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Summary 
Managing resources is one of the most important tasks an operating system has to perform. 

Managing resources involves policy decisions, such as how much of a resource should be allo- 

cated to competing resource consumers, and mechanisms, such as how to multiplex competing 

consumers. Traditionally, resource management policies are implemented by centralised entities, 

either individually per resource, by a scheduling algorithm or, at a higher level, using resource 

or Quality of Service (QoS) managers. Resources are "magically" allocated to consumers with 
little or no involvement of the consumers of the resources. Often, resources are virtualised to 

give competing consumers the impression of being the only consumer of that resource. 
This dissertation explores operating system mechanisms to allow resource-aware applications 

to be involved in the process of managing resources under the premise that these applications (1) 

potentially have some (implicit) notion of their future resource demands and (2) can adapt their 

resource demands. The general idea is to provide feedback to resource-aware applications so that 

they can proactively participate in the management of resources. This approach has the benefit 

that resource management policies can be removed from central entities and the operating system 
has only to provide mechanism. Furthermore, in contrast to centralised approaches, application 

specific features can be more easily exploited. 
To achieve this aim, I propose to deploy a microeconomic theory, namely congestion or 

shadow pricing, which has recently received attention for managing congestion in communica- 

tion networks. Applications are charged based on the potential "damage" they cause to other 

consumers by using resources. Consumers interpret these congestion charges as feedback sig- 

nals which they use to adjust their resource consumption. It can be shown theoretically that 

such a system with consumers merely acting in their own self-interest will converge to a social 

optimum. 
This dissertation focuses on the operating system mechanisms required to decentralise re- 

source management this way. In particular it identifies four mechanisms: pricing & charging, 
credit accounting, resource usage accounting, and multiplexing. While the latter two are mech- 
anisms generally required for the accurate management of resources, pricing & charging and 
credit accounting present novel mechanisms. It is argued that congestion prices are the correct 
economic model in this context and provide appropriate feedback to applications. The credit 
accounting mechanism is necessary to ensure the overall stability of the system by assigning value 
to credits. 

With two prototype implementations it is demonstrated that these mechanisms can be easily 
implemented and that the decentralised resource management yields the desired results, namely, 
achieving a socially optimal resource allocation. 
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Chapter 1 
Introduction 

Managing resources is one of the main services provided by operating systems. An operating 
system has to allocate resources such as CPU, physical and virtual memory, disk and network 
bandwidth, between a number of competing tasks with different and variable resource demands 

of varying importance. Resource management can be divided into two main tasks: deciding 

how many resources should be allocated to competing consumers and the actual multiplexing 

of those resources. The former is referred to as policy and the latter as mechanism. Policies are 

typically centralised within a single entity, often for each resource individually, and aim to satisfy 
both the user's preferences and the application's resource requirements. 

Resource management is either performed at a low-level within the operating system in the 
form of scheduling algorithms or at a higher level in the form of Quality of Service (QoS) 

managers. Scheduling algorithms only deal with individual resources, and, in general purpose 

operating systems, often implement mechanisms and policies. They often only provide crude 

and limited control to users and applications over these decisions. QoS managers, on the other 
hand, aim to meet user and application specified high-level goals, such as guaranteed, user- 

perceived levels of service, while optimising the overall resource utilisation. This typically re- 

quires both user and application requirements to be specified accurately and in advance - in 

itself a non-trivial task - and these requirements to be mapped to low-level resource allocations. 
Typically, neither of these approaches inform applications of changes in resource allocation - 
they manage resources "behind the scenes" - and only a fixed set of resource allocation policies 
is implemented. 

In this dissertation I propose a radically different approach in order to support resource- 
aware, adaptive applications. For these applications, almost all resource management policies 
are eradicated from central entities, such as the operating system kernel or resource managers, 
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and the operating system only provides some basic resource management mechanisms which 

allow these applications to actively manage resources themselves in a cooperative or competitive 
fashion. The mechanisms provided by each resource are based on a microeconomic theory, 

namely shadow or congestion prices. Tasks, or consumers of resources, are charged based on the 

congestion they cause to the system by consuming resources. For example, if a resource is only 

slightly loaded a task consuming some amount of that resource is not causing any "damage" 

to other consumers of the same resource. If, however, the load on that resource becomes too 
high, i. e., the resource becomes congested, a consumer, while receiving a sufficient amount of 

that resource for itself, may have a negative effect on other consumers. In economics, this is 

called an externality and shadow prices can be used to charge or tax consumers for this external 

effect - economists say they internalise the externality. Consumers interpret congestion charges 

as feedback signals, based on which they adjust their resource consumption. It can be shown, 

mathematically, that such a system with consumers merely acting in their own self-interest will 

converge to a social optimum (section 3.2 provides a detailed review). 
The main contribution of this dissertation is the application of this theory to resources man- 

aged by operating systems. Furthermore, using two prototype implementations, it is demon- 

strated that the application of congestion prices to CPU resources is feasible and yields results as 
indicated by the theoretical treatment of the model. 

In general, the idea of engaging consumers in the management of resources is not novel, 

albeit not widely deployed (see chapter 2 and in particular section 2.2), and researchers have 

proposed the use of economic ideas in this context before. Indeed this was quite popular in 

the context of large scale time-sharing systems (e. g., [Sut68, Nie70, Lar75]) with users making 
decisions on when to run jobs based on demand based prices. However, the approach presented 
in this dissertation follows a particular economic model more rigorously, applying the model at 
different time-scales, targeting different application domains, and encouraging the applications 

rather than the user to make resource allocation decisions. 

In the remainder of this chapter a high-level synopsis of this dissertation is presented. The 

next section provides a basic overview of the key components of the resource management frame- 

work followed by a summary of the key operating system mechanisms provided by the architec- 

ture. Section 1.3 then motivates the architecture by providing some sample application areas in 

which it may be particular beneficial. Having set the context of this dissertation, in section 1.4 

the thesis statement is formulated. This chapter is concluded with an overview of the remainder 

of this dissertation. 
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1.1 Overview 
This dissertation proposes a new resource management model for operating systems in which 

applications play a key role in making resource management policy decisions. Figure 1.1 presents 

a high-level overview of this decentralised resource management architecture with the key com- 

ponents highlighted in blue. Each resource is extended by a pricing and charging module, 

which uses the resource usage accounting to determine prices and to charge applications for 

their resource usage. Each process has associated with it an account from which these charges 

are deducted. Users allocate credits to be placed in an application's account depending on how 

much they value the utility provided by that application. Each participating application has an 

adaption module which monitors the credit account and therefore the current charging rate and 

adjusts the resource consumption of that application. Users may aid this task by providing the 

adaption module with detailed, application-specific preferences for different modes of operation 

and the adaption module may be linked with the rest of the application code to adjust the mode 

of operation based on the user preferences and the observed charges. 

Consumer/Application 

User 
Preferences 

unprivileged 

Multiplex/Schedule ýj Multiplex/Schedule 

Resource A Resource B 

Figure 1.1: Overview of the decentralised resource management architecture 
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The diagram also indicates the separation between the privileged and unprivileged parts of 

the architecture'. The aim is to only provide mechanisms within the privileged parts of the 

architecture and to leave policy decisions to be made cooperatively amongst the consumers of 

resources as unprivileged operations. This allows the consumers to choose policies suitable for 

the needs of the applications and the users. 
In this dissertation, the architecture and the mechanisms are described in economic terms. 

Prices and resulting charges are based on the theory of congestion prices and applications are 

presented as consumers of resources providing utility to users. Applications are charged for their 

resource consumption and attempt to maximise their utility minus the cost of providing this 

utility. A general economic framework was chosen to describe the architecture as it helps to 
leverage the substantial body of theoretical work in that area and because it has received much 
attention recently as an alternative scheme for flow control in computer networks. 

However, the architecture could also be described in terms of control theory. Essentially, 

charges are feedback signals and the adaption module are controllers. The resource demand they 
impose on the resource is essentially an actuator. With these three components (feedback signal, 

adaption, and actuators) a traditional feedback control system can be constructed. However, the 

presence of multiple feedback loops, one for every application, interacting with each other at 

each resource, complicates matters significantly from a control theoretical point. Alternatively, 

the architecture could also be described in game theoretical terms, for example, as a variant of 
Axelrod's repeated Prisoners Dilemma [Axe90]. 

Stratford and Mortier [SM99a, SM99b] have independently proposed a very similar resource 

management architecture which is slightly more complex in that it incorporates the concepts of 

contracts for resource and credit allocations over variable time-scales; contract trading, allowing 

consumers to sell resources from their contracts back to resource managers; and user agents, im- 

plementing policy decisions on behalf of the user. Unfortunately, in [SM99a, SM99b] Stratford 

and Mortier do not provide any details on the implementation of their design. In particular, no 
details are provided on the pricing mechanisms, the required operating system mechanism, and, 
indeed, a detailed evaluation of the system. 

'The terms privileged and unprivileged are used rather than kernel and user-space as the architecture is not tied 
to a particular operating system structure. 
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1.2 The mechanisms 
This dissertation is mainly concerned with the operating system mechanisms necessary to de- 

centralise resource management as outlined above. In summary, the mechanisms provided are as 
follows: 

Pricing & Charging The main mechanism of the proposed architecture is to send the correct 
feedback signals in the form of charges to consumers and to provide them with an incen- 

tive to adjust their resource consumption. I will argue that shadow prices, which capture 

the cost of congestion, and charges, based on the individual responsibility for generating 

congestion cost, provide the correct feedback signals to resource consumers. 

Credit accounts: To provide consumers with an incentive to adjust their resource demands 

according to the charges they incur the availability of credits must be managed. A mech- 

anism is required to attach a value to credits for applications and users if credits are not 
directly translated into real money2. 

Resource accounting: Resource management in general requires that resource usage can be 

accurately accounted to individual consumers. Unfortunately, many general purpose op- 

erating systems provide insufficient mechanisms for accounting resource usage. While 

resource accounting is not a mechanism especially provided by the decentralised resource 

management architecture, an accurate accounting mechanism is nonetheless required. 

Multiplexing: With multiple clients consuming a resource, a mechanism is required to mul- 
tiplex these clients. This task is usually performed by a scheduler, which typically also 
implements mid- to long-term resource allocation policies. For the decentralised resource 

management architecture, mechanisms from real-time scheduling are deployed to multi- 

plex client requests in the short term, but the congestion pricing mechanisms coopera- 

tively determine mid- to long-term resource allocations. 

In chapter 4 these mechanisms are discussed in more detail and chapter 5 describes two 
implementations of these mechanisms in different environments. 

'Following Ricardo's simple 1817 dictum in "Principles of Political Economy and Taxation": "It is not necessary 
that paper [money] should be payable in specie [i. e., gold] to secure its value, it is only necessary that its quantity 
should be regulated" (cited from "Crisp and even", The Economist, Dec. 22nd 2001 - Jan. 4th 2002, pp. 91-93. ) 
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1.3 Application scenarios 
The resource management architecture proposed in this dissertation advocates the active involve- 

ment of applications in the resource management process. There are two application domains 

where this would be particularly useful: multimedia applications and consolidated server sys- 

tems. 
Many multimedia applications have high and highly variable resource demands with strict 

timing requirements. This makes it difficult to manage resources for them efficiently. A sig- 

nificant part of the resource management research, in particular into QoS management, has 

focused on multimedia applications (see section 2.2 for an overview). Multimedia applications 

also have the interesting property of being highly adaptable. Typically, applications can operate 
in different modes of operation along different dimensions. A video display application, for ex- 

ample, can reduce the frame-rate, the quality of the decoded video, and the size of the decoded 

frame. These different modes can have a significant impact on the overall resource demands of 

the application. 
In a traditional operating system environment, an adaptive multimedia application has to 

frequently monitor its performance and adjust its mode of operation. With the feedback pro- 

vided by the architecture proposed in this dissertation, applications can take a much more proac- 

tive position, i. e., adjust their mode of operation before the performance in the current mode 
deteriorates. QoS managers, on the other hand, typically require the modes of operation and 

possibly resource demands for them, to be specified explicitly and in advance. Some approaches 

also allow users to express preferences for different modes of operation and the QoS manager 

then attempts to maximise the users' utility from the system. With the congestion pricing based 

approach much less specification is required from the applications. Instead, more intelligence 

is placed in the applications, with application developers and users choosing from a wide range 

of application specific adaption strategies. These strategies can range from very simplistic ap- 

proaches to fairly sophisticated ones leveraging full application internal knowledge combined 

with additional user input. None of this information needs to be made explicit to a central 

entity, as required by many QoS managers. 
A second application domain in which the decentralised resource management approach 

can be deployed beneficially is server systems, though adaption may be performed on different 

timescales. In this area, a trend to consolidate servers into fewer or even single servers can be 

observed. Rather than managing individual computers, each responsible for an individual server 
application, multiple server applications are executed on the same server with additional software 
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providing performance isolation between them3. This is also of particular interest to Application 

Service Providers (ASPs), providing services to potentially competing customers, or, in fact, for 

the more radical proposals of Xenoservers [RPM+99, SM99a] which aims to allow networked 

applications to be executed on public servers closer to the data they might require. 

In such consolidated server environments, a highly dynamic allocation of resources to com- 

peting consumers is desirable as the load on a system may change rapidly and, more significantly, 
bursty and very high loads can be generated. Furthermore, some server applications, such as web 

servers or e-commerce sites, towards which these server systems are targeted, can adjust their re- 

source requirements under high load, by, for example, giving preferential treatment only to 

certain customers, dynamically adjusting the content they provide, or scheduling background 

maintenance tasks at off-peak times. For these applications, especially in a competitive envi- 

ronment, such as that at an ASP, providing feedback to the application enables them to make 
informed decisions about these options. Furthermore, a pricing-based approach, where charges 

can be related to real costs for customers, may be particular appealing to ASPs, and may provide 

the appropriate incentive to consumers to adjust their resource consumption. Moreover, it has 

been shown that, at least theoretically, congestion charges would generate the revenue neces- 

sary for capacity expansion [MV95a]. Interestingly, a recent paper [CAT+01] also proposes an 

economic-based approach for managing energy usage in Internet hosting centres. 
In general, I view decentralised resource management as an enabling technology, which may 

be used in a variety of scenarios, some of which have been outlined above. However, this disser- 

tation focuses mainly on the operating system mechanisms which are required to enable these 

scenarios. A detailed study of different application scenarios is beyond the scope of this work. 
It needs to be stressed that active application involvement in the resource management pro- 

cess is not mandated by the decentralised architecture. Depending on the implementation of the 
framework, two options are conceivable: either default policies are provided for applications that 

are not capable of participating (see section 4.4), or, as in the FreeBSD prototype described in 

section 5.2, feedback is only provided to applications that are interested in actively participating 
in the management of their resources. 

3Examples of such system software are Linux on IBM Mainframes (http: //www. ibm. com/s390/linux/), 
IBM's LPAR technology [IBMOI], VMware for servers (http : //www . vmware , com/products/server/), 
Aurema's ARMTech (http: //www. aurema. com/), or Sun's Solaris Resource Manager 
(http: //www. sun. com/software/solaris/ds/ds-srm/). 
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1.4 Thesis statement 
Resource management in operating systems has traditionally been performed by centralised en- 

tities implementing a fixed set of resource management policies with little or no involvement 

of the consumers of those resources. While it is accepted that a wide range of applications 

can adjust their resource demands, operating system resources are typically managed "magically" 

from an application's point of view, and adaptive applications are forced to observe performance 
degradation before being able to adapt to changing resource availability. 

I assert that these applications should be more actively involved in the management of the 

resources they consume, in order to allow them to adapt to changing resource availability proac- 

tively. By providing feedback to applications and therefore expecting them to adapt, almost all 
higher-level resource management policies can be removed from privileged operating system en- 
tities, leaving the core OS to only provide simple, well understood, multiplexing mechanisms. 
Furthermore, I assert that congestion prices are applicable to all resources typically managed by 

an operating system and are suitable for providing the correct feedback to applications. This 

dissertation addresses the operating system mechanisms required to enable applications to par- 

ticipate in the management of resources. 

1.5 Outline of the dissertation 
Chapter 2 provides an overview of existing resource management approaches in operating sys- 

tems. It focuses on scheduling algorithms and QoS management approaches. It also includes 

a general discussion on the impact of the overall operating system structure on its ability to 

manage resources accurately and the chapter describes a number of alternative approaches. 
Chapter 3 serves two purposes: Firstly it provides an overview of general economic con- 

cepts and previous proposals for their application in managing computational resources. And, 

secondly, it introduces the general concept of congestion or shadow prices more formally, by 

reviewing the related work of its application to managing congestion in computer networks. 
Chapter 4 is the core chapter of this dissertation. It presents the proposed architecture in 

detail and discusses its application in the context of operating systems. The chapter primarily 
uses CPU resource management as an example resource, but other resources are discussed as 
well. 

Chapter 5 provides the background on, and a detailed description of, two implementations 

of the decentralised resource management architecture. A general simulation environment for 

scheduling algorithms and a prototype implementation under FreeBSD are presented. 
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Chapter 6 provides a detailed evaluation of these prototypes. The evaluation demonstrates 

that resource are shared in a weighted proportionally fair fashion despite each consumer attempt- 
ing to maximise their own utility. 

Chapter 7 summarises the main arguments of this dissertation, discusses future work, and 
presents the conclusions. 
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Chapter 2 
Resource management in operating 
systems 

Resource management in operating systems is performed at various levels. Traditionally, each 
resource is scheduled independently of other resources and scheduling algorithms are responsi- 
ble for both multiplexing and resource allocation policies. Especially with the emergence of soft 
real-time multimedia applications this approach has been considered insufficient to provide pre- 
dictable performance to these applications. As a solution, researchers have proposed high-level, 
integrated QoS managers, which aim at providing resource guarantees to complex multimedia 
applications. 

In this chapter several of these approaches to resource management are reviewed to set the 
context for the novel decentralised resource management architecture. This review is structured 
in three parts. First, in section 2.1 an overview of CPU scheduling algorithms is given. Schedul- 
ing algorithms provide the low-level mechanisms and policies for allocating resources. In sec- 
tion 2.2 higher-level approaches, namely approaches to QoS management, are described. While 

these two sections cover the related work with respect to the actual management of resources, 
the structure of an operating system can also have a significant impact on how (especially on 
how accurately) resources can be managed. In section 2.3 these general operating systems issues 

are discussed. 

2.1 CPU Scheduling algorithms 
CPU scheduling performs the function of multiplexing the CPU resource among application 
programs. Applications, or more specifically, application mixes have largely varying demands 

10 



on how the CPU should be multiplexed. Not surprisingly, there is a large body of research 
focusing on scheduling algorithms. These range from scheduling algorithms, traditionally used 
in general purpose operating systems', to hard real-time scheduling algorithms designed for 

specific narrowly focused (embedded) operating systems. This section first provides a general 

taxonomy of these scheduling algorithms (loosely based on that given in [RJS00]) and then 
discusses some examples in detail. 

Scheduling algorithms for general purpose operating systems have to provide good interac- 

tive performance while ensuring high throughput for batch processing applications and some 
form of fairness between competing processes. When used for dedicated server applications, as 
is often the case, both fast response times for requests and high general system throughput are 
required. For dedicated server systems, overall fairness of resource allocations is not necessarily a 
requirement. However, for consolidated server systems, executing multiple server applications, 
fairness and load isolation are important issues. 

For hard real-time scheduling algorithms it is paramount that all hard deadlines are met. This 
is often achieved by carefully engineering a system for a specific task and then statically analysing 
the resource requirements of the typically small set of processes executing on the system. As the 
a priori analysis of resource demands is sometimes difficult, if not impossible, resources are 
typically generously over-provisioned. 

Some application domains, in particular multimedia applications, have timeliness require- 
ments on resource allocations which are less stringent than those of hard real-time systems. 
While having deadlines, e. g., determined by a frame rate, deadline misses are undesirable but 

maybe acceptable to these applications. Applications with such a property are termed soft real- 
time applications. With the increased demand for multimedia applications on users desktops it 
is desirable to support them together with more conventional application mixes as provided by 

general purpose scheduling algorithms. 
While scheduling algorithms can be categorised by their suitability for the above application 

scenarios, it is useful, when analysing a given scheduling algorithm, to distinguish between its 
steady state behaviour and its behaviour at mode changes. The steady state behaviour is given 
with a fixed task set while mode changes are defined by changes to the task set (tasks joining or 
leaving) and (user initiated) changes of scheduling parameters. 

'The term "general purpose OF is used loosely to describe operating systems for personal computers, worksta- 
tions and servers. Most popular operating systems, such as the OS families of Microsoft Windows, Linux and other 
Unix style operating systems fall into this category. 
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In steady state behaviour, a scheduler should distinguish between importance and urgency 

[NL97]. Importance should determine the overall share of a resource a task is allocated while 

urgency should be used to make the actual scheduling decision, i. e., which task to schedule next. 
Importance can be indicated by the user, e. g., through the means of priorities, while urgency may 
be determined by the past resource consumption of a task, e. g., to give preference to unblocking 
interactive tasks, or the closeness of a task deadline. 

Next, different categories of scheduling algorithms are reviewed, namely general purpose 

scheduling algorithms used in traditional operating system, classic hard real-time scheduling al- 

gorithms, scheduling algorithms which provide CPU reservations, and scheduling algorithms 

which emphasise proportional fair sharing of CPU resources. For each category the application 

scenarios supported and their behaviour in steady state and during mode changes are investi- 

gated. Then several specific scheduling algorithms are reviewed in detail. 

2.1.1 "Traditional" general purpose schedulers 
Most general purpose operating systems deploy scheduling algorithms aimed at application 

mixes of interactive and batch processing applications. These systems typically deploy prior- 
ity scheduling algorithms where the priority of a process is dynamically adjusted based on its 

past usage of the CPU and/or current resource requirements (e. g., to speed up response times 

to a given event). The scheduler always selects a runnable process with the highest priority. If 

there are multiple processes with the same priority they are typically scheduled round-robin. 
Typically, scheduling decisions are made in fixed intervals or time slices. If at the end of a time 

slice a higher priority process is runnable, the current process is preempted. Preemption can also 

occur during a timeslice if the a higher process becomes runnable and, for example, the current 

process returns from a system call. 
To the best of my knowledge, all general purpose operating systems in use today, deploy 

variants of this scheme. This includes the different derivatives of the UNIX operating system, 

starting with the original Unix [Tho78], and the more recent versions of the family of Windows 

desktop and server operating systems. 
For example, 4.4BSD [MBKQ96], on which all modern BSD flavoured UNIX operating 

systems are based, maintains two different priorities per process: the current scheduling priority 
p_priority, on which all scheduling decisions are based, and the user mode priority p usrpri. 
When a process executes in user mode these two priorities are identical. The kernel associates 
a sleep priority with every event a process can be blocked on when in kernel mode. When a 
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process unblocks, its p_priority value is temporarily set to the sleep priority to allow blocking 

processes to complete blocking system calls promptly. When a process returns from kernel mode, 

its p_priority value is restored to the user mode priority p usrpri. 
The user mode priority depends on two factors: the recent CPU usage of the process 

(p_estcpu) and the puice value assigned to it by the user. Every four clock ticks the user mode 

priority of a process is recalculated using p_userpri = PUSER + (p_estcpu/4) +2x p_nice 

where PUSER is the base priority for user mode processes2. The process' CPU usage p_estcpu 
is incremented each clock tick the process is executing and, in addition, is decayed every second 
based on the load average of the system using: p_estcpu = (2 x load)/(2 x load + 1) x 

p_estcpu + p_nice. Thus, for processes that have recently accumulated a large amount of CPU 

(large p_estcpu value) the user priority value will increase, resulting in a lower priority. Like- 

wise, the user priority of heavily I/O bound processes that spend most of their time waiting for 
I/O operations will remain at a relative higher level. 

The UNIX System V Release 4 (SVR4) has a completely redesigned scheduler framework 

compared to its predecessors [Vah96, Section 5.5]. It implements the concepts of scheduling 

classes which define different scheduling policies. The default scheduling class is the time- 

sharing class which also changes priorities dynamically and uses round-robin scheduling for 

processes with the same priority. However, unlike the BSD based systems, priorities are not re- 

calculated in fixed intervals. Instead, priorities are changed based on events. Events include the 

completion of time slices, blocking, etc. Furthermore, processes may use different length time- 

slices depending on priority. A static dispatcher parameter table defines how different events 

affect priorities and defines the length of time-slices per priority. This approach promises greater 
flexibility and is more scalable as the periodic recalculation of priorities for all processes is re- 

placed by a simple table lookup only involving one process. However, the subjective "feel" of 

the performance of the system heavily depends on the parameters in the table. Furthermore, the 

priority boosts and penalties related to various events required for a responsive system depend 

on the overall system load, thus manual re-tuning of these parameters may be necessary. 
The recent versions of Microsoft Windows (NT/2000/XP) define several priority classes for 

threads [Mic01, So198, CJ98]. For threads of all priority classes except the real-time class, prior- 
ities are dynamically adjusted. Priorities are boosted for the threads with the current foreground 

window, for threads receiving user input, or when a thread wakes up after an I/O operation. 
After the priority of a thread has been raised, it is reduced for every completed time slice until it 

reaches the thread's base priority. 

'Note that in BSD systems numerically lower values correspond to higher priorities. 
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Apart from providing traditional time-sharing functionality most modern general purpose 

operating systems also provide some rudimentary scheduler support for real-time applications 

as defined by the POSIX standard [ISO96]. This functionality is typically provided by a real- 
time scheduling class often mapped to a privileged range of priorities. Unlike priorities in the 
time sharing class, priorities in the real-time scheduling class are not adjusted dynamically and 
real-time processes have a higher priority than any process in the default time-sharing scheduling 

class. The POSIX standard defines two types of real-time scheduling policies: FIFO and Round- 
Robin. Processes using the round robin policy are preempted after a configurable time quantum 
has expired while processes using the FIFO policy are only preempted when higher priority 
processes become runnable. This form of real-time scheduling is provided by SVR4,4.4BSD 
derived systems (e. g., FreeBSD), Linux, and Windows NT/2000/XP. 

A major problem with this mix of real-time scheduling and time-sharing scheduling is that 
it is extremely difficult to configure a system to support a mix of applications. Using a fixed 

set of three different applications - interactive typing, batch processing, and video display - 
[NHNW93] tried to find an adequate combination of scheduling class and priorities under 
SVR4. This also included settings for the X-Server process which was used by the interactive 

typing and the video display applications. The authors of [NHNW93] found that the combi- 
nations were either ineffective or resulted in complete system lockups and concluded that while 
"SVR4 UNIX provides many controls for changing scheduler performance, they are virtually impossi- 
ble to use successfully" : Furthermore, if it almost impossible to find an adequate combination of 
parameters for a static set of applications, it is infeasible to do the same for a dynamic mix of 
applications. 

2.1.2 Real-time scheduling 
Dedicated real-time systems form a specialised area in computing science research and there 
exists a huge body of research on just hard real-time scheduling algorithms. An exhaustive 
review is beyond the scope of this dissertation and only a brief overview of related scheduling 
algorithms is provided. 

The real-time literature distinguishes between periodic, aperiodic, and sporadic tasks. Periodic 
tasks enter their execution state at regular intervals and typically have hard deadlines. [PDP93] 
defines aperiodic tasks as tasks whose execution states cannot be determined in advance as they 
usual depend on the occurrence of external or internal events and whose deadlines are soft, i. e., 
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deadlines whose adherence is desirable but not critical to the functioning of the system. The 

authors of [PDP93] define sporadic tasks as aperiodic tasks whose deadlines are hard deadlines3. 

Furthermore, tasks can be categorised into preemptable and non-preemptable tasks. A 

preemptable task's execution can be interrupted by tasks with a higher priority while non- 

preemptable must be executed until they complete. 
Real-time scheduling algorithms can be categorised into static and dynamic algorithms. A 

static algorithm is one in which a feasible schedule, i. e., a schedule in which all deadlines are met, 
is computed offline and not changed during the execution of the schedule. While the run-time 

overhead of these algorithms is very low, they are too inflexible to be deployed in the context of 

a dynamic operating system environment. With dynamic algorithms, the exact schedule is not 
known in advance; it is computed dynamically at run-time. This allows for new tasks to enter 

the schedule at any time, provided that the schedule remains feasible. This obviously induces a 
higher run-time overhead than static algorithms but provides for more flexibility. 

As this dissertation is mainly concerned with resource management in general purpose oper- 

ating systems the primary interest is on dynamic scheduling algorithms that deal with preempt- 

able tasks. For systems supporting multimedia applications, scheduling algorithms for periodic 

tasks are of particular interest as those applications often have inherent periodic behaviour, e. g., 
fixed intervals between frames of a video or virtual reality game applications. 

The two classic algorithms for scheduling preemptable, periodic real-time tasks are Rate 

Monotonic (RM) and Earliest Deadline First (EDF) [LL73]. In their seminal paper Liu and 
Layland study these two algorithm in an environment which has to fulfil the following require- 

ments (directly taken from [LL73]): 

Al: The requests for all tasks for which hard deadlines exist are periodic, with a constant interval 
between requests. 

A2: Deadlines consist of run-ability constraints only - i. e., each task must be completed before 

the next request for it occurs. 

A3: The tasks are independent in that requests for a certain task do not depend on the initiation 

or completion of requests for other tasks. 

3Note, that alternative definitions exist. Hyden [Hyd94], e. g., defines aperiodic tasks as tasks with stochastic 
arrival rates and multiple instances of the same task way arrive in very short periods of time; and sporadic tasks are 
classified as aperiodic tasks with a minimum limit between the arrival times of multiple instances of the same task. 
However, the precise definition of these terms is not relevant in the context of this dissertation and are only given 
for completeness. 
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A4: The run-time for each task is constant for that task and does not vary with time. Run-time 

here refers to time which is taken by a processor to execute the task without interruption. 

A5: Any nonperiodic tasks in the system are special; they are initialisation or failure-recovery 

routines; they displace periodic tasks while they themselves are being run, and do not 

themselves have hard, critical deadlines. 

RM is a fixed priority based scheduler, i. e., a priority is computed for a task once and is 

maintained unchanged throughout its lifetime. For RM the priorities are assigned relative to 

the tasks' periods: the shorter the period the higher the priority. In [LL73] a proof is given that 

this approach is optimal among fixed priority algorithms, i. e., given a set of tasks, RM always 

produces a feasible schedule if any other fixed priority algorithm does. 

The processor utilisation u of a system with m tasks can be defined as: u= j_1 
Ci/Ti with 

CZ denoting the run time and Ti the period of task i. In [LL73] it is shown that the achievable 

processor utilisation U for RM, and in fact for every fixed priority scheduling algorithm adhering 
k to the above assumptions, is U=J: i' 

1 
Ci/Ti < m(21/' - 1), approaching 1n2 for large tas 

sets. This means that if U< ln2 a feasible schedule can be constructed. This represents a lower 

bound on the achievable utilisation. For average task sets a feasible schedule can be found with 

an utilisation up to 88% [LSD89]. An optimal resource utilisation (U < 1) can be achieved 
if all periods are harmonic, i. e., each period is an integer multiple of every period of smaller 
duration. A simple admission control policy aiming for a feasible schedule is to admit tasks 

up until the pessimistic lower bound of U= 1n2 is reached. Since this potentially leaves the 

resource underutilised, one could use spare resource time for unreserved background tasks or 

use the more optimistic lower bound of 88%. Furthermore, an exact analysis of the task set, if 
feasible, might be used to yield a more optimal resource allocation. 

While RM uses fixed priority values for each task, EDF computes dynamic priorities at 
run-time based on tasks' deadlines. The deadline of a periodic task is the end of the period 
at which it started. The EDF algorithm chooses at any given point in time to run the task 
with the smallest deadline value. Thus, the closer the deadline of a task, the higher its priority. 
Under the assumptions outlined above, all tasks meet their deadline if the processor utilisation is: 
U= >i"_' 1 C2/Ti <1 [LL73]. Admission control for EDF is fairly straightforward: new tasks 
are admitted as long as the utilisation of the resource is less then 1. EDF is very attractive because 
it can achieve high utilisation and it is optimal in the sense that if there exists any algorithm that 
can schedule a set of tasks without missing a deadline, then EDF can also schedule the tasks 
without missing any deadlines. 
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Both algorithms behave optimally when the processor utilisation conforms to the given 

scheduleability test, however they behave differently under overload. Under RM the tasks with 
the longest period will be the first to miss its deadline since it has the lowest priority. While this 
behaviour is predictable, it is undesirable since the period of a task and thus its RM priority is not 
related to its importance. The way EDF degrades under overload is not that easily predictable. 
The general consensus is, that EDF performs poorly under overload and can even result in a 
state where the resource is constantly busy, but no deadlines are met. Furthermore, it is unde- 
termined which tasks will miss their deadlines under overload. There have been proposals, e. g., 
[SLR86, Mi190], to overcome these problems, namely to assign some measure of importance to 
the tasks. However, these proposals make this very simple and well understood algorithm more 
complicated and the general consensus seems to be to simply not use EDF in environments in 

which overload can occur. 
A number of proposals have been made to incorporate support for aperiodic or sporadic 

tasks in real-time systems. These are not very widely used in the domain of general purpose 
operating systems, therefore, only a brief overview is given. In [PDP93] five different approaches 
dealing with aperiodic tasks are described. The simplest approach is to execute aperiodic tasks as 
background tasks, i. e., they are only executed if no periodic tasks are active. A second approach, 
known as polling, uses a periodic task with fixed priority to serve aperiodic service requests. This 

approach has the obvious problem of the incompatibility of periodic and aperiodic tasks. The 
Priority Exchange (PE) and Deferrable Server (DS) approaches both use a high priority periodic 
server to maximise responsiveness of aperiodic tasks. In the DS approach, the server maintains 
its priority throughout its period, thus it can service aperiodic tasks with its high priority. With 
PE approach, on the other hand, the server exchanges its priority with the priority of the highest 

priority task pending if no aperiodic task requests occur at the beginning of the server's period. 
The final approach, known as Sporadic Server (SS), also uses a periodic server. Its response time 
performance is comparable to PE and DS, its implementation is, according to [PDP93], less 

complex. 

2.1.3 CPU reservations 
Scheduling algorithms that support CPU reservations are closely related to real-time scheduling 
algorithms, in fact systems that offer CPU reservations typically deploy real-time scheduling 
algorithms to support multimedia applications. CPU reservations provide applications with 
load isolation and predictable resource allocations, often in a periodic fashion. For example, an 
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application may reserve 15mns of CPU time every 100ms. The scheduling algorithm would then 

guarantee that this application would not receive less than the reserved amount every 100mns. 
In [MST94] a mechanism called Processor Capacity Reserves is presented. It is one of the 

first papers to highlight the relationship between resource reservations, presented as processor 

capacity reserves, and real-time scheduling algorithms in the context of a multi-media operating 
system. Previously, these algorithms had been mainly discussed in the context of classic hard 

real-time systems. 
The principal abstraction described is the processor capacity reserve, which allow applications 

to request a reservation of the processor's capacity. Once the request has been granted, i. e., 
after performing an admission control check, the system guarantees that the reservation is met. 
Applications can increase their reservation if permitted by the admission control system and can 
always decrease it. 

The processor capacity reserve abstraction is translated into a kernel abstraction known as 
reserve. Reserves are used to track reservations and measure processor usage for each program. 
The measurement is used to enforce reservations. Reserves can be passed from one thread to an- 

other, for example, during an Inter-Process Communication (IPC) call, to account for resource 
consumption independently of threads. 

Capacity specification is based on periodic tasks; programs can request a percentage of the 
CPU to be reserved to them during an arbitrary period. Percentage and period define the rate 
of progress. The authors of [MST94] suggest that programs with known periods, but unknown 
or varying resource requirements during the period, should request conservative worst-case es- 
timates. Programs with no natural computing rate, i. e., non-periodic tasks or batch processing 
applications, get assigned a rate determining the completion time of the application (details are 
not provided). 

For the scheduler framework supporting processor capacity reserves both RM and EDF 
based algorithms were considered and admission control for both algorithms is discussed in 
detail (see section 2.1.2). Although EDF is theoretically preferable since it allows reservations 
up to 100% of the processor, the authors argue that, considering accounting inaccuracy, the 
effect of critical sections and synchronisation problems, 100% reservation cannot be achieved 
and both RM and EDF are suitable. 

A similar approach to processor capacity reserves is presented in [Hyd94] where "processor 
bandwidth" is used analogously to processor capacity reserves. Hyden proposes a scheduling 
algorithm based on EDF. This work was carried out in the context of an operating system called 
Nemo. Nemo and its scheduling algorithm were the predecessors of the Nemesis operating 
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system [LMB+96] (described in more detail in section 2.3.1) and its scheduling algorithm, 
known as Atropos [Ros95, Bar98]. Atropos is an implementation of the classic EDF algorithm 
extended by two features: support for latency sensitive tasks and a mechanism to deal with any 
"slack" CPU time. In addition to the standard EDF parameters of period p and slice s tasks 
have an extra latency hint 1 and boolean flag x associated. If a task has been blocked for a time 
longer than a period and unblocks at time t its next deadline is calculated using the latency hint 

rather than its period. Thus by choosing l<p, an unblocking task may be given preferential 
treatment. Essentially, its deadline is moved forward at the risk of potential deadline misses 
by other tasks during the first period after unblocking. This approach may still result in long 
dispatch latencies for tasks which only block briefly, i. e., unblock before their current deadline 

expires. These tasks are given preferential treatment if the CPU should become idle. Atropos 

also distributes "slack" CPU time in a round-robin fashion amongst tasks for which the x flag is 

set. 
In Rialto [JRR97], applications can make CPU reservations by requesting Y units of time 

every X units of time. This is similar to the other reservation based systems described in this 
section, but the Rialto scheduler provides stronger guarantees in that the reservation is guaran- 
teed continously, i. e., at every time Ta task will receive at least Y units of time in the interval 
[T, T+ X1. These guarantees are given for activities which do not block. 

In addition to CPU reservations, Rialto also provides time constraints allowing threads to 
dynamically request a piece of code associated with a time constraint to be executed between a 
start time and a deadline. Deadlines of constraints may be tighter and execution times may be 
higher than the CPU reservation of the associated activity. A feasibility analysis, or admission 
control, is performed for any requested time constraint and, when accepted, time constraints are 
guaranteed to be met. 

Unlike the other CPU reservation based systems, the Rialto scheduler is not based on one 
of the classic dynamic real-time scheduling algorithms. Instead, Rialto uses a static precom- 
puted scheduling graph that allocates specific future time intervals to activities ensuring that 
CPU reservations can be met. The scheduling graph presents a repeating schedule of all ac- 
cepted CPU reservations and forms the basis for the feasibility analysis of time constraints. The 

graph is recomputed whenever CPU reservations change or activities enter or leave the schedule. 
Thus, the runtime overhead for a static task set is small (complexity 0(1)), while the assumed 
infrequent recalculation of an optimal scheduling graph is NP hard (for the implementation the 
authors of [JRR97] use a simpler algorithm which provides an approximation of the optimal 
graph). Depending on the assumed dynamics of the active task set, it is not clear if this tradeoff 
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is better than using a dynamic real-time scheduling algorithm with simple admission control, 

such as EDF. 

There are two common criticisms about reservation based systems. First, reservation based 

systems need to deploy a run-time admission control systems in order to make guarantees about 

resource reservations. A simplistic approach would simply be to accept new reservations until the 

capacity of the resource is exhausted. This potentially leads to inflexibility and unfairness since 

tasks arriving later than others may be denied access to a resource even if they are more important 

[NL97]. Furthermore, even for conventional tasks with no special timeliness requirements, 

reservations have to be made to prevent their potential starvation. 
The second criticism is that consumers of a resource have to specify their resource require- 

ments in advance in order to make a reservation. This is non-trivial for most applications. 
Multi-media applications, for example, may have highly bursty resource requirements (e. g., see 
figure 5.1 for decoding times of an MPEG video stream). If the reservation is made for the peak 

resource requirement (which itself might be unknown) the resource is likely to be underutilised. 
If, however, a reservation is made based on the average resource requirement, some application 

specific deadlines might be missed due to insufficient resources. Moreover, the admission control 
system would have to provide incentives to applications to make correct reservations. 

These issues are typically not addressed with reservation based systems. Instead, they are 
deferred to a higher level entity such as a QoS manager (see section 2.2). 

2.1.4 Proportional fair schedulers 
A recent trend has been the introduction of proportional share schedulers into general pur- 
pose operating systems (e. g., [WW94, WW95, GGV96, SAWJ+96a, NL97, JSMA98, DC99, 
BPM99]). In proportional share allocation all tasks in the system are guaranteed to make 
progress at a well defined uniform rate. This progress is frequently expressed in terms of vir- 
tual time [Zha91], which advances relative to real time. These scheduling algorithms are closely 
related to the fair queueing models that have been proposed for packet scheduling in computer 
networks (e. g., [Nag87, DKS90, Zha9l, PG93, BZ96]). 

Proportional fair schedulers aim at providing a perfect sharing of resources. However, re- 
sources cannot be shared in infinitesimally small units (e. g., due to fixed packet sizes, time 
slicing, prevention of context thrashing). Therefore, the share a consumer should receive in an 
ideal system (often referred to as the fluid flow model) and the share of the resource a consumer 
has received at any given point in time may be different. In [SAWJ+96a] ts difference is called 
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service time lag. The lag is a measure for the allocation accuracy of a given proportional share 

scheduler and, ideally, should be bounded to a constant. 

2.1.4.1 Virtual time based scheduling 
Most proportional share algorithms are formulated in terms of virtual time. Virtual time flows 

at a rate proportional to the weights of the active tasks and thus abstracts over changes in the 

task set. The relationship between real time and virtual time can be defined as (taken from 
[SAWJ+96a]): 

V(t) =1 dT (2.1) 
fEjEA(r) 

wj 

with A(T) denoting the set of all active processes at time T. The flow of virtual time changes 
to "accommodate" all active clients in one virtual time unit. This notion of virtual time can be 

used to express the service time a task should receive in the fluid-flow model. In this model, a 
task with the weight wi should receive a service time proportional to the sum of the weights of 

all active tasks: 
tz 1 Si(to) ta) = wi r d-r 

o /ýjE. A(T) wj ft"' 
From equation 2.1 and 2.2 it follows: 

(2.2) 

Silty t2) (V (t2) -V (tl))wi (2.3) 

Thus, the lag, or deviation of the service time in a real system from the fluid-flow model, can be 

viewed as a problem of how well the virtual time is estimated in the real system. 
The general model of virtual time is used by a number of CPU and fair-queueing packet 

scheduling algorithms, for preemptive and non-preemptive schedulers, and for soft real-time 
and non real-time systems, demonstrating the expressive power of virtual time. The initial 

work was done in the area of link sharing in datagram networks. Therefore, the general modus 
operandi of virtual time scheduling algorithms is first described in the terminology of packet 
scheduling. Later in this section its application to CPU scheduling is discussed. 

Bit-Round Fair Queueing (BRFQ) and Weighted Fair Queueing (WFQ) [DKS90), also 
known as Packet Generalised Processor Sharing (PGPS) [PG93), aim at emulating the fluid-flow 

model in which packets would be transmitted bit by bit in a (weighted) round-robin fashion 

among different flows or clients. Each packet is assigned a timestamp representing its virtual 
finish time (VFT) in the fluid model. If vo is the virtual time the kth packet arrives for flow 

k i and lý its length, then the V FV can be calculated as V FT k= vo +. The VFT can 
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be interpreted as the amount of service, normalised with respect to the weight, the flow i has 

received immediately after the kth packet is served. Thus, WFQ transmits packets from different 

flows in the order of their VFT. 

There are two well known problems with WFQ. First, in WFQ, flows could be serviced 
long before they would complete in the fluid-flow model. Therefore, some scheduling algo- 
rithms (e. g., [SAWJ+96a, BZ96, BZ97]) include the notion of eligibility. A task is considered 

eligible if it would receive service in the fluid-flow model. Thus, the resulting system conforms 
more closely to the idealised fluid-flow model. Systems taking eligibility into account have a 
provably smaller bound for the lag. For example, in Earliest Eligible Virtual Deadline First 
(EEVDF) [SAWJ+96a, SAWJ+96b] and WF2Q [BZ96], the lag is bounded by the maximum 
time quantum or maximum packet size respectively. 

The second problem with WFQ is maintaining the virtual time necessary to compute the 
VFT. For an active flow, i. e., a flow which has outstanding packets queued, vo is simply the 
VFT of the previous packet. However, for idling flows, the current virtual time at the time a 
new packet arrives needs to be maintained. The original WFQ proposal simulates the fluid flow 

model and essentially maintains the exact virtual time. However, the simulator is complicated 
and computationally intensive (essentially, it implements equation 2.1). More recent algorithm 
[SAWJ+96a, GVC96, BZ96, BZ97, DC99] instead estimate the virtual time in the system by 

setting the virtual start time vo of a packet to the maximum of either the VFT of the previous 
packet of that flow or to the smallest virtual start time of any packet from the other active flows. 
This estimate is either accurate or slightly conservative. 

The virtual time based scheduling algorithms have been discussed so far in the context of 
packet scheduling in datagram based networks. They can be applied in different ways to CPU 

scheduling. Packet scheduling is usually non-preemptive - once the transfer of a packet has 

started it has to be finished. However, the length of a packet is known at arrival and networks 
typically define a Maximum Transfer Unit (MTU), limiting the maximum length of a packet. 
EEVDF uses the simplest equivalent for CPU scheduling and uses a fixed scheduling quantum, 
as is the case in most general purpose operating systems. However, EEVDF assumes that all 
active tasks at the start of a quantum will use their entire quantum. This assumption is necessary 
to calculate the VFT. However, if a task becomes inactive before its quantum expires, the task's 
lag can be zero, positive or negative. If the lag is zero, than the task can simply leave, as it 
has received its fair share of the resource. If the lag is negative or positive the task has received 
more or less service than it should have in the ideal fluid model. In this case the authors of 
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[SAWJ+96a] propose to adjust the virtual time as if the task would have executed until its lag is 

zero and distribute the task's lag to the other tasks proportional to their weights. 
BERT [BPM99], a non-preemptive CPU scheduler based on WF2Q+ [BZ97], requires tasks 

to specify the length of a request and uses this to calculate the VFT of the task. To an ex- 
tent this choice reflects the environment, namely the path-oriented' operating system SCOUT 

[MP96, MT97], for which BERT was developed. BERT also implements a mechanism called 
Fair Queueing (FQ) stealing which allows more important tasks to steal cycles from less impor- 

tant tasks. For this purpose the user can divide tasks into important and unimportant ones using 
a simple user interface. The amount of cycles a task can steal is bounded and BERT preserves 
the relationship between real time and virtual time during stealing as weights are adjusted in 

correspondence to the number of cycles stolen. 
Start-time Fair Queueing (SFOJ [GGV96, GVC96] takes a different approach. Instead of 

executing tasks in the order of their VFT SFQ uses a task's virtual start time vo. The authors 
demonstrate that, using this approach, the lag is bounded, but is dependent on the number of 

clients. However, SFQ has the advantage that it naturally supports non-uniform time quanta, 
no a priori knowledge of the computational requirements is necessary, and it can cope with 
variable capacity resources (WFQ and related algorithms implicitly assume a fixed capacity in 

the calculation of the VFT). The assumption of variability of capacity is required by the desire 

to deploy SFQ in hierarchical schedulers. 
Yet another approach is used by Borrowed Virtual Time (BVT) [DC99]. BVT uses a rela- 

tively small time quantum, e. g., 100µs, and essentially uses this to directly model the fluid-flow 

model, i. e., it ignores the resulting quantisation error. In order to prevent constant CPU context 
switches, also known as thrashing, a context switch allowance is introduced, which allows a task 
to execute for a minimum amount of time. The more interesting feature of BVT, however, is the 
introduction of virtual time warping. Warping is used to support latency sensitive applications 
by dispatching unblocked tasks earlier rather than later. To achieve this aim, latency sensitive 
tasks have an associated warp factor, a constant which is subtracted from their virtual timestamps. 
Thus, the scheduler will run them earlier than in the corresponding fluid-flow model. The time 
a task can run warped and the time between warps are controlled by two additional task specific 
parameters. The base BVT algorithm is very simple. However, configuring the scheduler for a 
variety of applications and application mixes appears more complicated: some per-task parame- 

'The term "path-oriented" refers to the primary abstraction in SCOUT, a "path". Paths are responsible for 
moving and manipulating data form one I/O device to another. 

23 



ters are expressed in virtual time, others in real time. Not surprisingly the majority of the paper 
is dedicated to the configuration of the scheduler. 

Virtual time based scheduling algorithms have also been proposed to support real-time tasks 
(e. g., [SAWJ+96a, GGV96, BPM99, DC99, BP00]). The general idea in these system is to 

control the weights assigned to different tasks. By policing the weights assigned, tasks have guar- 

anteed execution rates. Then, if the lag is bounded for a given scheduling algorithm, guarantees 

can be given about the completion times of a task's particular work unit. The proponents of this 

approach argue that these type of guarantees are sufficient for soft real-time tasks. A generalised 
treatment of the use of virtual time based schedulers for real-time scheduling can be found in 
[FP97, BP00]. 

2.1.4.2 SMART: A Scheduler for Multimedia And Real-Time 

A particular feature-rich and influential virtual time based scheduling algorithm is SMART 
[NL97]. SMART aims at supporting a mix of real-time multimedia and conventional appli- 
cations. It allows real-time applications to execute blocks of code under time constraints and 
provides notifications to applications if the time constraints cannot be met. SMART uses both 

priorities and shares: priorities allow users to specify their preference for one process over an- 
other; and shares may be used to influence the amount of CPU a process receives compared to 
other processes of the same priority if there is CPU contention. The base scheduler is a standard 
virtual-time based scheduler to which two main features are added: a bias of the VFT and a 
reordering of real-time tasks based on EDF. For conventional processes, a bounded bias is used 
to defer long running batch processing applications during transient overloads by adding it to 
the VFT of each task. The bias is calculated similarly to the dynamic priority recalculations used 
in the SVR4 time-sharing scheduler. Scheduling decisions are based on a value tuple of priority 
and Biased Virtual Finishing Time (BVFT) of a process. A process with a higher priority is said 
to have a higher value tuple, for processes with the same priority, one with a lower BVFT has a 
higher value tuple. 

In general, tasks with the higher value tuple are scheduled. However, the second special 
feature of SMART, the EDF based reordering of real-time tasks, is used to trade off urgency 
of lower priority real-time tasks against the importance of higher valued real-time tasks. More 
precisely, if the process with the highest value tuple is a conventional process, that process is 
run. If the process with the highest value tuple is a real-time task, a candidate set is created, 
to which all real-time processes with a higher value tuple than the highest valued conventional 
process are added. From the candidate set of real-time tasks, processes are inserted into an EDF 
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schedule starting with the process with the highest value tuple until either the candidate set is 

empty or the EDF schedule becomes infeasible. The real-time processes that cannot be inserted 

into the schedule are then notified by the OS that their resource requests cannot be granted. 
The resulting EDF schedule may result in lower valued processes being run before higher valued 

processes. In general, this approach trades off instantaneous fairness for better real-time and 

interactive response times. 

2.1.4.3 Lottery Scheduling 

A number of other proportional fair share algorithms have been proposed; the most prominent 
being lottery scheduling [WW941. Lottery scheduling is a probabilistic, proportional share 

scheduler - scheduling decisions are based on a lottery with lottery tickets representing resource 

rights. Resource allocations are determined by holding a lottery, the resource is granted to the 

process holding the winning ticket. Thus, lottery tickets represent relative resource rights, since 

the fraction of a resource represented by one ticket varies dynamically in proportion to both 

the total number of tickets in the system and the contention for the resource. In the worst 

case, a process receives a share of the resource proportional to the number of tickets it holds. 

Furthermore, lottery scheduling is probabilistically fair. Since a lottery has a random result, 

the actual proportion of a resource a process receives is not guaranteed over shorter periods. 
However, the accuracy of the allocation improves with the number of lotteries held. Waldspurger 

and Weihl argue that with a scheduling quantum of 10 milliseconds a reasonably fair distribution 

can be achieved over sub-second intervals. 

A number of further abstractions are supported to form a "modular resource management" 
framework. Ticket transfers allow a process to yield its resource rights to another task, for exam- 
ple, when a process needs to block on a reply from a server. This provides a mechanism to avoid 
priority inversion. Processes may transfer parts of their tickets to multiple clients. Currencies 

and ticket inflation are mechanisms which allow a more flexible management of resource rights 
within groups of mutually trusted processes, e. g., processes belonging to a particular user. A 

unique currency can be used to express resource rights within a group of processes. Each local 

currency has to be backed by tickets in a more primitive currency, forming an arbitrary acyclic 
currency graph. This allows, for example, a user, to locally inflate tickets by creating more of 
them. Exchange rates between currencies are implicitly changed by ticket inflation. Compen- 

sation tickets may be awarded to processes which only use a fraction of their allocated resource 
quantum, essentially inflating the value of that process' allocation until the start of the next 
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quantum. This mechanism ensures that processes yielding the resource before their quantum 

expires may still receive their fair share of the resource 
A number of researchers have revisited lottery scheduling since its introduction and pro- 

posed improvements. In particular, Sullivan et al. [SSOO, SHS99] have extended the resource 

management abstractions to include multiple resources. They introduce resource specific tickets 

to provide insulation between different resources and allow applications, via ticket exchanges, to 
barter with each other over resource specific tickets. 

2.1.5 Hybrid and hierarchical schedulers 
Since designing one scheduler to accommodate both conventional and real-time tasks is difficult, 

a number of hybrid schemes have been proposed. Typically, a base scheduler is used to schedule 
both tasks and other schedulers, forming a hierarchy of schedulers. Different policies have been 

proposed for the base level scheduler, as discussed below. 

Hybrid, priority based schemes, such as the Windows NT scheduler [CJ98] or the Unix 

System V scheduler [Vah96, Chapter 51 assign higher, typically fixed, priorities to real-time 

tasks than are assigned to tasks scheduled by a conventional scheduler. This results in all real- 

time tasks being scheduled before any conventional tasks, irrespective of their importance. It 

has been demonstrated [NHNW93] that this might result in pathological behaviour in which 

run-away real-time tasks prevent users from regaining control of the system. 
Proportional-share based hybrid schemes (e. g., [BJ95, WW95, GGV96, SAWJ97, DC99]) 

deploy a proportional-share base-level scheduler. This prevents real-time tasks from monop- 
olising the resource, but potentially prevents them meeting all their deadlines in the name of 
fairness. Often, the base-level proportional share scheduler is combined with an admission con- 
trol system to guarantee a share of the resource to the set of real-time tasks. 

In reservation based schemes (e. g., [LMB+96]) the base scheduler is a classic real-time sched- 
uler allowing resource guarantees to be given to tasks. Conventional tasks are scheduled when the 
resource is not busy, i. e., after all real-time tasks have been serviced. As in priority based schemes, 
this might lead to resource starvation of conventional tasks. Alternatively, conventional tasks can 
be grouped together as one real-time "task", with a conventional scheduler scheduling processes 
within that group. While this prevents resource starvation of conventional tasks it might put an 
additional strain on the base level scheduler by introducing artificial real-time tasks. 

CPU inheritance scheduling [FS96] presents a special case of hybrid schedulers. In this 
scheme arbitrary threads can act as scheduler for other threads, allowing for a wide range of 
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policies to be implemented and spawning arbitrary domains such as processes, jobs, users, and 

user groups. Threads can donate their share of the CPU to selected threads while waiting on 

events. Donating threads can be notified if the thread it donated its CPU to does not require it 

anymore and running threads can be preempted if the donor wakes up and the CPU is given back 

to the donor thread. The authors of [FS96] anticipate that special scheduler threads exist in the 

system that donate most of their CPU time to other threads. Furthermore, each physical CPU 

has one root scheduler thread associated with it, forming the root of the scheduling hierarchy. 

However, it is unclear what overheads including multiple context switches this approach incurs 

or what influence the multiple levels of scheduling threads have on wake-up latencies?. 

2.1.6 Feedback-Driven schedulers 
Recently, researchers have proposed applying concepts from control theory to the management 

of resources in operating systems [LMB+96, BN98, SGG+99, LSTS99]. At the core, these 

systems deploy a real-time scheduler and then, using a feedback controller, adjust the resource 

allocations of processes. 
Steere et al. [SGG+99] argue that scheduling should be based on the notion of progress. 

Their feedback-driven resource allocator, implemented under Linux, monitors the progress of 

applications via symbiotic interfaces, which map application specific notions of progress to a 

uniform progress metric, and adjust the "reservation" of the applications for an RM based real- 

time scheduler so that the progress is distributed uniformly. 
The controller is the central component in their architecture. It receives feedback of the 

progress of applications via the symbiotic interfaces and dynamically assigns proportion and 
periods. The controller distinguishes between four different types of application: real-time, 

aperiodic real-time, real-rate, and miscellaneous. Real-time tasks supply both proportion and 

period while aperiodic real-time tasks only specify the required proportion. Real-rate applica- 

tions do not specify either of these but instead provide a metric of progress. Applications which 
do not provide any information at all fall into the miscellaneous category. For real-time applica- 
tions the controller does not adjust proportion and periods but treats the supplied information 

as a reservation. If the system is under significant overload it initiates a renegotiation of the 

reservations. For aperiodic real-time tasks the controller has to assign a period determining the 
deadlines for the task. If the application does not supply a progress metric a systemwide default 

5The paper only describes a prototype implementation as a user-level thread package on top of FreeBSD, thus 
definitive answers to these concerns cannot be given. 
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value is used. Real-rate tasks are the main subject for the controller since they do not specify 
their resource requirements but have requirements on the achieved throughput, as expressed by 

their progress metric (ranging between -1/2 and +1/2). The controller, executing in regular 
intervals, attempts to level the progress metric at 0 and uses a Proportional-Integral-Derivative 
(PID) function, commonly used in control theory, to adjust the share of real-rate application. 
The system can be overloaded, either by new real-time tasks arriving or by the adjustments of 
shares made by the controller. In this case, newly arriving real-time processes are rejected by an 
admission control system, and for other processes their allocation is squished in a manner not 
described in detail in [SGG+99]. 

The second feedback based system is FC-EDF [LSTS99, LSA+00]. Unlike Steere et al. 's 

resource allocator, aimed at general purpose operating systems, FC-EDF is targeted at dynamic, 

adaptive real-time environments and is based on an EDF scheduler. It is motivated by the 
observation that traditional real-time scheduling algorithms are mainly targeted at static envi- 
ronments with well-known workload characteristics. However, the authors concede that in a 
dynamic, complex system it will be impossible to meet all deadlines, without significant over- 
provisioning of resources. They therefore argue that for such systems the aim should be to meet 
as many deadlines as possible and propose to use a control theoretical framework to meet this. 
The aim of which is to minimise the deadline-miss ratio, i. e., the percentage of tasks that miss 
their deadlines6. In soft real-time environments a small percentage of missed deadlines is ac- 
ceptable, especially if it yields significantly higher resource utilisation. In FC-EDF, a controller 
periodically monitors the deadline-miss ratio (controlled variable) and compares it with a prede- 
fined acceptable value (set or reference point). The controller then uses a control function, again 
PID, to determine by how much to change the overall requested CPU utilisation OCPU(t) 
(manipulated variable). This is done to minimise the error between controlled variable and set 
point. 

FC-EDF uses two different mechanisms to adjust the requested CPU utilisation (actuators). 
First it attempts to accommodate the change OCPU(t) within the existing task set by changing 
the modes of operation of the existing tasks - the service level controller. This is facilitated 
by the assumed task model borrowed from the imprecise computation model [LLS+91] which 
describes a task as a tuple of vectors referring to the different modes of operation, their resource 
requirements, and their value to the user - essentially defining a discrete utility function. If 
the service level controller cannot accommodate the entire requested change, ACPU(t), by 

6The task model used assumes that tasks only have a single deadline - processes with periodic deadlines are 
modelled as periodically arriving tasks. This definition of a task is common in the real-time literature. 

28 



changing the modes of operation of existing tasks, the admission control system, as the second 

actuator, is instructed to take the remaining change into account when performing admission 

control for newly arriving tasks. 

2.1.7 Discussion 

In this section a wide range of differing scheduling algorithms have been presented. For a general 

purpose resource management framework, as proposed in this dissertation, all these approaches 
have their shortcomings. 

Priority based schemes are problematic for soft real-time applications, such as multi-media 

applications, as they specify what to schedule and not when and how much [Pra97]. Assigning a 
high priority to an application which requires only a small amount of a resource, albeit in a timely 
fashion, requires these applications to be trusted as high priority applications may monopolise 

the resource [NHNW93]. Furthermore, in order to provide predictable resource allocations, 

global knowledge about other application's priorities and behaviour is required. 
The first problem of high priority processes is addressed with proportional fair schedulers - 

they ensure isolation between processes by making sure that they make progress at a defined rate 
(proportional to their weight). However, in order to provide predictable resource allocations 

some global knowledge, namely the sum of weights of all processes, needs to be known and 

controlled. Furthermore, with most proportional fair scheduling algorithms it is difficult to 

achieve the timely allocations of resources, that are required by some applications, such as digital 

audio applications [JR00] or soft modems [JSO1]. These types of applications typically require 
real-time scheduling algorithms. Proportional fair share schedulers only provide upper bounds 

on the timeliness of allocations, typically dependent on the number of active processes and/or 

the sum of weights. 
Both priority based and proportional fair scheduling algorithms manage resource "magi- 

cally"; they do not provide any feedback to applications when resource allocations are changed 
(a notable exception is SMART, which provides a notification mechanism informing applica- 
tions when deadlines cannot be met - this, however, is a fairly coarse grained feedback). The 

consequence of this "behind the scenes" approach is that those applications which can adjust 
their resource demand, can only do so after they have experienced unexpected performance 
degradation due to insufficient resources, rather than being able to avoid undesirable side-effects 
by proactively adjusting their behaviour. 
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In contrast, reservation based scheduling algorithms, borrowing heavily from hard real-time 

scheduling algorithms, provide firm guarantees about resource allocations. While this offers 
predictable performance to applications it requires an admission control system to ensure the 

guarantees. Processes requiring more resources or processes arriving late may be rejected. Fur- 

thermore, simplistic implementations of an admission control system provide no incentive to (1) 

not reserve a large amount of the resource, e. g., peak-rate, and (2) adjust an existing reservation 
if other processes may benefit from it. 

Feedback driven schedulers have been proposed as a solution to the problems related to reser- 
vation based systems. A feedback controller periodically observes the system, and dynamically 

changes the resource allocations of active processes. However, one might argue that processes 
should be notified when their resource allocations are changed, i. e., feedback based systems again 
manage resource magically behind the scenes. Furthermore, for the controller to be able to adjust 
the overall systems applications have to provide either a metric for their progress or a detailed 

model of their modes of operation. It is unclear, especially for the latter, if this is feasible is a 
general purpose operating system environment. 

2.2 QoS Architectures 
With the increased interest in multi-media applications and their significant demand for more 
than one resource, many researchers have proposed QoS architectures. These are often con- 
cerned with providing QoS end-to-end, i. e., including all resources required by an application. 
QoS architectures are typically structured in layers (e. g., network layers, OS layer, application 
layer). At each of these layers QoS specifications describe the resource demands of the application 
and the QoS architecture provides a QoS mapping mechanism to translate higher level specifica- 
tions to lower level ones with the aim of freeing the user from representing applications' resource 
requirements in lower level, system terms. In terms of system resources, QoS architectures typ- 
ically operate with resource reservations in order to provide resource guarantees or contracts to 
the higher layers. Resource reservations are combined with admission control and, often, with a 
mechanism for contract renegotiation. 

The following sections introduce a number of different QoS architectures that aim to pro- 
vide end-to-end QoS management. A good survey and a generalised framework is presented in 
(ACH98]. 
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2.2.1 The QoS-A model 
The Lancaster University Quality of Service Architecture (QoS-A) [CCG+93, CCH94, BCC 94] 

is a layered architecture which uses a modified version of the Chorus microkernel [CBRS93] 

to provide QoS support in the end-systems and an experimental ATM testbed to provide net- 

work connections. The key abstractions in QoS-A are flows which characterise the production, 

transmission, and consumption of multimedia data streams; service contracts which are agree- 

ments about a resource allocation between users and providers; and flow management which 

encapsulates monitoring and maintenance of service contracts. 
The main contributions of QoS-A are the definition of a comprehensive architecture for 

QoS management and the definition of interfaces between the components of the architecture 
[CCH94]. This interface, for example, allows the specification of a flow's QoS requirements 
to the lower level of the system in terms of bandwidth requirements, delay, loss and jitter. In 

addition to these flow characteristics, a request for the establishment of a flow also indicates 

the level of commitment required from the provider (e. g., deterministic, probabilistic, or best- 

effort). This information is used for an admission control test [BCC+94]. Also encapsulated 
in the flow specification is information about different adaption options for the flow. This 

information is used for contract renegotiation in the event of changes in the system load. The 

authors envisage that users or application programmers can specify flow QoS requirements in 

terms of high level, commonly used channel types, such as "Standard Video", and a QoS mapper 

service would convert these to specifications for the next level down. Then for each further level, 

QoS specifications are mapped to the next level down. Unfortunately, no details are provided 
on how this mapping is implemented and how the overall system performs. 

2.2.2 QualMan and OMEGA 
OMEGA [NS96, NS951 and its successor QualMan [NhCN98] aim at providing end-to-end 
QoS. OMEGA presumes that each individual resource in a distributed system, e. g., network and 
OS resources, is able to provide service guarantees or has real-time facilities and OMEGA aims 
at integrating these into a networked multimedia system. OMEGA's key component is the QoS 
Broker [NS95] which runs on each of the end-systems. QoS brokers either operate as buyers, if 
they wish to establish a connection with another end-system, or as sellers, if they are contacted 
by another end-system. The communication between brokers is performed using a QoS Broker 

protocol, which is modelled in layers, in a similar way to network protocols, compromising an 
application layer (or subsystem) and a transport subsystem. Both of these make use of the OS 
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resources in the end-systems and the QoS broker additionally translates the higher level resource 

requirements at each layer to the OS resources. 
OMEGA translates QoS specifications between four different QoS views: User (e. g., TV 

quality video), application (e. g., 20 frames per second (fps)), system (e. g., 10'ms of CPU cycles 

every 50ms) and network (e. g., 10Mbits/s of bandwidth). The mapping from user (or percep- 

tual) QoS to application level QoS specifications are performed by a tuning service, allowing 

users to specify QoS using their senses. The user can adjust application QoS parameters, such 

as frame rate or picture size of a sample audio/video clip using a simple set of sliders. The slider 

values encode application QoS parameters, such as sample size, sample rate, period between 

samples, and end-to-end delay, for periodic uncompressed data streams and Constant Bit Rate 

(CBR) data (on which the prototype is focused). The authors realise that this mapping from 

perceptual QoS to application QoS is non-trivial and still an open research issue. Application 

QoS parameters are then translated by the QoS broker into network (e. g., packet size, packet 

rate) and system (e. g., task priorities and periods, and buffer space requirements) QoS parame- 

ters using fixed bidirectional mappings. Admission control is performed using these translated 
QoS specifications using a number of admission tests, first at the end-systems for the application 

subsystem (both seller and buyer) and then for the transport subsystem. The admission test 

also accounts for time dependencies of the tasks and streams. Admission control is actually per- 
formed as a form of negotiation with three possible results: accept, reject, and modify. The latter 

case caters for the situation where a subsystem may be able to suggest different QoS parameters 

to achieve the same higher level QoS specification, which is why bidirectional translation be- 

tween different specifications is used. QoS parameters are renegotiated periodically, where only 

one parameter can be changed per negotiation. 
QualMan is the successor of OMEGA and addresses some of the lessons the authors learned 

from OMEGA. In particular, the QoS Broker is split up to move some of its functionality closer 

to the individual resources. In QualMan each resource has a broker associated with it, which 

accepts system level QoS requests (e. g., CPU reservations in the form of period and utilisation) 

and performs its own admission control. However, there is still a central QoS Broker which 
performs QoS translation and negotiation as in OMEGA. In QualMan, the QoS translation 

can be aided by a probe-based system for estimating system QoS parameters [NHK96] which, 
during the negotiation phase, determines the statistical resource requirements for media streams. 

7The paper also seems to suggest that applications may request system level QoS directly from the resource 
brokers. However, the authors also argue this may result in a deadlock situation when applications request and are 
directly granted resources in a different order. 
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[KN97] describes a mechanism for how these estimates can be used for admission control and 

to determine CPU scheduling parameters for Variable Bit Rate (VBR) MPEG video streams. 

In general, both OMEGA and QualMan do not seem to address the issue of resource re- 

vocation, thus exhibiting similar problems to reservation based systems (see section 2.1.3). In 

both architectures, admission control seems to be performed on a first-come first-served policy, 

placing a disadvantage on clients arriving later, and neither architecture seems to include mech- 

anisms to provide clients with an incentive to reduce their resource demands or to even choose 

the appropriate QoS parameters, given the overall system utilisation. 

2.2.3 Q-RAM 

The Q RAM model [LLS+99, LLRS99, RLLS98, RLLS97], developed in the context of re- 

source kernels [RJM098, OR98], strives for an optimal allocation of multiple resources to con- 

current adaptive applications, which can operate at different levels of quality. In order to achieve 

this aim, the authors introduce a general model, which, unlike many other systems, encapsulates 

the notion of the end-user's utility. 
The model assumes a set of applications T,, and a set of shared system resources R71. Each 

application i has a number of application specific quality dimensions (e. g., picture format, colour 
depth, frame rate, etc) Qid;. These quality dimensions define a di-dimensional space Qi of 

quality points. Each application has associated with it a task profile which is partially populated 
by the application developer and partially by the user. The application profile contains: the 

quality space, Qi; a quality index, which is an ordering of quality points, where the order is 
defined by a "better than" relation; a utility function, which could be defined as the weighted 
sum of per quality dimension utility functions; and a resource profile, that defines a relation 
between potential allocation of resources and quality points. A user can also specify minimum 
QoS requirements in terms of minimum quality values along each dimension. 

The aim of this model is to maximise the system utility, defined as the (weighted) sum of 
application utilities under the constraints of limited resources and the resource profiles. It has 
been proven that even the optimisation problem considering a single resource and a single qual- 
ity dimension is an NP-hard problem, and therefore, so are more complex allocation problems 
involving multiple resource and/or multiple quality dimensions [Lee99]. However, in [RLLS98] 

a practical solution to this problem is presented under the assumption of a concave utility func- 
tion, while [LLRS99] relaxes this assumption and presents an optimal and two near-optimal 
algorithms (one with a bounded distance from the solution and one with a user-specified dis- 
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tance from the solution). The results suggest that the first of the near optimal solutions is close 

to the optimal solution and has feasible run-times for use on-line. 
This theoretical solution has some practical considerations. First, it is infeasible to expect 

the user to specify utility values for all possible quality points along all quality dimensions (an 

example application of a video phone can have tens of thousands of quality points). However, by 

presenting a number of sample single dimensional utility functions, the user only has to specify 

a few points out of this vast space. [Lee99] presents an example user interface for the above 

mentioned video phone application. 
The second main issue is that the optimisation problem requires knowledge of the relation 

between resource allocation and quality points. Unfortunately, the authors do not provide de- 

tails on how this relation can be constructed. This task is especially difficult as the resource 

requirements for a given quality point may vary dramatically over time and are also machine 
dependent. 

The third issue is that of interfaces. Since the authors assume a centralised entity to perform 

the optimisation problem, the user, application, and resource profiles need to be communicated 

to the entity performing the optimisation. Again, these are not specified in more detail. 

2.2.4 AQUA 

AQUA is an architecture which focuses on providing QoS in the end-system, aiming in partic- 

ular at multi-media applications [LY96, LYF97]. Each resource in AQUA is associated with a 

resource manager which includes policies for scheduling, admission control, and resource reser- 

vations. Applications use a QoS specification library to specify their resource requirements for 

each resource. Applications may omit some resources if the demand is not known in advance. 
Each application also has an application level QoS manager which interacts with the resource 

managers and adjusts the application's resource requirement. And finally, a QoS adaption library 

is provided to facilitate the cooperation between resource managers and QoS manager. 
AQUA uses a uniform QoS specification for all resources. This specification includes an 

application class (CBR, VBR, or, Available Bit Rate (ABR)); a rate range over which resources 
should be allocated; a delay range, specifying the maximum delay of resource allocation ac- 
ceptable; and an optional payload, specifying the quantity of the resource required. The QoS 

manager takes the specification and makes resource requests to the resource managers. The re- 
source managers measure the resource consumption over an averaging interval and feed these 
values back to the QoS managers. The QoS manager then compares the received QoS with the 
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desired QoS and adjusts the resource demand based on application specific policies. Further- 

more, the resource managers can also request, again via the QoS manager, that an application 

changes its resource demand when the overall resource demand changes. Admission control and 

adaptation requests are based on averaged resource utilisation and the authors have evaluated the 

system for one resource, namely CPU, using a trace driven simulation. 

2.2.5 Discussion 

In this section a number of QoS architectures have been introduced, most of which use some 
form of layering to free users and application programmers from having to directly specify re- 

source demands for each individual resource. The three main challenges in this area are then 
(1) the mapping of QoS specifications between the different layers; (2) dealing with admission 

control and resource renegotiation under changing resource availability; and (3) the definition 

of appropriate APIs which allow for both the specification of application-domain specific QoS 

requirements and the interaction between the different layers. 

The mapping of QoS specifications is non-trivial both for multimedia applications and server 

applications, although most of the work on QoS management has focused on the former. The 

resource demand for individual work units, such as decoding a frame of an MPEG encoded 

video stream, are highly variable, depending, for example, on the encoding and the content 

of the stream. The authors of [BMP98] report a factor of three difference in decoding times 
between different frames of the same MPEG encoded video. Should the mapping take the peak 

or the average decoding times into account when determining the resource demand? Similar 

problems arise in server applications, where, depending on the type of request, it is difficult to 

predict how much of which resource is required to serve an incoming request. Thus, reliably 
deriving concrete resource allocations from high-level descriptions such as desired frame-rate or 

requests per second is still an open research issue. I argue that, for these types of application, 

some form of feedback based approach is more promising than attempting to establish static 

mappings between application QoS specifications and resource demands. From the described 

systems, only AQUA appears to advocate providing feedback to applications. 
The second problematic area with the described QoS architectures is related to admission 

control. Most of the architectures require an admission test for a task's translated QoS require- 
ments in order to provide QoS contracts to applications and suggest resource renegotiations 
should the general resource availability change. However, most architectures seem to deploy a 
simple, but unfair, first-come first-served policy for admission control and do not seem to pro- 
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vide applications with an incentive to adjust their resource demands when resource availability 
changes. Unless the QoS mapping is performed by a central entity, i. e., the resource request can 
be trusted, and applications are required to provide alternative modes of operation, the applica- 
tions or users have very little incentive to not simply request the best individual QoS achievable. 
In this respect, Q-RAM is certainly the most advanced approach. By taking the user and appli- 
cation utility into account, Q RAM can find an optimal allocation of resources and make the 

correct trade-offs should the resource availability change. However, it is unclear what incentive 

users have to truthfully reveal their utility functions. Furthermore, Q -RAM also requires a full 

specification of resource demands for different modes of operation which raises the same prob- 
lems as those discussed with QoS mapping. For Rialto, a similar user-centric approach has been 

proposed [JLDB95], however, their resource planner is not described in detail and is considered 
as future work. 

The construction of appropriate APIs is a third problematic area. Depending on the QoS 

architecture, the APIs need to both support the declaration of application-specific QoS specifica- 
tions and enable the communication between the different layers of the architecture. While this 
is mainly an engineering effort, it is non-trivial given the complexity of the QoS architectures 
described above. Part of the complexity of the APIs can be found in the centralised approach 
advocated by most QoS architectures, as they require the explicit specification and communica- 
tion of QoS requirements to the central QoS manager. This communication to a central entity 
may also prevent frequent renegotiation of QoS contracts. 

2.3 General operating system issues 
The previous two sections covered approaches on how to manage resources in an operating 
system, both at the lower level through scheduling algorithms and at a higher level through QoS 

management architectures. In addition, the general structure of an operating systems may also 
have a significant impact on the way resources are managed. In this section some of the issues 

related to this impact are discussed by describing a number of example systems. 
The discussion starts with an overview of the Nemesis operating system which probably 

presents the most radical approach (section 2.3.1). This discussion of Nemesis is of particular 
significance in the context of this dissertation as one of the main evaluation systems for the 
decentralised architecture is based on Nemesis' key abstractions. Sections 2.3.2 to 2.3.4 then 
discuss three other approaches for retrofitting more advanced resource management concepts 
into existing systems. 
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2.3.1 Nemesis 

The Nemesis operating system [LMB+96] was designed and built from scratch (mainly at the 
Computer Lab, Cambridge University) to offer genuine support for multimedia data stream 

types by providing QoS guarantees for all shared resources. In more traditional operating sys- 

tems a significant amount of resources are consumed anonymously, i. e., unaccounted for, be- 

cause a significant proportion of code is executed in the kernel, or in shared servers, on behalf 

of processes. In a multimedia operating system this may lead to an undesired effect, termed 

QoS-Crosstalk, where one process could influence the performance of other processes by causing 

contention for shared resources. In Nemesis, this problem has been addressed by multiplex- 
ing shared physical resources only once and at the lowest possible level, facilitating accurate 

accounting of resource consumption. The resulting operating system is vertically structured 
[Bar96], with most of the functionality usually provided by traditional operating systems instead 

of being executed by the applications themselves, implemented as user-level shared libraries (see 

figure 2.1)8. 
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Figure 2.1: Nemesis: A vertically structured operating system 

The task model in Nemesis distinguishes between three entities: Scheduling Domains (SDOMs), 

Activation Domains (ADOMs), and Protection Domains (PDOMs). SDOMs are entities the 

scheduler allocates the CPU resource to. Each SDOM contains one or more ADOMs which the 

scheduler explicitly activates via scheduler activations [ABLL92]. Usually there is a one-to-one 

'T'his structure is comparable to Exokernel systems (KEG+971, though the motivation behind the design is dif- 
ferent. The principal motivation for the Exokernel design was to allow applications to optimise the implementation 

of various system components using application-specific knowledge. 

37 



mapping between SDOMs and ADOMs, forming the closest equivalent to a "process" in more 

traditional operating systems. Hierarchical scheduling schemes can be formed by associating 

more than one ADOM with an SDOM, with the SDOM scheduling its ADOMs. Furthermore, 

it is also conceivable, though not implemented, that one ADOM is associated with more than 

one SDOM allowing for flexible combinations of resource allocations and executions. PDOMs 

are the entities on which memory protection is enforced. They form the closest equivalent to an 

address space in a multiple address space operating system. 
Nemesis provides QoS guarantees for the following resources: CPU [LMB+96], memory 

[Han99b], I/O devices such as the network interface [BBDS97] and disk drives [Bar97], the 

audio device[Ree98], and framebuffer devices [Bar96]. Processes can make reservations for the 
CPU in the form of a slice of s nanoseconds per period p nanoseconds which are then scheduled 

using the Atropos scheduler. For memory, individual processes can request ranges of virtual 

memory which are guaranteed to be backed by a specified number of physical pages. Processes 

are then responsible for their own virtual memory management. Device drivers for I/O devices 

are implemented as privileged, user-level processes which register interrupt handlers with the 

system. The interrupt handler typically only clears the interrupt condition, and sends an event to 

the device driver process, effectively decoupling interrupt notification from interrupt servicing. 
The device driver process only implements infrequent out-of-band management functions and 

performs a single de-multiplexing function for the hardware device (e. g., packet filtering for 

network devices)10. I/O requests are scheduled using the Atropos scheduler which is also used for 

CPU scheduling. All higher level functionality, such as network stack processing, is performed 

at the user level, utilising (shared) libraries. Similarly, processes own individual pixels or regions 

of pixels of the framebuffer device and all higher level drawing primitives are performed by the 

processes themselves. Again, protection and access control is managed by the device driver. 

As a result of this OS architecture, most activities typically performed by an operating system 
kernel are instead performed by the applications. Thus, virtually all resources consumed can be 

accounted to individual processes and processes can request guaranteed, absolute shares for each 

resource. In a recent paper [NMO1] we have illustrated how this accurate accounting can be 

9It is worth pointing out, that the current version of Nemesis only supports the one-to-one mapping of ADOM, 
SDOM, and PDOM. However, Neil Stratford once extended this implementation to include almost arbitrary 
mappings. Unfortunately, this was never included in the mainstream Nemesis source tree [Str98]. 

'°With appropriate hardware support, as provided, for example, by some network cards, de-multiplexing can be 

mainly performed in hardware, thus reducing the resources needed by the device driver. A software mechanism, 
known as call-privs [BBDS97, Bar96], also allows some of the dc-multiplexing costs to be accounted to the clients. 
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extended to account for battery energy consumption by individual processes as a necessary step 

towards energy management in mobile devices. 

The Nemesis base system includes a complete windowing system, network stack function- 

ality, and simple file system access, implemented mainly as user-level shared libraries. Using 

this base system we have developed a set of shared libraries providing a Unix-like API, al- 
lowing a range of unaltered Unix applications to be used with Nemesis [NBOO, NDH+99, 

ND99, NB98]. This Unix personality also includes support for the X-Window client API X1 ib 

[NH99]. 

2.3.2 Resource Containers 

Resource containers [BDM99], developed at Rice University, attempt to provide advanced re- 

source management mechanisms in general purpose operating systems but are specifically tar- 

geted at large-scale server systems. The key observation is that in traditional operating systems 

processes are both protection domains and resource principals, i. e., entities to which resource 

are allocated and accounted. This creates a mismatch between the requirements of large-scale 

server applications, where individual activities, such as servicing a client's requests, may require 

the participation of multiple processes and individual processes may service requests from mul- 

tiple clients. The resource container work addresses this mismatch by separating the concept of 

protection domains from that of resource principals, to enable fine grained and robust resource 

management in server operating systems. Resource containers are the entities to which resources 

are allocated (comparable to Nemesis' SDOMs). Actual work is performed by activities, which 
may spawn multiple threads in different protection domains, and which are dynamically bound 

to a resource container. Resources consumed by an activity are accounted to its current resource 
container. 

The resource container abstraction also addresses the problem with monolithic kernel de- 

signs that a significant amount of resources can be consumed by the operating system kernel 

and often are not accounted to the activity causing the resource consumption. A well publi- 
cised example is the network subsystem, especially for receiving packets from the network. In 

traditional operating systems, such as most UNIX flavours, incoming network traffic processing 
is interrupt driven: the arrival of a packet is signalled by the card through a hardware inter- 

rupt. The interrupt handler receives the packet from the card and, after some minimal hardware 

specific processing, puts it into a protocol specific input queue before scheduling a software in- 

terrupt. In the context of the software interrupt handler all the protocol processing is performed 

39 



before the processed data is placed into a per socket queue from where user programs can re- 

trieve the data. There are two main problems with this approach. First and foremost, as the 

interrupt handlers are executing at a higher priority than any user level program, a system can 
livelock under heavy load with all CPU resources being spent on processing incoming network 

traffic -a phenomenon termed Receive Livelock [MR97]. Secondly, CPU resources spent on 

processing incoming network traffic is largely accounted to whichever process is executing at the 

time of the interrupt handler execution rather than to the recipient of the network packet. To 

tackle the receiver livelock problem, Mogul & Ramakrishnan in [MR97] proposed switching 
between interrupt driven mode and polling under heavy network loads. The resource container 

prototype uses an alternative technique, called Lazy Receiver Processing (LRP) [DB96], which 

tackles both problems by de-multiplexing incoming network traffic into separate queues as early 

as possible (either in hardware or in the hardware interrupt handler) and then performs protocol 

processing in the context of and with the priority of the receiving process or resource container. 
Essentially, LRP can be seen as an implementation of Nemesis' general device driver architecture 
[Bar96] in the context of a monolithic operating system kernel. 

The authors of [BDM99] have implemented resource containers in the context of FreeBSD 

and Digital UNIX 4. OD for CPU scheduling and network interfaces. However, they stress that 

resource containers are a generic abstraction or mechanism which also allows for the accounting 

of other resources. For example, cluster reserves [ADZOO] extend the notion of resource contain- 

ers to clusters of commodity PCs used as web server farms. Resource containers on individual 

cluster nodes are associated with cluster reserves in order to achieve performance isolation be- 

tween different services hosted by the cluster. [CAT+01] describes a similar system, however, 

with the primary aim of managing energy consumption in server farms. Resource containers are 

used to account energy consumption to individual customers of a server farm. [ZFE+01] uses 

the resource container abstraction to account for battery energy consumption in mobile com- 

puting devices. Energy consumed by an activity is accounted to its associated resource container. 

2.3.3 Resource Kernels 

The resource kernel work [RJM098, OR98] is built on and significantly extends the earlier 
work on processor capacity reserves [MST94] which only addressed CPU resources. Instead, 

resource kernels present an overall resource-centric approach in order to support real-time and 
multi-media systems where multiple applications with different timing constraints are executed 
concurrently. 
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Resource kernels provide a unified abstraction for time based resource reservations. A re- 

source request consists of explicit and implicit parameters. The explicit parameters specify the 

nett usage of the resource in terms of computation time, C, every T time units, timeliness 

requirements in terms of a deadline D and starting time S, and the lifetime L of a resource 

allocation. The implicit parameter B (blocking factor) is used to place an upper bound on 

the priority inheritance protocol used to prevent priority inversion. The resource reservation 

abstractions also distinguish between hard, firm, and soft reservations. Processes with hard reser- 

vations are only allowed to use their resource reservations of C within T time units and will not 

receive any additional resources. Processes with firm reservations may use extra resources only if 

all other reservations have been satisfied. Processes with soft reservations may receive additional 

resources even if not all reservations have yet been satisfied. 
This unified resource model is used in a prototype for both CPU and disk bandwidth. For 

CPU scheduling a fixed priority scheme based on either deadline or periods (for either an RM or 
EDF style scheduler) is used with a custom admission control test which takes the exact schedule 
into account. For disk scheduling an EDF based scheme, called just-in-time scheduling, is used. 
For higher level resource management policies, the authors refer to the related work on Q RAM 

(see section 2.2.3). 

In comparison with the two systems described previously, it is unclear how resource kernels 

deal with accounting of resource consumption to activities, in particular, considering its im- 

plementation in an micro-kernel environment, where considerable amounts of resource may be 

consumed in server processes on behalf of client processes. However, considering the resource 
kernel work is based on Processor Capacity Reserves [MST94] which uses the reserve kernel 

abstraction to track reservations independently of threads, it may be assumed that a similar 
abstraction is deployed in resource kernels. 

2.3.. 4 Eclipse 

Eclipse aims to provide support for soft real-time, multimedia, and server applications. The 

most recent variant of Eclipse, referred to as Eclipse/BSD, is based on FreeBSD [BBG+99c, 

BBG+99a, BGSS99], an earlier version was based on Plan 9 [BGÖS98]. Eclipse/BSD provides 
QoS guarantees to selected applications for CPU, memory, disk, and network resources through 

resource reservations. A resource reservation determines a fraction of a resource exclusively set 

aside for use by one or more processes. An admission control check ensures that all resource 
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reservations can be met. Applications can sub-divide their reservation hierarchically, e. g., assign 

sub reservations to individual tasks or clients. 
Applications access the reservation subsystem through a special filesystem mounted as /reserv. 

The top-level directory of this filesystem contains a directory for each of the physical resources. 
Subdirectories of these directories represent resource reservations. Each reservation directory 

r contains a file containing two values: a minimum absolute value mT of that resource and a 

weight 0, which is is share of its parents resource reservation. An admission control test ensures 

that the sum of minimum resources of child reservations is less than or equal to the minimum 

resource of the parent reservation. Resource reservations which can not have children are called 

queues and a resource reservation may contain multiple queues. Queues are the entities on which 

scheduling decisions are made and to which consumed resources are accounted. Each process 
is associated with a reservation domain which is a list of a process' root reservations, one for each 

resource. Each root reservation contains a default queue and system calls are provided to change 

the queues. This allows processes to execute different work items for different "activities". Reser- 

vation domains are accessible through FreeBSD's /proc filesystem. By default, child processes 
inherit the reservation domain of their parent process. However, the user or parent process can 

create new reservation domains for child processes by assigning new root reservations to the 

child's reservation domain. These root reservations have to be descending from the parent's root 

reservations. 
The /reserv interface provides a flexible abstraction for making and managing resource 

reservations. Internally, resources are scheduled using proportional share scheduling algorithms. 
CPU is scheduled using Move-To-Rear List Scheduling (MTRLS) [BGOS97], a virtual-time 
based scheduler with special support for processes blocking on 1/0 operations. Disk bandwidth 

is scheduled according to YFQ [BBG+99b], another virtual-time based scheduling algorithm. 
Outgoing network traffic is scheduled using WF2Q [BZ96] while incoming network traffic is 

managed similarly to the LRP approach deployed in the resource containers implementation. 

Unfortunately, the mechanism for memory reservations is not described in the Eclipse publica- 

tions. 

2.3.5 Discussion 

Recent work on general operating system resource management issues has been motivated by 

the desire to support either soft real-time, multimedia applications, or server applications. Both 

application scenarios require performance isolation between, and QoS guarantees for, concurrent 
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"activities". In the most general case, activities are units of computation for which an application 

wishes to perform separate resource allocation and accounting. Thus, activities can be equivalent 

to traditional processes or groups of processes, or may be independent of processes, e. g., related 

to client requests in a server application. 
Two different approaches for achieving isolation have been presented. Isolation can either be 

achieved through the general operating systems structure, as in the case of Nemesis, or through 

the introduction of new abstractions in existing operating systems, such as resource containers or 

reservation domains in Eclipse. While the former approach is certainly more radical, the latter 

provides better support for legacy applications, possibly at the expense of achievable accuracy of 

resource allocations. 
QoS guarantees are typically provided in the form of resource reservations supported by real- 

time scheduling algorithms. This typically allows better control over the timeliness requirements 

of multi-media applications. However, proportional-fair scheduling algorithms may also be 

deployed, especially if the resource shares are policed by an admission control test. In general, the 

systems discussed only provide fine grained control over resource allocations for some resources 
(Nemesis being the notable exception). While this is usually sufficient for most applications, 
it raises the concern that contention for an "unmanaged" resource, e. g., virtual memory, may 

significantly impact the resource guarantees provided for other resources. 
The main difference between the systems discussed is the granularity at which activities are 

defined. Resource kernels seem to simply map activities to processes, while the other three sys- 

tems (and others, e. g., activity objects in Rialto [JRR97]), provide mechanisms for similar flexi- 

bility for defining activities independently of other OS abstractions, such as protection domains. 

This is very important for the more general problem of resource management. 
In general, it has to be stressed that accurate accounting of resource consumption to enti- 

ties specific to a particular application domain is the key to the ability to manage and control 

resources for that application domain. 

2.4 Summary 
This chapter has provided background on resource management in operating systems. The 

general task of managing resources can be divided into two parts: deciding how resources should 
be allocated to competing consumers and the actual multiplexing of resources, e. g., deciding 
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which task to allocate a resource to next for time based resources. The former is referred to as 

policy and the latter as mechanism"" 
Some scheduling algorithms, e. g., traditional scheduling algorithms used in general purpose 

operating systems and, to a lesser degree, proportional fair share algorithms, implement both 

mechanism and some policy. As a result, it is more difficult to control timely resource allocations. 
Real-time schedulers, typically used in reservation based systems, provide much better control 

over the multiplexing of resources. However, they require a separate entity, e. g., an admission 

control system or a QoS manager, to implement resource allocation policies. 
Policies implemented in conjunction with reservation based systems should provide con- 

sumers with an incentive to make reservations over the appropriate amount of resource. What 

is appropriate depends both on the user preferences and the general resource availability. Since 

both may change over time, consumers also need to be given an incentive to renegotiate their 

resource reservations. Unfortunately, very few systems provide these incentives and they imple- 

ment very simplistic policies. 
The second issue is that most QoS architectures are centralised in order to manage multiple 

resources, which are typically scheduled independently of each other by the operating system. 
The centralised approach raises the problem of designing suitable APIs, and also requires applica- 

tions to provide explicit, often high-level, specifications of their resource demand. Furthermore, 

it is a non-trivial task to map these QoS specifications to low-level scheduling parameters. 
Finally, most approaches to resource management discussed in this chapter, both QoS ar- 

chitectures and scheduling algorithms, fail to involve the application in the management of 

resources. Scheduling algorithms may "magically" shift resource allocations without notifying 
the consumers. QoS managers, once a resource contract has been established, typically do not 
provide feedback to applications, although these applications may be able to choose different 

resource allocations to satisfy the same level of user perceived QoS, e. g., by trading resources 

against each other or by correcting an initially overly pessimistic resource estimate. 
These issues will be revisited in section 4.6 which discusses how they are addressed by the 

decentralised resource management architecture. 

Note, that multiplexing itself also contains some element of policy. However, this "policy" is typically well 
defined and enforces low-level resource access. The main policy decisions in resource management are concerned 
with the amount of resources consumers receive and to deal with changing resource availability. 
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Chapter 3 
Pricing computational resources 

This chapter provides background information on general economic models and their applica- 

tion to the management of computational resources. It also describes related work, especially 

related work on congestion or shadow pricing as has been proposed for use in communication 

networks. Initially, some very basic economic models are introduced. These models are then 

used to describe, in more detail, specific mechanisms for establishing prices. Finally, how these 

mechanisms can be applied to establish prices for computational resources is discussed. 

In economics the area which is primarily concerned with the process of allocating scarce 

resource and the establishment of prices for commodities is called microeconomics. The basic 

model used in microeconomics is that of a market where demand and supply determine the price 

of commodities. Demand denotes the quantity of a commodity that buyers, given a certain 

price, are willing to purchase; correspondingly, supply is the quantity of a commodity sellers 

are prepared to sell at each possible price. In general, the higher the price, the fewer buyers are 

willing to purchase a commodity, while more sellers are inclined to sell the commodity, and vice 

versa. This relationship is typically expressed in terms of supply and demand curves such as 
depicted in figure 3.1(a). 

From the figure it is clear that, at high prices there is an excess of supply while at low prices 
there is an excess of demand. However, at some intermediate price the quantity demanded 

equals the quantity supplied and the market reaches an equilibrium at a price known as the 
equilibrium price or market clearing price (marked P in the figure). In economic theory, an 
ideal market will converge to this equilibrium point and stabilise although buyers and sellers are 
acting independently of each other and pursue their own interests. One often cited aim for such 
markets is to achieve Pareto optimality: an allocation of resources where no-one can be made 
better off without someone else being made worse off. 
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While some researchers have proposed deploying variations of this basic model for allocating 

computational resources in distributed systems (e. g., [CT93, WHH+92, We196]), the model is 

unsuitable for deployment as a system for resource management in an operating system. The 

model assumes a large number of buyers and sellers with none being powerful enough to indi- 

vidually have an impact on the market. In an operating system there is typically only one seller 

per commodity and a small number of buyers (processes). Furthermore, the supply of com- 

modity is limited - processor capacity, network bandwidth, physical memory, etc. are typically 
fairly scarce resources with individual consumers easily being capable of consuming the entire 

capacity. Thus, the conditions of an ideal market and perfect competition are not given. 

Quantity 

(a) Supply and Demand 

Quantity 

(b) Fixed Capacity 

Figure 3.1: Supply and Demand - The Basics 

Quantity 

(c) Congestion Prices 

However, since the operating system is in control of the supply side of commodities, a re- 

source controller could still model the behaviour of sellers in an idealised market. This leads to 

the model described in [MV95b, MV96] in the context of pricing schemes for the Internet. As 

argued above, computational resources are of fixed capacity, thus the supply of the commodity 
is fixed. If the price for this commodity is high, users would consume less of it and, conversely, 
if the price for the commodity is low, users are assumed to consume more of it. Thus, the price 

should be determined by the demand for the commodity. This, again, can be depicted as supply 

and demand curves (see figure 3.1(b)). The graph shows two different demand curves (D1 and 
D2) for different levels of demand. The supply curve is fixed as the capacity of the resource is 
fixed. As in the previous model, the optimal, market clearing price is where the demand curve 

crosses the supply "curve", resulting in the two prices P1 and P2 for the two levels of demand. 

In [MV95b] a third pricing model is presented. Assuming that a shared resource of fixed 

capacity is only lightly loaded then one user increasing its share slightly does not create any 
additional cost. If, however, the resource is utilised close to capacity, that marginal increase 

Marginal cost 
at congestion 
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may impose an unreasonably high cost on the other users in the form of delay or exclusion. 
In economic terms this congestion cost is an "externality", a phenomenon closely related to the 
"tragedy of the commons" [Har68] and typically shadow prices are used to cover these external 

costs. In other words, shadow prices make users aware of the external cost they impose on others. 
Suppose it is possible to determine the relationship between the utilisation and the congestion 

cost, then the marginal congestion cost of an increase of resource utilisation by one user can be 

determined. Then, as depicted in figure 3.1(c), the optimal price is when the demand curve 
intersects the curve representing the marginal cost. 

Independent of the actual mechanism of establishing resource prices one can distinguish be- 

tween prices which are based on reservations and prices which are based on actual resource usage. 
With reservation based prices, users make requests for resources and prices are established before 

actual resource consumption. While this allows the suppliers of resources to give guarantees 

that users will actually receive the resources they purchased, it requires users to estimate their 

resource requirements as accurately as possible. Conversely, with usage based prices, users are 

charged only for the resources they consume. In both schemes, prices can be based on demand; 

in reservation based schemes, the demand for a resource is expressed through the estimates while 
in usage based schemes the demand is based on actual usage. Note, that usage and reservation 
based pricing schemes can be combined into a single scheme. See section 3.2.2.2 for an example. 

In the next sections different pricing schemes for computational resources are introduced. 

These are organised into two categories: systems using market based mechanisms (section 3.1) 

and pricing schemes based on congestion prices (section 3.2). 

3.1 Market based mechanisms 
As described in the introduction, prices can be formed based on supply and demand. A common 

approach to determine market clearing prices is through auctions. A number of researchers have 

proposed deploying auction based schemes for resource allocations in computer systems, e. g., 
[MD88b, WHH+92, Bog94, MKH+96, We196, YW196]. In this section, a general overview of 
auctions is given, followed by descriptions of representative systems. 

There are a variety of different auction schemes which differ in the way clients submit bids 

and how the final price is determined. In general, one can distinguish between four major 
auction types ([Ago96] provides an excellent overview): 
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" English auction, also known as first-price, open-bid auction: Bidders submit bids with 
higher and higher prices and the highest bidder wins, paying the final price he bid. Every 

bidder knows the bids other make. 

" Dutch auction: The seller offers lower and lower prices until a buyer claims the item at 

the last offered price. Every bidder knows the bids other make. 

" First-price sealed-bid auction: Fixed bids are submitted and the highest is accepted at the 

price of that bid. Bidders do not know the bids of other bidders. 

" Vickrey Auction or second-price sealed bid auction: Fixed bids are submitted and the 
highest bid wins at a price equal to the second highest bid. Bidders do not know the bids 

of other bidders. 

A fifth category, though not normally identified as one of the four classic auction forms, is the 
Double auction. Buyers and seller simultaneously submit bids and offers, generating supply and 
demand profiles. In a particular variant of the Double auction, known as Continuous Double 

Auction (CDA), sellers and buyers simultaneously submit offers and bids and at any time a seller 
is free to accept a bid of a buyer and a buyer is free to accept an offer of a seller. CDA is widely 

used in financial markets. 
While the four classic categories represent quite different auction mechanisms it might seem 

surprising that, under certain assumptions, they result, at least theoretically, in the same prices. 
This is the case when the bidders have different private evaluations of the goods on auction, and 
behave in a risk neutral and symmetric way. If bidders have common values attached to the goods 

on auction then the English action yields the highest prices followed by the Vickrey auction; 
Dutch auction and first-price sealed-bid auctions yield similar prices. For Dutch and first-price 

sealed-bid auctions it is irrelevant if bidders have private or shared common evaluations of the 

goods because bidders behave the same as they have the same information available. For second 

price and English auctions it depends on whether the bidders are certain about their private 

evaluation or are uncertain about the common value of the goods. If bidders have independent 

private values, both auction schemes yield the same price. Furthermore, the risk characteristics 

of the bidders plays a role as well. For risk averse bidders first-price and Dutch auction result in 
higher prices. 

For establishing prices for computational resources, sealed-bid auctions have the advantage 
that they do not require any iteration and do not require clients to be active while bidding. 
All clients submit their bids and the highest bid wins. Both English and Dutch auctions require 
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some form of iterations and thus may incur a higher runtime overhead. Clients of computational 

resources have different, independent evaluations of the resource; a certain amount of CPU may 
be more valuable to a batch processing application than to a simple interactive application. Thus, 

to a resource manager aiming to maximise its profit, the choice of auction mechanism is largely 

irrelevant. However, Vickrey auctions have the advantage that they offer a clearer strategy to the 
bidders: the literature suggests that the dominant strategy for bidders in a Vickrey auction is to 

submit a bid equal to his true evaluation of the resource (see [MV95b, Ago961 and the literature 

cited therein). 
The simple auction models described above are able to allocate a single good to competing 

users or multiple items of a good to multiple users only interested in single items. However, if 

users want more than one item of a good the simple auction models may result in an inefficient 

allocation, i. e., they may not find the equilibrium price (see [WWWM98, Section 6] for ex- 

amples). In [VM94, WWWM981 the Generalised Vickrey Auction (GVA) model is presented, 

an extension of the standard Vickrey auction, which allows for the efficient allocation of mul- 

tiple goods. The basic idea of GVA is that a winning bidder gets charged the amount which 

could have been generated by the goods he won had he not participated in the auction. The 

rationale behind this scheme is that bidders are best off if they truthfully reveal their preferences 

and evaluation for the goods on auction. More formally, consider a set of a=1, ..., 
A users, 

and user a chooses a set of xa goods; x denotes the choices of all users x= (xl, 
... , xq) and 

x_a denotes the set of all choices except xa. Each user is assumed to have a quasi-linear utility 
function 'aa(x) + ma where ma is the amount of money held by user a. If the utility functions 

are strictly concave', there will be an allocation x* which is Pareto optimal. Suppose each user 
reports a utility function ra("), which does not necessarily need to be a truthful revelation of 
its real utility function Ua("), then an auctioneer would compute: x* = max Ea ra(x) and, 
under GVA, each user has to pay: Va = Ga(r_a) - W_a(x*) with W_a(x*) _ Eb 

a rb(x*) 

and Ga(r-a) = max >b#a rb(x-a)" 

The W_a(x*) component of the cost represents the total value of the allocation x* without 
the user a. The function Ga could be any function, however the function given presents the 
total value the auction would achieve if user a would not have participated in the auction. 
Thus, it represents the second-prize analogue to the simple Vickrey auction. In [VM94] and 
[WWWM98] it is argued that, if users reveal their true preference to the auction, i. e., ra(") = 
Ua(. ), then GVA will compute an optimal allocation. However, as noted in [WWWM98], the 
GVA mechanism for auctioning multiple goods is an NP-complete computation. 

'This is a common assumption indicating a diminishing marginal utility as x increases. 
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In the following sections, a number of systems deploying an explicit auction mechanism are 
described. Not surprisingly, most systems deploy a variant of Vickrey auction, as it does not 

require any iterations of the auction process and encourages users to reveal their real preferences. 

3.1.1 Spawn 

The Spawn distributed computation economy [WHH+921 represents one of the first imple- 

mentations of a market based resource allocation. It allows for the coarse grained, decentralised 

allocation of idle computational resources in a network of heterogenous workstations. On each 

workstation an auction process controls the sale of idle computing resources to potential buyers. 

Idle computation resources are divided into slices and are auctioned one at a time. During a 

slice, a process has exclusive access to the resource. The auction process continously accepts 
bids for the next available slice. Potential buyers place bids consisting of a length of time and a 

quantity of funds. For the basic auction model a Vickrey auction was chosen because it provides 

the incentives to clients to place bids corresponding to their real evaluation. The basic auction 

process can be parameterised to accommodate bids with varying lengths. The authors suggest 

using a linear function relating cost to the length of time of the bids, allowing for the amorti- 

sation of startup costs for the winning bidder while avoiding inconvenience to a user returning 

to his "idle" workstation. However, it is unclear how this parameterisation is factored into the 

auction process. 
Applications consist of worker modules and managers. Worker tasks implemented by the 

worker modules perform the actual computation of the application. The simplest case consti- 
tutes a single worker task corresponding to a monolithic application executing in a single process. 
However, decomposable applications which are aware of the underlying distributed nature of the 

system may have a number of tasks and subtasks forming a tree structure of tasks. Managers are 

associated with worker tasks and are responsible for the execution of worker tasks. Thus, a 

manager and a worker task form a subtask of the application. Managers of decomposable appli- 
cations may choose to spawn additional subtasks on other nodes to complete the application's 

work. Before a worker task can be created at a new node a new manager for that worker task 
needs to be spawned on that node. The manager then takes part in the auction, and if successful, 
creates the new local worker task. 

The basic concept of funding deployed in Spawn is that of sponsored computation. A man- 
ager serves as a funding sponsor for all its children tasks, allowing it to dynamically control the 
relative fraction of funding allocated to its children and thereby forming a sponsorship hierar- 
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chy. A top-level manager controls the total amount of funding available to the application, while 

users control the amount of funding available to their applications, and, ultimately, system ad- 

ministrators control the amount of funding available to users. Neither managers nor users can 

create nor destroy funds, however, the prototype implementation does not enforce this. Man- 

agers can deploy a number of strategies to allocate funds to their subtasks. In a simple strategy 

a manager would allocate funds equally to all its subtasks while a more sophisticated manager 

may allocate more funds to more efficient subtasks, e. g., tasks located on faster workstations. 

3.1.2 Agoric systems 
Miller and Drexler have authored several papers advocating the use of marked-based mecha- 

nisms for resource management in computer systems [MD88a, MD88c, MD88b, MKH+96, 

MTHH97]. They refer to systems which apply economic techniques to the management of 

computational resources as agoric systems2. 
In [MD88b] an auction algorithm for scheduling CPU resources is presented. The algorithm 

is called the escalator-bid auction and is a variation of the Vickrey auction. The variation was 
introduced to tackle the problem of process starvation; if the market price for a slice of the 

processor stays above a process' bid, the process will never run, and, thus, won't be able to raise its 

bid. In the escalator-bid auction, processes with an initial bid are placed on an "escalator" which 
linearly increase the bid over time depending on the speed of the escalator. Different escalators 
have different "speeds". The process with the highest bid is selected, and after executing a cycle 

of the escalator, i. e., increasing the bids of other processes, it is charged the highest bid (i. e., 
the second-highest bid before it was removed). The initial bid and the escalation rate together 
form the priority of a process. If a selected process does not have enough funding in its expense 
account it will not be run, but placed on a stationary escalator with a bid equalling its expense 

account. The system has two additional parameters, the maximum initial bid and the maximum 

escalation rate. Since bids for all processes on non-stationary escalators will eventually grow 
large enough, starvation is not an issue. The authors argue that a process' initial bidding strategy 

should be to place it on the fastest escalator with an initial bid of zero. Under this condition the 

escalator-bid auction guarantees non-starvation to all processes. 
Based on the more general work described in [MD88a, MD88c, MD88b], the authors de- 

veloped an auction system for allocating bandwidth in an Asynchronous Transfer Mode (ATM) 

network [MKH+96], with the related patent [MTHH97] containing some additional informa- 

From the Greek word "Agora" for a square serving as a marketplace. 
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Lion. The auction method is a variant of the Vickrey auction. Users submit their bids in bid 

slates consisting of any number of individual bids for a combination of resources3. When bid 

slates are submitted to the auction process, first, all individual bids are eliminated from a slate 
for which an individual resource request exceeds the capacity or a maximum allocation for that 

resource. The auction process then selects the user with the highest bid as the winner. Unfor- 

tunately, due to the inherently incomprehensible patent language, it is somewhat unclear how 

the prices for the winning bids are calculated. However, at least from the textual description, it 

appears that a variant of the GVA auction is deployed. 

The use of bid slates allows users to bid for different allocations of multiple resources and 

the GVA style auction ensures that an optimal allocation is found for competing users. Further- 

more, GVA also encourages the users to reveal their real evaluations of the resource allocations. 
In this context it is worth noting that the GVA auction is not aiming at maximising monetary 

return to resource managers but to allocate resources to maximum declared user values. How- 

ever, given the computational complexity of GVA it is unclear at which timescales resources are 

reallocated. Furthermore, the process requires a centralised auction process with a global model 

of the network which accepts bid slates from users scattered around on the ATM network. 

3.1.3 WALRAS 
Michael Wellman's WALRAS system [We196] provides an infrastructure for implementing mar- 
ket based control systems. It is built around the concept of a market-oriented programming 

environment and paradigm offering an object-oriented implementation of general equilibrium 

theory in which two basic classes of agent, consumers and producers, interact solely via a bidding 

protocol. Consumers submit bids which maximise their utility and producers aim at maximising 
their profits. Based on the two basic classes of agents, subtypes of these can be created, which 

either implement more specific but still general features of an agent, or provide application spe- 

cific roles for agents. Producers and consumers submit supply and demand bids in the form of a 
partial function of quantity versus price. The WALRAS system then computes the equilibrium 
price for that auction. In essence, the WALRAS system implements the perfect competition 

model depicted in figure 3.1(a). 

3The definition of bid slates differs slightly between [MKH+96] and [MTHH97]. However, since the latter 

provides a more detailed description of the bidding process its definition is used in the main text. In [MKH+96] a 
bid slate is formed from non-overlapping, monotonically increasing bid segments describing a straight line segment 
on a graph of price as a function of quantity of one resource. 
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In [CW98] a detailed accord of the algorithm deployed in WALRAS to achieve equilibrium 
is given. The WALRAS algorithm is based on the classic Walrasian tatonnement process in which 

agents respond to price signals for individual goods sent out by an auctioneer. More specifically, 

an auctioneer is responsible for each separate good. Each auctioneer starts with sending out a 

randomly chosen price for its good to agents. Agents then compute their demand functions for 

the individual goods they are interested in (consumers are interested in goods which are part 

of their utility functions and producers are interested in goods they produce) and send them 
back to the corresponding auctioneer - the agents submit their bids for individual goods. The 

auctioneer then computes the market clearing price from the bids and notifies the bidders of 

the new price. These in turn re-evaluate their demand functions. This iteration is continued 

until an equilibrium is reached. The important feature of this auction mechanism is that it 

is asynchronous, i. e., agents can submit bids at any time. The main difference between the 
WALRAS mechanism and the classic tatonnement process is that in WALRAS, agents respond 

with demand functions rather than single points on their demand curve. The authors show that 

the WALRAS algorithm converges to the price equilibrium under the assumption of convex 

preferences (demand and supply functions) and gross substitutability4. However, as noted in 

[We1961, the WALRAS model does not allow for the modelling of monopolies or small groups 

of agents, where the actions of one agent may have a significant impact on the price or the other 

agents. 
The WALRAS system has been used to model a number of non-computing related resource 

allocations problems, e. g., [We196] describes its application to a distributed transportation re- 

source allocation and information services within networks. 
In [YWI96] the application of the WALRAS system to the problem of network bandwidth 

allocation in a virtual networked meeting environment, called FreeWalk, is described. FreeWalk 

provides a three-dimensional space in which users, represented by their corresponding audio 

and video feeds, can informally meet. Each user, represented by a FreeWalk client, can move 

around freely and perceives the other participants relative to their distance, i. e., users further 

away are displayed in smaller windows mapped into the distance in a three dimensional space, 

while participants closer by are displayed in larger windows. Participants outside a specified 
distance are not displayed. As each user has a different, constantly changing view of the three- 

4"Two goods are gross substitutes if an increase in the price of one of the goods causes an increase in the 
demand for the other" [Var92, p. 395]. N. B. according to Cheng and Wellman [CW98] gross substitutability 
is only essential for the formal proof of convergence to an equilibrium, while in experiments, convergence can be 

observed without this assumption. 
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dimensional meeting space, the corresponding audio and video streams are sent directly between 

the users, i. e., are not multicast. A so called community server is responsible for tracking users' 

positions in the meeting space and to allocate bandwidth to clients. 
The market model for bandwidth allocation in FreeWalk uses four different types of goods: 

two network goods, raw bandwidth and QoS, and two different time periods, current and future. 

The distinction between raw bandwidth and QoS goods is motivated by the idea that QoS 

(different levels of service) is "produced" from raw bandwidth by the agents in the market, 

and that QoS is what clients primarily value. Thus, client 1 may receive QoS level q1,2 for 

the communication with client 2 at price P1,2. The distinction between current and future 

time periods is introduced to provide incentives to inactive clients to transfer network resources 

allocated to these clients to more active participants. 
Each client receives an initial endowment of goods which it is free to trade at the current mar- 

ket price. In the FreeWalk system, endowments only consist of current and future bandwidth, 

and do not contain QoS goods, as they must be produced from bandwidth. Each consumer 
has a known utility function which is dependent on its endowment both in current and future 

bandwidth and its current and future QoS. The authors assume a known mapping between 

the bandwidth and QoS which is dependent on the distance of the participants in the spatial 

meeting space. The notion of future QoS is then given by the same mapping for the future 

bandwidth and the distance factor set to unity. Consumers are the individual Freewalk clients 

which naturally seek to maximise their utility given the current market prices and their endow- 

ment. Producers are modelled in the community server and attempt to maximise their profits 
based on the current price and a set of technically feasible bandwidth/QoS pairs (technologies). 

Prices are determined by the WALRAS algorithm described above. 
The motivation for the two time periods, current and future, allows clients to trade off 

current bandwidth with future bandwidth in return for future QoS. The WALRAS algorithm 
is executed in fixed slices and deploys a rolling time horizon of T timeslices. Then the current 

period refers to the current time slice and the future period refers to the remaining T- 1 slices. At 

each increment of the time slice, each client is allocated a new endowment in current bandwidth 

and new future bandwidth based on its current share of future bandwidth. Unfortunately, the 

authors do not discuss how the initial endowment with bandwidth is determined nor how clients 

entering the system later are initially endowed. 
In [Bog94] a number of market mechanisms for allocating computing times based on the 

general WALRAS approach are discussed. The author considers various models including auc- 
tioning off individual time blocks of CPU time and creating a futures market for time blocks 
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of CPU time. These are deemed impractical as they require processes to know in advance their 

computing time demands and cannot account for processes whose computing time demands 

depend on other processes to complete. Instead, the author of [Bog941 proposes a processor 

rental scheme. In this scheme, tasks bid for the processor and the task with the highest bid is 

awarded the processes until it either runs out of credits, completes its computation, or is outbid 
by another task. The winning task is charged a price between the second highest bid and its own 
bid, thus modelling a Vickrey auctions. 

3.1.4 Discussion 

In this section a number of market based resource allocation systems for computational resources 

were introduced. The resource allocation problem is typically expressed in classic market eco- 

nomic terms with buyers, sellers, and a market or auctioneer to establish market clearing prices. 
This model may be applicable in the context for which it has been proposed, i. e., distributed 

computing systems, where multiple market agents supply and demand resource. However, for 

local resources managed by an operating system there is typically only one supplier offering a 
fixed capacity resource and only a small number of consumers. Furthermore, there is no per 

unit cost associated with producing an extra unit of a resource, e. g., there is a one-off cost in 

providing the CPU, but then offering cycles is essentially free. Furthermore, operating system 

resources can become congested (see next section), causing additional costs typically not con- 

sidered in market based approaches. However, since the operating system controls the resources 
it could still model the supply side of a market, but I argue that markets are simply the wrong 
economic model for managing operating system resources. 

Furthermore, some of the approaches discussed share the same problems as some of the 
QoS architectures discussed in the previous section: complex APIs for bid vectors and complex, 
NP complete algorithms for establishing prices at the equilibrium. They can however provide 
incentives to consumers of resources to truthfully reveal their resource preferences. A further 

critique of the market based approach is that it may require all clients to be synchronised, i. e., 
submit bids at the same time. None of the reviewed systems addresses this issue in detail. 

SNote that this work appears to precede the WALRAS algorithm described above. 
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3.2 Congestion Prices for Communication Networks 
Recently, the application of pricing mechanisms to communication networks, in particular the 

Internet, has received much attention in the research community. It is generally understood 

that a network offering different classes of services to users requires some pricing mechanisms to 

encourage users to choose the appropriate service class for their traffic (e. g., [She95b, MV95c]). 

This is required due to the limited supply of network resources; if network capacity was available 
in abundance, there would be no need to prioritise traffic of individual users or applications. 
However, if demand for, say bandwidth, exceeds the supply, mechanisms for allocating resources 
become more important. 

In this context, it is important to distinguish between two types of cost: fixed costs for 

providing the network infrastructure and variable costs dependent on the users' network usage. 
While the fixed cost is easily recoverable through fixed subscription fees, variable usage based 

costs are more difficult to determine. Ideally, usage based prices should accurately reflect costs 

so that users can compare the benefits of their actions to the cost of their actions [MV95c]. 

Consider a lightly loaded network. A user sending an additional packet does not cause any 

additional costs, while in a heavily loaded network an additional packet could cause congestion 

and therefore cause delay or packet loss to other users. Thus, if prices reflected these additional 

social costs, a user would decide whether his marginal benefit of sending an additional packet is 

greater then the marginal social cost caused by the additional packet. 
In economics, congestion is called an "externality". In general, an externality exists when the 

action of one agent directly affects the environment of another agent [Var92, p. 432ff). Classic 

examples for externalities are pollution, or road congestion. In general, agents seek their own 
benefits without considering the cost they impose on others. Consider a firm A which produces 

x units of good at a cost c(x). Then, if the price for a unit of the good is p then firm A seeks 
to optimise max px - c(x) with an equilibrium solution of p= c'(x). Now assume, that the 

production of good x imposes a negative, external cost of e(x) on firm B, then a merged firm 

would seek to optimise max px - c(x) - e(x) with a solution of p= c'(x) + e'(x). Economists 

say that c(x) denotes the private cost and e(x) the social cost of good x. Prices which capture 
the social cost are known as shadow prices. 

There are a number of ways to deal with externalities. In small communities social norms 
may be established to prevent congestion externalities. However, in larger, non-cooperative en- 
vironments pricing mechanisms are more appropriate. There are a number of ways to determine 
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shadow prices, and researchers have proposed a number of mechanisms in the context of com- 

munication networks. In the following sections some examples are presented. 

3.2.1 Smart-Markets -- MacKie-Mason and Varian 

MacKie-Mason and Varian are two economists who have been investigated pricing mechanisms 
for the Internet. In [MV95b] the authors argue that users of the Internet should face prices 

which reflect the real resource costs and consider five different types of cost: 

1. The fixed cost of providing the network infrastructure. 

2. The incremental cost of connecting to the network. 

3. The incremental cost of sending another packet. 

4. The social costs of delaying other users' packets when the network is congested. 

5. The cost to expand the network capacity. 

The authors argue that costs of type 1 should be covered by a flat access fee and costs of type 2 

should be paid for by the user setting up the connection, as a one-time connection fee. Es- 

sentially, costs of the first two types form the traditional pricing model for the majority of the 
Internet today. The other three types of cost are related to the actual usage and the degree of 

congestion in the network. In summary, the authors argue that prices should be based on three 

principles: (1) a positive packet charge close to zero when the network is not congested; (2) a 
larger positive packet charge when the network is congested and; (3) a fixed connection charge. 

In the appendix of [MV95b] and, in greater detail in [MV95a], a more formal treatment 

of this model is presented. Let xi denote a user's use of the network resource and Y= X/K 

denote the total network utilisation, with K denoting the network capacity and X= Fj'=1 xi 

the total use of the resource. External costs, such as delay and exclusion depend on Y. Users' 

utility functions are of the form ui(xi, Y) + mi, with mi denoting the number of credits that a 

user has to spend on other things. In general, it is assumed that ui is a differentiable and concave 
function of xi and a decreasing concave function of Y. Further, assume that c(K) is the cost of 

providing the capacity K. 

Given a fixed capacity K an efficient allocation maximises the welfare W(K), i. e., the sum 
of the benefits minus the costs: 

W (K) = max u&j, Y) - c(K) (3.1) 
j=1 
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with the solution satisfying the first order condition: 

aui (xi, Y) 
=1 

au j (x7, Y) 
(3.2) ý 

axi K aY j=1 

This equation gives the social optimum for the resource allocation, where the marginal benefits 

from the usage for user i equals the marginal costs he imposes on the other users. Equation 3.2 

denotes the shadow price pe of congestion, which measures the total marginal congestion cost 

that an increase of xi imposes on the users: 

1n öuj (xj, Y) 
Pe 

Ký aY 
j=1 

If the price for resource usage is pe then, for user i, the maximisation problem becomes: 

max ui(xi, Y) - Pexi 
2i 

with the solution: 

(3.3) 

(3.4) 

8ui(xi, Y) 
+1 

äui(xi, Y) 
(3.5) 

axi K aY Pe 

Considering the definition of pe in (3.3), for large n the second term on the left hand side will 
be negligible relative to pe and the solution becomes equivalent to the solution of the social 

optimum. 
Using this basic model, MacKie-Mason and Varian consider a number of scenarios. For 

example, it can be shown that the shadow price, apart from providing a measure of social cost, 

also provides the incentive to expand the capacity under certain conditions (namely: W'(K) _ 
peK - c'(K)). Further, it is shown, that in a competitive market with a number of suppliers 

of network resources, suppliers are forced (due to competition) to charge the socially optimal 

prices given in equation 3.2. Further analysis investigates the schemes without usage fees and in 

a monopolistic environment (see [MV95a] for details). 

In [MV95b] the authors propose implementing the usage based charges in this model as a 
"Smart Market" where prices fluctuate constantly reflecting the current degree of congestion. 
This could be implemented using a variant of a second-price sealed-bid auction whereby each 
packet contains a field indicating how much its sender is willing to pay. The network admits 
all packets with bid prices exceeding the current cutoff amount determined by the marginal 
congestion cost imposed by the next additional packet. 
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3.2.2 Frank Kelly et. al. 
Frank Kelly and his collaborators have developed a number of pricing schemes for communica- 

tion networks. While these are conceptually similar to the scheme proposed by MacKie-Mason 

and Varian (see previous section), their treatment is mathematically more rigorous. Much of 

this work has been carried out in the context of the CA$hMAN project. This work had a great 
influence on research on congestion pricing in networks. 

Most of Kelly et al. 's work has been carried out in the context of multi-service ATM net- 

works, but the results have also been applied to packet switched networks, such as an enhanced 
Internet, offering differentiated or integrated services. In general, it distinguishes between elas- 

tic traffic and traffic requiring guaranteed services. Elastic traffic corresponds to the ABR traffic 

class in ATM networks, which provides a best effort service with an explicit congestion con- 

trol mechanism; and guaranteed services correspond to the CBR, VBR, and ABR with specified 
Minimum Cell Rate (MCR) traffic classes, which provide varying degrees of guarantees to users 
(see [ATM99J or a computer networks textbook, e. g., [PDOO, chapter 6.5], for a detailed de- 

scription of these service categories). The use of an economic framework is partially motivated 
by the desire to provide incentives to users of a network to choose an appropriate service class. 
For example, a customer willing to pay twice as much for bandwidth in the best effort class 

should receive twice as much bandwidth. 

3.2.2.1 Elastic traffic 

A congestion pricing model for elastic traffic is presented in [Kel97b] which considers ABR traf- 
fic with zero MCR. In [KMT98] the authors consider, in greater detail, fairness and convergence 

criteria of this model especially in the context of large scale networks. In [GK99b] the authors 
discuss how this congestion pricing model can be used to implement a decentralised transmis- 

sion rate control in the end-nodes of a packet switched network such as the Internet. End-nodes 

are provided with sufficient information and the correct incentives to use the network efficiently. 
Peter Key [KeyO I] provides an excellent introduction and summary of this work. 

The basic congestion pricing model is similar to that presented by MacKie-Mason and Var- 
ian and argues that users should be charged the marginal increment in cost that a marginal 
increment in load causes. More formally, consider a network as a set of J resources with Kj 
denoting the finite capacity of each of the resources jEJ. Let rER denote a route, i. e., a 

6Charging and Accounting Schemes in Multi-service ATM Networks, ACTS Project AC-039, September 1995 
to August 1998. 
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non-empty subset of J, and associate a route with a user. Let Ajr =1 if jEr and Ajr =0 oth- 

erwise. Further, define the 0-1 matrix A= (Ajr, jEJ, r(=- R) and the vector K= (K;, jE J). If a 

user receives a rate Xr along a route r then his utility is denoted by Ur(xr). Ur(Xr) is assumed to 
be an increasing, strictly concave and continously differentiable function of xr for Xr > 0, i. e., 

the traffic is elastic. Let x= (Xr, rE R) and assume that utilities are additive, then an optimal 

allocation of rates would solve: 

maximise U(x) _ ErER Ur(Xr) 

subject to Ax <K 

over x>0 

(3.6) 

However, as argued above, if a resource is heavily loaded the network incurs some cost C; (yj 

such as delay or loss depending on the load yj of the resource. Then the optimisation problem 
becomes: 

maximise 
U(x) ErER Ur(xr) 

- 
EjEJ Cj (ErER Ajrxr) 

subject to Ax <K 

over x>0 

(3.7) 

If Cj(y3) = Cj(ETERAjrxr) is differentiable with dýC, (yj) = pj(yj) and pj(yj) is a 

non-negative, continously increasing function for y>0 then U(x) has a unique maximum 
[KMT98]. For Xr >0 at the optimum UU(XT) = Ej¬rPi(yj) is satisfied. The function p(yj) 

represents the marginal increase in cost at the resource for a marginal increment in load, while 
UT(Xr) represents the marginal increase in utility. Equilibrium is reached when the marginal 
increase in utility matches the marginal increase in cost. 

While the above optimisation problem is mathematically tractable, it requires knowledge of 
users' utility functions, which are unlikely to be known to the network. Instead, Kelly proposes 

to separate the problem into an optimisation problem for the users and one for the network. 
Suppose a user is charged a price Ar per unit transmitted and is allowed to freely vary Xr. Then 

optimisation can be decomposed: 

User max�, Ur(xr) - , 
\rxr 

Network maxar ErER ArXr (3.8) 

In [Kel97b] it is shown that there does exist a price vector A= (A, E R) which solves both the 
user and the network optimisation problem as well as the utility maximisation of equation 3.6. 

For an alternative formulation, assume that a user is willing to pay an amount w, per unit 
of time and receives in return a flow of rate x, proportional to w,., i. e., x,. = Wr/Ar. Then the 
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user optimisation problem becomes max Ur(wr/Ar) - w,.. If the users' utility function is of 

the form Ur(X, ) = wrlog(xr), which fulfils the requirements on the users' utility functions 

stated above, then at the optimum w,. = XrAr = x,. EjEr pj(yj). The resulting allocation x is 

proportionally fair to the unit charge. 
Kelly et. al. suggest that each resource should continously generate feedback signals at rate 

yjpj(yj) and each user receives a proportion X,. /y, of these feedback signals, i. e., each user is 

charged proportionally to his share of the resource. Users are then encouraged to adapt their rate 

accordingly. More specifically, Kelly et. al. suggest that elastic users execute a Willingness-To-Pay 

(WTP) algorithm: 

dtXT(t) = 
(Wr(t) 

- x, (t) E Pj(t)) (3.9) 
j er 

This algorithm provides a steady increase of the rate proportional to w,. (t) and a decrease of the 

rate proportional to the rate of feedback signals (charges). The constant n influences the rate of 

convergence. In [KMT98] it is shown that, for a constant wr(t) = w, this decentralised system 

converges to the stable point with a proportional fair allocation as described above. In essence, 

the system forms a classic Walrasian tatonnement process, described in section 3.1.3, where users 

respond to price signals from the resource and is in contrast to the "smart market" model de- 

scribed in section 3.2.1. In [KMT98] the effects of stochastic perturbation on the measurement 

of the load yj and time lags in the delivery of the feedback signals are also considered. 
While the presentation so far has considered optimisation problems and convergence, only 

qualitative statements about the shadow prices p3(yj) have been made, namely, that each in- 

crement in load should be charged the cost increment that it causes. In [GK99b] the authors 
consider two network models (slotted-time and a more realistic queueing model) which show 
that the shadow prices are straightforward to identify. In the slotted-time model a resource has 

the capacity per slot to transfer N equally sized packets with any excess lost. Thus, lost packets 

can be assumed to be the cost of congestion. The authors demonstrate that for loads which 

are generated by independent Poisson random variables as "users", a mechanism which marks 

each packet arriving in a time slot in which the total capacity is exceeded, produces a charge (in 

marks) equalling precisely the shadow price at the resource, as derived from the Poisson charac- 
teristic of the users' traffic. Furthermore, the charge per unit time for each user r is precisely the 
fair charge xrP(y) described above. For more general statistics other than Poisson the authors of 
[GK99b] demonstrate that for small increments of the load the above identities hold. 

7Note, that [KMBL99] shows that this is not a necessary requirement. 
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For the more realistic queueing model, a finite length queue is modelled which can serve a 

single packet per unit time. If more than one packet arrives each time unit, the queue fills up 

and if its capacity is exceeded, packets are lost. In this model a busy period is defined between 

the time when the queue starts filling up and the time only one packet is left in the queue. 
Again, the cost can be identified as the number of lost packets, and ideally every packet which 

passes through the queue from the start of a busy period until a packet loss occurs should be 

marked/charged as it contributed to the packet loss. However, while in the slotted-time model 
it is quite easy to mark packets contributing to packet loss, this is impracticable in the queueing 

model as it is difficult to determine in advance if a packet passing through the queue will in fact 

contribute to a packet loss for a packet arriving later. Instead, the Gibbens and Kelly propose to 

maintain a count of packets leaving the queue from the start of a busy period and at the time of 

packet loss mark all packets currently in the queue and a sufficient number of packets afterwards. 
While this doesn't mark all packets contributing to the packet loss it will mark the right number 

of packets. In an alternative scheme all packets leaving the queue after a packet loss until the 

end of a busy period could be marked. 
For both models the authors of [GK99b] present the results of some experiments with dif- 

ferent control mechanisms in the end-notes designed to achieve different user objectives. Elastic 

users implement a variation of the WTP algorithm presented above; intermittent users behave 

as elastic users for a random period of time before being inactive for a random period of time; 

a file transfer user attempts to transmit a file as quickly as possible for a fixed amount. The ex- 

periments demonstrate that elastic users with different w, achieve different, proportional service 

rates and that under fluctuating demand, introduced by intermittent and file transfer users, the 

users manage to share the resource between them keeping the total throughput approximately 
constant. 

Other people have investigated how this pricing scheme for elastic traffic can be implemented 

in more realistic network environments. Courcoubetis et. al. [CSS96] describes an integration 

into the flow-control mechanism for ABR traffic in ATM networks. Essentially, the Resource 

Management (RM) cells are used to convey the congestion information from the switches to the 

end-systems. Key et. al [KM99, KMBL99] describe an implementation and simulation results 
for TCP/IP networks using the proposed Explicit Congestion Notification (ECN) mechanism 
[F1o94] to convey the marks/charges to the end-systems. 

One obvious drawback of Kelly's idealised charging scheme is that it may send out feedback 

signals too late, i. e., after packets were lost. Furthermore, depending on the timescales, e. g., 
Round-Trip Time (RTT), feedback signals may arrive after any transient congestion has occurred 
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and clients may have adjusted to a congestion situation that no longer exists. In order to send 
feedback signals early, i. e., before packet loss occurs, Gibbens and Key suggest using a Virtual 

Queue (VQ) shorter that the real queue and base per packet charges on packet loss in the virtual 

queue [GKTOO, GKOI] (Kunniyur and Srikant discuss a similar approach [KS01b, KS01a]). 

Another implementation related issue recently discussed is the debate about using single bits 

versus multiple bits to convey the charges [StrOOl. Using a single ECN bit the end-system has 

to average over a significant number of packets in order to determine the charging rate, thus 

potentially exaggerating the delayed feedback caused by the RTT delay. Instead, Stratford and 
Barham [StrOO] have experimented with multiple bits per packet header and provide positive as 

well as negative feedback to the end-systems, depending on whether a link is idle or congested 
(Ganesh et al. [GLSOO] present a similar approach using non-binary prices). 

3.2.2.2 Guaranteed services 

For charging guaranteed services Kelly et. al. [Ke197a, CKW97, CS98, CKSW98] propose a 
Time-Volume scheme a0 xT+ al xV=T (ao + al x M) which accounts for both resource 

reservations through the time component T and actual usage through the volume component 
V. The cost of a connection is dependent on static parameters, such as the parameters for the 

token bucket used for policing the traffic contract, and dynamic parameters which can be easily 

measured, such as volume. Time-Volume pricing is a specialised form of a family of per unit 

time charges which are expressed as linear functions of the form: 

ao + aigi (X) + a292(X) +"""+ ang,, (X) = ao + aT g(X) (3.10) 

with gl (X) 
... g,,, (X) being measurements or functions of measurements from observations 

x= (X1, 
..., 

XT). The coefficients ao, ..., an are solely dependent on static parameters, 

such as policing parameters. Charges are thus linear in the chosen measurements. This linear 

dependency makes it easier to implement the charging at run-time as well as making charges 

more transparent to users. 
To determine the coefficients ao, ... , an the authors use the notion of effective bandwidth 

[Ke196]. Conceptually, effective bandwidth refers to the bandwidth a link needs to reserve for 

a connection in order to satisfy its particular statistical characteristics and requirements. The 

general form of the effective bandwidth of a source is: 

a(s, t) = 
tlogE [esxlo, tI] 0< s, t< o0 (3.11) 
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with X [0, t] being the total load produced in the epochs 1, 
..., t and s and t being system 

parameters which depend on the characteristics of the multiplexed traffic and link parameters 

such as capacity and buffer size'. Since the notion of effective bandwidth provides a way to 

assess the resource usage, charges can be based on the effective bandwidth of a source. However, 

this requires the effective bandwidth of a source to be estimated. In [Kel97a] Kelly considers a 

number of schemes, such as using a priori information like the characteristics of past sources of 

the same type, and a posteriori measurements. However, he argues that both these approaches 
have severe drawbacks. The a priori scheme is analogous to an all-you-can-eat restaurant where 

prices are based on the average amount users have consumed before and therefore encourages 

users to consume more resources than they need and penalises users which do not consume up 

to the average. Effective bandwidth estimates based on a posteriori measurements do not take 
into account a priori expectations of the users. Consider a user requesting, in good faith, a 

connection with a high peak rate but then only transmitting very little traffic. Using a posteriori 

measurements, the user will only be charged very little, even though the a priori estimates might 
have been much higher. Essentially, the network is carrying too much risk. 

Instead, Kelly proposes a scheme which is based on equation 3.10 and defines an upper 
bound ä(m, h) on the greatest effective bandwidth possible with a traffic contract h and mea- 

sured mean rate m. ä(m, h) is concave in m and h may be interpreted as a policed peak rate. 
Through Lagrangian methods equation 3.10 can be rewritten as: 

ao = ä(m' h) - aT m' (a1[m' h]' a"[m' h]) = AT - 
ää(m, h) yä(m, h) 

OMI Urran 
(3.12) 

and the simplified version of the per unit time charges form of the Time-Volume charge be- 

comes: 
a(m h) - 

ää(m, h) 
m+ 

aä(m' h) 
M (3.13) ' amt Öml 

where M is the measured mean rate and ml is a value for the mean rate announced by the user 
before connection admissionlo. In essence this equation defines a set of tangents on a(rn, h) 

with the user choosing one by specifying the mean rate ml. 
The coefficients of the pricing scheme are dependent on a conservative approximation of the 

effective bandwidth ä(m, h). To be efficient and easy to implement, this approximation should 
be simple and in [CS98, CKSW98] the authors propose a number of different schemes: The 

'For example, the effective bandwidth of an on/off source of peak rate h and mean rate in is ct(s, t) = ! log [1+ 
h (es" _ 1)]. See [Ke1961 for more examples. 

9Lagrangian methods are a standard mathematical method to find optima under constraints. 
I°See [Ke197a] for a similar description for users with unknown peak and mean rate. 
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first, called "on-off" or "peak/mean", is based on an on/off traffic source providing an upper 
bound to a(m, h) which solely depends on the peak rate which is assumed to be policed. If, 

in addition, a token bucket policing mechanisms is used at the source, a tighter upper bound 

can be defined. This bound is called "simple bound". A third approximation is based on the 

observation that the worst case output of a token bucket policed source consists of blocks of 
inverted T patterns. By using a statistical model of this pattern the "T approximation" can 

provide an upper bound to a(m, h). Experiments with trace data derived from real traffic shows 

that "simple bound" and "T approximation" yield considerably better results than the "on-off" 

approximation, as their approximation of a(m, h) is more accurate. 
As a concluding remark, it has to be noted that the Time-Volume scheme described in this 

section can also be used in conjunction with ABR source which have MCR requirements. Traffic 

up to the specified MCR is charged according to the Time-Volume scheme and traffic exceeding 

the MCR is charged according to the congestion prices described in the previous section, thus 

combining the two pricing schemes. 

3.3 End-user perspective of network pricing 
Elaborate schemes proposed for network pricing, especially in the context of Internet pricing, 

pose an interesting question on the effect and impact on end-users. In [OdlO 1] Andrew Odlyzko 

provides an interesting insight into these issues by providing a historical perspective of pricing for 

several communication services. Odlyzko focuses mainly on the business to consumer market 

and argues that customers are predominantly attracted to simple pricing models, in particular 
flat-rate pricing. This argument is supported by a number of studies which demonstrate that 

the end-users prefer flat-rate charges over usage based charges even if the flat-rate charges result 
in higher cost to the user. Possible explanation for this are risk avoidance and overestimation of 

usage by the users. Furthermore, flat-rate charges can make economic sense to service providers, 

not least because they ensure a steady stream of revenues and lower the per transaction cost 
by removing the need for usage-based charging and billing, but also because of the obvious 
preference of their customers. This observation is supported by the fact that historically for 

communication services there has been little relation between the cost of providing a service and 

the price charged to the end-user. Odlyzko concludes that pricing for the Internet should be 

based on simple flat-rate based schemes even at the cost of the efficiency of resource usage. 
Odlyzko's argument seems to appear in stark contradiction to the aims of the congestion 

pricing proposals reviewed above. For instance, he writes: "people are also averse to varying 
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prices, and are more willing to accept variations in quality than in price". From an end-user per- 

spective congestion pricing, if applied explicitly, would appear even more complex than e. g., the 

original calling tariffs for mobile phone with time-of-day and recipient dependent call charges, 
because a user would also have to take into account the current state of congestion within the 

network. 
However, most researchers do not primarily view network congestion prices as prices in 

economic terms to which end-users would be exposed. Instead, congestion pricing is used to 

model fair sharing of congestible network resources. Moreover, prototype implementations of 

congestion pricing for networks typically operate at the level of individual flows and are used 

as a replacement for TCP-like flow control algorithms, not as a charging scheme end-users will 

ever encounter. 
There is, however, an economic argument for price differentiation if different service qual- 

ities are available: why would any user choose a lower quality if a higher quality is available at 

no extra cost? Whether ISPs will offer per-flow service differentiation to end-users is a separate 

question. Key et al. [KMBL99] discuss a number of options on how congestion charges could be 

used to determine charges in real money terms, starting with pricing for aggregate flows between 

ISPs, and allude to a scheme where guaranteed service could be offered by means of brokers, 

managing the risk of fluctuating prices on behalf of the users. However, irrespective of this ar- 

gument, congestion pricing is still a valid proposition as a flow control mechanism capable of 

achieving fair sharing of network resources. 

3.4 Summary 
This chapter has provided an introduction in the use of economic models for managing resources 
in operating systems, networks, and distributed systems. I distinguished between market based 

approaches and congestion prices. In a market based approach prices are established by supply 

and demand, e. g., through an auction mechanism. While some researchers have proposed the 

use of market based approaches for distributed system, I have argued that they do not present 

the correct economic model for resources in an operating system context. The main arguments 

are that the supply side would need to be modelled by the operating system, that bidding would 
have to be synchronised, and that the required APIs would be complex 

An alternative scheme, namely congestion pricing, has recently received much attention in 

the context of computer networks, in particular the Internet. This is based on standard economic 
practice which suggest that prices should be matched by cost [MV971. That is, the fixed costs for 

66 



providing network capacity and operational costs should be covered by fixed subscription fees. 

Then the direct usage costs are negligible. However, when the network becomes congested the 

social cost of congestion is incurred. The general idea of congestion pricing mechanisms is to 

make this social cost explicit to the end users in order to provide them with an incentive to adjust 

their behaviour. This chapter discussed a number of approaches, both theoretical and practical, 

showing how this concept can be applied to computer networks. The theoretical results show 

that congestion or shadow prices, based on the marginal cost of congestion, can achieve a socially 

optimal resource allocation. Under certain conditions, it can be demonstrated that such a system 

with independent users acting in their own self-interest converges to a fixed point at which the 

allocation is proportionally fair. Furthermore, revenues from congestion prices also provide the 
incentive to network operators to expand capacity. These theoretical results can also be observed 
in the more practical work, which is mainly concerned with implementation issues of how to 

convey congestion charges to the end-systems. 
The same argument for congestion pricing in networks also applies for resources managed 

by an operating system. Essentially, if a resource, e. g. the CPU, is not congested its usage should 
be free. In the next chapter it will be demonstrated that operating system resources can become 

congested and that the consumption of a resource by one consumer can have an external negative 
impact on other consumers. I therefore argue that congestion prices are the correct economic 

model for operating system resources. 
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Chapter ,4 
Congestion pricing in operating systems 

This chapter describes the three main components of the decentralised resource management ar- 

chitecture: the two OS mechanisms for pricing and charging and example application strategies. 
However, first the underlying theoretical model of congestion prices applied to operating systems 

is introduced. The model, described in section 4.1, is based both on general micro-economic 

theory and the prior work of its application to congestion avoidance in communication networks 
described in chapter 3. In section 4.2, how this model can be applied to resources managed by 

an operating system is discussed. A particular focus is placed on the management of CPU. It 

is argued that the CPU resource can become congested and that congestion externalities can be 

observed. It is discussed in detail how congestion can be detected, how shadow prices can be 

identified, and how congestion charges can be applied. Congestion detection and shadow prices 
for other resources are considered in less detail. 

The second operating system mechanism is concerned with the management of credits used 

to pay for congestion charges. Allowing users to assign different amounts of credits to con- 

sumers' is necessary for service differentiation - if consumers of resources could spend as many 

credits as they like there would not be any incentive for them to adjust their behaviour. In 

section 4.3 a detailed description of these account mechanisms is provided. 
While this research is mainly concerned with the mechanisms necessary to eliminate cen- 

tralised resource management policies, this approach puts an additional onus on the application 
developer or user agents. In section 4.4 some of the issues concerned with resource consumer- 
adaption are discussed. 

I In this chapter the generic term "consumer" is used to refer to the entities to which an operating system 
accounts resources to. These may be processes, threads, resource containers, or other operating system abstractions 
as discussed in section 2.3. 
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In this chapter the focus is on consumers of a single resource. In section 4.5 issues related to 

consumers of multiple resources are discussed. 

The chapter is rounded off by comparing the decentralised resource management architec- 

ture to previous approaches to resource management (section 4.6) and a discussion on how 

this new form of resource management can be deployed in different contexts, such as personal 

workstations or server environments (section 4.7). 

4.1 The model 
Before discussing the use of congestion prices for decentralising resource management in oper- 

ating systems, a formalised notion of the general model is provided. This model follows the one 

presented in, e. g., [KMT98] or [KM99], and is a simplified version of the model discussed in 

section 3.2.2.1. Consider a user i of a resource whose preference for consuming the resource 

at a rate of xi is expressed through the utility function ui (xi). Assume further that ui (xi) is a 

concave and non-decreasing function of xi - an assumption which characterises an elastic user 
[She95a]. For a user, it is natural to seek to maximise the utility ui(xi) over xi > 0. However, 

resources, such as CPU, disk and network bandwidth, memory, etc., are finite. Thus, if every 

user would seek to maximise their utility, resources would become overloaded and congested. 
Assume that the resource is incurring a (congestion) cost at rate C(y) with y= xi being the 
load of the resource. 

In such an environment, a social planner, seeking to achieve a socially optimal resource allo- 

cation, would attempt to maximise the net utility of the systems: 

max 
E ui(xi) - C(y) with y=E xi (4.1) 

ii 

For convex cost functions C(y), at the optimum 

ui(xi) = p(y) with p(y) = C'(y) (4.2) 

is satisfied where p(y) can be interpreted as the shadow price of the load. In other words, the 

optimum is achieved when the marginal benefit for user i equals the marginal cost to all users. 
This solution is mathematically tractable, however, it relies on the explicit knowledge of 

users' utility functions. This is problematic as utility functions are typically not known ex- 
plicitly. Instead, Kelly et al [KMT98] suggest decomposing the optimisation problem into an 
optimisation problem for each user and an optimisation problem, not involving the user's utility 
functions, for the resource. 
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Assume that a user i is charged at a rate ti proportional to the amount of the resources xi 

consumed. Then, it is natural for the user to maximise the net utility Ui(xi): 

max Ui (xi) = ui (xi) - tixi (4.3) 

Under the assumption of a monotonically increasing, concave, and continously differentiable 

utility function, the unique solution is: 

Ui(xi) = ti (4.4) 

If the system is aiming for socially optimal resource allocations according to equation 4.1 then 

it will set the charge ti to the shadow price p(y). Thus, if the price is right, the individual users' 

optimisations drive the system towards the social optimum. 
Furthermore, it can be shown mathematically [KMT98, KMBL99] that if users adjust their 

rate of resource consumption xi according to: 

Oxi(t) =K 
(x(t)u(x(t)) 

- xi(t)p(y(t)) (4.5) 

then, again under the assumptions of concavity of ui and convexity of C(y), each user will 

converge to a unique fixed point at the social optimum. The factor Ki controls the rate of 

convergence. 
Finally, if one assumes utility functions being of the general form wilog(xi), satisfying 

the conditions of an elastic user, it can be demonstrated that, if all users adapt according 

to equation 4.5, the systems yields a weighted proportional fair allocation of resources with 

xi = wi/p(y). The factor wi can be interpreted as the willingness-to-pay, i. e., it denotes the 

rate at which a user is willing to pay for the resources consumed. 
This is depicted in figure 4.1. The four panels show an elastic user with a utility function 

of the form wilog(xi) with two different valuations (top panels with wi = 1, bottom panels 
with wi = 0.5) at two different prices (left panels p=2, right panels p= 4). This graphical 
representation confirms the proportional fair allocation with independently acting users. The 

optimal allocation for a user willing to pay twice as much as another (top vs. bottom panels) 
is twice as large. Similarly, the proportionality of charges and resources consumed results in 

proportional optimal allocations for different prices (left vs. right panels). 
As a socially optimal resource allocation is desirable in the context of an operating system, 

one of the main issues is to determine the right price, i. e., p(y) = C(y) where C(y) is the 
external cost of the load Y. In the following section a number of approaches for identifying con- 
gestion prices for a number of operating systems resources are discussed. It is worth pointing out 
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Figure 4.1: Elastic user optimisation - graphical solution for varying p(y) and wi 

that the assumptions made for the mathematical proofs can be significantly relaxed in practise. 
In particular, proportional fairness can be achieved with other adaption strategies. 

4.2 Identifying Shadow Prices 

identifying the right prices is vital to achieve a socially optimal allocation of resources. The 

prices should reflect the external cost of resource contention or congestion. In communication 

networks there is a clear indication of congestion, namely dropped packets or cells, and therefore 

a way of assessing the external cost of congestion. Essentially, all packets which have passed 

through a node prior to a dropped packet (since the node was last idle) have contributed to the 
dropping of the packet by congesting the node. 

For operating system resources a similar measure needs to be identified for every resource 

managed. In this section, it is discussed how shadow prices can be identified in an OS context. 
The main focus is on CPU resources. Subsequently, other resources such as physical memory, 
disk bandwidth, network I/O, and battery energy are investigated. 

In general, the approach is to require consumers of a resource to reveal their preferences for 

the resource. Then resource congestion can be identified if not all preferences can be satisfied. 
Note, that such an approach does not require admission control, as no strict guarantees are 

given that all preferences will be satisfied. Instead, one could think of these preferences as "soft 
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reservations". Through the charging mechanism consumers are encouraged to truthfully reveal 
their preferences. 

4.2.1 CPU congestion pricing 
Following the general approach outlined above, assume a soft real-time environment with a 
real-time scheduler, e. g., EDF [LL73]. Such an environment has the advantage that it allows 
consumers of CPU resources to state their preferences for a resource in advance. For an EDF 
based scheduler, resource preferences can be defined by a tuple of period and slice. The scheduler 
then takes care of the short term scheduling decisions while the resource requests correspond to 
medium term resource allocations (e. g., on the scale of seconds). This approach can also be 
described as separating urgency from importance [NL97]. The scheduling algorithm determines 

which task to run next (the one with the earliest deadline) and the resource requests (combined 

with the decentralised resource management) determine the importance of a task, i. e., the share 
of the resource (slice/period) a task receives. 

In a preemptive real-time environment an admission control system ensures that, for an 
EDF based scheduler, the sum of requests does not exceed 100%, which guarantees that all 
resource requests can be satisfied. In a soft real-time environment occasional deadline misses are 
acceptable and can be interpreted as an indication of resource congestion, i. e., missed deadlines 

are the external cost of CPU resource congestion. Thus, shadow prices can be based on it. Missed 
deadlines can be interpreted as the analog to dropped packets in communication networks. 

If a task misses a deadline, all tasks which contributed to that miss should be charged propor- 
tionally to their responsibility. These are essentially all tasks which consumed CPU time between 

the last deadline met by that task and its missed deadline. This is illustrated in figure 4.2. The 
top of the figure shows the time line of a schedule for five tasks T1.. 5 which, for simplicity, all 
have the same periods and deadlines labelled Dl�5. All tasks meet their first deadline. However, 

task T5 misses deadlines D2 and D4 as some processes vary their share. 
Ideally, the tasks responsible for the deadline miss should be charged. In the example sched- 

ule, these are all the tasks which executed between the end of the first period and the first missed 
deadline. The same applies for the second missed deadline and the ideal charging periods are 
marked in the upper time-line in the figure. During these periods, tasks should get charged 
proportionally to their resource consumption. 

There are several practical problems with using the ideal scheme. Ideally, one would like to 
charge tasks for their consumption as they consume the resource. This, however, is impossible 
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Figure 4.2: Different charging schemes 

to implement as it would require knowledge of future events, i. e., knowing if a deadline will be 

missed. In the example, the system would need to know at the end of the first period that 7; F, will 

miss its next deadline. This knowledge can only be derived if the exact resource requirements 

are known in advanced. Unfortunately, exact resource requirements are typically not known in 

real systems. If they were, managing resources would be much easier. 
A second approach to implementing an ideal scheme could gather usage information as time 

passes and charge tasks after a deadline is missed based on their previous resource consumption. 
In this example, all tasks would be charged, at time D2, an amount proportional to their resource 

consumption between D1 and D2. Such an approach may seem feasible if all tasks have exactly 

the same deadlines, as in the example. However, consider a more realistic example in which 

tasks have different deadlines and different periods. If any of the tasks miss a deadline the 

system needs to know how much CPU each of the tasks have consumed since this task last met 

a deadline in order to calculate the charges. This information would have to be maintained for 

each task individually. This is clearly impractical as it imposes a high overhead for maintaining 

the usage history. Furthermore, as charges are interpreted as feedback signals by tasks, it would 

seem desirable for charges to be applied continously as tasks consume resources. 
As an implementation of the ideal model seems infeasible, an alternative charging scheme 

is required. A similar problem exists in communication networks, Gibbens and Kelly [GK99b] 

and Key et al [KMBL99] have suggested charging an appropriate number of packets which pass 
through a congested queue after the congestion occurred. This ensures that the correct amount 
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of feedback is provided to resource consumers at the risk that some consumers may be charged 

although they have not been responsible for the resource congestion. However, it is argued that 

on a statistical basis the correct consumers are charged. 
The same idea can be applied to CPU shadow prices. Instead of starting to charge at the 

start of the previously met deadline, one simply starts charging once a deadline has been missed 

and continues until the next deadline for that task is met. For the example schedule in figure 4.2 

this is illustrated in the bottom time line. Tasks are charged for their resource usage during the 

period starting with T5 missing deadline D2 and continues until T5 meets its next deadline D3. 

From the example, it is clear that using this scheme, tasks T2 and T4 will get charged less than 

they would under the ideal scheme while T3 would get charged more. However, this effect is 

amplified in this contrived example and in practise (see chapter 6 for examples) does not appear 
to be a problem. 

In order to provide a continuous stream of charges proportional to the resource consumed, it 
is useful to define a minimum time unit which, under congestion, corresponds to a charge of one 
credit. A possible implementation of this approach may deploy the periodic timer interrupt most 

operating systems use to maintain the system software clock and/or to perform scheduling related 
functions such as updating usage statistics or priority re-computation. If the scheduler detects 

a missed deadline (i. e., an overload) the interrupt service routine would charge the currently 
running task one credit on every execution until the scheduler detects the next deadline is met. 
On standard PC style hardware this periodic timer can be set to periods as small as 122µs 

offering a high resolution feedback signal. However, general purpose operating systems use 
the periodic timer interrupt for scheduling related activities, such as recalculating priorities and 
schedulable timers. In these systems it is not advisable to increase the timer interrupt frequency 

to such high levels2. 

An alternative approach is to modify the code responsible for de-scheduling the current 
task. If the system is currently in congestion the de-scheduling code would simply charge the 
current task an amount proportional to the number of minimum time units consumed. Such 

an approach would require marginally more changes. However, an operating system typically 
performs some resource accounting in these routines which can easily be extended to also per- 

'In Nemesis, however, the periodic timer interrupt is only used for maintaining wall clock time and, on alpha 
architecture, the interrupt service routine is implemented entirely in PAL code. Changing the timer period to 
122µs and adding code for implementing the charging scheme does not impact the overall performance of the 
system. 
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form the charging. In practise, this approach provides charges at a fine enough granularity (see 

chapter 5). 

4.2.1.1 Avoiding congestion 

One problem with the pricing and charging model presented above is that in order for charges to 
be generated resource congestion must occur first. However, it is desirable to avoid congestion 

altogether as systems in overload tend to behave less predictably. Instead of basing charges on the 

external cost of congestion, charges could be based on the probability of congestion. This would 

generate some charges and therefore feedback signals to resource consumers prior to congestion 

and would provide them with an incentive to back-off their resource consumption, thereby 

potentially avoiding the system being overloaded. 
This approach has its equivalent in communication networks. For example, Random Early 

Detection (RED) [FJ93] was proposed to avoid congestion in packet-switched networks by 

"randomly" dropping packets if the average queue size exceeded a threshold. In the context of 

congestion pricing in communication networks, RED in combination with ECN [Flo94] has 

been proposed to convey charges. Gibbens and Key [GKTOO, GK01] proposed a similar scheme 
based on a Virtual Queue. 

For CPU shadow prices a scheme akin to RED can be easily deployed3. In general, the 

probability of resource congestion increases with higher resource utilisation. Therefore, shadow 

prices can be based on the utilisation of the resource. More specifically, a charging probability is 

assigned for each minimum time unit consumed, with the probability dependent on the resource 

utilisation. 

P 
1.0 

P 
ý--" 1.0 

1.0 1.0 
Utilisation Utilisation 

Figure 4.3: Charging probabilities 

3Virtual queue base schemes are not applicable as it is difficult to identify queues in this context. 
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Figure 4.3 illustrates a number of examples. The left most panel illustrates the scheme 
introduced in the previous section. If the system utilisation is below 1.0 no congestion occurs 

and consumers are not charged for their resource consumption. If the resource is over-utilised 

the probability that a consumer gets charged for a unit of CPU time consumed becomes 1.0. 

The second panel shows an exponential function of the utilisation (i. e., ea( )) 
- the higher 

the CPU utilisation the more likely it is for a consumer to be charged for a unit of CPU time 

consumed. This scheme also accommodates a configurable offset from full utilisation to allow a 

target utilisation to be set. The third panel shows an alternative scheme which allows charges to 
be above one credit per minimum time unit. The final panel shows an example which provides 
"negative charges" when the resource is only lightly loaded and positive charges as in the previous 

example. The rationale behind this scheme is that the resource may also provide an indication to 

consumers that resources are underutilised, so that they can adjust their resource demand more 

quickly. 
These example demonstrate that introducing the notion of a charging probability for min- 

imum time units is flexible enough to accommodate a range of different pricing schemes. In 

general, setting the charging probability based on utilisation should reduce the risk of conges- 

tion and, in the event of congestion, the consumers responsible for the congestion are more 
likely to be charged. 

4.2.1.2 Request-Usage charges 

The discussion so far assumed elastic applications which were capable of consuming all requested 

resources. Therefore, the pricing schemes discussed were only concerned with resource utilisa- 
tion and resource usage. A significant amount of real life applications have either bursty or 
constant resource requirements. These applications may not use the entire requested amount. 
For reasons of overall system stability4 it is desirable that these applications make the "right" 

resource requests. For example, bursty applications could make requests based on their mean 

or peak resource demand depending on system load. Within a microeconomic based resource 

management system it is natural to provide this incentive by charging for resource requests as 
well as for resource usage. 

A pragmatic approach is to split the charges for each consumer based on some systemwide 
ratio ,ß as shown in equation 4.6, where xi is the resource usage and ri the resource request 
of consumer i and p(") is a price function. The price function could be the same as the ones 

4Some scheduling algorithms, such as EDF, do not perform well when in constant overload. 
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discussed in the previous section. 
1 

chargei = /3 
(xiP(E 

xi)) + (1 - Q) 
((4.6) 

Using the parameter 0, the system is configurable to shift emphasis from purely usage based 

charging to purely request based charging. Due to the request component of a charge, bursty 

applications are charged even if they only consume very little resources. This should provide an 
incentive to them to request an affordable amount of the resource. 

This Request-Usage scheme is similar to Kelly's Time-Volume scheme [Ke197a] (see sec- 

tion 3.2.2.2) which is based on the notion of effective bandwidth. The Request-Usage scheme 

is mathematically less sophisticated but appears to work well in practice (see chapter 6). 

4.2.2 Other resources 
The previous section was mainly concerned with identifying shadow prices for CPU resources. 
In this section, other resources are discussed. For every resource, the initial challenge is to iden- 

tify congestion and the cost of congestion. For some resources there is an obvious indication of 

congestion (i. e., dropped packets in networks) for others this is less obvious. However, once the 

congestion has been identified the same or similar techniques to the once discussed in the previ- 

ous section, for example for congestion avoidance, can be directly applied to different resources. 

4.2.2.1 Memory 

Most operating systems abstract over the limited physical memory available in a system with a 

virtual memory management subsystem typically using the local hard-disk as backing store - 
"inactive" pages of physical memory are stored or paged to disk in order to make the memory 

available for more active data. Paging activity can have a severe impact on the overall system per- 
formance, as disk I/O is typically several orders of magnitude slower than main memory accesses. 
In standard operating systems, some heuristic, such as Least Recently Used (LRU), is deployed 

to decide when, and which, pages are paged-out to disk. Thus, in the case of virtual memory 

management, resource congestion can be easily identified - if paging of other consumers' pages 
is required to serve a consumer' physical memory demands then there is resource congestion and 

all consumers using physical memory are responsible for this congestion, in proportion to their 

usage of physical memory5. 

5Note, that this description is deliberately oversimplified. In practise, operating systems make tradeoffs between 

using pages as buffer caches and user-level programs; they use shared libraries and layered VM systems which 
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Analogous to the discussion on CPU, congestion pricing consumers can be charged based on 

the number of physical pages of memory they use if the OS has to page-out. Alternatively this 

can be based on the probability of paging being required. Again, charges can be seen as feedback 

signals and consumers could free up used memory. Interestingly, some modern derivates of 
Unix, e. g., IBM's AIX, already implement a very rudimentary feedback mechanism using signals 
if a high-water mark is exceeded. However, full blown congestion pricing for physical memory 

would be more interesting in the context of self-paging systems which provide QoS within 

the virtual memory system [Han99a, Han99b]. In such a system, complex application-specific 

paging strategies [McD01] can be implemented and could benefit from the feedback provided 
by congestion charges. 

4.2.2.2 Disk bandwidth 

In most modern variants of the Unix operating system, disk I/O requests are queued in a per 
device queue and are serviced by the bottom-half of the block device driver (see, e. g., [Vah96, 

Chapter 16] or [MBKQ96, Chapter 6] for a detailed description). Completion of an I/O request 
is indicated through an interrupt. Typically, I/O requests are reordered using a specific disk 

scheduling algorithm to improve device throughput by minimising disk-head seek times (see, 

e. g., [SCO90, SV981 for a discussion of different scheduling algorithms). 
Conceptually, as the block device I/O infrastructure uses queues to manage concurrent I/O 

requests, similar techniques to the ones developed for network routers and switches could be 

deployed (see section 3.2). Essentially, one could define a maximum acceptable queue length 

for outstanding I/O requests and identify congestion if this queue length is exceeded. Also, 

techniques like VQ or RED may be applicable to help prevent this congestion. As an alternative 
to monitoring queue lengths, the system could also monitor I/O request completion times. If 

the servicing time for an I/O request exceeds a device dependent threshold, congestion can be 

identified. This approach has the advantage that it monitors requests directly and is independent 

of any I/O request reordering. Akin to the exponential marking scheme, discussed above, a 
marking probability for I/O requests could be set as a function of either queue length or service 
times. 

It is worth pointing out that the two approaches discussed in the previous paragraph are or- 
thogonal to more advanced disk scheduling algorithms, such as Anticipatory scheduling [IDO 11, 

or filesystem prefetching, e. g., [SSS99]. 

complicate the accounting of physical pages to consumers. These and many other implementation specifics would 
need to be addressed by an actual implementation of congestion prices for memory. 
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Alternatively, some disk schedulers, e. g., the Nemesis disk scheduler [Bar97], deploy a dead- 

line based scheduler. In fact, the Nemesis disk scheduler is based on Atropos, the CPU scheduler 

used in Nemesis. If an OS uses such a scheduler, similar techniques to those discussed in the 

previous section on identifying CPU congestion and shadow prices could be applied for disk 

access. 
As with identifying congestion in the VM subsystem, the discussion in this section delib- 

erately ignores many implementation details but rather focuses on conceptual approaches. For 

example, when using the queue length to identify congestion, without further studies it is un- 

clear on which time scales, and with what degree of multiplexing of requests from different con- 

sumers, I/O request queues are operated. Furthermore, the service time for I/O requests varies 

significantly depending on the current head position - I/O requests may have different, un- 
known "sizes". This may significantly affect the applicability of results from network congestion 

control. Furthermore, unlike CPU or network packet scheduling the ordering of disk requests 
has a significant impact on the overall performance (throughput as well as latency). Therefore, 

the interactions between congestion pricing and disk scheduling and/or request tagging, as sup- 

ported by modern disk drives, needs careful studying. Also, the discussion above focuses on 
individual disk devices. For systems with multiple disks, possibly configured as software RAID, 

this conceptual model would have to be expanded. 

4.2.2.3 Network I/O 

Operating systems treat outgoing network traffic in a similar way to disk I/O requests. Outgoing 

network packets are typically queued until they are transmitted on the wire. Concurrent requests 
are then serviced by a variety of different queueing disciplines (e. g., FCFS or some proportional 
fair scheduler like WF2Q). Outgoing network traffic can also be scheduled using deadline based 

schedulers, e. g., in Nemesis a variant of Atropos is used [BBDS97]. So, the general techniques 
for congestion prices for disk I/O request also apply for outgoing network traffic. 

Incoming network traffic is largely controlled by CPU capacity for protocol processing, thus 
mechanisms like LRP [DB96] (see section 2.3.2) in combination with congestion prices for 
CPU resources should suffice to control this resource. 

4.2.2.4 Energy 

Recently, there has been increased research activity in energy management in operating systems. 
The main motivation is the increased use of mobile devices such as laptop computers or PDAs, 
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but environmental issues, such as overall power consumption and the noise generated by active 

cooling, also play a role. 
In a recent paper [NMO1] we investigated how congestion pricing can be applied to manag- 

ing energy, focusing mainly on battery energy management in mobile devices. The first obstacle 

to applying the general model outlined in section 4.1 is that energy is consumed by all devices 

in a computer system. Thus, accounting energy consumption to individual consumers, as nec- 

essary to apply the correct charges, is more difficult -a problem exaggerated by the general 
lack of fine grained resource accounting in general purpose operating systems. In [NMO1] we 

propose to exploit the mechanisms deployed in the Nemesis OS, for accounting for the usage 

of traditional resources (e. g., CPU, network, disks, and displays), to account energy consump- 

tions to individual consumers. A similar approach is presented in [ZFE+01 ], which extends the 

notion of resource containers [BDM99] to account for energy consumption. 
Accounting for a consumer's energy consumption forms only the basis on which advanced 

energy management can be performed. In the research community, it is now widely accepted 
[E1199, FS99, VLE00] that energy management should be performed at a higher level and may 
involve applications themselves. In [FS99] it is impressively demonstrated how a variety of ap- 

plications, executing in different modes of operation, can have a significant impact on a system's 

energy consumption. Flinn and Satyanarayanan therefore argue that applications should form a 

collaborative relationship with the operating system. 
Unlike the other resources discussed so far in this section, for energy it is initially not ap- 

parent how resource contention and the cost of resource contention can be identified. There 

are no obvious queues or deadlines to be considered. Instead, for battery energy, we adopt the 

goal directed approach, proposed in [FS99]: to a user the primary, most meaningful, energy- 

related performance metric is the lifetime expectancy of the current battery charge. In other 

words, the user should be able to specify how long the current battery charge should last, and 
the energy management system should strive to achieve this goal while maximising the utility 

provided to the user. Given the current battery capacity the system can calculate the maximum 

average discharge rate of the battery acceptable to achieve the user's goal. If the current discharge 

rate exceeds this average discharge rate, the system runs the risk of not being able to meet the 

user's expectation. This can be interpreted as energy contention and the consumers responsi- 
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ble for the excess energy consumption should be charged proportionally to their current energy 

consumption. 
More specifically, in intervals At the reduction of battery capacity AE can be measured 

(courtesy of the Advanced Configuration and Power Interface (ACPI)[Int99]). If AE exceeds 

the maximum amount of energy E,,,, 
Q. the system is allowed to use in that interval, we charge 

every consumer, i, proportional to the energy DEi it consumed during that interval, thus the 

term tixi from the decomposed model equals DEz/DE. As the battery capacity decreases non- 

linearly [ZFE+01], even under constant load, E,,,,,, needs to be recalculated periodically (e. g., 

the Odyssey prototype [FS99], implementing a similar mechanism, uses adaption intervals At 

of half a second). This approach for identifying shadow prices for energy consumption is similar 

to the simple "slotted time" model discussed in [GK99b] for network congestion prices. 
As with the other resources discussed in this section, this proposed model for managing 

energy will require additional considerations for implementation. Most importantly, it is not 

known how accurately energy consumption can be accounted to individual resources and appli- 

cations. This is clearly dependent on the accuracy provided by the specific ACPI implementa- 

tion. 

4.2.3 Comparison to congestion pricing in networks 
The congestion pricing mechanism described in this section was inspired, and is based on, sim- 
ilar proposals in the area of communication networks. However, there are some notable differ- 

ences, which make its application in an OS context easier. 
First, in networks congestion charges are only delivered with RTT delays. Thus, the feedback 

they provide may be delivered too late to the end-systems which then react to a past transient 
congestion. In an operating system, congestion charges can be applied immediately and appli- 
cations can potentially react more quickly. 

Recently, there has been a discussion amongst researchers about using single bit vs. multiple 
bits for charges [Str00]. This argument is motivated by the desire to provide more fine-grained 
feedback than the single ECN bit available in the standard IP header. With a single bit, the end- 
system has to sample many packets to determine the current charging rate, thus exaggerating the 
delayed feedback caused by the RTT delay. For congestion prices for CPU this discussion does 

not apply. If a higher resolution of feedback signals is required then the minimum work unit 

6For desktop computers, the goal could instead be for the system to not need active cooling. An external cost 
of contention can then be identified, if active cooling is required. For server systems, a system administrator could 
set a target energy consumption and resource contention can be identified if this target is exceeded. 
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can simply be made smaller, thus providing finer-grained feedback. For other resources, e. g., 

virtual memory or disk I/O, where the rates of resource consumption is discrete and relatively 
low, using an approach akin to multiple bits may prove useful. 

Furthermore, in computer networks, packets may traverse multiple congested routers. If 

a single bit is used to indicate congestion charges the sum of marked packets an end-system 

observes may not accurately reflect the actual congestion price unless the charging/marking 

probability is very small. This problem does not apply when applying congestion charges in 

the context of operating systems as charges from different congested resources can be observed 

separately. 
And finally, operating system interfaces are easier to change than network protocols. Chang- 

ing network protocols, such as adding an additional field to a header in order to provide more 
detailed feedback, requires the agreement of all parties involved and may require routers and 

other network equipment to be updated. In an operating system only local changes are needed. 

4.2.4 Summary 

In this section different ways of identifying congestion and the related shadow prices have been 

discussed for a variety of resources that are typically managed by an operating system. In sum- 

mary, there a number of different approaches to identify congestion. 

Request based: Consumers of a resource reveal their resource preference through resource re- 

quests, which are treated as soft reservations. If the resource cannot satisfy all resource 
requests, resource congestion can be identified. This approach can be applied to all re- 
sources for which a given operating system provides a mechanism for resource reservations. 

Goal directed: The goal directed approach is related to the reservation based approach. The 

user or a system administrator sets a target utilisation of a resource and if this target 
utilisation is exceeded resource congestion can be identified. 

Queue based: For resources which use a queue to multiplex concurrent resource requests, or 
which can be modelled as queues, similar mechanisms to the ones discussed for congestion 
prices in communication networks can be applied. Congestion externality occurs if either 
the queue is full or a certain queue length threshold is exceeded. 

Resource specific: Some resources, as for example, discussed for virtual memory, provide a 
natural form of congestion control, e. g., paging activity. In these cases, it is straightforward 
to identify shadow prices. 
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Which of these techniques is appropriate depends not only on the type of the resource but also 

on the way a given operating system supports this resource. For example, as discussed above, 
disk drivers could either use a request queue or a deadline based disk scheduler. For the latter, 

clearly a reservation based scheme is more natural to use, while for the former, a queue based 

approach is more appropriate. 
In general, it is essential that the operating system is able to account resource consump- 

tion to consumers of resources as consumers should be charged in proportion to their resource 

consumption in the case of congestion. 

4.3 Managing credits 
Identifying congestion and the associated shadow prices is the most important operating system 

mechanism in the context of the described decentralised resource management system. The 

second important OS mechanism required is the management of credits and accounts, against 

which resource consumers are charged. For the overall stability of the system it is required 

that consumers cannot create credits themselves or accumulate arbitrary amounts of credits. In 

other words, if credits do not carry any value, there is no incentive for consumers to adjust 

their resource consumption and there would be no means to differentiate between services. 
Furthermore, if it was possible for consumers to either create or accumulate arbitrary amounts 

of credits, individual consumers could easily, either maliciously or through software bugs, price 

other consumers out of the market and monopolise a resource. Therefore, credits need to be 

policed and managed by the system. Essentially, limiting the amounts of credit available to 

consumers provides the incentive for them to adapt their resource demands. 

The general idea is that each consumer has associated with it an account from which it 

gets charged. If an account is empty and a resource is congested, i. e., the consumer would get 
charged for its resource consumption, then the consumer is prevented from using that resource. 
If, however, a resource is not congested, i. e., no charges are applied, even a consumer with an 
empty account can use the resource. 

A user allocates credits to each of his consumers of OS resources. This could either be done 

as a one off payment - the completion of a task is worth a certain amount of credits to the user 

- or the user specifies a rate at which credits should be allocated to a consumer (in credits/s). 
As charges are rate-based, i. e., are observed in credits/s, it is natural to base the credit allocation 

7Note, that if credits are associated with real money, managing credits is not necessarily required as, at least 

theoretically, congestion charges would generate the revenue necessary for capacity expansion [MV95a]. 
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on rates as well. Thus, a user specifies at which rate a given consumer is allowed to spent credits 

on congestion charges. This approach is similar to assigning priorities in traditional operating 

systems. However, it is potentially easier to understand as it has a direct real-life equivalent. 

If a user allocates twice as many credits to one consumer than to another, the user values the 

work performed by the first consumer as being twice as important as the work performed by the 

second. Naturally, if both consumers are non-blocking, the first consumer should receive twice 

as many resources as the second8. 
After the user has specified how many credits per second are allocated for each of the con- 

sumers, an operating system mechanism will place the appropriate amount of credits into a 

consumers account in fixed intervals. It is important to prevent consumers from accumulating 

an arbitrary amount of credits over time, as could happen if no resource congestion occurs for a 

while or the consumer is idle. Therefore, the absolute amount of credits in an account should 
be policed. A simple token bucket (e. g., [Par94, page 260ff]) as shown in figure 4.4 fulfils this 

requirement. Tokens, or credits, are placed in a fixed sized bucket, or account, of size 0 at a rate 

of w credits/s. If the bucket is full, newly generated credits are discarded. Credits are removed 
from the bucket when the consumer consumes resources and resource congestion is identified, 

i. e., if the shadow price is non-zero. A consumer is allowed to consume resources if (1) it has 

credits available to pay for the congestion charges, or (2) if a resource is not congested. 

(1) 

R 
Co = Credits/s 
0= size of account 

Usage x, --. (- --. 
Price 

Figure 4.4: A token bucket scheme for managing credits 

The token bucket scheme for credits permits credit spending rates of up to ß+ rr xw 
in an interval r with a long term average of w. To prevent excessive accumulation of credits 
which would allow consumers to sustain longer periods of heavy congestion without adjusting 

8The experimental results, presented in chapter 6, confirm this intuition and, under certain conditions, this can 
also be proven theoretically[KMT98, KMBL99]. 
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their resource demands the size 0 of the bucket should be sized close to the per second credit 

allocation rate w. In the implementations (see chapter 5) 
,ß 

is typically set to 2xw, allowing 
for consumers with small credit allocations some slack should there be a sudden rapid increase 

in congestion charges. Note, that in general, limiting the bucket size to close to the per second 

rate of credit allocations is not a problem for well behaved applications. The upper limit on the 

number of credits which a consumer can accumulate merely provides a means of dealing with 

malicious, uncooperative, or buggy consumers. 
In practise, this simple token bucket scheme for managing credits has been proven to be 

sufficient. However, should further policing of peak credit spending rates be required, a Token 

Bucket with Leaky Bucket rate control [Par94, pp. 262-263] could be implemented to provide a 

policed upper bound on the burst credit spending rate. In this context, it is also worth pointing 

out that a simple Leaky Bucket scheme for policing credit spending rates is not sufficient as 

neither resource demands nor congestion charges are likely to be isochronous, i. e., both are 

expected to be bursty. 

On the more practical side, the operating system should provide an interface which allows 

consumers to query their current account, the rate at which the user allocates credits to them, 

and, most importantly, a mechanism which allows them to easily establish the current charging 

rate. This would be difficult by simply observing the current level of the token bucket, as the 

system is periodically placing new credits into that bucket. This would require consumers to 

sample the account frequently, resulting in an unnecessary overhead. In the implementations, 

accounts are only maintained internally and consumers can simply query the total amount of 

charges incurred or the charges incurred since they last queried the charges. Thus, by keep- 

ing timestamps on the samples, consumers can easily establish the current charging rate at a 
granularity best suited to them. 

It is worth pointing out that the token bucket for credits only provides a minimum mecha- 
nism for managing credits. Higher level mechanisms, such as the "top half" of lottery scheduling, 
i. e., tickets and currencies (section 2.1.4.3 and [WW94]) and windowed ticket boost [PMG99], 

or user agents varying wi(t) on behalf of the user9 can be implemented to compliment this basic 

mechanism. In a multi-user environment a mechanism is also required to allow an administra- 
tive entity, e. g., system administrator, to allot credit rates to individual users of a system. 

9As a simple example, in a workstation environment the windowing system's input focus may be used to increase 

the rate of credit allocation for the current "foreground" application [SM99b]. 
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4.4 Consumer Strategies 
In this chapter, the operating system mechanisms for pricing and managing accounts have been 

described. In this section, different adaption strategies for consumers are discussed which can be 

used to react to feedback signals provided by the charges. 
Following the decomposed model introduced in section 4.1, consumers of resources ob- 

serve charges of the form tixi, i. e., proportional to their resource consumption xi. A rational 

consumer aims to maximise their utility UU(xi) minus these charges: 

max Ui(xi) - ui(xi) - tixi (4.7) 

A general assumption is that a consumer's utility is elastic with a diminishing marginal increase of 

utility as the resource allocation increases. In other words utility functions, at least qualitatively, 

are assumed to be monotonically increasing and concave. With this in mind, a consumer's 

optimisation problem has the unique solution ui (xi) = ti. 

In a dynamic system, overall resource consumption and shadow prices, and therefore, the 

charges, change constantly. Consumers will have to adjust xi dynamically to deal with these 

changes. Consumers of a resource thus observe the charging rate tixi and adjust their resource 

consumption or reservation by Oxi according to some application specific strategy. Applications 

may also change their mode of operation in response to the feedback signals. e. g., reduce or 
increase video decoding quality or display frame rate. 

Given the account model outlined in the previous section, it is natural for elastic consumers 

to attempt to match the rate of charges to the rate at which they are allotted credits by the user. 
Essentially, each elastic consumer will run a rate adaption algorithm so that its willingness to pay 
wi, as assigned to by the user, equals the rate tixi at which charges are observed. 

A wide range of different rate adaption strategies are conceivable. These range from a sim- 
plified TCP-like algorithm implementing an additive increase/exponential decrease strategy, to 
more sophisticated, control theory based algorithms. 

One simple sample strategy can be derived from the general adaption strategy described in 

equation 4.5. Assuming a general utility function of the form wilog(xi) this equation can be 

transformed into Gibbens and Kelly's WTP algorithm [GK99b, Key01]: 

Oxi(t) = ii(wi(t) - xi(t) x p(y(t))) (4.8) 

With this algorithm, a consumer observes charges proportional to the load they impose on a 
resource and increase or decrease their consumption according to whether the charge is higher 
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or lower than the amount they are willing or allowed to pay. The parameter Ki influences the 

rate of convergence. 
An alternative approach could use a classic controller from control theory, namely a PID 

controller, which has also been used in other feedback based resource management systems for 

operating systems [SGG+99, LSTS99]. A PID controller adjusts the resource consumption rate 
based on the combination of a proportional, integral, and derivative component of an observed 

error: 
Oxi(t) 

= CiPei(t) + Ci! 1 ei(t) + CzD d 
dtt) 

(4.9) 

where Cip, Cii, CiD are constants and ei(t) represents the error between a configurable will- 
ingness to pay rate and the rate at which congestion charges are incurred, i. e., ei(t) _ 'wi(t) - 

p(y(t)) 
In general, consumers are free to choose which adaption strategy to use. It is conceivable that 

the operating system provides a variety of default adaption strategies in the form of user-level 

shared libraries for the application developer or even the user to choose from. 

The system can also accommodate non-adaptive legacy applications. Consumers are guaran- 

teed a share of the resource proportional to wi/ E wi since E wi is policed through the accounts 

mechanism and the maximum charging rate is fixed by the mechanism for identifying shadow 

prices. Consumers which do not perform any Oxi adaption are able to sustain charges up wi. 
Therefore the simplest way to support non-adaptive legacy applications is to make resource re- 

quests for them which are proportional to their weight and the maximum charging rate. The 

FreeBSD prototype, described in detail in section 5.2.4, uses this mechanism to support non- 

adaptive legacy applications. 
More complex strategies other than the simple charging rate control algorithms discussed 

in this section, may be deployed. For example, a user may specify that a consumer should 

perform a certain task before a given deadline at a minimum or fixed cost. This freedom enables 

application developers and users to choose from a wide range of different strategies borrowing 

from game theory, control theory, economics and mathematics. Some sample strategies for 

different types of application are discussed in [GK99a, KM99] in the context of communication 
networks. Furthermore, application developers are encouraged to use the feedback provided to 
pro-actively adapt the behaviour of their applications. A detailed discussion of these issues is 
beyond the scope of this dissertation, which is primarily focused on the enabling mechanisms. 
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4.4.1 Non-convex utility curves 
The theoretic model of congestion prices, more precisely, the analysis of optimality of resource 

allocations, assumes strictly continuous, convex utility curves. While it can be expected that 

some applications fulfil this criterion, many real applications might not. Often, realistic applica- 

tions require a minimum amount of a resource before being of use to a user. Furthermore, real 

utility curves are likely to be non-continuous as real applications are likely to only offer distinct 

modes of operation with different resource demands. 

U? 

-0. RR 

Figure 4.5: Examples of non-convex utility curves 

For realistic applications one can distinguish two common cases for non-convex utility 

curves. These are illustrated in figure 4.5. The left curves represents an application which 

requires a fixed amount of a resource in order to work. However, once it receives this amount of 

the resource any further allocations of resource do not allow it to offer any further utility to the 

user. The system can accommodate these types of application in a similar way as described above 
for legacy applications. Since an application is guaranteed a share of a resource proportional to 
its credit allocation and the maximum charging rate is known, a user could assign an appropriate 

amount of credits to this type of application and the application does not need to perform any 
Axi adaption. Either the user considers them valuable enough and provides them with suffi- 

cient funding to sustain their service rate even under resource congestion, or they simply do not 

execute. 
A sample utility curve for a different type of application is depicted on the right hand side of 

figure 4.5. This type of application also requires a minimum amount of a resource to perform 

any useful work and then has a sharp increase in the utility provided which then tails off in 

a convex form with more resources added. Typical applications with this type of utility curve 

are multimedia applications which may have a quite high initial resource demand for decoding 

video frames and then are able to offer increased quality video playback with a higher resource 

allocation. Again, it is up to the user to provide sufficient funding for these types of applications 
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to allow them to operate in the region of the utility curve where they can offer any utility to the 

user. However, once the application is able to operate in the convex part of the utility curve it 

can utilise the adaption techniques described above. 
The right hand side utility curve also illustrates the non-continuous nature of real applica- 

tions (in blue), contrasting them with the idealised form (in red). An application may offer 
distinct modes of operation offering different amounts of utility to end-users. A switch between 

these modes may be distracting to an end-user (e. g., a change in video playback resolution) so 

that application programmers would typically implement a hysteresis for mode changes. Again, 

if an application does not receive enough funding to continuously operate in a mode desired by 

the user, the user could simply increase the credit allocation for that application. 
In general, it can be assumed that applications with non-convex utility curves fall into the 

two categories described. Furthermore, typically, applications with a relatively high resource 
demand belong to the second category, while applications with a low overall resource demand 

fall into the first. The reason for this is clear: even if an application with a small resource 
demand is adaptive and may consume more or less resource based on its mode of operation, 

this adjustment of resource demand is still relatively insignificant when compared to the total 

amount of resource available. In other words, applications with a small resource demand might 

as well request resources at a peak rate and be treated as fixed rate applications. 
Applications with non-convex utility functions do place a certain onus on the end-user, 

namely the end-user has to provide sufficient funding to these types of applications. However, 

this task can be supported by appropriate user interfaces which allow an end-user to both mon- 
itor the system and to adjust credit allocations. Two prototypes of such interfaces are presented 
in section 5.2.6. 

4.4.2 Dealing with ill-behaved consumers 
If consumers get involved with resource management and can choose any application strategy 
then ill-behaved or even malicious consumers may try to sabotage or play the system in order 
to gain an unfair advantage over other consumers or even deliberately cause harm to other con- 
sumers. The credit policing account mechanisms described in section 4.3 may prevent the worst 
ill-effects by simply reducing the number of credits available to consumers. 

Even with such protection in place it is conceivable for consumers to "play" the system. 
While this, to an extent, is encouraged - may the best strategy win - there may be "strategies" 

which could cause unnecessary fluctuation or oscillation in service rates received by other con- 
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sumers. For example, a malicious consumer may deliberately attempt to drive a resource into 

heavy congestion and, as soon as congestion charges are applied, retract to a minimum resource 

consumption or be inactive for a period of time. Also, ill-configured adaption strategies may 

cause similar effects. For example, the PID strategy introduced above requires up to four pa- 

rameters to be specified. Choosing an unfortunate combination for these factors may result in 

erratic behaviour. 

In the evaluation chapter the interaction of these and other ill-behaved consumers and "good 

citizens" is investigated in detail. However, there are a few mechanisms which may provide ad- 
ditional protection. For example, using the congestion charges based on congestion probability 
(section 4.2.1.1) increases the likelihood of malicious consumers, who are trying to drive the re- 

source into congestion, being charged for their behaviour. Another protection mechanism may 
be to prevent a consumer from making rapid and significant changes to their resource requests, 
thus encouraging more measured resource adaption. 

It is worth pointing out that apart from these technical measures, social measures may be 

more effective in dealing with ill-behaved consumers. In a mainly single-user workstation en- 

vironment, a user has little incentive to use applications or adaption strategies which are ill- 
behaved and have a negative impact on the user's other consumers. In a shared multi-user envi- 
ronment, users with ill-behaving consumers may be subject to peer-pressure from other users or 
administrators can ultimately ban users with ill-behaving consumers from using the system. 

4.5 Multiple resources 
The discussion so far has focused on the management of individual resources. However, appli- 
cations typically make use of multiple resources. From a user's point of view, it is desirable to 
have just one currency for all resources used by a consumer, i. e., the user allocates a credit rate 
for its consumers and consumers then have to decide on which resources to spent these limited 
funds. 

However, consider a user allocating a larger amount of credits to a consumer for CPU, disk 
I/O, and memory. If memory momentarily is not congested, and the consumer performs less 
disk I/O than anticipated, the consumer could potentially use the "surplus" credits to monop- 
olise the CPU resource. Thus, from a systems view, it is desirable to use different currencies 
for different resources. This approach is also favoured by Sullivan and Seltzer [SSOO, SHS99] 
which present a system using the lottery scheduling resource management framework (see sec- 
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tion 2.1.4.3) to manage multiple resources. They argue that different currencies are necessary in 

order to provide insulation between different resource and consumers. 
Unfortunately, in such a system an undesirable burden is placed on the user who has to 

allocate credits in different currencies to each of the consumers rather than simply stating how 

important a particular consumer is. One possible solution is to assume that for a given consumer 

all resources are equally important. The user would assign a credit rate wi to a consumer and the 

system would assume equal allocations for all n resources, i. e., the credit allocation rate for each 

resource would be policed to win credits/s for each resource. In such a system it is conceivable 

to allow consumers to exchange or trade credits for different resource with each other. For this 

purpose, Sullivan and Seltzer [SS00] proposed Ticket Exchanges, so that, for example a CPU 

intensive consumer could exchange its disk I/O tickets (or credits) for more CPU tickets with 

an I/O intensive application. An alternative would be to allow consumers to change credits of 
different currencies, but tax each exchange as a deterrent against frequent changes. 

A single currency for all resources might still be feasible in an economic framework if con- 

sumers are given an economic incentive to spent their credits appropriately. In the single resource 

pricing scheme discussed in section 4.2.1.1 minimum work units were charged one credit with a 

probability determined by the level of resource congestion. Thus each resource had a maximum 

charging rate at probability 1.0 depending on the size of the minimum work unit. By deploying 

a scheme which inflates prices beyond this maximum charging rate of one credit per minimum 

work unit consumers might be given an incentive to spent credits on different resources (if they 
can) or, are at least discourage from spending most of their credits on one resource, as it becomes 

exceedingly undesirable to spent credits on just one resource. 
Without further investigation and practical experiences with congestion pricing for multiple 

resources it is unclear which of these alternatives to use. The single currency model is certainly 
more appealing from a user's point of view but might introduce instability and potential exploits 
for malicious consumers to the system. These issues will need to be addressed with future work. 

4.6 Related work revisited 
In chapter 2 existing approaches to resource management in operating systems have been re- 
viewed and several problems with them have been identified. Specifically, these are issues related 
to (1) QoS mapping, (2) admission control, and (3) complex APIs. Now, with the decentralised 

resource management architecture introduced in detail, these issues are revisited and it is shown 
how the new architecture addresses them. 
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The decentralised resource management architecture separates mechanisms from policies 

[LCC+75] as is generally considered a good practice which all higher level resource manage- 

ment architectures adhere to. Low level mechanisms merely multiplex resources, and implement 

pricing, charging, and accounting. However, unlike previous approaches to resource manage- 

ment, higher level policies are not centralised within a single entity, such as a QoS manager: 
decisions about how much of a resource a consumer requires are made by the consumers - 

policies are decentralised. 

Centralised QoS managers typically export complex APIs to allow a range of different types 

of applications to specify their QoS demand in a application specific manner. In contrast, the 

API presented by the decentralised architecture is very simple: resource consumers can request 

resources via a single interface per resource and can enquire about their current charging rates 

- there is no need for more information being exchanged between applications and resources. 
The per resource interfaces should be very simple, merely reflecting the way the resource is mul- 

tiplexed. Thus, whether a particular type of application is supported depends on the capability 

of the multiplexing mechanisms rather than on support for it by a higher level API. For most 

resources, especially the CPU, the capabilities of multiplexing mechanisms and their interfaces 

are well understood, as indicated by the review of scheduling algorithms in section 2.1. Likewise, 

the interface for managing credits, both for the user and the consumers is simple: users can spec- 
ify credit allocations in very much the same way they would assign priorities to applications and 

consumers can, through a simple call, find out the number of credits they have been charged. 
This simplicity is in stark contrast to the interface definitions of, e. g., QoS-A (section 2.2.1), 

OMEGA (section 2.2.2) or Q -RAM (section 2.2.3) which define interfaces at a significantly 
higher level, i. e., at the application level. 

In most existing QoS architectures QoS managers typically attempt to map these high level 

QoS definitions to lower level resource allocations. This mapping is complex, requires dynamic 

adjustments and, most importantly, knowledge about the performance of the application with 

respect to the stated high-level QoS requirements. Most of the reviewed QoS architecture 
(OMEGA, QualMan, Q -RAM) accomplish this task by assuming a static mapping from ap- 

plication level QoS requirements to resource allocations (determined either off-line or during 

a calibration phase at application startup). However, it has been argued that this approach is 
infeasible due to the high variability of resource demands of applications and its dependency on 
the application's input (e. g., differently encoded video streams). The decentralised architecture 

addresses this problem by not performing this mapping outside the application. Instead, an 
application may perform the mapping from an application level QoS specification to low-level 
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resource requests itself; potentially leveraging full application specific knowledge. This mapping 
does not need to be explicit, i. e., an application may simply try to maintain a certain QoS level; 

it can be performed continuously, adjusting to changing resource demand and availability; and 
is assisted and encouraged by the decentralised architecture through the feedback provided by 

the pricing information. 

This type of flexibility would be difficult to achieve in a centralised architecture as more and 

more information would have to be passed to a centralised resource manager, thus making its 

API more complex. For example, a video decoding application would require an interface to 
inform the manager about its current frame-rate and decoding quality level. A much simpler 
approach would be that proposed by Steere et al. with their feedback-driven scheduler (discussed 

in section 2.1.6). In their system applications only have to provide a simple progress metric 
to a centralised controller. While this solves the problem of complex APIs and mapping, it 
is unclear how the performance of complex applications can be reduced to a single progress 
metric. The decentralised architecture does not have such a constraint and instead enables 
applications to choose progress metrics specific to the applications and to adjust their resource 
demand accordingly. 

The third problem with existing resource management approaches has been identified as 
admission control and resource renegotiation, in particular under changing resource availability. 
QoS managers have to implement an admission control system to provide resource guaran- 
tees to applications. Simplistic admission policies, e. g., first-come-first-served, are unfair and 
suboptimal as later arriving, more important tasks may be denied access. Furthermore, under 
conditions of changing resource availability QoS managers typically propose to use one of two 
different schemes: either to change resource allocations based on detailed application knowledge 

or to engage in resource renegotiation with the consumers. It has been argued that the former 

exhibits the same problems as QoS specification mapping, in that the resource manager would 
need to know how many resources a consumer would require in different modes of operations. 
The latter approach is more promising. However, it requires consumers to be provided with an 
incentive to reduce their resource demand. The decentralised architecture addresses this issue by 

charging consumers for their resource consumption. By basing the charges on the external cost 
of congestion, consumers are made aware of the impact they are having on the overall system per- 
formance and by limiting the availability of credits used for paying for these charges consumers 
are given an incentive to adjust their resource demand with changing resource availability. This 
feedback in the form of charges is provided to resource consumers continuously, allowing them, 
to some degree, to adjust (or "renegotiate") their resource demand at timescales suitable to them, 
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rather then at times chosen by a resource manager. Furthermore, by controlling the availability 

of credits and through an appropriate pricing mechanism the need for an admission control 

policy at the resource is alleviated. 
From the reviewed QoS architectures, AQUA is conceptionally similar to the decentralised 

approach. In both systems, resources provide feedback to the applications which adjust their 

resource demand based on the feedback. However, AQUA does not seem to provide any mech- 

anisms, other than prescribing a QoS manager, to force applications to adapt their resource 
demand. Furthermore, by basing the decentralised approach on a sound micro-economic the- 

ory (see chapter 3), theoretical results from other areas of resource management can be leveraged. 

These results state that under certain assumptions, a decentralised approach can yield optimal 

allocations as well, maximising the overall system utility. Techniques proposed for QoS archi- 
tectures are still applicable in the decentralised resource management architecture. For example, 
techniques for mapping QoS requirements may be deployed by the resource consumers directly 

in order to make more accurate resource demands. Techniques for mapping user and applica- 

tion utility to an application's mode of operation, proposed in the context of Q -RAM, may be 

valuable for applications to react to feedback signals. Classifications of applications, as used by 

some systems, may be used to develop default adaption strategies for applications. However, 

an important difference is that the decentralised approach does not force the use of any of these 
techniques. 

4.7 Use in different contexts 
The description of the decentralised resource management architecture in this chapter has so 
far focused on the low-level operating system mechanisms. However, there are a number of 
additional considerations depending on the context in which such a system would be deployed. 
Three different contexts are considered: a user's personal workstation, a server internal to an 
organisation, and an external server. The latter could be part of a server farm at an application 
service provider, a node in a compute cluster, or even part of a public computing infrastructure 
(such as the proposed by the XenoServer project [RPM+99, HHKPO3] or built by the Planet- 
Lab project10). The distinguishing feature between internal and external servers is that external 
servers have potentially competing users from different administrative domains. 

The approach to congestion pricing in operating systems as described in this chapter can 
be applied directly in the context of personal workstations. Typical target applications in this 

10http: //www. planet-lab. net 
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context are adaptive multimedia applications or applications which perform compute-intensive 

yet non-time critical background tasks, e. g., document indexers. A user can assign different 

credit allocations to different applications in a similar way as he would assign priorities. Appli- 

cations can directly enquire their credit allocation and charging rates using simple system calls. 
If funds for an application are insufficient a user could directly increase funding for this appli- 
cation. Furthermore, the task of assigning and changing credit allocations to applications could 
be facilitated through user interfaces or simple user agent softwares. In section 5.2.6 some initial 

prototypes for this purpose are described. 

Congestion pricing "could" also be applied to manage resources in local servers - servers 
which are deployed within an administrative domain such as workgroups or small companies to 

provide services to users within that group. However, in general congestion pricing as a resource 
management mechanism is only useful for resources that (can) become congested and there is 

a strong argument that congestion within local servers should be avoided - resources for such 
services should be over-provisioned or at least sized to provide an adequate level of service. 

Applying congestion pricing in the context of an external server is significantly more interest- 
ing and challenging. As described above external servers are servers providing services on behalf 

of non-cooperating remote users. A typical application scenario for external servers are host- 
ing centres using consolidated servers, i. e., hosting multiple competing applications on a single 
server or small group of servers, maybe deploying virtual machine techniques such as VMWare 
ESX. Even more challenges are posed by emerging public computing infrastructures allowing 
arbitrary users to run potentially short-lived services on a computer system "somewhere" in the 
network, e. g., as proposed by the XenoServer and PlanetLab projects. 

Such environments suggest that real money will be used to provide services to users or cus- 
tomers. Then the question becomes whether congestion pricing should be used to charge cus- 
tomers real money and, if so, how should users be made aware of the fluctuating prices inherent 
to congestion prices. While the answer to the first question is difficult to provide - it would 
make sense from an economic point of view, however, issues such as customer preferences and 
general market conditions may be prevailing - the second question is directed more at whether 
it would be feasible to implement such as pricing scheme. 

A simple way of implementing congestion pricing in external servers involving real money 
would be to enable customers to specify a fixed maximum amount of money they are willing 
to pay per unit time for the service. This knowledge would only be made available to their 
application which would take this information into account when changing resource requests. 
A more elaborate scheme could involve customers making use of a partial autonomous agent at 
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the server making limited decision about spending for them. Comparable schemes have been 

proposed in the context of MUSE [CAT+01], a system to manage energy in hosting centres, 

and the modified version of REXEC used for managing jobs in the cluster computers [0000]. 

In both systems customers specify a policy on how much money should be spent on their be- 

half. This policy could be as simple as stating a maximum spending rate. It is anticipated that 

each external server also exports an interface via which customers can query pricing informa- 

tion, e. g., current price or the price history. This interface could be simply web-based or use, 

e. g., a multicast group to disseminate pricing information to all customers. It is important, 

however, that using an agent of some sort frees customer from having to react to congestion 

pricing information at the short time scales at which they change -a customer can occasionally 

check the performance of his service (via an application specific interface) and then take pricing 
information into account in order to decide whether to adjust the policy implemented by the 

agent. 
The external server example obviously requires further infrastructure for it to be feasible. For 

example, mechanisms for authentication and payment are required. One possible approach is 

presented by the XenoServer project which models part of these mechanisms similar to the way 

credit card companies operate [HHKPO3]. A detailed discussion of these issues is beyond the 

scope of this dissertation and the remainder of this dissertation focuses on the application of 

congestion pricing in personal workstation environments. 

4.8 Summary 
In this chapter the application of congestion pricing mechanisms to managing resources in op- 

erating systems has been discussed. Particular emphasis was put on the mechanisms which an 
operating system has to provide in order to decentralise resource management. These mecha- 

nisms are the identification of congestion and congestion prices, and an appropriate mechanism 
for managing credit accounts. An accurate accounting mechanism is assumed to be provided by 

the operating system. 

I have identified 4 different ways of identifying congestion - request based, goal directed, 

queue based, and resource dependent - and have demonstrated how these can be applied to 
identify congestion in a variety of resources managed by an operating system. In this discussion, 

particular emphasis was placed on the management of CPU resources. For CPU resource man- 
agement a soft real-time approach was proposed as it allows consumers of a resource to express 
their preferences in the form of soft reservations and real-time schedulers can be used to provide 
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resource allocations at a fine granularity while medium to long term allocations are provided by 

the decentralised approach. In the context of CPU resource management, the importance of 

actually avoiding congestion entirely by basing congestion charges on the probability of conges- 
tion rather than on congestion itself has been discussed. In general, it has been demonstrated 

that operating system resources are indeed congestable and exhibit congestion externalities. 
The second important mechanism has been identified as that of managing credit accounts, 

used by consumers, to pay congestion related charges. It has been argued that a rate allocation 

scheme for providing credits to consumers offers a useful abstraction: the user decides at which 

rate credits are allocated to consumers. A simple token bucket scheme is deployed to prevent 
consumers accumulating arbitrary amounts of credits. This is mainly a safeguard against ill- 

behaving consumers and should not impact well-behaved consumers. 
Finally, this chapter provided a discussion on possible adaption strategies for consumers. 

Consumers are encouraged, through the congestion charges and the limited availability of cred- 
its, to adjust their resource demands. A natural behaviour is to adjust the resource demand so 
that the charging rate matches the rate at which the user has allocated credits. Two different 

algorithms (WTP and PID) for achieving this goal have been described. However, it is worth 
stressing that consumers are free to choose any strategy they like. Measures beyond the credit 
controlling mechanism, to protect the system from ill-behaved consumers, have been discussed. 

Congestion pricing mechanisms for CPU resource management have been implemented 
in two different environments. Background to these implementations is provided in the next 
chapter and chapter 6 provides an evaluation of these implementations. 
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Chapter 5 
Implementations 

To evaluate the model of congestion pricing for operating system resources that has been outlined 
in the previous chapter, I have implemented two prototypes. In this chapter these implementa- 

tions are described in detail - an evaluation of the congestion pricing mechanisms is given in 

the next chapter. 
For initial experiments and comparative studies I have implemented a generic simulation 

environment for scheduling algorithms. The simulator offers an environment in which dif- 
ferent CPU scheduling algorithms and resource management mechanisms and policies can be 
implemented quickly and evaluated under similar workloads. Thus, it allows for the detailed 

qualitative and quantitative comparisons of different scheduling and resource management ap- 
proaches. The simulator is described in the next section. 

Although simulations are a very practical tool to quickly explore different approaches, they 
often model only certain aspects of real systems and, therefore, the results should be carefully 
interpreted. More specifically, the simulator only provides a highly idealised simulation envi- 
ronment for CPU scheduling. To validate the results gathered from the simulator, I have also 
implemented a prototype under FreeBSD. The FreeBSD implementation has the advantage of a 
mature, industrial strength workstation and server OS. The FreeBSD prototype is described in 
5.2. 

5.1 The simulator 
The simulator is a discrete-event simulation environment for scheduling algorithms and work- 
loads. It provides abstractions for processes, schedulers, and inter-process communication and 
synchronisation. These abstractions are derived from their equivalents in Nemesis, as it al- 

98 



ready provides a rich and flexible notion for these fundamental abstractions. In practise, the 

abstractions are shown to be powerful enough to implement a variety of scheduling algorithms, 
including hierarchical schedulers (see section 5.1.1 and 5.1.4). The task model is flexible enough 

to model both artificial and realistic workloads (see section 5.1.5). 

The simulator is implemented' in Python [vRDOO], taking advantage of both its object- 

oriented and functional programming features. The basic abstractions are implemented as base 

classes and can be easily extended or partially replaced to suit a variety of different scheduling 

algorithms. For example, the basic IPC mechanism can be extended with scheduler specific 

techniques to avoid priority inversion. Python's interpreted runtime environment also facilitates 

rapid development and prototyping. 
In the remainder of this section, the simulator is described in more detail. First, the general 

abstractions are introduced, followed by an description of how different scheduling algorithms 
can be added and how a variety of workloads are modelled. This section is rounded off with a 
discussion of how the decentralised resource management mechanisms are implemented in this 

environment. 

5.1.1 The task model 
The simulator offers a general task model mirroring the conceptual task model used in Nemesis 
(see section 2.3.1). Tasks are composed from SDOMs and ADOMs (Nemesis' PDOMs are not 
modelled as the simulation environment does not need to provide memory protection). The 

simulator provides an n-to-m mapping from SDOMs and ADOMs allowing for very flexible 

combinations of resource allocations and executions. However, as in Nemesis, the default is a 
one-to-one mapping, forming the closest equivalent to a "process" in more traditional operating 
systems. 

An SDOM can be in one of 4 states. Different schedulers may only make use of a subset of 
these states. If an SDOM has any associated ADOMs which are willing to receive CPU time it is 

either in the run, wait, or unblocked state. The run state indicates that the SDOM is eligible 
to receive the CPU, while the wait indicates that the SDOM has already received its quantum 
of CPU and is currently waiting to become eligible for the next quantum. The unblocked state 
may be used by schedulers to indicate that the SDOM only became runnable recently, and a 
given scheduler may pay it special attention in order to reduce unblocking latencies. The block 

'The initial implementation was derived from a small test harness for the Nemesis Atropos scheduler (orig- 
inally written by Paul Barham at the Computer Laboratory, University of Cambridge, U. K. ). However, it was 
subsequently completely redesigned and significantly extended for use in this dissertation. 
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state indicates that the SDOM currently does not have any associated active ADOMs and is 

therefore blocked awaiting an external event. 
In the simulator, SDOMs and ADOMs are implemented as classes. The base SDOM class 

implements the simple case of a one-to-one mapping between SDOMs and ADOMs. When 

the scheduler selects an SDOM to be run, its associated ADOM is activated. To implement hi- 

erarchical scheduling schemes, the HSDOM class provides an interface via which the scheduler can 
inform the SDOM of changes in its ADOMs' states (i. e., if they block or become unblocked). 
If an SDOM is awarded the CPU by the scheduler, it can nominate one of its active ADOMs to 
be run. However, to keep the main scheduler implementations clean and simple, the base SDOM 

class is used as the default. The base SDOM class can be extended to accommodate scheduler 

specific attributes and methods, e. g., to contain priorities, resource reservations, and deadlines. 

In contrast to SDOMs, ADOMs are generic and independent of any specific scheduling 
algorithm and implement various types of workloads. As with SDOMs the ADOM base class 
implements the basic functionality of all ADOMs. The main method of the ADOM class is 

activate () which is called whenever the ADOM gets allocated the CPU by an SDOM. The 

simplest implementation consumes the entire allocation (see section 5.1.3 on how CPU time 
is consumed). Subtypes of the ADOM class provide different implementations of activate() 
to implement different types of workload (see section 5.1.5 for details). The ADOM class also 
provides methods to block the ADOM or to yield the current allocation. Furthermore, the ADOM 

class implements the user-level part of the basic IPC mechanism, described in section 5.1.2. The 
ADOM base class is derived from Nemesis' Virtual Processor (VP) interface which, in Nemesis, is 

also used to multiplex user-level threads and to implement thread synchronisation. 

5.1.2 The event mechanism 

The simulator provides a very basic IPC mechanism which is a direct implementation of the 
event channels abstraction2 used in Nemesis (see e. g., [LMB+96, section III. a)). Communication 
between two ADOMs is accomplished via communication Endpoints (EPs) which are connected 
via event channels. Channels are unidirectional, allowing a single numerical value to be conveyed 
from a transmit (TX) EP to a receive (RX) EP via the asynchronous send_event() function, 
that is provided by the simulator core. Currently, each ADOM has a fixed length array of EPs. 
The simulator core provides functionality to connect two EPs via a channel (bind_ep () ). The 

2Strictly speaking, event channels are a synchronisation mechanism which can be used to implement a variety 
of higher-level IPC mechanisms. 
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ADOM class provides methods to allocate and free EPs, to send an event of a particular value via a 

TX EP, and to read the value of an RX EP. 

The event mechanism also interacts with the scheduler, allowing it to unblock blocked 

ADOMs and SDOMs, and to give preferential treatment to these tasks to reduce dispatch la- 

tency. If an ADOM sends a value over an event channel via send-event (), a reference to 

the receiving ADOM is placed into a FIFO managed by the simulator core, indicating to the 

scheduling algorithm that the ADOM has received an event. The send-event C) code also 

places a reference to the RX EP into a ADOM specific FIFO. This allows ADOMs to easily 

check for any pending events. As an obvious optimisation, an EP is not placed on the FIFO if it 

has already been placed into it due to a previous event. 
It is worth noting that the event mechanism does not impose any restrictions on the inter- 

pretation of the event values. Furthermore, a receiver is not able to reconstruct any intermediate 

values an EP might have had in between subsequent reads. Any semantics carried by events are 
defined at a higher level between ADOMs. 

One such mechanism, used in Nemesis, is an Event Count (EC) [RK79]. In the simulator, 
ECs are provide by a separate class, Events, and ensure monotonically increasing event values. 
The Events class provides methods to read the value of an EC, to advance an EC by an in- 

crement, and to block the ADOM until the EC has reached a specific value (or, optionally, a 

timeout has expired). To provide an IPC mechanism, ECs can be attached to connected EPs - 
advancing an event count then results in an event carrying the updated value to be sent to the 

peer EP in the peer ADOM. 

In Nemesis, ECs are used for both inter and intra ADOM synchronisation. For example, 
[Bla95] demonstrates how a variety of user-level thread synchronisation primitives can be built 

using ECs and sequencers. For inter-domain communication, both a local RPC mechanism 
[Ros95] as well as a bulk data transfer mechanism, known as RBufs [B1a95], are built using ECs 

for synchronisation. 
For the simulator, only the basic EC mechanism is provided for inter ADOM communica- 

tion, because, so far, it has been sufficient to model simple interactions between ADOMs. For 

example, a synchronous Local RPC call can be modelled using two ECs per ADOM connected 
via a pair of EPs: The client's TX EC is connected to the server's RX EC, and vice versa. To 
"call" the server, the client advances its TX EC by one and than awaits an advance on its RX EC. 
The server ADOM does the reverse, starting, however, with awaiting an advance on its RX EC. 
More complex interactions, such as a server serving multiple clients, can be built in a similar 
fashion. 
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5.1.3 The simulator core 
The core of the simulator provides the infrastructure in which simulations are executed. More 

specifically, it provides the equivalent of the functionality of the Nemesis Trusted Supervisor 

Code (NTSC) as well as the event machinery driving a simulation. The most important facility 

provided by the core is the notion of simulation time. Simulation time is maintained in the 

global variable Now. Time is typically interpreted in units of nanoseconds, although the simulator 
itself does not have a notion of time units - time is simply a monotonically increasing value. 

Simulation time is advanced through the consume_time() method, which, for example, is 

used by ADOMs to consume CPU time in their activate() method. Different parts of the 

simulator can schedule events to be executed at specific times. There are two types of sched- 

uled events: those which are part of the main simulation, such as preemption times, and those 

a user can schedule, e. g., for changing scheduling parameters or adding new tasks at specific 
times. Only the former are scheduled at the exact time. The latter are scheduled some time 

after the specified time, whenever the simulator core was entered for other reasons. A caller to 

consume_time() specifies by how much the simulation time should be advanced, i. e., how 

much time should be consumed on its behalf. The scheduler core then checks if this would 
advance the simulation time beyond scheduled events of the first type. In this case, simulation 
time is only advanced to the time of the scheduled event. The simulator core returns from a 
consume -time 

() call with the time to which it actually advanced the simulation time. 
This mechanism allows for the implementation of both preemptive and non-preemptive 

scheduling algorithms. For non-preemptive scheduling algorithms, an ADOM is allowed to 
consume as much time as it wants until it either blocks or yields - consume_time() always 
returns the time passed in and advances scheduling time by that value. For preemptive algo- 
rithms, an ADOM is only allowed to consume time until the scheduling time reaches the time 
of the next scheduling decision, as set by a preemptive scheduler. These times can be either 
periodic, to model periodic timer interrupts used in some operating systems, or non-periodic, 
modelling a programmable timer. 

The core simulator essentially executes in a loop which invokes the selected scheduler and 
activates the ADOM selected by the scheduler. While an ADOM is active, simulation time is 
advanced as described above. Within the loop, user scheduled events are also executed at the 
scheduled time. Optionally, a very small perturbation of simulation time can be introduced on 
every run through the loop. This may be used to introduce - albeit, in a very crude way - 
variations seen in real systems, so some results look less artificial. 
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The simulator core also provides some of the facilities implemented by the NTSC and other 

system services in Nemesis. Namely, it provides functions to block and yield an ADOM, to 
bind two communication EPs together, to send events, and to create and delete ADOMs. While 

most of this functionality could be implemented elsewhere, it keeps the structure of the simulator 

closer to that of Nemesis. 

Finally, the core also provides a generic tracing facility through which all scheduling related 

events are timestamped and logged to a file. Tools are provided to extract interesting information 

from these log files. The tools are described in more detail in section 5.1.7. 

5.1.4 Implementing schedulers 

In the environment provided by the task model and the simulator core, the implementation of 
different scheduling algorithms is straightforward. All schedulers extend the base Scheduler 

class and typically extend the SDOM class to include scheduler specific attributes. The Scheduler 

class provides methods for adding and removing ADOMs and to change their scheduling pa- 

rameters, e. g., priority. The main method of the Scheduler class is reschedule(). This 

method is invoked by the simulation core whenever a scheduling decision has to be made and 

typically performs the following steps: 

1. De-schedule the currently active ADOM/SDOM combination. This may include updat- 
ing some usage statistics for the SDOM and, optionally, blocking the ADOM. 

2. Check if blocked ADOMs became runnable, i. e., check for expired time-outs and deliv- 

ered events. The latter is facilitated by the kernel event FIFO in which send-event 

places ADOMs which have received events. 

3. Run the scheduling algorithm and select the next SDOM and an associated ADOM to 
allocate the CPU to. Also, for preemptive scheduling algorithms, a time for the next 
schedule needs to be calculated. 

For hierarchical schedulers, these steps are slightly more complicated. If an ADOM wishes 
to block, all its associated SDOMs need to be notified and they may also need to be blocked if 

they have no other associated runnable ADOMs. During the unblocking phase, any unblocking 
ADOM needs to be added to all its associated SDOMs, unblocking them if necessary. In the 
final step, the winning SDOM needs to nominate one of its associated ADOMs as described 

above. 
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While most scheduling algorithms only extend the SDOM class with scheduler specific fields, 

the object-oriented design allows for the straightforward extension of other basic simulator prim- 
itives. For example, the implementation of a Lottery scheduler [WW94] naturally extends the 

event mechanism to implement ticket transfers from a blocking task to the task it is blocked on. 
A wide variety of scheduling algorithms have been implemented in the simulation environ- 

ment. These include real-time scheduling algorithms, such as RM, EDF [LL73], and Atro- 

pos [Ros95, Bar98], virtual-time based, proportional fair algorithms, such as Stride scheduling 
[WW95] and BVT [DC99], as well as classic priority based and round robin algorithms. In the 

experience of the author, an implementation of a new algorithm only requires a few hours (obvi- 

ously, depending on its complexity) and requires about 140 lines of Python code to be written, a 

significant portion of which is boilerplate code, dealing for example, with adding and removing 
tasks or (un)blocking them. 

5.1.5 Modelling workloads 
Workloads are implemented by providing subtypes of the basic ADOM class. In particular, work- 
loads are specialisation of the ADOM class' activate () method. With the simulator, a number 
of individual workloads are provided which can be easily combined to create more complex 
workload mixes. The workloads provided can be categorised into "toy" workloads modelling 
very simplistic applications, which can be used to highlight certain aspects of a scheduling algo- 
rithm, and realistic workloads, which are derived from real applications. First a number of "toy" 

workloads are described. 

The simplest workload models a batch application, always consuming its entire CPU alloca- 
tion. Thus, the Batch class simply calls the consume_time() function with a very large time 
value every time it gets activated. The Block and Yield workloads both consume a config- 
urable amount of CPU time before blocking or yielding respectively. For the Block workload, 
the time it blocks for is also configurable. 

The PingPong class is a simple workload making use of the event mechanism. Two instances 
of this class play ping-pong with event counts. After consuming a specified amount of CPU 
time, the first ADOM increments a TX event count by one and blocks until its RX event count 
is incremented by the other ADOM. This workload can be used to highlight the unblocking 
characteristics of a given scheduling algorithm. 

An extension to this simple workload can be used to model a server applications. The server 
ADOM has an RX/TX endpoint pair for each of it clients. Clients send "requests" by sending 
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an event on their TX endpoint and then block on their RX endpoint waiting for the server's 

response. The server task consumes some CPU time in order to "satisfy" the client's request and 

then sends its response by sending an event on the appropriate TX endpoint. A server task can 
implement different internal scheduling algorithms to decide which client to serve if different 

clients send requests concurrently. 
A variety of bursty workloads can be modelled using Markov processes. Markov processes 

describe stochastic processes with discrete states. Probabilities are assigned to the transition from 

one state to another. The decision of which state to change to only depends on the current 

state and not on past states. Thus, Markov models can be described by a transition probability 

matrix. In the simulator, Markov workloads can be generated using the Markov class. Objects of 

this class are instantiated with a list of states and a probability matrix defining the probabilities 
for transitions between states. In each state the ADOM either consumes a specified amount of 
CPU time or blocks for a specified time. This general interface allows the definition of simple, 

two-state ON-OFF Markov workloads as well as more complex workloads. 

5.1.5.1 Multimedia workloads 

Multimedia applications are generally regarded as requiring special treatment from a scheduler 

-a number of scheduling algorithms have been designed specifically to support them (see 

section 2.1). Multimedia workloads, in particular interactive ones, place special demands on 

a scheduler as they have strict timeliness requirements, often combined with overall high, and 
highly variable, resource demands. 

The highly variable resource demands can be attributed to the encoding and compression 

used for video streams. The MPEG format [LG91], for example, uses three different types 

of frame encodings, which require different amounts of CPU to decode. The three types are 
I (intra picture) frames, P (predicted picture) frames, and B (bidirectional predicted picture) 
frames. In general, I frames require more decoding time than P and B frames as they contain 

the entire image. In contrast, P and B frames only encode differences from reference frames, 

thus less data needs to be decoded. Reference frames can be I and P frames. Further, frames are 
grouped into Groups Of Pictures (GOPs) which contain sequences of frames from one I frame 

to the next. 
As the different types of frames require different amounts of CPU to decode, the GOP 

sequence has an impact on the overall resource demands and the variability of the resource 
demands. Furthermore, the content of a video stream can have a significant impact on the 
resource demands as well. Scenes with highly dynamic content require more information to be 
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encoded in P and B frames, thus require more CPU resources to decode. In general, it is rather 
difficult to predict a priori the CPU resource requirements for decoding any given stream. For 

example, Bavier et al. [BMP98] achieve an accuracy of 25% of predicted decoding times over 

actual decoding time with predictions based on observations of frame type and size. 
Resource demands can be reduced by lowering the quality of the resulting image prior to the 

main decoding stage. MPEG, and also JPEG [Wa191], compress an original stream by convert- 
ing 8x8 pixel samples into the frequency domain, using Forward Discrete Cosine Transform 

(FDCT), quantising them to values from 1 to 255, and then Huffman encoding them. For 

decoding, this process is reversed with the final transformation from the frequency domain to 

the spatial domain being performed by an Inverse Discrete Cosine Transform (IDCT). The 

IDCT is the most resource intensive operation in the decoding chain, and by reducing the in- 

formation passed into it, the resource demands can be lowered at the cost of a lower quality. 
Information can be reduced after the Huffman decoding, by setting coefficients which are below 

a certain threshold to zero. The visual effect of this information reduction is that frames look 

more "blocky" as fewer levels of details are displayed. 
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Figure 5.1: Decoding times for an encoded MPEG video at different quality levels 

In order to model a variety of workloads based on video decoding, an MPEG decoder, 

mpeg2play, and a Motion JPEG decoder3 have been instrumented using the per-process cycle 

counter, avaliable on Digital Alpha based systems[Mos97]. The instrumentation measures the 

per-frame decoding times for a given stream at a specified quality level. The resulting decoding 

times are normalised to values from 0 to 1000 and stored in a table with a frame per row and 
each column representing the decoding time at a different quality level. For an MPEG stream 
the frame type is also stored in the table. 

30riginally written by Neil Stratford at the Computer Laboratory, University of Cambridge, U. K. 
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Figure 5.1 illustrates a sample taken from video stream, using an IBBPBBPBBPBBPBB group- 

ing of frame types, with three quality levels4. In the graph every I frame falls directly on a tick 

on the x-axes. Clearly visible are the different decoding times for different types of frames, scene 

changes (e. g., after frame 240), and the reduction of resource requirements for reduced quality 
decoding. 

Within the simulator, ADOMs, implementing video decoding workloads, are initialised 

with a file containing the table of normalised frame decoding times, the desired frame rate, and 

a factor for translating the normalised decoding times into simulator time scale. The simple 

video workload ADOM consumes the time for decoding a frame and then blocks until the next 
frame is due. When unblocked, the ADOM writes an entry to the log file that a frame has been 

"displayed". 
More complex, adaptive workloads can be implemented by an ADOM comparing the cur- 

rently achieved frame rate with the requested frame rate. For example, if a frame's deadline 

was missed by a certain threshold, an adaptive player may consider skipping the next frame or 

reducing the quality of the decoded image, as described above. Furthermore, in a real decoder 

application, the decoding step can be decoupled from the displaying step by executing them in 

separate threads. By introducing a buffer between the two threads, the decoder can, potentially, 

make more efficient use of allocated time slices, as it need not to block after each frame. Similar 

behaviour can be modelled within an ADOM by introducing a FIFO of decoded frames and 

periodically checking if the head of the FIFO needs to be "displayed". In [Neu991, I demon- 

strated, using a sample Motion JPEG video application, that some these techniques can be used 

to make the resource demand of adaptive multimedia applications more elastic. 
As the video workload ADOMs write log entries for the frame display times, their perfor- 

mance can be evaluated. In general, the simulator environment provides tools to extract informa- 

tion, such as how many frames have been displayed on time, or how much jitter was introduced. 
This allows the comparison of different scheduling algorithms for multimedia workloads and 
different adaption strategies under different workload conditions5. 

4The values were obtained on a Alpha PC 164LX 533MHz and, for this stream, the normalised value of 1000 
is equivalent to 16846394 cycles or around 31 milliseconds. 

51 have also instrumented an MP3 decoder, measuring audio frame decoding times. However, its resource 
demand is intrinsicly linked with the buffering performed by the audio device driver. For example, under FreeBSD 

the device driver essentially polices an audio application like a leaky bucket - if the buffer is full the application is 
blocked and if the buffer is empty, the audio breaks up. In order to evaluate the performance of audio applications, 
this or other audio device driver models would have to be implemented within the simulator. 
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5.1.5.2 Interactive workloads 

Interactive applications are another type of application which may require special treatment by 

a CPU scheduler. Typically, interactive applications have fairly low resource requirements - 

although applications like a word processor may perform a significant amount of work while 

active. However, the response time of the system to user events, such as displaying characters 

after they have been typed, should be fairly low. The author of [Shn92] recommends system 

response latencies to be less than 50-150 ms. 
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Figure 5.2: emacs (top) and netscape (bottom) characteristics 

100 

To illustrates the resource requirements of interactive applications, a scheduling trace from 

an instrumented FreeBSD kernel is used (the instrumentation is described in section 5.2.2). 

The trace was collected during a typical working day from the author's workstation (a 533MHz 

Alpha PC164LX with 128MB of RAM). Figure 5.2 shows sample data extracted from the trace 
for two interactive applications: emacs and netscape. The two panels to the left show the very 
bursty nature of CPU consumption during a period of heavy use of the respective applications. 
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The two panels to the right summarise the dynamic nature of the applications by showing the 
distributions of times for which the applications have been in the blocked state and the amount 

of CPU they consumed between two blocked states over the entire day. The graphs contain both 

histograms, relative to the left y-axis, and cumulative distributions, relative to the right y-axis 
(note the different scales, and the logarithmic x-axis). For both applications, the graphs show 
heavy tail distributions of both blocked times and run times which reflect the bursty nature of 

the workloads. 
To model interactive workloads in the simulator, one could use traces such as the ones sum- 

marised above. However, using such trace data may give the wrong impression of accurately 

modelling the behaviour of such applications - the trace data depends on: the system on which 
it was captured; the overall system load; and the specific scheduler used. These factors also 
influence a user's actions. Instead, interactive workloads are better modelled using a stochastic 

process, e. g., Markov processes as described above, to just capture the bursty nature of interactive 

applications. While this is clearly not ideal, it prevents the misconception of an accurate model 
for interactive applications. 

The suitability of a given scheduling algorithm with respect to interactive applications can be 

evaluated using a set of standard tools provided with the simulator (described in section 5.1.7). 
The main performance metric for interactive applications would be dispatch latency, i. e., the 
time between the time an ADOM became runnable after being blocked and the time it subse- 

quently is awarded the CPU. As noted above, this time should be below 50-150 ms. 

5.1.6 An example simulation 

To illustrate how the various parts of the simulator are combined to execute a simulation, fig- 

ure 5.3 shows a sample simulation. In essence, simulations are Python programs which make 

use of modules and classes provided by the scheduling simulator. 
In the sample simulation, first the simulator core is initialised and a trace file is created (lines 

3-5). The simulator core will introduce random perturbations to the scheduling time with a 
maximum of fps as indicated by its parameter. Next, in lines 7-8, a scheduler is created and 
registered with the simulator core, in this example an instance of Nemesis' Atropos scheduler is 
created (see section 2.1.3). The parameter is the time quantum for best effort tasks, in this case 
500µs. In the next step, a number of ADOMs modelling different types of workload are created 
(lines 11-16). Note, that this simply creates ADOM objects but does not actually add them to the 
scheduler. The next block of code (lines 19-2 1) illustrates how a pair of event channels is set up 
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01: # [imports omitted] 

02: # set up the simulation 
03: sim = SchedSim(us(O. 1)) 
04: trace = open('sample. log', 
05: sim. create trace(trace) 
06: 
07: sched = Atropos(us(500)) 
08: sim. set_sched(sched) 
09: 
10: # create domains 

IW') 

11: domO = PingPong('Ping', us(200)) 
12: domi = PingPong('Pong', ms(2)) 
13: dom2 = Block('Block', ms(5), ms(1)) 
14: dom3 = Markov('Markovl', ms( 2),. 75, ms(5),. 5) 

15: dom4 = Markov('Markov2', ms(. 2),. 80, ms(2),. 8) 

16: dom5 - Batch('Batchl') 

17: 
18: # set up event channels 
19: epO = dom0. get ep_pair() 
20: epi = doml. get ep_pair() 
21: kernel. bind_ep_pairs(dom0, epO, domi, epl) 
22: 
23: # Add ADOMs to the scheduler 

#a new simulation with small time perturbations 
# open trace file 
# create trace file of all events 

# create an Atropos scheduler 
* tell the Simulator core about it 

* consume 200us then ping 
* consume 2ms then pong 
# consume 5ms then block for This 
# ON/OFF Markov 
# ON/OFF Markov 
# consume all you can get 

24: sched. add_domain(dom0, ms(10), ms(1), ms(10), 0) 

25: sched. add_domain(dom1, ms(10), ms(2), ms(10), 0) 
26: sched. add_domain(dom2, ms(10), ms(2), ms(10), 0) 

27: sched. add_domain(dom3, ms(10), ms(2), ms(10), 0) 

28: sched. add_domain(dom4, ms(10), ms(1), ms(10), 0) 

29: sched. add_domain(dom5, ms(10), ms(2), ms(10), 0) 

30: 

31: # create events 
32: sim. at(sec( 30), lambda: sched. set_param(dom5, ms(10), ms(1), ms(10), 0)) 
33: sim. at(sec( 30), lambda: sched. set_param(dom0, ms(10), ms(2), ma(10), 0)) 
34: sim. at(sec(100), lambda: sched. set_param(dom5, ms(10), ms(2), ms(10), 0)) 
35: sim. at(sec(100), lambda: sched. set_param(doml, ms(10), ms(1), ms(10), 0)) 
36: sim. at(sec(200), lambda: sim. stop()) 
37: sim. run() 

Figure 5.3: Sample simulation 

between the two PingPong ADOMs. After creating the communication channel all ADOMs 

are added to the scheduler with the specified parameters for period, slice, latency hint, and, 
extra time flag (lines 24-29). Finally, a number of scheduled events are created using Python's 

lambda function (lines 32-26). The scheduled events change the scheduling parameters for two 
ADOMs after 30s and 100s. The simulation is stopped after 200s. 

When run, this simulation creates a log file called sample. log which can be subsequently 
analysed by a set of tools described in the next section. To investigate the same task set with 
a different scheduler, only a different scheduler needs to be instantiated and the scheduling 
parameters need to be changed accordingly. Further, as a simulation is essentially a Python 

program, the full functionality of the programming language can be used to set up simulations. 
This, for example, allows for the systematic exploration of choices for options. 
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5.1.7 The tools 

As part of the simulation environment a number of tools are provided to parse log files, to extract 

numerical information, and to perform a variety of data analysis tasks on the data. As the trace 
files only contain log entries for scheduling events, the parser essentially creates a state machine 
for each ADOM, changing its states whenever an event occurs. At state changes, the requested 
information may be extracted and written to an appropriate data file. 
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Figure 5.4: Extracting information from trace file events 

To illustrate this, consider the time line of events for an ADOM displayed in figure 5.4. 

Logged scheduling events are marked with arrows. Below the time line a number of interesting 

metrics are drawn. For example, service time can be extracted by monitoring activation and 
"de-activation" events, such as block or preemption events. In general, the tools first extract this 

raw data and then presents it in a more compact form. 

To give an example, service times can be extracted either as raw data, as shown in the figure, 

or as cumulative service time over the lifetime of an ADOM. To evaluate criteria such as fairness 

of allocations, service rates can be calculated from the raw data by averaging over a configurable 

window size. Currently, both batch and moving averages can be calculated. Others, such as 

exponentially-weighted moving averages or Flip-Flop [KN01 ], can be easily added. For real-time 

schedulers with purely periodic task sets, averaging windows can also be based on multiples of 

the period rather than specifying a fixed window size. 
To evaluate the suitability of a scheduler, especially for interactive tasks, dispatch latencies 

are an important measure. Dispatch latency denotes the time between an ADOM receiving an 

6The same tools are used to analyse trace data gathered from an instrumented FreeBSD kernel, described in 

section 5.2. 
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event or a timeout expiring and the ADOM being activated. As with service times, the tools are 

able to provide a range of presentations of dispatch latencies. Along with the raw data, dispatch 

latency distributions and cumulative distributions can be extracted. These distributions may be 

used to demonstrate that a particular scheduling algorithm provides an upper bound on dispatch 

latencies. Similar data can be extracted for blocking times. 
The tools can also be used to correlate different data sets. For example, scatter plots of 

time blocked vs. dispatch latencies may be used to analyse if a scheduling algorithm provides 

preferential treatment for long or briefly blocking tasks. Likewise, plots of time blocked vs. 

service time after unblocking may be used to characterise workload behaviour. 

Sometimes it is important to investigate the exact schedule a particular task set/scheduler 

combination produces. For this purpose, a tool is provided which generates an annotated 

scheduling time line, not unlike the one presented in figure 5.4. In these time line graphs, 

events and block timeouts are annotated with arrows. For real-time schedulers, deadlines and 
missed deadlines are also marked. 

Finally, the tool set also provides a number of tools to extract scheduler and workload spe- 

cific trace date, for example, to calculate deadline misses for real-time schedulers or to analyse 

the performance of video decoding workloads. In practise, the tracing mechanisms have been 

flexible enough to extract all data necessary to characterise and to analyse different schedulers 

and workloads. 

5.1.8 Considering overheads 
The simulator currently presents an idealised system which does not account for overheads in- 

troduced by, e. g., context switches or system calls. It only introduces some optional "jitter" to 
simulation time. To take system overheads into account the simulator core would need to be 

extended to advance simulation time, using consume -time 
(), on a context switch or whenever 

system calls are executed. 

In order to get an idea of the scale of these overheads, the cost for basic operations needs to be 

measured on a real system. As the simulator models the Nemesis operating system, it is natural 
to measure the overhead for a number of basic operations under Nemesis. These measurements 
can then be used to decide whether it would be necessary to also model these overheads in 
the simulator. To measure the overheads in Nemesis, a number of micro-benchmarks7 were 

7These benchmarks were mainly written by Paul Barham at the University of Cambridge Computer Lab. But, 
other people, including the author of this dissertation, also contributed individual benchmarks. 

112 



performed on two different platforms: a 533MHz Alpha PC164LX system and an 200MHz 

Intel Pentium. The results are summarised in figure 5.5. 

Benchmark 
Alpha 

Time(ns) Cycles Benchmark 

ntsc_yield() 3092 
Events$Advance 145 

ntsc_send() 45 
Event Channel Ping Pong 13674 
10 Ping Pong 16875 
NULL RPC 23777 

Intel 

1648 ntsc_yield() 
77 Events$Advance 
23 ntsc_send() 

7288 Event Channel Ping Pang 
8995 10 Ping Pong 

12674 NULL RPC 

Time(ns) Cycles 

10061 2006 
407 81 
729 145 

103112 20564 
136347 27193 
166230 33153 

Figure 5.5: Micro-benchmarks for AXP PC164LX 533 MHz and Intel P200 

For each operation implemented by the simulator, its equivalent on Nemesis is executed in 

a tight loop 10000 times after an initial warmup loop of 1000 iterations. The time is recorded 

at the start and the end of the main loop. The numbers given in the table are the average time 

and the number of cycles for a single operation, i. e., the recorded time divided by the number 

of iterations. All benchmarks were run on an otherwise idle system. 
The first benchmark, labelled ntsc_yield(), continously yields the CPU. This causes a full 

de-schedule of the process, a run through the scheduler, and an activation through the user-level 
thread scheduler back to the thread which called ntsc_yield(), as it is the only active thread 
in the process. The slightly slower execution of this benchmark in terms of cycles on the P200 

can largely be attributed to the higher cost of crossing the user-kernel boundary required for the 
system call. 

The second benchmark, Events$Advance, measures the cost of advancing a local event 
count, essentially an atomic operation as described in section 5.1.2. Performance in terms of 
cycles spent is comparable between the two architectures. The third benchmark, ntsc -send(), 
measures the cost of sending an event on a "bogus" event channel'. On the Intel platform the 
overhead of the system call is significant. 

The fourth benchmark measures the time of a round-trip ping pong of events using event 
channels between two processes. Thus, two runs through the scheduler and two ntsc_send() 
calls on a valid event channel are required during each iteration. The cost for this benchmark 

8Sending an event on a "bogus" channel performs most of the work a send-event () call would perform on a 
connected event channel. The RX count, however, is not updated and the RX endpoint is not placed into the peer's 
event FIFO, as described in section 5.1.2. These are comparatively cheap operations. 
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is significantly higher on the P200 - it requires almost three times as many cycles than on 
Alpha system. This again, can partly be attributed to the system call overhead. Also, the cost 

of a switch between different protection domains is considerably higher on Intel architectures 

compared to the Alpha architecture (see [Han99a] for a detailed discussion). The final two 
benchmarks measure round-trip times for different IPC mechanisms, built on top of the event 

channel mechanism, one using the bulk data transfer mechanism and the other using the local 

Remote Procedure Call (RPC) mechanism. The increased time required, compared with the 

simple channel ping pong, can be attributed to the additional overheads introduced by these 

mechanisms. However, the significantly higher overhead for the NULL RPC call on the Alpha 

system, compared to the "event channel ping-pong" benchmark, may be caused by less optimised 

stub code generation. 
The results from these micro-benchmarks could be incorporated into the simulator through 

a configuration file specifying the cost of certain operations for different architectures. However, 

for most applications the overhead is sufficiently small to be ignored. Furthermore, the perfor- 

mance of a real system is likely to be more influenced by other factors, such as caching effects, 

which are more difficult to account for in the environment of the simulator. Therefore, it makes 

more sense to keep the simulator simple and simply take these limitations into account when 
interpreting simulation results. 

An alternative way of assessing scheduling overheads is to examine the accuracy of CPU 

allocations over a wide range of scheduling parameters. For this purpose, a small benchmark was 

constructed. When active, the benchmark program consumes all CPU allocated to it by means 

of an endless loop. In a control thread, the CPU reservations are systematically changed and the 
received share of the CPU is recorded. More specifically, the control thread systematically alters 
the period and the percentage of the CPU allocation for the benchmark process. After a period 
of time equivalent to 1000 periods, the accounting information maintained by the scheduler 

and the number of iterations through the endless loop are recorded. 
The results from this benchmark on the two test systems are shown in figure 5.6. The two 

left-hand graphs show the percentage of time received by the benchmark process over a wide 
range of different periods at different percentages of CPU allocation. All values are averaged 
over five runs with error-bars showing the minimum and maximum values (variations between 

runs are insignificant so the error-bars are not visible in the figures). The left-hand graphs 
illustrate that the allocation of CPU time to the benchmark process is very accurate on both 

platforms. Only for very short periods of less than 200 µs can one see a divergence between 

the allocation the process should receive and the allocation it actually receives. This trend is 
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Figure 5.6: Scheduling accuracy for AXP PC164LX (top) and Intel P200 (bottom) 

stronger for higher allocation percentages. It is worth pointing out that the benchmark could 

not be run on the Intel P200 for periods shorter than around 150 its as the machine would "lock 

up", probably spending most of its time processing the programmable timer interrupt without 

making any real progress. 
While the graphs on the left-hand side show the percentage of the CPU received by the 

benchmark application, the right-hand graphs show how much work, i. e., iterations of the end- 
less loop, has been performed by the benchmark application. Again, these are averaged over 
5 runs with minimum and maximum values shown as error-bars. One can clearly see that the 

amount of work performed by the benchmark is proportional to its CPU allocation. However, in 

particular on the P200, the amount of work performed declines significantly for shorter periods. 
This can be attributed to the scheduling overhead, which as indicated by the micro-benchmarks, 
is higher on the Intel Pentium based system. 

In summary, Nemesis is capable of allocating CPU resources accurately over a wide range of 

timescales (from hundreds of microseconds upwards) and is capable of accounting for the CPU 

usage accurately (as indicated by the left-hand graphs in figure 5.6). However, the performance 
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perceived by the applications themselves may be reduced for shorter periods due to scheduling 

overheads. For the simulator, this means that as long as care is taken to ensure that periods 

are not below a certain threshold, for example, 500µs, no additional measure must be taken to 

model scheduling overheads. 

5.1.9 Implementing congestion pricing 

In the next chapter, the simulator is used to explore a variety of congestion pricing mechanisms 

and application adaption strategies. An extended version of the Atropos scheduler is used as 

the base scheduler. To cater for the variety of pricing mechanisms a subclass of Atropos, called 

AtroposECO, is used. AtroposECO is the base class for classes implementing different pricing 

mechanisms and maintains information such as CPU utilisation and sum of requests. CPU 

utilisation is calculated in configurable intervals using an Exponential Weighted Moving Average 

(EWMA) filter [Tha98, KNOI1. Different pricing mechanisms are implemented as subclasses 

of AtroposECO and may use this information or other information, such as missed deadlines, 

to calculate a current price. 
The de-schedule code has been modified to charge SDOMs based on charging probabilities 

as described in sections 4.2.1 to 4.2.1.2. The pricing mechanism sets a probability with which 

the current SDOM is charged one credit for each time unit its active ADOM consumes. The 

length of the time unit is configurable. The base class also contains a mechanism to periodically 

charge SDOMs for their resource requests based on a price set by a pricing mechanism. 
The SDOM class has been extended to contain a token bucket for credits as described in 

section 4.3. Credits are placed into the bucket at regular intervals in accordance to the set 
willingness to pay value set for that SDOM. SDOMs with an empty token bucket are not run 
if the usage price is non-zero and are placed on the wait queue if the request price is non-zero. 
The token bucket is only maintained internally. For SDOMs a separate attribute is maintained 

containing the total charges incurred and resource consumed. An ADOM associated with an 
SDOM, can access this attribute to calculate the rate at which its SDOM incurs charges. Based 

on this observation they may adjust their resource consumption. 
Different adaption strategies are implemented as subclasses of the ADOM class. Simple adap- 

tive workloads are created by merging ADOM subclasses implementing workloads, as described in 

section 5.1.5, and subclasses implementing adaption strategies using Python's multiple inheri- 

tance features. For example, a batch processing workload using the WTP strategy, is created by 

9The reactivity of the filter to newer values can be controlled by a single parameter a, called the gain. 

116 



sub-classing from both the Batch class and the WTP class. More complex adaptive workloads 

may require tighter integration of the two subclasses. 
For subsequent analysis, various events, such as changes to the charging probability and the 

observed marking rate, are written to the log files. As part of the tool set, tools are provided to 

extract this information for further analysis. 

5.1.10 Summary 

In this section a simulation environment for scheduling algorithms has been introduced. This 

environment is used in the next chapter to explore a number of different design choices for 

congestion pricing for CPU resource management. The simulation environment builds on some 
key abstractions introduced by the Nemesis operating system, which, in the experience gained 
with the simulator, have proven to be more than sufficient to support a wide variety of scheduling 
algorithms and workload models. Currently, the simulator and tools consist of around 6000 lines 

of Python code10 and implement more than 10 different scheduling algorithms and a variety of 
workloads. 

The workloads provided are mainly "toy" workloads which can be used to highlight certain 
characteristics of a given scheduling algorithm. More realistic workloads can be modelled to the 
extent that they capture the essential characteristics and properties of real workloads. In general, 
I believe, that it is not necessarily desirable, if at all possible, to model workloads accurately, as 
they often exhibit complex interactions with the operating system itself. So far my experience 
has shown that simplified workloads are sufficient to highlight certain features or problem areas 
of a given scheduling algorithm. 

The simulator provides a good environment in which to experiment with congestion pricing 
mechanisms and adaption strategies. Different pricing mechanisms can be easily explored and 
directly compared with each other. Similarly, the simplified environment the simulator provides, 
allows for a direct comparison of different adaption strategies, avoiding the interactions with 
other parts of a real operating systems. 

However, it must be stressed that simulation results should only form the basis for exploring 
congestion pricing mechanisms in real operating systems, as certain aspects of the simulator are 
oversimplified. For example, the simulator does not take into account: any overheads (e. g., for 
context switches or systems calls); limited timer accuracies, typically found in mature operating 
systems; or, indeed, interactions with other subsystems of an operating system, such as the virtual 

10According to'SLOCCount' by David A. Wheeler http: //www. dwheeler. com/slot-count. 
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memory system, I/O subsystem, and the network interface. Some of these issues are addressed 
in the next section, which provides background on a prototype implementation of congestion 
pricing in the FreeBSD kernel. 
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5.2 The FreeBSD prototype 
FreeBSD" is an advanced BSD UNIX derived from the Berkeley 4.4 BSD distribution [MBKQ96] 

and widely used in server and workstation systems. It currently runs on both Intel ix86 and DEC 

Alpha platforms (other ports, including Intel's IA64, PowerPC, and Sparc64 are planned). In 

this section, a prototype implementation of the congestion pricing framework for CPU resource 

management under FreeBSD 4.3-STABLE is described. 

For CPU scheduling, FreeBSD uses a typical decay usage priority scheduler which em- 

ploys multi-level feedback queues [MBKQ96], similar to the schedulers found in other UNIX 

derivates. Processes are assigned priorities and the process with the highest priority is selected 

to run for a time quantum. Priorities are dynamically adjusted reflecting the resource usage 
of the processes. In addition to this relatively standard Unix scheduler, FreeBSD also defines 

two other scheduling classes (similar to the POSIX real-time scheduling classes): the real-time 
class and the idle class. Processes of the real-time class are scheduled with a higher priority than 

processes of the standard scheduling class, while processes of the idle class are scheduled with 

a lower priority. Priorities in both classes are not adjusted dynamically. The real-time class has 

two subclasses, FIFO and round robin. Processes of the round robin class are preempted after a 
configurable time quantum, if processes of the same priority are runnable, while processes of the 
FIFO class are only preempted by higher priority processes. Processes are put in the real-time 
or idle classes by using the privileged system call rtprio (2) or the system utilities rtprio (1) 

and idprio (1) respectively. The real-time scheduling classes defined by POSIX are mapped 
onto the same mechanism. 

Nieh et al. [NHNW93] have demonstrated that this type of real-time support is inappropri- 

ate for multimedia workloads; indeed, using these extensions may result in locking up the entire 
system. Furthermore, the congestion pricing framework, introduced in the previous chapter, 
requires its clients to be able to make requests for absolute resource allocations, rather than the 
relative allocations provided by the priority based scheme of the standard FreeBSD scheduler. 
To provide CPU resource reservations, I have modified the FreeBSD kernel to provide a new 
scheduling class capable of providing CPU reservations to processes. This implementation is 
described in detail next. 

llhttp: //www. freebsd. org/ 
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5.2.1 Providing CPU reservations 
CPU reservations are offered to individual processes by providing a new scheduling class. Pro- 

cesses of this class have a higher priority than processes of the default scheduling class, but a 
lower priority than processes of the real-time class. Processes can reserve a share of the CPU 

using a new system call, eco_sched () 12. For simplicity, CPU reservations are expressed as the 

number of microseconds per one second. However, for scheduling purposes a shorter epoch (or 

period) may be used with reservations scaled accordingly. The scheduling epoch can be con- 
figured dynamically at run-time using FreeBSD's sysctl (8) interface 13. The default epoch is 

is but for some experiments, requiring more fine-grain sharing of the CPU, it is reduced to 

100, n s. If a process requests a change of its CPU reservation, its share during the current epoch 
is adjusted proportionally to the share of the CPU it has already received during that epoch. The 

relationship of the CPU reservation scheduling class to the other scheduling classes is depicted 

in figure 5.7. 
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Figure 5.7: FreeBSD CPU reservation scheduling class 

A runnable process of the reservation scheduling class resides on one of two queues: the run 

queue if it has not consumed its entire reservation yet, or the wait queue, if it has already received 
its share of the CPU but is still runnable. Blocked processes are kept on the standard FreeBSD 

kernel data structures for blocked processes. Every time a process relinquishes the CPU, either 

"To limit the number of new system calls, all new system calls necessary arc implemented via sub functions to 
this system call, akin to fcntl(2). 

13The sysctl(8) interface allows user programs to read and write kernel specific state variables. 
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voluntarily or through preemption, its runtime is subtracted from its current reservation. If a 

process becomes runnable again it is put at the end of the run queue provided it has not yet 

consumed its entire reservation; otherwise, it is put at the end of the wait queue. A periodically 

scheduled function renews the reservations every scheduling epoch and moves processes from 

the wait queue to the run queue, if appropriate. 
When the scheduler has to pick a new process to run, it first checks if there are any real-time 

processes runnable, and if so a process is selected based on its real-time priority. If no real-time 

process is runnable, and there are processes on the run queue associated with the reservation 

scheduling class, the scheduler selects the head of that run queue. If the run queue is empty, 

a process from the standard scheduling class is selected, again based on priority. If there are 

no runnable processes in the standard scheduling class, processes on the CPU reservation wait 

queue are scheduled round-robin. And, finally, if the wait queue is empty, processes from the 
idle class are selected. 

If a process of the reservation scheduling class is selected, it is given the CPU either until 
it blocks or yields or until it is preempted. Processes are preempted either by real-time pro- 

cesses becoming runnable, or because they have consumed their entire reservation, or a config- 

urable preemption interval expires (default 10ms which can be changed at runtime using the 

sysctl (8) interface). The preemption interval prevents a process with a large allocation from 

monopolising the CPU for an excessive interval. Preemption within the scheduling class, i. e., 

consumption of the reservation or the preemption interval, is implemented using the kernel's 

timeout (9) function [VL87], which is scheduled by the periodic timer interrupt. To increase 

the accuracy of the preemption, the periodic timer interrupt frequency has been raised from 

100Hz to 1000Hz. For non-blocking processes this may lead to accounting inaccuracies of at 

most 1ms14. This effect is not cumulative, as the measured run time of the previous epoch is 

taken into account when the reservation is renewed every second. 
The CPU reservation scheme as described so far works fine for individual processes placed 

into the new scheduling class by the user. However, processes that are part of the default schedul- 
ing class may be starved of CPU time just as they can be starved by processes of the real-time class 
[NHNW93]. To prevent this starvation, the default scheduling class is also run as a "dummy" 

process within the new class, i. e., a CPU reservation can be requested which all processes of the 
default class share. If the dummy process is selected by the scheduler, a process from the default 

14 Higher timer resolutions could be achieved using Soft Timers (AD00). Soft Timers provide potentially higher 

timer resolutions with less overhead by also checking for scheduled events at trigger points, such as system call exits 
or hardware interrupts. 
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scheduling class is selected as usual. CPU time is then accounted to the dummy process. Like 

other processes, if it uses its entire reservation, the dummy process is put on the wait queue. 
However, if the run queue is empty, processes of the default class are selected as normal. Re- 

source consumed by these processes are not accounted to the dummy process. If the system is 
idle, i. e., there are no runnable processes in the real-time or default scheduling class and the run 

queue of the reservation scheduling class is empty, processes are selected from the wait queue in 

a round-robin fashion. This mechanism gives priority to processes with CPU reservations, but 

favours processes of the default scheduling class, if all reservations have been satisfied. 
The new scheduling class has been implemented with only minor modifications to the stan- 

dard kernel. Most of its functionality is implemented in a separate source file. Most modifica- 
tions were made in the chooseproc () function, mainly to allow the default scheduling class to 
be part of the new scheduling class. Minor modifications were necessary to setrunqueue () and 
remrunqueue 0) to deal with processes of the new scheduling class. The functions tsleep (9), 

await(9), and yield() had to be modified slightly to update the CPU usage account in the 

case where a process blocks or yields. And, obviously, fork () and exit 0) required modifica- 
tion to deal with process creation and termination. Currently, newly forked processes are placed 
in the default scheduling class, even if the parent process is part of the reservation scheduling 
class. 

5.2.1.1 Discussion 

The current implementation of CPU reservations is fairly simplistic - it merely provides a 
means of allowing individual processes to make CPU reservations. In this section a number 
of possible extensions and improvements are discussed. However, it is worth pointing out that 
the simple implementation has been sufficient for the prototype of the resource management 
framework, and the possible extensions and improvements would not fundamentally change the 
way the resource management is implemented. 

An obvious limitation is the round-robin scheduling of processes in the new scheduling class. 
For larger active sets of processes in this class this may lead to unacceptable dispatch latencies 
(i. e., for n processes, a worst case delay of n times the preemption interval). A possible solution 
would be to insert unblocking processes at the front of the run queue in order of their wakeup 
priority - the tsleep(9) kernel function, used for event-based process blocking, allows the 
specification of a priority with which a newly woken process is made runnable. So far, I have not 
observed a dispatch latency, even for a non-buffering MP3 decoder or interactive applications, 
which would require such a change. 
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Another possible extension is to introduce a two level hierarchy of schedulers, where, by de- 

fault, all child processes of a process in the new scheduling class are scheduled as one entity. The 

new scheduling class only selects such a process group and a secondary scheduling algorithm se- 
lects a process from this group to be scheduled. Such an approach would be beneficial especially 

in server systems where typically a service forks off a number of child processes to serve incoming 

requests. A server administrator could then manage CPU reservations for the service rather than 

individual server processes. 
Ideally, the prototype should also contain more flexible abstractions for resource manage- 

ment, e. g., resource containers [BDM99] or reservation domains [BBG+99c] (described in sec- 

tion 2.3) to provide a more accurate accounting and a flexible framework for different types 

of applications. The code available for these prototypes is only applicable to earlier versions 

of FreeBSD, changes the base system substantially, and would require further changes to ac- 

commodate the requirements of the decentralised resource management framework. To keep 

the experimental environment simple and manageable, I decided against using these prototypes. 
However, for a more generally applicable implementation, the use of either of these approaches 

would be beneficial. 

5.2.2 Tracing facility 

In addition to CPU reservations, the kernel was modified to provide detailed traces of all schedul- 
ing related information. The implementation of this tracing facility is similar to the Linux Trace 

Toolkit [YD00]. Essentially, all places in the kernel where scheduling decisions are made, such 

as selecting a new process, or blocking and unblocking of processes, have been instrumented. 
The tracing facility also traces creation and destruction of processes. When the tracing facility is 

active, these events are timestamped and written to a kernel-internal circular buffer. The supe- 

ruser can activate tracing by starting a daemon process which periodically reads this data from 

a pseudo device and writes it to disk. When started, the daemon also takes a snapshot of the 

currently running processes. 

For detailed analysis, the binary file, produced by the tracing daemon, can be converted 
offline into the format used by the scheduling simulator. This allows the simulation analysis 
tools, described in section 5.1.7, to be used for the analysis of traces from a FreeBSD system. 
However, typical traces obtained over a longer period of time, say an entire day, may contain 
trace information for a lot of "uninteresting" processes. Also, one is often interested in the 
resource consumption of an entire group of processes, for example, of a larger compile job where 
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a significant number of short lived processes are created to perform the task. For this purpose, 

tools are provided to extract the process hierarchy from the trace file (similar to the pstree 

utility) and to extract only trace information about "interesting" processes, summarising all the 

other processes into a single background process, or to "collapse" the data of an entire sub- 
hierarchy into one process. 

It is worth pointing out that the tracing facility is implemented independently of the CPU 

reservation system. The tracing facility can be conditionally compiled into an otherwise standard 
FreeBSD kernel by adding the appropriate option in the standard kernel configuration file. The 

tracing facility can also be used in conjunction with the CPU reservation system and the dynamic 

resource management prototype described below. 

5.2.3 Evaluation of CPU reservations 
In this section a brief evaluation of the CPU reservation subsystem is given. First, the ability to 

reserve CPU allocations and isolate processes from each other is demonstrated and contrasted 

with the default scheduler. The main focus of this evaluation is on compute-bound processes due 

to the limitations of the current prototype (see section 5.2.1.1). The tracing facility is used to 
provide detailed information on CPU resource allocations. Secondly, the overhead, introduced 
by the various alterations made to the FreeBSD kernel, is evaluated. 

In figure 5.8, the effect of CPU reservations is illustrated by showing the service rates re- 
ceived by a number of processes. For this experiment, a 200 MHz Pentium was used and the 
service rates were averaged over one second. The use of a slow processor has the advantage of 
highlighting the effect of resource allocations by providing a more resource constrained environ- 
ment. For the experiment, initially, a set of processes was started using the default scheduling 
class with different nice (1) levels. Then, after about 375 seconds some of these processes are 
entered into the new scheduling class with different CPU reservations. The processes include 

an MP3 decoder (labelled mpg123) and a number of processes executing an endless loop (la- 
belled loop). To provide some background load, a large parallel compilation job compiling the 
FreeBSD kernel is executed. For the figure, the CPU resource consumed by all processes of this 
compilation are summed together and shown as one process, labelled make. 

Initially, all processes are started in the default scheduling class with different nice levels. 
In the figure, the nice levels are indicated in the key by the first number in brackets. Four 
loop processes are started with nice levels of -10, -5,5, and 10 respectively. Lower nice levels 
represent higher priorities. A fifth loop process is started with the default nice level of 0 as is the 
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compilation process. The MP3 decoder is started with a nice level of -5. From the graph it is 

clearly visible that, although the different nice levels for the different loop processes correspond 

to different service levels, there is no clear relationship between the different nice levels and 

service rates. Furthermore, the allocation is fairly bursty, although the service rates are averaged 

over a relatively long period of one second. It is also worth noting that, although the MP3 

decoder has the second highest priority, the sound continously breaks up and plays back at an 

essentially unacceptable quality. 
For the second part of the experiment some of the processes are placed into the new schedul- 

ing class providing CPU reservations. The four loop processes with non-default nice levels are 

given reservations of 2.5%, 5%, 10%, and 20% as indicated in the graph by the second number 
in the key. The MP3 decoder is given an allocation of 20%, while the fifth loop process and the 

compilation processes are left in the default scheduling class. In stark contrast to the first part of 

the experiment, processes with CPU reservations receive exactly the share of the CPU they have 

reserved, with very little variation in allocations over time. Note, that for this part of the experi- 

ment an averaging interval of one second is the smallest meaningful interval, as it represents the 

granularity at which CPU reservations are made. The make and the best-effort loop process 

share the remaining CPU resources and still show the bursty nature of allocations. The MP3 

player uses less than its reservation of 20% and consumes an almost constant 15% of the CPU 

- there are no audible drop-outs in the decoded audio stream. As described in section 5.2.1, 

the surplus CPU resources are first allocated to processes of the default scheduling class. Due 

to the non-blocking loop process in this class, all surplus cycles are consumed by this class and 
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no spare cycles are allocated to processes of the CPU reservation class which have used up their 

allocation. 
This experiment clearly demonstrates that the CPU reservation prototype is capable of pro- 

viding absolute shares of the CPU to processes in the CPU reservation scheduling class. 
Next, the overhead introduced by the various modifications made to the FreeBSD scheduling 

subsystem are evaluated. The overhead is measured using long running, entirely compute bound 

processes. For this purpose a modified version of a benchmark by Larry McVoy called mhz, 

part of lmbench [MS96], is used15. The original mhz benchmark was modified so that it is 

guaranteed to run longer than one scheduling epoch. To determine the overhead, initially a 

single instance of the benchmark is executed with the default kernel configuration and the time 

to execute it is measured. This forms the baseline performance and all further experiments 

are normalised to this value. Subsequently, concurrent instances of the benchmark process are 
started. By measuring the time for all processes to complete and normalising it by the number of 
concurrent processes, one can evaluate how well any given configuration scales with the number 

of active concurrent processes. This procedure is repeated for a number of different kernel 

configurations, which subsequently enable more and more features of the modified kernel. The 

results of this experiment are shown in figure 5.9 for three different computers: The Pentium 
200MHz and Alpha PC164LX, already introduced, and a 1.3GHz AMD Athlon. The figure 

uses the average of five runs for each data point, with error bars indicating the minimum and 
maximum of the five runs. There are only insignificant variations between runs, therefore the 
error bars are not visible in the graphs. 

The different lines in the graphs correspond to the different kernel configurations: default 
is the default kernel configuration with all modifications disabled at kernel compile time. The 
line labelled hz=1000 represents the default configuration with an increased periodic timer in- 

terrupt frequency (1000Hz instead of the default 100Hz). The line labelled tracing shows the 
normalised overhead for a kernel configuration with the tracing code compiled in and the line 
labelled tracing active uses the same kernel but with the tracing daemon actually collect- 
ing trace data. The remaining lines are different measurements from the kernel configuration 
with the CPU reservation scheduling class compiled into the kernel. For the first line, labelled 

reservations BE'6, none of the active benchmark processes are using CPU reservations, thus 
this line represents the overhead introduced to normal processes. For the second and third run, 

15The modifications are courtesy of the "Plug in Scheduler Policies for Linux" project: 
http: //resourcemanagement. unixsolutions. hp. com/WaRM/schedpolicy. html. 

'6Short for Best Effort. 
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Figure 5.9: Scheduling overhead for different number of concurrent processes 

all benchmark processes are placed into the CPU reservation scheduling class with total guaran- 

tees amounting to 50% and 99.9% respectively. The graph for the Athlon processor included 

two additional lines which repeat the best effort and the 99.9% runs with a different scheduling 

epoch and preemption interval (100ms epoch with lms preemption interval) and measure the 

additional overhead for finer-grain multiplexing of the CPU. 

From figure 5.9 two main observations can be made: First, the overall overhead introduced 

by the modifications is not significant (<1%). Second, the single biggest contributer to the 

overhead is the increase in periodic timer interrupt frequency, necessary to achieve higher timer 

resolutions. This overhead does not occur on the AXP PC164LXas FreeBSD on Alpha platforms 

already uses a periodic timer interrupt of 1024Hz by default. In more detail, a number of other 

observations can be made. First, one can also conclude that the overhead introduced by the 

tracing facility is insignificant. In fact, for the P200, the kernel configurations with the tracing 
facility enabled perform better than the kernel configuration with only the increased HZ value. 
A similar phenomenom can be observed on the Alpha platform'. Secondly, when using the 
CPU reservation scheduling class, an overhead, albeit small, is introduced for processes not 

using the new scheduling class. Thirdly, for processes in the CPU reservation scheduling class 
there appears to be an almost linear increase in the overhead with the number of processes. 
This overhead can probably be attributed to the linear traversal of the list of all processes in this 

'7This may be attributed to caching issues resulting from slightly different code layouts. On the Alpha platform 
this could be investigated further using Compaq's Iprobe tools, which provide a simple means of using the perfor- 
mance counters available on that processor (http: //www. support. compaq. com/alpha-tools/software/). 
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class every second, in order to update their CPU reservations and move them from the wait 

queue to the run queue when appropriate. One possible optimisation would be to only update 

the allocations of processes already on the wait queue and update the information for other 

processes, i. e., those residing on the run queue and those being blocked, only when needed. 
However, it is not clear whether this only distributes the costs over a longer period or whether it 

would significantly reduce the overhead despite the significantly more complex implementation. 

In either case, I would argue that the linearity of the overhead is negligible for the number of 

processes expected to be in the CPU reservation class (< 100); especially when considering the 

small scale of the overhead on faster machines. Furthermore, there is no significant difference in 

overhead between the two experiments where the benchmark processes are given a reservation 

of 50% and 99.9%. This is not entirely unexpected as there are no active processes in the 
default scheduling class. This means that almost the entire remaining CPU cycles, which would 
preferentially be given to processes of the default scheduling class, are instead allocated to the 

processes on the wait queue, i. e., the processes which have exhausted their CPU reservations18. 
There does not seem to be a significant overhead involved. The final observation to be made 
is that although the higher context switch rate for the last two experiments on the Athlon does 

introduce an additional overhead, this overhead is relatively small compared to the overhead 
introduced with the higher timer frequency and is negligible for a smaller number of processes. 

To summarise this section, the CPU reservation scheduling class introduced in the previous 
section is indeed capable of providing CPU guarantees to individual processes without allowing 
them to starve processes in the default scheduling class. Processes within the CPU reservation 

class are isolated from each other as well as from processes in the default scheduling class. This is 

achieved with little extra overhead. Indeed, most of the overhead can be attributed to the higher 

timer interrupt frequency necessary for better timer resolutions. The approximately linearly 
increasing overhead per processes in the CPU reservation class is negligible for the number of 
processes expected to be in that class. 

5.2.4 Implementing congestion pricing 
The CPU reservation scheduling class allows individual processes to request a share of CPU. 
This forms the basis for the implementation of decentralising resource management. The dc- 

"If there were active processes in the default scheduling class, the result for the experiment with 50% alloca- 
tion would naturally be much worse. That, however, would defeat the purpose of the experiment of measuring 
overheads. 
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centralised resource management extends the CPU reservation scheduling class in a number of 

ways. 
Similar to the scheduler simulator, the reservation scheduling class maintains utilisation and 

total resource request information. The utilisation information is updated every one second 

epoch, again using an EWMA filter. The gain parameter a of the filter can be controlled via the 

sysctl (8) interface. Prices, and therefore charges, are combinations of utilisation and requests, 

as discussed in section 4.2.1.2. The emphasis for request vs. usage charges, as controlled by the 

parameter 0, can also be configured using the sysctl (8) interface. Usage charges are applied 

as part of the de-scheduling code of the reservation scheduling class, which also maintains per 

process usage statistics. Charges for resource requests are applied every epoch in the routine 

which renews the reservations for each process. An exponential function of the form ea*(x-1) 
is used as the pricing function, with a= 10 working well in practise. As with all arithmetic 
calculations required, values are scaled to a large integer range, as floating point arithmetic is not 
permitted in kernel space. 

The structure representing a process in the reservation scheduling class is extended to im- 

plement the token bucket for credits as described in section 4.3. Using the sub-functions of the 

eco_sched() system call, a process can query the current number of credits in the account and, 
more importantly, the number of credits charged since the last call. This provides a process with 
a simple facility to determine the current charging rate. The credit allocation for a process can 
be set by the user using a new utility called ecoprio (1), modelled after the standard FreeBSD 

utilities, rtprio(1) and idprio(1), used to place processes in the real-time and idle schedul- 
ing class respectively. A routine executed at the end of each scheduling epoch places new credits 
in a process' credit token bucket. 

As the default scheduling class is also a member of the reservation scheduling class it also has 
a credit account and is charged for its usage and resource requests. The system administrator can 
assign a credit allocation to the default scheduling class, thus guaranteeing it a share of the CPU 
for the processes it manages. Optionally, and also controlled by sysctl (8), an adaption based 

on the WTP strategy is performed for the default scheduling class every epoch. 
Figure 5.10 summarises the interface for processes actively participating in the CPU resource 

management. These are implemented as sub-functions to the eco_sched0 system call. In 
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Function Description 

ECO_SET_SHARE Request a CPU reservation 
ECO_GET_SHARE Query current CPU reservation 

ECO_GELACCOUNT Query current account 
ECO_GET_DCHARGES Query Acharges since last call 

ECO_GET_TOTAL_CRED Query total amount of credits in circulation 
ECO_GET TOTALSHARE Query total CPU reservations 

Figure 5.10: eco_sched(): Resource management interface 

addition, processes can query their current credit allocation rate using the rtprio(2) system 

call'9. 
Figure 5.11 shows pseudo code an application may use for a periodic adaption. The code 

example implements an endless loop, which could, for example, be executed in a separate thread 

within a process20. The loop is executed every second and determines the current requested share 

of the CPU (line 20), queries the charges incurred since the last call (line 23), and calculates the 

time since the last call (lines 26-30). It then computes the Ox of the desired change using the 
WTP strategy (line 33). It finally requests an updated share of the CPU and goes to sleep for a 

second (lines 36-42). Naturally, an adaptive application can extend this skeleton code to perform 

application specific adaption. A more realistic example is given in section 5.2.5.1. 

Non-adaptive applications can coexist with adaptive applications. When a user places an 

application into the reservation scheduling class and assigns a credit allocation to it, its initial 

share is set to a proportion equal to (credit allocation)/ (maximum charging rate). A non- 

adaptive application is guaranteed this share of the CPU as it can pay for the charges even at the 
highest price. Furthermore, if a user changes the credit allocation of a non-adaptive consumer, its 

share is also updated. The system distinguishes between adaptive and non-adaptive consumers 
by setting a flag in a process' state when it calls EC0_GETJCHARGES. It is assumed that only 

adaptive consumers have an interest in their charging rate, thus processes with the flag cleared 

'90n FreeBSD this system call is used for lookup and change of priorities of processes which are not in the 
default scheduling class. As the credit allocation is the closest equivalent to priorities it was decided to use this 

system call. rtprio(2) already is a misnomer as the system call is also used by the idle scheduling dass. 
20Threads in FreeBSD are implemented in user-level and are multiplexed over a standard process. This is unlike, 

for example, the Linux implementation where threads are almost treated as independent processes. The process 
and thread model in FreeBSD is currently being changed radically to model a scheduler activation [ABLL92] based 

approach. [Eva00] provides a good overview of the current thread implementation, its limitations and the new 
design. 
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01: adapt() { 

02: 
03: 
04: 
05: 
06: 
07: 
08: 
09: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
36: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: } 

int share, share-delta; 
int charges; 
struct timeval q_time, nev_q_time; 
struct rtprio rtp; 
struct timespec rqtp; 

u_int64_t t_delta; 

rgtp. tv_sec = 1; /* is */ 

rqtp. tv nsec = 0; 

gettimeofday(&q_time, NULL); 

goto sleep; 

for (;; ) { 
Is Check current credit allocation 
res = rtprio(RTP_LOOKUP, 0, krtp); 
if (rtp. type == RTP_PRIO_ECO) { 

/* Get current share */ 
res - eco_sched(ECO_GET_SHARE, &share); 

/* Get charges since last call */ 
res = eco_sched(ECO_GET_DCHARGES, &charges); 

/* Get current time */ 
gettimeofday(snev-gtime, NULL); 
t 

_delta - (u_int64_t)(nev_q_time. tv_usec - 
q_time. tv_usec) + 

(new_q_time. tv-sec - q_time. tv_sec) " 
(int64_t)1000000; 

/* Calculate change in share using WTP with kappa-0.1 
share-delta - WTP(. 1, rtp. prio, charges, t_delta) 

/s Request new share 
share +- share delta; 
res - eco_sched(ECO_SET_SHARE, Aahare); 
q_time - new_q_time; 

} 
sleep: 

/s sleep for one second "/ 
nanosleep(ergtp, NULL); 

} 

Figure 5.11: Pseudo code for adaption 

./ 
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are assumed to be non-adaptive. This mechanism provides simple support for legacy applications 

which require a fixed share of a resource. 

5.2.4.1 Discussion 

The implementation of congestion prices under FreeBSD is only a proof of concept implemen- 

tation. Apart from the relatively coarse grained control for resource requests and the difficulties 

of accounting for resource consumption, as discussed in section 5.2.1.1, the congestion pricing 

mechanism currently has no concept of different users and requires super-user privileges to as- 

sign credits to resource consumers. Furthermore, the implementation does not address process 

relationships well. Child processes are simply placed back into the default scheduling class. 
To address these issues a more comprehensive API is required. Fortunately, previous research 

provides some example implementations. For example, the "top half" of lottery scheduling, i. e, 

tickets and currencies (section 2.1.4.3 and [WW94]) could be directly applied to manage credit 

allocations amongst users and processes. A file based namespace, similar to Eclipse's /reserv 

filesystem (section 2.3.4 and [BBG+99c]), would offer an alternative API for managing credits 

and would allow resources consumers to make resource requests. Furthermore, it could easily be 

extended to provide support for multiple resources. 
It has to be stressed that these issues are orthogonal to the actual congestion pricing mech- 

anism described in this section. For the implementation of the pricing mechanism it is merely 

necessary to identify distinct consumers of resources, account resource consumption to them, 

and to be able to identify resource congestion. However, for a deployment in a general-purpose 

operating system, abstractions similar to the two described above would need to be provided. 

5.2.5 Example application: mplayer 
The previous sections described the implementation of the decentralised resource management 

architecture over FreeBSD and the interface provided to user-level applications. To evaluate the 

suitability and the effort required to modify applications to make use of this new facility a small 
number of applications where adapted. The most substantial one was a multi-media decoder 

and player called mplayer21. 

mplayer is a modular application which can handle several different media formats and 
decoders and is primarily written for Linux but also compiles and runs under FreeBSD. Existing 
decoders are imported into the main source code distribution and small wrappers are provided 

21http: //www. mplayerhq. hu 
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to access them through a common API. These decoders include various MPEG2, MPEG4 and 
DivX decoders. mplayer also includes a number of output modules both for audio and video 

and a general framework for applying filters to them before playback. Examples for video filters 

are horizontal and vertical de-blocking filters and noise filters. They are typically used to reduced 

the effect of artifacts introduced by the video encoding scheme being used. 
Video playback in mplayer is driven by the audio playback - displaying of video frames 

is synchronised with audio playback to prevent unpleasant effects such as, dialogues being out 

of sync with lip movements. This is achieved by using timestamps embedded in combined 

audio/video streams in combination with the audio card as the main timing source. After a 

video frame has been decoded its timestamp is compared with the timestamp of the current 

audio sample. If the video timestamp is later then the audio timestamp mplayer sleeps for the 

appropriate amount of time. If the video frame is late it is displayed immediately. 

mplayer performs some adaption depending on the time difference, or skew, between video 
frames and audio samples. For example, it may drop the decoding of entire frames if video 
decoding lags behind by a larger margin. Furthermore, if post-processing filters are enabled 

mplayer can be configured to increase or decrease the number of filters applied to a video frame 

depending on whether the previous frame was too late or too early. In the default configuration 

mplayer uses six distinct levels of post-processing filters and uses increasingly more CPU re- 

sources to improve image quality. It is worth pointing out that the image quality improvements 

depend on the video encoding used and, while the improvements are noticeable in certain scenes, 

the difference between different filters is small enough to allow for a frame by frame change of 
filters without irritating the viewer. 
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Figure 5.12: CPU consumption for decoding a video sequence with different filters 
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Figure 5.12 shows the resource demand, averaged over one second intervals, for decoding 

and displaying a DivX encoded video sequence on an otherwise idle AMD Athlon 1.3GHz 

system with different, fixed levels of post-processing enabled. The bottom line represents the 
baseline resource usage of the video decoder without any post-processing. For the next line 

post-processing was enabled but no filters were activated. The slightly higher CPU usage can be 

attributed to per-frame overheads such as an additional memory copy introduced by the post- 

processing module. The top three lines show the CPU demand for three different levels (1, 

3, and 6) of post-processing filters enabled. On this system the resource requirement for the 
different post-processing filters covers a range of about 20% of the available CPU time, leaving 

room for dynamic adaption, trading off resource consumption against image quality22. It is 

worth pointing out that the absolute numbers for CPU resources consumed, as shown in the 

graph, are somewhat misleading and it has been observed that the same quality levels can be 

achieved with less CPU resources used. The reason for this phenomenon can be found in the 

stream synchronisation code: mplayer occasionally "busy-waits" instead of sleeping if the time 
difference between the current video frame timestamp and the current audio sample timestamp 
is relatively small. Furthermore, a certain amount of buffering of decoded video frames may 

also help for smoothing out resource demand over multiple frames making the overall resource 
demand somewhat more elastic (I observed a similar effect using a modified MJPEG player 
described in [Neu99]). 

Figure 5.12 also indicates that mplayer is a non-elastic resource consumer with a non- 

convex utility curve. The application has a relatively high initial resource demand of 45% to 
50% of the CPU for the chosen video clip on the particular system used. If the mplayer process 

receives less CPU resources the video playback will become unwatchable to a user. However, for 

resource allocations above this minimum allocation its utility curve can be assumed convex. 
This application therefore falls into the second category of applications with non-convex utility 
curves as identified in section 4.4.1. For the evaluation, presented in section 6.3, it is ensured 

that the mplayer application has sufficient resource available to operate in the convex region of 
its utility curve. 

Further reduction in CPU resource demands could be achieved by modifying the individual decoders, e. g., as 
described for a simple MPEG decoder in section 5.1.5.1. However, the MPEG4 decoders available in mplayer are 
significantly more complex and more optimised so this would have required a significant additional effort. 
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5.2.5.1 Introducing congestion pricing 

To evaluate the benefits of congestion pricing based feedback I modified the standard mplayer 

source code to use the interface provided by the FreeBSD prototype. These changes where 

made to the main loop in mplayer. Within this loop the following actions are performed 

continuously until the end of a file is reached: 

1. Decode audio sample and place it in play buffer if not empty. 

2. Decode a video frame. 

3. Deal with GUI events (if enabled). 

4. Determine when to display the frame, then sleep, if necessary, and display the frame. 

5. Calculate the timestamps for audio and video and the delay between them. 

6. Adjust the post-processing levels based on the time spent sleeping. 

7. Deal with keyboard events. 

To take feedback signals from the kernel into account only step 6, the adjustment of post- 

processing filters, has been replaced. Instead of adjusting the output quality only based on 

the time spent sleeping, the modifications also determine the current charging rate and decide 

whether to increment or decrement the resource demand along with the output quality. This 

adaption is not performed for every frame as the sample interval would be too short to reliably 
determine charging rates. Instead, the current prototype performs the adaption step for resource 

requests every ten frames and sets the maximum allowed post-processing level for the next ten 
frames. For intermediate frames the post-processing level is set between this maximum level and 

zero, based on the sleep time as before. 

Figure 5.13 shows the pseudo code for the changes made. Lines 2-10 essentially perform 
the WTP algorithm as the example given in section 5.2.4. However, the requested share is 

not directly adjusted. Instead, in line 14-17, it is decided if the current share is sufficient by 

checking if the application slept during the past ten frames. If that is the case the share is not 
increased. Next, the maximum level of post-processing is decided based on the ratio of current 
charging rate to credit allocation rate. Three distinct cases are distinguished. If the charges are 
higher than the current credit allocation, the maximum level of post-processing is reduced (lines 
19-25). More specifically, if the post-processing level is at the maximum, it is reduced by two 
levels and if it is already at the minimum a frame is dropped. Otherwise, the level is only reduced 
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every 10 frames do { 
/* Get the data */ 
rtprio(RTP_LOOKUP, 0, &rtp); 
eco_sched(ECO_GET_SHARE, &share)) 
eco_sched(ECO GET_DCHARGES, &charges) 
t delta=time difference since last call; 
charging-rate - charges/t_delta; 

/* used WTP algorithm */ 
wtp_share delta = wtp(kappa, rtp. prio, charging_rate); 

c_ratio = charges/(float)rtp. prio; 

/* decide what to do */ 
if (wtp_share d> 0) /* we can afford a bigger share */ 

if (eq_sleep_time >2* 1/frames-per-second) 
wtp_share_d - 0; /* don't increase share */ 

if (c-ratio > 1) {/* charges > than credid allocation */ 
if (max-quality eco_q_max) 

max-quality 2; 
else if (max-quality >= 1) 

max-quality--; 
else 

drop-frame = 2; 

} else if (c-ratio <_ . 95) {/s charges « than credit alloc*/ 
if (max-quality < eco_q_max) 

max-quality ++; 

} else { /* charges within 6% of credit allocation 
if (max-quality -- eco-q-maLx) 

max-quality--; 
} 

share +s wtp_share d; /* adjust share 
res - eco_sched(ECO_SET_SHARE, &share); 

output-quality v max-quality; /" set new output quality "/ 

} else f 
/* for intermediate frames we still do adaption "/ 
if (output_quality<max_quality kk aq_sleep_time>O) 

++output_quality; 
else 

if (output_quality>1 kk aq_sleep_time<0) 
--output-quality; 

else if (output_quality>O kk aq_sleep_time<-0.060f) // Some 
output-quality-0; 

} 
set video_quality(sh_video, output_quality); 

Figure 5.13: Pseudo code for mplayer adaption 
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by one. If the charges are significantly lower than the credit allocation the post-processing level 

is raised (lines 27-29). If the charges are within 5% of the credit allocation and the level is at 

the maximum the post-processing level is reduced as a precaution (lines 31-34). In all other 

cases the output quality remains the same. Lines 36-39 simply request a new share of the CPU 

and set the output quality to the new maximum level. Lines 41-51 perform the adaption for 

intermediate frames as the unmodified mplayer does. 

This adaption strategy is fairly simple. It performs the WTP algorithm with some adjust- 

ments to the output quality of the application. It does not implement any hysteresis when 

adjusting the level of post-processing as the resulting image quality changes are relatively small. 
One could imagine more complex adaption strategies, for example, strategies which utilise statis- 

tics about per-frame decoding times or which take the size of change in requested share into 

account when adjusting the output quality. However, it is worth pointing out that even this 

simple strategy performs adaption specific to an application - it proactively adjusts the max- 
imum output quality based on the feedback provided -a task difficult to achieve with any 

centralised resource management approach. 

mplayer has also been modified to write per frame information, such as quality level and 
audio/video timestamps to a log file. This information is used for the evaluation of different 

adaption strategies and has also been useful for debugging purposes. 

5.2.6 User Interface 

The description has so far focused on the implementation of congestion pricing mechanisms 

within the FreeBSD kernel and a description of the API presented to the application developer. 
The prototype also includes a set of utilities for end-users, both command-line utilities and 
graphical user interfaces. 

As described above, a user can add or remove applications to and from the new scheduling 

class using the ecoprio(1) command. This command is modelled after the standard FreeBSD 

commands rtprio(1) and idprio(1), used to change the scheduling class of processes to 
the real-time class and the idle class respectively. ecoprio (1) can also be used to adjust the 

credit allocation of a running process. A new command was introduced, eco ps(1), which, 
analogous to the standard ps (1) utility, displays information about processes currently in the 
new scheduling class. This information includes a process' credit allocation, current charging 
rate and resource current consumption. 
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Figure 5.14: Graphical User Interfaces and sample applications 

In addition to these text-based utilities two graphical utilities are provided: a standalone 

application, called eco_bars and a modified window manager23. Both tools are shown in fig- 

ure 5.14. 

The eco_bars application consists of the three windows, located at the top of the screenshot. 
The leftmost window shows a horizontal bar for the default scheduling class and for each process 

executing in the new scheduling class. Each process' bar is composed of three different bars. The 

outermost bar (in yellow) shows the current charging rate for that process. The middle bar 

(in green) shows the rate at which the process consumes the CPU resource and the innermost 

bar indicates the requested share for that process. The colour of the innermost bar is either 

red, indicating that the process performs adaption, or blue, indicating that the process is non- 

adaptive. These horizontal bars provide visual feedback to a user on the current state of the 

system. The small red vertical line indicates the current credit allocation for each process. A user 

can move this line using the mouse to change the credit allocation for each application. The 

23Both tools are modelled after similar user interfaces available under Nemesis. The equivalent to eco. bars, 
known as gosbars, was widely used with Nemesis, however, the window manager integration was only demon- 

strated at the final Pegasus II workshop (Cambridge, UK, November 1999), and has nor, unfortunately, been 
described in detail anywhere. 
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horizontal bars then provide the user with visual feedback on how resource allocations change. 
The other two windows of the eco_bars application provide an animated history of resource 

consumption and charging rates for each of the processes. 
The second user interface component is embedded in the window manager. The effect is 

visible within the window-manager decoration for two sample applications in the middle of the 

screenshot: mplayer and an motion JPEG player. The title bar for these two applications con- 

tains a black area with a red bar indicating the credit allocation to these applications. Again 

the user can adjust the credit allocation using the mouse. Furthermore, if the user moves the 

mouse pointer into one of these windows, the credit allocation of the corresponding application 
is automatically boosted by a fixed percentage. This is an example of a simple user policy im- 

plemented entirely in user-space. Naturally, more complex policies can be implemented, e. g., 

through configuration files specifying application-specific policies for credit allocations. 
The window manager based user interface was implemented by modifying an existing win- 

dow manager, vtwm. It required only minor modifications to the main window manager code, 

essentially adding hooks to selected parts of the window drawing and event handling code. The 

core functionality is implemented in a separate file in less than 300 hundred lines of code. Since 

in the X-Window system the window manager has no detailed knowledge about the processes 

to which the windows belong - in particular the window manager has no knowledge of the 

process ids - an application wishing to be managed in the fashion outlined above has to com- 

municate its identity to the window manager. In the current prototype this is accomplished 

using the standard X-Window feature of window properties: an application stores its process 
id under a well known name, ECOPID, for one of its windows. This requires the addition of 
5 lines of code to the window initialisation code and could be provided as a standard library 

call. If a window does not have this property then it is handled by the window manager without 

modifications to the decoration. 

5.2.7 Summary 

In this section a prototype implementation of the congestion pricing mechanism for CPU re- 
source in FreeBSD has been described. The three main components of this implementation are 
a new scheduling class providing processes with the ability to make absolute requests for CPU 

resources, a request-usage based pricing mechanism allowing flexible run-time configuration, 
and a token-bucket based credit account mechanism. Furthermore, the kernel has been instru- 

mented to provide detailed tracing information about scheduling decisions for off-line analysis. 
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The implementation required around 70 lines of kernel code to be changed. The single 
biggest change was required in the chooseproc() function in order to add the reservation 

scheduling class to the other scheduling classes. Most other changes were required to instru- 

ment the kernel with the tracing code. The reservation scheduling class itself, inclusive of the 

code for the pricing and accounting mechanism, is implemented in around 900 lines of heavily 

commented code, while the tracing facility requires around 350 lines of kernel code. 
The implementation serves mainly as a proof-of-concept prototype and its limitations and 

their possible solutions have been addressed. In summary, CPU reservations are only provided 

to processes - there is no separate abstraction of a resource principal and resources may be 

consumed without being accounted for, e. g., due to interrupt processing - and the round- 
robin scheduling of processes is not sufficient to provide timeliness guarantees. Subsequently, 

the congestion pricing mechanism is only applied within the constraints of the implementation 

of the reservation scheduling class. It has been argued that these issues can be addressed by 

proposals to introduce more flexible resource management abstractions into FreeBSD (reviewed 

in section 2.3) and that the application of congestion pricing to operating system resources is 

orthogonal to these approaches. 
Despite its limitations, the prototype has two important features. Firstly, it provides a mech- 

anism to prevent processes in the default scheduling class from being starved by processes with 
reservations in the higher priority scheduling class. This is achieved by providing a configurable 
reservation to the default scheduling class. Secondly, and more importantly, the use of a separate 
scheduling class allows only those processes that can benefit from being more actively involved in 

the management of their resource demands, to be exposed to the feedback - other applications 
are simply allotted resources by the default scheduler as in an unmodified system. This is ar- 
guably a better approach than that of requiring all applications to participate and also having to 
provide default strategies for those applications that have not been instrumented to adjust their 
resource demands. 

This section has been rounded off with a description of how applications can make use of 
these new features by describing the modifications made to an existing multimedia video player 
and with a presentation of a number of tools and user interfaces enabling end-users to use of the 
system more easily. 
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Chapter 6 
Evaluation 

In the previous two chapters a general discourse on how the concept of congestion pricing can 
be applied in the context of operating systems has been given (chapter 4) and two prototype im- 

plementation have been described in detail (chapter 5). In this chapter a detailed evaluation of 

these prototypes is provided. In section 6.1 the simulator is used to evaluate the effect of the dif- 

ferent design options discussed in chapter 4 while section 6.2 presents results from the FreeBSD 

prototype. In section 6.3 the benefits the decentralised resource management architecture offers 

to applications is investigated. 

In section 6.4 my general experience with the decentralised system is presented and sec- 

tions 6.5 and 6.6 discuss what impact this system has on application developers and users re- 

spectively. Section 6.7 provides a summary of this chapter. 

6.1 Simulation results 
The simulator is a convenient tool to evaluate the different design options, such as different 

pricing mechanisms and adaption strategies, discussed in sections 4.2.1 and 4.4. Initially, only 

elastic consumers are used, i. e., consumers which can consume an arbitrary amount of a re- 

source albeit with a diminishing marginal utility. Using these consumers, first, different pricing 

mechanisms are compared in section 6.1.1, then, in section 6.1.2, different consumer adaption 

strategies are compared under changing task sets. 

The two sections that follow section 6.1.2 then investigate non-elastic consumers. First, in 

section 6.1.3 non-elastic, bursty applications are used, while in section 6.1.4 consumers are used 
which attempt to "play" the system. 
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6.1.1 Different pricing mechanisms 

In this section the impact of different pricing mechanisms, discussed in section 4.2.1, are eval- 

uated. For this purpose, a task set of ten elastic consumers is used, each is assigned a different 

credit allocation by the user (in multiples of 150 credits/s, with a total sum of 8250 credits /s). 

All ten consumers adapt their resource demand every 100ms according to the WTP strategy, de- 

scribed in section 4.4, with a convergence constant of it = 0.1. All ten consumers use a period 

of 10ms and make the same initial request of a slice of 100µs. 

In section 4.2.1 two different approaches for determining shadow prices for CPU resources 

were discussed: consumers are charged after congestion has occurred; and prices are based on 

the probability of congestion. These two approaches are compared in the first experiment. The 

results are shown as a time-line in figure 6.1. On the left hand side a pricing mechanism is 

used which charges all tasks, in proportion to their usage, after a deadline has been missed until 

the CPU is next idle (as shown in figure 4.2). On the right hand side the pricing mechanism 

uses a probability function of the form p(y) = ea(y-b) with a= 15 and b=0.95 with 

the probability kept between 0.0 <= p(y) <= 1.0 (as in the second graph in figure 4.3). 

The factor a determines the slope of the function and the factor b ensures that the maximum 

charging probability (1.0) is reached at the target utilisation of 95%. 

For each of the pricing mechanisms, figure 6.1 shows four different aspects: (1) the top graph 

shows the service rate achieved by each of the ten consumers (the service rate is averaged over 
100ms); (2) the second graph shows the amount of resource requested by each of the consumers; 
(3) the third graph summarises the top two graphs by showing the total utilisation and the sum 

of requests for the experiment; (4) the bottom graph shows the charging rate for each of the ten 

consumers. 
A number of key observations can be made from these graphs. First, and most importantly, 

the service rate graphs demonstrate that, after an initial settling period, with both pricing mech- 

anisms, the consumers receive a service rate proportional to their credit allocations. This is 
important because, although each consumer is attempting to maximise its utility independently, 

given its credit allocation, the overall system still provides a socially optimal allocation of the 
CPU. Furthermore, the credit allocation provides a meaningful measure for service differentia- 

tion. If a user assigns twice as many credits to one consumer compared to another consumer, 
the user can expect the first consumer to receive twice as many resources. 

The second important observation is that all consumers manage to control their charging 
rate close to the rate at which credits are allocated to them. Thus, the WTP strategy seems to 
work well in this environment. 
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Figure 6.1: Charging after congestion vs. Avoiding congestion 
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Comparing the two pricing mechanisms, it is apparent that the mechanism using prices 
based on the probability of congestion provides much "smoother" results. This is not un- 

expected, as it provides some feedback signals to the consumers before the resource becomes 

congested. The pricing scheme, which charges after congestion occurs, does not provide any 
feedback to the consumers until a deadline is missed, and then consumers observe charges for 

every minimum time unit they consume. The result is that the consumers periodically drive 

the system into overload, then observe charges and reduce their resource demand. This can be 

observed in the oscillations of the requested share and the graph showing the resource utilisation 

and sum of resource requests made by all consumers. In contrast, the pricing mechanism based 

on the probability of congestion does not exhibit this behaviour and the system settles with a 

steady state after an initial period. Furthermore, due to the offset of the pricing function, it 

achieves a target utilisation of around 95%, and, since the system is not in overload, all resource 

requests are satisfied. 

Consumer Charging after Congestion Avoiding Congestion 

wi Service time Charges Missed Ddlns Service time Charges Missed Ddlns 

150 
300 
450 
600 
750 
900 

1050 
1200 
1350 
1500 

0.213s 1414 556(55%) 
0.389s 2714 564(56%) 
0.551s 4046 576(57%) 
0.706s 5366 590(59%) 
0.865s 6695 606(60%) 
1.016s 8015 622(62%) 
1.178s 9325 647(64%) 
1.336s 10661 673(67%) 
1.497s 11982 719(72%) 
1.655s 13291 776(77%) 

0.202s 1397 0(0%) 
0.381s 2680 0(0%) 
0.497s 4122 0(0N 
0.667s 5414 0(0%) 
0.844s 6726 0(0%) 
0.953s 8139 0(0%) 
1.133s 9418 0(0N 
1.275s 10769 0(0%) 
1.420s 12123 0(0%) 
1.596s 13422 0(0%) 

Figure 6.2: Summary of experiments 

The results from this experiment are further summarised in table 6.2 where rows contain 
statistics about consumers, i. e., the overall service time received, the total charges incurred, and 
the number and percentage of missed deadlines. As one would expect, the pricing mechanism 
which charges consumers after congestion occurred, results in a significant number of missed 
deadlines (between 55% and 77% of deadlines) while with the second pricing mechanism no 
deadlines were missed. One can also see that the service time and total charges are roughly 
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proportional to the credit allocation. The inaccuracy of proportionality can be attributed to 
both the fluctuation of service rates and charges, and the initial settlement period. 

In the this experiment it takes over a second, or more than ten iterations, until the stable 

state is reached. In section 4.2.1.1 a pricing function providing "negative charges" is proposed 

to give consumers an indication of when a resource is only lightly loaded. Figure 6.3 shows 

the result of an experiment with such a pricing function and the same task set as in the previous 

experiment. "Negative charges" are based on a linear charging probability function ranging from 

-1.0 for a utilisation of 0 and no charges for a utilisation of 0.75. Above this utilisation, the 

same exponential probability function is used as in the previous experiment. 
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Figure 6.3: Exponential prices vs. Positive/Negative Charges 
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Not surprisingly, the results for the steady state are comparable to the pricing scheme using 
the exponential function in the previous experiment, as, for a higher utilisation, the same func- 

tion is used. However, as can be seen from the enlargement at the bottom of figure 6.3, with 
this pricing mechanism, the system reaches the steady state slightly earlier. 
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In summary, for homogeneous task sets, as used for the experiments in this section, the de- 

centralised approach yields results comparable to a proportional weighted fair scheduler although 

the individual consumers are acting independently of each other. For general system stability it 

appears beneficial to provide some early feedback to applications before congestion occurs while 

only a slight improvement is noticeable if the system also provides feedback if the resource is 

idle. 

6.1.2 Different strategies and changing workloads 
In the previous experiments a static task set with all consumers using the same adaption strategy 
(WTP) was used. In this section, two different aspects are evaluated: firstly, different strategies 

are used, and, secondly, the task set is changed over time, to evaluate how the decentralised 

system responds under changing conditions. 

For this evaluation, again, a task set of ten elastic consumers is used, however, only five of 

them are using the WTP strategy as in the previous experiment. The remaining five consumers 

are using a PID controller, as described in section 4.4, to adjust their resource demand in ac- 

cordance to the charges they observe. The tasks have different credit allocations assigned (in 

multiples of 250 credits/s). The tasks also use different periods, ranging from 5ms to 20rns, 

and have different initial resource allocations. During the experiment, the task set is changed 

every 50 seconds. A new task joins the set at time 50s, the user then decides that certain con- 

sumers are more or less important and changes their credit allocation rate at time 100s and 150s 

respectively. Finally, a consumer leaves the task set at time 200s. For this experiment, the same 

simple exponential price function is used, as in the initial experiment. 
Figure 6.4 shows the results of this experiment. The top graph shows the service rates 

achieved by each consumer over time. The service rates are batch-averaged over 100m. s as 
in the previous experiments. The second graph shows the rate at which the consumers incur 

charges in credits/s. The final graph shows the current price for resource usage (in red) and the 

utilisation of the CPU (in green), as measured by the pricing mechanisms (using the EWMA 

filter described in section 5.1.9). The price graph is so highly variable as the exponential price 
function amplifies the slight changes in system utilisation. The graph also contains the sum of 

all resource requests (in blue). 

There are two key observations to be made from these results. Firstly, different (sensible) 

strategies can be used for elastic consumers and the decentralised system still provides good 
weighted proportionally fair resource allocation. Both WTP and PID seem rational strategies 
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to use for elastic users as they both manage to control the charging rate well (as can be seen 
from the second graph). Secondly, the overall system reacts quite quickly to changes in the task 

set, despite its consumers acting independently of each other. Thus, the weighted proportional 
fairness is maintained. This is important, as it allows a user to dynamically change the credit 
allocations of his consumers should the user's preference for consumers change. However, as 
with the initial settling period in the previous experiments, it may take a number of iterations of 
the adaption for the system to settle to a new stable state. 
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6.1.2.1 Effects of different adaption parameters 

The previous experiments demonstrated that consumers can choose their adaption strategy. 
However, consumers may also choose the various parameters, e. g., the intervals in which they 

adapt, that are used by their adaption strategy. In this section, the impact of these parameters is 

analysed. This analysis focuses on the WTP strategy as it is much simpler, and as demonstrated 

in the previous experiment, is similarly effective as the more complex PID controller. In fact, 

the PID controller requires five parameters to be specified and, in practise, it is quite difficult to 

choose the right parameters to achieve rapid convergence while preventing extreme reactions or 
heavy oscillations. 

A WTP consumer essentially requires two parameters to be specified: an interval, over which 

to perform adaption and the convergence constant K. The constant is influences by how much 

the new request is adjusted given an observed charging rate and credit allocation. The adaption 
interval determines how quickly a consumer reacts to the feedback signal. 

For an initial analysis, the first experiment from section 6.1.1, using, again, the exponential 

price function is repeated multiple times with different values of K. Figure 6.5 summarises the 

results. The graph shows the average service rate (with min/max values as error-bars) achieved 
by each of the consumers in the steady state' for different values for K. 

The graph shows that the average service rate is largely independent of the choice of K- 

on average the consumers receive a service rate that is proportional to their credit allocations. 
However, for larger values of ic they observe much larger variations of services rates as indicated 

by the min/max values. 
Next, the effects of the convergence constant K and the adaption interval are investigated in 

more detail. Combinations of these two parameters may have an impact on how quickly a con- 

sumer adapts to changing conditions or on how variable a consumer's resource requests are when 

the task set is stable. To illustrate this impact, a series of simulations with systematically adjusted 

values of ic and the adaption interval have been executed. As in the previous experiments, a task 

set of 10 elastic consumers with different, evenly distributed, credit allocations is used. These 

experiments are summarised using three different measures: the percentage of missed deadlines, 

the time it takes for the consumer with the highest credit allocations to reach the stable state2, 

I The first 10 seconds of each 20 second-long experiment are discarded. With the smallest value of te (0.01) the 
steady state is reached after about 8 seconds. 

2The length of the initial transient interval is calculated with a variant of the initial data deletion method using 
relative changes, as described in [Jai91, pp 424-426]. First, the overall mean of the service rate is calculated. Then, 

the mean is calculated without the first, second, third,..., observation. For each of these means, the relative change 
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Figure 6.5: Impact of /C on service rate: Mean and Max/Min values in stable state 

and the variance for this task for the first 20 seconds after reaching the stable state. The results 

are shown in figure 6.6. Note, however, that the absolute values given in these graphs also de- 

pend on the behaviour of the other consumers. The graphs, therefore, only present a qualitative 
illustration rather than a quantitative evaluation. 

The top-left panel shows the percentage of missed deadlines for all consumers. Only for 

larger values of n are deadlines missed, especially for short adaption intervals. This is not sur- 

prising, as for larger values of K the individual consumers may overreact to the feedback signals 

and drive the system into overload. This effect will be more pronounced if the consumers "over- 

react" more often, i. e., for shorter adaption intervals. 

The top-right panel shows the variance (Q2) of the service rate once the stable state is reached. 
The results are what is to be expected. The variance is highest when the consumers adjust the 
resource requests more often and by a larger amount (larger n). The variance is lowest when the 
resource requests are changed only slightly in large intervals. 

However, as the bottom panel illustrates, there is a tradeoff between the variability a con- 
sumer may experience in the stable state and the rate at which it can adjust to changes. The 

bottom panel shows the time it takes for one consumer to reach the stable state allocation with a 

to the overall mean is calculated. If the difference of relative changes for subsequent means approaches zero, the 
"knee" of the graph can be identified. 
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Missed Deadlines Variance 

Time to stabilise 

Figure 6.6: Impact of K and adaption period 

static task set. Note that, for better visibility, the axis, showing the adaption interval, is reversed 

and the z-axis is in a log-scale. Again, the results are what is to be expected. A consumer which 

adjusts its requests by only a small amount (small K) in large time intervals, will take a longer 

time to reach the stable state. Conversely, a consumer adjusting the resource requests more often, 

and by a larger amount, will reach the stable state earlier. 
The drop in missed deadlines and in variance for is = 0.5 and long adaption intervals 

(< 200ms) is counterintuitive. The variance should increase with larger values of t and not 
decrease as the top right-hand panel of figure 6.6 shows. Despite an inspection of the data it 
is not entirely clear why this is the case. It could possibly be attributed to interactions between 
different consumers which is triggered by this particular combination of parameters. Another 

explanation is a possible interaction of the trace analysis tools, for example, a correlation of the 
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parameters used for the experiments and the way service rates and, subsequently the knee and 

variance, are calculated. This issue requires further investigation. 

To summarise, for large values of ic and, especially, for short adaption intervals, the system 

might be driven into overload, and the steady state allocation is highly variable. But, by choosing 

such a combination, the consumer will be able to react more quickly to changes in the task set. 
Conversely, for small values of ic, the service rate will be less variable in the steady state. For small 

values of /c, the impact of the adaption interval is not as significant as for larger values. Individual 

consumers therefore have a wide range of "sensible" values to choose from. It is also conceivable 

that a consumer may adjust their convergence "constant" over time to reflect different modes of 

operation or changes in the overall dynamic of the task set. 

6.1.3 Non-elastic applications 

The consumers used in the experiments so far have been elastic consumers, i. e., consumers 

capable of consuming as many resources as are available. In this section, non-elastic consumers 

with bursty resource demands are investigated. In section 4.2.1.2 it has been argued that for 

non-elastic consumers a combined pricing scheme, with charges based on the resource requests 

and resource usage, should be used. Charges of the form chargei = /3 
(xzp(E 

xi)) + (1 - 

p) 
(ri(> 

ri)) have been proposed, where xi is the resource consumption of consumer i and 

ri its resource request. The factor, 3 determines the ratio of request and usage price. 
To evaluate this pricing scheme a combination of bursty workloads, modelled using Markov 

processes (as described in section 5.1.5), elastic consumers, and a non-adaptive constant rate 
consumer is used. The results are shown in figure 6.7, with graphs of the achieved service rates3, 

requested shares, and charging rates for each consumer. The bottom graph shows the CPU 

utilisation and the sum of requests with the resulting prices. 
Three Markov processes (labelled Markovl to Markov3) and the non-adaptive constant rate 

consumer (labelled CBR) are started first. The first two Markov processes use the same simple 
ON/OFF transition probability matrix, but have different amounts of credit assigned (300 and 
600 credits/s). The third Markov process generates a more bursty workload by using a four state 

3 For this graph the service rates are averaged over the longer interval of one second. With an interval of 1(On y, 
as used for the other simulation results, the highly variable service rates of the Markov workloads would obscure the 
service rates of the elastic consumers and the graph would become illegible. However, this longer averaging interval 
does not have a significant smoothing effect on the service rates for elastic consumers, as their service rates a quite 
stable. 

151 



3 Markový Add elastic wipi I 
Il 

Add elastic wtp2l 
1 CBR 

l 
0.30 

0.25 

ID 0.20 m 
cc 0.15 

cn 0.10 

0.05 

0.00 

..... ..... - 

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0 10 20 30 40 

tq 

Ü 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 

1200.00 

900.00 

600.00 

300.00 

0.00 

övý 
- wýtp2 

Iov 

- 

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

1.20 
1.10 
1.00 
0.90 
0.80 
0.70 
0.60 
0.50 
0.40 
0.30 
0.20 
0.10 
0.00 

Time (s) 

Figure 6.7: Request-Usage prices and non-elastic consumers 
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transition probability matrix and has 300 credits/s assigned. The non-adaptive constant rate 

consumer tries to consume 1.25ms worth of CPU time every lOms4. Initially, it has enough 

credits (270 credits/s) assigned to achieve this rate. At times 40s, 80s, 120s and 160s elastic 

users with different credit allocations (300,600,900,1200 credits respectively) are started. 

All consumers, with the exception of the non-adaptive consumer, use WTP as their adaption 

strategy. The charges are split 40% for requests and 60% for usage. 

Initially (i. e., in the first 40 seconds), the Markov processes request a much larger share 

than they actually consume, especially the consumer labelled Markov2 (requesting 40% while 

consuming a maximum of 20%). However, the processes can afford to request more resource 

than they consume, since, as the bottom graph shows, charges are almost exclusively based on 

resource requests and not usage during the initial period. Due to the 40 : 60 split of charges 

consumers can afford this high reservation. However, with the first elastic user joining the task 

set, the sum of requests, and thus the charges for requests, increases and the Markov consumers 

reduce their resource requests. This has a bigger impact on the service rate for the consumer 
labelled Markovi as its credit allocation is half of that of consumer Markov2. Usage prices 

are still very low as, due to the bursty behaviour of the Markov processes, the overall resource 

utilisation is still low. 

With a more elastic consumer joining, the other consumers are forced to reduce their re- 

source requests further, since both the prices for request and usage rise. With the fourth elastic 

consumer joining at time 160s the price for request reaches its maximum and the higher charges 
for usage are becoming more dominant as the resource utilisation rises. 

An interesting observation is that all the adaptive applications manage to keep their credit 
spending rates constant around their credit allocations, although charges are based on both their 

requests and their resource usage and the resource utilisation is quite bursty. Furthermore, as 
in the previous experiments, elastic consumers achieve service rates proportional to their credit 

allocation. 
The non-adaptive, constant rate consumer (labelled CBR) initially sustains its desired service 

rate of 12.5%, as its credit allocation covers the charges it incurs for its resource request and 
usage. However, around the 84th second the charging rate exceeds its credit allocation and its 

service rate drops below the desired rate. If the consumer were an MP3 player, this would result 
in a breakup of the audio signal. A user could then increase the credit allocation to such an 
application. Thus, in the experiment, the credit allocation for the CBR consumer is increased to 

4An example for such an application is an MP3 player (see section 6.2). 
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660 credits/s at time 100s. The new credit allocation is sufficient to sustain the required service 

rate again. 
In summary, this experiment demonstrates that the combined Request-Usage pricing scheme 

is suitable for non-elastic and non-adaptive consumers as well as elastic consumers. If the re- 

source is only slightly loaded, it allows bursty consumers to request resources at a peak rate, or 

above it, without impacting other consumers. However, if the load increases, they are forced 

to reduce their resource requests, as they will be increasingly charged for their resource usage as 

well. At very high resource load, they essentially behave like elastic consumers. Furthermore, the 
decentralised system also allows non-adaptive consumers to participate. By simply ignoring the 

charges, like the CBR consumer, they are guaranteed a service rate proportional to the total num- 
ber of credits in the system. If this is not sufficient, the user could increase the credit allocation 
for those consumers. 

An interesting direction for future work is to dynamically change the parameter , ß, which 
determines the ratio of request and usage charges. By changing,, the emphasis of charges could 
be placed more on charges for requests, if, for example, there is a significant difference between 

the sum of requests and actual resource utilisation. This would encourage consumers to estimate 

their resource requests more accurately. Likewise, if the utilisation is closer to the sum of resource 

requests, the emphasis could be placed on usage based prices, as usage based charges are more 

meaningful (congestion occurs through usage not through requests). 

6.1.4 III-behaving consumers 
The experiments so far only used well-behaving consumers, i. e., consumers which only made 
small adjustments to their resource requests on each adaption and which reacted to feedback 

signals. In this section, a number of more aggressive strategies and their impact on the overall 

system are evaluated. Two different strategies are presented. Both aggressively increase their 

resource requests if they are charged less than they can afford. They simply double their resource 
demand. However, if their charges exceed their credit allocation, the first strategy immediately 

decreases its resource demand to a small share (to 5% in the experiment) while the second 

strategy only reduces its request by a small fraction (1% in the experiment). Furthermore, these 

strategies also adapt in much shorter intervals (every 10ms in the experiments) in order to 

exploit small fluctuations of the price. By aggressively increasing their resource demand, these 

consumers may drive the price up and other consumers may suffer from this. 
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To evaluate the impact such aggressive consumers have on well-behaved consumers, a task 

set of well-behaved consumers is initially used. Once that task set has reached a stable state, an 

aggressive consumer is introduced to the task set and the impact can be observed. Then, the task 

set is reduced to observe the behaviour of the aggressive strategy under changing load and price 

conditions. The set of well-behaved consumers is consists of 5 elastic consumers with different 

credit allocations (multiples of 250 credits/s) and the simple two state Markov workload, also 

used in section 6.1.3. These consumers all use the WTP strategy and adjust their resource 

requests every 100ms. The pricing mechanism is the same combined Request-Usage scheme, 

that is also used in section 6.1.3. A new consumer is introduced after 15 seconds and an elastic 

consumer leaves the task set after 30 seconds. Figure 6.8 shows the results of this experiment. 
The three panels show the service rates achieved by the consumers when a consumer with 

a different strategy joins the task set after 15 seconds. For the top panel, a consumer, labelled 

Aggressivel, joins, which doubles its resource requests if its charges are below its credit al- 
location and reduce its share to 5% when charges exceed the credit allocation. The consumer, 

labelled Aggressive2 in the middle panel, also doubles it resource request of the charging rate 
does not exceed its credit allocation but only reduces its resource request by 1% if it does. For a 

comparison, the bottom panel shows the service times if the new consumer joining is also using 

the WTP strategy. Thus, by comparing the first two graphs with the bottom graph, the impact 

of a more aggressive consumer can be assessed. 

The first variation of an aggressive consumer (top graph) does not seem to have a significant 
impact on the other consumers. While it aggressively increases its resource requests it also backs 
down too radically. This has the effect of harming its own performance and it actually receives 
less service time that if it used a better-behaved strategy, such as WTP. In fact, since it receives 
less service time than an equivalent consumer using WTP, the other consumers benefit from its 
behaviour and receive slightly more service time. 

However, the second aggressive consumer, as shown in the middle graph disrupts the other 
consumers noticeably. For example, the consumer labelled WTP5 receives less CPU time after 
the aggressive consumer joins, compared to the bottom graph where another WTP consumer 
joins. When the consumer labelled WTP3 leaves the task set after 30 seconds, the consumers 
labelled WTP4 and WTP5 are unable to increase their share as in the other two experiments. 
This is because of the aggressive consumer increasing its share first, and thus driving the price 
up to a level which prevents the other consumers from increasing their share. Furthermore, 

the aggressive consumer manages to receive a higher service rate when compared to the WTP 
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consumer with the same credit allocation in the bottom graphs, and causes all consumers to miss 

a considerable proportion of their deadlines (a total of 8% of the deadlines are missed). 
However, this experiment also demonstrates that the credit account mechanism, described 

in section 4.3, prevents the aggressive consumer from causing greater damage to the other con- 

sumers. The other consumers still make reasonable progress, albeit not quite as good as would 
be the case without the aggressive consumer. This can be attributed to the credit account mech- 

anism: the service rate of the aggressive consumer frequently drops to zero because it is spending 

credits at a significantly higher rate than credits are allocated to it. Thus, with an empty credit 

account, the consumer is unable to pay for both its resource request and consumption and, 

therefore, the consumer is not allocated CPU. This mechanism prevents the aggressive con- 

sumer from driving the other consumers out of the system. 
However, as the increased service rate it receives indicates, the aggressive consumer is still 

able to "play" the system to some extent, even though it suffers from frequent suspensions due 

to an empty account. Apart from the measures already discussed in section 4.4.2, such as social 

pressure on users with such aggressive consumers, a number of other, more technical deterrents 

could be deployed to prevent consumers from behaving too aggressively. An obvious measure is 

to prevent consumers from making rapid changes in their resource requests. The two example 

strategies used in this section double their resource requests every 10ms if their charges are 
low. Policing the increase in resource requests to an upper limit, of, for example 20%, prevents 

rapid increases in demand while not interfering with well-behaved consumers, which typically 

only increase their resource requests moderately. Another measure could identify ill-behaving 

consumers by monitoring credit accounts. Consumers which are frequently suspended due to 
the lack of credits, such as the second aggressive consumer in the experiment, could be penalised 

and suspended for increasingly longer periods of time, or the user or system administrator could 
be notified of such consumers and then they could take appropriate action. 

6.2 FreeBSD results 
In this section an evaluation of the congestion pricing implementation in FreeBSD is given. 
The simulation results suggest that a combined Request-Usage pricing mechanism, using an 
exponential pricing function, is a suitable scheme to support a variety of different application 

5Due to the short averaging interval of 100ms this is not apparent from the graph. However, the aggressive 
consumer receives around 3.37 seconds of CPU time during the experiment, while the WTP consumer in the 
bottom graph receives around 2.93 seconds of CPU. 
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scenarios. Therefore, the FreeBSD prototype implements such a scheme. Charges for request 

and usage are divided into a 40: 60 ratio. For simplicity, elastic consumers are implemented as an 

endless loop but, essentially, any compute bound process could be used. These elastic consumers 

use the WTP strategy for adjusting their resource request and execute the WTP algorithm once 

every second. 
In general, the baseline behaviour of the FreeBSD prototype is comparable to the simula- 

tion results. Therefore, a slightly more complex experiment is presented in this section. This 

experiment is similar to the one described in section 6.1.3 using both adaptive and non-adaptive 

applications. The results of this experiment6 are presented in figure 6.9. The graphs show the 

service rates, requested shares, charging rates, and prices as in the simulation experiments. 
The task set for the experiment initially contains four elastic adaptive consumers. These con- 

sumers have different credit allocations (initially set to 25,50,125, and 150 credits/s) and are 
labelled loopl to 1oop4 respectively. In addition, a non-adaptive MP3 application, decoding a 

variable bit-rate MP3 sound file, is used with an initial credit allocation of 100 credits/. s and 

a resource reservation of 10%. This consumer is labelled mpg123. The default scheduling class 
has a credit allocation of 200 credits/s and a CPU reservation of 20%. There is no adaption 

performed for the default scheduling class (however, this could optionally be enabled). Within 

the default scheduling class an elastic consumer (labelled loopO) and a parallel build of the 
FreeBSD kernel are executed. After 290 seconds this elastic consumer is placed into the CPU 

reservation class and then it adjusts its resources demands using the WTP strategy. The processes 

of the kernel compilation and other processes of the default scheduling class are summarised and 
labelled Default in the graphs. 

The kernel build is started first and after 20 seconds the elastic consumers are added to the 
task set. These adaptive tasks quickly manage to receive a service rate proportional to their credit 
allocations. In the default scheduling class the CPU is shared between the elastic consumer 
(loopO) and the other processes. The burstiness of these allocations is caused by the bursty 

resource demand of the compilation processes. 
The MP3 decoder is started 40 seconds into the experiment and it initially receives 10% 

of the CPU, which is proportional to its credit allocation of 100 credits/s. However, this 
allocation is not sufficient and the sound frequently breaks up. Therefore, its credit allocation is 
increased to 175 credits/s after 140 seconds. Since this application is non-adaptive its resource 
request is automatically increased to 17.5%, the share it can pay for at the maximum charging 
rate (see section 5.2.4). After the credit allocation increase, the MP3 decoder receives enough 

6Performed in multi-user mode on the same Intel P200 hardware used in sections 5.1.8 and 5.2.3. 
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CPU resource to decode and play back the sound file without breaking up, consuming CPU 

resource at a constant rate of around 15%, leaving 2.5% percent of its resource request unused. 
With the increase of the credit allocation and share for the MP3 decoder the adaptive con- 

sumers are forced to reduce their resource requests as the prices rise. Further changes to the 

task set result in similar changes. After 390 seconds the elastic consumer loop0 is taken out of 

the default scheduling class and placed into the CPU reservation scheduling class with a credit 

allocation of 75 credits/s. After 440 seconds the credit allocation for 1oop2 is increased from 

50 to 150 credits/s and after 590 seconds the credit allocation for 1oop4 is reduced from 150 

to 75 credits/s. On each of these changes the individual consumers quickly adjust their re- 

source requests and their resulting service rates remain proportional to their credit allocations. 

Furthermore, elastic consumers with the same credit allocation achieve similar service rates (e. g., 

consumer 1oop2 and 1oop4 between 440 and 590 seconds). 
The slightly higher variations of the service rates after around 300 seconds can be attributed 

to the elastic consumer loop0 leaving the default scheduling class. Due to the bursry resource 
demand of the remaining processes in that class, the overall resource utilisation and thus the 

usage price fluctuates stronger. Thus, the charges vary more and the consumers adjust their 

resource requests slightly more than before the change. However, the resulting service rates are 

still reasonably stable and not lower than the minimum guaranteed service rates (as defined by 

the proportion of credit allocation to the maximum charging rate). In fact, especially during 

the period from 450 seconds to 600 seconds, the elastic consumers achieve a higher service rate 

than their proportional fair share, since the resource demand of the default scheduling class is 

significantly lower than its resource request of 20%. 

This effect can also be observed in the charging rates, shown in the third graph. Up to 
290 seconds the elastic consumers manage to stabilise their charging rates close to their credit 
allocations. The charging rates vary more strongly after consumer loop0 leaves the default 

scheduling class. However, on average, the charging rates are maintained at the same rates at 
which credits are allocated. Furthermore, some of the variations visible in the graph can be 

attributed to quantisation errors; the charging rate is calculated by the analysis tools over one 
second intervals, but, these intervals do not exactly match the one second time quantum of the 
scheduler nor the one second adaption intervals 

The bottom graph summarises utilisation and the sum of resource requests and the resulting 
prices. Resource requests are largely matched by the resource utilisation except during the period 
where the resource usage of the processes in the default scheduling class is particular bursty (450- 
600 seconds). The resulting prices clearly show the 40: 60 split between request and usage prices. 
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A number of key observations can be made from this experiment. First, with the decen- 

tralised resource management, independently acting elastic consumers can achieve weighted 

proportional fair resource allocations. Second, constant rate and non-adaptive applications, such 

as the MP3 decoder, can be accommodated by the same operating system mechanisms. Third, 

placing the default scheduling class as a dummy process in the CPU reservation scheduling class 

effectively prevents starvation of its processes. And, most importantly, the results obtained from 

the FreeBSD prototype are comparable to the results obtained with the simulator (especially 

when compared to the experiment with the non-elastic consumers presented in section 6.1.3). 

6.3 Application use 
In the previous experiment a set of simple applications make use of the decentralised resource 

management architecture to achieve proportional fair sharing of the CPU. In this section a set 

of experiments is presented which demonstrates how a more complex and realistic application 

can make use of the resource management architecture. For this purpose an instance of the 

modified version of mplayer, introduced in section 5.2.5, is executed with varying background 

loads and its performance is compared to instances, both adaptive and non-adaptive, using 
CPU reservations and the default FreeBSD scheduler. The aim is to evaluate what benefits the 
decentralised architecture offers to real applications. 

The mplayer application is used to decode and display a 400s long video clip at 25 frames 

per second (10000 frames in total). The modified version of mplayer can be configured through 

command line options to decode the video frames at a fixed level of post-processing or to adapt 
the amount of post-processing performed based on the audio/video skew of the previous frame 

and, additionally, adapt based on the feedback provided by congestion prices. The first two 

modes are available in the standard mplayer distribution. The last mode has been described 

in detail in section 5.2.5.1. As the primary measure to compare performance between different 

configurations the audio/video skew is used as this is the main measure mplayer attempts to 

minimise. Specifically the following configurations are compared: 

Adapt Q, BE: mplayer is executed in the default scheduling class and performs its default 

quality adaption policy. 

Fixed Q, 60%: mplayer is executed with a fixed reservation of 60% of the CPU and performs 
the maximum amount of post-processing for all frames. 
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Adapt Q, 60%: mplayer is executed with a fixed reservation of 60% of the CPU and performs 
its default quality adaption policy. 

Feedback, 500: mplayer receives a credit allocation of 500 credits per second and performs 

adaption based on the feedback provided by congestion prices. This should result in a 

resource allocation of at least 50% of the CPU. 

These configurations are representative of different approaches to resource management. The 

first configuration represents a traditional Unix operating system, using a "traditional" Unix 

scheduling algorithm. The next two configurations represent reservation based scheduling algo- 

rithms and are chosen to evaluate the effectiveness of mplayer's default adaption policy. The 

final configuration is used to evaluate the impact of the decentralised resource management 

architecture on the performance of mplayer. 

To compare the performance of these different configurations they were exposed to the same 
background load while decoding the aforementioned video clip. During each experiment, the 

background load is varied every 100s. For all experiments using reservations (either fixed or 
dynamically adjusted) the following load is used: Initially, only a light load is used consisting 

of a constant rate application consuming 5% of the CPU and a process executing in the de- 

fault scheduling class with a bursty resource demand. The default scheduling class has a CPU 

reservation of 5%. After 100s the load is increased by starting three processes with reservations 

of 5%, 5%, and 10% and a bursty resource demand. After a further 100s all four processes 

with bursty resource demand are replaced with entirely compute bound processes: one execut- 
ing in the default scheduling class and three with fixed resource reservations of 5%, 5%, and 
10% respectively. The compute bound process in the default scheduling class has the effect that 

the system has no slack CPU resources available (recall the relative priorities of the different 

scheduling classes described in section 5.2.1). For the final 100s of each experiment, the com- 

pute bound process with fixed reservations are replaced with elastic compute bound consumers 

performing the WTP to adjust their resource demand. This background load essentially com- 

petes with mplayer process for available CPU resources and generates a high background load. 

For the only configurations not using reservations for the mplayer process, Auto Qj BE, the 
background load is generated by starting the same background processes as above, albeit in the 
default scheduling class without resource reservations. 

7The bursty demand is generated using a two state Markov process. In the "On" state the process consumes 
as much CPU as possible and sleeps in the "Off" state. Each state has a period of is and the probability for state 
changes was set to 50% for both states. For simplicity, this configuration was used for all bursty background loads. 
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All experiments were executed on a 1.3 GHz Athlon computer with 256MB of memory. For 

the experiments using the CPU reservation scheduling class a scheduling quantum of 100rns 

and a preemption interval of lms were configured. For these experiments, the X server process 

was given its own CPU reservation equivalent of 9%. This reservation is sufficient for the 

work performed by the X server and was necessary to avoid the scheduling of the X server from 

influencing the performance of the measured applications. 

Figure 6.10 gives a summary of the results. For each graph four subgraphs are shown corre- 

sponding to the four phases of each experiment. The top graph shows the service rates received 
by the mplayer process for the different configurations, the second graph shows the level of 

post-processing performed by the adaptive configurations. The third graph plots the skew be- 

tween audio and video playback in milliseconds and the fourth graph summarises this data as a 

cumulative distribution function (CDF) for the four different phases (at 25 frames per second a 
frame should be displayed every 40ms). Ideally, the CDF would be a vertical line at Orris indi- 

cating perfect synchronisation between the audio and video playback. A positive skew indicates 

that the video frame has been displayed after the corresponding audio sample has been played 

while a negative skew indicates that the video frame has been displayed before the correspond- 
ing audio sample. The latter can occur if the previous video frames have been displayed too late 

(positive skew) and mplayer attempts to "catch up". Note, that for clarity of presentation not 

every graph shows results from all configurations. 
Looking at the results in more detail, it becomes clear that the default FreeBSD scheduler is 

not suitable for this type of workload. Even under the light background load in the first phase 

the service rate received by the mplayer process is highly variable. This variability is too high 

to be compensated by the default adaption strategy. As a result, the audio/video skew is highly 

variable (for clarity not shown in the third graph) and, as can been seen from the corresponding 
CDF in the bottom graph, only a small fraction of video frames are displayed in sync with the 

audio playback. A large fraction of video frames are displayed when the previous or next frames 

respectively should have been displayed, resulting in unacceptable playback performance for an 

end-user. This effect is exaggerated when the background load is increased in the second phase 

making the video clip unwatchable with 80% of the frames being dropped; in the final two 

phases, with further increased background load, less than 0.1% of the frames are displayed. 

The performance of the other, reservation based configurations is in stark contrast to the 
performance of mplayer under the default scheduling class. For all tested configurations the 
audio/video skew is predominately within an acceptable range. However, there are differences 
between these configurations. With a light background load in the first phase the modified 
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Figure 6.10: mplayer performance comparison in different configurations 

mplayer, adjusting its resource reservation based on the feedback provided by the operating 
system performs better than the instances of mplayer with a fixed reservation (both the adap- 
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tive and non-adaptive versions). This is not surprising since the modified version of mplayer 

receives a bigger share of the CPU due to its, dynamically adjusted, higher resource requests 
(the requested resource share for the modified version of mplayer is shown as a thin red line 

in the top graph, with the received share of the CPU drawn as a thick red line). In contrast, 

the instances with fixed reservations have to compete with the other processes for slack CPU 

resources on a best effort basis. The resulting better performance is particular visible in the third 

graph showing the audio/video skew. After an initial settling period, the skew for the feedback 

based mplayer is predominantly within 5ms of the ideal time while for the adaptive mplayer 

instance with fixed reservation of 60% of the CPU the skew is more variable, but typically within 

lOms. This is also reflected in the CDFs of the audio/video skew, shown in the bottom graph. 
Interestingly, the configuration with the fixed maximum level of post-processing levels almost 

matches the performance of the adaptive configuration, indicating that 60% of the CPU on this 

particular system is just about sufficient to decode this video clip at the highest quality'. 
With a higher background load, as in the second and third phase of each experiment the 

difference between the feedback based instance of mplayer and the instances of mplayer with 
fixed reservations becomes less pronounced. Due to the higher load the feedback based instance 

of mplayer is forced to reduce its requested share close to the 60% of the CPU'. However, 

since it reduces its level of post-processing more aggressively based on the feedback provided 
by the operating system its audio/video skew is less variable when compared with the other 

configurations. The reduction of post-processing is particularly visible in the third phase where 

the feedback based mplayer frequently chooses a level of post-processing of 4 while the adaptive 

mplayer with a fixed reservation rarely drops its post-processing level below 5. 
The forth phase further exaggerates this effect by adding adaptive background loads, es- 

sentially driving the system into full utilisation. The added competition forces the feedback 

based mplayer to further reduce its requested share to slightly below the 60% guaranteed to 

the mplayer instances in the other configurations. The feedback based mplayer compensates 

this constraint resource availability by reducing the level of post-processing it performs. In this 

phase, the adaptive mplayer with fixed reservation matches the performance of the feedback 

based mplayer, although with a slightly higher overall quality. The performance of mplayer 

with a fixed post-processing level, however, drops slightly behind, clearly visible in the high 

spikes in its audio/video skew and the wider audio/video CDF graph. The higher skew is clearly 

81n fact, this is the reason why this reservation was chosen. 
9The mplayer process does not always consume its entire resource reservation because it may block, waiting 

for the X server to render a decoded frame. The X server requires up to 2ms of CPU time to draw a frame. 

165 



visible to a user, the video playback appears slightly unsteady and jittery. This is not surprising, 

considering that almost 10% of the frames are displayed more than half a intra-frame time be- 

fore or after their ideal time. This frequently leads to rapidly varying intervals between frames 

displayed, which can be perceived as irritating by a human. 

6.3.1 Credit allocation versus CPU reservations 
A general problem with reservation based resource allocation schemes is that someone, possibly 

a end-user, has to decide what fixed fraction of a resource to assign to particular consumers. The 

problem is that a too high reservation results in inefficient sharing of resources by leaving them 

under-utilised, while too small a reservation may result in poor performance. This problem is 

made more complicated since the resource demand of a given application may depend on its 

input parameters. For example, the resource demand of the mplayer application depends not 

only on the decoding scheme of a given video clip but also varies between different video clips 

using the same encoding scheme. With the decentralised resource management architecture, the 

question arises if the assignment of credits is similarly problematic. 
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Figure 6.11: Sensitivity to credit allocation 

To investigate this issue, the previous experiments were repeated with different, lower credit 

allocations for the feedback based mplayer (400 credits/s and 300 credits/s instead of 
500 credits/s) and lower resource reservations for the default adaptive mplayer (50% and 
40% instead of 60%) respectively. Figure 6.11 shows the resulting cumulative distributions 
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of the per-frame audio/video skew of the first and last phase of each experiment for these six 
different configurations. 

From the graphs it is clearly visible, that the performance of the feedback based mplayer 

configurations are almost identical. There is hardly a difference for the configurations with l00 

and 500 credits/s, both under light and high background load. The configuration with only 
300 credits/s has a slightly higher skew under the light background load as it requires more 

time to settle to a steady state initially. Under the high background load this configuration 

performs slightly worse than the other two feedback based configurations. 
In comparison, the configurations with fixed reservations are significantly more sensitive to 

the amount of CPU reserved for them. In particular, the configuration with a reservation of 40% 

exhibits a significant skew between its audio and video playback times in both phases of the ex- 

periment, but especially under the higher load. During this phase of the experiment it becomes 

unpleasant for a viewer to watch the decoded video with more than 10% of frames displayed 

more than 20ms out of sync and with rapidly changing intra-frame times. The other configu- 

rations, especially the ones with a 50% reservation or credit allocations of, 100 or 500 credit s/s 

are still quite watchable. Subjectively, the skew and the related changes of intra-frame times 

are significantly more irritating than the changes of post-processing levels. However, this may 
depend on the encoding scheme used for the video stream. 

The main reasons for the better performance are that the feedback based configuration can 

more dynamically adjust both its resource requests and the post-processing level. The former is 

probably more significant, especially under lighter load conditions where in a reservation based 

resource management architecture consumers have to compete with others for slack resources. 
However, under high load conditions the adaption of modes of operations, e. g., change of post- 
processing levels in the case of mplayer, also contributes to better performance. 

In general, it is important to note that for the feedback based configurations used in this 
section the minimum guaranteed share of the CPU based on their credit allocation is 30%, 
40% and 50% respectively and that even the configuration with the lowest credit allocation 
compares quite favourably with the configuration with the highest fixed reservation of 60%. 
This obviously depends somewhat on the background load used. However, the comparison 
demonstrates that the feedback based configurations are less susceptible to the credit allocation 
than reservation based schemes are to changes in reservations. 
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6.3.2 Summary 

In this section the benefits of the decentralised resource management architecture to applications 
have been evaluated. This evaluation was performed using a modified, adaptive multimedia 
decoder application, which utilises the feedback provided by the operating system to adjust its 

resource demand and change its mode of operation. The performance of this application has 

been compared to an unmodified version of that application executing both on a traditional 

Unix CPU scheduler and a reservation based scheduler. 
Two main observations can be made from these experiments: First, the application performs 

better when adapting to the feedback provided by the system. This can primarily be attributed 

to its ability to dynamically change its resource demand, but also due to its ability to change its 

mode of operation based on the feedback. More importantly, however, the second observation is 

that the feedback based system appear to be easier to configure for the user. The performance of 

the individual applications, and the overall system performance, is less sensitive to the allocation 

of credits to applications than a comparable reservation based system. This is because, the 

applications are actively involved in the way resources are shared amongst them. 

6.4 Experience with the system 
In the decentralised resource management system individual consumers act independently of 

each other and compete for limited resources. This is essentially a system where multiple feed- 

back loops, one for each consumer, may indirectly interact with each other - which is, from 

a control theoretical point of view, a fairly complex system. Even in controlled systems, i. e., 
where parameters such as the WTP's convergence constant is can be set globally, issues such as 
oscillations, stability and sensitivity to change and different parameter settings may arise. In this 

section some of my experiences with this type of system arc presented. 
In general, as, for example the experiment presented in section 6.1.2 shows, task sets with 

just well-behaved, elastic consumers do not create any unwanted interactions between different 

consumers, even if they use different strategies for their adaption. Resource allocations arc sta- 
ble and there are very little variations of service and charging rates. However, when designing 

this experiment, I had significant problems finding the correct parameter settings for the P11) 

controller used by half of the consumers in the experiment. For different choices of parameters, 
consumers with the PID controller would either react very slowly to changing conditions, or 
would wildly overreact to the feedback provided (unlike WTP's re, the effect of some of the pa- 
rameters of the PID controller are non-intuitive). The wild overreaction of half the consumer in 
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the task set also had a knock-on effect on the well-behaved consumers using the W'I? strategy, 

as available prices and resources would fluctuate rapidly. Due to the high proportion of miscon- 
figured consumers, this effect was far more severe than in the system with just one ill-behaving 

consumer as presented in section 6.1.4. 

From figures 6.7 and 6.8 it can also be observed that bursty or ill-behaved consumers have 

an effect on the "smoothness" of the achieved service rates and observed charging rates of elastic 

consumers. The higher variability in resource utilisation, and thus the price, results in higher 

variations of the feedback signals. One possible solution would be to make the price less variable, 
for example, by averaging the utilisation over longer periods. However, this would potentially 
introduce delays into the appropriate feedback being delivered to consumers in overload situa- 

tions. I have experimented with different time scales for establishing prices based on utilisation. 
This experience showed that it is better to provide fine grained but highly variable feedback, 

as used in the experiments presented in this chapter, instead of a more coarse grained feedback 

(utilisation is averaged with an agile EWMA filter over twice the length of the longest period 

used by any consumer). Consumers can then average the observed charges at timescales suitable 

to them. Furthermore, consumers could also vary these intervals or change parameters of their 

adaption strategy, for example WTP's tt, over time. 
It is worth pointing out, however, that the variations in service rate for well-behaved con- 

sumers does not effect their "guaranteed" resource allocations. Due to the design of the pricing 
function, an elastic consumer is ensured to receive a service rate which is proportional to their 

credit allocation and the maximum charging rate (w, /(rruaX charging r« tc)). Thus, adaptive 

applications only are exposed to these variations if they either receive more service time than 
their minimum rate or if they overreact to charges and reduce their resource requests below the 
minimum rate. 

The Request-Usage pricing scheme splits charges between requested resources and resources 
used. The ratio of the split can be controlled by a single variable. The need for this pricing 
scheme arose when experimenting with non-elastic consumers. In the first experiments I con- 
ducted with non-elastic consumers using the WTP strategy, these would constantly increase 

their resource requests as they were only being charged for their resource consumption. While 

the usage charges prevented the system from being driven into constant overload, nevcrthc- 
less a significant proportion of deadlines would be missed. Furthermore, the E DF scheduler 
is known to behave unpredictably under overload, thus allowing consumers to make arbitrar- 
ily large requests could potentially be exploited by malicious consumers. The Request-Usage 
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pricing scheme prevents this by charging consumers for their resource request as well as their 

usage. 
With this pricing scheme the question arises on how to split the charges. In practice, placing 

the emphasis on usage charges can cause the same effect as with only usage based charges. Placing 

the emphasis on request based charges may result in a lower overall system utilisation. Experi- 

ments with different mixes of bursty and elastic consumers and ratios ranging from . 10 : 60 to 

70 : 30 have worked well. It would, however, be interesting to explore these issues in more detail 

as part of future work. 
The mathematical foundation of congestion prices assumes elastic resource consumers with 

continuous, convex utility functions. Many real world applications do not satisfy this assump- 

tion. In my experience this is not a problem. For example, in section 4.4.1 two typical categories 

of applications with non-convex utility curves were presented. In this evaluation chapter, it has 

been demonstrated with two representative applications, mpg123 and mplayer respectively, that 

the decentralised resource management architecture can support these types of application. 
And finally, in my experience with the FreeBSD prototype, I have been unable, even with 

ill-behaved or misconfigured consumers, to place the system into a state where it was completely 

unresponsive and required rebooting (as it is possible when using the real-time scheduling class 
(NHNW931). This can be in part attributed to the credit account mechanisms (as demonstrated 

in section 6.1.4) and in part to the resource "reservation" for the default scheduling class. Thus, 

even if misbehaving consumers may negatively affect other consumers of the system, the user 

or system administrator still has the opportunity to stop these consumers. However, in exper- 
iments with more realistic application scenarios, some limitations of the prototype have (not 

unexpectedly) become apparent. For example, the server architecture of the X window system 
causes significant distortions if more than one application makes heavy use of the display. Other 
limitations include the limited timing and scheduling granularity and the audio device driver 

only allowing one client playing back audio samples at a time. While limitations prohibit the 

use of the prototype in the real-world it has to be stressed that they are only artifacts of the 

current prototype and are not inherent to the decentralised resource management architecture 
itself. 

6.5 Application developer issues 
The decentralised resource management architecture removes resource management policies out 
of centralised entities and places them into the applications. Thus, application developers also 
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have to be concerned with managing resources for their applications. In this section the im- 

pact on application developers is evaluated in the form of a discussion of the issues involved. 

This discussion takes the FreeBSD prototype as an example since it provides a more realistic 

environment than the simulator. 
Application developers are potentially faced with the additional task of managing resources 

for their applications. Applications receive feedback from the resources and have to adapt their 

resource demand accordingly. With the decentralised architecture, developers have three op- 

tions. 
First, developers could opt to not participate in the management of resources. These appli- 

cations then receive either best-effort service, if placed into the default scheduling class by the 

users, or a fixed share, if placed into the resource reservation class (like the MP3 decoder in sec- 

tion 6.2). Furthermore, default adaption strategies could be supplied automatically to these and 
legacy applications. For example, Eclipse/BSD (described in section 2.3.4) uses a modified 1 ibc 

which intercepts certain system calls and loads either generic or application specific requirement 
brokers to enable unmodified legacy applications to take advantage of Eclipse/BSD's resource 

management features [BGSS99]. A similar approach can be adopted for the decentralised re- 

source management architecture. 
Second, developers could choose a standard adaption strategy, like WTP, from a system 

supplied library to adjust the resource demand of the application, but without changing the 

mode of operation of the application in response to charges. This option is suitable for simple 

elastic consumers. However, it is unclear what advantage this would provide over the automatic 

approach described above. 
Third, application developers can write applications to actively participate in the manage- 

ment of resources. The decentralised architecture is particularly targeted at these types of appli- 
cation. Typically, these applications will be complex and resource intensive and it is assumed that 
at least a small group of expert developers have good knowledge of how these applications be- 
have in resource constraint environments, and that benchmarking and profiling should be good 
practice during the development cycles of these applications. Therefore, some developers should 
have an understanding on how an application may adapt to varying resource availability. This 

understanding may be used to adjust the mode of operation of such applications in response to 
observed charging rates. It is not expected that this requires substantial changes to applications 
which already are adaptive, however, these applications can be enabled to be more proactive in 

their resource adaption. 
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As anecdotal evidence, it took the author of this dissertation less than a day to identify 

a "knob" to adjust the decoding quality, and thus influence the resource requirement of the 

MPEG decoder, mpeg2play, used in section 5.1.5.1. Similarly, it required about three days to 

make an already adaptive Motion JPEG player10, which adjusted the decoding quality when the 

previous frame missed its deadline, more elastic to resource changes by making it multi-threaded 
(Neu99]. Modifying the mplayer application was slightly more complicated, partially because 

it represents a more complex and larger piece of software and partially because it is written quite 

poorly (e. g., the main() function is close to 3000 lines of code using a substantial number of 

global variables). However, after the appropriate "knob" and variables had been identified, the 

changes required to adjust mplayer to respond to feedback from the operating system were local 

and straightforward. This personal experience seems to suggest that writing adaptive multimedia 

applications is reasonably easy and adjusting existing adaptive applications to take advantage of 

the feedback provided by the operating system is straightforward. Existing adaptive multimedia 

applications adapt after they have observed a resource shortage, i. e., after they were unable to 
display a decoded video frame on time. It seems straightforward to change this in order to react 

to congestion charges instead. 

In general, adaptive applications are written in a way that they adapt after a performance 
degradation has been detected. With congestion pricing the same techniques can be applied. 
But, instead of reacting to the observed performance, however, applications would react to con- 

gestion charges. Thus, I believe that for expert developers of adaptive applications, it should 
be reasonably straightforward to develop applications which take advantage of the decentralised 

resource management system. 

6.6 User issues 
The decentralised resource management may also have an impact on how cnd-uscrs interact with 
the system. They have to manage limited credits available to them and allocate them to their 
applications. The current FreeBSD implementation provides them with an interface similar to 
one which allows users to assign priorities to their applications. However, users actually have 
better control over the resource allocations as credit allocations result in a more comprehensible 
resource allocation, than, for example, nice values. 

For server systems, this type of control might be sufficient to simply provide a programmable 
interface to the system. However, for the system to be used by end-users, a more comprehen- 

"Originally written by Neil Stratford at the Computer Laboratory, Univcr%ity of Cambridge, U. K. 
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sible user-interface needs to be provided. The simple graphical user interface presented in sec- 

tion 5.2.6 may help users to control credit allocations to their applications and provides them 

with graphical feedback about the allocation of resources. However, more sophisticated tools 

are conceivable. For example, users could deploy user agents which manage credit allocations 
for them in accordance with their preferences. However, these higher level issues arc beyond the 

scope of this dissertation. 

6.7 Summary 
In this chapter a detailed evaluation of the congestion pricing mechanisms for CPU resource 

management has been presented. The main evaluation was performed using the simulation 

environment described in section 5.1. Simulations were used to evaluate different pricing mech- 

anisms and different consumer adaption strategies with a variety of different types of consumer. 
In section 6.2 the simulation results have been confirmed with the FreeBSU prototype. 

The key observation from the experiments is that the dcccntraliscd resource management 
framework can achieve weighted proportional fair sharing of CPU resources with individually 

acting elastic consumers, using a variety of pricing mechanisms and adaption strategies. This 

confirms the theoretical results (presented in sections 3.2.2.1 and 4.1). For elastic consumers, 

resource allocations are weighted proportionally fair to their credit allocations. 
A number of different pricing mechanisms have been compared and a simple exponential 

price function based on the resource utilisation provides good results for well-behaved elastic 
resource consumers. Such a price function helps to prevent resource congestion (which is de- 

sirable) as it provides some feedback signals to consumers before congestion occurs. This is in 

particular contrast to an alternative pricing mechanism which only applies charges after resource 
congestion has been detected. 

For non-elastic consumers, the combined Request-Usage pricing mechanism, discussed in 

section 4.2.1.2 provides good results, requiring non-clastic consumers to make "sensible" re- 
source requests based on the overall demand for the resource. For a lightly loaded resource, a 
bursty consumer may request a share of the resource which satisfies its peak resource demand, 

while for a heavier loaded resource, such a consumer will be forced to reduce its resource re- 
quests. Furthermore, it has also been demonstrated that this pricing scheme can also accommo- 
date non-adaptive applications. They simply receive resources either proportional to their credit 
allocation or to their resource reservation (whichever is smaller). The combined Request-Usage 
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pricing scheme does not affect elastic consumers as the combined charges are the same as in the 

scheme using just usage based prices. 
In section 6.1.4 it has been demonstrated that the credit account management scheme pro- 

vides some protection against ill-behaved or malicious consumers. Such consumers may still 

gain a small, unfair advantage over well-behaved consumers, however, they are not able to com- 

pletely monopolise the resource. A number of additional measures, such as detecting ill-behaved 

consumers or preventing resource request changes that are too radical, have been proposed to 
further limit the impact of ill-behaved consumers. 

The decentralised resource management architecture enables applications to actively partic- 
ipate in the management of the resource they consume. In section 6.3 an evaluation of how real 

applications can benefit from this participation was presented. The evaluation has shown that 

applications can benefit from the feedback in two ways: they can benefit from controlling the 

amount of resources they receive and they can proactively adjust their mode of operation. Both 

enable applications to provide better performance to end-users. 
Sections 6.4 to 6.6 provided a qualitative rather than quantitative evaluation of the system, 

describing personal experience (section 6.4) and discussing the impact on application developers 
(section 6.5) and users (section 6.6). Described in personal experience, some of the design 
decisions implicit in the implementations have been motivated. 

For application developers and end-users, it has been argued that the decentralised system 
is not radically different from more traditional operating systems. Developers of adaptive ap- 

plications may benefit from the feedback provided by the system in order to trigger application 
adaption (instead of observing deteriorating application performance) and to end-users the sys- 
tem can be presented as a simple priority based resource allocation. 
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Chapter 7 
Conclusions 

In this chapter a summary of the dissertation is given, future work is discussed and the conclu- 

sions are presented. 

7.1 Summary 
This dissertation is concerned with the management of resources in operating systems. It has 

been argued that certain types of application, such as multimedia and server applications, can 

actively adjust their resource demand and that they may have an approximate notion of their 
future resource demand. In chapter 2, it was argued that current approaches to resource man- 

agement in operating systems do not leverage this potentially useful ability. Instead, resources are 

typically managed "magically" without notifying the resource consumers of changes in resource 

allocation or availability. 
In contrast, I have proposed a radically different approach: allowing and encouraging resource- 

aware applications to manage resources themselves. Applications consume resources at a rate de- 

termined by their demand and are provided with feedback by the operating system. Applications 
interpret this feedback in order to adjust their resource demands. This electively decentralises 

resource management as applications, rather than the operating system, make policy decisions on 
the allocation of resources between competing consumers. The operating system then only has 

to provide mechanisms for multiplexing resources and a feedback mechanism, but no resource 
allocation policies. 

This decentralised resource management system has been described in microeconomic terms. 
Feedback is provided to applications by charging them for their resource consumption and ap- 
plications are given the incentive to adjust their resource demand by limiting the credits available 
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for paying these charges. Resource prices are based on congestion prices, which expose a con- 

sumer of a resource to the negative, external impact it causes on the other consumers of the 

same resource. In chapter 3 it has been argued that this is the correct microeconomic model for 

resources managed by an operating system. This argument is based on standard economic prac- 

tice, which suggests that prices should be matched by cost, and a sound theoretical framework, 

which previously had been applied for managing resources in communication networks. 
This dissertation has been focused on the operating system mechanisms required to dcccn- 

tralise the management of resources. I have identified four essential mechanisms: pricing & 

charging, credit accounts, resource accounting, and multiplexing. 
In chapter 4 the two core mechanisms, pricing & charging and credit accounts, have been 

described in detail. The pricing mechanism has been identified as the most important one. Four 

different approaches for identifying the cost of congestion, and therefore the price, for resources 

managed by an operating system have been identified (request based, goal directed, queue based, 

and resource specific) and the applicability of these approaches to the various resources were 
discussed. A particular emphasis was placed on the management of CPU resources and a request 
based approach has been proposed for this particular resource: consumers request a share of the 

resource and prices are based on both resource utilisation and resource requests. 
The management of credits is the second important mechanism. The availability of credits 

needs to be limited in order to assign a value to them. This provides consumers of resources with 

an incentive to adjust their resource demand when they incur congestion charges. lo prevent 

arbitrary accumulation of unspent credits, a simple token bucket scheme for managing credits 

was introduced. It was argued that such a scheme provides some protection from ill-behaving 

consumers and that more complex, potentially user- or application-specific, credit allocation and 
management policies can be built on top of it at user-level. 

The remaining two mechanisms, resource accounting and multiplexing, are not specific to 
the decentralised resource management framework. Resource accounting is an essential precon- 
dition to effectively manage resources and multiplexing falls in the well researched domain of 
scheduling algorithms. Prior work in these areas, applicable in the context of this dissertation, 

was reviewed extensively in chapter 2. 
Chapter 4 also contains a discussion of possible application adaption strategies. This discus- 

sion presented two example strategies which are suitable for consumers wishing to maintain a 
charging rate close to their credit allocation - given the account mechanism, which is a rational 
objective. 
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In chapter 5 two prototype implementations of the congestion pricing framework for CPU 

resources were presented. A generic simulation environment for scheduling algorithms was de- 

scribed in detail. This simulator models the key abstractions of the Nemesis operating system 

and is suitable for implementing a large variety of scheduling algorithms, resource management 

mechanisms and policies, and both simple and realistic workloads. The implementation of con- 

gestion pricing is provided as a simple extension of the Nemesis task model and uses the Nemesis 

scheduler Atropos as the multiplexing mechanism. The second prototype is a modification of 

the FreeBSD kernel. This proof-of-concept implementation introduces a new scheduling class 

which allows processes to make resource requests and which provides feedback in the form of 

congestion charges. A key feature of this implementation is that only resource-aware applications 

need to actively participate in the decentralised resource management, while all other processes 

are managed by the default scheduling class as in an unmodified kernel. 

Chapter 6 has provided a detailed evaluation of the decentralised resource management 
framework using both the simulator and the FreeBSD prototype. The results confirm the 

theoretical model, namely that, for elastic consumers, the decentralised approach, with inde- 

pendently acting consumers, can yield a socially optimal resource allocation where resources are 

shared in a weighted proportional manner. Furthermore, it has been demonstrated that the 

congestion pricing framework is suitable for a variety of non-elastic and even non-adaptive ap- 

plications. Using a modified existing application, the multimedia system mplayer, it has been 

demonstrated that applications can benefit from the feedback provided by the operating system 

and provide better performance to end-users. And finally, the experimental results have demon- 

strated that both implementations, despite following radically different operating system design 

philosophies, are comparable. This supports the claim that the operating system mechanisms 
presented in this dissertation are generally applicable to the resources managed by operating 
systems. 

7.2 Future Work 
This dissertation is mainly concerned with operating system mechanisms to decentralise resource 
management and has mainly used a single resource, namely the CPU, for evaluation. There arc 
two main directions in which this work can be extended - other resources and application- 
specific adaption strategies. 

In section 4.2.2 the application of congestion pricing to resources other than the CPU was 
discussed. It was argued that, for all resources managed by an operating system, congestion and 
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the cost of congestion can be identified. However, this discussion was oversimplified and left 

many implementation issues unanswered, such as timescales and shared resources. Future work 

could address these issues in greater detail. A further step in this direction would address the 
issues arising from handling multiple resources within the same decentralised framework. Some 

of these issues were discussed in section 4.5; however, detailed experimentation is required to 

acquire a deeper understanding of the issues involved. 

Decentralising resource management enables resource-aware applications to perform appli- 

cation specific adaption to changing resource availability. The evaluation using the mplayer 

application provided some promising initial results of how applications can benefit from the 
feedback provided, however a more detailed study of these resource-aware applications is cer- 

tainly very interesting, especially if all resources, managed by an operating system provide feed- 

back signals to them. Such work could leverage some of the techniques developed in the area of 
QoS management (see section 2.2, in particular Q-RAM), applying them in the context of the 

applications themselves. Thus, it would address the problems with centralised QoS managers 
discussed in section 2.2.5. 

A related area of future work is the development of appropriate user interfaces and user 

agents for the decentralised architecture. The command line tools and graphical user interfaces 

presented in section 5.2.6 only provide very rudimentary means for a user to adjust the credit 

allocations to his applications. More sophisticated interfaces could be developed, especially sys- 

tems which would require less interaction from the end user. Examples range from a mechanism 
to specify sensible default values for certain applications to sophisticated user agents managing 
credit allocations on behalf of a user. These policies could be built on top of the presented oper- 
ating system mechanisms and would not require changes to the general model described in this 
dissertation. 

In terms of implementations, it would be advantageous to combine advanced resource man- 
agement abstractions (described in section 2.3), such as resource containers or reservation do- 

mains, with congestion pricing. Such an approach would be especially beneficial, if not strictly 
necessary, when dealing with multiple resources, as traditional operating systems do not provide 
accurate enough accounting of resource consumptions to resource consumers. An implemen- 
tation using the Nemesis operating system would be of particular interest, as Nemesis provides 
advanced resource management facilities for all operating system resources. 
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7.3 Conclusions 
One of the most important tasks an operating system has to perform is the allocation of resources 

to competing consumers. It has been argued that existing approaches attempt to perform this 

task "magically" without involvement from the resource consumers. While this might be appro- 

priate for a range of applications and utilities, it is the premise of this dissertation that a number 

of application domains exist where applications are resource-aware, i. e., applications from these 

domains can actively control their resource demands and might have an (implicit) notion of 

their future resource requirements. Example application domains are multimedia applications 

and a range of networked server applications. It is the thesis of this dissertation that getting 

these applications actively involved in the management of operating system resources is valuable 

and beneficial to the performance of these applications and their users. Therefore, this disserta- 

tion has presented operating system mechanisms which enable applications to actively manage 

resources themselves. 
These mechanisms are based on the principled approach of congestion or shadow prices - 

a well understood microeconomic theory which also has been proposed to manage bandwidth 

and congestion in communication networks. The theoretical model of shadow prices and the 

results of its application to congestion pricing in networks suggest that, for congestable resources, 
independently and selfishly acting consumers can achieve a socially optimal resource allocation 
if the charges are based on the cost of resource congestion. 

In this dissertation it has been demonstrated that operating system resources can become 

congested and that congestion pricing can be applied in this context. Congestion pricing can 
be implemented in an operating system and its implementation is inexpensive (in terms of per- 
formance overhead) and simple. Furthermore, the implementation provides the desired results, 
which are in line with the theoretical model: resources are shared in a weighted proportional 
fashion by independently acting consumers. 

Applications are encouraged to adjust their resource demand by being charged for their re- 
source consumption. Simple elastic applications can change their resource demand according to 
one of the charging rate controlling strategies presented. More complex, resource-aware appli- 
cations can adjust their mode of operation in response to the feedback signals. Typically, expert 
developers of resource aware applications are best suited to decide on a specific application adap- 
tion strategy. However, for simple applications, a developer could choose a system-provided 
adaption strategy. Users are presented with an easy to understand interface; they simply assign 
credits to their consumers, in a similar way as they assign priorities to processes in traditional 
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systems. However, more elaborate, user-friendly schemes can be built on top of the mechanisms 

provided by the decentralised architecture. 
In conclusions, this dissertation presents and evaluates a novel, decentralised approach to 

resource management in operating systems which allows applications to actively participate in 

the management of resources. To the best of my knowledge it presents the first application 

and implementation of the general shadow pricing theory to resources managed by operating 

systems. It has been demonstrated that this approach is both viable and useful to applications, 
developers and users. 
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