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Thesis Abstract

Searching for information when using a computerised retrieval system is a complex and in-

herently interactive process. Individuals during a search session may issue multiple queries,

and examine a varying number of result summaries and documents per query. Searchers

must also decide when to stop assessing content for relevance – or decide when to stop their

search session altogether. Despite being such a fundamental activity, only a limited num-

ber of studies have explored stopping behaviours in detail, with a majority reporting that

searchers stop because they decide that what they have found feels “good enough”. Notwith-

standing the limited exploration of stopping during search, the phenomenon is central to

the study of Information Retrieval, playing a role in the models and measures that we em-

ploy. However, the current de facto assumption considers that searchers will examine k

documents – examining up to a fixed depth.

In this thesis, we examine searcher stopping behaviours under a number of different search

contexts. We conduct and report on two user studies, examining how result summary

lengths and a variation of search tasks and goals affect such behaviours. Interaction data

from these studies are then used to ground extensive simulations of interaction, exploring

a number of different stopping heuristics (operationalised as twelve stopping strategies). We

consider how well the proposed strategies perform and match up with real-world stop-

ping behaviours. As part of our contribution, we also propose the Complex Searcher Model, a

high-level conceptual searcher model that encodes stopping behaviours at different points

throughout the search process. Within the Complex Searcher Model, we also propose a new

results page stopping decision point. From this new stopping decision point, searchers can

obtain an impression of the page before deciding to enter or abandon it.
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Results presented and discussed demonstrate that searchers employ a range of different

stopping strategies, with no strategy standing out in terms of performance and approxima-

tions offered. Stopping behaviours are clearly not fixed, but are rather adaptive in nature.

This complex picture reinforces the idea that modelling stopping behaviour is difficult.

However, simplistic stopping strategies do offer good performance and approximations,

such as the frustration-based stopping strategy. This strategy considers a searcher’s toler-

ance to non-relevance. We also find that combination strategies – such as those combining a

searcher’s satisfaction with finding relevant material, and their frustration towards observ-

ing non-relevant material – also consistently offer good approximations and performance.

In addition, we also demonstrate that the inclusion of the additional stopping decision point

within the Complex Searcher Model provides significant improvements to performance

over our baseline implementation. It also offers improvements to the approximations of

real-world searcher stopping behaviours.

This work motivates a revision of how we currently model the search process and demon-

strates that different stopping heuristics need to be considered within the models and mea-

sures that we use in Information Retrieval. Measures should be reformed according to the

stopping behaviours of searchers. A number of potential avenues for future exploration

can also be considered, such as modelling the stopping behaviours of searchers individu-

ally (rather than as a population), and to explore and consider a wider variety of different

stopping heuristics under different search contexts. Despite the inherently difficult task

that understanding and modelling the stopping behaviours of searchers represents, poten-

tial benefits of further exploration in this area will undoubtedly aid the searchers of future

retrieval systems – with further work bringing about improved interfaces and experiences.

iv







Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this doctoral thesis are original and have not been submiĴed in whole (or in

part) for consideration for any other degree or qualification in this (or any other) university.

This doctoral thesis is the result of my own work, under the supervision of Dr Leif Az-

zopardi (University of Strathclyde) and Professor Roderick Murray-Smith (University of Glas-

gow). Nothing included is the outcome of work done in collaboration, except where specif-

ically indicated within the text.

Permission to copy without fee all or part of this doctoral thesis is granted, provided that

copies are not made or distributed for commercial purposes and that the name of the author,

the title of the thesis and date of submission are clearly visible on the copy.

David Martin Maxwell
Glasgow, Scotland
3rd March 2019

vii





Original Publications

Portions of the research presented in this doctoral thesis are included in the following se-

lected peer-reviewed publications. These are listed chronologically by publication date.

■ Maxwell, D. and Azzopardi, L. (2014). Stuck in traffic: How temporal delays affect

search behaviour. In Proceedings of the 5th IIiX, pages 155–164

■ Maxwell, D., Azzopardi, L., Järvelin, K., and Keskustalo, H. (2015a). An initial inves-

tigation into fixed and adaptive stopping strategies. In Proceedings of the 38th ACM

SIGIR, pages 903–906

■ Maxwell, D., Azzopardi, L., Järvelin, K., and Keskustalo, H. (2015b). Searching and

stopping: An analysis of stopping rules and strategies. In Proceedings of the 24th ACM

CIKM, pages 313–322

■ Maxwell, D. (2016). Building realistic simulations for interactive information retrieval.

In Proceedings of the 1st ACM CHIIR, pages 357–359

■ Maxwell, D. and Azzopardi, L. (2016b). Simulating interactive information retrieval:

Simiir: A framework for the simulation of interaction. In Proceedings of the 39th ACM

SIGIR, pages 1141–1144

■ Maxwell, D. and Azzopardi, L. (2016a). Agents, simulated users and humans: An

analysis of performance and behaviour. In Proceedings of the 25th ACM CIKM, pages

731–740

ix



■ Maxwell, D., Azzopardi, L., and Moshfeghi, Y. (2017). A study of snippet length and

informativeness: Behaviour, performance and user experience. In Proceedings of the

40th ACM SIGIR, pages 135–144

■ Maxwell, D. and Azzopardi, L. (2018). Information scent, searching and stopping:

Modelling SERP level stopping behaviour. In Proceedings of the 40th ECIR, pages 210–

222

■ Maxwell, D., Azzopardi, L., and Moshfeghi, Y. (2019). The impact of result diversifi-

cation on search behaviour and performance. Information Retrieval Journal. In press.

x







Presentational Conventions

A number of different presentational conventions have been employed in this thesis for a

consistent (and different) look, and to maximise understandability. This section outlines

the conventions that have been used.

Spelling

■ Spelling is to the Oxford English Dictionary (British English). The version that was re-

ferred to is searchable online at https://en.oxforddictionaries.com/. We pre-

fer a s to a z!

Fonts and Emphasis

■ Italicised text is used to define a term and/or concept, but not thereafter. This applies

to acronyms, where the full expansion is presented initially; associated abbreviations

are used thereafter. Full expansions of an acronym may be reused if required (i.e. in

later chapters).

■ The main body of this thesis is typeset in 12-point Palatino (body) with 11⁄2 line spac-

ing. Headers, figures and tables (along with their associated captions) use Foundry

Sterling. The names of tools used and other minor components of this thesis (e.g. ta-

ble groupings) are also represented using Foundry Sterling. For example, the fictional

retrieval system Search is used to demonstrate various concepts.1

1Any resemblance of Search to real-world retrieval systems is unintentional and purely coincidental.
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■ Emphasis is provided in the form of shaded boxes , such as a section header. These

boxes also appear inline to emphasise the introduction of an important concept or

term that is key to the thesis.

– Research questions and hypotheses are also highlighted inline.

– Important terms and descriptors to this thesis are highlighted when first intro-

duced.

– We refer to a number of different stopping strategies throughout this thesis, each

with their own name and at least one variable. These strategies are presented

using the notation Name @Value .

– Cell highlighting is used throughout tables presented within this thesis to repre-

sent values of interest – whether they simply are the best reported, or to highlight

statistically significant differences. Refer to the caption of a given table for the

specific meaning of what cell highlighting denotes.

– Emphasis is also used to denote labels used in figures presented throughout

this thesis. For example, these labels are used to name individual components

illustrated within a figure.

URLs

■ URLs are used to provide references for claims and to refer readers to external re-

sources. As these resources may become unavailable over time, the date ofLastAccess

follows each URL – e.g. http://www.dmax.org.uk LA 2018-06-07 .2

Presenting Concepts and Results

■ Pseudo-code that is presented within this thesis uses the HAGGIS high-level refer-

ence programming language (CuĴs et al., 2014), as used by the ScoĴish Qualifications

Authority (SQA) for computing science exams.

2If a URL becomes inaccessible, the Wayback Machine (https://archive.org/web/) may provide an
archived copy of the page being referenced.
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■ Plots use a consistent colour scheme across chapters to maximise understandability

and comparability. Colours employed are based upon colour schemes as demon-

strated to be effective in the online tool outlined by Harrower and Brewer (2003).

■ Results are presented to three significant figures. Some representations require a

greater degree of accuracy, in which case an appropriate representation will be used.

■ In addition to the points described above, flowcharts are also used extensively in this

thesis to demonstrate the conceptual models that we outline. A standard design for

flowcharts is used. It follows the design guidelines provided in ISO 5807:19853.

Other models presented in the literature also employ such an approach (e.g. Thomas

et al. (2014)). The following example demonstrates the symbols used.

Action
YesDecision

Point
Decision
Point

Yes

No

No No
Action

The sequence of events begins at the and ends at the .4 Diagram flow can be

deduced by examining the direction of the arrows. Actions (or events) are denoted

by the text contained within unfilled rectangles , with decision points represented

as . The different outcomes of decisions are denoted by the italicised text at each

output point of a .

Use of Illustrations Illustrations are used extensively to make the process of reading this

thesis a liĴle more enjoyable, as well as (hopefully) providing the reader with a beĴer under-

standing of points and concepts being conveyed. The author of this thesis drew a majority

of the illustrations in Adobe ® Illustrator ® CS6.

However, a number of free vector artworks have also been downloaded from freepik.com

and incorporated within illustrations in this thesis. This statement serves as an acknowl-
3ISO 5807:1985defines symbols to be used in information processing documentation and gives guidance

on conventions for their use in data flowcharts, program flowcharts, system flowcharts, program network
charts, system resources charts.

4Note that these symbols are not part of the ISO 5807:1985 standard; they are part of theUnifiedModelling
Language (UML) specification and have been included to ensure diagrams are simple to understand.
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edgement that such artworks have been incorporated within this thesis, and are included

on the assumption that no part of this work will be used for commercial purposes.

Secondly, the IKEA assembly man has been included at the start of Part II to convey the

idea of assembling the searcher model proposed in this thesis. Permission has been sought

and granted from Inter IKEA Holding S.A. to incorporate the IKEA assembly man within

this work. Thank you, IKEA!

Finally, Picture 1 in the PhD Journey shows several of my friends from the School of Com-

puting Science at the University of Glasgow. I sought permission from everyone siĴing at

the table before including the image in my thesis. Thanks, team!

Document Compilation, Rules and Regulations This thesis is typeset using X ETEX, version

3.14159265-2.6-0.99999. A custom TEX class (.cls) has been developed and used for

typeseĴing. The layout meets University of Glasgow PhD thesis regulations; core require-

ments of margins, font sizes and line spacing are fully complied with.
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Apparatus Used

The user studies reported in this thesis made use of the TREConomics framework. The two

user studies were crowdsourced in nature, and as such were run over theAmazonMechanical

Turk (MTurk) platform.

For the extensive simulations of interaction, three computers hosted by the School of Com-

puting Science at the University of Glasgow were used. Basic hardware and software spec-

ifications are listed below. FQDNs are obscured to avoid potential security issues.

■ ****.***.gla.ac.uk

2× Intel® Xeon® CPU E5-2660, 32 logical cores

128GB RAM

Scientific Linux 6.10 (Carbon), 2.6.32-696.1.1.el6.x86_64

■ ******.***.gla.ac.uk

2× Intel® Xeon® CPU E5-2660, 32 logical cores

128GB RAM

Scientific Linux 6.10 (Carbon), 2.6.32-573.12.1.el6.x86_64

■ ******.***.gla.ac.uk

8× AMD Opteron™ processors 6366 HE, 64 logical cores

512GB RAM

Fedora 18 (Spherical Cow), 3.11.10-100.fc18.x86_64
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All three computers ran experiments with Python 2.7.14, Whoosh 2.7.4 and the SimIIR frame-

work. All stochastic simulation components were seeded, ensuring reproducible results.

Results from seeded random number generation were checked across all three computers

– identical results were obtained.

Thanks go to Douglas Macfarlane, Stewart MacNeill and the rest of the support team at

the School of Computing Science for ensuring these computers (and the DCS network) were

available for all of the experimental work that was undertaken over the years.
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2016
2017

2018 2019

Where have I been? What have I done?
But most importantly... I want to say thanks!The PhD Journey

A good friend of mine (and a fellow PhD student) once said to me that when the time came

to write his PhD thesis, he would avoid an acknowledgements section where everyone and

their dogwould be thanked for helping him reach his target of aĴaining a PhD. I, on the other

hand, hold a very different opinion on this maĴer. There are a lot of people, who have in one

way or another, helped me reach where I am today. Whether these people actively guided

me in my studies, or were individuals who I was fortunate to become acquainted with over

the past five years, they all “cajoled”1 me in one way or another towards the finishing line.

I firmly believe that everybody who I have the pleasure of meeting and working with over

the past five years should be acknowledged – whether they feel they contributed in any

meaningful way. If you are one of these people and are left wondering, believe me: you

did make a difference. While acknowledgements may not merit enough gratitude to those

who have helped me along the way, I still wish to thank all of you. To show my sincere

appreciation, I want to dedicate this work to each and every one of them – regardless of

whether they have a dog or not.

Hindsight tells me that doing a PhD is much like embarking on a very long, solo journey.

Unless you have experienced it yourself, you won’t appreciate how tough (and lonely) it

can be at times – especially when things don’t go according to plan. Three years in, I found

myself siĴing in my lab all alone on a Friday night, wondering why my experiments weren’t

1Professor Ian Ruthven used this term in his PhD thesis (Ruthven, 2001) as a means of describing the
individuals who were there for him, behind the scenes, “cajoling” him towards the finishing line.
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producing the results I had expected and hoped for.2 It can at times all seem so incredibly

pointless, and you find yourself questioning what you’re doing with your life. I experi-

enced these lows more times than I care to admit. It can be tortuous. Impostor syndrome is

something every PhD student feels, and I was no exception.

However, I got to the finishing line. Doing a PhD isn’t just about learning your field of study

and making an original contribution to it; no, it’s much more than that. It also involves

learning about yourself. It’s character building. It involves steely grit and determination

to get through the difficult times. Even when everything comes crashing down around

you, you will get through it. My PhD taught me this more than anything, and for that I am

incredibly thankful. I’m definitely a different person for having done it3 – a much beĴer

one (I think so, anyway!), equipped with a good skillset to enter the world and make a

positive contribution. Even though every PhD comes complete with negative moments, I

took positives from all of them. From this, I could enjoy the good times even more. And

believe me, there were heaps of good times during the past five years.

One of the many great things about my experience as a PhD student was the office I was

given to work in. It’s in the Sir Alwyn Williams Building (SAWB), room 221. Being a contem-

porary building, there are lots of windows – and you get a really nice view of the grass next

to Lilybank Gardens, looking down to Brel, and, yeah, the Boyd Orr Building, too. However,

in moments of reflection, I always found myself staring vacantly out the window at people

walking past outside, going about their lives. Everyone’s experiences – from all walks of

life – are different, making for a virtually limitless number of stories to listen to, and to learn

from. I have always found this truth about life to be absolutely fascinating.

So, on that basis, I want to spend the next few pages writing about my PhD journey, ac-

knowledging everyone who made a positive impact along the way. I think that investing

the additional time in writing this short passage is a good reflective experience, and also

goes a liĴle to say thanks for the amazing things these people have done for me.

I hope you enjoy reading it as much as I enjoyed writing it.
2It was a stupid mistake, of course. From memory, I think I forgot to increment a counter in a loop. But it

took an entire evening to figure that out. Of course it did!
3This is something most people will agree with. My friend James gave a nod to this in the acknowledge-

ments of his excellent PhD thesis, too (McMinn, 2018).
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Day One — and Looking Back Day one was October 1st, 2013. I remember this day well.

In particular, I have vivid memories of siĴing down at my new desk in the morning and

thinking something along the lines of “what have I just let myself in for?!”. The very idea that

I was now a PhD student in itself felt really daunting because from reading research papers

in my MSci year, I was humbled by how much knowledge there was out there – and I had

to get myself to a level to contribute to that knowledge. After being assigned my first task

by my supervisor, Leif, I set to work – but it did seem very overwhelming.

However, I chipped away at it. As one task was completed, the next one fell into place – and

I found I could do that, too (with some guidance, of course!). I started to produce things,

got a paper accepted after six months, and presented it at a conference (as I’ll talk about

shortly). But as I worked away, I started to find another area of research4 to be much more

interesting. The work presented in the thesis you are reading is actually preĴy different

from what I thought about doing back on day one. It just goes to show how when you

think you have something laid out before you, it’s by no means certain that it’ll happen.

Life in Glasgow One constant that was present throughout my time as a PhD student at

Glasgow was the people. There were always individuals I could rely on for support, advice,

or a simple chat. We’d often find ourselves down at Brel when the sunshine was out (which

did happen sometimes). These are the people that I’d like to acknowledge first – and what

beĴer than to start with those who I shared an office with over the past five years?

SAWB221 To Stuart Mackie, الصافوري ابراهيم امين فاطمه (Fatma Elsafoury), my tocayo Jorge David

González Paule and王烯 (Xi Wang) – thank you for your companionship throughout the

years in SAWB221. The camaraderie and support we gave one another did not go unno-

ticed, and I am grateful for that. Fatma, thank you for the support and interesting philo-

sophical discussions that we had. There are also two other individuals with whom I also

shared SAWB221 with – and also a home (for four years!). To Horaţiu Bota, thank you for

the friendship that we had over the years throughout our time as PhD students. To จรณะ
มโนธรรมรักษา (Jarana Manotumruksa), thank you for your friendship throughout. It’s been

an absolute pleasure, and it didn’t feel like being in an office – you all made it a happy place.

4User modelling and simulation – the scope of this thesis.
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I’d also like to say thank you to my friends Colin McLellan and Andrew (James) McMinn.

All three of us started at theUniversity of Glasgow back in September 2008 as undergraduates

in Computing Science. Colin was in my very first CS1Q undergraduate lab! By early 2019,

all three of us had passed our PhD defences at the same institution, although the routes

we took to get to that point were slightly different. We got through it together! To Colin in

particular, thank you for the support and friendship – especially when we were both writing

up at the end. Having the same supervisor kept us in close contact with one another – but

I don’t think either of us has a bad word to say about Leif!

Team IR With all of us working on some aspect of IR, there’s also more people within

the wider IR group that I would like to acknowledge. My appreciation goes out to ev-

eryone who resided next door in SAWB220 over the years, including الخوالدة سليمان رامي (Rami

Alkhawaldeh), الدبعي عبدالرقيب شوقي (Shawki Al-Dubaee), العشبان ابراهيم نجود (Nujud Aloshban), Phil

McParlane, Jesús Alberto Rodriguez Pérez (and his brother, Félix Rodríguez Pérez), Stew-

art Whiting,辛鑫 (Xin Xin) and发杰原 (Fajie Yuan). To Stewart in particular, thank you for

your support throughout your time as a PhD student – your guidance was greatly appreci-

ated and valued when I started out. You made things seem a liĴle less daunting.

I’d also like to acknowledge those in the rest of the IR group at Glasgow. In particular, I

would like to acknowledge Dr Jeff Dalton, Professor Joemon Jose, Dr Craig Macdonald, Dr

Richard McCreadie, Graham Mcdonald, 方安杰 (Anjie Fang) and 苏亭 (Ting Su) for their

friendship and support throughout the years. Professor Iadh Ounis in particular was a

source of great support. Together with Leif and Craig, Iadh taught me many of the basics

of IR in my MSci year, for which I am very grateful. Iadh was also one of the examiners for

my final PhD defence – and I’ll talk about that experience later.

I’d also like to pay particular thanks to مشفقى ياشار (Yashar Moshfeghi) for his friendship and

support throughout my time at Glasgow. When you were a PhD student at Glasgow, you

were my tutor for the undergraduate Java Programming 2 course. From the lectures, you

helped me to understand and reinforce many of the programming constructs that I use

today! Yashar, your expert knowledge and advice on how to run crowdsourced studies

was also appreciated. You played an important role in helping me to get the user studies

that I define and report on in this thesis up and running. Thank you.
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Glasgow Computing Science Of course, I didn’t just exclusively interact and socialise with

people who studied IR. One of the great things about the School of Computing Science at the

University of Glasgow is its size and the huge range of different disciplines that are studied.

I have made friends with many people along the way, and also learnt things from different

research areas, too. It’s always interesting to see what other people are working on.

I made some close friends. To Gözel Shakeri, you are the best. I cannot thank you enough

for your friendship, support and encouragement that you’ve given me throughout my time

as a PhD student. The support and words of advice through the difficult times – especially

when my world came crashing down in mid-2018 – will not be forgoĴen. Even if I was able

to even begin offering you the advice and comfort that you did for me, I will have been a

good friend to you, too. And to Frances Cooper, thanks for your friendship and company,

especially when you had a brief stay in SAWB221 during my final writeup phase!

Picture 1 The good old days, back in Au-

gust 2016. Sláinte, everyone!

In addition to Gözel and Frances, there are heaps

of other people at Glasgow that I want to ac-

knowledge. To name a few... Blair Archibald,

Dr Ornela Dardha, Наталья Чечина (Dr Natalia

Chechina), Marco Cook, Richard Czivá, Euan

Freeman, Simon Jouet, Φωτεινή Κατσαρού

(Foteini Katsarou), William Kavanagh, An-

toine LorieĴe, Ciaran McCreesh, Stephen Mc-

Quistin, Magnus Morton, Алекс Панчева (Alex

Pancheva), Craig Reilly, Stefan Raue, Dr Giorgio Roffo, Charlie Rutherford, Kyle Simpson,

Robbie Simpson, Dr Michel Steuwer, Lovisa Sundin, Patrizia Di Campli San Vito, Tom Wal-

lis, Dr David White and Михаил Янев (Mihail Yanev) – you all over the years provided a

friendly face and support. My appreciation goes out to every single one of you. Even if we

simply had a chat and/or a drink, your company meant (and still means!) a lot.

I would also like to thank Professor Roderick Murray-Smith. Thank you for your support

when Leif left Glasgow in mid-2016 to the University of Strathclyde. Your insightful advice

and feedback gave me an alternative perspective from which I viewed my work. I was able

to incorporate some of your points into the final product, making it a stronger thesis.
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And to those friends from outside the School, I want to acknowledge your support and

continued friendship. In particular, I’d like to acknowledge Julie Briand, Gary Christie,

Adéla Holubová, Nick Swan and Shaun Rew. Julie, thanks for your company throughout

the process – we both achieved our goals and got our PhDs! “Choose your future. Choose life.”

I’d also like to mention Sean McKeown – thank you Sean for your friendship throughout

the whole experience. I value your advice and feedback, and I hope I have been able to

repay that over the years. You have done Edinburgh Napier proud.

Tutoring, Exam Collection and More I always said to my friends that when my PhD work

was geĴing tough, I could find some solace in teaching. Throughout my time as a student in

the School of Computing Science, I’ve been incredibly fortunate to take on such important

roles – and from those roles, meet and work with some fantastic people. Back when I was a

fourth year undergraduate, Professor Quintin CuĴs introduced me to the world of teaching.

From that moment, I never looked back. Tutoring and demonstrating were some of the

best things I did at Glasgow. SiĴing down and helping someone understand a solution to

a problem that they have been facing in their work was such an enjoyable experience.

I tutored labs for a total of nine years – and loved every minute of doing so. While I tutored

basics such as CS1P and JP2 (Python and Java programming), my main focus was undoubt-

edly web development. As I’ll talk about later, I wrote a book with Leif called Tango with

Django to make learning the Django web application framework a more straightforward ex-

perience. I’d like to thank Professor David Manlove and Dr Gerardo Aragón-Camarasa for

providing me with the opportunity to continue working on web development with them

in my capacity as a tutor. I thoroughly enjoyed working with you both. And to my friend

and fellow PhD student Laura Voinea, thank you for your company during the WAD2 and

ITECH labs over the years. Working with you was an absolute pleasure.

Of course, there’s also the administrative team within the School that kept things flowing

smoothly. These were the individuals who supported me when I needed it, too – and I want

to acknowledge them here. To Lydia Marshall, Helen McNee and Αναστασία Φλιάτουρα

(Anastasia Fliatoura), thank you for making everything as straightforward as it could have

been, at least from an administrative point of view! In particular, I want to thank Anastasia

for her help in sorting out the thesis submission dates for me at the end of the PhD.
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I also want to acknowledge Teresa Bonner, Helen Border and Gail Reat in the teaching office.

You all trusted me to do the job that I did when it came to tutoring, and for that, I am very

grateful. One of the other jobs you gave me during my time as a PhD student was to run

around the campus during exam season and collect the student’s scripts. Although to many

this sounds like a nightmare, I actually really enjoyed it. Once again, it provided a nice break

from my studies, and I learnt how to sort ~200 exam scripts by matriculation number in the

quickest possible time. Where else would I have got that experience? Thanks also to Magnus

and Laura – as well as Paul Harvey – for your companionship when we spent those days

in April-May 2015, 2016 and 2017 running around collecting all the student’s scripts!

Of course, all of these extra commitments I took onboard were for the benefit of the students

who have studied at the School over the years. As one of their tutors/demonstrators, I’ve
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Glossary of Terms

AR Aspectual Recall considers the number of documents returned by a retrieval sys-

tem that reference at least one unseen aspect of a particular topic. An interactive-based

approach can also be considered, where documents identified by searchers are exclu-

sively considered.

CG Cumulative Gain is used to measure the effectiveness of a retrieval system (or the

searchers that use it). The usefulness or gain possessed by each ranked document is

considered and accumulated together to produce a final measure. This can be at the

query level (i.e. considering individual queries), or at the session level (considering the

total gain acquired over a number of queries).

CSM The Complex Searcher Model is the high-level, conceptual searcher model pro-

posed in this thesis. It is a development of existing searcher models provided in the

associated literature. The model considers the search session as a whole and incorpo-

rates novel improvements to the search process, such as a new stopping decision point.

DCG Considered as a natural evolution of CG,Discounted Cumulative Gain once again

considers the gain that can be aĴained from a document. However, the underlying

assumption here is that relevant documents at higher ranks are more desirable. Gain

therefore for documents at lower ranks are penalised, or discounted, producing a rank-

aware measure.
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Document In an IR system, a document contains information that can be examined.

Typically, this would consist of unstructured text (i.e. natural language). However,

depending upon the context, a document may contain other forms of information, such

as images, audio, or video.

ESL The Expected Search Length is an evaluation measure used within IR. It considers

the number of non-relevant documents that will have to be examined by a searcher be-

fore reaching the desired number of relevant documents. The ESL provides motivation

for a number of stopping heuristics used within this thesis.

FQDN A Fully Qualified Domain Name is a domain that specifies a host’s exact location

within a domain name hierarchy. For example, www may be a valid hostname, but

www.gla.ac.uk provides an exact match to the host’s location within a wider network.

HCI Human-Computer Interaction is the study of how computer technology is used

and designed. It focuses on the interfaces between users and computers.

HIT AHuman Intelligence Task is the name given to jobs posted on theAmazonMechan-

ical Turk (MTurk) platform.

HTML HyperText Markup Language is the standard markup language used in the devel-

opment of web pages and web applications. HTML documents are annotated in a way

that is syntactically different from the text, such as through the use of <tags>).

HTTP The HyperText Transfer Protocol is the underlying protocol used for the trans-

mission of content over the WWW, amongst many other protocols. It defines the rules

by which web servers and web browsers can communicate with one another.

Hyperlink A hyperlink is a reference to some data source that can be clicked on to jump

to the said data source. This concept is most well known as part of the WWW, with the

links that hyperlinks create between documents defining the web-like structure.
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IFT Information Foraging Theory applies the theory and constructs provided as part

of OFT. First considered in the 1990s with seminal work by Pirolli and Card (1999), IFT

considers searchers as individuals when searching for information. This analogy al-

lows one to consider how instinctive foraging mechanisms employed by animals look-

ing for food in the wild can be applied to humans when foraging for information.

IIR A simplistic description of Interactive Information Retrieval would be the study

of how humans interact with retrieval systems, considering aspects such as their be-

haviours and experiences. This is in contrast to the study of IR, considering purely

system-sided aspects.

Information Need A searcher can develop an information need when observing some

phenomenon in the real world. It is a desire to locate and obtain information to satisfy

a conscious or unconscious need. This is typically considered to be one of the first steps

of the IIR process.

iP Similar to precision, interactive precision considers the fraction of relevant docu-

ments relevant to the issued query, as identified by the searcher.

iPRP The Interactive Probability Ranking Principle (Fuhr, 2008) is an update to the PRP.

Within its framework, interaction is considered. This allows for costs over different

activities (i.e. issuing queries or examining result summaries and documents) and

changes in a searcher’s information need.

IR As a field of academic study, Information Retrieval could be defined as the study of

“finding material (usually documents) of an unstructured nature (usually text) that satisfies

an information need from within large collections (usually stored on computers)” (Manning

et al., 2008).

KL-Divergence Kullback-Leibler divergence, or relative entropy, is a measure of how one

probability distribution is different from a second.
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MSE The Mean Squared Error measures the average squared difference between esti-

mated values, and what is being estimated. It considers the notion of bias and standard

error, with the lower the MSE, the beĴer the estimation to the real-world observation.

MTurk Amazon Mechanical Turk is a crowdsourcing platform, allowing for one to coor-

dinate the use of human intelligence to perform tasks that computers cannot presently

undertake by themselves.

MVT The Marginal Value Theorem (Charnov, 1976) is an optimisation model used to

describe the behaviour of individuals foraging in a system where resources are located

in discrete patches.

NIST The National Institute for Standards and Technology is a laboratory and non-

regulatory agency of the U.S. Department of Commerce. NIST has been central in pro-

viding support to the TREC evaluation effort.

OFT Optimal Foraging Theory (Stephens and Krebs, 1986) is a behavioural ecology

model that helps to predict how animals behave when searching for food. From the

theory, an optimal foraging strategy can be derived and employed that provides the

most gain (energy) at the lowest cost.

Patch Considering Optimal Foraging Theory (OFT), a patch is considered an area a for-

ager’s surrounding environment. In each patch, the forager can extract gain. Using the

example by Pirolli and Card (1999), a bird foraging for berries would find berries on

different berry bushes. Each bush can be considered an individual patch with different

levels of gain. The bird would expend time on a particular bush (within-patch) and

then fly to the next patch (between-patch). Under IFT, a patch is typically considered

as a SERP.

Precision One of the simplest performance measures, precision is defined as the frac-

tion of documents retrieved that are relevant to the searcher’s query. This is typically

presented as P@k or the fraction of relevant documents up to some rank k.
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PRP TheProbability Ranking Principle (Cooper, 1971; Robertson, 1977) is a fundamental

theory of IR, outlining that for a retrieval system to be effective, it must present results

to a searcher in decreasing order of likelihood of the results being relevant.

QREL Query RElevance Judgements are a series of judgements that are assigned to doc-

uments within a corpus. Typically, these are considered over a per-topic basis, with bi-

nary or graded judgements assigned. As an example, binary judgements would denote

that some item is either relevant and not relevant. These are considered as the ground

truth or gold standard judgements of relevance.

Query A query is a precise request issued to a retrieval system. Here, a searcher’s

information need is formulated as one or more query terms.

RBP Rank-Biased Precision (Moffat and Zobel, 2008) is an evaluation measure used

within IR. It encodes within it a simple model of searcher behaviour, with a patience

factor denoting how far down a list of ranked results a searcher is prepared to go.

RDBMS A Relational DataBase Management System is a type of database management

system based upon the relational model. At a minimum, a RDBMS provides data as a

series of tables, comprised of rows and columns, and the ability to create relationships

between the said tables and data.

Recall Recall denotes the number of relevant documents that were matched against a

searcher’s query by a given retrieval system.

Result Summary On a SERP, a result summary provides a title, summary and source

for a document that was matched to the searcher’s query. Result summaries are the ten

blue links one is accustomed to when interacting with a retrieval system.

Result Summary Level Stopping In this thesis, result summary level stopping denotes

the stopping decision point when a searcher is interacting with a SERP. It considers the

depth to which a searcher will examine result summaries. This is typically referred to

as snippet level or query level stopping in the literature.
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Searcher A searcher is an individual who uses a retrieval system to help him or her

satisfy some given information need.

SERP A Search Engine Results Page is the primary output of a contemporary retrieval

system (typically WWW-based). It is a page consisting of a series of results that were

matched by the retrieval system to the searcher’s query.

SERP Level Stopping SERP level stopping denotes the stopping decision point where

a searcher can choose to either enter a SERP and begin examining content in detail, or

abandon the SERP and move on to the next action.

Session Level Stopping Session level stopping considers stopping in terms of the overall

search session. Typically, this would be evaluated in consideration of time limits or

search session goals (i.e. find x relevant documents).

SET Search Economic Theory (Azzopardi, 2011) is a theory explaining the search pro-

cess in terms of economics – in particular microeconomic theory. Under this approach,

the search process is viewed as a series of inputs (queries, assessments) that are used to

produce an output (relevance).

Stopping Decision Point Core to this thesis, we refer to stopping decision points as the

decision points within the CSM that permit a searcher to stop their current activity (i.e.

examining result summaries or the search session).

Stopping Heuristic A stopping heuristic is defined in this thesis as a heuristic that de-

scribes the stopping behaviour of a searcher. A heuristic may consider one or more

stopping criteria when determining a stopping point.

Stopping Strategy A stopping strategy is an operationalised stopping heuristic. The

heuristic is converted to a series of rules that can be subsequently operationalised –

and later implemented – as part of a wider searcher model.
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TREC The Text REtrieval Conference is an IR evaluation forum, considering a number

of different research areas, or tracks. Central to the TREC effort is the development of

topics, tasks and document collections (corpora) that are commonly used in IR experi-

mentation – with this thesis included.

URL A Uniform Resource Locator is a reference to some resource hosted on a computer

network. It contains the address to the resource and the means by which it can be

retrieved. For example, the URL http://www.dmax.org.uk specifies that HTTP is

used to retrieve content at the address www.dmax.org.uk.

User Analagous to a searcher.

WWW The World Wide Web is an information space in which documents and other

resources, linked together via hyperlinks, can be accessed via the Internet.
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“Essentially, all models are wrong, but some are useful.”

George E.P. Box, 1919–2013

Oh well. I hope that my model is at least useful…
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stopping behaviour

Part I

Introduction and Background

In this opening part, we provide an overview

of the thesis, present the overarching

research questions , and detail the thesis

structure. We also provide background to the

problem, with a detailed literature review of

the various techniques and components

commonly used in both IR and IIR — with an

emphasis on stopping .





Chapter 1

Introduction

Today, we live in the Information Age, an era of human history characterised by the rapid

development of technology. This allows for the creation, transmission and retrieval of large

volumes of information. Two key developments that have permiĴed an increase in infor-

mation generation are the electronic computer and the associated technologies that allow

for near-instantaneous communication with devices all around the planet, including the

Internet and World Wide Web (WWW) (Berners-Lee et al., 1994).

Since the early 1990’s, the WWW has emerged as the dominant means of publishing infor-

mation over the Internet, replacing obsolete technologies such as the Gopher protocol.1 As

the amount of information available on the WWW grew, so too did the paradigms that were

employed by those wishing to seek information on it.
1Gopher was designed primarily with a menu-driven interface in mind (i.e. selecting options from a se-

ries of choices). The Gopher ecosystem provided the foundations for the HyperText Transfer Protocol (HTTP)
protocol, which the WWW today utilises.
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Information seekers would traditionally surf the WWW, starting from a particular domain.

From there, they would navigate through the WWW via a series of hyperlinks within web

pages (or documents). This proved practical, as portal websites typically presented cate-

gorised lists of websites, much like a telephone directory. However, as the volume of con-

tent available on the WWW grew ever larger, this approach became impractical. The devel-

opment of search engines – referred to as retrieval systems in this thesis – provided information

seekers with the ability to search the ever-increasing universe of documents available at

their disposal (refer to Figure 1.1).2

This is not to say that surfing no longer occurs. Information seekers today will often use

a retrieval system to find a particular domain. From there, they may then begin surfing

within the said domain to find the information that they seek – if such information was not

found immediately by the retrieval system. Retrieval systems are however today the most

effective way to locate information. Helping searchers realise this by developing efficient

retrieval systems is seen as the raison d’être of the study of IR.

“...but perhaps the key technology that took the web from a useful supplement of current

information practice to become the default communication medium is search.”

Wilson et al. (2010)

Contemporary commercial retrieval systems such asGoogle and Bing are considered to offer

an effective means of finding the proverbial needle in the haystack (Wilson et al., 2010),

where near perfect accuracy is regularly aĴained for popular queries (Vaughan, 2004). These

retrieval systems, along with the many others in existence today (for use in a variety of

contexts3), are the product of the collective work undertaken in the field of IR, as we discuss

in more detail in Chapter 2.

2McBryan (1994) considered a retrieval system as a means of taming the considerable number of documents
online.

3Google and Bing may be the most popular retrieval systems for general web queries, but other contexts, for
example, can include academic search, enterprise search, multimedia search and patent search.
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Figure 1.1 The paradigms of surfing and searching. On the left, a seeker will navigate through

a series of documents via hyperlinks (perhaps without a specific information need in mind), while a

searcher (right) will issue a query articulating their information need, relying on a retrieval system

to retrieve a series of documents that are judged to be useful to the seeker.

Retrieval systems aim to make it easier for searchers to satisfy their underlying information

need. A searcher will develop an information need from a perceived problem – either from

a knowledge gap, an internal inconsistency, or a conflict of evidence. This state has been

referred to as the Anomalous State of Knowledge (ASK) (Belkin, 1980). A searcher, once they

have realised this information need, will formulate a query – an expression of what they

are looking to seek (Borlund, 2003), typically consisting of a number of different terms.

This query is then submiĴed to the retrieval system, before a potentially relevant set of

documents – as judged by the retrieval system – are returned to the searcher. From this set

of documents, the searcher can then begin the process of examining them for relevance.

A number of complex interactions take place between an individual seeking information

and the retrieval system being utilised (Ingwersen and Järvelin, 2005). This interactive pro-

cess, where the searcher engages in dialogue with the retrieval system, is considered the

study of Interactive Information Retrieval (IIR) (Borlund, 2003). One of the fundamental as-

pects of IIR is that of stopping – where, for example, a searcher must decide when to stop

examining the list of results returned to him or her.

Examining stopping behaviour is one of the many different aspects of interaction that have
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1.1Motivation and Context

been examined to help us beĴer understand a searcher’s behaviours. This knowledge can

be used to make the search process a more seamless experience for the individuals using a

retrieval system. As we discuss in the next section, much of the research in both IR and IIR

has been limited in terms of examining stopping. Subsequently, these limitations provide

motivation for the work that we present in this thesis.

1.1 Motivation and Context

Central to much of the work undertaken in the field of IR is the Cranfield paradigm , a

term denoting a standardised approach of IR evaluation (Cleverdon et al., 1966). Primarily

credited to Cyril Cleverdon at Cranfield University4, the paradigm revolves around the

notion of standardised test collections – standardised corpora of documents that can be

used by different researchers, providing a uniform foundation for IR experimentation.

While the basic principles of the Cranfield paradigm have remained in place since it was

established in the 1960’s, aspects of the approach have evolved over the years to cater for

the ever increasing complexity of the tasks trialled (Harman, 2010). The approach is widely

used in evaluation forums, such asNTCIR (NII Testbeds and Community for Information access

Research) and CLEF (Conference and Labs of the Evaluation Forum). However, one of the best-

known evaluation forums following the paradigm is the National Institute of Standards and

Technology (NIST) sponsored Text REtrieval Conference (TREC) (Harman, 1993). Indeed,

the work reported in this thesis extensively utilised material generated as part of TREC

efforts, provided as part of different TREC Tracks over a number of years.

With the Cranfield paradigm, significant advances have been made possible regarding the

evaluation of IR systems. However, the approach can be argued to be somewhat limited

from the context of IIR as it highly abstracts the interactions that take place between a

4Cranfield University is located at Cranfield, Bedfordshire, England. It is a unique university in that it has
a semi-operational airport, given its heritage with aeronautics research.
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searcher and a retrieval system (Borlund, 2000; Ingwersen and Järvelin, 2005). In other

words, the paradigm broadly fails to consider the complexities of the IIR process. As an

example of such a complexity, searchers could issue multiple queries during the course of a

search session. Subsequently, they would adapt their interactions based upon the perceived

quality of presented ranked result lists (Moffat et al., 2013).

A key example of such behaviour adaption is the searcher’s stopping behaviour. For ex-

ample, a poor set of results may mean that searchers would stop examining results com-

paratively early than a set of results perceived to be of good quality. Searchers also often

stop once they feel that they have found sufficient information to satisfy their information

need (Zach, 2005). Indeed, selecting good terms to use within a query is difficult yet impor-

tant (Efthimiadis, 2000). The initial query posed in a search session often acts as an entry to

the search system, followed by phases of browsing and query reformulations (Marchionini

et al., 1993). Searchers also will typically abide by the principle of least effort, whereby they

strive to minimise the expected rate of work expenditure over time (Zipf, 1949).

The experimentation paradigms that have evolved from Cranfield make a series of different

assumptions that are largely at odds with how searchers interact with retrieval systems.

Namely, these assumptions state that a searcher will:

■ issue a single query over the course of a search session;

■ examine documents to a fixed depth (typically 1, 000 in TREC experimentation); and

■ assess all documents to the fixed depth.

While providing a simple platform for performing retrieval system evaluation, such as-

sumptions are unrealistic. Herein lies a fundamental disconnect between the studies of IR

and IIR – the naïve assumptions made of searchers within IR experimentation listed above

do not hold when considering the complex interactions that actually take place during

the IIR process (Ingwersen and Järvelin, 2005). In order to address the fundamental discon-

nect between the two fields, we need to create more realistic searcher models that beĴer
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articulate what real-world searchers actually do. A beĴer searcher model would ultimately

mean a beĴer understanding of the complex interactions that take place, which would lead

to an improved understanding of how to assist searchers. Work to improve our understand-

ing has been undertaken in the field of IIR to address this, examining searcher behaviours

under a number of different phenomena – including (but not limited to) the following:

■ query formulation and suggestions (Azzopardi, 2009; Azzopardi et al., 2007; Baskaya

et al., 2013; CartereĴe et al., 2015; Jordan et al., 2006; Keskustalo et al., 2009; Verberne

et al., 2015);

■ browsing behaviours (CartereĴe et al., 2015; Chuklin et al., 2015; Guo et al., 2009; Pääkkö-

nen et al., 2015; Smucker, 2011);

■ the influence of costs and time (Azzopardi, 2011; Baskaya et al., 2013); and

■ performance over search sessions (Luo et al., 2014, 2015).

When considering how we model searcher interactions, a further (and particularly impor-

tant) phenomenon largely overlooked in the above is a searcher's stopping behaviour . In-

deed, given its title, this is what we consider in this thesis – how can we make improvements

to searcher models when considering stopping behaviours? This phenomenon is now seeing an

increasing amount of time devoted to its examination. In the following subsection, we pro-

vide an argument as to why examining this phenomenon is important.

1.1.1 Considering Stopping Behaviours

Knowing when to stop is a fundamental aspect of animal – and by definition, human –

thinking and behaviour. There must come a time when an animal must stop what it is doing.

In the natural world, for example, a honeybee, when foraging for pollen, will eventually

make a decision to stop collecting pollen on the flowerhead it finds itself on and flies away
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STOP ?

highland whiskies - Search

highland whiskies

Dalwhinnie Distillery | Dalwhinnie Malt Whisky | Malts
https://www.malts.com/distilleries/dalwhinnie/
Dalwhinnie Distillery stands in the Cairngorm National Park at the heart of the 
Scottish Highlands in the village of Dalwhinnie. Finest scotch whisky.

Laphroaig: Home
https://www.laphroaig.com/
Laphroaig Single Malt peated Whisky from Islay. The most richly flavoured 
scotch whisky in the World.

Scapa Whisky | Scapa The Orcadian
scapawhisky.com/
Scapa is an artisanal single malt whisky forged by the extreme elements of 
Orkney, Scotland.STOP ?

Figure 1.2 Examples of stopping. On the left, when will the bee move from one flowerhead to

the next? On the right, under the context of information seeking, how far down a list of ranked

results will a searcher go before he or she decides to stop examining content? In the example

above, Search has failed to return a comprehensive list of highland single malt whiskies . Will

the searcher become frustrated with this, and stop examining results early?

to another flowerhead. The honeybee is in essence aĴempting to maximise the amount of

gain (pollen) she accumulates over time on each patch (flowerhead) that is visited.

If we consider stopping from an information seeking context, there are many different ex-

amples we can use to demonstrate why this behaviour is of great importance. For example,

a searcher may decide to stop searching for information when the documents presented

show a large volume of non-relevant material, frustrating the searcher (Cooper, 1973b) –

perhaps because the retrieval system failed to gauge the searcher’s query intent (Ashkan

et al., 2009), as demonstrated in Figure 1.2. Searchers could also stop examining content

after they have become satisfied with the information found previously in a search ses-

sion (Cooper, 1973a; Gibb, 1958; Simon, 1955), or if they feel that the information being

presented is too similar to what has been found earlier (Nickles, 1995).

A number of different external factors can influence the decision of when one should stop.

Examples of these include the bee finding a flowerhead with no pollen, or time pressures

when searching for information. However, Nickles (1995) argues that knowing when to

stop is largely determined by a series of internally defined stopping criteria that the decision

maker employs, just like the examples defined above. Therefore, this internal construct

makes stopping a phenomenon that is difficult to model in an effective way. Given that
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internal factors are a major drive in determining when to stop, studies have largely been

unable to quantify why searchers stop, other than what they find during the search process

gives them the feeling that the located information is “good enough” (Zach, 2005).

In contrast to this vague definition of stopping behaviour, several researchers have at-

tempted to create a series of reasoning- and judgement-based stopping heuristics that

aĴempt to formally define when a searcher should stop. It is these stopping heuristics that

we will primarily consider in this thesis. These heuristics can then be integrated within a

wider searcher model, allowing us to determine whether they improve or worsen approxi-

mations of actual searcher stopping behaviours. From here, we can then begin to ascertain

potential answers to what the feeling of “good enough” (or even not good enough!) may

entail. The searcher model can incorporate stopping behaviours at a variety of different

stopping decision points – such as at an individual result summary level (how far down

this list of ranked results should I go?).

Examining stopping behaviours during search is important because it considers the judge-

ments of a searcher as part of their interactions. For example, it would be prudent of a

searcher examining a ranked list of results that are mostly non-relevant to stop early, thus

saving time and effort (thus making the searcher more efficient). Stopping behaviour is also

implicitly or explicitly encoded within a variety of different IR and IIR measures. Obtaining

a beĴer understanding of when searchers stop means that we can encode this information

within measures of search (improving their credibility), and provides an evidence-based

approach to mapping these measures with what actually takes place in reality.

1.2 High-Level Research Questions

Having set out the problem space above, we can now begin to formulate the four high-level

research questions that the work in this thesis addresses, denoted as HL-RQx . Our first

research question considers the concept of modelling searchers, and how, with an emphasis
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1.2 High-Level Research Questions

on examining stopping decision points, we can improve current models to beĴer reflect

actual searcher behaviours – in particular, their stopping behaviour.

■ HL-RQ1 How can we improve searcher models to incorporate different stopping

decision points?

As previously stated, being able to improve upon the current searcher models from the

perspective of stopping should allow those subscribing to such a model to become more ef-

ficient as to how they search. Closely related to this advancement in modelling this process

is the consideration of the various stopping heuristics.

■ HL-RQ2 Given the stopping heuristics defined in the literature, how can we encode

these heuristics into a series of operationalised, programmable stopping strategies

that can be subsequently incorporated into the searcher model and evaluated?

Stopping heuristics that we detail later in Section 3.2 are high-level in nature and do not

provide an explanation as to how they can be operationalised within a wider system. The

challenge that must be addressed in order to answer this second high-level research ques-

tion will be how we can operationalise such stopping heuristics.

With a more realistic searcher model from HL-RQ1 and a series of stopping strategies

defined by addressing HL-RQ2 , how well does this combination perform?

■ HL-RQ3a Given the aforementioned operationalised stopping strategies, how well

does each one perform?

■ HL-RQ3b How closely do the operationalised stopping strategies compare to the

actual stopping behaviours of real-world searchers?
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1.3 Thesis Contributions

These questions are of course of a very broad nature, and it is simply not possible to evalu-

ate them in every conceivable search context. As such, we will examine different contexts

that are likely to impact upon searcher stopping behaviours. Specifically, we will examine

topical interactive search in the domain of news, where we will consider various conditions:

search goals and task types; retrieval systems; and result summary length. In the following

section, we expand upon these conditions to provide a concrete set of thesis contributions.

1.3 Thesis Contributions

This thesis presents a number of key contributions. Listed below, we consider primary

contributions from conceptual, theoretical, methodological and empirical standpoints.

Conceptual Complex Searcher Model Our first contribution is a new searcher model.

Taking current searcher models, we propose an updated, high-level model of the search pro-

cess called the Complex Searcher Model (CSM). This provides us with a solution for address-

ing HL-RQ1 . Outlined in Chapter 4 (page 107), the conceptual CSM outlines a series of

different activities and decision points that searchers undertake throughout the search pro-

cess, and establishes a flow of interaction based upon established models. Within the CSM

are a number of different innovations, key of which is the new stopping decision point.

For example, this improvement allows us to ascertain a beĴer understanding of the search

process, and the complex interactions that occur between a searcher and retrieval system.

Being a conceptual model, we can take the CSM and instantiate it in a number of different

ways. The stopping strategies that we consider in this thesis, for example, provide a means

for instantiating stopping decision points within the CSM.

Theoretical Stopping Strategies As previously discussed, there is a range of different

stopping heuristics that have been defined in the literature that provide an explanation

for when searchers should stop examining content. The second major contribution of this

thesis is the development of twelve operationalised stopping strategies. These may then be
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1.3 Thesis Contributions

subsequently deployed as the logic underpinning a stopping decision point of the CSM (as

defined above). These twelve strategies encode a total of seven different stopping heuristics

and IR measures. The operationalised stopping strategies provide a solution to HL-RQ2 .

Methodological The proposed CSM and the twelve stopping strategies that we opera-

tionalise need to be evaluated, such that we can then subsequently address the two re-

maining high-level research questions, HL-RQ3a and HL-RQ3b . To do this, a general

methodology outlines an approach undertaken for user studies. Simulation is then used

to determine how the different stopping strategies perform over each of the different search

contexts trialled, and how the stopping strategies compare to actual searcher behaviour.

Empirical Varying Result Summary Length We report on a study where the length of in-

dividual result summaries presented to searchers are varied to determine what impact that

this has on searcher stopping behaviours. As we modify the length of result summaries,

we also argue that we influence the overall quality of result summaries. We then perform a

simulated analysis examining each of the stopping strategies, determining what strategies

perform best and offer the closest approximations to real-world stopping behaviours.

Empirical Varying Goals, Tasks and Systems We report on an additional user study, ex-

amining the impact of stopping behaviours when the search task and goals are changed.

For this, we consider topical ad-hoc retrieval5, along with a diversified search task, chang-

ing the overall goal of what searchers are looking to find. This is then complemented by a

further simulated analysis, examining the individual stopping strategies like above.

Empirical New Stopping Decision Point Thefinal empirical contribution complements the

conceptual contribution of this thesis, addressing HL-RQ1 . We perform a further simu-

lated analysis, examining how well the new stopping decision point performs when incor-

porated within the CSM – and whether it offers beĴer approximations to actual searcher

stopping behaviours.

5The ad-hoc search task is explained in detail in Section 2.3.1.1 – it is one of many different types of search
task that can be performed by searchers.

13



1.4 Thesis Statement

1.4 Thesis Statement

Given the above, the major claim of this thesis is that by considering stopping behaviours at

different points throughout the search process, we can develop more credible and realistic

models of the said search process. These more advanced models can be used as a tool for

improving our understanding of stopping behaviours and other complex interactions that

occur when searching. Findings from this work can then subsequently aid researchers in

the development of more intuitive (and realistic) measures used to facilitate the evaluation

of retrieval systems and their users.

1.5 Origins of the Material

Material presented in this thesis has appeared in several conference papers and journals

throughout the duration of the author’s PhD programme, from October 2013 to March 2019.

All are listed in the front maĴer of this thesis in chronological order. In this section, we

provide a narrative, explaining how the developments in the listed publications led to the

contributions of this thesis. Work can be considered over three main strands:

■ the development of the conceptual and theoretical contributions to this work;

■ the development of the SimIIR framework; and

■ a series of empirical studies.

Conceptual and Theoretical Work on the Complex Searcher Model (CSM) has been under-

taken over a number of years, and were presented in various publications. Several itera-

tions of the CSM have been developed, with each iteration offering refinements to improve

its realism.6 The first iteration of the CSM – essentially analogous to prior models of search
6To simplify reporting (and use) of the CSM in this thesis, we consider only the latest revision of the model.

14



1.5 Origins of the Material

outlined in Sections 2.3.1.2 and 2.3.5 – was used in simulated analyses, as reported in the

two publications listed below.

■ Maxwell, D., Azzopardi, L., Järvelin, K., and Keskustalo, H. (2015a). An initial inves-

tigation into fixed and adaptive stopping strategies. In Proceedings of the 38th ACM

SIGIR, pages 903–906

■ Maxwell, D., Azzopardi, L., Järvelin, K., and Keskustalo, H. (2015b). Searching and

stopping: An analysis of stopping rules and strategies. In Proceedings of the 24th ACM

CIKM, pages 313–322

These publications are notable for also including a number of operationalised stopping

strategies, providing the foundations for the second major contribution of this thesis. The

stopping strategies defined in these publications were used in subsequent publications.

Further developments to the CSM were found in a subsequent publication which exper-

imented with the notion of developing intelligent search agents.

■ Maxwell, D. and Azzopardi, L. (2016a). Agents, simulated users and humans: An

analysis of performance and behaviour. In Proceedings of the 25th ACM CIKM, pages

731–740

The final development of the CSM led to the inclusion of an additional stopping decision

point. This new stopping decision point was tested with a thorough empirical analysis, as

reported in the publication enumerated below.

■ Maxwell, D. and Azzopardi, L. (2018). Information scent, searching and stopping:

Modelling SERP level stopping behaviour. In Proceedings of the 40th ECIR, pages 210–

222
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SimIIR Framework One of the major pieces of scientific apparatus utilised throughout all

of the aforementioned studies is the SimIIR framework, which we discuss in Section 6.4.1

on page 159. Conducting the extensive simulations of interaction we report in this thesis

would not have been possible without it. A demonstration paper presenting the framework

and the various components that could be instantiated within it has been published.

■ Maxwell, D. and Azzopardi, L. (2016b). Simulating interactive information retrieval:

Simiir: A framework for the simulation of interaction. In Proceedings of the 39th ACM

SIGIR, pages 1141–1144

Empirical Studies The general methodology that we employ for the third major contri-

bution of this thesis has been introduced and refined in the publications listed previously.

In addition to this, a basic description of the methodology is provided in a Doctoral Con-

sortium paper that the author presented at the first ACM Conference on Human Information

Interaction and Retrieval (CHIIR) in Chapel Hill, NC, USA.

■ Maxwell, D. (2016). Building realistic simulations for interactive information retrieval.

In Proceedings of the 1st ACM CHIIR, pages 357–359

The results of two user studies have also been published, and are of direct relevance to the

work detailed later in this thesis.

■ Maxwell, D., Azzopardi, L., and Moshfeghi, Y. (2017). A study of snippet length and

informativeness: Behaviour, performance and user experience. In Proceedings of the

40th ACM SIGIR, pages 135–144

■ Maxwell, D., Azzopardi, L., and Moshfeghi, Y. (2019). The impact of result diversifi-

cation on search behaviour and performance. Information Retrieval Journal. In press.
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These studies provide the grounding for simulated analyses that we also consider later in

this thesis. The data extracted from these user studies provides credibility to our simula-

tions through the extraction of aspects such as interaction costs and probabilities.

1.6 Thesis Outline

This section provides a brief summary of the remaining parts and chapters of the thesis.

Part I The remainder of Part I concerns prior work that has been undertaken in the fields

of IR and IIR. Two chapters outline the basics of IR and IIR (with particular emphasis to how

models and measures that we commonly employ consider stopping), before examining the

literature that has explicitly considered searcher stopping behaviours.

Chapter 2 Beginning on page 21, this chapter provides an overview of the key con-

cepts of the fields of IR and IIR. We focus on core IR concepts, such as the indexing

and retrieval processes (including retrieval models). We then move towards a more

user-centric examination of established methods in the field of IIR, such as the con-

sideration of various evaluation measures that are commonly used. We also outline

different searcher models that have been previously defined in the literature. These

capture the activities and decisions that individuals perform while searching.

Chapter 3 We then consider work that has considered stopping in relation to search.

In this chapter, we begin by describing various stopping heuristics defined in the lit-

erature. We summarise previous user studies that have examined searcher stopping

behaviours, and then consider key theoretical models of search that provide explana-

tions for when individuals stop.

Part II Beginning on page 106, Part II presents the conceptual and theoretical contributions

of this thesis, including a discussion of the CSM. In this part of the thesis, we also provide

an outline of the general methodology that is used in Part III.
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Chapter 4 This chapter introduces the CSM, discussing the advances that the con-

ceptual model provides over contemporary searcher models. We discuss the key stop-

ping decision points provided by the CSM that are central to this thesis, before dis-

cussing the assumptions of the model. This partly addresses HL-RQ1 – evaluation

of the model is also required, and is discussed in Chapter 9.

Chapter 5 In this chapter, we introduce and discuss the various stopping strate-

gies that we operationalise as part of the contributions of this thesis, thus addressing

HL-RQ2 . Each of the different stopping strategies, complete with examples, are dis-

cussed in depth. The chosen stopping strategies are linked back to their originating

stopping heuristics, which are detailed in Chapter 3.

Chapter 6 This chapter outlines our general methodology, detailing the high-level

structure of the scientific method used in our empirical work. We also provide a dis-

cussion of common approaches that we used across all subsequent chapters.

Part III The third part of this thesis considers our empirical contributions. In this part, we

present the user studies that were undertaken, as well as a number of simulated analyses

that allow us to address research questions HL-RQ3a and HL-RQ3b .

Chapter 7 Thefirst empirical chapter considers how stopping behaviours varywhen

the length (and thus quality) of result summary snippets are varied. We provide a dis-

cussion of a user study that examined this phenomenon, before summarising the find-

ings of simulated analyses that were conducted in order to determine what stopping

strategies offered the best performance and approximations of real-world searchers

under this context.

Chapter 8 In this chapter, we report on a user study examining how a searcher’s

stopping behaviour varies when subjected to conditions that vary the task, goal, and

system used. We then again perform simulated analyses to examine these stopping

behaviours in more detail.
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Chapter 9 The final chapter wherein novel findings are presented considers the new

stopping decision point that is provided by the CSM. We empirically test the CSM,

allowing us to determine whether the inclusion of the new stopping decision point

discussed in Chapter 4 provides improvements in overall performance and approxi-

mations of actual searcher stopping behaviours. As such, this chapter provides suffi-

cient evidence, in conjunction with Chapter 4, to address HL-RQ1 . We utilise data

from user studies discussed in Chapters 7 and 8 to ground our simulations.

Part IV The final part of this thesis consists of a solitary chapter, Chapter 10 . The con-

cluding chapter of this thesis provides a summary of the work that was undertaken, and

the results obtained. We then discuss potential avenues for future work.
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Chapter 2

Information Retrieval:
A History and Background

Searching for information on computers is today commonplace, thanks to the proliferation

of the WWW and commercial search engines1. Despite potential negatives that these tech-

nologies may bring – turning us into shallow thinkers (Carr, 2008), for example – retrieval

systems today by and large make our lives easier, allowing us to find the proverbial needle

in the haystack with minimal effort. These results are returned to us while honouring the

implicit searcher contract of a timely response (in the order of milliseconds).

how to write a phd thesis

Central to the development of retrieval systems is the study of Information Retrieval (IR).

One of the key developments in the advancement of IR as a field was the creation of a de

facto approach to studying IR and performing IR experimentation. This was developed in

tandem with a series of retrieval models underpinned by different theories, and the means by

which we could evaluate their effectiveness. We begin this chapter with a brief overview of

1Or, as we refer to them in this thesis, retrieval systems.
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2.1 A (Brief) History of Information Retrieval

the history of IR, acknowledging the manual and mechanised systems that predate contem-

porary computer-based retrieval systems. After this, we move on to discussing the basics of

what constitutes an IR system. From there, we discuss work that has switched the core fo-

cus of research from the system to the searcher, introducing the field of Interactive Information

Retrieval (IIR). Included in our discussion of the searcher are some of the current searcher

models that encapsulate the different activities that they may perform. We then conclude

the chapter with a discussion of the various measures used for IR and IIR evaluation.

2.1 A (Brief) History of Information Retrieval

While many associate the study of IR with computers, the need to seek information in a

quick and effective manner has existed throughout human history. In this section, we pro-

vide a very brief overview of some of the key advancements in what can be considered to be

the study of IR – from library cataloguing approaches, to contemporary retrieval systems.2

2.1.1 Libraries and Mechanisation

Containing a large volume of books discussing a virtually unlimited range of categories, li-

braries require the need for a means of organising (and thus easily locating) information with

relative ease. Catalogues provide a way in which to achieve this, with ancient Greek poet

Callimachus being the first person to create a catalogue in the third century BC (Eliot and

Rose, 2009). A more recognisable approach to categorising content was devised by Dewey

(1891) with theDeweyDecimal System. The use of cards as an indexing systemwas also consid-

ered by individuals such as Soper (1918) who invented a system of providing information

on what category a card belonged to based upon a punched hole.

However, finding information using these techniques was slow. In order to speed up the

process of finding useful material, mechanised techniques were also used. Allowing for
2An excellent, in-depth discussion on the history of IR is provided by Sanderson and Croft (2012).
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2.1 A (Brief) History of Information Retrieval

searching at the rate of 600 cards per minute, Luhn devised in the early 1950s a mechanised

system that utilised punchcards and light. As stated by Sanderson and Croft (2012), this

was also around the time that the term Information Retrieval (IR) was used (Mooers, 1950).

From this point in history, computer technology was developing at a rapid rate. Ultimately,

this led to computerised systems superseding mechanised approaches (Jahoda, 1961).

2.1.2 The Rise of Computers

Computers now provide the underlying technologies with which we closely associate with

a typical, contemporary IR system. Sanderson and Croft (2012) state that digital storage

capacity (e.g. hard disks, and more recently, solid state storage) roughly doubles every

two years. This claim is essentially analogous to the famous Moore’s Law (Moore, 1965),

which observes that the number of transistors in a processor (or other integrated circuits)

doubles roughly every two years.3 Indeed, the speed at which modern day computers can

search vast indexes and databases of content is vastly superior to traditional cataloguing ap-

proaches. These technological advances permit the near instantaneous returning of results

from an initial request, with searchers expecting a set of results in the order of milliseconds.

Progressing from computers was the development of computer networks, permiĴing the

transmission of information between computers over increasingly large geographical dis-

tances. With the development of the Internet, the scene was set for the introduction of one

key technology – the World Wide Web (WWW).

2.1.3 The World Wide Web

The distribution and ability to search for information over computer networks such as the

Internet was traditionally undertaken with legacy protocols such as Gopher. Gopher would

3As of 2019, it is becoming increasingly difficult to develop integrated circuits that meet this rule of thumb.
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2.1 A (Brief) History of Information Retrieval

Figure 2.1 A screenshot of the landing page of Yahoo!, as shown on July 5th, 1998. Notice the

link for the 1998 FIFAWorld Cup that was taking place at the time. More central to this thesis is the

inclusion of a list of page categories in conjunction with the now ubiquitous search box. Screenshot

acquired from the Internet Archive (under fair use).

provide a series of options for a user to select (i.e. categorisation of content), akin to the

traditional library cataloguing approaches described above.

The advent of the WWW in the early 1990s brought about a new type of IR system – web re-

trieval systems. Regarded as the first experimental web retrieval system, JumpStation was

outlined by McBryan (1994).4 In this system, anchor text within hyperlinks of HyperText

Markup Language (HTML) pages could be exploited to aid the ranking of documents. How-

ever, popular web retrieval systems of the 1990s initially followed the categorisation ap-

proach hailing back from libraries, as illustrated in Figure 2.1 with a screenshot of Yahoo!

from 1998. This categorisation approach on the Yahoo! front page ties in with the surf-

ing paradigm described back in Chapter 1. However, as the volume of information on

4With JumpStation developed and hosted at the University of Stirling, could one make the claim that web
retrieval systems are a ScoĴish invention?
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2.2 Information Retrieval Basics

the WWW rapidly increased, this way of presenting information became impractical. It

was not long before the now contemporary paradigm of search took hold, allowing indi-

viduals to dictate their information needs through the issuance of a query.

The processes that take place from query issuance to the returning of results can be consid-

ered as the study of contemporary Information Retrieval (IR). As we will discuss throughout

the remainder of this chapter, work includes aspects such as the basic components of a

retrieval system and approaches used for the evaluation of such systems.

2.2 Information Retrieval Basics

An IR system is expected by the searchers that use it to return results that can be consid-

ered relevant to their information need. Typically, these results should be ranked by

decreasing order of relevance. This was originally hypothesised by Luhn (1957), and suc-

cinctly expressed by Robertson (1977).

“A [reference] retrieval system should rank references in the collection in order of their

probability of relevance to the request, or of usefulness to the user, or of satisfying the

user.” Robertson (1977)

Such a system would search through a collection of unstructured or semi-structured data

(such as a collection of web pages or other text documents, or even images or videos, rep-

resenting multimedia retrieval) before returning potential matches to the searcher.

Unstructured and (Semi-)Structured Data Akey difference between a traditional database

system – or Relational Database Management System (RDBMS) – and an IR system is the type

of data that they consider. While a RDBMS considers structured data, an IR system, in con-

trast, considers semi-structured data, as illustrated in Figure 2.2. With an IR system, such a
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Consisting of relationships (primary/foreign keys), data 
types… structured data is a highly organised source of 
data. Such data sources are typically represented as a 
relational database (RDB).

Term Document(s)

Data with no predefined data model.
Typically text heavy, with dates, numbers, ambiguities...

teachesLecturer Student1 m

Student

matric (PK) (int)
forename (varchar)
surname (varchar)
dateofbirth (date)

APW19980610.0909
Saving the endangered species

A NEWSPAPER report that the vast Endau-Rompin area 
has fewer than five rhinoceroses from the 20 to 25 
animals five years ago is a clear indication of the 
increasing threat to Malaysian wildlife and their 
habitats posed by the country's rapid development. 
Thanks to the environment-conscious...

Structured Data

(Semi-)Structured Data

Lecturer

staffID (PK) (int)
forename (varchar)
surname (varchar)
phone (varchar)

Figure 2.2 Examples of structured and (semi-)structured data. On the left is a struc-

tured RDBMS schema, represented in compressed Chen notation (Chen, 1976). Different data

types can be specified for each field, representing data in a structured way. On the right is an ex-

ample of semi-structured data, showing a document from a newswire collection. Note the semi-

structured component (containing an identifier and title), and the unstructured body text.

premise for structured data does not exist.5 Semi-structured data such as an HTML page

contains a series of elements (e.g. section headers represented within header elements such

as <h1>, <h2>, <h3> up to <h6>), but the text within these elements is largely of an unstruc-

tured nature. The unstructured data can contain information such as dates or entities (terms

describing a real-world object and/or location, such as canberra or dropbear, and can be

(as it is probably wriĴen in a natural language) ambiguous. Because of this, examining

unstructured data presents a major challenge to researchers.

Being able to effectively sift through large volumes of unstructured data led to the develop-

ment of retrieval systems. Consisting of a number of key components, the basic process of

a retrieval system – along with the inclusion of the users (or searchers) that utilise such sys-

tems – can be seen in Figure 2.3. Core to the wider system is the retrieval engine , of which

many experimental6 retrieval engines can be selected based upon experimentation require-

5This may be a slight misnomer; schemas can be used for an IR system index when considering fielded re-
trieval. For example, a collection of newspaper articles may contain a title and body – but within the fields,
the data is unstructured to the retrieval system.

6van Rijsbergen (1979) defines a difference between operational and experimental IR systems. A majority
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Interface/SERP
Generation of a Search 
Engine Results Page (SERP) 
to display matching results

Document Corpus
Collection of documents

Retrieval Engine
Returns a (ranked) list of 
documents, given an index, 
retrieval model and query

Indexing Process
Converting to an index

Information Need
What to search for

Query/Queries
Information need in term(s)

Judgements
Created by assessors

Searchers
With an information need, 
seeking to satisfy said need

Interaction
Clicking links, examining...

Batch Queries
For system evaluation

Index
Various data structures

Retrieval Model
Scores documents

System
-Sided Evaluation

Ranking, efficiency, etc.
U

ser-Sided Evaluation
Interaction, presentation, etc.

Figure 2.3 The core components of a retrieval system, including the key processes that we

discuss in this chapter, highlighted by blue boxes. Central to the discussion in this chapter is the

delineation between system-sided and user-sided evaluation, with both clearly separated in this

figure by the dashed line. On the top, system-sided aspects include the retrieval engine, retrieval

model and index. Below, user-sided aspects include the interface, interactions that take place with

said interface, and constructs such as the searcher's information need and derived query/queries.

ments and existing infrastructure available. Examples include Elasticsearch, Lemur/Indri,

Lucene for IR (including derived projects such as Apache Solr), Okapi, the Terrier IR platform,

Wumpus and ZeĴair. Common to all systems are three key inputs, which are:

■ an index of documents, a specially crafted data structure used for the fast lookup of

documents derived from a source collection, or corpus;

■ a retrieval model that scores and identifies documents that may constitute as rele-

vant to what is being searched for; and

of individuals will only ever interact with an operational system (such as Google). The work in this thesis
however focuses more on experimental IR systems, and the methodology employed to compare different
experimental retrieval systems against each other.
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■ a query , the construct that represents a given information need by a searcher – or one

of several queries issued in a batch environment.

The retrieval engine combines these inputs to yield an output. This is a ranked list of doc-

uments7 that the retrieval model concludes to be relevant to the given query. This is often

called the matching process. The retrieval model is responsible for performing the matching

of documents from an index. This index typically constitutes a number of different data

structures that are generated through the indexing process, where a source document cor-

pus is traversed. As highlighted by the blue boxes in Figure 2.3, we discuss the indexing

process and various retrieval models in this chapter, explained in Sections 2.2.1 and 2.2.2

respectively. These components are all considered as system-sided aspects of the wider

retrieval system, with evaluation of system-sided aspects concerning the quality of returned

rankings, how efficient the retrieval engine is, etc.

However, the system-sided aspects only tell part of the story. We build retrieval systems

to help searchers satisfy their information need – and hence the study of Interactive Infor-

mation Retrieval (IIR) is devoted to considering the interactions between the searcher and

retrieval system. While we discuss more user-sided aspects later on in this chapter (Sec-

tion 2.3), searchers, given an information need, will issue one or more queries, and interact

with the presented interface (Ingwersen and Järvelin, 2005), or Search Engine Results Page

(SERP) (refer to Section 2.3.2.1). Their ultimate goal is to satisfy their said information need.

User-sided evaluation is also considered extensively in this thesis. Examples include the ex-

amination of the many different interactions that take place, and how the presentation of

results affects search behaviours.

Before discussing the user-sided aspects of search, we turn our aĴention to the system-sided

components of the wider retrieval system, considering the indexing process and various

retrieval models that are commonly employed.

7Depending upon the retrieval model used, ranking may or may not occur – refer to Section 2.2.2 for more
information.
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2.2.1 The Indexing Process

Indexing takes into account the conversion of a collection of documents (or corpus) into

a data structure that facilitates fast, full-text search – a key requirement of any retrieval

system. Full-text search is typically undertaken in milliseconds, with the goal of finding

documents that will be relevant to a given query (and thus information need). The addi-

tional storage space and management requirements to maintain an index of documents are

considered to be a necessary tradeoff to guarantee timely responses to a searcher’s query.

As illustrated in Figure 2.4, the indexing process can be split into three main steps:

gathering the corpus of documents to be indexed;

performing pre-indexing data preparation; and

creating the various data structures that constitute an index.

Experimental corpora are available for use with batch experimentation, typically from var-

ious evaluation forums, as discussed in Section 2.3.1.1. For operational retrieval systems,

data is collated by other means. For example, web retrieval systems employ aweb crawler to

examine pages on the WWW, and accumulates additional content by following the WWW’s

hyperlink structure. Google’s crawler, Googlebot, regularly crawls high impact websites to

ensure that the associated index is continually refreshed with up to date information.

An index will contain an entry for each processed document, along with a vector of terms

that are present within the said document. This is known as the direct index8. However,

a retrieval system needs to support fast full-text search, matching terms from a searcher’s

query to one or more documents within the index. To support faster query matching, the

most simplistic approach is to simply invert the index, such that the lookup of the index

then corresponds to individual terms, not individual documents. A vector of documents can
8The direct index is sometimes referred to as a forward index.
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Collection of documents to index Promotes fast, full-text search

D3
Glasgow 
Caledonian 
University 
(informally 
GCU or 
Caledonian)...

D2
The 
University of 
Strathclyde is 
a public 
research 
university...

D1
The 
University of 
Glasgow is 
the fourth 
oldest 
university...

Removal of stopwords, etc.

Term Document(s)

the
glasgow
university
research
fourth
caledonian
...

D1,D2
D1,D3
D1,D2,D3
D2
D1
D3
...

tokenise the text

Split up individual terms

remove the stopwords

Remove common terms

apply porter stemming

Stem terms to their  base 

Corpus1 Indexing Process2 Inverted Index3

Figure 2.4 An illustration of the main steps to produce an inverted index, using a source doc-

ument collection of three documents as an example. Depending upon the requirements of the IR

system, the indexing process may vary; all classical IR systems however rely on an inverted index.

then be provided for each term, yielding much faster access to a potential list of documents.

An example of an inverted index is provided at step in Figure 2.4. The source corpus in

this example illustration consists of three documents, with the resultant index shown. The

set of documents retrieved can then be sent to a retrieval model for ranking.

Before a document is indexed, a number of pre-indexing steps take place. Three of the most

common processes involved include tokenisation, stopword removal and stemming.

2.2.1.1 Tokenisation

Tokenisation is the process of parsing a source document and spliĴing the data within the

document into a number of individual tokens that may be subsequently indexed. A token

is a sequence of grouped characters that provide some semantic meaning.

While we do not go into greater detail about the process of tokenisation, there are many

challenges to this process – such as word boundary ambiguity. While parsing an English or

Latin-based document may be relatively straightforward (with spaces representing word

boundaries), other language structures (such as 汉语 (Chinese), 日本語 (Japanese), 한국어
(Korean), or ภาษาไทย (Thai)) could present an issue. Considering what words a potential

searcher of a retrieval system may use to search with may be a potential pathway for finding

a solution to this problem.
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2.2.1.2 Stopword Removal

Stopword removal is another popular choice for indexing document collections for use in an

experimental IR system. Illustrated in Figure 2.4, extremely common words which would

appear to have liĴle value in selecting documents matching a searcher’s query (that is, non-

discriminative words) can simply be removed from a document’s vocabulary entirely. Ex-

amples of such stopwords could be the, a, or did, or even a complete phrase from the famous

soliloquy of William Shakespeare’s Hamlet: “to be or not to be”. Some experiments consider

a small list of stopwords, while others consider a larger list. Larger lists often significantly

reduce the size of an indexed corpus (Manning et al., 2008). Indeed, it was argued by Fox

(1992) that larger lists “are advisable”.

While stopword lists may be manually crafted under particular scenarios, automatic ex-

traction from a document corpus is perhaps a more common practice. A simple approach

would be to count the term frequency for each term within a corpus and sort the resultant

list in descending order, selecting some top k of the most frequently occurring terms. Read-

ily available lists are also available. van Rijsbergen (1979) for example produced a list of

250 terms, with Francis and Kučera (1985) demonstrating a list of 425 stopwords from the

Brown corpus9. For the experiments detailed in this thesis, Fox’s classical stopword list (Fox,

1992) is used, consisting of 421 terms. Such an approach may be considered acceptable, but

stopwords lists do vary from collection to collection, as stated by Lo et al. (2005).

Issues of course also exist with the removal of stopwords. Removing stopwords from a

query may decrease processing time, but what if all terms within a query are stopwords,

like the aforementioned soliloquy? The resultant query passed to the retrieval engine could

contain zero terms! As such, commercial retrieval systems are less likely to employ stopword

removal during the indexing process to counter such an occurrence (Manning et al., 2008;

Dolamic and Savoy, 2010). Rather, stopword removal may be undertaken on issued queries

9The Brown corpus was a collection of documents representing (then) contemporary American English,
compiled by William Francis and Henry Kučera – refer to Francis and Kučera (1979) for more information.
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instead (Croft et al., 2009). Techniques such as compression may be used to reduce the

size of the index. Queries such as `to be or not to be' may contain some semantic

meaning. Like tokenisation, there is often more to this problem than initially meets the eye.

2.2.1.3 Stemming

Another common pre-indexing process is stemming. This is the process of reducing inflected

– or sometimes derived – words from their word stem, base or root. For example, given the

terms fisher, fished and fishing, reducing each of these terms to their respective word

stem would result in fish. Essentially, stemming allows one to group words together with

a similar semantical meaning. This provides the advantage of reducing the size of an index,

with fewer terms to index. A further benefit may be the potential increase in the number

of possible matches that can be found with a stemmed set of query terms, increasing the

retrieval system’s recall (refer to Section 2.4.1.2).

The concept of stemming has been studied since the 1960s, with the Porter stemmer (Porter,

1980) emerging over time as empirically the most effective – especially for smaller docu-

ment collections.10 Comprised of a series of linguistic rules, the measure of a word can be

considered as:

“loosely checking the number of syllables to see whether a word is long enough that it is

reasonable to regard the matching portion of a rule as a suffix rather than as part of the

stem of the word.” (Manning et al., 2008)

Porter stemming is utilised in the indexing process for the work reported in this thesis;

other stemmers do exist, with examples including the original single pass stemmer devised

by Lovins (1968), and the Kroveĵ stemmer (Kroveĵ, 1993).

10The Porter stemming algorithm is not provided in this thesis; refer to Porter (1980) for an in-depth expla-
nation of the algorithm.
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Issues such as overstemming can impact upon a retrieval system’s performance. Here, terms

are reduced so far back to the point that meaning is lost, thus negatively affecting the re-

sults returned. Terms like universe, university and universal when stemmed will be

reduced to univers. While the three original terms may be etymologically linked, their

modern meanings are however very different. When stemming is applied, documents con-

taining both universe and university will be returned. While we do not go into depth

into the solutions to this problem, two potential workarounds consider: the lemmatisation of

terms (Manning et al., 2008); and the n-gram context of a term, allowing the retrieval system

to select the correct meaning (McNamee, 2006). Like stopword removal, stemming is also

often applied on issued queries (Croft et al., 2009).

2.2.2 Retrieval Models

Given a generated document index and a searcher’s query, the next part of the process is

retrieval (or matching). For this, a number of mathematically-based retrieval models have

been developed over the years that aĴempt to operationalise the notion of relevance. These

models provide us with a means for discussion and further refinement. They also provide

us with the blueprint from which we operationalise a retrieval system (Hiemstra, 2009). The

usefulness of such a model can be subsequently tested via experimentation and evaluation.

Several different types of retrieval model have been defined, ranging from the relatively

simplistic to the more complex. More complex approaches not only define a notion of what

documents would be considered relevant, but also to what degree that is so. This section

considers three main retrieval model families, including:

■ the boolean model;

■ the vector space model; and

■ probabilistic models.
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This summary is not exhaustive. A further approach could be a language model that consid-

ers a probability distribution over a sequence of words (and thus is probabilistic) (Manning

et al., 2008). A more contemporary ranking approach would be neural IR models. Here,

neural networks are used to rank documents in relation to a searcher’s query (Mitra and

Craswell, 2017). These other approaches are not discussed here. Instead, this section pro-

vides a broad overview of models used in this thesis, discussing the benefits and disadvan-

tages of each. We focus the discussion of each retrieval model on how they can potentially

influence stopping behaviours.

2.2.2.1 Boolean Model

Cited as the first formally defined IR retrieval model, the boolean model is also the most

likely one to be criticised (Hiemstra, 2009). The model employs operators of mathemati-

cal logic as defined by George Boole (Boole, 1847), or set theory. Boole defined three basic

operators: AND, yielding a logical product between two sets; OR, yielding the logical sum

between two sets; and NOT, yielding the logical difference.

By considering an individual query term and an unambiguous set of documents, logical op-

erations can be applied to retrieve a set of documents. For example, the query term glasgow

will yield a set of all documents containing the term glasgow, yet the query NOT glasgow

will retrieve the set of documents that do not contain any mention of the term glasgow.

Results of applying logical operators between different sets can be illustrated through a

Venn diagram, where each set of documents is represented as a disc. Figure 2.5 provides an

example of such diagrams, using glasgow university computing as an example.

Despite its relative simplicity, there are major limitations to the exact match approach. First,

when considering the boolean query, there is no notion of term importance – every term

has equal weighting. Issuing a query utilising rules of logic also appears as an unnatural

representation of the searcher’s information need. Indeed, as an information need becomes
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university

computing

glasgow

computing

glasgow university

computing

glasgow university

Figure 2.5 An example illustration of the boolean retrieval model, using the query terms

glasgow, university and computing. Each coloured disc represents the set of documents

containing that particular term. In the figure, three Venn diagram examples are provided, demon-

strating the key logical operators AND and OR.

more complex, the corresponding boolean query can grow to be disproportionately large

and cumbersome. As documents either belong to a set or not, a document is considered to

be either relevant (TRUE) or not (FALSE). As such, one cannot estimate the degree of how

relevant a document may be to the searcher’s query. Results therefore are provided to the

searcher in an unranked manner.

Returning an unranked set of documents would appear as an alien concept to users of con-

temporary retrieval systems – one would assume that the document presented first would

be the document considered to have the greatest relevance, as per the underlying retrieval

model. This would make it difficult for a searcher to obtain some notion of how many

results he or she should examine before stopping. This is because no ranking means all

returned documents are of equal importance.

Instead, a searcher utilising a boolean retrieval system will often find an initial exploratory

query will return a large set of documents – too many to examine each in sufficient detail.

Rather, what a searcher will likely do is gradually reformulate their query in an iterative

manner (Koch et al., 2009) – like in the illustration below – until the document set returned is

of a manageable size to process. This is an inherently different kind of stopping behaviour
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from the examples provided thus far in this thesis which assumes documents are presented

in a ranked list, with some notion of a depth at which a searcher would stop.

n=1000
n=500 n=50

Despite not being required in contemporary retrieval systems, many systems still do pro-

vide support for crafting a boolean query for when returning a good set of results is difficult.

Boolean queries may also be of use where ambiguity exists within a searcher’s query, and

clarification is required to eliminate a set of non-relevant documents (i.e. perhaps using a

boolean operator to return a more focused set of results). Indeed, boolean queries still find

considerable traction in professional search systems, such as patent search. Here, missing

an existing, relevant patent may be incredibly costly – here, recall is preferred over precision,

as discussed in Sections 2.4.1.2 and 2.4.1.1 respectively.

2.2.2.2 Vector Space Model

Further families of retrieval model were later developed to counter the issues and criticisms

of boolean retrieval. Luhn (1957) hypothesised that a searcher should prepare a document

that is similar to the documents being sought after. By comparing documents against this

representative document, a retrieval system could then begin to deduce what other docu-

ments would be useful, and by what margin.

The vector space model proposed by Salton et al. (1975) incorporates the principles as out-

lined by Luhn (1957). These basic principles are operationalised by representing queries

and documents within Euclidean geometry, where both are represented as vectors in multi-

dimensional space. The notion of how close documents appear to each other therefore de-

notes the relevance of a document.
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Figure 2.6 An illustration of the vector

space model in Euclidean space, with each

term representing a dimension. Here, the

cosine similarity between query q and doc-

ument d is shown.

The vector space model has been very popular

as it provides an intuitive means for addressing

the overarching problem of a retrieval system.

It can also incorporate methods such as term

weighting, which has been shown to improve

retrieval effectiveness (Croft et al., 2009). Fur-

thermore, as queries and terms are represented

in Euclidean space, vector similarity methods

can be employed to determine relevance. While

many approaches have been trialled, empiri-

cal evidence has favoured cosine similarity (Croft

et al., 2009). This is illustrated in Figure 2.6. Us-

ing such an approach allows one to then com-

pute the degrees of relevance, meaning that matched documents can be returned in a ranked

order. Provision of a ranking then gives cues to searchers interacting with the results list to

form an idea of the depth at which examination should stop. However, at what threshold

should a searcher stop? As we highlight in the following section, the Probability Ranking

Principle (PRP) (Robertson, 1977) suggests that such a threshold does exist. If the proba-

bility of a document being relevant is greater than the probability of it being non-relevant,

a searcher should look at it. Once the probability of a document being non-relevant out-

weighs the probability of it being relevant, the PRP indicates that a searcher shouldn’t in-

vest time examining it. What value this threshold should be is open to interpretation, and

will vary from searcher to searcher.

In order to understand the basic workings of the vector space approach, let us consider a

query, Q, with each of its constituent terms placed within a term vector in t-dimensional

space, leading to Q = (q1, q2, q3, . . . , qit). Consider also a document, Di, with terms from

the document again represented in t-dimensional space, yielding Di = (di1, di2, di3, . . . , dit).

From this notation, di j represents the term frequency (TF) of term j appearing in document i.
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With each term represented as a separate dimension within Euclidean space, a weighting

scheme can be subsequently applied to emphasise or understate more discriminative or less

discriminative terms respectively. By applying weighting schemes, the vector space model

ranks documents which promote terms that are more discriminative, thus improving the

quality of the returned ranked list.

Term frequency is one of many different term weighting schemes that have been trialled

over the years in IR research. A widely used schemes is inverse document frequency (IDF),

proposed by Spärck Jones (1972). In the words of its creator, IDF allows for one to de-

fine the specificity of a term as “an inverse function of the number of documents in which it

occurs.” (Spärck Jones, 1972). This is useful, as non-discriminative terms that occur fre-

quently within an index (e.g. the) would have a small weighting applied, with the inverse

happening for more discriminative terms that are beĴer able to return a document.

TF and IDF are typically combined together as a measure of both term appearance and

importance, under an approach called TF-IDF. For a given term k, one can calculate a TF-

IDF score with the following equation:

t fi,k · id fk =
fi,k∑t

j=1 fi, j
· log

N
nk

. Equation 2.1

Above, fi,k is the frequency of term k, N is the number of documents in the collection used,

and nk is the number of documents in which term k appears at least once.

2.2.2.3 Probabilistic Models

Like the vector space model, probabilistic retrieval models estimate the likelihood of a

document being relevant to a given query. One of the most well-known ranking princi-

ples, named as the Probability Ranking Principle (PRP) in the previous section, was defined

by Cooper (1971) and Robertson (1977).
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“If a reference retrieval system’s response to each request is ranking of the documents in

the collections in order of decreasing probability of usefulness to the user who submiĴed

the request, where the probabilities are estimated as accurately as possible on the basis

of whatever data has been made available to the system for this purpose, then the overall

effectiveness of the system to its users will be the best that is obtainable on the basis of

that data.” Robertson (1977)

Essentially, this states that documents that are considered more likely to be relevant than

non-relevant should be retrieved – or where P(R|D) > P(R|D). This also implies a cutoff

point exists, where probabilities fall below some threshold. While the PRP lays much of the

foundation from which probabilistic models have been derived, it does not provide its own

concrete implementation of such a model.

A simple approach that implements the PRP is the Binary Independence Model (BIM). Simple

assumptions that make the implementation of the PRP straightforward are employed. As

the name of the model suggests, one such assumption is the notion of binary relevance in

term vectors for a given document (i.e. a term either exists in a document or not). A second

assumption is that terms are modelled as occurring in documents independently, with no

association between terms (represented as a bag of words) (Manning et al., 2008).

With the BIM originally designed for documents fairly consistent in length, contemporary

corpora have a large variance in term frequencies and document lengths. Okapi BM25

presented by Robertson et al. (1995) was devised as a way of building a probabilistic re-

trieval model that combined term frequencies, inverse document frequencies and docu-

ment lengths (of a document and the average document lengths of documents within a

corpus) (Jones et al., 2000). BM25 has had considerable impact upon the IR community,

and is still used extensively today. BM25 provides a solid baseline for contemporary re-

search and is the retrieval model employed in the experimentation discussed in this thesis,

primarily selected for its effectiveness and popularity.
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For a given query Q containing keywords q1, · · · , qn, the BM25 score of a document D is

defined as:

score(D, Q) =
n∑

i=1

IDF(qi) ·
f (qi, D) · (k1 + 1)

f (qi, D) + k1 · (1− β+ β · |D|avgdl)
, Equation 2.2

where f (qi, D) represents qi’s term frequency within document D, |D| is the length of doc-

ument D (represented by the number of terms), and avgdl is the average document length

in the corpus of documents used. β and k1 are free parameters, usually set to β = 0.75

and k1 = 1.2.11 Refer to Robertson and Zaragoza (2009) for a more thorough review of

probabilistic models – and of BM25 in particular.

Like the vector space model, retrieval models implementing the PRP ranks documents with

respect to the issued query. Therefore, these models provide searchers with a gauge as to

how relevant a document can be. They intrinsically provide a cue as to the depth at which

a searcher should stop (when documents are ordered by decreasing relevance).

2.3 From System to Searcher

So far in this chapter, we have provided a background on several aspects in the field of IR.

These developments are focused exclusively on the system. Recall however that the purpose

of a retrieval system is to satisfy the information needs of the searcher (or user) using it.

Satisfying this information need is key to any successful retrieval system.

In this section, we discuss a line of research that moves from considering the system to

a more extensive examination of the searcher, and his or her interactions with a retrieval

system. This is examined in the study of Interactive Information Retrieval (IIR). However,

before discussing the IIR process, we must first consider in more detail the paradigms that
11The values of β and k1 reported here are the values used throughout experimentation presented in this

thesis.
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have been extensively used in traditional, system-sided IR research. These paradigms have

been one of the cornerstones of IR’s scientific methodology for many decades, and are

mostly considered to be naïve of a searcher’s behaviour. After discussing these paradigms,

we then move to our discussion of IIR, emphasising the spectrum of research between the

system-sided (IR) and user-sided (IIR) extremes. This then leads onto the concept of searcher

models that aĴempt to capture the high-level, cognitive processes that searchers undertake.

2.3.1 Experimental Paradigms

The methodology behind the majority of classical IR research has focused on the Cranfield

paradigm. Developed at Cranfield University in Bedfordshire, England, the experimental

paradigm is based upon the Cranfield II experiments (Cleverdon et al., 1966). The goal of

these experiments was to create:

“a laboratory type situation where, freed as far as possible from the contamination of

operational variables, the performance of index languages could be considered in isola-

tion.” Cleverdon (1991)

The experimental paradigm required the same set of documents, and the same set of in-

formation needs to be used for each language, and the use of common IR measures, pre-

cision and recall (refer to Sections 2.4.1.1 and 2.4.1.2 respectively) to be used to measure a

given retrieval system’s effectiveness . Core to these experiments was also the notion of

a test collection , itself consisting of three key components:

■ the corpus (collection of documents) to be used;

■ the statements of different information needs hereafter referred to as topics ; and

■ a set of relevance judgements – a list of documents considered relevant that should

be retrieved by the retrieval system for each topic trialled.
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Given these three components, the Cranfield experiments made a number of major simpli-

fying assumptions, as outlined by Voorhees (2002). The first considers the notion of topical

similarity, by which their relevance is approximated. In short, all relevant documents are

equally desirable, and the relevance of one given document is independent of the relevance

of any other document. This also leads to the notion of a static information need. Under Cran-

field, there is assumed to be no change during the search process for what the searcher is

searching. Additionally, the single set of relevance judgements provided as part of the test

collection is to be considered to be representative of an entire population. This means that for

a given topic, every searcher will seek to find the same set of relevant documents. Finally,

the list of relevant documents for a given topic is assumed to be total and complete, i.e. all

documents relevant to a topic have been identified and are listed.

2.3.1.1 The Text REtrieval Conference

A number of different evaluation forums have been derived from the Cranfield experimental

paradigm, utilising many of the implicit assumptions. These forums promote the devel-

opment of IR as a field, fostering a drive to develop improvements in the various retrieval

models and other retrieval system components. Examples of evaluation forums include

NTCIR (Kando et al., 1999), CLEF (Peters and Braschler, 2001) and INEX (Fuhr and Lalmas,

2006). However, one of the most well-known evaluation forums is the U.S. Government

funded, NIST sponsored Text REtrieval Conference (TREC) (Harman, 1993). Experimenta-

tion following the TREC approach is hereafter referred to as TREC-style in this thesis.

TREC provides a platform for annual collaboration between research groups interested in

different aspects of IR research. Each year, a series of TREC tracks are defined, with each

consisting of a test collection, in turn consisting of the three components defined above.

Within each track is a set of tasks. Some of the tasks, such as those belonging to the TREC

Interactive Track (Over, 2001), are known as ad-hoc . This type of task can be considered as

one of the most obvious for search, where a searcher, perhaps through curiosity, develops
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an information need in an ad-hoc fashion. They then begin the search process by issuing

an exploratory query to a retrieval system.

These tasks are used in conjunction with the relevance judgements provided by assessors.

Assessors are usually employees of NIST (Robertson, 2008), who were in turn previously

employed as news analysts by various U.S. security agencies. A series of documents are ex-

tracted from the document collection using a simple query (a process called pooling). Due

to the potentially large size of document collections, pooling is an acceptable solution to re-

ducing the number of documents to be examined. As an example, given the topicwildlife ex-

tinction, the query `wildlife extinction' is issued over a number of different retrieval

systems. Documents returned are pooled together and then judged by the assessors.

For many TREC tracks, judgements are binary, with 0 denoting non-relevance, and 1 de-

noting relevance. Graded relevance judgements can also be used – the initial Cranfield II

experiments, for example, used a five-point relevance scale (Voorhees, 2002). Pooling can

mean that documents that are potentially relevant can be missed by assessors, and thus will

receive no judgement (Keenan et al., 2001).

Institutions wishing to participate in a track receive the associated test collection and tasks.

They then index the corpus and run their experimental retrieval system over the provided

material. Experiments are typically run over 25-50 different topics (Voorhees, 2002), with

a solitary query issued for each (the topic’s title). These are typically executed in a batch

environment, with a large number of results (typically 1, 000) returned from the retrieval

engine. Output from the experiments is then produced in a standardised format. Results

can then be used in conjunction with the judgements (termedQuery RElevance Judgements, or

QRELs ), and fed into a standardised program called trec_eval12 to perform an evalua-

tion of the runs that have been undertaken. The application returns the values for a number

of common system-sided evaluation measures, some of which are discussed in Section 2.4.1.

12trec_eval is downloadable from http://trec.nist.gov/trec_eval/ LA 2018-03-08 . Version
8.1 of the software was used for computing most of the evaluation measures reported in this thesis.
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Issue Query
Reached
rank k?

No

Yes
Examine Item

Figure 2.7 The TREC searchermodel. Considering a highly abstracted searcher, a query is issued

(Issue Query), with each individual result examined in a linear order (Examine Item), up to some

depth k (typically 1,000), before the searcher stops. All documents up to rank k are assessed; no

documents are skipped during this process.

2.3.1.2 The TREC Searcher Model

Given the assumptions of the Cranfield paradigm and subsequent evaluation forums such

as TREC, one may be forgiven for thinking that the searcher – the target audience of any

retrieval system – has been completely ignored from the process. While it is true that the

paradigm focuses primarily on system-sided evaluation of retrieval systems, a searcher is

considered – just in a highly abstracted form. The assumption that a searcher’s information

does not vary as they search is just one example of an abstraction from reality – a searcher’s

information need is dynamic and typically evolves as they search (Borlund, 2003).

The basic searcher model employed by a TREC-style experiment is illustrated as a flowchart

in Figure 2.7. Given the batch-style nature of TREC-style experimentation, this particular

searcher model is well suited to such an environment, as the simplifying assumptions and

complete lack of interaction from the searcher go hand in hand with the design goals of the

initial Cranfield II experiments. When subscribing to this model, a searcher, given an in-

formation need (or topic), will issue a single query pertaining to the said information need.

This query is simply the topic’s title (e.g. wildlife extinction). From there, the searcher

will then examine each individual document in a linear fashion. This process continues un-

til some rank k, at which point the searcher will cease and the search process ends. This rank

k is typically set to 1, 000 to provide evaluation programs such as trec_eval with a large a

set of rankings as possible for the various evaluation measures to be computed accurately.
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With this highly abstracted searcher model being agonistic of the complex interactions that

take place during search, a number of different criticisms can be made. Below, we enumer-

ate on three primary criticisms that have been discussed in the literature.

■ A Single Query The TREC searcher model assumes that a single query is issued for a

given information need. This severely limits the potential for interaction between the

searcher and retrieval system – a single query means no query reformulation is possible,

for example. In reality, searchers do reformulate queries, issuing multiple queries

during a search session (Keskustalo et al., 2009).

■ Assuming a Fixed Depth Searchers subscribing to this searcher model will always

examine documents up to a depth of k. This assumes a fixed-depth stopping strategy,

where searchers are agnostic of the results as presented to them. In reality, searchers

adapt their stopping depths dependent upon a variety of different factors, such as the

number of non-relevant items uncovered thus far (Cooper, 1973b).

■ All Documents are Inspected Thefinal key, limiting assumption in the TREC searcher

model is that all documents to depth k are assessed. In reality, searchers may skim

through results, or simply decide that a document does not look to be promising, and

thus skip it. In the TREC searcher model, there is no concept of a result summary, a

shorthand overview of the contents of the document. Result summaries are typically

expected to be part of the interface of a contemporary retrieval system.

Over time, researchers have begun to examine ways in which to improve upon the ba-

sic, rigid assumptions laid out by this searcher model. For example, Smucker and Clarke

(2012) introduced time-biased gain, where probabilities of interacting with documents were

included. Work by Tran et al. (2017) considered the TREC searcher model from the stand-

point of a Markov model. As such, this representation of the search process was comple-

mented with a series of different transition probabilities, dictating the likelihood of a searcher

switching from one state to another.
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These works can be considered as a means of including the complex interactions that take

place between the searcher and retrieval system within a searcher model, or consideration

of the wider IIR process.

2.3.2 Interactive Information Retrieval

The study of Interactive Information Retrieval (IIR) aĴempts to address our lack of under-

standing of a searcher’s behaviours and interactions, and incorporate new findings into the

evaluation of retrieval systems (Callan et al., 2007). IIR studies can include aspects from both

user-sided and system-sided research. For example, one might present the results of a user

study examining a particular phenomenon of a searcher’s behaviour, and also provide de-

tails of a system-sided evaluation. As discussed by Kelly (2009), IIR can trace its roots back

to a variety of different disciplines, including: traditional IR (i.e. exclusively system-sided

research); library and information sciences; psychology; and Human-Computer Interaction

(HCI). Typically presented as a branch of IR and/or HCI, arguments also exist to consider IIR

as a distinct area of research (Ruthven, 2008).

“In IIR, users are typically studied along with their interactions with systems and in-

formation. While classic IR studies abstract humans out of the evaluation model, IIR

focuses on users’ behaviors [sic] and experiences – including physical, cognitive and

affective – and the interactions that occur between users and systems, and users and

information. In simple terms, classic IR evaluation asks the question, does this system

retrieve relevant documents? IIR evaluation asks the question, can people use this sys-

tem to retrieve relevant documents?” Kelly (2009)

To address the question of whether people can use a retrieval system, we begin by examining

the wider IIR process. Figure 2.3 on page 27 considered a number of user-focused aspects,

as illustrated in Figure 2.8. Given some phenomenon in the natural world (perhaps by ob-

servation, reading a book, or through conversation with another human), a searcher will
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Interface/SERP

Retrieval Engine

Information Need
What to search for

Query/Queries
Information need in term(s)

Document(s)

Reformulation

Examination

Attractive?

Click

STOP

STOP

The word 
"Canberra" is 
popularly 
claimed to
derive from the word Kam-
bera or Canberry, which is 
claimed to mean "meeting 
place" in Ngunnawal, one of 
the Indigenous languages 
spoken in the district by...

Relevant?

Examination

Figure 2.8 The basics of the IIR process, complete with a number of different searcher inter-

actions (as highlighted ) that can take place (although this illustration may not be exhaustive).

Forming an information need, searchers then begin the interaction process by issuing a query, be-

fore examining content presented on the SERP. At given points, searchers may then stop.

then begin to formulate an information need. As discussed previously in this thesis, this

information need can arise from a knowledge gap in the searcher’s mind, an internal incon-

sistency in what they are experiencing, or a conflict of evidence. In an Anomalous State of

Knowledge (ASK) (Belkin, 1980), the searcher will then begin the IIR process, with the aim of

satisfying their (perhaps vague) information need.

Upon bringing up the interface of a retrieval system, the searcher begins their so-called

search session , which begins with the formulation of the information need as a query.

Once the query has been submiĴed, a complex series of interactions begin to take place

between the system and the searcher, with these interactions being of great importance to

those studying IIR. Results will be retrieved by the underlying retrieval system and pre-

sented to the searcher in the form of a Search Engine Results Page (SERP). While we discuss

the SERP in more detail in Section 2.3.2.1, it should be noted that a majority of the inter-

actions that take place occur on the SERP.

However, interactions may be dependent upon the searcher’s intent – that is, what they are

aiming to achieve through the satisfaction of their information need. Three intents typi-
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cally used are navigational, transactional and informational (Jansen et al., 2008). Navigational

intents for example simply refer to the notion of using a retrieval system to navigate the

searcher to some Uniform Resource Locator (URL). This means that the searcher will simply

need to click the link to satisfy their information need.13

Informational intents will undoubtedly require a greater degree of interaction with the re-

trieval system.14 For example, searchers will begin to examine the content on the SERP,

inspecting individual summaries for potential relevance to their information need. At each

stage, the searcher is continually learning, and thus the interaction cycle may prompt the

searcher, for example, to provide a query reformulation as they begin to develop their under-

lying mental model of the topic. A revised SERP may then begin to yield more promising

results. As the searcher examines these updated results, he or she may find that a partic-

ular summary is deemed sufficiently attractive to investigate further, and thus clicks on

the provided link. Taking the searcher to the corresponding document, the searcher can

then examine the document in more detail, and make a decision as to its relevance. If not

satisfied, the searcher may navigate back to the SERP, and continue their examination of

further results. At some point, the searcher will make a decision to stop their interactions

– either within a given SERP, or the search session as a whole (both are illustrated in Fig-

ure 2.8 with stop signs). Stopping may occur for example if a searcher has satisfied their

information need, has been frustrated with the retrieval system’s inability to return relevant

results (Cooper, 1973b), or from a variety of different factors external to the search process,

such as time pressure.

While this example above may be highly abstract in nature, it clearly shows that the search

process is extremely complex and inherently interactive (Ingwersen and Järvelin, 2005). Thus,

work in the field of IIR provides a basis for developing more complex, realistic models of

the search process, improving upon the TREC-style searcher model.
13A searcher intent analysis by Jansen et al. (2008) showed that approximately 10% of queries issued to web

retrieval systems were either navigational or transactional in nature.
14One could argue that an informational intent could now be satisfied through information cardspresented on

contemporary web retrieval systems. Models and measures at present typically do not consider the presence
of these components.
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2.3.2.1 The Search Engine Results Page

Core to the experience of a searcher when using a given retrieval system are the interactions

that take place on its SERPs. Figure 2.9 depicts an example SERP of the fictional retrieval

system, Search.15 The illustration highlights several key SERP components that are exten-

sively referred to in subsequent parts of this thesis. At the top of the SERP is the query box ,

which allows a searcher to enter (and reformulate) queries as and when they require.

The main body of the SERP is then divided up into the left rail and right rail. Contempo-

rary SERPs utilise the right rail to display additional components such as information cards

as illustrated in Figure 2.9, with contemporary SERPs thus becoming more and more com-

plex in nature. We however in this thesis exclusively consider simplified SERPs without the

right rail, or SERPs comprised entirely of result summaries, as shown on the left of Figure 2.9.

These result summaries are typically displayed on a SERP as the ten blue links (Hearst, 2009),

or the first ten ranked results. The document that is judged to be most relevant – as defined

by the underlying retrieval model that ranks them – is displayed at the top of the ranked list.

These result summaries are short summaries of the corresponding document, and consist

of three main components:

■ a title that represents the title, or headline, of a source document;

■ one or more textual snippets , providing a summary of the source document such

that searchers can determine whether it is worth examining the document in more

detail; and

■ a source for the document, typically an URL if the object is WWW-based.

Snippets are of particular interest to the work in this thesis; we explore the effect of their

length on stopping behaviours in Chapter 7. Snippets are typically presented in contempo-
15As highlighted in the front maĴer, we utilise Search throughout this thesis to illustrate various concepts.
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Canberra - Wikipedia
https://en.wikipedia.org/wiki/Canberra
Canberra is the capital city of Australia. With a population of 403,468, it is Aus-
tralia's largest inland city and the eighth-largest city overall. The city is located...

VisitCanberra: Canberra Holidays, Accommodation & Things...
https://visitcanberra.com.au/
Discover things to do in Canberra with our guide. Experience culture at the Na-
tional Portrait Gallery and the National Gallery of Australia, or visit the...

Canberra Airport | Arrivals, Departures, Lounges, Transport...
https://www.canberraairport.com.au/
Official website for Canberra Airport - The latest information on flights, parking, 
transport and more. View live information on arrivals and departures.

canberra australia

Example Search Engine Results Page (SERP)

Query Terms

Title

Canberra
Capital of Australia

Canberra is the capital city of 
Australia. With a population of 
403,468, it is Australia’s larg-
est inland city and the 
eighth-largest city overall. 
Wikipedia

Left Rail (Result Summaries)

Right Rail

Source Snippet Fragments
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Figure 2.9 An example of a Search Engine Results Page (SERP) for the query canberra

australia. Labels illustrate the names of the key components of a SERP. Of particular rel-

evance to the work in this thesis are the result summaries, shown on the left rail.

rary retrieval systems as query-biased (Tombros and Sanderson, 1998). This means that the

snippet text relates to terms that were present in the searcher’s query. Figure 2.9 demon-

strates this with the use of bolded terms in example snippet text. This approach is alterna-

tive to the simple technique of displaying the first sentence or n characters from a document

as part of the result summary. Section 7.1.4 on page 195 provides more detail on how snip-

pet text is generated for result summaries.

2.3.3 The IR/IIR Spectrum

In order to aptly describe where IIR fits into the system-sided and user-sided space, Kelly

(2009) provided an intuitive spectrum of work that bridges IR and IIR. Figure 2.10 illus-

trates the spectrum, consisting of eight different categories of study. Moving from left to

right in the illustration, categories shift from solely system-sided (TREC-style) studies to-

wards those that are more user-focused, considering a searcher’s behaviours when interact-

ing with a retrieval system. Below, we detail four key category types as outlined by Kelly

(2009) that have particular relevance to the work detailed in this thesis.
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TREC-Style Studies With a majority of traditional IR studies falling into this cate-

gory, TREC-style studies focus upon the development and evaluation of system-sided

research, such as retrieval models and indexing techniques. No real searchers are in-

cluded in the loopwith this approach, although a simplistic, abstracted searcher model

is encoded, as previously discussed in Section 2.3.1.2. While assessors do create rele-

vance judgements used for evaluation, they are not involved in the actual batch-style

search process. As such, interaction is assumed to be very simplistic, with a single

query issued, for example. This is illustrated in Figure 2.7 on page 44.

'User' Relevance Assessment Studies The second category of study does explicitly

consider a human in the loop, but only in exceptionally limited circumstances. As the

name of the category suggests, the humans that are employed for this category of

study are used only for generating relevance assessments, perhaps because a specific

corpus is used, and no pre-existing TREC relevance assessments are available.

TREC Interactive Studies Studies belonging to this category typically are used to

evaluate a retrieval system and/or a feature of its user interface, where an experimen-

tal retrieval system is used. Typically, aspects such as searcher behaviours, their cog-

nition or the information seeking context are examined. These studies usually aim

to assist in aiding our understanding of the search process, and the development of

more intuitive and user-friendly search interfaces. Interaction is considered – search

sessions in this category of study permit searchers to issue multiple queries through

query reformulation and conduct a number of other interactions that studies closer to

the left of Figure 2.10 simply do not cater for. These studies are therefore more realistic,

and are thought to more accurately represent real-world searcher behaviours.

Moving to the right of the spectrum, the study of the searcher becomes ever more promi-

nent, until we reach the following category that considers the experiences of searchers.

Information Seeking Behaviour in Context Studies In this final category of study, re-
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“Archetypical IIR Study”System Focused User/Searcher Focused

TREC-style studies

“User” makes
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information behaviour

Information seeking
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Figure 2.10 The spectrum of conceptualising IIR research. Methods on the left consider a more

system-focused approach, with those on the right considering a more user-focused approach.

The fifth step within the spectrum considering TREC interactive studies is considered to be an

"archetypical IIR study". Figure adapted from Kelly (2009), with support of the author.

searchers consider the information needs of individuals. Researchers would typically

observe how individuals conduct their searches, while at the same time collating qual-

itative data about their differing experiences. These data can then be used to motivate

iterations of the design and presentation of search results, thus improving the overall

experience for searchers.

The studies represented by Kelly (2009) as category , called archetypical IIR studies, are

the type of study that we largely consider in this thesis. Indeed, in subsequent chapters,

we consider a variety of different aspects that can influence the behaviour and performance

of searchers – particularly in relation to their stopping behaviours. This work is done in

combination with a series of experiments that can be considered to belong to category .

By grounding these experiments with data collected from studies in category , we are

able to instantiate more realistic, credible abstractions of the search process which consider

some aspects of interaction. We achieve this by simulating the behaviour of real-world

searchers to examine what happens to searcher behaviour in different contexts.

2.3.4 The Simulation of Interaction

Simulation is defined as the imitation of the operation of a real-world process or system over

time (Banks et al., 1996). Such an approach allows one to gain insight into the functioning
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of some real-world phenomenon, such as the complex interactions that take place during

the IIR process. Computerised simulation (Heermann, 1990) has become more commonplace

today with increasing computational power allowing for the development of ever more

complex and realistic simulations. Simulation permits one to solve a large number of prob-

lems without resorting to a “bag of tricks” (Fishwick, 1995), where special purpose (and often

arcane) solutions must be used. Such an example would be a series of linear equations (Fish-

wick, 1995). With this closed-form approach, underlying assumptions can become twisted

and altered, drifting the representation further away from the real-world phenomenon that

is being modelled.

Simulation avoids such issues by providing one with the freedom and flexibility to reduce

the above assumptions. This permits a rapid means of exploring different scenarios, all at

a low cost. Additionally, without needing to consider issues such as subject fatigue (within

a user study, for example), simulation provides the capability of running experiments with

reproducible results (Azzopardi et al., 2011).

Simulation has been employed extensively within classical IR experimentation.16 TREC-

style experimentation may be considered as a form of simulation, where the simple searcher

model discussed in Section 2.3.1.2 is used to simulate the searcher’s interactions. We con-

sider in this thesis the simulation of interaction, where one aĴempts to mimic behaviours that

a searcher exhibits when interacting with a retrieval system (Azzopardi et al., 2011). This

means that we can explore different searcher behaviours, methods and techniques to beĴer

understand how searchers do, could, or are likely to behave. However, such simulations

are questionable and open to criticism if they are not properly motivated, grounded and

validated. Therefore, there is a pertinent need to ensure that such simulations are credi-

ble abstractions of the search process and that they are seeded with data based on actual

human interaction data (study category , as per Section 2.3.3) (Azzopardi et al., 2011).17

16For an in-depth discussion of various classical IR simulations, refer to Heine (1981).
17An exception to this rule would be the exploration of what-if scenarios, allowing researchers to examine

whatwould happen to a searcher’s behaviour if a particular scenario were to be applied. One example of such
a study is that by Azzopardi (2011). Indeed, we employ such an approach in contributory chapters of this
thesis, where we examine many what-if scenarios.
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Such grounding can, for example, permit stochastic simulations,working on the notion of the

probabilities of interaction (e.g. the probability of clicking on an aĴractive result summary).

Within the wider IIR process, a number of different individual components have been ex-

amined through the use of simulation. These have often been independently analysed from

one another (Azzopardi et al., 2011), with examples of different components and associated

studies listed below.

■ Query Formulation and Suggestions This component considers querying, including

the generation of pseudo-realistic queries and the development of realistic querying

strategies, grounded upon the querying behaviours of real-world subjects. Examples

include: Azzopardi (2009); Azzopardi et al. (2007); CartereĴe et al. (2015); Jordan et al.

(2006); Keskustalo et al. (2009); Hagen et al. (2015); and Verberne et al. (2015).

■ Browsing Behaviours This broader component considers the wider behaviours of

searchers when examining content, including aspects such as click models, and dif-

ferent browsing strategies employed by searchers (e.g. can a searcher’s behaviour

be classified as fast and liberal, or slow and neutral? (Smucker, 2011)). In addition to

the work by Smucker (2011), examples include: CartereĴe et al. (2015); Chuklin et al.

(2015); Guo et al. (2009); and Pääkkönen et al. (2015).

■ The Influences of Cost and Time This component examines how varying interaction

costs (i.e. the cost of issuing a query or examining a document, considered primar-

ily in terms of the amount of time required) and time constraints can influence the

behaviour of searchers. Examples include the economics-based approach outlined

by Azzopardi (2011), and work by Baskaya et al. (2012).

■ Performance over Search Sessions This area of work considers how, when differ-

ent aspects are changed, the performance of a searcher over a search session varies.

Examples include work by Luo et al. (2014) and Luo et al. (2015).
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Of particular relevance to this thesis is the work that has been undertaken to examine a

searcher’s stopping behaviour , with examples including: CartereĴe et al. (2015); Maxwell

et al. (2015a,b); and Thomas et al. (2014). In these works, different stopping strategies

and stopping models are proposed. These are considered in depth later in Chapter 3.

Simulation provides a means for examining the aforementioned components from two dif-

ferent standpoints:

considering each of the individual components in isolation , as discussed above (e.g.

exclusively examining querying behaviours); or

considering the interactive search process as a whole , and aĴempting to capture and

model an entire search session, from querying to document examination.

The work in this thesis considers , meaning that potential influences of components over

others can be considered. This also justifies the need for a more advanced searcher model

that captures the interactions of the wider search process. A model is a key component of

a simulation or the representation of the real-world phenomenon being simulated (Tocher,

1963). With the TREC-style searcher model outlined, we now turn our aĴention to consid-

ering more advanced searcher models of the IIR process.

2.3.5 Searcher Models

Models of the search process aĴempt to capture the high level, cognitive processes that a

searcher undertakes during a search session – such as issuing a query, or examining a doc-

ument for relevance. As we have discussed previously, highly abstracted searcher models

have been present in system-sided IR research, as well as implicitly encoded within a variety

of different evaluation measures, as discussed in Section 2.4.

CartereĴe et al. (2011) argues that the measures widely used within IR research are them-

selves typically comprised of three distinct underlying models. These are listed below.
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■ Browsing Model Browsing models describe how a searcher interacts with a retrieval

system’s interface, including the SERPs that are presented to them.

■ Document Utility Model These models encode some form of document utility that

provides a description of how utility or gain can be derived from relevant documents

that are examined.

■ Utility Accumulation Model This final model describes how a searcher accumulates

the said utility over the course of an entire search session.

Of particular interest to the work in this thesis are the browsing models that aĴempt to

capture the broad array of interactions that take place between the searcher and the retrieval

system. The TREC searcher model is a highly abstracted example of such a model, yet

there is a disconnect between the assumptions made in this searcher model and reality.

As such, we now discuss a number of more advanced searcher models, providing beĴer

representations of the complex interactions that take place during IIR.

Seminal work undertaken by Baskaya et al. (2013) presented an explicit, revised searcher

model that improved upon the interactive capabilities that could be exploited. Improve-

ments over the TREC-style searcher model included the following:

■ the ability to separately judge result summaries presented on a SERP from the doc-

uments associated with each;

■ giving a searcher the ability to stop at a variable depth on the SERP , avoiding fixed

depth stopping behaviours as typically employed in searcher models; and

■ permiĴing a searcher to issue multiple queries during a search session, lifting one

of the major constraints of the TREC searcher model.

These improvements are demonstrated as a Markov model, illustrated in Figure 2.11. Com-

pared to the TREC-style searcher model illustrated in Figure 2.7 on page 44, the model can

be visually seen as more complex, consisting of six main actions.
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Figure 2.11 The searchermodel, as outlined by Baskaya et al. (2013). Represented as aMarkov

model, the model considers six steps in all. Encoded within two of the steps are decision points that

a user following this model must consider in order to continue. Figure adapted from Baskaya et al.

(2013), with acknowledgement from the authors.

■ Query Formulation considers where a searcher formulates the terms that they wish

to enter, as well as the issuance of the query to the underlying retrieval system.

■ Snippet Scanning concerns the action that considers the examination of individual

result summaries for aĴractiveness.

■ Link Clicking occurs when a result summary is considered to be aĴractive enough

to warrant further examination.

■ Document Examination considers the process of examining a document for rele-

vance to the underlying information need (considering some form of document utility

model (CartereĴe et al., 2011), or document triage (Marshall and Shipman, 1997)).

■ Relevance Judging determines whether the document is relevant to the searcher’s

information need.

■ Session Stopping concerns the action that curtails the search session.

These steps broadly match up the IIR process as outlined in Figure 2.8 on page 47, and de-

scribed in an abstract form in Section 2.3.2. Azzopardi (2011), Yilmaz et al. (2010), CartereĴe
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Figure 2.12 The searchermodel, as outlined by Baskaya et al. (2013). Adapted from the version

of themodel illustrated earlier in Figure 2.11, this flowchart illustrates themain processes, decisions

and interaction flow that an individual subscribing to this model will follow.

(2011), and more recently Zhang et al. (2017b) have all introduced and utilised searcher

models that are similar in terms of the broad set of actions as outlined by Baskaya et al.

(2013). Being a Markov model, this searcher model considers each of the different actions

as a state, with a series of transition probabilities linking each of the actions together (i.e. what

is the probability of a searcher moving from scanning a result summary to stopping the search ses-

sion?).18 Indeed, the typical browsing model components (e.g. inspecting a document for

relevance) as per CartereĴe et al. (2011) are also integrated with query generation and utility

accumulation, permiĴing a searcher to issue multiple queries and gain utility.

Judging result summaries separately from associated documents is to be regarded as a ma-

jor development in searcher models. The snippet text forming part of each result summary

can be generated in a variety of different ways, as discussed earlier. This generation is im-

portant – what may look like a result summary that is aĴractive enough to explore further

could potentially lead to a document that is in actuality not pertinent to the given informa-

tion need. This is a clear development from the TREC-style searcher model which doesn’t

consider the notion of a separate result summary at all.
18This searcher model can also be represented as a flowchart, as illustrated in Figure 2.12.
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Figure 2.13 A further model of the search process, considering the high-level processes un-

dertaken by a searcher, as outlined by Thomas et al. (2014). Figure adapted, with the support of

the authors. Note here the inclusion of the overarching Select System process, where a searcher

will consider what retrieval system to use before beginning the IIR process.

Effectivelymodelling stopping behaviour is also important to provide a more realisticmodel

of the search process. The addition of decision points allowing a searcher to judge the at-

tractiveness of a result summary, or the relevancy of a document, provides natural locations

for stopping decision points (refer to Section 3.1.1).

Given that this result summary looks unaĴractive and therefore not useful for satisfying

my information need, should I stop examining the results presented to me on this SERP?

As an example, a searcher may issue a query that returns very few relevant documents.

Once a few snippets and/or documents have been examined, he or she will then conclude

that the issued query was unsuccessful and that they would be wasting their time examining
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more content on the presented SERP. In this case, issuing a reformulated query would be a

beĴer course of action. This intuition has been confirmed by empirical analysis, where Az-

zopardi (2011) for example demonstrated that simulated searchers examined significantly

fewer documents when the underlying retrieval system failed to retrieve any relevant ma-

terial in the top ten results, in contrast to when they did. This shows that searchers are

inherently adaptive with their behaviours conditioned upon the quality of the ranked lists.

This justifies the inclusion of these additional stopping decision points.

A further explicitly defined searcher model was proposed by Thomas et al. (2014). Illus-

trated as a flowchart in Figure 2.13, this model encapsulates the same principles as the pre-

viously described searcher models: given an information need, a searcher will issue one

or more queries and examine a varying number of result summaries and documents for

aĴractiveness and relevance in turn. This searcher model also includes a form of utility

accumulation model that considers the utility obtained from a result summary si and the

relevance judgement of a document, ri. An addition to this searcher model is the inclusion

of an additional step at the beginning of the search session, where a searcher must decide

what retrieval system to use – or tool selection.

The searcher model proposed by Thomas et al. (2014) also considers the examination of

result summaries from an alternative perspective. Instead of assuming that a searcher (per-

haps naïvely) examines each individual result summary in detail before making a decision

about its aĴractiveness, searchers subscribing to this searcher model undertake an initial in-

spection of result summaries, where they can examine in either direction on the list of ranked

results (by increasing or decreasing some positional counter, i). Essentially, this can be re-

garded as a searcher skimming result summaries, determining if they are worthy of further

examination, and adds an additional layer of complexity to the model.

Despite the slight variations in how different researchers interpret the IIR process, what

can be clearly seen from an examination of these searchers models is the similar workflow

between each of them. From query issuance to document examination and judgement,
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this has emerged as the generally accepted process of IIR. While studies examining explicit

searcher models are not common, searcher models have been encoded within many of the

different evaluation measures used within IR and IIR. Moving onto the final section of this

background chapter, this is now the topic of our aĴention.

2.4 Evaluation Measures

We now turn our aĴention towards the evaluation of both retrieval systems and the searchers

that use them. Careful and thorough evaluation of retrieval systems is required to demon-

strate the superior performance of new retrieval models or a new way of presenting of re-

sults, for example (Manning et al., 2008). Recalling that the modus operandi of a retrieval

system is to satisfy the information needs of the searchers who utilise it, Lancaster (1968)

provided three criteria by which an IR system can be evaluated:

■ the suitability of a retrieval system in terms of the searcher’s specific tasks;

■ the retrieval system’s task performance efficiency ; and

■ the extent to which the retrieval system satisfies information needs.

These three criteria themselves may be split into two separate categories, considering:

■ how well the system performs, utilising the first two criterion above; and

■ how the system performs in the eyes of the searcher who is using the retrieval system

at the time (Voorhees and Harman, 2005).

Measures for both system and user-focused evaluation are considered in this section, in

Subsections 2.4.1 and 2.4.2 respectively.
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Other Evaluation Measures The measures discussed in this section are only a subset of

the range that have been developed and trialled. This section focuses on measures used

throughout this thesis. For a more comprehensive summary, refer to Sanderson (2010).

2.4.1 System-Based Evaluation

Considering system-orientated measures of evaluation, one can consider a system’s effi-

ciency or effectiveness. Efficiency concerns some form of operational metrics, such as the

speed of the retrieval system. This example is important (especially in commercial retrieval

systems), as even a fractional increase of the time taken to return results to a searcher can

reduce the number of returning searchers – thus impacting upon the amount of revenue

generated through advertising (Brutlag, 2009).

However, when one thinks of the evaluation of a retrieval system, its effectiveness is typi-

cally considered. Of course, the definition of what defines a retrieval system to be effective

depends upon the type of search task being undertaken. A patent searcher would, for exam-

ple, expect a retrieval system to return all relevant patents to avoid missing a related patent

(and thus incurring penalties). However, a casual web searcher curious about a topic they

know liĴle about (i.e. searching in an ad-hoc fashion) may be satisfied with either a singular

or a small number of results.

This section provides a brief overview of basic effectiveness measures widely used within IR

today from the perspective of system-sided evaluation – or the retrieval system’s output –

the generated ranked list of results.

2.4.1.1 Precision

The precision (P) of a ranked list of results is the fraction of documents that have been re-

trieved that are considered to be relevant or useful for the searcher’s information need. A
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retrieval system that yields high precision for individual queries is regarded as one that

performs well and satisfies searchers.

Figure 2.14 provides a visual illustration of what precision entails (as well as its counterpart,

recall, which is discussed below). Given the set of all documents within an index, a retrieval

system will retrieve a number of these documents that satisfy the criteria set out in the

employed retrieval model. Of the documents retrieved, some will be considered relevant

to the searcher’s information need; others will be considered non-relevant. As such, prior

knowledge as to what documents are relevant to a given topic are therefore required to

successfully compute the precision of a ranked list – TREC QRELs are an example of prior

knowledge, as we discussed earlier in Section 2.3.1.1.

Precision is defined as:

P =
| relevant documents ∩ retrieved documents |

| retrieved documents | . Equation 2.3

IR research reports precision up to a particular rank, i.e. P@k. For example, P@10 will

provide a fractional value for the number of relevant documents that appeared within the

top 10 results for a given query. Herein lies one of the most elementary and basic stopping

models that we find implicitly encoded within various IR measures. Stopping at a depth of

10, or k (refer to19) denotes that documents past this rank are not examined.

2.4.1.2 Recall

While precision considers the fraction of documents retrieved that are relevant, recall (R)

considers the fraction of documents that were retrieved and relevant to a query against all

19The value of k = 10 is often chosen in IR research as it has been shown that this is typically the depth to
which searchers would look through web search results, perhaps due to the effects of pagination (Jansen and
Spink, 2006).
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precision = recall = 

How many of the retrieved
documents are relevant/useful?

How many relevant/useful items in
the index have been retrieved?

Figure 2.14 An illustration of precision and recall. On the left is an illustrated example of an

index, containing many documents. The large circle represents the set of documents retrieved

for a query. Documents that are relevant to the query are represented as , with non-relevant

documents represented as . Note that not all relevant documents are retrieved; doing so would

mean that the retrieval engine used would have produced perfect results. On the right of this

illustration, definitions of precision and recall are also provided.

known relevant documents for a query. Recall can formally be defined as:

R =
| relevant documents retrieved |
| relevant documents | . Equation 2.4

Considering the patent searching example defined above, a high recall would be more de-

sirable in a patent searching task. This means that more patents matching the searcher’s

query will be returned, thus reducing the possibility of missing important prior, relevant

patent filings (and reducing the risk of any penalties).

Given more modern retrieval models, the notion of ranking would lead a searcher to assume

(as per the PRP (Robertson, 1977)) that relevant documents pertaining to their query will

be the first results presented. Non-relevant documents will also of course appear, typically

leading to some form of a tradeoff between precision and recall, as discussed below. The

tradeoff considers the notion that as you increase recall, the number of non-relevant items

will undoubtedly also increase, thus reducing the overall precision of the retrieval system.
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2.4.1.3 Expected Search Length

The Expected Search Length (ESL) (Cooper, 1968) of a searcher considers the number of non-

relevant documents that a searcher will have to search through to obtain the desired number

of relevant documents. Therefore, systems demonstrating a shorter ESL are considered to

be more effective than systems with a comparatively longer ESL. In other words, the ESL

indicates how much wasted search effort one would expect using a given retrieval system,

as opposed to randomly searching until the needed relevant documents are found.

While we do not explicitly use this measure in the contributory work of this thesis, the ESL

does nevertheless provide motivation for a number of different stopping heuristics outlined

in Section 3.2.

2.4.1.4 Cumulative Gain Measures

An important suite of measures that address the gain (or utility) that is presented in a ranked

list can be derived from Cumulative Gain (CG). Outlined by Järvelin and Kekäläinen (2000,

2002), CG is measured as the cumulation of gain of all relevant documents up to some rank

k (or CG@k). CG can be measured on a system-sided basis, purely considering the ranking

provided. Alternatively, it can also be measured from a user-sided stance, considering only

the documents that a searcher has identified (or saved) as relevant to their information need.

Determining a value for the level of gain that can be acquired from a document is not triv-

ial; experimentation in IIR (such as the simulation of interaction study by Pääkkönen et al.

(2015)) typically uses the TREC relevance judgement score for a given topic and document

combination as the level of gain that is accrued from a document.

This is demonstrated by the illustration below, highlighting the concept of graded relevance

judgements. When not related to the information need, a score of 0 is assigned, with a rel-

evant document assigned a judgement of 2. Documents partially fulfilling the relevance
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requirements are assigned an intermediary score of 1. These values are then accumulated

over the rankings to yield the CG measure for a searcher’s interactions.
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Figure 2.15 An illustration of the Cumu-

lative Gain (CG) as outlined by Järvelin and

Kekäläinen (2000, 2002). In the exam-

ple, the first five documents from a list are

shown — 1, 3 and 4 contain information,

from which the user gains.

Relevance judgements can also be indicative of a

searcher’s stopping behaviour. Assuming a per-

fect ranking, a searcher would be wise to stop his

or her interactions with a ranked list once docu-

ments that yield no gain begin to appear as they

traverse the ranked list. Continuing examina-

tion of the ranked list from that point on would

be a waste of their time. Given the illustration in

Figure 2.15 however, it is unlikely a perfect rank-

ing will occur in reality, and thus searchers need

to determine whether they should continue ex-

amining a ranked list after encountering several

documents yielding no gain in a row.

Given the definition above, CG can be computed as:

CGk =
k∑

i=1

reli, Equation 2.5

where k denotes the ranking at which CG should be calculated, and reli denotes the rel-

evance assessment score for a document at rank i. Given this definition, a computed CG

value will be unaffected by changes in rankings. Two lists of rankings with one highly rel-
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evant document in rank 1 in one list, and rank 5 in the other, will yield identical CG values.

A further development of CG is Discounted Cumulative Gain (DCG), which, as the name

may imply, discounts the level of gain accrued by searchers the further down the ranked

list of results that they go, thus addressing the problem of CG by increasing the accuracy

of the reported values. Specifically, the gain obtained by a new document is discounted

according to the rank of that document (i.e. weighted precision). A new relevance score is

therefore computed for each document by dividing the relevance assessment score by the

log of its rank. Further developments have included measures such asNormalisedDiscounted

Cumulative Gain (nDCG), which addresses the issue of different result lists having different

lengths. To address this, nDCG considers the ideal DCG (iDCG) of all relevant documents in

a corpus for a given query, where the relevance judgements of these documents are ordered

by decreasing relevance (i.e. 2, 2, 2, 1, 0). Dividing the DCG score for a ranked list up to rank

k by the iDCG score up to rank k thus normalises the reported value across queries.

2.4.1.5 Rank-Biased Precision

Rank Biased Precision (RBP) (Moffat and Zobel, 2008) is a more contemporary IIR measure

that is derived from a simple searcher model. It considers the notion that searchers are not

willing to examine every result presented to them in a ranked list. The encoded searcher

model, illustrated in Figure 2.16, assumes that a searcher will always examine the first result

presented to him or her. The process can be likened to the previously discussed idea of using

a Markov model to represent the search process (Tran et al., 2017), modelling the likelihood

of a searcher reaching a given depth. Subsequent documents further down the ranking will

then be examined with a decreasing likelihood. Given a ranked list of documents, d, RBP is

defined as:

RBP = (1− p) ·
d∑

k=0

relk · pk−1, Equation 2.6
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Figure 2.16 An illustration of the simple searcher model encoded within Rank Biased Precision

(RBP). A user following this model will always examine the first result presented, and will exam-

ine subsequent results with decreasing probability (from p, the patience parameter). Stopping is

determined with probability 1-p. Figure used with support from Moffat and Zobel (2008).

with relk once again denoting an assessor’s relevance judgement for the document at rank

k, and p denoting the patience parameter. It is this parameter that provides a decaying prob-

ability that a searcher will continue to examine a ranked list of results the further down the

rankings they go. A searcher subscribing to the RBP searcher model will stop examining

results with probability 1 − p. The patience parameter allows for a very flexible measure;

one can model both very persistent searchers (when p tends towards 1.0) and impatient

searchers (where p ≈ 0.5) (Moffat and Zobel, 2008). When p = 0.0, a searcher will examine

only the first presented result for relevance, and then stop.

RBP has been shown to fit wellwith actual searcher data extracted from click logs, as demon-

strated by Chapelle et al. (2009) and Zhang et al. (2010). RBP is used within this thesis as

a means for aĴempting to decide when a simulated searcher should stop examining a list

of ranked results. By incorporating an additional probability in conjunction with the calcu-

lated RBP score at some rank k, we can determine whether the searcher should stop.

2.4.2 User-Based Evaluation

With basic evaluation measures above considering the system-sided aspects (i.e. the quality

of the retrieved ranked list), this section considers a number of IIR evaluation measures re-

lated to the searcher and their interactions. It may be interesting to note that a large number
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of measures for IIR have been proposed over the years (and indeed, over the experimental

spectrum as shown in Figure 2.10); however, only a small number of measures have been

regularly used in the literature. A more in-depth summary of IIR measures can be found in

works by Su (1992) and Kelly (2009).

Indeed, Kelly (2009) provides a taxonomy of the different types of measures used within IIR

experimentation. The taxonomy consists of four main categories.

■ Contextual Factors Thesemeasures are related to the subject (or participant), of an IIR

experiment. Factors include those commonly gathered from forms of demographics

surveys, such as the subject’s age, sex, and prior search experience. In an information

seeking context, one will also be able to gather information about the prior knowledge

of the searcher and their knowledge. For example, questions can be asked about their

knowledge of the topic they are to find information about.

■ Interactions These measures characterise the interactions that take place between

the system and the searcher – including their behavioural characteristics. Examples of

such interactions include: the number of queries that the searcher issues; the number

of documents that they examine; the depth to which they examine results (stopping

depth); and the mean length (in terms) of the queries that they issue. Time-based

measures are also included in this category – both at a gross level (i.e. the total session

time), and at a more specific level (i.e. the mean time spent entering queries). These

measures can be usually computed by extracting and parsing interaction log data.20

■ Performance Factors As the name suggests, these measures are related to the out-

come of the interactions that take place between the searcher and the retrieval system.

These measures can be considered analogous to the system-sided measures that we

examined previously in Section 2.4.1, but with an emphasis on a searcher’s interac-

20By log data, we refer to the file that is created by an experimental retrieval system as a subject conducts
a search task. Typically, a series of different actions (i.e. issuing a query, or clicking a document link) are
logged, and post-hoc log analysis can interpret the logged events, computing the requested measure.
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tions (i.e. considering only documents explicitly identified by the searcher). As such,

these measures can again be extracted from interaction log data.

■ Usability Measures These measures are typically a series of qualitative and quan-

titative approaches for capturing a subject’s feelings and aĴitudes towards a search

system that they have used. Common measures in this category include the subject’s

view of the system’s effectiveness and their overall satisfaction with how they per-

formed when undertaking the search task in question (Hornbæk, 2006).

In this thesis, we employ measures from all four of the above – including the extraction of

interaction data from user studies, which is subsequently employed to ground simulations of

interaction. For example, measures include a variant of CG that considers the documents

a searcher identifies as relevant during a search session. These are used to compute the

level of gain that he or she experienced, rather than the actual CG of the ranked list.21 This

section also discusses an additional measure, considering again the interactions that take

place between the searcher and retrieval system.

2.4.2.1 Interactive Precision and Recall

During the IIR process, searchers examine a number of different result summaries (and

their associated documents), making individual judgements as to the relevance of each.

Some may not be relevant and are disregarded by the searcher. This differs from the ab-

stracted TREC-style searcher model that assumes that all documents returned are assessed

in their entirety by the searcher.

Subjects of IIR studies are typically instructed to save documents that they consider relevant

to a provided information need. As such, the judgements created by subjects of IIR studies

may not match with those made by the assessors of relevance judgements provided as part

21Of course, the CG of a ranked list will equal a searcher’s computed CG if he or she identifies all relevant
documents correctly.
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Partick - Wikipedia
https://en.wikipedia.org/wiki/Partick
Partick is an area of Glasgow on the north bank of the River Clyde, just across 
from Govan. To the west lies Whiteinch and to the east, Finneston, and to the...

Partick Thistle FC
https://ptfc.co.uk/
Formed in 1876 and known to their supporters as The Jags, Partick Thistle 
Football Club is The Great Glasgow Alternative to the might of the Old Firm...

What's it like to live in Partick - A guide to one of Glasgow's...
www.glasgowlive.co.uk/news/glasgow-news/whats-it-like-to-live-11115003
Partick is about two miles out of the city centre, on the edge of the west end, 
and runs down to the north bank of the river Clyde.

Partick named as one of the UK's 'hippest neighbourhoods'
www.scotsman.com/.../partick-named-as-one-of-the-uk-s-hippest-neighbourho...
Now Partick, a former burgh in Glasgow's west end, has been named as of the 
coolest neighbourhoods in the UK thanks to its street art and...

partick

Demonstration of Precision and Interactive Precision

Assessors Searcher Correct?

Web  News  Image  Settings

Y

Y

Precision Interactive Precision

3/4 2/4
Retrieval system returns three relevant documents in the top four results. 
The searcher’s judgements show that he or she identified two of the three 

relevant items, hence a score of 2/4 for interactive precision@4.

Figure 2.17 A graphical example of interactive precision alongside traditional, system-sided

precision. In the example ranking, the retrieval system returned three relevant documents, yet

the searcher only 'correctly' identified two of them, hence an interactive precision (iP) score of

2/4=0.5. This is in contrast to the system's precision score of 3/4=0.75.

of a test collection. Indeed, some TREC topics that are widely used contain hundreds of

documents marked as relevant by assessors. It is unlikely that a subject would be able to

find all of these documents or agree with an assessor’s judgement.

Interactive Precision (iP) and interactive recall were defined by Veerasamy and Belkin (1996)

and Veerasamy and Heikes (1997). Instead of purely considering precision and recall as

measures exclusively utilising the relevance judgements provided as part of a test collection,

one would also consider the number of documents considered relevant by a subject of an IIR

study that were also TREC relevant . This means that a document judged relevant by an

assessor may not be retrieved, viewed and subsequently judged by the subject of an IIR

study. We demonstrate this with a visual example in Figure 2.17. The Assessors column

denotes the judgement from the relevance assessors, while the Searcher column denotes
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the judgement of the searcher. In the example illustration, the retrieval system’s P@4 score

is 3/4 = 0.75, while the searcher’s iP@4 = 2/4 = 0.5. Despite the searcher saving three

documents as relevant, the document at rank two was not assessed as such, resulting in the

iP score being 0.5. Therefore, only two of the three saved documents contribute.

2.4.3 Evaluation Measures and Stopping

Throughout this section, we have outlined a number of different evaluation measures com-

monly employed in both IR and IIR studies. Common with these measures are implicit

models encoded within them that in turn provide a stopping point in the ranked list.

These models vary from the simplistic to more complex, with the more complex approaches

providing a more realistic rationale of the stopping behaviour of real-world searchers. Re-

garding stopping behaviours, the most simplistic approach discussed in this chapter is P@k

– or stop at rank k. This is agnostic of the relevance of the results presented, and is often de-

scribed as a fixed-depth assumption, something that we discuss later in Section 5.1. Other

measures such as RBP (Moffat and Zobel, 2008) and nDCG (Järvelin and Kekäläinen, 2002)

offer of a more complex stopping model. These measures consider a decreasing likelihood

of continuation the deeper a list of results is traversed.

Evaluation measures are however only a small part of the work undertaken in order to

understand the different stopping behaviours exhibited by searchers during the IIR process.

Chapter 3 provides an in-depth overview of prior work examining this area.

2.5 Chapter Summary

In this chapter, we have introduced some of the key constructs and components of an IR sys-

tem – from the document indexing process, to the retrieval models that are used to return a

(typically) ranked list of results to the searcher. We also briefly touched on the history of the
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field, discussing some of the key manual and mechanised systems that were commonplace

before the advent of computers and the WWW, giving rise to contemporary IR systems.

The focus of this chapter has however mainly been on the disconnect between traditional IR

research, and the reality of what searchers actually do during the IIR process. In particular,

we identified a number of limitations within the TREC-style searcher model that is com-

monly employed, and discussed a number of more advanced searcher models that reduce

the assumptions (and therefore limitations) that the models provide, particularly in terms

of a searcher’s interactions. This led to a discussion of how IR systems and the searchers that

use them can be evaluated, along with a discussion of the different categories of study in IR

and IIR – from system-focused to user-focused.

The next chapter continues the focus towards the searcher, considering previous work that

has been undertaken to examine stopping in IIR.
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Chapter 3

Stopping in Interactive
Information Retrieval

Towards the end of Chapter 2, we examined a number of different evaluation measures typ-

ically employed in IR and IIR studies. In particular, we emphasised the notion of different

stopping models that are implicitly encoded within these measures, ranging from the naïve

to more representative approaches of a real-world searcher’s stopping behaviours.

STOP Actually, please continue reading...

In this chapter, we provide an overview of work undertaken in the field of IIR that explicitly

examine the stopping behaviours of searchers. We enumerate on a number of different

stopping heuristics that aĴempt to quantify when searchers should stop examining results,

before examining theoretical frameworks that provide insight and explanation into why and

when searchers stop. We then examine a number of different user studies that have examined

stopping behaviours. Before examining these prior works, we first consider why examining

the stopping behaviour of searchers is important to the field, and to the future development

of the retrieval systems and their interfaces that we use extensively today.
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3.1 Why Stopping?

Knowing when to stop is a fundamental aspect of human thinking and behaviour. Humans

and other animals, when interacting with the world, will employ some form of stopping

criterion (or criteria) to decide when they should stop (Nickles, 1995). As an example, a

shopper who is looking to purchase a new smartphone will stop shopping around once

he or she has obtained sufficient information on which new smartphone to purchase. Once

their case notes for a patient have been compiled, a medical doctor will then be in a position

to diagnose the patient’s ailment. In the context of search, numerous reasons exist why

searchers stop. Perhaps searchers stop because they have satisfied their information need,

have become frustrated with the lack of potentially relevant information – or because of

some external factor, such as a time constraint that has been imposed upon them.

The decision of when to stop is not exclusively due to such external factors to the decision

maker, but rather from a series of internal, cognitive factors of their thinking process (Nickles,

1995). For example, an individual who is hungry will stop eating once he or she feels full,

rather than stopping when all of the food presented to them has been consumed. Empirical

research has over the years demonstrated that individuals, regardless of the task presented

to them, will frequently stop prematurely. Indeed, this naïve behaviour demonstrates that

individuals may be willing to go with what “sounds right” to them – often minimising the

cognitive effort that is required at the expense of greater accuracy (Perkins et al., 1983).

However, when searching, this lower level of potential accuracy does lead to individuals

making a greater number of errors in their decision making (Baron et al., 1988). Searchers

overlook important elements, and potentially miss out useful information (Fischhoff, 1977;

Fischhoff et al., 1978; Shafir and Tversky, 1992), with the individual then failing to consider

alternatives (Farquhar and Pratkanis, 1993).

Based upon prior research into stopping behaviours, it is clear that such a decision is driven

primarily from internal factors. As such, we then consider: what aspects of the decision maker’s
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Examine Snippet

Yes

Continue
on SERP?

Stop
Session?

Attractive?

Yes Yes

No No No
1 2

Figure 3.1 Excerpts from various searcher models, highlighting two established stopping deci-

sion points. These are modelled as points at which searchers can stop performing a given action.

These are illustrated as blue diamonds. The two points consider 1 result summary level stopping

(often called snippet level or query level stopping), and 2 session level stopping.

thinking processes prompt him or her to stop assessing the information provided? Knowing when

to stop requires that the individual in question makes a judgement regarding the sufficiency

of the information obtained, and whether or not additional information is required (Browne

and PiĴs, 2004). This judgement is normally characterised by both the completeness and

correctness of the information obtained thus far (Smith et al., 1991). These claims can be

mirrored by qualitative studies on examining stopping behaviour. Here, researchers have

found that searchers stop examining search results simply because what they have found

previously is “good enough” (Zach, 2005) to satisfy their underlying information need. This

finding echoes the reasoning that individuals would be happy to stop when what they have

found “sounds right” (Perkins et al., 1983).

3.1.1 Stopping Decision Points

In Section 2.3.5, we discussed a number of searcher models that are considered to be an

improvement over the traditional TREC-style searcher model, a model that is agnostic of a

searcher’s interactions. The more advanced models considered two distinct stopping deci-

sion points that capture specific points during the interaction process where a searcher can

stop their current activity, and move onto the next step in the process. These stopping de-

cision points are illustrated in an excerpt of a typical searcher model flowchart, as shown

in Figure 3.1. Both established stopping decision points are discussed below.
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1 Result Summary Level Stopping Traditionally called snippet level stopping or query

level stopping in the literature1, this stopping decision point considers the depth at

which a searcher will stop examining a list of ranked results. After stopping at this

point, the searcher can continue the search session by issuing a further query.

2 Session Level Stopping This second stopping decision point considers the point at

which a searcher will stop their search session in its entirety. As such, this stopping

decision point is regarded as terminal to the search session.

In particular, session level stopping is considered when a searcher must decide, for example,

if they have met their overall search goal, have run out of time or queries, or simply have

become so frustrated with a lack of relevant content that they would rather abandon their

search. These stopping decision points can be operationalised in a variety of different ways,

as we explore in the remainder of this chapter. Chapter 4 also proposes an additional, third

stopping decision point that we will consider in a later contributory chapter of this thesis.

3.2 Stopping Heuristics

Considering the above, researchers have over several decades devised a number of differ-

ent high level stopping rules – hereafter referred to as stopping heuristics – as a means of

encoding a searcher’s aforementioned sense of what is “good enough” (Zach, 2005) – or even

what can be considered as not good enough.

Stopping heuristics have been investigated in decision-making research. A number of norma-

tive stopping heuristics have been identified. As examples, Busemeyer and Rapoport (1988)

considered the expected loss from terminating information acquisition. Kogut (1990) exam-

ined the expected value of additional information. Other examples of normative stopping

heuristics are demonstrated by Piĵ et al. (1969) and Busemeyer and Rapoport (1988).
1The phrase result summary level stopping is used in this thesis to avoid confusion with a new SERP level

stopping decision point, discussed in depth in Section 4.3.1 on page 113.
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However, as outlined by Browne and PiĴs (2004), these heuristics usually fail to describe the

actual cognitive behaviours of the decision makers. Such heuristics often assume that the

decision maker must think ahead to the final decision of when to stop, enabling them to assess

the value of additional information (Busemeyer and Rapoport, 1988). This is an inherently

difficult task for decision makers to undertake, due to the limited working memory capacity

of a human. We are simply unable to cognitively process all of the information aĴained to

make a decision considering all possible outcomes (Browne and PiĴs, 2004). Nickles (1995)

agreed, stating that normative stopping heuristics made implicit assumptions about the

mental activities of the decision maker, especially in terms of mental scaling and weighting.

No clear cognitive perspective has yet been provided to address the cognitive mechanisms

and/or assumptions of the decision maker’s thinking.

Nickles (1995) identified two distinct approaches to considering the cognitive processes in-

volved in decision making: judgement , where an individual assesses a context to choose

a course of action; and reasoning , where an individual convinces himself or herself that a

particular understanding of the scenario is correct. Research in this area of decision making

typically assumed that when assessing a particular scenario (or presented information), a

decision maker would draw upon the available evidence and use their judgement to make a

decision as to how to proceed (Reisberg, 1997). This assumption was implicitly used in the

normative stopping heuristics outlined above. An alternative way to consider what a deci-

sion maker undertakes revolves around the notion that taking a decision is dominated by

his or her ability to reason. Drawing on the available evidence, arguments can be constructed

to reach an overall conclusion. This is known as belief assessment (Benson et al., 1995), where

the individual determines their degree of belief in the conclusion that has been reached.

With the inherent limitations of the normative stopping rules in mind – and the two cate-

gorisations defined above, we now enumerate a number of different stopping heuristics that

are beĴer able to represent a searcher’s cognitive processes, considered as either judgement-

based or reasoning-based. We enumerate these heuristics below in their two classifications.
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■ Judgement-based Heuristics These heuristics are defined as when a decision maker

maintains some mental threshold along a key dimension and a running total of the

number of occurrences of this measure. More details are provided in Section 3.2.1.

– Satisfaction and Frustration These heuristics consider a decision maker’s satis-

faction with what they have found during the course of their search (satisfaction

or satiation), or their tolerance to non-relevance (frustration or disgust).

– Difference Criterion This heuristic concerns the notion of whether a decision

maker is learning anything new by examining more documents.

– Magnitude Threshold This heuristic concerns a decision maker’s belief that the

information that they have found provides sufficient evidence to prompt him or

her to stop searching for further information.

– Single Criterion A single criterion to the decision maker’s information need is

considered in this stopping heuristic.

■ Reasoning-based Heuristics This classification concerns the mental representation of

the given topic for which a searcher is seeking information. In other words, the men-

tal representation is formed from a series of (perhaps contrasting) points. When com-

bined together, a decision can be made as to the suitability of the information found.

– Representational Stability This stopping heuristic concerns the notion of the

decision maker’s mental model of the topic and the stabilisation point.

– Propositional Stability Here, a series of potential conclusions regarding the un-

derlying information need are formed, with these arguments needing to be sat-

isfied to feel sufficiently satisfied to stop.

– The Mental List A mental list of aspects is constructed, with each item on the

list needing to be addressed by the decision maker before stopping occurs.

These were devised largely as ways of modelling the Expected Search Length (ESL) (Cooper,

1968), as briefly discussed in Section 2.4.1.3. Nickles (1995) also proposed a number of stop-
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ping heuristics that are discussed in subsequent sections, with discussion expanded to in-

clude additional heuristics defined by other researchers. We now address each of the two

classifications, explaining each of the different heuristics enumerated above in detail.

3.2.1 Judgement-Based Heuristics

As discussed previously, a judgement-based stopping heuristic is defined as when a deci-

sion maker is assumed to set and consistently maintain a mental threshold along some form

of key dimension (e.g. determining the seemingly relevant from non-relevant), and to keep

a running total of the measure relative to the dimension in question (GeĴys and Fisher, 1979;

Nickles, 1995). When the measure meets or exceeds this set threshold, the searcher will then

stop searching for information. Each of the judgement-based heuristics we consider in this

thesis are discussed in turn below.

3.2.1.1 Satisfaction and Frustration

Two of the earliest stopping heuristics defined in the literature are by Cooper (1973b), who

consider a searcher’s tolerance encountering non-relevant material, and how satisfied they

become when encountering relevant material. The heuristics were originally defined as

a means for estimating the utility a searcher can aĴain when interacting with a retrieval

system. While the means of which Cooper (1973b) estimated the utility of search are not

of key relevance to this thesis, the work on stopping heuristics is. The satisfaction point and

frustration point stopping heuristics are considered to be judgement-based heuristics, as they

rely solely on the searcher’s notion of what constitutes a relevant document. Both consider

counts of the number of (non-)relevant documents observed.

Satisfaction Point The satisfaction point heuristic considers the point at which a searcher

has found enough material to consider his or her search a success. This is achieved by con-

sidering the amount of material found that has been judged to be relevant. It can easily be
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imagined that such a heuristic would apply directly to both result summary level stopping

(i.e. find x relevant documents on this SERP) and session level stopping (i.e. find x relevant

documents). This heuristic is also called the satiation heuristic (Simon, 1955) (see below). This

heuristic can be considered as a decision making process...

“[...]through which an individual decides when an alternative approach or solution is

sufficient to meet the individuals’ desired goals rather than a perfect approach.”

Simon (1971)

This suggests that searchers employing the satisfaction heuristic would stop searching as

soon as certain conditions arise, instead of after they have exhaustively considered all avail-

able information (March, 1994). Conditions could include acceptance of the results; discom-

fort; boredom; time limits; and the snowballing of information (Mansourian and Ford, 2007),

where the repetition or saturation of information occurs.

Frustration Point In a converse fashion to the satisfaction point heuristic, the frustration

point heuristic considers a searcher’s overall tolerance to non-relevance by stopping after being

sufficiently frustrated by the results presented to the searcher. This heuristic is also called

the disgust heuristic in the literature (see below).

The two relatively straightforward heuristics defined above makes a searcher’s interactions

with a ranked list of results inherently adaptive. In other words, given a set of results, his or

her behaviour will change with respect to the perceived quality of the ranked list. As a re-

minder, this would not necessarily mean considering the system’s effectiveness measures,

but rather user-focused measures such as interactive precision and recall, as discussed pre-

viously in Section 2.4.2.1.

Combining Satisfaction and Frustration Perhaps due to the relative simplicity of the two

aforementioned heuristics, identical approaches have been defined elsewhere in the liter-

ature. Kraft and Lee (1979) later defined three further stopping heuristics, two of which
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are the satiation (as per Simon (1955)) and disgust heuristics. In essence, the rules defined

by Kraft and Lee (1979) are the same satisfaction and frustration heuristics as previously

defined by Cooper (1973b). Within the satiation rule, a searcher will stop after becoming

satiated by finding a number of documents considered to be relevant, while the disgust rule

considers a searcher’s disgust at finding a number of non-relevant documents.

Kraft and Lee (1979) also proposed a third heuristic that combines both satisfaction/sati-

ation and frustration/disgust together into a single heuristic. Here, a searcher following

such an approach would be inclined to stop examining content if they were either satisfied

with what had been found, or frustrated by having to trawl through material judged to be

non-relevant (thus considering multiple criteria). The stopping point would be whatever

of the two conditions are met first. Indeed, Kraft and Lee (1979) demonstrated that the ESL

of a searcher could be approximated using each of the two stopping heuristics by consid-

ering the size of the retrieval set, the number of relevant documents a searcher wished to

obtain, and the number of non-relevant documents a searcher would be willing to tolerate.

The number of documents required to consider a search as successful is dependent upon

whether the search task is high precision (where one would stop comparatively early), or

high recall (where one would stop comparatively later), as hypothesised by Bates (1984).

3.2.1.2 Difference Threshold

The difference threshold heuristic (Nickles, 1995) concerns whether a new document is pro-

viding a searcher with additional, useful content about their information need. Here, the

searcher is assumed to keep an internal record of the information that has been consumed

along some key dimension. The searcher is also assumed to use this internal record of what

has been assessed to compare a new document with previously examined content. When

the difference between the new and existing information falls below some internal differ-

ence threshold, the searcher stops as nothing new is being learnt.
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Doc 1 Doc 2 Doc 3 Doc 4 Doc 5

Previously examined documents Next Document

...
Have I seen two

documents describing 
the same species?

STOP
New New Seen New Seen

Yes

Figure 3.2 A simplified example of the difference threshold heuristic. Given the information

need of finding different species of animal, a searcher issues a query, and examines a number of

documents. The third document offers information on dogs, which has been already observed in

Doc 1. Using the stopping criterion that once the same species has been observed twice, Doc 5

satisfies it. This then means that the threshold has been met, and the searcher then stops.

As a simplistic example of this heuristic, a searcher is provided with an information need

to find as many different species of animal as possible. Once a query has been issued, the

searcher begins to examine documents on the SERP. This is illustrated in Figure 3.2, where

the first document considers dogs. A simple criterion is employed whereby the searcher

stops after encountering the same animal twice, illustrating that nothing new is being learnt

from the list of results presented. Once this is met, the searcher abandons the SERP, and

can then perform a query reformulation to discover different species of animal.

3.2.1.3 Magnitude Threshold

The magnitude threshold heuristic (Nickles, 1995) considers an individual’s belief that the

information accrued during the search process provides sufficient evidence to prompt him or

her to stop searching for further information. The point at which the searcher would decide

to stop (stopping criterion) is determined by some predetermined, internal threshold that

must be reached (Wald, 1948; Nickles, 1995). GeĴys and Fisher (1979) hypothesised that

the searcher “mentally tabulates” the cumulative impact of the evidence that he or she has

uncovered. When the tabulation crosses the predetermined threshold, he or she stops.
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Figure 3.3 The magnitude threshold

heuristic. Once a searcher accrues a prede-

termined level of impact, he or she stops.

Adapted from Browne and Pitts (2004).

Determining what exactly this threshold should

be before commencing a task has aĴracted re-

search from several perspectives. This decision

can be left open to interpretation by the individ-

uals who choose to operationalise such a heuris-

tic. However, research has shown that under

different tasks, varying the criteria by which an

individual bases their initial threshold value dif-

fers. For example, Busemeyer (1982) demon-

strated this for decision making under uncer-

tainty. Saad and Russo (1996) demonstrated the

usefulness of this heuristic under common choice tasks. Considering prior knowledge of

a topic may also impact upon the threshold chosen – a topic where a searcher has limited

knowledge may mean a lower stopping threshold, for example.

An abstract representation of the stopping heuristic is provided in Figure 3.3. From the

figure, we can see that a searcher accrues information through each document that is ex-

amined. This is combined together to form a cumulative impact of the information. For each

document examined, the current cumulative impact value is compared against a predeter-

mined threshold value. If the cumulative impact is above this threshold, the searcher then

assumes that enough supporting evidence has been collected, and stops.

3.2.1.4 Single Criterion

The single criterion heuristicwas later defined by Browne et al. (2005). As the name suggests,

this heuristic considers a searcher examining information for a single criterion related to their

information need, typically assumed to be the most important one. The searcher then stops

examining content once he or she has deduced that enough information about said criterion

has been accumulated for them to be satisfied. The concept of a stopping threshold can be
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borrowed from the magnitude threshold heuristic, discussed in Section 3.2.1.3. This con-

siders that a searcher will stop once they have accumulated enough impactful information

to satisfy their information need.

Browne et al. (2005) go on to outline an example search task where the single criterion

threshold would be directly applicable. Their example considers purchasing a mortgage

for a new house. Here, a searcher will explore the websites of various mortgage lenders

in order to find the best deal for them. Given a mortgage deal, the most obvious criterion

that an individual would look for would be interest rates. More aĴractive deals would be

associated with lower interest rates. Of course, other factors may influence the decision,

but this example ultimately demonstrates how the heuristic works in simplistic terms.

3.2.2 Reasoning-Based Heuristics

The second category of stopping heuristics as defined by Nickles (1995) are reasoning based.

While searching and accruing information about a particular topic, a searcher is essentially

developing a mental representation of the topic (Yates, 1990). As highlighted by Nickles

(1995), these elements can include arguments constructed during informal reasoning, pre-

viously constructed arguments, or information evoked from the searcher’s long-term mem-

ory. As such, Nickles (1995) devised a category of stopping heuristics that are dominated

by the searcher’s reasoning processes.

3.2.2.1 Representational Stability

The representational stability heuristic (Nickles, 1995) (with the phenomenon initially dis-

cussed by Yates and Carlson (1982)) concerns the notion that as a searcher acquires new

information, his or her mental model of the underlying information need shifts and devel-

ops – but only up to a certain point. From this point, their mental model stabilises, and the

searcher is said to have accrued enough information to satisfy or understand the (sub)topic.
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t-1 t

Information Acquisition

Figure 3.4 Example illustration of the

representational stability stopping heuristic.

The searcher's model of the given informa-

tion need begins to stabilise at t-1, meaning

that a searcher would stop at t.

It is stated by Nickles (1995) that while a searcher

examines content, he or she generates argu-

ments that serve to develop and elaborate his or

her conception of the decision(s) that they are

tasked to make. As the searcher continues to

reason, certain arguments may be relegated to

long-term memory due to the limited size of the

searcher’s working memory. Searchers will ac-

crue new information, with some perhaps returning to the original subset of arguments. As

mentioned previously, it is this point that can be interpreted as a form of stability regarding

the searcher’s mental model of their information need. This is depicted in Figure 3.4, where

given a vague information need, a searcher will trawl a series of documents in order to de-

velop their mental model of the given problem, turning their understanding of the topic

from an initial fuzzy state to crystal clear.

3.2.2.2 Propositional Stability

Similar to the representational stability heuristic, Nickles (1995) also defined the proposi-

tional stability heuristic which again focuses on the concept of a stabilising mental model of

the given information need. Here, a searcher when examining content will form a series of

arguments from the information he or she is observing. These arguments can lead to tenta-

tive conclusions, from which at some point stability is achieved – and the conclusion does not

change. Therefore, this heuristic suggests that the stabilised nature of the decision maker’s

conclusion from the information observed prompts him or her to stop.

3.2.2.3 The Mental List

The mental list stopping heuristic considers a mental list of aspects of some phenomenon.

Each of the different aspects within the mental list must be ‘checked off’ to a satisfactory
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Figure 3.5 Given a well defined information need, Nickles (1995) outlined the mental list

heuristic, where a number of different criteria must be satisfied before stopping. In the illustration

above, car shopping is used as an example. Here, certain criteria for a new car (as shown on the

notepad) must be met before a searcher is satisfied with what they have found.

level before the searcher then decides to stop examining content. This mental list can typ-

ically be constructed from a searcher’s long-term memory, meaning that they will likely

have a priori knowledge of the particular information need. So-called belief structures such

as schemas (BartleĴ and Burt, 1933) or scripts (Schank and Abelson, 1977) may assist the

searcher in organising the construction of the mental list that forms the set of criteria that

determines when they stop.

Figure 3.5 provides a graphical illustration of the mental list heuristic. When looking for

a new car, a searcher will construct a mental list of different aspects of a car which are es-

sentially the minimum requirements (e.g. a minimum engine displacement of 1.8 litres).

Searching is then conducted, with the searcher narrowing down the potential choices avail-

able to them to those that satisfy their mental list.

3.2.3 Summary of Heuristics

In this section, a number of different stopping heuristics have been discussed from a number

of seminal papers in the literature. While a much larger number of normative stopping

heuristics have been defined in prior works, these have been omiĴed from the review as
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they do not adequately describe the cognitive behaviours of a searcher, often assuming a

searcher has to think ahead to make a decision to stop or continue (Browne and PiĴs, 2004).

In contrast, the heuristics that are enumerated above do not make this assumption, making

more realistic assumptions about the searcher’s cognitive abilities.

Of course, the different stopping heuristics discussed above are likely to behave differently

under different search contexts. As an example, the mental list heuristic might be impos-

sible to use given a searcher with a very limited knowledge of a topic. He or she simply

would not know enough information to ascertain key aspects of the topic and construct a

set of criteria that must be met (Browne et al., 2005) – Gigerenzer and Goldstein (1999) also

discuss this reasoning for the single criterion stopping heuristic. As such, it is hypothesised

that the aforementioned stopping heuristics would likely work beĴer with a searcher who

is more knowledgeable.

Browne et al. (2005) also discuss the so-called “structuredness” of a given search task. If the

task has well-defined inputs and outputs – or the goals and operations are clear and easily

understood (Simon, 1996) – then it is hypothesised that searchers will employ more precise

stopping heuristics for deducing when to stop. For example, the mental list and single

criterion stopping heuristics might offer greater degrees of precision than (for example) the

frustration and satisfaction heuristics, although the frustration and satisfaction heuristics

may perform well for any given search task. Altogether, the heuristics discussed in this

section would be applicable for informational search tasks (Browne et al., 2005) such as

ad-hoc retrieval (refer to Section 2.3.1.1).

With the heuristics now enumerated, we later in this thesis discuss how we take these stop-

ping heuristics and consider how to operationalise them, such that they can be subsequently

implemented and compared against each other empirically. This also involves which of the

two stopping decision points we discussed in Section 3.1.1 these operationalised heuristics

can be used in. Chapter 5 provides explanations of the twelve stopping strategies that we

employ in the contributory work in this thesis.
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3.3 Theoretical Models

In addition to the stopping heuristics above, mathematically grounded, theoretical models

have been defined that allow us to describe, predict and explain how and why searchers

behave in the way they do. Crucially for this thesis, such models provide an explanation

of their stopping behaviour. As discussed in Section 2.3.4 however, such models also have

limitations, ranging from the low-level assumptions engaged by the different models, the

variables that are considered or excluded from the models, and the difficulties arising from

the complexities of human behaviour (Fishwick, 1995; Azzopardi and Zuccon, 2015).

Despite the limitations of such an approach, such formal models also permit the generation

of different hypotheses regarding search behaviours. These can subsequently be empiri-

cally tested and validated – with examples of such studies including Azzopardi et al. (2013)

and Pirolli et al. (1996). Three examples of such theories include Information Foraging Theory

(IFT) (Pirolli and Card, 1999), Search Economic Theory (SET) (Azzopardi, 2011) and the In-

teractive Probability Ranking Principle (iPRP) (Fuhr, 2008). Central to the work in this thesis

is IFT that we discuss in detail in the following subsection. As shown by Azzopardi and

Zuccon (2015) however, the three theories are all mathematically equivalent, with all ul-

timately leading to the same understanding. As such, we do not discuss Search Economic

Theory (SET) and Interactive Probability Ranking Principle (iPRP) in detail.

3.3.1 Information Foraging Theory

A well known conceptual model in the field of information seeking is the berry picking model,

as proposed by Bates (1989a). As shown in Figure 3.6, this model considers searchers look-

ing for information to be analogous to foragers scavenging for food in the wild. In the model,

foragers are looking for the juiciest and ripest berries on a number of different bushes (or

patches). The juiciest and ripest berries offer the highest levels of gain. Picking these berries
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Figure 3.6 The Berry Picking Model Bates (1989a). A forager traverses through bushes to pick

the juiciest berries for consumption. The model is high level and conceptual in nature, and thus

does not provide any justification for how or why foragers search for the juiciest berries.

helps the forager maximise their level of gain. Applied to search, this construct means that

a searcher forages for information, picking the most relevant (or juiciest!) documents that help

them maximise their level of gain.

While the berry picking model is an intuitive and simple model to understand, its highly

descriptive nature does not provide an explanation regarding the behaviour of the forager.

How long should a forager spend examining this berry bush? This question cannot be answered

as such by the model, but Bates (1989b) in a later publication does allude to the fact that

searchers could weigh up the costs and benefits in order to decide what to do next.

Theories do however exist that aĴempt to explain the behaviour of a searcher when foraging

for information. Initial aĴempts by Russell et al. (1993) and Sandstrom (1994) demonstrated

that Optimal Foraging Theory (OFT) (Stephens and Krebs, 1986) could be potentially used to

model the search process. This led to the development of Information Foraging Theory (IFT),

proposed by Pirolli and Card (1999). The theory provides an explanation as to how informa-

tion foragers will behave, and as such, also provides a rationale as to how they will stop. IFT

is extensively used in this thesis as a theoretical underpinning to several hypotheses. We

also outline an optimal stopping heuristic, as well as several other time-based heuristics

that derive from work associated with OFT.
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3.3.1.1 Patches and Scent

IFT is comprised of three main models: the information diet model, concerning what infor-

mation is consumed; the information patch model; and the information scent model. With the

information diet model not considered in this thesis, we focus in this section on discussing

the information patch and information scent models.

Central to IFT is the notion of a patch, as per the patch model. In the wild, a patch is modelled

as an area of land with a degree of potential gain (food) that can be acquired by foraging

through the said patch. The between patch time is the amount of time a forager spends moving

towards a patch, and the within patch time is the time spent within the patch, examining its

contents for potential gain.

With IFT, a patch can be modelled in a variety of ways. However, as outlined by Azzopardi

and Zuccon (2015), the generally agreed approach to model a patch in terms of information

seeking is to consider it as a SERP. With this representation, moving between a patch is akin

to issuing a query, and thus incurs a cost. This is called the between patch time . Staying

within a patch is the same as assessing result summaries on the presented SERP and their

associated documents, with each summary and/or document taking a certain amount of

time to process, or the within patch time . The patch model essentially predicts how long

an information forager should stay in a patch (or SERP) before abandoning it and moving

to the next patch.

However, given a series of patches (or potential queries), how does a forager deduce which

one they should enter next, and examine in closer detail? This is described by the informa-

tion scent model and encapsulates a currently active area of research. Figure 3.7 graphically

illustrates the scent of a patch in action – given two patches as depicted in the illustration,

which patch will the forager travel to next? Following the scent or cues on the ground next

to him, the forager observes that the paw prints to patch are more prevalent, and thus

will venture to that patch first. Like foragers in the wild, information foragers will observe
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1
2

Which patch (  ) should the forager enter?

Figure 3.7 A graphical depiction of the patch model, part of Information Foraging Theory (IFT).

When presented with two patches, each containing food that can be represented as gain, what

patch should our forager choose first — patch or ?

a series of proximal cues presented to them on a SERP, such as hypertext links, document

titles, snippet text and thumbnails to locate information (Pirolli and Card, 1995, 1999; Chi

et al., 2001; Olston and Chi, 2003; Pirolli, 2007). In the context of news search, cues were

examined by Sundar et al. (2007). Here, cues such as the source of an article (its scent) were

shown to have a powerful effect on the perception of the article, and influenced whether

the said article was clicked on.

If these cues provide a rationale as to what leads to a promising scent trail, it follows that

scent, in combination with patches, provides a rationale as to when a searcher will stop

examining a set of results (Pirolli and Card, 1999; Wu, 2012; Wu et al., 2014). For example, a

user study by Wu et al. (2014) demonstrated that a searcher would forage to greater depths

if the SERP appeared to contain many relevant items. Card et al. (2001) also observed this

trend. They found that when navigating through pages, searchers were more likely to leave

when the information scent began to decline. Section 3.4 provides more details on these user

studies, along with others considering stopping behaviours.
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3.3.1.2 Stopping Heuristics

Given a patch with a scent, how can one deduce when they should stop? Like all theories, IFT

makes some key assumptions from which we can deduce behaviours of a forager. The

assumptions are that a forager will: enter a patch with what appears to be the highest yield

first; and aĴempt to maximise their gain per unit of time. Given these assumptions, one

would now be able to answer the question posed in Figure 3.7. With a beĴer scent and

greater volume of potential energy to be gained, patch is the answer that a forager would

provide to the question which patch should I explore first?

In addition, the assumptions provided above allow us to begin formulating a stopping

heuristic based on the optimal behaviour of a forager. The Marginal Value Theorem (MVT)

by Charnov (1976) states...

“...that a forager should remain in a patch so long as the slope of the gain function is

greater than the average rate of gain in the environment.”

Pirolli and Card (1999)
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Figure 3.8 The IFT stopping heuristic.

The searcher should stop when the rate of

gain (solidgreen line) no longer outperforms

the average rate of gain (dotted green line).

The MVT implies that if a forager is within

a patch that initially looked promising, yet is

yielding a rate of gain less than the average rate

of gain expected within the patch, he or she should

then abandon the patch and then move to an-

other one. This phenomenon is often called

the instantaneous intake theorem (Stephens and

Krebs, 1986). In the context of information seek-

ing, this would imply a query reformulation.

Conversely, a forager who has found himself or

herself in a patch yielding gain at a rate greater
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Figure 3.9 Illustrations of the time stopping heuristic (left), and the give up heuristic (right).

On the left, a forager will stop after a time limit has been reached (40 seconds in this example)

from the point at which they enter a patch. On the right, a forager will reset their timer when they

encounter something gainful, but will grow increasingly impatient the poorer the results of their

foraging, and eventually stop too (a 20 second limit is shown here).

than the average rate of gain would be best advised to stay within that patch. This is graph-

ically illustrated in Figure 3.8, where the gain curve for a forager in a patch is highlighted in

green. In addition, the plot illustrates: the between patch time, where the forager is not

acquiring any gain; the within patch time, where the forager is examining the SERP and

associated documents; and the optimal stopping point, based upon the MVT. Graphi-

cally, this is best described as the point at which the tangent to the curve (from the origin)

touches the gain curve. From this point onwards, the rate of gain decreases and is less

than the average rate of gain, meaning that the forager receives diminishing returns for the

investment in examining content within the current patch (or SERP).

Operationalising the instantaneous intake theorem is often difficult to do in practice. How

would one measure, for example, the expected rate of gain? Instead, several other stop-

ping heuristics that influence patch leaving have been developed as part of OFT (Stephens

and Krebs, 1986). These aĴempt to approximate the instantaneous intake theorem. Such

heuristics include, but are not limited to:
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■ the so-called number heuristic (Gibb, 1958), where a forager would leave a patch

after finding n prey;2

■ the time heuristic (Charles-Dominique and Martin, 1972; Krebs, 1973), where a for-

ager stops after spending x seconds within a patch; and

■ the give up heuristic (Krebs et al., 1974), where a forager would stop and leave a

patch after x seconds have elapsed since last finding something of use.

The time-based stopping heuristics are illustrated in Figure 3.9. A further study of differ-

ent patch types (i.e. where the density of prey varies) was also undertaken by McNair (1982).

They found that across different patch types, different stopping heuristics worked beĴer in

different environments – also demonstrated in works by Iwasa et al. (1981), McNair (1982)

and Green (1984). Consequently, a further combination heuristic was devised. For a patch

that appears to be fruitful early on, a satisfaction-based heuristic would perform well. Oth-

erwise, employing the give up time-based heuristic (Krebs et al., 1974) would work best.

This intuitively makes sense. A searcher, when presented with a SERP of high quality with

many relevant results would be prudent to continue examining it for more content if the

initial set of results are promising. However, if initial results are not promising, the searcher

should be more sceptical, and be prepared to abandon it if, after examination, relevant con-

tent was not forthcoming as the results are traversed.

3.4 User Studies

While stopping heuristics provide a means for quantitatively characterising and predict-

ing stopping behaviour (Wu et al., 2014), only a handful of user studies have been under-

taken that aĴempt to understand when enough information is enough (Zach, 2005). As

2This stopping heuristic is analogous to the satisfaction and satiation stopping heuristics, defined
by Cooper (1973a) and Simon (1955) respectively.
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we have already discussed, stopping is an inherently difficult phenomenon to model ef-

fectively. This is because it is instrumented by a series of internal factors to the decision

maker’s thinking (Nickles, 1995). In this section, we detail a number of different user stud-

ies that have aĴempted to provide an explanation for a searcher’s stopping behaviours.

3.4.1 Understanding Stopping Behaviours

Two user studies by Zach (2005) and Berryman (2006) have examined searcher stopping

behaviours through a series of interviews with subjects. These studies primarily focused on

the notion of why searchers stopped when they did, with both considering subjects seeking

information in an academic work environment.

Zach (2005) considered how senior art administrators determined when to stop searching

in their daily jobs, and found that they mostly stopped either because they:

■ felt satisfied with the information that they had obtained during their search; or

■ stopped because of time constraints.

The study by Berryman (2006) was conducted in a similar approach. Public sector policy

workers reported finding it difficult to work out how much information would be enough

to satisfy their tasks when initiating them. However, once the structure of what they needed

to find had been established, the point at which they felt they should stop became clearer.

The findings from this second study provide evidence that the assessments of what consti-

tutes as enough can be difficult and complex to deduce. This finding also provides evidence

of the development of an underlying mental model of the given information need and pro-

vides justification for the representational stability, propositional stability, and mental list

stopping heuristics (as discussed in Section 3.2.2).

A number of user studies have also examined stopping behaviours in relation to the concept

of satisfaction or satiation (Simon, 1955). As previously discussed in Section 3.2.1.1, this
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concept suggests that a searcher will cease searching as soon as conditions arise, instead of

after they have exhaustively considered all available information (March, 1994).

Considering this approach, Agosto (2002) examined the decision-making abilities of young

people when searching on the WWW. In this study, 22 9th and 10th grade students from a

U.S. high school demonstrated limitations which affected their decision making, including

time constraints that were imposed externally and internally, information overload, and

other physical constraints. In order to find websites to help in satisfying their information

need, the students used reductive approaches to decrease the amount of information pre-

sented on the WWW, and used this to work out when to stop. How students perceived the

websites were also largely down to personal preference.

With a completely different set of subjects, Mansourian and Ford (2007) conducted a study

where they analysed the stopping behaviours of 37 staff and students from four university

biology departments, and classified their stopping behaviours by search depth and search

impact. Qualitative results showed that subjects indicated that missing potentially impor-

tant information in the course of their searching was a maĴer of concern. The authors re-

ported that the estimations and importance of information missed likely would affect their

stopping behaviour. From this, classifications of the perceptions of missing information

ranged from inconsequential to disastrous, and search strategies classified as perfunctory to

extensive, with the information need dictating what category the searcher would have con-

sidered appropriate.

A similar study by Prabha et al. (2007) considered searchers in a further academic library set-

ting, with one key finding from their study showing that time constraints led to a decrease

in the number of documents that searchers examined. Again, the specific information need

and the searcher’s role in academia affects every stage of their search processes – which

includes affecting what they have found to be enough.

These findings were further demonstrated by Wu et al. (2014), who undertook a study

where subjects performed a series of different search tasks. Subjects were then interviewed
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about their result summary level stopping and session stopping behaviours. Results from

this study showed that result summary level stopping decisions were taken primarily on

the face of search results, queries and search tasks. Session stopping decisions were deter-

mined by the subject’s overall goal for each task, the content examined (and their subjective

perceptions of the examined content) and the study constraints imposed upon them, such as

time constraints and search interface restrictions. Further empirical evidence to this study

was later provided by Wu and Kelly (2014). They reported that some subjects discussed

“forced stopping” (stopping when no more information could be found), and “voluntary”

stopping that stemmed from the feeling of securing enough information.

Wu et al. (2014) also discussed how information scent affects the stopping behaviour of a

searcher. Constituting part of IFT, it is important to note that user studies have been con-

ducted using this model. For example, Card et al. (2001) observed that if a person started

with a high information scent web page, he or she would be inclined to visit more web pages

on the high scented page’s domain. They also found that as the information scent of web

pages declined, there was a tendency for the person to leave the site or return to a previ-

ously visited page. Loumakis et al. (2011) examined scent that was associated with images

presented on SERPs, and how these impacted on the evaluation behaviour of searchers.

They found that when images were added to text snippets, participants reported increased

confidence that they could find an appropriate result.3

Central to the findings of all of the above studies – regardless of the group of subjects or

contexts in which the searches were conducted – is the idea that searchers stop when they

are satisfied. Even though subjects of these studies were acutely aware of the fact they had

not found all relevant information to their given information need, they were nevertheless

satisfied with what they had found, and subsequently decided to stop. While the results

from these studies may be underwhelming in terms of concrete explanations as to why

people stop, they do provide invaluable insights, and demonstrate just how difficult it is

to encapsulate or create descriptive parameters of such behaviour. Indeed, factors such as

3A picture is worth a thousand words.
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time constraints, a searcher’s information seeking ability and other factors all influence the

internal stopping rules of a searcher, as was discussed by Marchionini (1995).

3.4.2 Quantifying Stopping Behaviours

With the above studies examining why people decide to stop, a very limited number of

studies have aĴempted to quantify when a searcher should stop searching – something the

stopping heuristics presented in Section 3.2 aĴempt to do. Toms and Freund (2009) studied

the actions preceding the endpoints in information seeking to predict what actions would

lead a searcher to stop. The most prevalent paĴern they observed that matches the searcher

models outlined in Section 2.3.5 consisted of a searcher:

issuing a query;

examining results presented to them on a SERP; and

viewing a document.

Interestingly, the authors observed that searchers appeared to be more engaged in page con-

tent and in revisiting and assessing pages that had already been found. They hypothesised

that this again may be due to the satiation heuristic, where the searchers would purpose-

fully go back to reassess if what they had found was enough.

A further study by Dostert and Kelly (2009) examined the stopping behaviours of 23 un-

dergraduate students. Subjects, in parallel to other studies, reported that the primary factor

for deciding to stop was their intuition. Like in the study reported by Prabha et al. (2007),

the subjects were time constrained. Dostert and Kelly (2009) reasoned that subjects could

not adequately articulate this intuition, but hypothesised that they simply felt that given

their perception of how much time had elapsed, the number of documents that they had lo-

cated felt sufficient. However, the authors report a number of additional reasons (as shown

in Figure 3.10) why subjects decided to stop, with the reasons providing links back to the

stopping heuristics defined in Section 3.2.
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Figure 3.10 Responses of the survey on

why subjects stopped by Dostert and Kelly

(2009). Like most studies examining stop-

ping behaviour, most subjects stopped be-

cause of their intuition — or what felt like

enough to them.

Indeed, the unarticulated notion of finding

“enough” (Zach, 2005) information links neatly

back to the idea of the magnitude threshold

stopping heuristic, proposed by Nickles (1995)

and detailed in Section 3.2.1.3. With this heuris-

tic, a searcher would stop once they have

accumulated a certain predetermined amount

of information. From the results of their

study, Dostert and Kelly (2009) hypothesised

that the threshold was reached once their sub-

jects felt they had correctly identified half of the

relevant documents available to them. In real-

ity, the searchers had on average only managed

to correctly identify 7.35%. In addition to comparisons to the magnitude threshold stop-

ping heuristic, Dostert and Kelly (2009) also drew comparisons from their results to the

difference threshold stopping heuristic, as outlined in Section 3.2.1.2. To recap, this heuris-

tic considered a searcher’s tolerance to not learning anything new. This is argued by the

authors as a reason for respondents citing repetition in the documents found, or a lack of

new documents. Lastly, the representational stability stopping heuristic as detailed in Sec-

tion 3.2.2.1 was also noted by the authors. With this heuristic concerning the stabilisation of

the searcher’s underlying mental model of the topic, the authors noted that supporting evi-

dence was obtained by subjects responding to a decrease in the number of relevant, and/or

an increase in the number of non-relevant documents.

These stopping heuristics were also investigated by Browne and PiĴs (2004) and PiĴs and

Browne (2004) with systems analysts during the process of information requirements de-

termination. The analysts were required to gather a series of information requirements

that would allow them to generate diagrams to represent an online grocery shopping sys-

tem. Browne and PiĴs (2004) found that more experienced analysts tended to use the mental
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list and magnitude threshold stopping heuristics, while less experienced analysts utilised

the difference threshold and representational stability stopping heuristics. In addition to

these findings, the authors noted that the applicability of different stopping heuristics re-

sulted in varying degrees of quantity, depth and the quality of information obtained.

3.4.3 Considering Search Depths

CQ Q
CQ

E
Q E

Figure 3.11 The cost-interaction hy-

pothesis (Azzopardi, 2011). As the cost

of querying increases (CQ), searchers will

issue fewer Queries and Examine more

documents per query.

A number of additional user studies have also

considered the so-called search depth – that is, the

depth on a list of ranked results that searchers

stop clicking (the click depth). Studies such as

the seminal work by Cutrell and Guan (2007)

undertook an eye-tracking study and reported

that subjects examined the first eight results be-

fore deciding to carry out a query reformula-

tion. Lorigo et al. (2008) also examined their sub-

jects’ scan paths as they undertook search tasks. On average, subjects scanned only 3.2 dis-

tinct search results per query. This work was supplemented by Huang et al. (2011), where

they found that subjects proceeded to issue a new query after inspecting the top four results

of the presented SERP.

A study by Azzopardi et al. (2013) also found that the depth to which subjects examined

content was affected by the cost of entering a query (as illustrated in Figure 3.11). With a

search interface where subjects were required to invest more effort to enter a query, sig-

nificantly fewer queries were issued, with the results for these queries examined to greater

depths. This was in contrast to subjects who used a standard search interface, where more

queries were issued with subjects examining the content to a shallower depth. These find-

ings comply with the query-cost hypothesis (Azzopardi, 2011), that states: as the cost of querying

increases, searchers will pose fewer queries and examine more documents per query.
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This is illustrated in Figure 3.11. Evidence from this study also demonstrated that the search

interface individuals are subjected to impacts upon their stopping decision making.

3.5 Chapter Summary

This chapter has provided an extensive overview of how stopping has been examined in the

context of IIR. In particular, we have detailed a number of different stopping heuristics that

have been proposed in the literature. These heuristics represent the aĴempts of researchers

to capture a searcher’s feeling of what is “good enough” (Zach, 2005). We also discussed

theoretical models of search, examining in particular Information Foraging Theory (IFT). This

theory provides an explanation as to why and when searchers should stop, and extensive

work in the literature based upon Optimal Foraging Theory (OFT) has also yielded a series of

additional stopping heuristics.

We also provided an overview of the literature concerning user studies and searcher stop-

ping behaviours. Many of these studies showed that searchers are simply unable to articu-

late why they stopped when they did, with internal heuristics causing them to stop when

they simply felt satisfied, perhaps complying with the satisfaction/satiation stopping heuris-

tics (Cooper, 1973b; Kraft and Lee, 1979) (or the number heuristic (Gibb, 1958)). However,

these different internal stopping heuristics vary from person to person, with factors such

as domain knowledge – and external factors such as time constraints – affecting their be-

haviours (Marchionini, 1995). As such, stopping behaviours are an intrinsically difficult

phenomenon to capture and understand effectively.

With the scope and background of this thesis now outlined, we now move towards Part II.

We begin to introduce the contributions that the work undertaken within this thesis pro-

vides, beginning with an updated searcher model. We will also discuss how we opera-

tionalised the stopping heuristics outlined in this chapter, turning them into a series of pro-

grammable stopping strategies.
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Part II

Modelling and
Methodology

In the second part of the thesis, we introduce

the Complex Searcher Model (CSM) that

provides a more realistic, conceptual model of

the information seeking process. We also detail

a series of operationalised stopping strategies

that we will apply as part of our

general methodology . This details how we

instantiate the CSM and other components in

subsequent chapters.





Chapter 4

The Complex Searcher Model

In this chapter, we present the Complex Searcher Model (CSM). The CSM is an updated, con-

ceptual searcher model1 that is one of the major contributions of this thesis. It is an amalga-

mation and development of prior, established searcher models. These models capture the

complex sequence of interactions that take place between a searcher and a retrieval system

over the course of a search session. As such, this chapter provides a partial answer to our

first high-level research question, HL-RQ1 .

Write Chapter Request Feedback Complete?

As discussed in Section 2.3.5, earlier examples of searcher models include the Markov-based

approach presented by Baskaya et al. (2013), and the model proposed by Thomas et al.

(2014). These searcher models (along with others) are in broad agreement with the general

sequence of events that take place within the IIR process – from issuing a query to examining

documents for relevance.
1The CSM can also be considered as a browsing model, as per CartereĴe et al. (2011).
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Given the aforementioned searcher models outlined in Section 2.3.5, the CSM offers a num-

ber of advancements in modelling searcher and retrieval system interactions. In this chap-

ter, we provide:

■ the flow of the proposed CSM, outlining the different steps and decisions that those

subscribing to it undertake (Section 4.1);

■ a discussion of the stopping decision points that the CSM considers (Section 4.2);

■ a summary of the key advancements that the CSM provides (Section 4.3); and

■ an outline of the key assumptions that we consider as part of the CSM (Section 4.4).

We also briefly outline the specifics for evaluating the CSM as a viable searcher model (Sec-

tion 4.5). Specific details of the implementation of the CSM are discussed in our general

methodology (Section 6.4, page 157). We begin this chapter with a discussion of the flow of

the CSM, discussing the different steps and decisions that searchers will make.

4.1 Model Flow

The CSM is illustrated as a flowchart in Figure 4.1. It is comprised of a number of different

activities denoted by boxes, and decisions represented as blue diamonds. The flowchart is

divided up into a number of different blocks, labelled A to F . Each of the blocks denotes

a logical set of interactions – block B , for example, considers all of the actions and decisions

a searcher is likely to consider in relation to querying. In this section, we outline the flow of

the CSM, discussing the key activities and decisions that searchers would undertake when

subscribing to it. This is done in relation to the six labelled blocks that are discussed below.

A Topic Examination A searcher subscribing to the CSM would begin the search pro-

cess with some information need. This would typically be provided as a topic, with
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Figure 4.1 A flowchart of the Complex Searcher Model (CSM). A cornerstone of this thesis,

the CSM is extensively used as the grounding model for simulations of interaction that we report

on in subsequent chapters. The main logical components of the CSM as discussed in Section 4.1

are labelled A to F , complete with surrounding boxes. The three stopping decision points are

highlighted with numbers , and (refer to Section 4.2).

a topic description outlining said information need. From this topic description, var-

ious entities can be extracted and used for the generation of queries, as described in

block B .

B Querying Once the information need has been established, the searcher will then

move onto the querying block. Here, a number of different activities and a decision

point are considered. Within the block, the first activity that the searcher will un-
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dertake is the generation of queries . Given the information need from block A ,

a searcher will formulate a number of candidate queries that they could issue to the

underlying retrieval system. This is achieved through the use of some form of query-

ing strategy that generates the said candidate queries. The searcher then must make

a decision as to what query they should issue. A query is selected from the candi-

date queries list by some process (e.g. some form of ranking). This query is the one

the searcher believes is most likely to return relevant documents. The query is then

issued to the underlying retrieval system2, with the searcher proceeding to C .

As stated previously, IIR is an iterative process where multiple queries can be issued

in a single search session. The CSM provides support for this – as can be seen from the

flowchart line from block F to querying block B . At each point, the list of candidate

queries generated could theoretically be regenerated, thus supporting query reformu-

lation. If a searcher then finds that the candidate queries list has been exhausted, a

stopping point is provided for this scenario.

C SERP Examination With the query now issued, the retrieval system will then return

a SERP for the searcher to examine. From here, the searcher is able to view the SERP

– that is, to obtain an initial impression of the SERP by examining the various proximal

cues (Chi et al., 2001) presented. If the SERP does not appear to look promising, or

gives the answer straight away, the searcher will abandon the SERP and proceed to

issue a further query from the list of candidate queries as described in block B . If

the SERP however does look useful , the searcher will then enter the SERP and pro-

ceed to examine individual result summaries in detail.

D Result Summary Examination Result summaries are presented to the searcher within

the SERP. Searchers can take individual result summaries in turn, examining the title

and snippet text provided for attractiveness . If deemed to be sufficiently aĴractive

to warrant further examination, the searcher will then click on the provided link. This

2As the CSM considers interactions with a retrieval system only, we assume that a searcher will have
already selected a retrieval system to use beforehand as discussed in Section 4.4.2.
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link will then take the searcher to the associated document for further examination.

If the searcher does not deem the summary to be sufficiently aĴractive to warrant

further examination, he or she will then move to block F . As described below, the

searcher in this block must decide whether to continue examining results on the SERP

– and if not, whether to continue with the search session.

E Document Examination Once a searcher clicks on an aĴractive result summary, he

or she will then assess the associated document for relevance, after which a further

decision must be made. Is this document relevant to the information need? If so, the

document is saved , meaning that it is added to a list of saved documents, as we

describe below. The searcher then proceeds to block F . If not considered relevant,

the searcher then proceeds directly F .

F Deciding to Stop Regardless of how the searcher reaches this block (either from

block D or E ), a searcher here can make two key stopping decisions. The first con-

siders whether he or she should remain on the present SERP. If this is decided to be

the case, the searcher will then move to the next result summary presented within it,

and begin to examine that for aĴractiveness. If it is decided not to remain on the SERP,

the searcher will then move to a final decision – should I stop this search session, or con-

tinue? If the searcher decides to continue the search session, he or she will then move

back to the query generation activity in block B , beginning the cycle again.

Of particular interest to the work in this thesis are the stopping decision points, as discussed

above – and shown in blocks C and F in Figure 4.1.

4.2 Stopping Decision Points

Outlined previously in Section 3.1.1, established searcher models consider stopping from

two key perspectives: result summary level stopping, and session level stopping. The two estab-
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lished stopping decision points are included within the CSM, and are labelled and in

Figure 4.1 respectively. They are also briefly outlined below.

Result Summary Level Stopping This stopping decision point concerns the depth at

which a searcher will stop examining a list of ranked results for a given query, as-

suming that results are ranked in a particular order. After stopping at this point, the

searcher can continue the search session by issuing a further query.

Session Level Stopping This second stopping decision point considers the point at

which a searcherwill stop their search session in its entirety. As an example, a searcher

will stop their search session when they believe that they have satisfied their search

goal, for example.

The CSM however includes a third, SERP level stopping decision point, highlighted as stop-

ping decision point within block C of Figure 4.1.

SERP Level Stopping With this new stopping decision point, a searcher can abandon

a SERP before entering it to examine result summaries in detail.

This new stopping decision point permits searchers subscribing to the CSM to become

savvier with their interactions. By gauging the SERP, a searcher can make an informed

decision as to the quality of said SERP before making the decision to invest more time ex-

amining its contents, or simply cuĴing their losses and abandoning it – for beĴer or for

worse. The new stopping decision point is one of the key advancements that the CSM pro-

vides, and is discussed in more detail in Section 4.3.1.

4.3 Model Advancements

The CSM provides two novel advancements in modelling interactions between a searcher

and retrieval system. These are highlighted as blocks B and C in Figure 4.1, and ad-
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vances our understanding of the querying process – as well as including the aforementioned

third stopping decision point. In this section, we discuss each in turn. While the advances

to querying are novel, they are not the core focus of this work, and thus discussion of the

new SERP level stopping decision point will be in greater depth.

4.3.1 SERP Level Stopping

This new stopping decision point – illustrated in block C of the CSM (Figure 4.1) – is

motivated by the idea of the information scent (refer to Section 3.3.1.1 on page 92) present on

a given SERP. This section also introduced the concept of proximal cues (Chi et al., 2001), cues

that provide insights into whether the presented SERP will yield information that will aid

the searcher in satisfying their underlying information need. This has been demonstrated

in prior studies (Wu et al., 2014; Ong et al., 2017) – and in Chapter 7 of this thesis.

By operationalising information scent as the perceived performance of a given SERP, we

allow a searcher to obtain an impression of the SERP before deciding to enter it and examine

presented content in detail – or abandon the SERP altogether, and move to the next activ-

ity. The notion of forming an impression is similar to the summary impressions formed

by searchers subscribing to the model defined by Thomas et al. (2014), as detailed in Sec-

tion 2.3.5. In their model, a searcher would not form an overview of the SERP, but rather

an impression of each individual result summary. The impression can then be used as a

means of gauging whether further examination would be worthwhile.

This new stopping decision point is analogous to the well-studied phenomenon of SERP

abandonment in which limited interaction occurs with the searcher. This has been typi-

cally assumed to provide an indication of the searcher’s dissatisfaction with the presented

results (Das Sarma et al., 2008; Chuklin and Serdyukov, 2012; Kiseleva et al., 2015), or sat-

isfaction (through the concept of good abandonment) (Loumakis et al., 2011; Wu et al., 2014).3

3We discuss this in more detail in Section 4.4.4.
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Thus, we provide, to the best of our knowledge the first searcher model that incorporates

a path for a searcher to leave a SERP that appears to be of poor quality (or a low scent), or

even satisfies their information need outright.

4.3.2 The Querying Process

Outlined previously, search sessions are inherently interactive (Ingwersen and Järvelin,

2005). During a session, a searcher’s underlying mental model of a given information need

can adapt and is likely to change as he or she examines new content for relevance (Bor-

lund, 2003). Searchers may find more descriptive terms associated with the said informa-

tion need, and incorporate these terms in a subsequent query reformulation.

From block B in Figure 4.1, the querying process has been broken up into two distinct

activities and decisions: query generation (thinking of queries that could be issued) and

query selection (selecting a query to issue). A searcher subscribing to the model will

have the capability of revising their generated query list at each query reformulation, thus

supporting the concept of the dynamic information need. Updated terms can in theory be

selected from newly examined documents and incorporated within the query generation

process for future reformulations.

Query selection then determines which one of the generated queries are to be issued to the

retrieval system. Of course, the potential exists whereby all generated queries have been

exhausted. This scenario would thus provide a natural stopping point for the searcher, as

included in Figure 4.1.

4.4 Model Assumptions

When modelling a real-world phenomenon, a number of different assumptions are made

about said phenomenon’s exhibited behaviours (Fishwick, 1995). The CSM is no excep-
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tion from this rule, and we make a number of different assumptions about a searcher’s

behaviours and the presentation of the retrieval system’s results. This section details five

key assumptions that we consider as part of the CSM.

4.4.1 Search Task

In this thesis, we are interested in the wider IIR process, considering all of the activities

and decisions involved. We are particularly interested in improving our understanding of

complex retrieval tasks.

The CSM provides scope for the modelling of a variety of different interactive search tasks. Ex-

amples of these include the aforementioned ad-hoc, exploratory, and diversity tasks. These

tasks can be undertaken in different search domains, such as informational (refer to Sec-

tion 2.3.2) or patent searching. As discussed in Section 1.2, we exclusively consider informa-

tional search in the domain of news. Tasks we consider include both ad-hoc and diversity,

such that we can then examine how behaviours vary under each task. This is because while

the CSM is able to model other search tasks, the selected search tasks provide for more in-

teresting task types to examine, and consider a greater depth of activities and decisions that

would not otherwise be examined by the more simplistic approach.

These tasks are interesting to examine for two key reasons:

■ the search goals between each task vary; and

■ from an examination of the literature (refer to Section 3.4), it is not clear when enough

information is enough.

These reasons will undoubtedly produce interesting results between the two tasks. As the

tasks are not simple lookups, a searcher will not stop once a single relevant page has been

found. Instead, he or she will stop once enough (Zach, 2005) information has been found to

satisfy their goal, or other constraints are imposed (e.g. time constraints).

115



4.4Model Assumptions

4.4.2 Retrieval System Tool Choice

The searcher model proposed by Thomas et al. (2014) provides those subscribing to it with

a choice as to which retrieval system they should use. As discussed earlier, we assume

with the CSM that a searcher uses a single retrieval system. Our focus is therefore with the

interactions that take place between the searcher and the said retrieval system.

Of course, the inclusion of such a decision point would be interesting to examine within

the wider IIR process. Different retrieval systems will have benefits and drawbacks for

particular domain types (e.g. a patent retrieval system would perform beĴer for patent

searching tasks). It would be interesting to examine this kind of tool switching behaviour –

and could be considered as a further stopping decision point, or retrieval system stopping.4

4.4.3 Simple SERPs

When considering the SERP presented to the searcher as a whole, we make three simplifying

assumptions within the CSM. These are enumerated and detailed below.

■ Ten Blue Links Under the CSM, a SERP will consist purely of a set of result sum-

maries, coined in IR literature as the ten blue links. Of course, we acknowledge that

additional components are present in contemporary SERPs, such as multimedia con-

tent in federated search (Chen et al., 2012). These are however not considered to sim-

plify the CSM.

■ Linear Examination Order Once a searcher has decided to examine a SERP in detail,

the result summaries presented to the searcher will be examined in a linear order.

There is evidence to suggest that real-world searchers examine results from top to

boĴom, as demonstrated by Joachims (2002) and Joachims et al. (2005), for example.

4Refer to Section 10.3.1 on page 349 for a more in-depth discussion on tool switching.
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Click models, such as the cascade model (Craswell et al., 2008), have been developed

that utilise this assumption. Such approaches are subject to positional bias, where the

searcher implicitly trusts the results of the retrieval model and assumes that the first

result presented is the most relevant to their information need.

■ No Explicit Pagination The CSM also assumes that the SERP presented to a searcher

is of a single page, with no pagination of results. This does simplify the modelling

process, with pagination activities and costs also not considered in earlier searcher

models that consider the session as a whole.

4.4.4 Good and Bad SERP Abandonment

As previously mentioned, the CSM provides a third SERP level stopping decision point. As-

sociated literature considers the notion of bad SERP abandonment, where a searcher is dis-

satisfied with the presented results. More contemporary research has introduced the notion

of good SERP abandonment (Khabsa et al., 2016), where a searcher satisfies his or her infor-

mation need by examining the SERP, requiring no further interactions with it. This is more

prevalent on small-screen devices, where an information card presented to the searcher

on the SERP may provide all the information required to satisfy the searcher on a simple

lookup task, for example.

The CSM does not explicitly consider the notion of good or bad SERP abandonment; the

provision exists however for both to be modelled effectively within the scope of the new

stopping decision point. Good abandonment can be for example catered for with the inclu-

sion of an additional decision point after determining a result summary to be aĴractive; the

searcher could then make the decision to abandon the SERP if they feel satisfied with the

result obtained. This is illustrated as an excerpt of a searcher model flowchart in Figure 4.2.

The excerpt demonstrates the result summary Attractiveness decision point, the additional

decision point determining Satisfaction with the result, and the final decision point that

determines whether the searcher should abandon the SERP.
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Figure 4.2 The interaction processes that can provide for incorporating good SERP abandon-

ment,where a searcher satisfies his or her information need by simply examining a presented result

summary. This is opposed to bad SERP abandonment, where the searcher will abandon a SERP if

he or she feels the presented results are not of good quality. Upon examining a result summary

(Attractive?), a searcher will then determine if the summary addresses their information need

(Satisfied?). If so, they reach the session level stopping decision point . Otherwise, they reach

the result summary level stopping decision point .

However, for the work in this thesis, we assume a simple SERP consisting only of a ranked

list of results. We also assume that searchers subscribing to the CSM will have complex in-

formation needs, as discussed in Section 4.4.1 above. As such, we assume that the elements

provided as part of the simplistic SERP are unlikely to fully satisfy their information need,

and thus we consider SERP abandonment in this thesis exclusively from the perspective of

bad abandonment. This is further discussed in Section 4.5.

4.4.5 External Factors

Given the flowchart of the CSM in Figure 4.1, it is clear that the model is completely agnostic

of external factors that could influence how an individual behaves when searching. Kelly

(2009), for example, cited that:

“searcher behavior [sic] can be governed by a number of external factors. For instance,
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the occurrences of a holiday or a project deadline will likely change the kinds of behaviors

users exhibit and these behaviors may not represent their typical behaviors.”

Kelly (2009)

These examples allude to time pressures, but there are a virtually unlimited number of

other external reasons that may influence a searcher’s behaviour. Even simple everyday

occurrences such as a phone call or an incoming e-mail can sufficiently distract the searcher

to the point that their behaviours are altered. Our assumption is that an individual searches

in a more controlled environment, where they are exclusively tasked to search.

4.5 Evaluating the CSM

The CSM is presented as a generalised, conceptual model of the search process. It captures

the key activities and decisions that a searcher must undertake. Given the current searcher

models presented in Section 2.3.5, the CSM introduces further levels of complexity and

realism into searcher models. Given our choice of search tasks, types, and assumptions,

four key assumptions are made for the evaluation of the model.

■ Costs We assume that a searcher will incur some cost when performing an indi-

vidual activity within the CSM. For example, a document examination cost will be

incurred when a searcher decides to examine a document for relevance.

■ Bad Abandonment As described previously, a searcher subscribing to the CSM will

only abandon a SERP if they consider it to be of poor quality. Given the complex

information needs we consider in this work, this is a reasonable assumption to make.

■ Saving Documents Documents that a searcher subscribing to the CSM will be saved

to a list. This provides us with a mechanism of identifying content the searcher deems

relevant, which can be used in calculating performance measures (see below).
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■ Accruing Gain Following on from the above, we assume that searchers only gain

from documents they examine and save. We do not assume that a searcher will be

able to gain from the examination of result summaries, for instance – the information

need is complex, and short result summaries would be unlikely to provide an answer

to their information need.

4.6 Chapter Summary

This chapter has proposed the Complex Searcher Model (CSM), our solution to partially ad-

dressing HL-RQ1 . Building on prior searcher models, the CSM proposes different ad-

vancements to modelling a searcher’s interactions, the main development being the inclu-

sion of a new, SERP level stopping decision point. We have outlined a number of different

assumptions that we make in the CSM, and also discussed some evaluation considerations

related to the work in this thesis. Empirical work presented later in Chapter 9 tests the CSM,

providing evidence to support HL-RQ1 in that the CSM does provide improvements over

current searcher models.

In the next chapter, we turn our aĴention to the twelve stopping strategies that we opera-

tionalise and subsequently implement. These then allow us to operationalise the stopping

decision points of the CSM.
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Chapter 5

Operationalised
Stopping Strategies

In Section 3.2, we discussed a number of different stopping heuristics that have been defined

in the literature. In this chapter, we take a number of these stopping heuristics forward

to produce a series of different stopping strategies, providing an answer that addresses

HL-RQ2 .1

Stopping Heuristics

STOP
?

Stopping Strategies

These stopping strategies are operationalised versions of their corresponding heuristics.

This means that we can subsequently implement and evaluate their effectiveness. We con-

sider twelve different stopping strategies across seven different categories, the categories

being:

■ fixed depth , which assumes a searcher examines to a fixed depth – and is also con-

sidered to be our baseline approach;
1Refer to Section 1.2 on page 10 for the definition of the research question.
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■ frustration , considering a searcher’s tolerance to non-relevance;

■ satisfaction , taking into consideration how satisfied a searcher feels with what they

have found;

■ difference , which operationalises how different new content appears to previously

observed content;

■ IFT , which considers a searcher’s instantaneous intake;

■ time-based , which utilise time as a measure for stopping; and

■ measure-based , considering an established IR measure as a stopping strategy.

In the remainder of this chapter, we consider each of the seven categories enumerated

above. For each category, we discuss the different operationalised stopping strategies that

we use for the empirical work reported later in this thesis. Before this, we begin with a brief

discussion about the different stopping decision points that were outlined in Section 4.2,

and the notation used herein when describing the different stopping strategies.

Stopping Decision Points An open question that we have not yet addressed is that of what

stopping decision points (of three presented in Section 4.2 on page 111) we will opera-

tionalise with the stopping strategies presented in this chapter.

For the purposes of this thesis, we consider the twelve operationalised stopping strategies

purely in the context of result summary stopping – or considering the depth to which a

searcher will examine a list of ranked results. The stopping strategies will be examined in

tandem with SERP and session level stopping. These are left for implementation decisions

as outlined in later chapters.

Selecting Stopping Heuristics Given all of the different stopping heuristics proposed in

Section 3.2 beginning on page 78, a further open question about this work is: how do you

choose what heuristics to operationalise? Stopping heuristics were selected that we believed
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would offer good levels of performance for complex search tasks, where the onus was on the

searcher to find and learn about a particular topic. Several of the reasoning-based stopping

heuristics (such as the mental list heuristic, presented in Section 3.2.2.3) were not selected

as operationalising them would have been too prohibitively complex.

A Note on Notation Each of the operationalised stopping strategies that are introduced

in this chapter comes complete with at least one stopping threshold variable, allowing one

to customise the point at which a searcher subscribing to a given stopping strategy should

stop. As demonstrated in the Presentational Conventions front maĴer, the notation we use

to illustrate a stopping strategy and its threshold(s) is NAME @THRESHOLD . As an exam-

ple, SS1-FIX @3 denotes the fixed depth stopping strategy SS1-FIX , set to a threshold

of 3. This stopping strategy is outlined below in Section 5.1.

5.1 Fixed Depth

The fixed depth stopping strategy is based upon an assumption held across many of the

models and measures widely used throughout the IR community. The assumption is that

a searcher will browse to a fixed depth before stopping when examining a list of ranked

results. P@k, defined in Section 2.4.1.1, is a prime example of this, and has been used in

many different studies examining the simulation of interaction. Given the wide use of this

fixed depth approach in historical and contemporary IR and IIR research, we consider this

stopping strategy as the baseline approach to which we will compare more advanced (and

adaptive) stopping strategies.

■ SS1-FIX Fixed Depth Asearcher employing this stopping strategywill stop search-

ing once they have observed x1 result summaries (i.e. SS1-FIX @x1 ), regardless

of the relevance of each judged result summary.

SS1-FIX is a naïve stopping strategy as it assumes that all documents up to rank x1 are
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SS1-FIX @ 4    with a poor query SS1-FIX @ 4    with a good query

Figure 5.1 An example of the fixed depth stopping strategy, stylised in this thesis as SS1-FIX .

Here, a searcher has an information need for the conference CIKM 2015 in Melbourne, VIC, Aus-

tralia. The left example shows the top five results for a poor performing query, with few unattrac-

tive results (denoted by ); conversely, the right shows results for a query performing well, with

many attractive results (denoted by ). With SS1-FIX @4 , the searcher will stop at a depth

of 4, regardless of the perceived relevance of the content provided.

considered aĴractive enough for a searcher to consider examining in closer detail. On av-

erage, this strategy does make sense. However, on a per-query basis, this strategy appears

counter-intuitive and would be a waste of the searcher’s time.

For example, Figure 5.1 demonstrates two SERPs side by side. Given a searcher’s desire

to find pages providing information to CIKM 20152, two queries are issued. The query

on the left yields poorer results than the query on the right, denoted by the and that

denote relevant and non-relevant results respectively. With SS1-FIX @4 , four result

2CIKM 2015 was a conference held in Melbourne, VIC, Australia in October 2015. The paper that initially
presented many of the different stopping strategies outlined in this chapter was presented by the author at
that conference. Refer to Maxwell et al. (2015b).
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summaries are always examined before stopping, regardless of the perceived quality of the

results. Examining four documents for the query on the results list on the left is a waste of

the searcher’s time, with lots of non-relevant material. A searcher would be beĴer adapting

his or her behaviour depending upon the perceived quality of the ranked list.

5.2 Frustration and Satisfaction

We referred to SS1-FIX as a fixed stopping strategy, as it is not adaptive. The remaining

stopping strategies presented in this chapter (with the exception of SS9-TIME ) are con-

sidered to be adaptive as they permit a searcher to adapt their stopping depth depending

upon the result summaries that they observe in a ranked list. In this section, we propose

three adaptive stopping strategies that are based upon a searcher’s tolerance to non-relevance

and a simple goal-based approach.

5.2.1 Searcher Frustration

We first discuss how the frustration stopping heuristics are operationalised, as outlined in

Section 3.2.1.1. Given a set of result summaries presented on a SERP, how many unaĴrac-

tive summaries would a searcher be prepared to examine before becoming frustrated with

the SERP, and abandoning it? This stopping heuristic aĴempts to address this question. In-

deed, as detailed in Section 3.2, a number of researchers have proposed stopping heuristics

that consider unaĴractiveness.

The frustration heuristic intuitively makes sense for exhaustive searchers (Kraft and Lee,

1979). As an example, when tasked to find as many documents as possible related to differ-

ent species of animals that are endangered, becoming disgusted with the presented results

when a lack of unseen animal species are shown would be a suitable point at which to break

and reformulate a new query, or abandon the search session altogether.
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From the heuristics defined by Cooper (1973b) and Kraft and Lee (1979), we propose two

variants of the frustration and disgust heuristics, SS2-NT and SS3-NC .

■ SS2-NT Non-relevant, Total Under this stopping strategy, the searcher will stop

once they have observed x2 unaĴractive result summaries.

■ SS3-NC Non-relevant, Contiguous Similar to the stopping strategy defined above,

a searcher employing this stopping strategy will stop once they have observed x3

unaĴractive result summaries in a row (contiguously).

With these stopping strategies adaptable to the presented results, this inherently makes

the strategies more realistic (Moffat et al., 2013). Figure 5.2 illustrates both strategies in

action across the same query and associated results. On the left of the figure is an illustra-

tion of when a searcher employing SS2-NT would stop, and on the right, an example of

SS3-NC . We use SS2-NT @3 and SS3-NC @3 . Under SS2-NT , a searcher would

stop at rank 5, while a searcher would stop at rank 7 when employing SS3-NC .

5.2.2 Goal/Satisfaction-Based

Analogous to frustration and disgust are the satisfaction, satiation and number-based stop-

ping heuristics (Cooper, 1973b; Simon, 1955; Gibb, 1958). Rather than focus upon the frus-

tration or disgust that a searcher might experience when confronted with unaĴractive result

summaries, satisfaction-based stopping heuristics – explained in Section 3.2.1.1 – consider a

searcher encountering a number of aĴractive result summaries before becoming sufficiently

satisfied with what they have found before stopping.

■ SS4-SAT Satiation A searcher using this stopping strategy will stop examining

content after encountering x4 aĴractive result summaries.
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SS2-NT @ 3 SS3-NC @ 3

Figure 5.2 An example of the two frustration rules, SS2-NT (left) and SS3-NC (right),

both three unhelpful (non-relevant) result summaries, under the same query and results. Given

that SS2-NT considers the total number of result summaries judged to be unhelpful, a searcher

employing this stopping strategy would stop at rank 5 in the example above. Considering a set of

contiguous unhelpful summaries, a searcher using SS3-NC would stop at rank seven.

While we consider this stopping strategy in the context of result summary level stopping,

such a stopping strategy may not be particularly useful when operationalised at this stop-

ping decision point. Consider the scenario where a searcher issues a poor query, yield-

ing next to no summaries deemed to be worthy of further examination. In this scenario, a

searcher fully complying with SS4-SAT may struggle to find enough documents to reach

their goal. This will mean that the searcher wastes time examining poor results. Such a

stopping strategy may be beĴer suited to an overall search goal – or at the session level
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stopping decision point. As a means of potentially avoiding a searcher becoming ‘trapped’

in an examination of a fruitless set of results, time limits could be imposed. We also consider

an additional stopping strategy to alleviate this issue, as discussed below.

5.2.3 Combining Frustration and Satisfaction

The next stopping strategy proposed considered a combination of both the frustration/dis-

gust and satisfaction/satiation stopping heuristics. This was named the combination heuristic

by Kraft and Lee (1979). Employing this stopping strategy, a searcher would stop either

when they became frustrated or were satisfied with the number of aĴractive summaries

that they had observed – whichever of the two were met first. As such, we can convert this

into a fifth stopping strategy, defined below.

■ SS5-COMB Combination — Frustration/Satiation A searcher using this stopping

strategy will employ both frustration (disgust) and satisfaction (satiation) stopping

heuristics to determine when to stop, ceasing their examination of the SERPs contents

for the first stopping heuristic whose criterion is met.

While SS4-SAT can be selected as the operationalised satisfaction/satiation component,

one of either SS2-NT or SS3-NC can be selected for the frustration/disgust component

of this fifth stopping strategy. We discuss this in our general methodology in Section 6.4.2.6

on page 173. Note that like SS2-NT and SS3-NC , we include items issued from previous

queries of the same search session.

5.3 Difference Threshold

The next set of stopping strategies are based upon the difference threshold heuristic, as out-

lined in Section 3.2.1.2 on page 83. To operationalise this stopping heuristic, we considered
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the difference between a given result summary’s snippet text and the snippet texts of pre-

viously examined result summaries. Here, the idea was that as a searcher examined result

summaries on a SERP, summaries may be encountered that are not sufficiently different from

what had already been observed.3 When encountering a result summary that is not suffi-

ciently different, a searcher subscribing to the difference threshold stopping heuristic will

then decide to stop examining results.

From this stopping heuristic, we devised two separate stopping strategies where the differ-

ence between snippet texts was computed in different ways. The first approach considered

the term overlap difference.

■ SS6-DT Difference, Terms This stopping strategy compares occurrences of terms

in a given result summary’s snippet text against all terms in previously examined re-

sult summary snippets. If |scurr∪sprev|
|scurr| > x6, the new snippet text is then considered as too

similar to previously examined result summaries. The searcher then stops examining

result summaries on the present SERP.

Essentially, SS6-DT considers that if more terms overlap between old and new, the greater

the chance that the new result summary would not contain any new information. In the

definition above, scurr denotes the terms of the currently examined result summary snippet,

sprev denotes terms from all previously observed result summary snippets4, and x6 is the

threshold at which the searcher will stop.

The second difference-based stopping strategy utilised Kullback–Leibler Divergence (Kull-

back and Leibler, 1951) to determine how different a given result summary is from result

summaries that have been previously examined.

3This means that searchers wouldn’t be learning anything new (Nickles, 1995), and thus, under the eyes
of such a strategy, would be wasting their time.

4All previously result summaries could be either session-based or query-based. This is an implementation
decision, which we discuss in Section 6.4.2.6 on page 173.
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■ SS7-DKL Difference, KL-Divergence Here, KL-divergence is used as a means for

comparing a given result summary (represented as a bag of words) against those pre-

viously observed. If the resulting value is less than threshold x7, the present result

summary is considered to be too similar, and the searcher stops. The searcher then

abandons the present SERP.

Details related to the implementation of the difference heuristic stopping strategies, as well

as the parameter threshold seĴings used, can be found in Section 6.4.2.6.

5.4 Instantaneous Intake

In Section 3.3.1.2, we discussed several stopping heuristics that were derived from OFT

and IFT. The IFT-based heuristic considers a searcher’s optimal stopping point at which a

forager5 should stop, as suggested by the underlying models of IFT. This is calculated by

observing a searcher’s average rate of gain. If the value of knowledge gained drops below

this threshold, the searcher should stop, as graphically illustrated in Figure 3.8 on page 94.

We now propose an eighth stopping strategy, this time based upon the notion of the average

rate of gain accrued by a searcher.

■ SS8-IFT Optimal Stopping With this stopping strategy, a searcher is assumed to

have some idea of the average rate of gain (denoted as x8). If the rate of gain from the

observed documents thus far does not exceed x8, the searcher then stops and proceeds

to undertake the next action as dictated by the CSM.

Computing the average rate of gain is a non-trivial problem. We leave specific implemen-

tation details of how this was achieved – along with other implementation details of the

stopping strategy – to our methodology, reported in Section 6.4.2.6 on 173.
5As we discussed in Section 3.3.1, a forager can be considered analogous to a searcher seeking information.
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5.5 Time-Based

In addition to the optimal stopping point approach discussed above, Section 3.3.1.2 also

outlined a number of different OFT-inspired stopping heuristics that primarily used time

as a measure of determining when to stop. From these approaches, we create two further

time-based stopping strategies.

■ SS9-TIME Time-based Basedupon the time heuristic (Charles-Dominique and Mar-

tin, 1972; Krebs, 1973), a simulated searcher using this stopping strategy will abandon

a SERP after x9 seconds have elapsed since they entered it.

■ SS10-RELTIME Time, Give-Up Using the give-up heuristic as defined by Krebs et al.

(1974), a searcher will abandon a presented SERP x10 seconds after the last document

that was found and considered relevant/useful (saved) to the given information need.

Given these stopping strategy definitions, SS9-TIME performs akin to SS1-FIX , in the

sense it offers a fixed interaction time on each SERP, and is agnostic of the quality of the

presented ranked list. Conversely, SS10-RELTIME offers a more adaptive solution similar

to SS2-NT and SS3-NC , basing the time at which the searcher stops x10 seconds after a

relevant document was last saved.

For this thesis, we also consider the combination heuristic proposed by McNair (1982). The

stopping strategy that we propose based upon this heuristic assumes that a searcher has

been able to acquire an idea of how potentially relevant summaries are distributed across

the results presented within the SERP.

■ SS11-COMB Combination — Time and satiation Encountering a SERP expected to

yield a high volume of relevant content early on (high scent), a searcher will employ

the satisfaction/satiation stopping heuristic. However, if the SERP is judged to yield
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Appears
Useful?View SERP High Yield

Early? Examine SnippetSS4-SAT

SS10-RELTIME

Yes

No

Yes

Use...

Use...

Figure 5.3 An excerpt of the CSMwith the additional decision point that SS11-COMB incor-

porates within the searcher model. After deciding that individual result summaries within a SERP

are worth examining in more detail, a searcher will then also have to decide whether the pre-

sented SERP will yield a high number of fruitful results early in the rankings, or trickle relevant

material over greater depths (or not at all). The additional decision point and selected stopping

strategies are highlighted within a blue box.

relevant items over greater depths or is judged to be of poor quality (low scent), the

give-up time-based heuristic is used instead.

From our definitions above, SS4-SAT is used for the satisfaction/satiation component,

and SS10-RELTIME is used for the give-up time heuristic component. The combination

stopping strategy aĴempts to ensure that a searcher does not waste time on a SERP that

appears to offer a low yield, but conversely capitalises upon patches that present a high

yield. Of course, determining the perceived yield is a question of implementation; refer

to Section 6.4.2.6 for more information on how we implemented this particular stopping

strategy. Essentially, this combination stopping strategy incorporates an additional deci-

sion point within the searcher model, where one must determine if the presented SERP is

high yield early on or not. This is illustrated as an excerpt of a flowchart in Figure 5.3.

5.6 Measure-Based

The final proposed stopping strategy is based upon an established IR measure. Rank Biased

Precision (RBP) – as discussed in Section 2.4.1.5 – is utilised as the basis of our final stopping
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strategy. Under RBP, the decision to continue to the next result in a ranked list is based

upon a patience parameter or the probability of continuing. Essentially, RBP states that the

probability of continuing decreases as a searcher progresses further down a ranked list.

■ SS12-RBP Rank-Biased Precision With this stopping strategy, a searcher will stop

examining a SERP when the likelihood of continuing falls below the RBP probability

computed at that rank, given a patience parameter x12.

By including such a measure, we provide a platform for which contemporary IR measures

can be compared against the performance of other stopping heuristics defined in the liter-

ature. Implementation details, such as how we implemented the probabilistic component,

can be found in Section 6.4.2.6.

5.7 Chapter Summary

This chapter has outlined 12 different stopping strategies, all of which are based upon prior

stopping heuristics and an established IR measure. As such, this chapter provides a possible

answer to HL-RQ2 . In subsequent chapters of this thesis, we take these stopping strategies

forward, discuss the specifics of how they were implemented in Section 6.4.2.6 (page 173),

and how they were employed in our empirical experimentation.
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Chapter 6

General Methodology

In this chapter, we provide an overview of the general methodology we used in this thesis.

Part III reports on a number of empirical contributions, where we explore how stopping

behaviours vary under different search contexts. This chapter is broken down into six main

components that we summarise below.

■ Context, Data, Tasks and Retrieval System This involves the search context, docu-

ment corpus, topics, tasks and retrieval system used throughout this thesis.

■ User Studies We discuss the general methodology behind two user studies designed

to examine how different factors affect stopping behaviours.

■ Interaction and Performance Data We discuss how we extracted key measures from

the interaction data obtained from the two user studies.

■ Simulations of Interaction Making use of the aforementioned interaction data, we

outline the methodology of an extensive series of simulations of interaction designed to

replicate the user studies.
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■ Examining Performance We evaluate the performance of simulated searchers, allow-

ing us to examine what stopping strategies offer the best levels of performance under

different search contexts.

■ Comparing Searchers Finally, we outline the approach for comparing the perfor-

mance of real-world searchers against simulated counterparts, meaning we can deter-

mine what configurations offers the closest approximations to real-world behaviours.

The remainder of this chapter is devoted to a discussion of each of these components. We

first begin with a discussion of the basic setup of our experiments, considering the retrieval

system and document collection used. We also consider the basic instructions that we issued

to subjects of our user studies, such as the simulated search task that we employed.

6.1 Context, Data, Tasks and Retrieval System

The context for all experiments reported in this thesis is news search. We employ a widely

used corpus of news articles and associated topics, with queries issued against the retrieval

system described in Section 6.1.2.

Given the context of news search, we employ a simulated work context with which subjects –

both real-world and simulated – conform to. As outlined by Borlund and Schneider (2010)

and Li and Hu (2013), simulated work contexts are designed as close as possible to the situa-

tions facing real searchers, and thus provide the context that elicits a searcher’s interactions

with a retrieval system. Subjects who participated in our user studies were instructed to

imagine that they were newspaper reporters. They were required to identify articles to

write stories about topics provided to them (refer to Section 6.1.3). Depending upon the

search task given to the subjects, subjects would then save articles that they believed were

relevant to a given topic – or were relevant, and discussed a new aspect of the said topic.1

1Refer to Section 6.2 for further details on the different goals that we imposed upon searchers.
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6.1.1 Document Corpus

Under the context of news search, we employed a corpus of newspaper articles. The TREC

AQUAINT corpus was selected for all experimentation work in this thesis. The corpus con-

sists of a total of 1, 033, 461 news articles (referred to as documents) from the period ranging

1996-2000. All of the documents were collected from three newswires, namely: the Associ-

ated Press (AP); the New York Times (NYT); and Xinhua (XIE). The AQUAINT corpus was

used as it has been extensively used in prior research. Studies include for example: Collins-

Thompson et al. (2004); Ofoghi et al. (2006); Baillie et al. (2006); Azzopardi and Vinay (2008);

Kelly et al. (2009); Azzopardi et al. (2013); Maxwell and Azzopardi (2014); Harvey and

Pointon (2017); Yang and Fang (2017); and Wilkie and Azzopardi (2017). Basic corpus statis-

tics can be found in the illustration below.

Total Number of 
Terms in Corpus

Number of
Documents in Corpus

Unique Terms

Mean Document Length (terms)

1,033,461 284,597,335275

707,778

6.1.2 Retrieval System

The AQUAINT corpus was then indexed using the Whoosh IR Toolkit.2 We applied Porter

stemming and removed stopwords as per the 421-term classical stopword list by Fox (1992).3

During the indexing process, we also removed documents with duplicate titles. With doc-

uments originating from newswires, we found many occurrences of documents with the

same title. Documents discussing ongoing events were continually revised as new informa-

tion about the event arose. For documents with duplicate titles, we retained the document

2Whoosh can be freely acquired using the pip Python package manager (via PyPi) – documen-
tation for Whoosh can be accessed at http://whoosh.readthedocs.io/en/latest/intro.html.
LA 2018-05-18 The corpus was indexed with Whoosh 2.7.4.

3More information on the indexing process can be found in Section 2.2.1.
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with the latest timestamp. This document represented the final version of the published

article, containing the most recent or up-to-date information.

From the indexing process, a 3.8GB index was produced. The index contained a total of

959, 678 indexed documents. The Whoosh IR toolkit was employed to issue queries against

the index. All ranked results for queries were computed with BM25, where β = 0.75 and

k1 = 1.2 (refer to Section 2.2.2.3 on page 38). Terms in all issued queries were ANDed together

to restrict the set of retrieved documents to those that contained all of the query terms. This

decision was also taken as many retrieval systems implicitly AND terms together.

6.1.3 Topics

Five topics were also selected from the 50 provided in the TREC 2005 Robust Track (as used

with the AQUAINT collection) as outlined by Voorhees (2006). These topics were used

throughout experimental work reported in this thesis and were selected based on evidence

from a previous user study (of similar nature) conducted by Kelly et al. (2009). Evidence

showed that the topics offered similar levels of difficulty. The five topics, along with a short

description of what constitutes a relevant document, are listed below. These summaries are

derived from the TREC topic descriptions that are provided as part of the TREC 2005 Robust

Track. Figure 6.1 provides an illustration of the five topics, along with their descriptions.

In addition, Table 6.1 provides basic summary statistics of the number of non-relevant and

relevant4 documents that were identified by the TREC assessors. The remaining 45 topic

descriptions are not used.

■ Topic 341 Airport Security For this topic, relevant documents discuss additional

security measures that were taken by international airports around the world. Rel-

evance is only denoted when a document discusses measures that go beyond ba-

sic passenger and carry-on luggage screening. For example, AQUAINT document
4The TREC 2005 Robust Track uses graded judgements for relevant documents; these are identified as

somewhat (1) and definitely (2) relevant.
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TREC Robust Track 2005
Topic 341
Airport Security

TREC Robust Track 2005
Topic 347
Wildlife Extinction Piracy

TREC Robust Track 2005
Topic 367

A relevant document would discuss 
how effective government orders to 
better scrutinise passengers and lug-
gage on international flights and to 
step up screening of all carry-on bag-
gage has been.  
 

A relevant document would contain 
reports on what new steps airports 
worldwide have taken to better scru-
tinise passengers and their luggage on 
international flights and to step up 
screening of all carry-on baggage.

TREC Robust Track 2005
Topic 408

Tropical Storms

The spotted owl episode in America 
highlighted U.S. efforts to prevent the 
extinction of wildlife species.  What is 
not well known is the effort of other 
countries to prevent the demise of 
species native to their countries.  
What other countries have begun ef-
forts to prevent such declines?  

A relevant item will specify the coun-
try, the involved species, and steps 
taken to save the species.

What modern instances have there 
been of old fashioned piracy, the 
boarding or taking control of boats?  
 

Documents discussing piracy on any 
body of water are relevant.  Docu-
ments discussing the legal taking of 
ships or their contents by a national 
authority are non-relevant.  Clashes 
between fishing vessels over fishing 
are not relevant, unless one vessel is 
boarded.

TREC Robust Track 2005
Topic 435

Curbing Population Growth
What tropical storms (hurricanes and typhoons) have 
caused significant property damage and loss of life?  
 

The date of the storm, the area affected, and the extent of 
damage/casualties are all of interest.  Documents that de-
scribe the damage caused by a tropical storm as "slight", 
"limited", or "small" are not relevant.

What measures have been taken worldwide and what 
countries have been effective in curbing population 
growth?  
 

A relevant document must describe an actual case in which 
population measures have been taken and their results are 
known. The reduction measures must have been actively 
pursued; that is, passive events such as disease or famine 
involuntarily reducing the population are not relevant.

++++ ++ ++ ++

Figure 6.1 The titles and descriptions of the five TREC topics used in experimental work. Topics

are extracted from the TREC 2005 Robust Track, as outlined by Voorhees (2006). Descriptions

provide an explanation as to what constitutes a relevant (and often non-relevant) document.

NYT19980616.0123 discusses San Francisco International Airport’s aĴempts at intro-

ducing a robot sniffer, aĴempting to look for nitroglycerine in luggage.

■ Topic 347 Wildlife Extinction This topic concerns wildlife extinction, and what ef-

forts have been taken by countries other than the U.S. to counter the decline in en-

dangered wildlife. Relevant documents would explicitly mention the country, the

species concerned, and the efforts the state or other governmental agency took to pre-

vent a decline in numbers. For example, document XIE20000531.0205 discusses the

breeding programme undertaken by China to bolster the number of Siberian Tigers.
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Table 6.1 Basic statistics for the five TREC topics selected, including the number of documents

judged to be relevant (with graded judgements) and explicitly non-relevant by the TREC assessors.

Non-Rel. TREC Relevant

Total Total Somewhat Definitely Total

Topic 341 617 580 33 4 37

Topic 347 665 500 22 143 165

Topic 367 621 526 11 84 95

Topic 408 685 502 57 126 183

Topic 435 707 555 98 54 152

■ Topic 367 Piracy Instances of modern piracy are considered relevant to this topic –

not in the sense of software piracy, but the act of a water going vessel being boarded by

individuals wishing to hijack it. Document APW19980601.1065 provides an example

of this – the Petro Ranger, a large fuel tanker, was boarded by pirates in 1998 in the

South China Sea. To be relevant to the topic, the name of the vessel and the body

of water it was hijacked on must be mentioned – those discussing instances of when

states intercepted vessels are not relevant.

■ Topic 408 Tropical Storms Documents discussing major tropical storms are rele-

vant, where the storm is reported to have caused significant damage and a large num-

ber of casualties. This is a particularly timely topic for the document corpus consid-

ered, as the 1998 hurricane season in the Caribbean has been reported to be one of the

most costly in history.5 For example, document APW19980921.1265 discusses the

effects on Puerto Rico of Hurricane Georges in September 1998, leaving three dead,

many houses damaged, and thousands homeless.

5This is reported by the US National Oceanic and Atmospheric Administration (NOAA), as seen at http://
www.outlook.noaa.gov/98hurricanes/. LA 2018-05-18
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■ Topic 435 Curbing Population Growth The final topic considers efforts that have

been made by countries around the world to stem the ever-increasing human pop-

ulation. Documents discussing this issue are only relevant to the topic if the results

to a case have been made public, and a reduction in a country’s population has been

actively pursued. The document must mention the country and the measures that the

state or governmental agency pursuant to bring about a fall in population. As such,

events like famines that resulted in a fall in the population are not relevant. A perhaps

well-known example of a country pursuing a reduction in its population is the Chi-

nese one-child policy, enacted in the late 20th century. Document NYT19981031.0070

discusses the Chinese government’s efforts to curb its expanding population at the

time, with sexual education and heavy financial penalties for additional children.

For all user studies reported in this thesis, we selected topic 367 as a practice topic ,

permiĴing participating subjects to familiarise themselves with the experimental system

used. We therefore do not report any results from interactions that took place with this

topic when reporting the user studies. In the next section, we outline the different search

tasks that were undertaken by subjects of the user studies.

6.2 User Study Methodology

Using the aforementioned corpus, retrieval system and topics, we now move onto a discus-

sion of the common methodology employed across the two user studies. These are detailed

in Chapters 7 and 8. While intricate details of each study’s methodology do indeed vary

(such as a summary of the subjects that were employed), these are nevertheless common

components. These are discussed in this section. As a reminder, the two studies examine:

■ the length (and thus quality) of snippets presented in result summaries are varied

(Chapter 7, conducted between July and August 2016); and
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■ the overall search goal (time constraints vs. relevancy accruement) and task goal (ad-

hoc vs. aspectual) are changed (Chapter 8, conducted in January 2018).

Specifically, the methodology used for these studies allowed us to determine how the stop-

ping behaviour of a searcher varies when these conditions and interfaces were varied. We

discuss the specific interfaces and conditions that we trialled in subsequent chapters of this

thesis.

Both user studies were undertaken using a custom built experimental framework called

TREConomics.6 The pure-Python framework has been developed over a number of years.

It permits for straightforward deployment of IIR-based studies that have examined a vari-

ety of different aspects. It has been successfully used in a number of prior works, includ-

ing those by: Azzopardi et al. (2013); Maxwell and Azzopardi (2014); Kelly and Azzopardi

(2015); Edwards et al. (2015); and Crescenzi et al. (2016).

6.2.1 Experimental Details and Flow

Each user study was designed to last for 45 to 50 minutes, which included the completion of

requested search tasks and surveys. Both experiments followed a similar structure, where

subjects would complete a number of surveys before beginning a search task, and were

then asked to complete a further survey after they had finished their task. These surveys,

as discussed in Section 6.3.4, permiĴed us to gather a series of usability measures (refer to

Section 2.4.2) about the perceived experiences that subjects had when interacting with the

various interfaces and conditions that were trialled.

The basic structure of both user studies was as follows.

Subjects began by reading the experiment briefing sheet. If they approved of the ex-

perimental outline, they then agreeing to continue.

6TREConomics can be accessed at https://github.com/leifos/treconomics. LA 2018-05-15
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A demographics survey was then completed.

Subjects then aĴempted the practice task, using the practice topic. This allowed subjects

to familiarise themselves with the system and its interface.

Subjects would then complete the various search tasks set out for them. Each task

consisted of three steps:

– a pre-task survey, capturing a subject’s prior knowledge about the topic;

– the search task itself; and

– a post-task survey, capturing the subject’s experiences regarding searching for

information about the given topic.

Upon completion of the required search tasks, subjects would then respond to a post-

experiment survey. In this survey, subjects were asked general questions about their

experience across all the different tasks.

Finally, upon completion, subjects would be presented with a results screen, provid-

ing a summary of their performance. Performance for each subject was presented on

a per-task basis. When the subject proceeded to the next step, they were presented

with a message informing them the experiment has concluded.

Subjects undertook a total of four search tasks. For each of these tasks, different interactions

and experiences were captured by the TREConomics framework. Including the practice task

at the beginning of each experiment, this took the total number of search tasks per subject

up to five. Following a within-subjects study design , the four search tasks – each using a

different topic as described in Section 6.1.3 – permiĴed us to trial one of the four experimen-

tal conditions/interfaces in each study. The topics and interfaces/conditions were assigned

to subjects using a Latin-square rotation to minimise ordering effects. A within-subjects

design increases the statistical power – the number of ‘subjects’ is higher than a between-

subjects design. Limitations of such a design include issues such as fatigue. AĴempts were

made to limit this by being mindful of the time required.
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6.2.2 Experimental Search Interface

In this section, we discuss the experimental search interface that was used by subjects of

the user studies.7 The interface would be familiar to anyone who had used a web-based

retrieval system, meaning that the learning curve for using the interface would most likely

be low. Upon commencement of the experiment, the interface would launch in a fixed-size

popup window (refer to Section 6.2.4.3) of the web browser being used.

The interface consists of three main views, the two most important being shown in Fig-

ure 6.2. The views were:

■ the Search Engine Results Page (SERP), presenting the query box and results for an

issued query;

■ the document view, providing the full text of a document; and

■ the saved documents list, providing a list of the documents that each subject had saved

during the search session.

In addition to the three views above, we also provided a topic view, which, when requested,

would open a further popup window that contained a description of the topic. This was to

serve as a reminder. Subjects were provided the topic description in full before the search

task began.

Common to all views was the inclusion of the blue navigation bar at the top of the popup

window. As we discuss further in Section 6.2.4.3, this bar was included to provide a series of

different navigational links. Such an example would be on the document view page, which

contained a link to return to the originating SERP. Where applicable, we also provided a

link for the subject to end the search task if he or she felt that they were satisfied.

7Slight modifications to the search interface were made to the goal-based study, as we discuss in Sec-
tion 8.2.1 on page 250.
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Back to Results

Save

Figure 6.2 Example screenshots of the basic search interface used as part of TREConomics.

On the left is a screenshot of typical experimental SERP for the query wildlife extinction.

The right shows the document view, showing the option for subjects to Save a document that

they consider relevant to the given topic. Buttons on the document interface are zoomed.

6.2.2.1 The SERP

As can be observed from the left screenshot in Figure 6.2, the SERP does not look all that

different from a SERP on a contemporary web retrieval system – sans right rail components,

the lack of which we discussed previously in Section 2.3.2.1. The experimental SERP pro-

vides the query box at the top, allowing subjects to enter their query term(s), and a buĴon

to submit their query, named Search. The ←↩ key could also be used to submit a query,

as is standard in contemporary retrieval system interfaces.

Once submiĴed, results were displayed underneath the query box. The issued query was

provided, along with an approximation of how many pages of results were provided to the

searcher from a given query. This hints that pagination is utilised – with 10 results per page

shown. At the boĴom of each SERP were links that would allow the searcher to move to

the previous and next page of results.

Prev. Page Next Page
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Result summaries were shown as discussed in Section 2.3.2.1. The title, the source, and any

snippet text were all provided. Given that the experiments were based on news search, the

source is the name of the newswire from which the document originates.

Chinese expert says South China tiger may be extinct in wild
...be too few to save the species from extinction, a Chinese wildlife expert said Thursday. The last... 
in May 1996, a report by the World Wildlife Fund for Nature said fewer than 50...
Associated Press Worldwide News Service

Chinese expert says South China tiger may be extinct in wild
...be too few to save the species from extinction, a Chinese wildlife expert said Thursday. The last... 
in May 1996, a report by the World Wildlife Fund for Nature said fewer than 50...
Associated Press Worldwide News Service

Unvisited Link

Visited Link

When a subject clicked on the link, he or she would then be taken to the document view

(discussed below), displaying the associated document in its entirety. Standard hyperlink

colours were employed – blue for unvisited, and purple for visited.

6.2.2.2 The Document View

The right screenshot in Figure 6.2 illustrates the document view. The view provides the

title, the document source (newswire), the date at which the document was created, and

the full text of the document. On the right rail of the page, subjects were provided with two

buĴons – one to return them to the originating SERP, or another to save the document.

The act of saving a document is a crucial component to both studies we discuss in this

thesis. It provided us with a mechanism to determine what documents that subjects thought

were relevant to the associated topics. From there, we could also use this series of saved

documents to calculate a subject’s performance.

6.2.2.3 The Saved Documents View

The third key view allowed subjects to view a list of documents that they had previously

saved as relevant to the given topic. This list of documents also provided buĴons allowing

subjects to change their decisions as to what constituted a relevant document.
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Figure 6.3 An excerpt from the interaction log of the user study presented in Chapter 7. A

sequence of interactions are shown that were logged by the TREConomics framework.

6.2.3 Capturing Interactions and Survey Responses

In addition to the interface, the TREConomics framework provided extensive logging ca-

pabilities to capture a variety of different events triggered by subjects as they performed

search tasks (with survey responses saved separately to a RDBMS). This resulted in the

generation of an experiment log file, capturing the date, time, searcher and topic for each

event that was logged. Figure 6.3 provides an anonymised excerpt from the interaction log

of the user study presented in Chapter 7.

The figure illustrates the different actions that were logged from when a searcher begins in-

teractions with the query box (QUERY_FOCUS), to issuing a query (QUERY_ISSUED, complete

with the terms of the query), to clicking a document (DOC_CLICKED), and, finally, to sav-

ing the document (or considering it relevant to the given topic, DOC_MARKED_RELEVANT).

A detailed discussion of the different behavioural measures that we examined from the

interaction log is detailed in Section 6.3.

6.2.4 Crowdsourcing Considerations

An important factor in planning any user study is the economics of collecting input from

subjects. Where do the subjects come from? How do we recruit them? A traditional, lab-based
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study as discussed in Section 2.3 typically involves a significant investment in time and

monetary cost from the researchers conducting the experiment (Spool and Schroeder, 2001).

For both user studies previously detailed, we employed a crowdsourced approach to our

experimentation. Crowdsourcing is the practice of obtaining input into a task by enlisting

the services of a number of people, recruited over the Internet.

As highlighted by Zuccon et al. (2013), crowdsourcing provides an alternative means for

capturing user interactions and search behaviours. Greater volumes of data can be ob-

tained from more heterogeneous workers at a lower cost – all within a shorter timeframe.

Of course, pitfalls of a crowdsourced approach include the possibility of workers complet-

ing tasks as efficiently (but not effectively) as possible, or submiĴing their tasks without

performing the requested operations (Feild et al., 2010).

Despite these issues, it has been shown that there is liĴle difference in the quality between

crowdsourced and lab-based studies (Kelly and Gyllstrom, 2011; Zuccon et al., 2013). Nev-

ertheless, quality control is a major component of a well-executed crowdsourced experi-

ment, with examples in a similar research area including work by Kazai et al. (2011) and

Crescenzi et al. (2013).

Using crowdsourcing for the two user studies, we detail in the remainder of this section the

precautions that were taken, discussing both the requirements for the subjects themselves,

and their device’s setup. We also provide a discussion of the crowdsourcing platform used.

6.2.4.1 Platform Details

Both studies were run over the Amazon Mechanical Turk (MTurk) platform. Workers8 from

the platform each performed a single task (or, to use MTurk terminology, a Human Intelli-

gence Task (HIT), with a single HIT corresponding to the entire experiment. This is in con-

8In this section, a worker refers to an individual undertaking the experiment on the MTurk platform. This
term is considered interchangeable with a subject.
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trast to many other crowdsourced studies, where workers would typically undertake small

(typically decision-based) HIT transactions. This decision was taken so that the experiment

would closely resemble a laboratory-based experiment.

6.2.4.2 Subject Requirements

Due to the expected length that workers would take to complete the two studies9, workers

who completed either study in full were reimbursed for their time with US$9 – greater

than the hourly US$7.25 minimum wage set by the U.S. federal government.10 Workers

interested in undertaking either of the two studies were required to meet a minimum set of

criteria to be eligible to participate. We required that workers were:

■ from the U.S.;

■ native English speakers;

■ possessed a HIT acceptance rate of at least 95% (from prior experiments); and

■ had at least 1000 prior HITs approved.

Requiring a high HIT acceptance rate reduced the likelihood of recruiting workers who

would not complete the study in a satisfactory manner. Recruits were forewarned about

the length of the HIT, providing them with a chance to abandon the experiment if they felt

the anticipated experiment time was too long to their liking.

6.2.4.3 Technical Requirements

Given worker limitations, we also enforced a number of technical constraints. Workers

aĴempting each experiment were required to be either using a desktop or laptop computer
9Note that two different sets of workers were used – the studies were run at different times.

10This was correct at the time of writing; value acquired from theU.S. Department of Labor at https://www.
dol.gov/whd/minwage/america.htm LA 2019-02-25 .
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with a screen sufficiently large enough to display the experimental interface without having

to resort to excessive scrolling. This also ensured a consistent number of result summaries

would be present on different worker’s screens. As such, we imposed a minimum display

resolution of 1024× 768 for both studies.

Conducted through a web browser, we wanted to ensure that only the controls provided

by the experimental apparatus were used, meaning that the popup window that we pre-

sented in Figure 6.2 had all other browser controls disabled to the best of our ability (i.e.

browser history navigation, etc.). The experimental system was tested on several major

web browsers (including Google Chrome, Mozilla Firefox, Apple Safari and Microsoft Edge),

across different operating systems (including Microsoft Windows, Apple macOS and several

Linux distributions, focusing on Ubuntu). This gave us confidence that a similar experience

would be had across different system configurations.

6.3 Extracting User Study Data

As discussed in Section 6.2.3, the TREConomics framework provided the necessary infras-

tructure for us to log the various interactions and capture survey responses from each indi-

vidual subject across the two user studies trialled. In this section, we provide details on the

different aspects that we subsequently used to evaluate searcher behaviours, performances

and user experiences. Figure 6.4 provides a graphical illustration of how we split these

various aspects into four distinct categories.

The first three categories can be extracted directly from the interaction log that recorded

different interactions by each subject as they progressed throughout each experiment. The

categories we considered are listed below.

■ Behavioural measures capture the broad interactions that take place, such as the

number of documents that a searcher examined in detail.
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User Experience

Performance
What interface produced 

summaries that were the most 
readable to you?

P@10

Interactive Precision

Depth per Query
(Average Stopping Depth)

Performance

Title only

Title + 1 snippet

Title + 2 snippets

Title + 4 snippets

Time-Based

Log

Interactions

Time per Document

Time per QueryNumber of Queries Issued

Figure 6.4 An illustration of the different types of measures that are captured, and from what

sources. Interaction, time-based and performance measures are derived from the user study ex-

periment log (with TREC QRELs used in conjunction with the interaction log to compute a subject's

performance). User experience metrics are collated from a number of different surveys.

■ Performance measures could then be extrapolated, with aid of TREC QRELs to as-

certain the performance of subjects.

■ Time-Based measures can also be derived from directly examining the interaction

log, measuring the time spent between different logged interactions.

In addition to these categories, we also considered a number of user experience measures

that were derived from a series of surveys. As highlighted in Section 6.2.1, surveys were

presented to subjects at a number of different stages throughout the experiment. In conjunc-

tion with the three log-based categories defined above, the user experience measures could

be used to complement the empirical evidence to test whether the interactions of subjects

actually correlated with their perceived experiences.

In all, the interactions (including aspects such as clicks and time-based measures) were used

as a grounding for our subsequent user simulations of interaction. How we grounded these

simulations is discussed in Section 6.4.2. The grounding was undertaken in conjunction
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with an analysis of the interactions recorded, examining how stopping behaviours varied

under different interfaces and conditions.

6.3.1 Behavioural Measures

Recorded solely from interaction log data, the basic interactions covered a large propor-

tion of the aspects we considered in our analyses. The key behavioural measures that we

examined are listed below.

■ Queries The number of queries that had been issued by subjects.

■ Documents The number of documents that were examined (viewed).

■ SERPs The number of SERPs that were examined.

■ Examination Depth The depth to which subjects clicked on (and hovered over) result

summaries on the associated SERPs.

From these measures, we could ascertain whether searcher behaviours varied when a cer-

tain condition or interface was changed – allowing us to address questions such as: whether

snippet length affects the depth to which subjects examine content? To compute depths, click and

hover depths were used – we however only report click depths in subsequent chapters. The

reasoning for this is discussed in Section 6.3.2 below. All of the aforementioned measures

were computed on a per-session basis. Means and totals for each measure were computed

for each session (where appropriate).

6.3.2 Time-Based Measures

As discussed in Section 6.2.3 – and also illustrated in Figure 6.3 on page 147, each logged

interaction was saved with a timestamp which allowed us to determine when each event
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occurred.11 With these timestamps, we could measure the time between two associated

events, thus yielding the time taken to perform a given activity. We considered five key

time-based measures across both user studies. These are enumerated below, along with a

description of the log events.

■ Queries This measure considered the time spent by a searcher issuing queries to

the retrieval system. This was captured from the point at which the searcher focuses

upon the query box (QUERY_FOCUS) to the point at which the query was submiĴed

(via the QUERY_ISSUED event, either by pushing the Search buĴon, or the subject

hiĴing ←↩ on their keyboard).

■ SERP Content This measure considered the total amount of time that a searcher

spent on a given SERP. This was captured as the point at which the subject was pre-

sented with the SERP itself (VIEW_SEARCH_RESULTS_PAGE) to the point at which they

left – either through the issuance of a further query, clicking on a document hyperlink,

or navigating to one of the other views of the experimental interface.

– Result Summaries As discussed below, this was the mean time spent by a sub-

ject examining individual result summaries on a given SERP. This was included

within the SERP content time.

■ Documents This measure considered the time a subject spent on the document view.

This was captured as the point at which the document was presented on the subject’s

screen (DOC_MARKED_VIEWED) to the point at which they left, which, like the SERP

content time, could be determined from a number of different events, such as the

event logged when returning to a SERP (VIEW_SEARCH_RESULTS_PAGE).

The fifth time-based measure that we considered in our reporting of results was an amal-

gamation of the four listed above.
11Timestamps were saved to the nearest thousandth of a second, as per the specification of the standard

Python logging framework – refer to https://docs.python.org/2/howto/logging-cookbook.html

LA 2018-05-29 for an example of the framework in action.
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■ Total Session Time The total session time was the addition of each of the times mea-

sured above. This was essentially the same as from the very first QUERY_FOCUS event

to theTASK_COMPLETED event, which is either triggered by an interface timeout (Chap-

ter 7), or the subject ending the task herself or himself (Chapter 8).

It should be noted that in this thesis we report all durations in seconds . We considered a

number of different options when measuring each of the above. For example, querying time

is measured only as the time the searcher spends interacting with the query box. Subjects

may well have spent longer considering what terms to enter, perhaps as they were browsing

existing content. However, this could not be captured; our logging tools were not capable

of capturing this additional time.

A further option used was the time per result summary. This was computed by dividing

by the click depth reached on a given SERP by the duration between the first hover event,

where the subject hovered his or her cursor over the <div> container of a result summary,

and the time at which they left the SERP. The first hover event was chosen as it was deemed

to be a good indicator of the beginning of interaction with result summaries. The mouse

cursor has been shown in prior studies to correlate strongly with the subject’s gaze on the

screen (Chen et al., 2001; Smucker et al., 2014). However, issues with network latency meant

that several of the hover events were logged in the incorrect order, making the approach

of measuring each individual HOVER_IN and HOVER_OUT event unreliable. Using the click

depth and total SERP time provided us with a value with which to work. The approach also

assumes that subjects examined each result summary on a SERP up to a particular depth,

spending an equal amount of time examining each. This was sufficient for the work in our

studies to ascertain whether or not a variation in the task goal or presentation of results

affected the depths to which subjects examined results.

These time calculations and approximations were also used as a means for providing ground-

ing to the simulations of interaction, as we discuss later in Section 6.4.2.1. It should also be

noted that the time per interaction could also be computed, such as the time per query. This
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was simply considered as the summation of the querying time across the entire session, for

example, divided by the total number of queries issued. The same principle could be ap-

plied for the per SERP time and the per document time by substituting querying with SERP

and document times respectively.

6.3.3 Performance Measures

In conjunction with behavioural and time-based measures, we were also able to extract a

number of different performance measures from the interaction logs.12 Key performance

measures that we captured included:

■ query performance , primarily measured with P@10 (although additional P@k val-

ues are reported); and

■ interactive precision and recall (as discussed in Section 2.4.2.1), including:

– the number of documents saved (identified as relevant); and

– the number of those documents that were TREC relevant (and vice-versa).

6.3.4 Demographics and User Experience Surveys

A number of surveys were also filled out by subjects. These captured different information

about each searcher’s individual search experiences. While there are similarities between

what is asked (refer to Sections 7.2.1 and 8.2.1.5 for further details), we provide in this sec-

tion a high-level overview of the different surveys, before examining questions that were

common between the two studies. Below, we outline the demographics, pre- and post-task

surveys, and post-experiment surveys – provided in the order of the experimental flow de-

tailed in Section 6.2.1.
12Some measures were computed with the trec_eval evaluation tool, discussed in Section 2.3.1.1.
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6.3.4.1 Demographics

Details in keeping with general demographics were aĴained about the different subjects

from this survey. These included: the subject’s age; gender; their present occupation; and

their highest level of professional qualification (from either high school, Associate’s degree,

Honours degree, MSc of PhD).

In addition to these basic questions, we also asked several questions pertaining to their

perceived search proficiency. Questions included:

■ how often they searched for information;

■ what pointing device they were using (i.e. mouse, trackpad); and

■ their preferred general purpose web retrieval system.

Considering that both of the user studies instructed subjects to imagine they were news-

paper reports (and search a collection of news articles), we also asked them how often that

they explicitly searched for news articles online.

6.3.4.2 Pre-Task

Between both user studies, we asked the same questions within the pre-task survey. Sub-

jects were provided with a short description of their search task and a topic description,

which in turn provided their information need for the said task. After examining the topic

description, subjects were then queried on the following:

■ how well they knew about the topic prior to this study;

■ how relevant the topic was to their life;
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■ how interested they were to learn more about the topic;

■ whether they had searched for information related to the topic before; and

■ how difficult they felt it would be to search for information on the topic before com-

mencing the search task.

Responses were provided on a seven-point Likert scale, providing the option for neutral-

ity between the two extremes – extremes being nothing/not at all/very difficult to lots/very

much/very easy. Responses to these questions helped us gauge the perceived difficulty of

the task, and ascertain how much background knowledge could potentially affect results.

6.3.4.3 Post-Task and Post-Experiment

Post-task and post-experiment surveys were unique to each of the two user studies. Sec-

tions 7.2.1 and 8.2.1.5 provide further information on what questions were asked. However,

the post-task surveys focused on how well the subjects thought they (and the retrieval sys-

tem, under the given condition and/or interface) performed during the search task. Post-

task surveys considered the experiment as a whole, asking questions about what condition

and/or interface the subjects preferred, or performed beĴer, for example.

6.4 Simulating Searcher Behaviours

With the general layout and components of the two user studies explained, we now con-

sider how we simulated searcher behaviours. The simulation of interaction provides a low-

cost means of exploring a variety of different searcher strategies and configurations (Az-

zopardi et al., 2011). In this section, we provide an overview of the general aspects of the

stochastic searcher simulations, which are reported in the later chapters of this thesis. In

this section, we discuss:
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■ how our simulations were grounded; and

■ how we instantiated the different components of the CSM defined in Chapter 4 for

our simulation experiments.

We conclude the chapter with a discussion as to how we evaluate the results from our sim-

ulations, allowing us to determine what stopping strategies offer the best overall perfor-

mance and approximations of real-world searcher behaviours. This is done in considera-

tion of the two user studies discussed in Chapters 7 and 8. By grounding our simulations

with data derived from the two aforementioned user studies, we can then obtain an insight

into how searcher stopping behaviours vary under different contexts.

The Mean Searcher Comparisons between simulated searchers and the results of real-

world searchers aremade between the average behaviours observed. This average behaviour

is considered across each of the different experimental interfaces and conditions that we trial

across the two user studies, discussed in Chapters 7 and 8. This consideration:

■ simplifies and reduces the number of simulations that are required to be run; and

■ provides a simple overview of how stopping behaviour varies across each interface

and condition, rather than across each individual searcher.

While the simplifications make it easier to report results, we acknowledge that the aver-

aging/aggregation that takes place may hide subtle behavioural differences that can be ob-

served between searchers. We discuss this particular limitation of our work later in Sec-

tion 10.3.4 on page 355.

Considering Stochastic Simulations We consider a series of different stochastic simulations

that mimic searcher behaviours. Stochastic simulations of interaction rely on probabilities

(typically extracted from real-world log data) to determine the likelihood of a particular

action occurring (e.g. clicking on a link presented on a SERP). Taking an example of a prior
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study using this approach, Yilmaz et al. (2010) used interaction probabilities for deducing

the likelihood of clicking on an aĴractive result summary – something that is extensively

used throughout the simulations reported in this thesis. We discuss this further in Sec-

tion 6.4.2.3. Again, if such probabilities are grounded from real-world interaction data, this

increases the realism of the simulations.

These models considered stochastically determining, for instance, the aĴractiveness of a

result summary to the given information need – something that we also utilise. We discuss

this further in Section 6.4.2.3.

6.4.1 The SimIIR Framework

All simulations of interaction reported in this thesis were run on the SimIIR framework, a

custom-built framework for the simulation of interaction. It captures the wider IIR pro-

cess (Maxwell and Azzopardi, 2016b).13 The framework consists of a number of individual

components, each which must be instantiated to yield a simulation. Figure 6.5 provides an

illustration of the framework’s basic architecture, highlighting each of the individual sim-

ulator components, and the framework’s key outputs.

In this section, we briefly outline each of these components, discussing the need for each.

Each of these components can be mapped to one of the individual decision points and/or

activities of the CSM, as outlined in Section 4.1 on page 108.

A simulation within the SimIIR framework consists of the following main components.

■ Topics One or more topic(s) can be provided, each consisting of a title and topic

description (i.e. the TREC topic descriptions, as per Section 6.1.3).

13SimIIR can be accessed at https://github.com/leifos/simiir. LA 2018-05-29
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Figure 6.5 The architecture of the SimIIR framework, with the components split across both

simulation and user categories. Simulation components define the simulation—a representation of

some real-world user study, with user components defining the behaviours of simulated searchers.

■ Retrieval System An interface is provided to link an underlying retrieval system

with the simulation. In the case of this thesis, this component links back to the setup

described in Section 6.1.2.

■ Output Controller This component is responsible for generating the output files that

can be fed into evaluation programs such as trec_eval, as outlined in Section 2.3.1.1.

Simulations also consist of one or more simulated searchers . These searchers aĴempt to

complete a given search task, having been instantiated with differing constraints. A simu-

lation is therefore in essence loosely associated with the concept of a real-world user study.

Each individual simulated searcher can be likened to an individual subject of a user study.

In turn, each of the simulated searchers is defined by a series of additional components that

describe their behaviours.

■ Querying Strategy The querying strategy determines how queries are generated

from topic descriptions, and subsequently selected.
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■ SERP Decision Maker This decision maker determines where a searcher should enter

a SERP and begin to examine individual result summaries, or abandon the SERP and

issue a subsequent query. This corresponds to the new SERP level stopping decision

point of the CSM, discussed in Section 4.3.1 on page 113.

■ Decision Maker These components are responsible for judging the aĴractiveness

and relevance of result summaries and documents respectively. For the work in this

thesis, this component is stochastic and grounded on interaction data.14

■ Result Summary Level Stopping Strategy This component, instantiated using one of

the stopping strategies outlined in Chapter 5, determines the point at which a simu-

lated searcher will stop interacting with a ranked list of results.

■ Logger The logger component is responsible for providing interaction costs for par-

ticular interactions (e.g. issuing a query), keeping track of the combined session time,

and determining whether the overall search session goal, time limit – or other session

level stopping constraint – has been met.

■ Search Context This component can be considered as a basic representation of a

searcher’s memory, keeping track of the different prior interactions. Examples include

the result summaries and documents that have been examined, prior queries that have

been issued, and what documents that have been saved (considered relevant).

All the above components are underpinned by a searcher model component, providing a

flow of interactions to the search process undertaken by simulated searchers. In all simula-

tions reported in this thesis, the CSM represents this component, and outlines the different

sequence of interactions that can occur between the different components. We do not dis-

cuss further technical details about how the SimIIR framework can be instantiated here; refer

to Maxwell and Azzopardi (2016b) for more information.

14Deterministic decision maker components have also been developed – refer to (Maxwell and Azzopardi,
2016a) for more details.
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6.4.2 Grounding and Instantiating Simulations

To ensure that the simulations of interaction that we report in this thesis are as realistic

as possible, we grounded the simulations using real-world observations extracted from in-

teraction log data. Doing so ensured that the results generated from the simulations were

credible abstractions of reality (Azzopardi et al., 2011). Given the CSM (and the means by

which we can evaluate it, as reported in Section 4.5 on page 119), we considered grounding

our simulations from three perspectives.

■ Query Generation We consider the generation of psuedo-realistic queries to issue to

the underlying retrieval system. As discussed in Section 6.4.2.2, these queries are

generated using querying strategies that are created from observing real-world searcher

querying behaviours. We also replay the queries issued by real-world subjects of the

user studies for one set of simulation runs.

■ Interaction Costs We extract a series of different interaction costs from log data to

ensure that the time spent by simulated searchers is an average representation of the

time spent by real-world searchers under a particular search context.

■ Interaction Probabilities As with interaction costs above, we also considered a se-

ries of grounded interaction probabilities that determine the likelihood of a simulated

searcher determining whether to: enter a given SERP (used in Chapter 9 only); the at-

tractiveness of a result summary; or the relevance of a document.

These are considered in conjunction with the twelve stopping strategies (as discussed in

Chapter 5), and the various constraints that we imposed upon each searcher, such as a

time-limited search session. The remainder of this section is left to a detailed discussion

of the key components of our simulations of interaction. In particular, this section focuses

upon how we instantiated each of the individual components of the SimIIR framework to

build realistic, credible simulations of the search process.
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6.4.2.1 Interaction Costs

Considering the individual CSM components as illustrated in Figure 4.1 on page 109, a num-

ber of different interaction costs can be derived. These are costs that must be expended by

searchers subscribing to the model in order for them to successfully complete the search pro-

cess. In conjunction with the time-based measures discussed in Section 6.3.2, we identified

five different interaction costs that searchers are faced with and thus use in our simulations.

These are listed below, with an illustration of the costs provided in Figure 6.6.

■ Querying This considers the Issue Query activity of the CSM, and considers the time

required by a simulated searcher to enter (and subsequently submit) a query into the

retrieval system’s interface. Again, this is considered as from when the subject focused

on the query box, to the point where they submiĴed the query.

■ SERP Examination This cost considers the View SERP activity, and denotes the time

spent by a searcher considering whether the presented SERP is aĴractive enough to

enter and examine in more detail. This is considered as the point at which the SERP is

rendered on their screen, to the point where they begin interacting with it in any way.

■ Result Summary Examination The Examine Snippet activity is considered here, this

being the time required to examine an individual result summary for aĴractiveness.

Estimations for this interaction cost are described in Section 6.3.2.

■ Document Examination This costs denotes the amount of time required to assess a

document for relevance to the given information need. This is the Assess Document

activity in the CSM.

■ Saving The SaveDocument activity is considered for this final cost, where a searcher

will actively save and identify the document as relevant. This is considered as the

time from the point at which a searcher clicked the Save buĴon to when they left the

document and returned to the SERP.
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Query

Interaction Time

Focus

SERP Document

1  Issue Query 2  Judge SERP 3  Examine Result Summaries 4  Examine Document 5  Save

Issue Load Interact Leave Save LeaveOpen

1 2 3 4 5

Figure 6.6 Illustration of the five interaction costs paid by searchers subscribing to the CSM.

Each cost is shown with the start and end events by which the costs were measured from the user

study interaction logs. Time spent on individual interface components is shown in white. Refer to

Section 6.4.2.1 for a detailed explanation of each interaction cost considered.

The derived costs are averaged for each of the conditions and interfaces trialled in the stud-

ies reported in Chapters 7 and 8. Refer to Table 7.6 on page 217 and Table 8.10 on page 283

for Chapters 7 and 8 respectively. These tables show the actual costs that were extracted

from user study interaction data.

Fixed Interaction Costs All simulations of interaction discussed in this thesis rely upon

the notion that all interaction costs are fixed over each interface and condition trialled. For

example, this means that no variation in querying time exists between a searcher who issues

single term queries, and another searcher entering terms that consist of three terms. All

queries require the same cost to be entered and submiĴed. This decision was taken to reduce

the complexity of our simulations. By including dynamic interaction costs, this would have

made the simulations themselves – and the subsequent comparisons – much more complex.

Previous work such as time-biased gain (Smucker and Clarke, 2012) has however shown

that estimations of dynamic interaction costs can be made.

6.4.2.2 Query Generation Strategies

The generation of queries is an important aspect of any simulation of interaction. Starting

from the simplistic TREC-style searcher model where a single query is issued, numerous

studies have focused upon the issue of query generation, and how one can generate a series
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Figure 6.7 Extensive examples of the three querying strategies used in this thesis, QS1 ,

QS3 , and QS13 . Queries are denoted by Qn, with individual terms denoted by tn . In these

examples, a total of six terms are used (from t0 to t5 ). Queries are separated by arrows ( ).

of pseudo-realistic queries based upon prior interaction data. We highlighted some of these

prior works in Section 2.3.4 (page 52).

In this thesis, we consider a number of different querying strategies as proposed by Keskustalo

et al. (2009) and Baskaya et al. (2013) in order to generate queries for our simulations of in-

teraction. These strategies are considered to be idealised, prototypical approaches to query

generation, themselves being grounded from a prior user study examining the query be-

haviour of subjects.15 Of the five strategies identified by the authors, we consider two in

this thesis that were shown in simulations by Keskustalo et al. (2009) to yield the worst and

best performance – but also shown to reflect actual searcher queries. The two querying

strategies, identified as QS1 and QS3 , are briefly explained below. We also provide an

illustration of the two strategies in Figure 6.7, where Qn denotes query n within a search

session, and tn denotes query term n from a list of terms available to formulate queries.

■ QS1 Single Term This querying strategy generates a series of single term queries.

■ QS3 Three Term This second querying strategy generates queries with two pivot

terms, and one additional term. Therefore, the first two terms remain constant, with

the third term changing for each subsequent query.
15Refer to Keskustalo et al. (2009) for further information on the user study undertaken.

165



6.4 Simulating Searcher Behaviours

Queries generated by QS3 are considered to be realistic in the sense that queries issued

in real-life web search sessions consist of three terms on average (Keskustalo et al., 2009).

With these two querying strategies in mind, we then interleaved the two strategies together.

This ultimately yields a third querying strategy that we identify as QS13 .

■ QS13 Interleaved With this querying strategy, queries from both QS1 and QS3

are generated and subsequently interleaved between each other, starting with the first

query from QS1 .

Refer to Figure 6.7 for an example of how this querying strategy works. These querying

strategies allowed us to test the robustness of each result summary stopping strategy. Recall

that Keskustalo et al. (2009) highlighted that QS1 yielded relatively poor performance

compared to QS3 . Therefore, it follows that a searcher, when issuing a query generated

by QS1 , will observe that the results presented are of poor quality, and thus stop at a

shallow depth when compared to examining results of queries issued by QS3 . Examining

many results from a poor query is by and large a waste of the searcher’s time, so robustness

of result summary stopping strategies can be checked to see if queries generated by QS1

are abandoned earlier than those generated by QS3 .

Reported Querying Strategy With interleaved querying strategy QS13 allowing us to

test the robustness of various simulation configurations, we provide a novel report on sim-

ulations of interaction using this interleaved querying strategy. As previously discussed,

we also replayed real-world queries issued by user study subjects. Refer to Section 6.4.3.2

for further information on how this was achieved.

Term List Generation Given the querying strategies, how did we then generate the ranked

list of terms to be used, shown as t0 to t5 in Figure 6.7? For all simulations in this thesis,

all terms were derived from the given TREC topic title and description. For all queries,

stopwords were removed as per the stopword list defined by Fox (1992).
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For QS1 , we combined the title and description terms together and creating a Maximum

Likelihood Estimate (MLE) language model, allowing us to create a probability distribution

for the likelihood of a term to appear in a topic description, i.e. p(term|topic). A list of single

term queries was then ranked in descending order by this probability to yield the set of

queries we would use for t0 , t1 , t2 , and so on.

A similar approach was used for QS3 . The same MLE approach was used to rank the

title and description terms separately, creating two separate rankings of terms. For the

pivot terms – the two terms that are consistently used as the first two terms of each QS3

query – all possible two term title terms were used, with the highest joint probability being

selected as terms t0 and t1 . Single terms from the topic description were then used as

per QS1 , with the descending probability ordering used to then determine the order in

which the third query term was selected.

6.4.2.3 Summary and Document Decision Making

As discussed earlier in Section 6.4, our simulations were stochastic in nature. Decisions

pertaining to the aĴractiveness of a result summary (should I click this link and examine it

further?) and the relevance of a document to the given information need (should I save this

document?) were determined through a series of different interaction probabilities. Chapters 7

and 8 present the interaction probabilities used within the simulations. In this section, we

describe the approaches used to derive them.

In parallel with earlier studies considering the simulation of interaction – such as those

by Yilmaz et al. (2010) and Baskaya et al. (2013), for example – result summary and docu-

ment decision making both revolve around two key probabilities:

■ the probability P(C) of considering a given result summary on a SERP to be suffi-

ciently aĴractive to ‘click’ and load the associated document; and
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■ the probability P(S) of determining the document to be relevant to the given infor-

mation need after examination, and thus saving it.

These are considered separately. The action of requesting a document from clicking on

the associated result summary does not necessarily mean that the document is relevant;

merely, it means it appears aĴractive enough to examine in more detail (Turpin et al., 2009).

The above probabilities are broken down further with regards to TREC relevance. This

warrants an examination of the TREC relevance judgements to determine whether the result

summary and/or document being clicked and/or saved would be considered to be relevant

to the given topic by the TREC assessors. As such, P(C) and P(S) can be split further, such

that we can then determine:

■ the probability that a result summary that has been clicked is TREC relevant P(C|R)

or not P(C|N) ; and

■ the probability that a document saved is TREC relevant P(S|R) or not P(S|N) .

From these definitions, we may take the interaction logs from the two user studies, split the

interactions by the interface or condition for which probabilities were derived, and sum-

mate the different measures – as shown by the equation for calculating P(C), where:

P(C) =
|clickedRel|+ |clicked¬Rel|

|examined| Equation 6.1

and P(S), where:

P(S) =
|savedRel|+ |saved¬Rel|

|examined| . Equation 6.2

In the above equations, Rel denotes the count for TREC relevant items, with ¬Rel repre-

senting items that were not TREC relevant. Finally, |clicked| represents the number of result
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Trial 1

=Saved
Where P(C|R) = 0.66

Trial 2

=Not Saved
Where P(C|R) = 0.66

Trial 3

=Saved
Where P(C|R) = 0.66

Figure 6.8 An example of the same TREC relevant document being judged differently across

multiple trials. This can have a negative effect upon simulation runs, yielding dubious results.

summaries that were clicked (deemed aĴractive enough to examine further), |examined| de-

notes the total number of documents that were assessed in full (i.e. presented in the doc-

ument view as shown in Figure 6.2), with |saved| denoting the number of documents that

were identified as relevant, and subsequently saved.

To compute probabilities concerning TREC relevance only, P(C|R) and P(S|R)were defined

as P(C|R) =
|clickedRel|
|examinedRel| and P(S|R) =

|savedRel|
|examinedRel| . These definitions are the same as the

above, sans the non-relevant, or ¬Rel values. Conversely, P(C|N) and P(C|R) were defined

as P(C|N) =
|clicked¬Rel|

examined¬Rel
and P(S|N) =

|saved¬Rel|
examined¬Rel

– this time, without the TREC relevant

judgements included (i.e. a judgement of 0, or no judgement at all).

Monte-Carlo Simulations Stochastic approaches to modelling interactions provide a sim-

ple means of operationalising the components of the simulation. Such an approach judges

the aĴractiveness and relevance of result summaries and documents with a roll of the dice,

rather than explicitly examining the content provided to formulate a judgement.

However, such an approach is not without limitation. By their very nature, a stochastic

simulation based upon random probabilities will require a large number of different trials

to be executed from which an average may be computed. Each trial will potentially result

in a different outcome, as illustrated in Figure 6.8. With a probability of clicking document

APW20000511.0185 set to 0.66, there is a 66.66% chance that the document would be clicked

in each run, resulting in different outcomes across trials.

Different outcomes can lead to a wide variance between different trials, which in turn leads

to a requirement of running a more powerful experiment over a larger number of trials, or
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Table 6.2 A visual example of how the use of pre-rolled judgements (right) performs when

comparedwithout (left). The top five rankings (fromD1 toD5) across four examples are shown. On

the left are two simulated searcher configurations that do not use pre-rolled judgements. On the

right, the same configurations are shownwith pre-rolled judgements. Notice that for the examples

with pre-rolled judgements, the same judgements are provided across configurations. On the left,

this is not the case — indeed, this phenomenon can have an undue influence upon the behaviour

of a simulated searcher, such as affecting their stopping behaviour. This is illustrated below, with

the stopping depth for SS2-NT @2 being affected (stopping depths are highlighted in red).

Without pre-rolled (incomparable) With pre-rolled (comparable)

SS1@5 SS2@2 SS1@5 SS2@2

D1 R D1 N D1 R D1 R

D2 N D2 R D2 R D2 R

D3 N D3 N D3 N D3 N

D4 R D4 R D4 R D4 R

D5 R D5 R D5 N D5 N

Monte-Carlo style simulations (Benov, 2016). In turn, this leads to an increase in the amount

of time (and computational power!) required to execute all simulations.

Pre-Rolled Judgements In Figure 6.8, if the same document is judged differently between

individual trials, the results from two different simulated searcher configurations are in-

comparable. This is demonstrated in the left hand side of Table 6.2. With a given proba-

bility, a result summary can be judged to be aĴractive or not (P(C)). Without proper con-

trols, these judgements will vary across trials, meaning that in Table 6.2, SS1-FIX @5

and SS2-NT @2 are incomparable (refer to Section 6.4.2.6 for more information on these

configurations) because the judgements for the same ranked list of results differs. As these

judgements change, this has an undue influence on the behaviour of the simulated searcher

across different experimental configurations.
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In order to address this issue and permit for fair comparisons across simulated searcher

configurations (and to allow for reproducible results), we used pre-rolled judgements that

determined the aĴractiveness or relevancy of result summaries and documents respectively

a priori. For each document within the AQUAINT collection, we pre-computed outcomes

for each individual document using the relevant grounded interaction probability, storing

them in action judgement files. One related to the action of clicking on result summaries

(i.e. P(C)), with the other relating to saving documents (i.e. P(S)). These judgement files

were then used by the decision maker components. All this component had to do was then

perform a simple lookup for the corresponding document judgement for a given trial.

By pre-computing these judgements in advance, the same document would therefore be

considered relevant in the same trial under a different configuration. This is demonstrated

in Table 6.2, this time on the right-hand side. Across this trial, judgements by the simulated

searcher have been pre-rolled in advance, and thus the judgements for documents D1 to

D5 are the same. As they are the same, this permits fairer comparisons between different

configurations, with the table showing how the simulated searcher’s behaviour varies.

It should also be noted that the generated pre-rolled judgements were seeded to allow for

these files to be easily reproduced. This process was repeated 50 times to account for vari-

ability between trials. This meant that for every simulated searcher configuration, we ran a

total of 50 trials in which result summaries could be considered aĴractive or not, and doc-

uments could be considered relevant or not. As such, all results reported later in this thesis

are an average over 50 trials. This value was selected since for each of the two user studies

reported in Chapters 7 and 8, approximately 50 subjects took part in each.

6.4.2.4 Computing Gain

As searchers examine information, they gain knowledge that helps shape their mental model

of the underlying information need (Nickles, 1995). In the simulations reported in this the-
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sis, gain is acquired when a simulated searcher, having examined a document, subsequently

considers said document is relevant, and saves it. During post-hoc analysis, we then can

compute how many documents were saved, and how many were saved and TREC relevant.

This is determined by looking up the TREC relevance judgements. Gain for the document

is then simply computed as the relevance judgement score from the TREC QRELs. Given

that we utilised the TREC 2005 Robust Track (Voorhees and Harman, 2005), graded relevance

judgements are used. This value, when summated over all saved documents, is the Cumula-

tive Gain (CG) score for a simulated trial. This is discussed in more detail in Section 6.4.3.1.

6.4.2.5 SERP Level Decision Making

Previously outlined in Section 4.2, the CSM includes an additional SERP level stopping de-

cision point. Motivated by the information scent16 offered by a SERP (or patch), this stopping

decision point joins other established decision points, including result summary and ses-

sion level stopping. The new decision point permits a searcher subscribing to the CSM to

either enter the SERP and begin examining result summaries in detail if the SERP appears

to offer a good scent, or abandon the SERP if it appears to be poor (and saving time).

For our simulated analyses of the user studies reported in Chapters 7 and 8, the SERP level

stopping decision point is not considered. In other words, a simulated searcher will always

examine a given SERP for content in detail – labelled SERP Always in this thesis. This

acts as our baseline for the SERP level stopping decision point. This decision was taken to

simplify our results and to provide greater emphasis upon how the different snippet level

stopping strategies (as discussed below) affect searcher behaviour and performance.

Chapter 9 provides empirical results for different result summary level stopping strategies

when the new SERP level stopping decision point was utilised. This chapter also provides

a detailed explanation as to how we operationalised the new stopping decision point, as

presented in Section 9.2.1 on page 311.
16To recap, we discuss the notion of information scent in Section 3.3.1.1 on page 92.
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6.4.2.6 Result Summary Level Stopping Strategies

In Chapter 5, we outlined twelve stopping strategies that had been operationalised from

various stopping heuristics and the RBP evaluation measure. In this section, we once again

enumerate each of the different stopping strategies, discussing what stopping threshold values

that we trialled for each. Any specific implementation details to a given stopping strategy

are also noted in this section.

For several of the stopping strategies, threshold values need to be approximated from real-

world interaction data to provide some grounding. An example of such a threshold is

the RBP patience parameter, as we discussed in Section 2.4.1.5 (page 67). As such, some

of the threshold value ranges were approximated from the user study interaction data in

Chapter 7, and used in all simulation experimentation for consistency. The values that

we ascertained were of most interest as they offer close approximations to how real-world

searchers actually behaved in consideration of the respective stopping strategies.

Below, we begin our discussion of each of the different stopping strategies, outlining the

parameter thresholds used.

■ SS1-FIX For our fixed depth stopping strategy, we trialled a range of values, where

x1 was set from 1 to 10 in steps of 1, and then 15 to 24 in steps of 3. This resulted in 14

separate parameter threshold configurations, with enough values such that a searcher

would comfortably reach the time limits imposed in the study detailed in Chapter 7.

■ Both SS2-NT and SS3-NC used the same range of values for threshold values

x2 and x3. These stopping strategies focused upon a searcher’s tolerance to non-

relevance, as discussed in Section 5.2.1.

Note that for both SS2-NT and SS3-NC , any document that has been previously exam-

ined during the same search session (returned in the ranked results of a prior query) will
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be included in the count of non-relevant items. This is opposed to ignoring previously ob-

served items, which has been shown in prior work to offer poorer performance (Maxwell

et al., 2015b).

Next, we enumerate the stopping strategy considering the satiation of a searcher.

■ SS4-SAT Concerning the number of documents that a searcher should save before

being satisfied, we examined a range of values for x4, from 1 to 10 in steps of 1.

Our first combination heuristic then combines the frustration and satisfaction heuristics

together. However, two frustration stopping strategies exist – SS2-NT and SS3-NC .

To reduce the complexity of the simulations – and to corroborate with empirical evidence

suggesting that this was the beĴer performing strategy (refer to Maxwell et al. (2015b)),

SS2-NT is assumed to be the non-relevant component of the combination strategy.

■ SS5-COMB Here, we utilised the stopping threshold values defined for x2 and x4

above. These were for the frustration component SS2-NT and SS4-SAT respec-

tively.

Next, we consider the two stopping strategies that focus on the difference threshold heuris-

tic (Nickles, 1995), where searchers would abandon a set of results if the summaries pro-

vided did not appear to yield any new information.

■ SS6-DT Considering the term overlap difference between a result summary and

prior summaries, a range of values from 0.0 to 1.0 in steps of 0.05 were utilised. This

was to explore the entire range of possible values. The smaller the threshold, the less

similar the content of the new result summary to those previously examined.

■ SS7-DKL Using KL-divergence, a range of values for x7 were trialled, from 3.0 to

8.0 in steps of 0.5. A small-scale pilot study examining this stopping strategy over the

AQUAINT index showed that a majority of values fell within this range.
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For both SS6-DT and SS7-DKL , we considered both the per-query difference and the per-

session difference. For the per-query variant, previously observed result summaries consisted

of the first result summary, thus meaning that the simulated searcher would always con-

sider at least two result summaries before deciding to stop. For the per-session variant, all

previously observed result summaries over the entire search session (i.e. including those

from previous queries) were used. In a pilot study, as reported by Maxwell et al. (2015a),

we consider in this thesis the per-query variants only. These offered beĴer performance

than their per-session variants.

Next, we consider the stopping strategy based upon a searcher’s optimal searching be-

haviour. This concerned computing a searcher’s average rate of gain. To determine the rate

of gain at a given result summary at rank i, we first computed the DCG (discussed in Sec-

tion 2.4.1.4 on page 65) received from the observed documents, up to the point in the ranked

list at position i. We then divided g (the DCG) by the total time taken, yielding i ∗ td + tq,

where i represented the rank, td was the time required to examine a document, and tq was

the time required to issue a query.

■ SS8-IFT Computing the searcher’s average rate of gain as defined above, we con-

sidered a gain threshold (x8) from 0.002 to 0.03 in steps of 0.002. A minimum of two

result summaries were examined before calculating the average rate of gain (y8 = 2).

The estimate computed was very dependent upon the first document in the ranked list.

For example, if judged to be non-relevant, the searcher would gain 0 – meaning that the

searcher would then immediately stop when x8 > 0. To counter this, we also considered an

additional parameter that specified how many result summaries the searcher should always

examine before making a decision based upon the rate of gain experienced.17 This would

17This second parameter y8 was set to 2 for all experiments utilising SS8-IFT . A pilot study by Maxwell
et al. (2015b) found that a value of 2 proved to be far less sensitive to non-relevant items, and resulted in beĴer
performance by the searcher.
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essentially mean that a searcher employing SS8-IFT would look at a minimum of y8 result

summaries, and from there begin to make decisions as to whether they should continue.

Next, we consider the time-based stopping strategies as outlined in Section 5.5. These con-

sider the total time spent examining a SERP and its associated documents, and the time

since last identifying a relevant document.

■ SS9-TIME Considering the total amount of time spent on a SERP and linked docu-

ments, we considered for this total time stopping strategy values for x9, from 30 to 150

seconds in steps of 30 seconds.

■ SS10-RELTIME Stopping (or giving up (Krebs et al., 1974)) after x10 seconds have

elapsed since saving a relevant document (or the start of the search session if no doc-

uments have been saved), we consider for this stopping strategy a smaller range of

values, from 10 to 50 seconds in steps of 10 seconds.

The parameter threshold values for x9 and x10 were grounded using interaction data derived

from the user study discussed in Chapter 7 only. For x9, the mean time spent interacting

on a SERP and its documents were computed at approximately 90 seconds – a 60 second

decrease and increase were selected for the lower and upper bounds respectively. Like-

wise, a relevant document was on average identified approximately every 30 seconds. This

provides motivation behind selecting the range of values chosen for x10.

The second combination rule, based upon the combination heuristic proposed by McNair

(1982), considers that a searcher decides whether a given SERP is of high yield at shallow

ranks (or not). Depending upon the outcome of this decision, a different stopping strategy

will be employed.

■ SS11-COMB For a SERP yielding a high scent at shallow ranks, a searcher will em-

ploy the satisfaction stopping heuristic, SS4-SAT . The give-up time-based strategy
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SS10-RELTIME is employed if the scent is low. Parameter threshold values are iden-

tical to those defined for x4 and x10 above.

All combinations of values for x4 and x10 were trialled. To determine the scent of a given

set of ranked results (and thus the stopping strategy used), we considered the first ranked

result, or P@1. If the first ranked document was TREC relevant, the SERP was assumed to

provide a high yield early on. Conversely, if P@1 = 0, the SERP was judged to be low yield

at shallow ranks. This matches with definitions of poor scented SERPs by Wu et al. (2014)

and Hassan and White (2013)18. We also make the further assumption that the document

presented at the first rank will be used to judge the SERP yield.

The final result summary level stopping strategy was based upon RBP. Once again, the

patience parameter was again grounded from the user study outlined in Chapter 7 only.

■ SS12-RBP Given a fiĴed patience parameter of 0.9087, we trialled a range of values

around this range, from 0.8 to 0.95 in steps of 0.05. We also trialled 0.99 and 0.9087.

To estimate the patience parameter, we assumed that the patience of a searcher could be

determined by considering the depths at which documents were clicked, as per RBP. The

deeper the searcher went down a list of ranked results, the more patient they were consid-

ered to be. For every query issued, we determined whether the document at each rank of

the corresponding set of results was clicked or not, as shown in step below.

...

...

D2 D3D1

Q0

Q1

...

D2 D3D1

|Clicks1|

|Q|
|Clicks2|

|Q|
|Clicks3|

|Q|

p(click@k)  = φk

Fitted value yields patience
parameter for clicking on

result summary link at rank k

Compute clicks on documents Calculate ratios at each rank Fit ratios to equation

For each rank, we could then compute the ratio of clicks over each query, as demonstrated

at step . This yielded a decreasing ratio with increasing depths, demonstrating that
18This is discussed in further detail later in Section 9.2.1 on page 311.

177



6.4 Simulating Searcher Behaviours

Table 6.3 Summary table of the twelve stopping strategies, along with each of the threshold

parameter values trialled. Note that for SS5-COMB and SS11-COMB , thresholds from dif-

ferent stopping strategies are used for the respective components of each combination strategy.

Stopping Strategy Threshold Parameter Values

SS1-FIX x1 = [1, 2, 3, ..., 8, 9, 10, 15, 18, 21, 24]

SS2-NT x2 = [1, 2, 3, ..., 8, 9, 10, 15, 18, 21, 24]

SS3-NC x3 = [1, 2, 3, ..., 8, 9, 10, 15, 18, 21, 24]

SS4-SAT x4 = [1, 2, 3, ..., 8, 9, 10]

SS5-COMB x2 = [1, 2, 3, ..., 8, 9, 10, 15, 18, 21, 24] (SS2-NT)

x4 = [1, 2, 3, ..., 8, 9, 10] (SS4-SAT)

SS6-DT x6 = [0.0, 0.05, 0.10, ..., 0.90, 0.95, 1.00]

SS7-DKL x7 = [3.0, 3.5, 4.0, ..., 7.0, 7.5, 8.0]

SS8-IFT x8 = [0.002, 0.004, 0.006, ..., 0.026, 0.028, 0.03]

y8 = 2

SS9-TIME x9 = [30, 60, 90, 120, 150]

SS10-RELTIME x10 = [10, 20, 30, 40, 50]

SS11-COMB x4 = [1, 2, 3, ..., 8, 9, 10] (SS4-SAT)

x10 = [10, 20, 30, 40, 50] (SS10-RELTIME)

SS12-RBP x12 = [0.80, 0.85, 0.90, 0.9087, 0.95, 0.99]

searchers were less likely to click on results further down the rankings. Finally, p(click@k) =

ϕk was fit to the data. This represents the probability of clicking on a result summary at rank

k, with ϕ denoting the RBP patience parameter. When fit, ϕ = 0.9087.

Table 6.3 on page 178 lists each of the stopping strategies, along with the different threshold

parameter values that were trialled for each.
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6.4.2.7 Simulated Searcher Constraints and Goals

Like in the corresponding user studies, we imposed different constraints upon the simu-

lated searchers to keep comparisons as fair as possible. These constraints and goals are

discussed in depth in the relevant chapter. Refer to Section 7.3.1.2 on page 216 and Sec-

tion 8.3.1.2 on page 282 for further information for the two studies.

6.4.3 Simulation Runs and Evaluation

Having now discussed how all of the various components of the CSM and the SimIIR frame-

work were instantiated for our simulations, we now move onto a discussion of how we

actually ran the simulations – and evaluated them.

With two high-level research questions focusing on the empirical work, we designed and

executed a set of simulation runs to address both

■ HL-RQ3a Given the aforementioned operationalised stopping strategies, how well

does each one perform?

To address this research question, we propose a series of performance runs that

allow us to determine the best overall level of performance that can be aĴained using

a particular configuration of a simulated searcher, via a number of what-if scenarios.

■ HL-RQ3b How closely do the operationalised stopping strategies compare to the

actual stopping behaviours of real-world searchers?

To address this second research question, we also propose a series of comparison runs

that instead focus upon how closely different configurations of simulated searcher ap-

proximate the stopping behaviours of real-world searchers.
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Experimental
Grounding

What-If Simulated
Interaction Logs

Simulated Searcher
Comparison Logs

Real Searcher
Interaction Logs

Collected Searcher
Experience Data

Performance Runs

Comparison Runs

Performance Analysis
Which simulation offers the best CG?

=
Behaviour Comparison Analysis
(Simulated vs. Real-World)

User Study Analysis
Behaviour, Performance, UX

User Studies

Costs

HL-RQ3a

HL-RQ3b

HL-RQ3b

HL-RQ3a

User Study

x2
Figure 6.9 How the two sets of simulations, represented as blue boxes , fit within the wider

experimentation framework as discussed in this chapter. The illustration also shows what compo-

nents address the two high level research questions, HL-RQ3a and HL-RQ3b .

Simulations: Within the Methodology These simulations of interactionfit within thewider

experimental framework discussed in this chapter, illustrated in Figure 6.9. Within the fig-

ure, we can see the link between the user studies and the two sets of simulations (high-

lighted with blue boxes) via the act of grounding. The illustration also provides linkage

between the simulations, and the two sets of analyses that are undertaken – the performance

analysis, addressing HL-RQ3a , and the behaviour comparison analysis that addresses

HL-RQ3b . The performance analysis is an examination of the hundreds of different pos-

sible simulation configurations, allowing us to explore how performance varies through

what-if simulations. In all, this process is repeated twice, once per user study, as shown

in the illustration. We discuss the two different sets of simulations that address research

questions HL-RQ3a and HL-RQ3b in Sections 6.4.3.1 and 6.4.3.2 respectively.

6.4.3.1 Performance Runs

Named as a series of what-if simulations above, the performance runs instantiate the differ-

ent components of the CSM and SimIIR framework as previously discussed throughout Sec-

tion 6.4.2. Using the grounded interaction probabilities and costs, these simulations were
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Simulated Searcher Configuration

QS SERP Strategy SS SS@x Topic

Sim.
Trial

Average Measures

QS13 Always SS1 @1 367 1

QS13 Always SS1 @1 367 2

QS13 Always SS1 @1 367 3

CG Depth/Query

0.7 1.0

... ... ... ... ... ...

QS13 Always SS1 @1 367 50

Figure 6.10 An example set of simulation results (each represented on a different row), with

each row representing the same configuration, over the 50 different trials. Performance values can

then be extracted from each trial, with a mean computed. In this example illustration, the mean CG

and depth per query are shown.

trialled over the five selected topics of the TREC 2005 Robust Track (Voorhees, 2006) (as

discussed in Section 6.1.3), with queries generated via the querying strategy outlined in Sec-

tion 6.4.2.2. Altogether, this provided us with a wealth of simulated interaction data from

which we could calculate a series of averages over the different trials run. As illustrated

in Figure 6.10, we then computed the various performance measures over each simulated

searcher configuration, taking an average over each of the five topics.

Figure 6.10 illustrates a simple example configuration of a simulated searcher, using: query-

ing strategy QS13 ; the SERP Always (baseline) SERP examination strategy; result sum-

mary level stopping strategy SS1-FIX @1 ; and TREC topic № 367. The configuration

was also run over 50 separate trials. All performance runs were examined over the same

five topics as outlined previously in Section 6.1.3. Performing 50 trials for each individual

configuration allowed us to account sufficiently for the variability that would be presented

across runs, with further detailed presented in Section 6.4.2.3.

Given the nameperformance runs, we examined the performance of each simulated searcher

trialled. While examining the performance of queries (via the measures outlined previously

in Section 6.3.3), we also examined measures illustrated in Figure 6.11: mean levels of CG,

and the mean depth per query (DQ) .
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DQ CalculationQ0 Q1 Q2

STOP

STOP Q0 = 2 Q1 = 0 Q2 = 1

DQ = 2 + 0 + 1
3

= 1

Figure 6.11 An example illustrating how themean depth per query is computed across a search

session. In this example, three individual queries are issued, with no results examined for Q1.

CG was discussed in passing in Section 6.4.2.4. For our simulations, we consider the CG

as the amount of gain accrued over the course of a search session – which, by definition, can

entail more than a single query. A more robust series of stopping strategies that are beĴer at

stopping a simulated searcher examining poor quality SERPs to great depths will provide

higher levels of CG, but only if the queries issued offer good performance. Similarly, an

effective SERP level stopping decision point implementation will stop the searcher from

examining a poor SERP in the first instance, leaving more time to examine SERPs that could

potentially offer higher quality results.

The other major measure used in our performance measures was the depth per query. With

this measure, performance is not measured, but rather the stopping behaviour of the simu-

lated searchers. As shown in Figure 6.11, a fictional search session consists of three queries.

In the example illustration, a simulated searcher examines to a depth of 2 for Q0, and a

depth of 1 for Q2. The searcher does not even enter the associated SERP for Q1, as the SERP

level stopping decision point prevents the searcher from examining result summaries in

detail. The resultant DQ for the search session is therefore 1.

6.4.3.2 Comparison Runs

Rather than focus upon the overall performance aĴained by simulated searchers under

different scenarios, the second set of simulations we ran focused on comparing simulated

searcher behaviours against their real-world counterparts.
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The simulations for this set were configured much like the performance set – save for the

difference between the querying component. Rather than considering queries generated by

a querying strategy, we instead took the queries from the associated user study and issued

each one in turn. In effect, we replayed all real-world queries issued (as discussed in

Section 6.4.2.2).

Real-world queries were extracted and grouped by the experimental interface or condition

in which it was executed. In order to compute per-session measures (e.g. CG), we could

then take the queries belonging to a particular subject and topic combination and group

them together, summing or averaging measures where appropriate. With only four topics

trialled during the user studies, we considered only the four TREC topics , omiĴing the

practice topic (№ 367). This was due to the fact that we only had real-world query data for

the four topics trialled in the user studies. We once again ran a simulated searcher for each

different configuration, over every query issued. A total of 50 trials were once again used.

To perform our comparisons between the real-world and simulated searchers, we used the

Mean Squared Error (MSE) to compute the difference between the two. For this, our cal-

culations were performed by examining the click depth of the real-world searchers over

each query, and taking the simulated click depths. Simulated click depths are defined as

the depth of the last document that was considered aĴractive enough to examine on a given

simulated SERP. Considering each configuration of simulated searcher (i.e. considering the

different ways in which SimIIR components were instantiated), we could then produce a ta-

ble of click depths, as provided in the example below.

Real-WorldQuery

408 5

Sim. 1 Sim. 2 Sim. 3 ...Topic

Q0

Q1

Q2

...

3 5 2 ...

...

4

408 1 2 1 2 ...

408 7 1 4 3 ...

... ... ... ... ...

MSE

...

0

16

...

In the above example, Sim. x represents the mean value of a particular simulated searcher

configuration, with the mean taken over the 50 simulated trials. For each query, the real-
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world click depth is shown, along with the simulated click depth from each simulated

searcher trialled. Highlighted cells show what is being compared on each row – for in-

stance, for query Q0, the real-world click depth of 5 is compared against the Sim. 1 click

depth of 3. Considering the MSE value between the two, using the following formula:

MSE = (θ− θ̂)2, Equation 6.3

where θ denotes the real-world click depth, and θ̂ denotes the click depth approximation,

we arrive at a MSE value of 4. The closer the MSE value is to 0, the beĴer the approx-

imation given. In the above example, the compared values for Q1 therefore offer the best

approximation of the actual stopping depth of the searcher. After each MSE value had been

calculated, this could then be used to plot against the mean depth per query across a variety

of different stopping strategies. For example, recall that SS1-FIX considers the stopping

depth across a range of threshold parameter values (x1), with the parameter denoting the

stopping depth. The higher this value, the greater the depth per query that will be aĴained.

By computing the MSE at each point, we were able to determine which stopping threshold

offered the best approximation of stopping behaviours, across a range of mean depths per

query, for that particular stopping strategy.

6.5 Chapter Summary

In this chapter, we have outlined the general methodology that is used throughout the re-

maining chapters of this thesis. As we report on two separate user studies in Chapters 7

and 8, this chapter provides an overview of the common approaches followed, with unique

aspects pertaining to the individual user studies discussed in the relevant chapter.

In order to tackle the high-level research questions of this thesis, our general methodology

was to first undertake a user study that captured a variety of different behavioural, per-
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formance and user experience measures, as discussed in Section 6.2. The data derived from

this user study was then used to ground a series of complex simulations of interaction , at-

tempting to mimic the behaviours exhibited by the real-world user study subjects. After dis-

cussing how we instantiated each of the different components of the CSM and SimIIR frame-

work, we then concluded the chapter with a discussion on the two sets of simulation runs

trialled, allowing us to address research questions HL-RQ3a and HL-RQ3b .

With the conclusion of this chapter, all necessary groundwork has been laid to present the

results of our user studies and simulations of interaction, which we present in Part III.
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Part III

Examining and Simulating
Searcher Stopping Behaviours

In this part of the thesis, we present our

empirical contributions , examining what

happens to searcher stopping behaviours under

different search contexts . We then report on

a number of different simulated analyses ,

examining our proposed stopping strategies.

Finally, we report on an empirical analysis of

the new SERP level stopping decision point .





Chapter 7

Result Summary Lengths and
Stopping Behaviour

The SERP is core to a searcher’s experience when using a retrieval system. The presen-

tation and design of the SERP has over the years been subject to much research. Today,

more complex components (such as the information card (Navalpakkam et al., 2013) or social

annotations (Muralidharan et al., 2012)) are now becoming commonplace in web retrieval

systems. Despite these advancements, much work still remains on examining how more

traditional SERP components are designed and presented to searchers. As we will focus on

in this chapter, result summaries are such a component.

University of Glasgow
https://www.gla.ac.uk/
The University of Glasgow is the fourth-oldest university in the English-speaking 
world and one of Scotland's four ancient universities.

As shown in the above example, result summaries have been traditionally viewed as the ten

blue links, each with their corresponding title and source (typically a URL) of the associated

document. Included with these two components are the textual snippets of keywords-in-

context, derived from the document itself. These snippets are approximately 130-150 char-

acters (or two lines) in length (Hearst, 2009). Researchers have explored result summaries

in a variety of different ways, such as: examining their length (Paek et al., 2004; Cutrell
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and Guan, 2007; Kaisser et al., 2008); the use of thumbnails (Woodruff et al., 2002; Teevan

et al., 2009); their aĴractiveness (Clarke et al., 2007; He et al., 2012); and the generation of

query-biased snippets (Tombros and Sanderson, 1998; Rose et al., 2007).

In this chapter, we are interested in examining how the length (and subsequently informa-

tion content) of result summaries affects SERP interactions – specifically examining their

stopping behaviours – and a searcher’s ability to select relevant over non-relevant items.

This is in tandem with an examination of different stopping strategies (outlined in Chap-

ter 5), and how they adapt to increasing result summary lengths. Prior research has demon-

strated that longer result summaries tend to lower completion times for informational tasks,

where searchers need to find only a single relevant document (Cutrell and Guan, 2007).

However, does this finding hold in an ad-hoc context, where searchers need to find several

relevant items? Furthermore, how does the length and information associated with longer

result summaries affect the searcher’s ability to discern the relevant from the non-relevant?

We address these questions from the perspective of both:

■ a user study examining this phenomenon, presented in Section 7.2; and

■ a simulated analysis , closely examining how varying snippet lengths affect searcher

performance and stopping behaviours, discussed in Section 7.3.

The outline for both of these studies follows the general methodology, as discussed in Chap-

ter 6. Before discussing the studies and their results, we begin with an overview of prior

work that has examined the length of SERPs and result summary snippets.

7.1 Background

Researchers have examined various aspects of SERPs, and how the designs of such aspects

influence the behaviour of searchers. In this section, we provide a summary of the various

aspects that have been examined over time. Specifically, we consider:
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■ the size of SERPs;

■ how much text should be presented within each result summary;

■ the layout and presentation of SERPs; and

■ how snippet text for result summaries is generated.

Of the four areas of SERP research that we examine in this section, we consider the laĴer to

be the main focus of this work. Each area is summarised below.

7.1.1 Results per Page

Today, a multitude of devices are capable of accessing the WWW – all utilising a wide

range of different screen resolutions and aspect ratios. Therefore, the question of how many

result summaries should be displayed per page becomes hugely important, yet increas-

ingly difficult to answer. Examining behavioural effects of mobile devices when interact-

ing with SERPs has aĴracted much recent research (e.g. Kim et al. (2012, 2014, 2016)), and

with each device capable of displaying a different number of results above-the-fold1, research

has shown that the number of results presented on a SERP can influence the behaviour of

searchers (Joachims et al., 2005; Kim et al., 2014). Understanding this change in behaviour

can help guide and inform individuals charged with the design of user interfaces in con-

temporary retrieval systems.

However, Linden (2006) stated in a Google industry report that searchers desired more than

10 results per page, despite the fact that increasing the number of results displayed yielded

a 20% drop in traffic. It was hypothesised that this was due to the extra time required to

dispatch the longer SERPs. However, this drop could have been aĴributed to other rea-

sons. Oulasvirta et al. (2009) discussed the paradox of choice (Schwarĵ, 2005) in the context

1Refer to Section 9.2.1 on page 311 for a detailed explanation on displaying results above-the-fold – also
called the viewport size.
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of search, where more options (results) – particularly if highly relevant – will lead to poorer

decisions, degrading searcher satisfaction. In terms of searcher satisfaction, it can be argued

that modern retrieval systems may be a victim of their own success, leaving searchers with

choice overload. Oulasvirta et al. (2009) found that presenting searchers with a six item re-

sult list (rather than a list of 24) was associated with higher degrees of searcher satisfaction,

confidence with choices and perceived carefulness.

Kelly and Azzopardi (2015) broadly agreed with the findings of Oulasvirta et al. (2009).

Here, the authors conducted a between-subjects study with three conditions, where sub-

jects were assigned to one of three interfaces – a baseline interface, showing 10 results per

page (the traditional ten blue links), and two interfaces displaying 3 and 6 results per page

respectively. Their findings showed that individuals using the 3 and 6 results per page in-

terfaces spent more time (significantly so) examining top ranked results. They were also

more likely to click on documents ranked higher than those using the 10 results per page

interface. Findings from this study also suggested that subjects using the interfaces show-

ing fewer results per page found it comparatively easier to find relevant content than those

using the 10 results per page interface. Of course, examining results to shallow depths also

means that searchers would have stopped examining content comparatively early, too. Dis-

playing 10 results per page is still considered as the de-facto standard (Hearst, 2009), with

this de-facto value our primary interest in examining result summary lengths in more detail.

7.1.2 Snippet Lengths: Longer or Shorter?

Snippet lengths have been examined in a variety of ways. A user study by Paek et al. (2004)

compared a searcher’s preference and usability against three different interfaces for dis-

playing result summaries. With question answering tasks, the interfaces:

■ displayed a normal SERP, consisting of a two line snippet for reach result summary,

complete with a clickable hyperlink to the corresponding document;
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■ an instant interface, where an expanded snippet was displayed upon clicking it; and

■ a dynamic interface, where hovering the cursor would trigger the expanded snippet.

The instant view interface was shown to allow searchers to complete the given tasks in less

time than the normal baseline, with half of the participants preferring this approach.

Seminal work by Cutrell and Guan (2007) explored the effect of different snippet lengths,

exploring short (1 line), medium (2-3 lines, the expected standard) and long (6-7 lines) snip-

pets. They found longer snippets significantly improved performance for informational

tasks (e.g. find the address for Glasgow International Airport2). Their sub-

jects performed beĴer for informational queries as snippet length increased. This work

was extended by Kaisser et al. (2008). They conducted two experiments that estimated the

preferred snippet length according to answer type (e.g. finding a person, time, or place),

and comparing the results of the preferred snippet lengths to searchers’ preferences, in or-

der to see if this could be predicted. Their preferred snippet length was shown to depend

upon the type of answer expected, with greater searcher satisfaction shown for the snippet

length predicted by their technique. The findings also indicated that longer snippets may

be more useful if the relevance of the snippet to the query was considered.

More recent work has begun to examine what snippet sizes are appropriate for mobile de-

vices, with the multitude of screen resolutions available. Given smaller screen sizes when

compared to desktop or laptop computers, this is particularly important – snippet text con-

sidered acceptable on a computer screen may involve considerable scrolling/swiping on a

smaller screen. Kim et al. (2017) found that subjects using longer snippets on mobile devices

exhibited longer search times and didn’t lead to improvements in correctly identifying rele-

vant content under informational tasks.3 Longer reading times and frequent scrolling/swip-

ing (with more viewport movement) were exhibited. Therefore, longer snippets did not
2Formerly Abbotsinch Airport and used as an airfield during World War II, Glasgow International Airport is

located eight miles west of Glasgow city centre.
3The tasks considered by Kim et al. (2017) were similar to those defined by Cutrell and Guan (2007), where

a single relevant document was sought.
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appear to be very useful on a small screen. An instant or dynamic approach (as per Paek

et al. (2004)) may have practical applications if searching were to be conducted on a mobile.

7.1.3 SERP Layout and Presentation

Early works regarding the presentation of result summaries examined different approaches

to automatically categorising result summaries for searchers, similar to the categorisation

approach employed by early retrieval systems (as shown in Figure 2.1 on page 24). Chen

and Dumais (2000) developed an experimental system that automatically categorised re-

sult summaries on-the-fly as they were generated. For a query, associated categories were

then listed as verticals, with associated document titles provided underneath each category

header. Traditional result summaries were then made available when hovering over a doc-

ument title (as illustrated below with a sample title and summary popup). Subjects of a

user study found the interface easier to use than the traditional ten blue links approach –

they were 50% faster at finding information displayed in categories. This work was then

extended by Dumais et al. (2001), where they explored the use of hover text to present ad-

ditional details about search results based upon user interaction. Searching was also found

to be slower with hover text, perhaps due to the fact that searchers were required to make

decisions as to when to explicitly seek additional information.

Chinese expert says South China tiger may be extinct in wild

...be too few to save the species from extinction, a Chinese wildlife expert said Thursday. The 
last... in May 1996, a report by the World Wildlife Fund for Nature said fewer than 50...
Associated Press Worldwide News Service

Mouse Hover Event

Popup Summary

Alternatives to the traditional, linear list of result summaries have also been trialled – like

grid-based layouts (Resnick et al., 2001; Kammerer and Gerjets, 2010; ChiericheĴi et al.,

2011). From these examples, Kammerer and Gerjets (2010) examined differences in searcher

behaviour when interacting with a standard list interface, compared against a tabular inter-

face (title, snippet and source stacked horizontally in three columns for each result), and a
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grid-based layout (result summaries placed in three columns). Those using the grid layout

spent more time examining result summaries, and demonstrated promise in overcoming

issues such as positional bias (Craswell et al., 2008), as observed by Joachims et al. (2005).

Marcos et al. (2015) also performed an eye-tracking analysis, examining the effect of searcher

behaviours while interacting with SERPs – and whether the richness of result summaries

provided on a SERP (i.e. result summaries enriched with metadata from corresponding

pages) impacted upon the user’s search experience. Enriched summaries were found to

help capture a searcher’s aĴention.

Including both textual and visual information within results could have a positive effect

on the assessment of relevance and the formulation of queries (Joho and Jose, 2006). En-

riched summaries were also examined by Ali et al. (2009) in the context of navigational

tasks. Striking a good balance between textual and visual cues (i.e. proximal cues, as dis-

cussed in Section 3.3.1.1) has been shown to improve a searcher’s ability to complete tasks,

and reduce search completion time.

7.1.4 Generating Snippet Text

Searchers may gain insight to the relevance of documents by examining the associated re-

sult summaries (He et al., 2012). Consequently, research has been undertaken that exam-

ined different kinds of snippets, and the optimal length of a snippet. Work initially focused

upon how these summaries should be generated (Pedersen et al., 1991; Landauer et al., 1993;

Tombros and Sanderson, 1998; White et al., 2003; Leal-Bando et al., 2015). These early works

proposed the idea of summarising documents with respect to the query (query-biased sum-

maries), or keywords-in-context – as opposed to simply extracting the representative or lead

sentences from the document (Kupiec et al., 1995). Examples of both approaches are illus-

trated in Figure 7.1. Indeed, Tombros and Sanderson (1998) showed that subjects of their

study were likely to identify relevant documents more accurately when using query-biased
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skylarks

Source Document

Associated Press (1998-12-14)

A British bumblebee is the latest 
species to become extinct here, 
and a handful of others will follow 
soon if the government does not 
act to save them, the World Wide 
Fund for Nature said Monday.

Water voles, the high brown fritil-
lary butterfly, pipistrelle bats, sky-
larks, gray partridges and the song 
thrush will all vanish during the 
next decade or so without new leg-
islation to protect them, the...

Leading Sentence

British bumblebee extinct; other 
species likely to follow

Web  News  Image  Settings

British bumblebee extinct; other species likely to follow
Associated Press
A British bumblebee is the latest species to become extinct here, and 
a handful of others will follow soon if the government does not act to 
save them, the World Wide Fund for Nature said Monday.

Query-Biased
British bumblebee extinct; other species likely to follow
Associated Press
...the high brown fritillary butterfly, pipistrelle bats, skylarks, gray 
partridges and the song thrush will all vanish during...

Figure 7.1 A visual example of two different types of summary, along with a portion of an ex-

ample document from the TREC AQUAINT collection. Given the query skylarks, the Search re-

sult summaries for both leading sentence and query-biased summaries are shown. Note the high-

lighting of the term skylarks in the query-biased summary.

summaries, compared to summaries that were simply generated from the first few sen-

tences of a given document. Query-biased summaries have also been more recently shown

to be preferred on mobile devices (Spirin et al., 2016).

When constructing snippets using query-biased summaries, Rose et al. (2007) found that

a user’s perceptions of the result’s quality were influenced by the snippets. If snippets

contained truncated sentences or many fragmented sentences (denoted as text choppiness),

searchers perceived the quality of the results more negatively, regardless of length. Ka-

nungo and Orr (2009) found that poor readability also impacted upon how the resultant

snippets were perceived. They maintain that readability is a crucial presentation aĴribute

that needs to be considered when generating a query-biased summary. Clarke et al. (2007)

analysed thousands of pairs of snippets where result A appeared before result B, but re-

sult B received more clicks than result A. As an example, they found results with snippets

which were very short (or missing entirely) had fewer query terms, were not as readable

and aĴracted fewer clicks. This led to the formulation of several heuristics relating to doc-
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ument surrogate features, designed to emphasise the relationship between the associated

page and generated snippet. Heuristics included:

■ ensuring that all query terms appeared in the generated snippet (where possible);

■ withholding the repetition of query terms in the snippet if they were present in the

page’s title; and

■ displaying shortened, easily readable URLs.

Recent work has examined the generation of snippets from more complex angles – from

manipulating underlying indexes (Turpin et al., 2007; Bast and Celikik, 2014), to language

modelling (Li and Chen, 2010; He et al., 2012), as well as using a searcher’s recorded his-

tory to improve the generation of snippets (Ageev et al., 2013; Savenkov et al., 2011). The

previous generation approaches also may not consider what parts of a document searchers

actually find useful. Ageev et al. (2013) incorporated into a new model of post-click searcher

behaviour data, such as mouse cursor movements and scrolling over documents, producing

behaviour-based snippets. Results showed a marked improvement over a strong text-based

snippet generation baseline. Temporal aspects have also been considered – Svore et al.

(2012) conducted a user study that showed searchers preferred snippet text with trending

content in snippets when searching for trending queries, but not so for general queries.

7.2 Varying Snippet Lengths

As can be seen from the background to this chapter, the presentation of result summaries

has been demonstrated to strongly influence the ability of a searcher to judge relevance (He

et al., 2012). Relevant documents may be overlooked due to uninformative or unaĴractive

summaries – but conversely, non-relevant documents may be examined due to a mislead-

ing summary. However, longer summaries also increase the cost of the examination, so
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there is likely a tradeoff between informativeness/accuracy and length/cost. The current,

widely accepted standard for result summaries are two query-biased snippets/lines (Hearst,

2009). However, does this concept hold in an ad-hoc context? In this context, do searchers

– when presented with longer result summaries – gain an improved discrimination between

relevant and non-relevant result summaries?

To address these questions, we now discuss a user study that investigated the effects of

search behaviour (in particular, stopping behaviours) and search performance when we

varied the lengths of result summaries, and thus the information content therein. The user

study reported is crowdsourced (n = 53) and follows a within-subjects design. Under

ad-hoc topic retrieval, subjects used four different search interfaces, each with a different

size of result summary. Findings from this study allowed us to address two main research

questions, which we enumerate below.

■ SNIPPET-RQ1 How does the length of a result summary affect searcher stopping

behaviours, performance and user experience?

■ SNIPPET-RQ2 Does the length of each result summary affect a searcher’s decision-

making ability and their likelihood of identifying relevant documents?

If longer result summaries affect searcher judgements regarding their relevance, it follows

that this will also influence their stopping behaviour, where searchers would stop at com-

paratively shallower depths (as per IFT and SET). This is because we assume that a greater

volume of text will require a longer period of examination (a greater examination cost).

Given sets of short and long result summaries, a searcher, over an identical time period,

will therefore examine fewer long result summaries than when examining the shorter sum-

maries. Refer to Section 3.4.3 on page 102 for more detail on the cost-interaction hypothe-

sis (Azzopardi, 2011).

This explanation provides a justification for SNIPPET-RQ2 . Corroborating evidence to

support the research question would be likely, as with longer result summaries comes a
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greater volume of information gain, as we demonstrate in Section 7.2.1.1. We hypothesised

that longer and more informative result summaries would enable participants to make bet-

ter quality decisions, due to a higher information content within a greater volume of text.

In the remainder of this section, we:

■ discuss study-specific details to complement the general methodology outlined in Sec-

tion 6.2;

■ provide results and analysis from the study, providing insight into the two study-

specific research questions outlined above; and

■ discuss the implications of the study.

We then take the interaction data from this study forward to Section 7.3, using it as a means

of grounding an extensive set of simulations of interaction. These are used to examine in

greater depth how snippet length affects searcher stopping behaviours using our opera-

tionalised result summary level stopping strategies.

7.2.1 Methodology

In this section, we outline the user study’s methodology. This section provides study-

specific, supplementary details that complement the general user study methodology. For

each subsection discussed below, we refer back to the relevant section in the general method-

ology to assist in understanding how each of the different components interact.

Below, we discuss the different search interfaces that we trialled, along with how we gen-

erated result summary snippets of varying length. We then provide a brief discussion of

the 53 subjects who took part in the user study, explain the search task, and discuss the

post-task surveys that subjects completed.
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7.2.1.1 Search System and Interfaces

In conjunction with the common retrieval system, corpus and topics discussed earlier in Sec-

tion 6.1.3, we trialled four different search interfaces as part of the within-subjects study de-

sign. The four interfaces presented snippets, as part of result summaries, of varying lengths.

This allowed us to explore the influence of snippet length and snippet informativeness on

search behaviours, performance and user experience.

Snippet Fragments
Example below
...fragment one...fragment 
two...fragment three...a sum-
mary can be comprised of 
many fragments.

To decide the length and informativeness of

the result summaries, we performed a prelim-

inary analysis to determine the average length

(in words) and informativeness (as calculated

by Kullback–Leibler Divergence (Kullback and

Leibler, 1951) (Kullback and Leibler, 1951) to measure information gain, or relative entropy)

of result summaries with the title, and a varying number of snippet fragments4 (from 0 to

10). The closer the entropy value is towards zero, the more information that is gained. Fig-

ure 7.2 plots the number of words, the log of the information gain, and the information gain

aĴained per word.56 It is clear from the plots shown in Figure 7.2 that a higher level of

information gain was present in longer snippets. However, as the length increased with

each snippet fragment added, the informativeness per word flatlined, with each fragment

added offering diminishing returns. Consequently, we selected the four different interface

conditions in the region where informativeness has the highest change, i.e. from zero to

four. The conditions selected7 for this study were therefore:

4Figure 2.9 on page 50 illustrates snippet fragments in the wider context of a SERP.
5These values were obtained by submiĴing over 300 queries from a previous user study, conducted by Az-

zopardi et al. (2013). These were conducted on similar topics, the same retrieval system and the same corpus
as used in the study reported in this chapter.

6Why did we take the log of the information gain? This was primarily done to show a visual increase in
Figure 7.2 and extrapolate differences. Negative values stem from the fact that information gain values are
small, and the log of a small value (< 1.0) corresponds to a negative value.

7Figure 7.3 provides a complete, rendered example of the different result summaries in each condition,
using the same document.
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Snippet Fragments: Length and Informativeness

Number of Snippet Fragments

Figure 7.2 Plots showing the length (in words), informativeness (represented by the log of the

information gain, or IG), and the log of the information gain (IG) per word for the title, plus 0 to 10

snippet fragments. The closer the value is to zero, the more information that is gained.

■ T0 , where only the title for each result summary was presented;

■ T1 , where for each result summary, a title and one query-biased snippet fragment

were presented;

■ T2 , where a title and two query-biased snippet fragments were presented; and

■ T4 , where a title and four query-biased snippet fragments were presented.

From here, we carefully selected the order in which subjects were presented with each in-

terface. For each of the four main topics discussed in Section 6.1.3, one of the four interfaces

from T0 , T1 , T2 and T4 were assigned to a topic using a Latin-square rotation. For

the practice topic, we used T2 – a title and two snippet fragments – the interface that

represented the de facto standard for presenting result summaries (Hearst, 2009).

7.2.1.2 Snippet Generation

For interfaces T1 to T4 , each result summary required one or more snippet fragments

from the corresponding document. As illustrated in the complete, rendered example in Fig-
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Venezuela Declares 42 Species in Danger of Exinction
Xinhua News Service
...the mammals in danger of extinction are the giant cachicamo, Margarita and...

Venezuela Declares 42 Species in Danger of Exinction
Xinhua News Service
...of animals in danger of exinction and banned game hunting of another 105...af-
fecting the population of existing wildlife, such as the irrational exploitation...

Venezuela Declares 42 Species in Danger of Exinction
Xinhua News Service
16 (Xinhua) - Venezuela declared 42 wildlife species of animals in danger of...of 
animals in danger of extinction and banned game hunting of another 105...affect-
ing the population of existing wildlife such as the irrational exploitation...the mam-
mals in danger of extinction are the giant cachicamo, Margarita and...

Venezuela Declares 42 Species in Danger of Exinction
Xinhua News ServiceT0

wildlife extinction

Examples of result summaries across each interface

T1

T2

T4

Title only

Title + 1 snippet

Title + 2 snippets

Title + 4 snippets

Figure 7.3 Examples of the result summaries generated by each of the interfaces, T0 , T1 ,

T2 and T4 . The same document is used. Demonstrated by Search, each of the result sum-

maries consists of: a title (in blue, underlined); none, one, or more snippet fragments (in black,

with fragments separated by ellipsis); and a newswire source (under the title, in green).

ure 7.3, each of the fragments generated was query-biased in nature (Tombros and Sander-

son, 1998). Fragments were generated by spliĴing a given document into sentences (delim-

ited by a period), and scoring each of the sentences according to BM25 (where β = 0.75).

Fragments were then extracted from the ordered series of sentences by identifying query

terms within said sentences. Fragments were created by creating a window of 40 characters

from either side of the identified query term, as illustrated in the example figure below.

...affecting the population of existing wildlife such as the irrational exploitation...
Query Term

The ordered set of fragments were then joined together, in order of relevance and separated

by ellipses (with one only for T1 , two for T2 , and four for T4 ). These were combined

together with the document’s title and source newswire to form the complete result sum-

mary.
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7.2.1.3 Search Task

As discussed previously in Section 6.2.1, subjects were grounded by instructing them to

imagine that they were newspaper reporters. As such, they were required to gather (save)

documents to write stories about each of the four topics for which they were asked to search.

For this study, subjects were assigned ten minutes to each of the four search tasks. They

and were specifically instructed to find and identify as many relevant documents as they

could during this alloĴed time. As shown in Section 6.2.2, subjects interacted with the stan-

dard search interface. Documents were saved by subjects when they were considered to be

relevant to the given TREC topic.

7.2.1.4 Crowdsourced Subjects

A total of 60 subjects took part in the MTurk platform. However, seven subjects were omit-

ted due to quality control constraints imposed on the study, as outlined in Section 6.2.4 on

page 147. This left 53 subjects who satisfied the conditions of the experiment. In all, of

the 53 subjects who satisfied the criteria, 28 were male, with the remaining 25 female. The

average age of the subjects was 33.8 years (min = 22; max = 48; stdev = 7.0). A total of

19 subjects reported possessing a bachelor’s degree or higher, with all expressing a high

degree of search literacy, and reportedly conducted at least five searches for information

online per week.

With a total of 53 subjects considered in the results of this study, each searching over four

topics, this meant a total of 212 search sessions being logged and available for analysis.

Finally, we report results over a reduced time period of six minutes (360 seconds). This de-

cision was taken as not all of the 53 subjects spent the full ten minutes searching, with these

subjects skewing results. By reducing the time period that we considered, we ensured that

we could extract meaningful data from the interaction logs, and guaranteed that subjects

were interacting with the experimental system up until the cutoff point.
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7.2.1.5 Post-Task Surveys

With the pre-task survey the same as that outlined in the general methodology (refer to

Section 6.3), surveys for this study differed post-task and post-experiment. Here, we discuss

the questions posed in each of the four post-task surveys.

A seven-point Likert scale was used for post-task surveys, similar to the pre-task surveys.

Upon completion of each search task, the following statements were completed by each

subject, selecting from strongly disagree to strongly agree.

■ Clarity The result summaries presented were clear and concise.

■ Confidence The result summaries presented increased my confidence in my deci-

sions.

■ Informativeness The result summaries presented were informative to me.

■ Relevance The result summaries presented allowed me to judge the relevance of the

associated document.

■ Readability The result summaries presented were readable.

■ Size The result summaries presented were of an appropriate size and length.

These questions allowed us to obtain quantitative data alluding to how each subject per-

ceived the search interface with which they interacted, and allowed us to ascertain the sub-

jects’ evaluations of the differing result summary lengths.

7.2.1.6 Post-Experiment Survey

At the end of the experiment, subjects also undertook a post-experiment survey. Five ques-

tions were posed, this time asking subjects to select which one of the four different interfaces

best reflected their opinion of the question asked.
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■ Most Informative? Of the four interfaces, what one yielded the most informative

result summaries?

■ Least Helpful? Of the four interfaces, which one provided the most unhelpful result

summaries?

■ Easiest? Which of the four interfaces provided result summaries that were easiest

to understand?

■ Least Useful? Of the four interfaces, which one provided the least useful result sum-

maries?

■ Most Preferred? Of the four interfaces, what interface did you prefer using the

most?

These questions allowed us to determine which interface delivered the optimal outcome for

searching when considering different criteria.

7.2.2 Results and Analysis

From the four aspects we highlighted in Section 6.3, we report results from the study across

four main sections, including analysis of: behavioural measures (interactions); time-based

measures; performance measures; and user experience (surveys).

Each measure was analysed over the four different search interfaces. To perform our analy-

sis, Analysis of Variance (ANOVA) tests were used using the interfaces as factors; main effects

were examined with α = 0.05. The Bonferroni correction was used for post-hoc analysis to

determine what interfaces offered significant differences.

To check whether the interfaces were sufficiently different with respect to snippet length

and information gain, we performed an analysis of the result summaries that were pre-

sented to the subjects. Table 7.1 summarises, over each interface, the number of words and
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Table 7.1 Characters, words and the log of the Information Gain (IG) across each of the four

interfaces trialled. Significant differences were revealed, with follow-up tests showing that each

interface was significantly different to others. An greater IG value denotes a higher level of IG.

T0 T1 T2 T4

Words 6.58±0.01 25.21±0.06 44.29±0.10 77.06±0.13

Characters 37.37±0.05 103.29±0.17 168.36±0.23 284.78±0.31

IG -6.35±0.01 -3.59±0.00 -3.00±0.00 -2.67±0.00

IG/Word -1.17±0.00 -0.18±0.00 -0.08±0.00 -0.04±0.00

characters that result summaries contained on average. As expected, the table shows an in-

creasing trend of words and characters as the number of snippet fragments were increased.

Information gain (or relative entropy), as previously discussed, was calculated using KL-

divergence (Kullback and Leibler, 1951).8 A two-tailed Student’s t-test (where α = 0.05)

showed that the differences between snippet length (F(3, 208 = 1.2x105, p < 0.001)) and in-

formation gain (F(3, 208) = 2.6x105, p < 0.001)) were significant . Follow up tests revealed

that this was the case over all four interfaces, indicating that our conditions were indeed

different over these dimensions. These findings provide some justification for our choices

of the number of snippet fragments used with each interface. A diminishing increase in

information gain after four snippet fragments suggested that there would not have been

much point generating result summaries that were any longer.

7.2.2.1 Interaction Measures

Across the four experimental interfaces trialled, Table 7.2 presents the mean (± standard

deviations) of:

■ the number of queries issued (#Queries);
8For consistency with the pilot study reported in Figure 7.2, we again took the log of the information gain

and reported them in Table 7.1.
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Table 7.2 Various measures reported over each of the four experimental interfaces, T0 ,

T1 , T2 and T4 . Included are interaction and time-based measures (behavioural), as well

as performance-based measures. No significant differences were observed, bar for the time per

result summary, as highlighted . Refer to Section 7.2.2.2 for details.

T0 T1 T2 T4

In
te
ra
ct
io
ns

#Queries 3.72±0.34 3.19±0.35 3.30±0.35 3.28±0.31

#SERPs/Query 2.87±0.29 2.69±0.23 2.43±0.13 2.40±0.20

#Docs./Query 4.23±0.55 4.83±0.54 5.14±0.66 4.76±0.62

Depth/Query 15.44±1.81 17.00±2.21 14.37±1.39 13.53±1.95

Pe
rf
or
m
an
ce

P@10 0.25±0.02 0.23±0.02 0.27±0.02 0.25±0.03

#Saved 6.68±0.66 7.00±0.63 6.49±0.58 7.60±0.79

#TREC Saved (iP) 2.58±0.34 2.28±0.25 2.47±0.28 2.66±0.32

#TREC Non. 1.85±0.32 2.08±0.29 1.98±0.24 1.68±0.32

Ti
m
es

Per Query 8.29±0.57 7.99±0.57 9.42±0.79 8.12±0.48

Per Document 17.32±2.12 22.82±6.03 17.19±1.86 18.99±2.13

Per Summary 1.63±0.13 2.21±0.21 2.35±0.23 2.60±0.27

■ the number of SERPs viewed per query (#SERPs/Query), considering pagination;

■ the number of documents viewed per query (#Docs./Query); and

■ the mean click depth – or stopping depth (Depth/Query).

These are all presented within the Interactions grouping. Across the four experimental

interfaces of T0 , T1 , T2 and T4 , there were no significant differences reported

between any of these measures. The number of queries issued follows a slight down-
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Table 7.3 A summary of the various interaction probabilities over each of the four experimental

interfaces examined. Note the increasing trends for each probability from T0 → T4 . Sec-

tion 6.4.2.3 on page 167 provides an explanation of the various probabilities listed here. No sig-

nificant differences were observed across any of the probabilities and interfaces.

T0 T1 T2 T4

C
lic
k

P(C) 0.20±0.02 0.25±0.02 0.26±0.03 0.28±0.03

P(C|R) 0.28±0.03 0.34±0.03 0.35±0.03 0.40±0.04

P(C|N) 0.18±0.02 0.23±0.02 0.25±0.03 0.24±0.03

Sa
ve

P(S) 0.61±0.04 0.68±0.04 0.65±0.03 0.71±0.03

P(S|R) 0.66±0.06 0.69±0.05 0.67±0.05 0.66±0.05

P(S|N) 0.55±0.04 0.65±0.04 0.58±0.04 0.67±0.04

ward trend as the length of the result summaries (dictated by the interface conditions) in-

creased (3.72 ± 0.34 for T0 , to 3.28 ± 0.31 for T4 ). This was also true for the number

of SERPs examined. However, the depth to which subjects went to per query follows a

downward trend. As the length of each result summary increased, subjects were likely to

go to shallower depths per query when examining result summaries (15.44± 1.81 for T0 ,

to 13.53 ± 1.95 for T4 ). Although not significantly different, we observe that result sum-

mary length does appear to influence searcher stopping behaviours. When using interface

T4 for example, subjects viewed fewer SERPs per query, and correspondingly examined

to shallower depths. Taken together, these two measures demonstrate that a relationship

may exist between these factors.

Interaction probabilities all showed an increasing trend as result summary length increased

over the four experimental interfaces, as shown in Table 7.3. Explanations for what each of

the different probabilities represents can be found in Section 6.4.2.3 on page 167. Although
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no significant differences were observed over the four interfaces and the different probabili-

ties examined, values reported across all probabilities generally showed an increasing trend

as result summary lengths increased. An increase was observed for both the probability of

clicking result summaries on the SERP (P(C)) and saving the associated documents (P(S)) as

relevant were observed. When these probabilities are examined in more detail by separating

the result summaries clicked and documents saved by their TREC relevance, we see increas-

ing trends for clicking and saving – both for TREC relevant (P(C|R) and P(S|R) for clicking

and saving, respectively), and TREC non-relevant documents (P(C|N) and P(M|N)). This

interesting finding shows that an increase in result summary length does not necessarily

improve a subject’s accuracy, but simply the likelihood that they will consider documents

to be relevant, making them more click happy.

7.2.2.2 Time-Based Measures

Table 7.2 also presents three time-based measures (within the Times grouping) that were

observed across the four experimental interfaces. We show:

■ the mean time spent by subjects issuing queries (Per Query);

■ the mean time spent by subjects examining individual documents (Per Document);

and

■ the mean time spent examining individual result summaries (Per Summary).

No significant differences were found between the time spent per query, and the time

spent examining individual documents. However, a difference did exist for the time spent

per result summary, as can be seen from the table. A clear upward trend in the time

spent examining result summaries can be seen in Figure 7.4 as their lengths increased, from

1.63 ± 0.13 for T0 to 2.6 ± 0.27 for T4 , and this difference was statistically significant
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Experimental Interface

T0 T1 T2 T4

2.0

2.5

3.0
Interface Time (in Seconds)

T0 1.63±0.13

T1 2.21±0.21

T2 2.35±0.23

T4 2.60±0.27 In
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The longer the presented result summary, 
the greater the time (on average) required 
to examine them

Figure 7.4 Plot and table illustrating the mean time spent examining result summaries across

each of the four experimental interfaces trialled. Note the increasing mean examination time as the

result summary length increases, from T0 → T4 . Error bars denote the standard deviation.

(F(3, 208) = 3.6, p = 0.014). The follow-up Bonferroni test showed that significant dif-

ferences did exist between interfaces T0 and T4 . This finding suggests that as result

summary lengths increased, the amount of time spent examining individual result sum-

maries also increased. This also complies with trends observed regarding examination

depths. When the length of result summaries increased, subjects were likely to examine

result summaries to shallower depths. This is an intuitive result; given the cost-interaction

hypothesis (Azzopardi, 2011), one would expect a searcher to examine less content if the

cost of such content (i.e. the greater length, and amount of information) were to increase.

7.2.2.3 Performance

Also included within Table 7.2 are our reported performance measures, this time shown un-

der the Performance grouping. Again, these are reported over each of the four experimental

interfaces trialled. We report the mean performance of:

■ the issued queries, with the corresponding P@10 score;

■ the number of documents that were saved by subjects (#Saved); broken up into
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– the interactive precision, or the number of saved documents that were TREC

relevant (#TREC Saved (iP)); and

– the number of saved documents that were not TREC relevant (#TREC Non.).

Like the interaction measures examined previously, no significant differences were ob-

served over the four experimental interfaces examined. The performance of queries issued

by subjects was very similar across all interfaces (P@10 ≈ 0.25), along with the number of

documents identified by subjects as relevant (6.49 ± 0.58) for T2 to 7.6 ± 0.79 for T4 ,

and the interactive precision (2.28 ± 0.25 for T1 to 2.66 ± 0.32 for T4 ). Considering the

number of saved TREC non-relevant documents, subjects saved on average two of these

documents. However, there were no significant differences between the four interfaces.

7.2.2.4 User Experience

In this section, we analyse the results of the post-task and post-experiment surveys that

subjects completed. Examining the results from these surveys allowed us to capture the

perceived experiences of the subjects when using the experimental system across all four

interfaces trialled.

Post-Task Surveys Table 7.4 presents the mean set of results (and their standard devia-

tions) from subjects across the four interfaces trialled. The survey questions are detailed in

Section 7.2.1.5. Using a seven-point Likert scale for their responses (with 1 denoting a strong

disagreement, and 7 denoting a strong agreement), significant differences were found in all

question responses, as shown below.

■ Clarity F(3, 208) = 5.22, p = 0.001

■ Confidence F(3, 208) = 5.2, p = 0.001

■ Informativeness F(3, 208) = 5.22, p = 0.001
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Table 7.4 Summary table of the recorded observations for the post-task surveys, indicating the

preferences of subjects over the six criteria and four experimental interfaces. Across all criteria,

T0 was significantly different from the other three interfaces. Using the seven-point Likert

scale, results are shown from 1 (strongly disagree) to 7 (strongly agree).

T0 T1 T2 T4

Clarity 4.16±0.27 5.00±0.21 5.06±0.24 5.40±0.20

Confidence 3.71±0.26 4.66±0.26 4.75±0.24 5.06±0.25

Informativeness 4.20±0.30 5.38±0.24 5.27±0.24 5.62±0.20

Relevance 3.84±0.28 4.89±0.25 5.08±0.24 5.36±0.20

Readability 5.18±0.31 6.32±0.17 6.46±0.14 6.36±0.14

Size 4.00±0.31 4.94±0.25 5.21±0.22 5.36±0.19

■ Relevance F(3, 208) = 6.44, p < 0.001

■ Readability F(3, 208) = 9.25, p < 0.001

■ Size F(3, 208) = 7.28, p < 0.001

However, follow-up Bonferroni tests show that a significant difference occurred only be-

tween interface T0 and T1 , T2 and T4 . A series of discernible trends can be ob-

served throughout the responses, with subjects regarding longer result summaries as clear

and concise, and possessing a higher degree of clarity (4.16 ± 0.27 for T0 to 5.4 ± 0.2 for

T4 ). This improved clarity also provided subjects with greater confidence that longer

result summaries helped them beĴer determine the degree of relevance to a given topic.

Interaction results presented above however differ from this (as shown in Table 7.3), where

the overall probability of saving documents increased, regardless of the document/topic

relevance judgement. Other notable trends observed from the results included an increase

in how informative subjects perceived results to be – again, with longer result summaries
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Table 7.5 Raw results of responses from the post-experiment exit survey completed by each

subject. More information on the survey can be found in Section 7.2.1.6, with results discussed in

Section 7.2.2.4. Questions recording the highest value(s) for each interface are highlighted .

T0 T1 T2 T4

Most Informative 1 4 19 29

Least Helpful 46 4 1 2

Easiest 4 4 24 21

Least Useful 48 4 0 1

Most Preferred 3 5 19 26

proving to be more informative. Subjects also reported a general increase in satisfaction of

the length of the presented result summaries. However, as mentioned, no significant dif-

ference existed between the three interfaces in which snippets were generated as part of the

result summaries (i.e. T1 , T2 and T4 ).

Post-Experiment Survey As detailed previously in Section 7.2.1.6, subjects completed a

post-experiment exit survey. Responses from the subjects are presented in Table 7.5. From

the results, subjects found result summaries of longer lengths (i.e. those generated by in-

terfaces T2 and T4 ) to be the more informative, and those generated by T0 – without

any snippet(s) – to be both the least helpful and useful. Longer result summaries were also

consistently favoured by subjects who preferred them over the result summaries generated

by interfaces T0 and T1 . Subjects also found the result summaries of longer lengths to

be beĴer in helping them satisfy their given information need.

From the results, it is clear that a majority of subjects preferred longer result summaries

to be presented on SERPs, generated by interfaces T2 and T4 . This is illustrated in

Table 7.5 by the highlighting of the key results. Note that interface T0 tended to be the

most popular option for questions with a negative tendency.
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7.2.3 Discussion and User Study Conclusions

This user study investigated the influence of result summary length on search behaviour

and performance. Using KL-divergence (Kullback and Leibler, 1951) as a measure of in-

formation gain, we examined result summaries of different lengths. We selected a series of

result summary lengths (comprised of snippet fragments) where there was a significant dif-

ference in information gain between them, which in turn yielded the configurations for our

four experimental conditions, T0 , T1 , T2 and T4 . A crowdsourced, within-subjects

user study was performed comprising of 53 subjects, each of whom undertook four search

tasks, using each of the four experimental interfaces. This work addressed two key research

questions, which explored how: SNIPPET-RQ1 the length of a result summary affected

search behaviour and user experience; and SNIPPET-RQ2 whether the length of result

summaries affected the decision making ability and accuracy of the subjects.

Addressing SNIPPET-RQ1 first in terms of search behaviour, there were few significant

differences, but we did observe the following trends. As result summary length increased,

subjects issued fewer queries and examined fewer SERPs, but importantly demonstrated a

higher probability of clicking result summary links. Our results also show that in terms of ex-

perience, subjects broadly preferred longer result summaries. Subjects reported that longer

summaries were more clear, informative, and readable. In addition to this, the longer result

summaries also gave subjects more confidence in their relevance decisions.

With respect to SNIPPET-RQ2 , we again observed liĴle difference in subjects’ decision

making abilities and accuracy between the four experimental interfaces. While subjects

perceived longer result summaries to help them infer relevance more accurately, our em-

pirical evidence suggests otherwise. In fact, it would appear that longer result summaries

were more aĴractive, increasing the information scent of the SERP. This may account for

the increase in clicks at higher ranks. However, the accuracy of our subjects did not im-

prove with longer result summaries, nor did they find more relevant documents. Increased
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confidence in the result summaries (from interfaces T0 → T4 ) may have led to a more

relaxed approach at saving content as relevant, as can be seen by increasing click and mark

probabilities for both relevant and non-relevant content. It is also possible that the paradox

of choice (Oulasvirta et al., 2009) could play a role in shaping a searcher’s preferences. For

example, in interface T4 , subjects viewed fewer results/choices than when using other

interfaces. This may have contributed to their feelings of greater satisfaction and increased

confidence in their decisions.

These novel findings provide new insights into how searchers interact with result sum-

maries in terms of their experiences and search behaviours. Previous work had only fo-

cused upon task completion times and accuracy of the first result while not considering

their experiences (Cutrell and Guan, 2007; Kaisser et al., 2008). Our findings show that

while containing a greater amount of information content, longer result summaries are not

necessarily beĴer in terms of decision making. However, subjects perceived this to be the

case. We also show a positive relationship between the length and informativeness of re-

sult summaries and their aĴractiveness (clickthrough rates). These results show that the

experiences and perceptions of searchers (and the actual performance of those searchers) is

different, and when designing interfaces, this needs to be taken into account.

7.3 Simulated Analysis

With our user study now reported, we move onto our corresponding simulations of inter-

action. In particular, this section reports on how the twelve different result summary level

stopping strategies performed (defined earlier in Chapter 5 on page 121):

■ HL-RQ3a perform; and

■ HL-RQ3b approximate actual searcher stopping behaviours.
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For both research questions, these are addressed under the context of varying result sum-

mary lengths. In the remainder of this section, we provide methodology details specific to

this study (Section 7.3.1), before providing the results of the simulations (Section 7.3.2).

7.3.1 Methodology

This methodology section outlines the details specific to this set of simulations. One can as-

sume that any components not discussed here were instantiated as presented in the general

simulation methodology, provided in Section 6.4 on page 157. As we wish to examine how

stopping behaviours vary when searchers are exposed to interfaces with result summary

snippets of different lengths, we utilised all four of the experimental interfaces defined ear-

lier. These are discussed below (Section 7.3.1.1), before we outline the interaction costs and

probabilities extracted for each interface (Section 6.4.2.1).

7.3.1.1 Experimental System and Interfaces

The experimental system used for these simulations was largely the same as outlined in

Section 6.4 on page 157 – save for the incorporation of the snippet generation components

as outlined previously in Section 7.2.1.2 within the SimIIR framework. By incorporating

this component, this allowed us to run simulations whose simulated searchers were also

subjected to interfaces T0 , T1 , T2 , and T4 . We could then mirror closely – given

the experimental setup – the interfaces that the real-world searchers were subjected to.

7.3.1.2 Interaction Costs and Probabilities

We then took the interaction log data from the associated user study. Given the four exper-

imental interfaces, we could then (following the methodology outlined in Sections 6.4.2.3

and 6.4.2.1) extract different interaction probabilities and costs to ground our simulations.
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Table 7.6 Summary table of the different interaction costs (in seconds) and probabilities, with

P(C) denoting the probability of a click, and P(S) denoting the probability of saving a document

(considering it relevant). Refer to Sections 6.4.2.1 and 6.4.2.3 respectively for further information

on how the costs and probabilities were extracted. All probabilities in this table is attained from

interaction data from the user study reported in Section 7.2.

T0 T1 T2 T4

P(
C
) P(C|R) 0.28 0.34 0.35 0.40

P(C|N) 0.18 0.23 0.25 0.24

P(
S)

P(S|R) 0.66 0.69 0.67 0.66

P(S|N) 0.55 0.65 0.58 0.67

C
os
ts

(i
n
se
co
nd

s)

Query 8.29 7.99 9.42 8.12

SERP 3.22 3.56 3.93 3.45

Result Summary 1.63 2.21 2.35 2.60

Document 17.32 22.82 17.19 18.99

Save 1.26 1.11 1.26 1.17

Time Limit 360 seconds (refer to Section 7.2.1.4)

The interaction probabilities and costs for each of the four interfaces are presented in Ta-

ble 7.6. Included in the table under the P(C) and P(S) groupings are:

■ the probabilities for clicking a result summary link, broken down over whether the

associated document is TREC relevant (P(C|R)) or not (P(C|N)); and

■ the probabilities for saving a document (denoting its relevance to the given TREC

topic), again broken down over whether the document is TREC relevant (P(S|R)) or

not (P(S|N)).
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Interaction costs denote the time required by the simulated searchers to undertake different

tasks. Interaction costs listed in Table 7.6 (under the Costs grouping) include:

■ the time taken to issue a query (labelled Query);

■ the time taken to perform an initial examination of the SERP (SERP);

■ the time taken for a simulated searcher to examine an individual result summary (Re-

sult Summary);

■ the time taken for a document examination (Document); and

■ the time required to save a document (Save).

Details for what constitutes each individual interaction cost can be found, as previously

stated, in Section 6.4.2.1 on page 163. Note that the SERP examination cost was included

even though the SERP stopping decision point was disabled in these simulations; this en-

sured that a cost was still paid when performing a SERP examination, even if the outcome

was always the same.

Regarding the total session time, simulated searchers were permiĴed a total of 360 seconds

to perform each search session. This was the same total session time used in the user study

analysis, as discussed in Section 7.2.1.4. Simulated searchers within this time period would

save as many documents as possible that were judged to be relevant according to the pre-

rolled action judgement files (refer to Section 6.4.2.3 on page 167).

7.3.2 Results

We now report the results of our simulations of interaction. We discuss our findings over

two subsections, considering:

■ the performance runs (Section 7.3.2.1), where we discuss the highest levels of perfor-

mance aĴained by simulated searchers under different what-if scenarios; and
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■ the comparison runs (Section 7.3.2.2), where we provide results of the simulations that

were directly compared to actual mean searcher stopping behaviours.

Both of these sections provide an answer for high-level research questions HL-RQ3a and

HL-RQ3b respectively, under the context of varying result summary lengths.

Significance Testing In order to determine what result summary level stopping strate-

gies were different from others, we employed significance testing. All tests in this section

utilise the two-tailed Student’s t-test, where α = 0.05. We compared the best performing

or approximating stopping strategies against the other eleven. Here, we are interested in

statistical non-significance (i.e. α > 0.05), meaning that the compared stopping strategies are

similar to one another in terms of performance or approximations.

7.3.2.1 Performance

Before discussing the performance (what-if) results, we must first determine whether the

implemented querying strategy QS13 delivered queries of expected performance. Re-

call that QS13 is an interleaved querying strategy, where queries from two other querying

strategies QS1 (poor) and QS3 (good) were interleaved together.9 In turn, this allowed

us to determine how robust a given result summary level stopping strategy was. With a poor

query, searchers would be best placed to abandon the associated SERP at shallow depths,

as an example. As such, we first examined the average performance of all generated queries

issued to the underlying retrieval system. An example of the interleaving approach that we

employed is demonstrated in Figure 7.5. In this illustration, we see four actual queries that

were issued for the piracy topic. Single term queries (i.e. `clashes') were generated by

QS1 ; three term queries (i.e. `piracy taking control') were generated by QS3 .

Table 7.7 reports on a number of different P@k measures for each of the three individual

querying strategies. We consider P@1, P@5, P@10 and P@20. Values (± standard devia-
9Refer to Section 6.4.2.2 on page 164 for additional information on how these querying strategies were

implemented.
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Table 7.7 Mean P@k values (± standard deviations) of all generated queries issued for perfor-

mance runs. Precision values are reported at depths of 1, 5, 10 and 20 over QS1 (single term

queries), QS3 (three term queries) and interleaved querying strategy QS13 . Note the general

increase in average query performance as we tend from QS1 → QS3 .

QS1 QS13 QS3

P@1 0.04 ± 0.20 0.19 ± 0.39 0.23 ± 0.43

P@5 0.03 ± 0.07 0.14 ± 0.21 0.18 ± 0.23

P@10 0.02 ± 0.07 0.12 ± 0.18 0.14 ± 0.19

P@20 0.03 ± 0.07 0.08 ± 0.13 0.10 ± 0.14

tions) for each of these measures were computed over each of the individual queries issued

during the performance runs. A total of 101 unique queries were identified across the five

topics trialled to produce these results. As per the querying strategy descriptions outlined

in Section 6.4.2.2, we split queries into sets for either QS1 (for single term queries) or

QS3 (for three term queries), and both sets for QS13 . From the table, we can see from

left ( QS1 ) to right ( QS3 ) an increasing trend in performance, demonstrating that the

performance of the queries that were issued was in line with our expectations. Moving

forward as we report the performance of individual stopping strategies, this provides con-

firmation that the querying strategies were working as intended. We believe that QS13

provides a good test environment to evaluate the robustness of the twelve individual result

summary level stopping strategies.

We now turn our aĴention to the main results of the performance (what-if) simulations.

We primarily consider HL-RQ3a in our reporting, which requires an examination of the

performance for each result summary level stopping strategy. Before this, we consider the

general trends that we observed from the results of the experiments and consider the dif-

ference between the four experimental interfaces.
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Piracy (Identify instances of vessels being captured and boarded)

TREC Robust Track 2005
Topic 367

SOS! !!!!!

P@10=0.4

P@10=0.1P@10=0.3

P@10=0.0

Figure 7.5 Illustration highlighting several queries issued during the performance (what-if) ex-

periments, as generated by QS13 . The selected topic illustrated is TREC topic 367, piracy.

Notice the interleaving between single term and three term queries, along with the varying levels

of performance between single term and three term queries, represented here by the P@10 score.

Figure 7.6 provides twelve individual plots, one per result summary level stopping strat-

egy. The plots represent the mean levels of performance aĴained at varying depths per

query, averaged over the five individual topics10 and 50 individual trials. This is shown

across interfaces T0 , T1 , T2 and T4 . Each point on a ploĴed line represents a stop-

ping threshold parameter configuration for a given stopping strategy. The mean depth per

query is represented along the x axis, with the performance aĴained (represented as CG)

represented on the y axis. Although some stopping strategies caused simulated searchers

to browse to depths greater than 25 on average, we cut all plots at this value for consistency,

and to beĴer illustrate how performance varies at shallower depths.

General trends across all twelve stopping strategies can be observed from the plots in Fig-

ure 7.6. We first note that as we alter the various stopping threshold parameter values that

we trialled, we see that mean performance is aĴained from shallower to greater depths per

10This figure includes the practice topic, privacy – as real-world queries were not required for this set of
experiments, we could use this topic.
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Figure 7.6 Plots showing the varying levels of performance, measured in CG, against the mean

depth per query. Each result summary stopping strategy is shown on an individual plot, with each

of the four experimental interfaces shown within each plot. The depth per query reported on each

x axis is cut at 25 to allow for an easier comparison between different stopping strategies.
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query. In turn, this generally results in a gain in overall performance, with the mean CG

aĴained generally increasing as the depth per query increases. However, this is true only

until a certain point, representing the maximum level of mean CG aĴained. After this point,

which is illustrated in a more profound way with some stopping strategies than others, a

simulated searcher would begin to browse to greater depths on average. At greater depths,

the searcher would encounter fewer and fewer potentially relevant documents, and thus

would begin to waste time examining the same SERP. This is represented in the plots as the

downward trend of mean CG at greater depths per query, clearly visible after the highest

level of CG is aĴained. This general trend can be clearly observed from our baseline, fixed-

depth stopping strategy, approximately at SS1-FIX @6 . An increase in mean CG up

until a mean depth per query of ≈ 6 (for most interfaces) can be observed; after this point,

we generally observed a gradual drop-off in performance.

Considering the four plots in Figure 7.6 from the perspective of the four experimental in-

terfaces, liĴle difference can be observed across all twelve stopping strategies, and across

the varying depths per query. The same general trends can be observed across T0 , T1 ,

T2 and T4 , with ploĴed lines representing each interface being largely invariant to each

other. However, some interesting observations can be made. Even though the mean lev-

els of CG are all very similar, we do find that interfaces yielding snippet text of greater

length (interfaces T2 and T4 ) generally outperform the interfaces with minimal and

no snippets (interfaces T1 and T0 , respectively). This is an unsurprising result – per-

formance of subjects in interface T0 was generally worse in the reported user study, and

this poorer performance had a subsequent impact upon the simulations of interaction which

were grounded by interaction data from the said user study.11 However, as the mean depth

per query increases, we find in all plots reported in Figure 7.6 that the mean level of CG

begins to close up over each of the four interfaces. This can be aĴributed to the fact that

at greater depths, the likelihood of encountering relevant material decreases and will likely

converge. Generally however, results are consistent across the four experimental interfaces.

11Refer to Table 7.6 for the different interaction costs and probabilities used to ground the simulations.
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Table 7.8 Results from the simulated what-if performance runs, showing the highest levels

of CG attained for each result summary level stopping strategy trialled. xn denotes the parameter

threshold(s), with DQ denoting the depth per query at which the greatest CG value was attained

at. For each interface, the stopping strategywhich attained the highest level of CG is highlighted .

Light blue highlighting denotes no significant difference from the best performing strategy, with

no highlighting denoting a significant difference at α=0.05. For combination thresholds, x2,x4 are

presented for SS5-COMB , with x10,x4 for SS11-COMB .

T0 T1 T2 T4

xn DQ CG xn DQ CG xn DQ CG xn DQ CG

FI
X

SS1 24 14.09 2.31 10 6.19 2.20 10 6.33 2.50 10 6.23 2.50

FR
U
S SS2 10 7.94 2.36 8 6.61 2.20 7 6.16 2.49 6 5.49 2.44

SS3 8 13.22 2.31 5 7.91 2.13 4 6.19 2.35 5 8.76 2.35

SA
T

SS4 5 14.79 2.26 2 5.40 2.08 3 7.15 2.21 2 4.80 2.30

C
O
M

SS5 24,8 15.58 2.41 8,4 6.05 2.30 8,4 6.17 2.52 9,3 5.65 2.56

D
IF
F SS6 0.55 8.23 2.08 0.35 4.35 1.96 0.55 7.48 2.12 0.55 7.53 2.16

SS7 3.5 11.24 1.84 6.0 3.73 1.97 6.0 3.71 2.16 6.0 3.72 2.35

IF
T

SS8 0.002 16.83 1.95 0.004 8.96 2.06 0.006 8.59 2.13 0.006 7.93 2.23

TI
M
E SS9 120 14.61 2.27 60 5.43 2.05 60 5.95 2.42 60 5.41 2.43

SS10 30 12.60 2.14 30 9.09 1.98 20 6.73 2.14 30 9.12 2.19

C
O
M

SS11 10,8 6.53 2.45 10,10 5.66 2.44 10,10 5.33 2.52 10,10 4.91 2.67

R
B
P

SS12 0.99 8.78 2.15 0.99 8.87 2.03 0.99 8.81 2.27 0.99 8.90 2.22
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With the twelve plots in Figure 7.6 presenting a broad overview of the variation in perfor-

mance as the mean depth per query increases, we now turn our aĴention to the peaks in

each plot for the four individual experimental interfaces – or the highest levels of CG that

were aĴained. Table 7.8 reports these values, across each of the twelve stopping strategies

(rows), and over the four individual experimental interfaces (columns, grouped by T0 ,

T1 , T2 or T4 ). For each of the twelve stopping strategies, we report: the highest level

of CG aĴained (CG); the mean depth per query at which this value was reached (DQ); and

the stopping threshold parameter value(s) used to reach this value (xn). Highlighted are the

stopping strategies that yielded the highest overall level of CG. Across all four interfaces,

combination stopping strategy SS11-COMB aĴained this, with mean CG values of 2.45,

2.44, 2.52 and 2.67 reported for interfaces T0 , T1 , T2 and T4 respectively. These

values were all reached at similar depths per query (5 − 6.5), and with a similar range of

threshold values, with x4 ≈ 8 − 10, and x10 = 10 seconds.12 The relatively low levels of

mean depths per query (6.53, 5.66, 5.33 and 4.91 for interfaces T0 , T1 , T2 and T4

respectively) at which the best CG was aĴained also demonstrates that SS11-COMB was

particularly robust at detecting a SERP with good results, and vice versa. As such, the

low depths per query indicate that the simulated searchers were confidently able to aban-

don poor quality SERPs without affecting their overall performance. Of course, this result

is unsurprising considering how we instantiated SS11-COMB . Using P@1 to determine

the patch yield type, our approach drew upon TREC QRELs. This meant that the strategy

would make the correct decision (as per the theory) for every SERP examined.

Upon closer examination of Table 7.8, we also find that the other combination strategy

SS5-COMB (relating to a combination of both frustration and satisfaction stopping strate-

gies) consistently placed second in performance rankings across the four experimental in-

12As a reminder, SS11-COMB considers the type of patch presented by a given SERP, before employing

either the satisfaction-based stopping strategy SS4-SAT for high yields early on. Alternatively, the give-up

time-based stopping strategy SS10-RELTIME was selected if the SERP did not appear to yield promising
results early on.
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Figure 7.7 Plots illustrating performance over varying depths per query. Reported are perfor-

mance values over combination strategies SS5-COMB (left) and SS11-COMB (right). With

each line representing a value from x4 (refer to legend), each point on the lines represents perfor-

mance and depth for a threshold value from x2 on the left, and x10 on the right. Little difference

in performance is observed between variations of parameter combinations.

terfaces trialled, very close behind the mean CG values aĴained by SS11-COMB (with CG

values ± standard deviations for both combination strategies reported in Table 7.9). Again,

this demonstrates that a combination strategy appears to be very effective at eliciting good

levels of performance, and suggests that a degree of flexibility in selecting their stopping

criterion/criteria is advantageous to searchers.

It should be noted that the two plots reported in Figure 7.6 onpage 222 for both SS5-COMB

and SS11-COMB are shown over the best performing x4 value for each stopping strategy,

as reported in Table 7.8. With two sets of parameters for these combination strategies, re-

porting in these plots would have been difficult – Figure 7.7 instead reports the varying

levels of CG across different mean depths per query, for each of the different x4 values tri-

alled. These are shown over interface T2 only; similar plots were observed for the other

three experimental interfaces, and as such are not reported here. We can see from these

plots that similar trends can be observed across the range of mean depths per query over
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Table 7.9 The highest levels of CG attained by the two combination result summary level stop-

ping strategies, across the four different experimental interfaces. Reported in the table are the

standard deviations, demonstrating a high variance between trials.

T0 T1 T2 T4

SS5-COMB 2.41±2.47 2.30±2.44 2.52±2.67 2.56±2.27

SS11-COMB 2.45±2.59 2.44±2.41 2.52±2.52 2.67±2.52

both stopping strategies. The change in performance for SS11-COMB is more profound

– as x4 increases, so too does the mean level of CG aĴained.

With both SS5-COMB and SS11-COMB performing very well in terms of the high-

est levels of CG aĴained, a cursory examination of Table 7.8 will also confirm that sev-

eral other strategies also perform to a high standard. With these generally high levels of

performance being reported, we decided to perform statistical significance testing to deter-

mine if the performance of any stopping strategies were significantly different (or not) from

that of SS11-COMB . As discussed previously in this section, we performed two-tailed

Student’s t-tests over the CG values, comparing SS11-COMB against the other eleven

stopping strategies. Results of the statistical testing showed that a majority of stopping

strategies were indeed not significant (p > 0.05), denoting that the performance was simi-

lar to SS11-COMB . In Table 7.8, highlighted cells denote that the represented stopping

strategy was similar in terms of performance to the best performing. Stopping strategies

without any cell highlighting offered statistically significant differences, meaning that CG

values were worse than the best reported over SS11-COMB . Of the eleven remaining

stopping strategies, we generally observe – across the four interfaces – that the following

showed similar levels of performance:

■ SS1-FIX , the fixed-depth stopping strategy;

■ SS2-NT and SS3-NC , the frustration-based strategies;
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■ SS4-SAT , the satiation-based stopping strategy;

■ SS5-COMB , the frustration and satiation combination strategy;

■ SS8-IFT , the IFT-based stopping strategy; and

■ SS9-TIME and SS10-RELTIME , the time-based stopping strategies.

This accounts for a majority of the remaining eleven stopping strategies trialled. The re-

maining three:

■ SS6-DT and SS7-DKL , the difference-based stopping strategies; and

■ SS12-RBP , the RBP-based stopping strategy

generally offered significantly different levels of CG (across the four experimental inter-

faces) from those of SS11-COMB . We now briefly examine the remaining stopping strate-

gies, before moving to the reporting of the real-world simulated comparisons.

We first consider SS1-FIX , SS2-NT and SS3-NC together. Examining the figures for

the first three stopping strategies in Figure 7.6, we observe very similar plots following the

aforementioned trends in performance over mean depths per query. Comparing the plots

for SS1-FIX and SS2-NT in particular, striking similarities can be observed. SS3-NC

yields similar plots, but spread over greater mean depths per query.13 Examining Table 7.8,

similar levels of CG can also be aĴained over three stopping strategies, all at similar mean

depths per query (2.50 at a DQ of 6.33, 2.49 at a DQ of 6.16 and 2.35 at a DQ of 6.19 for

SS1-FIX , SS2-NT and SS3-NC respectively, over interface T2 ). This result is inter-

esting as intuitively, one would expected both SS2-NT and SS3-NC to offer greater per-

formance over SS1-FIX . This is because the frustration-based stopping strategies are adap-

tive in nature, curtailing the examination of result summaries early when results are mostly

non-relevant. This is in contrast to the fixed-depth strategy (and baseline) of SS1-FIX .

13This is due to the fact that the stopping criterion for SS3-NC considers a series of contiguous, non-
relevant items to be found. This can mean that a searcher subscribing to this stopping strategy will typically
examine content to greater depths before meeting this criterion.
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Moving to the satiation-based stopping strategy SS4-SAT , we find that the associated plot

in Figure 7.6 looks somewhat invariant compared to other strategies. A relatively consistent

level of CG can be aĴained at a range of mean depths per query. It is somewhat surprising

how this stopping strategy performs so well, given that it may have been beĴer suited to a

session-based stopping decision point (e.g. as applied in the study reported in Chapter 8)

than being applied at the result summary level. Nevertheless, SS4-SAT yields good levels

of CG (2.10− 2.30). A low stopping threshold (x4) value ranging from 2 to 5 provides these

levels of CG across the four experimental interfaces, suggesting that to acquire good levels

of CG, finding 2 to 5 potentially relevant documents is a good approach to follow.

Turning our aĴention to the IFT-based stopping strategy SS8-IFT , we notice the lower

values of CG that are aĴained in Table 7.8. These values are generally reached at greater

mean depths per query. If we examine the plot for SS8-IFT in Figure 7.6, we notice a drop

in mean accumulated CG after a D/Q ≈ 7. However, the low levels of CG in comparison to

other stopping strategies (e.g. 2.13 vs. 2.52 for SS11-COMB over interface T2 ) suggests

that this approach does not work particularly well. This perhaps can be aĴributed to how

the rate of gainwas calculated – a difficult value to estimate. We leave the issue of calculating

this rate of gain parameter to our discussion, presented in Section 10.2.2 on page 340.

We next consider the time-based stopping strategies, SS9-TIME and SS10-RELTIME .

The first stopping strategy here can be considered analogous to a fixed-depth approach,

considering the time from the point at which a SERP is presented – and is therefore agnostic

of relevance. The second strategy can be considered adaptive in the sense that it considers

the time from which the last relevant document was saved. To this end, it is a somewhat

interesting result that SS9-TIME consistently yields a higher level of CG across all four ex-

perimental interfaces (2.27, 2.05, 2.42 and 2.43 for T0 , T1 , T2 and T4 respectively)

than when compared to SS10-RELTIME (2.14, 1.98, 2.14 and 2.19 for T0 , T1 , T2

and T4 respectively – with the CG aĴained for T4 significantly different from best-

performing strategy, SS11-COMB ). Intuitively, one would expect higher performance
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to be aĴained by the adaptive approach, where searchers would stop earlier when exam-

ining a poor set of results with few (if any) documents saved. The performance across

SS10-RELTIME is invariant across mean depths per query, as illustrated in Figure 7.6. A

smaller number of points reflects the smaller number of threshold values that we trialled.

These are summarised as x9 and x10 in Table 6.3 on page 178.

Difference-based stopping strategies SS6-DT and SS7-DKL are considered next. As

reported earlier, these stopping strategies offered significant differences in performance

across interfaces T1 and T4 when compared to stopping strategy SS11-COMB . In-

deed, performance is generally poor in comparison to other stopping strategies that were

trialled in this study. As can be seen from the performance plots in Figure 7.6 however, the

greater the depth a searcher was to go on average, the beĴer performance would be. We

discuss these findings in more detail in Section 10.2.2 on page 340 – with an emphasis on

the poor performance that these strategies yielded.

Our final stopping strategy is the RBP-based approach, SS12-RBP . From the plot in Fig-

ure 7.6, it is clear that RBP provides lower levels of CG when compared to other stopping

strategies. An intuitive result is that as the patience parameter was increased, simulated

searchers would traverse to greater depths on average – the highest levels of CG as reported

in Table 7.8 are aĴained at greater depths on average than SS11-COMB .

While SS11-COMB consistently offers the highest level of CG across the four experimen-

tal interfaces, it is clear from our results that this is not significantly so. Several other stop-

ping strategies offer maximum CG values that are very close to that of SS11-COMB . As

such, this combination stopping strategy does not offer a significant improvement in per-

formance over our fixed-depth baseline, SS1-FIX . It does, however, offer a marginally

greater level of CG at comparatively lower depths per query on average, demonstrating

that it is a more robust and efficient means for determining when to stop. This means that

following such a strategy may be prudent for a searcher to follow – at least under the search

context examined in this work.
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7.3.2.2 Real-World Comparisons

From ourwhat-if performance simulations that examined what would happen if a particular

stopping strategy were to be rigidly followed, we now examine how closely each of the

aforementioned stopping strategies compares to actual searcher behaviours. As such, this

provides an answer to HL-RQ3b under the context of varying result summary lengths.

These simulations replayed all of the queries issued by real-world searchers, allowing us to

compare real-world and simulated click depths.

Figure 7.8 again presents twelve plots, one for each result summary level stopping strategy

trialled. Each of the plots illustrates the mean depth per query, again on the x axis. This is

ploĴed against theMean Squared Error (MSE)14 of the real-world vs. simulated click depths.

Each point on the ploĴed lines represents a given stopping threshold parameter configura-

tion, and its position represents how close the click depth approximation was on average to

real-world searcher click depths. The closer the MSE tends towards zero, the closer the sim-

ulated searcher’s approximation to actual stopping behaviours. These are shown over each

of the four experimental interfaces. For reference, we also include on each plot four verti-

cal dashed lines, representing the mean click depths reached by the real-world searchers.

Again, a separate line is presented for each experimental interface. For most of the plots,

notice how the lowest point for the simulated results tends towards the dashed lines. This

indicates that the simulations offered a good approximation of real-world searcher click

depths on average. As an example of how to interpret these plots, interface SS2-NT over

T2 reaches its lowest MSE value of 77.76 at a mean depth per query very close to the

real-world mean (14.67 for T2 vs. 14.39 for real-world).

From the plots in Figure 7.8, we can observe a number of notable trends. Stopping strate-

gies that offered good levels of performance (as reported in Section 7.3.2.1) generally yielded

smootherMSE curves, a trait indicative of providing good approximations of actual searcher

14Refer to Section 6.4.3.2 on page 182 for further information on how we computed the Mean Squared Error
(MSE).
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Figure 7.8 Plots reporting the comparison runs, reporting the MSE vs. the mean depth per

query. Trials over each of the four experimental interfaces are shown. Also included in the plots are

a series of dashed lines denoting the mean depth per query reached by the real-world subjects of

the user study. Depths per query (and mean CG values) are also reported in Table 7.11.
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Table 7.10 Results from the simulated comparison runs, showing the lowestMSE value reached

over each result summary level stopping strategy trialled (grouped by their type). xn denotes the

parameter threshold(s) that the lowest MSE was reached with. Results are presented across the

four experimental interfaces, including an average over the four to examine if a particular strat-

egy emerges as a better approximation. For each interface, the stopping strategy that attained

the lowest MSE is highlighted . For the combination stopping strategies, two parameters are

presented, with x2,x4 presented for SS5-COMB and x10,x4 presented for SS11-COMB . Sig-

nificance testing yielded no significant differences between strategies at α=0.05.

T0 T1 T2 T4 Average

xn MSE xn MSE xn MSE xn MSE xn MSE

FI
X

SS1 24 133.90 24 215.48 21 74.04 21 167.38 24 149.66

FR
U
S SS2 21 139.15 18 224.61 15 77.76 15 178.05 18 159.02

SS3 9 183.45 7 282.34 6 121.60 6 191.21 6 224.69

SA
T

SS4 4 138.75 5 219.43 5 72.36 5 171.06 5 153.21

C
O
M

SS5 24,6 135.31 21,8 216.96 21,6 72.81 24,6 167.69 21,6 160.63

D
IF
F SS6 0.90 214.53 0.70 298.30 0.70 113.59 0.65 227.33 0.70 219.51

SS7 4.0 244.09 4.5 344.04 4.5 124.92 4.0 263.53 4.0 250.13

IF
T

SS8 0.002 180.77 0.002 273.69 0.004 115.98 0.004 191.13 0.004 221.44

TI
M
E SS9 120 140.16 150 224.59 150 75.36 150 170.02 120 158.16

SS10 30 136.63 40 229.02 30 74.81 40 167.54 30 159.20

C
O
M

SS11 30,9 152.60 40,10 256.30 30,8 84.39 50,2 155.33 40,9 168.75

R
B
P

SS12 0.99 195.56 0.99 265.90 0.99 93.02 0.99 185.22 0.99 184.93
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behaviours. For example, plots for SS6-DT are more variable in nature; this stopping

strategy was also reported in Section 7.3.2.1 as one of the worst performing on average.

We also notice a variation in how predictions differ across the four experimental interfaces,

with this trend observed over all twelve stopping strategy plots. Interface T2 consistently

served beĴer approximations than its counterpart interfaces, with T1 always offering the

worst. Interfaces T0 and T4 appear between the two extremes, often interleaving with

one another as the mean depth per query increases.

These trends can also be observed in Table 7.10. In this table, we report for each stopping

strategy and interface the point on the corresponding plots in Figure 7.8 where the lowest

MSE value is aĴained (MSE), and the stopping threshold value(s) (xn) that were used to

aĴain it. For interface T2 , notice how the MSE values are lower than those of the other

three experimental interfaces. The table also highlights the stopping strategy combina-

tion that yielded the lowest MSE for each interface, with somewhat surprising results. The

baseline, fixed-depth stopping strategy SS1-FIX offered the best approximations for inter-

faces T0 , T1 and T4 , with satiation stopping strategy SS4-SAT yielding the lowest

MSE for interface T2 . These results are somewhat surprising: it would make sense for a

searcher to employ a more adaptive approach in determining when they should stop. Fur-

thermore, the satiation stopping strategy would likely make more sense at a session level.

With these interesting results in mind, we also ran a series of statistical significance tests

over the reported MSE values. This was to determine if any significant difference existed

between approximations for each reported stopping strategy. Our findings showed that

when compared to the best stopping strategy for each interface, no significant differenceswere

observed. These findings highlight that even though SS1-FIX and SS4-SAT offered the

lowest MSE overall, the other eleven stopping strategies all offered good approximations of

stopping depths, some beĴer than others. In other words, it was hard to deduce from the

results a stopping strategy offering a clearly superior means of approximating searchers’

mean stopping depths.
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Table 7.11 Additional results from the searcher comparisons runs, with this table reporting

mean depth per query (DQ) and CG values, along with the mean interactive precision value (iP).

All these values are reported at the configuration yielding the lowest MSE (refer to Table 7.10),

indicating the best approximation to real-world stopping behaviours. Also included are the mean

real-world (RW) values over each interface for a direct comparison. Note that result summary

level stopping strategies offering the lowest MSE are highlighted — cell colouring here does not

denote the outcome of any significance testing.

T0 T1 T2 T4

DQ CG iP DQ CG iP DQ CG iP DQ CG iP

RW 15.42 1.87 2.58 17.04 1.83 2.28 14.39 2.36 2.47 13.74 1.87 2.66

FI
X

SS1 13.68 1.77 1.17 15.86 1.90 1.28 14.67 2.14 1.41 13.10 1.93 1.27

FR
U
S SS2 14.04 1.88 1.25 15.13 1.88 1.25 13.81 2.15 1.42 12.50 1.93 1.27

SS3 11.99 1.85 1.22 14.23 1.99 1.32 11.80 2.08 1.37 11.52 2.11 1.38

SA
T

SS4 14.80 1.65 1.10 15.51 1.75 1.17 15.10 1.95 1.26 13.48 1.79 1.18

C
O
M

SS5 14.76 1.80 1.19 16.45 1.93 1.29 15.22 2.08 1.34 14.58 1.89 1.23

D
IF
F SS6 12.25 1.75 1.15 11.08 1.60 1.05 10.69 1.84 1.21 7.62 1.28 0.85

SS7 8.74 1.33 0.89 7.63 1.28 0.85 7.90 1.54 1.01 8.02 1.10 0.74

IF
T

SS8 12.96 1.28 0.86 19.92 1.58 1.06 13.50 1.72 1.12 10.41 1.48 0.97

TI
M
E SS9 15.79 1.75 1.16 14.30 1.69 1.14 16.49 2.17 1.41 13.54 1.86 1.22

SS10 11.86 1.45 0.97 14.98 1.64 1.09 11.74 1.45 0.98 13.79 1.73 1.14

C
O
M

SS11 10.78 1.37 0.92 13.42 1.63 1.07 11.27 1.49 1.01 15.80 1.86 1.24

R
B
P

SS12 7.78 1.22 0.82 9.59 1.44 0.97 10.26 1.57 1.05 9.42 1.47 0.97
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7.3 Simulated Analysis

Given the findings outlined above, we also decided to examine if a particular stopping

strategy emerged as providing a good approximation of stopping behaviours when con-

sidering all four interfaces on average. Results of this analysis are shown in the Average

grouping in Table 7.10. Statistical tests comparing the best-approximating strategy (again

SS1-FIX @24 ) against the remaining eleven stopping strategies once again yielded no

significant differences, highlighting that all stopping strategies offered similar approxima-

tions. As such, we did not explore the concept of averaging over the four experimental

interfaces any further.

Moving back to our per interface examination, Table 7.11 reports additional information

relating to the best approximations offered by each stopping strategy. We report for each

stopping strategy (across each experimental condition) the: mean depth per query (DQ);

CG; and the mean number of saved TREC relevant documents, or interactive precision (iP).

These values are aĴained at the stopping threshold parameter(s) that yielded the lowest

MSE, as reported in Table 7.10. Also included in Table 7.11 are the mean real-world (RW)

values aĴained by the subjects of the user study. We also once again highlight the stopping

strategy for each interface that yielded the lowest MSE, as reported in Table 7.10.

Trends from Table 7.11 are largely to be expected: stopping strategies that yielded the clos-

est approximations to actual mean stopping behaviour parallel the mean depth per query

to the real-world (RW) counterparts. In contrast, we find that for stopping strategies such

as SS6-DT and SS12-RBP , the mean depth per query is lower than the mean values

across each of the four interfaces. As such, these strategies largely underestimate the stop-

ping depth of the real-world searchers. We also find that for interface T2 , mean depths

per query all appeared to offer closer representations to the real-world mean. This may be

an artefact of the probabilities that were used to ground the simulations of interaction.

Stopping strategies offering beĴer approximations also reported a higher mean number

of TREC relevant documents that were identified (saved). For example, SS4-SAT @5

over interface T2 reported a mean of 1.26 saved TREC relevant documents. However,
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Figure 7.9 Bar charts, one per experimental interface, demonstrating the mean level of CG at-

tained by each result summary level stopping strategy. Ordered by CG, these values are reached

using the threshold configurations yielding the best approximations to actual searcher behaviour, as

shown in Table 7.10. Also included are the mean real-world searcher CG values for each interface.
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7.3 Simulated Analysis

this is lower than the real-world mean of 2.47. Interestingly, we find that stopping strate-

gies SS1-FIX , SS2-NT and SS3-NC all consistently reported the highest levels of mean

saved TREC documents across the four interfaces, albeit still lower than the real-world

means. For example, SS2-NT @21 reports a mean of 1.25 saved documents over in-

terface T0 , compared to 0.89 over SS7-DKL @4.0 . This is in contrast to the real-world

mean of 1.87 over the same interface.

Considering the levels of CG aĴained, we also find interesting results. Values reported in

Table 7.11 indicate the level of CG that searchers would have accumulated on average if

they rigidly followed a given stopping strategy (using the stopping threshold value(s) that

yielded the best approximations of actual stopping behaviours). In other words, if rigidly

following a given stopping strategy, would searchers have been able to accumulate higher levels

of CG (on average) compared to what they actually achieved? To beĴer represent these results,

we generated a series of bar charts as shown in Figure 7.9. Each bar chart represents an

individual experimental interface, with each bar representing the mean level of CG aĴained

over each of the twelve stopping strategies, plus the additional mean real-world CG.

Results show that on average, real-world searchers typically appear on the high end of the

spectrum across all four experimental interfaces. This suggests that given the twelve stop-

ping strategies that were trialled, not many would have offered improvements in overall

levels of CG. This is especially true for interface T2 , where the real-world CG mean topped

all twelve stopping strategies. For interfaces T0 , T1 and T4 where simulations do of-

fer beĴer levels of CG, we find the same stopping strategies appearing above the real-world

mean: SS1-FIX , SS2-NT , SS3-NC and SS5-COMB . These results are interesting, as

they suggest that a simple stopping strategy is an effective means for aĴaining high levels

of CG, even that of the fixed-depth baseline. Combination stopping strategy SS11-COMB

consistently ranked lower across all four interfaces, even though this yielded the highest

levels of CG in the what-if performance runs reported in Section 7.3.2.1. This suggests that

if employed by our real-world subjects, SS11-COMB (on average) would have potentially

allowed the subjects to enjoy higher levels of gain (finding relevant documents).
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7.4 Chapter Summary

In this chapter, we have examined how result summary snippet lengths affect a searcher’s

behaviour, performance and user experience via a crowdsourced user study (Section 7.2).

From this user study, we then subsequently used interaction data from said user study to

ground an extensive set of simulations of interaction (Section 7.3). These simulations were

trialled to determine how each of the twelve stopping strategies proposed in Chapter 5 per-

formed and approximated the mean stopping behaviours of searchers. In turn, these find-

ings provide answers to our two high-level research questions HL-RQ3a and HL-RQ3b

when varying result summary snippet lengths.

The main finding from the user study showed that as snippet lengths increased across the

four experimental interfaces (i.e. T0 → T4 ), subjects reported that they became more

confident with the decisions they were making with respect to identifying relevant material.

This can be cited due to the fact that more text in the result summary yielded a greater in-

sight into the corresponding document – at the cost of greater examination time. However,

a disconnect existed between how subjects believed they performed, and what was actually

aĴained through empirical evidence. Here, we found that as snippet lengths increased, sub-

jects became more click happy, marking more documents as relevant, even though accuracy

did not improve. This is particularly clear when examining the interaction probabilities that

we extracted from interaction data, as reported in Table 7.3 on page 208.

These interaction probabilities (and costs) were then used as a basis for grounding an exten-

sive set of simulations of interaction. Split across performance (addressing HL-RQ3a ) and

comparison runs (addressing HL-RQ3b ), we examined each individual stopping strat-

egy in terms of both overall performance and how well they approximated actual searcher

stopping behaviours. This was considered across the four aforementioned experimental

interfaces. Findings for HL-RQ3a show that all twelve stopping strategies offered reason-

able levels of CG – although we found that combination stopping strategy SS11-COMB
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consistently provided the highest levels of CG across all four experimental interfaces. This

was however largely reached without achieving statistical significance from the remaining

eleven strategies. Likewise, for HL-RQ3b , we found that SS1-FIX appeared to offer the

lowest MSE (and thus best approximations) when tuned to actual searcher behaviours – a

surprising result.15 This was largely consistent across interfaces. We also showed that if fol-

lowed rigidly, several stopping strategies offered improved levels of CG when compared to

the real-world mean. No significant differences were obtained between the stopping strate-

gies. The lack of significant differences may be due to the interface variations not possessing

a large enough effect, or an insufficient number of subjects to detect it (whose interaction

data would have been used for subsequent grounding). This may also be aĴributed to

the way in which we operationalised the stopping strategies examined, something that is

discussed later in Section 10.2.2 on page 340. However, from the results, it is clear that a

notable trend exists. With fewer SERP pages examined and subjects examining content to

shallower depths when result summary lengths increase, this suggests that the length of

result summaries do indeed affect stopping behaviours.

Findings from this chapter will be discussed further in Chapter 10. Along with the find-

ings of the two remaining empirical contribution chapters, we will consider all of our find-

ings from the stopping strategy simulations in detail, determining what conclusions can

be drawn from this work. Our next chapter considers how altering search tasks and goals

affects stopping behaviours – and whether this is reflected by what stopping strategies per-

form and approximate well.

15We leave further discussion of this finding to Section 10.2.2 on page 340.
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Chapter 8

Result Diversification and
Stopping Behaviour

As we’ve discussed previously, snippet text will typically provide a query-biased summary

of a document. The provided text is used by a searcher to help him or her in satisfying

their underlying information need. Often, this information need may be very diverse, with

searchers learning about a diverse topic by issuing multiple queries to explore the topic

space (Kelly et al., 2015).

What measures are being 
taken to prevent extinction?

What species?

What countries?

Wildlife Extinction
Topic 347

These topics or information needs are considered as aspectual in nature, where an under-

lying goal is to find out about the different facets, dimensions or aspects1 of the topic. An

example of different aspects within is illustrated above, showing the wildlife extinction topic

used in this thesis. An aspect here includes for example endangered species of animal.
1We consider aspects in this chapter, defined as “roughly one of many possible answers to a question which the

topic in effect poses” (Over, 1998).
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While aspectual retrieval has been heavily studied in the past (most prominently during

the period of the TREC Interactive Tracks (Over, 2001)), there has been renewed interest in

this type of search task (Collins-Thompson et al., 2017). Under this context, retrieval systems

are tasked with helping searchers learn more about a topic. With this goal, it makes sense

to return results that are more diverse in nature, presenting the searcher with a broader

view of the topic. This should assist searchers in learning more, and would likely lead to an

improved search and learning experience (Syed and Collins-Thompson, 2017).

In this chapter, we consider how task types and the diversification of search results affect

stopping behaviours. Complementing ad-hoc retrieval tasks, we introduce aspectual re-

trieval tasks – and compare searcher behaviours between the two. We also consider the

retrieval systems that are used, allowing for comparisons in searcher behaviours when ex-

posed to a baseline retrieval system (using BM25), and a retrieval system that diversifies the

results presented to searchers (employing the XQuAD framework (Santos et al., 2010)).

The intuition behind the aforementioned variations in tasks and retrieval systems suggest

that we will observe a difference in stopping behaviours. Under an aspectual retrieval task

on a standard retrieval system, searchers will likely issue more queries as they aĴempt to

explore the topic space – all the while stopping at relatively shallow depths. This requires

a higher degree of effort on the part of the searcher. When switching to a retrieval system

that diversifies results, we would expect a searcher to subsequently issue fewer queries and

browse to greater depths. With this intuition demonstrating that stopping behaviours are

likely to be influenced, this chapter reports on:

■ a user study , exploring how diversifying results (or not) affects the performance

and stopping behaviours of searchers when undertaking different search tasks, from

one of ad-hoc or aspectual retrieval (Section 8.2); and

■ a simulated analysis , examining how the various stopping strategies proposed in

Chapter 5 perform under these conditions (Section 8.3).
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8.1 Background, Motivation and Hypotheses

In particular, we consider IFT (Pirolli and Card, 1999) to theoretically ground a number

of different hypotheses relating to stopping behaviours. We begin this chapter with a dis-

cussion of prior work in the area (focusing upon aspectual retrieval), before moving to the

introduction of our IFT-based experimental hypotheses.

8.1 Background, Motivation and Hypotheses

As discussed previously, a searcher will likely pose a varying number of queries (exam-

ining SERPs), and examine a number of documents (if any) before issuing a new query, or

stopping their search altogether – session level stopping (refer to Section 4.2 on page 111). The

reasons for stopping at the session level are numerous, and can occur because searchers:

■ have found enough information (Prabha et al., 2007; Dostert and Kelly, 2009; Hassan

et al., 2013);

■ have run out of time (Zach, 2005);

■ become dissatisfied with what they found (Kiseleva et al., 2015); or

■ simply give up their search (Diriye et al., 2012).

Studies have shown that different factors influence search behaviours. This is demonstrated

in Chapter 7, for instance, which showed how varying the length of result summaries in-

fluences behaviour. However, of particular relevance to this chapter is how different search

tasks influence a searcher’s behaviours (Kelly et al., 2015).

8.1.1 Aspectual Retrieval

An interesting search task that has not received much aĴention in contemporary research is

aspectual retrieval. Aspectual retrieval is a type of search task that concerns the identification
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Wildlife Extinction - Parallel Search

crested ibis

Crested ibis
en.wikipedia.org
The crested ibis (Nipponia 
nippon), also known as the Japa-
nese crested ibis or Toki (トキ)...

Crested Ibis Sumatran Rhino Giant Panda

rhino malaysia giant panda demise

What Could Help Save the En-
dangered Crested Ibis?
nrdc.org
In the middle of the 19th century, 
more than 50,000 crested ibis 
were walking on their stilty legs...

Rhino | WWF Malaysia
wwf.org.my
Smallest of the rhinoceros spe-
cies, the Sumatran rhinoceros 
has two horns like...

Sumatran Rhinoceros
en.wikipedia.org
The Sumatran rhinoceros, also 
known as the hairy rhinoceros or 
Asian two-horned rhinoceros 
(Dicerorhinus sumatrensis)...

The demise of the panda
theguardian.com
The young giant panda is snooz-
ing up a tree, in classic panda 
pose...

Giant Panda
en.wikipedia.org
The giant panda, literally "black 
and white cat-foot"; Chinese: 大熊
猫), also known as panda bear or 
simply panda, is a bear native...

Wildlife Extinction - Tabbed Search

giant panda demise

The demise of the panda
theguardian.com
The young giant panda is snoozing up a tree, in classic panda pose. 
His substantial bum is splayed over the fork of one branch, while his...

Crested Ibis Sumatran Rhino Giant Panda

Giant Panda
en.wikipedia.org
The giant panda, literally "black and white cat-foot"; Chinese: 大熊猫), 
also known as panda bear or simply panda, is a bear native...

Giant pandas, species in way of extinction
macaupanda.org.mo
Giant pandas come from a large flourishing family of same species... 
and death from old age, means that the natural growth rate of the...

Figure 8.1 Mockups of Search interfaces that consider the different AspectBrowser interfaces,

as examined by Villa et al. (2009). Considering the wildlife extinction topic, the left illustration

denotes a parallel interface, with the right demonstrating a tabbed interface. Refer to Villa et al.

(2009) for further information on the interfaces, and how they performed.

of different aspects of a given topic. This task type differs from traditional ad-hoc retrieval in

the sense that ad-hoc retrieval is concerned only with what constitutes a relevant document

to a given topic, rather than identifying relevant documents and whether they are different

to what has been previously observed.

A relevant and different document will contain unseen aspects associated with the topic

in question. With a graphical example provided at the beginning of this chapter, we now

provide a further example to aid understanding. Consider the topic wildlife extinction from

the TREC 2005 Robust Track (Voorhees, 2006). In an ad-hoc search task, if the searcher

manages to find several documents concerning `Pandas in China', these would all be

considered relevant. However, for an aspectual retrieval task where different aspects must

be found, the first document concerning `Pandas in China' is considered to be relevant,

and other aspects (in this case, the species of endangered animal) would need to be found,

such as `Sumatran Rhinos in Malaysia', `Crested Ibis in Japan', etc.

Aspectual retrieval found significant traction in TREC Interactive Tracks (Over, 2001) from

1997-2002. The overarching goal of these tracks was to investigate searching during an inter-

active search task by examining the processes involved, as well as the outcome (Over, 2001).

Interaction was considered from the inaugural TREC-1 in 1993 (Harman, 1993), where one
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8.1 Background, Motivation and Hypotheses

group investigated interactive searching under the so-called interactive query mode while

undertaking an ad-hoc task. From TREC-6 (1997) to TREC 2002, a substantial volume of

research was directed towards the development of systems and search interfaces that:

■ assisted searchers in exploring and retrieval various aspects of a topic, such as cluster-

based and faceted interfaces that explicitly showed different aspects (McDonald et al.,

1998; Villa et al., 2009) (refer to Figure 8.1 for a visual example);

■ provided tiles and stacks to organise documents (Hearst, 1995, 1997; Harper and Kelly,

2006; Iwata et al., 2012); and

■ provided mechanisms to provide query suggestions that led to subjects following dif-

ferent search paths (Kato et al., 2012; Umemoto et al., 2016).

However, a disappointing conclusion from this initiative was that liĴle difference was ob-

served between such systems and the standard control systems (i.e. the traditional ten

blue links, as previously discussed in this thesis) – both in terms of behaviour and perfor-

mance (Voorhees and Harman, 2005).

As work shifted from aspectual retrieval to other areas, studies related to determining the

intent of a searcher’s query began to take hold, where the goal here was to diversify the

results retrieved with respect to the original query (Rose and Levinson, 2004). Thus, this

addresses the problem of ambiguity for short, impoverished queries. This led to a series of

diversification algorithms (and intent-aware evaluation measures), changing focus from the

interface to the underlying algorithms and their evaluation measures. However, while there

have been numerous studies investigating the effectiveness of diversification algorithms for

the problem of query intents (e.g. one query, several possible interpretations), liĴle work

has looked at studying how such algorithms apply in the context of aspectual retrieval (e.g.

one topic, many aspects). This is mainly due to the fact that most of these algorithms were

developed after the TREC Interactive Track concluded in 2002.
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Recently, a growing interest in new, more complex and exploratory search tasks has taken

hold. This is true within the context of “searching as learning” (Collins-Thompson et al.,

2017). Syed and Collins-Thompson (2017) hypothesised that diversifying results presented

to searchers would improve their learning efficiency. This would then be observed by a

change in vocabulary expressed in their queries. This is coupled with a hypothesis of stop-

ping behaviours, with diversifying results leading to searchers issuing more queries, and

examining content to comparatively shallow depths. These hypotheses provide motivation

for examining the effects of diversification when considering the task of aspectual retrieval,

where a searcher needs to learn about different aspects of a topic. To ground our work,

we now consider how search behaviours are likely to be changed by generating a series of

hypotheses based upon IFT.

8.1.2 Tasks, Systems and Information Foraging Theory

To motivate our hypotheses for this chapter, we draw upon IFT (Pirolli and Card, 1999) and

the patch model, in particular, to ground our research, and provide insights into how search

behaviours may change. To recap, the patch model, as detailed in Section 3.3.1 on page 90,

provides a mechanism for predicting how long foragers (searchers) will stay in a patch

before moving onwards to the next. Using the established approach discussed previously –

where moving between patches is akin to issuing a new query, while staying within a patch

is considered as examining a SERP and any associated documents – we can then make a

series of predictions as to how searchers will behave – and most importantly for this work,

stop – under different experimental conditions.

These predictions are graphically illustrated in the four plots shown in Figure 8.2 – over

a diversified D and non-diversified ND system, with ad-hoc AD and aspectual AS

retrieval tasks.2 Gain curves for each of the four conditions are shown. In Figure 8.2 (a)

2The system and task are combined together to produce a complete condition, such as ND AD repre-

senting a non-diversified system ND with an ad-hoc retrieval task AD .

246



8.1 Background, Motivation and Hypotheses

Information Foraging Theory Hypotheses: Diversification and Task Types
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Figure 8.2 Plots of the hypotheses motivated by IFT, with each plot showing how stopping be-

haviour is likely to be affected when using a system that (a) diversifies results and (b) doesn't, and

over (c) aspectual and (d) ad-hoc tasks. Section 8.2.1 enumerates the four different experimental

conditions shown here, such as ND AD for instance.

where a non-diversified system is being used, the gain curve for the ad-hoc retrieval task

is higher. This is because any relevant document would contribute to the searcher’s gain.

Conversely, the gain curve is lower for the aspectual retrieval task. This is because similar

relevant documents that are encountered would not contribute to the overall level of gain

experienced by the searcher.

From IFT, the optimal stopping point would be different between the two tasks. As we

discussed in Section 3.3.1 on page 90, we can graphically find this point by drawing a line

from the origin to the tangent of the gain curve. Red and blue dots indicate the optimal

stopping points for ad-hoc and aspectual retrieval respectively. IFT suggests that with a
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non-diversified system, searchers will examine more documents per query for aspectual

retrieval tasks than when compared to ad-hoc tasks.

Figure 8.2 (b) illustrates gain curves where a diversified system would be used, with gain

curves for ad-hoc and aspectual retrieval being similar in nature. This is because the diver-

sified system should bring relevant but different documents closer to the top of the rankings

earlier. In the case of ad-hoc retrieval, these relevant (even if different) documents would

still contribute to the overall level of gain. For aspectual retrieval, relevant and different

documents will also contribute to the overall level of gain experienced by the searchers –

up to the point where the documents become similar to the previously examined mate-

rial. Therefore, IFT appears to suggest that similar stopping behaviours would be observed

when searchers use a diversified search system.

Figure 8.2 (c) shows the predicted stopping behaviour for the aspectual retrieval task, where

we have ploĴed the aspectual gain curves from system plots (a) and (b). Interestingly, IFT

suggests that searchers will stop sooner when using the diversified system. As such, if

searching for the same length of time, searchers would thus issue more queries. Finally,

Figure 8.2 (d) shows the predicted stopping behaviour for the ad-hoc retrieval task, where

again we plot the curves from the respective systems in plots (a) and (b). Note that here,

the gain curve for the diversified system may be a liĴle lower as some non-relevant but dif-

ferent material may bubble up the rankings. However, we expect liĴle difference overall

between the two systems, and so we hypothesise that the two levels of gain (and searcher

behaviours) will approximately be the same. Consequently, IFT suggests that there will be

liĴle observable difference in terms of stopping behaviours between the two systems with

ad-hoc retrieval tasks.

Therefore, we found IFT to counter our intuitions as to how searchers would behave. When

using a standard, non-diversified retrieval system, our intuition suggests that since the as-

pectual retrieval task is rather exploratory, searchers are then more likely to issue more

queries as they learn about the topic, and try to explore efforts made by different countries
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to protect different species. Kelly et al. (2015) for example showed that more complex search

tasks required a greater number of queries. If a searcher submits a query that retrieves rel-

evant material such as `protecting Pandas in China', then one would expect them to

only select one or two examples, rather than many more. In the case of ad-hoc topic re-

trieval, we intuitively expected that searchers would issue fewer queries and examine more

documents. This is because they don’t need to find multiple aspects. However, when using

a diversified system that aĴempts to promote different aspects of a given topic, we would

intuitively expect that the stopping behaviours of searchers using it would change. Under

an aspectual retrieval task, searchers would issue fewer queries (when compared to ad-hoc

tasks) and examine a greater number of documents per query.

8.1.2.1 Hypotheses

From the plots and descriptions provided above, we can formulate a number of different

hypotheses relating to the expected searcher behaviours in different contexts.

Under aspectual retrieval search tasks, using a diversified system D will lead to:

■ H1 fewer documents examined per query (stopping earlier); and

■ H2a more queries issued; or

■ H2b a decrease in the task completion time.

With ad-hoc retrieval AD tasks, diversification will lead to:

■ H3 no difference in the number of documents examined (invariant stopping be-

haviour); and

■ H4 no difference in the number of queries issued.
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The contradiction between IFT and our intuitions provide an ulterior hypothesis. In ad-

dition, given the findings demonstrated by Syed and Collins-Thompson (2017), we also

hypothesise that diversification will lead to a greater awareness of the topic, regardless of

the task put forward, because more aspects will be encountered and found.

8.2 Diversifying Search Results

Following on from the motivation and IFT-based hypotheses outlined above, this section

discusses the user study that examined the aforementioned hypotheses. As per our gen-

eral user study methodology discussed previously in Section 6.2 (page 141), we conducted

a within-subjects experiment. Specific details relating to this study are detailed in Sec-

tion 8.2.1 below.

The primary research question for this user study is as follows.

■ DIVERSITY-RQ How does diversification affect the search performance and stop-

ping behaviours of searchers under ad-hoc and aspectual retrieval tasks?

This research question is addressed in tandem with the hypotheses put forward above in

Section 8.1.2.1. Below, we now discuss the specific details for this user study, before dis-

cussing the results, with an emphasis on stopping behaviours, and whether or not the em-

pirical evidence supports our hypotheses.

8.2.1 Methodology

The same basic retrieval system, document corpus and topics were used as reported in

Section 6.2 (page 141).
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The within-subjects study considers two key factors: the system and the task. For the system

factor, our baseline control system was based upon BM25 (i.e. no diversification), and a di-

versified system. The details of our diversification approach are discussed in Section 8.2.1.5.

For the task factor, we used the standard ad-hoc retrieval task and compared this against the

aspectual retrieval task. This resulted in a 2× 2 factorial design. Each subject who took part

in the study completed four different search tasks. Each of those tasks utilised a different

experimental condition, as we enumerate below. Conditions were assigned using a Latin

square rotation to minimise any ordering effects. The conditions listed below are also used

in Section 8.1.2 when explaining the plots supporting our hypotheses. Note that for all con-

ditions we list below, two snippet fragments are used when generating result summaries,

as per T2 in Chapter 7.

The first two conditions consider a non-diversified retrieval system ND . Our baseline, this

uses BM25 as the retrieval model.

■ ND AS A non-diversified system, with an aspectual retrieval task.

■ ND AD A non-diversified system, with an ad-hoc retrieval task.

Our second set of conditions consider a diversified system D , using BM25 with an addi-

tional re-ranking, diversifying component. We discuss this later in Section 8.2.1.5.

■ D AS A diversified system, with an aspectual retrieval task.

■ D AD A diversified system, with an ad-hoc retrieval task.

With non-diversifying and diversifying systems, we developed different sets of branding

for each system, each with their own distinct colour scheme, name and logo. This was to

assist searchers in differentiating between the two. First, in terms of branding, we created

two fictional retrieval system names:
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■ Hula Search, representing the non-diversified system ND ; and

■ YoYo Search, representing the diversified system D .

These names were chosen as they were not associated with any major retrieval system (to

the best of our knowledge), nor did they imply that one of the systems performed beĴer than

the other – both systems presented results in an identical way. Colour schemes were chosen

to provide the greatest difference in visual appearance to those with colour blindness.3 This

was to ensure that subjects could later indicate which one of the two systems they preferred.

Note that only the colour schemes and logos varied – the same basic interface layout as

previously discussed in Section 6.2.2 (page 144) was employed. Figure 8.3 demonstrates

the two different colour schemes and logos for the systems.

For the practice task, it should be noted that the standard, blue colour scheme as shown in

Figure 6.2 on page 145 was used. This is the same colour scheme as used in the user study

reported in Chapter 7. A standard `News Search System Study' title was also used in

place of any logos. This decision was taken to remove any impact that incorporating an

individual system’s colour scheme in the practice task would have on searcher behaviour

or perceptions. All subjects used the ND AS system and task for the practice task.

8.2.1.1 Search Tasks

As we discussed in Section 6.2.1, subjects were grounded by instructing them to imagine

that they were newspaper reporters. As such, they were required to gather documents to

write stories about the four topics for which they had been asked to search. Given each

topic, each subject was then instructed to search while considering different search goals.

■ For ad-hoc retrieval tasks, subjects were simply instructed to find documents that

were relevant to the topic provided.
3Two of the more common variants of colour blindness – protanopia and deuteranopia – were both consid-

ered.
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Hula Search

YoYo Search

View Saved | Show Task | End Task

View Saved | Show Task | End Task

Enter your query here Search

Enter your query here Search

Figure 8.3 Mockups of the two interfaces used to differentiate between the two experimental

systems of this user study. Hula Search and YoYo Search represented the non-diversified and

diversified systems respectively. Refer to Section 8.2.1 for more information.

■ For aspectual retrieval tasks, subjects were instructed not only to find documents

that were relevant but also discussed different aspects of the provided topic.

For example, take theAirport Security topic (refer to Section 6.1.3 on page 138). Under an ad-

hoc retrieval task, subjects were required to learn about the efforts taken by international air-

ports to beĴer screen passengers and their carry-on luggage. For aspectual retrieval tasks,

subjects were also asked to find relevant documents that are different, mentioning new air-

ports. Thus, subjects were explicitly instructed to find a number of examples from different

airports, as opposed to a discussion of the same airport over several documents.

Task Goal Rather than imposing a session time limit (as used in Chapter 7), subjects were

requested to find and save at least four novel documents which they judged to be either

relevant (ad-hoc) or relevant and different (aspectual) for their given topic. (Refer to the

following section for details on the reasons behind selecting this value.) As such, subjects
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had the liberty to end the search task when they chose to do so by selecting the End Task

option at the top right of the search interface – refer to Figure 8.3 for examples of this. This

is in direct contrast to the user study reported in Chapter 7, where the End Task option

was not present – the ten minute limit dictated when their search session ended.

8.2.1.2 Crowdsourced Subjects and Controls

Subjects undertaking the user study were informed that from a small-scale pilot study, it

would take approximately 7-10 minutes of their time to find at least four useful documents

per task. Combining everything together, this meant that the entire experiment would take

approximately 40-50 minutes. Since we did not impose any time constraints on how long

subjects searched, we instead established an accuracy-based control. We informed subjects

that their accuracy in identifying useful material would be examined, and that they were

required to find four useful documents with at least 50% accuracy (based upon TREC rele-

vance judgements as the gold standard). Using data from the prior user study reported in

Chapter 7, the accuracy of those subjects was between 25% and 40% on average, depend-

ing upon the topic. While we stipulated a higher accuracy, this was to motivate subjects to

work in a diligent manner.

In all, a total of 64 subjects performed the experiments that complied with the MTurk re-

cruiting constraints imposed, as we outlined in Section 6.2.4 on page 147. However, a total

of 13 were omiĴed from this population because they either:

■ failed to complete all the search tasks (a total of five subjects were removed);

■ failed to mark at least four documents (two subjects); or

■ spent less than two minutes per task, and failed to retrieve any relevant documents

(six subjects).
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Of the 51 subjects who successfully completed the experiment, 26 females and 25 males

participated. The average age of the subjects was 38.66 years (min = 20; max = 71; stdev =

11.43). In addition to these basic demographics, a total of 22 subjects reported possessing

a bachelor’s degree or higher, with the remaining 29 possessing an associate’s degree or

lower. All subjects bar one expressed a preference to Google as their everyday retrieval

system of choice. All subjects indicated that they conducted many searches for information

via a retrieval system per week.

8.2.1.3 Extracting Aspects

For each topic, we used the corresponding TREC QRELs derived from the 2005 Robust

Track (Voorhees, 2006). However, to assess how many aspects were retrieved by subjects,

we needed to commission additional labels as existing labels were not available for all the

selected topics. First, for each topic, we examined the topic descriptions to identify what

dimensions could be considered aspects of the topic. We noted that for each topic, there

were at least two ways this could be achieved: entity- or narrative-based. For example, a

useful document within the Curbing Population Growth topic could either state the country

in which measures were taken (entity-based) or a description of the actual measure used to

reduce population growth (narrative-based).

For this study, it was decided that we should focus on entity-based aspects. This decision

was taken as different narratives were subject to greater interpretation than different entities

– it is easier to identify from a document that China, for example, is the country being

discussed, rather than the measures the country took – and their effects. For each TREC

relevant document across the five topics considered, the author and his supervisor manually

extracted the different aspects for each, with higher agreement (95% vs. 67%) between them

across entity-based aspects. Both the entity- and narrative-based approaches for each of the

five topics are shown in Table 8.1.
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Table 8.1 A list of the different entity- and narrative-based approaches trialled during the as-

pect extraction process. As discussed in Section 8.2.1.3, the entity-based approach was carried

forward for this study with a higher agreement rate between assessors.

Entity Narrative

Airport Security Airports Security measures taken

Wildlife Extinction Species Protection and conservation measures

Piracy Vessels boarded Acts of piracy

Tropical Storms Storms Lives lost, destruction caused

Curb. Pop. Growth Countries Population control methods

To complement Table 8.1, we also list below a number of different example entity-based

aspects that were extracted for each of the five topics. The number provided with the topic

title denotes the number of individual aspects that were extracted for a specific topic.

■ Airport Security 14 unique aspects Considering different airports in which addi-

tional security measures were taken, examples include John F. Kennedy International

Airport, Boston Logan International Airport, or Leonardo da Vinci International Airport.

■ Wildlife Extinction 168 unique aspects Considering different species of endangered

animals under protection by states around the world, such as the golden monkey, Javan

Rhino, or Manchurian tiger.

■ Piracy 18 unique aspects Considers different vessels that were either boarded or

hijacked, such as the Petro Ranger, Achille Lauro or Global Mars.

■ Tropical Storms 43 unique aspects Considers different tropical storms where indi-

viduals were killed, and/or there was major damage, such asHurricaneMitch, Typhoon

Linda or Tropical Storm Frances.
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Whale Shark Tree Gecko White Rhino
African Elephant

Whale Shark

Tree Gecko

White Rhino

African Elephant

TREC Diversity Format File

Figure 8.4 Illustration of the process used to create a TREC diversity format file. The identified

aspects are assigned a unique identifier per topic. With the diversity format file, we could then use

tools such as ndeval to compute diversity-based measures.

■ Curbing Population Growth 26 unique aspects Considers different countrieswhere

population control methods were employed, such as China, India or Zimbabwe.

Each of these unique aspects was assigned an identifying number, and stored in the TREC

diversity format. By storing the aspects in this format, we could then use existing evaluation

tools, such as ndeval4. This tool was used to compute a number of measures related to

aspectual retrieval. This process is illustrated in Figure 8.4.

8.2.1.4 Additional Performance Measures

In conjunction with the standard performance measures that we discussed in Section 6.3.3

on page 155, we also include for this chapter two measures allowing for the examination

4The ndeval source code can be acquired from the TREC website at https://trec.nist.gov/data/
web/10/ndeval.c. LA 2018-06-24
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of searcher and system performance regarding the entity-based aspects. While traditional

measures consider what documents are relevant, these additional measures allow us to

determine why said documents are relevant (i.e. what aspects each document covers).

The first measure we consider is Aspectual Recall (AR) . Defined by Over (1998), AR was

introduced as part of the TREC-6 campaign. It was defined as:

“...the fraction of the submiĴed documents which contain one or more aspects.”

Over (2001)

3 1 0
NEW NEW NEW

=1.33
AR@3

Given a ranking, aspectual recall can be there-

fore computed by summing the number of un-

seen aspects regarding a given topic up to some

depth k, and dividing by the rank. This is in contrast to more simplistic relevance measures

that consider only the TREC relevance judgement score for a document and topic combina-

tion. An example is provided above: given three documents, with three, one and zero new

aspects to a topic, the aspectual recall at rank 3 is therefore (3 + 1 + 0)/3 = 1.33.

The second measure that considers the diversity of the results returned is αDCG . A Cu-

mulative Gain (CG)-based approach, we discussed CG basics in Section 2.4.1.4. An exten-

sion of Discounted Cumulative Gain (DCG) (Järvelin and Kekäläinen, 2002), αDCG employs

a position-based searcher model (Clarke et al., 2008). The measure takes into account the

position at which a document is ranked, along with the aspect(s) mentioned within the doc-

uments. αDCG ranks by rewarding newly-found aspects, and penalising redundant aspects

geometrically, discounting all rewards with a discounting rank function. As the name of

the measure might imply, α is a tuneable parameter, controlling the severity of redundancy

penalisation. As used in prior TREC experimentation, we used α = 0.5 for all reporting of

αDCG in this chapter.
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8.2.1.5 Diversifying Search Results

As discussed earlier, our system factor considered both a baseline BM25 retrieval system

and a diversified approach, again using BM25 as an initial ranking baseline. The algorithm

that we employed, based upon theXQuAD framework by Santos et al. (2010), re-scores and

subsequently re-ranks documents based upon the number of unseen entities that appear

within the document. The algorithm is presented as pseudo-code in Algorithm 8.5 below.

Essentially, documents are re-ranked according to the number of new entities that are con-

tained within them, with w determining the weighting of the aspectual scoring component.

In order to select a reasonable approximation for the algorithm’s weighting, we performed a

pilot study running the diversification algorithm over the set of 715 queries that were issued

by subjects of the user study reported in Chapter 7. Results of the pilot study are presented

in Table 8.2. As can be seen from the table, we explored a range of cutoff (k) and weighting

(w) values, with 10− 50 trialled for k and 0.1− 1.0 trialled for w. We selected k = 30, w = 0.7

as this combination provided the best results (AR@10 = 6.61, αDCG = 0.075, P@10 = 0.36)

in terms of performance and efficiency. A higher k for example only slightly increased

performance but took longer to compute. Indeed, k = 30 was deemed to be a sensible

choice as subjects from the prior user study didn’t go lower than a depth of 24 on average

over interface T0 .

For the diversity re-ranking to work in this scenario, the algorithm must be aware of the

ground truths which were collated, as described in Section 8.2.1.3 above. The reasons for

following this approach were:

■ not having to invest a significant amount of effort into tuning a different diversifica-

tion algorithm to return acceptable results; and

■ that it would guarantee that TREC relevant documents, containing different entities,

would bubble up to the top of the rankings, increasing the effect (and hopefully the

subject’s observation) that the results were indeed ranked differently.
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Input
Parameters

Output

Helper Functions

Figure/Algorithm 8.5 Pseudo-code of the diversification algorithm used in this study, based

on the XQuAD framework by Santos et al. (2010). As described in Section 8.2.1.5, the algorithm

guarantees that TREC relevant documents containing different aspects from each other will bubble

up the baseline (BM25) rankings. Pseudo-code is provided in HAGGIS (Cutts et al., 2014).
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Table 8.2 Table illustrating the effects of varying the diversification weighting parameter, w,

and diversification cutoff kwhen using the diversification algorithm as discussed in Section 8.2.1.5.

Values in the table represent the aspectual recall in the top 10 documents (AR@10) after re-

ranking, on average, over the 715 queries issued by subjects of the user study reported in

Chapter 7. At w=0.0, diversification is not applied — this configuration therefore enjoys the

same performance as our baseline, non-diversified system ND , utilising BM25 (b=0.75). Cells

highlighted denote the selected configurations for systems ND and D .

Cutoff Range (k)

10 20 30 40 50

W
ei
gh

ti
ng

Pa
ra
m
et
er

(w
)

0.0 (ND) 3.64

0.1 3.64 4.94 5.51 5.95 6.37

0.3 6.58 6.58 6.64 6.59 6.59

0.5 6.58 6.58 6.58 5.58 6.58

0.7 (D) 6.56 6.56 6.61 6.51 6.60

0.9 6.52 6.52 6.61 6.57 6.63

1.0 6.63 6.63 6.59 6.61 6.56

Without such a ground truth based approach, ensuring that TREC relevant documents

would bubble up would have been difficult to achieve. Given the effects of document pool-

ing as part of how the TREC QRELs were created (refer to Section 2.3.1.1), it is highly likely

that many other documents exist within the corpus that could be considered to be useful to

a given topic, but were not assessed.

One major pitfall of this approach is that the diversification algorithm employed would

have provided results that were too good, thus not presenting much of a challenge to sub-

jects. To mitigate this issue, we also included documents that were considered non-relevant

by TREC assessors (i.e. a TREC assessment of 0) when performing re-ranking. Rather than
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always bubbling up relevant documents discussing new aspects, the inclusion of these doc-

uments would also mean the bubbling up of non-relevant documents that ultimately men-

tion one or more aspects.5 From this, an additional 2, 663 documents that were not relevant

were included within the diversity re-ranking ground truths. For the five topics we con-

sidered, the number of non-relevant documents from the TREC QRELs over each topic are

reported in Table 6.1 on page 140.

Rather than manually assess each non-relevant document, we took the list of entities that

were discovered for TREC relevant documents, and performed an exact keyword search

for each of the entities within each of the 2, 663 documents. Any matches would have the

corresponding entity aĴached to the document.

8.2.1.6 Post-Task Surveys

With the pre-task survey the same as that outlined in the general methodology (refer to

Section 6.3.4 on page 155), questions for this study differed only over post-task and post-

experiment surveys. Here, we discuss the questions posed in each of the four post-task

surveys.

On the completion of each of the four search tasks, subjects were asked to answer questions

that were split into two broad categories, examining:

■ their perceived behaviours when interacting; and

■ how they felt the retrieval system they used had performed.

Answers were compulsory; we provided a seven-point Likert scale for responses, providing

the ability to give a neutral response, as well as strong disagreement (1) or agreement (7)

with the questions that were asked.
5For example, a non-relevant document for the wildlife extinction topic may have discussed a species of

animal, but would not have discussed approaches used to correct its endangered status.
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Considering the subject’s behaviours, we asked their opinions on the following areas.

■ Success How successful they thought they were at completing the given search task.

■ Subject Speed How quickly subjects felt that they completed the search task.

■ Queries Whether the subjects issued different queries to explore the topic.

■ Documents If they only examined a small number of documents per query.

■ Checks Whether they checked each document carefully before saving.

■ Enough Whether the subjects saved more documents than was required (remem-

bering that subjects were instructed to save at least four per task).

In addition to the behavioural component of the survey, the system-sided component of

the survey asked an additional six questions, again using a seven-point Likert scale. The

questions posed to the subjects are enumerated below.

■ System Speed How well subjects thought the system helped them complete the

given search task quickly.

■ Difficulty Whether they felt the system made things difficult to find useful informa-

tion.

■ Ease If the system made it easy for subjects to complete the given search task.

■ Happiness Whether the subjects were happy or not with how the system performed.

■ Cumbersome Whether they felt the system was cumbersome to use or not.

■ Confidence How confident the subjects were in the decisions that they had taken.
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8.2.1.7 Post-Experiment Survey

In addition to the post-task surveys, we also asked subjects to answer a post-experiment

survey upon completion of all four search tasks. Here, we wanted to ascertain which of the

two retrieval systems (Hula Search, representing the baseline non-diversified system ND ,

and YoYo Search Search, representing the diversified system D ) offered subjects a beĴer

experience, and which one of the two they preferred overall.

Seven questions were posed, with answers again provided on a Likert scale. However, this

time we provided six possible choices, from 1 (definitely Hula Search) to 3 (slightly Hula

Search), from 4 (slightly YoYo Search) to 6 (definitely YoYo Search). We opted not to include

a neutral option to force subjects into deciding between one of the two systems.

■ Informative Which one of the two retrieval systems returned the most informative

results?

■ Unhelpful What one of the two retrieval systems was more unhelpful?

■ Easiest Of the two retrieval systems, what one was easier to use?

■ Least Useful Which retrieval system was less useful?

The final three questions then asked subjects about what one of the two systems they felt

yielded the most relevant and diverse content.

■ Most Relevant Which of the two retrieval systems yielded more relevant informa-

tion?

■ Most Diverse Which of the two retrieval systems offered the more diverse set of

results?

■ Most Preferable Which retrieval system did you prefer overall?

We discuss the results from this survey in Section 8.2.2.4.
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8.2.2 Results

We now move onto an analysis of the user study results, addressing the overarching study

research question DIVERSITY-RQ , and the five hypotheses posed in Section 8.1.2.1. In

this analysis, we examine both the behaviour and performance of subjects across the four

different experimental conditions, D AS , ND AS , D AD and ND AD . Both task

(considering AD vs. AS ) and system (considering ND and D ) effects were also exam-

ined. To evaluate these data, ANOVAs were conducted using the experimental conditions,

tasks and systems each as factors; main effects were examined with α = 0.05. Bonferroni

tests were then used for post-hoc analysis. To reiterate, αDCG was computed at α = 0.5.

To begin our analysis, we first examined whether the performance demonstrated by sub-

jects over the two retrieval systems was in fact different – as indicated it would be by our

pilot study (refer to Section 8.2.1.5). We took the queries subjects issued to each of the two

systems and measured the performance according to αDCG, AR and precision. Results are

presented in Table 8.3. Statistical testing confirms that the two systems were significantly

different in terms of diversity (i.e. αDCG@10: F(1, 1272 = 28.74, p < 0.001) and AR@10:

F(1, 1272 = 55.43, p < 0.001)). However, P@10 was not significantly different between the

two retrieval systems. This suggests that the re-ranking promoted relevant and diverse

documents, mostly from the top ten results (on average).

Aside from showing query performance, Table 8.3 also reports the number of terms issued

per query over retrieval systems ND and D . Of the 1273 total queries issued, those issued

to ND were shorter on average, with 3.59 terms compared to 3.80 terms for system D .

However, the vocabulary used by subjects issuing queries to ND was more diverse than

D – queries issued to ND contained a total of 345 unique terms compared to 292. This

provides our first finding of note from the interaction data. When using retrieval system

ND that did not diversify search results, subjects issued a greater number of queries – but

with slightly shorter and more varied queries (in terms of the vocabulary used) – in order

to accomplish their tasks.
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Table 8.3 Query statistics and performance measures across experimental systems ND

(baseline, non-diversified) and D (diversified). Note the significant differences between the

diversity-centric measures, αDCG (where α=0.5) and aspectual recall (AR), demonstrating that

the diversification algorithm did indeed provide subjects with a more diverse set of results with

which to examine. Highlighted cells denote a significant difference between systems.

ND D

Queries Issued 718 555

Terms per Query 3.59 3.80

Unique Terms 345 292

Pr
ec
is
io
n

P@5 0.25±0.01 0.29±0.01

P@10 0.22±0.01 0.24±0.01

α
D
C
G αDCG@5 0.02±0.00 0.04±0.00

αDCG@10 0.03±0.00 0.04±0.00

A
R

AR@5 1.40±0.11 3.39±0.21

AR@10 2.11±0.14 4.07±0.24

8.2.2.1 Interaction Measures

Firstly, we examine the different interactions between searchers and the retrieval systems.

Tables 8.4 and 8.5 both present the mean (and standard deviations) of:

■ the number of queries issued (#Queries);

■ the number of SERPs that were examined by subjects per query (#SERPs/Query);

■ the number of documents examined (clicked) per query (#Docs./Query); and

■ the click depth (or stopping depth) per query (Depth/Query).
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These are reported in the Interactions category in both tables. Table 8.4 reports over the

four different system and task combinations trialled, while Table 8.5 reports over each in-

dividual system and task. ANOVAs revealed no effects across conditions, systems or tasks.

However, there are trends that are worth discussing. Firstly, we notice that when subjects

used system D to complete the aspectual retrieval task, they examined fewer documents

per query than when completing the same task on system ND (12.85±1.49 vs. 15.73±1.45)

– which is in line with H1 . We also observed that subjects issued slightly more queries on

D compared to ND under the aspectual retrieval task (5.92 ± 0.88 vs. 5.25 ± 0.80). This

is in line with H2a – these results, however, were again not statistically significant.

Now we turn our aĴention to the ad-hoc retrieval tasks. Our hypotheses claimed that there

would be no differences in terms of the number of documents examined ( H3 ) or in the

number of queries issued ( H4 ) – which was the case. However, we note that subjects us-

ing D examined more results than when using ND (16.19 ± 2.14 vs. 13.94 ± 1.93), and

they issued slightly fewer queries (4.96 ± 0.74 vs. 5.20 ± 0.69). We can see the trade-offs

between queries and the number of results inspected per query, where more queries tend

to lead to fewer results being examined, and vice versa. This result suggests that subjects,

when searching using diversified system D , under an ad-hoc task, may have had to ex-

amine to greater depths to find more relevant material due to the system’s performance.

Alternatively, this trend could be explained by suggesting that the system encouraged sub-

jects to go deeper, something that we intuitively expected when subjects were searching

for aspectual, diversified information. Either way, no conclusive evidence to support our

hypotheses exists with statistically significant differences – merely trends.

8.2.2.2 Performance Measures

Tables 8.4 and 8.5 also report a number of different performance measures, reported within

the Performance grouping. Included in these tables are:

■ the number of saved documents (#Saved); also broken down into:
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Table 8.4 Behavioural (including interaction and time-based) and performance measures,

across each of the experimental conditions D AS , ND AS , D AD and ND AD . Cells

that are highlighted denote statistically significant differences between conditions.

D-AS ND-AS D-AD ND-AD

In
te
ra
ct
io
ns

#Queries 5.92±0.88 5.25±0.80 4.96±0.74 5.20±0.69

#SERPs/Query 1.78±0.14 2.42±0.24 2.28±0.31 2.28±0.20

#Docs./Query 3.02±0.39 3.65±0.46 3.48±0.51 3.23±0.37

Depth/Query 12.85±1.49 15.73±1.45 16.19±2.14 13.94±1.93

Pe
rf
or
m
an
ce

#Saved 5.80±0.26 5.96±0.25 5.92±0.25 5.78±0.20

#TREC Saved (iP) 2.63±0.22 2.18±0.23 2.51±0.23 2.22±0.22

#TREC Non. 1.75±0.22 1.96±0.23 1.37±0.22 1.82±0.23

#Ent. Found 7.22±0.94 4.31±0.60 5.82±0.77 4.37±0.59

#Docs. New Ent. 3.20±0.21 2.35±0.20 2.63±0.23 2.02±0.18

Ti
m
es

Total Session 443.65±45.05 430.50±38.39 432.18±49.87 447.55±47.82

Per Query 8.80±0.89 9.99±1.21 9.69±0.79 8.69±0.57

Per Document 15.97±1.96 13.03±1.01 13.66±1.02 15.09±2.20

Per Summary 1.59±0.09 1.75±0.15 1.71±0.11 1.71±0.13

– the number that were TREC relevant, or interactive precision (#TREC Saved (iP));

and

– the number that were TREC non-relevant (#TREC Non.);

■ the number of new entities that were found (within saved documents, with new enti-

ties being in the context of a search session) (#Ent. Found); and
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Table 8.5 Behavioural (including interaction and time-based) and performance measures,

across the two experimental systems ND and D , as well as the two tasks, AD and AS .

Cells that are highlighted denote statistically significant differences between conditions.

ND D AD AS

In
te
ra
ct
io
ns

#Queries 5.23±0.53 5.44±0.58 5.08±0.51 5.59±0.59

#SERPs/Query 2.35±0.16 2.03±0.17 2.28±0.18 2.10±0.14

#Docs/Query 3.44±0.29 3.25±0.32 3.36±0.31 3.34±0.30

Depth/Query 14.84±1.58 14.52±1.31 15.07±1.44 14.29±1.47

Pe
rf
or
m
an
ce

#Saved 5.87±0.16 5.86±0.18 5.85±0.16 5.88±0.18

#TREC Saved (iP) 2.20±0.16 2.57±0.16 2.36±0.16 2.40±0.16

#TREC Non. 1.89±0.16 1.56±0.16 1.60±0.16 1.85±0.16

#Ent. Found 4.34±0.42 6.52±0.61 5.10±0.49 5.76±0.57

#Docs. New Ent. 2.19±0.13 2.91±0.16 2.32±0.15 2.77±0.15

Ti
m
es

Total Session 439.02±30.52 437.91±33.44 439.86±34.38 437.08±29.45

Per Query 9.34±0.67 9.25±0.59 9.19±0.49 9.39±0.75

Per Document 14.06±1.21 14.81±1.10 14.37±1.21 14.50±1.11

Per Summary 1.73±0.10 1.65±0.07 1.71±0.08 1.67±0.09

■ the number of documents containing at least one new entity (#Docs. New Ent.).

In terms of the number of documents saved, there were no significant differences between

conditions, systems or tasks. On average, subjects saved around six documents on average,

which was two more than the minimum goal of four. This suggests that subjects wanted to

make sure that they found a few extra, potentially useful documents.
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Table 8.6 Interaction probabilities, as observed over the four experimental conditions. Cells

that are highlighted denote statistically significant differences between conditions. Refer to Sec-

tion 6.4.2.3 on page 167 for an explanation of the different probabilities listed here.

D-AS ND-AS D-AD ND-AD

C
lic
k

P(C) 0.16±0.01 0.21±0.02 0.16±0.01 0.20±0.01

P(C|R) 0.27±0.03 0.30±0.04 0.25±0.03 0.31±0.04

P(C|N) 0.13±0.02 0.18±0.02 0.13±0.01 0.17±0.02

Sa
ve

P(S) 0.67±0.03 0.66±0.03 0.70±0.03 0.71±0.04

P(S|R) 0.78±0.04 0.63±0.05 0.74±0.04 0.67±0.05

P(S|N) 0.59±0.04 0.61±0.04 0.65±0.04 0.65±0.04

When we turn our aĴention to the entity-related measures, we note that subjects found more

documents that contained new entities, and found more new entities overall when using the

diversified system D . This was statistically significant (6.52± 0.61 compared to 4.34± 0.42

for systems D and ND respectively, where F(1, 203 = 8.70, p < 0.05)). When examining

each condition, the Bonferroni follow-up test showed significant differences between condi-

tions D AS and conditions D AD and ND AD , where F(3, 203 = 3.49, p < 0.05). We

also noticed that subjects found more documents with new entities, and thus more entities

generally, for task D AD than when using system ND (documents with new entities:

2.63 ± 0.23 vs. 2.02 ± 0.18, new entities: 5.82 ± 0.77 vs. 4.37 ± 0.59). Though this was not

significantly different, it does suggest that when subjects used system D , they did learn

more about the different aspects of the given topic (or at least encountered more aspects)

than when using system ND that did not diversify results.

Table 8.6 reports interaction probabilities associated with searcher interactions, the details

of which are discussed in Section 6.4.2.3 on page 167. From the table, we can see that there

was a significant difference between conditions for the probability of clicking on a result
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summary link, and the probability of clicking on TREC non-relevant items. Comparing

systems indicated that subjects clicked more when using the non-diversified system, and

clicked on more non-relevant documents. However, we did not observe any task effects

and thus do not report these measures here. This suggests that the non-diversified system

ND led to subjects examining more documents, but often more non-relevant documents.

This is reflected by the fact that across all the performance measures, subjects when using

system ND , performed worse.

8.2.2.3 Time-Based Measures

Tables 8.4 and 8.5 also report a third grouping of results, showing a series of times recorded

for various interactions. These are all reported within the Times grouping. Across both

tables (conditions, systems and tasks), we report:

■ the mean total session time (denoted as from the first query focus to ending the task,

Total Session);

■ the mean time spent entering queries (Per Query);

■ the mean per document examination time (Per Document); and

■ the mean time spent examining an individual result summary (Per Summary).

All values in the two tables for time-based measures are reported in seconds. Surprisingly,

no significant differences were found between any of the comparisons over the total session

times, the per query times, the per document times, and the individual result summary

examination times. However, results do show a relatively constant mean session time over

each of the four experimental conditions, as shown in Table 8.4. At ≈ 438.5 seconds, this is

around seven minutes on average – in line with the time taken to find four documents in

the previous user study reported in Chapter 7.
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Considering H2b , no evidence was found to support that task completion times were

lower under the diversifying retrieval system with an aspectual retrieval task D AS .

From Table 8.5, we can see that subjects in actuality spent slightly longer on the task, with

443 seconds reported for D vs. 430 seconds for ND – essentially, the difference of exam-

ining approximately one document on average.

8.2.2.4 User Experience Measures

There were no significant differences between conditions, tasks, or systems for any of the

post-task surveys. For the post-experiment survey, subjects were roughly evenly split be-

tween their preference for system D or ND – again with no significant differences. This

finding suggests that despite the substantial (and significant) difference in aspectual recall

and other system performance measures between the systems, subjects seemed largely un-

aware of the influence of the two systems. However, their observed behaviours do suggest

that the system (and task) did affect their performance, as Table 8.4 demonstrates.

Post-Task Surveys Table 8.7 provides the results of the post-task surveys. Questions were

provided in Section 8.2.1.6. To recap, a seven-point Likert scale was used for all responses,

ranging from 1 (strongly disagree) to 7 (strongly agree). Turning our aĴention first to the

Behavioural survey results, we observed no significant differences across conditions, sys-

tems or tasks. However, across all conditions, systems and tasks, subjects broadly agreed

with the statements that they were presented with, suggesting that they felt successful in

completing the search tasks, and were able to complete them quickly. All were in agreement

that they carefully checked their documents for usefulness (i.e. relevance and/or new enti-

ties, depending upon the task) before saving, but were in broad disagreement that they had

examined a few documents per query, indicating that across all conditions, subjects felt as

though they had examined more than they felt they needed to (or more than the requested

minimum). A positive sentiment to this question was recorded across 68.2% of all logged

search sessions, with 23% and 8.33% for negative and neutral sentiments respectively.
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Table 8.7 Results from the post-task surveys, consisting of both the behavioural- and system-

based questions. Results shown are averages recorded for each of the four experimental conditions

when considering the seven-point Likert scale. Significant differences are highlighted .

D-AS ND-AS D-AD ND-AD

B
eh
av
io
ur
al

Success 5.90 5.53 5.98 5.98

Subject Speed 4.24 4.33 4.61 4.45

Queries 5.75 5.35 5.24 5.47

Documents 2.78 3.00 2.67 2.69

Checks 6.08 6.10 6.14 6.02

Enough 5.00 5.06 4.84 5.43

Sy
st
em

System Speed 4.55 4.16 4.84 4.42

Difficulty 3.78 4.20 3.31 3.38

Ease 4.53 4.00 4.47 4.32

Happiness 4.45 4.18 4.73 4.46

Cumbersome 3.31 3.50 3.18 3.00

Confidence 5.25 5.04 5.63 5.36

Regarding the System-sided survey questions presented in Table 8.7, subjects considered

that both systems offered a reasonably quick and straightforward approach to finding re-

sults, with a generally positive outcome for both. The systems generally did not appear

to be considered cumbersome to use, and subjects did not find the system made it overly

difficult to complete the tasks – a significant difference existed between the two tasks for

this question, where F(1, 201 = 5.51, p < 0.05). Overall, subjects felt happy with how the

system performed and had some confidence in their decisions.
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Table 8.8 Raw results of the post-experiment survey. Values denote subjects who selected an

answer (columns) for each question (rows). The lower the value, the stronger the preference to

YoYo Search; the higher the value, the stronger the preference to Hula Search.

Preference to YoYo (D) Preference to Hula Search (ND)

1 2 3 4 5 6

Most Informative 5 0 20 20 0 6

Most Unhelpful 7 0 21 17 0 6

Easiest 7 0 18 20 0 6

Least Useful 6 0 20 18 0 7

Most Relevant 10 0 16 18 0 7

Most Diverse 8 0 18 19 0 6

Most Preferable 9 0 16 18 0 8

Post-Experiment Survey Upon finishing the experiment, subjects completed the post-

experiment survey as detailed in Section 8.2.1.7. Here, we asked subjects which system they

preferred (from either D or ND ) over a number of different questions. Results from the

survey, as shown in Table 8.8, provide a mixed picture – neither system was favoured by

the subjects, with all questions recording a near 50-50 split. This is an interesting finding,

as results – especially from Table 8.3 on page 266 – showed that there was a significant dif-

ference between the two systems. Subjects simply had difficulty aĴempting to determine

which system was more aĴractive to use.

8.2.2.5 Gain over Time

Back in Section 8.1.2, we motivated this study – and indeed the wider work reported in

this chapter – using IFT, where we constructed a number of gain curves reflecting our be-

liefs about how the search performance experienced by subjects would look on each of the
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four combinations of system and task. This was done in order to generate our hypotheses

outlined in Section 8.1.2.1. In this final section of the user study results, we examined how

subjects performed over time for each of the experimental conditions trialled, allowing us

to infer the gain curves. We then compare each of the curves generated with our initial

expectations, shown in Figure 8.2 on page 247.

To create empirical gain curves, we ploĴed Cumulative Gain (CG) against time, where gain

was defined to be either:

■ the number of saved relevant documents under ad-hoc retrieval tasks; or

■ the number of saved, relevant and different documents when undertaking an

aspectual retrieval task.

These definitions are what constituted as a useful document for both of the tasks, defined

previously in Section 8.2.1.1. As both of these definitions can be expressed in the same units,

they can be also ploĴed on the same axes.

In parallel with expectation plots shown in Figure 8.2 on page 247, Figure 8.6 plots the

corresponding empirical gain curves for:

(a) the non-diversified system, ND , over both search tasks AD and AS ;

(b) the diversified system, D , over both search tasks AD and AS ;

(c) the aspectual search task AS for both retrieval systems; and

(d) the ad-hoc task AD for both retrieval systems.

Compared to our expectations in Figure 8.2 on page 247, on visual inspection, we see that

our predictions were roughly in line with the average levels of CG experienced by the sub-

jects. With Figure 8.6 (a) for example, we hypothesised that using retrieval system ND ,
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Results: Information Foraging Theory, Diversification and Task Types
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Figure 8.6 Plots illustrating the Cumulative Gain (CG) attained by subjects of the user study (on

average), over the first 100 seconds of a search session. Shown are plots with the four different

combinations of experimental condition trialled. Dashed lines represent fitted curves.

subjects would have experienced greater levels of gain. The empirical gain curves demon-

strate that this actually occurred. A critical difference however though is for plot (b). Here,

it is clear that subjects went through a very different experience when searching, and this

motivated a revision of our expectations.

To do so, we first fit a logarithmic function to each of the gain curves given session time,

such that: gain = b · log(time) − a, as used by Athukorala et al. (2014). Table 8.9 presents

the parameters and correlation coefficients for fit (r2) for each of the four experimental con-

ditions. We could then calculate how many documents subjects examined by drawing the

tangent line to the estimated gain functions from the origin. This resulted in the predicted
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Table 8.9 Fitting parameters for the gain curves illustrated in Figure 8.6, over each of the four

experimental conditions trialled. Also included are the estimations from the model of the predicted

number of documents that subjects would examine, and the actual number from the empirical data.

Model Fitting Parameters Predictions

a b r2 Pred. D. Actual D.

ND-AD -1.08 0.48 0.989 3.68 3.23

ND-AS -0.57 0.23 0.987 4.92 3.65

D-AD -1.22 0.52 0.959 4.98 3.48

D-AS -0.68 0.29 0.985 4.36 3.02

number of documents examined (Pred. D.), which we see are in line with the actual number

of documents examined (Actual D.). With respect to plot (b), we see that for diversified sys-

tem D , the theory, given their performance, suggests that subjects should examine more

documents per query under the aspectual task AS than when undertaking the ad-hoc task

AD (i.e. 4.98 vs. 3.68 for AS and AD respectively, as shown in Table 8.9). We observed

that subjects examined 3.48 and 3.02 documents per query (shown in Table 8.4 and repeated

in Table 8.9) – which follows a similar trend but not to the same magnitude. Thus, this re-

vises our expectations regarding how people would search differently between these tasks.

With respect to H1 , we see that the theory, given their performance, suggests that subjects

– when undertaking the aspectual retrieval task – would examine fewer documents per

query when using the diversified system D than when using the non-diversified system,

ND (4.36 vs. 4.92). Again, we see that subjects examined 3.02 and 3.65 documents per

query respectively, again following the same trend – but not to the same magnitude. This

post-hoc analysis provides justification for some of our initial hypotheses regarding how

search behaviour would change under the different experimental conditions. However, it

has also led to us revising our expectations based upon the empirical data.
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8.2.3 Discussion

This user study has investigated the effects of diversifying search results when searchers

undertook complex search tasks, requiring one to learn about different aspects of a topic.

To test the series of hypotheses, derived from IFT outlined in Section 8.1.2.1, we conducted

a within-subjects user study, using:

■ a non-diversified system ND ; versus

■ a diversified system D .

These were tested over two different search tasks, where the task was set to either:

■ ad-hoc topic retrieval AD ; or

■ aspectual retrieval AS .

This led to four experimental conditions. Our findings lend evidence to support the IFT

hypotheses broadly. However, we only observed statistically significant differences across

a subset of behavioural and temporal measures. This was despite the fact that there were

significant differences in performance between systems ND and D . Diversified system

D was able to, on average, return a ranked list of results with a greater number of docu-

ments containing new, unseen entities. This finding is in line with past work which found

that interface-based interventions seemingly had liĴle influence on search performance and

search behaviours. Clearly, bigger differences need to be present – or larger sample sizes

are required – to determine if the difference between systems over all examined indicators

are significant. Despite these results, there were a number of clear trends.

When performing the aspectual task AS on the diversified system D (in contrast to the

non-diversified system ND ): subjects examined fewer documents per query (3 vs. 3.7 doc-

uments/query), issued slightly fewer queries (5.92 vs. 5.25 queries), and didn’t go to as great
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a depth when examining SERPs (depths of 12.85 vs. 15.73). Taken together, this resulted

in a lower probability of clicking (P(C) = 0.16 vs 0.21, which was significantly different)

and interestingly a lower probability of clicking on non-relevant document (P(C|N) = 0.13

vs. 0.18, which was also significantly different). While subjects spent a similar amount of

time searching on both systems, subjects on the diversified system spent slightly more time

examining each document (15.97 seconds vs. 13.03 seconds) – suggesting that more effort

was directed to assessing rather than searching. However, subjects found significantly more

entities (7.22 vs. 4.31 entities) and found more documents that contained new/different en-

tities (3.20 vs 2.35). Both of these findings were statistically significant. This shows that

the diversification algorithm led to a greater awareness of the topics, and provided subjects

with greater coverage of the topic. In turn, this also suggests that subjects were able to learn

more about the topic, and were exposed to less bias.

When performing the ad-hoc task AD over the diversified system D (in contrast to the

non-diversified system ND ): subjects examined more documents per query (3.48 vs. 3.23

documents/query), issued slightly more queries (4.96 vs. 5.20 queries), and examined con-

tent to greater depths presented on SERPs (depths of 16.19 vs. 13.94). Again, this meant

that the probability of clicking was lower on the diversified system D (0.16 vs. 0.20); this

was significantly so. Subjects spent similar amounts of time searching on both systems.

However, unlike on the aspectual tasks AS , subjects spent less time examining poten-

tially relevant documents on system ND (13.66 vs. 15.09 seconds). This suggests that less

effort was directed at assessing, rather than searching. This could be possibly due to the

performance of D being higher than ND (P@5 = 0.29 vs. 0.25, which was significantly

different). Alternatively, it could be because the results returned were easier to identify as

relevant, as the probability of marking a document given it was relevant was higher (0.74

vs. 0.67). This suggests that subjects may be more confident when using the diversified sys-

tem. Although not explicitly requested in the task description, subjects encountered more

novel entities when using D (5.82 vs. 4.37). Subjects also found more documents with

new entities using D (2.63 vs. 2.02). Taken together, this suggests that subjects again im-
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plicitly learn more about the topic because the diversified system D surfaced content that

presented a more varied view on the topic.

With regards to the application of IFT, we showed that the generated hypotheses were

largely sound. However, the empirical data prompted us to revise the hypotheses. Ini-

tially, we hypothesised that the performance and behaviour on both tasks would be similar

when using the diversified system D (see Figure 8.2 (b)). However, post-hoc analysis re-

vealed that the performance (and subsequent behaviour) was different (see Figure 8.6 (b)).

Here, subjects obtained higher levels gain for the ad-hoc task AD . Thus, under such con-

ditions, IFT would stipulate that they would examine more documents per query (3.48 vs

3.02 documents/query) and issue fewer queries (4.96 vs. 5.92 queries) when undertaking the

ad-hoc retrieval task AD vs. the aspectual retrieval task AS (as opposed to there being

no difference). Encouragingly, our application of IFT (before and after the experiment) led

to new insights into how behaviours are affected under different conditions. This shows

that IFT is a useful tool in developing, motivating and analysing search performance and

behaviours. Furthermore, counter to our intuition about how we believed people would be-

have in these conditions, the theory provided more informed and accurate hypotheses which

tended to hold in practice.

In past work, many interface-based solutions were studied, where a few significant differ-

ences in behaviour were found when compared to a standard interface. Disappointingly,

we also found that an algorithmic solution has liĴle impact or influence either, though there

were trends which indicated that diversifying search results does indeed lead to beĴer per-

formance, greater awareness of the topic (even when not specifically instructed, i.e. find

relevant only), and fewer examinations of non-relevant items. Thus, this allows the sugges-

tion that diversification should be employed more widely (in particular, in the context of

news search) where bias is an issue, and diversification algorithms can present a broader

overview of the aspects within a topic. From this discussion, we now move to the next

section, outlining our corresponding simulations of interaction.
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8.3 Simulated Analysis

From the user study, we now move to a simulated analysis of searcher stopping behaviour

and performance. In this section, we detail how stopping behaviour and performance vary

when simulated searchers utilise different systems (i.e. D vs. ND ) and search tasks

(i.e. AD vs. AS ). These are again, like in Section 7.3, addressed in the context of the

two high-level research questions. Considering each of the twelve result summary level

stopping strategies enumerated in Chapter 5, how does each strategy:

■ HL-RQ3a perform; and

■ HL-RQ3b approximate actual searcher stopping behaviour?

In the remainder of this section, we discuss the specific details of our methodology (Sec-

tion 8.3.1), discussing in particular how we instantiated the task goals for these experiments.

We then move onto an examination of the results from our simulations (Section 8.3.2).

8.3.1 Methodology

This methodology section provides the details specific to how we instantiated this set of

simulations. One can assume that any components that are not discussed in this section

were instantiated as shown in the general simulation methodology. The general method-

ology is presented in Section 6.4 on page 157.

Two of the key differences between the simulations reported in Chapter 7 and the simula-

tions discussed here are how we operationalise the underlying retrieval system to support

diversity, and the simulated searcher task goals.
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8.3.1.1 Experimental System and Conditions

The SimIIR framework was adapted to incorporate additional components, allowing the

simulations to employ the use of the diversified system D , as well as the standard BM25-

based non-diversified system, ND . This involved the development of a further retrieval

system component (refer to Section 6.4.1 on page 159 – in particular, the Retrieval System

block in Figure 6.5 on page 160) that catered for system D . Therefore, this new component

allowed us to run simulations over the four experimental conditions trialled as discussed

in Section 8.2.1. Given the same queries, results returned from systems D and ND in the

simulations were identical to results returned to the real-world subjects of the correspond-

ing user study.

The second major component of the SimIIR framework that we considered was the result

summary and document decision makers. These components determine whether a result

summary is considered aĴractive enough to click and whether a document is relevant to the

given TREC topic. For aspectual search tasks AS , the focus was not to simply save relevant

documents but to save relevant documents containing at least one new entity associated

with the topic. However, we decided to keep the decision makers the same for both search

tasks, meaning that only the relevance to the topic was considered. We do however report

results with aspectual measures, such as AR, in Section 8.3.2.

8.3.1.2 Interaction Costs and Probabilities

Interaction log data from the associated user study was taken and filtered by the four ex-

perimental conditions. Following the methodology outlined in Sections 6.4.2.3 and 6.4.2.1

on pages 167 and 163 respectively, we then extracted the different interaction probabilities

and costs to ground our simulations.

Table 8.10 presents the interaction probabilities and costs across the four experimental in-
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Table 8.10 Summary table of the different interaction costs (in seconds) and probabilities, with

P(C) denoting the probability of a click, and P(S) denoting the probability of saving a document

(considering it relevant). Also included are probabilities broken down over TREC relevant (P(C|R)

andP(S|R)) and non-relevant (P(C|N) andP(S|N)). Values are reported across the four experimen-

tal conditions trialled. Refer to Sections 6.4.2.1 and 6.4.2.3 respectively for further information

on how the costs and probabilities were derived. All data in this table are attained from interaction

data extracted from the user study reported in Section 8.2.

D-AS ND-AS D-AD ND-AD

P(
C
) P(C|R) 0.27 0.30 0.25 0.31

P(C|N) 0.13 0.18 0.13 0.17

P(
S)

P(S|R) 0.78 0.63 0.74 0.67

P(S|N) 0.59 0.61 0.65 0.65

C
os
ts

(i
n
se
co
nd

s)

Query 8.80 9.99 9.69 8.69

SERP 5.92 6.29 6.36 5.79

Result Summary 1.59 1.75 1.71 1.71

Document 15.97 13.03 13.66 15.09

Save 1.73 1.78 1.58 1.68

Task Goal Find 6 relevant (refer to Section 8.3.1.2)

Session Timeout 500 seconds (refer to Section 8.3.1.2)

terfaces trialled. Included within the table are the interaction probabilities for clicking on

result summaries (under the P(C) grouping) and saving documents (under the P(S) group-

ing). Also included are the five main interaction costs, presented under the Costs grouping.

Task Goal Also included in Table 8.10 is the task goal. In the user study, subjects were
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instructed to find and save a minimum of four useful documents, as reported back in Sec-

tion 8.2.1.1. Across all four experimental interfaces, subjects saved on average 5.87 docu-

ments, perhaps to hedge their bets in the eventuality that certain saved documents turned

out to not be useful after all. These values can be found in the #Saved row in Table 8.4 on

page 268. As such, simulated searchers were given a goal of finding six useful documents

to mirror the average saved by their real-world counterparts.

Session Timeout A session timeout was also provided such that if simulated searchers

failed to find the minimum of six useful documents, a time limit would prevent the sim-

ulation from ‘geĴing stuck’, where the query lists would be exhausted. Again referring

to Table 8.4 on page 268, the mean total session time (reported on row Total Session) was

reported to be 438.47 seconds across all four experimental conditions. With a large vari-

ance in total session time reported across search sessions, we set a time limit of 500 seconds

(equating to the upper side of the variance) to grant sufficient time for searchers to find the

six required documents, yet restricting runaway (and unrealistic) behaviours.

Simulations of interaction when considering aspectual retrieval tasks have to the best of our

knowledge not been performed before. The majority of prior work purely considers ad-hoc

retrieval, given that this is a relatively straightforward search task to model. Therefore, we

suggest that the assumptions made for these simulations of interaction provide a reasonable

approximation for how real-world searchers actually performed and behaved, and leaves

scope for development of these simulations in future work. We leave the discussion on these

assumptions and potential issues that may arise from them to Section 10.3.1 on page 349.

8.3.2 Results

We now report the results of our simulations of interaction, under different search tasks

and goals. As presented in Chapter 7, we discuss our findings from these experiments over

two subsections, considering:
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■ the performance runs (Section 8.3.2.1), where we discuss the highest levels of perfor-

mance aĴained by simulated searchers under different what-if scenarios; and

■ the comparison runs (Section 8.3.2.2), providing results of the simulations that were

directly compared to the actual mean.

Both of these sections provide an answer for high-level research questions HL-RQ3a and

HL-RQ3b respectively, this time under the context of varying search tasks and goals.

Significance Testing Like before, we employ significance testing to determine whether

the performance of a result summary level stopping strategy was significantly different

from the other eleven trialled. All tests in this section utilise the two-tailed Student’s t-test,

whereα = 0.05. Our tests consider the best performing or approximating stopping strategy,

and how they compare to the other eleven. Like before, we are interested in statistical non-

significance (i.e. α > 0.05), meaning that the compared stopping strategies are similar to one

another in terms of performance or approximations.

8.3.2.1 Performance

Before reporting on the performance of each stopping strategy across our performance

(what-if) simulations, we must first determine whether querying strategy QS13 delivers

queries of expected performance across systems ND (non-diversified) and D (diversi-

fied). From the reporting of the user study, we know that the performance across the two

systems (as shown in Table 8.3) was significantly different in terms of precision (at most

ranks), αDCG and AR. Results from the user study showed consistently higher levels of

αDCG and AR for system D , a result that was in line with expectations.

Table 8.11 reports various precision, αDCG and AR for queries generated by querying strat-

egy QS13 . Across both systems ND and D , measures (± standard deviations) are

shown across all three stopping strategies, including QS13 and constituent querying
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Table 8.11 Mean performance values (± standard deviations) of all generated queries issued
for performance runs. Included are P@k, αDCG@k and AR@k values, incorporating aspectual re-

trieval measures. Values are reported across both the non-diversified ( ND ) and diversified ( D )

systems. Note the increasing trends in performance across all measures as QS1 → QS3 , as

well as the improved performance for diversification measures over system D .

ND (Non-Diversified) D (Diversified)

QS1 QS13 QS3 QS1 QS13 QS3

P@1 0.04 ± 0.20 0.18 ± 0.39 0.23 ± 0.42 0.04 ± 0.20 0.19 ± 0.39 0.23 ± 0.43

P@5 0.02 ± 0.07 0.14 ± 0.21 0.18 ± 0.23 0.05 ± 0.16 0.18 ± 0.26 0.22 ± 0.28

P@10 0.02 ± 0.06 0.11 ± 0.18 0.15 ± 0.19 0.03 ± 0.10 0.14 ± 0.20 0.17 ± 0.21

αDCG@5 0.00 ± 0.00 0.01 ± 0.03 0.02 ± 0.03 0.00 ± 0.00 0.02 ± 0.04 0.02 ± 0.04

αDCG@10 0.00 ± 0.00 0.01 ± 0.03 0.02 ± 0.03 0.00 ± 0.01 0.02 ± 0.04 0.03 ± 0.05

AR@5 0.01 ± 0.04 0.30 ± 0.87 0.40 ± 0.98 0.05 ± 0.24 0.51 ± 1.25 0.65 ± 1.40

AR@10 0.01 ± 0.04 0.20 ± 0.51 0.27 ± 0.58 0.03 ± 0.13 0.30 ± 0.69 0.38 ± 0.77

strategies QS1 (single term, poor queries) and QS3 (three term, good queries). A to-

tal of 213 unique queries were extracted from the simulated interaction logs. Queries were

then categorised depending upon their term length, allowing us to deduce measures for

each individual querying strategy.

Closer examination of Table 8.11 shows that as we move from QS1 to QS3 , a consis-

tent improvement in precision is achieved. Again, this finding is in line with intuition. In-

terleaved querying strategy QS13 delivers intermediary performance between the two.

When we turn our aĴention to aspectual measures, we again see performance improve-

ments as we move from QS1 to QS3 . Considering systems ND and D , we also see

improvements in performance. For example, AR@10 is reported as 0.27 ± 0.58 for system

286



8.3 Simulated Analysis

ND , with 0.38 ± 0.77 for system D . This jump in mean AR once again demonstrates

that the diversification algorithm presented in Figure/Algorithm 8.5 did indeed work as ex-

pected, where it returned a greater number of unique entities in its re-ranked search results.

Results from Table 8.11 therefore provide us with confidence that the two systems were

indeed working as intended, yielding queries that performed in line with our intuition, and

offered similar trends in performance compared to those issued by the real-world subjects

of the user study. We also gain confidence in knowing that interleaved querying strategy

QS13 also offered improvements in aspectual measures compared to QS1 . As such, this

should be later reflected in our examination of the what-if experiments when we consider

aspectual measures.

Satisfied with the performance of the generated queries, we now turn our aĴention to an

examination of the individual result summary level stopping strategies. Like our reporting

in Section 7.3.2.1, we consider results primarily from the perspective of HL-RQ3a , which

requires an examination of the performance of each stopping strategy. Before this, we con-

sider the general trends that we observed across the performance simulations, examining

whether these trends are consistent across the experimental conditions trialled.

Figure 8.7 presents twelve individual plots, one per result summary level stopping strategy.

These plots represent the mean levels of performance aĴained over each experimental con-

dition (of either D AS , ND AS , D AD or ND AD ) at varying depths per query,

averaged over the five individual topics and 50 individual trials. The mean depth per query

is represented along each x axis, with the performance aĴained (represented as CG) repre-

sented along the y axes. Although strategies such as SS3-NC allowed simulated searchers

to browse to depths greater than 25 on average, all plots were cut at this depth for consis-

tency, and to highlight what occurs at lower depths per query. Each point on the respective

lines for each condition represents one of the stopping threshold values used for each stop-

ping strategy, as reported in Table 6.3 on page 178.
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General trends across mean depths per query can be observed in each of the twelve plots

in Figure 8.7. We can see across a majority of stopping strategies and experimental con-

ditions that as the mean depth per query increases, simulated searchers aĴain greater of

levels of CG on average before a peak point of CG aĴainment is reached. After this point,

as searchers traverse result lists to greater depths, the mean level of CG begins to diminish.

Peaks can be more profound in some stopping strategies (e.g. SS1-FIX and SS5-COMB )

than with others (e.g. SS4-SAT ). This trend can be observed across all four experimen-

tal conditions, where all four start at very similar levels of mean CG across shallow mean

depths per query, before gaps begin to emerge between them. Indeed, it can be observed

across the twelve plots that condition D AS consistently offers the best approximations

across nearly all depths per query reported. This condition is very closely followed by

D AD , with slightly lower mean levels of CG. Interestingly, we then observe a gap be-

tween these two conditions, and the remaining two conditions, ND AS and ND AD .

This gap is largely present amongst all twelve stopping strategies and is more profound in

stopping strategies that offer higher mean levels of CG. This is especially true after peak CG

has been reached, and the mean depth per query begins to increase. The gaps between con-

ditions clearly demonstrate a difference in performance between systems D and ND ,

with system D consistently offering improved mean levels of CG. Interestingly, gaps be-

tween tasks AD and AS are less profound, with negligible differences observed from an

examination of the twelve plots.

While the plots in Figure 8.7 present the general trends in performance across mean depths

per query, Table 8.12 reports on the highest level of CG aĴained by each result summary level

stopping strategy, across the four experimental conditions trialled. The values in Table 8.12

correspond to the peaks shown in each of the plots in Figure 8.7. For each stopping strat-

egy and condition, we report: the greatest level of mean CG aĴained (CG); the mean depth

per query at which this value was reached (DQ); and the stopping threshold value(s) that

were used to aĴain this value (xn). Highlighted are the stopping strategies that yielded

the highest mean level of CG, with the highest value demonstrated for each condition. For
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Figure 8.7 Plots showing the varying levels of performance, measured in CG, over the mean

depth per query. Each result summary stopping strategy is shown on an individual plot, with each

of the four experimental conditions shown within each plot. The depth per query reported on each

x axis is cut at 25 to allow for an easier comparison between different stopping strategies.
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conditions D AS , ND AS and D AD , combination stopping strategy SS5-COMB

aĴains the highest mean level of CG, with values 2.21, 1.79 and 2.13 reached for the afore-

mentioned conditions respectively. As these levels of CG are reached under a combination

strategy, values x2 = 5 and x4 = 3, x2 = 10 and x4 = 6, and x2 = 7 and x4 = 3 were

used to aĴain these values for conditions D AS , ND AS and D AD respectively.

This means that under condition D AS , a searcher would examine a total of five non-

relevant documents or save three relevant documents per query before stopping – what-

ever occurred first. Interestingly, our fixed-depth, baseline stopping strategy SS1-FIX

reaches the highest level of CG for condition ND AD , at 1.81. SS5-COMB is however

very close behind, with a mean CG of 1.80 reported. Like the results in Section 7.3.2.1, this

again demonstrates that a fixed-depth strategy can be hard to beat in terms of aĴaining a

high level of CG.

Indeed, it should be noted that the following stopping strategies reported maximum levels

of CG close to the absolute maximum observed:

■ SS2-NT and SS3-NC , the frustration stopping strategies (considering total and

contiguous non-relevance);

■ SS4-SAT , the satiation-based stopping strategy;

■ SS9-TIME , the time-based strategy; and

■ SS11-COMB , the patch-based combination strategy.

This was true across all four experimental conditions. For SS5-COMB , the relatively low

mean depths per query at which the greatest level of CG was reached also demonstrates that

the combination strategy was particularly robust at detecting a query of poor performance.

Subsequently stopping at shallower depths, the strategy thus saved time for the simulated

searcher. Taking this further, an interesting trend that was initially observed in Figure 8.7
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shows that peak CG is aĴained at generally shallower mean depths per query under tasks

using system D than when compared to system ND .

With performance levels aĴained by several stopping strategies reported to be very sim-

ilar, we employed statistical testing to determine what strategies, if any, yielded signifi-

cantly different performances from the best performing strategy over each condition. At α =

0.05, this statistical significance would demonstrate that performance is significantly poorer

than the best performing strategy ( SS5-COMB for D AS , ND AS and D AD , with

SS1-FIX for ND AD ). Results of these tests can also be observed in Table 8.12, with

cells highlighted denoting no statistical significance from the best performing strategy (i.e.

p > 0.05). Therefore, cells without highlighting denote a statistically significant difference

in terms of the CG values reported. Indeed, only SS8-IFT and SS10-RELTIME yielded

significant differences across interfaces D AS , ND AS and D AD , suggesting that

these particular stopping strategies were not effective. All other strategies reported no sig-

nificant differences from the best performing strategies.

Given that subjects from the user study were asked in aspectual ( AS ) tasks to find rel-

evant documents containing at least one new, unseen entity, we consider in tandem both

mean CG and mean AR. Figure 8.8 again presents 12 different plots, each one representing

the individual result summary level stopping strategy. Each line on the plot again repre-

sents one of the four experimental conditions that were trialled. While the mean depth per

query is shown along the x axes, we instead plot these against the mean AR values along the

y axes, denoting the mean number of documents containing unseen entities over the course

of a session. Unsurprisingly, the plots follow similar trends to those shown in Figure 8.7,

with the same mean depth per query values shown.

Indeed, a higher mean level of CG correlates strongly with a higher mean level of AR –

an intuitive result. In order to aĴain gain, one must save documents, and by saving doc-

uments, a simulated searcher will also identify documents with unseen entities. Trends

illustrate that like Figure 8.7, plots build up to a peak before slowly diminishing as the
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Table 8.12 Results from the simulatedwhat-if simulated performance runs, showing the high-

est levels of CG attained for each result summary level stopping strategy trialled (grouped by their

type). xn denotes the parameter threshold(s), with DQ denoting the depth per query at which the

greatest CG value was attained at. For each condition, the stopping strategy which attained the

highest level of CG is highlighted . Light blue highlighting denotes no significant difference from

the best performing strategy, with no highlighting denoting a significant difference atα=0.05. For

combination thresholds, x2,x4 are presented for SS5-COMB , with x10,x4 for SS11-COMB .

D-AS ND-AS D-AD ND-AD

xn DQ CG xn DQ CG xn DQ CG xn DQ CG

FI
X

SS1 7 4.95 2.19 10 6.45 1.77 7 4.99 2.09 10 6.47 1.81

FR
U
S SS2 5 4.29 2.18 10 7.71 1.76 9 6.93 2.08 10 7.55 1.80

SS3 5 5.64 2.20 4 5.03 1.73 5 5.52 2.08 4 4.93 1.74

SA
T

SS4 2 8.77 2.01 2 6.87 1.57 2 9.21 1.85 2 7.15 1.63

C
O
M

SS5 5,3 4.21 2.21 10,6 7.65 1.79 7,3 5.47 2.13 10,6 7.50 1.80

D
IF
F SS6 0.30 3.58 2.02 0.55 8.29 1.58 0.30 3.60 1.95 0.55 8.22 1.70

SS7 5.5 4.91 1.92 6.5 2.87 1.59 5.5 4.95 1.82 6.5 2.86 1.66

IF
T

SS8 0.008 3.18 1.68 0.008 5.30 1.53 0.006 4.68 1.46 0.010 3.48 1.52

TI
M
E SS9 30 5.26 2.08 30 4.79 1.58 30 5.22 1.99 60 8.21 1.61

SS10 20 9.37 1.86 10 3.39 1.42 20 8.48 1.90 20 8.01 1.53

C
O
M

SS11 10,4 4.62 2.08 10,6 4.44 1.71 20,4 8.08 1.91 10,6 4.56 1.75

R
B
P

SS12 0.95 4.82 2.01 0.99 8.81 1.57 0.99 8.87 1.91 0.99 8.75 1.63
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Figure 8.8 Aspectual recall (documents containing at least one newentity) over themean depth

per query for each result summary level stopping strategy, reported over each of the four exper-

imental conditions. Note the profound gaps between the two tasks using diversified system D

and non-diversified system ND . The depth per query reported on each x axis is cut at 25.
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mean depth per query increases. We also observe that a much higher level of AR is aĴained

by tasks using system D . For example, SS5-COMB aĴains a maximum AR of 1.04 at a

mean depth per query of 4.21, and 0.69 at a mean depth per query of 7.65 under conditions

D AS and ND AS respectively. These results provide further proof that subjects and

simulated searchers enjoyed a more diverse set of results when the diversification algorithm

was applied.

Turning our aĴention to the remaining stopping strategies, we first consider our fixed-depth

baseline SS1-FIX , in addition to frustration-based strategies SS2-NT and SS3-NC . All

three perform remarkably well, with SS1-FIX indeed offering the best performance for

condition ND AD . Under condition D AS , for example, the three strategies offer a

maximum CG of 2.19, 2.18 and 2.20, respectively. This is compared to the maximum reached

by SS5-COMB of 2.21. In addition, the strategies all offer these levels of CG at similar

mean depths per query, suggesting that such approaches are just as robust as the combina-

tion strategy. This perhaps is an unsurprising finding, as SS5-COMB utilises SS2-NT

as its frustration-based component.

Considering our time-based stopping strategies SS9-TIME and SS10-RELTIME , we find

that SS9-TIME consistently delivered the best performance across the four experimen-

tal conditions. This result is perhaps somewhat surprising and mirrors findings from Sec-

tion 7.3.2.1 on page 219. An adaptive approach such as SS10-RELTIME would intuitively

make more sense. Here, the searcher would then be able to adapt his or her stopping be-

haviour based upon the amount of relevant content found, rather than simply stopping

after 30 or 60 seconds have elapsed from the point at which they would have begun their

examination of results.

Considering our measure-based strategy SS12-RBP , the performance offered across the

four conditions is somewhat poorer than the other strategies. However, no significant dif-

ferences in performance were observed with this stopping strategy. Once notable trend

regarding the results for this strategy is the relatively shallow mean depth per query that
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simulated searchers reached, despite the close proximity of the patience parameter to 1.

For tasks employing system ND , results are particularly invariant – no obvious peak in

performance is observed.

The difference threshold stopping strategies SS6-DT and SS7-DKL yielded similar per-

formance when compared to SS12-RBP . However, simulated searchers subscribing to the

difference strategies both traversed result lists to greater depths on average. Performance

from these strategies perhaps was hindered by the querying strategy that we employed and

demonstrates that they are not particularly robust at dealing with poor quality queries.

The IFT-based stopping strategy SS8-IFT however consistently performed the worst over

all four experimental conditions. As can be observed from Figure 8.7, we can see that the

aforementioned gap between the two systems was not present, with all four tasks bunched

very closely together across the range of mean depths per query. Indeed, performance

across tasks utilising system D was significantly different from the best performing strat-

egy, SS5-COMB . CG reached 1.68 and 1.46 for tasks D AS and D AD respectively

at relatively low mean depths per query. This suggests that the strategy was stopping too

early, which may indicate an incorrectly set rate of gain. This, and other aspects of our

findings are discussed in Section 10.2, beginning on page 338.

8.3.2.2 Real-World Comparisons

We now turn out aĴention to an examination of our real-world searcher comparison runs.

These simulations provide a means for us to address HL-RQ3b , under the context of

varying task types and goals. As a reminder, we replayed all of the queries issued by the

real-world searchers, allowing us to make a direct comparison between simulated and real-

world click depths, indicative of a searcher’s stopping behaviours.

Figure 8.9 on page 297 provides a total of twelve plots, one per result summary level stop-

ping strategy. Within the plots are four lines, one representing the approximations offered
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by each of the four conditions for a given stopping strategy. Along the x axes is the mean

depth per query, with the y axes this time to denote the MSE of the real-world vs. simulated

click depths for the given stopping strategy and experimental condition combination.6 Each

point on the ploĴed lines represents a stopping threshold parameter configuration. The

closer the MSE tends to zero, the beĴer the approximation to actual searcher stopping be-

haviours. For reference, we also include four dashed vertical lines on each of the plots in Fig-

ure 8.9. These lines represent the mean click depths achieved by the real-world searchers,

over each experimental condition. The closer the lowest MSE was in a given simulation to

the corresponding real-world click depth, the beĴer the approximation. For example, the

last point for condition D AS under stopping strategy SS1-FIX lied very close to the

real-world click depth mean of 12.85, compared to the simulation result of 13.25. However,

under SS7-DKL , the same condition obtained a relatively shallower depth compared to

the mean of the corresponding real-world value. This results in a higher MSE.

From the plots in Figure 8.9, we can observe a number of notable trends. One of the first

points of note is the consistent ordering of the different conditions across the twelve stop-

ping strategies. Remembering that the lower the MSE value the beĴer the approximation

offered, we see that D AS consistently offers the best approximations, especially at lower

mean depths per query. This is then followed by ND AD , D AD and finally ND AS .

Note that unlike the results of the performance (what-if) simulations reported earlier in Sec-

tion 8.3.2.1, there is a distinct lack of separation between the two experimental systems

trialled – all four conditions are evenly spaced out. We also see smooth curves for stop-

ping strategies such as SS1-FIX , SS2-NT and SS5-COMB that offered good levels of

performance from simulations reported in Section 8.3.2.1. Conversely, strategies that per-

formed poorly also appear more diffuse with widely spaced plots, such as those shown by

SS7-DKL and SS8-IFT . These plots demonstrate that the approximations offered by the

stopping strategies are relatively poor related to the mean depths per query, reflecting the

presence of less exact approximations.

6Refer to Section 6.4.3.2 on page 182 for further information on how we computed the Mean Squared Error
(MSE).

296



8.3 Simulated Analysis

M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

150

100M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

550

500

350

250

150

100

450

M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

550

350

250

150

100

M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

550

500

400

350

300

250

150

100

200

450

M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

150

100M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

400

150

100

M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

150

100M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

150

100M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

550

500

400

350

300

250

150

100

200

450

M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

150

100M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)
Mean Depth per Query

50 10 15 20 25

150

100M
ea

n 
Sq

ua
re

d 
Er

ro
r 

(M
SE

)

Mean Depth per Query
50 10 15 20 25

400

150

100

Stopping Strategies and Conditions: Simulated vs. Real-World Comparisons

SS1-FIX SS2-NT SS3-NC

SS4-SAT SS5-COMB SS6-DT

SS7-DKL SS8-IFT SS9-TIME

SS10-RELTIME SS11-COMB SS12-RBP

AS

AS

AD

AD

D

ND

D

ND

RW SIM

Figure 8.9 Plots reporting the comparison runs, reporting the MSE vs. the mean depth per

query. Runs over each of the four experimental conditions are shown. Also included in the plots

are a series of dashed lines denoting the mean depth per query reached by the real-world subjects

of the user study — one for each experimental interface.

297



8.3 Simulated Analysis

Given these trends, what stopping strategies offer the best approximations of actual searcher

stopping behaviours? Table 8.13 presents for each stopping strategy (over each condi-

tion) the point on the corresponding plots in Figure 8.9 where the lowest MSE value is

aĴained (MSE), together with the values of stopping parameter threshold(s) (xn) used for

its calculation. Note that for condition D AS , generally lower MSE values are aĴained

than under other conditions. The table also highlights the stopping strategy that yielded

the lowest MSE for each condition. Interestingly, the baseline, fixed-depth stopping strat-

egy SS1-FIX offered the best approximations for conditions D AS and D AD , both

of which were using diversified system D . In comparison, conditions ND AS and

ND AD were both found to show SS10-RELTIME as the strategy that yielded the best

approximation to actual searcher stopping behaviour. Consistency is also observed across

the stopping parameter thresholds that yielded the lowest MSE – for SS1-FIX , a depth

of 24 is cited as yielding the best approximations, with the best approximations under

SS10-RELTIME yielded at 30 seconds after the last relevant document had been saved.

Given the fact that we observed consistent results across the systems trialled, we also de-

cided to examine whether a particular stopping strategy emerged as providing good ap-

proximations over all four experimental conditions when averaged together. Results from

this analysis are shown in the Average grouping in Table 8.13. Statistical tests comparing

the best approximating stopping strategy (again SS1-FIX @24 ) against the remaining

eleven stopping strategies yielded no statistically significant differences. Indeed, this was

true across all four experimental conditions when considered in isolation. This result high-

lights that all stopping strategies offered similar approximations. As in Chapter 7, no statis-

tical differences emerged when considering the average of the four experimental conditions.

Because of this, we do not explore this avenue any further.

Moving back to our per-condition examinations, Table 8.14 reports additional information

relating to the best approximation offered by each stopping strategy. We report for each

stopping strategy the: mean depth per query (DQ); the mean number of saved and TREC

relevant documents (or interactive precision, iP); and the mean AR, denoting the number
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Table 8.13 Results from the simulated comparison runs, showing the lowestMSE value reached

over each result summary level stopping strategy trialled. xn denotes the parameter threshold(s)

that the lowest MSE was reached with. Results are presented across the four experimental con-

ditions. For each condition, the stopping strategy that attained the lowest MSE is highlighted .

For the combination stopping strategies, two parameters are presented, with x2,x4 presented for

SS5-COMB and x10,x4 presented for SS11-COMB . Significance testing yielded no significant

differences between the stopping strategies at α=0.05.

D-AS ND-AS D-AD ND-AD Average

xn MSE xn MSE xn MSE xn MSE xn MSE

FI
X

SS1 24 90.27 24 287.50 24 169.62 21 168.39 24 179.03

FR
U
S SS2 18 98.49 18 303.84 21 175.76 18 175.39 21 190.83

SS3 9 123.04 9 354.20 10 244.59 8 207.71 8 247.90

SA
T

SS4 3 107.38 4 307.00 3 173.16 3 170.68 3 190.14

C
O
M

SS5 24,3 93.79 21,5 288.30 24,6 173.23 21,5 162.81 21,5 181.12

D
IF
F SS6 0.70 154.08 0.70 418.69 0.85 307.94 0.65 224.88 0.70 280.81

SS7 3.5 168.04 3.0 424.14 3.0 303.07 3.0 239.57 3.0 288.72

IF
T

SS8 0.002 120.96 0.004 312.39 0.002 258.71 0.004 215.60 0.004 252.71

TI
M
E SS9 90 105.68 90 300.81 90 171.19 90 170.88 90 187.14

SS10 30 120.43 30 282.86 30 174.96 30 162.19 30 185.11

C
O
M

SS11 30,5 117.50 30,7 360.06 30,5 206.59 30,5 187.68 30,5 218.25

R
B
P

SS12 0.99 118.09 0.99 330.16 0.99 255.20 0.99 188.53 0.99 222.99
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8.3 Simulated Analysis

of saved, TREC relevant documents containing at least one new entity. The values were

aĴained at the stopping threshold parameter(s) that yielded the lowest MSE, as reported

in Table 8.13. Also included in Table 8.14 are the mean values for each measure that were

aĴained by real-world subjects within the user study (represented by the RW) column, in-

cluded for direct comparison. We once again also highlight the stopping strategy for each

condition that yielded the lowest MSE values.

Results observed from Table 8.14 are largely as expected: stopping strategies that yielded

close approximations to actual mean searcher behaviours offered mean depths per query

that were similar to those of the real-world mean for the given condition. In contrast, we find

that stopping strategies offering approximations with higher MSE values such as SS6-DT ,

SS7-DKL and SS8-IFT do so at lower or higher mean depths per query, although these

differences are not statistically significant. Results from Table 8.14 also show that the sim-

ulated searchers on average saved fewer TREC relevant documents across all four experi-

mental conditions, and, as a consequence, identified fewer TREC relevant documents with

at least one new entity. For example, across conditions D AS , ND AS , D AD and

ND AD , real-world subjects saved 2.63, 2.18, 2.51 and 2.22 TREC relevant documents

respectively, on average. Across our fixed-depth baseline SS1-FIX , simulated searchers

saved 1.94, 1.96, 1.67 and 1.66 TREC relevant documents. These comparatively low val-

ues may be an artefact of how we instantiated the simulations of interaction. We leave this

discussion to Section 10.2.

With the comparatively low numbers of TREC relevant documents saved, this also cor-

responds to a relatively low level of CG when compared to the real-world means across

conditions. Figure 8.10 reports the mean levels of CG that were aĴained for each of the

stopping strategies, along with the mean real-world CG values for each experimental in-

terface. These values were again computed from the stopping threshold parameter(s) that

yielded the lowest MSE values, as reported in Table 8.13. Bar charts provide a visual rep-

resentation of CG aĴained by each stopping strategy for each experimental condition, with

the ranked values provided to the right of each chart. With real-world CG values of 4.09,
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8.3 Simulated Analysis

Table 8.14 Additional results from the searcher comparisons runs. We report the mean depth

per query (DQ), the mean interactive precision (iP) — and from that, the mean number of saved

documents that contain one or more new entities (AR). All values are reported at the configura-

tion yielding the lowest MSE (refer to Table 8.13), indicating the best approximation to real-world

stopping behaviours. We also include the mean real-world (RW) values over each condition for a

direct comparison. Note that stopping strategies offering the lowest MSE are highlighted — cell

colouring here does not denote the outcome of any significance testing.

D-AS ND-AS D-AD ND-AD

DQ iP AR DQ iP AR DQ iP AR DQ iP AR

RW 12.85 2.63 3.20 15.73 2.18 2.35 16.19 2.51 2.63 13.94 2.22 2.02

FI
X

SS1 13.25 1.94 1.50 16.79 1.96 1.44 13.40 1.67 1.42 12.89 1.66 1.26

FR
U
S SS2 11.01 2.04 1.58 15.15 1.91 1.43 13.15 1.75 1.48 13.34 1.77 1.33

SS3 9.16 1.91 1.47 18.22 2.33 1.59 9.97 1.75 1.43 11.80 1.73 1.25

SA
T

SS4 14.87 1.89 1.54 17.40 1.73 1.32 15.29 1.70 1.48 12.51 1.27 0.96

C
O
M

SS5 11.62 1.81 1.48 15.43 1.86 1.43 14.98 1.80 1.49 14.16 1.75 1.32

D
IF
F SS6 7.85 1.36 1.11 9.97 1.25 0.94 9.19 1.50 1.25 7.10 1.05 0.81

SS7 8.50 1.35 1.12 14.12 1.40 1.05 8.02 1.29 1.14 9.50 1.30 0.99

IF
T

SS8 16.35 1.16 0.83 11.21 1.04 0.74 20.76 1.16 0.86 7.66 0.95 0.71

TI
M
E SS9 13.96 1.92 1.49 15.66 1.76 1.33 15.15 1.71 1.46 13.55 1.49 1.12

SS10 15.42 2.07 1.63 15.69 1.68 1.25 13.72 1.83 1.55 15.05 1.50 1.13

C
O
M

SS11 12.54 1.75 1.44 12.81 1.48 1.14 10.14 1.58 1.37 11.71 1.35 1.03

R
B
P

SS12 7.36 1.54 1.30 9.54 1.29 1.00 7.61 1.39 1.25 8.61 1.19 0.92
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3.35, 4.12 and 3.49 aĴained for conditions D AS , ND AS , D AD and ND AD , we

can see that in all but condition ND AS , the real-world searchers on average outperform

all twelve stopping strategies. For condition ND AS , SS3-NC yielded a CG value of

3.55 compared to a real-world value of 3.35.

For conditions D AS and D AD , we find that stopping strategy SS10-RELTIME also

yielded the highest level of CG after the real-world means. This is in contrast to stopping

strategy SS1-FIX yielding the lowest MSE (approximating mean click depths). For con-

dition ND AD , frustration-based stopping strategy SS2-NT was the stopping strategy

offering the best CG (2.73), along with SS3-NC that offered the highest overall CG for con-

dition D AS , as previously mentioned. This means that instead of following their actual

behaviours, the real-world searchers would have on average aĴained a slightly higher level

of CG if they rigidly followed SS3-NC @9 . However, the difference is not significant.

Looking towards the lower end of the bar charts in Figure 8.10, we note that stopping strate-

gies SS6-DT , SS7-DKL , SS8-IFT and SS12-RBP frequently appear. In particular,

SS12-RBP consistently ranks last, with the lowest level of CG aĴained. For this stopping

strategy, we can see that the plot in Figure 8.9 demonstrates that it underestimates the stop-

ping depths, with searchers stopping at much lower mean depths per query. These values,

being much lower than the mean real-world equivalents, result in higher MSE values. Un-

derestimation can also be clearly seen for SS6-DT , with the lowest MSE values aĴained in

the range of 7.10 to 9.97 across the four experimental interfaces. The same can be observed

for SS7-DKL . Contrast this plot for example to that of SS4-SAT , with a smooth curve

and the lowest point of each line close to the real-world means.

8.4 Chapter Summary

In this chapter, we have examined how varying search task type, goals and systems affect

the behaviour, performance and user experience of searchers. This was conducted via a
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Figure 8.10 Bar charts, one per experimental condition, demonstrating the mean level of CG

attained by each result summary level stopping strategy. Ordered by CG, these values are reached

using the threshold configurations yielding the best approximations to actual searcher behaviour, as

shown in Table 8.13. Also included are the mean real-world searcher CG values for each interface.
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crowdsourced user study, as reported in Section 8.2. From this user study, we then sub-

sequently used interaction data to ground an extensive set of simulations of interaction,

reported in Section 8.3. These simulations were used to determine how each of the twelve

stopping strategies proposed in Chapter 5 performed and approximated the mean stop-

ping behaviours of searchers. In turn, these findings provide answers to our two high-level

research questions HL-RQ3a and HL-RQ3b , when tasks and goals were varied.

Considering the user study first, we trialled four different experimental conditions. These

were D AS (diversified system, aspectual task), ND AS (non-diversified system, as-

pectual task), D AD (diversified system, ad-hoc task) and ND AD (non-diversified

system, ad-hoc task). Under system ND , results were returned with the standard BM25

retrieval model (β = 0.75). For system D however, results were re-ranked according to a

diversification algorithm. This helped ensure that a more diverse set of results for the given

topic were returned. It used entities contained within each document to perform the re-

ranking. Considering tasks, searchers were either asked to save four relevant documents

(for task AD ), or save at least four relevant documents that contained at least one new

entity related to the topic being examined (for task AS ).

While significant differences existed between the performance of systems ND and D ,

no significant differences were observed when considering searcher behaviours, although

trends were observed. When using system D , subjects did offer improvements on aver-

age, saving more TREC relevant documents and TREC relevant documents with at least

one new entity. Evidence was also found to support our IFT-based hypotheses. However,

the lack of significant differences between the experimental conditions – and (perhaps) the

small sample size – may suggest that bigger differences may be required between systems.

Individuals may then be able to subjectively report on whether the two would yield differ-

ent levels of performance.

From the user study, we then took the interaction data to derive a series of interaction proba-

bilities and costs. In turn, these were used to ground an extensive set of simulations of inter-
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action. Split across performance (addressing HL-RQ3a ) and comparison runs (addressing

HL-RQ3b ), we examined each individual stopping strategy both in terms of overall perfor-

mance and how well they approximated actual searcher stopping behaviours. These were

run across each of the four experimental conditions. Findings for HL-RQ3a show that all

twelve stopping strategies offered reasonable levels of CG. We found that stopping strate-

gies SS1-FIX and SS5-COMB offered the best levels of CG (with SS1-FIX performing

best under condition ND AD ). Only stopping strategy SS8-IFT consistently yielded

significantly poorer levels of performance than the best performing strategies, perhaps due

to how the strategy was instantiated.

When considering HL-RQ3b , we found that under system D , SS1-FIX offered the best

approximations to searcher behaviours, with SS10-RELTIME providing the best approx-

imations for system ND . This is an interesting result – and perhaps can be aĴributed to

the fact that system D offered beĴer performance on average than system ND . Intu-

itively, the result makes sense. Given the higher levels of performance afforded by D ,

more relevant documents mean that following a fixed-depth approach on average would

most likely yield greater benefits. On the contrary, with the poorer performance offered by

ND , an adaptive approach would make more sense when fewer relevant documents were

presented. However, when comparing the simulation results to the real-world means, we

found that the simulated counterparts of the real-world subjects performed poorly across all

conditions, and may be utilising improved stopping criteria than the twelve operationalised

stopping strategies trialled. Further work will be required to examine this.

Along with results from Chapter 7, findings from this chapter will be discussed in detail in

Chapter 10. From an examination of our result summary level stopping strategies, we now

turn our aĴention towards our final contributory chapter. Here, we experiment with our

new stopping decision point – SERP level stopping.
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Chapter 9

Modelling SERP Level
Stopping Behaviours

In Chapters 7 and 8, we reported on two user studies that examined the effects of searcher

behaviour and performance under different search contexts. Interaction data from these

studies were then used to ground simulations of interaction that examined how each of

the twelve different stopping strategies performed and approximated real-world searcher

stopping behaviours. We now turn our aĴention towards providing a complete answer to

our first high-level research question, HL-RQ1 .

■ HL-RQ1 How can we improve searcher models to incorporate different stopping

decision points?

In order to address this research question, we presented in Chapter 4 the Complex Searcher

Model (CSM), a conceptual, high-level model of the search process. The CSM introduced

the SERP level stopping decision point, motivated by information scent. This new stopping

decision point allows a simulated searcher to abandon a SERP if a general overview of the

given SERP shows that the results did not appear to provide promising results. With the

definition of the CSM partially satisfying HL-RQ1 , in this we chapter provide the results

of an empirical study using the new stopping decision point.
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9.1Motivation and Research Questions

9.1 Motivation and Research Questions

We begin with the concept of SERP abandonment (discussed previously in Section 4.4.4 on

page 117), before considering how Information Foraging Theory (IFT) provides strong theo-

retical motivation. The concept behind the new SERP level stopping decision point revolves

around the notion of SERP abandonment, when a searcher fails to click on any of the results

returned for a given query (Diriye et al., 2012; Hassan and White, 2013). This may occur for

a variety of reasons, both good and bad. The primary motivator for this study considers the

notion of bad abandonment, where searchers abandon a SERP because they are dissatisfied

by the results returned (Hassan and White, 2013).

As we discussed in Section 3.3.1.1 on page 92, Pirolli and Card (1999) argue that information

seekers are like animals foraging in the wild, and as such will follow a scent to find food. As

discussed previously, information seekers have been shown to follow a series of proximal

cues provided by SERP components such as hypertext links, titles, snippets and thumbnails

to help locate relevant information (Pirolli and Card, 1995, 1999; Chi et al., 2001; Olston and

Chi, 2003; Pirolli, 2007). For example, Card et al. (2001) found that when navigating through

webpages, searchers were more likely to leave when the information scent provided on a

page began to decline. Work by Wu et al. (2014) discussed a user study where low, medium

and high scent SERPs were created by changing the number and distribution of relevant

items on the page – thus altering the proximal cues provided. Those interacting with high

scent SERPs examined more content and went to greater depths compared to those who

utilised low scent SERPs. Further work by Ong et al. (2017) – and indeed the user study

reported in Section 7.2 – all confirm that modifying the scent of a SERP does indeed alter a

searcher’s stopping behaviour.

For this chapter, we operationalise the information scent as the performance of a given SERP,

examining how the new SERP level stopping decision point within the searcher model – as
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Figure 9.1 The Complex Searcher Model (CSM), highlighting the stopping decision point (by an

asterisk*, with the SERP examination component also highlighted within the blue rectangle) that is

examined in detail in this chapter. Refer to Section 4.1 for an in-depth explanation of the model.

shown in Figure 9.11 – affects searcher, stopping and overall performance. This is achieved

by enumerating a series of different SERP level implementations, allowing us to opera-

tionalise the new stopping decision point in several ways. As such, we pose two key re-

search questions to be addressed in this chapter.

SERP-RQ1 Does the incorporation of a SERP level stopping decision point lead to

improved overall performance?

1Further information on the Complex Searcher Model (CSM) can be found in Chapter 4, starting on page 107.
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SERP-RQ2 Does the incorporation of a SERP level stopping decision point lead to

improved approximations of searcher stopping behaviour?

Taken together, the answers to these research questions will provide us with a complete

answer to high-level research question HL-RQ1 . This is in conjunction with the CSM

proposed in Chapter 4. In the next section, we outline the methodology undertaken to

address the aforementioned research questions.

9.2 Methodology

In order to address the two research questions posed above, we followed general method-

ology. This is detailed in Section 6.4 on page 157. A variety of different simulation com-

ponents that mapped to individual components of the CSM were left unchanged from the

general methodology. One can assume that all components are left unchanged, save for

changes to our experimental setup outlined here. The component of interest for the work

in this chapter is the SERP level stopping decision point.

In this section, we outline:

■ the different SERP level stopping decision point implementations that were trialled,

including the introduction of a new interaction probability concerning the likelihood

of examining a SERP (Section 9.2.1); leading onto

■ a discussion of the different interaction probabilities and costs that were used for this

study (Section 9.2.2);

■ an enumeration of the different result summary level stopping strategies trialled for

this study (Section 9.2.3); and

■ a summary of the other components of the CSM that departed from the general method-

ology (Section 9.2.4).
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9.2.1 SERP Decision Making

This section discusses the various ways in which we implemented this new stopping de-

cision point. As a searcher can only obtain an impression of the overall quality of a SERP

from what he or she can see at a glance, we begin this section with a discussion on the size

of the browser's viewport .

Considering Browser Viewport Size Real-world searchers are able to infer the quality (and

perhaps relevance) of a given page or SERP through the examination of various proximal

cues (Chi et al., 2001). Such cues are not considered in this work. Instead, we rely upon

more simplistic means to implement the stopping decision point. One aspect of a SERPs

presentation that we do consider in this chapter is the size of the browser’s viewport. A SERP

is typically larger than the viewport within which it is displayed, leading to the inclusion

of scrollbars. Results can only be seen above-the-fold, or what is visible within the viewport.

scotch whiskies - Search

scotch whiskies

Dalwhinnie Distillery | Dalwhinnie Malt Whisky | Malts
https://www.malts.com/distilleries/dalwhinnie/
Dalwhinnie Distillery stands in the Cairngorm National Park at the heart of the 
Scottish Highlands in the village of Dalwhinnie. Finest scotch whisky.

Laphroaig: Home
https://www.laphroaig.com/
Laphroaig Single Malt peated Whisky from Islay. The most richly flavoured 
scotch whisky in the World.

Scapa Whisky | Scapa The Orcadian
scapawhisky.com/
Scapa is an artisanal single malt whisky forged by the extreme elements of 
Orkney, Scotland.

Jura Whisky: Jura Single Malt Scotch Whisky
https://www.jurawhisky.com/
Learn more about what makes Jura Single Malt Scotch Whisky a long way from 
ordinary.

Bruichladdich - Single Malt Scotch Whisky
https://www.bruichladdich.com/
PROGRESSIVE HEBRIDEAN DISTILLERS of classic and peaty single malt 
scotish whisky, including the world's most heavily peated whisky, Octomore.

Figure 9.2 The SERP viewport threshold.

In this example, three result summaries are

visible, with two present but outwith the

viewport. Therefore, vsize=3.

We argue that a searcher can infer the quality of

the SERP from the initial view with which they

are presented, and thus incorporate a viewport

size (vsize) variable in our simulations of interac-

tion – a searcher can only judge what they can

see. This variable can vary between the different

interfaces we trialled. For example, longer snip-

pet text resulted in fewer result summaries being

displayed in the initial view. By using a fixed-

size popup window in the two user studies (as

discussed in Section 6.2.2), we were able to man-

ually check the number of result summaries dis-

played within the popup window, and use these

values to provide more extensive grounding to the new stopping decision point.
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For simulations of interaction reported in Chapter 7, different values of vsize could be used

over the four experimental interfaces trialled. This was because for each interface, result

summary lengths varied. As we tended from interface T0 (no snippet text) to T4 (four

snippet fragments), longer result summaries would impact upon the number of result sum-

maries visible in the initial view. Longer result summaries would mean that fewer would

be presented within a viewport of the same size, compared to shorter result summaries.

However, result summary lengths were not modified under the experimental conditions

trialled in Chapter 8. This means that vsize would (on average) remain constant, with fixed

popup window dimensions resulting in two lines of snippet text per result summary.

Definition: Low vs. High Scent Given a SERP, would it constitute as low scent or high scent?

For this chapter, we follow the work of Wu et al. (2014). In their study, the authors state

that a low scent SERP offers liĴle or no relevant content. Definitions by Wu et al. (2014)

and Hassan and White (2013) define a poor scented SERP as P@10 = 0.0. We take this defi-

nition to delineate between good and bad SERPs, and extend it by also considering vsize. This

leads to our definition of P@vsize = 0.0 for a poor quality SERP, meaning that a simulated

searcher would then gauge the quality of a SERP by examining the average number of re-

sult summaries displayed within a fictional browser viewport for the given experimental

interface or condition being trialled. The definition of low and high scented SERPs was also

used for SS11-COMB , as defined in Section 5.5 on page 131.

Probability of Examination For this new stopping decision point, we introduce the proba-

bility of examining a SERP, or P(E) . Given a SERP presented to a searcher, this probability

determines the likelihood that the searcher will enter the SERP (based upon its information

scent) and begin to examine result summaries in detail. Taking this concept further, we can

then consider two further probabilities of interaction that incorporate the notion of a SERPs

information scent, yielding:

■ P(E|HS) , the probability of examining a SERP perceived to give a high information

scent (i.e. a good quality SERP); and
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Compute Query Performance
Low Scent

P@v
size

 = 0.0
High Scent
P@v

size
 > 0.0

P(E|LS) = #SERPs w/click
#SERPs

P(E|HS) = #SERPs w/click
#SERPs

Figure 9.3 An illustration highlighting how the different SERP examination costs were com-

puted. As an example, low scented SERPs offering P@vsize = 0.0 are selected, with the calculation

for P(E|LS) then taking place. We consider both the probability of examining SERPs yielding both

high and low information scents. The definitions for low and high scented SERPs using vsize are

adapted from Wu et al. (2014) and Hassan and White (2013).

■ P(E|LS) , the probability of examining a SERP offering what appears to be a low

information scent (i.e. a poor quality SERP, or P@vsize = 0.0).

These values were computed from interaction log data, taken from the two user studies re-

ported in Chapters 7 and 8. Computed values derived are not reported in this section; refer

to Section 9.2.2 for the probabilities. Intuitively, one would expect a searcher demonstrating

competency at searching for information to know when a query is returning good results

and vice versa. As such, one would expect to see a higher probability for P(E|HS) than

when compared to P(E|LS), and would provide evidence that searchers do indeed aĴempt

to avoid low quality SERPs.

As illustrated in Figure 9.3, we took each query issued from the interaction log of each

user study, and extracted for each the P@vsize score (as per Wu et al. (2014)), considering

P@vsize = 0.0 as our criterion for a SERP of poor scent. For the interactions recorded on

each SERP, we could then count the number that recorded no clicks (meaning no result

summaries were deemed to be aĴractive enough to examine further). We considered this

as a definition of an abandoned SERP , as used in previous work by Hassan and White

(2013). From these counts, we could then compute the probabilities of examining a SERP,

as illustrated in Figure 9.3.
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9.2.1.1 Decision Point Implementations

We trialled three different implementations of the SERP level stopping decision point, pro-

viding us with the ability to explore the effect of incorporating it within the CSM. These are

enumerated below, with an explanation of each. The first can be considered our baseline

approach.

■ SERP Always Considered our baseline, a searcher subscribing to this implementa-

tion will always enter the SERP and examine at least one result summary – the exact

number would be determined by the result summary level stopping strategy. This is

the generally accepted approach as used in prior simulations of interaction. As such,

we consider this to be our baseline implementation. As a reminder, this implementa-

tion was used in the simulations reported in Chapters 7 and 8.

From here, the remaining two strategies begin to consider a simulated searcher’s judge-

ments regarding the perceived quality of a SERP, and thus begin to use the new stopping

decision point to abandon a SERP before examining individual result summaries in detail.

■ SERP Perfect Here, a simulated searcher will only begin to examine a SERP in de-

tail if P@vsize > 0 (considering the viewport size). If P@vsize = 0, the searcher will

abandon the SERP, and proceed to the next action as dictated by the CSM. This is the

upper bound in terms of performance for the stopping decision point, and is analo-

gous to, as an example, the ideal user of Hagen et al. (2016).

■ SERP Average This final implementation used a stochastic element to determine

whether the simulated searcher should enter the SERP or not. Like above, the view-

port size (P@vsize) of the SERP is computed. If the SERP is of high scent, P(E|HS) is

used to determinewhether the searcher should enter the SERP.Conversely, if the SERP

is considered to be of low scent, P(E|LS) is used instead to determine the likelihood
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of abandonment. We considered the probabilities of interaction for a given interface

or condition, taking the average.

Given the three implementations, one would intuitively expect SERP Perfect to yield

simulated searcher that aĴain the highest overall levels of CG. These searchers would not

waste time examining poor scented SERPs, and instead spend their time examining SERPs

that will return at least one relevant document. For the implementation that offers the best

approximations of real-world stopping behaviours however, SERP Perfect may not be

best. It depends how well real-world subjects were able to discern from good and poor

scented SERPs. It is more likely that SERP Average will provide the beĴer approxima-

tions of real-world behaviours.

By considering the three different approaches to implementing the new SERP level stop-

ping decision point, we can then clearly identify whether improved performance and im-

proved approximations of actual searcher stopping behaviours are offered. We also trialled

each of the stochastic SERP level stopping decision components a total of 10 times, comput-

ing the average over the different trials. Given that the decision maker components of the

SimIIR framework were run a total of 50 times each (responsible for determining the at-

tractiveness of result summaries and relevancy of documents), this made the addition of

a stochastic SERP level stopping decision point expensive in terms of the number of addi-

tional runs that were required.

9.2.2 Interfaces, Conditions, and Experimental Grounding

To determine whether the new SERP level stopping decision point implementations of-

fered improvements, we conducted a series of simulations across interfaces and conditions

trialled in the two user studies, reported earlier in Chapters 7 and 8.

From Chapter 7, the different experimental interfaces – whereby result summary lengths

were manipulated – were considered. Namely, these were T0 , T1 , T2 and T4 . From
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Table 9.1 Probabilities of examining high (P(E|HS)) and low scented SERPs (P(E|LS)), along

with vsize values for each of the experimental interfaces and conditions trialled in this chapter. Sta-

tistical tests between interfaces/conditions yielded no significant differences, at α=0.05. Probabil-

ities that are used in the experiments reported in this chapter are highlighted. Refer to Tables 7.6

(page 217) and 8.10 (page 283) for other interaction probabilities and costs for the studies re-

ported in Chapters 7 and 8.

T0 T1 T2 T4

C
ha
pt
er
7

P(E|HS) 0.76 0.79 0.78 0.78

P(E|LS) 0.27 0.40 0.31 0.40

vsize 10 9 7 6

D-AS ND-AS D-AD ND-AD

C
ha
pt
er
8

P(E|HS) 0.76 0.76 0.73 0.75

P(E|LS) 0.29 0.37 0.26 0.34

vsize 7 7 7 7

Chapter 8, we also considered the four experimental conditions that manipulated the un-

derlying system and searcher tasks: D AS , ND AS , D AD and ND AD .

From the interaction data of the two user study interaction logs, we could then compute the

probabilities of subjects examining low scented (P(E|LS)) and high scented (P(E|HS)) SERPs.

Values were computed as per the explanations provided in Section 9.2.1. The computed val-

ues are reported in Table 9.1, along with the corresponding vsize value for each interface or

condition, denoting the number of result summaries visible within a simulated viewport.

From examination of the table, we can see that the probabilities for both sets are very sim-

ilar across all interfaces and conditions. Indeed, a two-tailed Student’s t-test yielded no
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significant differences across the four interfaces or conditions where α = 0.05. Given the

close proximity of the probabilities (and the subsequent lack of differences that we would

likely observe), we simplified our experimentation. We chose to run experiments for one

interface and condition per study, selecting T2 and ND AD . These were selected as

they represent a standard search interface and task.

Values reported in Table 9.1 should be considered in tandem with the interaction costs and

probabilities reported in Tables 7.6 (page 217) and 8.10 (page 283). These tables report in-

teraction costs (such as querying and document examination costs) and other probabilities

(considering the probabilities of clicking on result summaries, P(C|R) and P(C|N) – and

saving documents, P(S|R) and P(S|N)).

9.2.3 Result Summary Level Stopping Strategies

Chapter 5 presented twelve different result summary level stopping strategies. To further

reduce the complexity of the experimentation reported in this chapter, we decided to reduce

the number of strategies that we considered. Doing so reduced the risk of potentially repeat-

ing the same results as shown before, while still demonstrating that when enabled, the SERP

level stopping decision point yielded improved performance (and closer approximations)

to actual searcher stopping behaviour – while still reporting over a range of configurations.

We only report the results of three result summary level stopping strategies in this chap-

ter. These were selected as they offered good performance and approximations of actual

searcher stopping behaviours in results presented in previous chapters. We used:

■ SS1-FIX , the fixed-depth baseline result summary level stopping strategy;

■ SS2-NT , the frustration stopping strategy, considering the total number of non-

relevant summaries encountered; and
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■ SS5-COMB , the combination stopping strategy combining frustration-based strat-

egy SS2-NT and satisfaction-based strategy SS4-SAT .

Definitions for each of these stopping strategies can be found in Chapter 5, starting on

page 121. Note that these strategies were instantiated with the same xn values (stopping

threshold values) reported in the general methodology in Section 6.4.2.6 (page 173).

9.2.4 Remaining CSM Components

The remaining CSM components were configured as presented in Section 6.4.3.1. For com-

parison runs, queries issued by real-world subjects under T2 and ND AD were again

replayed in the simulations, the process of which is outlined in Section 6.4.3.2 on page 182.

Specific implementation details for interface T2 were the same as described in Section 7.3.1

(page 216), with the methodology in Section 8.3.1 (page 281) followed for ND AD .

9.3 Results

We now report the results of our simulations of interaction, involving the new SERP level

stopping decision point. As in previous chapters, we discuss our findings over two subsec-

tions, considering:

■ performance runs (Section 9.3.1), where we discuss the highest levels of perfor-

mance aĴained by simulated searchers under different what-if scenarios; and

■ comparison runs (Section 9.3.2), where we provide results of the simulations that

were directly compared to actual mean searcher stopping behaviours.

Both of these runs provide answers for this chapter’s two research questions, SERP-RQ1

and SERP-RQ2 . Refer to Section 9.1 for information on the questions posed.
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Significance Testing While the difference between individual result summary level stop-

ping strategies is interesting, the main focus of the results reported in this chapter is the

difference in performance and approximations offered across individual SERP level deci-

sion point implementations. Statistical tests in this chapter are therefore performed across

different SERP level decision point implementations to determine if significant differences

exist between them. All tests reported in this chapter utilise the two-tailed Student’s t-test,

where α = 0.05. Unlike Sections 7.3 and 8.3, we this time examine results for significant

differences between the implementations.

9.3.1 Performance

Figure 9.4 presents six individual plots, each representing one of the three different result

summary level stopping strategies trialled (from SS1-FIX , SS2-NT and SS5-COMB ).

The three plots on the top correspond to results over interface T2 (Chapter 7), with the

boĴom three plots corresponding to condition ND AD (Chapter 8). Each plot repre-

sents the mean level of CG that is aĴained across the runs (represented on the y axes)

across varying mean depths per query (along the x axes). In each plot, we represent the

three individual SERP level stopping decision points, with our baseline SERP Always ,

SERP Average and SERP Perfect presented. This means that we can observe how

performance varies across different depths, over different result summary level stopping

strategies – and over a different interface/condition.

From an initial observation of the plots, we note a number of different (and consistently

occurring) trends. As with the plots in Figures 7.6 (page 222) and 8.7 (page 289), we observe

that at low mean depths per query, all three SERP level decision point implementations

offer similar levels of CG. CG then steadily rises up to a peak as the mean depth per query

increases. Once this peak has been reached, the performance then begins to slowly tail off,

or remain relatively invariant across greater mean depths per query. Of particular relevance

to SERP-RQ1 is the difference in CG aĴained by the three different SERP level stopping
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Figure 9.4 Plots demonstrating the varying levels of performance, measured in CG, over the

mean depth per query. Plots are for thewhat-if simulated performance runs. Each result summary

level stopping strategy is plotted separately, with the three different SERP level decision point

implementations shown. Plots on the top relate to interface T2 ; plots on the bottom relate to

condition ND AD .

decision point implementations. As previously mentioned, all three start from a similar

point at shallow depths per query, across all stopping strategies and the interface/condition.

However, as the mean depth per query increases, we observe that the performance across

the three different implementations begins to diverge from one another.

We consistently find that as the mean depth per query increases, the SERP Always (base-

line) implementation consistently offers the lowest levels of CG, and the SERP Perfect

implementation consistently offers higher levels of mean CG. This is an intuitive result;

avoiding SERPs that offer a poor scent means that you are likely to invest more time in is-

suing queries that offer beĴer results, thus identifying and saving more relevant documents.

This consistent improvement also provides evidence for addressing SERP-RQ1 – incorpo-
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rating a SERP level stopping decision point does indeed lead to higher overall performance.

The final implementation SERP Average presents further evidence to support this claim,

with performance generally performing beĴer than the baseline SERP Always imple-

mentation. However, it should be noted that there are certain points where SERP Always

does outperform SERP Average . For example, examining the plot in Figure 9.4 for inter-

face T2 over stopping strategy SS2-NT , one can see that SERP Always outperforms

SERP Average at a mean depth per query from around 6 to 8. This may be because that

a simulated searcher may decide to skip some queries judged to yield a poor scented SERP,

and would therefore have the time to issue more queries later on in the session. As we do not

consider previously examined content in the initial SERP judgement, a simulated searcher

may enter subsequent SERPs without any additional relevant content to mark, lowering

their overall mean CG. We discuss this potential limitation later in Chapter 10.

Given the evidence supporting SERP-RQ1 , we now turn our aĴention to the absolute best

performance that each of the stopping strategies yield, across each interface/condition and

over the three SERP level stopping decision point implementations. Table 9.2 provides these

values, with values for interface T2 reported first, and condition ND AD reported un-

derneath. For each stopping strategy and SERP level stopping decision point combination,

we report: the highest level of CG aĴained; the mean depth per query (DQ) that this was

aĴained at, and the stopping threshold(s) (xn) that were used. For combination stopping

strategy SS5-COMB , two stopping threshold values were used for x2 and x4. These are

presented in Table 9.2 in this order.

From Table 9.2, we find results that complement the findings observed in Figure 9.4. In

the table, we highlight the SERP level stopping decision point implementation and stop-

ping strategy combination yielding the highest level of mean CG. Unsurprisingly, these

are all obtained with the SERP Perfect SERP level stopping decision point implementa-

tion. Indeed, a general trend from the table can be observed – improvements in the high-

est levels of CG can be clearly seen as we tend from left to right, or SERP Always to
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Table 9.2 Results from the simulated what-if simulated performance runs, showing the high-

est levels of CG attained for result summary level stopping strategies SS1-FIX , SS2-NT and

SS5-COMB . These are reported over the SERP Always (baseline), SERP Average and

SERP Perfect SERP level stopping decision point implementations. xn denotes the stopping

parameter threshold(s), with DQ denoting the depth per query at which the greatest CG value

was attained at. Note that for combination strategy SS5-COMB , x2,x4 are shown as xn column.

Stopping strategy/SERP decision point implementation combinations that yield the highest CG val-

ues are highlighted .

Always Average Perfect

xn DQ CG xn DQ CG xn DQ CG

In
t.

T2

SS1-FIX 10 6.33 2.50 10 4.17 2.45 10 4.45 2.98

SS2-NT 7 6.16 2.49 21 10.77 2.58 8 5.07 3.11

SS5-COMB 8,4 6.17 2.52 21,9 10.54 2.59 8,7 5.04 3.14

C
dn
.

N
D

A
D SS1-FIX 10 6.47 1.81 10 3.93 1.82 10 4.69 2.30

SS2-NT 10 7.55 1.80 10 4.71 1.84 5 3.12 2.35

SS5-COMB 10,6 7.55 1.80 10,4 4.43 1.85 10,3 4.87 2.37

SERP Perfect . The biggest increase in maximum CG that can be observed from the ta-

ble is for SS5-COMB over interface T2 , with mean CG rising from 2.52 and a mean

depth per query of 6.17 to 3.14, at a mean depth per query of 5.04. Interestingly, the rises

in CG are more profound over T2 generally when compared to the results obtained over

condition ND AD .

Closer inspection of the values reported for the SERP Always SERP level stopping deci-

sion point implementation reported in Table 9.2 can also be undertaken. These values are

considered as our initial baseline, and are essentially the values aĴained by the simulated
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searchers when instructed to browse every resultant SERP. As such, this is the configuration

that is employed in the results of the simulations of interaction we presented in Chapters 7

and 8. Specifically, values of interface T2 reported in Table 7.8 on page 224 match those

reported in Table 9.2 above. Indeed, this is also confirmed for condition ND AD , with

results reported in Table 8.12 presented on page 292 again matching those in Table 9.2.

Considering the stopping threshold(s) and mean depths per query across the result sum-

mary level stopping strategies, we see that SS1-FIX @10 consistently offers the highest

mean CG, with a slight drop in the mean depth per query at which the highest CG score was

aĴained. Indeed, this trend can broadly be observed across the other two stopping strate-

gies, and over both interface T2 and condition ND AD . An exception to this trend is

observed over SS2-NT and SS5-COMB under the SERP Average SERP level stop-

ping decision point implementation. Greater stopping thresholds are observed for x2, with

a resultant greater mean depth per query (≈ 10.6 over interface T2 , compared to ≈ 6.16

over SERP Always ). Despite this, we see that a fixed depth approach holds up remark-

ably well, showing that when issuing a performant query, a fixed approach will offer good

returns. However, overall, we find that adaptive strategies SS2-NT and SS5-COMB

outperform SS1-FIX .

Evidence has thus far led to trends supporting SERP-RQ1 – the new SERP level stopping

decision point implementation does indeed yield improvements in performance. How-

ever, are the improvements offered by SERP Average and SERP Perfect significant

improvements over our baseline implementation, SERP Always ? As outlined at the start

of Section 9.3, we ran a series of two-tailed Student’s t-tests to determine whether this was

the case. Tests were run comparing the best performing implementation, SERP Perfect ,

against both SERP Average and SERP Always , over each of the result summary level

stopping strategies, as well as over interface T2 and ND AD .

Between SERP Perfect and SERP Always and SERP Perfect and SERP Average ,

significant differences considering the levels of CG were observed. This was true across

323



9.3 Results

all result summary level stopping strategies, over both T2 and ND AD . Considering

SS1-FIX over interface T2 , we observed the following:

■ SERP Perfect → SERP Average : SD = 2.43, t(2748) = 3.25, p = 0.001; and

■ SERP Perfect → SERP Always : SD = 2.46, t(498) = 2.19, p = 0.03.

We also ran comparisons between SERP Average and SERP Always , to determine

if a significant difference existed there. Unsurprisingly, no significant difference was ob-

served, with p = 0.78 reported over SS1-FIX and interface T2 . However, results clearly

demonstrate that the upper bound SERP Perfect implementation yields significant per-

formance improvements over the existing baseline approach, across all stopping strategies

and the interface/condition. This solidifies our supporting evidence for SERP-RQ1 .

9.3.2 Real-World Comparisons

From our what-if performance simulations, we now examine how closely each of the afore-

mentioned stopping strategies compares to actual searcher behaviours. Therefore, this sec-

tion provides an answer to SERP-RQ2 . As a reminder, these simulations replayed all of the

queries issued by real-world searchers, allowing us to compare real-world and simulated

click depths. In turn, we could then see if the inclusion of the SERP level stopping decision

point improved approximations.

Figure 9.5 presents six plots, one for each of the three result summary level stopping strate-

gies: SS1-FIX ; SS2-NT ; and SS5-COMB . These are duplicated over interface T2

and condition ND AD . Each of the plots illustrates the mean depth per query to which

searchers traversed result lists to (represented along the x axis). This is ploĴed against

the MSE2 of the real-world vs. simulated searcher click depths (thus considering stopping
2Refer to Section 6.4.3.2 on page 182 for further information on how we computed the Mean Squared Error

(MSE) for our comparisons.
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Figure 9.5 Plots reporting the comparison runs, reporting the MSE vs. the mean depth per

query. Runs over interface T2 (top) and condition ND AD (bottom) are shown, for the three

trialled result summary level stopping strategies. SERP level decision point implementations are also

shown. Also included are dashed lines denoting themean depth per query reached by the real-world

subjects of the corresponding user study. Note that the mean depth per query is limited from 5 to

20 to highlight what happens around the mean real-world click depths.

behaviours). Each point on the ploĴed lines represents how close the click depth approxi-

mation was on average for a given stopping threshold parameter configuration. The closer

the MSE value tends towards zero, the closer the simulated searcher’s approximation to

actual stopping behaviours. Each plot also presents one of the three trialled SERP level

stopping decision points, from SERP Always , SERP Average , and SERP Perfect .

The plots demonstrate how approximations from each of the implementations differ across

interfaces/conditions and result summary level stopping strategies. We also include the

mean real-world click depths for a straightforward visual comparison, represented as ver-

tical dashed lines. These differ between interface T2 and ND AD , as shown in Fig-
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Table 9.3 Results from the simulated comparison runs, showing the lowest MSE value reached

over each of the three result summary level stopping strategies trialled. These are reported over

the SERP Always (baseline), SERP Average and SERP Perfect SERP level stopping de-

cision point implementations. The stopping strategy yielding the lowest MSE for both T2 and

ND AD are highlighted . Note that for combination strategy SS5-COMB , x2,x4 are shown

as xn column.

Always Average Perfect

xn MSE xn MSE xn MSE

In
t.

T2

SS1-FIX 21 74.04 24 70.68 24 76.94

SS2-NT 15 77.76 21 72.12 18 82.06

SS5-COMB 21,6 72.81 21,10 70.23 21,7 77.89

C
dn
.

N
D

A
D SS1-FIX 21 168.39 24 176.98 24 164.97

SS2-NT 18 175.39 24 169.52 21 169.85

SS5-COMB 21,5 162.81 24,8 168.26 21,5 160.69

ures 7.8 (page 232) and 8.9 (page 297), respectively. Note also truncated x and y axes. As all

ploĴed lines were close together, we altered the axes to beĴer highlight the approximations

when the MSE values were at their lowest.

At a glance, the small difference between MSE values demonstrates that there is not much of

a difference between the three SERP level stopping decision point implementations. To aid

in the reporting of our results, we also include a table of MSE values. Table 9.3 reports the

lowest MSE values that were aĴained across each of the SERP level stopping decision point

implementations and stopping strategies, over T2 and ND AD . Along with the MSE

values are the stopping parameter threshold(s) that were used to aĴain the lowest MSE for

each combination. For combination stopping strategy SS5-COMB , we once again report
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x2 and x4 for the thresholds, in that order. We also highlight in the table the lowest MSE

values over the three SERP level stopping decision point implementations, considering each

result summary level stopping strategy in turn.

From Table 9.3, we note that over interface T2 , the SERP Average SERP level stop-

ping decision point consistently yielded the lowest MSE values over the three result sum-

mary level stopping strategies trialled. This is closely followed by our baseline approach,

SERP Always , with SERP Perfect consistently offering the poorest approximations

of mean real-world searcher approximations. This result is intuitive – real-world searchers

would have been unlikely to correctly judge the scent of a SERP with 100% accuracy, and

thus would mean that the upper bound SERP Perfect implementation would be fur-

thest from mean real-world stopping behaviours. In contrast, a stochastic approach offered

by SERP Average would intuitively yield beĴer approximations. Although real-world

searchers would not have rolled a die to determine whether a SERP is worth examining,

they would have had the flexibility to abandon SERPs that they felt did not offer a good

scent. This flexibility is provided to the SERP Average simulated searcher. An interest-

ing observation for interface T2 is the higher stopping parameter threshold(s) that were

found to offer the lowest MSE values. This demonstrates that the mean real-world searcher

stopping behaviours over this interface is that of a tolerant searcher, who is willing to ex-

amine results to greater depths on average, before deciding to stop.

The trends that we observe for interface T2 in Table 9.3 can also be demonstrated by close

examination of the corresponding (top) plots in Figure 9.5. Close examination shows that

across varying mean depths per query, the general trends observed from Table 9.3 hold

– SERP Perfect and SERP Always consistently offered poorer approximations than

SERP Average , which consistently offered the lowest MSE values.

Results over interface ND AD are different from those of interface T2 . Examining Ta-

ble 9.3, we observe that SERP Average yielded the best mean searcher stopping approx-

imation for SS2-NT @24 . Interestingly however, we find that the lowest MSE values
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Table 9.4 Additional results from the searcher comparison runs, reporting the mean depth per

query (DQ), the mean level of CG, and mean interactive precision (iP). These values were attained

using the configurations yielding the lowest MSE (refer to Table 9.3), indicating the best approx-

imation to real-world stopping behaviours. We also include the mean real-world searcher values

(RW) over T2 and ND AD for a direct comparison.

Always Average Perfect

DQ CG iP DQ CG iP DQ CG iP

In
te
rf
ac
e

T2

RW 14.39 2.36 2.47 14.39 2.36 2.47 14.39 2.36 2.47

SS1-FIX 14.67 2.14 1.41 12.35 1.82 1.17 13.68 2.16 1.41

SS2-NT 13.81 2.15 1.42 13.70 1.98 1.27 13.06 2.22 1.45

SS5-COMB 15.22 2.08 1.34 13.35 1.93 1.25 13.11 1.99 1.30

C
on
di
tio
n

N
D

A
D

RW 13.94 3.49 2.22 13.94 3.49 2.22 13.94 3.49 2.22

SS1-FIX 12.89 2.55 1.66 9.61 1.84 1.20 13.06 2.59 1.69

SS2-NT 13.34 2.73 1.77 11.33 2.12 1.38 13.35 2.78 1.84

SS5-COMB 14.16 2.69 1.75 11.14 2.05 1.34 11.94 2.53 1.66

for SS1-FIX @24 and SS5-COMB @21,5 were yielded by the SERP Perfect SERP

level stopping decision point implementation. This perhaps demonstrates that the change

in task goals (from time-limited for T2 to find x for ND AD ) influences the SERP level

decision making of real-world searchers on average. Results show that under SS1-FIX

and SS5-COMB , searchers under ND AD were beĴer able to discern between poor and

high quality SERPs. We provide a discussion into this result in Section 10.2.

Table 9.4 also provides additional information on the comparison runs. The table reports

the mean depth per query (DQ), CG and interactive precision (iP) aĴained across each of

the SERP level stopping decision point implementations and result summary level stopping

328



9.3 Results

strategies, again over interface T2 and condition ND AD . To allow for easy compar-

ison, we also include the real-world mean depth per query, CG and interactive precision

values (row RW) across the interface and condition examined.

Trends from Table 9.4 show that as we tend from SERP Always to SERP Average ,

we generally observed a drop in the CG aĴained by the simulated searchers. Over inter-

face T2 for example, CG for SS2-NT @15 dropped from 2.15 for SERP Always to

1.98 for SS2-NT @21 for SERP Average . Unsurprisingly, we observed that under

SERP Perfect , CG was generally higher than the other two SERP level stopping deci-

sion point implementations. Corresponding interactive precision rose and fell with the CG

aĴained – an intuitive result. As a reminder, results in Table 9.4 demonstrate the levels

of CG and interactive precision aĴained using the configurations that yielded the lowest

MSE values. These were computed with respect to click depths. As such, these values do

not correspond to the maximum level of performance that could be aĴained; rather, they

demonstrate the best performance that would have been aĴained by a searcher had a given

result summary level stopping strategy been rigidly followed. From the RW values for in-

terface T2 and ND AD , we see that the simulated searcher CG and interactive precision

values fall below the real-world equivalents.

To conclude our analysis of the comparison runs, we performed a series of statistical tests

to demonstrate if significant differences in terms of approximations existed. Like ourwhat-if

performance runs described in Section 9.3.2 above, we considered the best-performing SERP

level stopping decision point implementation and result summary level stopping strategy

combination, comparing the MSE values aĴained there against the other two SERP level de-

cision point implementations. Given the closeness of each of the SERP level decision point

implementations, no significant differences were found over any combination of result sum-

mary level stopping strategy, or interface/condition. Therefore, results show that there is

supporting evidence for SERP-RQ2 , albeit not statistically significant. Interesting find-

ings between interface T2 and ND AD will receive further discussion in Section 10.2.
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9.4 Chapter Summary

In this chapter, we conducted a series of simulations that empirically tested the CSM, com-

plete with the new SERP level stopping decision point (as discussed in Section 4.3.1 on

page 113). We observed improvements in:

■ SERP-RQ1 overall performance; and

■ SERP-RQ2 approximations to actual real-world searcher stopping behaviours.

Results were significantly improved in terms of overall CG aĴained between the upper-

bound SERP Perfect implementation (only examine a SERP if it appears to yield a high

scent), and the baseline SERP Always implementation (always examine a SERP, regard-

less of perceived quality). Improvements were consistent across our trialled interface and

condition, as well as across different result summary level stopping strategies. Our stochas-

tic implementation, SERP Always , consistently ranked between our baseline and upper-

bound implementation.

Results pertaining to SERP-RQ2 were however not significant, with our findings differ-

ing across interface T2 and condition ND AD . Over interface T2 , we found that

the SERP Average implementation consistently yielded the beĴer approximations over

SERP Perfect and SERP Always – an intuitive result. Differences, as previously men-

tioned, were however very slight and not statistically significant – MSE approximations

varied in the region of ten units. Over condition ND AD , we found that SERP Average

and SERP Perfect offered the best approximations – an interesting result. This suggests

that when task goals vary, a searcher’s behaviour with respect obtaining an initial impres-

sion of a SERP also varies.

Overall, we find that including the new SERP level stopping decision point ultimately leads

to beĴer performing and more realistic simulations of interaction.

330







Part IV

Conclusions

This final part of the thesis summarises the

findings from this research, provides a

discussion of our results, and explores a

number of potential areas for future work .





Chapter 10

Discussion and
Future Work

The final chapter of this thesis summarises and discusses the results reported. In particular,

we emphasise on the impact of our findings on IR and IIR research, discuss the limitations

of our work, and outline several potential future research directions.

10.1 Thesis Summary

In this thesis, we examined how stopping behaviours vary under different search contexts.

In particular, we conducted and reported on two user studies under the domain of news

search, examining how result summary lengths and a variation of search tasks, goals

and retrieval systems affected search behaviours. A total of eight different interfaces and

conditions were used to examine how behaviours vary – as summarised in Table 10.1.

From the first user study reported in Chapter 7, results showed that as result summary

lengths increased (from T0 → T4 ), searchers became more confident in the decisions

they took pertaining to the relevance of documents encountered. However, this was not

reflected empirically; their accuracy in identifying relevant content did not improve with
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Table 10.1 A summary table of the different experimental interfaces and conditions that were

trialled. These are based upon the work reported in Chapters 7 and 8. In total, eight differ-

ent experimental interfaces and conditioned were employed, considering different result summary

lengths, systems and tasks.

Summary Length System Task

C
ha
pt
er

7

T0 Title only ND (Non Div.) AD (Ad-hoc)

T1 Title + 1 snippet ND (Non Div.) AD (Ad-hoc)

T2 Title + 2 snippets ND (Non Div.) AD (Ad-hoc)

T4 Title + 4 snippets ND (Non Div.) AD (Ad-hoc)

C
ha
pt
er

8

D-AS Title + 2 snippets D (Div.) AS (Aspectual)

ND-AS Title + 2 snippets ND (Non Div.) AS (Aspectual)

D-AD Title + 2 snippets D (Div.) AD (Ad-hoc)

ND-AD Title + 2 snippets ND (Non Div.) AD (Ad-hoc)

longer summaries. In terms of stopping behaviours, a downward trend was observed. As

the length of summaries increased, subjects examined to shallower depths per query – an

intuitive result, given the increased examination times required for longer summaries.

Considering variations of tasks, goals and systems as reported in Chapter 8, we found that

when using diversified system D (i.e. BM25 and XQuAD (Santos et al., 2010)), subjects

issued more queries, and stopped at comparatively shallower depths per query. This was

in comparison to the non-diversified system ND (i.e. BM25 baseline), where subjects re-

ported feeling less confident about their decisions. Despite the significant differences we

observed regarding how the two systems performed, few significant differences were ob-

served when examining changes in searcher behaviours. Most subjects reported difficulty

in identifying differences in performance between the two systems.

336



10.1 Thesis Summary

Analysis of interaction data from these user studies was then used to ground an extensive

set of simulations of interaction. These simulations were designed to test a total of twelve in-

dividual stopping strategies, derived from six different stopping heuristics1 and the RBP IR

measure. Our approach to cataloguing these heuristics – together with the subsequent oper-

ationalisation of them into stopping strategies – provided an answer to HL-RQ2 . We then

tested the overall performance and how closely the simulations matched up to real-world

searcher behaviours (across the eight experimental interfaces and conditions). In turn, this

allowed us to provide answers to both HL-RQ3a and HL-RQ3b . The simulations were

modelled with the Complex Searcher Model (CSM), a high-level, conceptual model of the

search process. By incorporating a new SERP level stopping decision point into the CSM,

complete with subsequent empirical evaluation (as presented in Chapter 9), we could then

provide an answer to HL-RQ1 .

Results show that when enabled, the new SERP stopping decision point led to significant

improvements over the baseline implementation, with consistent improvements in over-

all performance (measured in CG) reported across a range of experimental conditions, in-

terfaces and stopping strategies. Improvements in approximations of real-world searcher

stopping behaviours were also achieved. However, statistical significance for these im-

provements was not obtained. Overall, these results provide compelling evidence to ad-

dress HL-RQ1 . The results also demonstrate a promising direction for future research in

developing our understanding of the search process.

With respect to our simulated analyses of individual stopping strategies, we found several

stopping strategies offered high levels of mean CG, and good approximations toward actual

searcher stopping behaviours. For example, we found that with increased result summary

length, SS11-COMB consistently offered the best performance. SS1-FIX and SS4-SAT

offered the best real-world searcher approximations. Furthermore, SS5-COMB offered

the best level of CG within the second user study, while SS1-FIX offered the best level

1Stopping heuristics for example considered a searcher’s tolerance to non-relevance, or their frustration
with observing non-relevant content (Kraft and Lee, 1979).
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of performance across condition ND AD . However, SS1-FIX and SS10-RELTIME

yielded the lowest MSE values. Despite several strategies performing well, no single strat-

egy clearly emerged as offering significantly improved levels of performance or approxima-

tions when acting alone. On the contrary, several more complex stopping strategies offered

poorer performance, such as SS6-DT and SS7-DKL . This was a common theme in our

results: simple and combination-based stopping strategies generally provided the highest

levels of performance. This includes the fixed-depth stopping strategy, SS1-FIX , which,

counter to our intuition, consistently performed well.

10.2 Discussion

From the analysis of our simulations of interaction, a number of novel, interesting areas

of discussion were revealed. In this section, we discuss our findings with an emphasis on

examining the result summary level stopping strategies. In particular, our discussion is

guided by our four high-level research questions. We repeat these below.

■ HL-RQ1 How can we improve searcher models to incorporate different stopping

decision points?

■ HL-RQ2 Given the stopping heuristics defined in the literature, how can we encode

these heuristics into a series of operationalised, programmable stopping strategies

that can be subsequently incorporated into the searcher model and be evaluated?

■ HL-RQ3a Given the aforementioned operationalised stopping strategies, how well

does each one perform?

■ HL-RQ3b How closely do the operationalised stopping strategies compare to the

actual stopping behaviours of real-world searchers?
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With these research questions pertaining to the simulations of interaction (along with the

implemented stopping strategies), in-depth discussion of our user studies can be found in

Sections 7.2.3 on page 214 and 8.2.3 on page 278. However, we do briefly touch on sum-

marising statements relating to searcher behaviours in Section 10.2.3.

10.2.1 Searcher Models and Realism

Work in this thesis has reported advancements to modelling the IIR process – particularly

with the inclusion of the new SERP level stopping decision point. The inclusion of the new

stopping decision point led to significant improvements in terms of the level of CG that

could be aĴained, together with improved approximations of real-world behaviours.

However, these significant improvements from the SERP Always baseline (as reported in

Chapter 9) were only achieved with the SERP Perfect implementation. This is a limita-

tion, as the implementation relied upon access to the TREC QRELs in order for the impres-

sion to be determined – although this implementation acted as a good upper bound. While

improvements in performance and approximations were noted with the SERP Average

implementation, these changes did not achieve a significant level of improved performance.

We discuss this limitation of our simulations later in Section 10.2.4.

Of course, aĴaining access to the gold standard is wholly unrealistic. However, the present

study demonstrates the maximum performance that can be reached with the inclusion of this

new stopping decision point. The observed improvements demonstrate that more realistic

simulations of interaction may be produced. With further work examining the proximal

cues that searchers observe when forming an initial impression of the SERP, incorporating

these findings into future models and simulations of the search process would arguably

make them even more realistic.
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10.2.2 Stopping Strategy Operationalisation

In general, findings across all interfaces and conditions demonstrated that simple stopping

strategies tended to yield beĴer performance, and matched beĴer with real-world searcher

stopping behaviours. Stopping strategies SS2-NT , SS3-NC , SS4-SAT , SS9-TIME

and SS10-RELTIME for example performed and approximated well. We consider these

to be simple in the sense that the stopping criterion that they each encoded was straight-

forward to implement and subsequently measure. Examples included the consideration of

aspects such as the number of non-relevant documents encountered, or the elapsed time

spent searching since a query was issued.

In contrast, findings also demonstrated that the more complex stopping strategies tended to

perform worse. They consistently offered poorer performance and approximations. Com-

plexity was again denoted by the criterion/criteria that were considered by each of the stop-

ping strategies, with more complex computations required in order to determine when

the simulated searcher should stop. Given these general findings, why did the more com-

plex stopping strategies perform and approximate worse on average? The present section of the

discussion focuses primarily on this question, considering the difference-based strategies

SS6-DT and SS7-DKL , the IFT-based strategy SS8-IFT , and the RBP-based strategy

SS12-RBP . We also discuss the importance of more performant stopping strategies, such

as SS5-COMB and SS11-COMB .

Difference Stopping Strategies Considering SS6-DT and SS7-DKL , we hypothesise

that the performance of issued queries may be having an effect on the way in which these

strategies perform. In other words, the stopping strategies may not be very robust to varying

levels of query performance. Recall that for our what-if performance runs, we employed

an interleaved querying strategy QS13 , where single and three term queries were in-

terleaved.2 From empirical evidence, it was shown that single term queries offered poor

2Refer to Section 6.4.2.2 on page 164 for additional information on how the querying strategy was imple-
mented.

340



10.2 Discussion

Query Performance over Interfaces
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Figure 10.1 Plot demonstrating the performance of queries (P@10) across the four experi-

mental interfaces trialled in the user study we report on in Chapter 7. On the right, a table high-

lights the varying levels of performance (averaged over all four experimental interfaces) in relation

to query term lengths. As query term length increases, so too does the mean P@10 score. Similar

findings were observed for the study reported in Chapter 8.

performance (in terms of P@k) when compared to three term queries – single term queries

offered higher levels of query ambiguity compared to the three term queries.3 As such,

using a fixed threshold across queries of varying performance would not necessarily make

sense. A low threshold for SS6-DT and SS7-DKL would mean that searchers would stop

too early for single term queries, and examine to excessive depths for three term queries. A

higher threshold would mean that searchers would examine to excessive depths generally.

This means for example that a low threshold would be too stringent for single term queries,

and suggests that poor levels of gain would be achieved.

As such, wehypothesise that for stopping strategies based upon thedifference-based heuris-

tic, thresholds should likely be query specific – perhaps dependent upon the length of the

query issued. Given queries issued by the real-world subjects in Chapter 7, we also ob-

served a large variation in performance for the queries that were issued. We report this in

Figure 10.1, with a plot showing the number of queries issued across each of the four in-

3For example, consider the queries `piracy' and `piracy china sea'. The first single term query
returned a majority of documents pertaining to software piracy, along with piracy at sea. In contrast, the
three term query returned a majority of its matched documents to instances of piracy on the South China Sea,
relevant to the TREC piracy topic.
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terfaces, ploĴed against the performance of the queries. A table also provides evidence to

support our hypothesis, showing that as the number of terms in the queries increased, so

too did the mean level of query performance. Similar findings were observed in the user

study reported in Chapter 8.

IFT Stopping Strategy Next, we consider the poor performance and approximations af-

forded by SS8-IFT . Evidence has shown that IFT has been proven to be good at predicting

search behaviours (Ong et al., 2017; Azzopardi et al., 2018). In Section 8.2.2.5 on page 274,

we demonstrated that our IFT-based hypotheses matched closely to empirical evidence. So,

why did SS8-IFT consistently offer poorer performance and approximations when com-

pared to more simplistic stopping strategies? We hypothesise that this comparative lack of

performance can be aĴributed to how the rate of gain was operationalised, which serves as

the stopping criterion for SS8-IFT . This is an inherently difficult value to compute, with

limitations relating to the rate of gain considered from two angles:

the per-topic rate of gain; and

how the rate of gain is estimated by searchers in the first instance.

Considering point first, we note that the same gain stopping threshold values (for x8)

were trialled over all five topics in the reported simulations of interaction. Table 6.1 on

page 140 demonstrated that the number of TREC relevant documents for each of the five

topics varies considerably. As such, one would expect that the computed rate of gain would

also vary considerably on a per-topic basis. This way, expectations of gain can be kept in

check – a rate of gain threshold computed over a performant TREC topic with many relevant

documents would perform much worse under a topic for which it is much harder to find

relevant documents for (i.e. a comparatively smaller number of TREC relevant documents).

This variation in the number of relevant documents over topics (amongst other factors, such

as the retrieval system used) is illustrated in Figure 10.2. Using interface T2 (left) and

condition ND AD (right) over SS3-NC , the two plots illustrate how performance varies
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Per-Topic Performance Differences: Considering SS3-NC
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Figure 10.2 Plots demonstrating the wide per-topic variance over the what-if performance

simulations. On the left, performance over interface T2 is shown — ND AD is shown on

the right. Stopping strategy SS3-NC is used for this demonstration. Similar observations were

observed across other interfaces, conditions and stopping strategies. Also highlighted on the

left plot is the number of TREC relevant documents for each topic. Note the general performance

improvement as the number of TREC relevant documents increases for a topic.

across the five topics. We also note a general trend of higher performance for a topic in the

plots if a greater number of TREC relevant documents are present.

We also consider how the rate of gain is computed, as per point . How do searchers estimate

a rate of gain threshold? This is a difficult question to answer, with further study required

to address this. However, one would be pressed to believe that from an initial impression

of a SERP, a searcher would undertake a series of computations in their head to reach an

estimation for a rate of gain threshold value. It is much easier to believe that searchers

would rather employ a simpler stopping criterion in this instance, such as stopping after

observing k non-relevant result summaries (i.e. the frustration-based heuristic). This can be

simplified with the trivial example of an individual throwing a ball in the air, as illustrated

in Figure 10.3. It would be easier to believe that the ball thrower would think of how to

catch the ball in relation to how it is falling through the air, with feedback from their visual
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Calculate the Equations? Use Feedback to Judge?

g=9.8m/s2
v=u+at

??
?

Figure 10.3 How would you catch a ball in the air? Would you consider all of the equations

required to work out when and where in space the ball will be for you to catch it, or would you rely

on your visual/proprioception systems to guide you? If you are human, it'll be the latter.

and proprioception systems. This is opposed to believing that the thrower of the ball may

catch it by calculating the equations relating to the physics of the falling ball to predict the

optimal point in space at which to intercept it.

However, even if we were able to provide beĴer values for the rate of gain, would we see

improvements in real-world approximations? While IFT says that we will, individuals may

be behaving in a suboptimal way. A body of literature in ecology suggests that when for-

aging for food in the wild, animals do behave in a suboptimal way. Janetos and Cole (1981)

and Krebs et al. (1983) state that animals may employ some rule of thumb that is less than

perfect, with an example cited as ‘take the largest thing you can eat’. This is some ways anal-

ogous to the more simplistic stopping strategies we trialled. Krebs et al. (1983) also argue

that these simplistic approaches are actually an optimisation within a wide number of con-

straints, such as sensory limitations. This may be true of searchers, too – with limited work-

ing memory, a more simplistic approach may, in reality, be the beĴer, optimal choice even

though the theory may suggest otherwise.

RBP Stopping Strategy We also observed that SS12-RBP , the RBP-based stopping strat-

egy, also generally failed to provide a good approximation. Performance in thewhat-if sim-

ulations was generally significantly different from the best performing stopping strategies,
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although instances such as T2 did not demonstrate any significant difference. While

performance matchups might have been relatively good, the depths to which simulated

searchers examined content using this stopping strategy were weak to a considerable de-

gree. Refer to plot SS12-RBP in Figure 7.8 on page 232 for an example. Recall the patience

parameter p of RBP, that dictated how deep down a list of ranked results a searcher would

be prepared to go. The point at which the searcher would decide to stop was modelled

stochastically. In the real-world, searchers do not roll a dice to determine when to stop,

but rather rely upon some form of an intuitive informational cue, as have been previously

shown to affect search behaviours. However, it may also be the case that this way of repre-

senting human behaviour is also correct at times – humans can often behave irrationally.

Considering more Performant Stopping Strategies Both the combination-based stopping

strategies SS5-COMB and SS11-COMB performed and approximated searcher stop-

ping behaviours well. Formed of more simplistic stopping strategies (e.g. SS2-NT ), re-

sults seem to suggest that searchers do not consider a single criterion when determining the

point at which they should stop examining results – an interesting finding.

This interesting conclusion can be corroborated by other recent studies. Work by Zhang

et al. (2017a) used the Bejeweled Player Model (BPM) to model a searcher’s stopping be-

haviours, where they would stop when:

“he/she either has found sufficient useful information, or no more patience to continue.”

Zhang et al. (2017a)

Findings from this study demonstrated improvements in the correlations between searcher

satisfaction and existing IR evaluation measures. This was also corroborated in a recent

study by Azzopardi et al. (2018). Central to this argument is the similarity of the BPM to

SS5-COMB , that considered a combination of the satiation ( SS4-SAT ) and frustration

( SS2-NT or SS3-NC ) stopping strategies. This provides evidence that empirically val-

idates the inclusion of both satiation and frustration-based stopping heuristics within the

345



10.2 Discussion

searcher model. The evidence is clearly showing that multiple criteria are being considered

when a stopping point is decided, and future work should consider the development of

measures that support both criteria.

The Fixed Depth Fallacy Overall, a majority of stopping strategies performed well and

produced approximations that were very close to one another, with few significant dif-

ferences. One particularly surprising result was that of SS1-FIX . The fixed-depth, non-

adaptive baseline approach consistently offered good performance and approximations.

This is counter-intuitive, as it would make sense for more adaptive strategies to offer im-

proved approximations. It is likely that different subjects would have employed different

stopping strategies, or a variety of different strategies depending upon the situation (i.e.

as demonstrated by SS11-COMB ). In this regard, next steps should consider stopping

behaviours on an individual level. However, from the perspective of averaging over a pop-

ulation, many of the stopping strategies trialled, and when tuned appropriately (i.e. would

SS1-FIX @24 really be considered as realistic? It is unlikely!), offer good approxima-

tions and performance. This provides a rationale as to how the fixed depth strategies con-

sistently performed and approximated so well across our results.

10.2.3 Searcher Behaviours

From the reported user studies, it is clear that the interfaces and conditions that we trialled

do affect the behaviours of searchers. In terms of stopping behaviours, we did observe

differences, but differences often were not significant. We hypothesise that due to the high

levels of variance that we observed, larger sample sizes over each study would be required

in order to tease out significant differences and to provide data for further examination.

Understanding stopping behaviours is difficult. What findings from our studies do sug-

gest is that variations in interfaces, tasks, goals and systems do impact upon performance.

For example, as we increased result summary lengths, stopping depths became shallower
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(i.e. from T0 → T4 ). More extreme interfaces and conditions would likely amplify the

effect. Factors such as how the prior topic knowledge that a subject possesses were also not

considered, and would likely play a role in stopping behaviours.

10.2.4 Simulations of Interaction

In this thesis, we have presented significant advancements in terms of modelling and under-

standing the IIR process. We developed an extensive framework that allowed us to change

components of the underlying CSM. Given this framework, we could then formulate the

search problem more precisely, and explore the impact that each of the component vari-

ations had on the wider search process. As components were changed, we were able to

demonstrate improvements in the approximations of human searcher behaviours. Given

the limitations of our user studies with the risk of an insufficient amount of interaction data,

simulations of interaction allowed us to generate more data at a much lower cost.

One particularly novel contribution concerning the simulations of interaction was address-

ing the issue of comparing results across different configurations. Being stochastic in na-

ture, the simulations relied upon the roll of a dice to determine whether a simulated searcher

would click on a result summary link (if deemed sufficiently aĴractive to warrant further

examination), or save a document as relevant (if deemed relevant to the given information

need). These were grounded on the TREC relevance judgements and interaction probabili-

ties extracted from the user studies. Across different configurations however, outcomes of

the dice roll would have resulted in different decisions being taken – which in turn ensured

that when examining two configurations, their outcomes would not be comparable.

Section 6.4.2.3 on page 167 outlined a pre-rolled judgements technique that rolled the dice

a priori 50 times, with 50 being the number of trials that were run per configuration. This

then meant that during the simulations, the decision maker components of the SimIIR frame-

work essentially became deterministic, extracting the judgement for a particular trial from
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a pre-rolled action judgement file. In turn, this addressed the issue of comparability between

different configurations. With the same judgements, comparisons became fairer. Of course,

a larger number of trials would always be more desirable as a means of teasing out further

differences that perhaps would otherwise not have been observed.

We also note limitations of the approach taken in conducting our simulations of interac-

tion. Most notably, we considered the most optimistic outcome at several points in our simu-

lations, mainly pertaining to the perceived quality of a SERP. A prime example of this was

highlighted in Section 10.2.1, with the SERP Perfect SERP level stopping decision point

implementation highlighted as the implementation yielding significant improvements in

performance, yet aĴaining this with access to TREC QREL judgements.

A further example of this approach was demonstrated with combination stopping strat-

egy SS11-COMB . Similar to the SERP level stopping decision point, this strategy took

an initial impression of a presented SERP, and used this impression to select an appro-

priate constituent stopping strategy – with either SS4-SAT for a SERP yielding relevant

documents early in the rankings, or SS10-RELTIME for a SERP of dubious quality. Un-

der these conditions, such strategies do intuitively make sense. However, the decision was

again made with access to TREC QRELs – P@1 was used to determine if the SERP yielded

relevant content at shallow ranks. If, for example, a stochastic approach were to be imple-

mented in determining what stopping strategy to employ, it may mean that even beĴer

approximations of real-world searcher behaviours could be achieved.

10.3 Future Research Directions

From the summary and discussion of our empirical results, a number of potential avenues

for future work may be considered. In this section, we consider: how to improve the realism

of simulations of interaction further; stopping heuristics and strategies; simulation trials

and topics; and the modelling of stopping from the level of individual searchers.
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10.3.1 Improving Simulation Realism

In this thesis, we presented the CSM, a high-level, conceptual searcher model. It encapsu-

lates many of the different activities and decision points that searchers would contend with

across informational search tasks. With the inclusion of the new SERP level stopping deci-

sion point, improvements were made to the realism of the simulations that were executed

with the CSM. However, what changes could we subsequently make to the CSM and related in-

frastructure in future work that would aid in advancing the realism of these simulations further?

As illustrated below, we consider this open question from three main research strands.

Conceptual Modelling

Contextual and Cognitive

Stochastic to Deterministic

University of Glasgow

https://www.gla.ac.uk/

The University of Glasgow is...

P(C|R)

P(C|N)

Choice

Stopping Decision Points

Tool Switching
Results Pagination

Stopping Strategy SelectionCognitive

DAVIDis calling...

Contextual

Contextual and Cognitive Our first strand considers contextual and cognitive factors. All

experimentation in this thesis was conducted under the domain of news search, with sub-

jects of the user studies asked to imagine that they were newspaper reporters, having being

given a task to find documents that they thought were relevant to a particular topic. How-

ever, this scenario is very specific. If we performed studies with the same methodology, but

under a different search context, would we find similar results? Arguably, behaviours will

change – general web search and a detailed examination of content under the context we

employed will result in different outcomes, for example. Different tasks can also be con-

sidered. Aspectual and ad-hoc tasks were considered as we believed they would offer the

greatest difference in terms of stopping behaviours. Would other retrieval tasks offer even

bigger differences in terms of searcher behaviours?

Other factors such as the location at which the search is undertaken, the device upon which

the search is undertaken and other external pressures will also undoubtedly influence the
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outcome of the results obtained. Crowdsourced subjects whose behaviours are reported

in this thesis conducted our experiments on a desktop or laptop computer. They were in-

structed to be in a comfortable, quiet location, free from major distractions. In reality, indi-

viduals are less likely to search in such conditions. Perhaps time pressures would influence

their behaviours – a student under pressure to finish a draft of her paper will behave differ-

ently to one who is not under the same pressure. With the proliferation of mobile devices

such as smartphones, searching on such devices must also be considered. A recent study

by Ong et al. (2017) demonstrated that search behaviours, for example, do differ between

individuals using desktop computers and smartphones.

Much work remains to determine how we can try to understand and subsequently model

the cognitive processes and factors that influence how individuals behave when searching.

Individuals are products of their prior experiences, and are therefore unique; behaviours

will undoubtedly differ from person to person. Within the modelling process, novel tech-

niques can be applied that could possibly improve the realism of simulations. For example,

within the SimIIR framework, the search context component tracks a list of queries issued,

documents examined (and saved), along with other measures. Could this component be

manipulated in such a way as to beĴer mimic the behaviours of a human? Rather than

maintaining a perfect list of everything that has been examined, a simulated searcher could

be programmed to become ‘forgetful’ in remembering what they have examined, with cues

within a document reminding them that they previously examined it. Other factors, such

as prior topic knowledge (as alluded to in Section 10.2.3) ought to be considered, as such

aspects would likely impact upon the stopping behaviours of searchers.

As alluded to in Chapter 8, further work could also be undertaken in relation to the decision

making components of the SimIIR framework. This work would consider how simulated

searchers would judge the aĴractiveness of result summaries and relevance of documents

to a given topic. Decision makers were implemented primarily with ad-hoc retrieval in

mind, considering only the probability of clicking or saving with respect to the TRECQuery

Relevance Judgement (QREL) judgement. For aspectual retrieval tasks, further work would
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consider whether the result summary or document contains a discussion of new entities for

the topic, such as a previously unseen species of animal.

Conceptual Modelling We next consider a number of further enhancements to the CSM

that could improve the realism of simulations further. Examples in the illustration above

consider potential areas for future improvement. One such example, tool switching, (demon-

strated by Thomas et al. (2014)) would be considered at the beginning of the search process.

It would enable a searcher to determine what tool (or retrieval system) would be beĴer

suited to help them satisfy their information need. This is opposed to the current CSM as

presented in this thesis that assumes a retrieval system has been selected a priori. A study

by White and Dumais (2009) has shown that predicting tool switching is feasible. They

reported that sufficiently consistent behaviours exhibited by searchers in relation to this

phenomenon led to accurate predictions of tool switching events.

Results pagination is also listed in the illustration above. Here, a simulated searcher will be

presented with SERPs that are split across a number of different pages, rather than exam-

ining a continuous ranked list of results. This would involve the notion of extracting ad-

ditional grounding data from interaction logs, perhaps such as the likelihood of a searcher

continuing to the next SERP page. This would likely impact upon the realism of simula-

tions, as a study by Jansen and Spink (2005) showed a sharp decrease in content examined

after the first page of results. Further examination of modelling stopping behaviours within

the CSM is also considered; refer to Section 10.3.2 for further details.

Stochastic to Deterministic Decisions pertaining to the aĴractiveness of result summaries

and the relevance of documents within our simulations of interaction were determined

stochastically, or by a roll of the dice. While a simplifying assumption that has been used

in many other studies employing simulations of interaction, this is an unrealistic approach.

If implemented correctly, a more deterministic solution would offer more realistic simula-

tions, where simulated searchers would be able to learn as they traverse through content,

improving their decision making abilities based upon the content observed, rather than the
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outcome of a roll of a dice. Advancements in understanding the information triage process

would undoubtedly lead to improved realism. In addition, the inclusion of variable interac-

tion costs would also benefit the realism of future simulations.4

10.3.2 Stopping Heuristics and Strategies

In this thesis, we considered a total of twelve different stopping strategies, operationalised

from a total of seven different stopping heuristics. We showed how each of the different

strategies perform over a number of different experimental interfaces and conditions. Dur-

ing the methodological design stage, it became apparent that approaches taken for the op-

erationalisation of our stopping strategies were just one of many. What if we implemented

our stopping strategies in different ways? Why did we select these strategies? Here, we consider

these questions with insight into what might happen if they were to be addressed.

Stopping Decision Points Following on with the theme of improving the underlying CSM,

additional stopping decision points could be included. These would provide searchers sub-

scribing to the CSM with greater flexibility regarding when they stop examining content.

Additional stopping decision points could, for example, include one for tool switching. In

this example, as we discussed earlier, a searcher, after spending some period of time on one

retrieval system, could decide to stop using it after certain criteria are met. After this point

has been reached, they will then switch to a different retrieval system. A further interesting

research question would be whether the result summary level stopping strategies trialled

in this thesis would work at different stopping decision points. For example, at a session

level, would these strategies make sense? Would using them at that decision point lead to

a beĴer matchup with real-world stopping behaviours?

Stopping Strategy Selection From here, we can also consider a further decision point

that could be encoded within the CSM. Inspired by SS11-COMB , consideration must be

4As discussed previously in this thesis, time-biased gain (Smucker and Clarke, 2012) is an example of such
an approach.
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taken into deciding why and when a particular stopping strategy could be employed. As

we demonstrated in Figure 5.3 on page 132, SS11-COMB employs both the frustration

and give-up time-based stopping heuristics – but not at the same time. Rather, a decision

is made pertaining to the quality of the presented SERP (much like the SERP level stop-

ping decision point). The outcome of this decision then dictates what stopping strategy is

employed for the remainder of the query. Further refinements to this approach could, for

example, include additional stopping strategies and a wider range of conditions for em-

ploying them. Empirical evidence could be extracted from interaction logs to determine if,

under certain circumstances, searchers would favour one approach over another.

Stopping Strategy Operationalisation An open question arising from the work in this the-

sis considers: how do you operationalise the stopping heuristics? Clearly, from the outline of the

twelve stopping strategies in Chapter 5 on page 121 (and implementation methodology in

Section 6.4.2.6 on page 173), there are a large number of different ways in which the stop-

ping strategies can be implemented. While we provided a means and justification for the

approaches that we took in this thesis, we have reason to believe that some of the stopping

strategies – especially SS6-DT , SS7-DKL and SS8-IFT – performed poorly, perhaps

because of our implementations (refer to Section 10.2.2). For example, the rate of gain for

SS8-IFT could have been computed on a per topic basis. Further work will be required in

order to determine if different implementations would lead to performance improvements.

Considering Additional Stopping Heuristics Of course, the seven stopping heuristics that

we considered do not constitute the entirety of the heuristics defined in the literature. We

selected these heuristics as they offered interesting differences between one another, were

relatively straightforward to implement, and would likely be discernible across complex

informational search tasks (though this was not necessarily proved). Unused heuristics

such as the mental list heuristic (considering different criteria that must be met, as outlined

by Nickles (1995) and detailed in Section 3.2.2.3 on page 87) would have been much more

challenging to operationalise and implement – and even so, would such a heuristic be suit-

able for the task at hand? The ability for a searcher to create a series of bullet points about a
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topic would imply he or she has some sound idea of their objective. The searcher’s knowl-

edge of a topic may be so limited that such a heuristic would be unsuitable. Linking back

to contextual factors above, considering additional search contexts (perhaps with searchers

of astute and limited knowledge of a topic) would be interesting to examine.

Towards Future IR Measures Given the above, findings from this research provide motiva-

tion for further work considering the inclusion of stopping heuristics within the measures

that are used within IR research. For example, stopping strategy SS5-COMB demon-

strated good overall and performance considering a searcher’s satisfaction and tolerance

toward non-relevant material. This has also been shown in the BPM (Zhang et al., 2017a).

10.3.3 Simulation Trials and Topics

We also consider future work in terms of how the simulations of interaction could be run.

While 50 trials were selected because of the fact that approximately 50 subjects partook in

each user study, there are likely trends and significant differences that exist that we simply

did not observe because of a lack of experimental power. This limitation was also imposed

with an insufficient amount of processing power to complete the experiments in a reason-

able timeframe.5 With more powerful computer hardware, scaling up the experiments with

more trials would have become a more realistic prospect.

We also consider using five topics for our performance (what-if) experiments to be a limiting

factor. While the decision to use five topics was justified due to a lack of data (considering

entities across the remaining 45 topics in Chapter 8) – and to ensure that comparisons be-

tween interfaces and conditions were fair – 50 topics would have been preferred (refer to

Figure 10.2). If (aspectual) data were available for the remaining 45 topics, we could then

trial additional performance runs, which may also lead to the observation of other trends

and potential significant differences.

5Using the experimental setup detailed in this thesis, all simulations of interaction took approximately 38
days of processing time.
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10.3.4 Individual Searcher Stopping Behaviours

Our final consideration for future work revolves around the notion of individual searcher

stopping behaviours. In this thesis, we considered searcher stopping behaviours, reported

across ≈ 50 subjects, over each interface and condition that was trialled. This provided us

with a rough approximation as to what strategies work best, with similar findings reported

across interfaces and conditions. However, research has shown that individual searcher

behaviours may differ to a significant degree. If we considered individual searchers, what

trends would we then observe? We may see a decrease in how well the fixed depth stopping

strategy SS1-FIX fares, given that we hypothesised in Section 5.1 on page 123 that such

an approach would work well on average. If we examined behaviours on a per-searcher

basis (or even at a session level), how would the strategy then fare?

Examining behaviours on a per-searcher level will avoid watering down results through av-

eraging over a particular cohort, exposing more interesting results. For example, could we

perform a classification of searcher stopping behaviours? Such an approach was followed,

for example, by Smucker (2011), who devised a classification of searchers when examining

documents – with searchers being categorised into one of either fast and liberal or slow and

neutral. This is undoubtedly one key area of future work that we must consider in order to

develop a deeper understanding of the stopping behaviours that searchers employ.

10.4 Final Remarks

Stopping during the search process is a difficult phenomenon to understand and model

effectively. A wide range of different factors influence the internal decision-making process

of searchers. We have shown in this thesis that a number of simple stopping strategies can

offer improved performance and approximations of real-world searcher behaviours. We

also provide novel evidence to motivate the fact that multiple stopping criteria need to be
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considered in the development of future IR evaluation measures, along with the inclusion of

additional stopping decision points to improve the realism of future searcher models. The

development of the CSM has also been positive, with a solid baseline provided for future

work in developing ever more realistic simulations of interaction.

Despite the inherently difficult task that understanding and modelling stopping behaviours

represent, we believe that the potential benefits of further exploration in this area will un-

doubtedly aid the searchers and researchers of future retrieval systems.
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