than to covering additional aspects in the ranking.

The performance of a standard DPH ranking is also included as a baseline.2 From

the figure, we first observe that the diversification performance of all approaches

is highly correlated to their underlying relevance estimation performance. This is

somewhat expected, since by improving relevance, the chance of satisfying at least

one of the aspects of the query increases, as confirmed by the high correlation ob-

served for the DPH baseline itself (Pearson’s ρ = 0.898). As for the diversification

approaches, xMMR is almost indistinguishable from DPH across the query MAP

range. Likewise, xQuAD cannot be distinguished from xQuAD∗. This further

shows that novelty is a generally weak diversification strategy, both on its own,

and when combined with coverage, corroborating the results in Section 8.3.2.

Figure 8.1(b) complements the results in Figure 8.1(a). In this second sce-

nario, instead of varying the relevance estimations for the query, we simulate

a range of diversity estimations. Once again, besides the diversification perfor-

mance of xMMR, xQuAD∗, and xQuAD over the range of simulated diversity

estimations, we include DPH as an adhoc retrieval baseline. From Figure 8.1(b),

we observe that the performance of xMMR remains indistinguishable from the

performance of DPH, even with increasingly improved aspect relevance estima-

tions, further confirming the limitation of novelty as a diversification strategy.

In contrast, xQuAD∗ substantially improves as the underlying aspect relevance

estimations improve. This shows that, besides being more robust, coverage can

also benefit more from improved evidence of the association of documents to

query aspects. More surprisingly, coverage proves to be a more effective strat-

egy for promoting novelty (i.e., for reducing redundancy) than novelty itself, as

2Note that none of the diversification approaches attains a perfect MAP or α-nDCG, since
their performance is limited by the performance of DPH.
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shown by the striking superiority of xQuAD∗ compared to xMMR. However, the

performance of xQuAD cannot be distinguished from that of xQuAD∗, further

confirming the limitations of novelty when combined with coverage.

8.3.3.2 Relevance vs. Non-Relevance

The results in Section 8.3.3.1 emphasise the limitations of novelty as a diversifica-

tion strategy, based on a range of simulated relevance and diversity performance

scenarios. Focusing on the relevance simulation scenario, for a fixed baseline

ranking (i.e., a fixed relevance performance), a novelty-based diversification ap-

proach re-ranks documents on the basis of their differences from other documents,

with no bearing on the likelihood of each document being relevant to a query as-

pect. In particular, Zhai et al. (2003) suggested that the gains in diversification

performance attained by promoting novelty in the ranking may be offset by the

corresponding losses due to also promoting non-relevant documents.

To fully investigate this intuition in a web search setting, we perform a com-

plementary simulation to the one shown in Figure 8.1(a). In particular, while the

previous simulation produced baseline rankings with various performances, these

rankings still contained both relevant and non-relevant documents. Instead, we

simulate a different scenario, where the baseline ranking is gradually improved by

randomly removing non-relevant documents. This allows us to assess the impact

of non-relevant documents on the performance of novelty-based diversification. In

particular, Figure 8.2(a) shows the diversification performance of MMR, xMMR,

xQuAD∗, and xQuAD, as we increase the fraction of non-relevant documents

removed from a baseline ranking produced by DPH. MMR (Equation (3.8)) is

included so as to allow the analysis of the impact of non-relevant documents un-

der an implicit novelty-based approach. The performance of DPH itself is also

shown as a baseline. We test removal fractions from 0 to 1, in steps of 0.05.

For instance, a removal fraction of 0 represents the original DPH ranking, while

a fraction of 1 means that all non-relevant results have been removed from this

ranking. For a given fraction, each random removal of non-relevant documents

is repeated 20 times, and we report diversification performances averaged across

these 20 repetitions, with error bars denoting standard deviations.
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Figure 8.2: Diversification performance of novelty (xMMR), coverage (xQuAD∗), and
hybrid (xQuAD) approaches as non-relevant documents are removed.

From Figure 8.2(a), we first note, as expected, that the performance of DPH

improves as non-relevant documents are removed from its ranking. What we are

interested to know, however, is whether a novelty strategy can take advantage of

these gradually improving baseline performances. Looking at MMR, we observe

that the performance of this implicit novelty-based approach is lower than that

of DPH. Moreover, the gap between MMR and DPH remains almost unaltered

as non-relevant documents are removed. A similar observation can be made for

xMMR. Although it performs above DPH, the gap between the two approaches

does not increase with the removal of non-relevant documents. Another important

observation is that the hybrid combination of coverage and novelty implemented

by xQuAD does not benefit from an improved baseline ranking when compared

to xQuAD∗—indeed, the performance of these two approaches is indistinguish-

able from one another in the figure. These results are surprising, as they show

that, contrarily to the established intuition, a baseline ranking with only relevant

documents is not sufficient to improve novelty-based diversification.

To investigate what could help improve novelty as a diversification strategy,

we perform a similar simulation to the one presented in Figure 8.2(a), however

under an extreme scenario. In particular, while the diversification approaches

in Figure 8.2(a) leverage “real’ aspect-document relevance estimates (i.e., those

provided by DPH), we propose a scenario where these approaches are deployed
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under ideal conditions, so as to stress their maximum potential. In this idealised

scenario, all approaches are deployed with “perfect” aspect-document relevance

estimates, based on the relevance assessments of the diversity task of the TREC

2010 Web track (Clarke et al., 2010). Moreover, all approaches are deployed to

make full use of these perfect estimates. To achieve this, xMMR is deployed

with λ = 0 (see Equation (8.2)), while xQuAD and xQuAD∗ are deployed with

λ = 1.0 (see Equations (4.7) and (8.5)). Note that MMR is discarded from this

simulation, as it cannot leverage aspect-document relevance estimates.

Figure 8.2(b) shows the results of this “perfect” simulation scenario. From the

figure, we first observe that xMMR can consistently outperform DPH. However,

as in Figure 8.2(a), the gap between xMMR and DPH remains roughly constant as

non-relevant documents are removed. This surprising result shows that removing

non-relevant documents from the baseline ranking does not necessarily improve

novelty, even when novelty is deployed under idealised conditions.

In terms of absolute performance, although xMMR performs slightly better

in contrast to its performance in the “real” scenario in Figure 8.2(a), the bene-

fits of deploying novelty as a standalone strategy seem quite low. Indeed, while

xMMR struggles to improve over DPH, xQuAD∗ largely outperforms both DPH

and xMMR. To understand why this is the case, we can look at the right end

of Figure 8.2(b). In particular, when there are only relevant documents to be

diversified (i.e., when the fraction of non-relevants removed is 1), xQuAD∗ still

outperforms xMMR. This is because, different from coverage, novelty does not

take into account how well each individual document covers multiple query as-

pects. In contrast, coverage provides a much stronger diversification performance,

by placing more emphasis on “highly diverse” documents (i.e., documents rele-

vant to multiple aspects). Lastly, compared to xQuAD∗—a purely coverage-based

approach—the hybrid strategy deployed by xQuAD is ultimately shown to bring

significant improvements. Recalling Q4, on the role of novelty as a diversification

strategy, this result shows that, although rather limited as a standalone strat-

egy, novelty can still play a role in combination with coverage, as a tie-breaking

criterion—i.e., whenever two documents have similar coverage, the one that cov-

ers the least seen aspects (i.e., the most novel) should be ranked higher.

186



8. Document Novelty

8.4 Summary

In this chapter, we have addressed the fourth claim of our thesis statement, by

showing that an improved estimation of novelty can be attained with an improved

estimation of the relevance of already selected documents with respect to each

sub-query. However, we have also shown that an improved estimation of novelty

does not necessarily result in an improved diversification performance.

To motivate our investigation, in Section 8.1, we questioned the lack of em-

pirical evidence of the effectiveness of existing novelty-based approaches in a web

search scenario. In order to ascertain the role of novelty for search result di-

versification, in Section 8.2, we proposed to bridge the gap between otherwise

incomparable diversification approaches from the literature, by organising these

approaches along the diversification strategy and aspect representation dimen-

sions introduced in Section 3.3. In particular, to enable the assessment of each

of these two dimensions independently of each other, we introduced four new

diversification approaches, as an extension of existing novelty-based approaches,

as well as a deconstruction of existing hybrid approaches.

By thoroughly evaluating the effectiveness of the introduced diversification

approaches, in Section 8.3.2, we provided empirical evidence of the limitations of

novelty-based diversification in a standard web search scenario. In particular, in

Section 8.3.2.1, we evaluated the introduced novelty-based approaches using three

distinct aspect representations. Contrary to the traditional view of novelty as an

intuitive diversification strategy, we observed that none of the considered novelty-

based approaches could consistently improve upon a non-diversified baseline, re-

gardless of their leveraged aspect representation. In contrast, in Section 8.3.2.2,

we showed that the introduced coverage-based approaches are substantially more

effective than the novelty-based ones. In addition, in Section 8.3.2.3, we showed

that the combination of coverage and novelty into a hybrid strategy does not

significantly improve upon a purely coverage-based strategy.

In order to shed light on the limitations of novelty and its role as a diversi-

fication strategy, in Section 8.3.3, we performed a thorough simulation analysis.

In particular, in Section 8.3.3.1, we further demonstrated the ineffectiveness of a

pure novelty-based strategy when leveraging relevance estimates of various sim-
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ulated performances, computed with respect to both the initial query and its

sub-queries. In Section 8.3.3.2, by simulating baseline rankings with gradually

fewer irrelevant documents, we observed a marginal improvement when promot-

ing novelty. Finally, by analysing an extreme scenario considering only relevant

documents, we showed that novelty plays a role at breaking the tie between doc-

uments with a similar coverage of the multiple aspects of the query, providing a

further empirical justification for hybrid diversification strategies.

The experiments in this chapter showed that novelty can be an effective strat-

egy for search result diversification, when deployed in combination with coverage

in a hybrid strategy. Nevertheless, the inconsistent performance of novelty sug-

gests that automatically detecting when such a criterion could be effectively ex-

ploited is key for the success of hybrid approaches. More generally, automatically

determining how much to diversify the search results is of utmost importance

for a robust integration of relevance, coverage, and novelty. Investigating such a

robust diversification mechanism is the goal of the next chapter.
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Chapter 9

Diversification Trade-Off

In Chapters 5 through 8, we validated the effectiveness of xQuAD in contrast to

the current state-of-the-art and described effective instantiations for each of the

components of the framework. In particular, we proposed effective mechanisms to

generate sub-queries in Chapter 6, as well as to estimate the coverage and novelty

of the retrieved documents with respect to each sub-query in Chapters 7 and 8.

Throughout these chapters, we assumed that all queries were equally amenable to

diversification. However, depending on how ambiguous they are, different queries

may arguably benefit from more or less aggressive diversification strategies.

A more lenient or more aggressive diversification can be attained by appropri-

ately setting the diversification trade-off λ, which balances relevance and diversity

in the ranking, as described in Equation (4.1) of Chapter 4. In this chapter, we

propose to selectively diversify the documents retrieved for different queries, by

inferring an effective diversification trade-off for each individual query. As a re-

sult, not only do we predict when to diversify, but also by how much. To this

end, we leverage a large range of query features from the literature and cast this

problem as a regression task, namely, the task of predicting an effective trade-off.

In the remainder of this chapter, Section 9.1 overviews selective ranking ap-

proaches in the literature. Section 9.2 details our approach for predicting an ef-

fective diversification trade-off on a per-query basis. Our approach is thoroughly

evaluated in Section 9.3. The results attest the effectiveness of our selective

mechanism, with significant gains compared to a mechanism that optimises the

trade-off uniformly for all queries, regardless of their predicted ambiguity.
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9.1 Selective Web Search

Selective ranking approaches are relatively common in web search. A typical

example is the adaptation of the produced ranking to account for the predicted

intent of each query, as discussed in Section 7.1. Another classical example of

selective ranking is the identification of queries more likely to benefit from query

expansion. For instance, Yom-Tov et al. (2005) showed that the effectiveness of

an expanded query is highly dependent on the effectiveness of the original query,

since a poor first-pass retrieval may lead to the selection of irrelevant expansion

terms. To overcome this problem, they proposed a selective mechanism to decide

when to apply query expansion, based upon the predicted difficulty of the original

query. Relatedly, Macdonald et al. (2005) hypothesised that using a high quality

external resource, such as Wikipedia, could improve query expansion in cases

where the local corpus would lead to decreased effectiveness. Accordingly, they

proposed to leverage query performance predictors (Carmel & Yom-Tov, 2010)

as features for choosing which corpus to use for expanding each query.

Plachouras (2006) introduced a Bayesian decision mechanism to select the re-

trieval approach most likely to be effective for a given query. Such a mechanism

performed a density analysis, considering the observed effectiveness of multiple

candidate approaches under multiple experimental conditions on a training set,

and the likelihood of each experimental condition given a test query. Example

experimental conditions included statistics of the available data, such as the dis-

tribution of terms, domains, and hyperlinks among the retrieved documents (Pla-

chouras & Ounis, 2004). In the same vein, Peng & Ounis (2009) proposed a

selective mechanism to choose the single most effective feature from a set of can-

didate query-independent features, such as those described in Section 2.2.2, to

be integrated to a baseline ranking. In particular, the divergence between the

score distributions of the documents retrieved for a query prior to and after the

integration of a feature served as a mechanism to predict the effectiveness of this

feature relatively to other candidates, given how well each candidate performed

for training queries with a similar divergence. This approach was later extended

to select any arbitrary ranking function from a pool of candidate functions to be

applied for each individual query (Peng et al., 2010; Peng, 2010).
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In a similar vein, Geng et al. (2008) proposed a selective approach to choose

the most appropriate training examples to use for learning a ranking function

on a per-query basis. Given a query, their approach deployed a ranking func-

tion (Joachims, 2002) learned on a selected subset of the available training queries,

as opposed to the entire training set. Such a subset was identified either online,

as the nearest neighbouring queries to the test query, or offline, by clustering

the available training queries (Aha et al., 1991). For the nearest neighbour clas-

sification, the average score of each document feature across the top retrieved

documents for a given query was used as a feature for this query.

Inspired by these approaches, we seek to learn an effective diversification

trade-off for an unseen query based upon the optimal trade-offs observed for

similar training queries. However, differently from these approaches, which relied

on a single feature to identify neighbouring queries, we leverage a large pool of

query features, inspired by different query understanding approaches in the liter-

ature. To the best of our knowledge, our approach constitutes the first attempt

to tackle search result diversification as a query-dependent ranking problem.

9.2 Selective Diversification

Intuitively, maximising the satisfaction of the population of users issuing the

same, ambiguous query involves trading off relevance for diversity in the rank-

ing. On the one hand, a relevance-oriented ranking can focus on the most likely

information need underlying the query (e.g., the most popular interpretation or

aspect of the query). On the other hand, a diversity-oriented ranking can also

cater for other plausible needs. As discussed in Section 4.2, these two strategies

can be integrated as a bi-criteria ranking objective for improved effectiveness.

Several diversification approaches in the literature build upon this idea, with

a parameter λ controlling the trade-off between relevance and diversity—e.g.,

MMR (Equation (3.8)), RM (Equation (3.9)), MVA (Equation (3.11)), ARW

(Equation (3.13)), SSSD (Equation (3.14)), and our xQuAD framework (Equa-

tion (4.1)). Typically, this trade-off is uniformly optimised so as to maximise

the diversification performance on a set of training queries. However, different

queries may benefit from different diversification strategies, since not all queries
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Figure 9.1: Optimal trade-off and diversification performance for the WT09 queries.

are equally ambiguous. For instance, while a query like “bond” could arguably

benefit from a more aggressive diversification, a more lenient strategy could suf-

fice for a less ambiguous query such as “james bond”. In the extreme, a clear

query like “james bond skyfall website” could attain an effective performance even

without any diversification. To quantify this observation, Figure 9.1(a) shows

the optimal trade-off λ∗ for xQuAD for each of the 50 TREC 2009 Web track

queries (Clarke et al., 2009a). From the figure, it is clear that different queries

benefit from different trade-offs, and that any uniform choice of λ for all queries

would be suboptimal. Indeed, Figure 9.1(b) shows that optimising this trade-off

on a per-query basis substantially outperforms a uniform optimisation regime.

In this chapter, we propose to selectively diversify the documents retrieved for

a given query, by predicting an effective trade-off between relevance and diversity

for this query. To this end, we introduce a supervised selective diversification

approach, aimed at inferring an effective trade-off for an unseen query, based

on the optimal trade-off observed for similar training queries. Our approach is

general and can be applied to improve any diversification approach, provided

that it adheres to the aforementioned view of search result diversification as the

problem of optimising the trade-off between promoting relevance or diversity in

the ranking. In the following, Section 9.2.1 formalises our learning approach,

while Section 9.2.2 describes the query features used to instantiate it.

192



9. Diversification Trade-Off

9.2.1 Learning a Regression Model

Given an unseen query q, our goal is to learn an effective setting for the diversi-

fication trade-off λ, which maximises diversification performance according to a

target evaluation metric. Following the standard discriminative learning frame-

work described in Section 2.2.3.1, we aim to learn a hypothesis h : X → Y ,

mapping the input space X into the output space Y .

Our input space X encompasses a set x = {xj}
m
j=1 of m learning instances,

with each instance xj = Φ(qj) conveying a vector representation of a query qj,

according to the feature extractor Φ. The actual features used in our investigation

are described in Section 9.2.2. In turn, our output space Y comprises a set

y = {yj}mj=1 of m learning labels, defined in the domain of the real numbers. In

particular, a label yj for a training query qj corresponds to the optimal trade-off

between relevance and diversity obtained for this query, according to a target

diversity evaluation metric, such as any of the metrics described in Section 3.4.2.

In principle, to obtain such an optimal trade-off, we could use any optimisation

method. For simplicity, we perform a full scan over the range of possible λ values

for the query qj (i.e., 0 ≤ λ ≤ 1), with steps of 0.001, and select the best value

(according to the target evaluation metric) as the label yj. Note that this process

is entirely conducted offline, with no knowledge of unseen queries.

Lastly, to learn a hypothesis h, we could use different numeric prediction ap-

proaches, such as linear regression or model trees (Witten & Frank, 2005). In our

investigation, we employ a k-nearest neighbour (k-NN) (Aha et al., 1991) algo-

rithm. As an instance-based learning approach, k-NN does not have an explicit

training phase. Instead, it stores the training data in memory and performs an

online regression for each unseen query. During the online query processing, we

predict an effective trade-off λ for a test query q as the mean of the λ∗
j values of

the k nearest neighbouring training queries to q:

λ = h(Φ(q)) = h(x) =
1

k

∑

j|xj∈Γk
x

λ∗
j , (9.1)

where Γk
x
comprises the k nearest training queries to q in the space of the consid-

ered features, according to a distance function, typically the Euclidian distance.
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The main advantage of k-NN as a lazy learning approach is that a differ-

ent and potentially more targeted hypothesis is learned based on the training

neighbourhood of an unseen query, rather than on the entire training data. This

reduces the complexity of the learning process by exploiting the locality of the

data (Geng et al., 2008). Additionally, k-NN does not make strong assumptions

about the underlying data distribution, as other regression approaches do (Aha

et al., 1991). Despite its simplicity and effectiveness, two main concerns arise

when employing an instance-based learning approach such as k-NN. Firstly, the

cost of prediction can be significant, particularly when a large number of training

instances is available. Fortunately, searching for the nearest neighbours of an un-

seen query can be done efficiently with the use of appropriate indexing structures

to store training queries, such as ball trees (Omohundro, 1989). The second con-

cern related to instance-based learning is the dimensionality of the feature space.

In particular, k-NN considers all instance features when searching for the nearest

neighbours. When the similarity between an unseen query and a true neighbour

is determined by only a few features, these queries may be considered far from

each other in light of the entire feature space, potentially compromising the accu-

racy of the prediction (Witten & Frank, 2005). To tackle this issue, we perform

a feature selection ahead of the prediction step, as described in Section 9.3.1.

9.2.2 Query Features

A pool of meaningful features is crucial for the effectiveness of any learning pro-

cess. As the goal of our particular task is to learn an effective trade-off between

promoting relevance or diversity for a given query, a natural first direction is to

look for features that capture the ambiguity of this query. Nevertheless, an effec-

tive setting for the diversification trade-off may depend not only on the ambiguity

of the query itself, but also on how a particular diversification approach tackles

such ambiguity, through its estimations of relevance and diversity.

In order to provide a rich query representation for our learning task, we devise

a total of 952 features, as variants of 33 distinct feature classes, summarised in

Table 9.1. Multiple variants are produced analogously to those described in Sec-

tion 7.2.2.3. In particular, as described in the “variants” column of Table 9.1, doc-
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Table 9.1: Query features used for trade-off prediction.

Feature Description Variants Total

Q
C
I

AcronymSenses Number of acronym senses 1
DisambCount Number of disambiguation pages 2m x 10c 20
DisambSenses Number of disambiguation senses 3m x 10c x 3s 90
EntityCount Number of entities in the query 4t 4

Q
ID

DomainDistro Number of documents per domain 5m x 3s 15
HostDistro Number of documents per host 5m x 3s 15
URLComponents Number of URL components 5m x 4t 20
HomePage Whether there is a homepage 2m 2
MaxIncrement Maximum score difference 2m 2

Q
L
M

QueryFrequency Number of occurrences 1
ClickEntropy URL-level click entropy 1
HostEntropy Host-level click entropy 1
ResultCount Examined documents per session 3s 3
ClickCount Clicked documents per session 3s 3
ReformCount Reformulations per session 3s 3
SessionDuration Session duration (in sec.) 3s 3

Q
P
P

AvICTF Pre-retrieval predictor 1
AvIDF Pre-retrieval predictor 1
AvPMI Pre-retrieval predictor 1
EnIDF Pre-retrieval predictor 1
Gamma1 Pre-retrieval predictor 1
Gamma2 Pre-retrieval predictor 1
Terms Pre-retrieval predictor 1
Tokens Pre-retrieval predictor 1
ClarityScore Post-retrieval predictor 5m x 10c 50
QueryDifficulty Post-retrieval predictor 2m x 10c 20
QueryFeedback Post-retrieval predictor 2m x 10c 20

Q
T
C

CategoryCount Number of categories 2m x 10c 20
CategoryEntropy Category entropy 2m x 10c 20
CategoryCosine Category pairwise cosine 2m x 10c x 3s 60
ConceptCount Number of concepts 5m x 3t x 10c 150
ConceptEntropy Concept entropy 5m x 3t x 10c 150
ConceptCosine Concept pairwise cosine 5m x 3t x 6c x 3s 270

Grand total 952
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ument features are computed based on five different ranking mechanisms (denoted

“m” in the “variants” column of Table 9.1), namely, BM25 (Equation (2.13)),

DPH (Equation (2.31)), and the APIs of the Bing, Google, and Yahoo! web

search engines. For the latter three mechanisms, URLs not present in our target

test collection are discarded. In addition, each of these features is computed at

ten distinct rank cutoffs (denoted “c”): 1, 2, 3, 5, 10, 20, 50, 100, 500, and 1000.

For entity-oriented features, up to four types (denoted “t”) are considered: per-

sons, organisations, products, and locations. Lastly, distributional features, such

as the number of documents per domain or the pairwise distance between any

two retrieved documents, are summarised using up to three summary statistics

(denoted “s”): mean, standard deviation, and maximum. The devised features

are organised into five groups, according to the tasks that motivated each feature:

query concept identification (QCI), query intent detection (QID), query log min-

ing (QLM), query performance prediction (QPP), and query topic classification

(QTC). In the following, we describe each of these groups.

Query Concept Identification (QCI) A first sign of ambiguity is present at

the word level (Sanderson, 2008). For instance, a query might contain multiple

named entities, possibly representing a complex information need with multiple

intents, as discussed in Section 7.2.2.3. Alternatively, a single query term can have

multiple meanings according to a particular source, such as a dictionary or an

encyclopedia. To capture these intuitions, we quantify the occurrence of named

entities in the query, as well as of Wikipedia disambiguation pages in the ranking

produced for this query. In addition, we further quantify the ambiguity of a query

by detecting the presence of acronyms. To this end, instead of deploying sophis-

ticated natural language processing techniques, we simply compute the number

of interpretations returned by all-acronyms.com for single-term queries.1

Query Intent Detection (QID) Navigational queries are usually less am-

biguous than informational ones (Welch et al., 2011), which suggests that useful

query intent detection features might also be useful for predicting query ambi-

guity (Kang & Kim, 2003). With this in mind, we leverage several query intent

1We assume that acronyms in multi-term queries are disambiguated by the additional terms.
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detection features proposed in the literature for our learning task. These include

the distribution of host names, domain names, and other URL fragments among

the top retrieved documents for a query, as well as the presence of a homepage

among these documents. Additionally, we consider the maximum difference in

relevance scores between any two retrieved documents as a strong indicator of

the query intent. In particular, by analysing the score distribution for a query,

this feature captures the intuition that navigational queries often have only a few

relevant documents that have markedly larger scores.

Query Log Mining (QLM) Another promising direction for inferring the am-

biguity of a query is to observe the past usage of this query in a query log (Silvestri,

2010). Inspired by previous research on query log mining for ambiguity detec-

tion, we deploy several query log features. For instance, queries often clicked for

a single document are intuitively less ambiguous than queries with clicks spread

over multiple distinct documents. We capture this intuition by computing the

entropy of user clicks (Clough et al., 2009; Wang & Agichtein, 2010), at both the

document URL and host levels. Additionally, for each query session, we compute

the total number of documents displayed to the user, the total duration of the

session in seconds, and the total number of query reformulations performed dur-

ing the session (Clough et al., 2009). Finally, we also consider basic features such

as the frequency of the query in the log and the total number of clicks it received.

Query Performance Prediction (QPP) As previously discussed in Sec-

tion 9.2, our selective mechanism is agnostic to any particular diversification

approach, and makes no assumption regarding how a given approach estimates

the relevance and the diversity of a document with respect to a query. Since

an optimal diversification trade-off clearly depends on the performance of these

estimates, a promising direction is to leverage query performance prediction fea-

tures within our learning approach (Carmel & Yom-Tov, 2010). In particular, we

employ a range of both pre-retrieval and post-retrieval predictors. Pre-retrieval

predictors estimate the performance of a query based on statistics derived from

the target collection, such as the document frequency of individual query terms

or the pointwise mutual information of pairs of query terms. Post-retrieval pre-

197



9. Diversification Trade-Off

dictors, in turn, are based on the top retrieved documents for the query. For

instance, they can estimate the query performance based on how cohesive these

documents are, according to their language models (Cronen-Townsend et al.,

2002) or relevance models built from them (Zhou & Croft, 2007).

Query Topic Classification (QTC) To further refine the prediction of an ef-

fective diversification trade-off for an unseen query, we consider more specialised

features, which capture the distribution of topics among the documents retrieved

for this query. These include the raw number of topics represented in the top

retrieved documents for the query, the pairwise “topic” distance between any two

retrieved documents for the query, and the “topic” entropy of the centroid of all

retrieved documents (Song et al., 2009). Similarly to our query topic classifica-

tion features discussed in Section 7.2.2.3, we consider topics related to multiple

named entities, as well as to multiple categories, both derived from Wikipedia.

In particular, our intuition is that documents sharing the same entities or the

same categories tend to be more similar to one another, in which case the query

for which they are retrieved tends to be less ambiguous.

9.3 Experimental Evaluation

In this section, we address the fifth claim from our thesis statement:

“By inferring the level of ambiguity of different queries, a balance

between promoting relevance or diversity can be effectively attained.”

In order to address this claim, we investigate the effectiveness of our selective

approach, which assigns an appropriate diversification trade-off on a per-query

basis, in contrast to a uniform approach, which assigns the same trade-off for

every query. This investigation aims to answer the following research questions:

Q1. How effective is our selective diversification approach?

Q2. What features constitute effective predictors of an optimal trade-off?

Q3. How robust is our approach to perturbations in the prediction accuracy?
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In the following, Section 9.3.1 details the experimental setup that supports

the investigation of these questions in Section 9.3.2.

9.3.1 Experimental Setup

In this section, we detail the test collection, topics, and evaluation metrics used in

our experiments. Additionally, we describe the baseline diversification approaches

and the different learning regimes considered in the evaluation of our selective

diversification approach, introduced in Section 9.2.

9.3.1.1 Test Collection

Our experiments use the WT09 test collection, comprising 49 queries from the

TREC 2009 Web track (Clarke et al., 2009a), as described in Table 5.1. The cat-

egory B portion of ClueWeb09 is used as our document corpus. In particular, we

index this corpus using Terrier (Macdonald et al., 2012a), after applying Porter’s

stemmer and removing standard English stopwords.

9.3.1.2 Diversification Approaches

In order to test the generality of our proposed approach, we deploy it to se-

lectively predict the trade-off λ for two diversification approaches, namely, our

xQuAD framework (Equation (4.1)) and MMR (Equation (3.8)). For MMR, fol-

lowing Carbonell & Goldstein (1998), we use the cosine distance as a similarity

metric. For xQuAD, as a means to isolate the impact of any particular choice

for representing query aspects, we use the official TREC Web track sub-topics

(WT in Table 5.5) as sub-queries. Both MMR and xQuAD are deployed to di-

versify the top 100 documents retrieved by two ad-hoc retrieval baselines: BM25

(Equation (2.31)) and DPH (Equation (2.31)).

9.3.1.3 Training Regimes

In our evaluation, five distinct regimes are considered in order to set the parameter

λ to control the diversification trade-off for both MMR and xQuAD:
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1. Uni(base): a baseline uniform diversification regime, with a single λ value

learned for all queries in each fold through a 5-fold cross validation.

2. Uni(ora): an upper-bound uniform diversification regime, with a single λ

value selected to maximise the average performance across all queries.

3. Sel(rand): a baseline selective diversification regime, with a different λ

value randomly sampled from the interval [0..1] on a per-query basis;

4. Sel(ora): an upper-bound selective diversification regime, with a different

λ value selected on a per-query basis, so as to maximise the performance of

each query individually.

5. Sel(k-nn): our proposed selective diversification regime, with a different

λ value learned for each query through a 5-fold cross validation.

To set the k parameter for k-NN, a leave-one-out cross-validation is performed,

by minimising mean absolute error (MAE; Witten & Frank, 2005). Additionally,

given the large number of features described in Section 9.2.2, we investigate the

impact of different feature selection mechanisms for the Sel(k-nn) regime. In

particular, besides a baseline variant with no feature selection applied (Sel(k-

nn,nofs)), we deploy two standard feature selection techniques:

• Sel(k-nn,pca) performs a principal component analysis (PCA) in order

to reduce the dimensionality of the feature space (Pearson, 1901).

• Sel(k-nn,bfs) performs a greedy best-first search (BFS) in the space of

feature combinations (Kohavi & John, 1997). To avoid converging on a

local maximum, we allow negative improvements in the search for the next

feature to be added to the current best combination. Hence, our stopping

criterion becomes the maximum number of features to be selected: 100.

9.3.2 Experimental Results

In the remainder of this section, we thoroughly evaluate our proposed approach

for selectively diversifying the documents retrieved for queries with different levels

of ambiguity. In particular, in Section 9.3.2.1, we assess the effectiveness of our
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approach at improving the diversification performance of MMR and xQuAD.

In Section 9.3.2.2, we analyse the suitability of different groups of features for

predicting an effective diversification trade-off on a per-query basis. Finally, in

Section 9.3.2.3, we further investigate the robustness of our approach based on

the impact of random perturbations on the prediction of this trade-off.

9.3.2.1 Diversification Effectiveness

In this experiment, we address research question Q1, regarding the effectiveness

of our selective diversification approach. To this end, Table 9.2 shows the di-

versification performance of MMR and xQuAD, deployed on top of BM25 and

DPH, under the several training regimes described in Section 9.3.1.3. These in-

clude Uni(base) as a baseline uniform regime, and Sel(rand) as a sanity check

for the several variants of our selective regime, i.e., Sel(k-nn,•). Additionally,

Uni(ora) and Sel(ora) provide upper-bound performances for both a uniform

and a selective diversification regime, respectively. Diversification performance is

given by ERR-IA (Equation (3.28)) and α-nDCG (Equation (3.29)). Significance

is verified by a paired t-test, with the symbols previously introduced in Sec-

tion 5.1.2 denoting significant differences (or lack thereof). For all instantiations

of MMR and xQuAD, a first symbol denotes significant differences compared

to BM25 or DPH. A second such symbol denotes significance with respect to

Uni(base), while a third symbol denotes significance with respect to Uni(ora).

From Table 9.2, we first observe that, compared to the adhoc retrieval base-

lines, i.e., BM25 and DPH, MMR cannot improve significantly. On the other

hand, xQuAD significantly improves upon both baselines in most settings, cor-

roborating our findings in Chapter 8 regarding the superiority of a hybrid diver-

sification strategy in contrast to a pure novelty-based strategy.

Contrasting the training regimes deployed by MMR and xQuAD, we note

that Sel(k-nn,•) improves over Uni(base) in all cases for BM25+MMR, and in

most cases for DPH+MMR, often significantly. For xQuAD, significant improve-

ments over Uni(base) are observed for the Sel(k-nn,bfs) variant on top of both

BM25 and DPH. Recalling research question Q1, on the effectiveness of our selec-

tive approach, these observations show that predicting an effective diversification
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Table 9.2: Diversification performance under different training regimes.

Sq λ
ERR-IA α-nDCG

@20 − = + @20 − = +

BM25 0.130 0.229

+MMR Uni(base) 0.079H 20 19 10 0.149H 20 19 10
+MMR Uni(ora) 0.131◦N 8 33 8 0.228◦N 8 33 8

+MMR Sel(rand) 0.052H◦H 31 7 11 0.110H◦H 33 7 9
+MMR Sel(k-nn,nofs) 0.113▽◦▽ 18 24 7 0.205▽△▽ 18 24 7
+MMR Sel(k-nn,pca) 0.115▽△▽ 11 28 10 0.207◦N◦ 11 28 10
+MMR Sel(k-nn,bfs) 0.133◦N◦ 9 32 8 0.237◦N◦ 10 32 7
+MMR Sel(ora) 0.140△N△ 5 25 19 0.248△N△ 8 25 16

+xQuAD WT Uni(base) 0.177◦ 13 9 27 0.280◦ 12 9 28
+xQuAD WT Uni(ora) 0.176△◦ 10 11 28 0.284△◦ 10 11 28

+xQuAD WT Sel(rand) 0.173◦◦◦ 15 8 26 0.271◦◦◦ 14 8 27
+xQuAD WT Sel(k-nn,nofs) 0.167◦▽◦ 15 9 25 0.267◦▽◦ 16 9 24
+xQuAD WT Sel(k-nn,pca) 0.174◦◦◦ 15 10 24 0.274◦◦◦ 15 10 24
+xQuAD WT Sel(k-nn,bfs) 0.202N△◦ 10 9 30 0.305N△◦ 9 9 31
+xQuAD WT Sel(ora) 0.237NNN 1 13 35 0.349NNN 1 13 35

DPH 0.143 0.243

+MMR Uni(base) 0.134◦ 8 33 8 0.231◦ 9 32 8
+MMR Uni(ora) 0.143◦◦ 0 49 0 0.243◦◦ 0 49 0

+MMR Sel(rand) 0.047HHH 37 8 4 0.105HHH 37 8 4
+MMR Sel(k-nn,nofs) 0.136◦◦◦ 6 37 6 0.229◦◦◦ 6 37 6
+MMR Sel(k-nn,pca) 0.137◦◦◦ 8 36 5 0.231◦◦◦ 9 35 5
+MMR Sel(k-nn,bfs) 0.144◦◦◦ 3 41 5 0.244◦◦◦ 3 41 5
+MMR Sel(ora) 0.147△△△ 3 35 11 0.251△△△ 4 34 11

+xQuAD WT Uni(base) 0.201△ 18 10 21 0.303△ 18 10 21
+xQuAD WT Uni(ora) 0.202△◦ 17 10 22 0.303△◦ 17 10 22

+xQuAD WT Sel(rand) 0.190◦▽▽ 20 8 21 0.289◦▽▽ 19 8 22
+xQuAD WT Sel(k-nn,nofs) 0.193△◦◦ 14 14 21 0.294△◦◦ 15 14 20
+xQuAD WT Sel(k-nn,pca) 0.197△◦◦ 16 11 22 0.305△◦◦ 17 11 21
+xQuAD WT Sel(k-nn,bfs) 0.204N△◦ 13 13 23 0.306△△◦ 15 13 21
+xQuAD WT Sel(ora) 0.252NNN 1 18 30 0.366NNN 1 18 30

trade-off on a per-query basis outperforms a uniform setting of this trade-off for

all queries. Comparing the different variants of our approach, we note that feature
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selection plays an important role in the identification of an effective diversifica-

tion trade-off, particularly when such a large set of features as the one described

in Section 9.2.2 is employed. In particular, Sel(k-nn,pca), the variant based

on principal component analysis, brings improvements over no feature selection

(i.e., Sel(k-nn,nofs)) in all cases. Further improvements are observed when a

greedy best-first search feature selection approach is used (i.e., Sel(k-nn,bfs)).

Moreover, this variant consistently outperforms the upper-bound uniform diversi-

fication baseline, given by the Uni(ora) regime. Although not significant, these

improvements are remarkable, given that the Uni(ora) is deployed with an ideal

setting of the diversification trade-off, optimised on all test queries.

Lastly, the non-triviality of these results is further attested by the superior

performance of our selective approach compared to the Sel(rand) regime, which

randomly assigns a diversification trade-off on a per-query basis. Interestingly,

while the performance of MMR is highly sensitive to a random assignment of

the diversification trade-off, xQuAD still performs relatively well in this scenario.

Nonetheless, such a resilient behaviour of xQuAD does not mean it would benefit

less from our selective diversification regime. Indeed, the upper-bound perfor-

mance of Sel(ora) gives an encouraging room for further improvements.

9.3.2.2 Feature Analysis

The results in Section 9.3.2.1 attest the effectiveness of our proposed selective

diversification approach, with significant improvements over a uniform diversi-

fication across multiple settings. These results are particularly promising given

the simple techniques we deployed to select a subset of effective features from the

large pool used in this work, as described in Section 9.2.2.

Although automatically finding an optimal subset of these features is beyond

the scope of this thesis, in this section, we investigate the predictive power of dif-

ferent groups of features. In particular, we aim to answer research question Q2,

concerning the usefulness of different features for our specific learning task. In-

spired by our proposed classification of the features described in Section 9.2.2, we

analyse the performance of our selective diversification approach using features

from five different groups: query concept identification (QCI), query performance
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prediction (QPP), query topic classification (QTC), query intent detection (QID),

and query log mining (QLM) features. In particular, Table 9.3 shows the perfor-

mance of our selective diversification approach for both MMR and xQuAD, with

features grouped according to the aforementioned classification.

Table 9.3: Per-feature group performance in terms of α-nDCG@10.

MMR xQuAD

BM25 DPH BM25 DPH

Sel(k-nn,nofs) 0.161 0.197 0.235 0.267

Sel(k-nn,qci) 0.166 0.159 0.239 0.261
Sel(k-nn,qlm) 0.174 0.182 0.240 0.246
Sel(k-nn,qpp) 0.168 0.170 0.245 0.257
Sel(k-nn,qtc) 0.172 0.203 0.238 0.284
Sel(k-nn,qid) 0.164 0.182 0.251 0.249

Pearson’s ρ 0.53 -0.52

From Table 9.3, we first observe that, for each of the possible combinations of

adhoc (i.e., BM25 or DPH) and diversity (MMR or xQuAD) baselines, there is at

least one feature group that can improve the effectiveness of our selective regime,

compared to using all the available features (i.e., the Sel(k-nn,nofs) variant).

Recalling research question Q2, on the relative effectiveness of different features,

we observe that our query topic classification (QTC) features constitute the most

robust group of all features considered in this work, with improvements across

all different baselines.2 Another interesting observation relates to how different

diversification approaches leverage different feature groups. For instance, while

MMR shows a positive correlation (ρ = 0.53) between its performances on top

of BM25 and DPH across different groups, xQuAD favours different groups of

features depending on the underlying ranking approach deployed to produce its

relevance and coverage estimates (ρ = -0.52). Although anecdotal, these observa-

tions illustrate the challenge of selecting a suitable subset of features for learning

an effective diversification trade-off for different diversification approaches.

2According to our greedy best-first search feature selection approach, the most effective
features in this group are CategoryCount and CategoryCosine, i.e., the total number of top-
level categories amongWikipedia articles retrieved for a query, and the average distance between
these articles in the space of categories, respectively.
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9.3.2.3 Prediction Robustness

In Section 9.3.2.2, we have shown that our approach can be effective even when de-

ploying relatively simple feature selection techniques to reduce the dimensionality

of our feature space. In this section, we investigate the reasons for such a robust

behaviour. More precisely, we aim to answer research question Q3, regarding the

sensitivity of our approach to perturbations in the underlying regression accu-

racy. To this end, we propose a simple perturbation criterion, which introduces

randomness in the regression process. In particular, we predict a diversification

trade-off λ for a query q according to a linear combination:

λ = (1− φ)λ∗ + φλrnd, (9.2)

where λ∗ is the optimal trade-off for the query q, obtained as described in Sec-

tion 9.2.1, and λrnd is a random number in the interval [0,1]. The interpolation

parameter φ represents the perturbation level. When φ = 0, we have a perfect pre-

diction accuracy, equivalent to our upper-bound regime Sel(ora). On the other

extreme, when φ = 1, we have a completely random prediction accuracy, equiv-

alent to our baseline regime Sel(rand). Figure 9.2 shows the diversification

performance of Sel(ora) for different levels of prediction perturbation, using

DPH+xQuAD. As a baseline, we also include the performance of the Uni(ora)

regime, which represents the upper-bound for a uniform diversification.

Regarding research question Q3, the results in Figure 9.2 attest the robustness

of our selective approach to perturbations in regression accuracy. In particular,

our approach can outperform the upper-bound uniform diversification even with

up to 50% of accuracy perturbation (i.e., φ = 0.5). This is remarkable, and

confirms the effectiveness of our approach, despite the inherent difficulty of the

prediction task. A second observation relates to how close to the upper-bound

performance we can expect to be in a realistic scenario. From Figure 9.2, we

observe that gradual improvements are attained as the level of perturbation drops.

However, after a certain level (φ ≈ 0.05), further improvements seem unlikely, as

they would require a near-perfect regression accuracy. In this example, we could

expect the upper-bound performance of DPH+xQuAD in terms of α-nDCG@10

to lie in between 0.31 and 0.32 in a more realistic scenario.
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Figure 9.2: Diversification performance under an increasing prediction perturbation.

9.4 Summary

In this chapter, we have addressed the fifth claim from our thesis statement, by

showing that an effective balance between promoting relevance or diversity in

the ranking can be attained by inferring the level of ambiguity of each individual

query. To perform such an inference, we have introduced a supervised machine

learning approach based upon nearest neighbour regression to predict an effective

setting for the diversification trade-off λ on a per-query basis.

In Section 9.1, we provided an overview of related approaches from the lit-

erature that selectively choose how to best rank the documents retrieved for a

given query, according to some characteristic of this query, such as its predicted

difficulty. In Section 9.2, we introduced our selective diversification approach,

motivated by the observation that not all queries are equally ambiguous, which

renders any uniform diversification strategy suboptimal. To operationalise our

approach, we leveraged a large range of query features inspired by different query

understanding tasks in the literature within a nearest neighbour regression task.

Given a query, our approach infers an effective setting for the diversification trade-

off λ according to the optimal setting observed for similar training queries. As a

result, we predict not only whether a particular query could benefit from diver-

sification, but also to what extent its retrieved documents should be diversified.
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In Section 9.3, we thoroughly validated our proposed approach for improving

the diversification performance of MMR and our xQuAD framework, as represen-

tatives of implicit and explicit diversification approaches. In order to validate our

selective diversification regime, we contrasted it to a uniform regime, in which ev-

ery query was assigned the same trade-off, learned from training data, regardless

of the predicted ambiguity of each individual query. The effectiveness of selec-

tively diversifying the retrieved documents on a per-query basis was demonstrated

in Section 9.3.2.1, with significant improvements compared to deploying a uni-

form regime. In Section 9.3.2.2, we assessed the effectiveness of different groups

of features for predicting a suitable trade-off. In particular, the query topic classi-

fication features were shown to perform particularly well across different settings.

Finally, in Section 9.3.2.3, we assessed the robustness of our approach to random

perturbations in its prediction accuracy. As a result, we found that our approach

is extremely robust, showing improvements compared to a uniform diversification

for trade-off predictions with as much as 50% of randomness.

With this chapter, we conclude the experimental validation of the xQuAD

framework, as proposed in Chapter 4. In the next chapter, we recap on the con-

tributions of this thesis, and discuss several directions for extending the xQuAD

framework and its various components, as opportunities for future research.
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Chapter 10

Conclusions and Future Work

Web search has grown in complexity with the growth of theWeb itself. Besides the

efficiency challenges posed by the ever-increasing rates of information production

and consumption (Cutts, 2012), web search engines must also strive to improve

their effectiveness. In particular, while the Web keeps growing, the typical length

of web search queries remains short (Jansen et al., 2000). As an immediate result,

queries submitted to a web search engine are often ambiguous or underspecified to

some extent (Song et al., 2009). In this scenario, understanding the information

need underlying each submitted query becomes a challenging task.

In this thesis, we proposed to tackle the ambiguity of a query by diversifying

the documents retrieved for this query. In particular, with the multitude of users

searching the Web, we argued that an ambiguous query should be viewed as

representing not one, but multiple possible information needs—i.e., the needs of

the different users issuing this query. By diversifying the retrieved documents with

respect to these needs, the chance that the population of users will be satisfied

can be improved. To this end, we introduced a novel probabilistic framework

aimed to diversify the documents retrieved for an ambiguous query, by explicitly

accounting for the possible information needs underlying this query.

Throughout this thesis, we thoroughly described and validated the proposed

framework in light of the current literature. In the remainder of this chapter,

Sections 10.1 and 10.2 summarise our main contributions and the conclusions

drawn from the previous chapters, respectively. In Section 10.3, we lay out several

directions for future research, directly stemming from the results of this thesis.
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10.1 Summary of Contributions

In the following, we summarise the main contributions of this thesis.

A taxonomy of diversification approaches In Chapter 3, we proposed a

taxonomy of existing search result diversification approaches, according to two

orthogonal dimensions: aspect representation and diversification strategy. The

first dimension determines how the multiple information needs underlying a query

are represented as query aspects, whereas the second dimension determines how

a diversification approach leverages the represented aspects in order to diversify

the retrieved documents. In Section 3.3, we described the most prominent diver-

sification approaches in the literature under this unified taxonomy, in order to

enable their systematic comparison across the two considered dimensions.

A probabilistic diversification framework In Chapter 4, we introduced

xQuAD, a novel framework for search result diversification. As discussed in

Section 4.1, different from implicit approaches in the literature, xQuAD adopts

an explicit aspect representation. In turn, different from most other explicit

approaches, xQuAD’s user-centric aspect representation directly represents the

multiple possible information needs underlying a query, in the form of sub-queries

associated with the initial query. Finally, xQuAD’s ranking objective is formally

defined in probabilistic terms, as demonstrated in Section 4.2. Such a theo-

retically sound formulation is also general, as it naturally encompasses effective

features of previous approaches, as discussed in Section 4.4.

A thorough validation of the proposed framework In Chapter 5, we thor-

oughly validated the xQuAD framework in contrast to effective representatives

of the multiple families of diversification approaches in the literature. In addi-

tion to validating the framework as a whole in Section 5.2.2.1, we also validated

its key pillars. In particular, Section 5.2.2.2 validated xQuAD’s hybrid diversi-

fication strategy, promoting both coverage and novelty in the ranking. In turn,

Section 5.2.2.3 validated xQuAD’s user-driven aspect representation in contrast

to representations deployed by other approaches in the literature.
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A mechanism for generating sub-queries from a query log In Chapter 6,

we proposed to mine effective sub-queries from a query log. In particular, in

Section 6.2, we introduced a learning to rank approach to identify effective query

suggestions as potential sub-queries. In addition, in Section 6.3, we proposed

an evaluation framework to quantitatively assess the effectiveness of a suggestion

mechanism. Under the proposed evaluation, in Section 6.4, we validated our

learning approach in contrast to a state-of-the-art suggestion mechanism, as well

as to the suggestions produced by the API of a commercial web search engine.

An intent-aware mechanism for estimating coverage In Chapter 7, we

proposed to improve the estimation of the probability that a document covers each

sub-query. To this end, in Section 7.2, we introduced an intent-aware approach

to perform such estimations. Our approach learns both the likelihood of multiple

intents given a sub-query, as well as the score of the retrieved documents with

respect to each intent. In Section 7.3, we thoroughly evaluated our approach in

comparison to coverage estimates computed by an intent-agnostic approach.

A thorough assessment of the role of novelty In Chapter 8, we performed

the first empirical investigation of the role of novelty as a diversification strategy.

To this end, in Section 8.2, we proposed adaptations of existing diversification

approaches in the literature, in order to enable a fair comparison of coverage and

novelty in isolation from any particular aspect representation. In Section 8.3,

we thoroughly evaluated novelty in comparison to and in combination with a

coverage-based strategy, under a range of empirical and simulated scenarios.

A selective approach for setting the diversification trade-off In Chap-

ter 9, we proposed a selective diversification approach, aimed at automatically

determining how much to diversify the retrieved documents on a per-query basis.

In Section 9.2, we formalised our approach as a nearest neighbour regression, by

learning an effective trade-off between promoting relevance or diversity for an

unseen query, given the optimal trade-off observed for similar training queries.

In Section 9.3, we thoroughly evaluated our proposed approach in contrast to a

mechanism that uniformly selects a single effective trade-off for every query.
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10.2 Summary of Conclusions

In this section, we summarise the main conclusions drawn from the thorough

and comprehensive evaluation of the xQuAD framework and each of its compo-

nents throughout this thesis. In particular, these conclusions fully validate the

statement of this thesis, as presented in Section 1.1.

On the effectiveness of xQuAD In Section 5.2.2.1, we contrasted xQuAD

to effective representatives of novelty-based, coverage-based, and hybrid diversifi-

cation approaches in the literature. The results of this investigation showed that

xQuAD compares favourably to these approaches, with significant gains in many

instances. Indeed, not only does xQuAD bring larger improvements on top of a

relevance-oriented baseline, but it also performs more robustly than the consid-

ered diversification approaches, in terms of the number of queries positively and

negatively affected. To understand the reasons for such a superior performance,

we performed a breakdown analysis of the effectiveness of xQuAD across the di-

versification strategy and aspect representation dimensions. In particular, in Sec-

tion 5.2.2.2, we showed that xQuAD’s hybrid diversification strategy consistently

outperforms the strategies deployed by the considered diversification approaches

across multiple (fixed) aspect representations. In addition, in Section 5.2.2.3,

we showed that, while different diversification approaches benefit more or less

from different aspect representations, the user-driven representation adopted by

xQuAD based on query suggestions is consistently effective for all the considered

approaches. Moreover, in contrast to other diversification approaches, by incor-

porating a probability of relevance as part of its ranking objective, xQuAD is able

to successfully leverage aspect representations that have no apparent bearing on

topical relevance, such as query categories.

On the effectiveness of xQuAD’s sub-query generation As demonstrated

in Section 5.2.2.3, xQuAD’s ranking objective is general and can be successfully

deployed using different mechanisms for generating sub-queries as an aspect rep-

resentation. Nevertheless, to better understand the characteristics of effective

sub-queries, in Chapter 6, we introduced a learning to rank approach for generat-
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ing sub-queries, identified as query suggestions from a query log. In Section 6.4.2,

we quantitatively evaluated the suggestions produced by our supervised approach

in comparison to those produced by a state-of-the-art query suggestion mecha-

nism from the literature. In Sections 6.4.2.1 and 6.4.2.2, we showed that our

approach significantly outperforms this baseline at producing suggestions that

serve as effective replacements for the user’s original query and as sub-queries for

an effective diversification using xQuAD, respectively. In the latter scenario, our

produced suggestions were also statistically comparable to those produced by a

commercial web search engine, which arguably leverages much larger query logs

than the one-month sample log used in our investigation. Another benefit of our

approach, as demonstrated in Section 6.4.2.3, is its resilience to data sparsity. In-

deed, our approach is able to produce effective suggestions even for a previously

unseen query, provided that this query shares at least one term with relevant

suggestions (or other queries related to these suggestions) in the log. Regarding

the representation of candidate suggestions, our investigation in Section 6.4.2.4

showed that features dependent on the input query (computed using terms from

the suggestion itself, as well as those from other queries with a common session

or click with the suggestion) are the most effective descriptors of effective sugges-

tions, denoting the topical nature of this task. Nevertheless, query-independent

features reflecting lexical characteristics of a suggestion (e.g., its length) or its

usage history (e.g., the amount of clicks it received across sessions) were also ef-

fective. Finally, a comprehensive analysis in Section 6.4.2.5 showed the robustness

of our proposed evaluation methodology for quantifying suggestion effectiveness

in light of missing document relevance assessments.

On the effectiveness of xQuAD’s coverage estimates In Chapter 7, we

investigated another pillar for the effectiveness of the xQuAD framework, namely,

its underlying estimation of the coverage of a document with respect to multiple

sub-queries. In practice, this coverage estimation can be performed as a stan-

dard estimation of the relevance of this document with respect to each individual

sub-query. To this end, we built upon a relevance estimation approach tradi-

tionally deployed for web search, by exploiting the intent (e.g., informational or

navigational) underlying each identified sub-query. As discussed in Section 7.2,
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our proposed intent-aware diversification approach estimates the relevance of a

document with respect to a sub-query by applying ranking models suitable for the

predicted intents of this sub-query. In particular, in Section 7.2.2.1, we proposed

two supervised intent prediction regimes within our approach: model selection,

which chooses a single ranking model corresponding to the most likely intent for

each sub-query, and model merging, which mixes the scores produced by mul-

tiple ranking models for each sub-query, proportionally to the likelihood of its

different intents. In Section 7.3.2.1, our thorough experiments showed that the

model selection regime, choosing between an informational and a navigational

ranking models on a per-sub-query basis, significantly outperforms the uniform

application of either of these models for all sub-queries regardless of their pre-

dicted intent. In addition, in Section 7.3.2.2, we showed that the model merging

regime, which mixes the scores produced by the informational and the naviga-

tional models, performs at least as effectively as the model selection regime.

On the role of novelty as a diversification strategy In Chapter 8, we

thoroughly investigated the role of novelty for search result diversification. Our

goal was to assess the effectiveness of this strategy when deployed in isolation,

as well as when combined with coverage into a hybrid strategy. To this end, in

Section 8.3.2.1, we evaluated two novelty-based approaches using three distinct

aspect representations. Contrary to the traditional view of novelty as an intuitive

diversification strategy, we observed that none of the considered novelty-based ap-

proaches could consistently improve upon a non-diversified baseline, regardless of

their leveraged aspect representation. In contrast, in Section 8.3.2.2, we showed

that coverage-based approaches are substantially more effective than novelty-

based ones. In addition, in Section 8.3.2.3, we showed that the combination of

coverage and novelty into a hybrid strategy does not significantly improve upon

a purely coverage-based strategy. Hence, to analyse the conditions (if any) under

which novelty could be an effective strategy, we performed a thorough simulation

analysis. In particular, in Section 8.3.3.1, we further demonstrated the ineffec-

tiveness of a pure novelty-based strategy when leveraging relevance estimates

of various simulated performances, computed with respect to both the initial

query and its sub-queries. In Section 8.3.3.2, by simulating baseline rankings
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with gradually fewer irrelevant documents, we observed a marginal improvement

when promoting novelty. Finally, by analysing an extreme scenario considering

only relevant documents, we showed that novelty plays a role at breaking the tie

between documents with a similar coverage of the multiple aspects of the query,

providing a further empirical justification for hybrid diversification strategies.

On the effectiveness of balancing the diversification trade-off In Chap-

ter 9, we argued that the trade-off between promoting relevance or diversity in the

ranking should be set on a per-query basis, according to the predicted ambiguity

of each query. To this end, as discussed in Section 9.2, we introduced a selective

approach for predicting an effective trade-off for an unseen query, based upon the

optimal trade-off observed for similar training queries. In order to validate our

proposed selective diversification regime, we contrasted it to a uniform regime, in

which every query was assigned the same trade-off, learned from training data,

regardless of the predicted ambiguity of each individual query. The effective-

ness of selectively diversifying the retrieved documents on a per-query basis was

demonstrated in Section 9.3.2.1, with significant improvements compared to de-

ploying a uniform regime. In Section 9.3.2.2, we assessed the effectiveness of

different groups of features for predicting a suitable trade-off. In particular, the

query topic classification features were shown to perform particularly well across

different settings. Finally, in Section 9.3.2.3, we assessed the robustness of our

approach to random perturbations in its prediction accuracy. We found that

our approach is extremely robust, showing improvements compared to a uniform

diversification for trade-off predictions with as much as 50% of randomness.

10.3 Directions for Future Research

In this section, we discuss possible directions for future research, directly inspired

by or stemming from the results of this thesis. These directions are further

organised in the broad themes of estimation and modelling.
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10.3.1 Estimation

As a generative probabilistic framework, the effectiveness of xQuAD is also de-

pendent on the effectiveness of the estimation of its components. In the following,

we propose directions for further improving the estimation of these components.

Multi-Source Sub-Queries As shown in Chapter 6, query suggestions are an

effective representation of the multiple possible information needs underlying a

query. However, our xQuAD framework is not tied to a particular sub-query gen-

eration mechanism. Indeed, as shown in Section 5.2.2.3, it can effectively leverage

sub-queries produced from sources other than a query log, including non-keyword-

based representations, such as categories from a topic taxonomy like ODP. In fact,

xQuAD has already inspired initiatives towards exploiting alternative sub-query

generation mechanisms. For instance, Plakhov (2011) proposed to leverage man-

ually identified terms that commonly occur in queries of the same category as the

user’s query (e.g., “symptoms” and “treatment” are common terms for queries

that fall in the category “diseases”). Relatedly, Zheng et al. (2012) proposed to

exploit a hierarchical classification of the concepts in the user’s query, in order to

identify potential aspects belonging to different sub-categories in this hierarchy

(e.g., “computer security” and “animals” are disjoint categories related to the

query “worm”). More generally, Dou et al. (2011) proposed to leverage multiple

sources in order to identify effective sub-queries, including anchor-text strings

matching the user’s query, query reformulations mined from a query log, key

phrases extracted from the top retrieved documents (Zeng et al., 2004), and vir-

tual aspects induced by grouping these documents by the domain part of their

associated URL. An important question for all these approaches is how to weigh

the relative importance of sub-queries derived from distinct sources, while still

achieving the goal of satisfying the information needs of the user population.

Another key open problem is the identification of effective sub-queries gener-

ated implicitly, i.e., from the top retrieved documents themselves. While a pure

implicit approach that performs effectively is still missing from the literature, a

hybrid aspect representation was investigated by He et al. (2012). In particu-

lar, they leveraged explicit query aspects mined from multiple sources in order
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to regularise an implicit aspect representation based on topic models estimated

from the top retrieved documents for the query. A promising direction towards a

pure implicit sub-query generation is a supervised approach aimed at learning the

characteristics of effective sub-queries given only the top retrieved documents.

Non-IID Sub-Queries and Coverage Estimates A common assumption

made by explicit diversification approaches is that the identified query aspects

are independent and identically distributed (IID) with respect to one another. On

the one hand, such an assumption greatly simplifies the underlying mathematics

of these approaches and their practical instantiation. On the other hand, this

assumption is unlikely to hold in a real scenario. As an example, the rankings

produced for different suggestions of the same query tend to be highly correlated,

particularly since these suggestions often share common terms (Ma et al., 2010).

While such an assumption has not precluded the effectiveness of explicit diver-

sification approaches such as our xQuAD framework, a promising direction for

further improving their effectiveness is to relax this assumption while generating

sub-queries. For instance, such sub-queries could be selected based upon the top

retrieved documents (Song et al., 2011b) or the clicks that these documents re-

ceived in the past (Radlinski et al., 2010a). From a statistical machine learning

perspective, one possibility is to account for partial dependencies between candi-

date sub-queries associated with the same query (Dundar et al., 2007). In this

vein, learning to rank sets of effective sub-queries is an open direction.

The non-IID nature of sub-queries can be also exploited by the mechanisms

deployed to estimate the coverage of each retrieved document with respect to

these sub-queries. For instance, in Chapter 7, we inferred the likelihood of mul-

tiple intents for a given sub-query regardless of the intents of other sub-queries

identified for the same query. One possibility for further improving this and other

selective approaches for coverage estimation is to once again take into account

partial dependencies between these sub-queries in order to predict an assignment

of intents to an entire set of sub-queries (Dundar et al., 2007). Another possibility

is to leverage query (as opposed to sub-query) features for this purpose (Macdon-

ald, Santos & Ounis, 2012b). As an intuitive example, sub-queries identified for

a navigational query could be more likely to be themselves navigational.
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Holistic Diversification Thus far, we have discussed aspect representation

and diversification strategy as two orthogonal dimensions. In particular, in Chap-

ters 6 and 7, we introduced sub-query generation and coverage estimation tech-

niques that make no assumptions about each other. While such an independence

contributes to the generality of xQuAD, an interesting direction for further im-

proving the effectiveness of the framework is to generate sub-queries and to infer

the coverage of documents in an integrated process. Such a process could be seen

as a holistic diversification, aimed to produce at the same time diverse sub-queries

and a diverse document ranking. To this end, a natural direction is to exploit

random walks in a query-click graph, so as to directly account for the sub-queries

covered by different documents. However, this approach could suffer from data

sparsity, particularly since typically only a few documents are clicked by web

search users (Jansen et al., 2000). To overcome this limitation, bipartite graphs

could be inferred from content-enriched representations of sub-queries (e.g., using

the structured virtual document representation proposed in Section 6.2.1) and of

the top retrieved (as opposed to the clicked) documents for the query.

10.3.2 Modelling

Besides improving the estimation of the various components of xQuAD, another

possible direction for future research is on extending the framework for search

result diversification in specialised search scenarios, as we discuss in this section.

Aggregated Diversification Existing diversification approaches have been

deployed mostly in the context of web (e.g., Agrawal et al., 2009; Rafiei et al.,

2010; Santos et al., 2010a) and newswire (e.g., Carbonell & Goldstein, 1998; Chen

& Karger, 2006; Zhai et al., 2003; Wang & Zhu, 2009) search, but there have also

been approaches dedicated to diversifying image (e.g., Paramita et al., 2009; van

Leuken et al., 2009), product (e.g., Vee et al., 2008; Gollapudi & Sharma, 2009),

and blog (Demartini, 2011; Santos et al., 2012a) search results. Our initial analy-

sis of ambiguous queries using searching behaviour data from four Google verticals

(web, image, news, and product search) showed that the ambiguity of a single

query varies considerably across different verticals (Santos et al., 2011a). Such a
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variation is observed not only in terms of the aspects underlying a query in differ-

ent verticals, but also in terms of the likelihood of these different aspects. With

the prevalence of aggregated search interfaces in modern web search (Murdock &

Lalmas, 2008; Diaz et al., 2010), an open question faced by web search engines is

how to tackle query ambiguity across multiple search verticals.

In this vein, we have proposed an extension of xQuAD to tackle the aggregated

search result diversification problem (Santos et al., 2011a). Following the greedy

approach in Algorithm 3.1, given a query q and an initial ranking Rq, comprising

search results from multiple verticals ϑ ∈ Θ triggered by this query, and a set Dq ⊆

Rq with the search results selected in the previous iterations of the algorithm, we

defined the ranking objective of xQuADagg as follows:

fxQuADagg(q, d,Dq) =
∑

ϑ∈Θ

p(ϑ|q)
[

(1− λϑ) p(d|q, ϑ) + λϑ p(d, D̄q|ϑ|q, ϑ)
]

, (10.1)

where p(ϑ|q) is the probability of selecting the vertical ϑ for the query q, while

p(d|q, ϑ) and p(d, D̄q|ϑ|q, ϑ) are vertical-specific instantiations of xQuAD’s rele-

vance and diversity probabilities in Equation (4.1). Accordingly, λϑ is the vertical-

specific diversification trade-off, denoting the expected ambiguity of the query q

in the scope of the vertical ϑ. Besides open questions regarding the estimation of

the various components that emerge from this extended formulation (i.e., vertical-

specific sub-query generation, coverage, and novelty), an interesting modelling

question also arises. In particular, the extended formulation in Equation (10.1)

takes a local approach, by diversifying the search results within each vertical,

and then aggregating the rankings produced from the various verticals. As a

result, redundancy is penalised only within each vertical, but not across different

verticals. In practice, we assume that similar search results of the same type

(e.g., two videos about the same event) may be redundant, but similar results

of different types (e.g., a video and a news story covering the same event) may

be actually complementary. Another plausible formulation could take a global

approach, namely, by aggregating the search results from multiple verticals first,

and only then performing a diversification. Given the lack of a shared test collec-

tion for aggregated search evaluation, the empirical validation of these proposed

complementary approaches is also left as an open direction for investigation.
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Personalised Diversification The experiments in this thesis assumed a con-

servative search scenario, in which a query is the only evidence of a particu-

lar user’s information need available to the search engine. Nonetheless, web

search engines are increasingly gathering additional information about individ-

ual search users, including their previously issued queries and clicked documents

in the session, their recently browsed websites, and their profile across multiple

social networking websites. Such evidence could be directly incorporated within

our xQuAD framework in order to perform a personalised search result diversi-

fication. Indeed, Vallet & Castells (2012) proposed one such extension, denoted

personalised xQuAD, which can be defined as follows:

fxQuADper(u, q, d,Dq) = (1− λu) p(d|q, u) + λu p(d, D̄q|q, u), (10.2)

where p(d|q, u) and p(d, D̄q|q, u) are the probabilities of relevance and diversity

conditioned on the user u, respectively. In turn, λu represents the user-specific

diversification trade-off, denoting how ambiguous the query q is for the user u.

This extended formulation of xQuAD’s ranking objective (Equation (4.1)) opens

up interesting directions regarding the estimation of the several components of

the framework within the universe of a single user. In particular, inferring how

ambiguous a given query is and which sub-queries are plausible given the current

user’s profile can be challenging tasks, primarily since this profile is typically

sparse (Shahabi & Chen, 2003). A possible solution in this direction is to augment

the user’s profile by leveraging the preferences of similar users that issued the

same query. For instance, such a group-based personalised diversification could

be performed by exploiting the user’s social circle (Carmel et al., 2009).

Discriminative Diversification Throughout this thesis, we have used ma-

chine learning to improve the estimation of several components of the xQuAD

framework. For instance, in Chapter 5, we used learning to rank for an improved

estimation of relevance and coverage, while in Chapter 6 learning to rank was

used to generate more effective sub-queries. In turn, Chapters 7 and 9 deployed

classification and regression techniques to infer the likelihood of different sub-

query intents and the ambiguity of different queries, respectively. Despite having
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been shown to be effective at estimating the various components of xQuAD, these

approaches were deployed independently of one another. While such a compo-

nentised approach contributes to the generality of the framework, by allowing

for alternative estimation techniques to be easily deployed, it would be desir-

able to have a unified process for learning to diversify the retrieved documents

given suitable training data. As described in Section 3.3, existing approaches for

learning to diversify are either based on implicit aspect representations (Yue &

Joachims, 2008; Raman et al., 2012) or leverage an explicit aspect representation

in an online learning setting (Radlinski et al., 2008a; Slivkins et al., 2010).

We are currently investigating an extension of xQuAD for learning to rank for

diversity in a traditional offline setting, which is a recognised open challenge in

learning to rank (Chapelle & Chang, 2011). In particular, we have devised a meta

learning framework that directly leverages existing learning to rank algorithms—

such as those introduced in Section 2.2.3.2—in order to produce effective ranking

models that reward diversity. To this end, our proposed framework extends a

standard feature space for learning to rank comprising, e.g., query-dependent

and query-independent document features, into a space augmented towards two

orthogonal axes. On the coverage axis, the feature space is augmented to include

features that estimate the relevance of a document with respect to multiple sub-

queries. On the novelty axis, the space is augmented by taking into account

the diminishing relevance of each document in light of the selection of other

documents to compose a diverse ranking. In practice, we can employ xQuAD’s

diversity component from Equation (4.6) as a mechanism for generating sub-

query-dependent features that leverage these augmented axes. Precisely, a sub-

query-dependent feature φ can be computed according to:

pφ(d|q) = Ψs∈S p(s|q) pφ(d|q, s)
∏

dj∈Dq

pφ(d̄j|q, s), (10.3)

where pφ(d|q, s) denotes the estimated coverage of the document d with respect

to the sub-query s, according to the feature φ, which could be any of the query-

dependent ranking approaches described in Section 2.2.1, such as BM25 (Equa-

tion (2.13)) or DPH (Equation (2.31)). The coverage probabilities produced for

all sub-queries s ∈ Sq using the feature φ are then aggregated using a function
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Ψ, which in turn could be any summary statistic, such as mean or maximum.

Our initial results for this approach in TREC 2012 are promising (Limsopatham,

McCreadie, Albakour, Macdonald, Santos & Ounis, 2012).

10.4 Final Remarks

This thesis contributed a novel framework for the search result diversification

problem. As demonstrated throughout the thesis, the principles underlying the

xQuAD framework are general, sound, and effective. From a research perspective,

the generality of the framework enabled the investigation of several dimensions of

the diversification problem, including how to best represent the possible aspects

underlying a query, how to estimate the relevance of a document with respect to

multiple aspects, and how to tailor the diversification for the level of ambiguity of

different queries. These investigations led to the publication of 11 peer-reviewed

research papers and 5 evaluation forum reports directly related to this thesis.

Moreover, as discussed in Section 10.3, this thesis opened up directions for other

researchers, who deployed and extended the xQuAD framework for different ap-

plications. From a practical perspective, xQuAD has been subjected to scrutiny

from the research community as a regular contender in internationally renown

evaluation forums, such as TREC and NTCIR. As the winning entry in all edi-

tions of the diversity task of the TREC Web track,1 we believe that the xQuAD

framework has secured its place in the state-of-the-art.

1Best cat. B submission in TREC 2009 (Clarke et al., 2009b) and 2010 (Clarke et al., 2010);
best overall submission in TREC 2011 (Clarke et al., 2011b) and 2012 (Clarke et al., 2012).
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