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Abstract 

In this thesis we develop results concerning strongly group-graded lk-algebras. Chapter 1 

is mainly expository: we set up a careful treatment of well-known facts and definitions 

regarding graded algebras so that later results run smoothly. A secondary reason for 

including the treatment is to give the reader a solid grounding in the basics: much use 

will be made of these initial observations throughout the thesis. 

In Chapter 2 we establish generalisations of known work for group algebras. Here the 

paper Complexity and Varieties for infinite groups, I by D. J. Benson is key, with results of 

J. Cornick and P. H. Kropholler discussed and generalised as needed. The main theorems 

of this chapter characterise - albeit under specific conditions - modules of finite projective 

dimension over strongly group-graded lk-algebras for G an LH~-group. 

Chapter 3 sees us take a different tack with complete cohomology where we define the 

zeroeth cohomology group to be the set of morphisms in certain module categories. We 

show that these categories can be realised as quotients of the derived category of suitable 

subcategories. This work also generalises results due to Benson. 

We introduce some vanishing theorems for modules of type FP 00 over skew polynomial 

rings, with suitable finiteness conditions on the base ring in Chapter 4. Iterated skew 

polynomial rings are also investigated, as are iterated skew Laurent polynomial rings. 
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Introduction 

Hilbert's Theorem on Syzygies states that if lk is a field then the global dimension of the 

polynomial ring lk[Xl' X2, ••• ,xn ] is equal to n. In the 1960s, Fields [14] showed that if R 

is a ring of global dimension n and a is an automorphism of R, then the polynomial ring 

R[x; a] (with multiplication defined by rx = xa(r) for all r E R) has global dimension 

n + 1. In 1975, Goodearl [17] showed that if R is a ring of finite global dimension and 

8 is an additive map, then the polynomial ring R[x; 8] (with multiplication defined by 

rx = xr + 8 (r)) has global dimension either equal to that of R, or more one than it and 

that both possibilities can occur. It is now known that if a ring R has global dimension at 

most n, then the skew polynomial ring (or polynomial ring of 'mixed type'), R[x; a, 8] has 

global dimension at either n or n + I, [26], (where a and 8 are as before and multiplication 

is defined by rx = xa(r) + 8(r) for all r E R). Woodward [30] discusses the situations 

under which both possibilities occur. These identities imply that modules over polynomial 

rings have projective dimension at most one more than their projective dimension over 

the base ring (which is necessarily finite). 

In Chapter 4 of this thesis, we investigate finiteness conditions on the base ring of skew 

polynomial rings and skew Laurent polynomial rings so that the projective dimension of 

modules of type FP <Xl over the polynomial ring is finite. The types of base ring we will 

consider are: 

• Strongly G-graded lk-algebras R with lk a commutative ring. This is a lk-algebra 

which admits a lk-module decomposition, 

R= EBRg 
gEG 

in such a way that RgRh = Rgh. In particular, we will be interested in the case G belongs 

to the class of HJ-groups which is the smallest class of groups that contains all finite 

groups and which contains a group G whenever there is an admissible action of G on a 

finite dimensional contractible cell complex for which all isotropy groups already belong 

4 



Introduction 5 

to H~. A more conceptually accessible definition of this class of groups appears in Section 

2.3. 

• Rings R which are filtered colimits of rings possessing finite global dimension, with 

the further property that R is flat over each of the rings in the limit. 

It turns out that if R is a strongly G-graded Ik-algebra (with G an H~-group), S = 

R[x, a, b"] or R[x-1
, x; a] and M is a left S-module of type FP 00 such that M has finite 

projective dimension as an RH-module for all finite subgroups H of G, then M has finite 

projective dimension as an S-module. Also, if R is a filtered colimit of rings of finite global 

dimension and S = R[x, a, b"] or R[x-l, x; a], then every left S-module of type FP 00 has 

finite projective dimension. 

If T is an iterated skew polynomial ring or iterated skew Laurent polynomial ring and 

the base ring R is of either type described above, then more is true: for every intermediate 

polynomial ring Sj in the construction, every left T -mod ule M of type FP 00 (with the 

property that M has finite projective dimension as an RH-module for each finite subgroup 

H of G, when R is the graded algebra case), all left T-modules N and all integers i, 

-----i 
ExtT(M, T ®Sj N) = 0 

from which the previous results follow as corollaries upon taking N M, ~ o and 

Sj =T. 

We conclude Chapter 4 by defining the concepts of bricks, walls and foundations and 

we pose questions for further research. 

In Chapter 2 we prove a number of results relating to complete cohomology and strongly 

group-graded lk-algebras. Notable in this chapter is the Vanishing Theorem (Theorem 

2.4.13) which extends a result of Cornick and Kropholler (Vanishing Theorem, Section 

8, page 50 [10]) to include the class of LH~-groups which comprises those groups whose 

finitely generated subgroups are in H~. Their result follows as a corollary. 

Much work has been done in the area of finiteness conditions for modules over group 

algebras. Given that group algebras are the simplest examples of strongly group-graded 

algebras, it seems natural to ask to what extent one can recover results for group algebras 

in this greater generality. Some headway has been made in this respect: AljadefI and 

Ginosar [1] in 1996 proved that if G is a finite group and R a strongly G-graded Ik-algebra, 

then an R-module is projective if and only if it is projective as an RE-module for each 

elementary abelian subgroup E of G. This generalises Chouinard's Theorem which was 
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proved twenty years previously [8]. The theorem states that if Ik is a commutative ring 

and G is a finite group, then a IkG-module is projective if and only if it is projective as a 

ikE-module for each elementary abelian subgroup E of G. 

It is in this spirit that we generalise results obtained by Benson for group algebras in [3]. 

Many of the results there conce:rn group algebras IkG with G finite and some condition 

(e.g. Noetherian or finite global dimension) on the base ring Ik:. In order to generalise 

these results to the case when R is a G-graded Ik-algebra (G any group), we need similar 

conditions to work with. The key observation is: 

• Let H be a subgroup of finite index in G. We then choose RH to be an analogue 

of a base ring: we assume the conditions on Ik from the group algebra case on RH 

in the strongly group-graded problem under consideration. Also, R is a projective 

RH-module (just as IkG is a projective (free) Ik-module). 

We successfully use this observation to state and prove a number of generalised results in 

Chapter 2. 

If M is an R-module of type FP 00 (that is, a module admitting a resolution by 

finitely generated projective modules), then the functors Erl~(M, -) are continuous for 
----i 

all i E Z; that is if ~j N j is a filtered colimit of R-modules, then ExtR (M, ~j N j ) = 
----i -0 

~j ExtR(M, Nj). It is because of this result coupled with the fact that ExtR(M, M) = 0 

if and only if M has finite projective dimension as an R-module (Lemma 2.1.8), that 

modules of type FP 00 are so often used when dealing with questions about finiteness of 

projective dimension. Indeed, many of our results concern these modules. 

Modules of type FP 00 playa role in Chapter 3. If R is a strongly G-graded Ik-algebra, 

then we can define four categories: Rmod, whose objects are left R-modules of type FP 00 

which have finite projective dimension as left R1-modules and whose maps are the set 

of left R-module homomorphisms; Rstmod, with the same objects as Rmod and maps 
-0 
ExtR(M,N) from M to N; RMod has objects left R-modules M such that B 0 M has 

finite projective dimension (where B is the IkG-module of maps from G to Ik which take only 

finitely many different values in Ik) and has maps the set of left R-module homomorphisms; 
-0 

and RStMod which has the same objects as RMod and maps given by ExtR(M,N) from 

M to N. The work done here also generalises results due to Benson who originally defined 

the objects of IkcMod and IkcStMod (for IkG a group algebra with Ik a Noetherian ring) to 

be countably presented left R-modules such that B 0 M has finite projective dimension. 

That the countability hypothesis can be dropped in the group algebra case was something 
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first noted by him in [3]. Working with strongly group-graded algebras, we see that we 

can also drop this hypothesis, as well as the Noetherian condition. 

In Section 3.2 we show that Rstmod and RStMod are triangulated categories. Then. 

defining RProj to be the full subcategory of RMod whose objects are the projective modules, 

we show that the category RStMod is equivalent to the quotient category 

Db(RMod) / Db(RProj). We also show that when R is Noetherian and G is an LH~-group, 

we obtain the same result for Rmod; that is, it is equivalent to Db(Rmod) / Db(RProj). 



Chapter 1 

Preliminaries 

1.1 Some basics 

Throughout this chapter, Ik will denote a commutative ring and G a monoid unless other

wise stated. Unembellished tensors mean Q9]k. 

Definition 1.1.1. Let X be a set. An X -graded Ik-module is a Ik-module M together 

with a Ik-module decomposition M = ffiXEX Mx. Elements of Mx are said to be homo

geneous of degree x. 

Example 1.1.2. zn, n EN is a {I, 2, ... , n}-graded Z-module via 

n 

zn = EB(zn)i 
i=l 

where each a E (zn)i has the form 

(0, ... ,0, a, 0, ... ,0) 

for some a E Z appearing in the ith position. 

Example 1.1.3. zn, n E N is a Z-graded Z-module via 

00 

Zn = EB (zn)i 
i=-oo 

Of course the above definition ignores any structure that the set X may possess. Much 

of what follows will depend on the next few definitions. 

8 
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Definition 1.1.4. A lk-algebra is a lk-module R with two lk-module maps: the unit 

E:lk-+R 

and multiplication 

j),:R®R-+R 

such that the diagrams 

commute. As usual, j),(r ® r') will be written as rr'. 

Definition 1.1.5. A G-graded lk-algebra is a lk-algebra R which admits a /k-module 

decomposition R = EB gEG Rg with the property that for all g, h E G, RgRh ~ Rgh . For a 

subset H ~ G, RH = EBgEH Rg is a /k-submodule of R. When H is a submonoid, RH is a 

subalgebra of R called the subalgebra of R supported on H. 

Example 1.1.6. Consider No as a monoid under addition. The polynomial ring in n 

commuting variables 

is an No-graded lk-algebra if for each n E No we define Rn to be the lk-module generated 

by all monomials of total degree n; that is, all X~l X~2 ••• x;t with Li ei = n. 

Definition 1.1. 7. Let G be a group and RaG-graded Ik-algebra. R is said to be strongly 

G-graded if for each g E G, there exist ng E N and sequences of elements Xl, X2,'" ,xng E 

Rg and YI, Y2,"" Yng E Rg-l such that L~g XiYi = 1 E R I . An equivalent definition is 

RgRh = Rgh for each pair g, h E G. 

Remark 1.1.8. Occasionally it will be necessary to indicate the degree of a homogeneous 

element. Where needed, this will be demonstrated through the use of a superscript: x~) 

means "the nth element X from Rg". It is hoped that this notation, while cumbersome, 

will facilitate understanding in large calculations. 
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Example 1.1.9. The simplest example of a strongly G-graded Ik-algebra for a given group 

G is the group algebra R = IkG = ffi 9EG Ikg. Note that Rl = Ik here. 

Example 1.1.10. The splitting field of the the polynomial X 2 - 2 = 0, Q( V2), is a 

Q-algebra which is strongly group-graded by its Galois group. To see this, observe that 

The first summand is a multiplicatively closed field, however, the second summand is 

not multiplicatively closed: the product of two second summand elements results in an 

element of the first. Also, the second summand is closed under multiplication by elements 

of the first summand. There are two elements in Gal(Q( V2)/Q) , namely the identity and 

a non-trivial element of order two, that is, the Galois group is 2/22. If we label the 

summands 

and 

then Q( J2) is a 2/22-graded Q-algebra. It is strongly 2/22-graded because 

1 -v2.v2 = l. 
2 

Example 1.1.11. Let n be a natural number greater than 1 and Ik a field. The n x n 

matrix ring over Ik, Mn(Ik), is a Ik-algebra if we map k E Ik to kIn where In is the n x n 

identity matrix. Decompose Mn(lk) into two direct summands as follows: in the first 

summand, allow non-zero entries in positions 

( i, j) : i, j < m for some 1 < m < n 

and 

(k,l) : k,l > m. 

The second summand is the complement of the first in the sense that non-zero entries 

appear in those positions which in the first summand were allocated zero, and zeroes 

appear everywhere else. It is obvious that the decomposition so described is not unique 

for n > 2: there are precisely n - 1 decompositions. For example, when n = 5, the four 

decompositions are 



CHAPTER 1. PRELIMINARIES 11 

Ik 0 0 0 0 0 Ik Ik Ik Ik 

0 Ik Ik Ik Ik Ik 0 0 0 0 

(i) 0 Ik Ik Ik Ik E9 Ik 0 0 0 0 

0 Ik Ik Ik Ik Ik 0 0 0 0 

0 Ik Ik Ik Ik Ik 0 0 0 0 

Ik Ik 0 0 0 0 0 Ik Ik Ik 

Ik Ik 0 0 0 0 0 Ik Ik Ik 

(ii) 0 0 lk lk lk E9 Ik k 0 0 0 

0 0 lk Ik lk Ik Ik 0 0 0 

0 0 lk Ik Ik Ik Ik 0 0 0 

Ik lk Ik 0 0 0 0 0 lk k 

Ik Ik Ik 0 0 0 0 0 Ik Ik 

(iii) Ik Ik Ik 0 0 E9 0 0 0 Ik Ik 

0 0 0 Ik Ik Ik Ik Ik 0 0 

0 0 0 Ik Ik Ik Ik Ik 0 0 

Ik Ik Ik Ik 0 0 0 0 0 Ik 

Ik Ik Ik Ik 0 0 0 0 0 Ik 

(iv) Ik Ik Ik Ik 0 E9 0 0 0 0 Ik 

k k Ik Ik 0 0 0 0 0 Ik 

0 0 0 0 Ik k Ik k Ik 0 

As in the last example, these algebras (with any choice of decomposition) are strongly 

Z/2Z-graded if we allow (Mn(lk)hz/n to be the first summand and (Mn(Ik))-lz/n the 

second. 

In examples 1.1.9 and 1.1.10, Rl coincided with the coefficient ring Ik, but in example 

1.1.11, Ik c (Mn(lk)hz/
2Z 

rv Mm(lk) EBMn- m(Ik), with m depending on the choice of decom-

position. Note that the axioms for algebras only require the existence of a homomorphism 

from Ik to Rl (the unit). 

Definition 1.1.12. Let R be a Ik-algebra. A left R-module is a Ik-module M together 

with a map () : R 0 M -+ M such that the diagrams 
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commute. As usual, B(r 0 m) will be written as rm. The first diagram tells us that there 

is an action of R on M, and the second that this action is unital. 

Lemma 1.1.13. Let a be a group, H a subgroup of a and R a strongly a-graded 't.-algebra. 

Then R is projective as a left RH-module and as a right RH-module. If [G : H] < 00, then 

R is finitely generated as a left RH-module and as a right RH-module. 

Proof. The first part of this lemma is Lemma 6.2 of [10]. 

Assume [G : H] < 00. We prove that R is finitely generated as a right RH-module, the 

proof of finite generation as a left RH-module being similar. First note that R = ffitET RtH 

where T is a transversal to H in O. For each t E T we can find a number nt and sequences 

of elements Xl, X2,"" Xnt E R t and YI, Y2,···, Ynt E Rt-l such that E~~l XiYi = 1. For 

r E RtH, 

r 1.r 
nt 

(L xiYi)r 
i=l 
nt 
L(xiYi)r 
i=l 
nt 

L Xi(Yi r ) 
i=l 
nt 

LXiri 
i=l 

where ri = Yir E RH. It follows that RtH is finitely generated as a right RH-module. 

Since ITI = [G : H] < 00, it follows that R is a finitely generated right RH-module. 0 

Lemma 1.1.14. Let G be a group and R a strongly G-graded k-algebra. If H is a sub

group of a with [0 : H] < 00, then RH left (respectively right) Noetherian implies R left 

(respectively right) Noetherian. 
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Proof. Let RH be left Noetherian. Since R = ffitET R Ht , T is finite and each RHt is 

finitely generated over RH by Lemma 1.1.13, it follows that R is left Noetherian. The 

right Noetherian case is proven similarly. 0 

Definition 1.1.15. Let Rand S be Ik-algebras. A Ik-algebra map f R --+ S is a 

Ik-module map such that the following diagrams commute: 

where J-lR, CR, J-ls, cS are the multiplication and unit of Rand S respectively. 

We will not need the following definition, but we include it for the sake of completeness. 

Definition 1.1.16. Let G be a group and RaG-graded Ik-algebra. A graded left R

module M is a left R-module admitting a decomposition 

M=EBMg 
gEG 

into Rl-modules (where 1 is the identity element of G) such that 

for all g, h E G. 

A strongly graded left R-module M is a graded left R-module with 

for all g, h E G. 

Remark 1.1.17. The interested reader can find more details on graded modules over graded 

algebras in Dade's paper, [12]. 
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1.2 Some dual constructions 

There is the notion of a 'coalgebra', dual to that of 'algebra': 

Definition 1.2.1. A k-coalgebra is a ·k-module C together with two maps: the counit 

v:C---+k 

and comultiplication 

'Y:C---+C®C 

such that the diagrams 

commute. 

Example 1.2.2. Let X be a set. Then the free k-module on X, kX, is a k-coalgebra if 

we define the maps v and 'Y by 

v : x f---t 1, 

'Y : x f---t x ® x. 

Definition 1.2.3. Let C be a k-coalgebra. A left C -comodule is a k-module V together 

with a map ¢ : V ---+ C ® V such that the diagrams 

commute. The first diagram says that we have a coaction and the second says that this 

coaction is counital. 
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Example 1.2.4. ]kG has a left lkG-comodule structure, the map </> 

defined by g f-t g ® g. 

lkG ~ lkG ® lkG 

Definition 1.2.5. Let C and D be coalgebras. A lk-coalgebra map f C ~ D is a 

Ik-module map such that the following diagrams commute: 

lk~D 

~If 
C 

where ie, Ve, iD, VD are the comultiplication and co unit of C and D respectively. 

The usefulness of the above definitions becomes evident with the following result. 

Lemma 1.2.6. Let X be a set. Then there is an equivalence between the category of (left) 

]kX -comodules and the category of X -graded Ik-modules. 

Remark 1.2.7. This lemma appears as Example 1.6.7 in [27] and a terse proof is sketched. 

Since the lemma is so important for later work in this thesis, we shall include a detailed 

proof. 

Proof. We show that every X-graded Ik-module structure determines a IkX-comodule struc-

ture, and vice versa. 

An X -graded Ik-module is a Ik-module V which decomposes as a direct sum of Ik

submodules, indexed by the set X: 

For each homogeneous element of degree x, define a map 

V ~ IkX ® V; v f-t X ® v. 

This determines a IkX-comodule structure on V. 

Conversely, if V is a IkX -comodule with map </> : V ~ IkX ® V, then define subsets of 

V as follows: for each x EX, let Vx = {v E V: </>( v) = x ® v}. The natural map 

t::EB1~~F 
.rEX 
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induced from the inclusion" : Vx '---+ V, is an isomorphism. To see this, choose any 

element v E V. Then there are uniquely determined elements Vx for x E X such that 

¢( v) = 2:x x ® Vx and since we have a coaction, it follows that 

x x 

which implies that ¢(vx ) = x ® vx , so Vx E Vx for each x. In this step we have used 

the commutativity of the square in Definition 1.2.3, just as Montgomery does with her 

reference to 1.6.2 b) in the proof of ( [27], 1.6.7). Since the coaction is counital (the 

commutativity of the triangle in Definition 1.2.3), we have v = 2:X Vx and hence t: is 

surjective. Suppose that 2:x Vx = 0 for some finite sum of elements Vx E V x . Applying ¢, 

we see that 0 = 2:x ¢( vx ) = 2:x x ® Vx and so all the Vx are zero and t: is injective. 0 

It is now clear that we can redefine G-graded lk-algebras as follows: 

Definition 1.2.8. A G-graded Ik-algebra is a Ik-algebra R together with a Ik-algebra map 

¢ : R --+ IkG ® R which makes R into a (left) IkG-comodule. 

Example 1.2.9. Let G be a group and RaG-graded Ik-algebra. Denote by B = B(G, Ik) 

the set of functions from G to Ik which take only finitely many different values in lk. This 

can be made into a commutative Ik-algebra by pointwise multiplication and realised as a 

left IkG-module via (gcr)(h) = cr(hg). Given a left R-module M, the tensor product B ® M 

can be made into an R-module via the structure map ¢ : R --+ IkG ® R: for l' = 2:9EG r g , 

r· (a®m) = L:ga®rgm. 
gEG 

We have homomorphisms of IkG-modules: i : Ik --+ B (the inclusion of the constant 

functions) and J1, : B ® B --+ B (multiplication). The cokernel of i is denoted B. 

Remark 1.2.10. This works more generally: if R is a G-graded Ik-algebra, V a (lkG, Ik)

bimodule and M a left R-module, then the tensor product V ® M is naturally a left 

R-module via r.(v ® m) = g.v ® rm for each homogeneous element l' of degree g. This is 

called the semi-diagonal action of R. 

Remark 1.2.11. Let R, V and M be as in the previous remark. We can make Homlk(F. M) 

into a left R-module via a semi-diagonal action: for each homogeneous element l' E R. of 

degree g, (r¢)(v) := r(¢(g-l.v)). 
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Lemma 1.2.12. Let R be a G-graded roc-algebra (G any group), V a (!kG, !k)-bimodule. and 

M and N left R-modules. Then there is a natural isomorphism 

Proof. This is Lemma 3.2 of [10]. o 

These ideas sometimes allow for more elegant arguments: 

Lemma 1.2.13. Let R be a Ik-algebra and 7r : G --+ Q a monoid homomorphism. If R is 

G-graded then it is Q-graded. 

Proof· Define a map ir : rocG --+ rocQ by 

ir(L kgg) = L kg7r(g). 
9 9 

This is a ring homomorphism. We have the map :;r 0 1 : rocG 0 R --+ !kQ 0 R, but we also 

have the structure map ¢ : R --+ !kG 0 R since R is a rocG-comodule. We can therefore 

define a map from R to rocQ 0 R as the composite (ir 0 1) 0 ¢: 

This map makes R into a rocQ-comodule, which by Lemma 1.2.6 is equivalent to being a 

Q-graded roc-algebra. o 

There is a similar result for strongly group-graded !k-algebras: 

Lemma 1.2.14. Let G and Q be groups and 7r : G --+ Q a surjective group homomorphism. 

If R is a strongly G-graded Ik-algebra, then it is a strongly Q-graded !k-algebra. 

Proof. By the previous lemma, we know R is a Q-graded roc-algebra. For each q E Q, there 

exists agE G such that 7r(g) = q because 7r is a surjective homomorphism. For each such 

g there exists a number ng and lists of elements Xl, X2, ... ,Xng E R g , Yl, Y2, ... ,Yng E Ry-l 

such that L:7::!1 XiYi = 1 because R is a strongly G-graded !k-algebra. Under the structure 

map ¢, 

d -1 
Xi f---t 9 0 Xi an Yi f---t 9 0 Yi 

for each 1 < i < n g • Under the map ir 0 1 (defined in the proof of the previous lemma). 
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and 

for each i. It follows that for each q E Q, we can find a number nq (= ng) and sequences 

of elements Xl, X2,···, xnq E Rq and Yl, Y2,· .. ,Ynq E Rq-l such that L~:!l XiYi = 1; that 

is, R is strongly Q-graded lk-algebra. D 

1.3 Induction and coinduction 

Definition 1.3.1. Let H be a submonoid of G and let R be a G-graded lk-algebra. If M 

is a left RH-module, then the induced module is the left R-module 

with the action of R defined by 

s(r 0 m) = sr 0 m 

for each s E R, r0m E R0RH M. 

Definition 1.3.2. Let H be a submonoid of G and let R be a G-graded lk-algebra. If M 

is a left RH-module, then the coinduced module is the left R-module 

Coind~(M) = HomRH (R, M) 

with the action of R defined by 

s¢ : r f-t ¢(rs) 

for each s E R, ¢ E HomRH(R,M). 

Remark 1.3.3. We can define another action of R on HomRH (R, M) by s¢ : r f-t ¢(sr), 

but this is not well-defined for non-commutative rings. For r, s, t E R, ¢ E HomRH (R, M), 

(st)¢ : r f-t ¢(str) 

but 

s(t¢) : r f-t (t¢)(sr) = ¢(tsr) 

which are not in general equal unless R is commutative. With our definition, however. we 

see that 

(st)¢ : r f-t ¢(rst) 
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and 

s(t¢) : r f-t (t¢)(rs) = ¢(rst) 

which are equal for any ring R. 

Remark 1.3.4. Ind~ and Coind~ are functors from the category of left RH-modules, 

RH9J10(), to the category of left R-modules, R9J10(). 

Lemma 1.3.5. Let H be a submonoid of G and RaG-graded 't-algebra. 

(i) For each left RH-module M, there exists a natural homomorphism 

lJM : Ind~(M) ---+ Coind~(M) 

of left R-modules. 

(ii) If G is a group, H a subgroup of G and R a strongly G-graded 't-algebra, then lJM is 

a monomorphism. 

Proof. (i) Choose a left RH-module M and define a map 

by 

'l/J(r, m) = r 8 m 

where r 8 m is the RH-map defined for each s E R by 

, 
r 8 m(s) = L (s(g)r(g ))m. 

gg'EH 

There are several things to check: 

• r 8 m is an RH-module map. For S1, S2 E R, 
, 

r 8 m(sl + S2) = L ((Sl + s2)(g)r(g ))m 

gg'EH 

L ((s~g) + s~g))r(g'))m 
gg'EH 

L (s~g)r(g') + s~g)r(g'))m 
gg'EH 

L ((s~g)r(g'))m + (s~g)r(g'))m) 
gg'EH 

L (s~g)r(g'))m + L (s~g)r(g'))m 
, , H gg EH gg E 

r 8 m(sl) + r 8 m(s2). 
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t(r8m(s)) 

99'EH 

99'EH 

gg'EH 

99'EH 
, L ((ts)(g)r(g ))m 

99'EH 

r8m(ts) . 

• 'I/J is an RH-biadditive map. For s E R, 

, 
(rl + r2) 8 m(s) = L (s(g) (rl + r2)(g ))m 

gg'EH 
, , 

L (s(g) (rig) + r~g )))m 

gg'EH 
, , L (s(g)rig ) + s(g)r~g ))m 

gg'EH 
, , L ((s(g)rig ))m + (s(g)r~g ))m) 

gg'EH 
, , 

L (s(g)ri
g 

))m + L (s(g)r~g ))m 

gg'EH gg' EH 

rl 8 m(s) + r2 8 m(s). 

Again, for s E R, 

, L (s(g)r(g ))(ml + m2) 

gg'EH , , L ((s(g)r(g ))ml + (s(g)r(g ))m2) 

gg'EH , , L (s(g)r(g ))ml + L (s(g)r(g ))m2 

gg' EH gg' EH 

r 8 mds) + r 8 m2(s). 

20 
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FortERH,sER, 

r 0 tm(s) 
, L (s(g)r(g ))tm 

99'EH 
, L s(g)(r(g )(tm)) 

99'EH 
, L s(g)((r(g )t)m) 

99'EH , L (s(g)(rt)(g ))m 

9g'EH 

rt 0 m(s). 

That is, 'IjJ(rt, m) = 'IjJ(r, tm). 

It follows by universality that we have a well-defined map 

VM : R ®RH M -+ HomRH (R, M) of abelian groups. It remains to show that VM is a map 

of R-modules; that is, for t E R, t.vM(r ® m) = vM(tr ® m). Let s E R. Then 

t.r 0 m(s) r 0 m(st) 
, L ((st)(g)r(g ))m 

gg'EH 

gil gil' g' EH 

gil gil' g' EH 

tr 0 m(s). 

For naturality, choose left RH-modules M and N and an RH-map a : M -+ N, to get 

the following diagram: 

R®RH M ~HomRH(R,M) 

1 a. 1 a. 

R®RHN VN )HOmRH(R,N) 

where the a* are the maps induced from a by 
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We have: 

a( L (s(g)r(g'))m) 

9g'EH 
, L (s(g)r(g ))a(m) 

99'EH 

r 8 a(m)(s). 

That is, a* 0 VM = VN 0 a* and the square commutes. 

and 

(ii) Note that 

R 0RH M "-' EB RtH 0RH M 
tET 

HomRH(R,M)""" HomRH (EBRHt-l, M) r'V II HomRH(RHt-l,M) 
tET tET 

22 

where T is a transversal to H in G. The map VM carries RtH0RHM into HomRH (RHt-l, M), 

so it suffices to show that for each t E T, VM is injective. Fix t and choose elements 

Xl, X2,··· , x nt E R t , Yl, Y2,···, Ynt E Rt-l such that E~l XiYi = 1. Suppose E j rj 0 mj E 

Ker VM, with the rj E RtH, mj E M. Then Ej rjmj = 0 and 

nt 

L L XiYirj 0 mj 

j i=l 

nt 

LLxi 0Yirjmj 
j i=l 

nt 

LXi 0 Yi(L rjmj) 
i=l J 

o. 

o 

Remark 1.3.6. It is required that R be a strongly G-graded Ik-algebra for part (ii) of Lemma 

1.3.5 to be true. For, let R = Ik[X], the polynomial ring in one indeterminate over a field 

k This can be made into a Z-graded Ik-algebra with the following grading: 

• Ro = Ik 

• Ri = {all monomials of degree i} for i > 0 

• Ri = 0 for i < O. 
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R is not strongly Z-graded because ~R-i =J. Ro. We know that VM carries the summand 

RtH ® RH Minto HomRH (RHt-l, M). Let H = 0, the trivial subgroup of Z. Then, for each 

t > 0, we have Rt ®lk M =J. 0, but Homlk(Rt-l, M) = ° since Rt-l = 0. It follows that v.\f 

cannot be injective. 

Lemma 1.3.7. Let G be a group, H a subgroup of G and R a strongly G-graded k-algebra. 

Suppose that [G : H] < 00. Then the natural monomorphism 

VM : Ind~(M) ---+ Coind~(M) 

is an isomorphism for each left RH-module M. 

Proof. First note that 

HOillRH (R, M) t"V HOillRH (E9 RHt, M) 
tET 

t"V II HomRH (RHt, M) 
tET 

E9 HOillRH (RHt? M) 
tET 

since T, a transversal to H in G, is finite with [G : H] elements. 

For a fixed t E T, define 

by 

i=l 

where the Xi E R t , Yi E Rt-l and E~:!l XiYi = l. 

Look at VM 0 J-lk: 

but 
nt 

2:(SXi)¢(Yi) 
i=l i=l 

i=l 

i=l 
nt 

¢( s(2: :r iYi)) 
i=l 

¢(S). 



CHAPTER 1. PRELIMINARIES 

but 

nt 

LXi ® (Yir)m 
i=l 

The result follows. 

nt 

LXi(Yir) ®m 
i=l 
nt 

L(xiYi)r®m 
i=l 

nt 

(LxiYi)r ® m 
i=l 

r®m. 

1.4 H-injective and H-projective modules 

2-1 

o 

Definition 1.4.1. Let G a group, H a subgroup of G and R a strongly G-graded lk-algebra. 

An RH-split monomorphism is an R-monomorphism 

O-+L~M 

for which there exists an RH-map TJ : M -+ L such that TJ 0 r = idL. It is split if the map 

TJ is an R-map. 

An RH-split epimorphism is an R-epimorphism 

M~N-+O 

for which there exists an RH-map TJ : N -+ M such that r 0 TJ = idN. It is split if the map 

TJ is an R-map. 

A short exact sequence of R-modules 

O-+L~M~N-+O 

is RH-split if there exists a map j E HomRH (N, M) with po j = idN. Equivalently. the 

short exact sequence is RH-split if there exists a map q E HomRH (M. L) with q 0 i = idL. 

The short exact sequence is said to be split if the maps j and q are R-maps. 

A long exact sequence 

dn , dn-l dl ~/, 0 o -+ Mn ~ Afn-l --+ ... --=-+ j~ 0 --t 
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is RH-split if for 1 < k < n - 1, each short exact sequence 

is RH-split. The long exact sequence is split if each short exact sequence is. 

We are now ready to introduce the notions of H- and RH-projective modules and H

and RH-injective modules. 

Definition 1.4.2. Let G be a group, H a subgroup of G and R a strongly G-graded Ik

algebra. A left R-module M is said to be H -projective if given an RH-split epimorphism 

of left R-modules a : A ---+ B and an R-map , : M ---+ B, there is at least one R-map 

f3 : M ---+ A making the following diagram commute: 

M 

~f3 ·······1 ........ "1 
\:.:' 

Q 

A~B~O. 

Definition 1.4.3. Let G be a group, H a subgroup of G and R a strongly G-graded 

Ik-algebra. A left R-module M is RH-projective if it is projective as a left RH-module. 

Lemma 1.4.4. Let G be a group, H a subgroup of G with [G : H] < 00 and R a strongly 

G-graded Ik-algebra. Then a left R-module M is projective if and only if it is both H

projective and RH-projective. 

Proof. (=}) Projectivity of M allows us to lift, in the following diagram ofleft R-modules 

M 

1"1 
A~B~O 

to a map f3 : M ---+ A. In particular, we can do this when a is RH-split, so M is H-

projective. Since all R-maps are RH-maps, M is also RH-projective. 

(~) Let a : A ---+ B be an R-module epimorphism and suppose we have an R-module 

map, : M ---+ B. We have the following diagram: 
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A 

1 
o 

where the RH-split maps 4>1 and 4>2 are the natural maps sending a tensor r®m to rm (the 

splitting being given by m t----+ 1 ®m) and a* is the (surjective) map induced from a. Since 

M is H-projective, we can find an R-map 'I/J : M --+ R ®RH B such that r = 4>1 0 'l/J. Since 

Mis RH-projective, we can find an RH-map w from M to R®RH A such that 'l/J = a* ow, 

which we may take to be an R-map since the functor HomR(M, R ®RH -) is an exact 

functor on RH-modules. To see this, note that 

HomR(M, R ®RH -) f"V HomR(M, HomRH (R, -)) 

f"V HomRH (R ®R M, -) 

f"V HomRH (M, - ) 

which is exact since M is projective over RH. The first isomorphism comes from Lemma 

1.3.7 and the second from the standard adjunction 

HomR(A, Homs(B, C)) ("V Homs(B ®R A, C) 

for rings Rand S and modules RA, SBR and se. 
The composite 4>2 0 w gives us an R-map from M to A. Filling in these maps: 

o o 

but 
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QO¢2 0W ¢1 ° Q* 0 W 

that is, M is projective. o 

Remark 1.4.5. Only the second part of the proof required the hypothesis that [G : H] < 00: 

that is, a projective left R-module M is both H-projective and RH-projective. 

Definition 1.4.6. Let G be a group, H a subgroup of G and R a strongly G-graded Ik

algebra. A left R-module M is said to be H -injective if given an RH-split monomorphism 

of left R-modules Q : A -+ B and an R-map , : A -+ M, there is at least one R-map 

f3 : B -+ M making the following diagram commute: 

Remark 1.4.7. Modules which are H-injective for H = Ie are called weakly injective. 

Definition 1.4.8. Let G be a group, H a subgroup of G and R a strongly G-graded 

lk-algebra. A left R-module M is RH-injective if it is injective as a left RH-module. 

Lemma 1.4.9. Let G be a group, H a subgroup of G with [G: H] < 00 and R a strongly 

G-graded lk-algebra. Then a left R-module M is injective if and only if it is both H -injective 

and RH-injective. 

Proof. (*) Injectivity of M guarantees that we can find a map f3 : B -+ M which makes 

the following diagram commute: 

O~A~B 

l' 
M 

In particular, we can do this when Q is RH-split, so M is H-injective. Since all R-maps 

are RH-maps, M is RH-injective. 

C{=) Let Q : A -+ B be an R-module monomorphism and suppose we have an R-module 

map, : A -+ M. We have the following diagram: 



CHAPTER 1. PRELIMINARIES 28 

o 0 

1 1 
o ---~, A ~---'Y--_O_---~) B 

<PI M <P2 

0----1 HOmRH (R, A) --0-*-----4) HomRH (R, B) 

where the RH-split maps ¢1 and ¢2 are the embeddings of A and B into their coinduced 

modules and a* is the (injective) map induced from a. Since M is H-injective, we can 

find an R-map 'IjJ : HomRH (R, A) -+ M such that, = 'IjJ a ¢1. Since M is RH-injective, we 

can find an RH-map w such that 'ljJ = w a a* which we may take to be an R-map since the 

functor HomR(HomRH (R, -), M) is an exact functor on RH-modules. To see this, note 

that 

HomR(HomRH(R,-),M) ~ HomR(R0RH -,M) 

~ HomRH(-,HomR(R,M)) 

rv HomRH(-,M) 

which is exact since M is injective over RH. The first isomorphism comes from Lemma 

1.3.7 and the second from the standard adjunction 

HomR(A, Homs(B, e)) rv Homs(B 0R A, e) 

for rings Rand S and modules RA, SBR and se. 

The composite w a ¢2 gives us an R-map from B to M. Filling in these maps: 

o o 

1 
o ------t) A~ ---'Y--"":'-

0-Y-
W

O-<P-2 ---7) B 

¢'yM~ ¢, 

0----1 HomRH (R, A) 0* ) HomRH (R, B) 

1 

but 
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WOCP2o a w ° a* ° CP1 

that is, M is injective over R. o 

Lemma 1.4.10. Let G be a group, H a subgroup of G, R a strongly G-graded k-algebra 

and M a left R-module. Then the following are equivalent: 

(i) M is H -projective. 

(ii) M is a direct summand of R 0RH V for some left RH-module V. 

(iii) M is a direct summand of R 0 RH M. 

Proof. (i)=?(iii) We have an RH-split epimorphism of left R-modules p : R 0RH M -+ M 

given by r 0 m f-t rm (the splitting is defined by m f-t 10m). Since M is H-projective, 

we can find an R-map (3 making the following diagram commute: 

M 

/11 p 
R 0RH M ----1 M ----10 

which gives us a split-exact sequence of R-modules 

o -+ Ker p -+ R 0 RH M ~ M -+ 0 

and R 0RH M rv M EEl Kerp. 

(iii)=?(ii) Trivial. 

(ii)=?(i) Suppose we have an RH-split epimorphism of R-modules 7r : B -+ M and an 

R-map'IjJ : R 0RH V -+ M, giving us the foHowing diagram 

T 

We want to find an R-map cp: R 0RH V -+ B, making the diagram comIllute. By thE' 

adjunction mentioned earlier, HomR(R 0RH V. M) rv HomRH (L AI). Similarly for B. \\'(' 

have the following commutative diagram: 
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HomR(R0RH V,M)~HomR(R0RH V,B) 

I,M ~ I'B 
HomRH (V, M) HomRH (V, B) - ~ 

T* 

where "M and "B are isomorphisms. We have 

30 

that is, 7[* is surjective so 'ljJ = 7[*(¢) = 7[ 0 ¢ for some R-map ¢ : R 0RH V --+ B. 0 

Lemma 1.4.11. Let G be a group, H a subgroup of G, R a strongly G-graded 't-algebra 

and M a left R-module. Then the following are equivalent: 

(i) M is H -injective. 

(ii) M is a direct summand of HomRH (R, V) for some left RH-module V. 

(iii) M is a direct summand of HomRH (R, M). 

Proof. (i)=>(iii) We have an RH-split monomorphism of left R-modules i : M --+ HomRH (R, M) 

given by m M ¢m where ¢m is the RH-map sending an element r of R to rm (the splitting 

is defined by ¢ M ¢(l)). Since M is H-injective, we can find an R-map a making the 

following diagram commute: 

O~M~HomRH(R,M) 

11/ 
M 

which gives us a split-exact sequence of R-modules 

0--+ M ~ HomRH(R,M) --+ Cokeri --+ 0 

and HomRH (R, M) r"V M EB Coker i. 

(iii) => (ii ) Trivial. 
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(ii)*(i) Suppose we have an RH-split monomorphism of R-modules i : M -+ Band 

an R-map 't/J : M -+ HomRH (R, V), giving us the following diagram: 

We want to find an R-map ¢ : B -+ HomRH (R, V), making the diagram commute. By 

the adjunction mentioned earlier, HomR(B, HomRH (R, V)) f"V HomRH (B, V). Similarly 

for M. We have the following commutative diagram: 

p* 

where [,B and [,M are isomorphisms. We have 

[,M 0 (p 0 i)* 0 [,M 0 'ljJ 

that is, i* is surjective so 'IjJ = i*(¢) = ¢ 0 i for some R-map ¢ ; B -+ HomRH (R, V). 0 

Lemma 1.4.12. Let G be a group, H a subgroup of G with [G : H] < 00 and R a 

strongly group-graded k-algebra. Then a left R-module M is H -injective if and only if it 

is H -projective. 

Proof. In view of Lemma 1.4.10, we shall prove the equivalent statement "M is H-injective 

if and only if M is a direct summand of R ® RH M" . 

(*) We have an RH-split monomorphism of left R-modules i : M -+ HomRH (R, M). 

Since [G : H] < 00, we have that HomRH (R, M) f"V R ®RH M. Since M is H-injective, we 

can find an R-map a making the following diagram commute: 

O~M~R®RHM 

II ,/ Q .. 

M 



CHAPTER 1. PRELIMINARIES 
32 

which gives us a split-exact sequence of left R-modules 

and so R ®RH M::: M E9 Cokeri. 

(~) Suppose we have an RH-split monomorphism of R-modules c : A --t B and an 

R-map 'ljJ : A -+ R ®RH M, giving us the following diagram 

c 
o --~) A --., B 

lw~ 
R®RHM 

We want to find an R-map ¢ : B --t R ®RH M to make the diagram commute. Given 

that [G : HJ < 00, R ®RH M rv HomRH (R, M) and by the adjunction mentioned earlier, 

HomR(A,R®RH M) rv HomRH(A,M). Similarly for B. We have a commutative diagram 

HomR(B,R®RH M) ~HomR(A,R®RH M) 

1'B ~ 1'A 
HomRH(B,M) HomRH(A,M) 
~ 

(7* 

where t Band t A are isomorphisms. We have 

c* 0 t B 0 0'* 0 tAO 'ljJ 

tA 0 (c 0 0')* 0 tA 0 'ljJ 

that is, c* is surjective so 'ljJ = c*(¢) = ¢ 0 c for some R-map ¢ : B --t R ®RH M. 0 

1.5 Dimensions 

Definition 1.5.1. Let R be a ring. A projective resolution of a left R-module M is an 

exact sequence, 

... -+ Pn -+ Pn - I --t .,. -+ PI --t Po --t M --t 0 

in which each Pi (i E No) is a projective left R-module. 
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Definition 1.5.2. Let R be a ring. A left R-module M has finite projective dimension 

if, in a projective resolution of M, there exists n E No such that for all i > n, Pi = O. If 

M f:. 0 has a finite projective resolution, then its projective dimension, pdR(M), is the 

least number n E No such that there exists a projective resolution of length n: 

o --+ Pn --+ Pn- I --+ ... --+ Po --+ M --+ O. 

In case no finite projective resolution exists, pdR(M) is defined to be equal to 00. 

The zero module is defined to have projective dimension -00. 

Example 1.5.3. Let R be a ring. A non-zero left R-module M is projective if and only 

if pdR(M) = O. In this case, Po = M. 

Example 1.5.4. Let p be a prime number. As a left Z-module, Z/pZ has projective 

dimension 1: 

0--+ Z ~ Z --+ Z/pZ --+ O. 

Definition 1.5.5. Let R be a ring. A left R-module M is said to be of type FP 00 over 

R if it admits a resolution 

... --+ Pn --+ Pn-I --+ ... --+ PI --+ Po --+ M --+ 0 

by finitely generated projective left R-modules. 

Example 1.5.6. If R is a Noetherian ring and M is a finitely generated left R-module, 

then M is of type FP 00 over R because the kernel of every surjective R-map from a finitely 

generated free module onto M is finitely generated. 

Definition 1.5.7. Let R be a ring and let 

be a projective resolution of a left R-module M. For n > 0, the nth syzygy is 

ifn = 0 

if n > 1. 

Syzygies help us compute projective dimension: 

Lemma 1.5.8. Let R be a ring. The following are equivalent for a left R-module .f..I: 
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(ii) Ext3HM, N) = 0 for all left R-modules N and all k > n + 1. 

(iii) For every projective resolution of M, On-dM) is projective. 

Proof· This is Lemma 11.123 of [28]. o 

The projective dimensions of modules in an exact sequence are intimately related: 

Lemma 1.5.9. Let R be a ring and 

O-tA-tB-tC-tO 

a short exact sequence of left R-modules. If it is the case that two modules have finite 

projective dimension then so does the third. In fact pdR(B) < max{pdR(A),pdR(C)} with 

equality unless pdR(B) < pdR(C) = 1 + pdR(A). 

Proof. See, for example, page 247 of [26]. o 

Lemma 1.5.10. Let 

o --+ Mr --+ ... --+ Ml --+ Mo --+ M --+ 0 

be an exact sequence of R-modules. If Mi has projective dimension at most n for all i then 

M has projective dimension at most n + r. 

Proof. This is Lemma 10.1 of [10]. o 

The following definitions will be used later. 

Definition 1.5.11. Let R be a ring. A flat resolution of a left R-module M is an exact 

sequence, 

... --+ Fn --+ Fn- l --+ ... --+ Fl --+ Fa -t M --+ 0 

in which each Fi (i E No) is a flat left R-module. 

Definition 1.5.12. Let R be a ring. A left R-module M has finite weak dimension if 

there exists a fiat resolution of M of finite length. If M =I- 0 has a finite fiat resolution, 

then its weak dimension, WdR(M), is the least number n E No such that there exists a 

flat resolution of length n: 

o --+ Fn --+ ... --+ Fl --+ Fa --+ M --+ O. 

In case no finite flat resolution exists, WdR(M) is defined to be equal to 00. 

The zero module is defined to have weak dimension - 00. 

The term "flat dimension" is sometimes used in place of "weak dimension". 
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Example 1.5.13. Let R be a ring. A left R-module M is flat if and only if WdR(M) = O. 

Example 1.5.14. Let R be a ring. Since projective modules are flat, every projective 

resolution of a left R-module M is a flat resolution. It follows that if R is any ring, then 

WdR(M) < pdR(M) for every left R-module M. 

Definition 1.5.15. Let R be a ring and let 

be a flat resolution of a left R-module M. For n > 0, the nth yoke is 

{

Kern 
Yn(M) = 

Kerdn 

ifn = 0 

if n > 1. 

Lemma 1.5.16. Let R be a ring. The following are equivalent for a left R-module M: 

(ii) Torf(N, M) = 0 for all right R-modules N and all k > n + 1. 

(iii) For every fiat resolution of M, Yn-dM) is fiat. 

Proof. This is Lemma 11.138 of [28]. 

Definition 1.5.17. The left global dimension of a ring R is defined as 

lD(R) = SUp{pdR(M) : M E obj(R9J1OD)}. 

There is a similar notion of right global dimension. 

Definition 1.5.18. The left finitistic dimension of a ring R is defined as 

lFPD = sup{pdR(M)} 

where M runs through all left R-modules for which pdR(M) is finite. 

Definition 1.5.19. The weak dimension of a ring R is defined as 

wD(R) = SUp{WdR(M) : M E obj(R9J1oD)}. 

It will be noted that we do not speak of the left weak dimension of a ring R. This 

is because the weak dimension can be computed using Tor groups which involve left and 

right modules simultaneously. 
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Lemma 1.5.20. Let G be a group, H a subgroup of G, R a strongly G-graded k-algebra 

and M an R-module. 

(i) If M is a projective R-module then M is a projective RH-module. 

Proof· This is Lemma 6.3 parts (i) and (ii) of [10]. D 

Lemma 1.5.21. Let G be a group, H a subgroup of G with [G : H] < 00 and R a strongly 

G-graded k-algebra. Then for every left R-module M with pdR(M) < 00, 

Proof. This is Lemma 6.6 of [10]. D 

1.6 Some useful results 

In this section we introduce some results we shall need for later work but whose inclusion 

elsewhere would interrupt the flow of the thesis. 

Recall the following: 

Proposition 1.6.1. Let R be a nng. A left R-module P is projective if and only if 

HomR(P, -) is an exact functor. 

Proof. This is Proposition 7.53 of [28] D 

Lemma 1.6.2. Let G be a group, H a subgroup ofG with [G : H] < 00 and R a strongly G

graded k-algebra. Then, given a left R-module N which is projective as a left RH-moduie, 

we can construct an RH-split exact sequence of left R-modules 

of any desired length in which the Pi (0 < i < n - 1) are projective and Pn is projective as 

a left RH-module. If N is finitely generated, then each of the Pi can be taken to be finitely 

generated as left R-modules. 

Proof. We have an injection 

given by 

n t---+ (¢n : r t---+ rn). 
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As we have already seen, this map is RH-split via 

¢ f--t ¢(1). 

Thus we have an RH-split short exact sequence 

Note that 

HomR(HomRH (R, N), -) ~ HomR(R 0RH N, -) 

~ HomRH(N,HomR(R,-)) 

~ HomRH(N,-) 

37 

which is an exact functor because N is projective as an RH-module (by Lemma 1.5.20, 

part 1). It follows by Proposition 1.6.1 that HomRH (R, N) is a projective left R-module. 

Because the sequence is RH-split, Coker [,0 is projective as an RH-module. 

It is clear that we can repeat this process, obtaining another RH-split short exact 

sequence 

0-+ Coker [,0 ~ HomRH (R, Coker [,0) ~ Coker [,1 -+ 0 

in which HomRH (R, Coker [,0) is a projective left R-module and Coker [,1 is a projective left 

RH-module. 

Set 

• Po = HomRH(R,N) 

• do = [,1 01ro 

and inductively (for i > 1), 

• Pi = HomRH (R, Coker [,i-d 

• di = [,i+ 1 0 1r i 

The construction is illustrated below: 
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o~/o 
Coker "I 

y~ 
0---+ N ~Po do p" dl P. d2 

~ )1 ' 2~): 
)ker\ )ker\ 

o 0 0 0 
We still need to check that the sequence is exact: 

• Imdi- 1 C Kerdi. 

• Kerdi ~ Imdi-l. Suppose di(p) = "i+l(7ri(p)) = 0 for some p E Pi. /'i+l is injective, 

so 7ri(P) E Ker 7ri = 1m /'i, by exactness. Thus there exists a p' E Coker /'i-l such that 

( ') ... h ." (") , /'i P = p. 7ri-l IS surJectIve, so t ere eXIsts apE I{-1 such that 7ri-l p = P . It follows 

that p E Imdi-l. 

The sequence is easily seen to be RH-split: the splitting of di is the map which is the 

composite of the the maps which split /'i+l and 7ri respectively. 

Suppose N is finitely generated with generating set {nl' n2,"" ns}. Because [G : H] < 

00, we have by Lemma 1.1.13 that R is finitely generated as a (right or left) RH-module 

with generating set {rl,r2, .. ' ,rt}. A simple check shows that Po = HomRH(R,N) is 

finitely generated as a left R-module by a generating set containing at most st elements. 

It follows by induction that the Pi (0 < i < n) are finitely generated. o 

Theorem 1.6.3. Let R = ~a Ra be a filtered colimit of rings, A a right R-module and 

B a left R-module. Then 

A®RB=~A®RaB. 
a 

Proof. For each Ra in the limit we have a ring homomorphism ¢a : Ra -+ R. It follows 

that A ®Ra B = A ®Im¢a B for each a and so ~a A ®Ra B = ~a A ®Im¢a B. Thus it 

remains to show A ®R B = ~a A ®Im¢a B. 

Elements oflil)l A®ImA- B are equivalence classes [a®b,a] where a®b E A®Im¢o B. 
cy '1'0 

and [a ® b, a] = [a' ® b', (j] if and only if there exist, > a, f3 and maps ¢~ : A ®Ra B -+ 
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A ®R-y B and ¢~ : A ®R{3 B -+ A ®R-y B such that ¢~(a ® b) = cp~(a' ® b'); that is. an 

element of A ®Im¢a: B and an element of A ®Im¢{3 B become identified in the limit if they 

are equal as elements of A ® R B. 

We have a natural map ~a A ®Im'¢a: B ~ A ®R B defined by [a ® b, a] f-t a ® b, 

which is well-defined: for r E 1m CPa, 

[ar ® b, a] f--------1 ar ® b 

II 
[a ® rb,a] ~a ® rb. 

It is easily checked 'if; is an R-module homomorphism. 

Let [a ® b, a] E Ker'if; (every element of the limit is of this form because the index set 

is directed). Then a ® b = 0 so [a ® b, a] is the equivalence class of the zero element and 

'if; is injective. 

Any a ® b E A ®R B is the image under 'if; of [a ® b, a] for any label a. Thus 'ljJ is 

surjective. o 



Chapter 2 

Generalisations 

In this chapter we will generalise known results for group rings to the strongly group-graded 

case. Throughout, Ik will denote a commutative ring. 

2.1 Complete cohomology groups 

The projective dimension of a left R-module M is the least n E No such that Extk(M, N) = 

o for all i > n and all left R-modules N. As a method for finding projective dimension, 

the use of Ext groups is virtually useless; however, very often all we are interested in 

knowing is whether the projective dimension is finite. A more appropriate formulation for 

this scenario are the complete cohomology groups. 

Lemma 2.1.1 (Schanuel). Let R be a ring. Given exact sequences 

o ---+ K ---+ P ---+ M ---+ 0 

and 
I I o ---+ K ---+ P ---+ M ---+ 0, 

of left R-modules with P and p' projective, then there is an isomorphism 

I I 

KtBP f"V K tBP. 

Proof. The result is well known. A proof can be found on page 10 of [2] o 

Let R be a ring and M a left R-module. Because the category RfmoD has enough 

projectives, we are always able to find a projective left R-module P and an epimorphism 

P ---+ M. 

40 
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Let R be a ring and A a set. We can construct a free left R-module pI A, where each 

element has a unique expression of the form La r aa, a E A, and all but finitely many of 

the ra are zero. Thus, we can define a functor p' : Sets ----+ R9J10(). This functor is left 

adjoint to the forgetful functor R9J10() -+ Sets which sends a module to its underlying set 

and regards homomorphisms as functions. If we define P : R9J10() -+ Sets ----+ R9J10() as the 

composite of these two functors, then the identity function from the set M to the module 

M induces an epimorphism PM -+ M. 

Definition 2.1.2. Given a left R-module M, OM is defined to be the kernel of an epi

morphism P -+ M with P a projective left R-module. (c.f. Definition 1.5.7.) 0 is not a 

functor on R9J10(). 

Remark 2.1.3. To avoid ambiguity, we will occasionally use brackets on this notation to 

distinguish O(M) EB N from O(M EB N), for example. 

Remark 2.1.4. Schanuel's Lemma shows that the definition of 0 is well-defined up to 

adding and removing projective summands: given two partial projective resolutions of a 

module M, 

o ----+ OM -+ P -+ M ----+ 0 

and 

o -+ OM -+ Q ----+ M -+ 0, 

we have O(M) EB Q ""' O(M) EB P. 

If ¢ is an R-map between two left R-modules M, N, then we may lift as in the following 

diagram 

o ---7 OM ---7 PM ---7 M ---7 0 

1 1 1 
o -----1 ON ------7 PN ------7 N -----1 0 

to obtain a map O(¢) : OM -+ ON which is unique up to the addition of maps factoring 

through a projective module. 

The free module F M obtained from a module M provides an easy way to obtain a 

surjective map from a projective module to M. 

Suppose we have an R-map ¢ : M ----+ N, then we have a commutative diagram 



CHAPTER 2. GENERALISATIONS 42 

We can iterate this process, giving us a commutative diagram (and free resolutions of 

M and N): 

n2N nN ,<p 

/~/~ 
... ~ p 3 N ) p2 N ) PN ----7 N ------7 o. 

Definition 2.1.5. Let R be a ring. Given any two left R-modules M and N, define 

PhomR(M, N) to be the additive subgroup of HomR(M, N) comprising those homomor

phisms which factor through a projective module. HomR(M, N) is then defined as the 

factor group 

and there is a natural map HomR(M, N) ---* HomR(M, N). 

Remark 2.1.6. While n is not a functor on R9J1oll, it is a functor on the category which 

has the same objects as R9J1oll but whose morphisms are given by HomR(M, N) for each 

pair of modules M, N. 

For any two left R-modules M and N, n induces a function 

which is not a homomorphism. However, if P is projective then np is either projective or 

the zero module, therefore we have an induced map 

which is an additive homomorphism and indeed we get a commutative square 

for any pair of left R-modules M, N. A proof of this appears in [25]. 
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Successive applications of n gives us a direct system of R-modules: 

Definition 2.1.7. Let R be a ring and let M and N be R-modules. The zeroeth com-
-0 

plete cohomology group Ext R (M ,N) is the coli mit of the above direct system: 

Ext~(M,N) := ~HomR(niM,niN). 
i 

. --j 
For each J E Z, we can define ExtR(M,N): for j > 0 as 

Ext~(M,N) := Ext~(njM,N) = ~HomR(ni+jM,niN) 
i 

and for j < 0 as 

Ext~(M,N) := Ext~(M,n-jN) = ~HomR(niM,ni-jN). 
z 

It is easy to check that Erl~ (M, N) is a functor which is covariant in Nand con-

----* travariant in M. There are a number of different (equivalent) definitions of these ExtR 

----* groups. Cornick and Kropholler follow Mislin in defining the Ext R in terms of satellites of 

functors [9]. Goichot [16] takes cohomology of a double complex of Horns in which he has 

factored out the 'bounded functions'. The above definition is from Benson and Carlson [4]. 

The following lemma was first proved by Kropholler in [22]. It illustrates the strength 

of the above definition so we reproduce the proof. 

Lemma 2.1.8. Let R be a ring and M an R-module. Then M has finite projective 
--0 

dimension if and only if Ext R (M, M) = 0 

Proo]. If M has projective dimension r, then for all i > r, ni M = 0 and so 

--0 . . 
ExtR(M,M) = ~HomR(nZM,nZM) = O. 

Z 

On the other hand, if Erl~ (M, M) = 0 then the identity map of M goes to zero in the 

limit and so there exists an i > 0 such that the identity map on M becomes zero under 
ni ., 

the natural map HomR(M, M) --* HomR(M, M) -----+ HomR(nZM, nZM). But that means 

that the identity map on ni M factors through a projective module. Therefore ni AI is 

projective and so by Lemma 1.5.8, M has projective dimension at most i. o 

We now state a number of lemmata which will prove useful later. but first a defillition. 
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Definition 2.1.9. A functor F between two module categories is said to be continuous 

(or finitary) if and only if the natural map ~A F(MA) -+ F(~A MA) is an isomorphism 

for all direct limit systems (MA) of modules. 

Example 2.1.10. Let R be a ring. For any right R-module A, the functors Tor~(A, _) 

are continuous. (For a proof of this, see Proposition 10.99 of [28].) 

Lemma 2.1.11. Let R be a ring and M a left R-module of type FP 00. Then the functors 

Erl~ (M, -) are continuous. 

Proof. This is Lemma 5.2.7 of [25]. o 

Remark 2.1.12. It follows that if (NA) is any family of left R-modules and M is a left 
-n -n 

R-module of type FP 00 then the map ffiA ExtR (M, N A) -+ ExtR (M, ffiA N A) is an iso-

morphism because the direct sum is the colimit of all its finite subsums. 

Lemma 2.1.13. Let R be a ring, 

an exact sequence of left R-modules and N a left R-module. Then if i is an integer such 

that Erl~(N, L) is non-zero then there exists a j with 0 <j < r such that Ext~j (N, M j ) 

zs non-zero. 

Proof. This is Lemma 3.1 of [22]. o 

The next result is crucial. Results of this kind are well known for group algebras, but 

it has not been possible to find an explicit reference for the general form that is needed. 

However, the discussion in Chapter 1 is intended to facilitate proving general results over 

group-graded rings. We shall give a proof of this lemma and a careful discussion of two 

corollaries (Lemmata 2.1.15 and 2.1.16). 

Lemma 2.1.14. Let G be a group, H a subgroup with [G : H] < 00, R a strongly G

graded k-algebra and M a left R-module. If N is a left R-module which is projective as an 

RH-module, then the natural map 

is an isomorphism. 
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Proof. We show that 0 is surjective. Let cP E HomR(ON, OM). We have a commutative 

diagram in which the top row is RH-split exact and the bottom row exact: 

where F M is the free left R-module on the underlying set of M. Since F M is a projective 

R-module, it is H-projective by Lemma 1.4.4 and because [G : H] < 00, it is H-injective 

by Lemma 1.4.12. It follows that we can find an R-map cp' : R0RH N ---+ FM making the 

left-hand square commute. 

If n E N, then there is an rl 0 nl E R 0RH N with 7lN(rl 0 nl) = n because 7rN is 

surjective. Define cp" : N ---+ M by cp" (n) = 7fM 0 cp' (rl 0 nl). cp" is well-defined because if 

r2 0 n2 E R 0RH N satisfies 7fN(r2 0 n2) = n, then 7fN(rl 0 n2 - r2 0 n2) = O. That is, 

rl 0 n2 - r2 0 n2 E Ker7fN = Imf,N, by exactness. Hence rl 0 n2 - r2 0 n2 = tN(n'), for 
, 

some nEON. Thus 

and the right-hand square commutes. It follows that the natural map 0 is surjective. 

For injedivity, first recall that for a map cp : N ---+ M, we obtain a map O(cp) 

ON ---+ OM. If O(cp) E HomR(!1N, !1M) represents the zero map, then it factors through 

a projective module P so we have a commutative diagram with an RH-split exact top row 

and exact bottom row: 

! 

n(¢) I ¢ 

We already know that the left-hand triangle commutes. Since P is projective, it is H

injective (by the same reasoning above) so we can find an R-map Q : PN ---+ P which makes 

the top triangle commute. Defining f3 to be the composite "!II 0 CP2 ensures commutativity 
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of the bottom triangle. It follows that 

(F¢ - f3 0 a) 0 "N 

an observation that we will use shortly. 

F¢ 0 "N - f3 0 a 0 "N 

"M 0 0 ( ¢) - "M 0 ¢2 0 ¢l 

"M 0 O(¢) - "M 0 O(¢) 

0, 
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Define an R-map 8 : N ---+ PM by sending a pre-image (n' E PN ) under 7f N of n E N 

to (F¢ - f3 0 a)(n'). 8 is well-defined because if n" E PN is another pre-image of n, then 

7fN(n' - n") = 0, so that n' - n" E Ker7fN = Im"N. Hence n' - n" = "N(n''') for some 

n'" E ON. Thus, by the above observation, 

° (F ¢ - f3 0 a) 0 "N ( n'" ) 

, " (F¢ - f3 0 a)(n - n ) 

'" '" F¢(n - n ) - f3 0 a(n - n ) 

, " , " 
F¢(n ) - F¢(n ) - f3 0 a(n ) + f3 0 a(n ) 

, " (F¢ - f3 0 a)(n ) - (F¢ - f3 0 a)(n ) 

, " 8(n) - 8(n ) 

as required. 

By commutativity, ¢ 0 7fN = 7fM 0 F¢ but 

7fM 0 F¢ 7fM 0 (8 0 7fN + f3 0 a) 

7fM 0 8 0 7fN + 7fM 0 f3 0 a 

7rM 0 8 0 7fN 

and since 7fN is surjective, we have that ¢ = 7fM 08; that is, ¢ factors through a projective 

R-module and so represents 0 in HomR(N, M). It follows that the natural map Q is 

injective. o 

We immediately obtain 
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Lemma 2.1.15. Let G be a group, H a subgroup with [G : H] < 00, R a strongly G

graded k-algebra and M a left R-module. If N is a left R-module which is projective as an 

RH-module, then the natural map 

--0 
HomR(N,M) --+ ExtR(N,M) 

is an isomorphism. 

Proof· By repeated use of Proposition 2.1.14, we see that the maps in the system 

n n 2 2 n HomR(N, M) -+ HomR(ON, OM) -+ HomR(n N, n M) -+ .. , 

are all isomorphisms and so the colimit is equal to HomR(N, M). D 

Proposition 2.1.16. Let G be a group, H a subgroup with [G : H] < 00, R a strongly 

G-graded k-algebra and M a left R-module. If the left global dimension of RH is finite and 

equal to n, then for all i > n and all left R-modules N, the natural map 

is an isomorphism. 

Proof. Let i > lD(RH), then as an RH-module, niN is projective. We have a commutative 

diagram 

The top map is an isomorphism by Proposition 2.1.15 and the right-hand map is an 

isomorphism because the terms in the system 

agree with those of the limit system 

for j > i and so their colimits are isomorphic. It follows that the diagonal map is an 

isomorphism also. o 
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2.2 Complete cohomology for group-graded lk-algebras 

The first lemma of this section generalises Lemma 6.1 of Benson's paper [3]. An obvious 

approach when generalising any result is to investigate to what extent one can utilise 

the original argument. Benson's lemma concerns group algebras and his proof involves 

a somewhat complicated calculation with group elements, something not immediately 

transferable to the strongly group-graded case. As we shall see, the machinery set up in 

Chapter 1 allows for a more elegant argument; indeed, it was trying to generalise this result 

which motivated the careful treatment of H-injective and H-projective modules there. 

Lemma 2.2.1. Let G be a group, H a subgroup with [G : H] < 00 and R a strongly 

G-graded k-algebra. Let M and N be left R-modules and let, : N -+ N' be an RH-split 

monomorphism of left R-modules. If ¢ : N -+ M factors through some projective module, 

then it factors through the map ,. 

Proof. Call the projective module that ¢ factors through P. We have the following dia-

gram: 

0-+ N 
'Y )N' 

"Z 
¢ p 

/a 
M 

Since P is projective, it is H-projective by Lemma 1.4.4 and H-injective by Lemma 1.4.12 

so we can find an R-map 'T/ : N' -+ P with (3 = 'T/ 0,. It follows that 

¢. 

o 

Remark 2.2.2. Compared to Benson's proof, ours is conceptually more accessible in that 

we can see exactly what is happening, and with fewer lines of argument. Also, we did not 

require the hypothesis that N be projective as an RH-module: we may therefore conclude 

the hypothesis that N be projective as a lk-module in Lemma 6.1 of [3] is redundant. 

We shall have need of the following lemma, which is a variation on well-known results. 
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Lemma 2.2.3. Let R be a ring and let 

be an exact sequence of left R-modules. IfpdR(Mi ) < r-i for each i then M has projective 

dimension at most r. 

Proof. We proceed by induction on the length of the exact sequence. Let K denote the 

kernel of the map Mo ---+ M. Then the exact sequence 

comprises modules M i , each of whose projective dimension is at most r - i and so by 

induction, pdR(K) < r - 1. To the short exact sequence 

o ---+ K ---+ Mo ---+ M ---+ 0 

apply HomR( -, X), where X is any left R-module, to give us the long exact sequence 

•.. ---+ ExtR(K, X) ---+ Ext~+l(M, X) ---+ Ext~+l(Mo, X) ---+ '" . 

The two outside terms are 0 since pdR(Mo) < rand pdR(K) < r - 1, so exactness forces 

Ext~+l(M, X) = 0 for all X and 

o 

The following generalises Benson's Proposition 6.3 of [3]. 

Proposition 2.2.4. Let G be a group, H a subgroup of G with [G : H] < 00 and R a 

strongly G-graded 't.-algebra. If M and N are left R-modules such that N has projective 

dimension at most r as a left RH-module and ¢ : N ---+ M is an R-module homomorphism 

which goes to zero in HomR(fF N, or M), then ¢ factors through a left R-module X of 

projective dimension at most r. If N and or N are finitely generated then X may also be 

taken to be finitely generated. 

Proof. Our proof closely mirrors that of Proposition 6.3 of [3]. We have occasionally 

included additional details and we have also used the methodology outlined in Chapter 1 

to smooth certain arguments. 

Choose resolutions and maps 
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with Po,··. ,Pr- 1, P~, ... , P;-l projective left R-modules. Since fY N is left RH-projective. 

we can, by Lemma 1.6.2 find a projective left RH-module N ' and projective left R-modules 

p~', ... ,p;'-1 (which are finitely generated if fY N is) so that there is an RH-split sequence 

of R-modules 

i' i' " d" 
O nrN r p" 1'-1 d1 " 0 I 
~~(, ~ r-l~···~Po~N~O. 

We have the following diagram: 

d" d" J,' d" 
O~nrN~p" ~ ... ~TJ"~N'----tO r-1 Fa 

/ d' I I 
a1' I ,. -1 d1 I do o ~ nr N ~ Pr- 1 ~ ... ----t Po -----+) N ----t O. 

Because P;-l' is a projective left R-module, we can appeal to Lemma 2.2.1 to find an 

R-map 'ljJr-1 making the triangle 

I 

commute. In fact it is almost unnecessary to appeal to Lemma 1.6.2 because Pr - 1 IS 

projective, therefore H-projective and so also H-injective by the results of Chapter 1. 

I " Because "cokernel is functorial," we can find a well-defined map 'ljJr-1 : Coker dr ----7 

I " I' P" . Coker dr' As we observed in the proof of Lemma 1.6.2, the map [, : Coker ar ----7 r-2 IS 

an RH-split monomorphism, so we can again appeal to Lemma 2.2.1 to find an R-map 

Cokerd; 

" ~, ~ d' 
dr " d"_1 ",.-2 

o~nrN~Pr_1 Pr-2~'" 
I I . 

l o'¢r_l 

'¢r-1_ Coker dr '¢r-2 

-((/ ~l' \ • 

I /j ~":"d' 
, d I dr - 1 I 1'-2 

O - -----' nrN ~ p ) p ~ ... 
----,~(, r-1 r-2 
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Also, 

, -" 

" 0 d~ 0 'l/Jr-l 

1/ --" 'l/Jr-2 0" 0 dr 

'l/Jr-2 0 J;-l 

so the square commutes. We may proceed in this way along the diagram, finding R-maps 
1/ , , 

'l/Ji : Pi ---t Pi for 0 < i < r - 1 and 'l/J : N ---t N. 

Applying the (exact) functor HomRH (R, -) to the exact sequence P~' ---t N' ---t 0 gives 

us an exact sequence of projective R-modules 

d" d" d" o ---t Qr ~ ... --4 Qo ---4 Q ---t 0 

where 

and d~ : Qi ---t Qi-l is the map induced from J;. For each p;', we have a natural map 

"i : P;' ---t Qi (the inclusion of P;' into Qd so that for each i we have a commutative square 

Adding our new sequence to P~ ---t N ---t 0 gives us an exact sequence P~ EBQ* ---t N EBQ ---t 0 

if we define ~ : pl EB Qi ---t pl-1 EB Qi-l by (p, q) f--t (~(p), d~ (q)). Augmenting the 'l/Ji by 

defining ($i = ('l/Ji, "i) has the effect of making them injective. We have, for each i, a square 
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which is commutative, since for PEP;', 

( 'l/Ji-l ((t; (P)), "i-l (J; (p))) 

( ~ ( 'l/Ji (P) ), "i-l (J; (P))) 

( ~ ( 'l/Ji (P) ) , d~' ("i (P) ) ) 

d~ ( 'l/Ji (P), "i (P) ) 
I ~ 

di ( 'l/Ji (P) ) . 

52 

If we extend 1> by the zero map on the new projective summand, these changes do not 

affect the hypothesis or the conclusion of the theorem. (We shall drop the tilde on each 

of the 'l/Ji from this point.) 

Turning our commutative diagram upside down 

and thinking of it as lying in a sea of zeroes, we may regard it as a double complex and 

therefore as a first quadrant spectral sequence. The differentials on the EO-page are the 

vertical maps. Remembering that the 'l/Ji are injective, on the El-page we get: 

On the E2-page there are no relevant differentials, so we are looking at E oo
. 

Reflecting the initial diagram in the diagonal gives rise to a second first quadrant 

spectral sequence, so that the EO-page looks as follows: 

N' 1/J )N 

1 " Id~ do 

P," 
1/Jo , 

) Po EB Q 
° 1 " d1 1 d: 
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The differentials on EO are the vertical maps, but the columns are exact sequences and 

so the spectral sequence collapses: the El-page consists entirely of zeroes. Since the two 

spectral sequences converge to the cohomology of the total complex, it follows that the 

original spectral sequence must have collapsed to zero as well and we conclude that we 

had an exact sequence 

0--+ Cokenpr cir) Coker1/Jr-l d~_~ ... ~ Coker1/Jo cio) Coker~ --+ 0; 

that is, Coker 1/J admits a resolution by modules of projective dimension at most 1 for 

o < i < r - 1, ending with a projective module at i = r. By Lemma 2.2.3, Coker ~ has 

projective dimension at most r. 

By hypothesis, or (¢) factors through a projective module and so by Lemma 2.2.1 there 

exists a map hr- 1 : P;'-l --+ or M satisfying or (¢) = hr- 1 0 J;. We have the following 

diagram: 

" " dr "dr - 1 o ------7 or N ------7 P --t ... r-l 

W(4))l / 14>r-lo¢r-l /hr - 1 

o --t or M --t Pr-l --t ... 
dr dr-l 

By commutativity of the square, 

and so if we define t5r-l := ¢r-l 0 1/Jr-l - dr 0 hr-l, then ImJ; C Kert5r- 1 because 

t5r- 1 0 J; = O. Thus we have the following: 

" 1m dr _ 1 

)/' ":~ r-l :":": ~ 

: " "" d 
" :" r-l p" 

p 1:" ) r-2 r- : 

. . . f I' . t P" Th ap 9 . 1m J' --+ P, 1 is defined where {, IS the mclusIOn 0 1m ar-l m 0 r-2' e m r-l . r-l r-

b ( ) = ~ (13) where 13 is a pre-image of 0', which is well-defined: if T is another y gr-l 0' Ur-l 

pre-image of C\', then 13 - T E KerJ;_l C Kert5r- 1 and so t5r - 1 (f3) = t5r-l(r). 
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Because L is a split monomorphism, Lemma 2.2.1 again provides a map hr - 2 : P;'-2 ---+ 

P r - 1 satisfying 9r-l = hr - 2 0 L, and so 

In particular, this means that cPr-l 0 'l/Jr-l = hr- 2 0 d;_l + dr 0 hr- 1, which by induction 

we can extend to 

for all 0 < i < r - 1. 

We have the following diagram 

d" d" " d" 
r II r-l d1 p," 0 o ----4) fY N --------4) Pr - 1 ) . . . ) 0 ------1) N' -----+) 0 

11/Jr ............... l'lfJr -1 .... ·l'lfJo .. ,'· .. ··· .... l'lfJ 
, .. ' I , .. , .' 

d.", dr -1 d1 , do 
0----1 fF(N) EB Qr ~ Pr - 1 EB Qr-l -----t ... ~ Po EB Qo ~ N EB Q -----t 0 

1":C~)<-1 1~'-1~O b h-1 I-
I.:; dr dr -1 ~ d1 do o ----'l) fY M ) Pr-l ) . . . ) Po ------7) M -----+) 0 

in which 

do 0 cPo 0 'l/Jo 

do 0 (h-l 0 d~ + d1 0 ho) 

do 0 h-l 0 d~. 

Since d~ is surjective, it foHows that cP 0 'l/J = do 0 h_1• 

Consider the pushout of the maps 'l/J and h_1 : 

h-1 
N' )Po 

1'lfJ 10 

NEBQ~X 
¢ 

Since 'l/J is injective we have, by the properties of pushout, that () is injective and cP = w 0 11· 
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Look at the following diagram: 

I h-l 
N --------+) Po 

I~ 16 

NffiQ 1] )x 

1 1 
Coker ¢ = Coker () 

Equality in the bottom row follows from exactness of the columns. Since Coker'IjJ has 

projective dimension at most r and Po is projective, we may use the Horseshoe Lemma to 

conclude X has projective dimension at most r. 

If Nand !"Y N are finitely generated, then X may be taken to be finitely generated. For, 

let us suppose Po was chosen to be free at the beginning. Since N' is finitely generated, 

Po contains a finitely generated projective summand F containing the image of h_ l . If we 

replace Po by F and let X be the pushout of the maps h-l : N' -+ F and 'IjJ, then X is 

finitely generated because F, Nand Q are. From here, we may proceed as before. 0 

Remark 2.2.5. We could have avoided using a spectral sequence argument via the following 

reasomng: 

Let 

be our original diagram. If we add the cokernels: 

d" " " d" 
"dr - 1 d1 " 0 ) N' o ---~)!y N r ) Pr - l )... ) Po -------+) 0 

1~, , l~'-', , l~o 1~ 
d, dr - 1 d1 , do N Q 

0--1 !"Y(N) ffi Qr ~ Pr- 1 ffi Qr-l --1 ... ---) Po ffi Qo ) ffi ------7) 0 

1 1 d,-I do 1 do 1 o -----t) Coker ¢r dr
) Coker ¢r-l ) ... ---t Coker ¢o ---t Coker 'IjJ ---t 0 

bearing in mind that each of the ¢i are injective, we see that we have a short exact sequence 

". ' of chain complexes. If we call the top sequence C*, the mIddle C* and the bottom C*, 
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we get a long exact sequence 

in homology, which is actually equal to 

.•. -------t Hn+l (C~) 

~ , 
0-----70 -----7 Hn(C*) 

~ 
0-----7" . 

since C~ and C* are exact sequences. But this means that Hn(C~) = 0 for all n and so 

C~ is an exact sequence also. 

Lemma 2.2.6. Let R be a ring and M be a countably presented R-module. If M is flat 

then it has projective dimension at most one. 

Proof. See Lemma 4.4 of Bieri [6). o 

Proposition 2.2.7. Let G be a group, H a subgroup of G with [G : H] < 00 and R a 

strongly G-graded t-algebra. If M is a countably presented R-module which is projective 

as an RH-module and flat as an R-module, then M is projective as an R-module. 

Proof. By Lemma 2.2.6, M has projective dimension at most one. Let 

be a projective resolution of M. Since M is projective as an RH-module, we can find an 

RH-map, making the diagram 

commute and so the resolution splits as a sequence of RH-modules. Since PI is projectiV('. 

it is H-projective by Lemma 1.4.4 and H-injective by Lemma 1.4.12. Therefore we can 

find an R-map " making the diagram 
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o ------1 PI ~ Po 

II ,/~:, 
PI 

commute; that is, the resolution splits as a sequence of R-modules, Po rv M ffi PI and so 

M is projective. D 

Proposition 2.2.8. Let R be a ring for which the left finitistic dimension is finite. Then 

any fiat left R-module has finite projective dimension. 

Proof. This is Proposition 6 of [19]. D 

Theorem 2.2.9. Let G be a group, H a subgroup of G with [G : H] < 00 and R a strongly 

G-graded k-algebra. Suppose RH is left Noetherian and has left global dimension at most 

r. Then the following are equivalent for a left R-module M .. 

(i) M has finite projective dimension. 

(ii) M has finite weak dimension. 

(iii) M is a filtered colimit of finitely generated left R-modules of finite projective dimen-

szon. 

-0 
(iv) For every finitely generated left R-module N we have Ext R (N ,M) = O. 

Proof. (i)::::} (iv): If M has projective dimension at most n, then on M is projective, so any 

homomorphism from on N to on M factors through a projective module, HomR(Oi N, Oi M) 

= 0 for all i > n and so ~i HomR(Oi N, Oi M) = O. 

(iv) ::::} (iii): Let I be a small skeleton of the category whose objects are the homomor

phisms N ~ M with N finitely generated and whose morphisms are the commutative 

triangles; i.e. for objects N ~ M, N' ~ M, a morphism from 0' to {3 is an R-map 'Y 

making the diagram 

N 

~ 
'Y M 

'~ 

commute. 



CHAPTER 2. GENERALISATIONS 
.j?:3 

We show that I is filtered. Given two objects N ~ M and N' L M, we can build 

the commutative diagram 

N 

£1 ~Q 
,(Q~ 

N EEl N ------7 M 

li~ 
N' 

where t, t' are respectively the inclusions of N, N' into N EEl N'. It follows that the first 

condition is satisfied. 

For the second condition in the definition of a filtered category, suppose we have two 

morphisms from a to {3: 

N' 

Taking the cokernel of ¢ - '1/;, we naturally obtain a commutative diagram 

Now, 0 = 7r 0 (¢ - '1/;) = 7r 0 ¢ - 7r 0 '1/;; that is, 7r 0 ¢ = 7r 0 'ljJ so the second condition is 

satisfied. 

Let J be the full subcategory of I whose objects are the morphisms N ~ M with N 

a finitely generated left R-module of projective dimension at most r. We show that J is 

cofinal in I; that is, every every object of I is the domain of a morphism whose codomain 

is an object of J. Let N ~ M be an object of I. Because RH is left Noetherian, 

we have by Lemma 1.1.14 that R is Notherian and so fY N is finitely generated if N 

is. i&t~ (N, M) = 0 for all finitely generated left R-modules N by hypothesis, so by 

Proposition 2.1.16, a goes to zero in HomR(fY N, fY M) where r is the global dimension of 

RH , and Proposition 2.2.4 tells us that a factors through a finitely generated left R-module 
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X of projective dimension at most T. We have a commutative diagram 

x 

Viewing X ~ M as an object of J and I as a morphism between a and {3, we see that 

since the object N ~ M of I was arbitrary, J is a cofinal subcategory. The module M 

is the filtered colimit of the functor from I to the module category which sends an object 

N ~ M to N. It follows that M is also the filtered colimit of the same functor on the 

subcategory J; that is, M is a filtered colimit of finitely generated left R-modules of finite 

projective dimension. 

(iii) "* (ii): Let M = ~A M A, a coli mit of finitely generated left R-modules of finite 

projective dimension. It follows from Lemma 1.5.21 and the fact that RH has finite global 

dimension that R has finite finitistic dimension since for any left R-mod ule A of finite 

projective dimension, 

Each MA has finite projective dimension by hypothesis, so the weak dimension of each MA 

is finite (see Example 1.5.14). Let n := max { WdR(MA)}. It follows by Lemma 1.5.16 and 

Example 2.1.10 that 

Tor~(R,M) 

that is, M has finite weak dimension. 

Tor~(R,~MA) 
A 

~ Tor~(R, M A) 

A 

0; 

(ii) :::::} (i): Since M has finite weak dimension, it admits a finite resolution 

o --+ Fn --+ ... --+ Fl --+ Fo --+ M --+ 0 

by flat R-modules. As was noted above, R has finite finitistic dimension so that by 

Proposition 2.2.8, each Fi in the resolution has finite projective dimension. It follows by 

Lemma 1.5.10 that M has finite projective dimension also. 0 
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Corollary 2.2.10. Let G be a group, H a subgroup of G with [G : H] < x and R 

a strongly G-graded lk-algebra. Suppose RH is left Noetherian and has finite left global 

dimension. If M is a left R-module which does not have finite projective dimension. then 

there exists a finitely generated left R-module N such that Ext~ (N ,M) i- o. 

2.3 LH~ groups 

In this short section we recall the definition of Kropholler's class of LHJ-groups. 

Given the class J of finite groups, define a class of groups HaJ for each ordinal a as 

follows. For Q = 0 we define HoJ = J. For Q > 0 we define a group G to be in HaJ if G 

acts cellularly on a finite-dimensional contractible CW-complex X, in such a way that the 

setwise stabiliser of each cell is equal to the pointwise stabiliser and is in H,8J for some 

fJ < Q. The class HJ is then defined to be the union of all the HaJ. A group G is said to 

be an LHJ-group if every finitely generated subgroup of G is an HJ-groUp. 

The following useful observation appears in [23]. 

Lemma 2.3.1. If G is a countable group whose finitely generated subgroups belong to HJ 

then G is in HJ. 

The interested reader can find a detailed discussion of the class of LHJ groups and 

indeed the closure operations Hand L in Kropholler's paper [22]. We will use the definition 

of LHJ-groups throughout the remainder of this thesis without further comment. 

2.4 Induced modules 

Chouinard's theorem states that if lk is a commutative ring of coefficients and G is a finite 

group, then a lkG-module is projective if and only if its restriction to every elementary 

abelian subgroup is projective. The result was subsequently generalised to the strongly 

group-graded case by Aljadeff and Ginosar in [1]. In this short section we will apply their 

theorem to generalise a result of Benson. 

Here is a useful observation: 

Lemma 2.4.1. Let G be a group and R a strongly G-graded lk-algebra. Then 

(i) If V is projective over lk then V ® - carries projective R-modules to projecfill(' R

modules; 
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(ii) if V is free over lk, then V ® - carries free R-modules to free R-modules. 

Proof. This is Corollary 3.3 of [10]. o 

The following lemmata were first proved in [24]. The first result is simply proved so 

we reproduce the details. 

Lemma 2.4.2. Let G be a group and R a strongly G-graded ft.-algebra. If M is a finitely 

presented left R-module, then there is a finitely generated subgroup H < G and a finitely 

presented RH-module M' such that M is isomorphic to the induced module R ®RH M'. 

Proof. Let 

(RY --+ (R)d --+ M --+ 0 

be a finite presentation for M. Then the the first map in this sequence is represented by 

a d x r matrix with entries from R. Each entry of this matrix is equal to a (unique) 

finite sum of non-zero homogeneous elements, each coming from some Rg,g E G. Since 

the number of such homogeneous elements is finite, the number of g EGis finite. Let 

H be the subgroup of G generated by these elements. We can use the same matrix over 

H to present a module M' : (RHY --+ (RH)d --+ M' --+ O. Applying R ®RH - to this 

sequence gives a presentation (RY --+ (R)d --+ R ®RH M' --+ 0 since induction is right 

exact. Exactness of the rows and equality of the first two columns of 

, 
imply that M is isomorphic to R ® RH M . o 

Lemma 2.4.3. Let G be a group, H a subgroup of G, R a strongly G-graded lk-algebra 

and M a left RH-module. Then R ®RH M is a left R-module of type FPoo if and only if 

M is a left RH-module of type FPoo ' 

Proposition 2.4.4. Let G be a group and R a strongly G-graded ft.-algebra. If AI is an R

module of type FP 00, then there is a finitely generated subgroup H < G and an RH -module 
, 

M' of type FP 00 such that M is isomorphic to the induced module R ® RH AI . 

Proof. Every module of type FP 00 is finitely presented. Now apply Lemma :2.-1.2 then 

Lemma 2.4.3. 
o 
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Proposition 2.4.5. Let G be a group, R a strongly G-graded k-algebra and M a countably 

presented left R-module. Then there is a countable subgroup H < G and a countably 

presented left RH-module M' such that M is isomorphic to the induced module R®RH lU'. 

Proof. Let 

be a countable presentation for M and let {a 1, a2, ... } be a fixed basis for A and {b1 , b2, ... } 

a fixed basis of B. For each n E N, define An = EBf=l Rai and Bn = EBf=l Rbi. Then 

A = ~iAi and B = ~iBi. 

For each i E N, there exists a(i) E N such that a(Ai) C Bo.(i)' Let ai denote the 

restriction of a to Ai. Then for each i EN, we have maps 

in which the map ai can be expressed as an a(i) X i matrix with entries from R. Fix i. 

As in the previous theorem, we can find a finitely generated subgroup Hi of G such that 

all the entries in the matrix associated to ai come from RHi' Thus we have a chain 

of subgroups of G. Let H := ~i Hi. Then H is a countably generated subgroup of G and 

the matrix associated to each ai can be thought of as having entries from RH· Let Li be 

the left RH-module presented by ai, then we have an exact sequence 

and we see that Li is a finitely presented left RH-module. It follows that we have an exact 

sequence of colimit systems: 

Taking the colimit of the columns, we get an exact sequence 

A~B-t~Li-tO, 
I 

and so M' := ~i Li is a countably presented left RH-module. Since R ®RH - is a right 

exact functor, we see that M '" R ® RH M', as required. 0 

The following definition requires us to recall the module B, introduced in Examplp 

1.2.9. 
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Definition 2.4.6. Let G be a group and R a strongly G-graded Ik-algebra. Left R-modules 

M for which B ® M is projective as a left R-module (with the semi-diagonal action of R) 

are said to be cofibrant. 

Proposition 2.4.7. Let G be a group and R a strongly G-graded Ik-algebra. Suppose that 

M is a cofibrant left R-module. If M has finite projective dimension then M is projective. 

Proof. We have a split short exact sequence of Ik-modules: 

o --+ Ik --+ B --+ B --+ O. 

Tensoring this with Mover Ik yields the short exact sequence 

o --+ M --+ B ® M --+ B ® M --+ O. 

B is a free Ik-module (see Lemma 5.1 of [4]) and so by Lemma 2.4.1, B ® P is a projective 

left R-module for any projective left R-module P. On tensoring a projective R-resolution 

of M with B, we see that PdR(B ® M) < pdR(M). It follows, by Lemma 1.5.9, that 

0= pdR(B®M) = max{pdR(M),pdR(B®M)}. That is, M is a projective R-module. D 

Lemma 2.4.8. Suppose that r a (a < ,) is an ascending chain of groups, for some 

ordinal" with union Ua<1' r a = rand R is a strongly r -graded Ik-algebra. If M is a 

left R-module which is projective as a left Rr a -module for each subgroup r a, then M has 

projective dimension at most one. 

Proof. Define r l' := r. We may assume, is a limit ordinal for if it were a successor 

ordinal, then there would be a greatest ordinal f3 less than, and so r = r .8+1' We may 

also assume that the union r = Ua<1' r a is continuous in the sense that if f3 < , and f3 is 

a limit ordinal, then r.8 = Ua<.8 r a' 

Since M is projective as a left Rl-module, P = R ®Rl M is a projective R-module 

(by Lemma 1.5.20) and the map from P to M is a surjective homomorphism. For each of 

the subgroups r a, let Qa := R ®Rra M and let Pa be defined as the kernel of the natural 

surjective map from P to Qa. Thus for each a < " we have a short exact sequence 

in which Qa is projective. Define Q r := M. 
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If Q < f3 < " then Qf3 < Qa and Pa < Pf3. It follows that the surjective map Qn --+ Q3 

splits and its kernel K is projective. We have the following diagram 

0 0 K 

1 1 1 
0---4 lPa ) P ---7 Q a ------1 0 

1 1 ° -----l ) Pf3 ) P -----7 Q f3 -----7 0 

1 1 1 
Pf3 /Pa 0 0 

and so by The Snake Lemma, K ~ Pf3/ Pa. Thus the short exact sequence 0 -+ Pu -+ 

Pf3 -+ Pf3/ Pa -+ 0 splits and Pf3 = Pa EB (Pf3/ Pa). Furthermore, if (3 < , and (3 is a limit 

ordinal, then Pf3 = Ua<f3 Pa. It follows that the kernel P, of P -+ M has a transfinite 

filtration by projective modules. 

We have a coli mit system 

~(O -+ Pa -+ P -+ Qa) 
a<, 

of short exact sequences which is equal to 

o -+ ~ Pa -+ P -+ M -+ 0 
a<, 

because lim is left exact and lim Q a = M, by the above discussion. Thus it remains 
---+ ---+a < I' 

to show lim Pa (= limPa ) is a projective R-module. We will do this by showing 
----7 a < I' ---+ 

HomR(~Pa, -) is an exact functor. 

Given a surjective map U ~ V -+ 0, we have the following diagram 

--~)o 

where Ba is the map obtained from ()a by projectivity of PCt' We want to show that we 

can always find a map lim Pa -+ U making the bottom triangle commute in such a wa ... ' 

that Bf3 iPa = Ba for all Q < f3 < ,. 

First choose Bo. Then, for the choice of B('o we have two options: 
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• a is a limit ordinal. 

Define 

• a is a successor ordinal. 

----4)0. 

First choose any map ¢ ; Po+1 -+ U such that 7r 0 ¢ = 8a+1. On Pa, look at the following 

composite; 

o. 

Thus Oa - ¢ 0 ta factors through W ;= Ker7r. 

We can extend Oa - ¢ 0 ta to a map 'IjJ ; Pa+1 -+ W (because Pa+1 = Pa ffi (Pa+t/ Pa), 

as we saw above). Consider ¢ + 'IjJ : Pa+1 -+ U ; 

Define Oa+1 ;= ¢ + 'IjJ. The result follows. 

¢ 0 ta - ¢ 0 ta + 8 a 

Oa. 

Here is a Lemma and a Corollary due to Cornick and Kropholler: 

o 

Lemma 2.4.9 (The tensor identity for strongly graded algebras). If G is a group. H a 

subgroup of G and R a strongly G-graded k-algebra, then for every left R-module 1'1. then' 

is an isomorphism 

R0RH M ~ k[G/H] 0 AJ;r 0m H gH 0rm 
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for r of degree g. R ®RH M has the action of R on the left and Ik[G/HJ ® M has the 

semi-diagonal action of R. 

Proof· This is Lemma 5.1 of [10]. 
o 

Corollary 2.4.10. If G is a group, H a subgroup of G and R a strongly G-graded Ik

algebra, then for every left R-module M, there is an isomorphism 

Hom!k{lk[G/H],M) rv HomRH(R,M);¢ H (r H r(¢(g-lH))) 

for r of degree g. HomRH (R, M) has the usual action of Rand HomJk(Ik[G / H], N) has the 

semi-diagonal action of R. 

Proof· This is Corollary 5.2 of [10]. o 

The following theorem generalises Theorem 5.7 of [3] although the argument is essen

tially the same. 

Theorem 2.4.11. Let G be an LHJ-group and R a strongly G-graded Ik-algebra. If M is 

a left R-module such that B ® M has projective dimension at most rand M has projective 

dimension at most r as a left RH-module for all finite subgroups H of G, then M has 

projective dimension at most r. 

Proof. Observe that or M is a cofibrant R-module: if P* ---t M ---t 0 is a projective 

resolution of M as an R-module, then the rth kernel of B ® P* ---t B ® M ---t 0 is B ® nr M 

which is projective because B ® M has projective dimension at most r. Also, fY M is 

projective as an RH-module for all finite subgroups H of G. It follows that we may 

assume B ® M is projective and that M is projective as an RH-module. 

First suppose that G is an HJ-group. We use an inductive argument to prove that AI 

is projective as an Rr-module for all subgroups r of G. The proof is on the least ordinal 

a such that r belongs to the subclass HJa of HJ. If a = 0, then r belongs to HJo which 

is the class of finite groups and so M is projective as an Rr-module by hypothesis. 

If a > 0 then there is an action of r on a finite dimensional contractible cell complex 

X with each isotropy group belonging to HJ,B for some f3 < a. The cellular chain complex 

of X is an exact sequence 
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of permutation modules over lkf. Tensoring with M and using the semi-diagonal action 

of Rr yields the exact sequence 

o --+ Cr ® M --+ ... --+ C1 ® M --+ Co ® M -+ M -+ ° 
of Rr-modules. Now each Cj is a· direct sum of modules of the form lk[f / KJ where K j~ a 

cell stabiliser for the action of f on X and so Cj ® M is a direct sum of modules of the 

form lk[f / KJ ® M. Using the tensor identity, we have 

Ik[f/K] ® M rv Rr ®RK M. 

By induction, M is projective as an RK-module for all isotropy groups K. By Lemma 

1.5.20, each of the Rr ®RK M are projective Rr-modules and so M has finite projective 

dimension as an Rr-module. Applying Proposition 2.4.7, we deduce that M is a projective 

Rr-module. The case f = G proves the theorem for H~-groups. 

Now suppose f is an LH~-group which is not an H~-group. Then r is necessarily 

uncountable and so can be expressed as an ascending union r = Ua<, r a (for some ordinal 

"y) in such a way that each fa has strictly smaller cardinality than r. Thus R = Ua<, Rr 0 • 

By induction, M is projective as a left Rra -module for each subgroup r. By Lemma 2.4.8, 

M has projective dimension at most one. By Proposition 2.4.7, M is projective. D 

Here is the statement of Aljadeff and Ginosar's theorem: 

Theorem 2.4.12. Let G be a finite group, R a strongly G-graded 't.-algebra and N a left 

R-module. Then the following are equivalent: 

(i) N is projective over R. 

(ii) N is projective over RE for each elementary abelian subgroup E of G. 

The following is a generalised and strengthened version of the Vanishing Theorem of 

Cornick and Kropholler ( [10], Section 8). Their theorem covers the case when G is an HJ

group. We show that their result holds for any LH~-group and in fact that it makes ~(,Ilse to 

state the result for a pair consisting of an arbitrary group together with an LHJ-~ubgroup. 

When this subgroup is an H~-subgroup, our argument is similar to that of Cornick alld 

Kropholler, but even this special case is not simply a corollary of the Cornick Kropholkr 

result. 
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Theorem 2.4.13. Let G be a group, R a strongly G-graded Ik-algebra, AI a left R-module 

of type FP 00 and N a left R-module which has finite projective dimension over RH for all 
-i 

finite subgroups H of G. Then Ext R (M, R 0 Rr N) is zero for all i and all LHJ -subgroups 

f of G. If G is an LHJ-group, then Ext~(M,N) is zero for all i. 

Proof. First assume that f is an HJ-groUp. We use an inductive argument on the lea~t 

ordinal a such that f belongs to the subclass HaJ of HJ. If Q = 0, then f belongs to Ho~ 

which is just the class of finite groups and so R 0Rr N has finite projective dimension by 

Lemma 1.5.20. Thus the claim holds in this case because complete cohomology groups 

vanish on modules of finite projective dimension. 

If a > 0 then there is an action of f on a finite dimensional contractible cell complex 

X with with each isotropy group belonging to H,BJ for some f3 < Q. The cellular chain 

complex of X is an exact sequence 

o -+ Cr -+ .. , -+ C1 -+ Co -+ Ik -+ 0 

of permutation modules over Ikf. Tensoring with N and using the semi-diagonal action of 

Rr, yields the exact sequence 

o -+ Cr 0 N -+ ... -+ C1 0 N -+ Co 0 N -+ N -+ 0 

of Rr-modules. Applying the functor R0Rr - preserves exactness because R is projective 

as a right Rr-module, by Lemma 1.1.13 and yields the exact sequence 

0-+ R0Rr (Cr 0N) -+ ... -+ R0Rr (C1 0N) -+ R0Rr (Co 0 N ) -+ R0Rr N -+ 0 

of R-modules. Each Cj is a direct sum of modules of the form Ik[f / K] where K is a cell 

stabiliser for the action of f on X and so R 0 Rr (Cj 0 N) is a direct sum of modules of 

the form R 0Rr (Ik[f / K] 0 N). Using the tensor identity, we have 

B 
. d t' E-ti (M R IQ, N) vanishes for all isotropy groups K. Since M is of type y In uc lOn, x R , '<YRK 

FP 00, Ext~ (M, -) commutes with arbitrary direct sums and so we deduce that 

for all i,j. Thus the functors &t~(M, -) vanish on all but the right-hand moduh' ill th<' 

f R d I °d ""a By Lemma 2.1.13. it follow~ t hat the~(' fllIlrtor~ 
exact sequence 0 -mo u es, V'l e sup,. < 

vanish on the right-hand module as well. 
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Assume now that r is an LH~-group. Then, r = ~r' where the limit is taken over all 

finitely generated subgroups r' of r, ordered by inclusion and so R - In'm R R 11' r - --? r' . eca mg 

that every finitely generated LH~-group is an H~-group, it follows that for all i. 

-i . 
ExtR(M,R0Rr N) -i 

ExtR(M,~R0Rrl N) 
----i 

~ExtR(M,R 0R
r
, N) 

O. 

If G is an LH~-group, then taking r = G establishes the theorem. o 

Kropholler outlines a version of the Eckmann-Shapiro lemma for complete cohomology 

in [24]: 

Lemma 2.4.14. Let G be a group, H a subgroup of G, R a strongly G-graded k-algebra, 

M a left R-module and N a left RH-module. Then for all n, there is a natural isomorphism 

between Ext~ (R0 RH N, M) and Ext~H (N, M) . 

The concluding result of this chapter was inspired by Theorem 7.6 of [3]. 

Theorem 2.4.15. Let G be an LH~-group and R a strongly G-graded k-algebra such that 

RI is left Noetherian and has finite left global dimension. Let M be a left R-module such 

that for every finite elementary abelian subgroup E of G and every finitely generated left 
-0 

RE-module N we have ExtR(R 0RE N,M) = O. Then 

(i) M has finite projective dimension as a left RH-module for every finite subgroup H 

ofG. 

(ii) If M is of type FP 00, then M has finite projective dimension. 

(iii) If B 0 M has finite projective dimension then M has finite projective dimension. 

Proof. By Lemma 2.4.14 we have that 

by hypothesis. By Theorem 2.2.9, we deduce that M has finite projective dimension as a 

left RE-module for every finite elementary abelian subgroup E of G. 

Fix a finite subgroup H of G. Then H necessarily contains finitely many elementar.\" 

abelian subgroups E. Define n := max{pdRE (M)}. Then any partial projectiy(' H's(}lutioll 

of M as a left RH-module 

o --+ K --+ P n --+ ... --+ Po --+ AI ---+ 0 
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(where K is the kernel of the map Pn -+ Pn-d is necessarily a projective resolution of 

M as a left RE-module; that is, K is a projective RE-module for each elementary abelian 

subgroup of H. By Theorem 2.4.12, K is a projective RH-module and so ~1 has finite 

projective dimension as a left RH-module. 

If M is of type FPoo , we may apply Theorem 2.4.13 (taking N = ~1 and i = 0) and 

Lemma 2.1.8 to deduce M has finite projective dimension. If B 0 M has finite project in' 

dimension, we may apply Theorem 2.4.11 to deduce M has finite projective dimension. 0 



Chapter 3 

Categorical Considerations 

3.1 Some basics 

We recall some basic notions. Much of what follows in this section can be found in [21] 

or [29]. 

Definition 3.1.1. Let C be an abelian category. A complex (X., d.) in C consists of a 

sequence of modules and maps 

where each Xi is an object of C and each of the di (called differentials) are morphisms 

in Homc(Xi' Xi-d subject to the condition di- 1 0 di = 0 for all i E Z. 

Definition 3.1.2. If (X., d.) and (Y., d.) are complexes, then a chain map 

f = f. : (X., d.) -+ (Y., d.) 

is a sequence of maps Ii : Xi ---+ Yi for all i E Z making the following diagram commute: 

Remark 3.1.3. The category of complexes is again abelian (see, for example [29]) and is 

denoted by C(C). 

Definition 3.1.4. A complex is bounded above if Xi = 0 for large enough 71. bounded 

below if Xi = 0 for small enough n and bounded if bounded above and lwlow. 

71 
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Example 3.1.5. Every short exact sequence a -+ A -+ B -+ C -+ a is a complex if we 

define Xl = A, Xo = B, X-I = C and Xi = a for all i rt {-La, I}. The differential~ 

agree with the maps of the short exact sequence and are the zero map elsewhere. This is 

an example of a bounded complex. 

Similarly, any we can associate a complex to any module by defining Xo = !II and 

Xi = a for all i =J 0 and letting all differentials be the zero map. Alternatively. we could 

associate to M a projective resolution of M and define X-I = M. Xi = a for i < -2 

and Xi = Pi for i > 0 where the Pi come from the projective resolution of M. The first 

complex associated to M is bounded and the second bounded below. 

Definition 3.1.6. A chain map f : (X., d.) -+ (Y., d.) is said to be nullhomotopic if, 

for all i, there are maps Sn : Xi -+ Yn+l with 

If f, 9 : (X., d.) -+ (Y., d~) are chain maps, then f is homotopic (or homotopically 

equivalent) to g, denoted f ~ g, if f - 9 is nullhomotopic. ~ is an equivalence relation on 

chain maps. 

For a complex X in C(C), the nth-homology of X is the quotient Kerdn /lmdn +1. 

Thus we have an additive functor Hn( -) : C(C) ----+ C. Complexes with zero homology are 

called exact or acyclic. Chain maps which induce isomorphisms on the level of homology 

are called quasi-isomorphisms. 

Example 3.1.7. Let M be a module in an abelian category C. If M has a projective 

1 t ·---'. P ----'" R ~~ M ----'" a then we can form the fonowing map of complexes: reso U Ion . . . ---r I ---r 0 ----r ---r, 

dl 
... --------7 P2 --------7 PI --------7 Po --------7 a --) ... 

1 1 1° 1 
---l) 0 ) a ) M --------7 a ----7 ... 

with M appearing in degree O. Upon taking homology, we obtain 

. . . --------7 0 -----) 0 -----) Po / IIll d 1 -----) a --) ... 

1 1 1~ 1 
.. , -----) 0 -----) 0 ) !II ) a --) ... 
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and we see that the map of complexes defined before is a quasi-isomorphism. 

Proposition 3.1.8. Homotopic chain maps induce the same homomorph' b t h 1,sm e U'f'f'lI 0-

mology groups: if j, 9 : (X., d.) -+ (Y., d.) are chain maps and f :::::: g, then 

Definition 3.1.9. Let (X., d.) -+ (Y., d.) be complexes and j a chain map between them. 

The mapping cone of j is the complex M(f) where 

and the differentials are given by 

that is, 

for x E Xi-I, Y E Yi. M(f) is related to X and Y via a(f) : Y -+ M(f); y f-t (0, y) and 

(3(f) : M(f) -+ X[l]; (x, y) f-t -x. 

Lemma 3.1.10. A chain map j : (X., d.) -+ (Y., d.) is a quasi-isomorphism if and only 

if the mapping cone M (f) is exact. 

Proof. This is Corollary 1.5.4 of [29]. o 

Given the category of complexes C (C) for some abelian category C, the homotopy 

category K(C), is the category whose objects are the same as those of C(C), but whose 

morphisms are 

HOillK(C) (X, Y) = HOffiC(C) (X, Y)/ rv 

where rv denotes homotopic equivalence. K(C) is an additive category, but may no longer 

be abelian. 

Definition 3.1.11. Let n be an integer. The shift (by n) functor [n] is an au

tomorphism of the category C(C) which sends a complex (X., d.) to another complex 

(X[n].,d.[nj) defined by X[n]i := Xi+n and di[n] := (-l)ndi+n. 

Remark 3.1.12. It is a feature of K(C) that l\J(a(f)) = X[l]. 
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Suppose we have a category K equipped with an automorphism T. A triangle on an 

ordered triple (A, B, C) of objects of K is a triple (u, v, w) of morphisms, where u : A -t B. 

v : B -+ C and w : C -+ T A. This is displayed figuratively thus: 

C 

;/~ 
A U )B 

A morphism of triangles is a triple (j, g, h) forming a commutative diagram in K: 

We now proceed to the definition of a triangulated category, essentially as it appears 

in Weibel's book (page 374 of [29]). It will be noted that Weibel's definition is the same as 

that of Verdier (see page 266 of [13]). Konig's treatment (see page 11 of [21]) is different: he 

has six axioms to Verdier and Weibel's four. What Konig and Verdier call a 'distinguished 

triangle,' Weibel refers to as an 'exact triangle,' and Verdier has no name for the axiom 

the other two call 'the octahedral axiom'. 

Definition 3.1.13. An additive category K is called a triangulated category if it is 

equipped with an automorphism T : K -+ K (called the translation functor) and with a 

family of triangles (u, v, w) (called the distinguished triangles in K) which are subject 

to the following four axioms: 

(TR1) Every morphism u : A ----+ B can be embedded in a distinguished triangle 

(u, v, w). If A = Band C = 0, then the triangle (idA, 0, 0) is distinguished. If (u, v, w) is 

a triangle on (A, B, C), isomorphic to a distinguished triangle (u' , v' , w') on (A', B' , C' ), 

then (u, v, w) is also distinguished. 

A U )B v )C w 

1~ I 1 ~ I 1 ~ I 

A'~B'~C'~TA' 

This is really three axioms; indeed, they are the first three axioms (TRO, TRl, TR2) in 

Konig's paper. 

(TR2) (Rotation). If (u, v, w) is a distinguished triangle on (A. B. C). then both 

its 'rotates' (v, w, -TU) and (-T-1W, u, v) are distinguished triangles on (B, C. 7.1) and 
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(T-
1 
C, A, B) respectively. Konig's rotation axiom states that (u, v, w) is distinguished 

if and only if (v, w, -TU) is distinguished, which is seen to be equivalent to Weibel and 

Verdier's axiom. 

(TR3) (Morphisms). Given two distinguished triangles 

and 

C 

;/~ 
A U )B 

C' 

~,~ 
A

, U , 
--------4) B 

with morphisms f : A ---+ A', g : B ---+ B' such that gu = u' f, there exists a morphism 

h : C ---+ C' so that (j, g, h) is a morphism of triangles. 

(TR4) (The octahedral axiom). Given objects A, B, C, A', B', C' in K, suppose there 

are three distinguished triangles: (u,j,8) on (A, B, C'); (v, x, i) on (B, C, A'); (vu, y, 6) on 

(A,C,B'). Then there is a fourth distinguished triangle (j,g, (Tj)i) on (C',B',A') 

such that in the following octahedron we have 

(1) the four distinguished triangles form four of the faces; 

(2) the remaining four faces commute (that is, 8 = 6f : C' ---+ B' ---+ T A and x = gy : 

C ---+ B' ---+ A'); 
, 

(3) yv = f j : B ---+ B ; 

(4) u6 = ig : B' ---+ B. 
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A' 

C' -----------------)~--------------~B' f 
Remark 3.1.14. The octahedral axiom is notoriously confusing. Verdier does not provide 

a pictorial representation of it, which is probably why he did not call it the 'octahedral 

axiom': it is not immediately obvious that one can associate a Platonic solid to the rather 

dry description of TR4 in [13]. In contrast, it would appear that every treatment of this 

axiom since Verdier has included some diagram or another in an attempt to make the 

octahedron explicit. Konig's picture looks nothing like an octahedron, it being a 4 x 4 

commutative diagram although the reader is assured that the octahedral axiom can be 

viewed as a "kind of first isomorphism theorem," which of course depends on how one 

numbers the isomorphism theorems. Weibel provides a very nice diagram in his book of 

an octahedron with appropriately labelled vertices and edges. One drawback is that it is 

difficult to discern a given face. The current author feels that a diagram retaining aspects 

of clarity from both authors would be one which is planar (Konig) and demonstrates the 

octahedron (Weibel), hence the use of the octahedral graph in TR4, above. 

Example 3.1.15. Proposition 10.2.4 of [29] shows that the category K(C) with automor

phism T = - [1] (shift by 1 composed with multiplication by -1) is a triangulated category. 

The triangles are diagrams of the form 

and the distinguished triangles are triangles of the form 

x -4 y ~ M(f) ~ X[l]. 

Remark 3.1.16. The category K(C) contains the full subcategories !\+lC) of boullded 
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below chain complexes, K- (C) of bounded above chain complexes and Kb(C) of bounded 

chain complexes, all of which are triangulated. 

3.2 Triangulated categories 

The following lemma requires us to recall the module B, introduced in Example 1.2.9. 

Throughout this section, Ik will denote a commutative ring 

Lemma 3.2.1. Let G be a group and Ik a commutative ring. Let B := B( G, Jk). Then 

(i) B is free as a Ik-module; 

(ii) B is free as a IkH -module for each finite subgroup H of G. 

Proof. This is Lemma 9.1 of [10]. o 

The sequence 

is split as a sequence of Ik-modules because the module B is free as a Ik-module (see Section 

3 of [9]). If R is a strongly group-graded Ik-algebra and P a projective left R-module, then 

Lemma 2.4.1 tells us that B ® P and B ® P are projective left R-modules with the semi

diagonal action of R. Also, given any left R-module M, we have a short exact sequence 

0---+ M ---+ B®M ---+ B®M ---+ 0 

of left R-modules. 

The following is a strengthened version of Proposition 9.2 of [10] in that we extend the 

result to include LH~-groups. The argument is essentially the same, the only difference 

being that we make use of Theorem 2.4.13. 

Proposition 3.2.2. Suppose that G is an LH~-group and that R is a strongly G-graded 

Ik-algebra. Let M be a left R-module of type FP 00· Then the following are equivalent: 

(i) B ® M has finite projective dimension over R. 

(ii) M has finite projective dimension as an Rl -module. 

Proof. (i) =} (ii) If B ® M has finite projective dimension over R. then by Lemma 1.5.20 

it has finite projective dimension over RI. By Lemma 3.2.1, B is free as a Ik-moduk aIld 
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so M has finite projective dimension as an R1-module because it is an R1-module direct 

summand of B ® M. 

(ii) =* (i) Suppose PdR1 (M) < 00. We show that B ® M has finite projective dimension 

as an RH-module for all finite subgroups H of G. Fix a finite subgroup H of G. Then B is 

free as a lkH-module by Lemma 3.2.1 and so B ® M is a direct sum of copies of lkH ® J1 as 

an RH-module. By the tensor identity, Lemma 2.4.9, lkH ® M is isomorphic to RH ®Rl "'1 

which has finite projective dimension over RH by Lemma 1.5.20. Since this is true for all 

choices of H, it follows from Theorem 2.4.13 that Ext~(M,B®M) = o. As was remarked 

in Section 9 of [10], this implies that Ext~ (B ® M, B ® M) = O. It follows by Lemma 

2.1.8 that B ® M has finite projective dimension as an R-module. o 

Let G be a group, H a subgroup of G, lk a commutative ring and R a strongly G-graded 

lk-algebra. Write Rmod for the category in which the objects are finitely generated left 

R-modules of type FP 00 which have finite projective dimension as left R1-modules. The 

maps from M to N in Rmod are given by HomR(M, N). We write Rstmod for the category 
-0 

with the same objects as Rmod, but whose maps are given instead by ExtR(M,N). 

We also define RMod to be the category in which the objects are left R-modules M such 

that B®M has finite projective dimension. The maps are given as before by HomR(M, N). 

We write RStMod for the category with the same objects as RMod, but whose maps are 

given instead by Ext~ (M, N). Note that since B is free as a lk-module, every module in 

RMod has finite projective dimension as an R1-module because M is an Rl-module direct 

summand of B ® M. 

By dint of Proposition 3.2.2, we see that when G is an LHJ-group and R is a strongly 

G-graded lk-algebra, Rmod can be realised as a full subcategory of RMod, and Rstmod can 

be realised as a full subcategory of RStMod. 

Proposition 3.2.3. Let G be a group and R a strongly G-graded lk-algebra. For left 

modules M, N in RStMod, the following are equivalent: 

(i) M is isomorphic to N in RStMod. 

(ii) There exist rENo and projective left R-modules P and Q such that 

~y (M) EB P f'V ~y (N) EB Q. 

Proof. We use::::: to denote an isomorphism in RStMod. 
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-0 -0 
(*) If M ~ N, then there exist f E ExtR(M,N) and 9 E ExtR(N.M) such that go! 

represents the identity in Ext~ (M ,M) and fog represents the identity in Ext~ (S . S). 

If 9 0 f represents the identity in Ext~ (M , M), then there exist an integer r ~ 0 

and p E HomR(fY M, fY N), (J E HomR(!"Y N, fY M) representing f and g. such that 

(J 0 p = idw M in HomR(fY M, fYM). Let ¢ and 'l/J be R-module representatives for p and 

(J respectively. Then there exist projective modules Ql, Q2 and R-maps 01 : fF 1\1 ---+ Q1. 

i31 : Ql -+ fY M, 02 : fY M -+ Q2, i32 : Q2 ---+ fF M with 'l/J 0 ¢ = idrzr /II + f31 001 and 

¢ 0 'ljJ = idw N + f32 0 02· 

To avoid notational overload, let us denote idrzr M by 1. Choose a projective module P 

which maps onto fY M. Since 'ljJ 0 ¢ -1 factors through Ql, we have the following diagram 

Ql 

'Y· .... l~l ...... (31 
~ ..... 6 ~o¢-l 

P -------t or M -------t or M 

where 

and we see that 'ljJ 0 ¢ - 1 maps though P. 

Denote the composite I 0 01 by E. Then 'l/J 0 ¢ - 6 0 E = 1. We have the following 

sequence: 

and so !"Y M is a direct summand of P EB or N. 

Composing (E, ¢) and (-6, 'ljJ) the other way, we obtain 

e : P EB Or N (-6,*) Or M (c:,¢; P EB Or N. 

The composite e is an idempotent endomorphism of P EB or N because 

e2 (c( 'ljJ - 6), ¢( 'l/J - 6))2 

(c( -6E + 'ljJ¢)( 'ljJ - 6), ¢( -6E + 'ljJ¢)( 'l/J - 6)) 

(c('ljJ - 6), ¢('ljJ - 6)) 

e. 

.' . (P or N P EB fF N), su I' - (' n)pn's(,Ilt~ 
Because e represents the Identity map III HomR EB . , 

( h I , - "d ) and so factors through a projective module Q . say. 
the zero map were - 1, PEBrzr N 
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I' - e is also an idempotent endomorphism of P ED fF N. We have the following diagram: 

, 
1 -e 

Im(I' - e) >------7 P ED fF N ~ P ED fF N ---» Im( I' - e) 

The composition of the maps is the identity on Im(l' -e). It follows that Im(I' -e) = Kere 

is a direct summand of Q' and so is projective. Thus Ker e ED fF M rv P ED fF N. 

(-{:::) We have HomR(Oi(M) ED P, Oi(N) ED Q) rv HomR(Oi M, Oi N) and HomR(ni(JV) ED 

Q, Oi(M)EDP) f""V HomR(Oi N, Oi M). It follows that there exist maps fi E HomR(Oi M. ni N) 

and 9i E HomR(OiN, OiM) such that Ii 0 9i = id0,iM in HomR(OiM, niM), and 9i 0 fi = 

id0,iN in HomR(OiN, OiN). Because 0 is a functor on these HomR sets, it follows, by the 
-0 

definition of ExtR(M,N), that M and N are isomorphic in RStMod. D 

Next, let RModc be the full subcategory of RMod consisting of the cofibrant R-modules 

and let RStModc be the corresponding full subcategory of RStMod. Similar definitions exist 

for Rmodc and Rstmodc . 

Lemma 3.2.4. Let G be a group, Ik a commutative ring of coefficients and R a strongly G

graded Ik-algebra. The inclusion of the subcategory RStModc into RStMod is an equivalence 

of categories. 

Proof. Let M be a module in RStMod and suppose that B 0 M is projective. Then M is 

a module in RStModc and in particular, B 0 M lies in RStModc also. 

Now suppose B 0 M has projective dimension r. Recall that there is a Ik-split exact 

sequence 

o --t Ik --t B --t B --t 0 

where B is the free Ik-module described in the last section, and B is the free Ik-module 

Coker(1k --t B). Then given a projective resolution P* --t M --t 0 of M, we see that 

o --t B 0 Or M --t B 0 Pr-l --t ... --t B 0 Po --t B 0 M --t 0 

is a projective resolution of B 0 M and so in particular, or M is a cofibrant R-module. 

We claim that in RStMod, M is isomorphic to B0
r 

0 or M where B:-:.
r 

= B 0 ... 0 B 

(r copies). We have short exact sequences 

o --t Or M --t B 0 Or M --t B 0 or AI --t 0 
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in which each middle term is projective: B®fF M is projective and B is free as a Ik-module 

so by Lemma 2.4.1, B ® B®i ® fF M is projective for each 0 < i < r - 1 where B'-':o := Ik. 

Splicing these sequences together, we obtain a long exact sequence 

which can be interpreted as a partial projective resolution of W T 
® fF M with rth kernel 

fY M. It follows that the projective resolution of M, mentioned at the start, agrees with 

the projective resolution of B®T ® fY M just constructed from the rth term onwards and 

so, by Proposition 3.2.3, M is isomorphic to B®T ® fY M which lies in RStModc . 0 

We need the following: 

Lemma 3.2.5. Let G be a group and R a strongly G-graded fA-algebra. Let M be a cofibrant 

left R-module. Then there are projective left R-modules PI, P2 and P3 such that 

Proof. We have the short exact sequence 0 ---+ OM ---+ F M ---+ M ---+ O. Since B is a free 

fA-module, we have the short exact sequence 

We also have 

0---+ M ---+ B®M ---+ B®M ---+ 0 

because 0 ---+ fA ---+ B ---+ B ---+ 0 is fA-split. By definition, we have the short exact sequence 

o ---+ O(B ® M) ---+ F(B ® M) ---+ B ® M ---+ O. 

Applying Schanuel's Lemma to the first two short exact sequences, 

(B ® OM) EB (B ® AI) r-v AI EB (B ® FlU). 
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Applying the Lemma to the second and third sequence and then to the first and third. we 

see 

M Ef7 F(B 0 M) '" O(B ® M) EB (B ® M) 

and 

(B 0 OM) EB F(B ® M) ~ O(B ® M) Ef7 (B ® FM). 

Taking PI = F(B 0 M) Ef7 (B ® F M), P2 = (B ® M) Ef7 F(B ® M) and P
3 

= (B ® PJI) EB 

(B ® M) establishes the lemma. 0 

Lemma 3.2.6. Let R be a ring. Suppose we have a commutative diagram 

o o o 

of left R-modules with exact rows and columns. If the middle row is split, then we have a 

diagram 

o -----7 A" -----7 B" ---t C ----7 C' -----7 0 

II 1 1 II 
, , 0 o -----7 A" ) A ) B -----7 C -----7 

with exact rows in which the outside squares commute and the middle square anticommutes. 

Proof. We have the following diagram 

" , 
" 'Y 07r 'Y, o -----7 A" ~ B" ) C ----7 C -----7 0 

~!2, 
,o~ ;;;/ "< ~ op 

o --+ A" ) A " ) B' ~ C' ---10 
0: I 00: 7r 
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with exact rows where p and K, are the splittings of the exact sequence 0 ---+ A ---+ B ---+ 

C -+ O. Observe that the left-hand square commutes: 

" K,o(3o{, -0' " K,o(3o{, -K,O{,OO' 

K, 0 ((3 0 {," - (, 0 0') 

o 

by commutativity of the top left square of our original 3 x 3 diagram and the fact that the 

composite K, 0 {, is the identity on A. 

The right-hand square commutes because 

" , 
7r 0(3 op-, " , 

7r 0(3 op-, 07r0P 
, , , 

(7r 0(3 -, 07r)op 

o 

by commutativity of the bottom right square of the 3 x 3 diagram and the fact that the 

composite 7r 0 P is the identity on C. 

For the middle square, consider (3' 0 po, 0 7r" + / 0 0" 0 /'i, 0 (3. By commutativity of the 

top right square of the 3 x 3 diagram, , 0 7r" = 7r 0 (3 and by commutativity of the bottom 

left square of the 3 x 3 diagram, / 0 0" = (3' 0 {,. It follows that 

, "" (3 OPO,07r +{, 00' 0/'i,0(3 
, I 

(3 0 P 0 7r 0 (3 + (3 0 {,/'i, 0 (3 

(3' 0 (p 0 7r + {, 0 /'i,) 0 (3 

(3' 0 (3 

O. 

D 

Lemma 3.2.7. Let G be any group and RaG-graded roc-algebra. Let 0 ---+ K ---+ L ---+ 

M -+ 0 be a short exact sequence with M cofibrant. If Q is a projective R-module, then 

the sequence 

is exact. 

Proof. HomR( -, Q) is left exact, so it suffices to show that the map HOIllR(L. Q) ---+ 

HOffiR(K, Q) is an epimorphism. 



CHAPTER 3. CATEGORICAL CONSIDERATIONS 8-1 

Applying the functor HomR( -, Q) to the split short exact sequence 0 ~ lk ~ B ~ 

B --+ 0 gives rise to the short exact sequence 

which is split because (applying Corollary 2.4.10) Homlk(lk, Q) "-' HomR(R. Q) '" Q is a 

projective R-module, and so Q is a direct summand of Homlk:(B, Q). We have the following 

diagram 

and so it suffices to show that the bottom map is a surjection. 

By Lemma 1.2.12, the bottom row of the above diagram is equivalent to 

Tensoring 0 --+ K --+ L --+ M --+ 0 with B gives the short exact sequence 0 ~ B ® K ~ 

B ® L --+ B ® M --+ 0 which is split because B ® M is projective. It follows that the map 

HomR(B ® L, Q) --+ HomR(B ® K, Q) is surjective. o 

Lemma 3.2.8. Let G be a group, lk a commutative ring of coefficients and R a strongly 

G-graded fK-algebra. For modules M and N in RStModc , the natural map HomR(M, N) ~ 
-0 
Ext R (M ,N) is an isomorphism. 

Proof. We show the natural map 0 : HomR(M, N) --+ HomR(OM, ON) is an isomorphism 

from which we deduce that HomR(f2iM, OiN) --+ HomR(f2i+ 1 M, Oi+1 N) is an isomorphism 
-0 

for all i and so ExtR(M,N) = HomR(M,N). 

Surjectivity: Given a map CP1 : OM --+ ON, we can find a map (h : PM --+ PN making 

the left-hand square commute in the diagram below. For, by Lemma 3.2.7. the map 

HomR(PM, PN) ~M> HomR(OM, PN) is surjective, and so we can find CP2 E HomR(PM. Pi\') 

satisfying f., At (</>2) = f., NO CP1; that is,CP2 0 f., M = "N 0 CPl. The proof of surjectivity is now the 

same as that of Lemma 2.1.14, giving us a map CP3 : M --+ N which makes the right-hand 

square commute. 
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Injectivity: Suppose we have a map ¢ : M ~ N with the property that Q(¢) represents 

o in HomR(OM, QN); that is, Q(¢) factors through a projective module P. Then, we have 

the following diagram in which ¢' : PM ~ PN is the map induced from ¢: 

n(¢) P ¢' ¢ 

)<N~' ~N o ------t QN ) PN ------t N -------1 0 

The map (3 : PM ~ P exists and makes the top triangle commute by Lemma 3.2.7. 8 : P -+ 

PN is defined to be the composite [,N 0 f. From here, the proof of injectivity is the same 

as that of Lemma 2.1.14: ¢ factors through PN and so represents 0 in HomR(M, N). 0 

Let us now consider the structure of RStMod. To that end, replace an object M by 

an object Mo in RStModc isomorphic to it. We will show that RStMod is a triangulated 

category. Define a translation functor on RStMod by T(M) = B 0 Mo; this acts as an 

inverse to the functor Q: 

Lemma 3.2.9. T and Q are mutually inverse functors. 

Proof. It is easily checked that T is indeed a functor, so we prove that it acts as an inverse 

to Q. 

We have 
T - n-

M -+ B 0 Mo -+ Q(B 0 Mo). 

By Lemma 3.2.5, MotBP ('..I Q(B0Mo)tBQ, so Mo is isomorphic to 0'(B0 M o) in RStMod c · 

Since M ~ Mo, it follows that M ~ Q(B 0 Mo). 

Composing the other way: 

n T -
M -+ QM -+ B 0 (QM)o. 

If B 0 M has projective dimension at most r, then B 0 QM has projective dimension at 

most r-l. (OM)o is the module B®r-1 00r- 1(OM) = B®r-1 0 0,r M (see the reasoning in 

the proof of Lemma 3.2.4). It follows that B0(OM)o = B0(BQ9r-1 00r M) = B~"0~YAJ, 

which is isomorphic to M in RStMod c . 
o 

Define the distinguished triangles in RStMod to be the triangles which are isomorphic 

to triangles of the form 
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where 

is a short exact sequence whose modules lie in RStModc and T is the functor defined above. 

Note that it makes sense to discuss injective and surjective maps in this category (up to 

the addition of maps which factor through a projective module) because of Lemma 3.2.8. 

Given such a short exact sequence, the map M' -+ M" can be made injective by replacing 

M" by M" EB (B 0 M') which is isomorphic to it in RStModc : given a projective resolution 

" ... -+ Pr -+ ... -+ PI -+ Po -+ M -+ 0, 

the sequence 

,,, , 
... -+ Pr -+ ... -+ PI -+ Po EB (B 0 M ) -+ M EB (B 0 M ) -+ 0 

", , 
is also exact and indeed a projective resolution of M EB (B 0 M) (because B 0 M IS 

projective). It follows by Proposition 3.2.3 that these two modules are isomorphic in 

RStModc and we have a short exact sequence 
, 

0-+ M' ~ Mil EB (B 0 M') -+ Coker~' -+ O. 

We have the diagram 

o o 
where ¢' : m I-t 1 0 ¢(m), 'ljJ' : m' I-t ('ljJ(m'), 10m') and Land 1r are the inclusion and 

projection respectively. Note that the top square commutes: 

L(¢(m)) L(10¢(m)) 

(0,1 0 ¢(m)) 

(~(¢(m,)), 1 0 ¢(m)) 

'ljJ' (¢( m ) ) 
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as does the bottom square: 

( ' , 
7r ¢(m ),1 ® m ) 

¢(m'). 

We have a sequence 
, -' 

O M 
¢ , 'lj; o~ , 

---+ ~ B ® M ~ Coker¢ ---+ 0 
, 

in which 1m ¢' C Ker( ¢ 0 I,): 

--' , -' , 
¢ 0 t 0 ¢ = ¢ 0 'ljJ 0 ¢ = O. 

Let Libi ®m~ E Ker(¢' 0 t)\Im¢'. Then t,(Libi ®m~) E Ker'ljJ' = Im'ljJ', so we can 

find Li n~ E M' such that ¢' (Li n~) = t,(Li bi ® m~). In particular, Li('f(n~), 1 ® n~) = 

Li(O, bi ® m~) and so Li 'f(n~) = O. This means that there exist ni E M such that 

¢(Li ni) = Li n~, but it also means that (t, 0 ¢')(Li ni) = ('f' 0 ¢)(Li ni), which equals 

t,(Li bi ® m:), implying ¢' (Li ni) = Li bi ® m~ (because t, is injective). Contradiction. 
-' , 

Thus Ker( ¢ 0 t) C 1m ¢ and the above sequence is exact. 

We have the diagram 

o ------t M --1 B ® M -----4) B ® M -~) ° 
1 1 

o ------t M -----t B ® M' ------t Coker'ljJ' ------t 0 

and because the left hand vertical map is an equality, we can appeal to Proposition 3.2.3 

to deduce that T(M) = B ® M is isomorphic to Coker'ljJ' in RStModc . Thus it is clear 

what to take for the map for the third morphism in the triangle 

, fI 

M ---+ M ---+ M ---+ T(M). 

We now show that the family of distinguished triangles just defined satisfy the axioms 

for a triangulated category: 

• (TR 1) Let u : A ---+ B be a morphism in RStMod. Replace A and B by modules Ao 

and Bo isomorphic to them in RStModc • Then we have a short exact sequence in RStMod c 

o ---+ AD ~ Bo ---+ Coker u ---+ 0 

and we deduce that 

A ---+ B ---+ Coker u ---+ T ( A ) 
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is a distinguished triangle. It follows that every morphism can be embedded in a distin

guished triangle. 

The triangle (idM , 0, 0) is distinguished. For, replace a module M by a module .l.U
o 

in 

RStModc isomorphic to it. The sequence 

o -+ Mo ~ Mo -+ 0 -+ 0 

is exact and the result follows. 

Suppose (u, v, w) is a triangle on (A, B, C) and suppose it is isomorphic to a distin

guished triangle (u' , Vi, Wi) on (A', B', C' ) .. Then we have a commutative diagram 

A 

1~ 

We may assume that these modules lie in RStModc. Since the bottom triangle is distin

guished, it remains to check that that the top row in the diagram 

u v 
A >B >C 

l~ I l~ I l~ I 

o --t A' ~ B' ~ C' ~ 0 

is exact, which is patently the case. 

• (TR 2) Let (u, v, w) be an exact triangle on (L, M, N). We have to show that 

M ~ N ~ T(L) is an exact sequence in RStModc and also that the map T(L) -+ T(M) 

is equal to -TU. 
I 

As we saw above, 0 -+ M ~ NEB (B 0 M) ~ T(L) -+ 0 is a short exact sequence 

which in RStModc is isomorphic to 0 -+ M ~ N ~ T(L) -+ O. The second point is 

easily proved. It follows that (v, W, -TU) is a distinguished triangle. 

A similar argument can be had for the triangle (-Ow, U, w) on the other 'rotate' 

(fJN,L,M) . 

• (TR 3) Suppose we have two distinguished triangles L ~ M ~ M ~ T(L) and 

L' ~ M' ~ M' ~ T(L') and maps f : L -+ L' and 9 : M -+ M' making the first 

square 
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commute. We can find a well-defined map h : N -+ N' such that the diagram 

commutes (by exactness of the rows). Similarly, we can find a map i : T (L) -+ T (L') which 

can be shown to be equal to T f and so (j, g, h) is a morphism of triangles 

• (TR 4) The Third Isomorphism Theorem for modules can be employed here because 

we are dealing with short exact sequences. 

3.3 Derived categories 

In this section we will show that there is an equivalence of categories between RStMod and 

the quotient category formed by the derived categories of two familiar examples. First we 

introduce the notion of localisation. The following is from [29] 

Definition 3.3.1. Let S be a collection of morphisms in a category C. A localisation of 

C with respect to S is a category S- l C, together with a functor q : C -+ S-lC such that 

(i) q(s) is an isomorphism in S-lC for every s E S. 

(ii) Any functor F : C -+ V such that F(s) is an isomorphism for all s E S factors 

uniquely through q. (It follows that S-lC is unique up to equivalence.) 

Definition 3.3.2. The derived category D(C) of an abelian category C is the category 

D(C) := Q-l K(C) 

where Q is the collection of quasi-isomorphisms. It is a triangulated category. 

Remark 3.3.3. Because we will be working with categories of modules there are various 

set-theoretic difficulties which we can ignore. Further information on these considerations 

can be found in Set-Theoretic Remark 10.3.3 of [29]. 

We now give an explicit description of the morphisms in Q-1K(C). 

Definition 3.3.4. A collection S of morphisms in a category C is called a multiplicative 

system in C, if it satisfies the folowing three self-dual axioms: 

(i) S is closed under composition (if s, t E S are composable, then .'It E S) and cOlltains 

all identity morphisms (ids E S for all objects X of C). 
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(ii) (Ore condition) If t : Z ---+ Y is in S then for every 9 . X -----'- Y' C th . 
, • ----r In ere I:' a 

commutative diagram "g8 = tf" in C with 8 E S. 

W~Z 

s 1 It 
X~Y 

(The slogan is "t-1g = f8- 1 for some f and 8".) 

(iii) ( Cancellation) If f, 9 : X ---+ Yare parallel morphisms in C, then the following two 

conditions are equivalent: 

• 8f = 8g for some 8 E S with source Y. 

• ft = gt for some t E S with target X. 

Definition 3.3.5. A chain in C of the form 

is called a (left) "fraction" if 8 E S. f 8-1 is equivalent to X t-!:- X 2 ~ Y just in 

case there is a fraction X +- X3 ---+ Y fitting into a commutative diagram in C: 

Horns (X, Y) is used to denote the family of equivalence classes of such fractions. 

Composition of fractions is defined as follows: given a fraction X +-- X' ~ Y and 

Y ~ y' ---+ Z , we use the Ore condition to find a diagram 

with 8 E S; the composite is the class of the fraction X +-- W ---+ Z in Homs(X, Z). The 

Homs(X, Y) form the morphisms of S-lC, which has the same objects as C. 

Remark 3.3.6. There is a similar notion of "right fraction", from which one call also 

construct S-lC using the equivalence classes of t- 1g: X ~ },f ~ Y. 
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It is noted in [29], that the set Q of quasi-isomorphisms form a multO Ii t' " 
Ip ca lve system 

in K(C), so we can describe the morphisms of the category Q-1 K(C) using the above 

formulation. 

Definition 3.3.7. Let B be a fu~l subcategory of C and let 8 be a multiplicative s~'stem 

in C whose restriction 8 n B to B is also a multiplicative system. For legibility, write 8-18 

for (8 n B)-18. B is called a localising subcategory oj C (for 8) if the natural functor 

8-
1
B ~ 8-

1
C identifies 8-18 with the full subcategory of 8- 1C on the objects of B. 

Lemma 3.3.8. A full subcategory B of C is localising for 8 if whenever C ~ B is a 

morphism in 8 with B an object of B, there is a morphism B' --+ C in C with B' an object 

of B such that the composite B' ~ B is in 8. 

Proof. This is Lemma 10.3.13 (2) of [29]. o 

Corollary 3.3.9. If B is a localising subcategory of C, and for every object C of C there 

is a morphism C ~ B is 8 with B an object of B, then S- l B is equivalent to 8-1C. 

Suppose in addition that SnB consists of isomorphisms. Then 8 is equivalent to S-lC. 

Proof. This is Corollary 10.3.14 of [29]. o 

It is also shown in Weibel's book that the subcategories Kb(A), K+(A), K-(A) of 

K (A) are localising for Q. 

3.4 Equivalences 

We will now study complexes comprising modules from categories we have already con

sidered. Throughout, Ik will denote a commutative ring. 

Following Chapter II of the Appendix to [13], we write K+,b(RMod) for the category 

whose objects are the chain complexes of objects in RMod which are bounded below (this 

corresponds to the first index, +) and whose homology is bounded (second index, b). The 

maps are chain homotopy classes of maps. We write Kb,b(RMod) for the full subcategory 

whose objects are bounded chain complexes and Kb,<P(RMod) for the full subcategory 

with the further restriction that the homology is zero; i.e. exact complexes. The derived 

category Db(RMod) is the quotient category Kb,b(RMod)/ Kb,<P(RMod), formed by formally 

inverting quasi-isomorphisms. Details on forming quotient categories can be found ill 

Gabriel [15], page 365. 
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We can also consider RProj, the full subcategory of RMod whose objects are projective 

modules and we can form categories K+,b(RProj), Kb,b(RProj), Kb'¢(RProj) and Db(RProj) 

in the same way as before. It is easy to see that Kb'¢(RProj) is the trivial category with one 

object and one morphism (any complex is homotopic to zero by the Comparison Theorem 

for exact sequences), so that Kb,b(RProj) and Db(RProj) are equivalent. Since RMod has 

enough projectives we may replace objects by projective resolutions. Given any object 

X* in Kb,b(RMod), there is an object P* in K+,b(RMod) and a map of chain complexes 

P* -+ X* inducing an isomorphism on homology. Such a map is called a projective 

resolution of X*. The following shows this explicitly: 

Definition 3.4.1. Let A be an abelian category that has enough projectives. A (left) 

Cartan-Eilenberg resolution P*,* of a chain complex A* in A is an upper half-plane 

double-complex (Pp,q = 0 if q < 0), consisting of projective objects of A, together with a 

chain map ("augmentation") P*,o ~ A* such that for every p 

(i) If Ap = 0, the column Pp,* is zero, 

(ii) The maps on boundaries and homology 

are projective resolutions in A, where Bp(P, dh ) denotes the horizontal boundaries 

in the (p, q) spot, that is, the chain complex whose qth term is dh(Pp+l,q)' The chain 

complexes Zp(p, dh) and Hp(P, dh) = Zp(p, dh)j Bp(P, dh) are defined similarly. 

Remark 3.4.2. It is shown in [29] that the total complex TotEB(P) -+ A is a quasi

isomorphism in A. In case A is bounded above, the object P* of K+,b(RMod) described 

above is exactly this total complex. 

Lemma 3.4.3. Let Q an object of K+,b(RMod) and P an object of K+,b(RProj). Then 

every quasi-isomorphism t : Q -+ P is a split surjection in K+,b(RMod). 

Proof. The mapping cone M(t) = T(Q) EB P is exact by Lemma 3.1.10 and there i~ a 

natural map a(t) : P -+ M(t);p f---7 (O,p). The Comparison Theorem shows us that o(t) 
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is null-homotopic by a chain homotopy v = (s, k) from P to Q EB T-I(P). Thus 

(O,p) a(t)(p) 

(dM(t)v + vdP)(P) 

(-dQs(P),dPk(p) - ts(p)) + (sdP(p),kdP(p)) 

(-d
Q 

s(p) + sdP (P), dP k(P) - ts(p) + kdP (p)). 

93 

From the first co-ordinate, we see that s is a chain map, and from the second, that 

-ts = idp - dPk(p) - kdP(p) (Le. k is a chain homotopy equivalence -ts ~ idp. Hence, 

-ts = idp in K+,b(RMod). D 

Remark 3.4.4. Because the minus sign is annoying, we will suppress it on -s and write 

ts = idp in K+,b(RMod). 

Theorem 3.4.5. There is an equivalence of categories 

Proof. We have already seen that to each object X of K+,b(RMod) we can associate an ob

ject P of K+,b(RProj) with P -+ X a quasi-isomorphism. If X -+ Y is a quasi-isomorphism, 

then so is P -+ Y. It follows from Lemma 3.3.8 that K+,b(RProj) is a localising subcat

egory of K+,b(RMod). By Chapter II of the appendix to [13], Db(RMod) is equivalent to 

K+,b(RMod)/ K+'</>(RMod), so Db(RMod) is equivalent to K+,b(RProj)/ K+'</>(RProj). By 

Corollary 3.3.9, it suffices to show that every quasi-isomorphism in K+,b(RProj) IS an 

isomorphism to obtain the theorem. 

Let P, Q be objects of K+,b(RProj) and t : P -+ Q a quasi-isomorphism. By Lemma 

3.4.3, there is a map s : Q -+ P such that ts = idQ in K+,b(RProj). Interchanging the 

roles of P and Q, sand t, we see that su = idp for some u. In K+,b(RProj), we have 

t = tsu = u and so t is an isomorphism in K+,b(RProj) with t- I = s. D 

Db(RProj) is a thick subcategory of Db(RMod) and so we may form the quotient cate-

gory 

The discussion of equivalences above shows that this quotient is equivalent to 
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In the quotient, truncating a chain complex of projectives by replacing the finitely 

many modules below a given degree by zero results in an isomorphic complex. It follows 

that we can truncate above the homology so that every complex is isomorphic to a complex 

which is exact except in a single degree. Such a complex is a projective resolution of a 

module in RMod, possibly shifted in degree. It follows that every object in the quotient is 

isomorphic to an object of this form. 

There is a functor 

which sends a module to a projective resolution. Such a resolution is well-defined up 

isomorphism in K+,b(RProj) (by the Comparison Theorem for exact sequences). 

The following digression includes material from [23] which serendipitously, is exactly 

the formulation we need to advance our discussion. 

Definition 3.4.6. Let C and D be bounded below chain complexes of projectives. Then 

we can form three chain complexes called the total complex, the hypercohomology 

complex and the Vogel complex. 

The hypercohomology complex is denoted HomR(C, D), the group of n-chains is de-

fined by 

HomR(C, D)n:= II HomR(C-p , Dq) 
p+q=n 

and the differential d : HomR(C, D)n --+ HomR(C, D)n-l is defined by 

d(¢) := d' 0 ¢ - (-It¢ 0 d, 

where d and d denote the differentials in C and D respectively. For example, HomR(C, Dh 

comprises all maps ¢ of the form 

and HomR(C, D)o comprises all maps ¢ of the form 
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In particular, chain maps are those maps ¢ E HomR(C, D)o for which 

d 0 ¢ - ¢o d = 0; 

that is, the chain maps are the elements of Ker do. Also, the nullhomotopic maps are 

those maps ¢ E HomR(C, D)o for which 

for some 'l/J E HomR(C, Dh; that is, ¢ = dt{'l/J) E Imdl . 

The total complex Tot(C, D) is the sub complex of the hypercohomology complex in 

which the nth chain group is given by 

Tot(C, D)n:= EB HomR(C_p , Dq). 
p+q=n 

The Vogel complex is defined to be the quotient of the hypercohomology complex by 

the total complex. Thus we have a short exact sequence of chain complexes: 

with the Vogel complex at the right. 

Theorem 3.4.7. Let P and Q be non-negative chain complexes of projective left R

modules and suppose that both have homology concentrated in degree zero, with Ho(P) = M 

and Ho(Q) = N. Then 

(i) the nth homology group of HomR(P, Q) is equal to Extjt(M, N); and 

_ --n 

(ii) the nth homology group of HomR(P, Q) is equal to ExtR (M,N). 

The morphisms of K+,b(RProj) / Kb,b(RProj) are just elements of the zeroeth homology 

of the Vogel complex: the maps in this category are chain maps and so elements of Ker do· 

We restrict ourselves to chain homotopy classes of maps, so we factor out the nullhomotopic 

maps; i.e. 1m dl. Thus we have a functor 

which induces an isomorphism on Hom sets by dint of Theorem 3.4.7. Every object in tht' 

quotient category can be truncated as described before to give a projective resolution of 

some module M sitting in degree d > 0 and hence is isomorphic to t he image undt'r <I> of 

the translate Td(M) in RStMod. We have: 
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Theorem 3.4.8. Let G be a group and R a strongly G-graded k-algebra. Then there is 

an equivalence of categories 

We would like to arrive at a similar result for Rstmod, Rmod and Rproj, but this is 

not possible with the machinery used to obtain the above theorem: given a module Al 

of type FP 00, there is no reason why the translate T(M) = B ® M should be of type 

FP 00; however, if we restrict the class of groups we work with and re-define the translation 

functor, we will see in the next section that we can achieve our aim. 

3.5 The inclusion of stmod in StMod 

Much of the work we need to do in this section was done in the previous section. 

Let G be an LH~-group and R a Noetherian strongly G-graded lk-algebra. If M is 

an object of Rstmod, then by Lemma 3.2.2, B ® M has finite projective dimension as 

an R-module and so Rstmod can be realised as a full subcategory of RStMod. A result 

of Kaplansky says that every projective module is a direct sum of countably generated 

projective modules. It follows that if B ® M is projective then it has a finitely generated 

projective summand P which contains the image of i ® idM : M --+ B ® M and so we have 

a diagram with exact rows 

o ~ M -----l) P -----l) P / M ---l) 0 

I I 
o ~ M ~ B ® M ~ B ® M ----) O. 

It follows that P/M '" B®M in RStMod. Note that P/M is a finitely generated R-module 

of type FP 00' 

If B ® M has projective dimension r > 0, then in any projective resolution of AI. 

fF M is cofibrant and finitely generated (because R is Noetherian). By repeated use of 

Kaplansky's result, we obtain a series of commutative diagrams with exact rows: 

o ~ SY M --~) Pr-l ----l) N r - 1 __ ---l) 0 

I I 
o ~ nr M ~ B ® nr M ----) B ® nr AI ----) 0 
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0------)' Nr' --------), Pr2 , NT2 -------i) 0 

o ------1 B (8) or M ------1 B (8) B (8) or M ------1 B@2 (8) fF M --1 0 

o 'Nt 'Ii 'I' '0 

o ------1 B@r-i-1 (8) or M ------1 B (8) B@r-i-1 (8) or M ------1 W r- i (8) or M --1 0 

0-------) No -------» P-1 ---------4) N -1 ----4---10 

I I I 
0------1 B@r (8) or M ------1 B (8) If9r (8) or M ------1 If9r+1 (8) or M --10 
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In which each of the n are projective and finitely generated, each of the Ni := Pi/Ni+1. 

and each of the middle terms in the bottom rows of the diagrams are projective. Splicing 

these diagrams together we obtain two exact sequences 

o --+ or M --+ Pr- 1 --+ Pr- 2 --+ ... --+ P-1 --+ N -1 -----t 0 

0--+ or M --+ B (8) Or M --+ B (8) B (8) or M --+ ... --+ B (8) If9r (8) Or M -----t B@r+1 (8) fY M -----t O. 

In particular, B@r+1 (8) or M '" N-1 in RStMod and N-1 is a finitely generated module 

of type FP 00. Thus we can define a translation functor on Rstmod by T(M) = B (8) M, 

because 
- - -@r 

T(M)=B(8)M"'B(8)B (8)orM"'N_l 

which, as we have observed, lies in Rstmod. It follows that this functor is the same as the 

one defined before on RStMod, up to isomorphism and that Rstmod is a thick subcategory 

of RStMod (that is, closed under taking direct summands (every direct summand of a 

module of type FP 00 is again a module of type FP 00) and triangulated with the same 

definition for distinguished triangles). We have the following: 

Theorem 3.5.1. If G is an arbitrary group and R a strongly G-graded k-algebra. then 

there is an equivalence of categories 
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If G is an LHJ-group and R a Noetherian strongly G-graded t-algebra. then in addition 

to above equivalence, we have that 

is an equivalence of categories. These equivalences are compatible with the inclusions 

induced by the inclusion of Rmod as a subcategory of RMod. 



Chapter 4 

Finiteness conditions and 

polynomial rings 

Let M be a left module over a ring R. At first glance the questions "does M admit a 

resolution by finitely generated projective modules?" and "does M have finite projective 

dimension?" would, as in the words of Cornick and Kropholler, "appear to address different 

qualitative properties of projective resolutions, and one would not expect either one to 

imply the other". However, it turns out that for certain rings one does indeed imply the 

other. In this chapter we will look at examples of rings where this is the case. 

4.1 Some motivating examples 

We begin with a lemma which we will not need immediately. 

Lemma 4.1.1. Let Ik be a field, G a group, H a subgroup of G and M a left IkG-module. 

Then as IkG-modules, 

IkG &J'tH M f'V Jk[G / H) &J M 

where IkG &J'tH M has the action of IkG on the left and Jk[ G / H] &J M has the diagonal action. 

Proof. Define maps 

¢: IkG &J'tH M -t Ik[G/H] &J M; 9 &J m M gH &J gm 

and 
-1 

'ljJ : Ik[G / H] &J M -t IkG &J'tH M; gH &J m M 9 &J 9 m. 

99 
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¢ and 'IjJ are well-defined since 

¢ 
gh ® m -----1 ghH ® ghm 

II ¢ II 
9 ® hm ) gH ® ghm 

and 

¢ and 'IjJ are obviously additive maps. They are lkG-maps since 

g' .¢(g ® m) = g' .(gH ® gm) = g' gH ® g' gm = ¢(g' .(g ® m)) 

and 

g'.'IjJ(gH ® m) = g'.(g ® g-lm) = g' 9 ® g-lm = 'IjJ(g' .(gH ® m)). 

¢ and 'IjJ are mutually inverse since 

'IjJ(¢(g ® m)) = 'IjJ(gH ® gm) = 9 ® m 

and 

¢('IjJ(gH ® m)) = ¢(g ® g-lm) = gH ® m. o 

Proposition 4.1.2. Let lk be a field, G a free abelian group of finite rank and M a left 

lkG-module of type FP 00. Then M has finite projective dimension. Moreover, the left global 

dimension of lkG is finite and equal to the rank of G. 

Proof. Let the rank of G be n, then the triviallkG-module lk has projective dimension at 

most n: 

o -+ Pn -+ ... -+ Po -+ lk -+ 0 

(this is the Koszul resolution. For details on its construction see Corollary 4.5.5 on page 

114 of [29]). Because this sequence is split as a sequence of lk-modules, applying - ® A[ 

gives us an exact sequence of lkG-modules 

o -+ Pn ® M -+ ... -+ Po ® M -+ M -+ 0 

which is a projective resolution of M because 
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which is a composite of exact functors and so, by Proposition 1.6.1, each Pi ® jI i:-; a 

projective IkG-module. It follows that M has finite projective dimension. 

The fact that M is of type FP 00 was not used above, we may therefore conclude that 

the left global dimension of IkG is finite and equal to n. 0 

Proposition 4.1.3. Let Ik be a field, G a free abelian group of infinite rank and M a left 

IkG-module of type FP 00' Then M has finite projective dimension. 

Proof· Since all modules of type FP 00 are finitely presented, we have an exact sequence 

(IkG)T ~ (IkG)d --+ M --+ 0 

of IkG-modules. The map a can be represented as an r x d matrix L with entries from IkG. 

Let H be the subgroup of G generated by those g E G appearing in entries of L. Then we 

have a finite presentation of a IkH-module U: 

Since H is free abelian of finite rank, we have, by Proposition 4.1.2, that U has finite 

projective dimension over IkH. Since IkG = tBtETtlkH where T is a transversal to H in G: 

that is !kG is free as a IkH-module and so IkG ®IkH - is an exact functor. Therefore , 

(IkG)T ~ (IkG)d --+ IkG ®IkH U --+ 0 

is an exact sequence, M "" !kG ®IkH U and so M has finite projective dimension. 0 

Let Ik be a field and let G = Coo I Coo = B ~ Coo where Coo = (t), B = (Xi: i E Z) 

and for all i, j, 

Then we may view IkG as a polynomial ring IkB[t-l, t], subject to the above relations. 

L 4 1 4 Let TIT be a field and G = B ~ Coo, as defined above. Then we have a short emma . .. l&. 

exact sequence 

o --+ Ik[G / B] ~ Ik[G / B] .4 Ik --+ 0 

of left !kG-modules. 

Proof. As IkG-modules, Ik[G/B] "" Ik[t-l, t]. For each i E Z, define maps 
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We must check the following: 

• (3 is surjective. If k Elk, then (3(k) = k. 

• Ima C Ker (3. 

m m 

U = L kiti - L ki 
i=-n i=-n 

m 

L (kiti - ki) 
z=-n 

-1 m 

L (ki ti - kd + L(kiti - ki) 
i=-n i=1 

because kotO - ko = ko - ko = O. 

We now show that for each i > 1, kiti - ki E Ima, the proof for each i ~ -1 being 

similar. These results, taken together, will prove that U E lma. It is apparent that 

L~==l (-ki ti-
j + ki ti-

j
) = O. Upon re-associating the terms in the sum, we see that 

i-I 

kit
i 

- ki = kiti + [2::) -kiti- j + kiti- j )] - ki 
j=1 

(ki ti - kit
i- 1

) + (kit
i- 1 

- ki ti - 2) + ... + (kit - ki ) 

a(kiti-l) + a(kiti-2) + ... + a(ki ). 

• a is injective. If z is a non-zero element of Ker a with z = E kiti and n is the largest 

index with kn =I- 0, then the coefficient of tn+1 = 0 in a(z) is kn, a contradiction since if 

kn tn is non zero, then so is kn tn+ 1. Thus Ker a = O. o 

The following will be used in the next section. 

Proposition 4.1.5. Let lk be a field and let G = Coo l Coo. Then every kG-module of type 

FP 00 has finite projective dimension. 

Remark 4.1.6. The proposition can be deduced from Theorem A on page 53 of [llJ and 

more directly from Theorem B on page 44 of [10]. For, G = Coo l ex belongs to H~ 

and is torsion free. It follows that if M is a lkG-module of type FP oc then iU is tri\'ially 

projective over lkF for all finite subgroups F of G becausp k is a field. Taking J/ = X 
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and i = 0, these theorems imply Ext~G(M, M) = 0; that is, pd'lr.G(M) < x. \Ve prove the 

proposition directly to make explicit why the method of attack employed for this example 

won't work for a related result that we will consider in the next section. 

Proof· By Lemma 4.1.4 we have .a short exact sequence 

o --+ Ik[G / B] --+ Ik[G / B] --+ Ik --+ O. 

Let M be a IkG-module of type FP 00' The functor - ® M is exact (because M is free as 

a Ik-module) and we get an exact sequence 

0--+ Ik[G/B] ® M --+ Ik[G/B] ® M --+ M --+ O. 

By Lemma 4.1.1, Ik[G / B] ® M rv IkG ®IkB M with the action of IkG on the left, so our exact 

sequence becomes 

o --+ IkG ®IkB M --+ IkG ®IkB M --+ M --+ O. 

Consider now the long exact sequence 

-i -i -i+l 
... --+ ExtlkG (M, IkG ®IkB M) --+ ExtlkG (M, M) --+ ExtlkG (M, lkG ®'lr.B M) --+ ... 

of complete cohomology groups arising from our short exact sequence. Assume (for a 

contradiction) that M doesn't have finite projective dimension. Then by Lemma 2.1.8, 

Ext~G (M ,M) f:. O. Feeding this information into the long exact sequence tells us that 
-i 
ExtlkG (M , IkG ®lkB M) cannot be zero for both i = 0, 1. 

Now, IkG ®IkB M = ~H lkG ®IkH M where the limit is taken over the direct system 

comprising the finitely generated subgroups H of B, ordered by inclusion. Since M is of 

type FPoo , we have by Lemma 2.1.11 that Ext~G(M, -) commutes with filtered colimits; 

that is, 

Ext~G(M,~IkG ®IkH M) = ~Ext~G(M,lkG ®lkH M) 
H H 

so if Ext~G (M ,IkG ®IkH M) f:. 0 for one of i = 0,1, then it is non-zero for at least one 

finitely generated subgroup H. Fix such an H. Then, since H is free abelian of finite 

rank, the left global dimension of IkH is finite by Proposition 4.1.2 and lv[ admits a finite 

resolution by projective IkH-modules: 

o --+ Pn --+ ... -+ Po -+ M --+ O. 
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The functor IkG Q9IkH - is exact (because IkG = CD tn'H h T' 
wtET m. were IS a transversal to 

H in G) so applying this to the IkH-projective resolution of M gives us a IkG-projectin> 

resolution of lkG Q9IkH M: 

but this means that 

-,0 

ExtIkC(M,IkG ®H M) = ~HomIkG(nj M, nj(IkG ®ocH M)) = 0 
j 

since n j (!kG ®IkH M) = 0 for all j > n. Also, 

---I 
ExtlkC(M, lkG ®H M) = ~Homocc(nj+1 M, nj(!kG ®fkH M)) = O. 

j 

Contradiction. Therefore M has finite projective dimension. 0 

4.2 Skew polynomial rings 

Let !k be a field. We have already seen that the twisted polynomial algebra IkG = IkB[r l , tJ 

(where G = Coo lCoo ) has the property that every module of type FP 00 has finite projective 

dimension. Since B is a free abelian group of infinite rank, Proposition 4.1.3 tells us that 

every lkB-module of type FP 00 has finite projective dimension. In the group G we have 

the relation t-1xit = Xi+l for all i. If we rewrite this as xit = tXi+l, we can form the 

twisted polynomial algebra IkB(t]. Since IkB C IkB[t] C IkB[t- 1 , tJ, it raises the question 

whether every IkB[tJ-module of type FP 00 has finite projective dimension. 

Immediately we are presented with the problem that we are no longer dealing with 

group algebras and so cannot appeal to group properties as we did in the proofs of the 

IkB and lkB[t- 1, t] cases. As we shall see, this difficulty can be obviated by considering the 

kB(t] case as one of skew polynomial rings. 

Definition 4.2.1. Let R be a ring, M a left R-module and a an automorphism of R. The 

conjugate module (7 M is defined to be the left R-module whose underlying set is e"m : 
m EM}, with the same abelian group structure as that of M and scalar multiplication 

given by r. (7 m = (7 (a( r)m) for all m E M and r E R. Details of the construction of a 1.\1 

can be found in [14]. 

Definition 4.2.2. Let R be a ring and a an automorphism of R. A (right) a-derviation 

is an additive map () : R ~ R such that for all r, s E R, 

()(rs) = rr5{s) + r5(r)a(s). 
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Definition 4.2.3. Let R be a ring. A (right) skew derivation is a pair (a. 8) where a 

is a ring automorphism of Rand 8 is a right a-derivation. 

Definition 4.2.4. Let R be a ring and (a,8) a right skew derivation on R. The (right) 

skew polynomial ring over R, R(x; a, 8], is the polynomial ring R(x] with multiplication 

defined by 

rx = xO'(r) + 8(r) 

for all r E R. 

Remark 4.2.5. We can write every element of R(x; a, 8] in the form L~I=O xiri for some 

n E Nand ri E R. We shall not prove this suffice to say that the calculations required to 

express a given element in this form become somewhat involved as n increases: 

rx = xa(r) + 8(r) 

rx3 = x3O'3(r) + x2 {O'2 (8(r)) + a(8(O'(r))) + 8(a2 (r))} 

+x{O'(82 (r)) + o(O'(o(r))) + 02 (a(r))} + 03(r). 

Remark 4.2.6. In light of Definition 4.2.4, we see that lkB(t] is a right skew polynomial 

ring with 0 = O. 

Example 4.2.7. Let R be a ring and T = R[x; 0', 8]. In general, uN cannot be given the 

structure of a T-module without the following relationship between a and 0: 

Define an action * of T on U N by 

r * un = U(a(r)n) 

for r E Rand 

We have that rx = xO'(r) + o(r) in T, so we we need 

On one hand, 

(rx) * un = (xa(r)) * un + o(r) * un. 

r*(x*Un ) 

r * U (xn) 

U(a(r)xn) 

U(xa2 (r)n + 8(a(r))n). 
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On the other, 

(xa(r)) * un + l5(r) * un x * (a(r) * Un) + U(a(l5(r))n) 

x * U(a2 (r)n) + U(a(l5(r))n) 

U(xa2 (r)n) + U(a(l5(r))n) 

U(xa2 (r)n + a(l5(r))n) 

so we have a well-defined action of T on UN if a and l5 commute. 

The following result will prove useful: 

106 

Lemma 4.2.8. Let R be a ring and R[x; a, l5] the right skew polynomial ring over R 

for some right skew derivation (a, (5). Then R[x; 0", l5] is free as an R-module with basis 

{ 1, x, x 2 , ... }. 

Proof. This is 2.4 on page 16 of [26]. o 

Proposition 4.2.9. Let R be a ring, S = R[x; a, l5] the right skew polynomial ring over 

R for some right skew derivation (a, (5) and M an S -module. Then there is a short exact 

sequence of S -modules 

where '\(s Q9 Um ) = sx Q9 m - S Q9 xm and 7r(s Q9 m) = sm. 

Proof. This is the proposition on page 262 of [26]. o 

We are now able to answer in the positive the question posed at the beginning of this 

section: 

Proposition 4.2.10. Every lkB[t]-module of type FP 00 has finite projective dimension. 

Proof. Let M be a lkB[t] module of type FP 00' By Proposition 4.2.9 we have a short exact 

sequence 

o -+ Ik:B[t] Q9IkB U M -+ lkB[t] Q9IkB M -+ M -+ O. 

Applying the functor Exi=B[t] (M, -), we get the long exact sequence 

_* -*+1 ( [] U\!) ... -+ Exi=B[t] (M, lkB[t] Q9IkB M) -+ ExtIkB[t] (M, M) -+ ExtkB[t] j\I .lkB t CS)"A13; -+ ... 
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Assume (for a contradiction) that M does not have finite projective dimension. Then 
-0 

ExtIkB[t] (M, M) ¥- 0 by Lemma 2.1.8 and so exactness requires Ert~B[t] (M, lkB[t] ®kB JI) 
-1 

and ExtIkB(t] (M, lkB[t] ®IkB 17 M) not both be zero. 

Now, IkB = ~A!kB" where the B" are the finitely generated subgroups of B, so 

IkB[t] ®IkB M = ~" IkB[t] ®IkB>, M. Since M is of type FP 00, Ext~B[t] (M. -) commutes 

with filtered colimits by Lemma 2.1.11, so 

-0 -0 
ExtlkB[t] (M, !kB[t] ®lkB M) = ExtIkB[t] (M, ~!kB[t] ®IkB>, M) 

" -0 
~ExtIkB[t](M,IkB[t] ®lkB>, M). 

A 

Similarly, 

-1 -1 
ExtlkB[t] (M,IkB[t] ®IkB 17M) = ~ExtIkB[t](M,IkB[t] ®IkB>, 17M). 

A 

-0 -0 
If ExtIkB[t] (M, !kB[t] ®IkB M) -I 0 then ExtIkB[t] (M, !kB[t] ®IkB>, M) -10 for some A, but 

B" is free abelian of finite rank, so by Proposition 4.1.2, the left global dimension of IkB>. 

is finite and M admits a finite resolution 

o ----+ P n ----+ • • . ----+ Po ----+ M ----+ 0 

by projective IkB,,-modules. Now, !kB is a free !kB>.-module (because IkB = ffisEsslkB>. 

where S is a transversal to BA in B) and IkB[t] is a free IkB-module by Lemma 4.2.8, thus 

!kB[t] is free as a !kBA-module and the functor IkB[t] ®IkB>, - is exact. It follows that 

is an exact sequence and so !kB[t]®lkB>, M has finite projective dimension as a IkB(t]-module. 

As a consequence of this, 

Erl~B[t](M,!kB(t] ®IkB>, M) = ~HomIkB[t](ni(M),!i(IkB(t] ®IkB>, M)) = 0 
t 

since ni(lkB(t] ®IkB>, M) = 0 for all i greater than some n 2: o. An identical argument 

shows 

Erl!B[t] (M,lkB[t] ®IkB>,' 17M) = ~HomlkB[t](ni+l(M).ni(IkB[t] ®IkB>,' 17A1)) = 0 
t 

for all A'. Therefore M has finite projective dimension. o 
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The proof of Proposition 4.2.10 was essentially that of 4.1.5 - the skew polynomial 

methods were used only in setting up a short exact sequence. Also, the only property of 

lkB we have used is that it is expressible as a filtered colimit of rings of finite left global 

dimension. This suggests we might be able to exploit the argument to arrive at a general 

theorem. Indeed, we have the following: 

Theorem 4.2.11. Let R = ~A RA be a filtered colimit of rings of finite left global dimen

sion with the property that R is fiat as an RA -module for each A and let S = R[x; a, 8] be 

the right skew polynomial ring over R for some right skew derivation (a, 8). Then every 

S -module of type FP 00 has finite projective dimension. 

Proof. We exploit the method employed in the proof of 4.2.10. 

• Let M be an S-module of type FP 00' 

• We have the short exact sequence 0 -+ S 0 R (7 M -+ S 0 R M -+ M -+ 0 by Lemma 

4.2.9 

• Applying the functor Ext; (M , -) yields the long exact sequence of complete coho-
-0 -1 

mology groups in which Exts(M, S 0R M) and Exts(M, S 0R (7 M) cannot both be zero 

if M does not have finite projective dimension (by Lemma 2.1.8). 

• Eri; (M , -) commutes with filtered colimits since M is of type FP 00, so 
-0 ------1) , 
Exts(M, S 0R>.. M) -=I- 0 and Exts(M, S 0R>.., aM -=I- 0 for some A, A . 

• As an RA-module, M has finite projective dimension since RA has finite global di

mension by hypothesis. S is a free R-module by Lemma 4.2.8 and R is a flat RA-module, 

so the functor S 0R>.. - is exact, meaning S ®R>.. M has finite projective dimension as an 

S-module. Similarly, S 0R , M a has finite projective dimension as an S-module. 
>.. 

• Ext~ (M , S ® R>.. M) = 0 and Ext ~ (M , S ® R>.., Ma) = O. Contradiction. Therefore 

M has finite projective dimension. o 

4.3 Skew Laurent polynomial rings 

In this short section we introduce skew Laurent polynomial rings and extend the main 

theorem of the previous section. 

Definition 4.3.1. Let R be a ring and a an automorphism. The skew Laurent polynomial 

ring over R is the the ring R[x- 1 , x; a] of polynomials over R subject to r;[ = .[a(r) for 

all r E R. 
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Remark 4.3.2. Each element of R[x-1
, x; aJ has a unique representation of th £ '"'. I. e orm DIE::r r l 

with all but finitely many coefficients being zero. 

We can improve Proposition 4.2.9: 

Proposition 4.3.3. Let R be a .ring, S = R[x; 0', 0] or S = R[x-1 , x; 0'] and let ~U be a 

left S -module. Then there is a short exact sequence of S -modules 

where '\(s ® CT m ) = sx ® m - s ® xm and 7r(s 0 m) = sm. 

Proof. This is the full statement of the Proposition on page 262 of [26]. o 

Another result we can improve upon is: 

Lemma 4.3.4. Let R be a ring and S = R[x-l, x; 0'] or S = R[x; 0', 0]. Then S is free as 

an R-module. 

Proof· For the proof that S = R[x-l, x; 0'] is a free R-module, see Proposition 1.16 on 

page 16 of [18]. o 

We now have for skew Laurent polynomial rings the same tools needed to make the 

skew polynomial ring problem in the previous section work: a short exact sequence of 

R[x-1 , x; a]-modules for each R[x-1 , x; a]-module M and the observation that R[x- I , x; 0'] 

is free as an R-module. Thus, we can extend the statement of Theorem 4.2.11: 

Theorem 4.3.5. Let R = ~'" R", be a filtered colimit of rings of finite left global dimen

sion with the property that R is fiat as an R", -module for each A and let S = R[x; 0', 0] or 

S = R[x-1 , x; 0']. Then every S -module of type FP 00 has finite projective dimension. 

Proof. The proof is the same as that of 4.2.11. o 

It is now evident that to draw a distinction between the !kB[t- I
, t] and !kB[t] cases 

introduced in the previous section on the grounds that !kB[t- 1
, t] is a group algebra serves 

only to mask the problem. 

4.4 When the base ring is strongly group-graded 

In the last section we saw that FP 00 modules over a skew (Laurent) polynomial ring 

have finite projective dimension when the base ring has a suitable finiten('ss condition 
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(in the case we considered, finite left global dimension of the rings in the limit wa~ the 

condition). In this section we will see that a suitable finiteness condition when the base 

ring is a strongly group-graded Ik-algebra is that the grading group belong to the class H~. 

Throughout this section and the next, Ik will denote a commutative ring. 

Recall the definition of the class HJ: 

Definition 4.4.1. Let J denote the class of finite groups. For each ordinal a we define 

operations Ho inductively: 

• HoJ = J 

and for ordinals a > 0 

• HoJ is the class of groups G which admit a cellular action on a finite-dimensional 

contractible CW -complex in such a way that each isotropy group belongs to HI'i~ for some 

f3 < a (where f3 may depend on the isotropy group). 

HJ is then the union of all the HoJ. 

Theorem 4.4.2. Let G be an HJ-group and R a strongly G-graded Ik-algebra. Let S = 

R'[x; 0", 8] or S = R[x- 1 , x; 0"] and let M be an S-module of type FP 00 such that M has 

finite projective dimension over RH for all finite subgroups H of G. Then M has finite 

projective dimension as an S -module. 

-i 
Proof. We show that for all subgroups H < G and all i, Exts(M, S 0RH M) and 

Erl~ (M, S 0RH (T M) are zero, from which the main result will follow. For, taking G = H, 

exactness of the sequence 

-0 -0 -1 ( (T) 

... -+ Exts(M,S®RM) -+ Exts(M,M) -+ Exts M,S0R M -+ ... 

-0 
arising from the short exact sequence provided by Proposition 4.3.3, forces Exts(M, M) = 

0, which by Lemma 2.1.8 means M has finite projective dimension. 

The proof is by induction on the least ordinal a such that H belongs to the subclass 

HoJ of HJ. If a = 0 then H belongs to HoJ which is the class of finite groups and so 

R ® RH M and R ® RH (T M have finite projective dimension. As a consequence of Lemma 

4.3.4, the functor S 0R - is exact and so S ®R R 0RH M = S 0RH M has finite projectiw 

dimension as an S-module. Similarly, S ®RH (T M has finite projective dimension as an 

S-module. Thus the claim holds because complete cohomology groups vanish on modlllp~ 

of finite projective dimension. 
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Assume now that a > O. Then H acts on a finite dimensional contractible cell complex 

X. Let 

o --+ Cr --+ ... --+ C1 --+ Co --+ lk --+ 0 

be the cellular chain complex of X. Each Cj is isomorphic to 

where ~j is a set of H-orbit representatives of j-dimensional cells in X and Hrp (EHaJ. 

o < (3 < a) is the isotropy group of the cell ¢ E ~j. Tensoring the sequence with AI and 

using the semi-diagonal action of RH, yields the exact sequence 

o --+ Cr 0 M --+ ... --+ C1 0 M --+ Co 0 M --+ M --+ 0 

of RH-modules. As was seen above, the functor S 0RH - is exact so applying it to the 

above sequence of RH-modules yields the exact sequence 

of S-modules. Applying the tensor identity we see that 

EB S0RH (Jk[HjHrp]0M) 
¢E'L,j 

EB S 0RH (RH 0RH", M) 
¢E'L,j 

EB S0RH", M. 
¢E'L,j 

By induction, Erl~ (M, S 0RH", M) vanishes for all isotropy groups Hrp. Since M is of type 

FP 00 we have, by the comment following Lemma 2.1.11 that 

Ext~(M, EB S0RH",M) = EB Ext~(M,S0RH",M) 
¢EL.j ¢EL.j 

and so we can deduce that Erl~ (M , S 0 RH (Cj 0 M)) = 0 for all i, j. Thus the functors 

vanish on all modules in the above exact sequence of S-modules except S 0RH iII. But 

this is incompatible with Lemma 2.1.13, so in fact these functors vanish on S 0RH iII also. 

An identical argument using (J M instead of M yields the same conclusion for S 0 RH (T .\1 . 

Thus the claim holds for the subgroup H. 

The strategy outlined at the beginning of the proof establishes the theorem. 
o 
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4.5 Some vanishing theorems 

We now turn our attention to iterated skew polynomial rings over base the base rings we 

have already considered. 

Definition 4.5.1. Let R be a ring. An n-fold iterated skew polynomial ring over R 

is defined as follows: let So = R and for each n > 1, Sn := Sn-I[Xn; an-I, 6n -l] for some 

right skew derivation (a n-I , 6n -l) on the ring Sn-I. 

Definition 4.5.2. Let R be a ring. An n-fold iterated skew Laurent polynomial ring 

over R is defined as follows: let So = R and for each n > 1, Sn := Sn-I [X;; 1 ,Xn; an-d for 

some automorphism an-1 of the ring Sn-1. 

Theorem 4.5.3. Let G be an HJ-group and R a strongly G-graded k-algebra with the 

property that every R-module has finite projective dimension as an RH-module for each 

finite subgroup H of G. Let T be an n-fold iterated skew polynomial ring or an iterated 

n-fold skew Laurent polynomial ring over R. Then, for all left T -modules M of type FP 00, 

all left T -modules N and all intermediate polynomial rings Sj, 0 ~ j < n, 

for all i. 

Proof. We proceed by induction on j . 

• j = O. The proof is similar to that of Lemma 4.4.2. We proceed by induction on the 

least ordinal a such that G belongs to the subclass HaJ of HJ'. If a = 0 then G belongs 

to HoJ which is the class of finite groups and so as an R-module, N has finite projective 

dimension. The functor T0R- is naturally equivalent to T0sn _ 1 Sn-10sn - 2 •• .0s1 S10R-· 

By Lemma 4.3.4, each Sk+1 is free as an Sk-module (0 ~ k < n - 1) so T 0R - is an 

exact functor. It follows that T 0R N has finite projective dimension as a T-module and 

so Ext~ (M , T 0 R N) = 0 for all i. 

Assume now that a > O. Then G acts on a finite dimensional contractible cell complex 

X. Let 

o -+ Cr -+ ... -+ C1 -+ Co -+ k -+ 0 

be the cellular chain complex of X. Each Ck is isomorphic to 
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where L:k is a set of G-orbit representatives of k-dimensional cells in X and Go (EH-J 

with 0 < f3 < a) is the isotropy group of the cell ¢ E L:k' Tensoring the sequence with S 

and using the semi-diagonal action of R, yields the exact sequence 

o -+ Cr ® N -+ ... -+ C1 ® N -+ Co ® N -+ N -+ 0 

of R-modules. As we saw in the first part of the proof, the functor T 0R - is exact so 

applying it to the above sequence of R-modules yields the exact sequence 

Applying the tensor identity, we see that for 0 < k < T, 

EB T 0R (Jk[GjG¢>] 0 N) 
¢>EL.k 

EB T 0R (R 0RGq, N) 
¢>EL.k 

EB T0RGq, N. 
¢>EL.k 

By induction, i&t~(M, T 0RGq, N) vanishes for all isotropy groups G¢>. M is aT-module 

of type FP 00, so by the comment following Lemma 2.1.11, 

i&t~(M, EB T ®RGq, N) = EB Ext~(M, T 0RGq, N); 

¢>EL.k ¢>EL.k 

that is, i&t~ (M , T ® R (Ck 0 N)) = 0 for all i and all k. The long exact sequence for 

complete cohomology groups shows us that in fact Ext~ (M, T 0 R N) = 0 for all i . 

• 1 < j < n. By Lemma 4.3.3, we have a short exact sequence 

0-+ S· 0s· OJ-IN -+ SJ' ®S'-1 N -+ N -+ 0 J )-1 ) 

of Bj-modules. As has been observed, the functor T 0sj - is exact and so 

o -+ T ®Sj-l OJ-l N -+ T 0sj_1 N -+ T 0sj N -+ 0 

is an exact sequence of T-modules. By induction, 

i&t~(M,T0Sj_l (Jj-lN) = Ext~(M,T0Sj_l N) = 0 

for all i and so exactness of the sequence 

E-t
i (M T to. N) -+ Exti (M, T 0s N) -+ Ext,~+l (1\/. T 0S;-1 (Jj-l S) -+ ., . . . . -+ x T , I6ISj_l T ) 

forces Erl~(M, T ®s) N) = 0 for all i. 
o 
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Remark 4.5.4. Taking Sj = T, N = M and i = 0 gives us Theorem 4.4.2. 

Theorem 4.5.5. Let R = ~A RA be a filtered colimit of rings of finite left global di

mension with the property that R is fiat as an RA -module for each A. Let T be an n-fold 

skew polynomial ring or n-fold iterated skew Laurent polynomial ring over R. Then. for 

all left T -modules of type FP 00, all left N -modules and all intermediate polynomial ri Tl gs 

Sj,O<j<n, 
--i 
ExtT(M, T ®Sj N) = 0 

for all i. 

Proof. We proceed by induction on j . 

• j = O. M is of type FP 00 so by Lemma 2.1.11, 

--i --i -i 
ExtT(M, T ®R N) = ExtT(M, ~T ®R,\ N) = ~ExtT(M, T ®R,\ N) 

A A 

for all i. Each RA has finite left global dimension, so we immediately see that T ®R>. N 

has finite projective dimension as a T-module because the functor T ®R,\ - is exact by 

repeated application of Lemma 4.3.4 and the fact that R is fiat as an RA-module. As a 

consequence of this, each Erl~ (M , T ® R>. N) is zero and so Erl~ (M , T ® R N) = 0 for 

each i . 

• 1 < j < n. By Lemma 4.3.3, we have a short exact sequence 

of Srmodules. As has been observed, the functor T ®Sj - is exact and so 

o -+ T ®s, OJ-1 N -+ T ®S-1 N -+ T ®sJ' N -+ 0 
)-1 J 

is an exact sequence of T-modules. By induction, 

for all i and so exactness of the sequence 

'-z (7)-1 -t , --i+l ) 
.. , -+ Erl~(M,T®sj_1 N) -+ ExtT(M,T®sj N) -+ ExtT (M,T®sj_1 N ... 

forces Erl~ (M, T ®Sj N) = 0 for all i. 
o 
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4.6 Bricks, Walls and Foundations 

Definition 4.6.1. Let B be a poset of subrings of a ring T with the following properti('~ 

• T E B. 

• B satisfies DCC. 

• T is flat as an 8-module for every 8 E B. 

• For all 8 E B, one of the following is true 

(i) 8 = 80 [x; 0-, 6] for some 8 0 E B. 

(ii) 8 = ~A SA for some 8 A E B. 

then the S E B are called bricks, each minimal element of B is called a foundation brick 

and B is called aT-wall. 

Remark 4.6.2. In order to perform various calculations, we have to stipulate that T be 

flat as an 8-module above because, as the following example shows, we cannot assume it. 

Example 4.6.3. Given rings R,8 and T with R < 8 < T such that 8 and T are flat as 

R-modules, it does not necessarily follow that T is flat as an 8-module. For, take R = lk, a 

field, S = lk:[x] and T = lk[x, y]/(xy, y2). lk:[x] and Jk[x, yJ/(xy, y2) are free lk-modules since 

lk: is a field and so they are also flat. As a lk:[x]-module, however, lk:[x, y]/(xy, y2) is not free 

or even flat. To see this, first observe that as a lk:[x]-module, 

lk:[x, y]/(xy, y2) ""' lk: EB lk:[x] 

via the map ¢ : (ay + f30 + f31x + f32x2 + ... ) H (0:, f30 + f31X + f32x2 + ... ) where Ik is thl' 

Ik[x]-module on which x acts as multiplication by zero; but this means that 

Tor~[x](Ik, lk: EB lk[x]) 

~ Tor~[xl (Ik, Ik) EB Tor~[xl (Ik, Ik[l:]) 

Tor~[xl (lk, lk) 

since Torn vanishes on free modules. Thus ifTor~[xl(lk,lk) is non-zero, then lk[x,y]/(.ry.y2) 

cannot be flat as a Ik[x]-module. 

The Koszul complex provides us with a free resolution of the Ik[x]-module Ik: 

o -t lk[x] ~ lk[x] -t lk -t O. 
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Considering the complex 

o --+ lk ®~[xllk[x] 1
0 1lk ®~[xllk[x] --+ 0, 

we see that the map 1 ® x sends the element 1 ® 1 to 1 ® x = x ® 1 = 0; that i~. 

Ker(l ® x) = lk ®lk[x]lk[x] so Tor~[x] (lk, lk) = lk ®~[x]lk[x] =1= 0 and therefore lk[x, y]/(xy, y2) 

cannot be flat as a lk[x]-module. 

Definition 4.6.4. Let T be a ring and BaT-wall. A T-module which is projective over 

each foundation brick is called a foundation module. 

Theorem 4.6.5. Let T be a ring and BaT-wall. Then for all bricks S, all T-m.odules 

M of type FP 00 and all foundation modules N, 

----* ExtT(M, T ®s N) = O. 

Proof. In case S is a foundation brick, N is a projective S-module and so T ®s N is 

projective (since T is flat over every brick) and the claim holds. 

Suppose now that the claim is not true for some brick which is not a foundation brick. 

Let S be the least such brick. Then &t~ (M, T ® s N) =1= 0 for some j. Either S = ~ A SA 

or S = So [x; a, <5] . 

• If S = ~A SA' then T ®s N = ~A T ®s).. N. M is a T-module of type FP 00 so 

&t~(M,T ®s N) = ~&t~(M,T ®s).. N) 
A 

so that if &t~(M,T ®s N) is non-zero, then &t~(M,T ®s).. N) is non-zero for 

some A. But Exi~(M, T ®s).. N) = 0 for all >. (since S was the least brick for which 

the claim is not true) and the result follows . 

• If S = So [x; a, <5], then Exi;(M,T ®so N) = 0 for all T-modules of type FPoc and 

all foundation modules N. 

We have a short exact sequence of S-modules 

o --+ S ®so (J N --+ S ®so N --+ N --+ 0 

(where a is the automorphism of So used in the construction of S). Applying the 

t (b eTisflatasan'l-module) functor T®s- to this sequence preserves exac ness ecaus, ' 

and yields the exact sequence 

o --+ T ®so (J N --+ T ®so N --+ T ®s N -+ 0 
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of T-modules. Applying E;ct; (M, -) to this sequence yields the long exact sequence 

-i ) -i -i+I 
... ---+ ExtT(M,T®so N ---+ ExtT(M,T®sN) ---+ ExtT (AI.T0so a"V) ---+ '" 

-i -i 
Each ExtT (M, T ®so N) = 0 by hypothesis, so if ExtT (M, T 0s N) is non-zero for 

-HI 
some i, then ExtT (M, T 0so aN) is non-zero. 

Questions I don't know how to proceed from here. Does it follow that if N is 

a foundation module then aN (where u is an automorphism of some brick) is a 

foundation module also? If u is an automorphism of the brick So, then we certainly 

have that pdT(T ®So aN) < pdso(a N) = pdso(N). 

o 
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