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Abstract

Queries submitted to a web search engine are typically short and often
ambiguous. With the enormous size of the Web, a misunderstanding
of the information need underlying an ambiguous query can misguide
the search engine, ultimately leading the user to abandon the origi-
nally submitted query. In order to overcome this problem, a sensible
approach is to diversify the documents retrieved for the user’s query.
As a result, the likelihood that at least one of these documents will

satisfy the user’s actual information need is increased.

In this thesis, we argue that an ambiguous query should be seen as
representing not one, but multiple information needs. Based upon this
premise, we propose xQuAD—Explicit Query Aspect Diversification,
a novel probabilistic framework for search result diversification. In
particular, the xQuAD framework naturally models several dimen-
sions of the search result diversification problem in a principled yet
practical manner. To this end, the framework represents the possible
information needs underlying a query as a set of keyword-based sub-
queries. Moreover, xQuAD accounts for the overall coverage of each
retrieved document with respect to the identified sub-queries, so as to
rank highly diverse documents first. In addition, it accounts for how
well each sub-query is covered by the other retrieved documents, so as
to promote novelty—and hence penalise redundancy—in the ranking.
The framework also models the importance of each of the identified
sub-queries, so as to appropriately cater for the interests of the user
population when diversifying the retrieved documents. Finally, since
not all queries are equally ambiguous, the xQuAD framework caters
for the ambiguity level of different queries, so as to appropriately

trade-off relevance for diversity on a per-query basis.



The xQuAD framework is general and can be used to instantiate sev-
eral diversification models, including the most prominent models de-
scribed in the literature. In particular, within xQuAD, each of the
aforementioned dimensions of the search result diversification problem
can be tackled in a variety of ways. In this thesis, as additional contri-
butions besides the xQuAD framework, we introduce novel machine
learning approaches for addressing each of these dimensions. These in-
clude a learning to rank approach for identifying effective sub-queries
as query suggestions mined from a query log, an intent-aware approach
for choosing the ranking models most likely to be effective for esti-
mating the coverage and novelty of multiple documents with respect
to a sub-query, and a selective approach for automatically predicting
how much to diversify the documents retrieved for each individual
query. In addition, we perform the first empirical analysis of the role

of novelty as a diversification strategy for web search.

As demonstrated throughout this thesis, the principles underlying the
xQuAD framework are general, sound, and effective. In particular, to
validate the contributions of this thesis, we thoroughly assess the ef-
fectiveness of xQuAD under the standard experimentation paradigm
provided by the diversity task of the TREC 2009, 2010, and 2011 Web
tracks. The results of this investigation demonstrate the effectiveness
of our proposed framework. Indeed, xQuAD attains consistent and
significant improvements in comparison to the most effective diversifi-
cation approaches in the literature, and across a range of experimental
conditions, comprising multiple input rankings, multiple sub-query
generation and coverage estimation mechanisms, as well as queries
with multiple levels of ambiguity. Altogether, these results corrobo-

rate the state-of-the-art diversification performance of xQuAD.
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Chapter 1
Introduction

Search engines have become the primary mechanism for information retrieval (IR)
on the World Wide Web. In particular, the leading web search engine has recently
reported to be answering a total of 100 billion queries each month, and to be
tracking over 30 trillion unique URLs (Cutts, 2012). Nevertheless, the enormous
scale at which content is produced and consumed on the Web is not the only
challenge faced by current web search engines. An equally challenging task, which
is of particular interest to this thesis, is understanding the information needs
underlying the queries submitted by web search users (Sparck-Jones et al., 2007).

Queries submitted to a web search engine are typically short (Jansen et al.,
2000) and often carry some degree of ambiguity (Song et al., 2009). On the one
hand, at least 16% of all queries submitted to a web search engine are genuinely
ambiguous, in that they allow for multiple interpretations of the user’s under-
lying information need to be drawn (Song et al., 2009). For instance, a user
issuing the query “bond” could mean the financial instrument for debt security,
the classical crossover string quartet “Bond”, or Ian Fleming’s secret agent char-
acter “James Bond”. On the other hand, even those queries with a single, clearly
defined interpretation—and, arguably, every query to some extent—may still be
underspecified, in that it is not clear which aspect of this interpretation the user
is actually interested in (Clarke et al., 2008). For example, a user searching for
“james bond” may be interested to learn about the actors that played the secret
agent character in the various films of the series, or when the next film will be

released, or simply where to buy the entire film collection.
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The most trivial approach to tackle the ambiguity of a query could be to
simply ignore it. Alternatively, a search engine could focus the retrieval process
on documents satisfying the most plausible (e.g., the most popular) aspect! of the
query. In both cases, there is an inherent risk of leaving the user unsatisfied, if
none of the retrieved documents matches the actual information need underlying
the query. A more diligent approach could be then to ask the users for feedback on
what they actually mean (Baeza-Yates et al., 2004). However, it is unreasonable
to expect that a user will always be willing to provide such feedback (Hearst,
2009). When a (usually short) query is the only evidence of the user’s information
need available to the search engine, a more sensible approach is to diversify the
documents retrieved for this query (Clarke et al., 2008). By doing so, the search
engine can maximise the chance that the user will find at least one of these
documents to be relevant to their information need (Chen & Karger, 2006).

Diversifying the search results usually involves a departure from the indepen-
dent relevance assumption underlying the well-known probability ranking princi-
ple in IR (Cooper, 1971; Robertson, 1977). Indeed, it is arguable whether users
will still find a given document relevant to their information need once other doc-
uments satisfying this need have been observed. Therefore, a search engine should
consider not only the relevance of each document, but also how relevant the doc-
ument is in light of the other retrieved documents (Goffman, 1964). By doing
so0, the retrieved documents should provide the maximum coverage and minimum
redundancy with respect to the aspects underlying a query (Clarke et al., 2008).
Ideally, the covered aspects should also reflect their relative importance, as per-
ceived by the user population (Agrawal et al., 2009). In its general form, this is an
NP-hard problem (Carterette, 2009). Most previous approaches to this problem
deploy a greedy approximation, inspired by the notion of maximal marginal rele-
vance (Carbonell & Goldstein, 1998). In common, they seek to promote diversity
by comparing the documents retrieved for a given query to one another, in order
to iteratively select those that are the most relevant to the query while being the
most dissimilar to the documents already selected. Therefore, these approaches
implicitly assume that similar documents cover similar aspects of the query, and

should hence be demoted, in order to achieve a diversified ranking.

!Unless otherwise noted, we will refer to “aspects” and “interpretations” indistinctly.
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Alternatively, the broad topic underlying an ambiguous or underspecified
query can be usually decomposed into its constituent sub-topics. As a result, we
can ezplicitly account for the different aspects of the query, in order to produce
a diverse ranking of documents. In this thesis, we introduce a novel framework
for search result diversification that exploits such an intuition. In particular, our
Explicit Query Aspect Diversification (xQuAD) framework uncovers different
aspects underlying the original query in the form of sub-queries, and estimates
the relevance of the retrieved documents with respect to each identified sub-query.
Hence, we can take into account both the variety of aspects covered by a single
document, as well as the novelty of this document in face of the aspects already
covered by the other retrieved documents. Moreover, the relative importance of
each identified sub-query can be directly incorporated within our framework, so
as to guide the diversification process towards more plausible aspects of the initial
query. This thesis thoroughly evaluates the proposed framework as well as several
strategies for instantiating its various components, both analytically as well as
empirically. Results using data from the diversity task of the TREC 2009, 2010,
and 2011 Web tracks (Clarke et al., 2009a, 2010, 2011b) attest the effectiveness

of the proposed framework in contrast to the current state-of-the-art.

1.1 Thesis Statement

The statement of this thesis is that an effective diversification performance can be
attained by explicitly representing the multiple possible information needs under-
lying a query as sub-queries. In particular, by inferring the relative importance of
each sub-query, the retrieved documents can better cater for the needs of the user
population. Moreover, by maximising the relevance of the retrieved documents
with respect to multiple sub-queries, a high coverage of these sub-queries can be
achieved. Furthermore, by estimating the relevance of the retrieved documents to
already well covered sub-queries, a high novelty can also be attained. Finally, by
inferring the level of ambiguity of different queries, a balance between promoting

relevance or diversity can be effectively attained.
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1.2 Thesis Contributions

The key contributions of this thesis can be summarised as follows:

1. We approach the diversification problem from a user-centric perspective, by
explicitly attempting to identify the multiple information needs that may

underlie an ambiguous query, based upon past reformulations of this query.

Traditional diversification approaches in the literature exploit intrinsic features
of the retrieved documents (e.g., their constituent terms) as surrogates for these
documents’ coverage of the actual information needs underlying a query. In
this thesis, we show that a representation that explicitly aims to model these
information needs as sub-queries is more effective. To this end, we exploit query

suggestions mined from the query logs of web search engines as sub-queries.

2. We introduce a novel probabilistic framework for search result diversifica-

tion that is both principled, general, and effective.

The explicit representation of query aspects as sub-queries leads to several ranking
criteria that intuitively capture the requirements of the diversification problem,
namely, that the search results should have maximum coverage of the possible
information needs underlying the query with minimum redundancy, that differ-
ent information needs may be more or less probable given the query, and that
different queries may require different amounts of diversification. We model all
these requirements as components of a probabilistic framework, which lays the

foundation for a general and effective approach to search result diversification.

3. We thoroughly evaluate all the components of the proposed framework and

their impact on the performance of the framework as a whole.

Our thorough experiments validate the aforementioned contributions in compar-
ison to state-of-the-art diversification approaches from the literature. Moreover,
we meticulously investigate alternative instantiations for the various components
of our proposed framework. As a result, we further contribute effective solutions
to the related problem of identifying effective query aspects from a query log,
as well as the problem of diversifying the search results in light of query aspects

with different intents, or in light of queries with different levels of ambiguity.
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1.3 Origins of the Material

Most of the material presented in this thesis has previously appeared in several

journal and conference papers published in the course of this PhD programme:

e Chapter 3 describes a taxonomy for diversification approaches in the litera-
ture, as initially proposed by Santos et al. (ECIR, 2010e) and later extended
by Santos et al. (IRJ, 2012b). A discussion of one of the approaches de-
scribed in this chapter—orthogonal to the one introduced in this thesis
and focusing on efficiency issues—previously appeared in the works by Gil-
Costa, Santos, Macdonald & Ounis (SPIRE, 2011) and Gil-Costa, Santos,
Macdonald & Ounis (JDA, 2013).

e Chapter 4 provides motivations for a user-centric diversification, as initially
advocated by Santos & Ounis (DDR, 2011). In addition, this chapter also
identifies the key requirements for an effective diversification performance,
as first discussed by Santos et al. (ECIR, 2010e), and describes a probabilis-
tic diversification framework that fulfils these requirements, as originally
introduced by Santos et al. (WWW, 2010a).

e Chapter 5 markedly extends the empirical evaluation conducted by San-
tos et al. (WWW, 2010a), in order to validate the proposed framework in

contrast to the current state-of-the-art.

e Chapter 6 extends the work by Santos et al. (IRJ, 2013) on identifying

effective query suggestions for an ambiguous query as sub-queries.

e Chapter 7 extends the investigations by Santos et al. (SIGIR, 2011d) on

effective estimations of document coverage and novelty.

e Chapter 8 builds upon the simulation analysis conducted by Santos et al.

(IRJ, 2012b) on the role of novelty for search result diversification.

e Chapter 9 builds upon the work by Santos et al. (CIKM, 2010b) on diver-

sifying the search results for queries with different levels of ambiguity.
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e Chapter 10 includes future directions inspired by Santos et al. (ICTIR,
2011a) on search result diversification across multiple search verticals, such
as news, images, and product search, as well as motivations for a unified
machine learning approach to explicitly diversify web search results, based
upon the findings reported by Santos et al. (SIGIR, 2011e).

During the course of this PhD programme, the approaches introduced in this
thesis have also been evaluated in the context of the two major international
forums for research on web search result diversification: the Text REtrieval Con-
ference (TREC),? run by the US National Institute of Standards and Technology
(NIST), and the Workshop on Evaluation of Information Access Technologies
(NTCIR),? run by the Japanese National Institute of Informatics (NII). The for-
mer forum evaluates diversification approaches for English queries (Clarke et al.,
2009a, 2010, 2011b, 2012), while the latter is concerned with diversification for
the Chinese and Japanese Web (Song et al., 2011a). In addition to the aforemen-
tioned publications, some of the approaches introduced in this thesis have been
described in the following TREC and NTCIR reports:

e McCreadie, Macdonald, Ounis, Peng & Santos (2009), Santos et al. (2010d),
McCreadie, Macdonald, Santos & Ounis (2011), and Limsopatham, Mc-
Creadie, Albakour, Macdonald, Santos & Ounis (2012) describe our partic-
ipations in the diversity task of the TREC 2009-2012 Web tracks.

e Santos et al. (2011f) describe our participation in the NTCIR-9 Intent task.

In our participations in the diversity task of the TREC Web track, the frame-
work proposed in this thesis attained the top performance among the participant
groups (best “category B” submission in TREC 2009 and TREC 2010, best over-
all submission in TREC 2011 and TREC 2012) (Clarke et al., 2009a, 2010, 2011b,
2012), attesting to its effective diversification performance. In our participation
in the NTCIR-9 Intent task, our proposed framework ranked second among the
participant groups (Song et al., 2011a), showing that the ideas underlying the

framework are sound and can generalise effectively to non-English data.

*http://trec.nist.gov/
Shttp://research.nii.ac.jp/ntcir/
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1.4 Thesis Outline

The remainder of this thesis is organised as follows:

e Chapter 2 describes background material on ranking for IR on the Web,
from the basics of a web search engine, to classical approaches for query-
dependent and query-independent ranking, to more recent ones that auto-
matically learn an effective ranking model given a set of training queries.
The chapter ends with a discussion about retrieval evaluation in IR, laying

the foundations for the several experiments conducted in this thesis.

e Chapter 3 begins by describing search result diversification from a historical
perspective, as a natural generalisation of relevance-oriented ranking. The
diversification problem is then formalised as an optimisation problem, and
its computational complexity is analysed. In addition, the chapter organises
and describes related approaches to search result diversification. Lastly, the
discussion about retrieval evaluation initiated in Chapter 2 is extended to

encompass the evaluation of approaches that aim to promote diversity.

e Chapter 4 introduces the xQuAD framework, including its motivation from
a user-centric perspective. The framework’s optimisation objective is then
formalised in probabilistic terms, as a mixture of the probabilities that a re-
trieved document is relevant to the query and that this document is diverse
given the possible information needs underlying the query. The various
components that naturally emerge in the formulation of these two proba-
bilities are then described, and an example application of the framework is
provided. Lastly, the commonalities and differences between the proposed

framework and related approaches from the literature are discussed.

e Chapter 5 is the first of a series of chapters reporting on the experimental
evaluation of the xQuAD framework. In this chapter, the experimental
methodology that serves as the basis for the experiments in the subsequent
chapters of the thesis is also described. The framework is then thoroughly
validated in comparison to effective representatives of the various families

of diversification approaches in the literature.
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e Chapter 6 evaluates the sub-query generation and sub-query importance
components of the xQuAD framework. In particular, the chapter introduces
a novel machine learning approach for generating effective sub-queries from
a limited sample of the query log of a commercial web search engine, in
contrast to sub-queries generated by this search engine itself and by a state-

of-the-art query suggestion mechanism from the literature.

e Chapter 7 evaluates the document coverage component of xQuAD. To this
end, a novel machine learning approach is introduced to leverage the au-
tomatically detected intent of each sub-query in order to choose the most

effective ranking model to be applied for this sub-query.

e Chapter 8 further evaluates the role played by novelty as a diversification
strategy in comparison to and in combination with coverage. In particular,
through a simulation analysis, we uncover the limitations of novelty and its

role at differentiating between documents with similar coverage.

e Chapter 9 evaluates xQuAD’s diversification trade-off component, in order
to determine not only when to diversify the search results, but also by how
much. To this end, the chapter introduces a supervised approach to auto-

matically adapt the trade-off for queries with different levels of ambiguity.

e Chapter 10 closes this thesis by providing a summary of the contributions
and the conclusions made throughout the chapters. Several future direc-
tions are then presented, regarding alternative approaches for estimating
the several components of the framework, as well as modelling directions

for extending the framework for other search scenarios.



Chapter 2
Web Information Retrieval

Information retrieval (IR) deals with the representation, storage, organisation of,
and access to information items (Baeza-Yates & Ribeiro-Neto, 2011). The overall
goal of an IR system can be stated as to provide items that are relevant to a
user’s information need. In the context of text retrieval, which is the focus of this
thesis, information items typically correspond to unstructured or semi-structured
documents, while information needs are represented as natural language queries.

The key challenge faced by an IR system is to determine the relevance of a
document given a user’s query (Goffman, 1964). Since relevance is a prerogative
of the user, the IR system can at best estimate it. This task is further aggravated
by the fact that both queries and documents are semantically ambiguous expres-
sions of information in natural language. Such an inherent ambiguity precludes
a precise match between information needs and items, as would be the case in
a data retrieval system, such as a relational database (Codd, 1970). In order to
be able to effectively answer a user’s query, an IR system must be able to first
understand the information need underlying this query. In turn, this informa-
tion need may convey distinct user intents, from a general search for information
about a topic, to a search for a particular website (Broder, 2002).

The primary application of interest for this thesis is web search. With this in
mind, Section 2.1 describes the basic retrieval process of a web search engine and
introduces the main components in this process. Section 2.2 further describes
several approaches devoted to ranking documents in a web search setting. Lastly,

Section 2.3 describes current approaches for web search evaluation.
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2.1 Web Search Engines

Web search engines are arguably the most popular instantiation of an IR system.
A recent report revealed that at least 100 billion searches are conducted on the
leading commercial web search engine each month, amounting to over 3.3 billion
searches each day (Cutts, 2012). Besides understanding the information needs
of such a mass of users with varying interests and backgrounds, web search en-
gines must also strive to understand the information available on the Web. In
particular, the decentralised nature of content publishing on the Web has led to
the formation of an unprecedentedly large repository of information, comprising
over 30 trillion uniquely addressable documents (Cutts, 2012). While the lack of
a central control is key for the democratisation of the Web, it also results in a
substantial heterogeneity of the produced content, from its language and writing
style, to its authoritativeness and trustworthiness (Arasu et al., 2001).

Another distinctive characteristic of the Web compared to traditional infor-
mation repositories is its interconnected nature. Indeed, not only do web authors
publish massive amounts of information, but they also create links (also known
as hyperlinks) between the published information (Berners-Lee, 1989). As a re-
sult, the Web can be viewed as a directed graph, with documents represented as
nodes, and hyperlinks between documents represented as directed edges (Klein-
berg et al., 1999). Understanding the web graph is crucial for understanding the
structure and dynamics of the Web itself, but it also plays a fundamental role in
designing effective and efficient web search engines (Broder et al., 2000).

The massive-scale, heterogeneous, and interconnected nature of the Web makes
it a particularly challenging environment for search (Arasu et al., 2001). To cope
with this challenge, web search engines are typically designed with three core com-
ponents: crawler, indexer, and query processor. Figure 2.1 provides a schematic
view of these components. In particular, a crawler browses the Web in order to
collect documents into a local corpus. This corpus is processed by an indezer,
which produces data structures for efficient access to the contents of the corpus.
The resulting structures are then used by the query processor, in order to produce
a ranking of documents that are likely to be relevant to a user’s query. In the

remainder of this section, we briefly describe each of these components.
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Figure 2.1: Schematic view of a web search engine.

2.1.1 Crawling

Crawling is the process by which search engines collect documents from the Web
into a local corpus. Such a corpus can be then processed by the search engine in
order to allow users to efficiently locate information. The overall goal of crawling
is to build a corpus as comprehensive as possible, in as little time as possible (Pant
et al., 2004). To this end, a web crawler must maximise its crawling rate, while
making efficient use of its own resources (Castillo, 2004), as well as the resources
of the servers that host the desired documents (Thelwall & Stuart, 2006).
Crawling the Web can be seen as a graph traversal problem (Broder et al.,
2000). As shown in Figure 2.2, at all times, the crawler maintains a list of URLSs to
be visited, the so-called crawling frontier, which is initially filled with a few seed
URLs. While the frontier is not empty, the next URL to be visited is removed
from it and downloaded by a fetcher module, after a DNS resolver translates the
URL domain into an IP address. The fetched document is processed by the crawl
controller and the extracted contents are stored locally for indexing, as will be
discussed in Section 2.1.2. The URLs extracted from this document—and the
document’s own URL, for continuous crawls—are inserted back into the frontier,

so that they can be visited by the crawler at a later time (Manning et al., 2008).

11
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Figure 2.2: Schematic view of a crawler.
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Not all content on the Web can be crawled directly. On the one hand, the
surface Web comprises content that is reachable by following hyperlinks be-
tween documents in the web graph. On the other hand, the deep Web com-
prises content that is generated dynamically, typically in response to a user ac-
tion (e.g., after submitting information through a form, or entering a password-
protected area). As a result, the deep Web is orders of magnitude larger than the
surface Web (Bergman, 2001),! and can only be sampled with special-purpose
crawlers (Raghavan & Garcia-Molina, 2000). Nevertheless, the surface Web is
itself massive (Cutts, 2012), making crawling a challenging task.

While new documents are created and existing ones are modified at a massive
scale, the resources available for crawling—mnotably, storage and bandwidth—are
limited. To make crawling scalable, web crawlers must consider carefully which
URLS to visit, and how often to revisit each URL (Castillo, 2004). The decision of
which URLs to visit depends on the predicted usefulness of each URL regardless of
any particular query. Such a decision could be based on the global importance of
the document referred to by the URL or its perceived quality, as will be discussed
in Section 2.2.2. However, in practice, it has been shown that a simple breadth-
first search is an effective traversal strategy, as it identifies important pages early
in the crawling process (Cho et al., 1998; Najork & Wiener, 2001).

IStrictly speaking, the deep Web can be infinitely large, as some web applications can
generate content indefinitely (e.g., a calendar with “previous” and “next” hyperlinks).

12
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The decision of how often to revisit a particular URL can be even more in-
volved. With the dynamic nature of the Web, by the time a web crawler has
finished crawling its frontier, many events could have happened. These events
can include the creation, update, or deletion of documents. Moreover, different
documents evolve at different rates (Fetterly et al., 2004). For instance, docu-
ments related to news, sports, and personal pages tend to change more frequently
than those hosted in educational or governmental domains (Adar et al., 2009).
At the extreme, recent years have witnessed the emergence of social media, which
encourage real-time publishing on collaborative projects, blogs, microblogs, social
networking sites, and virtual game worlds (Kaplan & Haenlein, 2010). To provide
access to the wealth of information on the Web, a crawler must be able to adapt
itself to the publishing patterns of such heterogeneous outlets, e.g., by crawling
more often those pages that change more often (Edwards et al., 2001; Ntoulas
et al., 2004). As will be discussed in the next section, these considerations are

also important for deciding how to efficiently index the crawled content.

2.1.2 Indexing

The overall goal of indexing is to create a representation of the documents in the
local corpus suitable for automatic processing by a search engine (Baeza-Yates
& Ribeiro-Neto, 2011). The devised document representations are then stored in
appropriate data structures for efficient access by the query processor.

Given a corpus of documents (e.g., crawled from the Web), each document
is indexed following the general process illustrated in Figure 2.3. Initially, a
parser extracts the textual content from each document. The extracted content
is then processed by a tokeniser, which splits the raw text into individual tokens.
An analyser performs multiple text operations on individual tokens and records
their occurrences in each document. In this process, two main data structures
are created, which are at the core of modern indexing architectures (Dean, 2009).
The first of these is a lexicon, which stores information for all unique terms in the
corpus, such as their total number of occurrences and the number of documents
where they occur. The second structure is an inverted file, which stores, for each

term in the lexicon, a posting list, comprising information on the occurrence
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of the term in different documents, such as the frequency of the term in each
document. To enable efficient storage and retrieval, both structures are typically
compressed (Witten et al., 1999). Indexing may be performed in a single batch,
in which case the whole corpus must be re-indexed when there is an update, or

incrementally, through small atomic operations (Peng & Dabek, 2010).

> Parser — —
Lexicon Inverted
l Index
i —
—— "
) ) Inverted
Tokeniser
Corpus Index
—— "
I e
Analyser S

Figure 2.3: Schematic view of an indexer.

Parsing web documents can be a complex task. With the global and demo-
cratic nature of the Web, web documents can have a variety of content types
and character encodings, which may not be immediately identifiable from the
document itself (in an HTML header) or from its provider (in an HTTP re-
sponse header) (Croft et al., 2009). Even pure textual content may contain noise.
Indeed, web documents typically comprise irrelevant content besides their core
topic, such as advertisements, client-side scripting code, and frequently a whole
HTML template structure. Such a noisy content can hurt not only the effec-
tiveness of a search engine, but also its efficiency, since more content needs to
be stored and processed. In order to remove noise and extract cleaner content
for indexing, “boilerplate removal” algorithms can be applied (e.g., Vieira et al.,
2006; Chakrabarti et al., 2007; Evert, 2008; Kohlschiitter et al., 2010).

Tokenisation is a relatively trivial task for most western languages, in which
tokens can be separated by a whitespace or a punctuation character. On the other
hand, languages such as German do not separate compound words. In the ex-
treme, East Asian languages such as Chinese, Japanese, and Korean have no word

boundaries at all. A similar problem, common to all languages, is the segmenta-
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tion of queries and URLs (Risvik et al., 2003; Tan & Peng, 2008). An effective
approach to this problem is word segmentation based on prior knowledge, by de-
ploying machine-learned sequence models, such as hidden Markov models (Zhang
et al., 2003). For East Asian languages, a simple yet effective alternative is to
split the textual stream into fixed-length character sequences (typically, two char-
acters long), which can capture the semantics of most individual syllables without
having to rely on lexical resources (Manning et al., 2008).

Not all identified tokens are directly useful for search. For this reason, each
token can be analysed and transformed through a series of text operations before
being indexed. For instance, a search engine can choose not to index too common
terms. Such terms, known as stopwords, possess little discriminative power for
deciding which documents should be retrieved in response to a query. In addition,
their presence can also impact efficiency, since their posting lists can be almost
as long as the number of documents in the corpus. Besides stopword removal,
another common text operation is stemming, a process that reduces multiple
words to their common grammatical root, so as to increase the chance of retrieving
documents that contain a different variant of the query terms (Porter, 1980). For
instance, after stemming, the terms “retrieval”, “retriever”, and “retrieving” can
be all reduced to their common root, “retriev”. Alternatively, the search engine
may choose to index all the identified tokens in their original form, in which case
text operations are delayed until the query processing stage. As will be discussed
in Section 2.1.3, this choice is more flexible, as it allows for text operations to be
deployed only when they are predicted to be helpful (Peng et al., 2007a).

Different information about terms, documents, and the occurrence of terms
in documents can be indexed. The most basic information, which is one of the
pillars for query-dependent ranking, as will be discussed in Section 2.2.1, is the
frequency of a term in a document (Luhn, 1957). Recording the position where
each term occurs in each document can also help improve the effectiveness of a
search engine (Zobel & Moffat, 2006). For instance, the terms “information” and
“retrieval” appearing next to each other can be a strong indicator of the relevance
of a document for the query “information retrieval”. In addition, term frequency
and positional information can be recorded for different fields of a document,
such as its title, URL, or body (Zaragoza et al., 2004). Another valuable source
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of evidence, which conveys how a document is described by the rest of the Web,
is the anchor text of the incoming hyperlinks to this document (Craswell et al.,
2001). Finally, several other features that can help infer the prior relevance of
a document regardless of any query can be computed and stored at indexing

time (Das & Jain, 2012). Various such features will be discussed in Section 2.2.2.

2.1.3 Query Processing

Query processing is the component responsible for answering users’ queries (Arasu
et al., 2001). As illustrated in Figure 2.1, when a user poses a query, the search
engine examines its index structures to locate the most relevant documents for this
query. Given the size of the Web (Alpert & Hajaj, 2008) and the short length of
typical web search queries (Jansen et al., 2000), there may be billions of matching
documents for a single query. In order to be effective, a search engine must be
able to rank the returned documents, so that the most relevant documents are
presented ahead of less relevant ones (Baeza-Yates & Ribeiro-Neto, 2011).
Query processing consists of three basic operations, as illustrated in Figure 2.4.
Initially, the search engine receives a query, as a typically short and often under-
specified representation of the user’s information need (Song et al., 2009). This
query may go through a series of query understanding operations, aimed to over-
come the gap between the user’s information need and the ill-defined representa-
tion of this need in the form of a query (Li, 2010). This stage is important, since
misinterpreting the user’s information need implies that relevant documents may
never be returned, regardless of how sophisticated the subsequent retrieval is.
Once a suitable representation of the user’s query has been created, a matching
process retrieves the indexed documents that contain the query terms. Lastly, to
ensure that the user is presented with the most likely relevant documents for the
query, the retrieved documents are scored and sorted by a ranking process.
Query understanding aims to derive a representation of the user’s query that
is better suited for a search engine (Li, 2010). Typical query understanding op-
erations include refinements of the original query (Huang & Efthimiadis, 2009),
such as spelling correction (Ahmad & Kondrak, 2005; Li et al., 2006), acronym
expansion (Jain et al., 2007), stemming (Porter, 1980; Peng et al., 2007a), term
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Figure 2.4: Schematic view of a query processor.

deletion (Kumaran & Allan, 2008; Kumaran & Carvalho, 2009), query segmen-
tation (Risvik et al., 2003; Bergsma & Wang, 2007), and named entity recogni-
tion (Guo et al., 2009). Other common query understanding operations are query
topic classification, aimed to restrict the scope of the retrieved documents (Beitzel
et al., 2005; Shen et al., 2006), and query expansion, aimed to enhance the query
representation with useful terms from the local corpus (Rocchio, 1971; Lavrenko
& Croft, 2001; Zhai & Lafferty, 2001; Carpineto & Romano, 2012), or from ex-
ternal resources, such as a query log (Cui et al., 2002) or a knowledge base such
as Wikipedia (He & Ounis, 2007; Li et al., 2007; Xu et al., 2009).

Users typically expect instant responses from a web search engine (Silverstein
et al., 1999). This makes it inefficient to fully score all documents matching the
query terms. Hence, scoring is typically performed as a multi-layer process (Cam-
bazoglu et al., 2010). In the first layer, matching documents from the entire corpus
are returned as an unordered set using a standard boolean retrieval approach (Gu-
divada et al., 1997). The second layer deploys an unsupervised query-dependent
ranking approach, such as those described in Section 2.2.1, in order to provide an
overall ordering of the initially matched documents at a low cost. This cost can
be made even lower by deploying efficient matching techniques, so as to short-
circuit the examination of the posting lists of documents that will not make the
final ranked list (e.g., Turtle & Flood, 1995; Macdonald et al., 2012c¢). Finally,
in the third layer, machine-learned ranking can be deployed to integrate ranking

evidence from multiple features, as will be discussed in Section 2.2.3.
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2.2 Web Search Ranking

The enormous size of the Web most often results in an amount of documents
matching a user’s query that by far exceeds the very few top ranking positions
that the user is normally willing to inspect for relevance (Silverstein et al., 1999).
While users may have high expectations regarding the quality of the documents
returned by a search engine, they often provide the search engine with a very lim-
ited representation of their information need, in the form of a short query (Jansen
et al., 2000). In such a challenging environment, effectively ranking the returned
documents becomes of utmost importance for satisfying the needs of search users.

Ranking is normally applied on the subset of the indexed documents that
matches the user’s query, according to, for instance, a boolean retrieval approach,
as discussed in Section 2.1.3. A ranking function f(q,d) takes as input a query
q, as a representation of the user’s need, and a document d, initially matched for
this query. As an output, it returns a list R, of documents in decreasing order
of their estimated relevance to ¢. Different ranking functions can be thought of
as different features (or signals) of the estimated relevance of a document to a
query. In particular, depending on the evidence it leverages from the query ¢ and

the document d, a ranking feature can be categorised into one of three classes:

e query-dependent document features score a document according to its esti-

mated relevance to the query;

e query-independent document features score the relevance of a document a

priori, regardless of any particular query;

e query features depend solely on the query, and can be used to adaptively

score the relevance of all documents for each individual query.

Query features are addressed in the specific contexts of Chapters 6, 7, and 9.
In the remainder of this chapter, Sections 2.2.1 and 2.2.2 introduce several ap-
proaches for query-dependent and query-independent ranking, respectively, which
are used as document ranking features in various experiments throughout this the-
sis. In Section 2.2.3, we introduce a machine learning framework for automatically
constructing ranking functions that leverage multiple features. The evaluation of

the effectiveness of different ranking approaches is discussed in Section 2.3.
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2.2.1 Query-dependent Ranking

A standard boolean retrieval is typically insufficient in a web search scenario, and
its use is often restricted to producing an initial set of documents that match the
query (Cambazoglu et al., 2010; Li & Xu, 2012). From this set, more sophisti-
cated approaches can be deployed to produce a ranking of documents likely to be
relevant to the user’s information need. To this end, it is of utmost importance
that the deployed ranking function be able to appropriately score the occurrences
of the query terms in each document. From this perspective, ranking can be seen
as the problem of appropriately counting frequencies (Salton & Buckley, 1988).
There are two fundamental frequencies of interest for ranking documents:
term frequency and document frequency. The term frequency (tf, ;) represents
the number of occurrences of a term ¢ in a document d, and denotes the impor-
tance of the term in the document. The intuition is that a document with more
occurrences of a query term is more likely to be relevant to the query (Luhn,
1957). The document frequency (n;) represents the number of documents where
the term t occurs in the corpus. This quantity is related to the ability of the term
to discriminate between documents. Intuitively, a document that contains a rare
query term is more likely to be relevant than a document that contains a com-
mon query term (Spéarck Jones, 1972). This notion leads to the so-called inverse
document frequency (idf,). In its simplest form, given the document frequency,

ng, and the total number of documents in the corpus, n, it can be defined as:
n
idf, = log —. 2.1
i =log - (2.1)

A third important quantity for ranking is the document length (I;). This
quantity denotes the likelihood that a document will match any query term,
regardless of its relevance to the query. As a result, if two documents contain the
same number of occurrences of a term, the shorter document should be preferred.
Different definitions of document length can be considered (Singhal et al., 1996).

A basic working definition is the following:

la = Z tha- (2:2)

ted
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Term frequency, inverse document frequency, and document length are at
the heart of the most prominent query-dependent ranking approaches in the
literature. These approaches can be broadly categorised as either algebraic or
probabilistic, depending on their underlying mathematical basis (Baeza-Yates &
Ribeiro-Neto, 2011). Algebraic approaches represent both the query ¢ and each

document d as vectors in the space of all unique terms t; € V, such that:

q= (W, q Wy g Wyq) and d= (w4 Wd,--.,W,d), (2.3)

where w; o is the weight of ¢ in either the query ¢ or the document d, as assigned by
a term weighting model, and v = |V| is the number of unique terms in the lexicon
V. The most prominent approach in this family is the vector space model (VSM;
Salton et al., 1975), which scores a document vector d by its similarity to the

query vector q, as given by the cosine between q and d, according to:

q- d EU 1wt“q i,d
ol 5, @21

In a classical formulation, the VSM adopts ¢f-idf weights, such that w; . = tf, , idf,
for both queries and documents (Salton et al., 1975). A simple document length

fvsm(q, d) = cos(q,d) = (2.4)

normalisation is automatically performed by dividing the dot product between
the query and document vectors by the product of their norms. Alternative
formulations have been further investigated by Salton & Buckley (1988). In
particular, an unnormalised version of Equation (2.4) with binary weights w; .

leads to the simple yet effective coordination level matching (CLM):

fCLM<Q7 d) =q- d= Z W;,q We; d - (25)

Different from algebraic approaches, probabilistic approaches leverage proba-
bility theory to model the relationship between queries and documents. In the fol-
lowing, we describe approaches from the three major families of probabilistic rank-
ing in the literature: probabilistic relevance modelling (Section 2.2.1.1), language

modelling (Section 2.2.1.2), and divergence from randomness (Section 2.2.1.3).
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2.2.1.1 Probabilistic Relevance Modelling

The literature on probabilistic ranking dates back to 1960, with the seminal work
by Maron & Kuhns (1960) on probabilistic indexing and retrieval in a library set-
ting. The field experienced intensive development in the 1970s and 1980s (Cooper,
1971; Harter, 1975a,b; Robertson & Sparck Jones, 1976; Robertson, 1977; Robert-
son et al., 1981), culminating in some of the most effective ranking functions used
by current IR systems (Robertson et al., 1994, 2004; Zaragoza et al., 2004).

Probabilistic relevance modelling explicitly accounts for relevance as an in-
tegral part of the ranking process. Although relevance is an unknown variable
to a retrieval system, properties of the query and the document may provide
probabilistic evidence of the relevance of the document to the information need
expressed by the query. The probability of relevance of a given document to a
given query is central in the formalisation of the well-known probability ranking
principle (PRP) in IR (Cooper, 1971; Robertson, 1977):

“If a reference retrieval system’s response to each request is a ranking
of the documents in the collection in order of decreasing probability of
relevance to the user who submitted the request, where the probabilities
are estimated as accurately as possible on the basis of whatever data
have been made available to the system for this purpose, the overall
effectiveness of the system to its user will be the best that is obtainable

on the basis of those data.”

The PRP provides a general framework for ranking functions:

ferp(q,d) = p(Gylq, d) (2.6)

~ E Wy, d,

where G, is the set of documents relevant to the query ¢, in which case p(G,|q, d)
denotes the probability of relevance given the query ¢ and the document d. As an
abstract principle, the PRP does not prescribe how the probability of relevance
should be estimated. Nonetheless, after a series of order-preserving transforma-

tions, its general formulation is typically stated as a summation over individual
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term weights w; 4 (Robertson & Zaragoza, 2009). This simplification makes the
estimation of the probability of relevance tractable, by assuming independence
among the query terms conditioned on the observation of relevant (and non-
relevant) documents. To estimate the individual term weights, there have been
two major directions, depending on whether the presence or the actual frequency
of terms in a document is considered. The resulting models, respectively, binary

independence and best matching, are discussed next.

Binary Independence Model One of the first instantiations of the PRP was
the binary independence model (BIM; Robertson & Spéarck Jones, 1976). This
model assumes a presence-absence scenario, where absence is the complementary
event to presence. Under this assumption, tf, ; is a binary variable, denoting
whether or not the term t occurs in the document d. It is further assumed
that tf, ; provides evidence of the relevance of the document d for the term ¢,
independently of other terms. The general formulation of the PRP under these

particular assumptions leads to the following definition:

M = log P(ta1Ga) (L = p(thalGy))

(1 = p(tf,a190)) P(tf,.a1G,)’ (2.7)

where G, is the relevance set for ¢ and if, ; is either 0 or 1. In the presence of
actual relevance data (e.g., from the user’s feedback), replacing the probabili-
ties in Equation (2.7) with their equivalent proportions leads to the well-known
Robertson / Spéarck Jones (RSJ) formula (Robertson & Spérck Jones, 1976):

wiy! = log (n +0.5)(n—n" —n + n +0.5)

, 2.8
(ng — ny +0.5)(n* — ny +0.5) (28)

where n; is the total number of documents in the corpus that contain the term ¢,
ny is the number of such documents that were judged relevant, and n* is the total
number of documents judged relevant. The introduced factor of 0.5 makes the
resulting estimation more robust compared to using a simple ratio (Robertson
& Sparck Jones, 1976). In a usual scenario, in the absence of relevance data,
n* = nf = 0, in which case the individual term weights in Equation (2.8) closely

approximate the idf formulation in Equation (2.1).
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Best-Matching Models The binary independence model estimates the use-
fulness of different terms at identifying relevant documents for a given query.
Such estimates can be iteratively refined with relevance feedback from the users,
resulting in an overall improved model. On the other hand, this model cannot
differentiate between documents that contain the same query terms, regardless
of the extent to which these documents are about these terms.

To overcome the deficiencies of the BIM, Robertson et al. (1981) introduced a
non-binary term frequency component to the framework of probabilistic relevance
modelling. In order to adequately model term frequency distributions, Robertson
et al. (1981) built upon the notion of eliteness proposed by Harter (1975a,b).
As conceived by Harter, for each term, there exists a set of documents, known
as the elite set, which is assumed to be somehow relevant to the term.?2 As a
result, the frequency of a term can be described as a mixture of two Poisson
distributions (Poisson, 1837): the first distribution describes the frequency of the
term in the elite set, whereas the second describes the term frequency in the
non-elite set, comprised by the rest of the documents in the corpus.

These distributional assumptions are at the core of Harter’s 2-Poisson model
for estimating the probability that a document is relevant to a single term (Har-
ter, 1975a,b). In order to extend Harter’s idea of eliteness to multi-term queries,
Robertson et al. (1981) initially proposed to model the relationship of the elite
sets associated with individual query terms and the relevance set associated with
the query. Estimating the various parameters that emerge from this formula-
tion turned out to be intractable, since there was no directly useful evidence for
performing this task, primarily because eliteness is a hidden variable.

As an alternative, Robertson et al. (1993) proposed a simple yet effective
approximation of the 2-Poisson model, by investigating the model’s qualitative
behaviour as a function of tf, 4, i.e., w;q(tf; ;). In particular, they noted that this
function had the following properties (Robertson & Walker, 1994):

(2) wea(0) =0 (b)wpa(tha) < thy  (¢) lim wea(tfg) = wig" . (2.9)

tft, a—>00

2Strictly speaking, term frequency is assumed to be dependent on eliteness, which is in turn
assumed to be dependent on relevance (Robertson & Zaragoza, 2009, page 352).
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The first property follows by design. The second property emphasises the
monotonically increasing behaviour of w; 4 as a function of tf, ;. The last property
was denoted saturation, and reflects the observation that the contribution of a
term to a document cannot exceed an asymptotic limit. This limit corresponds to
the weight given by the BIM, as defined in Equation (2.7). A simple parametric

function that satisfies all these properties is the following:

i

ATU t,d

—_— ! 9 2 . 10
t,d L tf;&,d ( )

where k& > 0 is the saturation parameter. For high k values, increments in if, ;
continue to contribute to the overall weight, whereas for low k values, this con-
tribution tails off quickly (Robertson & Walker, 1994).

Harter’s 2-Poisson model relies on the assumption that all documents have
the same (constant) length. While this assumption was arguably plausible in the
scenario originally addressed by Harter (1975a,b), where abstracts rather than
the full text of documents were considered, it is unlikely to hold in a general text
retrieval setting, particularly on the Web (Fetterly et al., 2004). To cope with
documents of different lengths, Robertson et al. (1993) proposed the following

parametrised length normalisation scheme:
whg = (1= ) +b(la /1), (2.11)

where I; and [ are the length of document d and the average length of all docu-
ments in the corpus, respectively, with the parameter b, 0 < b < 1, controlling
the strength of the normalisation. In particular, b = 0 results in no normalisa-
tion, whereas b = 1 results in a full length normalisation. A carefully chosen
setting can help balance the normalisation, so as to penalise long documents that
are verbose without harming those that genuinely include extra relevant con-
tent (Robertson & Zaragoza, 2009). Applying this scheme to normalise the tf

component of Equation (2.10) results in the following saturation function:

iy

SATU t,d

= . 2.12
t,d k w}t\’lé)RM + tft,d ( )
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Finally, by combining the normalised term frequency saturation function of
Equation (2.12) with the asymptotic maximum of Equation (2.9), which can be
approximated by Equation (2.8), we arrive at the definition of the well-known
BM25 ranking function (Robertson et al., 1994):

fBM25(Q7 d) = Z wzreIEzATU wng . (2-13)

teq

BM25 is the latest of the original family of best-matching (BM) probabilistic
models proposed by Robertson et al. (1993, 1994). Variants of the model, includ-
ing different correction factors for document length normalisation, as well as with
parameters for controlling the term frequency saturation in the query itself, are
discussed by Robertson & Zaragoza (2009, page 361).

2.2.1.2 Language Modelling

Language modelling is the task of predicting the next term given a previously ob-
served sequence of terms. This task has been extensively investigated in contexts
such as automatic word completion, speech, handwriting and optical character
recognition (OCR), spelling correction, and statistical machine translation (Man-
ning & Schiitze, 1999). Early developments date back to Markov’s work on
modelling character sequences in Russian literature (Markov, 1913), as well as
Shannon’s work on modelling sequences of symbols, which helped lay out some
of the basic elements of modern information theory (Shannon, 1948).

A language model is a probability distribution over sequences of terms (Man-
ning & Schiitze, 1999). Formally, let ¢ represent some sample text (e.g., a query,
a document, a set of documents). A language model 6, is a function that assigns

a probability to a sequence of terms ¢, --- %, given (, such that:

v

Oc = p(te,- -+, t|C) = Hp<ti‘t17 et €), (2.14)

i=1

where the right-hand expansion follows from the chain rule.
A language model permits generating sequences of terms following the model’s

distribution, or estimating the probability that a given sequence is generated by
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the model. As apparent from Equation (2.14), language modelling aims to predict
the next term given the previously observed terms. However, conditioning this
prediction on the entire history of observed terms is often infeasible, as evidence
of the occurrence of longer sequences is sparser than that of shorter ones (e.g., the
observation of a sequence of terms implies the observation of its subsequences, but
the opposite is not necessarily true). To counteract sparsity problems, a typical
solution is to limit the history of considered terms to the previous o — 1. This

simplification leads to an ngram language model of order o, i.e., Qég):

920) ~ Hp(tz‘\tz‘—(o—l)a o tie1, Q). (2.15)
i—1

An ngram language model of order o corresponds to a Markov model (Markov,
1954) of order o — 1, where future observations (i.e., the next term) depend solely
on the present state (i.e., the immediately preceding o — 1 terms). Typical ngram
language models are the unigram (o = 1) and bigram (o = 2) models, which

instantiate Equation (2.15) respectively as follows:

0 ~ T p(til0), (2.16)
=1

07 ~ ] p(tilti, ). (2.17)
=1

Despite its prominent usage in other fields, it was only in the late 1990s
that language modelling was introduced as a ranking approach for IR (Ponte &
Croft, 1998; Hiemstra, 1998; Berger & Lafferty, 1999; Miller et al., 1999). While
probabilistically equivalent to the classical models described in Section 2.2.1.1,
the language modelling approaches are fundamentally different from a statistical
perspective. In particular, probabilistic relevance modelling constructs a model
for relevant (and non-relevant) documents given a query, while language modelling
constructs a model for relevant queries given a document (Zhai, 2008). The latter
choice allows language modelling approaches to estimate effective ranking models
without having to make parametric assumptions regarding the distribution of

terms in predefined relevance classes (Ponte & Croft, 1998).
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Query Likelihood Departing from an explicit account of relevance, the most
basic language modelling approach attempts to model the query generation pro-
cess (Ponte & Croft, 1998). Starting from the probability p(d|q) of observing a

document d given the query ¢ and applying Bayes’ rule, we have:

p(qld) p(d)
p(q)

where the latter expression is obtained by ignoring p(q), which is the same for

p(d|q) = o p(q|d) p(d), (2.18)

every document d. The document prior p(d) can be estimated in order to em-
phasise distinctive characteristics of different documents, such as their authority
or quality, as will be discussed in Section 2.2.2. Alternatively, this probability is
commonly assumed to be uniformly distributed across all documents, in which
case it can also be ignored. After these simplifications, ranking is reduced to
the task of estimating the probability p(g|d) of observing the query ¢ given the
document d. This model, denoted the query likelihood model (QLM), estimates
the probability that the query ¢ is generated by the document language model

04. Under a unigram assumption, it can be stated as follows:

fotan(a.d) = T p(t16a) s, (2.19)

teq

where p(t|0;) denotes the probability of observing the term ¢ given the language
model 64, and {f, , denotes the frequency of this term in the query g.
Higher-order ngram language models have been deployed with some success
in the literature, as a means to reward the occurrence of the query terms in close
proximity. For instance, Song & Croft (1999) proposed to interpolate unigram
and bigram language models. Srikanth & Srihari (2002) relaxed the sequential
nature of bigrams and exploited unordered term pairs. Gao et al. (2004) extended
unigram models to cater for term dependence in both the query and the retrieved
documents using identified syntactic structures. Alternatively, Cao et al. (2005)
leveraged term relationships derived from a thesaurus. Recently, Lv & Zhai
(2009) proposed to build multiple language models for different positions within
each document, while Zhao & Yun (2009) proposed to refine the estimation of

unigram models based upon the centrality of each query term in a document.
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A particularly effective approach to exploit term dependence was proposed
by Metzler & Croft (2005). Their approach models term dependence in the
language modelling framework via Markov random fields (MRF), an undirected
graph structure commonly used to model joint distributions. Within this frame-
work, they proposed to model two types of dependence: sequential dependence,
capturing relationships between pairs of neighbouring query terms, and full de-
pendence, capturing relationships between all pairs of query terms. These two

models were linearly interpolated with a unigram model, according to:

hire(g: d) = ay, Z log p(ti|0a)

ti€q

+agy > logp((ti, ty)ulba)

ti€q t;€q
j=itl

tapy Y logp((tity)ulba). (2.20)

ticq tj€q

J#i
where the parameters ay,, a,, and oy control the weights of the unigram, sequen-
tial, and full dependence models in the linear combination, respectively, and the

parameter w defines the length (in tokens) of the sliding window for counting

occurrences of the pair (¢;,¢;) in the document d.

Document Likelihood By modelling the language of documents rather than
the query language, traditional language modelling approaches are able to lever-
age more data for inferring the relevance of a document to a given query. On the
other hand, it is unclear how to enhance the query representation for improved
retrieval, since the query is assumed to be a random sample of the document
language model (Zhai & Lafferty, 2001). To overcome this limitation, one could
instantiate the language modelling framework to produce a ranking function or-
thogonal to the query likelihood model. Analogously to Equation (2.19), under

a unigram assumption, we can define a document likelihood model (DLM) as:

Olni(a,d) = T p(t16,) e, (2.21)

ted
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Directly deploying this ranking function would likely be ineffective, given the
sparse evidence available for estimating 0, from the query ¢ alone. Nevertheless,
the query language model can be enhanced by leveraging feedback information,
either directly from users, in the form of relevance judgements, or automati-
cally, by assuming that the top retrieved documents for the query are relevant.
The latter scenario is denoted pseudo-relevance feedback (Rocchio, 1971). Ef-
fective alternatives for constructing improved query language models include the
relevance-based language modelling approach of Lavrenko & Croft (2001), as well
as the model-based feedback approach of Zhai & Lafferty (2001).

Unified Likelihood While there exist effective approaches for modelling both
the query and the document generation processes, an even more effective approach
is to combine both query and document language models in a unified formulation.
In particular, Lafferty & Zhai (2001) proposed a risk minimisation approach for
document ranking within the language modelling framework. In their approach,
the risk of returning documents with a language that does not fit the query
language is quantified by the Kullback-Leibler (KL) divergence between the query

and document language models, 0, and 0, respectively, according to:

fKL<Q7 d) = _KL<‘9q”‘9d)
=~ 3 ptloy) o 0 (2.22)

p(1lo)

where p(t|6,) and p(t|0,) denote the probability of observing the term ¢ given the
query and document language models, respectively. This formulation has been
shown to be effective across many ranking scenarios, and represents the current

state-of-the-art in language modelling for IR (Zhai, 2008).

Language Model Estimation A key issue for the effectiveness of language
modelling approaches is the estimation of a language model (Zhai & Lafferty,
2004). Given some text ¢ (a query or a document), one of the most simple
and widely used mechanisms to estimate the language model 6, = p(¢|() is the
maximum likelihood estimation (MLE; Fisher, 1922), defined as:
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Puasltl0) = 55, (223)
where {f, - denotes the raw frequency of the term ¢ in the sample of text ¢, whereas
lc denotes the length of this text, measured in tokens.

A central problem when estimating language models is that the majority of the
terms in a lexicon typically appear very sparsely in limited text samples such as
queries and documents. For example, in a query likelihood scenario, some query
terms may not appear at all in a document. If the document language model is
estimated as in Equation (2.23), the document will be assigned a zero probability
of generating the query, unless it contains all query terms. In addition, even when
a query term is present in the document, its associated generation probability
tends to be overestimated via maximum likelihood (Manning et al., 2008). To
overcome these limitations, an effective approach is to smooth the probabilities
when estimating a language model (Zhai & Lafferty, 2004).

A simple smoothing approach consists in interpolating a query or document-
specific language model with the language model of a large background corpus.
Typically, the target document corpus C is used for this purpose. The result-
ing model, p,(t|(), is referred to as a linear interpolation language model (or a

language model with Jelinek-Mercer smoothing), and is estimated as follows:

Pa(tlC) = apyp(tlC) + (1 — @) pure(tlC), (2.24)

where 0 < « < 1 is the interpolation parameter. A particularly effective alter-
native to linear interpolation is Bayesian smoothing with a Dirichlet prior with

parameter u (Mackay & Peto, 1994), defined according to:

t, tlc
p,(t¢) = f’CﬂZT:E(' ) (2.25)

It can be shown that Equation (2.25) is a special case of Equation (2.24), with
a length-dependent interpolation parameter, i.e., & = p/(l +4). This observation
explains the state-of-the-art performance of Dirichlet smoothing (Zhai, 2008).
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2.2.1.3 Divergence from Randomness

A different probabilistic approach to query-dependent ranking is based on the
notion of divergence from randomness (DFR; Amati, 2003). DFR models build
upon the intuition that the more the content of a document diverges from a
random distribution, the more informative the document is. Similarly to the
best-matching approaches discussed in Section 2.2.1.1, DFR models are inspired
by Harter’s 2-Poisson model (Harter, 1975a,b), which assumes that the informa-
tiveness of a term in a corpus can be inferred by analysing its distribution in
different subsets of the corpus. Nonetheless, different from best-matching and
other probabilistic relevance models, DFR models have no explicit account of
relevance. Instead, these models exploit the statistical distribution of terms in
documents, in which they resemble the language modelling approaches described
in Section 2.2.1.2. However, different from language models, DFR models are an
example of frequentist rather than Bayesian inference models (Amati, 2006).

The relationship between the informativeness of a term and its distribution in
a corpus of documents has been recognised early (Damerau, 1965; Bookstein &
Swanson, 1974; Harter, 1975a,b). As discussed in Section 2.2.1.1, non-informative
terms tend to be randomly distributed over the document corpus, whereas infor-
mative terms appear more densely in a few elite documents. In particular, the
frequency of a non-informative term can be modelled by a Poisson distribution
with a mean proportional to the average frequency of the term in the corpus. Un-
der this assumption, inferring the informativeness of a term reduces to measuring
the deviation of the term’s frequency distribution from a random distribution.
Harter’s 2-Poisson model and the family of best-matching models derived from
it perform this inference by parametrising the occurrence of informative terms as
a second Poisson distribution (Harter, 1975a,b). As discussed in Section 2.2.1.1,
estimating the parameter of this distribution for each query term is problematic,
since eliteness is a hidden variable (Robertson & Zaragoza, 2009).

To overcome this limitation, DFR models assume that the elite set of a term
is simply the set of documents that contain the term (Amati & van Rijsbergen,
2002). In particular, the basic hypothesis underlying DFR models is that “the

informative content of a term can be measured by examining how much the term
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frequency distribution departs from a ‘benchmark’ distribution, that is, the distri-
bution described by a random process” (Amati, 2003). To quantify this hypothesis,
a prototypical DFR model can be defined as follows:

forr(q,d) = Z Wi, q Wt d, (2.26)

teq

where w;, and w4 represent the weight of each term ¢ in the query ¢ and in
the document d, respectively. The former weight is typically computed as the

normalised frequency of t in ¢, according to:

tﬁ?q

Uy = e (2.27)

In turn, the weight w; 4 is computed as:
Wy, q = inf; infs, (2.28)
where inf, = —log, p;(t|C) and inf, = 1 — py(t|d) define the informativeness of

the term ¢ in the corpus C and in a document d that contains ¢, respectively. As
a result, the weight w4 of each query term ¢ in a document d is a decreasing
function of both probabilities p,(¢|C) and py(t|d). In particular, the probability
p1(t|C) defines a basic randomness model of the distribution of ¢ in the corpus C,
whereas p,(t|d) defines the information gain of observing the term ¢ in the docu-
ment d. As the amount of information in a document is directly proportional to
its length, a third component is introduced to perform a term frequency normali-
sation. Different distributional assumptions for estimating the basic randomness
model and the information gain conveyed by the occurrence of a term in a docu-
ment, as well as different term frequency normalisation schemes, lead to a variety
of effective DFR models (Amati, 2003). In the following, we describe examples of
models that are used in the experimental part of this thesis. These include both
parametric and non-parametric models that assume term independence, as well
as an extended non-parametric model that exploits term dependence, in order to

promote documents where the query terms occur in close proximity.
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Parametric Models Several effective ranking functions can be derived by com-
bining different models of randomness, information gain, and term frequency nor-
malisation (Amati, 2003). While DFR was originally conceived as a framework
of non-parametric models (Amati & van Rijsbergen, 2002), subsequent studies
have shown that the effectiveness of these models could be further improved by
parametrising the term frequency normalisation component for the characteristics
of different corpora or for different query lengths (He & Ounis, 2003).

One of the most prominent parametric models in the DFR framework is
PL2 (Amati, 2003). This model deploys the Poisson distribution (Poisson, 1837)
and Laplace’s law of succession (Laplace, 1814) as models of randomness and in-
formation gain, respectively. In particular, the Poisson distribution is a limiting
case of a binomial process, expressing the probability p,(¢|C) of observing tf, ;
occurrences of a term ¢ in a randomly selected document d from the corpus C.
After tf, ; occurrences have been observed, the probability p,(t[d) of observing a
further occurrence of t in d—the so-called aftereffect of future sampling (Feller,
1968)—is proportional to the number of already observed occurrences, according
to Laplace’s law of succession. Intuitively, while an informative term may be
relatively rare in the corpus, the frequency of this term tends to be high in the

documents where it occurs. PL2 instantiates Equation (2.28) as:

2
n tfi, 3
thc

o
td T
t2) +1

(#2110

14
(55 - o o +0510mor f)).
(2.29)

where n is the number of documents in C, tf, o is the frequency of the term ¢ in

the corpus, and tffag is given by the so-called normalisation 2, according to:

1
tfii? = th.alog, <1 + 7@)’ (2.30)

where {f, ; is the raw term frequency in d, l; and 1 are the length of d and the
average length of all documents in the corpus, respectively, and v a is a param-
eter controlling the amount of normalisation. This model has been shown to be

particularly effective for web search (Plachouras & Ounis, 2004).
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Non-Parametric Models Although provably effective, PL2 and several other
models derived from the DFR framework require tuning the parameter v in Equa-
tion (2.30) (Amati, 2003). Parameter tuning also plays an important role for term
frequency normalisation in probabilistic relevance models and for smoothing in
language models, as discussed in Sections 2.2.1.1 and 2.2.1.2, respectively. To
alleviate the need for extensive tuning while attaining an effective retrieval per-
formance for corpora and queries with different characteristics, Amati (2006)
introduced a series of non-parametric DFR models. Such models deploy a hyper-
geometric distribution (Feller, 1968) as the basic randomness model. Similarly
to the binomial distribution (or its previously discussed Poisson approximation),
the hypergeometric distribution expresses the probability p,(¢|C) of observing
tf, 4 occurrences of a term ¢ in a corpus C. Unlike the binomial, the hypergeo-
metric distribution assumes that samples are drawn without replacement, i.e., in
a non-independent fashion. As a practical consequence, this randomness model
naturally incorporates an inherent non-parametric term frequency normalisation
mechanism, hence precluding any need for further parameter tuning.

Of the family of non-parametric DFR models, DPH (Amati et al., 2007) has
been shown to perform effectively across a variety of web search tasks (McCreadie
et al., 2009; Santos et al., 2010d; McCreadie et al., 2011). Moreover, as it requires
no parameter tuning, it is also efficient from a deployment perspective. Besides
using a hypergeometric randomness model, DPH estimates the information gain
of observing a term inspired by the notion of informative content of a theory in-
troduced by Popper (1934) and extensively studied by Hintikka & Suppes (1970).
The weighting scheme of DPH is formulated as:

Te,a) 2 =
tﬁd(l——t’) In tf;
wPPH = = la 7y, <t —) +0.51o <27Tt <1 — ﬂ))
t,d tf;’d +1 g ft,d ld tf;g,c g ft,d ld

(2.31)

Once again, as normalisation is inherent in the model, DPH provides an effec-
tive and efficient alternative to other models. For these reasons, it will be used
extensively in the experimental part of this thesis, both as a baseline ranking on

its own as well as a strong basis for building additional baseline rankings.
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Extended Models All previously described DFR models assume that the
query terms occur in a document independently of one another. To relax this
assumption, Peng et al. (2007b) introduced the pBiLL DFR model to exploit
higher-order term dependence for ranking documents. Similarly to the MRF
model of Metzler & Croft (2005), described in Section 2.2.1.2, pBiLi can model
different modes of term dependence, such as sequential and full dependence. As
Peng et al. (2007b) have shown, full dependence generally outperforms sequential
dependence, and is hence the mode used in our experiments. Assuming a full

dependence mode, the pBilL weighting scheme can be defined as:

PP —
td T Qy, Wy q

+0sz L

= (“og, (I —1)! + log, tfi, . 4!
ticq ety .a +1( > (a=1) 2 Hnta)d
tiFt +log, (I —1 — tf(t,ti),d>!
- tf(t,ti),d logy(1/(la—1))
— (=1 = sy loga((a=2)/(—1))),  (232)

where the parameters a, and oy control the linear interpolation between the
unigram and full dependence weights, respectively. The unigram weight, w4,
can be computed using any of the aforementioned DFR models, such as PL2
(Equation (2.29)) or DPH (Equation (2.31)). The term dependence weight com-
bines the binomial randomness model with the Laplace model of information gain
to measure the informativeness of occurrences of pairs (t,t;) of query terms in
cach document d. The resulting factorials in Equation (2.32) can be efficiently
computed using Lanczos’ approximation of the Gamma function (Lanczos, 1964).
Different from other probability distributions, such as the Poisson and hyper-
geometric distributions used by PL2 and DPH, respectively, the binomial distri-
bution does not consider the total frequency of each pair (¢, ;) in a corpus, which
would be computationally expensive to estimate given the combinatorial number
of possible pairs. Instead, the informativeness of the pair in the document d is
solely dependent on the frequency ify,, , of the pair in the document and on
the length I; of the document. As a result, pBiL is also an efficient approach for
exploiting term dependence (Peng et al., 2007b; Macdonald & Ounis, 2010).
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2.2.2 Query-independent Ranking

The previous section described query-dependent ranking approaches, which infer
the extent to which a document is about the topic of the user’s query. While
topicality is essential for inferring the relevance of a document (Boyce, 1982),
there may be too many documents with relatively similar topicality scores for
the same query. In addition, some queries may be better answered by sources
that fulfil a specific quality criterion, such as authoritativeness, credibility, or
trustworthiness, particularly when the user is searching for a specific information
provider (Kraaij et al., 2002; Bendersky et al., 2011). To distinguish between
documents with similar topicality, and also to address queries that explicitly
seek for quality content, several query-independent ranking approaches have been
proposed in the literature. In this section, we describe two broad classes of such
approaches, which are used in the experimental part of this thesis. In particular,
Section 2.2.2.1 describes approaches that infer the a priori quality of a document
based upon evidence in the document itself, whereas Section 2.2.2.2 focuses on

approaches that infer quality from sources external to the document.

2.2.2.1 On-Document Evidence

A typical assumption underlying query-dependent ranking approaches is that all
documents in a corpus are equally relevant a priori (Kraaij et al., 2002). While
this assumption may hold when retrieving from curated corpora such as newswire
documents, it may be unrealistic in an environment such as the Web (Bendersky
et al., 2011). In particular, web documents are produced independently by au-
thors with various motives and backgrounds, leading to a vast heterogeneity in
content quality, ranging from high quality sources, such as online encyclopedias,
to adversarial content, such as spam (Castillo & Davison, 2011).

Kraaij et al. (2002) were among the first to analyse the usefulness of the a priori
evidence of the quality of documents for web search. To this end, they investigated
the effectiveness of several features for estimating the document prior p(d) in a
query likelihood model, as described in Section 2.2.1.2. Among these, URL-
based features were shown to be particularly effective for identifying homepages,

a classical web search task (Broder, 2002). For instance, the URL type feature
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was introduced to distinguish between URLs containing different components,
such as a domain name (a “root” URL), a domain followed by a subdirectory
(a “subroot” URL), a deeper directory (a “path” URL), or a filename (a “file”
URL). In particular, homepages tend to be mainly of type “root” (Kraaij et al.,
2002). Given some relevance data G, this feature can be quantified as:

_ Hdi € G | type(ua) = type(ua,)}|

Forla- ) = 100 typelug) = typelun )} (2.33)

where type(uy) defines the type of the URL u,4 of document d. A simpler feature,
capturing the intuition that shorter URLs are preferred is the URL depth (UD),

which counts the number of components in the document’s URL:

foola, d) = | parts(uq,*/")], (2.34)

where parts(ug, ‘/’) denotes the set of forward slash-separated substrings of ug,
excluding its protocol (e.g., “http://”). Yet another similar feature counts the
number of characters g, in the URL, and is denoted URL length (UL):

fUL<Q7 d) = SQuy - (235)

Another class of query-independent ranking features used in the experimental
part of this thesis exploits the textual content of each document, in order to
measure its overall readability. The underlying intuition is that documents that
are easier to read are more likely to be perceived as relevant by search users.
For instance, Kanungo & Orr (2009) investigated a series of features for the task
of generating readable document summaries to be displayed in response to a
query (Tombros & Sanderson, 1998). Of these, we use the average term length

(ATL) in a document as a simple measure of readability, according to:

1
far(a, d) = T Z thast- (2.36)

d yed

where ¢; denotes the length in characters of the term t. The intuition here is that

longer terms would reflect a more thoughtful, and hence readable writing style.
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Additional readability features have been recently proposed by Bendersky
et al. (2011). For instance, they proposed to use the entropy H(6,) of a document’s

language model 6, as a measure of topic cohesiveness (TC), according to:

Fro(q,d) = H(0) = =Y p(t|d) log p(t|d), (2.37)

ted

where p(t|d) was computed using a maximum likelihood estimation, as described
in Equation (2.23). Other readability features proposed by Bendersky et al.
(2011) include the document’s fraction (SF) and coverage (SC) of stopwords,
computed as the ratio of terms in the document that are stopwords and the ratio

of all stopwords that are covered in the document, respectively, according to:

o |{tz € d} N Vs|
oland) = S0 (2:39

where V; is a list of stopwords. Both SF and SC are intended as simple estimators
of the divergence between the document and the corpus language models, and are
positively correlated with the document informativeness (Zhou & Croft, 2005).
Another readability feature used in the experimental part of this thesis is the
fraction of terms in the document that appear in tables. The underlying intuition
here is that documents comprising mostly tabular content are less readable. Let
T4 comprise the textual content appearing within tables in the document d. The
table text (TT) feature (Bendersky et al., 2011) can be estimated according to:

tt
frrlg,d) = ZjidfT (2.40)

At the lower end of the quality spectrum, the Web is severely affected by
spam. Spam documents typically include automatically generated content tar-
geting popular search queries, or even human-generated content plagiarised from
legitimate sources, so as to deceive search engines and attract larger audiences,
which can ultimately result in increased advertisement revenue for the spam-

mer (Castillo & Davison, 2011). In particular, spam documents typically have
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abnormally long titles, a total length that deviates from the average length of non-
spam documents, a proportionally higher ratio of raw text per HTML markup,
and a high redundancy, which is typically a sign of automatic “keyword stuffing”.
Inspired by the latter observation, Ntoulas et al. (2006) proposed a simple feature

for spam detection, denoted compression ratio (CR), and defined as:

Sz
fon(q. d) = =2, (2.41)
Sd

where z(d) denotes a compressed representation of document d, produced by any
standard data compression algorithm (Salomon, 2007), whereas ¢4 and ¢4 are
the size (in bytes) of the compressed and uncompressed representations of d. The
higher the compressed size ¢4 and consequently the compression ratio fog (g, d),
the less redundant, and hence the less likely the document d is to be spam.

A more sophisticated spam detection feature was devised by Cormack et al.
(2011). In particular, using a gradient-descent logistic regression classifier (Good-
man & tau Yih, 2006) with training data combining manually labelled documents,
as well as documents highly ranked for “honey pot” queries (popular queries that
are commonly targeted by spammers), they estimated the probability that a doc-
ument contains harmful or malicious content. Taking the complement event,
the probability that a document d is not spam can be used to compute a ham?

likelihood (HL) score as a log-odds estimate, according to:

p(n|d)
(7ld)’

where 1 and 77 denote the observation of ham and spam content, respectively.

=

Ju(q, d) = log (2.42)

3

2.2.2.2 Off-Document Evidence

The analysis of the content of a document provides valuable evidence about the
quality of this document. On the other hand, such evidence is prone to manip-
ulation by the document author. Indeed, as previously discussed, much of the
content produced on the Web is intended to maliciously deceive search engines in

order to increase revenue for spammers. While analyses based on off-document

3In the jargon of the spam detection community, “ham” is an antonym of “spam”.
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evidence, such as hyperlinks (Kleinberg et al., 1999) or clicks (Joachims, 2002),
are certainly not immune from spammers (Castillo et al., 2007), they provide an
arguably more unbiased assessment of the quality of a document, by relying not
on the document author, but on other web authors or on web search users.

The view of the Web as a graph of hyperlinked documents brings various
opportunities for improving web search. A particularly prominent use of the web
graph is for inferring the global importance—or, in graph theorists’ terms, the
centrality (Newman, 2003)—of each document in the graph. In the context of web
search, the centrality of a document in the web graph is considered as a measure
of authority, as perceived by the entire Web, which has been extensively used for
improving the quality of document rankings (e.g., Kleinberg, 1998; Page et al.,
1999; Plachouras et al., 2005). A simple measure of the centrality of a document
d is its indegree (ID), defined as the cardinality of the set B, of documents linking

to d (i.e., the document’s backlinks) in the web graph, according to:

fin(q,d) = |Bd. (2.43)

An analogous measure to the indegree of a document is its outdegree. Different
from the indegree, however, the outdegree of a document is not considered as
a measure of global authority. On the contrary, a document with abnormally
high outdegree often serves malicious purposes, by inflating the indegree of other
documents, a spamming technique known as a link farm (Castillo & Davison,
2011). The outdegree (OD) of a document d is defined as the cardinality of the

set Fy of documents linked to from d (i.e., the document’s forward links):

fon(q,d) = | Fal. (2.44)

One of the most well-known link analysis algorithms—and one that is used
in our experiments—is PageRank (Page et al., 1999). The PageRank algorithm
estimates the global importance of a document based on the number of other
documents that link to it and also on the importance of these documents. To
this end, the algorithm iteratively performs a random walk on the web graph, so

that the score assigned to a document when the algorithm converges can be seen
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as the probability of that document being visited by the random walker. The
PageRank (PR) of a document d in a graph with n documents is given by:

fal@d =—"1+7 Y ]&PR (2.45)

d;€By fOD

where jg%{(q, ) is the PageRank of d at the i-th iteration, with PR(q, d) = (1/n)
for all d, By is the set of documents linking to d, fop(g,d;) is the outdegree
of d; € By, given by Equation (2.44), and 7 is a damping factor, which can
be interpreted as the probability that a random walker will stop following the
chain of hyperlinks and “jump” to a randomly selected document. The algorithm
iterates until the computed PageRank scores stabilise within a given threshold or
until a predefined number of iterations is performed (Brin & Page, 1998).

An alternative, rich source of off-document ranking evidence is based on the
quality of a document as perceived by web search users rather than other web
authors. In particular, a web search engine can record in a query log a variety of
signals describing the interaction of search users during their search tasks. One
class of such signals is click evidence. While not all searches lead to clicks—
for both positive and negative reasons (Li et al., 2009; Stamou & Efthimiadis,
2010)—a click on a document ranked in response to a query can be seen as an
implicit judgement of the relevance of this document, of the non-relevance of the
documents ranked ahead of it that were skipped or, more generally, of the user’s
preference for the clicked document over the skipped ones (Joachims, 2002).

A simple query-independent feature can also be derived by leveraging click
evidence. In particular, given the sets of documents displayed (R,,) and clicked
(KCy;) for each query ¢; in a query log L, the click likelihood (CL) of a document
d models the probability that d will receive a click regardless of any particular

query (Richardson et al., 2007), according to:

Z%’Eﬁ 1Kq¢ (d)

Jor(q, d) = S Lln.(d)’

(2.46)

where the indicator functions 1y, (d) and 1z, (d) determine whether the docu-

ment d belongs to each of the aforementioned sets for each query ¢; in the log.
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2.2.3 Machine-learned Ranking

The previous sections have introduced several approaches for ranking documents
in response to a query. Regardless of these approaches’ relative effectiveness
when compared to one another, it is extremely unlikely that any single one of
them will be effective in all search scenarios (Zhai, 2011). This is particularly
true for web search, given the massive size and heterogeneity of the Web and the
increasingly complex information needs of web search users (Liu, 2009). On the
other hand, each of these approaches can potentially capture a different dimension
of the relevance of a document for the user’s query. As a result, combining
these approaches as multiple features of a unified ranking function emerges as a
promising direction for effectively searching the Web (Fuhr, 1989). The automatic
construction of such functions is the goal of a branch of machine learning denoted
learning to rank, which is the focus of this section. In particular, Section 2.2.3.1
introduces the general framework of learning to rank, whereas Section 2.2.3.2
describes the three main families of approaches that adhere to this framework,

including the approaches that will be used in the experiments in this thesis.

2.2.3.1 Discriminative Learning Framework

A learning to rank process can be specified within the general framework of
discriminative learning (Liu, 2009). In particular, the ultimate goal of learning

to rank is to automatically construct a ranking function:

fur(@:d) =h: X =Y, (2.47)

where X and ) represent the input and output space of learning, respectively.
The input space X comprises learning instances, typically represented as feature
vectors x = ®(q,d), where ® is a feature extractor. Each dimension ¢(q,d) of
the feature vector could correspond, for instance, to one of the various ranking
functions described in the previous sections. The output space ) defines the target
of the learning task, which could be either a continuous or a discrete distribution
over the learning instances, or simply an overall ordering of these instances. The

class of functions h that map from the input to the output space is denoted the
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hypothesis space ‘H. Lastly, the loss incurred by the predicted output for the input
learning instances compared to these instances’ expected output is quantified by
a loss function A, which is used to guide the learning process towards improved
ranking functions, for instance, by iteratively minimising the observed loss.

As a supervised or semi-supervised learning task, learning to rank requires
some form of training (Macdonald, Santos & Ounis, 2013). As illustrated in
Figure 2.5, the training data comprises a sample {(x;;, yij)};iil for each training
query g;, including a feature vector representation x;; and an output label y;; for
each of the top n,, documents retrieved for g;, typically by using one of the query-
dependent ranking approaches described in Section 2.2.1. The training samples
are used by a learner module to produce a ranking function h with optimal effec-
tiveness on the training queries, as measured by the loss function A. To reduce
the possibility that the learned function is overfitted to the training data, and

hence generalises poorly to unseen queries, separate validation samples may be
used to guide the learner. Finally, given a test query ¢ with a sample {(x;,7)}7%,
sharing the same feature space with the training and validation samples, a ranker
module applies the learned function h in order to produce an ideally more effective

permutation of the documents in the initial sample.
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Figure 2.5: Discriminative learning framework.

43



2. Web Information Retrieval

2.2.3.2 Learning to Rank Approaches

Depending on their choice for implementing each of the input space, output space,
hypothesis space, and loss function components, learning to rank approaches can
be classified as pointwise, pairwise, or listwise (Liu, 2009). Pointwise approaches
consider an input space comprising feature vectors built for individual documents,
and an output space comprising a single numeric score for each document vector.
In this case, learning to rank is reduced to a standard regression task, namely, that
of predicting the relevance score of each query-document pair. As a result, a range
of existing regression approaches—and classification approaches, for discretised
scores—can be directly leveraged for learning to rank (Witten et al., 1999).

Different from pointwise approaches, pairwise approaches have an input space
comprising pairs of document vectors and an output space covering binary val-
ues {—1,1}, which denote a preference for one of the two documents in the
pair over the other. Accordingly, the hypothesis space covers bivariate functions
h(x1,x2), which can be transformed using a scoring function f(x) for simplic-
ity, i.e., h(x1,x2) = 2 [1(f(x1) > f(x2))] — 1. As their loss function, pairwise
approaches minimise the average number of swaps in the ranking (Li, 2011).

A limitation of both pointwise and pairwise approaches is that they ignore the
fact that some (pairs of) documents are related to the same query. To overcome
this limitation, listwise approaches extend their input space to include the entire
sample for each query. Accordingly, their output space comprises either a full per-
mutation of the sample, or numeric scores for all documents in the sample. In the
latter case, a scoring function f(x) can be used to produce the output, by serving
as a sorting criterion, i.e., h({x;}) = sortx{x;}. The output space also deter-
mines the choice of a loss function. In particular, if the output is a permutation,
the prediction loss can be estimated as the difference between the ground-truth
and the predicted permutations. Otherwise, with ground-truth labels for all doc-
uments, a standard metric for retrieval evaluation can be used to estimate the
loss. The latter option has the additional benefit of directly accounting for the
actual effectiveness of the ranking—as measured by any standard metric for re-
trieval evaluation, as will be described in Section 2.3—instead of resorting to an

intermediate function as a proxy for retrieval effectiveness (Liu, 2009).
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In the experimental chapters of this thesis, we use two learning to rank al-
gorithms: AFS (Metzler, 2007) and LambdaMART (Wu et al., 2008). AFS is a
listwise learning to rank algorithm that incrementally builds a hypothesis h({x;})
as a linear combination of single-feature hypotheses h, selected iteratively, in a
greedy fashion (Metzler, 2007). In particular, at the i-th iteration, AFS selects the
single-feature hypothesis A?) that most improves the current hypothesis A1,
according to a loss function A. The selected single-feature hypothesis h(@ is then
weighted proportionally to the improvement it brings, with the resulting weight

w® used to combine it with the current hypothesis A~ according to:
hO({x;}) = hV({x;3) + 0 hO({x;}), (2.48)

where h() is the resulting hypothesis at the i-th iteration. Metzler (2007) has
shown that the greedy learning strategy deployed by AFS suffices for most prac-
tical cases, with little benefits observed when retraining all individual weights
w® after each iteration. Indeed, despite its simplicity, AFS has been shown to
perform effectively in a web search setting (Santos et al., 2011d).

Besides AFS, we use LambdaMART (Wu et al., 2008), which represents the
current state-of-the-art in learning to rank (Chapelle & Chang, 2011). Lamb-
daMART is a listwise learning to rank algorithm that falls into the general frame-
work of boosting (Kearns, 1988; Schapire, 1990). A boosting algorithm aims to
iteratively build a strong hypothesis by combining multiple weak hypotheses. In
particular, given an input sample {x;}, a strong hypothesis (or an ensemble)
h({x;}) of weak hypotheses h({x,}) can be iteratively built according to Equa-
tion (2.48), where h()({x;}) now represents the resulting ensemble at the i-th
iteration, whereas 2 ({x;}) and w”) represent the learned weak hypothesis and
its associated weight at the same iteration, respectively. Different from AFS,
LambdaMART models 2 ({x;}) as a multi-feature regression tree, with leaves
representing possible prediction outcomes and inner nodes representing decision
points that lead to a particular outcome, depending on the conjunction of feature
values in the chosen path. An example of such a tree is illustrated in Figure 2.6,
with UL (Equation (2.35)), HL (Equation (2.42)), PR (Equation (2.45)), DPH
(Equation (2.31)), and pBiL (Equation (2.32)) serving as decision points.
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fu(q.d) > 45 fopn(q,d) > 25

fe(q.0)>25

Figure 2.6: Example regression tree with query-independent (URL length (UL), ham
likelihood (HL), and PageRank (PR)) and query-dependent (DPH and pBiL) features.

Both AFS and LambdaMART optimise an information retrieval evaluation
metric, such as the several metrics introduced in Section 2.3.3, as their loss func-
tion A. Nevertheless, most such metrics are non-continuous and non-differentiable
and hence cannot be optimised directly (Burges et al., 2006). In order to over-
come this limitation, AFS leverages an evaluation metric indirectly, as a criterion
for selecting the best performing feature at each iteration. LambdaMART, on the
other hand, uses the gradient of an evaluation metric (Burges et al., 2006)—as op-
posed to the metric itself—as a loss function. In particular, in order to learn both
a regression tree A ({x;,}) and its weight w(® at each iteration, LambdaMART

performs a gradient descent optimisation (Friedman, 2001).
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2.3 Retrieval Evaluation

Retrieval evaluation is crucial for assessing and improving search technologies.
In particular, both the effectiveness and the efficiency of a search engine can be
evaluated. While effectiveness concerns the ability of the search engine to retrieve
and rank documents that are relevant to the users’ information needs, efficiency
is concerned with the speed with which such a ranking is produced. As this thesis
is primarily concerned with improving the satisfaction of the users’ information
needs, in this section, we focus on the evaluation of retrieval effectiveness. In
Section 2.3.1, we overview the most prominent methodologies for web search
evaluation. In Section 2.3.2, we discuss the particular methodology that underlies
all experiments in this thesis. Lastly, in Section 2.3.3, we introduce some of the

most prominent metrics for assessing the effectiveness of ranking approaches.

2.3.1 Evaluation Methodologies

Evaluating the effectiveness of web search ranking is an open challenge. Not only
is relevance an ill-understood concept per se (Mizzaro, 1997), but it can also
span multiple dimensions (Borlund, 2003), particularly in light of the complex
information needs of web search users (Broder, 2002; Rose & Levinson, 2004).
Alternative evaluation methodologies have been proposed and tested throughout
the years, based upon both implicit and explicit user feedback on the relevance
of the documents ranked in response to a query (Sanderson, 2010).

Implicit feedback approaches typically rely on the observation of web search
users’ interactions with the ranking, such as the documents they click on or the
time they spend examining a clicked document (Kelly & Teevan, 2003). Treating
implicit feedback as an absolute judgement of relevance has important limitations
though. On the one hand, clicks are significantly biased by the presentation order
of the ranked documents (Craswell et al., 2008). On the other hand, the absence
of a click does not necessarily reflect a poor ranking. For instance, the user may
leave the search page without clicking on any document, simply because relevant
information appears in the snippet of some document (Li et al., 2009; Stamou
& Efthimiadis, 2010). A more sensible approach in this situation is to treat the

user’s feedback as a preference judgement between pairs of documents (Joachims,
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2002; Joachims et al., 2005), or even between entire rankings produced by dif-
ferent approaches, presented either side-by-side (Thomas & Hawking, 2006) or
interleaved (Radlinski et al., 2008b; Chapelle et al., 2012).

A different evaluation methodology relies on the users’ explicit feedback on
the effectiveness of ranking approaches. This can be achieved, for instance, by
observing real users interacting with the ranking (Saracevic, 1995; Borlund &
Ingwersen, 1997). Such a methodology enables the assessment of relevance in
context (Ingwersen & Jarvelin, 2005), which can contribute to understanding its
multiple dimensions (Borlund, 2003). However, this methodology is often costly
and therefore limited to small-scale studies. An alternative methodology recently
introduced to enable gathering users’ feedback at a larger scale is crowdsourc-
ing (Alonso et al., 2008). In particular, crowdsourcing platforms, such as Ama-
zon’s Mechanical Turk,* provide a marketplace where researchers can hire a large
number of human judges for a relatively small cost. Nevertheless, the limited
knowledge of these judges’ background and motivations makes it a challenging
task to assure the quality of the evaluation (Carvalho et al., 2011). Another al-
ternative methodology relies on expert judges to produce a benchmark against

which multiple ranking approaches can be tested, as we discuss next.

2.3.2 Evaluation Benchmarks

One of the most established retrieval evaluation methodologies abstracts away
from the specificities of individual users, instead relying on the relevance assess-
ment of expert judges to produce an evaluation benchmark (Voorhees, 2007).
Such a methodology was pioneered by Cleverdon (1967) at the College of Aero-
nautics, Cranfield, UK, in their experiments to assess the effectiveness of multiple
indexing approaches. While the so-called Cranfield paradigm may limit the as-
sessment of relevance in context (Teevan et al., 2007), it dramatically improves
the reproducibility of the resulting evaluation, by allowing multiple ranking ap-
proaches to be tested on a common benchmark (Voorhees & Harman, 2005).
Moreover, it is estimated that such a methodology has fostered around one third

of all improvement in web search ranking from 1999 to 2009 (Rowe et al., 2010).

‘http://www.mturk.com
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The Text REtrieval Conference (TREC), one of the major forums for research
in information retrieval (Voorhees & Harman, 2005; Voorhees, 2007) can be seen
as a modern instantiation of the Cranfield paradigm. In particular, TREC was in-
troduced in 1992 in a co-sponsorship between the National Institute of Standards
and Technology (NIST) and the Defense Advanced Research Projects Agency
(DARPA), both U.S. government agencies. Since its inception, the conference
has witnessed a substantial increase in the number of participant groups working
on several different search scenarios (known as tracks in the TREC jargon).

The overall aim of TREC is to support information retrieval research by pro-
viding the necessary infrastructure for the evaluation of retrieval techniques on a
common benchmark, known as a test collection. A test collection comprises three
components: a corpus of documents, a set of stated information needs (called
topics), and a set of relevance assessments, which function as a mapping between
each topic and the documents deemed as relevant for this topic. A prototypical
TREC track works as follows (Voorhees, 2007). Firstly, a document corpus is
built so as to serve as a common testbed for experimentation in the particular
search scenario addressed by the track, such as web search. Secondly, NIST pro-
vides the participants with a set of topics representing realistic information needs
for the search scenario under consideration. Thirdly, in order to build a ground-
truth for evaluating the participants’ approaches as to the extent to which they
are able to retrieve the relevant documents in the corpus for the devised topics
ahead of irrelevant ones, a process called pooling (Spéarck Jones & van Rijsbergen,
1975) is usually employed. This process consists of building a pool of documents
for each of the considered topics as the union of the top documents retrieved for
that topic by all the participant systems. These document pools are then sampled
and submitted to manual relevance assessment. Finally, the participant groups
submit the document rankings (known as runs) generated by their different re-
trieval approaches for each of the considered topics. These document rankings
are then scored based on the produced relevance assessments according to several
standard evaluation metrics, such as those discussed in Section 2.3.3. By evalu-
ating the participants’ approaches using this common benchmark, TREC allows
for the direct comparison of their deployed ranking techniques, hence identifying

which techniques work best for the retrieval scenario under consideration.
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2.3.3 Evaluation Metrics

Several metrics have been proposed in the literature to evaluate the effectiveness
of ranking approaches using a benchmark test collection (Sanderson, 2010). Given
a query ¢ and a cutoff x, the goal of an evaluation metric is to quantify how well
the top £ documents from a ranking R,, produced by some ranking approach,
cover the documents G, judged relevant for ¢. Since different queries may have
different numbers of relevant documents, the evaluation score for a given query
is typically normalised by the maximum attainable score for this query, which is
equivalent to the score assigned by the metric to an ideal ranking.

Perhaps the most basic metrics associated with retrieval effectiveness are pre-
cision (P) and recall (R) (Cleverdon & Keen, 1966). While precision measures
the fraction of retrieved documents that are relevant, recall measures the fraction
of relevant documents that are retrieved. These metrics are defined as:

G, N RYY]

P(q, k) = "R(H)| _ 1% ‘|
q

and R(q, k) = A (2.49)
q

where R((f) is the set of top x documents retrieved for ¢ and G, is the set of
documents relevant to this query. As observed by Cleverdon & Keen (1962), pre-
cision and recall often have an inverse relationship, as illustrated in Figure 2.7.
For instance, precision-improving approaches, such as term dependence weight-
ing (Metzler & Croft, 2005; Peng et al., 2007b), typically lead to reduced recall,
as relevant documents that do not contain the query terms in close proximity are
demoted. Conversely, recall-improving techniques, such as query expansion (Roc-
chio, 1971; Lavrenko & Croft, 2001; Zhai & Lafferty, 2001), typically incur some

topic drift, potentially promoting non-relevant documents.
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Figure 2.7: Example precision vs. recall graph.
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2. Web Information Retrieval

A clear limitation of set-based metrics such as precision and recall is that they
are insensitive to ranking swaps above the rank cutoff where these metrics are
computed (Robertson, 2008). For instance, two approaches retrieving the same
amount of relevant documents in the top 10 positions will receive exactly the same
precision and recall scores at cutoff 10, regardless of how well each approach ranks
these documents. One of the first metrics to address the limitation was average

precision (AP; Harman, 1993). It is defined according to:

AP@JQZ:ZZ%Jﬁ%lEﬁ, (2.50)
|94l
where P(q, i) denotes the ranking precision at the i-th position, according to Equa-
tion (2.49), whereas g; denotes whether or not the i-th document in the ranking
R, is relevant. Indeed, as originally conceived, average precision assumes that
relevance is a binary quantity, an assumption that also underlies the probabilistic
relevance modelling approaches described in Section 2.6.

While a binary assumption simplifies the processes of both assessing and infer-
ring the relevance of documents, such an assumption is arguably limiting. Indeed,
in a large and heterogeneous corpus such as the Web, different documents are
likely to be relevant to the same query to different extents (Teevan et al., 2007).
To account for a non-dichotomous notion of relevance, Jarvelin & Kekaldinen
(2002) considered a scenario where the relevance of a document is assessed using
a graded scale, from less relevant to more relevant. In addition, they proposed
to use a log-based discount factor to model the fact that relevant documents
ranked high are preferred over lower ranked ones. The resulting metric, denoted

discounted cumulative gain (DCG), is defined as:

K

20i _ 1
DCG( 2.51
(q. % Z el 11 (2.51)

where g; now denotes a non-binary relevance grade associated with the document
ranked at the i-th position. In a typical web search scenario, five relevance grades
are used (Burges et al., 2005). In addition, different logarithm bases can be used

to simulate smaller or larger discounts (Jéarvelin & Kekéldinen, 2002).
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2. Web Information Retrieval

The formulation of DCG assumes that the probability of a user inspecting
a particular document depends only on the position of this document in the
ranking. Moffat & Zobel (2008) argued that different users may not have the
same willingness to inspect documents at lower ranks. To cater for such a varying
user behaviour, they introduced the rank-biased precision (RBP) metric, a graded
relevance metric with a parameter p denoting the (fixed) probability that a user
will inspect a further document. The higher the value of p, the more persistent
the user. The RBP metric can be defined by incorporating this probability into

a geometric discount function, according to:
RBP(q,k) = (L—p) Y _gip ", (2.52)
i=1

where g; is as defined for the DCG metric in Equation (2.51).

Although having different discount factors, both DCG and RBP assume that
the probability that the user will inspect a given document does not depend on the
documents previously inspected. In practice, such an independence assumption
does not fit well the users’ observed click behaviour. In particular, Craswell et al.
(2008) observed that the probability that a user will click on a given document
diminishes as higher ranked documents are clicked. Intuitively, according to this
cascade browsing model, once a user has found the desired information, the need
for inspecting further documents is reduced. As a result, this model tends to
favour rankings that contain novel information, as will be discussed in Chapter 3.
Chapelle et al. (2009) quantified the effectiveness of a ranking according to this

model into the expected reciprocal rank (ERR) metric, defined as:

K i—

ERR(q, k) = Z%H(l - p;) pis (2.53)

j=

where p; denotes the probability that the i-th document is relevant to the query,
in which case H;;ll(l — p;) denotes the probability that none of the documents
ranked higher than the ¢-th document is relevant. In practice, p; is defined as a
function of the relevance grade g; of the i-th document, i.e., p; = (29 —1)/29max—1,

where gnax is the maximum grade considered.
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2.4 Summary

In order to lay out the foundations for the work contributed in this thesis, this
chapter provided a comprehensive and up-to-date background on web information
retrieval in general, and on web search ranking in particular.

Starting with an overview of the typical operation of a web search engine,
in Section 2.1, we described the processes of crawling, indexing, and query pro-
cessing. Within the scope of the latter, in Section 2.2, we provided a contextu-
alised background on over 50 years’ worth of literature on ranking in information
retrieval. This encompassed classical approaches to query-dependent ranking
in Section 2.2.1, including the three main families of probabilistic ranking ap-
proaches. In addition, in Section 2.2.2, we described several query-independent
ranking approaches, which emerged with the advent of the Web. The framework
of learning to rank was introduced in Section 2.2.3 as a sound mechanism for in-
tegrating multiple ranking approaches as individual features of a strong ranking
model. Lastly, in Section 2.3, we reviewed different methodologies for retrieval
evaluation, with a further look into the most established metrics for assessing the
adhoc retrieval effectiveness of a ranking approach.

In common, all ranking approaches described in this chapter assume that a
query submitted to a web search engine represents a single, well-defined informa-
tion need. In the next chapter, we will discuss the limitations of this assumption
in a complex search environment such as the Web, and the new ranking problem

that results from abandoning such an assumption.

23



Chapter 3
Search Result Diversification

Ranking in IR has been traditionally approached as a pursuit of relevant informa-
tion, under the assumption that the users’ information needs are unambiguously
conveyed by their submitted queries (Sparck-Jones et al., 2007; Sanderson, 2008).
While such an assumption may have arguably held in the library setting where
the early studies of relevance-oriented ranking were conducted (Maron & Kuhns,
1960; Cooper, 1971; Harter, 1975a,b; Robertson, 1977), it does not hold in gen-
eral (Gordon & Lenk, 1992), and it is unlikely to hold for web search in particular.
Web search queries are typically short, ranging from two to three terms on
average (Jansen et al., 2000). While short queries are more likely to be ambiguous,
even longer queries can show some degree of ambiguity (Song et al., 2009), which
in turn can substantially affect the effectiveness of web search engines (Sanderson,
2008). In order to identify relevant information under the uncertainty posed by
query ambiguity, an effective approach is to diversify the search results. By doing
S0, the search engine can minimise the chance of wrongly guessing the users’ needs,
which might cause the users to abandon their queries (Chen & Karger, 2006).
In this chapter, we describe the search result diversification problem. In par-
ticular, Section 3.1 discusses how query ambiguity manifests in web search, as a
motivation for diversifying the search results. Section 3.2 starts with a historical
perspective on the diversification problem, before providing a formal definition
and an analysis of the complexity of the problem. Section 3.3 describes several
related approaches for diversifying the search results. Lastly, Section 3.4 extends

the discussion initiated in Section 2.3 with an emphasis on diversity evaluation.
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3. Search Result Diversification

3.1 Query Ambiguity

As an inherently limited representation of a more complex information need, every
query can be arguably considered ambiguous to some extent (Cronen-Townsend
& Croft, 2002). Nevertheless, in the query understanding literature, query am-
biguity is typically classified into three broad classes (Clarke et al., 2008; Song
et al., 2009). At one extreme of the ambiguity spectrum, genuinely ambiguous
queries can have multiple interpretations. For instance, it is generally unclear
whether the query “bond” refers to a debt security certificate or to Ian Fleming’s
fictional secret agent character.! Next, underspecified queries have a clearly de-
fined interpretation, but it may be still unclear which particular aspect of this
interpretation the user is interested in. For instance, while the query “ames
bond” arguably has a clearly defined interpretation (i.e., the secret agent char-
acter), it is unclear whether the user’s underlying information need is for books,
films, games, etc. Finally, at the other extreme, clear queries have a generally
well understood interpretation. An example such query is “james bond books”.
Sanderson (2008) investigated the impact of query ambiguity on web search.
In particular, he analysed queries from a 2006 query log of a commercial web
search engine that exactly matched a Wikipedia disambiguation page? or a Word-
Net? entry. Ambiguous queries from Wikipedia showed a larger number of senses
on average than those from WordNet (7.39 vs. 2.96), with the number of senses
per ambiguous query following a power law in both cases. The average length
of an ambiguous query was also similar across the two sources, with the pre-
dominance of single-word queries. In contrast to previous works, which assumed
that multi-word queries were relatively unaffected by ambiguity, he found that
ambiguous queries with more than one term were also numerous. Importantly, he
observed that ambiguous queries comprised over 16% of all queries sampled from
the query log, with Wikipedia queries being more frequent than WordNet ones,
particularly among popular queries. Finally, through a simulation, he showed

that current search systems underperform for ambiguous queries.

'As a matter of fact, Wikipedia’s disambiguation page for “bond” lists over 100 possible

meanings for this particular entry: http://en.wikipedia.org/wiki/Bond.
’nttp://en.wikipedia.org/wiki/Wikipedia:Disambiguation
Shttp://wordnet.princeton.edu
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Song et al. (2009) analysed the ambiguity of web search queries through a
user study. In their study, five assessors manually classified 60 queries sampled
from the log of a commercial search engine from August 2006 as either ambigu-
ous, underspecified, or clear queries. While a high assessor agreement (90%) was
observed for judging whether a given query was ambiguous or not, distinguish-
ing between underspecified and clear queries turned out to be substantially more
difficult. Nonetheless, based on the demonstrated feasibility of the former case,
they proposed a binary classification approach to automatically identify ambigu-
ous queries. Based on the learned classification model, they estimated that 16%
of the queries in their entire query log sample were ambiguous.

Another log analysis of query ambiguity was performed by Clough et al.
(2009). In their analysis, a total of 14,909 unique queries that satisfied mini-
mum frequency criteria were selected from a one-month sample of the query log
of a commercial search engine from 2006. Of the sample queries, 18% had a high
click entropy, which quantified the spread of each query’s clicked documents. Such
queries were mostly informational, whereas queries with a low entropy were pre-
dominantly navigational (Broder, 2002). Analysing the subset of queries with an
exact match among Wikipedia disambiguation pages, they found no significant
correlation between click entropy and the number of suggested interpretations on
Wikipedia. However, they observed that queries with a dominant interpretation
on Wikipedia had a higher entropy. Such queries tended to be underspecified,
with clicks covering a range of aspects of the dominant interpretation. In particu-
lar, they found a significant correlation between the entropy of these queries and
the total length of the corresponding articles on Wikipedia, suggesting that they
indeed covered broad topics. Finally, considering both queries with high entropy
and those with at least one reformulation in the query log, they estimated that
from 9.5% to 16.2% of all queries in their sample were ambiguous.

The aforementioned studies characterised query ambiguity from different per-
spectives. In common, all studies reached the surprisingly consensual figure that
around 16% of all user queries are ambiguous, while many more can be under-
specified to some degree. In the next section, we will discuss how query ambiguity
can pose challenges to traditional ranking approaches, and how search result di-

versification can be deployed to address such challenges.
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3.2 Ranking under Uncertainty

Throughout the years, the probability ranking principle (PRP; Cooper, 1971;
Robertson, 1977), discussed in Section 2.2.1.1, has served as a general policy for
ranking in IR (Gordon & Lenk, 1991). However, the development of probabilistic
ranking has been permeated by simplifying modelling assumptions that are often
inconsistent with the underlying data (Gordon & Lenk, 1992; Cooper, 1995).
Gordon & Lenk (1991, 1992) analysed the optimality of the PRP under the
light of both decision and utility theories (von Neumann & Morgenstern, 1944).
In the context of document ranking, while decision theory assigns a cost to retriev-
ing each document independently of other documents, utility theory considers the
overall benefit of retrieving a set of documents. Besides the definitional assump-
tion that probabilities are well-calibrated,* Gordon & Lenk (1991) discussed two

key assumptions underlying probabilistic ranking approaches in IR:

Al. The probability of relevance is estimated with certainty, and is provided as

a single point estimate, with no associated measure of risk.

A2. The probability of relevance is estimated for a query-document pair inde-

pendently of the estimated probability of relevance of the other documents.

As Gordon & Lenk (1991) demonstrated, the PRP attains the greatest ex-
pected utility compared to any other ranking policy under the aforementioned
assumptions. However, when at least one of these assumptions fails to hold, the
principle is suboptimal (Gordon & Lenk, 1992). In general, neither A1 nor A2 are
realistic assumptions. Regarding A1, uncertainty arises naturally from the fact
that the probability of relevance is estimated based upon limited representations
of both information needs and information items (Turtle & Croft, 1996). The
former is particularly the case in complex search environments such as the Web,
where queries are often ambiguous, as discussed in Section 3.1.

Regarding A2, the limitation of assuming that documents are conditionally
independent given the query was early recognised. In his note on relevance as a

measurable quantity, Goffman (1964) pointed out that “the relationship between

4According to the definition of Gordon & Lenk (1991), a well-calibrated IR system is one
that predicts an accurate probability of relevance for each document.
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a document and a query is necessary but not sufficient to determine relevance.”
Intuitively, once a document satisfying the user’s information need has been ob-
served, it is arguable whether other documents satisfying the same need would
be deemed relevant. This intuition has been empirically corroborated in recent
years with the analysis of users’ browsing behaviour from click logs. Indeed, as
discussed in Section 2.3.3, users’ clicks on the ranked documents are better ex-
plained by a cascade model (Craswell et al., 2008), in which the probability of

clicking on a given document diminishes as higher ranked documents are clicked.

3.2.1 The Search Result Diversification Problem

The aforementioned assumptions, A1l and A2, generally do not hold in a realistic
search scenario, such as web search. While Al is challenged by ambiguity in
the user’s query, A2 is challenged by redundancy in the ranking. In order to
overcome these limitations, search result diversification has been proposed as a
generalisation of the standard ranking problem, where ambiguity and redundancy
are no longer ruled out by simplifying assumptions (Bennett et al., 2008).
Departing from these assumptions requires viewing an ambiguous query as
representing not one, but multiple information needs (Spérck-Jones et al., 2007).
Under this view, query ambiguity can be tackled by ensuring a high coverage®
of the possible information needs underlying the query. In turn, redundancy
can be tackled by ensuring a high novelty with respect to the covered needs.
Analogously to the traditional single-need ranking problem, coverage and novelty
can be seen as a generalisation of recall and precision, respectively, as introduced
in Section 2.3.3. Just as it happens with recall and precision, coverage and novelty
can also be conflicting goals (Gollapudi & Sharma, 2009). Indeed, a ranking with
maximum coverage may not attain maximum novelty (e.g., although covering all
information needs, the ranking may place all documents covering a particular need
ahead of documents covering other needs). Conversely, a ranking with maximum
novelty may not attain maximum coverage (e.g., although covering each need as

early as possible in the ranking, not all possible needs may be covered).

SClarke et al. (2008) refer to this concept as “diversity”. We call it “coverage” to emphasise
the fact that it is one component of the broader search result diversification problem.
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3. Search Result Diversification

Coverage and novelty can be combined to define the search result diversifi-
cation problem. Informally, the problem can be stated as that of producing a
ranking with maximum coverage and maximum novelty with respect to the pos-
sible information needs underlying a query, as illustrated in Figure 3.1. The figure
also contrasts a diversity-oriented ranking from a traditional relevance-oriented

ranking, which assumes that a single information need underlies the query.

cutoff T \ )
maximum maximum maximum maximum
relevance coverage novelty diversity

Figure 3.1: Relevance-oriented ranking and the often conflicting goals of diversity-
oriented ranking, namely, to attain maximum coverage and maximum novelty.

Formally, let R, denote the ranking produced for the query ¢ by a relevance-
oriented ranking approach, such as those described in Section 2.2. Moreover,
let NV, and N, denote the sets of information needs for which the query ¢ and
each document d € R, are relevant, respectively. The goal of the search result

diversification problem is to find a subset D, € 274, such that:

D, = argmax | Ugep; Ny N Na|, s.t. |D| <7, (3.1)

D, e2Ra
where 7 > 0 is the diwersification cutoff, denoting the number of top documents
from R, to be diversified, and 274 is the power set of R,, comprising all subsets
D;, of Ry, with 0 < |D;| < 7, to be considered as candidate permutations of R,.
The permutation with the maximum number of covered information needs up to

the cutoff 7 is chosen as the optimal diversified ranking D,.
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3.2.2 Complexity Analysis

The search result diversification problem, as formalised in Equation (3.1), is an
instance of the maximum coverage problem, a classical NP-hard problem in com-

putational complexity theory (Hochbaum, 1997), which can be stated as:

Given a universe of elements U, a collection of potentially overlapping
subsets W € 2 and an integer 7, select a set of subsets M C W,

with |M] < 7, with maximum coverage of the elements from U.

To show that the diversification problem is also NP-hard, we can reduce the
maximum coverage problem to it (Agrawal et al., 2009). In particular, we map the
universe of elements U to the possible information needs N, underlying the query
q. Likewise, we map the collection of candidate subsets W to the documents in
R, initially retrieved for ¢, in which case each document d € R, can be seen as
a subset of the information needs n € N, for which this document is relevant. As
a result, it can be easily verified that a set of subsets M C W, |[M| < 7, has
maximum coverage of the elements in ¢/ if and only if a permutation D, C R,,
|D,| < 7, has maximum diversity with respect to the information needs in N.

Since the diversification problem is NP-hard, we must look for a polynomial-
time approximate solution. An important observation to this end is that the
maximisation objective in Equation (3.1) shows a submodular structure (Vohra
& Hall, 1993). In particular, given arbitrary sets I';, 'y C U, with I'; C T'y, and
an element v € U \ T'y, a set function f: 2 — R is called submodular if and
only if ATy U{~}) — A1) > filTs U {v}) — f(T'2). In other words, adding a new
element v to I'y causes an equal or higher increment in f compared to adding
~v to I'y’s superset I'y. Intuitively, a submodular function captures the notion
of decreasing marginal utility, a fundamental principle in economics (Samuelson
& Nordhaus, 2001). In the context of search result diversification, the marginal
utility of selecting a further document relevant to an information need diminishes
the more this need is satisfied by the documents already selected.

A greedy algorithm can be used to solve the submodular function optimisation
in Equation (3.1). As described in Algorithm 3.1, this greedy approach takes as
input a query ¢, the initial ranking R,, with |R,| = n,, and the diversification

cutoff 7 < n,. As its output, the algorithm produces a permutation D, C R,
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with |D,| = 7. Such a permutation is initialised as an empty set in line 1 and
iteratively constructed in lines 2-6 of Algorithm 3.1. In line 3, the submodular
objective function f(q, d, D,) scores each yet unselected document d € R, \ D, in
light of the query ¢ and the documents already in D,, selected in the previous
iterations of the algorithm. The highest scored document, d*, is then removed
from R, and added to D, in lines 4 and 5, respectively. Finally, in line 7, the

produced diverse permutation D, of the initial ranking R, is returned.

Diversify (¢, R, 7)
1 Dq <— (Z)
> while |D,| < 7 do
s d' < argmaxyep \p, f(q,d, D,)
R, — Ry \{d'}
D, < D, U {d"}
¢ end while
7 return D,

IS

ot

Algorithm 3.1: Greedy search result diversification.

The asymptotic cost of Algorithm 3.1 is the product of two factors: the cost
w; of evaluating the function fin line 3 at the i-th iteration, and the number A,
of such evaluations required by the algorithm to identify the 7 most diverse doc-
uments. The unitary cost w; varies for different approaches, as will be discussed
in Section 3.3. For approaches adhering to the greedy strategy in Algorithm 3.1,
the number of evaluations A, performed up to (and including) the i-th iteration
can be modelled as a recurrence relation. In particular, at the first iteration (i.e.,
i = 1), the most diverse document is trivially selected as the one with the highest
estimated relevance to the query, independently of the other documents, since
D, = 0 at this point. At the i-th iteration, with i > 1, the function fis evaluated
for each document d € R, \ D,, which amounts to a total of n, — (¢ — 1) docu-
ments. These two observations can be modelled as the base and recursion steps

of a first-order linear recurrence, respectively, according to:

AL =0, (3.2)
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To obtain the total number of evaluations A, required to select the 7 most
diverse documents from R,, we can iteratively expand the recursion step (Equa-
tion (3.3)) through telescoping (Cormen et al., 2001), until we finally arrive at
the base step (Equation (3.3)), according to:

Ar=mng—17+14+A 4, (3.4)
AT,1 =Ng—T + 2+ AT*27 (35)
No=mng—7+ (1 —1)+ Ay (3.6)

Replacing Equation (3.2) into (3.6), and back-replacing Equations (3.5)-(3.6)

up into Equation (3.4), we can derive a closed form for A,, as follows:

A= (ng —7+14) + Ay

&
3 ”Mﬂ
[\

T

= (nq—T)+Z’i+0

] 1=2

(21n, — 7% — 2n, + 7). (3.7)

I
[N}

DO | =

With 7 < n,, it follows from Equation (3.7) that A, = O(rn,). As 7 — ny,
we have A, = O(ng). An important non-approximability result is known for this
polynomial-time algorithm, which stems from the submodular structure of the
objective function f. In particular, Nemhauser et al. (1978) have shown that such
a greedy algorithm achieves an approximation factor of (1 —1/e) ~ 0.632 of the
optimal solution to the maximum coverage problem. Feige (1998) has further
demonstrated that, for any € > 0, the optimal solution cannot be approximated
within a ratio of (1 — 1/e) + €, unless P = NP. This result was independently
confirmed under a weaker assumption by Khuller et al. (1999), who proved that no
approximation algorithm with ratio better than (1 —1/e) exists for the maximum

coverage problem, unless NP C DTIME(ng)(loglognq)

). Given the approximation
guarantee offered by Algorithm 3.1, this algorithm underlies most diversification
approaches in the literature, as will be described in Section 3.3, as well as the

framework introduced in this thesis, which we will describe in Chapter 4.
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3.3 Related Approaches

Most diversification approaches in the literature differ by how they implement the
objective function f(q, d, D,) in Algorithm 3.1. In this thesis, we propose to organ-
ise these approaches according to two complementary dimensions, as described in
Table 3.1: aspect representation and diversification strategy (Santos et al., 2010e,
2012b). An aspect representation determines how the information needs underly-
ing a query are represented as multiple aspects of this query.®” In particular, an
implicit representation relies on features intrinsic to each document in order to
model different aspects, such as the terms contained in the document (Carbonell
& Goldstein, 1998), or those derived from different language models (Zhai et al.,
2003), topic models (Carterette & Chandar, 2009), or clusters (He et al., 2011)
built from the initial ranking. In turn, an explicit representation seeks to directly
approximate the possible information needs underlying a query, by relying on fea-
tures derived from the query itself, such as its associated clicks (Radlinski et al.,
2008a), reformulations (Santos et al., 2010a), or categories (Agrawal et al., 2009).
Given a particular aspect representation, a diversification strategy determines
how to achieve the goal of satisfying the different query aspects. Coverage-based
approaches achieve this goal by directly estimating how well each document covers
each aspect of the query, regardless of the other retrieved documents. Depending
on the underlying aspect representation, coverage can be estimated in terms of
classification confidence (Agrawal et al., 2009), topicality (Carterette & Chan-
dar, 2009), and relevance (Santos et al., 2010a,e). In contrast, novelty-based
approaches directly compare the retrieved documents to one another, regardless
of their covered aspects, in order to promote novel information. For instance, doc-
uments can be compared in terms of content dissimilarity (Carbonell & Goldstein,
1998), divergence (Zhai et al., 2003), or relevance score correlation (Rafiei et al.,
2010; Wang & Zhu, 2009). Finally, the advantages of both coverage and novelty
can be combined into a hybrid diversification strategy (Santos et al., 2012b).

6Unless otherwise noted, we will refer to query interpretations and aspects indistinctly.

"While both queries and aspects are representations of information needs, we find the fol-
lowing distinction helpful: a query is a potentially ambiguous representation of an information
need in the classical “single-need” view of ranking, whereas an aspect is an unambiguous rep-
resentation of one need when multiple needs are considered, as discussed in Section 3.2.1.
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Table 3.1: Representative diversification approaches in the literature, organised into
two complementary dimensions: diversification strategy and aspect representation.

Diversification Aspect representation

strategy Implicit Explicit

Carbonell & Goldstein (1998)
Zhai et al. (2003)

Chen & Karger (2006)

Zhu et al. (2007)

Novelty Wang & Zhu (2009) Santos et al. (2012b)
Rafiei et al. (2010)
Zuccon & Azzopardi (2010)
Gil-Costa et al. (2011, 2013)
Radlinski & Dumais (2006)
Coverage Carterette & Chandar (2009) Radlinski et al. (2008a)
He et al. (2011) Capannini et al. (2011)
Santos et al. (2012b)
Yue & Joachims (2008) Agrawal et al. (2009)
Hybrid Santos et al. (2010e) Santos et al. (2010a)
Raman et al. (2012) Slivkins et al. (2010)

3.3.1 Novelty-based Approaches

Novelty-based approaches have the longest history in the search result diversifi-
cation literature, stemming from research on identifying novel sentences for text
summarisation (Carbonell & Goldstein, 1998). The definitional characteristic of
such approaches is their account for dependences between the ranked documents,
and consequently their strict adherence to the formulation in Algorithm 3.1.
The novelty-based diversification approaches in the literature typically dif-
fer according to their estimation of document dependence. As highlighted in
Table 3.1, the vast majority of these approaches adopts an implicit aspect repre-
sentation, typically comprising the space of unique terms in a document corpus.®
For such approaches, at the i-th iteration, an evaluation of the objective function

flq, d,D,) would have a cost w; o v(i—1), where v is the number of unique terms

8To enable the assessment of the effectiveness of novelty as a diversification strategy in
isolation from the aspect representation dimension, in Chapter 8, we introduce the first explicit
novelty-based diversification approaches in the literature.
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in the lexicon. Nonetheless, in reality, the function f must only be evaluated with
respect to the last document added to D, (as opposed to the entire set D,), since
the yet unselected documents in R, \ D, would have already been compared to
the documents added to D, in the previous iterations. As a result, complement-
ing the explanation in Section 3.2.2; the total cost incurred by a novelty-based
diversification approach can be expressed as Zg\;l w; = 259:(17 ma) ) = O(vtny).
The first novelty-based diversification approach in the literature was intro-
duced by Carbonell & Goldstein (1998), with applications to text retrieval and
summarisation. In particular, their maximal marginal relevance (MMR) method
scored a candidate document d € R, \ D, as the document’s estimated relevance
with respect to the query ¢, discounted by the document’s maximum similarity

with respect to the already selected documents in D,, according to:

Funen(:4. D) = My (a,d) = (1= X) max (d. ), (3.8)
where f, (¢, d) and f,(d, d;) estimate the relevance of d to the query ¢ and its simi-
larity to the documents already in D,, respectively. A balance between relevance
(i.e., f;) and redundancy (i.e., max f,, the opposite of novelty) is achieved through
an appropriate setting of the linear combination parameter \.

Inspired by the formulation of MMR, Zhai et al. (2003) proposed a novelty-
based diversification approach within a risk minimisation (RM) framework for
language modelling (Zhai & Lafferty, 2006). In particular, given a query ¢ and
a candidate document d, their approach estimated the score of the document
model 64 with respect to the query model 6, as well as a reference model fp_,

comprising the documents already selected, according to:

fan (¢, d,Dy) = fi(6y,00)(1 = X = f(0a, Up,)), (3.9)

where f,(6,,64) was estimated using the KL ranking function, as described in
Equation (2.22). Six methods were proposed in order to estimate f(64,0p,),
based on either the divergence between 6; and 0p, or a mixture of the reference
model 0p, and an English background model. Similarly to Equation (3.8), the

parameter A controls the penalisation of redundancy.
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A related risk-aware approach was proposed by Chen & Karger (2006). In
particular, they argued that maximising the probability of relevance could lead
to a complete retrieval failure when ranking under uncertainty. Instead, they
proposed to maximise the chance of retrieving at least one relevant document in
the ranking. To this end, they instantiated the objective function in Algorithm 3.1
to estimate the conditional relevance (CR) of a document d, under the assumption

that none of the already selected documents D, were relevant, according to:

fer(@,d,Dy) = p(guay | G157+ 5 Gipgls dis -+ 5 dip,), d), (3.10)

where r(d) denotes the ranking position of document d, and g; and g; denote the
events in which the document at the i-th position is relevant and non-relevant,
respectively. Intuitively, this formulation promotes novelty by considering the
already selected documents as a form of negative relevance feedback.

Wang & Zhu (2009) introduced a diversification approach® inspired by the
portfolio theory in finance (Markowitz, 1952). In particular, the selection of doc-
uments for a ranking involves a fundamental risk, namely, that of overestimating
the relevance of individual documents, analogously to the risk involved in select-
ing financial assets (e.g., stocks) for an investment portfolio. In both the finance
and the retrieval scenarios, diversifying the selected items can maximise the ex-
pected return (mean) while minimising the involved risk (variance) of a particular
selection. Wang & Zhu (2009) proposed to deploy such a mean-variance analysis

(MVA) as a diversification objective, according to:

fvva(q,d,Dy) = pa — bw; 03 —2boy Z Wj 04, Pdd; (3.11)
d; €Dy

where 14 and 02 are the mean and variance of the relevance estimates associated
with document d, respectively, with the summation component estimating the
redundancy of d in light of the documents in D,. Documents are compared in
terms of the Pearson’s correlation pgg4; of their relevance estimates. The weight
w; assigns a discount to the document at the i-th ranking position. A balance

between relevance, variance, and redundancy is achieved with the parameter b.

9A very similar approach was proposed independently by Rafiei et al. (2010).
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Building upon the formalism of quantum mechanics (Dirac, 1930), Zuccon &
Azzopardi (2010) proposed the quantum probability ranking principle (QPRP).
In contrast to the classic PRP (Cooper, 1971; Robertson, 1977), introduced in
Section 2.2.1.1, the QPRP prescribes that not only the estimated relevance of each
document should be considered as a ranking criterion, but also how it interferes
with the estimated relevance of the other documents. In particular, in the quan-
tum formalism, interference refers to the effect of an observation on subsequent

observations. This notion was quantified into the following objective:

fQPRP<q7 d7 Dq) = p(QQ‘q7 d) + Z 0d,d; s (312)

dj EDq

where p(G,|q, d) denotes the probability of observing the relevant set G,, given the
query g and the document d, which corresponds to the classic formulation of the
PRP in Equation (2.6). The estimation of the interference gq44, between d and
each document d; € D, involves operations with complex numbers. In practice, it
can be approximated as 044, ~ —21/p(Ggla, d)\/p(Gylq, d;) f(d, d;), where f(d, d;)

can be any function measuring the similarity between the two documents.

Zhu et al. (2007) approached the diversification problem as an absorbing ran-
dom walk (ARW) with transition probabilities p,; = (1 — A) p(d;|q) + A p(d;|d;),
where p(d;|q) and p(d;|d;) denoted the estimated relevance of d; and its similarity
to d;, respectively, with the parameter A balancing between the two scores. An
absorbing random walk is a Markov chain with reachable absorbing states 7, such
that p,;; = 1if i = j, and 0 otherwise (Kemeny & Snell, 1960). In their formu-
lation, each already selected document d; € D, was represented as an absorbing

state, in which case candidate documents were scored according to:

fARW(%da DQ) = ﬁ(d> DQ)’ (313)

where 9(d, D,) denotes the expected number of visits to document d before ab-
sorption by the states in D,. While this computation would incur an inversion of
the underlying transition matrix at every iteration, in practice, such an inversion
can be computed only once and reused subsequently to update the portion of the
matrix corresponding to the states in R, \ D, (Woodbury, 1950).
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Gil-Costa, Santos, Macdonald & Ounis (2011, 2013) explored the properties
of the metric space induced from the ranking produced for a query in order
to identify novel documents. To this end, they deployed different techniques
to partition the initial ranking R, into zones Z,, with each zone comprising
documents similar to each other and dissimilar from documents in the other zones.
Since | Z,| < |D,|, they were able to drastically reduce the number of document
comparisons required to promote novelty, by comparing each candidate document
d € R,\D, to each identified zone centre z € Z,, instead of all previously selected
documents d; € D,. While such centres could be directly returned as a diverse
selection of documents, Gil-Costa et al. (2011) introduced a scoring function to

perform what they called a sparse spatial selection diversification (SSSD):
fessp(@:4.Dg) = (1= V) fila,d) + A(1—maxfy(d2)),  (3.14)

where fi(q,d) and f,(d, z) estimate the relevance of d to the query ¢ and its
similarity—as given by a metric distance—to each zone centre z, with the pa-

rameter \ controlling the trade-off between the two scores.

3.3.2 Coverage-based Approaches

Different from novelty-based approaches, coverage-based approaches do not ac-
count for dependences between the ranked documents. Instead, they attempt to
maximise the coverage of multiple query aspects by each independently selected
document, regardless of the aspects covered by the other documents. As a result,
these approaches do not adhere to the greedy formulation in Algorithm 3.1.
Although such an independence assumption breaks the effectiveness guaran-
tees offered by the greedy approximation, it improves the efficiency of the result-
ing diversification. In particular, while novelty-based approaches evaluate the
objective function f(q,d, D,) a total of O(7n,) times, only O(n,) evaluations are
required by coverage-based approaches. The cost of a single evaluation, in turn,
depends on the total number of represented aspects k, i.e., w; = O(k). Similarly
to the analysis conducted for novelty-based approaches, we can express the total

cost incurred by coverage-based approaches as Zf\;l w; = Zf):(f ) = O(kny).
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Carterette & Chandar (2009) proposed a probabilistic approach for maximis-
ing the coverage of multiple “facets”, representing different aspects of a query.
Such facets were generated by constructing either relevance models (Lavrenko &
Croft, 2001) or topic models (Blei et al., 2003) from the top retrieved documents
for the query. Three strategies were proposed to re-rank the initially retrieved
documents R, with respect to their coverage of the identified facets. In particu-
lar, the best performing of these strategies selected the highest scored document
d for each facet z € Z, in a round-robin fashion. Such a facet modelling (FM)

approach can be formalised into the following objective function:

d if 4z, € Z d|lz)>0ANi=|D, mod |Z,,
P £ )| p(dl) P mod 12,
0 otherwise,

where Z, is the set of facets identified for the query ¢, p(d|z;) denotes the like-
lihood of observing each document d given the facet z; € Z,. The modulus
operation ensures a round-robin selection from a total of | Z,| facets. Since the
probabilities p(d|z;) are not comparable across facets, the documents selected in
the round-robin process are ultimately ordered by their likelihood given gq.

A similar approach was investigated by He et al. (2011), by partitioning the
documents initially retrieved for a query into non-overlapping clusters using topic
modelling (Blei et al., 2003). In their approach, each cluster ¢ € Z, received a
score p(c|q), given by the cluster’s likelihood of generating the query g. As a
result, the diversification problem was reduced to the task of selecting documents
with a high coverage of highly scored clusters. Of the selection strategies in-
vestigated, a weighted round-robin selection (WRR) performed the best. This

selection strategy can be formalised according to:

p(dlg) if3e; € Z,|dec; Ni=|D,| mod |Z,|
fwrr(q,d,Dy) = s.t. plerlg) > plealq) > -+ = plez,|q), (3.16)

0 otherwise,

where the probability p(c;|¢) imposes a total ordering over the clusters ¢; € Z,,

essentially biasing the round-robin selection towards highly scored clusters.
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Radlinski & Dumais (2006) proposed to diversify the documents retrieved for
a query according to these documents’ coverage of multiple reformulations of the
query, mined from a query log. In particular, given a query ¢, they selected the k
queries most likely to follow ¢ across multiple sessions in a query log as a set S, of
query reformulations. In order to select the 7 most diverse documents from the
ranking R,, they enforced a proportional coverage of the identified reformulations.
According to this proportional coverage (PC) policy, each reformulation s € S,
could be represented by at most 7/k documents, which essentially filtered out

documents covering already well covered reformulations, according to:

,d) ifdse S, |deRsN|RsND,| < 7/k,
focla,d, Dy) = N ) a | o</ (3.17)
0 otherwise,

where R is the set of documents that match the reformulation s. Despite ensur-
ing a proportional coverage of different reformulations, the selected documents
are still ranked by their estimated relevance to the initial query, f(q,d).

In a similar vein, Capannini et al. (2011) proposed to mine query specialisa-
tions (i.e., queries with a more specific representation of the user’s information
need compared to the initial query (Boldi et al., 2009b)) from a query log in
order to guide the diversification process. In particular, they selected the 7 most
diverse documents from R, according to each document’s weighted proportional
coverage (WPC) of the identified specialisations s € S,. More precisely, their

approach can be formalised into the following objective function:

flg,d) ifdse S, |deRsN|RsND,| < p(slq) T,
fwpc(q, d, Dy) = ! ‘ (3.18)
0 otherwise,

where p(s|q) 7 is the proportion of the final ranking dedicated to documents

matching each specialisation s € S,, given each specialisation’s likelihood p(s|q).

For documents matching a not well represented specialisation s, f(q,d) denotes
s 1—f(dd;)

each document’s utility, such that flg,d) oc >0 5 p(slq) >_ d,er. TGk Where

R is a ranking produced for each specialisation s and f(d, d;) measures the sim-

ilarity between d and each document d; € R, ranked at position 7(d;, Rs).
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Radlinski et al. (2008a) proposed an online learning approach to maximise the
coverage of clicks for a given query. Their intuition was that users with different
information needs would click on different documents for the same query. In
their formulation, the choice of the next document to be selected for a query was
seen as a multi-armed bandit (MAB) problem (Berry & Fristedt, 1985). A MAB
models the process of selecting one of many possible strategies or “arms”, trading
off the exploitation of existing knowledge and the acquisition (or exploration) of
new knowledge. In the context of the diversification problem, each candidate
document d € R, \ D, for the next ranking position of a query g was considered
as an “arm”, with existing knowledge MEZ) at time 7 denoting the likelihood of the
document being clicked when ranked at that position for the query. Precisely,
their ranked-armed bandits (RAB) objective can be described as:

1 if d = MAB;(Ry, ut),

Jras(¢,d,Dy) = (3.19)

0 otherwise,

where MAB;(R,, uﬁi)) is a MAB instance specifically trained to select a document
d* € R, for the j-th ranking position, with j = |D,| + 1, balancing exploration

and the exploitation of the expected reward ,ug*) at time 7.

3.3.3 Hybrid Approaches

Hybrid search result diversification approaches combine the benefits of both cov-
erage and novelty-based approaches. On the one hand, they try to certify that
multiple aspects of the initial query are covered in the ranking. On the other hand,
they strive to ensure that the covered aspects are novel with respect to the aspects
covered by the other documents. As an inherited characteristic of novelty-based
approaches, hybrid approaches also account for dependences between the ranked
documents. As a result, hybrid approaches also strictly adhere to the greedy for-
mulation in Algorithm (3.1). In addition, the account of document dependences
gives hybrid approaches a total cost of Zf\;l w; = ZZO:(I ma) | = O(ktn,). Com-
pared to the O(v7n,) cost incurred by pure novelty-based approaches, hybrid

approaches are more efficient, since typically k < v.
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Yue & Joachims (2008) proposed a hybrid diversification approach within the
framework of supervised machine learning. As training data, they considered a
pair (R,,, N,,) for each query ¢;, where R,, and N, denoted the initially ranked
documents and the manually labelled information needs possibly underlying g;,
respectively. Since the actual needs N, are unknown in a real scenario, these
were implicitly represented using the words covered by each document. In order
to learn a function f to identify a set D,, C R,, with maximum coverage of N,
they employed structural support vector machines (SVMs; Tsochantaridis et al.,
2005). In particular, their weighted word coverage (WWC) approach considered

linear functions f, parametrised by a weight vector w, according to:
fwwel(e, d, Dy) = WT(I’(Rqa D, U {d}), (3.20)

where the feature extractor ®(R,, D, U {d}) measures the extent to which the
words in R, are covered by each candidate selection D, U {d}.

A supervised learning approach similar to the one of Yue & Joachims (2008)
was introduced by Raman et al. (2012), but within an online learning setting.
In particular, at a given time i, their approach presented the user with a diverse

ranking D,, produced by the following objective:
fDP(Q7 da Dq) = W;TCI)(Rqa Dq U {d})v (321)

where w; denotes the weight vector learned by a diversification perceptron (DP),
based upon the evidence accumulated up to time i, and ®(R,, D,U{d}) is defined
in terms of word coverage, similarly to Equation (3.20). To update the vector w;,
the feedback received from the user in the form of pairwise preferences is used
to produce an improved (in expectation) ranking ﬁq. In particular, the updated
vector is defined as w;p; = w; + ®(R,, D,) — ®(R,, D,).

Hybrid approaches based on explicit aspect representations have also been
proposed. For instance, Slivkins et al. (2010) introduced a hybrid diversification
approach within the multi-armed bandits (MAB) framework. In particular, they
extended the click coverage maximisation approach of Radlinski et al. (2008a),

described in Section 3.3.2, to account for the context in which clicks are observed.
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To this end, they proposed to condition the expected reward ué?pq of each docu-
ment d at time ¢ on the documents D, selected ahead of d. This can be formalised

into the following objective function, denoted ranked context bandits (RCB):

1 if d = MAB;(Ry, i) ).

fren(a,d, Dq) = (3.22)

0 otherwise,

where, similarly to Equation (3.19), the instance MAB;(R,, MS\)D ) selects a doc-
ument d* € R, for the j-th ranking position, with j = |D,| + 1, but instead using
the conditional reward /,Lg*)mq at time 7, by correlating the clicks on d* to those ob-
served for the documents d; € D,. To reduce the number of required correlation
computations, they modelled the reward function p, as a Lipschitz-continuous
function in the metric space induced by the documents in R, (Searcéid, 2006),
which dramatically improved the efficiency of the proposed approach.

Agrawal et al. (2009) sought to diversify a document ranking in light of a tax-
onomy 7T of query intents, represented as different categories from the Open Di-
rectory Project (ODP).!% Given the classification of both queries and documents

in light of this taxonomy, they proposed an intent-aware selection (IA-Select)

mechanism, instantiating the objective function in Algorithm 3.1 as:

fIA Select Q7d D Zqu’ d|Q7 )7 (323)
ceT

where, for each category ¢ € T, f(d|q, ¢) denotes the extent to which the document
d covers ¢, while f(c|q, D,) denotes the marginal utility of ¢ given the query ¢ and
the documents already in D,. Intuitively, an already well covered category is
deemed less useful, which contributes to the promotion of novel documents.

The search result diversification framework introduced in this thesis also falls
into the family of hybrid approaches. In Chapter 4, we will discuss how particular
choices for explicitly representing the query aspects and for estimating the diver-
sity of the retrieved documents with respect to each aspect lead to a principled,
effective, and flexible solution to the diversification problem. Before that, in the

remainder of this chapter, we will introduce approaches for diversity evaluation.

Ohttp: //www.dmoz.org/
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3.4 Diversity Evaluation

A diverse ranking is one that satisfies the multiple information needs possibly
underlying an ambiguous query—be these needs from different users or from the
same user in different contexts. While traditional web search evaluation is chal-
lenging, departing from the assumption that a single information need underlies
each query arguably renders the evaluation of diversity even more complex. In
this section, we review the literature on diversity evaluation. In particular, Sec-
tion 3.4.1 extends the discussion in Section 2.3.2 with an emphasis on diversity
evaluation benchmarks. In turn, Section 3.4.2 describes diversity evaluation met-

rics, as an extension of the traditional metrics introduced in Section 2.3.3.

3.4.1 Evaluation Benchmarks

As discussed in Section 2.3.2, search systems have greatly benefited from the
controlled evaluation offered by benchmark test collections. On the other hand,
query ambiguity has been largely ignored by early test collections, similarly to
how traditional ranking approaches have ignored query ambiguity, as discussed in
Section 3.2. In practice, the assumption that the user’s query represents a single
information need reduces the complexity of the underlying evaluation, ensuring
that different systems are evaluated with respect to an unambiguously defined
information need (Cleverdon, 1991). However, as pointed out by Spéarck-Jones
et al. (2007), this assumption is far from holding in the real world, particularly
with the high incidence of short an ambiguous queries. As discussed in Section 3.1,
such queries can negatively impact search effectiveness (Sanderson, 2008).

In order to address such a limitation of the established evaluation paradigm,
Spérck-Jones et al. (2007) argued for the development of test collections that
explicitly account for queries with different levels of ambiguity. In particular, they
claimed that such a test collection should consider each query as representing an
ensemble of information needs, as opposed to a single need. In turn, such needs
should reflect the interests of the population of users that could have issued the
query. Finally, the relevance of each ranked document should be judged separately
for each information need, so as to enable the assessment of the effectiveness of

the whole ranking at satisfying the multiple needs.
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Analogously to the instantiation of diversification approaches, discussed in
Section 3.3, diversity evaluation is typically operationalised by representing the
possible information needs underlying a query as multiple query aspects.!! Early
attempts to build a test collection for diversity evaluation were made at the TREC
6-8 Interactive tracks (Over, 1997, 1998; Hersh & Over, 1999). The investigated
task, called “aspect retrieval”, involved finding documents covering as many dif-
ferent aspects of a given query as possible. In this evaluation campaign, a total
of 20 topics were adapted from the corresponding years of the TREC Ad hoc
tracks (Voorhees & Harman, 1997, 1998, 1999). Each topic included from 7 to 56
aspects, as identified by TREC assessors, with relevance assessments provided at
the aspect level. Figure 3.2 illustrates one of such topics, 353i, along with some

of its identified aspects, denoted “sub-topics” in the TREC jargon.
<topic number="353i">
<query> antarctic exploration </query>
<description>
Identify systematic explorations and scientific investigations of
Antarctica, current or planned.
</description>
<subtopic number="1"> mining prospection </subtopic>
<subtopic number="2"> o0il resources </subtopic>
<subtopic number="3"> rhodium exploration </subtopic>
<subtopic number="4"> ozone hole / upper atmosphere </subtopic>
<subtopic number="5"> greenhouse effect </subtopic>
</topic>

Figure 3.2: TREC-7 Interactive track, topic 353i and its sub-topics.

By relying on expert judges to identify query aspects from the retrieved doc-
uments (Lagergren & Over, 1998), the TREC Interactive track test collection
arguably lacks in plausibility and completeness in light of the actual information
needs of the population of users issuing a query (Radlinski et al., 2010b). In
order to overcome this limitation, Radlinski et al. (2010a) proposed to identify
realistic query aspects for diversity evaluation from the query and click logs of a
commercial search engine. In their approach, candidate aspects were selected as

queries that frequently co-occurred with the initial query across multiple sessions

"' Note that the aspect representation adopted by a diversification approach does not neces-
sarily reflect the ground-truth aspect representation adopted for evaluation purposes.
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in the query log. Candidates with a low transition probability after a two-step
random walk on the bipartite query-document click graph (Craswell & Szummer,
2007) were filtered out. The remaining candidates were then clustered using a
graph partitioning algorithm (Blondel et al., 2008). The highest-scoring aspects
from different clusters were shown to better reflect real user needs compared to
aspects proposed by expert judges (Radlinski et al., 2010a,b). As a result, these
aspects served as the basis for a new test collection, developed in the context of
the TREC 2009-2012 Web tracks (Clarke et al., 2009a, 2010, 2011b, 2012).

The diversity task of the TREC 2009-2012 Web tracks currently provides the
largest publicly available test collections for diversity evaluation. As of 2011,'2
these test collections comprised a total of 150 topics, with 2 to 8 associated
aspects each (Clarke et al., 2009a, 2010, 2011b). As such, these collections are
chosen as benchmarks for the experiments conducted in this thesis. An example
TREC Web track topic, along with its identified aspects, is shown in Figure 3.3.
In contrast to the short description provided by the TREC Interactive track test
collection, the TREC Web track aspects include a natural language description
of the information need represented by each aspect. Moreover, each aspect is
further classified as either informational (“inf”) or navigational (“nav”) by TREC
assessors, depending on the intent of its underlying need (Broder, 2002).

<topic number="1">
<query> obama family tree </query>
<description>
Find information on President Barack Obama’s family history, including
genealogy, national origins, places and dates of birth, etc.
</description>

<subtopic number="1" type="nav">

Find the TIME magazine photo essay "Barack Obama’s Family Tree".
</subtopic>

<subtopic number="2" type="inf">

Where did Barack Obama’s parents and grandparents come from?
</subtopic>

<subtopic number="3" type="inf">

Find biographical information on Barack Obama’s mother.

</subtopic>
</topic>

Figure 3.3: TREC 2009 Web track, topic 1 and its sub-topics.

12The TREC 2012 Web track is ongoing at the time of writing.
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Another test collection for the evaluation of web search result diversification
was recently introduced as part of the NTCIR-9 Intent task (Song et al., 2011a).13
Initiated in 1999, NTCIR is a series of evaluation workshops designed to assess
information retrieval on Asian languages, as well as across different languages. For
the NTCIR-9 Intent task, two test collections were developed, aimed at evaluating
search result diversification on the Chinese and the Japanese Web. In particular,
the Chinese collection comprised 100 topics, with 4 to 15 associated aspects each.
For Japanese, another 100 topics were developed, each with 3 to 22 aspects. An

example Chinese topic (translated to English) is shown in Figure 3.4.
<topic number="0015">

<query> mozart </query>

<subtopic number="1" probability="0.241379310344828">
mozart’s music download

</subtopic>

<subtopic number="2" probability="0.241379310344828">
mozart’s biography

</subtopic>

<subtopic number="3" probability="0.241379310344828">
works by mozart

</subtopic>

<subtopic number="4" probability="0.126436781609195">
mozart’s concerts

</subtopic>

</topic>
Figure 3.4: NTCIR-9 Intent task (Chinese), topic 0015 and its sub-topics.

Different from the diversity task of the TREC 2009-2011 Web tracks, the
NTCIR-9 Intent task included graded (i.e., non-binary) relevance assessments
at the aspect level. In addition, as shown in Figure 3.4, the identified aspects
were assigned non-uniform probabilities, estimated through assessor agreement,
in order to place more emphasis on popular aspects during the evaluation (Sakai
& Song, 2012). While these extensions certainly introduce interesting nuances for
diversity evaluation, in order to ensure a consistently uniform experimental setup
throughout this thesis, we opted not to use these test collections. Nonetheless,
an evaluation of the framework introduced in this thesis on both NTCIR-9 Intent
task test collections was conducted by Santos et al. (2011f).

3The NTCIR-10 Intent task is also ongoing at the time of writing.
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3.4.2 FEvaluation Metrics

Several metrics have been proposed in recent years to evaluate the diversification
effectiveness of a document ranking. Given a query ¢ and a cutoff k, a diversity
evaluation metric quantifies the extent to which the top x documents in a ranking
R, cover the aspects A,, representing the information needs N, underlying q.
The most straightforward metric for diversity evaluation is perhaps sub-topic
recall (SC; Zhai et al., 2003). Also known as intent recall (Sakai et al., 2010),
this metric quantifies the amount of unique aspects A, of the query ¢ that are

covered by the top s ranked documents d € Ré’i), according to:

U (K)|Aqﬂ./4d|
SR(5. 1) = =S
q

(3.24)

where Ay is the set of aspects for which the document d € Ré”i) is relevant.

A limitation of sub-topic recall is that it does not take into account the prob-
ability of different aspects given the submitted query. Ideally, this probability
should reflect the fraction of the user population that is interested in the infor-
mation need represented by each aspect. Two evaluation frameworks that take
into account the (potentially non-uniform) probability of different aspects have
been proposed in the literature. In common, these frameworks generate diversity-
oriented metrics as a natural extension of relevance-oriented evaluation metrics
in the presence of multiple query aspects. The first of these frameworks, de-
noted “intent-aware”,'* was introduced by Agrawal et al. (2009). In particular,
they defined an intent-aware (IA) metric Eval-IA(q, k) as the expected value of

its counterpart relevance-oriented metric Eval(a, ), with a € A,, according to:

Eval-IA(q, k) = Z p(alq)Eval(a, k), (3.25)

acA,

where p(a|q) is the probability of observing the aspect a given the query ¢, and

Eval(a, k) is computed by assuming that a is the only relevant aspect of g.

M Agrawal et al. (2009) use “intent” in the sense of “information need”. Throughout this
thesis, we adopt the traditional definition of “intent” as a property of an information need (e.g.,
informational, navigational), in the sense proposed by Broder (2002) and Rose & Levinson
(2004), and instead generally refer to the information needs underlying a query as “aspects”.
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An alternative to the intent-aware framework of Agrawal et al. (2009) was
proposed by Sakai et al. (2010), as an extension to traditional metrics based
upon graded relevance, such as discounted cumulative gain (DCG; Jarvelin &
Kekéldinen, 2002), described in Equation (2.51). In particular, instead of com-
puting the expected value of one such metric across each of the multiple aspects
A, underlying the query ¢, as in Equation (3.25), they proposed to extend this
metric to leverage the expected gain over multiple aspects—as opposed to the
raw gain with respect to the query ¢ only. The introduced family of diversity

metrics, denoted “D” metrics, can be formalised according to:
D-Eval(q, k) = Eval(A,, k), (3.26)

where Eval(A,, k) denotes a traditional graded relevance metric, with the gain
of the i-th document computed by aggregating the aspect-specific gains g;,, ac-
cording to g; = >~ 4, p(alq) g;,. One basic advantage of this framework over the
intent-aware framework of Agrawal et al. (2009) is that the metric Eval(A,, k) is
computed for a single rather than for multiple separate rankings.

A limitation of both the TA and the D evaluation frameworks is that they
do not enforce a high coverage of multiple query aspects by design. As a result,
some metrics generated by these frameworks, such as DCG-IA (Agrawal et al.,
2009) or D-DCG (Sakai et al., 2010), may completely ignore aspects with a low
probability p(alg). In the extreme case, these metrics may end up maximally
rewarding a ranking that covers only a single yet dominant aspect. In order to
overcome this limitation, Sakai et al. (2010) proposed to linearly interpolate a
D metric with sub-topic recall (SR), defined in Equation (3.24). The resulting

metric, which they called a “Df” metric, can be defined according to:
Dﬂ—EV&l(q, K’) =7 SR(qa ’%) + (1 - V)D_Eval(qa ’%)a (327)

where the parameter -y controls the balance between the SR(q, k) and D-Eval(q, k)
metrics. Typically, this parameter is set as v = 0.5, as it was shown to have
little impact in the final value of Dg-Eval(q, k), primarily because SR(q, k) and
D-Eval(q, k) are highly correlated with each other (Sakai et al., 2010).
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Another option to enforce the coverage of multiple aspects is to instantiate ei-
ther the TA or the D framework by computing the expected value (for IA metrics)
or the expected gain (for D metrics) of a cascade metric (Clarke et al., 2011a). As
discussed in Section 2.3.3, cascade metrics penalise redundancy, by modelling the
behaviour of a user who stops inspecting the ranking once a relevant document
is observed (Craswell et al., 2008). As an indirect result, these metrics encourage
the coverage of multiple, non-redundant query aspects. One such metric is ex-
pected reciprocal rank (ERR; Chapelle et al., 2009), described in Equation (2.53).
This metric can be extended into its intent-aware counterpart, ERR-IA (Chapelle

et al., 2011), according to:

ERR-IA(q, %) = Y _ p(alg)ERR(a, k), (3.28)

acAy

where ERR(a, k) is computed separately for each aspect a € A,, under the as-
sumption that none of the other query aspects is of interest.

Instantiations of the D framework using cascade metrics are also possible.
For instance, Clarke et al. (2008) proposed to extend the traditional discounted
cumulative gain (DCG) metric (Jarvelin & Kekélainen, 2002), described in Equa-
tion (2.51), with the gain at a given ranking position defined in order to reward
a high coverage of the query aspects while penalising excessive redundancy with
respect to the aspects covered by documents at higher ranks. More precisely,

they introduced the a-DCG metric according to:

EaE.Aq gz\a<1 - (X)Z;;ll 9ila
log, (i + 1)

a-DCG(q, k) = Z

i=1

, (3.29)

where g;, is the (binary) relevance grade of the i-th ranked document with respect

a
to each query aspect a € A,. As a result, (1 — a)zz; Jila penalises redundancy
by diminishing the value of covering the aspect a, according to how much this
aspect is already covered by the documents ranked ahead of the i-th document.
The parameter o € [0, 1) controls the amount of penalisation: o — 1 results in
the maximum penalisation, whereas o = 0 reduces to the standard DCG, with

the number of covered aspects ) . 4, Yila used as the gain at rank :.
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Extended metrics have also been proposed in recent years, accounting for di-
mensions of the diversification problem not addressed by the metrics described
thus far. For instance, Clarke et al. (2009b) proposed a metric that explicitly
distinguishes between aspects related to different interpretations of the user’s
query. Their basic intuition was that, while a user may be interested in multiple
aspects of a given interpretation, only one such interpretation should be of in-
terest. To exploit this intuition, they extended the rank-biased precision (RBP)
metric (Moffat & Zobel, 2008), described in Equation (2.52), with a discount
factor that penalises redundancy, similarly to a-DCG (Clarke et al., 2008). The

resulting metric, novelty- and rank-biased precision (NRBP), was defined as:

NRBP(C], /{) _ (1 - (15— Oé)ﬁ) Zﬁz Z p(:j\Q) Z gi\a(l _ a)z;;ll 9jla, (330)

i=1 PEQq ‘ LP‘ acAy,

where €, is the set of possible interpretations of the query ¢, and A, is the set of
aspects associated with each interpretation ¢ € €2, in which case g;, denotes the
(binary) relevance grade of the i-th document with respect to the aspect a € A,,.
Interpretations follow a non-uniform distribution p(¢|q), whereas the distribution
of aspects for a given interpretation is assumed to be uniform. Analogously to
a-DCG in Equation (3.29), (1 — a)zé;ll Jile penalises the coverage of already well
covered interpretation-aspect pairs, with the parameter o controlling the amount
of penalisation. The extra parameter 8 models users with different patience levels,
similarly to the standard RBP metric in Equation (2.52).

Sakai (2012) proposed to extend the IA and D frameworks, in order to account
for the intent of different aspects. For the extended D framework, he computed
the gain at rank 7 by distinguishing between informational and navigational as-
pects, according to g; = > ,c 4, P(alq) gijo(1 — Lanav(a) 1U§;11Adj (a)), where the
indicator functions 1 v (a) and 1u;ﬂ;11 A (a) denote whether the aspect a € A,
is navigational and whether it is covered by any document ranked ahead of the
i-th. His assumption was that redundancy should be penalised for navigational
aspects, but not for informational ones. An analogous extension was proposed
for the TA framework, by interpolating the expected value of informational- and

navigational-oriented metrics over the corresponding subsets of aspects.
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In addition to developing diversity evaluation metrics, much effort has been
invested in validating such metrics. For instance, Clarke et al. (2011a) analysed
the discriminative power of diversity metrics, a property that reflects the extent
to which a metric can distinguish between pairs of rankings. Using the runs sub-
mitted to the TREC 2009 Web track (Clarke et al., 2009a), they observed that
sub-topic recall (Equation (3.24)) has the highest discriminative power compared
to the other considered diversity metrics. Intent-aware and cascade metrics, on
the other hand, showed a discriminative power inferior to that observed for aver-
age precision (Equation (2.50)), a relevance-oriented metric.

Ashkan & Clarke (2011) analysed the informativeness of diversity metrics,
which reflects the extent to which a metric predicts the actual distribution of
relevant documents. Using the maximum entropy method to estimate the most
plausible relevance distribution according to a given metric (Aslam et al., 2005),
they found that intent-aware cascade metrics (which reward coverage and novelty)
are more informative than their pure cascade counterpart (which only rewards
novelty), with ERR-TA (Chapelle et al., 2011), described in Equation (3.28),
showing the highest informativeness among all considered metrics.

Sanderson et al. (2010) investigated the predictive power of diversity metrics,
in terms of the extent to which these metrics correlate with the behaviour of
actual users. In their study, 296 subjects were hired through crowdsourcing to
express their preference between pairs of runs submitted to the TREC 2009 Web
track (Clarke et al., 2009a). The runs in each pair were also evaluated according
to multiple diversity metrics. Their analysis showed a high agreement between
the prediction of several diversity metrics and the users’ preferences, with no
significant difference in predictive power between the considered metrics.

Carterette (2009) analysed the optimality of the normalisation component of
cascade metrics. In particular, producing an ideal ranking for normalising such
metrics is an NP-hard problem, as discussed in Section 3.2.2. Since the ideal
ranking is typically computed using the greedy approximation in Algorithm 3.1,
a natural question is whether the produced evaluation scores are affected by a sub-
optimal normalisation. Fortunately, an analysis of real and simulated topic sets
and aspect relevance assessments showed that the greedy and optimal evaluation

normalisations agree in 93% and 85% of the cases, respectively.
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3.5 Summary

This chapter introduced the search result diversification problem as a departure
from the traditional view of ranking as the problem of satisfying a single infor-
mation need expressed by the user’s query, which was the focus of Chapter 2.

In Section 3.1, we described several studies that quantified the occurrence
of ambiguous queries in real web search logs, as a motivation for diversifying
the search results. In Section 3.2, we discussed the simplifying assumptions un-
derlying traditional probabilistic ranking approaches and the limitation of such
assumptions in a real search scenario. This discussion led to the formal definition
of the diversification problem and the analysis of its complexity. In Section 3.3,
we described the most prominent diversification approaches in the literature, or-
ganised according to the complementary dimensions of diversification strategy
and aspect representation. Lastly, in Section 3.4, we extended the discussion in
Section 2.3 with an emphasis on the evaluation of diversification effectiveness,
including a description of the existing evaluation benchmarks and metrics.

As a complement to Chapter 2, this chapter consolidates our account of the
related literature on web search ranking, and particularly on diversity-oriented
ranking. In the next chapter, we will introduce a novel framework for search result
diversification, which exploits the strengths and weaknesses of past research in

order to deliver a flexible and effective solution for diversifying the search results.

83



Chapter 4

The xQuAD Framework

Several approaches have been recently proposed to diversify the documents re-
trieved for an ambiguous or underspecified query. In common, we argue that
none of these approaches addresses the multiple information needs underlying
a query in a principled manner. As discussed in Section 3.3, on the one hand,
implicit diversification approaches rely on an aspect representation derived from
the retrieved documents, as opposed to the query or the possible information
needs that it represents. On the other hand, existing explicit approaches rely on
arbitrary surrogates or on heuristics to exploit multiple information needs.

In this thesis, we claim that an effective diversification should be explicitly
driven by the perspective of the search users, as opposed to the perspective of
the retrieved documents. Moreover, such an explicit representation should reflect
the multiple information needs that may have motivated the query (Spérck-Jones
et al., 2007). In order to formalise this view, we propose a probabilistic objective
for search result diversification, which is at the core of the Explicit Query Aspect
Diversification (xQuAD) framework introduced in this thesis.

The remainder of this chapter describes the xQuAD framework. In particu-
lar, Section 4.1 discusses our view towards a user-driven diversification and the
requirements involved in pursuing this view. Section 4.2 formalises xQuAD’s
probabilistic ranking objective, which fulfils the identified requirements in a prin-
cipled yet practical manner. A complete example of the operation of the proposed
framework is provided in Section 4.3. Lastly, a parallel to approaches that in-

spired the development of xQuAD is drawn in Section 4.4.
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4.1 User-driven Diversification

Early diversification approaches typically built an implicit representation of the
query aspects based upon some property of the retrieved documents, such as their
raw content (Carbonell & Goldstein, 1998), their language models (Zhai et al.,
2003), their relevance scores with respect to the initial query (Wang & Zhu, 2009;
Rafiei et al., 2010), or their coverage of latent topics (Carterette & Chandar,
2009) or clusters (He et al., 2011; Gil-Costa et al., 2011, 2013). As illustrated in
Figure 4.1, these approaches differ from more recent ones that derive an explicit
aspect representation driven by the query itself. On the other hand, existing
explicit approaches either rely on arbitrary properties of the query, such as its
classification according to a fixed taxonomy (Agrawal et al., 2009), or on heuristic
diversification strategies, aimed at achieving a proportional coverage of multiple

query aspects in the ranking (Radlinski & Dumais, 2006; Capannini et al., 2011).

query-driven
diversification

document-driven
diversification

information
needs

Figure 4.1: Query- vs. document-driven diversification.

We argue that the existing approaches have three key limitations:

L1. The ranking produced by a document-driven approach can be only as di-
verse as the aspects identified from the documents retrieved for the initial
query, which may be biased (Mowshowitz & Kawaguchi, 2002). As a result,
important aspects (from the user population perspective) may be overlooked
simply because they are not well represented among the initial documents;

conversely, marginally important aspects may be overemphasised.
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L2. The query aspects identified arbitrarily based on either document or query
properties are a loose surrogate for the actual information needs that may
have motivated different users to issue the query in the first place. For in-
stance, documents that cover different topics or categories—or documents
that are just dissimilar from each other—can feasibly meet the same infor-

mation need, in which case they would be deemed redundant.

L3. Heuristic ranking strategies may not cater for all dimensions of the diver-
sification problem. For instance, as discussed in Section 3.3.2, ensuring a
proportional coverage of multiple aspects is arguably ineffective if these as-
pects do not represent likely information needs; even when the likelihood
of different aspects is appropriately estimated, aiming for a proportional
coverage regardless of the incurred redundancy voids the approximation

guarantees known for this problem (Nemhauser et al., 1978; Feige, 1998).

In this thesis, we overcome limitation L1 by adopting an explicit aspect repre-
sentation, which is driven by the query as opposed to the retrieved documents. In
turn, limitation L2 is overcome by ensuring that this representation is meaning-
fully driven towards modelling multiple users’ information needs, rather than any
arbitrarily defined query properties. Finally, in order to overcome limitation L3,
we propose a probabilistic framework that accommodates the different dimensions
of the search result diversification problem in a principled yet practical manner.
In particular, the proposed framework should account for the overall coverage of
each retrieved document with respect to the identified information needs, so as
to rank highly diverse documents first. Moreover, it should account for how well
each information need is covered by the other retrieved documents, so as to avoid
promoting redundant documents. Additionally, the framework should be able to
infer how much emphasis should be placed on each of the identified information
needs, since there may be dozens of possible information needs underlying the
query. Finally, since not all queries are equally ambiguous, the framework should
also cater for the ambiguity levels of different queries, so as to infer how much to
diversify the retrieved documents on a per-query basis. Our proposed framework,

which fulfils all the above requirements, is introduced in the next section.
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4.2 Explicit Query Aspect Diversification

The diversification problem, formally defined in Section 3.2.1, can be naturally

stated as a trade-off between finding relevant and diverse information:

Given an initial ranking R, produced for a query ¢, find a re-ranking
D, that has (1) the maximum relevance to ¢, and (2) the maximum

diversity with respect to the different aspects underlying q.

As discussed in Section 3.2.2; this bi-criterion optimisation problem can be
reduced from the maximum coverage problem (Hochbaum, 1997), which makes
it NP-hard (Agrawal et al., 2009). Fortunately, there is a well-known greedy ap-
proximation to this problem, as described in Algorithm 3.1, which forms the basis
of most of the approaches to search result diversification presented in Section 3.3,
and is also the basis for our proposed diversification framework.

In order to solve this optimisation problem, we introduce the Explicit Query
Aspect Diversification (xQuAD) framework. In particular, inspired by Spérck-
Jones et al. (2007), we argue that an ambiguous query should be seen as represent-
ing an ensemble of possible information needs. Accordingly, within xQuAD, we
model an ambiguous query as comprising a set of sub-queries, with each sub-query
representing one of the possible information needs underlying the initial query.
While different sub-query instantiations are certainly possible, in this thesis, we
adopt a keyword-based representation. As we will show in Chapter 6, not only
is this representation consistent with the one adopted for the initial query, but
it also enables the exploitation of past users’ queries as effective representations
of multiple information needs. Moreover, such a representation allows xQuAD to
tackle search result diversification as an optimisation of the expected relevance
of a ranking in light of multiple needs. As a result, our framework can directly
leverage a plethora of traditional ranking approaches, such as those introduced
in Chapter 2, as we will demonstrate in Chapters 7 and 8. Lastly, by recognising
that different queries may have different levels of ambiguity, we explicitly model
the trade-off between promoting relevance and diversity within xQuAD, as will
be discussed in Chapter 9. In the remainder of this section, we describe a proba-
bilistic formulation that accommodates all these characteristics into a principled

ranking objective for search result diversification.
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4.2.1 Probabilistic Objective

As limited representations of information needs and information items, respec-
tively, queries and documents naturally incur an uncertainty to the estimation of
relevance. By adding to these the representation of multiple information needs,
the estimation of diversity exacerbates the problem. In order to leverage an appro-
priate groundwork for reasoning under uncertainty, we devise a ranking objective
for search result diversification in light of probability theory (Good, 1950).
Recalling the greedy approximation in Algorithm 3.1, given a query ¢ and a
ranking R, of documents retrieved for this query, our goal is to iteratively build
a new ranking D,, with |D,| < 7, by selecting, at each iteration, the highest
scored document d € R, \ D,. To this end, we devise xQuAD’s scoring function

according to the following probability mixture model:

fequan (@, d, D) = (1= ) p(d|q) + A p(d, Dylq), (4.1)

where p(d|q) models the probability of observing the document d given the query
q, and p(d, D,|q) models the probability of observing d but none of the documents
already in Dy, selected in previous iterations, given ¢. These probabilities can be
interpreted as estimations of the relevance and the diversity of d, respectively,
with the parameter A controlling the balance between the two.

The probability of relevance, p(d|q), is defined in general terms, without any
assumption regarding the underlying statistical mechanism used for estimation.
In fact, any ranking approach can be used for this estimation, including the
probabilistic ranking approaches as well as the machine-learned approaches in-
troduced in Section 2.2, provided that they produce probabilistic scores. In turn,
the probability of diversity, p(d,D,|q), models the contribution of a document
d towards answering the query ¢, when d is provided jointly with the already
selected documents in D,, which are assumed to be non-relevant. In practice,
this formulation models the marginal utility of the document d in light of the
documents D,, selected in the previous iterations of the greedy algorithm. As
a result, maximising the probability p(d,D,|q) increases the chance that at least
one relevant document is retrieved in response to the query, even when different

users have different perceptions of this relevance (Sanner et al., 2011).
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While estimating p(d|q) is comparatively simpler, the estimation of p(d, D,|q)
requires further development. To this end, it is useful to consider a sample space
comprising features (e.g., terms) representing the information carried by the doc-
uments in R, initially retrieved for g. As aresult, d, D,, and g can be seen as sets
of such features or, equivalently, events in this sample space. In order to derive
p(d,D,|q), we further partition the sample space into a set of pairwise disjoint
sub-queries S, = {s1, 2, - , Sx}, with each sub-query s € S, representing one of
the possible information needs underlying ¢q. The resulting probability space is

illustrated by the Venn diagram in Figure 4.2 for k = 4 sub-queries.

Figure 4.2: Sample space partitioned by sub-queries.

In Figure 4.2, we can identify the three events of interest, denoting the ob-
servation of the query ¢, the document d, and the already selected documents in
D,. The thicker line in the figure restricts the sample space given the observation
of ¢q. As a result, the intersection between this region and the region covered by
the observation of a document can be seen as a measure of the probability that
the document is relevant to the query. In particular, the intersection between
the events d and ¢ is highlighted in different shades: the darkest shade denotes
the information represented by d that is also covered by the documents already
selected in Dy; the lighter shades denote the novel information covered by docu-
ment d, split across the considered sub-queries. Our goal is then to estimate the

probability associated with the event (d\ D,) N q or, equivalently, p(d, D,|q).
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After defining our target probability space, we can derive the probability of

diversity, p(d, D,|q), in a series of steps, according to:

p(d, Dylq) = z; p(d, Dy, s|q) (4.2)
S:Z: p(d, Dylg, s) (4.3)
~ gp(sm) p(dlg, 5) p(Dylg, 5) (4.4)
~ gp( pldlg, s dlel p(djlg, s) (4.5)
= ; pldlg, )dgj(l — pldjlg, 5))- (4.6)

In order to derive Equation (4.2), we apply the sum rule and marginalise the
probability p(d, D,|q) over the sub-queries s € S,. Equation (4.3) follows trivially
from the product rule (Good, 1950). The resulting probability p(s|q) can be seen
as modelling the importance of the sub-query s with respect to the other sub-
queries in §,. This notion could reflect, for instance, users’ preferences or the
context of their search (Clarke et al., 2008; Agrawal et al., 2009).

In order to derive p(d, D,|q, s) in Equation (4.3), we assume that the observa-
tion of the document d is independent of the observation of the documents already
selected in D, (and, by extension, of 1_),1), conditioned on the observation of the
query ¢ and the sub-query s. While this assumption is also present in the formu-
lation of other diversification approaches in the literature (e.g., Agrawal et al.,
2009; Carterette & Chandar, 2009), in reality, the knowledge of the documents
that have already been selected affects the selectio