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Abstract 
  

 Senescence is a state of permanent proliferation arrest that normal cells 

undergo in response to shortened telomeres, oncogenic activation and other sources 

of cellular stress, thus restricting the replicative capacity of impaired or damaged 

cells. As such, senescence provides a potent mechanism of tumor suppression, but 

has also been implicated in organismal aging. Senescence is accompanied by 

profound chromatin remodeling, which reinforces several important features of the 

senescence program. Consequently, there is considerable interest in elucidating 

precisely how chromatin structure influences senescence.  

 In the present work, I set out to investigate the role of the H4K20me3 histone 

modification in senescence, as the mark has been implicated in aging and is 

commonly lost in human cancers. I first showed that although senescent cells 

undergo a progressive loss of bulk histone content, the H4K20me3 modification is 

selectively retained during senescence. I next demonstrated that while the net 

abundance of H4K20me3 remains unaltered, senescent cells display a nuclear 

redistribution of the mark that coincides with SAHF. Utilizing ChIP coupled with 

next-generation sequencing, I mapped the genome-wide distribution of H4K20me3 

in proliferating and senescent cells and found that H4K20me3 is highly enriched at 

several classes of DNA repeats and ZNF genes in senescent cells. Although 

H4K20me3 is associated with transcriptional repression, presence of the mark did 

not correlate with gene expression changes in senescence.  

 In order to investigate the mark functionally, I established cells overexpressing 

SUV420H2, a histone methyltransferase that catalyzes trimethylation of H4K20. 

Ectopic expression of SUV420H2 increased levels of the mark robustly, but 

produced no overt phenotype. When subjected to long-term culturing, SUV420H2 

overexpression produced a moderate acceleration of senescence compared to control 

cells. Following infection with oncogenic H-RASG12V, SUV420H2 cells displayed 

an enhanced degree of senescence compared to H-RASG12V-infected control cells, 

based on multiple molecular readouts. Most remarkably, SUV420H2 overexpression 

blocked senescence escape following H-RASG12V infection, which occurred at a 

much higher frequency in H-RASG12V-infected control cells. Therefore, the data 

suggest that high levels of SUV420H2 and the H4K20me3 mark are beneficial to the 
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senescence program and serve to reinforce the permanent proliferation arrest. 

Although the molecular basis for this effect is presently unclear, the findings provide 

convincing evidence that chromatin structure is indeed an important contributor to 

the senescence program. 
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Chapter 1. Introduction 
 

1.1 Cell Senescence 

 

1.1.1 Overview of Cell Senescence 

 Cell senescence is a state of permanent proliferation arrest that normal cells 

can undergo in response to a variety of detrimental stimuli. In this manner, 

senescence restricts the proliferative capacity of impaired or damaged cells. Several 

well-characterized triggers of senescence have been identified including short 

telomeres, oncogenic signalling, loss of tumor suppressors and general cell stress. 

Upon exposure to these triggers, cells exhibit a characteristic set of morphological, 

transcriptional and biochemical changes, the culmination of which is a permanent 

proliferation arrest. In order to establish senescence, cells engage a coordinated 

network of effector pathways. The p53 and pRB pathways are the master regulators 

of senescence and interact extensively with additional effector processes including 

DNA damage signalling, altered secretion and autophagy. Importantly, senescence is 

accompanied by profound changes to chromatin structure, which is thought to 

reinforce aspects of the senescence program. Functionally, senescence serves as a 

potent tumor suppression mechanism and facilitates wound healing. However, 

senescence has also been implicated in aging and tumorigenesis. Thus, senescence is 

a complex but important biological process that undoubtedly requires further study 

(Figure 1.1). 

 

1.1.2 Triggers of Senescence 

 

1.1.2.1 Telomere Shortening 

 In 1961, Leonard Hayflick and Paul Moorhead described a phenomenon that 

they termed “Phase III,” in which primary human diploid cell strains exhibited a 

reduced proliferative capacity and underwent striking morphological changes 

following extended periods in culture (Hayflick & Moorhead, 1961). Four years 

later, Hayflick reported the seminal finding that primary human diploid cells indeed 

have a finite lifespan in culture and described the Phase III phenomenon as a form of 
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“senescence” at the cellular level (Hayflick, 1965). As a result, the point at which 

normal cells cease to proliferate is commonly referred to as the “Hayflick limit.” 

 It is now recognized that after an extended period in culture, primary cells 

undergo a form of senescence called replicative senescence (RS) that results from the 

shortening of telomeres. Telomeres are the regions of repetitive DNA sequence (5’-

TTAGGG-3’) and associated proteins that protect the linear ends of chromosomes 

(Shay & Wright, 2005). However, due to the properties of DNA polymerase, a short 

50-200 base pair segment of the lagging strand is lost with each sequential round of 

DNA replication, which is referred to as the end-replication problem (Harley et al., 

1990). Thus, following repeated rounds of replication, telomeres become critically 

short and dysfunctional, which activates the DNA damage response (DDR) and 

initiates senescence (d'Adda di Fagagna et al., 2003; Herbig et al., 2004). Precisely 

how the DDR engages senescence will be discussed in detail in a subsequent section. 

 Because the rate of telomere loss is not identical for every chromosome in the 

cell, some chromosomes develop critically short telomeres faster than others. 

Consequently, the presence of only a few short telomeres is capable of inducing 

senescence (Martens et al., 2000). Remarkably, ectopic expression of telomerase, a 

ribonucleoprotein enzyme that can synthesize telomeric DNA but is not ordinarily 

expressed sufficiently in human somatic cells, is sufficient to extend lifespan and 

delay senescence in primary human cells (Bodnar et al., 1998). Importantly, this 

confirmed that telomere attrition is a molecular trigger of senescence. 

 

1.1.2.2 Activated Oncogenes  

Subsequent to the discovery that telomere shortening limits the replicative 

lifespan of normal cells, it was reported that activated oncogenes are also sufficient 

to induce senescence in primary cells. Previous studies had established that 

expression of oncogenic H-RAS is capable of transforming most immortal rodent 

cell lines (Newbold & Overell, 1983). In contrast, Scott Lowe and colleagues noted 

that introduction of an oncogenic form of H-RAS into primary human and rodent 

cells resulted in a stable G1 cell cycle arrest and the acquisition of morphological 

features reminiscent of replicative senescent cells (Serrano et al., 1997). Lowe and 

colleagues further confirmed senescence in the mutant H-RAS-expressing cells by 

showing induction of the tumor suppressors p53 and p16INK4a and pH-dependent 

senescence-associated β-galactosidase activity. Importantly, co-expression of viral 
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E1A, a protein that binds and inactivates pRB, prevented H-RAS-induced senescence 

in the human cells. These data convincingly established that oncogene activation is 

indeed capable of inducing premature senescence in primary cells.  

 Since the time of these initial findings, numerous oncogenes have been 

reported to induce senescence in vitro. For example, the activation of additional 

members of the RAS-RAF-MEK signaling pathway, including RAF, BRAF, MEK 

and MOS, has been shown to drive senescence (Zhu et al., 1998; Michaloglou et al., 

2005; Narita et al., 2003; Lin et al., 1998; Bartkova et al., 2006). Likewise, countless 

other oncogenic proteins (e.g., MYC, TGFβ, RUNX1) have also been implicated in 

the induction of senescence (Grandori et al., 2003; Katakura et al., 1999; Wolyniec et 

al., 2009). Importantly, oncogene-induced senescence (OIS) is not strictly an in vitro 

phenomenon and has been described in variety of in vivo contexts. In fact, various 

oncogenic mutations have been associated with the accumulation of senescent cells 

in premalignant lesions (Collado et al., 2005). To this end, oncogenic forms of 

BRAF, KRAS and NRAS appear to induce senescence in the contexts of benign 

melanocytic nevi, lung adenomas and lymphoproliferative disorders, respectively 

(Michaloglou et al., 2005; Collado et al., 2005; Braig et al., 2005). 

 Although oncogene-induced senescent cells resemble replicative senescent 

cells phenotypically, oncogenic activity appears to drive senescence independently of 

telomere shortening. As such, expression of telomerase, which is sufficient to delay 

replicative senescence, does not prevent OIS, indicating that oncogenes do not 

induce senescence via telomere shortening (Wei et al., 1999). Instead, oncogenic 

activation is thought to induce senescence by driving hyper-replication, resulting in 

stalled replication forks and DNA double-strand breaks, which in turn activates the 

DDR (Di Micco et al., 2006). Thus, oncogene activation represents a distinct trigger 

of cell senescence. 

 

1.1.2.3 Loss of Tumor Suppressors 

The loss or inactivation of tumor suppressor proteins is also capable of 

inducing cell senescence in vitro and in vivo. Illustrating this, Pier Paolo Pandolfi 

and colleagues reported that while targeted deletion of both alleles of the tumor 

suppressor Pten in mouse embryonic fibroblasts (MEFs) induces senescence, 

Pten/Trp53 double-null MEFs continue to proliferate (Chen et al., 2005). 

Intriguingly, MEFs in which only a single Pten allele is deleted fail to senesce and 
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proliferate more than wild-type cells. In the same study, the authors investigated the 

effect of tumor suppressor loss in vivo and found that prostate-specific deletion of 

both Pten alleles in mouse results in the initial development of pre-malignant 

prostatic intraepithelial neoplasia and senescence. 

 In a separate study, Karen Cichowski and colleagues demonstrated that 

depletion of the neurofibromin (NF1) tumor suppressor from primary human 

fibroblasts results in p53/pRB-mediated senescence (Courtois-Cox et al., 2006). The 

authors also showed that knockdown of NF1 results in a transient activation of the 

RAS pathway that is quickly attenuated. Importantly, inactivation of the RAS 

pathway after NF1 knockdown precedes senescence, suggesting that a negative 

feedback loop might be responsible for triggering senescence upon loss of NF1. 

Finally, Cichowski and colleagues showed that dermal neurofibromas, small benign 

tumors that arise from somatic mutation of NF1, contain SA β-gal and p16INK4a-

positive senescent cells. 

 In addition, William Kaelin, Jr and colleagues reported that targeted deletion 

of the von Hippel–Lindau tumor suppressor gene Vhl in MEFs results in a p53-

independent senescence proliferation arrest (Young et al., 2008). Specifically, Vhl 

deletion results in loss of the SWI2/SNF2 complex member p400, which leads to 

elevated p27 levels and subsequent activation of pRB. The authors also reported high 

levels of SA β-gal in the kidneys of Vhlfl/fl mice, indicating that loss of Vhl is also 

sufficient to induce senescence in vivo. Therefore, collective these studies provide 

compelling evidence that loss of tumor suppressors can trigger cell senescence. 

 

1.1.2.4 Cellular Stress 

It has also been noted that in culture, cells can undergo senescence in 

response to various forms of stress. To this end, suboptimal culturing conditions and 

the stress incurred by maintaining cells in an artificial environment can undoubtedly 

contribute to premature senescence in vitro (Sherr & DePinho, 2000). In addition to 

the inevitable detriments of growing cells in culture, several other factors have been 

reported to induce a form of senescence that is occasionally referred to as stress-

induced senescence (SIPS) (Toussaint et al., 2000). 

 As discussed in the sections on telomere shortening and oncogene activation, 

DNA damage appears to be a common molecular driver of cell senescence. 

Consequently, other sources of DNA damage are equally effective at inducing 
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senescence. For example, exposure to ultraviolet (UV) light has been reported to 

produce stable proliferation arrest and senescence in primary human melanocytes 

and fibroblasts (Medrano et al., 1995; Helenius et al., 1999). In a similar manner, 

ionizing radiation has been used extensively to induce senescence in human and 

mouse fibroblasts (Di Leonardo et al., 1994; Coppé et al., 2008; Rodier et al., 2009). 

Drug treatment is widely acknowledged as another source of cellular stress 

capable of inducing senescence. DNA damaging agents including hydroxyurea, 

etoposide and doxorubicin are routinely used to trigger senescence in primary cells 

(Yeo et al., 2000; Kosar et al., 2011). Likewise, treatment of cells with the histone 

deacetylase (HDAC) inhibitors sodium butyrate and trichostatin A (TSA) has been 

shown to confer senescence in primary human fibroblasts (Ogryzko et al., 1996; 

Place et al., 2005). Remarkably, treatment with chemotherapeutic agents has even 

been reported to induce senescence in certain tumor cells in vitro and in vivo (te 

Poele et al., 2002; Zheng et al., 2004; Roberson et al., 2005). 

 Finally, oxidative stress also limits cellular lifespan in culture through the 

induction of senescence. First, exposure of primary human fibroblasts to sub-lethal 

concentrations of H2O2 has been shown to promote proliferation arrest and 

senescence (Chen et al., 1998a; Dumont et al., 2000). Likewise, culturing cells under 

hyperoxic conditions accelerates the onset of senescence (von Zglinicki et al., 1995; 

Klimova et al., 2009). In contrast, maintaining primary human cells under low 

oxygen conditions extends lifespan in culture (Parker et al., 1977; Saito et al., 1995). 

Intriguingly, oxidative stress even promotes senescence in response to other triggers, 

as elevated RAS expression increases intracellular levels of reactive oxygen species 

(ROS) (Lee et al., 1999). High levels of ROS have also been reported in replicative 

senescent cells (Furumoto et al., 1998). Thus, it is evident that various sources of 

cellular stress can serve as triggers of senescence. 

 

1.1.3 Effectors of Senescence 

 

1.1.3.1 The p53 and pRB Pathways 

The establishment and reinforcement of a stable proliferation arrest is one of 

the defining features of cell senescence. In order to facilitate this critical process, 

stressed cells engage a coordinated network of effector pathways. To this end, the 

establishment of senescence is primarily contingent upon the activities of the p53 and 
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pRB tumor suppressor pathways. Underscoring the significance of p53 and pRB to 

senescence induction, the simultaneous inactivation of both pathways is required in 

order to abolish senescence in primary human cells (Shay et al., 1991; Bond et al., 

1999; Hahn et al., 2002). However, in mice, individual inactivation of either the p53 

pathway or pRB (plus p107 and p130) is sufficient to prevent senescence (Harvey et 

al., 1993; Dannenberg et al., 2000; Sage et al., 2000). Regardless, the p53 and pRB 

pathways both serve as the master regulators of the senescence program (Figure 1.2). 

 The p53 pathway is ordinarily activated upon exposure to a variety of cellular 

stressors, including DNA damage. DNA damage results in the activation of ATM 

and ATR, which subsequently phosphorylate and activate the CHK2 and CHK1 

kinases, respectively (Kurz & Lees-Miller, 2004). Upon activation, CHK2/CHK1 

phosphorylate and stabilize p53, which enables the transcriptional activation of 

specific p53 target genes (He et al., 2005). One critical p53 target gene is the cyclin-

dependent kinase inhibitor p21CIP1 (CDKN1A). Once expressed, p21CIP1 binds 

and inhibits cyclin-CDK2 complexes, thus blocking cell cycle progression and 

arresting cells in G1 phase (Sherr & Roberts, 1999). In this manner, activation of the 

p53 pathway blocks proliferation. 

 The pRB pathway is a second critical effector mechanism through which 

senescence is established. In the unphosphorylated state, pRB restricts cell cycle 

progression by binding to and inhibiting the E2F family of transcription factors. As 

the cell approaches S phase, pRB is phosphorylated by cyclin D/CDK4/CDK6, 

which releases E2F and frees the transcription factor to activate a series of target 

genes required for progression through S phase (Nevins, 2001). Cellular stress, 

including oncogenic activation, induces the expression of the cyclin-dependent 

kinase inhibitor p16INK4a (CDKN2A) (Ohtani et al., 2001). Upon induction, 

p16INK4a inhibits the activity of cyclin D/CDK4/CDK6 complexes, which in turn 

prevents the phosphorylation of pRB. Dephosphorylation of pRB restores binding 

with E2F, prevents the transcription of proliferation genes and blocks cell cycle 

progression (Lowe & Sherr, 2003). Thus, induction of the p16INK4a-pRB pathway 

provides another important mechanism of restricting proliferation following 

exposure to stress signals. 
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1.1.3.2 DNA Damage Response 

Given the ability of DNA damage to engage the p53 and pRB pathways, it is 

not surprising that the DNA damage response (DDR) is another important effector 

pathway through which senescence is established. Although senescence can occur 

independently of DNA damage, many of the aforementioned triggers of senescence 

elicit the DDR. In fact, telomere shortening, activated oncogenes, ionizing radiation 

and genotoxic agents all induce senescence through activation of the DDR (d’Adda 

di Fagagna et al., 2003; Di Micco et al., 2006; Fumagalli et al., 2012; Ben-Porath & 

Weinberg, 2005). 

 The progressive telomere shortening that results from repeated rounds of 

DNA replication is a well-documented trigger of the DNA damage response. In one 

of the first demonstrations that telomere attrition could produce a DNA damage 

signal, Stephen Jackson and colleagues reported that replicative senescent cells 

accumulate several markers of DNA damage including phosphorylated γ-H2AX, 

SMC1, RAD17, CHK1 and CHK2 (d’Adda di Fagagna et al., 2003). The study 

further revealed that γ-H2AX was enriched at subset of subtelomeric regions of 

chromosomes that have been shown to have particularly short telomeres. 

Intriguingly, inactivation of the DNA response through expression of dominant 

negative forms of ATM, ATR, CHK1 and CHK2 enabled replicative senescent cells 

to resume DNA replication. Expanding on this work, Fabrizio d’Adda di Fagagna 

and colleagues showed that DNA damage occurring at telomeres cannot be 

effectively repaired, which results in the presence of chronic DNA damage foci, a 

persistent DDR and establishment of senescence (Fumagalli et al., 2012).  

 Activated oncogenes have also been reported to induce senescence through 

engagement of the DDR. Work from the laboratories of Jiri Bartek and Fabrizio 

d’Adda di Fagagna demonstrated that oncogenic activation indeed produces a DDR 

by causing hyper-replication that results in DNA double-strand breaks and 

improperly terminated replication forks (Bartkova et al., 2006; Di Micco et al., 

2006). Significantly, inactivation of CHK2 not only abolishes H-RAS-induced 

senescence but also results in cell transformation, highlighting the importance of an 

intact DDR for establishment of OIS (Di Micco et al., 2006).  

Finally, the DDR is not only important for the induction of a permanent 

proliferation arrest, but is also critically important to the generation of the SASP. To 

this end, Judith Campisi and colleagues reported that inactivation of critical DDR 
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mediators including NBS1, ATM and CHK2 prevents the SASP in response to 

radiation-induced senescence (Rodier et al., 2009). In addition, SASP factors 

including the chemokine IL8 and ligands of CXCR2 provide a feedback loop that 

enhances the DDR (Acosta et al., 2008). Therefore, the DDR is not an independent 

process, but rather a fully integrated branch of the other effector pathways that 

establish senescence. 

 

1.1.3.3 Senescence-Associated Secretory Phenotype 

Several early transcriptional profiling studies of senescence revealed that 

compared to proliferating cells, senescent cells exhibit a discrete pattern of altered 

gene expression (Shelton et al., 1999; Zhang et al., 2003; Yoon et al., 2004). As 

anticipated, these studies invariably revealed a significant downregulation of 

proliferation and cell cycle genes in senescent cells. Unexpectedly, the profiling 

studies also indicated that numerous genes encoding pro-inflammatory cytokines, 

chemokines, growth factors and extracellular matrix remodeling enzymes are 

consistently upregulated in senescent cells. Remarkably, many of these proteins are 

actively secreted into the extracellular environment (Campisi, 2005). Thus, while 

initially surprising, it is now evident that these secreted proteins, collectively termed 

the senescence-associated secretory phenotype (SASP), comprise an important 

feature of the senescence program (Coppé et al., 2008; Rodier et al., 2009). 

Although considered a phenotypic hallmark of cell senescence, the SASP 

also represents an important effector mechanism involved in the establishment of 

senescence. To this end, some of the components of SASP have been reported to 

reinforce the senescence proliferation arrest through an autocrine feedback 

mechanism. Work by Jinsong Liu and colleagues revealed that ectopic expression of 

RAS in ovarian epithelial cells induces the expression and secretion of GRO-1, 

which when applied to stromal fibroblasts in conditioned medium, induces 

senescence (Yang et al., 2006). Similarly, René Bernards and colleagues determined 

that expression of the SASP factor PAI-1 is both necessary and sufficient to induce 

senescence in human BJ fibroblasts and MEFs (Kortlever et al., 2006). Likewise, 

expression of oncogenic BRAFV600E in primary human cells results in the 

expression and secretion of IGFB7, which subsequently induces senescence through 

inhibition of the RAF-MEK-ERK pathway (Wajapeyee et al., 2008). Finally, work 

from the laboratories of Daniel Peeper and Jesus Gil revealed that the cytokine IL6 
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and chemokine IL8 help to establish and reinforce senescence by mediating 

expression of a C/EBPβ- and NF-κB-dependent network of inflammatory factors 

(Kuilman et al., 2008; Acosta et al., 2008). 

In light of the fact that several SASP factors actively reinforce senescence, 

considerable attention has been directed toward understanding how the SASP is 

regulated. As mentioned above, the expression of several SASP factors is regulated 

through the transcription factors C/EBPβ and NF-κB. In fact, depletion of C/EBPβ 

from cells infected with oncogenic BRAFV600E not only inhibits the expression of 

IL6 and IL8, but also allows the cells to bypass senescence and continue proliferating 

(Kuilman et al., 2008). Likewise, pharmacologic inhibition of NF-κB prevents the 

expression of numerous SASP factors in primary cells overexpressing mutant MEK 

(Acosta et al., 2008). The DDR appears to play an integral role in facilitating the 

SASP, as silencing of several DDR components attenuates the expression of several 

SASP factors (Rodier et al., 2009). It is important to note that although SASP 

expression typically accompanies several forms of senescence induction (e.g., RS, 

OIS, stress), senescence and SASP expression are separable processes. For example, 

ectopic expression of p16INK4a induces senescence in primary cells without 

eliciting the DDR or the SASP (Coppé et al., 2011). There is also evidence to support 

roles for p38MAPK signalling and microRNAs in the regulation of the SASP 

(Freund et al., 2011; Bhaumik et al., 2009). Thus, SASP regulation is undoubtedly a 

complex process that warrants additional investigation.  

While the SASP is certainly a critical effector of the senescence program, it is 

also a downstream phenotype of senescence. In this capacity, the SASP likely helps 

to facilitate the physiological function(s) of senescence in vivo. Alternatively, the 

SASP might also contribute to some potentially detrimental aspects of senescence. 

Indeed, both of these topics will be addressed in a subsequent discussion of the 

functional relevance of senescence. 

 

1.1.3.4 Autophagy 

More recently, autophagy has been identified as another key effector of the 

senescence program. Autophagy is an evolutionarily conserved process that 

facilitates the sequestration, degradation and turnover of intracellular proteins and 

organelles (Mizushima, 2007; Yang & Klionsky, 2010). It has been reported that as 

cells age they accumulate oxidatively damaged and misfolded proteins that cannot 
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undergo efficient degradation and turnover (Ryazanov & Nefsky, 2002; Breusing & 

Grune, 2008). Indeed, the accumulation of oxidized protein with age has been shown 

to impair various aspects of cellular function (Squier, 2001). Consequently, 

autophagy has been proposed as a potential mechanism for limiting the amount of 

damage protein that increases with age (Levine & Kroemer, 2008). 

In view of the concept that replicative senescence represents a form of aging 

at the cellular level, an interest in investigating the link between senescence and 

autophagy has emerged. To this end, Christian Behl and colleagues reported that 

autophagy increases in late passage, replicative senescent IMR90 cells (Gamerdinger 

et al., 2009). The study further revealed that induction of autophagy in replicatively 

aged cells occurs through a switch in the ratio of BAG3 to BAG1, two members of 

the BCL-2-associated athanogene protein family, and involves the LC3-binding 

protein SQSTM1. Thus, the authors suggested that autophagy induction in aged cells 

might mitigate the accumulation of damaged proteins. 

Work from Masashi Narita’s laboratory revealed that in human diploid 

fibroblasts, autophagic activity increases during the transition phase of OIS (Young 

et al., 2009). Activation of autophagy during the transition phase also correlates with 

the concurrent suppression of mTORC1 and mTORC2 activities. In the same study, 

shRNA-mediated depletion of ATG5 or ATG7, two genes required for autophagy, 

attenuated SA β-galactosidase activity and delayed the production of IL6 and IL8, 

two cytokines that contribute functionally to the senescence program. Importantly, 

reduction of ATG5 or ATG7 also resulted in a bypass of H-RAS-induced 

proliferation arrest suggesting that autophagy is an important effector mechanism in 

the establishment of OIS. 

Senescent cells often undergo a significant increase in size and contain more 

protein per cell than proliferating cells (Young et al., 2009). In order to accommodate 

this considerable energetic demand, senescent cells must maintain effective protein 

turnover and synthesis. Another recent study from Masashi Narita’s group revealed 

that protein turnover during OIS is mediated through the co-localization of 

autophagic and protein synthesis machinery to a sub-cellular space termed the TOR-

autophagy spatial coupling compartment (TASCC) (Narita et al., 2011). The authors 

demonstrated that recruitment of the mTOR complex to the TASCC is dependent on 

amino acids and Rag GTPase function. Likewise, expression of a Rag GTPase 

dominant negative disrupts mTOR recruitment to the TASCC and restricts the 
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expression of IL6 and IL8 during OIS. This indicated that the production of some 

SASP proteins during senescence is dependent upon the spatial overlap of mTOR-

autophagy and protein synthesis organelles. Importantly, all three of these studies 

support the concept that autophagy is an integral effector pathway of the senescence 

program.  

 

1.1.4 Functions and Consequences of Senescence 

 

1.1.4.1 Tumor Suppression 

It has been widely proposed that the primary physiological function of 

senescence is to suppress tumorigenesis. Indeed, there are several lines of evidence 

that strongly support a prominent role for senescence in preventing cancer. As 

addressed in the discussion of OIS, oncogenic activation is one of the key triggers of 

senescence in a variety of cell types. To this end, well-characterized oncogenic 

proteins including H-RASG12V and B-RAFV600E are potent inducers of cell 

senescence in vitro and in vivo (Serrano et al., 1997; Michaloglou et al., 2005; 

Sarkisian et al., 2007). In addition, senescent cells are frequently present in various 

premalignant neoplastic lesions. Senescent cells have been reported in benign 

melanocytic nevi, early-stage lymphomas, prostate intraepithelial neoplasia, dermal 

neurofibroma, colon adenoma, pancreatic intraepithelial neoplasia and early-stage 

thyroid tumors (Michaloglou et al., 2005; Gray-Schopfer et al., 2006; Braig et al., 

2005; Collado et al., 2005; Chen et al., 2005; Courtois-Cox et al., 2006; Bartkova et 

al., 2006; Kuilman et al., 2008; Acosta et al., 2008; Fujita et al., 2009; Morton et al., 

2010; Caldwell et al., 2012; Vizioli et al., 2011).  

 Further supporting a role for senescence in tumor suppression, inactivation of 

key pathways that drive the senescence program enables the progression from early-

stage pre-malignant lesions to more advanced tumors. In fact, targeted disruption of 

p53 and Ink4a/Arf has been reported to accelerate tumorigenesis in multiple murine 

models of cancer (Chin et al., 1997; Bardeesy et al., 2002; Chen et al., 2005; Braig et 

al., 2005). Additionally, reactivation of p53 within tumors results in regression of the 

tumor and is associated with senescence induction. Tyler Jacks and colleagues 

reported that reactivation of p53 within established sarcomas in mice results in 

profound tumor regression and the presence of senescence markers (Ventura et al., 

2007). Similarly, Scott Lowe and colleagues elegantly showed that reactivation of 
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p53 within Hras-induced hepatocarcinomas in mice causes senescence, tumor 

regression and immune-mediated clearance of the tumors (Xue et al., 2007).  

 Although these findings provide compelling evidence that senescence 

provides a barrier to tumorigenesis, it is also important to examine how senescence 

might accomplish this. Undoubtedly, the anti-proliferative property of senescence 

restricts damaged cells from expanding clonally, thus preventing tumor formation. 

For example, benign melanocytic nevi are comprised of non-proliferating senescent 

melanocytes, and despite frequently harboring oncogenic BRAF mutations, rarely 

progress to melanoma (Michaloglou et al., 2005; Pollock et al., 2003; Gray-Schopfer 

et al., 2007). In addition, because senescent cells cease proliferation and DNA 

replication, there is a reduced likelihood of the cells acquiring additional mutations 

that might enable bypass of senescence and promote tumorigenesis. 

 Finally, there is data emerging to suggest that senescence suppresses tumor 

formation by promoting immune-mediated clearance of damaged cells. As 

mentioned above, Scott Lowe’s laboratory first reported that senescent cells are 

subject to immune clearance in vivo (Xue et al., 2007). In the study, Lowe and 

colleagues demonstrated that reactivation of p53 in mouse liver tumors induces 

senescence and causes tumor regression. Remarkably, the authors showed tumor 

regression was facilitated by the active clearance of senescent cells by natural killer 

(NK) cells, as antibody depletion of NK cells prevented regression. Subsequent work 

from Lowe and colleagues revealed that NK cells preferentially kill senescent cells in 

vitro (Krizhanovsky et al., 2008). 

 Expanding on this concept, recent work from Lars Zender’s laboratory 

showed that in mice, RAS-induced senescent hepatocytes are cleared from the liver 

through a CD4+ T-cell-mediated adaptive immune response (Kang et al., 2011). 

Clearance of senescent hepatocytes also requires an intact monocyte/macrophage 

response. Importantly, the authors proposed that secretion of cytokines and 

chemokines by senescent cells mediates recruitment of innate and adaptive immune 

cells. Likewise, work by Lowe and colleagues revealed that factors secreted by 

senescent cells are important for attracting NK and other immune cells (Xue et al., 

2007). Senescent cells indeed secrete a wide array of chemokines, cytokines and 

other immune modulating factors as part of the SASP (Kuilman et al., 2008; Acosta 

et al., 2008). It is now evident that the SASP can promote immune-mediated 

clearance of senescent cells in vivo. Thus, two important features of senescence, 
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permanent proliferation arrest and the SASP, likely collaborate to provide a barrier to 

tumorigenesis. 

 

1.1.4.2 Wound Healing 

Cell senescence also contributes functionally to the process of wound repair. 

Wound repair is the complex but coordinated process through which tissue integrity 

is restored following injury or damage. The process of wound repair involves a 

diverse array of cellular components and pathways, but typically involves sequential 

progression through three distinct phases: inflammation, proliferation/new tissue 

formation and remodelling (Gurtner et al., 2008b). In adults, the wound repair 

process inevitably produces a localized region of non-functional fibrotic tissue called 

a scar. Recent findings suggest that senescent cells accumulate at the sites of healing 

wounds and restrict the formation of fibrotic tissue through the secretion of 

extracellular matrix remodelling enzymes. 

 Utilizing a mouse model of chemical-induced liver fibrosis, Scott Lowe’s 

laboratory demonstrated that in response to carbon tetrachloride (CCl4) treatment, 

hepatic stellate cells (HSCs) undergo an initial proliferative expansion and produce 

extracellular matrix (ECM) components that comprise the fibrotic scar 

(Krizhanovsky et al., 2008). The activated HSCs subsequently senesce, downregulate 

ECM production and induce the expression of ECM degrading enzymes and immune 

modulators. Following termination of CCl4 treatment, a significant reversion of 

hepatic fibrosis accompanied by the elimination of activated HSCs was observed. In 

contrast, livers from CCl4-treated, p53-/-;INK4a/ARF-/- senescence-defective mice 

continued to display marked hepatic fibrosis and numerous activated HSCs, after 

CCl4 withdrawal. Consequently, the authors concluded that cell senescence limits the 

extent of chemical-induced hepatic fibrosis through the secretion of ECM degrading 

enzymes and by modulating the immune clearance of activated HSCs. 

 In a separate study utilizing a mouse model of cutaneous wound healing, it 

was reported that senescent fibroblasts accumulate within granulation tissue during 

the proliferative phase of the wound repair process (Jun & Lau, 2010). Through the 

use of transgenic mice, the authors showed that CCN1, a matricellular protein highly 

expressed in granulation tissue, is required for the accumulation of senescent cells 

during cutaneous wound healing. CCN1 promotes senescence in fibroblasts by 

inducing DNA damage, resulting in p53 and RAC-NOX1-dependent production of 
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reactive oxygen species (ROS) and subsequent activation of the p16INK4a/pRB 

pathway. Following CCN1-mediated induction of senescence, fibroblasts upregulate 

the expression of the ECM-degrading enzymes MMP1 and MMP3, and 

downregulate type I collagen, a component of the ECM. Thus, senescent cells restrict 

the formation of fibrotic tissue during cutaneous wound healing. Together, these 

studies both demonstrate a role for cell senescence in the process of normal wound 

repair. 

 

1.1.4.3 Aging and Cancer 

Despite the proposed beneficial roles of senescence to tumor suppression and 

wound healing, there is evidence to suggest that senescence might also facilitate 

some pathophysiological processes. This has led some researchers in the field to 

view senescence as a form of antagonistic pleiotropy, in which features of 

senescence might be beneficial early in life, but detrimental to the aged organism 

(Campisi & d’Adda di Fagagna, 2007). To this end, cell senescence has been 

implicated as a contributor to both organismal aging and cancer. 

Organismal aging is associated with a variety of pathologies that are 

collectively characterized by a decline of normal tissue function. Indeed, there are 

several lines of evidence that suggest cell senescence contributes to age-associated 

tissue dysfunction. First, it has been reported that senescent cells accumulate with 

age in various tissues in humans, baboons and rodents (Dimri et al., 1995; Paradis et 

al., 2001; Herbig et al, 2006; Jeyapalan et al., 2007; Wang et al., 2009). To this end, 

many of the molecular markers of cell senescence increase with age, including SA β-

galactosidase activity, p16INK4a induction, the presence of shortened telomeres and 

DNA damage signals (Dimri et al., 1995; Krishnamurthy et al., 2004; Hastie et al., 

1990; Sedelnikova et al., 2004). 

Several key functional studies also strongly suggest that senescence 

contributes to aging. Most somatic mouse tissues express sufficient levels of 

telomerase to maintain telomere length (Kipling, 1997). Consequently, genetic 

disruption of the telomerase holoenzyme (mTR-/-) in mouse accelerates various aging 

phenotypes, impairs wound healing and shortens lifespan (Rudolph et al., 1999). 

Inactivation of p16INK4a, a key regulator of senescence, abrogates senescence, 

prevents loss of tissue integrity and extends lifespan in a mouse model of premature 

aging (Baker et al., 2008). Utilizing the same prematurely aged mouse model, van 
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Deursen and colleagues subsequently generated a transgenic strain that enables drug-

inducible clearance of p16INK4a-positive cells (Baker et al., 2011). Remarkably, the 

authors showed that drug-induced clearance of p16INK4a-positive senescent cells 

delays the premature adipose tissue, skeletal muscle and eye degeneration typically 

observed in these mice. Moreover, the clearance of p16INK4a-positive cells from 

tissues in which degeneration is already initiated, blocks further progression. Thus, 

these data confirm that senescence can promote organismal aging. 

Mechanistically, senescence might promote aged-associated tissue 

degeneration several ways. First, senescence might restrict normal tissue 

regeneration by blocking the proliferative capacity of progenitor cells. To this end, 

several groups have reported that the abundance and proliferative capacity of 

progenitor cells decreases with age in a variety of tissues (Nishimura et al., 2005; 

Krishnamurthy et al., 2006). Second, because senescent cells secrete an array of 

chemokines and cytokines as part of the SASP, senescence might promote a state of 

chronic inflammation. In fact, chronic inflammation is a common hallmark of and 

contributor to numerous age-associated pathologies (Chung et al., 2009). Senescent 

cells also secrete a variety of extracellular matrix remodeling enzymes (e.g., MMPs) 

that can modify the tissue stroma (Page-McCaw et al., 2007). Thus, elevated 

expression of MMPs and other proteases might irrevocably alter the extracellular 

environment and potentiate tissue dysfunction (Burrage et al., 2006). 

In addition, there is evidence that in certain contexts senescence can actually 

promote another age-associated disease: cancer. Work by Judith Campisi and 

colleagues revealed that senescent fibroblasts stimulate the proliferation of 

premalignant and malignant epithelial cells in culture, but have no effect on normal 

epithelial cells (Krtolica et al., 2001). Likewise, the authors reported that co-injection 

of senescent fibroblasts with pre-malignant or malignant epithelial cells into mice 

promotes tumorigenesis, whereas co-injection with pre-senescent fibroblasts has no 

effect. Campisi and colleagues subsequently demonstrated that the SASP produced 

by senescent fibroblasts promotes epithelial–mesenchymal transition (EMT) and 

enhances the invasiveness of epithelial cells in vitro (Coppé et al., 2008). 

Significantly, both EMT and invasiveness are defining characteristics of malignancy. 

Finally, cells depleted of IL-1a, an upstream regulator of IL6 and IL8, inhibits 

secretion of IL6 and IL8 by senescent cells and reduces the pro-malignant properties 
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of the SASP (Orjalo et al., 2009). Thus, senescent cells, and specifically the SASP, 

have the ability to promote cancer through a paracrine mechanism. 

In light of this, it is reasonable to view senescence as an antagonistically 

pleiotropic response. To this end, permanent proliferation arrest and SASP are 

important features of senescence that undoubtedly promote tumor suppression and 

wound healing early in life, but ultimately become detrimental later in life. 

 

1.2 Chromatin 

 

1.2.1 Chromatin Structure and Organization 

Each human cell contains approximately two meters of genetic information in 

the form of DNA that must be effectively packaged and organized within the 

nucleus. To accomplish this, DNA is subjected to a series of folds and protein 

interactions, forming a higher-order structure called chromatin. The basic structural 

unit of chromatin is the nucleosome, an octameric core of highly conserved proteins 

called histones, around which approximately 147 basepairs of DNA is wrapped 

(Richmond et al., 1984). Structural studies have revealed that the nucleosome core 

consists of a tripartite structure that features one tetramer comprised of two copies 

each of histones H3 and H4 and two histone H2A/H2B dimers (Arents et al., 1991). 

Each of the core histones contains two distinct structural domains, a central globular 

fold domain through which the histone-histone and histone-DNA interactions occur 

and an unstructured amino-terminal tail domain that extends from the nucleosome 

core (Luger et al., 1997). In addition to the histone octamer and 1.75 turns of folded 

DNA, each complete nucleosome contains linker DNA, which connects one 

nucleosome to the next (Simpson, 1978). 

Based on this nucleosome/DNA interaction, if a single chromosome were to 

be stretched out into a linear arrangement, it would likely assume a “beads-on-a-

string” conformation (Hansen, 2002). However, chromatin inevitably forms several 

additional higher-order structures that exhibit increasing levels of compaction 

culminating in the mitotic chromosome. Consequently, this raises important 

questions as to how this is accomplished. To this end, several in vitro studies 

demonstrated that under optimal conditions, the 10-nm “beads-on-a-string” 

conformation assembles into a densely packed 30-nm chromatin fiber (Gall, 1966). 

Since this finding, numerous attempts have been made to visualize the 30-nm fiber in 
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situ utilizing a variety of sensitive microscopic techniques, but have largely ended 

unsuccessfully (Grigoryev & Woodcock, 2012).  

In recent years, several experimental models have succeeded in producing 

chromatin fibers approaching the 30-nm structure utilizing folded and zig-zag 

oriented arrays of reconstituted nucleosomes (Routh et al., 2008). However, an even 

more recent finding, calls into question whether the assumed 30-nm fiber really even 

exists as the fundamental unit of higher-order chromatin structure. Using cryo-

electron microscopy and synchrotron X-ray scattering, Kazuhiro Maeshima and 

colleagues demonstrated that mitotic chromosomes from HeLa cells are devoid of 

30-nm sized structures, but are actually comprised of approximately 11-nm fibers 

that are folded in an irregular fashion (Nishino et al., 2012). Thus, it is formally 

possible that chromosomes and other intermediate chromatin structures arise from 

the ~11-nm “beads-on-a-string” unit of chromatin. 

Despite these unresolved controversies, what is evident is that chromatin 

exists in the cell in two distinct forms: gene-rich, transcriptionally active 

euchromatin and gene-poor, transcriptionally silent heterochromatin (Huisinga et al., 

2006). This fascinating dichotomy is predominantly mediated through specific 

epigenetic modifications and associated proteins and dictates much of the nuclear 

function of the cell. Therefore, it is worth considering each of these structural and 

regulatory components of chromatin in greater detail. 

 

1.2.2 Histone Variants 

An additional level of chromatin regulation is provided by the nucleosome 

through the incorporation of histone variants. Whereas the expression of most 

canonical histones is coupled to DNA replication and tightly regulated through the 

cell cycle, histone variants represent a distinct set of nonallelic histone isoforms that 

are not necessarily regulated in the same manner (Malik & Henikoff, 2003). Most 

histone variants are stably incorporated into nucleosomes and impact process ranging 

from transcription to replication and DNA repair (Sarma & Reinberg, 2005). 

Numerous histone variants have been identified, including the well-documented 

histone H2A variants H2AX, H2AZ, macroH2A and H2ABBD and the H3 variants 

H3.3 and CENP-A (Paull et al., 2000, Popescu et al., 1994; Pehrson & Fried, 1992; 

Gautier et al., 2004; Ahmad & Henikoff, 2002; Palmer et al., 1987). Some histone 

variants are expressed in a cell and tissue-dependent manner, suggesting specific 
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regulatory roles for the variants (Garcia et al., 2008). For example, the histone H1, 

H2B and H3 variants, H1T, TSH2B and H3T, respectively, are expressed solely in 

the testis and likely contribute to the unique regulatory requirements of that 

chromatin environment (Sarg et al., 2009; Zalensky et al., 2002; Tachiwana et al., 

2010). 

 To date, variants of histone H3 have been investigated the most extensively. 

Several isoforms of histone H3 have been identified, including the structurally 

similar H3.1, H3.2 and H3.3 forms, the centromeric CENP-A variant and testis-

specific H3T. Expression of canonical histone H3.1 is replication-dependent and is 

restricted to S phase where it is incorporated into newly synthesized DNA (Tagami 

et al., 2004). In contrast, the H3.3 variant is expressed throughout the cell cycle and 

is deposited in both replication-dependent and independent contexts (Dunleavy et al., 

2011; Drané et al., 2010). Importantly, H3.3 deposition is associated with 

transcriptional activation, as it is typically enriched around the transcription start 

sites of active genes and frequently contains activating post-translational 

modifications (Mito et al., 2005; McKittrick et al., 2004). H3.3 is also deposited at 

centromeres during DNA replication, but is exchanged for another H3 variant, 

CENP-A, during G1 phase of the cell cycle (Dunleavy et al., 2011). Finally, 

deposition of the H3 variants is largely contingent upon the activity of specific 

histone chaperones. Whereas replication-coupled H3.1 deposition is carried out by 

CAF-1, H3.3 is deposited by the chaperones HIRA, ATRX and DAXX (Tagami et 

al., 2004; Goldberg et al., 2010). 

 Significant attention has also been directed toward understanding the histone 

H2A variants. The variant H2AX is thought to play an important role in mediating 

the DNA damage response. H2AX contains an extended C-terminal domain that 

becomes phosphorylated by ATM and DNA-PK in response to double-strand breaks, 

which in turn is required for the formation of DNA damage repair foci (Stiff et al., 

2004; Celeste et al., 2002). H2AZ is an essential gene in mammals and is reportedly 

involved in transcriptional activation (Faast et al., 2001; Santisteban et al., 2000). 

MacroH2A contains a large C-terminal domain and its incorporation into chromatin 

is enriched at heterochromatic regions including inactive X chromosomes and 

senescence-associated heterochromatic foci (SAHF) (Costanzi & Pehrson, 1998; 

Zhang et al., 2005). Less is known about the H2ABBD variant, although reports 

indicate that it is excluded from inactive X chromosomes and its incorporation into 
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nucleosomes makes them less stable (Chadwick & Willard, 2001; Gautier et al., 

2004). Little has been reported regarding histone H2A variant-specific chaperones, 

with the exception of H2AZ, which in yeast has been found in a complex that 

contains the SWI/SNF family member Swr1 (Mizuguchi et al., 2004; Kobor et al., 

2004). Thus, additional work is required in order to determine whether individual 

histone variants require unique chaperone complexes for deposition and eviction. 

 

1.2.3 Histone Posttranslational Modifications 

 Histones provide far more than just structural support for the genome and have 

been implicated in nuclear processes including transcriptional regulation, DNA 

replication and DNA repair (Bannister & Kouzarides, 2011). In order to facilitate 

these processes, histones are subject to an extensive array of post-translational 

modifications (PTMs) (Figure 1.3a). The majority of histone modifications occur at 

the N-terminal tails, which as revealed by the high-resolution crystal structure of the 

nucleosome, protrude from the nucleosome core (Luger et al., 1997). More than sixty 

individual histone PTMs have been identified, including acetylation, methylation, 

phosphorylation, ubiquitylation, sumoylation, ADP ribosylation, deimination and 

proline isomerization modifications (Kouzarides, 2007). As proposed by Thomas 

Jenuwein and David Allis in the “histone code” hypothesis over a decade ago, 

combinations of these histone PTMs likely provide an important layer of regulation 

to the genome (Jenuwein & David Allis, 2001). 

 Although numerous histone PTMs have been reported, considerable emphasis 

has been placed on understanding one modification in particular: histone 

methylation. Histone methylation primarily occurs on lysine and arginine residues, 

but has also been reported to occur on histidine residues (Borun et al., 1972). 

Methylation of lysine residues occurs at the e-amino group and can exist in one of 

three different states: monomethylation, dimethylation or trimethylation (Murray, 

1964; Paik & Kim, 1967; Hempel et al., 1968). Arginine methylation takes place on 

the guanidinyl group of the residue and can occur in a monomethylated, 

asymmetrically dimethylated or symmetrically dimethylated state (Byvoet et al., 

1972; Borun et al., 1972). Histone histidine methylation has not been studied 

extensively. 

 Lysine methylation is one of the most abundant histone PTMs in the cell. As 

such, histone lysine methylation impacts chromatin in a variety of ways. First, 
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several methyl-lysine marks, including methylated H3K4, H3K36 and H3K79, are 

commonly found at transcriptionally active genes (Bernstein et al., 2002; Santos-

Rosa et al., 2002; Vakoc et al., 2006). In addition, it has been reported that 

methylated H3K4 and H3K36 physically interact with RNA polymerase II, 

suggesting that these marks indeed promote transcription (Ng et al., 2003; Krogan et 

al., 2003). In contrast, several well-characterized methyl-lysine marks, including 

H3K9me3, H3K27me3 and H4K20me3, are associated with transcriptional 

repression and heterochromatin (Schotta et al., 2004; Pauler et al., 2009). Further 

exemplifying the functional diversity of histone lysine methylation, both the 

H3K79me2 and H4K20me2 marks have been reported to have roles in mediating the 

DNA damage response (Wakeman et al., 2012; Sanders et al., 2010). Thus, histone 

lysine methylation is a multifaceted and critical component of the chromatin 

landscape. 

 The methylation of histone lysine residues is catalyzed by a group of enzymes 

called the histone methyltransferases (HMTs), which transfer a methyl group from S-

adenosyl methionine to the amino group of the lysine (Figure 1.3b). HMTs fall under 

one of two subcategories: SET domain-containing and non-SET domain-containing 

methyltransferases (Greer and Shi, 2012). SET domain proteins contain a conserved 

130 amino acid catalytic domain that was first identified in the Drosophila 

melanogaster proteins suppressor of variegation 3-9, enhancer of zeste and trithorax 

(Dillon et al., 2005). Well-characterized SET domain-containing HMTs include 

MLL, SUV39H1, EZH2 and SUV420H2, which catalyze H3K4, H3K9, H3K27 and 

H4K20 methylation, respectively (Dou et al., 2006; Ait-Si-Ali et al., 2004; Pasini et 

al., 2004; Schotta et al., 2008). In addition, the non-SET domain containing 

methyltransferase DOT1L also catalyzes methylation of histone H3 lysine residues 

(Min et al., 2003). Finally, in recent years several histone lysine demethylating 

enzymes have been identified including LSD1 and the JmjC domain containing 

proteins, thus providing an additional level of regulation (Shi et al., 2004; Tsukada et 

al., 2006; Whetstine et al., 2006). 

 

1.2.4 Histone Binding Proteins 

Although the histones collectively comprise a major fraction of the total 

protein content of chromatin, additional non-histone effector proteins also physically 

associate with and modify chromatin. Importantly, many of these interactions are 
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mediated by the ability of the effectors to recognize specific chemical moieties in the 

form of histone PTMs (Taverna et al., 2007). To accomplish this, the effector 

proteins contain specialized domains or modules that bind specific motifs with high 

affinity. Although numerous histone binding proteins have been identified, they can 

be reduced to a few distinct categories based on their binding modules. To this end, 

the most prominent binding modules include bromodomains, chromodomains, Tudor 

domains and PHD fingers (Taverna et al., 2007). 

 Bromodomains (BRDs) are highly conserved 120-amino acid domains that 

recognize acetylated lysine residues with high selectivity (Filippakopoulos et al., 

2012). In humans there are over 40 BRD-containing proteins, including several 

histone acetyltransferases (HATs) and the HAT co-activator p300/CBP-associated 

factor (PCAF) (Dhalluin et al., 1999; Filippakopoulos & Knapp, 2012). Despite the 

highly conserved structure of BRDs, individual BRD-containing proteins exhibit 

selectivity for different acetylated lysines. For example, whereas the BRD-containing 

transcription factor FALZ recognizes H4K5ac, the yeast HAT Gcn5p preferentially 

binds H4K16ac (Filippakopoulos et al., 2012; Owen et al., 2000). This variable 

selectivity likely enables the effectors to modulate highly specific targets. 

 In contrast, several distinct protein interaction modules specifically bind 

methyl-lysine marks, including chromodomains, Tudor domains and PHD fingers. 

Chromodomains are 40-50-amino acid long motifs present in several chromatin 

remodelling enzymes that bind di- and trimethylated histone lysine residues (Taverna 

et al., 2007). For example, the SET domain-containing histone methyltransferase 

SUV39H1 also contains a chromodomain. Remarkably, deletion of the SUV39H1 

chromodomain impairs enzymatic activity demonstrating the interdependence of the 

binding and catalytic domains (Chin et al., 2006). The Tudor domain is another 50-

amino acid module that specifically binds histone methyl-lysines. The double Tudor 

domain-containing histone demethylase, JMJD2A, binds H4K20me2 with high 

affinity, H3K9me3 with low affinity and actively demethylates H3K9me3, revealing 

one mechanism of histone crosstalk (Ozboyaci et al., 2011). PHD domains represent 

a third class of histone methyl-lysine binding modules comprised of a Cys4-His-Cys4 

structural motif that frequently associate with H3K4me2/me3. Prominent examples 

of PHD-containing chromatin effectors include the histone methyltransferase MLL, 

the nucleosomal remodelling factor BPTF and the DNA methyltransferase accessory 

protein DNMT3L (Fair et al., 2001; Li et al., 2006; Aapola et al., 2002). Importantly, 
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the aforementioned binding modules provide important mechanistic links between 

seemingly autonomous chromatin remodelling processes including histone lysine 

methylation, demethylation and acetylation, nucleosome remodelling and 

transcription. 

 

1.2.5 Nucleosome Positioning 

Nucleosome density can profoundly affect the structure and function of 

chromatin. Consequently, nucleosome positioning reflects another important 

mechanism through which chromatin structure can contribute to the regulation of 

gene expression. Studies of nucleosome positioning in a variety of species have 

revealed that nucleosomes are not even distributed across the genome (Yuan et al., 

2005; Johnson et al., 2006; Lee et al., 2007; Dennis et al., 2007). For example, the 

transcribed regions of genes usually exhibit a higher density of nucleosomes than 

promoters or regulatory elements (Bai & Morozov, 2010). Several groups have 

reported that while nucleosomes are typically present at the transcription start sites 

(TSS) of most unexpressed genes, expressed genes and genes containing 

transcriptional pre-initiation complexes at their promoters are largely devoid of 

nucleosomes at the TSS (Ozsolak et al., 2007; Schones et al., 2008). In addition, the 

nucleosome-poor regions around the TSS of active genes also exhibited high levels 

of transcription factor and RNA polymerase II binding. Thus, nucleosome-free 

regions likely permit transcription binding and gene expression. 

 A body of data suggests that nucleosome positioning is governed in a variety 

of ways. First, the underlying DNA sequence appears to dictate nucleosome 

positioning to a certain degree. Indeed, nucleosomes have higher affinities for 

specific DNA sequences and in yeast nearly 50% of nucleosome positions are likely 

determined by the genomic sequence (Sekinger et al., 2005; Segal et al., 2006). 

Second, nucleosomes positioning is also regulated by ATP-dependent histone 

chaperones, which deposit and evict nucleosomes at promoters for the purposes of 

transcriptional repression and activation, respectively (Williams & Tyler, 2007). For 

example, in yeast, Asf1-mediated eviction of histones is required for the 

transcriptional activation of certain promoters (Korber et al., 2006). Similarly, the 

histone chaperone Spt6 is required for histone deposition and subsequent repression 

of several yeast promoters (Adkins & Tyler, 2006).  
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Finally, there is evidence emerging that insulators, including the enhancer-

blocker protein CTCF, are involved in determining nucleosome position. Integrative 

analysis of several genome-wide datasets revealed that nucleosome positioning is 

relatively variable across the genome, except at gene the TSS of genes and adjacent 

to CTCF binding sites (Fu et al., 2008). In fact, nucleosome positioning at CTCF 

sites is even less variable than that of the TSS. To this end, nucleosome positioning 

might play an important role in maintaining genomic boundaries as well. 

 

1.2.6 DNA Methylation 

DNA is also subject to chemical modification in the form of DNA 

methylation, an important structural and regulatory feature of chromatin. The process 

of DNA methylation involves the transfer of a methyl group from S-adenosyl 

methionine to the 5 position of the carbon ring of cytosine residues and typically 

occurs within the context of CpG dinucleotides (Bird, 2002). Approximately 1% of 

all nucleotides in the human genome are comprised of 5-methylcytosine (5mC) in 

somatic cells (Ehrlich et al., 1982). Likewise, approximately 70% of all CpG 

dinucleotides in the human genome contain the 5mC mark (Strichman-Almashanu et 

al., 2002). 

Short regions of high CpG dinucleotide density called CpG islands are 

present at more than 50% of all genes in the human genome (Gardiner-Garden & 

Frommer, 1987). However, individual CpGs are also dispersed throughout the 

genome and tend to account for the majority of 5mC (Gama-Sosa et al., 1983; Bird et 

al., 1995). As a result, the cytosine residues within the CpG islands of genes are 

largely unmethylated. Despite this trend, methylation of CpG islands has been 

reported in the contexts of imprinted genes and the X chromosome inactivation 

(Ferguson-Smith et al., 1993; Yen et al., 1984). 

The process of DNA methylation is catalyzed by the enzymatic activities of a 

family of enzymes called the DNA methyltransferases (DNMTs). To date, three 

DNMT family members have been identified: DNMT1, DNMT3a and DNMT3b. 

DNMT1, functioning as the maintenance DNA methyltransferase, preferentially 

catalyzes the methylation of hemimethylated CpGs during DNA replication and 

repair, likely through interactions with PCNA and Np95/Uhrf1, respectively (Chuang 

et al., 1997; Sharif et al., 2007; Arita et al., 2008; Avvakumov et al., 2008). In 

contrast, the de novo DNA methyltransferases DNMT3a and DNMT3b are capable 
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of methylating CpG DNA irrespective of the initial methylation status (Hsieh, 1999; 

Gowher et al., 2005). Although no bona fide DNA demethylase has been confirmed, 

several demethylase candidates and mechanisms are currently being investigated 

(Cortázar et al., 2011; Iqbal et al., 2011; Cortellino et al., 2011). 

Functionally, DNA methylation has been implicated in a variety of processes 

including gene regulation, X chromosome inactivation, genomic imprinting and 

development. DNA methylation is present infrequently at the CpG islands of genes, 

and targeted methylation is not thought to contribute causally to gene silencing. 

However, data indicate that some genes indeed gain DNA methylation, but that gene 

silencing precedes acquisition of the 5mC mark, suggesting that methylation might 

serve to reinforce long-term gene inactivation (Ohm et al., 2007; Schlesinger et al., 

2007). In a similar manner, DNA methylation contributes to long-term gene 

silencing in the context of X chromosome inactivation (Panning & Jaenisch, 1998; 

Sharp et al., 2011). An important role for DNA methylation in the control of 

genomic imprinting, in which genes are either expressed or silenced in a parent-of-

origin-specific manner, has also been demonstrated (Li et al., 1993; Ferguson-Smith 

& Surani, 2001). Finally, DNA methylation is critically important to normal 

development, as targeted disruption of Dnmt1 causes a global reduction of 5mC that 

is embryonically lethal in mice (Li et al., 1992). Thus, DNA methylation is an 

important epigenetic contributor to diverse aspects of chromatin regulation and 

function. 

 

1.2.7 Non-Coding RNA 

In addition to DNA and protein, recent studies reveal a critical role for RNA 

as both a structural and regulatory component of eukaryotic chromatin. A 

considerable fraction of chromatin is comprised of RNA. For example, analysis of 

chromatin purified from chicken liver revealed RNA to constitute approximately 2-

5% of the total nucleic acid content (Rodriguez-Campos & Azorin, 2007). Not 

surprisingly, as many as 93% of all nucleotides in the human genome have been 

identified as being present in primary transcripts (Birney et al., 2007). Although the 

genome is highly transcribed, approximately only 1.5% of the genome is comprised 

of protein coding genes (Venter et al., 2001; International Human Genome 

Sequencing Consortium, 2004). Consequently, a large proportion of transcripts 

represent non-coding RNA (ncRNA). 
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In humans, ncRNA constitutes a considerable fraction of total chromatin-

associated RNA (CAR). One study characterizing the RNA content of chromatin in 

human fibroblasts indicated that 71% of total CAR was derived from intergenic and 

intronic regions, whereas only 29% corresponded to exons (Mondal et al, 2010). 

Given the sheer abundance of ncRNAs, considerable effort is now being directed 

toward deciphering the functional significance of these transcripts. Indeed, a growing 

body of data now supports a role for long ncRNA (lncRNA) in the regulation of 

chromatin structure and gene expression (Saxena & Carninci, 2011). In particular, 

significant regulatory roles have been revealed for four of the best-characterized 

lncRNAs: Kcnq1ot1, Airn, Xist and HOTAIR. 

Kcnq1ot1 is a 91 kilobase-long lncRNA that is involved in the lineage-

specific transcriptional silencing of multiple genes within the imprinted Kcnq1 

domain (Pandey et al., 2008). Specifically, Kcnq1ot1 promotes the formation of long 

stretches of H3K9me3 and H3K27me3 enriched silent chromatin, by recruiting the 

histone methyltransferases G9a and PRC2, respectively. Targeted disruption of the 

Kcnq1ot1 transcript in mice restores expression of multiple genes within the Kcnq1 

locus that are ordinarily paternally repressed (Mancini-Dinardo et al., 2006). 

Similarly, Airn, an ncRNA expressed in human and mouse, regulates the imprinted 

expression of the Slc22a3, Slc22a2 and Igf2r genes (Sleutels et al., 2002; Yotova et 

al., 2008). Airn recruits G9a to the promoters of these genes, resulting in H3K9me3-

mediated silencing (Nagano et al., 2008). Thus, Kcnq1ot1 and Airn actively mediate 

epigenetic imprinting control. 

In female mammals, epigenetic inactivation of a single X chromosome occurs 

during embryonic development and differentiation as a form of dosage 

compensation, and is regulated in part by the ncRNA Xist (Brown et al., 1991; Penny 

et al., 1996). Encoded within the 1 megabase-long chromosome X inactivation 

center, Xist determines which X chromosome will become inactive and facilitates the 

spreading of epigenetic silencing marks across the chromosome (Marks et al., 2009). 

Importantly, Xist is negatively regulated by another ncRNA, Tsix, which is 

concomitantly repressed during X-inactivation (Marks et al., 2009). This illustrates 

an important role for ncRNAs in wide-scale chromatin regulation. 

Finally, there is also evidence that lncRNAs can mediate long-range 

regulation of defined genomic loci. The lncRNA HOTAIR, encoded within the 

HOXC locus of human chromosome 12, represses the transcription of a 40 kilobase-
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long domain of the HOXD locus of chromosome 2 (Rinn et al., 2007). 

Mechanistically, HOTAIR silences the HOXD locus through the recruitment of the 

Polycomb Repressive Complex 2 (PRC2) and the LSD1/CoREST/REST complex, 

thus facilitating methylation of histone H3K27 and demethylation of H3K4 (Tsai et 

al., 2010). Remarkably, lncRNAs can serve as structural scaffolds capable of 

targeting chromatin modifiers to distant genomic loci. Collectively, these data 

illustrate the varied functions that ncRNAs serve in the regulation of chromatin. 

 

1.2.8 Lamins 

The nuclear lamina is a dense meshwork of filamentous structural proteins 

that lines the inner surface of the nuclear envelope (Bridger et al., 2007). As such, 

the nuclear lamina plays a crucial role in maintaining the size, shape and integrity 

and the nucleus. Structurally, the lamina is comprised of the A- and B-type nuclear 

lamins, which include lamin A, lamin C, lamin B1 and lamin B2 (Dechat et al., 

2008). Lamins A and C are both encoded by the LMNA gene and result from 

alternative splicing (Lin & Worman, 1993). The Lamin B1 and B2 proteins are 

encoded by two separate genes: LMNB1 and LMNB2, respectively (Lin & Worman, 

1995; Höger et al., 1990; Biamonti et al, 1992). 

In addition to providing structural integrity to the nucleus, lamins contribute 

to a variety of nuclear functions including chromatin organization, gene transcription 

and DNA replication (Shimi et al., 2008). First, in flies, mice and humans, it has 

been reported that chromatin physically interacts with the nuclear lamina through a 

series of domains termed lamina-associated domains (LADs) (Pickersgill et al., 

2006; Guelen et al., 2008; Peric-Hupkes et al., 2010). Remarkably, most of the genes 

contained within LADs are transcriptionally inactive. In contrast, lamins also appear 

to play a role in promoting gene expression, as silencing or inactivation of lamins A 

and B1 impairs RNA polymerase II-dependent transcription (Spann et al., 2002; 

Tang et al., 2008; Shimi et al., 2008). Finally, lamins reportedly contribute to DNA 

replication. To this end, lamins co-localize with PCNA at replication foci as well as 

at sites of BrdU incorporation (Moir et al., 1994; Kennedy et al., 2000). In addition, 

DNA replication is blocked by the expression of lamin B dominant negative mutants 

(Spann et al., 1997; Moir et al., 2000). 

Lamin mutations are associated with numerous human diseases, including 

Hutchinson–Gilford Progeria Syndrome (HGPS) (Dittmer & Misteli, 2011). Caused 
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by mutation of the LMNA gene that results in expression of an abnormal form of 

lamin A called progerin, HGPS is characterized by an accelerating aging phenotype 

in children and premature death (Uitto, 2002). Further underscoring the role of 

lamins in maintaining genomic integrity, cells isolated from HGPS patients exhibit 

an array of chromatin abnormalities. First, it was reported that in female HGPS 

fibroblasts, the H3K27me3 histone mark is lost from the inactive X chromosome and 

is accompanied by reduced expression of the H3K27 histone methyltransferase 

EZH2 (Shumaker et al., 2006). In addition, HGPS cells contain lower levels of 

H3K9me3 and exhibit an altered pattern of localization between the mark and 

heterochromatin protein 1 (HP1) and CREST, suggesting that constitutive 

heterochromatin is disrupted in the cells. Intriguingly, levels of H4K20me3, another 

constitutive heterochromatin mark, were markedly elevated in HGPS cells. 

Collectively, the data illustrate how lamin dysfunction can influence chromatin 

structure. 

 

1.3 Chromatin Dynamics in Cell Senescence 

 

1.3.1 Senescence-Associated Heterochromatic Foci 

As cells undergo senescence, they typically exhibit profound changes to 

chromatin structure. Probably the most striking and widely documented 

manifestation of chromatin reorganization in senescent cells is the formation of 

senescence-associated heterochromatic foci (SAHF) (Figure 1.4). First reported by 

Scott Lowe’s laboratory, SAHF represent distinct structures of facultative 

heterochromatin that appear as punctate foci following staining of senescent cells 

with the DNA dye 4’,6-diamidino-2-phenylindole (DAPI) (Narita et al., 2003). The 

number of visible SAHF foci per cell varies, but typically ranges from approximately 

30-50, with each focus arising from compaction of an individual chromosome 

(Funayama et al., 2006; Zhang et al., 2007). Although SAHF is reflective of a 

heterochromatic state, domains of constitutive heterochromatin including telomeres 

and pericentromeres largely localize to the periphery of SAHF (Narita et al., 2003; 

Funayama et al., 2006; Zhang et al., 2007, Chandra et al., 2012).  

Initial molecular analysis of SAHF composition revealed that the foci contain 

the heterochromatic histone modification H3K9me, but largely exclude the 

euchromatic H3K9ac and H3K4me marks (Narita et al., 2003; Narita et al., 2006). 
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More recent work from Masashi Narita’s lab indicates that SAHF do not form 

through the spreading of repressive histone modifications, but rather through the 

spatial reorganization of existing domains of repressive marks into focal structures 

(Chandra et al., 2012). This work also elegantly showed that H3K9me3 localizes 

solely to the SAHF core and is surrounded by a ring of H3K27me3, while H3K9me2 

is present across the entire SAHF focus. Additional components of SAHF include the 

histone H2A variant, macroH2A, heterochromatin protein 1 (HP1) and the high-

mobility group A (HMGA) proteins (Narita et al., 2003; Narita et al., 2006; Zhang et 

al., 2005).  

 Some progress has been made in deciphering the molecular mechanisms by 

which SAHF is regulated. Several reports indicate that SAHF formation is at least 

partially, if not fully dependent on the activities of the p16INK4a-pRB and p53 

pathways (Narita et al., 2003; Chan et al., 2005; Ye et al., 2007a). To this end, in 

IMR90 cells, knockdown of either p16INK4a or pRB is insufficient to prevent RAS-

induced proliferation arrest but does abolish SAHF formation (Narita et al., 2003). 

Although correlative, BJ fibroblasts induced to senescence by either replicative 

exhaustion or exposure to DNA-damaging agents fail to induce p16INK4a and do 

not form SAHF, providing additional evidence of a critical role for p16INK4a in the 

formation of SAHF (Kosar et al., 2011). 

The chromatin regulators HIRA and ASF1a also appear to play an important 

role in mediating SAHF formation (Zhang et al., 2005). Upon downregulation of the 

Wnt ligand, Wnt2, in prescenescent primary human fibroblasts, GSK3β 

phosphorylates the histone chaperone HIRA, resulting in translocation of HIRA to 

promyelocytic leukemia (PML) nuclear bodies (Ye et al., 2007b). HIRA 

translocation to PML bodies subsequently promotes SAHF formation, potentially 

through an interaction with HP1 (Zhang et al., 2007). Also consistent with the 

putative role for HIRA in the formation of SAHF, in senescent mouse embryonic 

fibroblasts (MEFs), HIRA does not translocate to PML bodies and the cells fail to 

form discrete SAHF foci (Kennedy et al., 2010). Alternatively, some other difference 

between the mouse and human senescence programs might account for the inability 

of MEFs to form proper SAHF. 

Regardless of the precise mechanism, it is clear that the formation of SAHF 

in senescent cells reflects a profound reorganization of chromatin structure and likely 

mediates important functions of the senescence program. It was initially suggested 
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that SAHF might reinforce the senescence proliferation arrest, by suppressing the 

expression of proliferation genes. Supporting this concept, the cyclin A2 gene 

acquires the repressive H3K9me histone mark and co-localizes with SAHF foci in 

senescent cells (Narita et al., 2003; Zhang et al., 2007). Likewise, sites of active 

transcription are predominantly excluded from SAHF (Narita et al., 2003; Funayama 

et al., 2006). 

However, Fabrizio d’Adda di Fagagna and colleagues recently postulated a 

different functional role for SAHF, arguing that formation of SAHF serves to 

dampen the DNA damage response (DDR) following oncogene-induced replication 

stress (Di Micco et al., 2011). In the study, the authors showed that two distinct 

forms of heterochromatin exist in senescent cells, one that acts locally to suppress 

gene expression and another large-scale form, SAHF, which serves to blunt the 

DDR. The authors also demonstrated that the local heterochromatin formation is 

mediated through ATM, whereas the formation of SAHF is mediated by ATR. 

Intriguingly, inactivation of ATM or p53 in RAS-induced cells allowed cells to 

continued to proliferate, even in the presence of prominent SAHF, indicating that 

SAHF is not responsible for the silencing of proliferation genes. 

 

1.3.2 Histone Modifications and Senescence 

Posttranslational histone modifications play a critical role in the regulation of 

chromatin structure and function. As such, histone modifications can influence 

diverse processes ranging from control of gene transcription to the maintenance of 

higher order chromatin structure. Consequently, the altered pattern of gene 

expression and profound structural changes to chromatin exhibited by senescent cells 

are likely mediated at least in part by histone marks. In fact, there is considerable 

evidence accumulating to suggest this is the case. 

As discussed above, work from Scott Lowe’s laboratory provided some of the 

first data implicating histone modifications in the formation of facultative 

heterochromatin (e.g. SAHF) in senescent cells (Narita et al., 2003). As discussed 

above, Lowe and colleagues demonstrated that SAHF contain enrichment of the 

H3K9me modification, but are largely devoid of the euchromatic histone marks 

H3K9ac and H3K4me. Importantly, the authors also found that in senescent cells, 

levels of the repressive H3K9me modification increased at the promoters of CCNA2 

and PCNA, two E2F target genes that are downregulated during senescence.  
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Expanding on these earlier observations, Masashi Narita’s laboratory 

subsequently reported that SAHF reflect a spatial rearrangement of regions of 

chromatin containing pre-existing histone modifications rather than local changes to 

histone marks (Chandra et al., 2012). Using confocal microscopy, Narita and 

colleagues elegantly showed that SAHF are comprised of discrete layers of 

chromatin containing the H3K9me3, H3K9me2 and H3K27me3 modifications, 

respectively. The SAHF core primarily contains H3K9me3-enriched regions of 

chromatin and is surrounded by layers of H3K9me2 and H3K27me3. In contrast, the 

active mark H3K36me3 is largely excluded from SAHF. These findings suggest that 

histone modifications contribute to higher-order chromatin structure in senescent 

cells. 

Recently, Scott Lowe’s laboratory utilized quantitative mass spectrometry in 

order to screen for global histone modification changes during RAS-induced 

senescence (Chicas et al., 2012). Consistent with the formation of heterochromatin, 

the abundances of several repressive histone modifications increase in senescent cells 

including H3K9me3, H3K27me3 and H4K20me3. In contrast, the RAS-induced 

senescent cells exhibit a profound loss of H3K4me3, a mark that typically coincides 

with transcriptional activation. A marked reduction of H3K4me3 levels was also 

observed in senescent cells induced by either prolonged passage in culture (RS) or 

etoposide treatment. ChIP-seq of H3K4me3 in proliferating and senescent cells 

revealed that the mark is predominantly lost at E2F target genes, which are required 

for proliferation. The authors subsequently showed that pRB mediates H3K4me3 

removal at E2F target genes during senescence via recruitment of the histone 

demethylases Jarid1a and Jarid1b. Importantly, this study illustrates how specific 

histone modification changes can regulate gene expression during senescence. 

Finally, there is evidence to suggest that histone modification changes also 

contribute to another important feature of senescence: p16INK4a induction. The 

INK4a gene is located within the INK4b-ARF-INK4a locus and is controlled by 

tightly regulated epigenetic mechanisms (Gil & Peters, 2006). Work from Kristian 

Helin’s laboratory showed that in normal proliferating human fibroblasts, the 

oncoprotein BMI1 directly binds and represses INK4a through a mechanism that 

involves H3K27me3 and the EZH2 and SUZ12-containing Polycomb-Repressive 

Complex 2 (PRC2) (Bracken et al., 2007). As cells approach senescence, EZH2 

expression decreases, which results in a reduction of H3K27me3 at the INK4a 
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promoter, loss of BMI1 binding at the locus and activation of INK4a transcription. 

Similarly, depletion of EZH2 or SUZ12 is sufficient to alleviate BMI1 binding, 

activate INK4a expression and induce senescence. Thus, these data confirm that local 

histone modification changes can mediate important aspects of the senescence 

program.  

 

1.3.3 Histone Loss and Senescence 

The profound chromatin remodelling that occurs as cells undergo senescence 

is likely at least partially mediated through changes in histone dynamics. Histone 

gene expression is a tightly controlled process regulated by both transcriptional and 

post-transcriptional mechanisms (Ma et al., 2000, Zhao et al., 2000). The expression 

of most canonical histone genes is tightly coupled to DNA replication and cell cycle 

progression, culminating in a robust upregulation of histone proteins specifically 

during S phase (Osley, 1991). Consequently, the expression of replication-dependent 

histones is largely suppressed in non-proliferating cells. For example, a significant 

repression of histone gene expression has been observed in quiescent human and 

murine fibroblasts (Coppock et al., 1993, Zahradka et al., 1993). Likewise, during 

terminal differentiation, histone gene expression is inhibited at the level of 

transcription as cells differentiate and exit the cell cycle (Stein et al., 1989). Not 

surprisingly, the expression of replication-dependent histone genes is also repressed 

in senescent human diploid fibroblasts (Pang & Chen, 1994). 

Although de novo histone synthesis is attenuated in the quiescent and 

terminally differentiated states, levels of chromatin-bound histones appear to remain 

unperturbed in these cells. For example, while mRNA levels of HIST1H1D, a gene 

that encodes the linker histone H1, become undetectable in quiescent human WI-38 

fibroblasts, the chromatin-bound levels of histone H1 remain identical to that of 

proliferating WI-38 cells (Funayama et al., 2006). In contrast, evidence is emerging 

that chromatin-bound histones are actually lost from senescent cells. To this end, 

Fuyuki Ishikawa and colleagues reported that the linker histone H1 is lost in 

senescent primary human fibroblasts induced by either oncogenic activation, 

prolonged culturing or activation of stress-induced p38 MAP kinase signalling 

(Funayama et al., 2006). The authors also showed that histone H1 loss occurs 

through a post-transcriptional mechanism and contributes to the formation of SAHF. 
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Several additional groups have subsequently reported that aging yeast and 

senescent human cells contain reduced protein levels of the core histones. Work from 

Shelley Berger’s laboratory revealed that compared to young cells, old 

Saccharomyces cerevisiae exhibit profound histone loss at several subtelomeric loci 

and moderate histone loss at numerous other regions (Dang et al., 2009). Similarly, 

Jessica Tyler’s laboratory reported a marked reduction of global histone levels in 

aged Saccharomyces cerevisiae (Feser et al., 2010). Remarkably, the authors also 

found that overexpression of histones H3 and H4 significantly extended lifespan in 

wild-type yeast. Finally, Jan Karlseder and colleagues reported that core histone 

protein levels decrease in IMR90 cells during replicative aging or after bleomycin-

induced DNA damage (O’Sullivan et al., 2010). Based on their findings, the authors 

proposed that the stress of progressive telomere shortening during replicative aging 

inhibits DNA synthesis and destabilizes histone chaperones, which in turn alters the 

chromatin landscape, resulting in degradation of the core histones. Taken together, 

these studies confirm that global histone levels indeed decrease during replicative 

aging and likely during senescence. 

 

1.3.4 DNA Methylation and Senescence 

 Methylation of DNA on cytosine residues within the CpG dinucleotide context 

is an important and stable epigenetic modification that contributes to transcriptional 

repression. Consequently, DNA methylation plays an important role in maintaining 

genomic integrity and function (Lengauer et al., 1997; Chen et al., 1998b). In light of 

the profound chromatin changes that occur during senescence, it is not surprising that 

DNA methylation patterns are also altered in senescent cells. Seminal work from 

Peter Jones’ laboratory demonstrated that the aging of normal human diploid 

fibroblasts in culture is accompanied by a prominent reduction of global 5-

methylcytosine content (Wilson & Jones, 1983). While this work was not conducted 

explicitly in senescent cells, it implicated DNA methylation changes in the 

replicative aging process. 

 Subsequent studies confirmed that genome-wide 5-methylcytosine patterns are 

indeed altered in senescent cells. One group reported reductions of both 5-

methylcytosine and the expression of the DNA methyltransferase DNMT1 in 

replicative senescent and oxidative stress-induced senescent human embryonic lung 

fibroblasts (Zhang et al., 2008). Recent work from Peter Adams’ laboratory also 
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revealed that replicative senescent IMR90 cells exhibit a marked reduction of DNA 

methylation at late-replicating regions of the genome and lamina-associated domains 

and increased methylation at some CpG islands (Cruickshanks et al., submitted). 

DNA methylation profiling conducted on a panel of early passage and senescent 

mesenchymal stem cells (MSC) identified numerous CpG sites that consistently 

become either differentially hypomethylated or hypermethylated during senescence 

(Schellenberg et al., 2011). Importantly, the authors also found that CpG sites that 

become hypomethylated in senescence are associated with enrichment of the 

H3K4me3 histone mark, whereas the CpG sites that become hypermethylated are 

associated with the repressive histone marks H3K27me3 and H3K9me3. Building on 

this work, the same group recently identified a senescence DNA methylation 

signature, which based on the methylation levels of six CpG sites, can accurately 

predict the replicative age and state of senescence of cells in culture (Koch et al., 

2012). 

 Finally, there is emerging evidence that the expression of some genes and 

non-coding transcripts is regulated at least in part through changes in DNA 

methylation during replicative aging and senescence. To this end, several genes 

involved in cell cycle progression, including CDK2, CDK4 and PCNA, or DNA 

replication, including POLD4, POLE and RFC2, become differentially 

hypermethylated in late passage MSCs relative to early passage cells, and possibly 

contribute to the onset of senescence (Choi et al., 2011).  Methylation changes have 

also been described at non-genic loci in senescent cells. Demethylation of the 

pericentromeric human satellite 3 (HS3) repeats of chromosome 1 has been reported 

in replicative senescent MRC5 cells, and is associated within increased transcription 

of the locus (Enukashvily et al., 2007). These data collectively support a functional 

role for DNA methylation in transcriptional regulation during senescence. It is 

important to note that to date, the majority of work focused on defining the senescent 

DNA methylome has been conducted in replicative senescent cells, and altered 

patterns of DNA methylation have not yet been described for oncogene-induced 

senescent cells. 

 

1.3.5 Lamins and Senescence 

Given the important contribution of the nuclear lamins to the regulation of 

chromatin structure and function, it is important to consider how dysregulation of 



	   51	  

lamins might influence the chromatin state of senescent cells. To this end, a 

considerable body of data has accumulated implicating lamin dysregulation as a 

driver of premature senescence in a variety of cellular contexts. First, it has been 

widely reported that primary cells isolated from Hutchinson-Gilford Progeria 

Syndrome (HGPS) patients harboring variety of lamin A defects, undergo 

accelerated senescence in culture (McClintock et al. 2006; Taimen et al. 2009). 

Importantly, various lamin A mutations have been shown to promote an accelerated 

senescence phenotype in non-HGPS contexts as well. For example, primary 

myoblasts isolated from a patient with a lamin A arginine 545 to cysteine point 

mutation displayed an abnormal nuclear morphology, nuclear accumulation of p21 

and a higher percentage of SA β-gal-positive cells, when compared to myoblasts 

expressing WT lamin A (Kandert et al., 2009). Similarly, the overexpression of 

lamin A mutants in 82-6pBlox human diploid fibroblasts resulted in abnormal 

nuclear morphology, accelerated rates of telomere loss and the premature onset of 

senescence (Huang et al., 2008). 

Premature senescence has also been reported in cells lacking sufficient levels 

of the mature processed forms of lamin A/C. Depletion of lamin A/C from IMR90 

cells results in conversion to a large flattened cellular morphology, induction of a 

p53-mediated cell cycle arrest and concomitant expression of multiple senescence 

markers (Moiseeva et al., 2011). Similarly, compared to normal human dermal 

fibroblasts, fibroblasts null for lamin A/C expression accumulate excessive ROS and 

undergo accelerated senescence following exposure to mild oxidative stress (Pekovic 

et al., 2011). Finally, accumulation of unprocessed pre-lamin A, either through direct 

overexpression or through knockdown of the pre-lamin A processing enzyme 

Zmpste24/FACE1, results in mitotic defects, impaired nuclear integrity and 

accelerated senescence in vascular smooth muscle cells (Ragnauth et al., 2010). 

In addition to the role that dysregulation of the nuclear lamina plays in 

initiating the onset of senescence, lamin perturbations also occur as a downstream 

consequence of senescence. Recent work from Robert Goldman’s laboratory 

revealed that in replicative senescent WI-38 human dermal fibroblasts, lamin B1 

protein levels decrease by 80-90%, yet remain unaffected in quiescent WI-38 cells 

(Shimi et al., 2011). The authors also observed a comparable reduction of lamin B1 

in senescent WI-38 cells resulting from expression of oncogenic H-RASG12V.  
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Research conducted by Judith Campisi’s laboratory similarly demonstrated 

that lamin B1 levels decrease in multiple human diploid fibroblast cell lines 

following induction of senescence by exposure to ionizing radiation, repeated 

passage in culture, expression of H-RASG12V or continuous p38 MAP kinase 

activity (Freund et al., 2012). The authors also showed that lamin B1 loss during 

senescence occurs after activation of either the pRB or p53 pathways, but is 

independent of the NF-κB, p38 MAPK, ATM and ROS signalling pathways. 

Importantly, both of these studies suggest that lamin B1 loss is a novel marker of 

senescence. 

 

1.4 Aim of the Study 

Chromatin structure undoubtedly plays an integral part in the establishment 

and reinforcement of cell senescence. As discussed above, chromatin undergoes 

extensive remodeling upon induction of senescence and contributes functionally to 

important processes including the maintenance of a permanent proliferation arrest 

and dampening of the DDR. Indeed, the formation of facultative heterochromatin 

domains, either locally or in the form of SAHF, appears to contribute significantly to 

both of these processes. Thus, chromatin structure has the potential to influence 

essential biological processes ranging from tumor suppression to wound healing. 

 Since the histone code was first proposed, considerable effort has been 

directed toward understanding how specific histone modifications impact various 

aspects of chromatin including gene regulation and higher-order chromatin structure. 

In light of the overt chromatin changes that accompany senescence, several 

laboratories have investigated the relationship between histone marks and chromatin 

structure in senescent cells. To this end, elegant work from the laboratories of Scott 

Lowe, Masashi Narita and others has provided critical insight into the epigenetic 

underpinnings of senescence-specific chromatin changes. 

 Despite the current progress, there is much to learn with regards to how 

individual histone marks might influence the chromatin landscape of senescent cells. 

More specifically, are specific histone modifications individually capable of 

regulating features of the senescence program such as gene expression or 

proliferation arrest? In order to address this question, I first wanted to identify a 

histone mark that might be of relevance to cell senescence. Therefore, after a 

thorough review of the literature and given the putative importance of 
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heterochromatin to senescence, I selected the histone H4 lysine 20 trimethyl 

(H4K20me3) modification for further investigation. 

 Histone H4 lysine 20 trimethylation is an evolutionarily conserved histone 

modification that is found in S. pombe, D. melanogaster and mammals (Schotta et 

al., 2004; Sanders et al., 2004). The H4K20me3 mark is typically present at a 

relatively low abundance in the cell and occupies only 5% of all histone H4 

molecules in HeLa S3 cells (Pesavento et al., 2008). Unlike numerous other histone 

modifications, H4K20me3 levels remain stable and fluctuate very little throughout 

the cell cycle (Pesavento et al., 2008). In humans, the SET domain-containing HMTs 

SUV420H1 and SUV420H2 are both capable of methylating histone H4 at lysine 20, 

although SUV420H2 preferentially deposits the H4K20me3 mark (Schotta et al., 

2004; Yang et al., 2008). Subsequent loss-of-function studies confirmed that Suv4-

20h2 is indeed responsible for the majority of H4K20me3 deposition in mice, while 

SUV420H2 confers the mark in human cells (Schotta et al., 2008; Kapoor-Vazirani 

et al., 2011). 

 An increasing body of literature indicates that H4K20me3 localizes to 

domains of constitutive heterochromatin and likely contributes to the transcriptional 

silencing of these regions. As reported by Thomas Jenuwein and colleagues, the 

H4K20me3 modification is highly enriched at pericentric heterochromatin in 

Drosophila, mouse embryonic fibroblasts (MEFs) and HeLa cells (Schotta et al., 

2004). This study additionally revealed that in MEFs, deposition of the H4K20me3 

mark at pericentric heterochromatin is dependent on the H3K9 methyltransferase 

Suv39h1/2 and the H3K9me3 binding protein HP1. A subsequent study from Maria 

Blasco’s laboratory demonstrated that in MEFs, the RB1 family proteins are required 

for proper heterochromatin formation and facilitate H4K20 trimethylation at 

pericentric and telomeric chromatin through recruitment of the HMTs Suv4-20h1 

and Suv4-20h2 (Gonzalo et al., 2005). 

 H4K20me3 enrichment has also been reported at other domains of 

transcriptionally silent chromatin, including imprinted regions and several classes of 

repetitive DNA. A study by Denise Barlow and colleagues found that in MEFs, 

H4K20me3 is present along with H3K9me3 and HP1α, -β and -γ at the silent 

maternal promoter of the Air ncRNA, within the Igf2r imprinted cluster (Regha et al., 

2007). A separate report showed that H4K20me3, H3K4me3 and H3K9me3 together 

comprise an epigenetic signature that is present at all imprinting control regions in 
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mice and humans (McEwen & Ferguson-Smith, 2010). Utilizing next-generation 

sequencing, several groups have observed marked enrichment of H4K20me3 at 

multiple classes of repetitive elements including satellite repeats, simple repeats and 

ERVL repeats, as well as at ZNF genes in human CD4+ T cells (Barski et al., 2007; 

Ernst & Kellis, 2010). Several lines of evidence support a functional role for 

H4K20me3 in the maintenance of transcriptional silencing and genomic integrity at 

regions of repetitive DNA. For example, in Drosophila H4K20me3 cooperates with 

DNMT2 to reinforce the silencing of retrotransposons (Phalke et al., 2009). In 

addition, H4K20me3 protects against telomere elongation and prevents telomeric 

recombination in MEFs (Benetti et al., 2007). Collectively, these data demonstrate 

that H4K20me3 is enriched at domains of constitutive heterochromatin and repetitive 

DNA and plays a critical role in the maintenance of these genomic regions. 

Several key findings from the literature suggest that H4K20me3 might be 

relevant to senescence. First, as discussed above, H4K20me3 is a marker of 

heterochromatin and is highly enriched at transcriptionally silent domains including 

telomeres, pericentromeres, imprinted regions and the inactive X chromosome 

(Schotta et al., 2004; Henckel et al., 2009; McEwen & Ferguson-Smith, 2010; 

Chadwick & Willard, 2004). This is potentially significant as senescent cells undergo 

extensive chromatin changes that ultimately manifest in the formation senescence-

associated heterochromatic foci (SAHF). Second, elevated levels of the H4K20me3 

mark have been reported in the livers of aged rats and in cells isolated from 

Hutchinson–Gilford Progeria Syndrome (HGPS) patients (Sarg et al., 2002; 

Shumaker et al., 2006). Intriguingly, these data suggested a potential link between 

H4K20me3, aging and senescence. Senescent cells have been reported to accumulate 

with age in various tissues, including rodent liver (Wang et al., 2009). Likewise, 

HGPS is premature-aging syndrome and primary cells isolated from HGPS patients 

senesce at an accelerated rate in culture (McClintock et al., 2006). 

Finally, H4K20me3 is frequently lost from human cancers (Fraga et al., 

2005). Because senescence provides a barrier to tumorigenesis, I wanted to 

investigate whether H4K20me3 contributes to the tumor suppressive properties of 

senescence. Therefore, in the present study I set out to address the following critical 

questions. (1) What happens to the H4K20me3 modification in senescent cells? (2) Is 

H4K20me3 required for senescence? (3) What is the function of H4K20me3 in 

senescent cells? 
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Chapter 2. Materials and Methods 
  

2.1 Expression and shRNA Vectors 

 

2.1.1 Expression Vectors 

The pBABE-puro and pBABE-puro-H-RAS-V12 (H-RASG12V) retroviral 

expression vectors were obtained as gifts from Robert Weinberg (Massachusetts 

Institute of Technology). pC1-HA-SUV420H1_i1 and pC1-HA-SUV420H2 were 

obtained as gifts from D. Alan Underhill (University of Alberta). pCMV-VSVG was 

purchased from Clontech Laboratories. psPAX2 was obtained from Addgene 

(plasmid 12260). 

 

2.1.2 Generation of SUV420H1 and SUV420H2 Vectors 

The pBABE-puro-MYC-SUV420H1 and pBABE-puro-MYC-SUV420H2 

vectors were generated using conventional molecular biology methods as follows. 

The full length SUV420H1 ORF was PCR amplified from pC1-HA-SUV420H1_i1 

using the following primers: Forward: 5’-GCG CGG ATC CGC CAC CAT GAA 

GTG GTT GGG AGA ATC C-3’; Reverse: 5’-GCG CGT CGA CTT AGG CAT 

TAA GCC TTA AAG A-3’. The PCR product was digested with BamHI and SalI 

and ligated into pBABE-puro-MYC digested with the same enzymes. The full length 

SUV420H2 ORF was PCR amplified from pC1-HA-SUV420H2 using the following 

primers: Forward: 5’-GCG CGG ATC CGC CAC CAT GGG GCC CGA CAG AGT 

GAC A-3’; Reverse: 5’-GCG CGT CGA CTC ACA GCT CTT CAC CGC CGA C-

3’. The PCR product was digested with BamHI and SalI and ligated into pBABE-

puro-MYC digested with the same enzymes. 

The pBABE-puro-MYC-SUV420H2-281-462 vector was generated using 

conventional molecular biology methods as follows. A fragment of SUV420H2 

corresponding to amino acid residues 281-462 was PCR amplified from pBABE-

puro-MYC-SUV420H2 using the following primers: Forward 5’-GCG CGG ATC 

CCT GGG CCC TCG GGC CTG CGT G-3’; Reverse: 5’-GCG CGT CGA CTC 

ACA GCT CTT CAC CGC CGA C-3’. The PCR product was digested with BamHI 

and SalI and ligated into pBABE-puro-MYC digested with the same enzymes. All of 
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the expression vectors were verified through restriction digestion and direct 

sequencing. 

 

2.1.3 Short Hairpin RNA (shRNA) Vectors 

A set of five human SUV420H2 lentiviral shRNA constructs was purchased 

from Open Biosystems (RHS4533). The set contains five unique short hairpins 

(TRCN0000142036, TRCN0000141493, TRCN0000141258, TRCN0000143766, 

TRCN0000141926) targeted against human SUV420H2, contained within the 

pLKO.1 lentiviral vector. An additional set of four human SUV420H2 retroviral 

shRNA constructs was purchased from OriGene Technologies (TR307397). The 

constructs feature four unique 29-mer hairpins targeted against human SUV420H2, 

contained within the pRS retroviral vector. 

 

2.2 Cell Culture 

 

2.2.1 IMR90 Cells 

IMR90 primary human diploid fibroblasts were obtained from the Coriell 

Institute (Camden, New Jersey, USA). The cells were cultured in Dulbecco's 

Modified Eagle Medium (DMEM) supplemented with 20% fetal bovine serum, 2 

mM L-glutamine, 25 U/ml penicillin and 25 µg/ml streptomycin. Cells were 

maintained in a humidified incubator under the following conditions: 37° C, 5% CO2 

and 3% O2. The IMR90 cells were subjected to serial passage approximately every 

two to three days.   

 

2.2.2 Phoenix-Ampho Cells 

Phoenix–Ampho embryonic kidney cells (SD-3443) were obtained from the 

American Type Culture Collection (Manassas, Virginia, USA). The cells were 

cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% 

fetal bovine serum, 2 mM L-glutamine, 25 U/ml penicillin and 25 µg/ml 

streptomycin. Cells were maintained in a humidified incubator under the following 

conditions: 37° C and 5% CO2.  
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2.2.3 HEK-293T Cells 

HEK 293T/17 embryonic kidney cells (CRL-11268) were obtained from the 

American Type Culture Collection (Manassas, Virginia, USA). The cells were 

cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% 

fetal bovine serum, 2 mM L-glutamine, 25 U/ml penicillin and 25 µg/ml 

streptomycin. Cells were maintained in a humidified incubator under the following 

conditions: 37° C and 5% CO2. 

 

2.2.4 Transfection of Phoenix-Ampho Retroviral Packaging Cells 

Working with 70% confluent 100 mm dishes of Phoenix-Ampho cells, the 

growth medium was removed, replaced with 9 ml of fresh medium and returned to 

the incubator four hours prior to transfection. 2.5 M CaCl2 was diluted to a final 

concentration of 250 mM with Milli-Q dH2O and 0.5 ml of the diluted CaCl2 was 

aliquotted into one sterile 15 ml centrifuge tube per transfection. Twenty-five µg of 

purified plasmid DNA was added to each tube of CaCl2 and mixed by flicking 

gently. To each tube of CaCl2/DNA, 0.5 ml 2X BBS (50 mM BES, 280 mM NaCl, 

1.5 mM Na2HPO4, pH 6.95) was added slowly, drop-wise. The tubes were incubated 

for 15 minutes at room temperature, mixed by gently bubbling air through the 

mixture and distributed drop-wise to the plates of Phoenix-Ampho cells. The plates 

were rocked gently and placed into a humidified 37° C, 5% CO2 incubator overnight. 

  

2.2.5 Retroviral Production and Infection 

Approximately 12-16 hours after transfection, the medium was removed from 

the Phoenix-Ampho cells, replaced with 6 ml of complete growth medium and the 

plates returned to a 32° C, 5% CO2 incubator for 24 hours. Twenty-four hours after 

the medium change, viral supernatants were collected from the transfected Phoenix-

Ampho cells and passed through 0.45 mm syringe filters. Fresh growth medium was 

again applied to the plates of Phoenix-Ampho cells and the plates were returned to 

the 32° C, 5% CO2 incubator for an additional 24 hours. 

Working with 100 mm dishes of target IMR90 cells, the growth medium was 

removed and replaced with 3 ml of fresh growth medium supplemented with 8 µg/ml 

polybrene. The target cells were then pre-incubated for 2 hours in a 32° C, 5% CO2 

incubator. After 2 hours, 3 ml of the filtered viral supernatant was applied to the pre-

incubated IMR90 cells. The IMR90 cells were returned to the incubator for 24 hours. 
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After 24 hours, the viral supernatant was removed from the IMR90 cells and 

replaced with 3 ml fresh viral supernatant and 3 ml growth medium supplemented 

with 8 µg/ml polybrene. The IMR90 cells were again returned to the 37° C, 5% CO2, 

3% O2 incubator for an additional 24 hours. Following the second 24-hour 

incubation, the viral supernatant was removed from the IMR90 cells and replaced 

with growth medium containing an appropriate selection drug. Infected IMR90 cells 

were typically selected as appropriate with either 1 µg/ml puromycin or 500 µg/ml 

neomycin (G418).  

 

2.2.6 Transfection of HEK-293T Lentiviral Packaging Cells 

 Working with HEK-293T cells, 11-12 million cells in 15 ml of normal 

growth medium were seeded onto T175 flasks and allowed to adhere for 24 hours. 

Approximately 24 hours after seeding, the transfection reactions were prepared. The 

following plasmids were added to sterile 15 ml centrifuge tubes containing 1.5 ml 

DMEM: 5 µg pCMV-VSVG, 14 µg psPAX2, 19 µg shRNA-containing plasmid.  In 

a separate set of sterile 15 ml centrifuge tubes, 100 µl Lipofectamine 2000 (Life 

Technologies) was mixed with 1.5 ml DMEM and incubated for 5 minutes at room 

temperature. The contents of the DMEM/DNA and DMEM/Lipofectamine 2000 

tubes were then combined, mixed gently and incubated for 20 minutes at room 

temperature. After 20 minutes, the DNA/Lipofectamine 2000 solutions were mixed 

by gentle bubbling with a pipette and distributed evenly to the flasks of HEK-293T 

cells. The HEK-293T flasks were then placed into a 37° C, 5% CO2 incubator. Six 

hours later, the transfection medium was carefully removed from each flask, replaced 

with 15 ml of normal growth medium and the flasks returned to the incubator. 

 

2.2.7 Lentiviral Production and Infection 

Approximately 12-16 hours after transfection, the medium was removed from 

the HEK-293T cells, replaced with 15 ml of normal growth medium and the flasks 

returned to a 37° C, 5% CO2 incubator for 24 hours. Twenty-four hours after the 

medium change, the lentiviral supernatants were collected from the HEK-293T cells, 

placed into sterile 50 ml centrifuge tubes and stored at 4° C overnight. The HEK-

293T cells were then covered with a fresh 15 ml of normal growth medium and the 

flasks were returned to a 37° C, 5% CO2 incubator for an additional 24 hours. After 

24 hours, the second 15 ml batches of lentiviral supernatant were collected and 
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pooled with the first batches for a total volume of 30 ml. In order to clear cellular 

debris, the lentiviral supernatants were then subjected to centrifugation for 10 

minutes at 3000 rpm. The supernatants were passed through 0.45 µm PVDF low 

protein-binding filters and transferred to sterile 25 x 89 mm polyallomer centrifuge 

tubes (Beckman, 326823). The tubes were weighed in a sterile laminar flow hood 

and balanced by the precise addition of sterile PBS. The tubes were then placed into 

an SW-28 rotor and subjected to centrifugation for 2 hours at 47,000 x g (23,000 

rpm) and 10° C in a Beckman-Coulter ultracentrifuge. Upon completion of the spin, 

the supernatants were removed by gentle inversion and placed inside sterile 50 ml 

centrifuge tubes. One hundred µl of sterile PBS was added to each lentiviral pellet, 

the tubes were capped and incubated overnight (12-16 hours) at 4° C on an orbital 

rocking platform. The following day, the purified lentiviruses were aliquotted as 

small volumes into sterile 1.5 ml microcentrifuge tubes and stored in the -80° C 

freezer. 

Working with 6-well dishes of IMR90 cells, the growth medium was 

removed and replaced with 2 ml of fresh growth medium supplemented with 8 µg/ml 

polybrene. The IMR90 cells were then pre-incubated for 2 hours in a 37° C, 5% CO2, 

3% O2 incubator. After 2 hours, 0, 4, 8, 12 or 16 µl of purified shControl or 

shSUV420H2 lentivirus was applied to the wells of the pre-incubated IMR90 cells. 

The IMR90 cells were then returned to the incubator for 24 hours. After 24 hours, the 

infection medium was removed from each well, replaced with 2 ml of fresh growth 

medium supplemented with 1 µg/ml puromycin and cultured until all of the 

uninfected cells were dead. The minimum volume of shControl or shSUV420H2 

lentivirus that yielded 100% cell survival following puromycin selection was utilized 

for all subsequent infections. For each experiment, the lentiviral-infected IMR90 

cells were maintained under puromycin selection for the full duration of the 

experiment. 

 

2.3. Induction of Cell Senescence and Quiescence 

 

2.3.1 Induction of Replicative Senescence 

Low passage IMR90 cells were initially thawed and cultured in normal 

growth medium (DMEM + 20% fetal bovine serum, 2 mM L-glutamine, 25 U/ml 

penicillin, 25 µg/ml streptomycin) under standard conditions (37° C, 5% CO2, 3% 
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O2). The cells were subjected to prolonged serial passage in culture under these 

conditions and counted at every split. Cumulative population doublings were 

calculated using the following equation ([log(number of cells counted) − log(number 

of cells plated)] / log(2)) and the resulting growth curves were plotted graphically. 

Once the growth curves began to exhibit a plateau, the cells were assayed routinely 

for markers of senescence (e.g., SA β-gal activity, decreased BrdU incorporation, 

p16INK4a induction, SAHF formation). The cells were considered replicative 

senescent when no proliferation was observed for a two week period following the 

final passage and the cells displayed the senescence hallmarks listed above. 

 

2.3.2 Induction of Oncogene-Induced Senescence 

Low passage IMR90 cells were initially thawed and cultured in normal 

growth medium (DMEM + 20% fetal bovine serum, 2 mM L-glutamine, 25 U/ml 

penicillin, 25 µg/ml streptomycin) under standard conditions (37° C, 5% CO2, 3% 

O2). Control (pBABE-puro) or H-RASG12V (pBABE-puro-H-RASG12V) 

retroviruses were produced following transfection of Phoenix-Ampho cells by 

standard procedures. IMR90 cells were subsequently infected with either control or 

H-RASG12V retroviruses and subjected to drug selection in normal growth medium 

supplemented with 1 µg/ml puromycin. The cells were maintained in culture under 

puromycin selection for the remainder of each experiment and passaged as 

necessary. Control and H-RASG12V-infected cells were typically harvested 12-14 

days after infection. The H-RASG12V-infected cells were considered senescent 

when no proliferation was observed and the cells displayed the senescence hallmarks 

(e.g., SA β-gal activity, decreased BrdU incorporation, p16INK4a induction, SAHF 

formation). 

 

2.3.3 Induction of Quiescence 

 Low passage IMR90 cells were initially thawed and cultured in normal 

growth medium (DMEM + 20% fetal bovine serum, 2 mM L-glutamine, 25 U/ml 

penicillin, 25 µg/ml streptomycin) under standard conditions (37° C, 5% CO2, 3% 

O2). Once the cells reached confluence, they were subjected to a 1:2 split in growth 

medium containing reduced serum (DMEM + 0.1% fetal bovine serum, 2 mM L-

glutamine, 25 U/ml penicillin, 25 µg/ml streptomycin). Seventy-two hours after 

splitting, the cells were harvested and assayed for hallmarks of proliferation arrest 
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and senescence. The cells were considered quiescent if they no longer proliferated, 

but also did not exhibit markers of senescence (e.g., SA β-gal activity, p16INK4a 

induction). 

 

2.4 Senescence Assays 

 

2.4.1 Senescence-Associated β-Galactosidase Assay 

Prior to the onset of senescence, cells were seeded onto sterile glass 

coverslips, allowed to adhere and transferred to 6-well tissue culture dishes. At the 

time of harvest, cells were rinsed once briefly with 1X PBS. The PBS was aspirated 

and the cells were covered with 2 ml of freshly prepared fixative solution (1X PBS 

containing 2% formaldehyde, 0.2% glutaraldehyde) and subjected to fixation for 5 

minutes at room temperature. The cells were washed twice with 1X PBS. After the 

second wash, the PBS was aspirated and cells were covered with 2 ml of freshly 

prepared staining solution (40mM Na2HPO4 pH 6, 150mM NaCl, 2mM MgCl2, 5mM 

K3Fe(CN)6, 5mM K4Fe(CN)6, 1mg/mL X-gal (in DMSO)) and incubated 12-16 

hours at 37° C in a non-CO2 incubator. Following incubation, the cells were washed 

twice with 1X PBS and twice with dH2O to remove residual salt. The coverslips 

were allowed to air dry at room temperature, mounted on glass microscope slides and 

visualized using conventional bright field microscopy. 

 

2.5 Gene Expression Analysis 

 

2.5.1 RNA Isolation 

Isolation of total RNA was performed using the RNeasy Mini Kit (Qiagen, 

74104). Working with 1-5 million IMR90 cells per 100 mm dish, the dishes were 

immediately transferred from the incubator to an ice tray. The growth medium was 

removed by aspiration and replaced with 10 ml of ice cold 1X PBS. The 1X PBS was 

removed and the cells were scraped into 350 µl Buffer RLT + 1% 2-mercaptoethanol 

and collected in 1.5 ml microcentrifuge tubes on ice. Now working at room 

temperature, the RLT lysates were sheared repeatedly with a pipette tip and 

transferred to QIAshredder spin columns (Qiagen, 79654). The columns were 

subjected to centrifugation for 2 minutes at 16,000 x g and room temperature. The 

QIAshredder columns were discarded, and 350 µl of 70% ethanol was added to each 
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lysate, mixed by pipetting and transferred to RNeasy spin columns. The columns 

were subjected to centrifugation for 15 seconds at 8,000 x g and room temperature. 

The flow-through was discarded, 350 µl of Buffer RW1 was added to each column 

and the columns were again subjected to centrifugation for 15 seconds at 8,000 x g. 

The flow-through was discarded, 80 µl of DNAse I mix (70 µl Buffer RDD + 10 µl 

DNAse I) was added to each column and the columns were incubated for 15 minutes 

at room temperature. After the incubation, 350 µl of Buffer RW1 was added to each 

column and the columns were subjected to centrifugation for 15 seconds at 8,000 x g. 

The flow-through was discarded and 500 µl of Buffer RPE was added to each 

column. The columns were subjected to centrifugation for 15 seconds at 8,000 x g, 

the flow-through was discarded and another 500 µl of Buffer RPE was added to each 

column. The columns were centrifuged for 2 minutes at 8,000 x g and then 

transferred into new 2 ml collection tubes. The columns were subjected to 

centrifugation for 1 minute at 16,000 x g and the columns were transferred into 1.5 

ml microcentrifuge tubes. Twenty-five µl RNAse-free dH2O was added to each 

column, incubated for 1 minute at room temperature and subjected to centrifugation 

for 1 minute at 8,000 x g in order to elute the RNA. RNA concentrations were 

determined for each sample using the NanoVue Plus spectrophotometer (GE 

Healthcare) and the RNA samples were stored in the -80° C freezer. 

 

2.5.2 Qualitative Assessment of RNA 

RNA integrity was evaluated using the RNA 6000 Nano Kit (Agilent) and the 

2100 Bioanalyzer (Agilent). First, the gel matrix was prepared by aliquotting 550 µl 

of the matrix into a supplied spin filter and centrifuging the filter for 10 minutes at 

1,500 x g and room temperature. Subsequently, the gel-dye mix was prepared by 

aliquotting 65 µl of the filtered gel matrix into a 1.5 ml microcentrifuge tube and 

mixing it with 1 µl of the RNA 6000 Nano dye concentrate. The gel-dye mix was 

vortexed thoroughly and subjected to centrifugation for 10 minutes at 13,000 x g and 

room temperature. 

To prepare the RNA samples, 1 µl of each sample was aliquotted into RNase-

free 0.2 ml PCR tubes, mixed with 9 µl RNase-free dH2O and kept on ice. The tubes 

were then placed into a thermal cycler and denatured for 2 minutes at 70° C to 

prevent the formation of secondary structure. The denatured RNA samples were then 

immediately placed on ice. 
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An RNA 6000 Nano chip was placed into the priming station and 9 µl of gel-

dye mix was dispensed into the appropriately marked well. The priming station 

syringe was then depressed, held in place for 30 seconds and released. Next, 9 µl of 

gel-dye mix was dispensed into the two additional appropriately marked wells. Five 

µl of the RNA 6000 Nano marker reagent was dispensed into the ladder well and 

each of the 12 sample wells. One µl of the supplied RNA 6000 Nano ladder was 

added to the indicated ladder well. For the denatured RNA samples, 1 µl of each 

sample was added to the indicated sample wells. The RNA 6000 Nano chip was 

placed into the foam adapter and vortexed for 1 minute on the 2400 rpm setting and 

then immediately run on the Agilent 2100 Bioanalyzer. Upon completion of the run, 

an RNA integrity number (RIN) was generated for each RNA sample and used to 

evaluate the quality of the samples.  

 

2.5.3 Affymetrix Microarray Analysis 

The Paterson Institute for Cancer Research Microarray Facility (Manchester, 

UK) conducted gene expression analysis of RS and OIS cells using Affymetrix 

Human Genome U133 Plus 2.0 GeneChIPs. Using 50 ng total RNA, the first and 

second strand cDNA synthesis steps were performed sequentially using the Ovation 

Pico WTA System (NuGEN Technologies, #3300). The resulting double-stranded 

cDNA was purified using Agencourt RNAClean beads (Beckman Coulter) and 

subjected to SPIA amplification to produce single-stranded cDNA complementary to 

the original RNA template. The resulting single-stranded cDNA was again purified 

using the Agencourt RNAClean beads. For each sample, 5 µg of purified, SPIA-

amplified, single-stranded cDNA was subjected to fragmentation and subsequent 

biotin labelling using the Encore Biotin Module kit (NuGEN Technologies, #4200). 

Hybridization cocktails were prepared by mixing 50 µl of biotin-labelled, 

single-stranded cDNA with a buffer containing 50 pM control oligonucleotide B2, 

1.5 pM bioB, 5 pM bioC, 25 pM bioD and 100 pM cre eukaryotic hybridization 

controls, 0.1 mg/ml herring sperm DNA, 0.5 mg/ml acetylated BSA, 1X 

hybridization buffer (100 mM MES, 1 M [Na+], 20 mM EDTA, 0.01% Tween-20) 

and 10% DMSO in a final volume of 220 µl. The hybridization cocktails were then 

heat denatured for 2 minutes at 99° C, incubated for 5 minutes at 45° C on a heat 

block and subjected to centrifugation for 5 minutes at 16,000 x g. 
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Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays were filled with 

1X hybridization buffer and pre-incubated for 10 minutes in a 45° C rotating 

hybridization oven. The pre-hybridization buffer was removed from the arrays, 

replaced with 200 µl of the denatured cDNA hybridization cocktails and hybridized 

for 16 hours at 45° C in the hybridization oven. The arrays were then washed and 

stained with streptavidin phycoerythrin (SAPE) and a biotinylated anti-streptavidin 

antibody on the Affymetrix GeneChip Fluidics Station. After an additional washing 

procedure, the hybridized and stained arrays were scanned with the Affymetrix 

GeneChip Scanner 3000 and the images managed with the GeneChip Operating 

Software (GCOS). 

 

2.5.4 Microarray Data Analysis  

Tony McBryan, our laboratory computational biologist, performed the 

microarray data processing and analysis. The raw data files (.CEL files) for each 

Affymetrix GeneChip were imported into the R software application and analyzed 

using the Bioconductor packages (http://www.bioconductor.org). All samples were 

subjected to background correction and normalization using the GC Robust Multi-

array Average (GCRMA) method. Differential expression was determined by 

performing T-tests based on the log-normalized values produced by the GCRMA 

method. Genes were considered differentially expressed if the fold difference 

between the control (i.e., proliferating) and experimental (i.e., senescent) groups 

exceeded 1.5 fold (or less than -1.5 fold) and exhibited a Benjamini–Hochberg false 

discovery rate (BH-FDR) adjusted p-value less than 0.05. BH-FDR is an error 

control method for multiple testing procedures first proposed by Benjamini and 

Hochberg that involves the ordered ranking of each comparison in a dataset by its 

unadjusted p-value in order to calculate the likelihood of any statistically significant 

change being a false positive (i.e., the false discovery rate) (Benjamini & Hochberg, 

1995). In this manner, the BH-FDR method provides a more statistically stringent 

and conservative method for evaluating differential gene expression data. 

Gene Set Enrichment Analysis (GSEA; www.broad.mit.edu\gsea) was 

applied to the microarray datasets in order to identify altered pathways and functions. 

Probes from the Affymetrix microarrays were collated into individual gene features 

and arranged by signal to noise ratios into a rank-ordered list (L). For each gene set 

(S), an enrichment score (ES) derived from the Kolmogorov-Smirnov statistic and 
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reflecting the degree to which the gene set was overrepresented at either the top or 

bottom of the entire ranked list (L) and was calculated. The statistical significance 

(nominal p-value) of the ES was determined by empirical phenotype-based 

permutation analysis. Significance levels of the ES were subsequently adjusted to 

account for multiple hypotheses testing, initially by normalizing the ES for each gene 

set to account for the size of the set (NES) and then by controlling the proportion of 

false positives by calculating the FDR for each NES. The respective gene sets were 

obtained from the Broad Institute Molecular Signatures Database. 

The microarray data were also evaluated to identify affected pathways and 

functions using Ingenuity Pathway Analysis (IPA, www.ingenuity.com). Previously 

determined lists of differentially expressed genes were compiled in a standard (.txt) 

file format and uploaded to the IPA application using the Core Analysis feature. 

Based on the input datasets, IPA subsequently generated lists of biological functions 

and canonical pathways that were affected in a statistically significant manner. 

Statistical significance was calculated for each function/pathway using the right-

tailed Fisher‘s Exact Test, by considering the following parameters: the number of 

genes included in the specific IPA function/pathway, the total number of 

function/pathway eligible genes annotated in IPA and the total number of genes in 

the input dataset. 

 

2.6 Protein Analysis 

 

2.6.1 Protein Isolation 

Working with 100 mm tissue culture dishes of adherent cells, the growth 

medium was aspirated and the cells were washed once with 10 ml of 1X PBS at 

room temperature. The PBS was aspirated completely and 300-500 µl of freshly 

boiled 1X sample buffer (62.5 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 0.1 M 

DTT, 0.01% bromophenol blue) was added to each plate. Using a plastic cell scraper, 

the cells were collected in the 1X sample buffer and the contents of the plate 

transferred to 1.5 ml microcentrifuge tubes. The lysates were boiled for 4 minutes 

and homogenized by vigorous vortexing. Lysates were subjected to centrifugation 

for 5 minutes at 12,000 x g and room temperature, transferred to new 1.5 ml 

microcentrifuge tubes and snap frozen in a dry ice/ethanol bath. The lysates were 

transferred to the -80° C freezer for long-term storage. 
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2.6.2 Protein Quantification 

The protein concentrations of lysates prepared in 1X sample buffer were 

determined using the Bradford method. To each of three 1.5 ml microcentrifuge 

tubes 0, 5 or 10 µl of 1 mg/ml BSA was aliquotted and mixed with 1 µl 1X sample 

buffer. In a separate set of 1.5 ml microcentrifuge tubes, 1 µl of each lysate was 

aliquotted. To each BSA standard and lysate sample, 700 µl 1X Bradford reagent 

(BioRad) was added and mixed by pipetting. Each sample was transferred to a 

disposable plastic cuvette and the absorbance at 595 nm was determined using a 

spectrophotometer. The values for the BSA standards were utilized to construct a 

standard curve and the protein concentrations of the respective lysates determined by 

extrapolating from the curve. 

 

2.6.3 Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Glass electrophoresis plates were washed thoroughly with water, rinsed with 

100% ethanol and allowed to dry. The glass plates were then assembled and placed 

into the gel casting apparatus. Separating gels of appropriate acrylamide composition 

were prepared according to the recipes contained in Table 2.1. The separating gels 

were poured into the assembled plates and a layer of water-saturated butanol was 

applied to the top of the gel. Following gel polymerization, the butanol layer was 

decanted and the top of the gel washed repeatedly with water to remove residual 

butanol and unpolymerized acrylamide. Stacking gels were prepared according to the 

following recipe: 6.34 ml H2O, 2.5 ml 4X Upper Tris pH 6.8, 1.3 ml 30% 

Acryl/0.8% MBA, 100 µl 10% APS, 10 µl TEMED. The stacking gels were poured 

above the separating gels, gel combs were inserted and the gels were allowed to 

polymerize. Prepared gels were then placed into the electrophoresis apparatus and 

the tanks were filled with 1X SDS-PAGE running buffer (25 mM Tris, 192 mM 

glycine, 0.1% SDS, pH 8.3). The gel combs were carefully removed and each well 

flushed repeatedly with running buffer in order to remove unpolymerized 

acrylamide. 

 When the gels were ready, protein lysates previously prepared in 1X sample 

buffer were subjected to boiling for 4 minutes and collected by brief centrifugation. 

The boiled protein lysates were loaded into the gels and separated by the application 

of a constant electric current. Total electrophoresis time varied according to the 
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acrylamide composition of the gels and the molecular weights of the intended protein 

targets. 

 

2.6.4 Immobilization of Protein 

Following the completion of SDS-PAGE, the fractionated proteins were 

immobilized to polyvinylidene fluoride (PVDF) membranes. To prepare the PVDF 

for electrophoretic transfer, the membranes were placed into 100% ethanol for 

approximately 30 seconds, rinsed with dH2O and equilibrated in cold 1X SDS-PAGE 

transfer buffer (25 mM Tris, 192 mM Glycine, 0.01% SDS, 20% methanol). The 

SDS-PAGE electrophoresis apparatus was disassembled and transfer cassettes were 

assembled in the following order: (1) foam pad, (2) Whatman paper equilibrated in 

transfer buffer, (3) SDS-PAGE gel, (4) PVDF equilibrated in transfer buffer, (5) 

Whatman paper equilibrated in transfer buffer, (6) foam pad. The assembled 

cassettes were placed into the transfer apparatus containing 1X SDS-PAGE transfer 

buffer and immobilized to PVDF through the application of constant electric current. 

After the transfer was complete, the cassettes were disassembled and the PVDF 

membranes were allowed to dry at room temperature. 

 

2.6.5 Western Blotting 

Following protein fractionation by SDS-PAGE and immobilization to PVDF, 

the membranes were immersed in 100% ethanol and subjected to gentle agitation for 

30 seconds. The ethanol was removed and the membranes were washed several times 

in TBS with gentle agitation. The membranes were blocked with TBS + 5% non-fat 

dry milk for 1 hour at room temperature and then washed briefly in TBS + 4% BSA 

+ 0.02% NaN3. Membranes were then incubated with primary antibodies typically 

diluted to 0.1-1 µg/ml in TBS + 4% BSA + 0.02% NaN3 for either 1 hour at room 

temperature or overnight at 4° C, depending on the manufacturer’s instructions. A 

list of the antibodies used in this study is included in Table 2.2. The membranes were 

washed three times for 15 minutes each in TBS + 0.05% Tween 20. Membranes were 

incubated with horseradish peroxidase-coupled secondary antibodies diluted in TBS 

+ 4% BSA + 0.02% NaN3 according to the manufacturer’s instructions for 1 hour at 

room temperature. The membranes were washed three times for 15 minutes each in 

TBS + 0.05% Tween 20. Membranes were transferred to a 1:1 solution of ECL Plus 

Western blotting substrate (Pierce), developed for 1 minute with gentle agitation and 



	   69	  



	   70	  

dried quickly between blotting paper. The membranes were covered with plastic 

wrap, exposed to film for appropriate time intervals and the films developed. 

 

2.7 Chromatin Analysis 

 

2.7.1 Chromatin Immunoprecipitation 

Proliferating and replicative senescent IMR90 cells were cultured as 

described previously. For chromatin immunoprecipitation, cells were cultured to 

approximately 95% confluence in 100 mm cell culture dishes containing 10 ml 

growth medium. This corresponds to approximately 4-5 million proliferating cells or 

1-2 x million senescent cells per 100 mm culture dish. Cells were subjected to cross-

linking in the presence of 1% formaldehyde by the addition of 271 µl of 37% 

formaldehyde (Sigma) to 10 ml of growth medium. Cross-linking was conducted for 

10 minutes at room temperature, with gentle agitation on a rocking platform. The 

cross-linking reaction was quenched for 5 minutes at room temperature by the 

addition of 500 µl 2.5 M glycine to a final concentration of 125 mM. Cells were 

detached from the culture dishes using plastic cell scrapers and collected in 50 ml 

centrifuge tubes kept on ice. Cells were subjected to centrifugation for 5 minutes at 

200 x g and 4° C. The supernatant was removed by aspiration, the cell pellets were 

washed with cold 1X PBS and subjected to centrifugation for an additional 5 minutes 

at 200 x g and 4° C. The supernatant was removed by aspiration, cell pellets were 

snap frozen with dry ice and ethanol and stored at -80° C.  

Frozen pellets comprised of approximately 10 million cross-linked 

proliferating or senescent IMR90 cells were resuspended with 1 ml cold (1:1) 

modified nuclear lysis buffer (mNLB):IP dilution buffer (IPDB) (35 mM Tris-HCl 

pH 8.0, 75 mM NaCl, 5.5 mM EDTA pH 8.0, 3 mM EGTA pH 8.0, 0.5% SDS, 0.5% 

Triton X-100) supplemented with inhibitors (10 µg/ml aprotinin, 5 µg/ml leupeptin 

and 50 µg/ml PMSF) and incubated on ice for 10 minutes. The cells were subjected 

to centrifugation for 5 minutes at 200 x g and 4° C. The supernatant was removed by 

careful aspiration and the cell pellets were resuspended with 0.5 ml cold (1:1) 

mNLB:IPD and inhibitors. Cell suspensions were transferred to 2 ml centrifuge tubes 

(Eppendorf) on ice and subjected to sonication in a Bioruptor XL water bath 

sonicator (Diagenode). Cells were sonicated at the highest amplitude setting for 22.5 

minutes, with cycles of 24 seconds on/24 seconds off. 
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Each 2 ml tube of sonicated chromatin was subjected to centrifugation for 5 

minutes at 12,000 x g and 4° C. The supernatants were collected, transferred to fresh 

1.5 ml microcentrifuge tubes and subjected an additional round of centrifugation for 

5 minutes at 12,000 x g and 4° C. The supernatants were collected, identical 

chromatin samples pooled in 15 ml centrifuge tubes and stored on ice. Aliquots were 

taken from the chromatin samples and used to determine the protein and DNA 

concentrations, respectively. Protein concentrations were determined using the 

Bradford assay, while DNA concentrations were determined using the Qubit dsDNA 

HS Assay Kit and a Qubit fluorometer (Life Technologies). Depending on the 

experiment, the respective chromatin solutions were diluted to either equal protein 

concentrations or equal DNA concentrations with (1:1) mNLB:IPDB + inhibitors. 

The chromatin solutions were then diluted with IPDB to a final mNLB:IPDB ratio of 

1:10 and kept on ice.  

The appropriate ChIP antibodies were pre-bound to Dynabeads M-280 Sheep 

anti-Rabbit IgG magnetic beads (Life Technologies) as follows. For each ChIP 

reaction, 100 µl of Dynabeads was aliquotted into a 1.5 ml microcentrifuge tube. The 

beads were washed 3 times with 1X PBS + 0.5% BSA using a magnetic rack. After 

the final wash, the beads were resuspended with 0.5 ml 1X PBS + 0.5% BSA. In 

order to facilitate the formation of antibody-bead complexes, 6 µg of primary 

antibody was added to each tube of Dynabeads and the tubes were incubated for 6 

hours at 4° C, on a rotating wheel. Following the incubation, the antibody-bead 

complexes were washed 3X with ice-cold IPDB using the magnetic rack. During the 

final wash, the IPDB was aspirated completely and the antibody-bead complexes 

were combined with the appropriate diluted chromatin solutions. After combining 

the chromatin and antibody-bead complexes, the reactions were incubated overnight 

(12-16 hours) at 4° C, on a rotating wheel.  

Following the overnight incubation, the beads were kept on ice and washed 

with the following ice-cold buffers: 2X with IPDB, 1X with High Salt Wash Buffer 

(20 mM Tris-HCl pH 8.0, 500 mM NaCl, 2 mM EDTA, 0.1% SDS, 1% Triton X-

100), 1X with LiCl Wash Buffer (10 mM Tris-HCl pH 8.1, 250 mM LiCl, 1 mM 

EDTA, 1% NP-40, 1% deoxycholic acid) and 2X with TE (10 mM Tris-HCl pH 8.0, 

1 mM EDTA). After the last wash, the beads were aspirated to dryness, resuspended 

in 500 µl IP Elution Buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM EDTA 

pH 8.0, 1% SDS) and added 0.5 µl 100 mg/ml RNase A and incubated at 65° C for 
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4-6 hours. To each tube, 6 µl 20 mg/ml proteinase K was added and the tubes were 

incubated at 45° C for 12 hours. The ChIP DNA was subsequently purified by 

phenol/chloroform extraction followed by ethanol precipitation, resuspended with 20 

µl nuclease-free dH2O and quantified using the Qubit dsDNA HS Assay Kit and a 

Qubit fluorometer (Life Technologies). 

 

2.7.2 Preparation of ChIP-Seq Libraries 

ChIP-Seq libraries were generated using the NEBNext® ChIP-Seq Sample 

Prep Master Mix Set 1 (New England Biolabs, E6240S) as follows. End Repair: 10 

ng ChIP or input DNA (in a 44 µl volume) was mixed the DNA with 5 µl NEBNext 

End Repair Reaction Buffer and 1 µl NEBNext End Repair Enzyme Mix in a PCR 

tube and incubated for 30 minutes at 20° C in a thermal cycler. The end-repaired 

DNA was purified using the QIAquick PCR Purification Kit (Qiagen, 28104) and 

eluted in 44 µl dH2O. dA-Tailing of End-Repaired DNA: 44 µl end-repaired DNA 

was mixed with 5 µl NEBNext dA-Tailing Reaction Buffer (10X) and 1 µl Klenow 

Fragment in a PCR tube and incubated at 37° C for 30 minutes in a thermal cycler. 

The dA-tailed DNA was purified using the MinElute PCR Purification Kit (Qiagen, 

28004) and eluted in 20 µl dH2O. Adaptor Ligation of dA-Tailed DNA: 19 µl dA-

tailed DNA was mixed with 6 µl Quick Ligation Reaction Buffer (5X), 1 µl 1.5 µM 

DNA Adaptors and 4 µl Quick T4 DNA Ligase in a PCR tube and incubated at 20° C 

for 15 minutes in a thermal cycler. The adaptor-ligated DNA was purified using the 

MinElute PCR Purification Kit (Qiagen, 28004) and eluted in 10 µl dH2O. 

 The purified adaptor-ligated DNA samples were subsequently fractionated on 

2% regular melting point agarose TAE gels containing 1 µg/ml ethidium bromide. 

The samples were oriented with empty wells between them so as to avoid cross-

contamination between wells. The gels were subjected to electrophoresis for 1 hour 

45 minutes at 60 volts, constant voltage. Using fresh scalpels for each sample, bands 

corresponding to 225 to 275 base pairs were excised and placed into sterile 1.5 ml 

microcentrifuge tubes. The gels were photographed before and after excision, to 

ensure uniform size selection occurred for all of the samples. The excised gel 

fragments were weighed, purified using the QIAquick Gel Extraction Kit (Qiagen, 

28704) and eluted in 37 µl dH2O. It is important to note that the gel digestion step of 

the gel extraction protocol was performed at room temperature as opposed to the 

recommended 65° C. 
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The purified size-selected, adaptor-ligated DNA was then subjected to PCR 

amplification: 36 µl size selected, adaptor-ligated was mixed with 10 µl 5X Phusion 

HF Buffer, 1.5 µl dNTP Mix, 0.9 µl Primer 1 (25 µM stock), 0.9 µl Primer 2 (25 µM 

stock), 0.5 µl Phusion High-Fidelity DNA Polymerase and 0.1 µl nuclease-free 

dH2O in a PCR tube. The samples were PCR amplified using the following cycling 

parameters: initial denaturation at 98° C for 30 seconds; 18 cycles of denaturation at 

98° C for 10 seconds, annealing at 65° C for 30 seconds, extension at 72° C for 30 

seconds; and final extension at 72° C for 5 minutes. The PCR-amplified, size-

selected, adaptor ligated DNA was then purified using the MinElute PCR 

Purification Kit (Qiagen, 28004) and eluted in 16 µl dH2O. The ChIP-Seq libraries 

were quantified using the Qubit dsDNA HS Assay Kit and a Qubit fluorometer (Life 

Technologies). 

 

2.7.3 Qualitative Assessment of ChIP-Seq Libraries 

The ChIP-Seq libraries were evaluated using the DNA 1000 Assay (Agilent) 

and the 2100 Bioanalyzer (Agilent). The gel-dye mix was prepared by combining 25 

µl of DNA dye concentrate with an entire DNA gel matrix vial. The gel-dye mix was 

vortexed, transferred to a supplied spin filter and subjected to centrifugation for 15 

minutes at 2240 x g. A DNA 1000 Assay chip was placed into the priming station 

and 9 µl of gel-dye mix was dispensed into the appropriately marked well. The 

priming station syringe was depressed, held in place for 60 seconds and then 

released. Nine µl of gel-dye mix was dispensed into the two additional marked wells 

of the chip. Five µl of the assay marker reagent was dispensed into the ladder well 

and each of the 12 sample wells of the chip. One µl of the supplied DNA ladder was 

added to the indicated well. For the ChIP-Seq library samples, 1 µl of each library 

was added to an appropriately indicated sample well. The DNA 1000 chip was 

placed into the foam adapter and vortexed for 1 minute on the 2400 rpm setting and 

then immediately run on the Agilent 2100 Bioanalyzer. The resulting 

electropherograms were used to evaluate the size range and integrity of the ChIP-Seq 

libraries. 

 

2.7.4 ChIP-Sequencing 

Billy Clark, from the Beatson Institute for Cancer Research Molecular 

Technology Services department, performed the sequencing. The ChIP libraries were 
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diluted to 2 nM stocks with nuclease-free dH2O. The libraries were then denatured 

with 0.1 N NaOH and diluted to 5 pM stocks. The denatured and diluted libraries 

were hybridized to Illumina flowcells using the TruSeq SR Cluster v2–cBot-GA kit 

(Illumina) on the Illumina cBot cluster generation instrument. Following cluster 

generation, the flowcells were inserted into the Illumina Genome Analyzer IIx 

sequencer and subjected to single-read sequencing using the TruSeq SBS Kit v5-GA 

kit (Illumina). 

 

2.7.5 ChIP-Seq Data Analysis 

Tony McBryan, our laboratory computational biologist, performed the ChIP-

Seq data processing and analysis as follows. Raw intensity files obtained from the 

Illumina GAIIx were converted into the standard textual FASTQ format using the 

Consensus Assessment of Sequence and Variation (CASAVA) version 1.8.2 

software. The default settings were used except for the FASTQ-cluster-count 

parameter, which was set to 500 million (far in excess of the GAIIx capacity) such 

that all reported clusters were retained within a single FASTQ file. The FASTQ files 

were subsequently inspected for quality using FastQC version 0.10.0 (Babraham 

Bioinformatics). FastQC provides basic statistics, per base and per sequence quality 

scores and additional metrics such as per base GC content, N counts, length 

distribution, estimated duplication levels and over-represented sequences. 

 The FASTQ files were subsequently aligned to the human genome (assembly 

hg18, NCBI Build 36) using Bowtie version 0.12.9 (Langmead et al., 2009). The 

following settings were used: chunkmbs 512 to provide additional memory for 

backtracking of difficult to map reads; m 1 to limit the reported alignments to reads 

which map uniquely to the genome; phread33-quals for input quality scores in 

FASTQ files compatible with CASAVA 1.8; p 8 to enable the processor to use 

additional CPU cores for alignment; best to guarantee that the reported reads were 

the best possible alignments in terms of the number of mismatches and quality values 

at mismatched positions. 

 For the purpose of visualization, reads were extended to account for the fact 

that the estimated ChIP DNA fragment size (150 bp) was larger than the sequenced 

reads. Duplicate reads containing identical start and end positions were removed as 

potential PCR artifacts. The genome-wide distributions of the input and ChIP reads 

were generated in bigWig format representing the number of detected fragments at a 
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given location normalized by the library size and visualized using the UCSC 

Genome Browser (Kent et al., 2002). 

 SICER version 1.1 was utilized in order to identify enriched regions within 

the H4K20me3 ChIP samples relative to the total histone H4 ChIP samples. SICER 

is particularly designed to identify enriched domains of histone modifications under 

contexts in which such domains might be diffuse (Zang et al., 2009). SICER 

specifically identifies clusters of signal unlikely to occur by chance by comparison to 

an idealized Poisson distribution. Briefly, reads were shifted by 75 bp from the 5' 

start to represent the center of the DNA fragment that was sequenced. The genome 

was then divided into non-overlapping windows of 200 bp. For each window, the 

number of reads mapped to the window was counted and a score was assigned as the 

negative log probability of detecting that number of reads within the window. 

Candidate islands were defined as a contiguous series of windows with a score 

greater than or equal to a threshold determined by the Poisson distribution. Candidate 

islands were compared to the control sample using an FDR criterion (FDR ≤ 0.01). 

 Domains of differential H4K20me3 enrichment between the proliferating 

(PD32) and senescent (PD86) samples were identified using the DiffBind (version 

1.2.0) Bioconductor package. Each SICER-identified region within each PD32 and 

PD86 sample was Trimmed Mean of M-values (TMM) normalized and scored for 

each sample as H4K20me3 ChIP read counts minus histone H4 ChIP read counts 

(after normalization) (Robinson & Oshlack, 2010). Specifically, the 

DBA_SCORE_TMM_MINUS_FULL scoring scheme was utilized. Four samples 

were used (two PD32 replicates and two PD86 replicates). Regions were only 

analyzed if they were present in at least two of the four samples, as identified by 

SICER. As with UCSC and SICER, insert lengths were again extended to 150 bp to 

account for DNA fragment size. Identified regions of differential H4K20me3 

enrichment between the PD32 and PD86 samples were extracted (FDR ≤ 0.1) and 

used in subsequent downstream analyses. Iranges (version 1.14.4) and 

GenomicRanges (version 1.8.7) were used as dependencies. 

Clustering analysis was performed using the R statistics environment (version 

2.15.1). Regions of differential H4K20me3 enrichment between the PD32 and PD86 

samples were overlapped with the coordinates of defined genomic features and 

assigned positive (1) or negative (0) values for either presence or absence of overlap. 

A matrix of the overlaps was loaded into the R environment, clustered using the 
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hclust function within the fastcluster package (version 1.1.6) and visualized using the 

heatmap.2 function from the gplots package (version 2.11.0). 

 In order to evaluate whether the PD86-specific H4K20me3 enrichment 

correlated with changes in gene expression, a scatterplot was generated to display the 

Affymetrix fold change of a gene (x-axis) plotted against the H4K20me3 ChIP 

difference (y-axis) within the promoter (5 kb upstream, 1 kb downstream) region of 

the gene. The Affymetrix NetAffx annotation (version 29) was used to annotate each 

probeset from the replicative senescence Affymetrix Human Genome U133 Plus 2.0 

array and to assign it to an Ensembl gene identifier. Any probesets targeting multiple 

Ensembl genes were discarded. Ensembl genes containing multiple probesets were 

assigned a fold change equal to the geometric average of valid probesets. H4K20me3 

ChIP signal was determined by measuring the number of reads (extended to 150 bp) 

within the promoter region of each gene normalized by the library size, with the 

histone H4 reads subtracted after similar normalization. ChIP difference was defined 

as the senescent (PD86) ChIP signal minus the proliferating (PD32) ChIP signal. 

In order to visualize H4K20me3 distribution upstream, downstream and 

within gene bodies, composite gene profiles were assembled. To generate composite 

gene profiles, the Ensembl gene annotation (version 54) was used to identify gene 

transcription start (TSS) and termination (TES) sites for each of the Ensembl genes 

in the replicative senescence microarray dataset. For each gene, the area between the 

TSS and TES was defined as the gene body and divided into forty windows of equal 

size (each corresponding to 2.5% of the total gene body). Ten additional 500 bp 

windows were added in front of the TSS or after the TES of the gene in order to 

provide genomic context. For each site within the composite gene (e.g., 0-2.5%, 2.5-

5%, etc), the H4K20me3 ChIP signal was calculated for each gene as previously 

described. The mean H4K20me3 ChIP signal was then plotted for subsets of genes 

(e.g., upregulated, downregulated or unchanged). Upregulated and downregulated 

genes were defined as genes for which at least one probeset changed 1.5-fold or 

greater in the appropriate direction and exhibited a BH-FDR value of less than or 

equal to 0.05. Unchanged genes were defined as the genes for which every probeset 

for that gene exhibited a BH-FDR greater than or equal to 0.9. ZNF genes were 

defined by their inclusion on the Zinc finger gene list available from HGNC 

(http://www.genenames.org/genefamily/znf.php), including a wildcard for ZNF* 

pattern genes. 
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Statistical analysis of the overlap between H4K20me3 ChIP enrichment (as 

defined by SICER) and defined genomic features (e.g. ZNF genes, non-ZNF genes, 

DNA repeats) was performed as follows. The genomic coordinates of H4K20me3 

ChIP enriched regions and specific genes/features were compared and the number of 

basepairs that were present in both datasets expressed as a percentage of the total 

number of gene basepairs occupied by H4K20me3. For example, for a given set of 

genes, a figure of 10% would indicate that an H4K20me3 enriched region 

overlapped 10% of all basepairs contained within that set of genes. A random 

overlap percentage was also computed, which is the result of random distribution of 

the gene set across the genome and the calculation of the overlap between this 

random gene set and the ChIP enriched signal. The random distribution was carried 

out 1000 times and the average overlap was used. P-values were also calculated by 

observing the frequency that a random overlap was greater than or equal to the true 

overlap. All p-values were below the detectable level using 1000 iterations (p < 

0.001). 

 

2.8. Immunological Methods 

 

2.8.1. Immunofluorescence  

Proliferating and presenescent IMR90 cells were seeded onto sterile glass 

coverslips, allowed to adhere and transferred to 6-well tissue culture dishes. The cells 

were washed twice with 1X PBS. The PBS was aspirated, the cells were covered 

with 2 ml freshly prepared 4% paraformaldehyde in 1X PBS and subjected to 

fixation for 10 minutes at room temperature. The coverslips were washed twice with 

1X PBS. The PBS was aspirated and the cells were permeabilized for 2 minutes by 

the addition of 2 ml of 0.2% Triton X-100 in 1X PBS to each well. The coverslips 

were washed 3 times with 1X PBS. The PBS was aspirated, the cells were covered 

with 2 ml 1X PBS with 3% BSA, 1% goat serum and incubated for 1 hour at room 

temperature to block. After blocking, the coverslips were inverted cell-containing 

side down onto 100 µl drops of primary antibody diluted in 1X PBS containing 3% 

BSA and 1% goat serum and incubated for 1 hour at room temperature. In most 

cases, the primary antibodies were used within a concentration range of 0.1-10 

µg/ml. A list of the antibodies used in this study is included in Table 2.2. Following 

the incubation, the coverslips were transferred back into 6-well plates containing 1X 
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PBS + 1% Triton X-100 and washed 3 x 5 minutes at RT. After the last wash, the 

coverslips were incubated for 1 hour at room temperature with either Alexa Fluor® 

488 F(ab')2 Fragment of Goat Anti-Mouse IgG (H+L) or Alexa Fluor® 594 Donkey 

Anti-Rabbit IgG (H+L) (Life Technologies) secondary antibodies diluted 1:5000 in 

1X PBS + 3% BSA, 1% goat serum. The coverslips were kept in the dark from this 

point. After the secondary antibody incubation, the coverslips were washed 3 x 5 

minutes with 1X PBS. The 1X PBS was aspirated and replaced with 1X PBS + 0.1 

µg/ml 4',6-diamidino-2-phenylindole (DAPI) for 5 minutes. The coverslips were then 

washed 3 x 5 minutes with 1X PBS, mounted onto glass microscope slides with 

ProLong Gold Antifade mounting medium (Life Technologies), sealed with clear 

fingernail polish and stored at 4° C, in the dark. 
 

2.8.2 Epifluorescence Microscopy and Imaging 

 Immunofluorescence slides were viewed using a Nikon Eclipse 80i 

epifluorescence microscope. Microscopic images were captured using a Hamamatsu 

ORCA-ER digital camera, controlled by the MetaMorph Microscopy Automation 

and Image Analysis Software (Molecular Devices). To enable accurate comparison 

between samples, all images from a given experiment were captured using identical 

exposure settings. 

 

2.8.3 MODified Histone Peptide Array 

 H4K20me3 antibody specificity was evaluated using the MODified Histone 

Peptide Array (Active Motif, 13005) as follows. Individual peptide arrays were 

immersed in 3 ml Blocking Solution (10 mM Tris-HCl pH 7.4, 150 mM NaCl, 

0.05% Tween 20, 5% non-fat milk) and incubated for 1 hour at room temperature on 

a rocking platform. The Blocking Solution was removed and the arrays were rinsed 

briefly and then washed 3 x 5 minutes with TTBS Buffer (10 mM Tris-HCl pH 7.4, 

150 mM NaCl, 0.05% Tween 20) at room temperature. After the last wash, the TTBS 

was removed and each array was incubated with a different primary H4K20me3 

antibody diluted 1:2000 in Blocking Solution. The arrays were incubated with the 

H4K20me3 antibodies for 1 hour at room temperature, on a rocking platform. Each 

array was rinsed briefly and then washed 3 x 5 minutes with TTBS Buffer at room 

temperature. Following the last wash, the arrays were incubated with anti-rabbit-

HRP (Cell Signaling Technology, 7074) diluted 1:2500 in 3 ml Blocking Solution 
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for 1 hour at room temperature, on a rocking platform. Each array was rinsed briefly 

and then washed 3 x 5 minutes with TTBS Buffer at room temperature. The arrays 

were developed for 1 minute at room temperature with ECL Plus Western Blotting 

Substrate (Pierce) and exposed to film (Kodak). 

 The resulting autoradiographic films were scanned with a conventional flatbed 

scanner and saved as TIFF files. The scanned images were then aligned to a 

reference grid to identify individual peptide spots using the Array Analyse software 

(Active Motif). Spot intensities for the individual peptides were determined and used 

to generate a specificity factor for each H4K20me3 antibody. The specificity factor 

is a calculated ratio of the average intensity of all spots that contain a specific 

modification to the average intensity of all of the other spots that lack the specific 

modification. 
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Chapter 3. Establishing Model Systems of Cell Senescence 
 

3.1 Rationale 

Cell senescence provides a potent mechanism of tumor suppression and is 

mediated through a specific program that entails the establishment of a stable 

proliferation arrest and altered secretory phenotype. The induction and maintenance 

of senescence is concurrently accompanied by profound changes to chromatin 

structure and regulation. Despite considerable progress in the senescence field, it is 

not definitively known how the extensive chromatin remodeling might facilitate the 

various features of the senescence program. In order to interrogate the putative 

relationship between chromatin structure and the senescence program, it was first 

important to develop and validate relevant model systems. In this manner, I set out to 

establish multiple in vitro models of cell senescence in order to determine how 

changes in chromatin structure could promote proliferation arrest and other aspects 

of the senescence program. More specifically, I sought to define a molecular and 

transcriptional profile of cell senescence that could be used as a framework to 

understand the functional impact of the chromatin changes. 

 

3.2 Results 

 

3.2.1 Establishing Experimental Models of Cell Senescence 

The ability to investigate a cellular state as complex as senescence is largely 

contingent upon the successful establishment and implementation of a robust model 

system. Therefore, in order for any senescence model system to provide maximum 

insight, it must be able to withstand experimental manipulation and respond in a 

reproducible manner. In addition, because the senescence program is such a 

complicated biological phenomenon, the utilization of multiple senescence models 

can lend an added level of confidence and specificity to a given observation. For this 

reason, models of both replicative senescence and oncogene-induced senescence 

were selected for use in studies to examine the contribution of chromatin structure to 

the regulation of the senescence program. 

Primary human diploid fibroblasts (HDFs) are a commonly employed cell 

type used in the mechanistic investigation of cell senescence. More specifically, 
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IMR90 cells, a thoroughly characterized HDF strain isolated from fetal lung has been 

utilized for nearly 30 years in the study of replicative lifespan and senescence 

(Nichols et al., 1977). As such, IMR90 cells were selected as an appropriate cell line 

for use as a model of replicative senescence. To facilitate replicative senescence, 

young IMR90 cells were subjected to serial passage in culture and maintained in a 

low (3%) oxygen incubator. To minimize stress, the cells were kept between 30 and 

95% confluence at all times and removed from low oxygen conditions for only the 

minimal amount of time required for sub-culturing. At each passage the cells were 

counted, cumulative population doubling values calculated and then plotted 

graphically (Figure 3.1a). The cells were assayed for features of replicative 

senescence once the population doubling time exceeded 14 days. 

To confirm senescence, whole cell extracts were prepared from proliferating 

(PD30) and replicative senescent (PD88) IMR90 cells, fractionated by SDS-PAGE 

and transferred to PVDF membranes for subsequent Western blot analysis. The 

membranes were then blotted to assess expression of several markers of cell 

proliferation and the senescence program. While lamin A/C expression appeared 

unaffected in the PD88 cells, a marked reduction of lamin B1 levels was observed 

(Figure 3.1b). Likewise, cyclin A was largely depleted from the PD88 cells, 

indicating that the cells had undergone cell cycle exit. Consistent with the PD88 cells 

being senescent, a robust induction of p16INK4a was noted, along with induction of 

another inhibitor of cell cycle progression, p21WAF1. As a loading control, GAPDH 

levels remained relatively consistent between the PD30 and PD88 lysates. 

 Detection of increased β-galactosidase activity is commonly utilized as an 

important diagnostic assay to distinguish senescent cells from other cellular states. 

To evaluate the cells for β-galactosidase activity, PD30 and PD80 cells were 

subjected to fixation and incubated in a buffer containing the synthetic substrate 5-

bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal). Cells that contained 

lysosomal β-galactosidase activity were detected by the formation of a perinuclear 

blue precipitate. While fewer than 5% of the PD30 cells stained positively for β-

galactosidase, more than 95% of the PD88 cells exhibited visually detectable 

perinuclear β-galactosidase staining (Figure 3.1c). Bright field microscopy of the 

stained cells also revealed profound differences in cellular morphology between the 

PD30 and PD88 cells. Whereas, the PD30 cells exhibited a characteristic spindly 

fibroblast morphology, the PD88 cells had an enlarged, flattened shape, often 
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contained multiple nuclei per cell and possessed prominent vacuoles. The latter 

PD88 morphology is a commonly observed feature of replicative senescent IMR90 

cells. 

The combined growth curve data, Western blotting analyses, β-galactosidase 

staining and cellular morphology of the PD30 and PD88 IMR90 cells validated that 

the PD88 cells were truly senescent. In this manner, a seemingly uniform population 

of senescent cells was generated with relative technical ease. In fact, during multiple 

subsequent rounds of culturing IMR90 cells to replicative senescence under the same 

conditions, the cells reproducibly underwent senescence between 86 and 90 

cumulative population doublings. As such, this confirmed that the IMR90 replicative 

senescence model would provide a robust and predictable system with which to 

interrogate aspects of the senescence program. 

Constitutive oncogene activation is also capable of inducing senescence in 

normal primary human cells and can be exploited experimentally to provide an 

additional model of cell senescence. Although a variety of oncogenes can induce 

senescence, ectopic expression of a constitutively active mutant H-RAS allele (H-

RASG12V) is commonly utilized to confer senescence in HDFs (Serrano et al., 

1997). To accomplish this, early passage IMR90 cells were infected with either a 

control retrovirus or a retroviral construct directing the expression of H-RASG12V, 

subjected to drug selection and maintained in culture. Infection efficiency was 

controlled for using several approaches. First, the transfection efficiency of the 

Phoenix retroviral packaging cells was evaluated by transfecting a parallel plate with 

a GFP expression construct and scoring for GFP-positive cells. The transfection was 

considered successful as greater than 95% of the Phoenix cells exhibited GFP 

expression twenty-four hours after transfection. Second, 100% of the control and H-

RASG12V-infected IMR90 cells survived puromycin selection, whereas the drug 

killed 100% of cells from an uninfected plate of IMR90 cells. These criteria were 

applied to all subsequent retroviral infection experiments in order to confirm that a 

comparable if not identical viral multiplicity of infection (MOI) was attained for each 

experiment.  

Ten days after retroviral infection, the control and H-RASG12V-infected 

cells were harvested and assayed for key markers of cell proliferation and 

senescence. Whole cell extracts prepared from the control and H-RASG12V cells 

were fractionated by SDS-PAGE and immobilized to PVDF membranes. The PVDF 
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membranes were then Western blotted to confirm expression of ectopic H-RAS. As 

anticipated, the H-RASG12V-infected cells exhibited high levels of H-RAS (Figure 

3.2a). Western blot analysis of lamin A/C revealed a subtle decrease in the upper 

lamin A band in the H-RASG12V cells, while the lower lamin C band remained 

unaffected. Similar to replicative senescent cells, lamin B1 and cyclin A expression 

were both greatly reduced in the H-RASG12 cells. In addition, both p16INK4a and 

p21WAF1 were induced to high levels in the H-RASG12V cells but not in the 

control cells. As a control, GAPDH expression levels remained comparable in both 

the control and H-RASG12V cells. These data collectively suggested that whereas 

the control cells continued to proliferate, the H-RASG12V-infected cells had 

undergone H-RAS-induced cell cycle exit. 

Control and H-RASG12V-infected cells were also fixed and stained to detect 

β-galactosidase activity. Similar to normal early passage IMR90 cells, very few cells 

(< 5%) stained positive for β-galactosidase activity (Figure 3.2b). In contrast, the 

majority of the H-RASG12V-infected cells showed robust staining for β-

galactosidase activity. In addition, the H-RASG12V expressing cells exhibited 

several morphological hallmarks of senescent cells including a large flattened shape 

and prominent vacuole formation. Importantly, the observed change in morphology 

in the H-RASG12V cells was not simply a consequence of viral infection, as the 

majority of the control-infected cells retained a normal spindly fibroblast 

morphology. Taken together, the Western blotting data, β-galactosidase staining and 

altered morphology confirmed that the H-RASG12V-infected cells were senescent. 

The results also confirmed that retroviral mediated introduction of an activated H-

RAS allele into IMR90 cells could be utilized as a second and complimentary model 

to study senescence in vitro. 

Two defining features characterize the cell senescence program: the 

maintenance of a stable proliferation arrest and an altered secretory phenotype. 

Although these two hallmarks have been studied individually in considerable detail, 

it is important to recognize that cellular states other than senescence may often share 

either feature of the senescence program. For example, whereas both quiescent and 

terminally differentiated cells possess a phenotype defined by proliferation arrest, 

unlike senescence these cellular states typically do not involve p16INK4a induction 

and SA β-gal activity. Therefore, one of the key challenges of investigating cell 

senescence at the molecular level is to distinguish whether a given observation 



	   85	  



	   86	  

represents a specific aspect of the senescence program, or is alternatively simply a 

consequence of cell cycle exit. In order to make this distinction, it is critical to 

determine whether a particular effect observed using models of cell senescence is 

unique to senescence, or whether it also occurs in the context of other non-

proliferative cellular states. To this end, the specificity of any putative senescence-

associated finding should first be validated using a model of quiescence. Although 

cell cycle arrest is a hallmark of both senescence and quiescence, the proliferation 

arrest associated with quiescence is by definition transient and can be reversed 

following exposure to sufficient mitogenic stimuli (Coller, Sang & Roberts, 2006). 

Experimentally, quiescent cells can be generated in culture by growing 

primary cells to high confluence in medium containing low serum content. To 

accomplish this, early passage IMR90 cells were seeded at approximately 90% 

confluence in medium containing only 0.1% FBS as opposed to the standard 20% 

FBS that is routinely used to culture IMR90 cells. Four days after seeding, whole cell 

extracts were prepared from the cells, subjected to fractionation by SDS-PAGE and 

immobilized to PVDF membranes for assessment of proliferation and senescence 

markers. Western blot analysis revealed that similar to senescent cells, quiescent 

cells maintain lamin A/C levels and exhibit a marked reduction of cyclin A 

expression (Figure 3.3a). The overall depletion of cyclin A confirmed that very few 

cells, if any within the quiescent population were actively progressing through S 

phase and therefore no longer proliferating. However, in contrast to senescent cells, 

no decrease of lamin B1 expression was observed in the quiescent cells. Also 

contrary to senescent cells, no induction of the cell cycle inhibitors p16INK4a and 

p21WAF1 was observed in the quiescent lysates. These data confirmed that although 

the quiescent cells had undergone cell cycle exit, they did not exhibit gene 

expression changes reflective of an activation of the senescence program. 

Although quiescent cells share a phenotype characterized by proliferative 

arrest with senescent cells, quiescent cells should not possess the increased 

lysosomal β-galactosidase activity that is associated with senescence. In parallel with 

the whole cell lysate preparation, proliferating and quiescent IMR90 cells were fixed 

and assayed to detect increased lysosomal β-galactosidase activity. As expected, in 

both the proliferating and quiescent IMR90, fewer than 5% of the cells stained 

positive for SA β-galactosidase activity (Figure 3.3b). Collectively, the general 

absence of β-galactosidase activity and failure to induce known molecular markers of 
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senescence, coupled with a robust reduction of cyclin A expression, indicate that 

although quiescent cells are non-proliferative, they are phenotypically distinct from 

senescent cells. As such, this confirmed that quiescent cells could provide a useful 

model for evaluating the specificity of senescence-associated findings. 

 

3.2.2 Identifying Gene Expression Changes in RS 

In order to further characterize and validate the replicative and oncogene-

induced senescence models, it was important to evaluate the respective systems on a 

more global level. To this end, transcriptional profiling provides a comprehensive 

and informative snapshot of a cell population’s state at a given time. Moreover, by 

evaluating the transcriptional status of a particular cell population, it is possible to 

gain insight into the pathways and processes that are engaged under a defined 

cellular state. Therefore, by obtaining gene expression profiles for replicative and 

oncogene-induced senescent IMR90 cells, it might be possible to identify additional 

transcriptional changes that might reveal novel aspects of the senescence program.  

To facilitate transcriptional profiling, total RNA was isolated from low 

passage, proliferating IMR90 cells (PD28) and late passage, replicative senescent 

IMR90 cells (PD90). The RNA samples were subsequently processed and hybridized 

to Affymetrix Human Genome U133 Plus 2.0 Arrays by the Cancer Research UK 

Microarray Facility (Paterson Institute for Cancer Research, Manchester, UK). The 

hybridized arrays were scanned and the resulting raw data (.CEL) files were 

imported into R and analyzed using the Bioconductor software packages. Each 

sample was subjected to background correction and normalization using the GC 

Robust Multi-array Average (GCRMA) method. Normalized intensity values for 

each probe from the PD28 and PD90 microarrays were compared and displayed as a 

scatter plot (Figure 3.4). Although the majority of probes exhibited comparable 

normalized intensity values between the PD28 and PD90 arrays, a smaller subset of 

probes contained higher intensity values on either the PD28 or PD90 arrays, 

respectively. 

  Differential expression was calculated from the log-normalized values of the 

proliferating and replicative senescent cells. T-tests were performed to determine 

statistical significance and genes were considered differentially expressed if the 

absolute fold difference between the proliferating and senescent samples exceeded 

1.5-fold and the BH-FDR adjusted p-value was lower than 0.05. For genes that were 
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represented by multiple probe sets on the microarray, the gene was only considered 

differentially expressed if all probe sets changed in the same direction and met the 

statistical criteria. Using these parameters, 5,447 differentially expressed genes were 

identified in the PD90 replicative senescent cells when compared to PD28 

proliferating cells. Of the 5,447 genes, 2,711 genes were significantly upregulated in 

the PD90 cells, while 2,736 genes were significantly downregulated.  

In order to identify biological processes that were altered in the PD90 

replicative senescent cells, the microarray intensity data were collated into individual 

gene values, ranked by signal to noise ratio and subjected to Gene Set Enrichment 

Analysis (GSEA). GSEA is a statistical method used to identify sets of genes within 

a dataset that are coordinately regulated by comparing the expression changes to 

predefined gene ontology categories (Subramanian et al., 2005). The resulting 

analyses reveal biological pathways and functions based on sets of genes that are 

either enriched in the control group (i.e., proliferating cells) or enriched in the 

experimental group (i.e., senescent cells). To this end, gene sets identified as 

enriched in replicative senescent cells predominantly contained genes that were 

upregulated in senescence, whereas gene sets enriched in proliferating cells were 

largely comprised of genes downregulated in the senescent cells. 

Based on GSEA, a number of gene sets were identified as significantly 

enriched in PD90 replicative senescent IMR90 cells (i.e., derived from genes that 

were upregulated in the PD90 cells). These gene sets represented diverse biological 

processes and functions (Table 3.1). The most significantly enriched gene set in the 

PD90 cells was the extracellular structure organization & biogenesis category. 

Remarkably, the identification of this category was seemingly influenced by the 

increased expression of numerous protocadherin genes (e.g., PCDHB2, PCDHB3, 

PCDHB6, PCDHB9, PCDHB10, PCDHB13, PCDHB14, PCDHB16) in the PD90 

cells. Elevated expression of the protocadherin genes, as well as another adhesion-

related gene, NRCAM, also contributed to high enrichment scores for additional 

gene sets (e.g., synapse organization and biogenesis, synaptogenesis). Consistent 

with the senescence-associated secretory phenotype, a category related to cytokine 

activity (hematopoietin interferon class D2000 cytokine receptor activity) was also 

highly enriched in the PD90 cells. 

In addition to the categories that were enriched in the senescent cells, GSEA 

also identified multiple significant gene sets that were enriched in the PD28 
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proliferating cells (i.e., derived from genes that were downregulated in the PD90 

senescent cells). Of the top 10 gene sets significantly enriched in proliferating cells, 

8 sets involved processes related to cell cycle progression (e.g., cell cycle process, 

cell cycle phase, mitosis), while 2 sets related specifically to chromosomes (e.g., 

chromosome, chromosomal part) (Table 3.2). The 8 cell cycle-related categories 

contained a number of overlapping genes that were robustly downregulated including 

KIF15, TTK, CDC25C, KIF2C, NCAPH, NEK2, CDKN3 and CDKN2C. The fact 

that nearly all of the most significantly enriched categories in the proliferating cells 

related to cell cycle progression, indicated that the replicative senescent cells had 

truly undergone proliferation arrest and provided additional validation of the RS 

model.   

 

3.2.3 Identifying Gene Expression Changes in OIS 

Transcriptional profiling was also performed on oncogene-induced senescent 

cells. Total RNA was isolated from proliferating control-infected and senescent H-

RASG12V-infected IMR90 cells 10 days after infection and prepared for microarray 

analysis in the same manner as for the replicative senescent cells. As before, control 

and H-RASG12V samples were hybridized to Affymetrix Human Genome U133 

Plus 2.0 Arrays, scanned to obtain raw (.CEL) files, imported into R and analyzed 

with Bioconductor. Each control and H-RASG12V replicate was subjected to 

background correction and normalization using the GC Robust Multi-array Average 

(GCRMA) method. Normalized intensity values for each probe from the control and 

H-RASG12V arrays were compared graphically as a scatter plot (Figure 3.5a). 

Similar to the RS dataset, the majority of probes displayed comparable normalized 

intensity values for both the control and H-RASG12V arrays, while a smaller subset 

of probes contained higher intensity values for either the control or H-RASG12V 

arrays.  

Gene changes exhibiting an absolute fold change greater than 1.5-fold and a 

BH-FDR adjusted p-value lower than 0.05 were considered differentially expressed. 

By these criteria, 3,189 genes were identified as being differentially expressed in the 

H-RASG12V-induced senescent IMR90 cells when compared to control-infected 

proliferating cells. Of the 3,189 genes, 1,502 genes were significantly upregulated in 

the H-RASG12V cells, while 1,687 genes were significantly downregulated. To 

evaluate the general performance of the microarray, several genes reported to 
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undergo expression changes during senescence were selected for measurement by 

quantitative real-time PCR (qPCR) (Figure 3.5b). Consistent with the microarray 

data, qPCR confirmed an upregulation of MMP1, MMP3 and IL8 and a repression of 

WNT2 in the OIS cells.  

Similar to the analyses conducted for the RS microarray data, the OIS gene 

expression data were also subjected evaluation by GSEA. Based on GSEA, multiple 

gene sets were identified as enriched in H-RASG12V-infected senescent IMR90 

cells. Assessment of the 10 most highly enriched gene sets in the H-RASG12V cells 

indicated that a variety of biological processes were affected, including cell 

differentiation, metal ion binding, metalloendopeptidase activity and the regulation 

of protein translation (Table 3.3). The identification of categories related to 

metalloendopeptidase activity was anticipated, as the matrix metalloproteinases 

(MMPs) comprise a family of genes that are induced in senescent cells as part of the 

secretory phenotype. Specifically, the metalloendopeptidase activity category 

revealed elevated expression for MMP3, MMP8, MMP9, MMP12, MMP13, MMP14 

and MMP16 in the H-RASG12V-infected senescent cells. To this end, the findings 

provided evidence that H-RASG12V infection of IMR90 cells resulted in the 

characteristic secretory phenotype and could therefore be utilized as a viable model 

of senescence. 

GSEA also identified diverse gene sets that were enriched in the control-

infected proliferating cells (i.e., comprised of genes that were downregulated in the 

H-RASG12V-infected senescent cells). As expected, several categorical gene sets 

related to cell cycle progression (e.g., spindle, cell division, cytokinesis) were 

identified as highly enriched in the control-infected proliferating cells (Table 3.4). In 

fact, the spindle and cell division gene sets exhibited the highest enrichment scores in 

the control cells, and were largely influenced by downregulation of cell cycle genes 

in the H-RASG12V-infected senescent cells. Multiple gene sets related to 

extracellular matrix composition (e.g., extracellular matrix structural constituent, 

proteinaceous extracellular matrix, extracellular matrix) were also significantly 

enriched in the control-infected cells. This revealed that genes involved in the 

structure of the extracellular matrix, including matrilin (MATN3), fibulin (FBLN1, 

FBLN2), collagen (COL4A2) and laminin (LAMA1), were downregulated in the H-

RASG12V cells. Collectively, downregulation of genes related to the cell cycle and 
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extracellular matrix are both hallmarks of senescence and further validated H-

RASG12 infection of IMR90 cells as a robust model of senescence. 

 

3.2.4 Defining a Transcriptional Profile of Cell Senescence 

Although the identification of differentially expressed genes in both 

replicative and oncogene-induced senescent cells could provide relevant biological 

insight into the respective model systems, a direct comparison of the two models 

could provide a more comprehensive understanding of the universal features of cell 

senescence. To this end, the replicative senescence and oncogene-induced 

senescence microarray datasets were queried to identify gene expression changes that 

were either common or unique between the two systems. For the respective datasets, 

a gene was considered differentially expressed if it exhibited an absolute fold change 

greater than 1.5-fold with a BH-FDR adjusted p-value lower than 0.05. According to 

these criteria, 1,770 genes were identified as being differentially expressed in both 

replicative senescent and oncogene-induced senescent IMR90 cells (Figure 3.6a).  

While the expression of 1,770 genes changed significantly in both models of 

senescence, the initial analysis did not account for the directionality of change. For 

example, some genes were identified as having met the statistical cutoff and found to 

be upregulated in one senescence model, but downregulated in the other. To address 

this discrepancy, analyses of upregulated and downregulated genes were performed 

separately. Of the 2,711 genes that were upregulated in replicative senescent cells 

and 1,502 genes that were upregulated in oncogene-induced senescent cells, 424 

genes were identified as upregulated in both senescence models (Figure 3.6b). 

Likewise, while 2,736 genes were downregulated significantly in replicative 

senescent cells and 1,687 genes downregulated in oncogene-induced senescent cells, 

584 genes were identified as downregulated in both model systems (Figure 3.6c). In 

all, the expression of 1,008 genes was altered in common between the replicative 

senescent and oncogene-induced senescent IMR90 cells. 

Based on prior investigation of cell senescence by many laboratories and the 

fact that 1,008 genes were differentially expressed in two models of senescence, it 

was reasonable to hypothesize that specific pathways and processes might be altered 

as part of the senescence program. In order to identify potentially affected biological 

processes, the genes that were differentially expressed in both the replicative 

senescent and oncogene-induced senescent IMR90 cells were evaluated using 
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Ingenuity Pathway Analysis (IPA). IPA utilizes literature-based findings to predict 

cellular phenotypes, biological interactions and physiological or disease processes 

based on user provided transcriptional profiling datasets. To help delineate between 

processes that were potentially activated or inhibited, the gene expression changes 

were queried as three distinct datasets: genes that were upregulated in common, 

genes that were downregulated in common and all genes that changed in common 

between the replicative senescent and oncogene-induced senescent cells. 

Through IPA evaluation of the 424 genes upregulated in both the RS and OIS 

models, multiple canonical signaling and metabolic pathways were identified as 

being affected in a statistically significant manner (Figure 3.7a). Several well-

characterized cancer associated pathways were identified (e.g., bladder cancer 

signaling, ErbB signaling, pancreatic adenocarcinoma signaling). In addition, 

multiple pathways related to the regulation of apoptosis and cell death were also 

significantly affected (e.g., retinoic acid mediated apoptosis signaling, death receptor 

signaling). In fact, retinoic acid mediated apoptosis signaling was identified as the 

most significantly altered pathway derived from the upregulated genes dataset. 

Specifically, key pro-apoptotic genes including TNFRSF10A, TNFRSF10D, DAP3, 

IFNA1, PARP8 and TIPARP were all induced in both RS and OIS (Figure 3.7b). 

However, it is important to recognize that regulation of signal transduction can be 

highly complex and elevated expression of pathway components may not be solely 

sufficient to activate a given pathway. To this end, the anti-apoptotic regulators 

CFLAR/FLIP and XIAP were also upregulated significantly in RS and OIS, 

suggesting that as expected, the apoptotic pathway is not fully engaged in senescent 

cells. 

Despite exhibiting some similar molecular characteristics, senescence and 

apoptosis reflect distinct cellular programs that result in separate endpoints. The 

senescence program involves the establishment of a permanent proliferation arrest 

and promotion of a proinflammatory environment through expression of the SASP 

(Coppé et al., 2010). In contrast, apoptosis is characterized by a caspase-mediated 

cell death program that involves rapid self-destruction and clearance, yet fails to 

elicit an inflammatory response (Taylor, Cullen & Martin, 2008). Thus, while 

senescence and apoptosis both restrict the proliferative capacity of damaged cells and 

suppress tumorigenesis, whether these processes cooperate at the molecular level is 

yet to be fully elucidated. 
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The 584 genes downregulated in both the RS and OIS IMR90 cells were also 

subjected to evaluation with IPA, which revealed several significantly affected 

pathways (Figure 3.8a). Remarkably, 4 of the top 10 altered canonical pathways 

involved aspects of the DNA damage response (e.g., G2/M DNA damage checkpoint 

regulation, role of BRCA1 in DNA damage response, ATM signaling, GADD45 

signaling). This was a little surprising as DNA damage signaling is a known effector 

mechanism of the senescence program. Importantly, each of the DNA damage 

response related pathways also incorporate elements of cell cycle regulation. This 

was also the case for the most significantly affected canonical pathway: mitotic roles 

of polo-like kinase. This pathway summarizes several distinct stages of mitosis: 

centrosome separation and maturation, mitotic entry, metaphase to anaphase 

transition, mitotic exit and cytokinesis (Figure 3.8b). In both RS and OIS cells, the 

mitosis genes EG5 (KIF11), PLK, CDC2 (CDK1), CCNB1, CDC20, PRC1, EMI1 

(FBXO5), PTTG1, MKLP1 (KIF23) were all significantly downregulated. Although 

the reduced expression of these genes could suggest a mitotic defect in senescent 

cells, it is more likely that these genes were downregulated as a secondary 

consequence of the senescence proliferation arrest. 

In order to obtain a more comprehensive assessment of the senescence-

associated gene expression changes, both the upregulated and downregulated gene 

lists were combined into a single dataset and evaluated with IPA. Similar to the 

individual upregulated and downregulated gene analyses, analysis of the combined 

dataset revealed multiple metabolic and signaling pathways were significantly 

affected in common between the RS and OIS IMR90 cells (Figure 3.9a). Four of the 

top 10 identified pathways involved diverse processes relating to intermediary 

metabolism (e.g., nitrogen metabolism, lysine biosynthesis, nicotinate and 

nicotinamide metabolism, ascorbate and aldarate metabolism). In each case, the 

metabolic pathways included upregulated and downregulated genes, complicating 

interpretation of the status of the pathways. Comparable to analysis of the 

downregulated gene list, IPA identified the mitotic roles of polo-like kinase pathway 

as the most significantly affected process based on the combined upregulated and 

downregulated dataset. In addition, G2/M DNA damage checkpoint regulation also 

scored highly in the pathway analysis of the combined gene list. Evaluation of this 

pathway revealed that key regulators of DNA replication and cell cycle progression 

including CDC2 (CDK1), CCNB1, CNNB2, SFN (14-3-3 s), CDC25B, TPO2A and 
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SKP2 were all significantly downregulated (Figure 3.9b). Another component of the 

pathway, the tumor suppressor p19ARF, was upregulated in both RS and OIS cells. 

This was not entirely surprising as p19ARF, an alternative gene product of the 

INK4/ARF locus known to increase in senescent cells, helps stabilize p53 by binding 

and sequestering MDM2. To this end, the gene expression analyses confirmed that 

both RS and OIS IMR90 cells exhibited a transcriptional profile consistent with cell 

cycle arrest and promotion of tumor suppression. 

 

3.3 Discussion 

 Before initiating mechanistic studies of a complex biological phenomenon, it 

is first critical to identify and implement an appropriate model system. Because 

several well-documented triggers of cell senescence have been identified, I selected 

two in vitro systems that were the most relevant to cancer and ageing: replicative 

senescence and oncogene-induced senescence. Both of these models have been 

utilized extensively to study senescence in the laboratory and were therefore 

relatively simple to establish and optimize. I selected IMR90 cells as a relevant cell 

line in which to induce senescence as this HDF line is not only well-characterized, 

but has been widely used by others to investigate senescence in vitro. 

 Upon implementation, both model systems were critically assessed for 

parameters of cell senescence including proliferation arrest, the expression of key 

senescence regulatory proteins and SA β-galactosidase activity. Both the late passage 

IMR90 and H-RASG12V-infected IMR90 cells exhibited clear indicators of cell 

cycle exit and senescence onset (e.g., reduction of cyclin A and lamin B1 expression, 

induction of p16INK4a and p21WAF1), while the respective early passage and 

control-infected IMR90 cells did not. Likewise, the late passage and H-RASG12V-

infected IMR90 cells stained uniformly positive for SA β-galactosidase activity. 

These data collectively confirmed that both models were suitable to generate 

senescent cells in a robust and reproducible manner. 

 Gene expression profiles were also generated for the RS and OIS models in 

order to further verify the senescent phenotype and to provide a transcriptional 

framework that could be used to assess the impact of chromatin changes. GSEA and 

IPA were employed to identify biological processes that were significantly affected 

during senescence. As expected, genes related to cell cycle progression and 

extracellular matrix composition were primarily downregulated, whereas genes 
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associated with cell cycle inhibition and the secretory phenotype were significantly 

upregulated. The consistency of these gene expression data with earlier findings from 

other laboratories further validated the two models as appropriate tools for studying 

cell senescence (Shelton et al., 1999; Zhang et al., 2003; Krizhanovsky et al., 2008). 

Genes differentially expressed in both the RS and OIS models were also 

identified and used to define a composite transcriptional profile of cell senescence. 

Although expression changes specific to either model might have provided some 

insight, it was formally possible that any given change could reflect a nuance or 

artifact of the individual model systems. By identifying genes that were differentially 

expressed in both RS and OIS senescent cells, it increased the likelihood that the 

gene changes were specific to senescence. However, one caveat to the interpretation 

of the RS and OIS gene expression data was that the analyses failed to account for 

any transcriptional changes that might have occurred as a secondary consequence of 

the proliferation arrest. One way to address this caveat would be to compare the 

overlapping senescence datasets with a gene expression profile derived from 

quiescent IMR90 cells. Any genes that would change in union between the RS, OIS 

and quiescence datasets could be eliminated as being related to proliferation arrest 

and not specific to the senescence program. This would provide a more accurate and 

definitive transcriptional representation of the senescence program. Despite this 

caveat, the derived gene expression signature of senescence could still serve as a 

baseline to evaluate the functional consequences of specific chromatin changes 

during senescence. 

In the process of defining a common RS and OIS transcriptional profile, it 

was evident that none of the IPA canonical pathways and processes was completely 

saturated. In fact, no single pathway exhibited altered expression for every gene 

within the pathway, raising the issue of how robust the pathway changes were. 

However, it is important to consider that the activity of a given pathway can be 

affected even in the absence of expression changes for all members of the pathway. 

For some genes, regulation is mediated through mechanisms other than transcription, 

including posttranslational modification or protein stabilization. For example, altered 

transcription of a rate-limiting gene within a pathway can have a profound affect on 

the overall activity of the pathway. In this context, an upstream member of a pathway 

might be regulated at the transcriptional level and still affect the activity of 

downstream pathway members without altering their absolute expression levels. 
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Importantly, IPA was employed in the current study simply as an exploratory 

tool in order to identify pathways and gene networks that were likely to be altered in 

a statistically significant manner during cell senescence. To this end, all of the 

pathways presented in Figures 3.5, 3.6 and 3.7 were ranked on the basis of statistical 

significance and had p-values lower than 0.5 (expressed as –log[p-value]). As 

described in Chapter 2 (Materials and Methods), the p-value was calculated for each 

pathway using the right-tailed Fisher Exact Test and incorporated several parameters: 

the number of genes within the IPA pathway, number of pathway eligible genes 

annotated in IPA and the total number of genes in the input dataset. Ultimately, a 

complete biochemical validation would be required to demonstrate that a specific 

pathway was truly altered, but is beyond the scope of the present study. Instead, the 

transcriptional profiling of RS and OIS was conducted primarily to provide a context 

for evaluating the impact of chromatin changes in cell senescence. 

Having now established and validated two separate in vitro models of cell 

senescence, I was subsequently in a position to evaluate the chromatin structure of 

senescent cells. The formation of SAHF in senescent IMR90 cells represents an 

extreme remodeling of chromatin that is thought to facilitate aspects of the 

senescence program. To this end, I set out to examine how other epigenetic features 

of chromatin might similarly contribute to the establishment and maintenance of cell 

senescence. 
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Chapter 4. Characterization of H4K20me3 in Senescence 
 

4.1 Rationale 

 The senescence program is characterized by an altered pattern of gene 

expression that simultaneously promotes both a permanent proliferation arrest and a 

secretory phenotype. In addition to these characteristic features, senescent cells 

concurrently undergo extensive chromatin remodeling. Although important research 

by several laboratories has already examined how changes in chromatin structure 

(e.g., SAHF formation) can promote senescence, little emphasis has been placed on 

elucidating the role of individual histone modifications in the regulation of the 

senescence program. Histone H4 lysine 20 trimethylation (H4K20me3) represents a 

key epigenetic marker of heterochromatin that is elevated in aged tissues and cells 

isolated from Hutchinson–Gilford Progeria Syndrome patients, but is lost in human 

cancers (Sarg et al., 2002; Shumaker et al., 2006; Fraga et al., 2005). Given the role 

of senescence in tumor suppression and its putative contribution to organismal aging, 

the H4K20me3 modification is of major interest in the senescence program. 

Consequently, I set out to characterize the H4K20me3 histone modification in 

proliferating and senescent cells. 

 

4.2 Results 

 

4.2.1 Evaluation of H4K20me3 Antibody Specificity 

  Before attempting to investigate a particular protein or post-translation 

modification, it is important to obtain and validate the appropriate tools and reagents. 

This is particularly crucial when the experimental approach necessitates the use 

specific antibodies to detect a desired protein target. As such, possessing the ability 

to definitively confirm the specificity for a given signal in any antibody-based assay 

is fundamentally critical to the interpretation of the assay. Antibody specificity is a 

particularly important consideration in the assessment of histone modifications, as 

antibodies that exhibit some degree of cross-reactivity may not allow for 

discrimination between subtle differences in posttranslational modification. For 

example, the dimethylation or trimethylation of a particular histone residue may not 

result in discrete differences in mobility by SDS-PAGE, thus confounding the 
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interpretation of Western blotting results. As a result, it is essential to confirm that a 

given antibody detects the desired histone modification with high specificity and 

exhibits minimal cross-reactivity. 

Based on information provided in the literature, publicly accessible databases 

(http://compbio.med.harvard.edu/antibodies/) and commercial availability, several 

H4K20me3 antibodies were selected and obtained for evaluation (Egelhofer et al., 

2010). The utilization of spotted arrays comprised of diverse combinations of 

unmodified and modified histone peptides has proven to be an effective method of 

evaluating the specificity of antibodies raised against various histone modifications 

(Bock et al., 2011). To this end, the MODified Histone Peptide Array (Active Motif) 

was selected for use in assessing the binding specificities of the obtained H4K20me3 

antibodies. The array is comprised of 384 separate peptides containing various 

combinations of acetylation, methylation, phosphorylation and citrullination 

modifications of the N-terminal tails of the four core histones. The H4K20me3 

modification is represented by seven different peptides on the array, either alone or 

in combination with additional modifications. 

In order to evaluate binding specificity, three H4K20me3 antibodies 

(Millipore, 04-079; Cell Signaling Technology, 5737; Abcam, ab9053) were 

subjected to a 2000-fold dilution and incubated with separate peptide arrays. The 

arrays were subsequently incubated with species-appropriate HRP-conjugated 

secondary antibodies and developed with standard enhanced chemiluminescence 

(ECL) reagents. The arrays were then exposed to film and the resulting 

autoradiographic images captured using a conventional flatbed scanner. Each of the 

three H4K20me3 antibodies detected only a few of the 384 total peptides on the 

array (Figure 4.1a). Both the Millipore and Cell Signaling Technology antibodies 

primarily detected the seven H4K20me3-containing peptides as indicated by the red 

circles, and exhibited only minimal signal for the other peptides. Although the 

Abcam antibody also detected the seven H4K20me3-containing peptides, it 

displayed moderate signal intensity for several other peptides as well. The arrows on 

the radiographic images denote examples of antibody cross-reactivity with peptides 

lacking the H4K20me3 modification. 

To obtain a more quantitative metric of the binding specificities of the 

respective H4K20me3 antibodies, the scanned images of the arrays were analyzed 

using the Array Analyse software (Active Motif). Array Analyse generates a 
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numerical value (i.e., specificity factor) that indicates how specific a given antibody 

is for each of the histone modifications on the array. The specificity factor is 

determined by dividing the average intensity of all spots that contain a given 

modification by the average intensity of all the other spots that lack the modification. 

Consistent with the autoradiographic images, both the Millipore and Cell Signaling 

Technology antibodies displayed high specificity factors for the H4K20me3 

modification and low values for the other modifications (Figure 4.1b). Although the 

Abcam antibody had an acceptable specificity factor for the H4K20me3 

modification, it also exhibited moderate cross-reactivity with the H4K20me2 

modification. Genome wide, H4K20me2 is far more abundant than H4K20me3, 

which might interfere with the interpretation of any results obtained using the Abcam 

antibody. For this reason, the Millipore and Cell Signaling Technology antibodies 

were utilized exclusively for all subsequent immunological-based assays of 

H4K20me3.  

 

4.2.2 H4K20me3 is Selectively Retained in Senescent Cells 

Having tested and validated multiple H4K20me3 antibodies, it became 

important to characterize the H4K20me3 modification in proliferating and senescent 

cells. In order to determine the relative abundance of H4K20me3 in proliferating and 

senescent cells, whole cell extracts were prepared from low passage (PD28) 

proliferating and late passage (PD90) senescent IMR90 cells. In parallel, whole cell 

extracts were also obtained from control and H-RASG12V-infected IMR90 cells. To 

accurately determine the stoichiometry of a histone modification between samples, it 

is important to utilize volumes of extract that contain an equivalent amount of total 

histone. To determine this, the volumes of both sets of extracts were titrated, 

subjected to fractionation by SDS-PAGE and Western blotted to quantify total 

histone H4 levels (data not shown). Optimal loading volumes were determined in 

order to ensure that an equal amount of total histone H4 was loaded for each sample. 

Based on this determination, extract volumes containing equal amounts of total 

histone H4 from the PD28, PD90, control-infected and H-RASG12V-infected cells 

were fractionated by SDS-PAGE and immobilized to PVDF. The PVDF membranes 

were then subjected to Western blotting to determine abundances of total histone H4 

and the H4K20me1, H4K20me2 and H4K20me3 modifications. 
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As anticipated, the PD28 proliferating and PD90 senescent samples contained 

normalized levels of total histone H4 (Figure 4.2a). Likewise, the control-infected 

proliferating and H-RASG12V-infected senescent cells contained normalized 

amounts of total histone H4. H4K20me1 levels were lower in the PD90 cells and to a 

lesser extent in the H-RASG12V senescent cells, relative to the respective 

proliferating cell extracts. In contrast, H4K20me2 abundance was higher in the PD90 

senescent cells but remained unchanged in H-RASG12V senescent cells, when 

compared to levels in proliferating cells. Intriguingly, the level of H4K20me3 in the 

PD90 cells was markedly elevated relative to the PD28 cells. Similarly, the H-

RASG12V-infected senescent cell extracts also contained a higher level of 

H4K20me3 than extracts from the control-infected proliferating cells. To 

demonstrate the specificity of the observed differences in H4K20me3 abundance, 

Western blots were performed with two independent H4K20me3 antibodies 

(Millipore and Cell Signaling) and these yielded comparable results. 

 However, it was formally possible that H4K20me3 levels were elevated in 

RS and OIS cells simply as a consequence of either the cell cycle position or non-

proliferative state of the senescent cells. In either of these scenarios, the observed 

elevation of H4K20me3 levels might have been a secondary effect of cell cycle exit 

and not specific to senescence. To address this, whole cell extracts from 

proliferating, replicative senescent and quiescent IMR90 cells were titrated, 

fractionated by SDS-PAGE and Western blotted to assess histone H4 levels. As 

before, extract volumes that would permit loading of equal amounts of total histone 

H4 were determined for each sample (data not shown). Appropriate extract volumes 

for the samples were subsequently fractionated by SDS-PAGE and transferred to a 

PVDF membrane. The membrane was then subjected to Western blotting to detect 

histone H4 and H4K20me3 (Figure 4.2b). As expected, H4K20me3 levels were 

again markedly higher in the senescent cells when compared to the proliferating 

cells. In contrast, the quiescent cells exhibited only modestly higher levels of 

H4K20me3 than the proliferating cells, suggesting that the robust increase of the 

modification in senescent cells is not merely a consequence of proliferation arrest or 

cell cycle position. 

 Although the Western blot data demonstrated that H4K20me3 levels were 

seemingly higher in senescent cells, the analyses relied on normalization to total 

histone H4. As a result, it was only possible to conclude that the ratio of H4K20me3-
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containing histone H4 to total histone H4 was higher in senescent cells than in 

proliferating cells. It has been reported that total histone levels undergo a marked 

reduction in senescent cells, so the higher levels of H4K20me3 could have simply 

reflected an overloading of the senescent samples in order to attain equal total 

histone H4 levels. As such, the Western blot data failed to provide any information 

about the actual abundance of H4K20me3 on a per cell basis, in the respective 

proliferating and senescent populations. In order to address this caveat, low passage 

(PD33) proliferating IMR90 cells and late passage (PD87) senescent IMR90 cells 

were dislodged by treatment with trypsin, subjected to manual cell counting with a 

hemocytometer and used to generate whole cell extracts. Additional plates of PD87 

senescent cells were harvested in a similar manner 1, 2, 3 or 4 weeks after the onset 

and confirmation of senescence. For each timepoint, the amount of lysis buffer was 

varied so that the proliferating and senescent extracts contained equal numbers of 

cells per volume of buffer. 

 Whole cell extracts from the RS timecourse containing equivalent numbers of 

cells were fractionated by SDS-PAGE, immobilized to PVDF membranes and 

subjected to Western blot analysis of proliferation/senescence markers and histones 

(Figure 4.3). As expected, levels of lamin A/C remained largely unchanged for the 

duration of the timecourse. Consistent with a senescent phenotype, lamin B1 and 

cyclin A expression underwent a robust decline beginning with the PD87 cells and 

continued over the course of the experiment. Further confirming senescence, marked 

induction of p16INK4a was observed in the PD87 cells and was maintained at 

comparable levels for up to 4 weeks after the onset of senescence. Beginning with 

the PD87 senescent cells, a progressive loss of total histone H4 content occurred over 

the remainder of the timecourse. Despite the significant decrease in total histone H4 

expression, H4K20me3 levels remained unchanged between the PD33 proliferating 

cells and PD87 senescent cells. Remarkably, H4K20me3 levels also remained 

unaltered for up to 4 weeks from the onset of senescence. These data indicated that 

on a per cell basis, the total amount of H4K20me3 was unaffected as cells underwent 

RS. The data also suggested that the previously observed elevation of H4K20me3 

levels during RS was primarily a consequence of normalizing the Western blot 

samples for total histone content. In other words, the total amount of H4K20me3 per 

cell does not change, but the proportion of H4 carrying this modification is 
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increased. This in turn implies that H4K20me3 is selectively retained in senescent 

cells, relative to other forms of histone H4.  

  

4.2.3 Assessment of H4K20me3 Localization in Senescent Cells 

In addition to measuring H4K20me3 abundance in proliferating and 

senescent cells, it was important to ask whether the nuclear localization of 

H4K20me3 in senescent cells differed from that of proliferating cells. To accomplish 

this, proliferating and senescent cells were subjected to indirect immunofluorescence 

staining with H4K20me3 antibodies. Low passage proliferating (PD22) and high 

passage senescent (PD85) IMR90 cells were fixed, permeabilized and stained with 

an H4K20me3 antibody and DAPI. The stained cells were subsequently visualized 

by fluorescence microscopy. The PD22 cells exhibited even predominantly nuclear 

DAPI staining and a diffuse, granular nuclear H4K20me3 staining pattern (Figure 

4.4a). By comparison, the PD85 senescent cells displayed a DAPI staining pattern 

characteristic of SAHF and H4K20me3 staining that revealed distinct, variably sized 

nuclear foci. Control-infected proliferating and H-RASG12V-infected senescent 

IMR90 cells were also fixed, permeabilized and subjected to H4K20me3 and DAPI 

staining (Figure 4.4b). Comparable to low passage IMR90 cells, control-infected 

cells displayed an even predominantly nuclear DAPI staining pattern and diffuse, 

granular H4K20me3 staining in the nucleus. In the H-RASG12V cells, DAPI 

staining revealed prominent SAHF formation and an H4K20me3 pattern that 

exhibited defined nuclear foci of variable size.  

 Whereas proliferating cells mostly displayed a uniformly diffuse H4K20me3 

nuclear staining pattern, senescent cells contained intensely staining H4K20me3 

nuclear foci. Several distinct types of nuclear foci have been previously described in 

senescent cells. The promyelocytic leukemia (PML) protein forms punctate nuclear 

bodies that increase in number and size during RS and OIS and contribute to the 

senescence program (Ferbeyre et al., 2000; Pearson et al., 2000; Bischof et al., 2002). 

Because PML forms prominent foci that mediate aspects of cell senescence, it was 

relevant to ask whether H4K20me3 foci co-localized with PML nuclear bodies in 

senescent cells. To examine this, control-infected proliferating and H-RASG12V-

infected senescent IMR90 cells were fixed, permeabilized and co-stained with DAPI 

and antibodies against H4K20me3 and PML. The stained cells were detected by 

indirect immunofluorescence and visualized by fluorescence microscopy. While the 
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DAPI and H4K20me3 nuclear staining patterns remained diffuse and even in the 

control cells, the H-RASG12V cells again exhibited SAHF formation and the 

presence of H4K20me3 foci (Figure 4.5a). As expected, both the number and size of 

the PML nuclear bodies increased in the H-RASG12V cells compared to control 

cells. Despite the prominence of both the H4K20me3 and PML foci in the H-

RASG12V cells, no spatial co-localization was observed. In fact, the respective foci 

appeared to occupy mutually exclusive nuclear locations in the senescent H-

RASG12V cells, indicating that H4K20me3 was not present at sites of PML nuclear 

bodies.  

Given the important contribution of DNA damage signalling as an effector 

mechanism of the senescence program, several nuclear structures indicative of DNA 

damage have also been identified in senescent cells. To this end, the DNA damage 

signalling mediator 53BP1 and phosphorylated histone H2AX (γ-H2AX), which 

marks DNA double-strand breaks, both form discrete nuclear foci in senescent cells 

(d'Adda di Fagagna et al., 2003). To examine whether H4K20me3 foci were present 

at these nuclear sites of DNA damage in senescent cells, cells were subjected to co-

staining by immunofluorescence. Control-infected proliferating and H-RASG12V-

infected senescent cells were fixed, permeabilized and co-stained with DAPI, an 

H4K20me3 antibody and antibodies against either 53BP1 or γ-H2AX. Control cells 

exhibited even DAPI staining and diffuse nuclear staining patterns for both 

H4K20me3 and 53BP1 (Figure 4.5b). In contrast, H-RASG12V-infected cells 

displayed SAHF, H4K20me3 staining of greater intensity with some foci and large 

discrete 53BP1 foci. Although some foci were adjacent, no overt co-localization was 

observed between the H4K20me3 and 53BP1 foci. 

Control and H-RASG12V cells were also assayed by immunofluorescence to 

compare H4K20me3 and γ-H2AX staining patterns. As anticipated, control cells 

contained even DAPI staining, a diffuse H4K20me3 pattern and the presence of very 

few, small nuclear γ-H2AX foci (Figure 4.5c). H-RASG12V cells again contained 

distinct SAHF and prominent H4K20me3 foci, as well as an increased number of 

larger γ-H2AX puncta. No co-localization between H4K20me3 and γ-H2AX 

occurred, as the γ-H2AX foci were mostly present at H4K20me3-poor regions of the 

nucleus. Taken together, the 53BP1 and γ-H2AX immunofluorescence data indicated 

that H4K20me3 foci did not mark regions of DNA damage in senescent cells. As 
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such, the data suggested that H4K20me3 is likely not involved in mediating the DNA 

damage signalling aspect of the senescence program. 

Despite the lack of co-localization between H4K20me3 and PML, 53BP1 or 

γ-H2AX, H4K20me3 appeared as distinct nuclear foci in senescent cells, suggesting 

a possible structural role for the modification during senescence. Senescent cells 

often appeared to harbour two distinct types of H4K20me3 nuclear structures: large 

globular foci and smaller, intensely staining puncta. In terms of size, shape and 

abundance, the larger globular H4K20me3 foci resembled SAHF. Therefore, it 

became important to address whether the H4K20me3 foci co-localized with SAHF in 

senescent cells. To examine this possibility, proliferating and replicative senescent 

IMR90 cells were fixed, permeabilized and stained with DAPI and an antibody 

against H4K20me3. The stained cells were visualized by epifluorescence microscopy 

and images were captured using identical exposure settings. As before, the 

proliferating cells displayed uniform DAPI and H4K20me3 nuclear staining patterns 

(Figure 4.6a). In contrast, the senescent cells exhibited SAHF formation and the 

presence of defined H4K20me3 foci. 

 Merged images of the DAPI and H4K20me3 immunofluorescence signals 

revealed that H4K20me3 frequently co-localized with SAHF in the senescent cells 

(Figure 4.6a). In order to provide an unbiased assessment of the co-localization, line 

scans were performed on the merged DAPI/H4K20me3 images and fluorescence 

intensity values (gray level) were determined for the respective channels (Figure 

4.6b). In proliferating cells, both the DAPI and H4K20me3 signals remained 

relatively uniform across the section of the nucleus measured by the line scan. In the 

senescent cells, more uneven line scan profiles of the DAPI and H4K20me3 staining 

were revealed. Regions of the nucleus that exhibited higher DAPI signal also 

displayed higher H4K20me3 signal in a strongly correlative manner. Because the 

images were captured by standard epifluorescence microscopy and not by confocal 

sectioning, it was formally possible that the SAHF and H4K20me3 foci existed in 

different focal planes. However, despite this caveat, it was reasonable to conclude 

that the larger H4K20me3 foci were located in close spatial proximity to SAHF in 

senescent cells. As such, the data suggested that H4K20me3 might be a structural 

component of SAHF. 
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4.2.4 SUV420H2 Expression is Modestly Altered in Senescent Cells 

 Having established that levels of H4K20me3 remained stable in senescent 

cells and that the modification co-localized with SAHF, it became important to ask 

how H4K20me3 was maintained given the dramatic reduction of histone content 

during senescence. To this end, there were two plausible scenarios that could explain 

how H4K20me3 levels remained unaltered in senescent cells despite a net decrease 

in histone expression: (1) H4K20me3-containing nucleosomes were protected from 

being lost during senescence or (2) H4K20me3-containing nucleosomes were lost 

during senescence, but the modification was deposited to remaining nucleosomes 

such that the steady state level of H4K20me3 appeared unchanged. As such, the 

latter argument would presumably require the activity of an H4K20me3-depositing 

enzyme.  

The majority of H4K20me3 is catalyzed in vivo by the activity of the histone 

methyltransferase SUV420H2 (Schotta et al., 2004; Schotta et al., 2008). In order to 

determine whether SUV420H2 expression was maintained as cells underwent 

senescence, the RS and OIS microarray datasets were queried. The Affymetrix 

Human Genome U133 Plus 2.0 Array contained multiple probesets for the 

SUV420H2 gene. Therefore, data for each probeset was compiled and assessed to 

determine whether SUV420H2 expression was altered in senescent cells No 

statistical difference was observed for either of the SUV420H2 probesets from the 

RS microarray (Table 4.1). Likewise, no change in expression was observed for 

either of the SUV420H2 probesets from the OIS microarray. Based on the 

microarray data, it was reasonable to conclude that SUV420H2 mRNA expression 

was not significantly altered in senescent cells.  

Although the microarray expression data for SUV420H2 were not confirmed 

by quantitative PCR, it was reasonable to measure expression of the enzyme at the 

protein level in RS and OIS cells. Before proceeding with analysis of SUV420H2 

expression, it was first necessary to identify and obtain a suitable SUV420H2 

antibody. To this end, it was important to verify that the antibody was specific and 

could be used for Western blot detection of SUV420H2. One approach commonly 

employed to confirm antibody specificity is to demonstrate that several independent 

antibodies are capable of detecting the same protein band by Western blot. However, 

due to the limited commercial availability of SUV420H2 antibodies, only a single 

antibody was obtained and tested for specificity. 
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In order to determine whether the SUV420H2 antibody could recognize the 

specified epitope, a control plasmid (pBABE-puro) or plasmids encoding MYC-

tagged full-length SUV420H1 (pBABE-puro-MYC-SUV420H1) or SUV420H2 

(pBABE-puro-MYC-SUV420H2) were transfected into Phoenix-Ampho cells. 

Forty-eight hours after transfection, whole cell extracts were prepared, subjected to 

fractionation by SDS-PAGE and immobilized to a PVDF membrane. The PVDF was 

cut vertically into two equal halves, containing the control, MYC-SUV420H1 and 

MYC-SUV420H2 cell lysates. The two membranes were Western blotted with either 

an antibody raised against the MYC tag or the SUV420H2 antibody. As anticipated, 

the MYC antibody detected a single band that migrated just above the 52 kDa 

molecular weight marker in the MYC-SUV420H2 lane, but not in the control or 

MYC-SUV420H2 lanes (Figure 4.7a). Importantly, the band corresponded with the 

predicted molecular weight (~ 53 kDa) of MYC-SUV420H2. The other half of the 

membrane was probed with the SUV420H2 antibody, which detected a band in the 

MYC-SUV420H2 lane that migrated at the same position as the band from the MYC 

Western blot. Although the signal from the SUV420H2 Western blot was 

considerably less intense than that of the MYC tag blot, the data indicated that the 

SUV420H2 antibody was capable of detecting ectopically expressed SUV420H2.  

It was also important to demonstrate that the SUV420H2 antibody could 

detect endogenous levels of SUV420H2. In the absence of several distinct 

SUV420H2 antibodies, an RNA interference approach was utilized to evaluate 

specificity. To this end, whole cell extracts were prepared from low passage IMR90 

cells infected with variable amounts of shControl or shSUV420H2 lentiviruses. The 

whole cell extracts were fractionated by SDS-PAGE, transferred to a PVDF 

membrane and Western blotted with the SUV420H2 antibody. A prominent band 

that migrated just above the 52 kDa molecular weight marker was detected (Figure 

4.7b). While the band remained unchanged across the shControl lanes, the 

shSUV420H2-infected cells exhibited markedly lower levels of expression. In fact, 

the cells that received the maximal amount of the shSUV420H2 lentivirus displayed 

the lowest expression of the putative SUV420H2 band. Because the band of interest 

migrated at the predicted molecular weight for SUV420H2 and underwent a 

reduction in expression following shSUV420H2 gene silencing, it was reasonable to 

conclude that the band represented endogenous SUV420H2. Based on this 
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evaluation, the SUV420H2 antibody could be used to accurately assess SUV420H2 

expression in proliferating and senescent cells. 

To evaluate SUV420H2 protein expression, whole cell extracts prepared from 

low passage (PD22) proliferating and high passage (PD85) senescent IMR90 cells 

were fractionated by SDS-PAGE and transferred to PVDF membrane for subsequent 

Western blot analysis. In parallel, whole cell extracts from control-infected 

proliferating and H-RASG12V-infected senescent IMR90 cells were also 

fractionated and immobilized to PVDF. The PVDF membrane was Western blotted 

with antibodies against SUV420H2 and GAPDH and quantified using the Image J 

software (Figure 4.8). A modest increase in SUV420H2 expression was observed in 

the PD85 replicative senescent cells relative to the PD22 proliferating cells, 

following normalization for GAPDH expression (Figure 4.8a & b). In contrast, 

SUV420H2 expression levels underwent a modest decrease in the H-RASG12V-

infected senescent cells relative to control-infected cells, following normalization for 

GAPDH expression (Figure 4.8c & d). Although SUV420H2 levels appear to 

undergo subtle changes in expression in RS and OIS, respectively, the findings do 

not provide any conclusive evidence to suggest that altered SUV420H2 expression is 

solely responsible for the maintenance of H4K20me3 levels in senescent IMR90 

cells. In OIS cells this is particularly unlikely to be the case, as H4K20me3 levels are 

maintained even in a context of reduced SUV420H2 expression. Consequently, 

whether H4K20me3 levels are maintained in senescent cells through a SUV420H2-

dependent mechanism remains to be tested using loss-of-function approaches. 

 

4.3 Discussion 

 In addition to the proliferation arrest and secretory phenotypes, senescent 

cells may also be characterized by a dynamic and extensively remodelled chromatin 

landscape. One of the more striking observations related to the chromatin state of 

senescent cells is that the cells undergo a loss of histone content. Importantly, despite 

the reduction of global histone levels, some histones are retained within the 

chromatin of senescent cells. Such is the case for histones that contain the 

H4K20me3 posttranslational modification, as levels of this mark remain identical in 

proliferating and senescent cells, when normalized per cell or to lamin A/C. The 

apparent stabilization of H4K20me3 is particularly intriguing as it occurs in both the 

contexts of RS and OIS, suggesting it might be a universal feature of the chromatin 
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of senescent cells. The observation that H4K20me3 level per cell is sustained for 

weeks following the onset of senescence is also of significance, possibly indicating 

that the modification plays a role in the long-term implementation of the senescence 

program. 

 Although the global level of H4K20me3 remains unaltered per senescent cell, 

the nuclear localization of the modification changes considerably as cells undergo 

senescence. In normal proliferating IMR90 cells, H4K20me3 exhibits a diffuse and 

even nuclear distribution as revealed by immunofluorescence staining. In striking 

contrast, replicative and oncogene-induced senescent cells display a pattern of 

H4K20me3 staining characterized by the formation of discrete nuclear foci. Several 

additional key nuclear proteins, including PML, 53BP1 and γ-H2AX, also form 

prominent foci during senescence, but surprisingly do not co-localize with 

H4K20me3. However, H4K20me3 does co-localize with SAHF in senescent IMR90 

cells, implying that the mark might help to facilitate the extensive chromatin 

remodelling that occurs as cells senesce. Given the proposed contribution of SAHF 

to the transcriptional silencing of proliferation genes, H4K20me3 might indirectly 

mediate the gene regulatory aspects of the senescence program (Narita et al., 2003; 

Zhang et al., 2007). 

 While the current findings provide convincing evidence that total H4K20me3 

levels remain unaltered in individual senescent cells, the data fail to provide clear 

insight into how abundance of the mark is maintained. One possibility is that 

nucleosomes containing the H4K20me3 modification are preferentially protected 

from removal during senescence. Alternatively, H4K20me3-containing nucleosomes 

might actually comprise a fraction of the histones that are lost during senescence, but 

the mark is maintained at steady state levels through the concomitant activity of an 

H4K20-specific histone methyltransferase acting upon the remaining nucleosomes. 

By either model, Western blotting analysis of H4K20me3 in proliferating and 

senescent cells and normalized for cell number would presumably reveal equivalent 

levels of the modification.  

The histone methyltransferase SUV420H2 has been reported to deposit the 

majority of H4K20me3 across the genome (Schotta et al., 2008). Similar to global 

H4K20me3 levels, SUV420H2 expression is only modestly altered in RS and OIS 

cells. This could imply that basal expression of SUV420H2 is sufficient to maintain 

H4K20me3 at appropriate levels following removal of H4K20me3-modified histones 
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during senescence. This also assumes that SUV420H2 is the primary histone 

methyltransferase for H4K20me3 in IMR90 cells, which remains to be formally 

tested through loss-of-function experiments. In contrast, the data could imply that 

H4K20me3 is simply not lost from senescent cells, thus no significant change in 

SUV420H2 expression is required. 

Another possibility that is not formally addressed in the present study is that 

H4K20me3 is maintained in senescent cells through a SUV420H2-independent 

mechanism. For example, H4K20me3 might be deposited by a different histone 

methyltransferase. To this end, several additional histone methyltransferases 

including NSD1, SMYD3 and SMYD5 have been reported to confer histone H4 

lysine 20 trimethylation either in vitro or in vivo (Rayasam et al., 2003; Foreman et 

al., 2011; Stender et al., 2012). Alternatively, H4K20me3 levels might be maintained 

in senescent cells through the inhibition of a specific histone lysine demethylase. The 

enzyme PHF2 was recently reported to demethylate H4K20me3 at the promoters of 

pro-inflammatory genes in macrophages (Stender et al., 2012). Although PHF2 

expression levels do not change by microarray in either RS or OIS (data not shown), 

it is possible that PHF2 undergoes enzymatic inhibition in senescent IMR90 cells. 

Although not tested in the present study, inhibition of PHF2 remains a potential 

mechanistic explanation for the stabilization of H4K20me3 during senescence.  

 Regardless, the question of whether H4K20me3 is simply retained at existing 

sites of deposition during senescence or is actively deposited to different 

nucleosomes following senescence-associated histone loss, is an important 

consideration. Possessing the ability to delineate between these two potential 

scenarios could provide valuable insight regarding the function of H4K20me3 during 

senescence. Probably the most effective way to address the question would be to 

obtain detailed genome-wide profiles of H4K20me3 occupancy in proliferating and 

senescent cells, respectively. Recent advancements in high-throughput sequencing 

technologies currently enable the rapid and accurate determination of nucleic acid 

sequence. Therefore, in order to better define the genomic distribution of H4K20me3 

in proliferating and senescent cells, chromatin immunoprecipitation of H4K20me3 

coupled to high-throughput sequencing will be employed and analyzed in the 

subsequent chapter. 
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Chapter 5. Mapping H4K20me3 Distribution in Senescence 
 

5.1 Rationale 

 Senescent cells are governed by a defined program of altered gene expression 

that culminates in the establishment of a stable proliferation arrest and secretory 

phenotype. Considerable evidence supports a model in which the senescence 

program is regulated at least in part by directed chromatin remodeling. However, 

despite widespread changes in chromatin structure, not all features of the epigenome 

undergo alteration during senescence. For example, total abundance of the 

H4K20me3 histone modification remains identical between proliferating and 

senescent cells. Even more remarkable, this maintenance of H4K20me3 levels occurs 

within the context of a profound reduction of total histone content from senescent 

cells, suggesting that H4K20me3 might be selectively retained at some regions of the 

genome or otherwise redistributed in senescent cells. To this end, chromatin 

immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) can 

generate high-resolution profiles of the genomic distribution of specific histone 

modifications. By comparing the genome-wide localization of H4K20me3 in 

proliferating and senescent cells, it might be possible to gain insight into the 

modification’s contribution to chromatin remodeling and ultimately the senescence 

program. Therefore, I set out to map the genomic localization of H4K20me3 in 

senescent cells by ChIP-Seq and then compare distribution of the mark to other 

defined features of the human genome. 

  

5.2 Results 

 

5.2.1 Optimization of ChIP-Seq Conditions 

 Over the last decade, considerable advancements in next-generation 

sequencing technologies have enabled the acquisition of genome-wide sequence data 

in a timely, accurate and cost-effective manner. Thus, as the sequencing technology 

has become more accessible, it has facilitated numerous important discoveries 

pertaining to chromatin structure, regulation and function. A valuable extension of 

next-generation sequencing has been to combine it with chromatin 

immunoprecipitation (i.e., ChIP-Seq) in order to obtain a detailed description of the 
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epigenetic landscape for a given cellular context (Barski et al., 2007; Wang et al., 

2008). To this end, I was interested in utilizing a ChIP-Seq approach to map the 

genome-wide distribution of the H4K20me3 histone modification in proliferating 

and senescent IMR90 cells. 

 However, in order to generate meaningful and reproducible data, ChIP-Seq 

can require considerable methodological optimization. To this end, the success of a 

ChIP-Seq experiment can be dictated by myriad factors including parameters for 

chromatin preparation, abundance of the ChIP target, ability to immunoprecipitate 

the target, antibody specificity and the selection of relevant controls (Kidder et al., 

2011). Another important consideration is the model system being used, as it may 

necessitate the optimization of additional parameters. Consequently, before 

proceeding with a wide-scale study of H4K20me3 in proliferating and senescent 

IMR90 cells, I first opted to systematically evaluate and optimize several of the key 

factors discussed above.  

 Because many of the downstream steps of the ChIP procedure are contingent 

upon efficient fragmentation of chromatin, it was first necessary to determine 

empirically the optimal conditions to achieve this. Chromatin fragmentation can be 

accomplished by multiple methods including sonication for cross-linked chromatin 

or nuclease digestion for native, unfixed chromatin. A standard ChIP protocol that 

relies on formaldehyde cross-linking and sonication-mediated fragmentation of 

chromatin was selected for the studies. Sonication of cross-linked chromatin occurs 

in a stochastic manner but can be influenced by several factors including cell density 

and the amplitude and duration of sonication. To determine optimal sonication 

conditions, a defined number of cross-linked IMR90 cells were resuspended in 

nuclear lysis buffer, divided evenly into multiple microcentrifuge tubes and 

subjected to water bath sonication for variable amounts of time at a fixed amplitude. 

As expected, chromatin fragmentation efficiency increased in a time-dependent 

manner, with optimal sonication occurring between 20 and 25 minutes (Figure 5.1). 

Excessive sonication can detrimentally affect ChIP target integrity, so a standard 

sonication time of 22.5 minutes was utilized for all subsequent experiments. 

 The ability to efficiently bind and immunoprecipitate an intended chromatin 

target is another requisite step of the ChIP procedure. Having previously assessed the 

binding specificity of a panel of H4K20me3 antibodies using the MODified Histone 

Peptide Array, the antibodies were subsequently evaluated for ability to 
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immunoprecipitate H4K20me3 from cross-linked chromatin preparations. Based on 

the prior specificity assessment, H4K20me3 rabbit antibodies supplied by Millipore 

(04-079), Cell Signaling Technology (5737), Abcam (ab9053) and Active Motif 

(39180) were selected for testing by ChIP. Sonicated cross-linked IMR90 chromatin 

solutions were subjected to immunoprecipitation with 2 or 10 µg of the Abcam and 

Cell Signaling Technology H4K20me3 antibodies, 10 µg of a total histone H4 

antibody (Millipore, 05-858), and 2 or 10 µg of a negative control rabbit IgG 

antibody (Sigma, M7023).  

 Following ChIP, bound chromatin and antibodies were eluted from the beads 

by boiling in SDS sample buffer, fractionated by SDS-PAGE and immobilized to a 

PVDF membrane. The membrane was subsequently Western blotted for histone H4 

and ChIP efficiency was estimated by the amount of total histone H4 

immunoprecipitated by the H4K20me3 antibodies compared to the histone H4 ChIP 

and input lanes (Figure 5.2a). While the negative control antibody (lanes 1 and 2) 

failed to immunoprecipitate any detectable histone H4, both the Abcam (lanes 3 and 

4) and Cell Signaling Technology (lanes 5 and 6) antibodies precipitated amounts of 

histone H4 comparable to the total histone H4 ChIP (lane 7). Use of an anti-rabbit 

IgG-HRP conjugated secondary antibody for the Western blot also enabled 

visualization of the ChIP antibody heavy and light chains and confirmed that equal 

amounts of the respective antibodies were used for each ChIP reaction. 

 In addition to testing the Abcam and Cell Signaling Technology H4K20me3 

antibodies by ChIP, rabbit antibodies produced by Millipore (04-079) and Active 

Motif (39180) were subjected to evaluation. Chromatin eluted from the Millipore and 

Active Motif H4K20me3 ChIP reactions was assessed by Western blot analysis of 

total histone H4 and compared to the previously validated Abcam antibody. Whereas 

even 10 µg of the Active Motif antibody was insufficient to precipitate any 

detectable histone H4 (Figure 5.2b, lane 5), the Millipore antibody (lane 3) 

precipitated a moderate amount of histone H4, but not as much as the Abcam 

antibody (lane 2). Utilization of an anti-rabbit IgG-HRP conjugated secondary 

antibody for the Western blot again facilitated detection of the ChIP antibody heavy 

and light chains, ensuring that equivalent amounts of the ChIP antibodies were used 

for each reaction. Based on the composite results of the two ChIP antibody 

evaluation experiments, three separate antibodies were found capable of 

immunoprecipitating H4K20me3 from cross-linked chromatin preparations. 
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However, because the Millipore and Cell Signaling Technology H4K20me3 

antibodies both demonstrated higher specificity than the Abcam antibody in the 

peptide array evaluation, these two antibodies were selected for use in all subsequent 

H4K20me3 ChIP experiments. 

 Although the relative specificities of histone modification antibodies can be 

effectively evaluated in vitro using a method such as the MODified Histone Peptide 

Array, it is important to recognize that all antibodies can exhibit a certain degree of 

nonspecific binding. Nonspecific antibody binding in the context of ChIP can be 

exacerbated by a variety of factors including antibody concentration, ChIP buffer 

composition and the stringency of wash conditions. Having previously ascertained 

that the Millipore and Cell Signaling Technology H4K20me3 antibodies were both 

highly specific and capable of immunoprecipitating cross-linked chromatin, the next 

step was to determine which ChIP conditions would permit sufficient H4K20me3 

pull-down while minimizing antibody cross-reactivity. To this end, a series of 

H4K20me3 ChIP reactions were set up to simultaneously evaluate the parameters of 

antibody concentration, ChIP buffer composition and wash stringency. 

  Most standard ChIP protocols suggest the inclusion of SDS in the ChIP lysis 

buffer as it helps facilitate fragmentation of chromatin during sonication. However, 

excessive SDS concentration can be detrimental to the subsequent antibody binding 

steps of ChIP. In order to determine the optimal SDS concentration for H4K20me3 

ChIP, chromatin was prepared from cross-linked IMR90 cells in lysis buffer 

containing 1% SDS and diluted to a final SDS concentration of either 0.25% or 

0.1%. The respective chromatin solutions were then subjected to 

immunoprecipitation using either 2 or 10 µg of the Millipore H4K20me3 antibody 

(04-079) or 10 µg of control rabbit IgG. Following immunoprecipitation, each ChIP 

reaction was washed either in accordance with the standard protocol or with an 

additional stringent wash buffer comprised of 10 mM Tris, 250 mM LiCl, 1 mM 

EDTA, 1% NP-40, 1% deoxycholic acid. The ChIP reactions were then boiled in 

SDS sample buffer, fractionated by SDS-PAGE, immobilized to a PVDF membrane 

and assessed by Western blotting of H4K20me3. 

 As expected, the control rabbit IgG ChIP failed to precipitate H4K20me3 

(Figure 5.3, lane 9), while the H4K20me3 ChIP reactions conducted under differing 

conditions produced variable amounts of H4K20me3 (lanes 1-8). The combined use 

of ChIP lysis buffer containing 0.25% SDS and 2 µg of H4K20me3 antibody was 
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insufficient to precipitate detectable levels of H4K20me3, irrespective of the 

inclusion or exclusion of the stringent LiCl wash (lanes 1 and 2). By reducing the 

SDS concentration to 0.1%, 2 µg of H4K20me3 became sufficient to precipitate low 

but detectable levels of H4K20me3 in either the presence or absence of the LiCl 

wash step (lanes 4 and 6). By increasing the amount of H4K20me3 antibody to 10 

µg, the ChIP reactions yielded considerably more H4K20me3 as assessed by 

Western blotting. The condition that facilitated the most robust precipitation of 

H4K20me3 was the combination of lysis buffer containing 0.1% SDS and 10 µg of 

H4K20me3 antibody (lanes 7 and 8). Under all conditions, the inclusion of the LiCl 

wash step did not appear to adversely affect the overall ChIP yield as determined by 

Western blotting for H4K20me3. As a result, the high stringency LiCl wash step was 

incorporated into all subsequent ChIP experiments. 

 

5.2.2 ChIP-Seq of H4K20me3 in Proliferating and Senescent Cells 

 Based on the series of experiments discussed above, I determined that the 

following conditions were optimal for ChIP of H4K20me3 from cross-linked IMR90 

cells: 22.5 minutes of sonication, dilution of chromatin solutions to 0.1% SDS, 

utilization of 6 µg of antibody per ChIP reaction and inclusion of the LiCl wash step. 

I arbitrarily selected 6 µg of antibody per ChIP as it represented the average of the 

two antibody amounts I had tested. Using these parameters, cross-linked, sonicated 

chromatin solutions isolated from proliferating (PD32) and replicative senescent 

(PD86) IMR90 cells were subjected to immunoprecipitation with 6 µg of control 

rabbit IgG, histone H4 antibody (Millipore, 05-858) or H4K20me3 antibody 

(Millipore, 04-079). For each ChIP reaction, 500 µg of chromatin protein, as 

determined by the Bradford assay, was utilized. Following overnight incubation with 

primary antibodies and beads, the ChIP reactions were washed, eluted, subjected to 

reverse cross-linking and purified by phenol-chloroform extraction. The purified 

ChIP DNA was subsequently quantified using the Qubit fluorometer (Invitrogen), of 

which 10 ng DNA was utilized to generate ChIP-Seq libraries according to the 

standard Illumina protocol. Prepared libraries underwent quality control analysis 

using the Agilent 2100 Bioanalyzer. The libraries were then hybridized to an 

Illumina flow cell for cluster generation, and subjected to single read sequencing on 

the Illumina Genome Analyzer IIx (GAIIx) by the Beatson Institute for Cancer 

Research’s Molecular Technology Services personnel. 
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Sequence (read) lengths of 75 basepairs for the first experiment and 76 

basepairs for the second experiment were extracted from the GAIIx as FASTQ files 

and inspected for quality as described in Chapter 2 (Materials and Methods). The 

resulting reads were then aligned to the human genome (assembly NCBI36/hg18) 

using the Bowtie alignment tool and the settings described in Chapter 2. It is 

important to note that Tony McBryan, our laboratory computational biologist, 

performed all of the sequence alignment and subsequent analysis. Any sequences 

that failed to align or align to more than one site in the genome were excluded from 

subsequent analyses. Because the standard ChIP-Seq library preparation protocol 

utilizes a PCR amplification step, preferential amplification of certain sequences can 

occur. PCR clonality is a particularly relevant issue when generating ChIP-Seq 

libraries from samples with a low ChIP yield, as low yield often corresponds with 

low sample complexity. In this context, an individual DNA fragment may undergo 

excessive amplification and become overrepresented in the sequencing run, reducing 

the specificity of the experiment. This can create bias in the process of identifying 

regions of the genome that are enriched for a particular chromatin modification. In 

order to account for this, any multiple identical reads were also excluded from the 

subsequent analyses.  

As summarized in Table 5.1, the first ChIP-Seq experiment generated 

between 28 and 42 million total reads for the DNA inputs and histone H4 and 

H4K20me3 ChIP reactions. After removing reads that failed to align uniquely to the 

human genome and multiple identical reads, between 7 and 33 million uniquely 

alignable reads remained (Table 5.1). For the PD32 input and histone H4 ChIP 

samples respectively, 24,478,131 (63%) and 25,455,213 (66%) of the total reads 

remained after filtering, whereas for the PD32 H4K20me3 ChIP sample only 

14,319,405 (36%) of the total reads were uniquely alignable sequences. Likewise, 

20,520,747 (71%) and 31,894,106 (76%) of the total reads from the PD86 input and 

histone H4 ChIP samples were uniquely alignable, while only 7,941,385 (20%) of 

the PD86 H4K20me3 ChIP reads remained after filtering. Although initially 

surprising, many of the PD32 and PD86 H4K20me3 ChIP reads were likely excluded 

by filtering because they represented repetitive regions of the genome, including 

pericentromeres and telomeres (Mravinac et al., 2009, Ernst & Kellis, 2010). 

Consequently, these repetitive sequences would not be aligned as unique regions of 

the genome. 
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 There is some debate as to whether reads that align to multiple genomic 

locations should be excluded from downstream analysis. The advantage of removing 

multiple alignments is that it improves the specificity of the analysis, by ensuring 

that the remaining reads align to single, unambiguous genomic sites. The 

disadvantage of removing multiple alignments is that it can create bias and decrease 

the sensitivity of the experiment, as certain genomic classes such as DNA repeats 

might be excluded from analysis due to the inherently repetitive nature of the 

sequences. Ultimately, the decision to include or exclude multiple alignments comes 

down to a trade-off between specificity and sensitivity and is largely dictated by the 

nature of the experiment. For example, for a ChIP-Seq experiment conducted on a 

chromatin modification reported to associate with repetitive elements, it might be 

beneficial to perform the analysis two ways, both including and excluding multiple 

alignments. 

 Before performing any comprehensive analysis of the first H4K20me3 ChIP-

Seq data, a second experiment was conducted. Whereas the first set of H4K20me3 

ChIPs were performed using equal amounts of chromatin protein from proliferating 

and senescent cells, the second experiment was carried out using equal amounts of 

chromatin DNA. Because senescent cells can contain more protein per cell than 

proliferating cells, by using equal amounts of protein for each ChIP reaction, I might 

unintentionally utilize fewer senescent cells per ChIP. DNA content is arguably less 

variable between proliferating and senescent cells and was therefore used to ensure 

that the ChIP reactions utilized equivalent numbers of proliferating or senescent 

cells. As before, solutions of sonicated chromatin from proliferating (PD32) or 

replicative senescent (PD86) IMR90 cells were subjected to immunoprecipitation 

with 6 µg of control rabbit IgG or histone H4 antibody (Millipore, 05-858). 

However, for this second experiment, a different H4K20me3 antibody (Cell 

Signaling Technology, 5737) was used. The second H4K20me3 was utilized in order 

to confirm the specificity of any observed regions of H4K20me3 localization. 

Therefore, any H4K20me3-containing regions that appeared with both antibodies 

likely represented genuine regions of enrichment for the modification. Aside from 

the differences just described, the second H4K20me3 ChIP-Seq experiment was 

conducted in the same manner as the first experiment. The resulting ChIP DNA 

samples were used to generate libraries and sequenced as before using the Illumina 

GAIIx. 
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 The reads obtained from the second ChIP-Seq experiment were similarly 

aligned to the human genome using the Bowtie alignment tool. All reads that failed 

to align to a unique region of the genome and any identical reads were filtered from 

the data. Comparable to the first ChIP-Seq experiment, the second experiment 

yielded between 33 and 39 million reads per input or ChIP sample (Table 5.2). 

However, after considering the alignment requirements discussed above, between 7 

and 29 million uniquely alignable, non-redundant reads per sample remained (Table 

5.2). Similar to the first experiment, 23,638,627 (62%) and 24,221,792 (66%) of the 

PD32 input and histone H4 ChIP total reads, respectively, aligned uniquely to the 

genome, while only 7,824,101 (24%) of the total reads from the PD32 H4K20me3 

ChIP aligned uniquely to the genome. For the PD86 input and histone H4 ChIP 

samples, 25,474,711 (68%) and 29,646,203 (75%) of the total reads, respectively, 

aligned uniquely to the human genome. In contrast, only 12,222,896 (34%) of the 

PD86 H4K20me3 ChIP total reads aligned uniquely. Although both the PD32 and 

PD86 H4K20me3 ChIP samples from the second experiment exhibited considerably 

lower degrees of sequence alignment, the observation was consistent with the first 

experiment. Again, the majority of the PD32 and PD86 H4K20me3 ChIP reads failed 

to align to unique regions of the genome presumably because they corresponded to 

repetitive genomic loci. 

 

5.2.3 Senescent Cells Contain Regions of H4K20me3 Enrichment 

Having obtained H4K20me3 ChIP-Seq data from proliferating and replicative 

senescent IMR90 cells using two separate H4K20me3 antibodies, it was next 

important to determine whether the modification occupied identical or unique 

locations in the respective cell states. Because net abundance of the H4K20me3 

modification was comparable in proliferating and senescent cells, two scenarios were 

possible. Either H4K20me3 distribution remained identical in proliferating and 

senescent cells, or the profile of the modification was altered in senescent cells, 

being lost from one region and deposited at another, such that the absolute levels of 

the mark remained constant. Using the respective ChIP-Seq datasets, it was possible 

to distinguish between the two scenarios. To this end, it was first necessary to 

identify regions of H4K20me3 enrichment in proliferating and senescent cells.  

 In order to accomplish this, the uniquely aligned H4K20me3 reads were 

compared to the uniquely aligned histone H4 reads using SICER (version 1.1). 
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SICER is a tool used to identify regions of significant enrichment for specific 

chromatin modifications, including histone marks, by defining clusters of sequencing 

reads that are unlikely to occur at a given location due to chance (Zang et al., 2009). 

SICER was specifically selected for the analysis as it performs optimally for 

modifications that occur diffusely across the genome. As described in detail in 

Chapter 2 (Materials and Methods), SICER works by computing the likelihood that 

an accumulation of chromatin modification ChIP reads (e.g., H4K20me3) occurs 

specifically within a defined region, rather than occurring in the region in a 

stochastic manner. For each region, SICER was used to evaluate the H4K20me3 

reads relative to the total histone H4 ChIP reads, in order to reduce the likelihood 

that the H4K20me3 reads accumulated due to regional variation in chromatin 

solubility. Based on the SICER analysis, statistically significant clusters (i.e., 

domains) of H4K20me3 reads were identified in the PD32 and PD86 samples. 

Following the identification of H4K20me3 domains in the PD32 and PD86 

samples using SICER, the respective datasets were compared using the DiffBind 

Bioconductor package in order to determine regions of differential H4K20me3 

enrichment between the PD86 and PD32 samples. In total, DiffBind identified 

10,786 domains of H4K20me3 differential abundance between the PD32 and PD86 

samples. Remarkably, the PD86 sample from experiment 1 contained differentially 

enriched H4K20me3 domains spanning 87,878,460 bp or 3.0% of genome, while the 

PD86 sample from experiment 2 contained H4K20me3 domains covering 

75,658,200 bp or 2.6% of the genome.  

The 10,786 domains of H4K20me3 differential enrichment were 

subsequently displayed as a cluster diagram (Figure 5.4a) using the R version 2.15.1 

hclust function from the fastcluster library, as described in Chapter 2 (Materials and 

Methods). Each row in the cluster diagram represents one of the 10,786 differentially 

enriched domains. It is important to note that the color intensity of each domain 

reflects the level of H4K20me3 enrichment over histone H4 (after normalization for 

library size) for each replicate, rather than the level of H4K20me3 differential 

enrichment between the PD86 and PD32 samples. As revealed in Figure 5.4a, the 

PD86 samples displayed numerous H4K20me3 domains that were either not present 

in the PD32 samples or present at a considerably lower abundance. Remarkably, the 

distribution of these differentially enriched H4K20me3 domains was strikingly 

similar between the PD86 samples from both experiments. Importantly, this 



	   144	  



	   145	  

indicated that both the Millipore and Cell Signaling Technology H4K20me3 

antibodies immunoprecipitated chromatin from comparable regions of the genome. 

In this way, the data provided supporting evidence that the individual H4K20me3 

antibodies were highly specific to the modification and added confidence in 

interpreting the distribution of H4K20me3 in senescent cells. 

To provide additional insight into the genomic distribution of the 

SICER/DiffBind defined regions of H4K20me3 enrichment, the domains identified 

in Figure 5.4a were plotted as a chromosome ideogram (Figure 5.4b). As evident in 

the ideogram, regions of PD86-specific H4K20me3 differential enrichment were 

present across all chromosomes. Although some chromosomes exhibited regions 

devoid of H4K20me3 enrichment, the mark was distributed widely across the 

genome and occasionally present as larger blocks of enrichment (e.g., chromosome 

19). 

 In order to better characterize the distribution of H4K20me3 in senescent 

cells, the regions of PD86-specific H4K20me3 differential enrichment identified in 

Figure 5.4a were compared to defined features of the human genome. To accomplish 

this, the coordinates of the H4K20me3 differentially enriched domains were assessed 

for overlap with a panel of well-defined genomic features. The 10,786 H4K20me3 

domains were clustered by hierarchical clustering, using the R 2.15.1 hclust function 

from the fastcluster library. As described in Chapter 2 (Materials and Methods), each 

differential domain was treated as a k-dimensional vector, for which each entry 

within the vector was either the presence or absence of a genomic feature of interest. 

The domains were then clustered both row and column-wise using Euclidian distance 

as the distance metric and the complete linkage function. The data were then 

reordered to conform to the clustering analysis and plotted using the R heatmap.2 

function in the gplots library (Figure 5.5a). Each row represents one of the 10,786 

H4K20me3 differentially enriched domains and each column reflects a specific 

genomic feature. It is important to note that because each feature was scored for 

either presence or absence of overlap with H4K20me3, this analysis did not provide 

any ranking based on the level of H4K20me3 differential enrichment.  

 As presented in Figure 5.5a, the domains of H4K20me3 differential 

enrichment coincided with a variety of genomic features, including long terminal 

repeats (LTR), intergenic regions, late replicating regions (Late), regions that 

become DNA hypomethylated in senescent cells (Hypo), lamina-associated domains 
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(LAD), short interspersed elements (SINE) and long interspersed elements (LINE). 

The late replicating regions were defined by the work of Hellman and colleagues 

(Aran et al., 2011). Regions of DNA hypomethylation were based on recent work 

from Peter Adams’ laboratory (Cruickshanks et al., submitted). Likewise, the lamina-

associated domains were defined by work from Shelley Berger’s laboratory (Shah et 

al., submitted). Finally, considerably more of the senescence-specific H4K20me3 

domains mapped to intergenic regions of the genome than to genes. This was not 

surprising however, as protein-coding genes comprise approximately only 1.5% of 

the human genome (Venter et al., 2001; International Human Genome Sequencing 

Consortium, 2004). 

 Several of the genomic features identified in Figure 5.5a as containing 

H4K20me3 enrichment in senescent cells, represented interspersed DNA repeats 

(e.g., LTRs, SINEs and LINEs). Although H4K20me3 was previously identified at 

another class of DNA repeats, the tandem satellite repeats, fewer of the senescence-

specific H4K20me3 domains appeared to occur at satellite sequences (Sat) in our 

analysis (Ernst & Kellis, 2010). This is may be partially explained by the fact that 

satellite repeats only account for approximately 3% of the human genome, whereas 

LTR retrotransposons (9%), SINES (15%) and LINES (21%) comprise a 

considerably larger proportion of the genome (Treangen & Salzberg, 2012). It is also 

important to point out that some of the H4K20me3 reads which might have aligned 

to DNA repeats were presumably removed from the analysis due to our intentional 

exclusion of sequences that could not be aligned to singly unique locations in the 

genome.  

 It is important to note that each of the genomic features included in the 

clustering analysis in Figure 5.5a comprised different proportions of the genome. 

Consequently, it was formally possible that some of the overlap between the 

H4K20me3 domains and individual genomic features might be attributed to the 

frequency that a specific feature occurred throughout the genome. To address this, 

the genomic coordinates of the H4K20me3 differentially enriched regions and 

defined genomic features were compared and the number of basepairs present in both 

datasets was calculated as a percentage of the total number of basepairs for each 

individual feature. For each genomic feature, a random overlap percentage was also 

calculated, which involved random distribution of the feature across the genome and 

the calculation of the overlap between this random feature and the H4K20me3 
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differentially enriched signal. The random distribution was carried out 1000 times 

and the mean percentage overlap was utilized. The data were then expressed as the 

fold enrichment of the observed H4K20me3 percentage overlap over the random 

percentage overlap for each genomic feature, and displayed graphically in Figure 

5.5b. P-values were calculated by observing the frequency that the random overlap 

was greater than or equal to the observed overlap. 

 Based on this analysis, three genomic features exhibited significant 

H4K20me3 enrichment over random chance: LTRs, satellite repeats and ZNF genes 

(Figure 5.5b). Approximately 3-fold enrichment over random chance was observed 

for H4K20me3 at both LTRs and satellites, with a p-value below the limit of 

detection. Likewise, 5-fold enrichment over random chance was observed for 

H4K20me3 at ZNF genes, with a p-value similarly below the limit of detection. 

Importantly, these data are largely consistent with a previous genome-wide study that 

reported marked enrichment of H4K20me3 at satellite DNA and ZNF genes in 

human CD4+ T cells (Barski et al., 2007). However, Barski and colleagues failed to 

observe significant H4K20me3 enrichment at LTRs, which may be attributed to one 

of several factors. First, it is possible that H4K20me3 enrichment varies between cell 

types, as the study by Barski and colleagues utilized T cells while the present study 

was conducted using IMR90 cells. Second, H4K20me3 enrichment may only occur 

at LTRs in senescent cells, as the enrichment at LTRs was only observed for the 

senescence-specific domains of H4K20me3 differential enrichment. Finally, the 

discrepancy between the study by Barski and colleagues and the present analysis 

may reflect differences in H4K20me3 antibody quality. Whereas the data from the 

report by Barski and colleagues was generated using the Abcam (ab9053) 

H4K20me3 antibody, the present study was conducted using Millipore (04-079) and 

Cell Signaling Technology (5737) antibodies, which I have previously demonstrated 

to exhibit higher specificity than the Abcam (ab9053) antibody (see Figure 4.1). 

Regardless of any discrepancies with the previous literature, the current data indicate 

that H4K20me3 is significantly enriched at LTRs, satellites and ZNF genes in 

senescent IMR90 cells.  

Based on the analysis presented in Figure 5.5, domains of statistically 

significant H4K20me3 enrichment coincided with several features of 

heterochromatin and repetitive DNA in the PD86 senescence cells. In order to 

validate the observed overlap between H4K20me3 and these features, it was 
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important to examine the H4K20me3 enriched domains within the genomic context. 

To this end, all uniquely alignable reads from the input DNA, histone H4 ChIP and 

H4K20me3 ChIP samples were assembled as individual bigWig tracks and uploaded 

to the UCSC Genome Browser for visualization. The SICER/DiffBind defined 

domains of H4K20me3 differential enrichment identified in Figure 5.4a were 

included as a parallel track in the Genome Browser viewer. Using the RepeatMasker 

tool, a program that identifies regions of low complexity DNA and interspersed 

repeats throughout the genome, a track showing domains of repetitive DNA and 

potential heterochromatin was also included in the viewer. As evident in Figure 5.6b, 

several domains of H4K20me3 differential enrichment exhibited distinct overlap 

with LTRs within an 85 kb region of chromosome 5 (5q31.3). Although occasional 

minor overlap between H4K20me3 and LINEs or SINEs was also apparent, the 

majority of the overlap occurred between H4K20me3 and LTRs. While LTRs are not 

exclusive to heterochromatic domains, this class of repeats is frequently associated 

with heterochromatin and was therefore considered a feature of heterochromatin for 

the present analysis (Cordaux & Batzer, 2009). It is important to note that alignment 

of the H4K20me3 differentially enriched domains to two of the most prominent 

examples of heterochromatin (e.g., centromeres and telomeres) was not possible, as 

these sequences are omitted from the current version of the UCSC Genome Browser. 

 In order to provide a less biased interrogation of the ChIP-Seq data, I next 

wished to examine the distribution of H4K20me3 across the broader genomic 

context. To this end, input DNA, histone H4 ChIP and H4K20me3 ChIP samples 

were again assembled as individual bigWig tracks and visualized using the UCSC 

Genome Browser. Whereas the previously discussed analysis was based on 

H4K20me3 differential enrichment, utilizing the Genome Browser enabled 

simultaneous viewing of each PD32 and PD86 sample from the two ChIP-Seq 

experiments. After viewing the input, histone H4 ChIP and H4K20me3 ChIP tracks 

aligned to each chromosome, chromosome 19 was selected as it contained discrete 

regions of marked H4K20me3 enrichment in the senescent samples (Figure 5.7b). As 

indicated by the schematic chromosomal ideogram displayed in Figure 5.7a, the 

tracks represented in Figure 5.7b spanned the entire length of chromosome 19 

(p13.3-q13.34).  

 Importantly, based on each of the input and ChIP tracks in Figure 5.7b, no 

regions appeared obviously devoid of reads, suggesting that sufficient sequencing 
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coverage had been achieved. However, a better and less ambiguous indicator of 

sequencing coverage is reflected in the total number of reads obtained for each ChIP-

Seq replicate. As recommended in the current guidelines of the ENCODE and 

modENCODE consortia, 10 million uniquely alignable reads per replicate is 

considered to provide sufficient sequencing coverage for binding factors and 

modifications that localize to specific positions across the genome, while 20 million 

uniquely alignable reads per replicate is considered adequate for chromatin 

modifications with a broad genomic distribution (Landt et al., 2012). As summarized 

in Tables 5.1 and 5.2, each input and histone H4 ChIP sample yielded in excess of 20 

million uniquely alignable reads, suggesting sufficient coverage. The H4K20me3 

ChIP samples ranged from 7.8-14 million reads per replicate, which is on the low 

end for a broadly distributed histone modification, but within an acceptable range for 

a localized modification. H4K20me3 is not a broadly distributed modification, as it 

only occupies approximately 2-3% of all histone H4 molecules present in chromatin 

and predominantly localizes to defined genomic regions including certain DNA 

repeats and ZNF genes (Pesavento et al., 2008; Ernst & Kellis, 2010). Consequently, 

the current H4K20me3 ChIP samples likely provide sufficient sequencing coverage. 

 As presented in Figure 5.7b, all of the input and histone H4 tracks for the 

PD32 proliferating and PD86 senescent cells exhibited a predominantly even 

distribution across chromosome 19, with very few regions of variability. This was 

important as it signified that there were unlikely any regions exhibiting solubility 

bias. For example, if multiple tracks had displayed identical regions lacking reads, it 

might have been formally possible that those particular genomic coordinates were 

resistant to solubilization during the ChIP process. Fortunately, this did not appear to 

be the case. Both of the PD32 H4K20me3 tracks contained some regions of subtle 

H4K20me3 enrichment over background, with slightly higher levels of enrichment 

observed in the track from the first experiment (PD32 H4K20me3 v1). Interspersed 

regions of H4K20me3 enrichment over background were even more apparent in both 

of the PD86 H4K20me3 tracks, again with higher numbers of clustered H4K20me3 

reads in the track from the first experiment (PD86 H4K20me3 v1). Domains of 

H4K20me3 enrichment in the PD86 cells relative to the PD32 cells were identified 

using SICER and DiffBind and represented graphically as a track of black bars 

plotted along the bottom of the Genome Browser window. Remarkably, both of the 

PD86 H4K20me3 tracks exhibited an extensive cluster of H4K20me3 enrichment 
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spanning nearly 5 megabases and located within the 19p12 locus (Figure 5.7b, 

indicated by the orange box). Similar clusters of robust H4K20me3 enrichment were 

also present at several additional regions of chromosome 19. 

 Several regions located within the p13.11-p12 locus of chromosome 19 

displayed high levels of H4K20me3 enrichment in the PD86 replicates. 

Consequently, this region was selected for visualization at a higher resolution. While 

no enrichment was observed in this 4.4 Mb region for the PD32 and PD86 input and 

histone H4 ChIP samples, marked H4K20me3 enrichment (ranging from 2- to 5-fold 

over background) was present in both PD86 replicates (Figure 5.8b). Domains of 

H4K20me3 enrichment in the PD86 versus PD32 replicates were confirmed using 

SICER and DiffBind and plotted graphically as a track of black bars along the 

bottom of the Genome Browser window. Surprisingly, whereas the initial 

comparison of PD86-specific H4K20me3 enrichment to defined genomic features 

indicated that H4K20me3 frequently resided within intergenic regions (Figure 5.5), 

the H4K20me3 enrichment observed in the PD86 replicates with the 19p13.11-p12 

locus seemingly occurred at a genic region (Figure 5.8b). Intriguingly, although 

numerous genes were present within this locus, much of the H4K20me3 enrichment 

appeared to localize to a specific cluster of ZNF genes. 

 Given that the PD86 replicates exhibited considerable H4K20me3 enrichment 

across multiple regions of chromosome 19 and appeared to localize to genes, it was 

important to inspect these regions at a higher resolution. To accomplish this, a 97-

kilobase region of chromosome 19 containing PD86-specific H4K20me3 enrichment 

was selected for visualization using the UCSC Genome Browser (Figure 5.9). At this 

resolution, three distinct genes (ZNF563, ZNF442, ZNF799) were visible and each 

displayed a PD86-specific accumulation of H4K20me3 reads within the gene body, 

as evident in the bigWig tracks and black SICER/DiffBind bars (Figure 5.9b). 

Although some of the H4K20me3 reads occurred within the intergenic regions 

adjacent to the genes, for each gene the most abundant accumulation of H4K20me3 

reads existed within the gene body, particularly toward the 3’ end. This strongly 

suggests that the domains of H4K20me3 enrichment in the PD86 samples likely 

originate within the gene bodies and extend into the adjacent intergenic regions, 

rather than the inverse. In order to explore this further, I next decided to evaluate the 

genomic distribution of H4K20me3 enrichment in the PD86 senescent cells with 

respect to genes. 
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5.2.4 H4K20me3 Does Not Correlate with Transcriptional Changes 

Given that the senescence program is regulated in part through a 

characteristic set of transcriptional changes, it was important to determine whether 

H4K20me3 was significantly enriched at specific genes in the PD86 senescent cells. 

As an extension, it was equally relevant to ask whether there was a correlation 

between H4K20me3 enrichment at genes and altered expression of those genes. To 

address this, the H4K20me3 ChIP data were directly compared to the replicative 

senescence gene expression data obtained from the Affymetrix Human Genome 

U133 Plus 2.0 microarrays.  

In order to visualize any potential correlation between H4K20me3 

distribution in senescent cells and gene expression, a scatter plot was generated 

(Figure 5.10a). Each individual data point represented an individual gene from the 

array with the relative expression levels of the genes (log of the fold change of 

senescent versus proliferating) plotted along the x-axis and relative H4K20me3 ChIP 

Difference plotted along the y-axis. As described in Chapter 2 (Materials and 

Methods), H4K20me3 ChIP Difference is defined as the senescent (PD86) 

H4K20me3 ChIP signal minus the proliferating (PD32) H4K20me3 ChIP signal. The 

respective PD32 and PD86 H4K20me3 ChIP signals were first determined by 

measuring the number of H4K20me3 reads (extended to 150 bp) within the promoter 

region of each gene, normalized by the library size, with the corresponding histone 

H4 library subtracted following similar normalization. For this analysis, the gene 

promoter was broadly defined as the gene body plus 5 kb upstream and 1 kb 

downstream of the gene body. 

 The majority of genes localized to the center of the plot indicating that those 

genes had neither undergone a change in expression in senescent cells nor contained 

different levels of the histone H4K20me3 modification in the proliferating and 

senescent states (Figure 5.10a). While there was a modest shift left along the x-axis 

for some genes, indicating reduced expression in PD86 senescent cells, these genes 

clustered around the zero point of the y-axis, revealing no relative H4K20me3 

enrichment was present at those genes. Likewise, although some genes contained 

relatively high enrichment of H4K20me3 in the PD86 senescent cells, these genes 

remained essentially unchanged at the level of expression and clustered around the 

zero point of the x-axis. Thus, gain or loss of H4K20me3 at genes does not appear to 

be tightly linked to activation or repression of gene expression in senescent cells. 
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Interestingly, a subset of genes showed marked enrichment of H4K20me3 but did 

not change expression between proliferating and senescent cells. It is possible that if 

more stringent criteria were applied in defining gene promoters then the results might 

exhibit a different pattern. For example, if gene promoters were more conservatively 

defined as the TSS +/- 1 kb, it is possible that a stronger correlation between 

H4K20me3 abundance and gene expression might emerge. Although this analysis 

was not performed for the present study, it could be useful in evaluating a potential 

role for H4K20me3 in the regulation of gene expression in senescent cells. 

To investigate the relationship between H4K20me3 and gene expression in 

senescent cells further, all of the genes from the replicative senescence microarray 

dataset were categorized into one of three classes: those that were upregulated in 

senescence, those that were downregulated in senescence and those that remained 

unchanged. As before, the expression changes were considered significant if the fold 

difference between proliferating and senescent cells exceeded 1.5 fold (or less than -

1.5 fold) and the BH-FDR adjusted p-value was less than 0.05. Using these lists of 

genes, composite gene profiles were generated for each of the three groups. 

To generate composite gene profiles, the gene body for each gene from the 

respective lists was divided into forty equally sized compartments and then queried 

for H4K20me3 ChIP Difference within each compartment. This enabled comparison 

of H4K20me3 distribution along genes while accounting for variations in gene 

length. Gene body was defined as any sequence that occurred between the 

transcription start site (TSS) and transcription end site (TES) of each gene. In 

addition, 5 kb of sequence up- and downstream of the gene body was also included 

in the analysis. Upon assembly of the three composite genes (e.g., upregulated, 

downregulated and unchanged), the compartments within each composite gene were 

interrogated for the level of H4K20me3 ChIP Difference. As with the analysis in 

Figure 5.10a, H4K20me3 ChIP Difference was defined as senescent (PD86) 

H4K20me3 ChIP signal (normalized for library size and histone H4 signal) minus 

the proliferating (PD32) H4K20me3 ChIP signal (normalized for library size and 

histone H4 signal). Mean H4K20me3 ChIP Difference was calculated within each 

compartment of the respective composite genes and plotted graphically. 

As displayed in Figure 5.10b, the composite gene profiles of H4K20me3 

distribution across the upregulated and downregulated genes were essentially 

identical, with modest levels of H4K20me3 present around the TSS and TES, 
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respectively. The fact that H4K20me3 abundance was comparable at both the 

upregulated and downregulated genes again confirmed that no obvious functional 

relationship existed between the histone mark and expression of those genes. 

Interestingly, as in the previous analysis, the set of genes that remained unchanged 

between proliferating and senescent cells exhibited the highest average levels of 

H4K20me3 ChIP Difference. Although data from only the first ChIP-Seq experiment 

were presented here, the composite gene profiles were nearly identical for the second 

experiment. 

 One potential caveat to the interpretation of the composite gene profiles 

presented in Figure 5.10b is that not every gene from the microarray overlapped with 

a domain of H4K20me3 enrichment. Because the composite gene profiles represent 

the mean H4K20me3 ChIP Difference within the respective gene categories and 

there are likely numerous genes within each category devoid of H4K20me3 signal, 

the plots potentially underestimate the distribution of the mark. For example, if the 

composite gene profiles were generated for only those genes which contained 

overlap with SICER/DiffBind defined domains of H4K20me3 enrichment, the 

profiles would likely provide a better representation of H4K20me3 distribution 

across the three categories of genes in senescent cells. This approach would 

undoubtedly increase the overall mean H4K20me3 enrichment observed for the 

respective profiles, with the greatest increase likely occurring in the profile of the 

unchanged genes (based on Figure 5.10a). However, it is difficult to predict whether 

specific features of the composite gene profiles, such as the observed peaks at the 

TSS and TES, would become even more evident using only genes that overlap with 

the SICER/DiffBind defined H4K20me3 domains. 

 It should also be noted that the H4K20me3 peaks present at the TSS of the 

composite gene profiles in Figure 5.10b were surprising. This was particularly 

unexpected for the profile of upregulated genes, as it has been widely reported that 

the TSS of active genes is ordinarily largely devoid of nucleosomes (Ozsolak et al., 

2007; Schones et al., 2008). As discussed earlier, the H4K20me3 ChIP Difference 

calculation involves subtraction of PD32 H4K20me3 reads (after normalization to 

histone H4 reads and library size) from PD86 H4K20me3 reads (after normalization 

to histone H4 reads and library size). Consequently, any signal observed for 

H4K20me3 at a histone H4-depleted TSS might be interpreted as a domain of 

H4K20me3 enrichment after normalization for histone H4. For this reason, 
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normalization to the respective DNA input samples might reduce any bias generated 

as a consequence of the histone H4-depleted regions. Although the present analyses 

were performed using normalization to histone H4, it might be useful to separately 

normalize to input DNA in order to determine whether H4K20me3 was indeed 

enriched at the TSS of genes in senescent cells. 

 

5.2.5 H4K20me3 is Enriched at ZNF Genes in Senescent Cells 

 Although the presence of H4K20me3 in senescent cells did not appear to 

overtly impact gene expression, it was still important to assess whether the 

modification was enriched at any specific classes of genes. Significantly, as revealed 

by the hierarchical clustering analysis (Figure 5.5) and visualized by the UCSC 

Genome Browser bigWig tracks (Figures 5.7, 5.8 and 5.9), replicative senescent 

IMR90 cells displayed considerable H4K20me3 enrichment at several distinct 

clusters of ZNF genes. In order to obtain a more definitive picture of the extent to 

which H4K20me3 was specifically enriched at ZNF genes, a composite gene 

approach was again employed to compare H4K20me3 enrichment at ZNF genes 

versus non-ZNF genes. In order to keep this analysis comparable with the previous 

comparisons of H4K20me3 enrichment and gene expression, only genes contained 

on the Affymetrix Human Genome U133 Plus 2.0 were included. In this case, 

composite genes were generated for two categories of genes: ZNF genes (of which 

there were 547) and all other non-ZNF genes (of which there were 18,056).  

 The composite genes were subsequently interrogated for H4K20me3 

enrichment in the PD32 proliferating and PD86 senescent ChIP datasets, 

respectively. It is critical to note that in this case, regions of significant H4K20me3 

enrichment were defined in the PD32 and PD86 samples by comparing H4K20me3 

reads to the corresponding histone H4 reads from the same ChIP sample. In the 

PD32 proliferating cells, relatively low levels of H4K20me3 enrichment were 

observed across the ZNF and non-ZNF composite genes, with only modest 

H4K20me3 enrichment present around the TSS of the ZNF genes (Figure 5.11a). In 

the PD86 senescent cells, low levels of H4K20me3 abundance were similarly 

observed for the non-ZNF genes (Figure 5.11b). In contrast, the PD86 cells exhibited 

significantly higher levels of H4K20me3 across the entire ZNF composite gene, with 

considerable enrichment noted at the TSS and increasingly toward the TES. This 
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data strongly suggests that in senescent cells, H4K20me3 is specifically enriched at 

ZNF finger genes, relative to all other genes. 

 It is important to note that the current ChIP-seq methodology does not 

provide a truly quantitative measure between samples, but rather a semi-quantitative 

measure. While the present analysis can detect differences in the distribution of a 

given histone modification between samples, it does not provide absolute levels of 

the modification for the respective samples. Although we did not utilize spike-in 

controls in the present ChIP-seq experiments, such an approach might provide a 

method for improving the quantitative capability of the analysis. By incorporating a 

fixed amount of known DNA into each ChIP sample prior to the library preparation, 

it is subsequently possible to determine the amount of the spike-in control that is 

recovered for each library after sequencing and to utilize the percentage of recovered 

spike-in control to provide a weighting normalization factor for the respective 

samples. However, one potential caveat of utilizing a spike-in control is that it might 

alter the complexity of the library sample and potentially be subjected to preferential 

amplification, thus providing an inaccurate measure of the spike-in recovery. In this 

case, the PCR amplification efficiency of the known spike-in DNA and sample DNA 

could not be assumed to be equivalent, ultimately compromising the accuracy of the 

normalization factor. Despite this caveat, spike-in controls provide a valid approach 

toward developing a more quantitative ChIP-seq assay and should be considered for 

future experiments. 

 In order to provide a more quantitative assessment of the apparent enrichment 

of H4K20me3 at ZNF genes in senescent cells, it was necessary to calculate the 

frequency with which the modification was present at ZNF genes relative to all other 

non-ZNF genes. To accomplish this, ZNF genes and non-ZNF genes were evaluated 

for H4K20me3 enrichment at the individual base pair level. To this end, the 

coordinates of H4K20me3 enrichment over histone H4 in PD32 and PD86 cells, 

respectively, were compared at the coordinates of ZNF and non-ZNF genes and the 

percentage of gene base pairs that were occupied by H4K20me3 was calculated. For 

each condition (i.e., PD32 ZNF genes, PD32 non-ZNF genes, PD86 ZNF genes, 

PD86 non-ZNF genes) the percentage of base pairs that was likely to overlap due to 

chance was also calculated. In both the PD32 and PD86 cells, H4K20me3 

overlapped with a higher percentage of ZNF gene base pairs than non-ZNF gene 

base pairs, with as much as 14% of all ZNF gene base pairs overlapping with 
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H4K20me3 in the PD86 senescent cells (Figure 5.12). Importantly, in both the PD32 

and PD86 cells, the observed percentage of ZNF gene base pairs overlapping with 

H4K20me3 exceeded that which might have occurred due to random chance. 

 

5.3 Discussion 

 By mapping the genome-wide distribution of a specific histone modification, 

it is possible to gain significant insight regarding the mark’s contribution to the 

broader chromatin landscape of the system being studied. Given the dynamic 

chromatin changes that take place as cells undergo senescence, I set out to further 

characterize the senescent chromatin state and investigate its role in mediating the 

senescence program. To this end, I first endeavored to map the genomic distribution 

of H4K20me3, a histone modification that I had previously demonstrated is 

selectively retained in senescent cells despite a net reduction of total histone content. 

In order to accomplish this, I opted to utilize a ChIP-sequencing based methodology, 

as it could facilitate the rapid acquisition of robust genome-wide sequence data. 

 Despite significant advances in sequencing technologies, conducting ChIP-

Seq experiments is not a trivial technical undertaking and typically requires 

considerable optimization. As such, great effort was made toward optimizing several 

of the key ChIP parameters including choice of antibody, sonication time, antibody 

concentration, chromatin dilution and wash stringency. Following optimization, 

immunoprecipitation of histone H4 and H4K20me3 was successfully performed on 

cross-linked chromatin isolated from proliferating and replicative senescent IMR90 

cells. Because antibody cross-reactivity is always a concern with any 

immunological-based assay, the ChIP experiments were performed with two 

independent H4K20me3 antibodies. 

Analysis of the H4K20me3 ChIP-Seq data revealed a markedly altered 

distribution of H4K20me3 in replicative senescent cells, relative to proliferating 

cells. Utilizing SICER and DiffBind, 10,786 domains of senescence-specific 

H4K20me3 differential enrichment were identified. Comparison of these domains to 

a panel of well-characterized genomic features showed that a large proportion of the 

H4K20me3-rich domains coincided with various classes of DNA repeats (e.g., LTRs 

and satellite DNA). Importantly, H4K20me3 enrichment has also been previously 

reported at regions of repetitive DNA, including satellite repeats (Ernst & Kellis, 

2010). Although sequencing reads corresponding to DNA repeats can be difficult to 
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align uniquely to the human genome and are often excluded from downstream 

analyses, the inexact and variable composition of DNA repeats allows for some reads 

to be aligned in an unambiguous manner (Treangen & Salzberg, 2012). 

 It should be noted that to identify the domains of H4K20me3 differential 

enrichment, the default settings were utilized for both SICER and DiffBind, as 

described in Chapter 2 (Materials and Methods). Ideally, by increasing the stringency 

of the settings it might be possible to improve the accuracy of the H4K20me3 

domain calling, while minimizing the false discovery rate. In the present study, the 

true false discovery rate was not determined, as this would require validation using 

an independent method such as quantitative PCR performed across hundreds of 

regions from different positions in the FDR ranking. However, there are several lines 

of evidence to suggest that SICER/DiffBind defined accurate domains of H4K20me3 

enrichment. First, the domains that exhibited the most statistically significant 

H4K20me3 enrichment coincided with satellite repeats and ZNF genes, two genomic 

features that have previously been reported to contain H4K20me3 (Barski et al., 

2007). In addition, the 10,786 H4K20me3 domains identified by SICER/DiffBind 

were essentially identical across two separate experiments, performed using 

independent H4K20me3 antibodies and under different conditions (e.g., 

normalization to protein in experiment 1, normalization to DNA in experiment 2). 

Taken together, this provides compelling evidence to suggest that SICER/DiffBind 

defined accurate domains of H4K20me3 enrichment in senescent cells. 

 In addition to DNA repeats, H4K20me3 was also present to a lesser degree 

within genic regions in senescent cells. Because senescence is regulated through a 

program of well-defined transcriptional changes, it was important to determine 

whether enrichment of H4K20me3 influenced gene expression in senescent cells. 

However, no clear correlation between the presence of H4K20me3 and changes in 

gene expression was observed. This was surprising, as H4K20me3 has previously 

been reported to contribute toward the establishment of a repressive chromatin state 

in a variety of contexts. For example, in humans, inactive female X chromosomes are 

highly enriched for H4K20me3 and additional epigenetic marks of heterochromatin 

(Chadwick & Willard, 2004). High levels of H4K20me3 have also been observed at 

imprinting control regions, presumably contributing to monoallelic gene silencing 

(Henckel et al., 2009; McEwen & Ferguson-Smith, 2010). Likewise, a role for 
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H4K20me3 in the repression of specific genes has been reported (Donati et al., 2008; 

Gurtner et al., 2008a; Kwon et al., 2010; Ma et al., 2011; Stender et al., 2012).  

 Although no direct functional impact on gene expression was observed for 

H4K20me3, the modification was highly enriched at numerous ZNF genes in 

senescent cells. In fact, 59% of all ZNF genes exhibited some H4K20me3 

enrichment in senescent cells, whereas only 26% of non-ZNF genes contained 

H4K20me3 overlap. Enrichment of H4K20me3 at ZNF genes has also been 

previously reported for human CD4+ T cells (Barski et al., 2007; Ernst & Kellis, 

2010). In the absence of any overt role for H4K20me3 in the regulation of gene 

expression in senescent cells, it is likely that enrichment of H4K20me3 at ZNF genes 

serves some other functional or structural purpose. 

 The H4K20me3 modification is an intriguing component of the senescent 

chromatin landscape. As I demonstrated previously, the histone mark is 

preferentially retained in senescent cells, despite an overall reduction of histone 

levels. Building on that observation, I have now shown that H4K20me3 is enriched 

in senescent cells at distinct regions of the genome, including DNA repeats and the 

ZNF genes. Although the present analyses do not suggest a direct role for 

H4K20me3 in the regulation of gene expression, it is entirely plausible that the 

modification facilitates some other aspect of senescence. To this end, I next set out to 

investigate whether H4K20me3 contributes functionally to arguably the most 

important feature of the senescence program: the induction and maintenance of a 

stable proliferation arrest. 
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Chapter 6. Functional Dissection of H4K20me3 
  

6.1 Rationale 

As established earlier, the chromatin of senescent cells undergoes profound 

remodeling, characterized in part by a progressive loss of the core histones. 

However, as evidenced by the H4K20me3 histone modification, it is apparent that 

not all modified histones behave uniformly during senescence. In replicative 

senescent cells, levels of histone H4K20me3 remained stable despite a net loss of 

global histone content. Likewise, in cells induced to senescence by the expression of 

oncogenic H-RASG12V, H4K20me3 levels remained stable. These findings provide 

compelling evidence that histone H4 proteins containing trimethylation of lysine 20 

are preferentially retained as cells undergo senescence and suggest that this specific 

histone modification might serve a crucial function in the senescence program. To 

understand this function, I next set out to manipulate the level of H4K20me3 and 

assess the impact on cell senescence.  

 

6.2 Results 

 

6.2.1 Technical Approaches for Depleting H4K20me3 

 One of the most effective ways to decipher the molecular function of a 

protein is to eliminate or reduce its expression and assess any resulting phenotypic 

changes. To reduce the abundance of an individual histone modification it is first 

necessary to reduce or eliminate expression of the specific enzyme responsible for 

the modification. To this end, shRNA-mediated gene silencing can provide an 

efficient tool for attenuating the expression of a given protein target. The H4K20me3 

modification is primarily deposited in vivo by the histone methyltransferase 

SUV420H2. Therefore, in an effort to evaluate the functional contribution of 

H4K20me3 to the senescence program, I set out to deplete IMR90 cells of 

SUV420H2 using a lentiviral shRNA approach. 

 To accomplish this, a complete set of SUV420H2 shRNA clones contained 

within the pLKO.1 lentiviral expression vector was obtained. Control and 

SUV420H2 shRNA constructs were transfected into 293T packaging cells, which 

were used to produce infectious lentiviral particles. The resulting control and 
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shSUV420H2 lentiviruses were purified by centrifugation and applied to low passage 

IMR90 cells. The shRNA-infected cells were drug selected and used to prepare 

whole cell extracts four days after infection. The cell extracts were then fractionated 

by SDS-PAGE, immobilized to PVDF membranes and subjected to Western blot 

analysis to assess the efficiency of the SUV420H2 knockdown. Of the five 

SUV420H2 shRNAs tested, three hairpins efficiently reduced SUV420H2 expression 

(Figure 6.1). However, although both shSUV420H2 #1 and shSUV420H2 #5 

depleted SUV420H2, infection with either virus resulted in considerable cell death 

(data not shown). Additional SUV420H2 shRNA clones encoded within the pRS 

retroviral expression vector were also tested for knockdown, but none of the five 

constructs yielded efficient silencing (data not shown).   

It is formally possible that the cell death observed following infection with 

the shSUV420H2 #1 and shSUV420H2 #5 viruses was a consequence of low 

infection efficiency, although unlikely as both hairpins markedly reduced 

SUV420H2 expression. It is also unlikely that a puromycin concentration of 1 µg/ml 

was too high, as I previously determined that this dose is sufficient to kill uninfected 

cells within two to three days, but well tolerated by positively infected IMR90 cells 

(data not shown). Although drug selection can exacerbate the stress associated with 

viral infection, it simultaneously provides a critical control by ensuring that each 

target cell has undergone viral transduction. This is particularly important when 

screening shRNAs for efficient depletion, as without drug selection, low infection 

efficiencies could be misinterpreted as suboptimal knockdown. Consequently, only 

the shSUV420H2 #4 construct remained a viable option for reducing SUV420H2 

expression. 

In order to evaluate whether reduction of H4K20me3 levels would have a 

functional impact on the senescence program, it was first necessary to establish 

stable SUV420H2 knockdown cells. Having previously determined that the 

shSUV420H2 #4 hairpin could effectively reduce SUV420H2, low passage IMR90 

cells were infected with either shControl or shSUV420H2 #4 lentiviruses and 

subjected to drug selection. As before, both the control and shSUV420H2 cells 

survived drug selection and exhibited morphological features comparable to 

uninfected IMR90 cells. In order to generate a sufficient number of cells, the 

respective lines were expanded in culture and maintained under puromycin selection. 

However, by seven days after infection, most of the shSUV420H2 cells exhibited an 
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irregular morphology and began to die (Figure 6.2). Most of the control-infected 

cells continued to survive. Drug selection of IMR90 cells with puromycin typically 

occurs with rapid kinetics, as all of the uninfected, drug-selected IMR90 cells died 

within 3 days of treatment. As such, the cell death observed in the shSUV420H2 

cells after seven days in culture was likely unrelated to drug selection and was either 

reflective of a SUV420H2 knock down phenotype or an off-target effect of RNA 

interference. In the absence of an additional viable SUV420H2 hairpin, it was 

impossible to distinguish between these two possibilities.  

Because the establishment of viable SUV420H2-depleted cells was not 

initially feasible, an alternative strategy to downregulate the modification was 

developed. In many cases, ectopic expression of a specific mutant form of a protein 

may serve as a dominant negative by antagonizing the function of the endogenous 

wild-type protein. Functionally, SUV420H2 contains two major domains: a 120 

amino acid N-terminal SET domain that catalyzes trimethylation of histone H4 at 

lysine 20 and an 88 amino acid C-terminal domain that is required for recruitment to 

heterochromatin (Schotta et al., 2004; Souza et al., 2009). In fact, ectopic expression 

of a SUV420H2 mutant comprised solely of the 88 amino acid heterochromatin 

recruitment domain is sufficient to target the construct to heterochromatic regions of 

the genome (Souza et al., 2009). To exploit this for use as a potential dominant 

negative, an N-terminal truncation mutant of SUV420H2 lacking amino acids 1-280 

of the wild-type protein, but still retaining the C-terminal heterochromatin 

recruitment domain, was cloned into the pBABE retroviral vector along with an N-

terminal MYC-tag (pBABE-puro-MYC-SUV420H2 281-462). As a control, a 

construct encoding MYC-tagged, full-length SUV420H2 was also cloned into 

pBABE (pBABE-puro-MYC-SUV420H2 1-462) (Figure 6.3a). 

 In order to address whether SUV420H2 281-462 could function as a 

dominant negative, early passage IMR90 cells were stably infected with a control 

retrovirus or retroviruses encoding either full length MYC-SUV420H2 1-462 or the 

MYC-SUV420H2 281-462 truncation mutant, subjected to drug selection and 

maintained in culture. The three cell lines survived drug selection, exhibited normal 

IMR90 morphology and continued to proliferate. Although no overt morphological 

or proliferation alterations were observed, it was first important to confirm that both 

the wildtype and mutant SUV420H2 constructs were expressed adequately and 

localized to the cell nucleus as expected. To this end, each cell line was seeded onto 
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glass coverslips and subjected to indirect immunofluorescence staining to detect 

expression of the MYC-tagged SUV420H2 constructs as well as the H4K20me3 

modification. As anticipated, only a negligible level of background MYC-tag 

staining was present in the control-infected cells (Figure 6.3b). The control-infected 

cells also possessed a diffuse nuclear staining pattern for H4K20me3, consistent with 

that of uninfected, early passage IMR90 cells. In contrast, both the MYC-SUV420H2 

1-462 and MYC-SUV420H2 281-462 overexpressing cell lines exhibited marked 

MYC-tag nuclear staining patterns, containing punctate foci of high signal intensity. 

The MYC-SUV420H2 1-462 cells showed a similar pattern for H4K20me3, with an 

overall higher nuclear intensity than the control cells and regions of brightly staining 

H4K20me3 foci. Intriguingly, in the MYC-SUV420H2 1-462 cells there also 

appeared to be a high degree of spatial co-localization between the MYC-

SUV420H2 1-462 foci and H4K20me3 foci. Although not proven definitively, it is 

possible that the intensely staining MYC-SUV420H2 1-462 foci reflect recruitment 

of the enzyme to defined heterochromatic regions of the genome.  

Conversely, the MYC-SUV420H2 281-462 overexpressing cells showed a 

different H4K20me3 staining pattern. Although both the MYC-SUV420H2 1-462 

and 281-462 cells contained high levels of ectopic enzyme expression including 

discrete nuclear foci, the H4K20me3 staining intensity in the MYC-SUV420H2 281-

462 cells remained comparable to that of the control cells and lacked discernible foci 

(Figure 6.3b). This suggests that as predicted, in cells overexpressing MYC-

SUV420H2 281-462, the mutant SUV420H2 enzyme is capable of being recruited to 

defined genomic loci, but incapable of catalyzing the H4K20me3 modification due to 

absence of the SET domain. Despite this, overexpression of MYC-SUV420H2 281-

462 apparently failed to serve a dominant negative function, as the cells retained 

basal levels of H4K20me3 staining in this assay. It is important to note that while 

immunofluorescence can provide some insight regarding the relative abundance of 

the H4K20me3 modification, the assay is inherently non-quantitative and can be 

artificially influenced by differences in epitope conformation or exposure. 

To account for this caveat, whole cell extracts were prepared from control, 

MYC-SUV420H2 1-462 and MYC-SUV420H2 281-462 cells, fractionated by SDS-

PAGE and immobilized to PVDF membranes. The membranes were then assayed by 

Western blot to assess expression of the ectopic enzymes and the H4K20me3 

modification. Consistent with the immunofluorescence data, Western blot analysis 
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using an antibody raised against the MYC tag revealed equivalent and robust 

expression of MYC-SUV420H2 1-462 and MYC-SUV420H2 281-462 in the 

respective cell lines, and no expression in control cells (Figure 6.4). Also similar to 

the immunofluorescence findings, the MYC-SUV420H2 1-462 cells contained 

elevated levels of the H4K20me3 modification compared to control cells. In contrast, 

cells expressing the mutant MYC-SUV420H2 281-462 exhibited low H4K20me3 

levels identical to the basal levels observed in the control cells. A longer exposure of 

the H4K20me3 Western blot confirmed that although H4K20me3 levels were 

generally low in the MYC-SUV420H2 281-462 cells, there was no additional 

reduction of the modification relative to control cells. As a result, the MYC-

SUV420H2 281-462 construct does not function in a dominant negative capacity and 

cannot be utilized to modulate levels of the H4K20me3 modification.  

There are several potential explanations that may account for the inability of 

the MYC-SUV420H2 281-462 construct to function as a dominant negative. First, 

while both the immunofluorescence and Western blot assays revealed robust 

expression of the MYC-SUV420H2 281-462 mutant, it is formally possible that the 

ectopic protein levels were not sufficient to displace or compete with the endogenous 

wild-type SUV420H2 protein. To this end, neither assay provided any information 

about the capacity to bind chromatin or the enzymatic activity of endogenous wild-

type SUV420H2 in the presence of ectopic MYC-SUV420H2 281-462. 

Alternatively, truncated MYC-SUV420H2 281-462, although capable of recruitment 

to heterochromatin, might not retain enough of the full-length protein to compete 

with other SUV420H2 binding partners. For example, proteins might bind to the SET 

domain or other N-terminal regions of SUV420H2 to facilitate catalysis of the 

H4K20me3 modification. Because MYC-SUV420H2 281-462 lacks 280 N-terminal 

amino acids, the mutant might be unable to efficiently titrate binding partners away 

from the endogenous enzyme. One way of addressing this would be to introduce a 

single point mutation within the catalytic SET domain of SUV420H2 that would 

attenuate histone methyltransferase activity but retain all other functions of the wild-

type protein. Finally, it is possible that some degree functional redundancy exists 

between SUV420H1 and SUV420H2. In this context, even a true dominant negative 

of SUV420H2 might be insufficient to fully abolish H4K20me3 genome-wide, as 

SUV420H1 could maintain basal levels of the modification.  
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Regardless of the reason for the failure of the dominant negative mutant, to 

this point I have been unable to devise a strategy to suppress abundance of the 

H4K20me3 mark in viable cells. In fact, based on the results from shRNA knock 

down, it is a formal possibility that suppression of H4K20me3 is incompatible with 

cell viability.  

 

6.2.2 MYC-SUV420H2 Cells Proliferate Despite Elevated H4K20me3 

As an alternative approach to functionally assess how H4K20me3 might 

contribute to the various features of the senescence program, I decided to develop a 

model system in which H4K20me3 levels could be elevated efficiently. To 

accomplish this, an additional retroviral plasmid directing the expression of N-

terminally MYC-tagged SUV420H1 was generated in pBABE-puro by standard 

molecular biology procedures. A construct encoding full-length SUV420H2 was 

described earlier. Early passage IMR90 cells were stably infected with control 

retrovirus or a retrovirus encoding either N-terminally MYC-tagged SUV420H1 or 

SUV420H2. The infected cells were maintained under drug selection and monitored 

microscopically for viability and overall morphologic appearance. Fourteen days 

after infection, whole cell extracts were prepared from the cells, subjected to 

fractionation by SDS-PAGE and Western blotted to confirm expression of MYC-

SUV420H1 and MYC-SUV420H2 (Figure 6.5a). As anticipated, both MYC-

SUV420H1 and MYC-SUV420H2 were expressed to comparable levels and 

migrated at expected apparent molecular weights of 120 and 52 kDa, respectively.  

Whole cell extracts were additionally assayed by Western blot for markers of 

active cell proliferation and senescence (Figure 6.5a). Cyclin A, a key regulator of 

the cell cycle that binds to cyclin-dependent kinase 2 (CDK2) and promotes S phase 

progression, can be utilized as an indicator of cell proliferation. Both MYC-

SUV420H1 and MYC-SUV420H2 infected cells exhibited cyclin A expression 

levels comparable to that of the control cells, suggesting similar levels of 

proliferation among the respective cell populations. In contrast, cells infected in 

parallel with a retroviral construct encoding H-RASG12V showed a marked 

reduction in cyclin A expression, indicating a considerable decrease in the number of 

proliferating cells in the population, as expected in association with H-RASG12V-

induced senescence. 
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The tumor suppressor protein p16INK4a blocks cell cycle progression 

through inhibition of cyclin D/CDK4 and CDK6 activity, and is commonly used as a 

senescence biomarker (Alcorta et al., 1996; Serrano et al., 1997). In order to further 

evaluate the proliferative status of the MYC-SUV420H1 and MYC-SUV420H2 

overexpressing cells, the lysates were Western blotted for p16INK4a. Whereas H-

RASG12V infected cells showed a robust increase in p16INK4a expression linked to 

induction of senescence, the control, MYC-SUV420H1 and MYC-SUV420H2 cells 

maintained minimal levels of expression (Figure 6.5a).  

Consistent with continued expression of cyclin A and failure to upregulate 

p16INK4a, MYC-SUV420H1 and MYC-SUV420H2 over-expressing cells showed 

no proliferative impairment compared to control infected cells, as judged by cell 

counting and cumulative population doublings. Collectively these data affirm that 

cells ectopically expressing SUV420H1 or SUV420H2 are viable, maintain 

proliferative capacity in the short-term and do not undergo immediate senescence. 

Before SUV420H1 or SUV420H2 overexpression could be considered a 

relevant model with which to dissect the functional contribution of H4K20me3 to 

senescence, it was essential to confirm that the H4K20me3 histone modification was 

appropriately modulated in the cells. Whole cell extracts obtained from control, 

MYC-SUV420H1, MYC-SUV420H2 and H-RASG12V-infected cells were titrated 

such that an equal amount of histone H4 from each sample was fractionated by SDS-

PAGE. The blots were subsequently probed with antibodies to detect total histone 

H4 as well as the H4K20me1, H4K20me2 and H4K20me3 modifications of histone 

H4 (Figure 6.5b). While H4K20me3 levels were markedly elevated in H-RASG12V-

infected senescent cells, an even more robust increase of lysine 20 trimethylation 

was observed upon SUV420H1 and SUV420H2 overexpression, with the highest 

levels occurring in the MYC-SUV420H2 cells. Although H4K20me2 levels 

remained largely unaffected in all of the cell lines, a marked decrease in the 

H4K20me1 modification was also noted in the MYC-SUV420H2 cells. 

To further characterize the MYC-SUV420H1 and MYC-SUV420H2 cells, 

the localization patterns of the MYC-tagged SUV420H enzymes and H4K20me3 

modification were evaluated by indirect immunofluorescence microscopy. Control, 

MYC-SUV420H1 and MYC-SUV420H2 cells were stained with DAPI and 

antibodies to detect the MYC tag and H4K20me3. Control cells exhibited an even 

nuclear DAPI staining pattern, no staining with the MYC tag antibody and a diffuse 
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granular nuclear pattern for H4K20me3 (Figure 6.6). MYC-SUV420H1 cells 

contained an even DAPI staining pattern and strong yet largely diffuse nuclear 

signals for both the MYC-tagged SUV420H1 and H4K20me3. In contrast, the MYC-

SUV420H2 cells were characterized by a generally even nuclear DAPI pattern with 

some subtle foci present and intense punctate staining patterns for both the MYC-

tagged SUV420H2 enzyme and the H4K20me3 modification. As evident in the 

merged image, a high degree of co-localization occurred between the ectopically 

expressed SUV420H2 and H4K20me3 in the MYC-SUV420H2 cells, suggesting that 

either SUV420H2 remains at sites where the histone mark has been deposited or the 

modification undergoes rapid turnover and the enzyme co-localizes to the newly 

deposited mark.  

Although not investigated here, it is formally possible that the subtle DAPI-

rich foci present in the MYC-SUV420H2 cells might represent SAHF-like 

heterochromatic structures. Functional roles for SAHF in reinforcing senescence by 

silencing proliferation-promoting genes and dampening the DNA damage response 

have been proposed (Narita et al., 2003; Di Micco et al., 2011). However, it is 

unlikely that the DAPI-rich foci in the MYC-SUV420H2 cells reflect the formation 

of bona fide SAHF, as the cells failed to exhibit any overt proliferation defect or 

express the senescence biomarker p16INK4a (Figure 6.5, panel A). Whether the 

MYC-SUV420H2 cells exhibit an altered DNA damage response, another putative 

function of SAHF, has not been evaluated in the present study but could prove useful 

in the subsequent characterization of these cells. Consequently, based on the present 

data it is not possible to conclude whether the subtle DAPI foci in the MYC-

SUV420H2 cells reflect true SAHF formation. 

Alternatively, the MYC-SUV420H2 cell DAPI foci might coincide with 

centromeric or telomeric constitutive heterochromatin. To this end, the potential co-

localization of the MYC-SUV420H2 DAPI foci with domains of constitutive 

heterochromatin could be evaluated using immunofluorescence staining for defined 

heterochromatin features (e.g., H3K9me3, HP1 proteins) (Richards & Elgin, 2002). 

Finally, in order to further delineate the specific nature of the DAPI foci in the MYC-

SUV420H2 cells, fluorescence in situ hybridization (FISH) could be performed 

utilizing centromere and telomere-specific probes. Likewise, the DAPI-rich foci 

could be assayed for co-localization with centromeres and telomeres through 

immunofluorescence staining with antibodies to detect either centromere-specific 
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(e.g., CENPA) or telomere-specific (e.g., TRF2) proteins (Palmer et al., 1987; 

Smogorzewska et al., 2000). Although not conducted as part of the present study, 

these additional data might enhance the characterization of the MYC-SUV420H2 

cells as a model system.  

Regardless, based on the combined Western blot and immunofluorescence 

analyses of the MYC-SUV420H1 and MYC-SUV420H2 cells, both lines were 

capable of increasing levels of the H4K20me3 modification and could therefore be 

utilized as appropriate model systems. Although both of the overexpressing cell lines 

elevated H4K20me3 abundance well above the basal levels observed in control cells, 

the MYC-SUV420H2 cells consistently yielded the highest levels of H4K20me3. 

Additionally, the apparent differences in H4K20me3 localization patterns in the 

MYC-SUV420H1 and MYC-SUV420H2 cell lines might indicate that while 

SUV420H1 appears capable of catalyzing H4K20me3 uniformly across the genome, 

SUV420H2 might deposit the modification at specifically defined genomic regions. 

 

6.2.3 SUV420H2 Overexpression Accelerates Senescence Onset   

Since the relative abundance of H4K20me3 is increased in senescent cells 

compared to total histone H4, I set out to determine whether elevated levels of 

H4K20me3 exert an effect on cellular senescence. In order to address this, control, 

MYC-SUV420H1 and MYC-SUV420H2 cells were exposed to either of two well-

defined triggers of senescence in vitro, prolonged passage in culture or ectopic 

expression of an activated oncogene, and evaluated for effects on senescence. 

To evaluate what effect an elevated level of H4K20me3 would have on 

cellular lifespan, early passage IMR90 cells were stably infected with a control 

retrovirus or viruses encoding either MYC-SUV420H1 or MYC-SUV420H2. 

Positively infected cells were maintained under drug selection and subjected to serial 

passage in culture. At every passage, the cells were counted and the number of 

population doublings calculated using the following equation: [log(number of cells 

counted) − log(number of cells plated)] / log(2). Importantly, and consistent with 

previous short-term experiments, the control, MYC-SUV420H1 and MYC-

SUV420H2 cells exhibited nearly identical population doubling times for 

approximately the first 70 days in culture (Figure 6.7). This confirms that elevation 

of H4K20me3 is not acutely stressful or toxic to the cells. However, beginning 

around 80 days in culture, a noticeable slowing of population doubling time was 
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observed in the MYC-SUV420H2 cells, while the control and MYC-SUV420H2 

continued to divide at comparable rates. MYC-SUV420H2 cells reached a 

proliferative plateau at 86 days, ultimately manifesting in a four cumulative 

population doublings advanced onset of senescence in the MYC-SUV420H2 cells 

compared to the control and MYC-SUV420H1 cells. These data indicate that while a 

high level of the H4K20me3 modification is not sufficient to drive an immediate cell 

cycle exit, increased abundance of the mark does accelerate proliferation arrest in the 

context of replicative senescence. 

Next, I asked whether a SUV420H2 mediated increase in H4K20me3 could 

elicit a similar effect on senescence induced by an activated oncogene. To this end, 

early passage control, MYC-SUV420H1 and MYC-SUV420H2 cells were infected 

with either a control retrovirus or a virus encoding oncogenic H-RASG12V and 

assayed for expression of SA β-gal, a marker of senescence, 14 days after infection. 

Importantly, in the absence of H-RASG12V, neither the MYC-SUV420H1 nor 

MYC-SUV420H2 showed elevated SA β-gal, supporting the previous conclusion 

that elevated H4K20me3 does not inappropriately stress the cells. In contrast, nearly 

all of the H-RASG12V-infected control, MYC-SUV420H1 and MYC-SUV420H2 

cells stained positively for SA β-gal activity (Figure 6.8). The MYC-SUV420H2 + 

H-RASG12V cells revealed a subtle yet consistently higher SA β-gal staining 

intensity compared to SUV420H1 + H-RASG12V and control + H-RASG12V, 

possibly reflecting an increased lysosomal compartment in the cells, an enhanced 

senescence or a combination thereof. Importantly, it is unlikely that the observed 

differences in SA β-gal activity among the H-RASG12V-infected control, MYC-

SUV420H1 and MYC-SUV420H2 cells were due to variations in the multiplicity of 

infection (MOI), as the respective cell lines were all infected with equal volumes of 

the same H-RASG12V viral stock. Similarly, no cell death was noted following 

puromycin selection of the H-RASG12V-infected control, MYC-SUV420H1 and 

MYC-SUV420H2 cells, indicating a sufficient and comparable MOI for each of the 

respective infections. 

To better characterize the senescence program, whole cell extracts prepared 

from the same cells were fractionated by SDS-PAGE and probed for markers of 

proliferation and senescence. As anticipated, both MYC-SUV420H1 and MYC-

SUV420H2 were expressed abundantly in the respective cell lines, resulting in a 

robust elevation of H4K20me3 levels in the MYC-SUV420H2 cells and a more 
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modest increase in the MYC-SUV420H1 cells (Figure 6.9). Consistent with previous 

findings, both total histone H4 and lamin B1 levels dropped precipitously in all three 

of the H-RASG12V-infected cell lines. Cyclin A expression and pRB 

phosphorylation (judged by the slower mobility of the hyperphosphorylated form), 

two biochemical indices of cell proliferation, were also reduced significantly in all of 

the H-RASG12V infected cells. However, longer exposures of the cyclin A and pRB 

Western blots revealed marked differences in the degree to which these proteins were 

regulated in the H-RASG12V expressing cells, with and without MYC-SUV420H2. 

Although low but detectable levels of cyclin A and phosphorylated pRB were 

observed in the H-RASG12V + control or MYC-SUV420H1 cells, cyclin A was 

essentially undetectable and pRB almost entirely in the unphosphorylated form in the 

H-RASG12V + MYC-SUV420H2 cells (Figure 6.9). Likewise, while p16INK4a 

induction occurred in all three H-RASG12V infected cell lines, absolute levels were 

slightly higher in the MYC-SUV420H2 cells. 

To summarize, in both the replicative and oncogene-induced models of 

senescence, the MYC-SUV420H2 cells consistently exhibited either an accelerated 

onset or enhanced senescence compared to the control or MYC-SUV420H1 cells. 

This accelerated or enhanced senescence in the MYC-SUV420H2 cells was evident 

through multiple parameters, including the precise measurement of population 

doublings prior to replicative senescence, a reduction in proliferation indicators (i.e. 

cyclin A expression, pRB phosphorylation) and the induction of senescence markers 

(i.e. SA β-gal activity, p16INK4a expression). Importantly, elevated H4K20me3 

levels mediated by SUV420H2 overexpression, but not SUV420H1 overexpression, 

appears to be critical for driving the accelerated senescent phenotype. However, it is 

difficult to distinguish whether this is due to the fact that H4K20me3 is increased to 

higher levels in the MYC-SUV420H2 cells than in the MYC-SUV420H1 cells, or 

whether the two enzymes deposit the H4K20me3 modification at different regions of 

the genome, thus exerting variable effects, or perhaps another non-histone substrate 

of SUV420H2. Regardless, collectively, these data support the hypothesis that 

although a high level of H4K20me3 is not sufficient to induce frank and immediate 

cell senescence, the modification does promote the onset of senescence in response 

to detrimental factors, including telomere attrition or an activated oncogene. 
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6.2.4 SUV420H2 Protects Against Senescence Escape 

 Although the MYC-SUV420H2 cells exhibited an enhanced senescent 

phenotype upon exposure to H-RASG12V compared to H-RASG12V-infected 

control or MYC-SUV420H1 cells, the experiment relied on assessment of 

senescence at a fixed endpoint and failed to provide insight regarding the kinetics of 

the proliferation arrest. To compare the kinetics of entry into senescence, control and 

MYC-SUV420H2 cells were infected with control or H-RASG12V retroviruses and 

assayed by Western blot for senescence markers at regular intervals post infection. 

As expected, high levels of ectopic MYC-SUV420H2 and the resulting H4K20me3 

modification were maintained for the duration of the timecourse (Figure 6.10). H-

RASG12V was expressed at high levels in both the control and MYC-SUV420H2 

cells and also sustained for the entire length of the experiment. As described 

previously, a marked reduction of total histone H4 was observed by day 5 of H-

RASG12V exposure in both the control and MYC-SUV420H2 cells and continued to 

progress as the timecourse proceeded. By day 10 of H-RASG12V infection, histone 

levels were depleted to comparable levels in both the control and MYC-SUV420H2 

cell lines. However, by the 15-day H-RASG12V timepoint, histone H4 levels 

appeared to rebound in the control cells, but not in the MYC-SUV420H2 cells. Also 

by 5 days of H-RASG12V exposure, both the control and MYC-SUV420H2 cells 

exhibited a considerable reduction in cyclin A expression and p16INK4a induction, 

consistent with cell cycle exit and the onset of senescence. Similar to the histone H4 

kinetics, in the H-RASG12V-infected control cells but not the MYC-SUV420H2 

cells, cyclin A levels began to increase around the 15-day timepoint. This partial 

restoration of proliferation in the H-RASG12V-infected control cells was also 

accompanied by a decrease in p16INK4a expression. Together, these results indicate 

that the control cells infected with H-RASG12V had partially bypassed or escaped 

the senescence-associated proliferation arrest, whereas the MYC-SUV420H2 cells 

appeared to maintain the senescent state. 

The concept that some cells are capable of either escaping or bypassing the 

H-RASG12V-induced senescence arrest in vitro has been previously documented 

(Kohsaka et al., 2011). Consistent with this, a subset of the control cells infected with 

H-RASG12V appeared to resume proliferation approximately 15 days after infection. 

In contrast, H-RASG12V infected MYC-SUV420H2 cells appeared to maintain a 

more stable proliferation arrest. In order to track the progression of the H-RASG12V 
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infected control and MYC-SUV420H2 cell lines, the cells were maintained in culture 

under continuous drug selection and observed frequently under the microscope. 

Thirty days after infection, bright field microscopic images of the respective plates 

were obtained and the cells were stained with crystal violet (N-

hexamethylpararosaniline), a basic dye that binds DNA and other negatively charged 

cellular components, enabling visual quantification of the cells (Gillies et al., 1986).  

As revealed in the bright field images, both the H-RASG12V-infected control 

and MYC-SUV420H2 plates contained a mixture of cells exhibiting either a 

classically-senescent, large, flattened morphology or concentrated in densely packed 

colonies of spindly apparently proliferative cells (Figure 6.11a). However, the 

densely packed colonies were more apparent in the H-RASG12V-infected control 

cells, compared to the H-RASG12V-infected MYC-SUV420H2 cells. Crystal violet 

staining confirmed that colony formation in the control cells infected with H-

RASG12V vastly exceeded that of the H-RASG12V + MYC-SUV420H2 cells, with 

the control cells nearly filling the culture dish (Figure 6.11b). Importantly, the H-

RASG12V + MYC-SUV420H2 cells did not lose viability, but persisted as viable 

cells with a classic senescent morphology (Figure 6.11a). Thus, the H-RASG12V-

infected control cells managed to overcome the senescence proliferation arrest with 

relatively high frequency, whereas expression of MYC-SUV420H2 and the 

corresponding elevation of H4K20me3 levels appeared to restrict the degree to 

which H-RASG12V-infected cells could bypass senescence. Consequently, the data 

suggest that H4K20me3 might play an important role in the senescence program by 

enhancing the stability of the proliferation arrest.  

 

6.3 Discussion 

 In contrast to the widespread chromatin remodeling that occurs during cell 

senescence, the H4K20me3 histone modification reflects a relatively stable 

component of the epigenetic landscape. Remarkably, the absolute levels of 

H4K20me3 remain seemingly unaffected in the contexts of replicative and 

oncogene-induced senescence, respectively. Even more compelling, the apparent 

stability of H4K20me3 levels during senescence occurs despite a profound reduction 

of overall histone content. Based on this, it was reasonable to hypothesize that the 

H4K20me3 modification might serve a specific and critical function within the 

senescence program. In order to test this hypothesis, it became essential to develop 
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model systems in which H4K20me3 levels could be effectively altered. To this end, 

approaches were employed to either reduce or enhance endogenous levels of 

H4K20me3 and interrogate whether modulation of the histone mark was sufficient to 

affect specific features of the senescence program. 

 Efforts to reduce or completely abrogate H4K20me3 levels by either shRNA-

mediated knockdown of SUV420H2 or through utilization of a dominant negative 

strategy were largely unsuccessful. Primarily, an inability to obtain multiple short 

hairpins capable of reducing SUV420H2 while maintaining cell viability posed a 

considerable technical challenge. One formal possibility is that IMR90 cells are 

unable to tolerate reduced levels of the H4K20me3 modification and consequently 

undergo cell death. However, in the absence of multiple active SUV420H2 hairpins, 

it is not possible to determine whether the observed cell death is an on-target or off-

target phenotype. Efficient silencing of SUV420H2 in human cells has been 

previously reported (Kapoor-Vazirani et al., 2011). While the study by Kapoor-

Vazirani and colleagues demonstrated successful knockdown of SUV420H2 in 

human MDA-MB-231 cells, only a single SUV420H2 hairpin was utilized and the 

authors failed to include convincing data that global H4K20me3 levels were reduced. 

Additionally, in contrast to primary IMR90 cells, MDA-MB-231 cells are a 

transformed breast cancer cell line, which may partially account for the ability of 

MDA-MB-231 cells to tolerate reduced H4K20me3 levels. Future experiments with 

additional shRNAs will address this issue in IMR90 cells.  

 Despite the limited success of efforts to reduce H4K20me3 levels in IMR90 

cells, considerable information was obtained from the complimentary SUV420H2 

overexpression approach. Infection of IMR90 cells with a retrovirus encoding MYC-

tagged SUV420H2 resulted in overexpression of the enzyme and a robust increase in 

the H4K20me3 histone modification. Although elevated levels of H4K20me3 alone 

did not directly induce senescence, high abundance of the modification did accelerate 

the onset of replicative senescence and produced an enhanced senescence phenotype 

following infection with H-RASG12V. Specifically, MYC-SUV420H2 cells 

displayed higher levels of p16INK4a expression and lower cyclin A expression than 

control cells upon induction of senescence, suggesting an enhancement of the 

senescence proliferation arrest in the MYC-SUV420H2 cells. 

 High levels of H4K20me3 also appeared to reinforce the stability of the 

senescence proliferation arrest induced by the expression of a constitutively active 
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H-RAS allele. In fact, unlike H-RASG12V-infected control cells, the H-RASG12V-

infected MYC-SUV420H2 cells were largely resistant to escape of oncogene-

induced senescence. This was a compelling finding as it implied that H4K20me3 

might be preferentially retained in senescent cells in order to maintain a chromatin 

state conducive to permanent proliferation arrest. In this manner, retention of 

H4K20me3 by oncogene-induced senescent cells in vivo would prohibit cells from 

re-entering the cell cycle, thus decreasing the likelihood of cellular transformation 

and subsequent tumor formation. 
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Chapter 7. Discussion 
 

7.1 Summary of Findings 

Cell senescence is an important biological state that limits the replicative 

capacity of impaired or damaged cells through a network of programmed processes. 

As a result, senescence provides a potent barrier to tumorigenesis and contributes to 

other physiological processes such as aging and wound healing. In addition to a 

variety of well characterized morphological and biochemical changes, senescent cells 

exhibit profound changes to chromatin structure. Specifically, the formation of 

facultative heterochromatin has been proposed to play an important role in mediating 

several aspects of senescence, including the repression of proliferation genes and 

limiting the DNA damage response. Therefore, I set out to further investigate how 

chromatin structure influences senescence, by asking whether the heterochromatic 

histone modification H4K20me3 contributes to the various features of the senescence 

program. 

In order to investigate the relationship between chromatin structure and 

senescence, I first established and validated two in vitro models of cell senescence. 

To this end, I established replicative senescent cells by subjecting primary human 

diploid IMR90 fibroblasts to prolonged passage in culture. Separately, I established 

an oncogene-induced senescence model by infecting IMR90 cells with a retrovirus 

encoding oncogenic H-RASG12V. Using common molecular markers of senescence, 

including proliferation arrest, p16INK4a induction and SA β-gal activity, I was able 

to confirm that the respective models generated senescent cells. I subsequently 

generated gene expression profiles for the respective senescence models and defined 

a common gene signature of senescence that included cell cycle genes, regulators of 

mitosis and genes involved in DNA damage signaling. 

Having established and validated models of replicative and oncogene-induced 

senescence, I next set out to characterize the H4K20me3 histone modification in 

proliferating and senescent cells, as the mark has implications for both cancer and 

aging. Remarkably, although global histone levels decreased in senescent versus 

proliferating cells, H4K20me3 abundance remained unaltered. As a result, senescent 

cells contain a higher ratio of H4K20me3 to total histone H4 than proliferating cells. 

It is important to note that whereas relative H4K20me3 levels were determined by 
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Western blotting, quantitative mass spectrometry is commonly accepted as the gold-

standard method for the accurate determination of histone posttranslational 

modification abundance (Britton et al., 2011). Importantly, recent work from Scott 

Lowe’s laboratory utilizing mass spectrometry to quantify histone modifications 

confirmed that H4K20me3 levels are indeed maintained/elevated in H-RASG12V-

induced senescent cells (Chicas et al., 2012). 

Although the absolute abundance of H4K20me3 did not change during 

senescence, senescent cells displayed a considerably different nuclear distribution of 

the mark compared to proliferating cells. Proliferating cells typically exhibited a 

diffuse nuclear staining pattern for H4K20me3, while senescent cells invariably 

contained distinct nuclear H4K20me3 foci. The senescence-specific foci did not co-

localize with several other well-characterized nuclear foci, including PML, 53BP1 

and γ-H2AX. In contrast, the H4K20me3 foci in senescent cells did co-localize with 

SAHF. Given the apparent stabilization of H4K20me3 abundance and presence of 

the mark at SAHF, I investigated whether these phenotypes were caused by altered 

expression of SUV420H2, the enzyme responsible for the majority of H4K20me3 

deposition. However, no change in SUV420H2 mRNA or protein expression was 

observed in senescent cells. 

 In order to evaluate whether the H4K20me3 modification might influence 

other features of the senescent chromatin landscape, I mapped the genome-wide 

distribution of H4K20me3 in proliferating and senescent cells using ChIP-Seq. 

Importantly, I performed the ChIP-Seq experiments with two independent 

H4K20me3 antibodies, which allowed for differentiation between specific antibody 

binding and non-specific binding. Marked H4K20me3 enrichment was noted in 

senescent cells with both antibodies. The regions of H4K20me3 enrichment were 

subsequently compared to defined features of the human genome. Regions of 

senescence-specific H4K20me3 enrichment coincided with intergenic regions, 

various classes of DNA repeats (e.g., LTRs, LINES, SINES) and regions of 

senescence-specific DNA hypomethylation. 

 Although the majority of H4K20me3 enrichment occurred at intergenic 

regions in senescent cells, some overlap with genes was evident. To investigate a 

potential role for H4K20me3 in the regulation of gene expression in senescent cells, 

regions of H4K20me3 enrichment were compared to the replicative senescence 

microarray data. The presence of H4K20me3 largely failed to correlate with gene 
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expression changes in senescent cells, suggesting that the mark does not contribute to 

the regulation of genes in senescence. However, significant enrichment of 

H4K20me3 was observed at numerous ZNF genes that were arranged in distinct 

genomic clusters. In addition, the enrichment of H4K20me3 at ZNF genes was far 

more prominent in senescent cells, with highest levels of the mark observed toward 

the 3’ ends of gene bodies. 

 In light of the observations that H4K20me3 is maintained in senescent cells 

and distributed to specific genomic regions, I next set out to ask whether the mark 

contributed to the defining feature of senescence: stable proliferation arrest. To 

accomplish this, I attempted to modulate levels of H4K20me3 and test whether the 

mark was required for permanent cell cycle exit. Due to technical limitations I was 

unsuccessful in reducing H4K20me3 levels either through shRNA-mediated knock 

down of SUV420H2 or through ectopic expression of a potential SUV420H2 

dominant negative construct. In contrast, ectopic expression of MYC-tagged 

SUV420H2 markedly increased H4K20me3 levels, but did not immediately yield 

any overt phenotype. However, following prolonged passage in culture, ectopic 

expression of MYC-SUV420H2 maintained elevated H4K20me3 levels and resulted 

in a moderate acceleration of senescence compared to control cells. Similarly, 

ectopic expression of MYC-SUV420H2 appeared to enhance entry into H-

RASG12V-induced senescence. Most remarkably, whereas MYC-SUV420H2 

overexpressing cells infected with H-RASG12V maintained a permanent 

proliferation arrest, control cells infected with H-RASG12V were able to escape the 

senescence arrest and resume proliferation. 

 The H4K20me3 modification is an important epigenetic mark involved in 

maintaining the structure and function of heterochromatin. Here, I have presented 

several key findings that demonstrate H4K20me3 is selectively retained in senescent 

cells despite global histone loss, is enriched in senescent cells at DNA repeats and 

ZNF genes, and helps facilitate the senescence proliferation arrest. Although these 

observations strongly support a contributory role for H4K20me3 to the senescence 

program, there are several limitations to the study, which will be subsequently 

discussed in detail. Despite the limitations, the current body of work contains 

compelling data to suggest that H4K20me3 plays an integral role in shaping 

chromatin structure in senescent cells. Thus, I will subsequently explore some of the 

important implications that the present study has for our understanding of 
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H4K20me3 regulation and the relationship between H4K20me3, senescence and 

cancer. 

 

7.2 Limitations of the Study 

 

7.2.1 Loss-of-Function Experiments 

Potentially the most significant caveat of the present work is the lack of loss-

of-function data. Consequently, one outstanding and critical question that remains to 

be addressed is whether the H4K20me3 modification is required for cell senescence 

to occur. In essence, are cells deficient for H4K20me3 still capable of undergoing 

senescence? This is an important question as the answer could reveal whether 

selective retention of H4K20me3 in senescent cells is an inconsequential passive 

event or whether the mark is retained in order to serve a specific function as part of 

the senescence program. Additionally, it could provide novel insight into how 

higher-order chromatin structure might suppress tumorigenesis by limiting the 

proliferative capacity of damaged cells. 

  As discussed in Chapter 6, the most significant obstacle to addressing 

whether H4K20me3 is required for senescence was obtaining viable cells in which 

the modification was sufficiently reduced. Although it is formally possible that 

reduction of H4K20me3 levels might adversely impact cell viability, there is some 

evidence that depletion of the mark can be achieved in human cells (Kapoor-Vazirani 

et al., 2011). Therefore, in order to efficiently reduce global levels of H4K20me3, 

several experimental approaches could be utilized. First, the selection and testing of 

additional SUV420H2 shRNAs might enable the identification of short hairpin 

sequences capable of effectively reducing SUV420H2 and H4K20me3 levels, while 

maintaining cell viability. Additional shRNAs targeting SUV420H2 have been 

developed as part of the Broad Institute’s RNAi Consortium TRC2 phase 

(http://www.broadinstitute.org/rnai/trc) and are now commercially available. It is 

possible that these new shRNA constructs might facilitate efficient depletion of 

H4K20me3 from IMR90 cells. 

 In the absence of two or more shRNAs that effectively target SUV420H2, it 

is difficult to differentiate between actual phenotypes and potential off-target effects 

of RNA interference. In addition, viral infection, the most commonly employed 

method of delivering shRNAs to primary target cells, can incur a further set of 
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complications. One way to distinguish between the phenotypic effects of shRNA 

knockdown and the potentially cytotoxic effects associated with viral introduction of 

the construct is to utilize an inducible shRNA system (Meerbrey et al., 2011). 

Inducible shRNA systems enable the initial establishment of stably infected cells and 

subsequent control over when RNA interference is initiated. By utilizing this 

strategy, it is possible to temporally separate any phenotypic changes from infection-

related complications. Inducible lentiviral shRNA constructs are commercially 

available and might provide an effective method of modulating H4K20me3 in 

IMR90 cells. 

 An alternative technical approach to conducting loss-of-function studies in 

vitro is to utilize cells isolated from genetically modified knockout mice. To this end, 

Suv420h2-/- mice have been successfully generated and characterized by Thomas 

Jenuwein’s laboratory (Schotta et al., 2008). Produced by germline disruption of 

floxed Suv420h2 alleles, the mice are viable, do not express SUV420H2 protein and 

are largely depleted of H4K20me3. Primary mouse embryonic fibroblasts (pMEFs) 

isolated from genetically modified mice provide an important tool for studying loss-

of-function. Importantly, pMEFS isolated from Suv420h2-/- mice remain viable and 

exhibit marked H4K20me3 depletion (Schotta et al., 2008). Consequently, the 

Suv420h2-/- pMEFs might provide an alternative and useful tool for evaluating 

H4K20me3 function in cell senescence. 

 Before initiating loss-of-function studies using the Suv420h2-/- pMEFs, it is 

important to consider several potential caveats. To this end, there are several 

limitations to utilizing mouse cells as a surrogate model for studying senescence. 

First, in human fibroblasts, inactivation of both the p53 and pRB pathways is 

required in order to abolish senescence (Shay et al., 1991; Bond et al., 1999; Hahn et 

al., 2002). In contrast, inactivation of either the p53 pathway or pRB along with p107 

and p130 is sufficient to abolish senescence in mouse fibroblasts (Harvey et al., 

1993; Sage et al., 2000; Dannenberg et al., 2000). This underscores a potentially 

fundamental difference in how cell senescence is established in humans and mice, 

respectively.  

Second, most proliferating human cells lack telomerase and undergo telomere 

attrition due to repeated rounds of DNA replication. Ultimately, telomeres reach a 

critically short length, which produces a DNA damage signal and induces replicative 

senescence (d'Adda di Fagagna et al., 2003). In contrast, most mouse somatic cells 
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express telomerase and consequently maintain lengthy telomeres (Kipling, 1997). As 

a result, telomere attrition is not a characteristic cause of senescence in mice, 

illustrating another important difference between human and mouse senescence 

(Parrinello et al., 2003). The difference between human and mouse telomeres also 

has implications for H4K20me3 loss-of-function experiments, as H4K20me3 has 

been reported to play a crucial role in the maintenance and function of telomeres 

(Benetti et al., 2007). 

Despite the inherent limitations of utilizing either shRNA mediated gene 

silencing or Suv420h2-/- pMEFs to conduct loss-of-function experiments, both 

approaches provide ways of investigating the role of H4K20me3 in cell senescence. 

For this reason, I would implement both strategies in order to adequately address the 

question of whether H4K20me3 is required for senescence. In fact, the use of 

multiple technical approaches and models can potentially enhance the significance of 

a finding, by demonstrating that the given phenomenon is a conserved feature of 

senescence in multiple species and cell types. Alternatively, using different methods 

might reveal species or cell type-specific features of the senescence program. Either 

way, the methods discussed above reflect complimentary and viable strategies for 

deciphering the role of H4K20me3 in cell senescence. 

 

7.2.2 H4K20me3 and Senescence In Vivo 

 A second limitation of the present work is the lack of experiments evaluating 

H4K20me3 in the context of senescence in vivo. The data presented in this study 

convincingly demonstrate that H4K20me3 abundance increases relative to total 

histone H4 content in replicative and oncogene-induced senescent cells, compared to 

proliferating cells. Thus, senescent cells appear to selectively retain H4K20me3 

despite a decrease of bulk histone content. Although the data are robust, reproducible 

and consistent across two separate models of senescence, the experiments were only 

conducted in primary human cells in vitro. Thus, it is difficult to conclude whether 

selective retention of H4K20me3 is a bona fide hallmark of cell senescence, or rather 

a feature of senescence in vitro. 

 Despite this limitation to the interpretation of the data, there is some evidence 

of H4K20me3 retention/elevation in an in vivo context. Significantly elevated levels 

of H4K20me3 were observed in the livers of 450-day-old aged rats compared to the 

livers of 30-day-old young rats (Sarg et al., 2002). Although senescent cells have 
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been shown to accumulate with age in many mammalian tissues, Sarg and colleagues 

did not explicitly describe the presence of senescent cells in the livers of the 450-

day-old rats. Therefore, the elevated levels of H4K20me3 observed in the livers of 

aged rats might have resulted from the presence of old, but not necessarily senescent, 

cells. 

 Over the last decade, there has been a growing interest in understanding how 

cell senescence contributes to both normal and pathophysiological processes in vivo. 

As a result, the presence of senescent cells has been described in a variety of in vivo 

contexts. Increased numbers of senescent cells have been detected in various aged 

mammalian tissues including human skin and liver, primate skin and mouse dermis, 

liver, spleen, lung and gut epithelium (Dimri et al., 1995; Paradis et al., 2001; Herbig 

et al, 2006; Jeyapalan et al., 2007; Wang et al., 2009). Accumulation of senescent 

cells has also been reported in numerous premalignant lesions including benign 

melanocytic nevi, early-stage thyroid tumors, dermal neurofibroma, pancreatic 

intraepithelial neoplasia, prostate intraepithelial neoplasia, lung adenoma, colon 

adenoma and lymphoma (Michaloglou et al., 2005; Gray-Schopfer et al., 2006; 

Vizioli et al., 2011; Courtois-Cox et al., 2006; Morton et al., 2010; Caldwell et al., 

2012; Chen et al., 2005; Acosta et al., 2008; Collado et al., 2005; Bartkova et al., 

2006; Fujita et al., 2009; Kuilman et al., 2008; Braig et al., 2005). 

 Importantly, many of the molecular markers that define senescent cells in 

vitro, including SA β-gal activity, p16INK4a induction and SASP, have also been 

observed extensively in senescent cells in vivo (Dimri et al., 1995; Michaloglou et 

al., 2005; Coppé et al., 2008). Thus, these markers reflect genuine features of the 

senescence program, and are not simply contextual artifacts of investigating 

senescence in vitro or in vivo, respectively. Whether the selective retention of the 

H4K20me3 modification similarly reflects a conserved feature of the senescence 

program remains to be seen. From a technical perspective, determining whether 

senescent cells exhibit retention or elevation of the H4K20me3 mark in vivo should 

be relatively straightforward. Given the extensive H4K20me3 antibody evaluation 

that I performed for this study, employing an immunological-based assay such as 

immunohistochemistry to detect H4K20me3 in vivo would be a reasonable approach. 

Finally, based on the current finding that elevated levels of H4K20me3 serve to 

reinforce the senescence proliferation arrest induced by oncogenic H-RAS, 

evaluating H4K20me3 in the senescent cells of pre-malignant lesions might reveal a 
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novel tumor suppressive function for the modification. To this end, it might be most 

appropriate to investigate H4K20me3 in the context of pancreatic intraepithelial 

neoplasia (PanIN), a pre-malignant lesion that often arises from aberrant RAS 

activation and has been reported to harbor senescent cells (Morton et al., 2010). 

 

7.3 Implications of the Study 

 

7.3.1 Regulation of H4K20me3 

The H4K20me3 histone modification is a repressive epigenetic mark that has 

important implications for aging, senescence and cancer. As demonstrated in the 

present study, H4K20me3 is selectively retained in replicative and oncogene-induced 

senescent cells, despite a net loss of bulk histone content. Additionally, ectopic 

expression of SUV420H2 in IMR90 cells conferred high levels of H4K20me3 and 

reinforced the H-RASG12V-induced proliferation arrest. Consequently, this raises 

the important mechanistic question of how H4K20me3 is regulated in senescent 

cells. 

One possibility is that H4K20me3 levels are simply maintained in senescent 

cells through the basal activity of the SUV420H2 histone methyltransferase. Indeed, 

SUV420H2 is responsible for the majority of H4K20me3 deposition in vivo (Schotta 

et al., 2008). In the present study, SUV420H2 mRNA and protein levels remained 

unaltered in senescent cells, supporting a possible role for the enzyme in stabilizing 

levels of the mark during senescence. Alternatively, it is possible that H4K20me3 

might be regulated through the activity of a different histone methyltransferase in 

senescent cells. One potential candidate is SUV420H1, an enzyme that primarily 

deposits the H4K20me2 mark, but also retains the ability to trimethylate H4K20 in 

some contexts (Schotta et al., 2008; Tsang et al., 2010). In fact, in the current study, 

ectopic expression of SUV420H1 increased H4K20me3 abundance, but not to the 

same magnitude as SUV420H2. 

There is emerging evidence that additional enzymes can deposit the 

H4K20me3 modification in a variety of contexts. The nuclear receptor-binding SET 

domain-containing protein (NSD1) has been reported to methylate H4K20 in vitro 

(Rayasam et al., 2003). Genetic disruption of NSD1 in humans results in Sotos 

syndrome, an autosomal dominant disorder characterized by tall stature, distinctive 

facial features, macrocephaly, cognitive disabilities and an increased risk of 
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developing tumors (Lapunzina, 2005; Tatton-Brown & Rahman, 2007). Remarkably, 

lymphoblastoid cell lines isolated from Sotos syndrome patients exhibited markedly 

reduced levels of H4K20me3, suggesting a role for NSD1 in the trimethylation of 

H4K20 (Berdasco et al., 2009). 

Recently, several members of the SET and MYND domain (SMYD) family 

of proteins were shown to play a role in H4K20me3 regulation. To this end, it was 

reported that SMYD3 exhibits histone methyltransferase activity in vitro and 

preferentially trimethylates H4K20 in reconstituted chromatin (Foreman et al., 2011). 

Another SMYD family member, SMYD5, in cooperation with the NCoR corepressor 

complex, trimethylates H4K20 and silences pro-inflammatory genes in primary 

mouse macrophages (Stender et al., 2012). Stender and colleagues also showed that 

upon lipopolysaccharide (LPS)-mediated activation of toll-like receptor 4 (TLR4), 

PHF2 is recruited by an NF-κB-dependent mechanism to the promoters of pro-

inflammatory genes, where it demethylates H4K20me3. Whether any of these 

histone methyltransferases contribute to the regulation H4K20me3 in senescent cells 

remains to be tested. 

Another potential mechanism by which H4K20me3 abundance could be 

maintained in senescent cells might be through the inhibition of an H4K20me3-

specific histone demethylase. However, to date, no genome-wide demethylase has 

been identified for H4K20me3. Although the histone lysine demethylase JMJD2A 

has been shown to bind H4K20me3 with high affinity in vitro, it has not been 

reported to demethylate the mark (Huang et al., 2006; Lee et al., 2008; Ozboyaci et 

al., 2011). While PHF2 has been identified as a putative H4K20me3 demethylase, it 

is possible that the enzyme only functions in a local context (e.g., at pro-

inflammatory genes) and does not impact H4K20me3 on a global scale. Thus, the 

hypothesis that H4K20me3 is retained in senescent cells through inhibition of a 

specific histone demethylase remains a formal possibility, but one that is challenging 

to test.  

Finally, it is formally possible that the H4K20me3 retention in senescent cells 

occurs independently of active methylation or inhibition of demethylation. For 

example, H4K20me3 stabilization might involve the interaction of other chromatin 

binding proteins. To this end, technical approaches such as quantitative interaction 

proteomics might enable identification of novel binding partners involved in the 

regulation of H4K20me3 (Wysocka, 2006; Vermeulen et al., 2010). Thus, although 
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additional work is required in order to fully elucidate how H4K20me3 is maintained 

in senescent cells, the findings might ultimately inform our current understanding of 

the relationship between chromatin, senescence and cancer. 

 

7.3.2 H4K20me3 and Cancer 

 Despite the dynamic nature of chromatin during senescence, net abundance 

of the H4K20me3 modification remains remarkably stable between proliferating and 

senescent cells. Additionally, genome-wide mapping of H4K20me3 distribution 

revealed senescence-specific enrichment of the mark at ZNF gene clusters, DNA 

repeats (e.g., LTRs, LINES and SINES) and regions of the genome that become 

DNA hypomethylated during senescence. However, the most compelling finding of 

the current study was the observation that high levels of H4K20me3, resulting from 

ectopic expression of MYC-SUV420H2, was sufficient to suppress escape from H-

RASG12V-induced senescence in vitro. In fact, this result has important implications 

for not only how H4K20me3 impacts the senescence program, but also how the mark 

might contribute to tumor suppression. 

Epigenetic factors undoubtedly play a significant role in the maintenance and 

regulation of chromatin. Consequently, epigenetic dysregulation is frequently 

associated with a variety of pathological processes, including human cancers (Jones 

& Baylin, 2007). Although considerable attention has been directed toward 

understanding how altered patterns of DNA methylation impact the initiation and 

promotion of cancer, an important role for histone modifications in these processes is 

also emerging (Sharma et al., 2010). Supporting this concept is the striking 

observation that the H4K16ac and H4K20me3 modifications are frequently lost from 

a variety of human cancer cell lines and primary tumors (Fraga et al, 2005). Equally 

compelling, as Fraga and colleagues noted, was the fact that loss of these two marks 

frequently coincided with DNA hypomethylation at regions of repetitive DNA (e.g., 

satellite 2). 

 Subsequent reports have provided additional evidence that loss of H4K20me3 

is indeed a common epigenetic feature of cancer. One study of breast cancer showed 

that compared to non-malignant MCF-10-2A breast epithelial cells, the MDA-MB-

231 and MDA-MB-231(S30) malignant breast cancer cell lines exhibited global 

DNA hypomethylation, marked reduction of H4K20me3 and decreased expression of 

the H4K20 histone methyltransferase SUV420H2 (Tryndyak et al., 2006). In the 
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same study, MCF-7 cells, a less invasive cell line that represents an earlier stage of 

breast cancer, also displayed H4K20me3 loss, but to a lesser extent. Utilizing a rat 

model of estradiol‐17b (E2)‐induced mammary carcinogenesis, the same group 

subsequently reported a decrease of global DNA methylation, LINE‐1 

hypomethylation and loss of the H3K9me3 and H4K20me3 marks in hyperplastic 

mammary tissue (Kovalchuk et al., 2007). Significantly, the observed epigenetic 

changes preceded the development of full mammary carcinoma by approximately six 

weeks. 

 Evaluation of H4K20me3 abundance in tumors also provides important 

clinical prognostic insight. In a comparison of 50 lung squamous cell carcinomas and 

50 lung adenocarcinomas to normal lung tissue, the tumors frequently displayed 

H4K5/H4K8 hyperacetylation, H4K12/H4K16 hypoacetylation, loss of H4K20me3 

and reduced SUV420H2 expression (Van Den Broeck et al., 2008). Although 

H4K20me3 loss was generally less frequent in the adenocarcinoma samples, a 

subgroup of stage I adenocarcinoma patients with reduced H4K20me3 exhibited a 

significantly lower rate of survival. In a separate study of 880 characterized human 

breast carcinomas, tumors of the poorest prognostic subgroups (e.g., basal 

carcinomas, HER-2-positive tumors) displayed moderate to low H4K20me3 levels 

(Elsheikh et al., 2009). Finally, in a study of bladder cancer, H4K20me3 levels 

decreased across the clinical spectrum, with highest levels noted in normal 

urothelium, and progressively lower levels observed in non-muscle-invasive bladder 

cancer (NMIBC), muscle-invasive bladder cancer (MIBC) and bladder cancer 

metastases (METS) (Schneider et al., 2011). Remarkably, the METS exhibited lower 

levels of H4K20me3 than the primary tumors.  

 Given the evident correlation between H4K20me3 loss and cancer, several 

critical questions arise. First, is loss of the H4K20me3 mark a driver or consequence 

of cancer initiation and progression? Evidence from several of the studies discussed 

above suggests that loss of H4K20me3 is an early event, often beginning in less 

malignant stages and decreasing progressively with increased tumor grade and 

severity. If H4K20me3 loss is indeed a mechanistic driver of cancer, it implies that 

proper maintenance of H4K20me3 levels in the cell might provide a barrier against 

tumorigenesis. In fact, this model is broadly consistent with two important 

characteristics of cell senescence: (1) senescent cells selectively retain high levels of 
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the H4K20me3 mark and (2) senescence is a potent tumor suppressor mechanism. In 

this manner, one novel way that senescence might block cancer initiation is through 

the maintained stability of H4K20me3. If so, what is the mechanism by which 

H4K20me3 reinforces the tumor suppressive properties of senescence?  

Revisiting the senescence-specific H4K20me3 mapping data might provide 

some critical insight toward addressing this mechanistic question. In senescent cells, 

H4K20me3 is seemingly abundant at a variety of DNA repeats including LTRs, 

LINES, SINES and DNA satellites (e.g., satellite 2). Based on recent data from Peter 

Adams’ laboratory, some of these same regions also become DNA hypomethylated 

in replicative senescent IMR90 cells (Cruickshanks et al., submitted). Thus, in 

senescent cells, DNA methylation and H4K20me3 are clearly separable epigenetic 

marks. As noted earlier, Fraga and colleagues established that loss of H4K20me3 is 

commonly associated with hypomethylation of repetitive DNA sequences in human 

cancer (Fraga et al, 2005). In view of this, it is formally possible that loss of 

H4K20me3 from hypomethylated DNA repeats allows cancer initiation and 

progression, whereas the presence of H4K20me3 at hypomethylated DNA repeats in 

senescent cells might maintain the barrier to tumorigenesis. 

If this is the case, it raises an important follow-up question: how might the 

presence of H4K20me3 at hypomethylated DNA repeats suppress cancer initiation? 

One possibility is that H4K20me3 prevents aberrant recombination events at regions 

of hypomethylated repetitive DNA. Loss of DNA methylation at repetitive regions 

(e.g., LINES, satellite 2) is associated with derepression of repeats, increased rates of 

insertional mutagenesis, genomic instability and cancer (Wong et al., 2001; Schulz et 

al., 2002; Howard et al., 2008). H4K20me3 is enriched in senescent cells at many of 

these regions, including LINES and satellite 2 repeats, suggesting that the mark 

might play a role in maintaining proper heterochromatin structure, particularly in the 

context of DNA methylation. Although this argument is largely correlative, a direct 

role for H4K20me3 in suppressing recombination at DNA repeats has been reported. 

Work from Maria Blasco’s group demonstrated that Suv420h2-/- pMEFs exhibit 

marked loss of H4K20me3 at telomeres and subtelomeres, resulting in telomere 

elongation and a higher frequency of telomere recombination (Benetti et al., 2007). 

Importantly, the authors noted that telomere recombination occurred independent of 

any subtelomeric DNA methylation changes, suggesting that H4K20me3 alone might 

be responsible for suppressing recombination at telomeric repeats. 
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Finally, marked enrichment of H4K20me3 was also observed at ZNF gene 

clusters in senescent cells. ZNF genes comprise one of the largest gene families in 

the human genome, including the Krüppel associated box (KRAB) domain-

containing ZNF (KRAB-ZNF) genes, a subgroup of approximately 800 loci that are 

arranged in large familial clusters (Shannon et al., 2003). Although H4K20me3 was 

generally not enriched at many genes in senescent cells, specific and marked 

enrichment was observed at KRAB-ZNF gene clusters. Additional reports have 

confirmed the presence of several other heterochromatic marks at ZNF genes. The 

heterochromatic protein HP1b (CBX1) is highly enriched at the 3’ ends of KRAB-

ZNF genes (Vogel et al., 2006). In a separate study, significant enrichment of 

another repressive epigenetic mark, H3K9me3, was observed at the 3’ exons of ZNF 

genes, but did not correlate with gene expression (Blahnik et al., 2011). In both 

studies, the authors proposed that the presence of heterochromatic histone 

modifications and associated proteins might stabilize chromatin at KRAB-ZNF gene 

clusters and prevent inappropriate recombination. Thus, the striking enrichment of 

H4K20me3 at KRAB-ZNF genes in senescent cells might similarly suppress 

recombination at these loci. 

Based on these published observations and the findings of this study, I 

propose a model of H4K20me3 function in senescence in which H4K20me3 prevents 

tumorigenesis in response to various triggers, by preventing recombination at DNA 

repeats and ZNF genes, thus maintaining genomic integrity (Figure 7.1). In this 

manner, retention of the H4K20me3 mark might compensate for the wide-scale 

chromatin changes that occur in senescent cells including DNA hypomethylation, 

shortened telomeres or damage resulting from DNA hyper-replication. Accordingly, 

cells that initiate the senescence program and retain adequate levels of H4K20me3 

might maintain genomic stability and successfully establish a permanent 

proliferation arrest. In contrast, if H4K20me3 is lost from DNA repeats and ZNF 

genes, these regions might become predisposed to a higher frequency of 

recombination and mutational insertions, consequently driving cancer initiation and 

progression. Indeed, recent data indicate that in cancer, regions of the genome that 

normally exhibit enrichment of H4K20me3 and other repressive marks, contain the 

highest rates of mutation, as evidenced by high single nucleotide variant (SNV) 

densities (Schuster-Böckler & Lehner, 2012). Thus, H4K20me3 represents an 
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important epigenetic feature of the senescence program that likely stabilizes the 

genome, prevents recombination and mutation and suppresses tumorigenesis. 
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