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Abstract 

A computer program (called PGROUPN) has been developed for the non-linear analysis of pile 

groups subjected to any combination of vertical loads, horizontal loads and moments. The code 

is based on a complete boundary element approach and may be regarded as a generic 

descendant of the program PGROUP (Banerjee & Driscoll, 1976) which has been extended in 

order to make the analysis numerically efficient for practical problems and to include the 

effects of soil nonlinearity by means of a stepwise linear incremental procedure. 

One of the main advantages of a non-linear analysis system over a linear elastic 

approach is that it has the desirable effect of demonstrating a reduction of the corner loads in 

large groups in both the vertical and horizontal senses. This observation is of basic importance in 

practice because it offers the prospect of tangible improvements in design procedures and potential 

saving of materials. 

The non-linear analysis put forward in this thesis may be applied to large pile groups 

embedded in cohesive soil, specifically fully saturated clay under undrained conditions. The soil is 

modelled as an elastic-pecfectly plastic material, which is assumed to behave linearly elastic at small 

strain levels, but fails when the stresses at the pile-soil interface reach certain limiting values. The 

analysis only requires the definition of three soil parameters whose physical meanings are clear, ie 

the (initial tangent) Young's modulus En the Poisson's ratio Vs and the undrained shear strength CII' 

This represents a significant advantage over more common load-transfer approaches which are 

based on either empirical parameters or the results of full-scale pile load tests. 

The validity and accuracy of the proposed PGROUPN solution have been verified by 

comparison with alternative numerical analyses for single piles and pile groups subjected to 

axial and lateral loads. Benchmark solutions in the linear and non-linear range are presented, 

and the critical question of estimation of soil parameters is addressed. Finally, two published 

case histories are described which demonstrate the applicability of the method to practical 

problems. 
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Notation 

The following is a list of main symbols used in this thesis. Other symbols are defined locally in 

the text. 

Ap cross sectional area of pile 

A"i shaft area of the pile element i 

Ab pile base area 

As pile shaft area 

An transverse area of the pile element i 

B pile displacement due to unit boundary conditions 

Cu undrained shear strength 

CUD undrained shear strength at ground level 

Ep pile Young's modulus 

E, soil Young's modulus 

E,L soil Young's modulus at the level of the pile base 

Eso soil Young's modulus at ground level 

F,," pile head axial force due to unit boundary conditions 

F: axial forces acting at the top of pile element i 

F," pile head shear force due to unit boundary conditions 

F,i shear forces acting at the top of pile element i 

G, soil shear modulus 

G,L soil shear modulus at the level of the pile base 

Go soil shear modulus 

H applied horizontal load on the cap 

H depth of soil layer 

Hav average lateral load acting on each pile head 

H, total lateral load acting on the group 

H" horizontal load acting on the cap due to unit boundary conditions 

Hu ultimate lateral load capacity (if failure occurs by failure of the soil) 

/p second moment of area of pile section 

viii 



K relative pile-soil stiffness 

KR stiffness ratio 

L pile length 

Lc pile critical length 

M applied moment on the cap 

M = (2N+ 1) total number of pile elements (per pile) 

M k moment acting on the cap due to unit boundary conditions 

M,k pile head moment due to unit boundary conditions 

M: bending moments acting at the top of pile element i 

N SPT value 

N number of pile shaft elements (per pile) 

N c bearing capacity factor 

NINe number of equal load increments 

P applied axial load 

Pav average axial load acting on each pile head 

Pb load carried by the pile base 

Pg total axial load acting on the group 

P,. ultimate axial load capacity 

R. group settlement ratio 

R,. group deflection ratio 

V applied vertical load on the cap 

V k vertical load acting on the cap due to unit boundary conditions 

[ F] global flexibility matrix of the pile group system 

[G.] soil flexibility matrix obtained from Mindlin's solution 

[ G .. ] non-linear soil flexibility matrix 

[ G p ] pile flexibility matrix obtained from Bernoulli-Euler beam theory 

[K.] soil stiffness matrix 

[ S] global stiffness matrix of the pile group system 

ix 



c rate of increase of undrained shear strength with depth 

c horizontal distance of the pile head from the vertical axis of symmetry of the cap 

d pile external diameter 

db pile base diameter 

d j pile internal diameter 

g depth of overhang of the pile cap 

h height of the pile shaft element 

kp ratio of applied vertical load to the average settlement of the group 

m rate of increase of soil Young's modulus with depth 

m number of piles in the group 

n number of pile types in the group 

p lateral load transfer 

qb end-bearing pressure 

qc cone resistance 

ro pile radius 

s pile spacing 

Smu maximum interaction spacing 

t axial load transfer 

t!j pile axial tractions acting on element i due to unit boundary conditions 

tp pile traction 

ts soil traction 

tsc limiting bearing stress 

tss limiting shear stress 

t! pile transverse tractions acting on element i due to unit boundary conditions 

U horizontal displacement of the cap 

up pile displacement 

Us soil displacement 

w vertical displacement of the cap 

y lateral pile displacement 

z axial pile displacement 

z depth coordinate 

x 



a adhesion factor 

a two-pile interaction factor 

f3 direction of horizontal loading 

~ angle of rake of the pile 

A. relati ve pile-soil stiffness 

6 rotation of the cap 

(Jv effective overburden stress 

T. shear stress 

V. soil Poisson's ratio 

Superscripts 

aa axial-axial interaction 

at axial-transverse interaction 

k = 1, 2, 3 (it represents the three unit boundary conditions) 

ta transverse-axial interaction 

tt transverse-transverse interaction 

e linear elastic conditions 

n non-linear conditions 

Subscripts 

a axial 

i pile element 

p pile 

s soil 

t transverse 

Xl 



CHAPTER I I nI roduction 

CHAPTER 1 

Introduction 

1.1 General remarks 

Despite the pessimistic statement of Terzaghi & Peck (1967), ' .... theoretical 

refinements in dealing with pile problems ... are completely out of place and can be 

safely ignored', the past three decades have seen major advances in understanding the 

manner in which piled foundations interact with the surrounding soil. 

For many years, the design practices of piled foundation have been based on 

empirical rules which are implicitly conservative and, in many cases, may turn out to be 

inadequate. Today, the development of numerical approaches such as the finite element 

method (FEM) and the boundary element method (BEM), in conjunction with the wide 

availability of desktop computers, has put many powerful methods of analysis at the 

disposal of the pile designer. The influence of battered piles, different pile sizes, enlarged 

base diameters, soil nonlinearity and inhomogeneity, as well as pile-soil-pile interaction, can 

now be examined with different degrees of rigour, depending on the approximations 

incorporated in the method of analysis. Such methods allow exhaustive estimates of pile 

group response to loading which even two decades ago would not have been 

considered practical for foundation design. This advance has resulted in a better 

understanding of pile group behaviour and tangible improvements in design practice 

(Poulos, 1989; Fleming et aI., 1992). 

The analysis and design of a pile group imply the consideration of three main 

categories of parameters, namely, material properties, geometrical characteristics and 

loading conditions. Material properties encompass both the mechanical characteristics 

of the soil, which can include consideration of such factors as nonlinearity, 

inhomogeneity and anisotropy, and the stiffnesses of the structural members, ie the 

piles and the pile cap. Geometrical characteristics include the specification of pile 

group configuration, the geometry of the cap and the individual piles, ie lengths, 



CHAPTER I Introduction 

diameters and the angles of rake. Loading conditions may include any combination of 

vertical loads, horizontal loads and moments. Vertical loads are mainly due to the self­

weight of the superstructure, while horizontal loads are relevant in stadia, bridges, 

harbours, pipelines and in structures subjected to wind and wave action, earth pressure 

and ground movements (ie earthquakes). In this thesis, attention will be confmed to 

problems involving static loading. 

1.2 Scope of thesis 

Present practice in evaluating the load-deformation response of pile groups is to 

adopt linear elastic approaches, but these ignore the non-linear load-deformation 

characteristics of soil and hence misrepresent the forces in piles, specifically by giving 

higher stresses in group comers. The cost of this in practice is high and there is an 

urgent need in industry for practical non-linear analysis methods. In addition, current 

numerical approaches suffer from restrictions imposed by the number of piles in the 

group which make such analyses computationally inefficient. 

For this purpose, the present research aims to develop a numerical procedure, 

implemented in a computer program called PGROUPN, by which realistic pile groups 

embedded in cohesive soils (specifically fully saturated clay under undrained 

conditions) and subjected to any combination of vertical loads, horizontal loads and 

moments may be investigated by means of a non-linear analysis. The main feature of 

PGROUPN lies in its capability to adopt a complete BEM approach while retaining a 

computationally efficient code which runs on an ordinary desktop computer. The various 

strategies adopted for achieving efficiency gains result in an economically viable analysis 

even if nonlinearity effects are simulated in large pile groups. 

In Chapter 2, the complete BEM approach, as proposed by Banerjee & Driscoll 

(1976), is further developed in order to make the analysis more numerically efficient and to 

include the effect of soil nonlinearity by means of a stepwise linear incremental procedure. 

Chapter 3 depicts the numerical implementation of the non-linear BEM formulation, 

together with a general description of the PGROUPN program. Comparison of the results 

with some published numerical solutions is undertaken in Chapters 4 and 5 for single piles 

and pile groups, respectively. In addition, Chapters 4 and 5 present parametric studies in 

2 



CHAPTER / /lIIroduction 

the linear and non-linear range to illustrate the influence of the relevant parameters on the 

behaviour of single piles and pile groups. Finally, in order to demonstrate the applicability 

of the method to practical problems, Chapter 6 presents some comparisons with published 

field test data. 

1.3 A review of pile group behaviour 

Piled foundations have the dual purpose of strengthening the soil and also of 

transferring the applied loads to deeper and stiffer soil strata. In most cases, piled 

foundations consist of a group of piles installed fairly close together (typically the 

centre-to-centre pile spacing is about 4 to 6 pile diameters) and joined by a cap cast on 

the top of the piles. 

The pile cap can be in contact with the ground, in which case part of the applied 

load is carried directly on the soil immediately below the surface. If the cap is not in 

direct contact with the soil, as in the case of offshore platforms, the piles in the group 

are referred to as free-standing. However, in most practical situations, it is customary 

to ignore the resistance offered by the top layer of soil because of fill or other soft or 

variable ground, and hence the contact between cap and soil may be considered 

ineffective. 

1.3.1 Capacity of pile groups 

Failure of a group of piles may occur either by failure of the individual piles or 

as failure of the overall block of soil enclosing the piles. If block failure occurs, soil 

between the piles may move with the piles resulting in failure planes which follow the 

periphery of the group or parts of the group (Fleming et ai., 1992). 

When investigating failure mechanism of the individual piles, it is necessary to 

take into consideration the effects of interaction between neighbouring piles so that the 

capacity of each pile may be altered. The beneficial effects of installing neighbouring 

driven piles may be relevant in cohesionless soils, where the soil between the piles 

becomes highly compacted leading to higher shaft capacities than for single piles. This 

has been proved experimentally by Vesic (1969), who showed that the shaft capacities 

of piles driven into loose and medium sand could increase by a factor of 2. A similar 

3 
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effect has been observed by Van Weele (1993) for free-draining soils, where the 

increased effective stress level due to an external load applied to neighbouring piles 

will enhance the capacity of each pile within the group. 

In other cases, the capacity of a pile within a group may be reduced by 

comparison with a single pile. For example, groups of piles driven into sensitive clays 

cause extensive remoulding of the surrounding soil and thus a heave of the ground 

surface occurs. Once the soil reconsolidates, this produces a drag-down on the pile 

shaft and hence a lower shaft capacity than for individual piles. 

As discussed by Van Impe (1991) and Fleming et al. (1992), the method of pile 

construction can have a critical influence on the capacity of a pile foundation. For 

instance, for a displacement (generally driven) pile, lateral stresses are increased as the 

pile shaft enters the ground and hence the soil stiffness may be expected to be higher in 

the zone immediately around the pile. In contrast, in a non-displacement (generally 

bored) pile, lateral stresses in the ground are reduced during excavation and hence the 

soil stiffness is likely to be reduced. 

Conceptually, the effect of pile installation may be modelled by 'softening' the 

value of soil stiffness in a zone near the pile face. Away from the pile, the soil stiffness 

may revert to the in-situ value because of the reduced effects of disturbance and also 

the reduced level of shear strain. Recent attempts have been made to incorporate this 

effect into pile group analysis: Poulos (1988) assumed a simplified form of soil 

modulus variation to assess the single pile behaviour and the interaction effects 

between piles, as indicated in Fig. 1.1; Hirayama (1991) assumed a hyperbolic variation 

of soil modulus with strain, while Chow (1991) considered a weakened zone near the 

piles. 

The significant effect of time since installation, particularly for displacement 

piles installed in soils of low permeability, has been discussed by Fleming et al. (1992). 

After a pile is driven into cohesive soil, the excess pore pressures will dissipate, mainly 

by radial flow of pore water away from the pile, and the soil will consolidate. Because 

of this consolidation process, the shear strength of the soil may increase by between 30 

and 100% close to the pile. This amount is governed by the coefficient of consolidation 

in a horizontal plane, the time since installation of the pile and the pile radius 

4 
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(Randolph et al., 1979; Randolph & Wroth, 1979). In general, the effects of pile 

installation will not extend beyond 10 to 15 pile diameters (Fleming et al., 1992). 

1.3.1.1 Axial capacity 

For pile groups with an effective ground-contacting cap, it is likely that axial 

failure occurs as failure of the overall block of soil rather than failure of the individual 

piles. Model tests by Whitaker (1957) show that this situation can also occur in free­

standing groups of piles with a centre-to-centre spacing less than about 2 pile 

diameters. In these circumstances, the pile group capacity corresponds to that of the 

block enclosing the piles. The analysis of the failing block is exactly the same as the 

analysis of a single pile but now taking the base area as the total base area of the block 

enclosing the piles and by evaluating the total skin friction on the basis of the perimeter 

area of the entire block. 

Modern trends in pile group design tend to favour the use of fewer, more 

widely spaced piles. In these circumstances, it is common practice to estimate the 

failure load of the group as the sum of the failure loads calculated for the piles acting 

individually. This has been confIrmed by full-scale tests on pile groups in stiff clay (see, 

for example, O'Neill et al., 1982). 

1.3.1.2 Lateral capacity 

A pile group under lateral loading will be subjected to lateral deformation as 

well as rotation and hence piles at the edge of the group will be loaded in compression 

and tension. As a consequence, the lateral response of the group will depend on both 

the axial capacity and the lateral capacity of the piles. In practice, the lateral capacity 

of a group of piles will rarely be critical in design and the only requirement is to ensure 

that the maximum bending moment in the piles will not lead to overstressing the piles 

(Fleming et al., 1992). 

1.3.2 Deformation of pile groups 

Burland et al. (1977) pointed out that the primary purpose of most pile groups 

is to satisfy a serviceability limit on deformations - nevertheless, traditionally pile 

5 
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designers have asked themselves how many piles are needed to carry the weight of the 

building rather than asking themselves the question of how many piles are needed to 

reduce settlements to an acceptable level. 

In spite of this primary purpose of piles, twenty years later, common practice in 

pile group design philosophy still concentrates on providing suitable capacity from the 

piles to carry the structural load, and estimation of the settlement is generally treated 

as a secondary issue. The dominance of capacity-based design, which is evident in 

current revisions of national and regional design codes, may be partially attributed to 

the common belief that predicting deformations is more difficult and less reliable than 

predicting capacity. In reality, however, the reverse is often true for pile foundations 

(Randolph, 1994). 

Thus, provided there is a minimum factor of safety, which may be as low as 1.5, 

pile group design should be approached in terms of satisfying the settlement criterion, 

rather than be based on a crude notional factoring of the ultimate state of each pile 

(Fleming et al., 1992). If this design philosophy is adopted, and hence low safety 

factors are employed, consideration of non-linear soil deformations becomes 

mandatory. This approach would result in tangible improvements in design practice and 

worthwhile savings in construction costs. 

A variety of techniques are used in practice to predict the settlement of pile 

groups. These techniques fall into three main categories (Poulos, 1993): 

a) purely empirical techniques which relate the deformation of a group to that of a 

single pile (Skempton, 1953; Meyerhof, 1959); 

b) simplified approaches which reduce the pile group to an equivalent simpler form of 

foundation, ie a pier or raft (Bjerrum et al., 1957; Wood, 1978; Poulos & Davis, 

1980; Tomlinson, 1994; Randolph, 1994); 

c) analytical methods which consider pile-soil-pile interaction (Poulos, 1968; 

Butterfield & Banerjee, 1971a; Randolph & Wroth, 1979; Poulos & Davis, 1980; 

Fleming et al., 1992). 

6 



CHAPTER I Introduction 

Recently, with the development of numerical techniques such as FEM and BEM, there 

has been significant development of the third category and hence many aspects of pile 

group behaviour may be modelled with different degrees of rigour. 

One of the most useful concepts in the analysis of pile group behaviour is the 

use of interaction factors to represent the influence of a pile on the displacement of 

another pile. An interaction factor, a, may be defined as the additional deformation 

(that is settlement, deflection or rotation at the pile head) of a pile due to an equally 

loaded identical adjacent pile: 

additional de#ormation due to adjacent pile a = ____ --.::.'J_. _____ ----" __ """'--_ 

deformation of pile under its own load 
(1.1) 

As fast suggested by Poulos (1968), superposition of the two-pile interaction factors 

may be employed to analyse the deformation behaviour of a pile group. 

The value of the interaction factor depends on several features, including type 

of loading (axial or lateral), spacing between piles, relative pile-soil stiffness, length­

diameter ratio of the piles, nature of the bearing stratum and the distribution of soil 

modulus with depth. Interaction factors for a wide range of situations are presented by 

Randolph & Wroth (1979), Poulos & Davis (1980), Randolph (1981) and Fleming et 

al. (1992). 

The use of interaction factors has been justified experimentally from field tests 

on axially loaded piles in London Clay (Cooke et al .• 1980). The authors show that, at 

loads up to one half of the ultimate load, the overall deformation of the pile group may 

be determined by superposition of the separate deformation fields of each pile. Thus, 

the deformation of one pile may be thought of as made up of the sum of the 

deformation due to its own loading (without the presence of the neighbouring piles) 

and the deformations due to each of the other pile displacement fields. It should be 

emphasised that the experimental results of Cooke and colleagues are restricted to a 

purely elastic analysis, which is appropriate for working loads of the order of less than 

one half of the ultimate load. However, as the loading increases, the divergence from 

7 



CHAPTER I Introduction 

elastic conditions becomes more marked and nonlinearity effects have considerable 

influence on pile behaviour. 

1.3.2.1 Axialloading 

An approach by Randolph & Wroth (1979), in which theoretical interaction 

factors are deduced from the deformation field around a single pile, shows the transfer 

of a higher percentage of load to the bases of piles within a group than for isolated 

piles. This phenomenon has been confmned experimentally by model tests (eg Ghosh, 

1975). 

When calculating interaction effects between piles in a group, care must be 

taken over the choice of the maximum interaction spacing. Randolph & Wroth (1979) 

showed theoretically that interaction effects between piles in a group become 

insignificant for pile spacing (centre-to-centre) greater than a limiting value Smax, which 

is defmed as: 

where 

Smax = 2.5Lp(l- v s ) + rg (1.2) 

L is the pile length, 

p is the inhomogeneity factor - its value is I for a homogeneous soil, while for a 

non-homogeneous soil it is the ratio of the soil modulus at pile mid-depth to that at 

the pile base, 

V, is the soil Poisson's ratio, 

r, may be taken, for rectangular groups, as the radius of the circle of equivalent 

area to that covered by the pile group; Mandolini (1994) provides values of rg for 

groups of any shape. 

Chin & Poulos (1991) have calculated the value of Smax for the particular cases of two­

layered soil and Gibson soil, ie a soil with stiffness linearly proportional to depth 

(Gibson, 1974). 
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However, a field investigation on the behaviour of a row of piles at close 

spacings in London Clay by Cooke et al. (1980) shows that the interaction factor 

approach considerably overestimates interaction between piles. Observed values of the 

interaction factors indicate that the interaction is practically zero at a pile spacing of 12 

pile diameters. 

From a practical viewpoint, in order to estimate the settlement of a pile group 

(with a rigid pile cap), it may be convenient to relate the settlement of the group to the 

settlement of an isolated single pile, as follows: 

where 

R, = group settlement ratio, 

Wg = settlement of group, 

(1.3) 

WI = settlement of single pile carrying the same average load as a pile in 

the group. 

Some values of R, are calculated by Poulos (1979) by means of the interaction factor 

approach. Fleming et al. (1992) present an useful approximation for the value of R, in 

large pile groups: 

where 

n = number of piles in the group, 

(J) = exponent which lies between 0.4 and 0.6 for most pile groups 

(tabulated in Fleming et al., 1992). 

(1.4) 

Load distribution. A consequence of the interaction between piles is that, in a pile 

group with a rigid cap (a reasonable assumption in most practical cases), the 
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distribution of load among the piles is generally non-uniform. This is because 

neighbouring piles will be within each others' displacement fields and hence the load 

per pile to generate a given displacement will be reduced for the central piles and 

increased for the outer ones. Therefore, in a square pile group, the corner piles carry 

the greatest proportion of load, while those near the centre carry least. 

Typical load distributions calculated for small pile groups (Poulos & Davis, 

1980) show that corner piles may take up to 3 to 4 times as much load as piles near the 

centre. This trend has been confirmed experimentally for a group of 9 piles by Koizumi 

& Ito (1967), who show that, at working load, the corner piles carry about three times 

the centre pile load and the centre side piles carry about 1.5 times the centre pile load. 

Further, carefully conducted tests on a group of 351 piles (Cooke et al., 1981) show 

that piles at the corner take more than twice the mean centre pile load and piles around 

the edge carry about 1.5 times the mean centre pile load. 

Short-term and long-term settlements. There appear to be no theoretical solutions 

available in the literature for the rate of consolidation settlement of pile groups. As 

discussed by Poulos (1993), fmite element analyses of an equivalent impermeable block 

representing the pile group indicate that the rate of consolidation decreases as the 

length-to-diameter ratio of the equivalent block increases. For a relatively deep 

homogeneous layer, the time for 50% consolidation of a block having a length-to­

diameter ratio of 5 is about 9 times that for a corresponding impermeable surface 

footing of the same diameter. 

Fleming et al. (1992) state that the immediate settlement of a pile group is a 

smaller fraction of the corresponding long-term settlement than is the case for a single 

pile (where the immediate settlement is generally 80 to 90% of the long-term 

settlement). This is confrrmed by Poulos & Davis (1980), by means of an elastic 

analysis which uses drained and undrained parameters, and by Fathallah (1978) using 

FEM. Field tests by Cooke et al. (1981) on a group of 351 piles in London Clay 

(which is consolidating) show that the observed settlement was 10 mm at the 

completion of construction, 25 mm after 5 years and it was continuing at the rate of 

less than 1 mm per year. 
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1.3.2.2 Lateralloading 

A finite element study carried out by Randolph (1981) showed that interaction 

under lateral loading decreases much more rapidly with pile spacing than for axial 

loading. It is also shown that interaction of piles normal to the applied load is half that 

for piles in line with the lateral load. 

However, it must be observed that it is not possible to separate the lateral load 

deformation characteristics of a pile group from the axial characteristics. In fact, as the 

laterally loaded pile group tries to rotate, piles at the edges of the group will be loaded 

axially in tension and compression, providing significant rotational stiffness to the 

group. 

As discussed by Fleming et al. (1992), if pile cap rotation is prevented, it is 

possible to defme a deflection ratio Ru, which is similar to the settlement ratio Rs for 

axial loading, ie: 

where 

(1.5) 

Ru = group deflection ratio, 

Ug = group deflection (under conditions of zero rotation of the pile cap), 

u/ = deflection of single pile carrying the same average load as a pile in 

the group (under conditions of zero rotation of the pile cap). 

Some values of Ru for square fixed-head pile groups in homogeneous and Gibson soils 

are presented by Fleming and colleagues. These charts show that interaction effects 

between piles in a Gibson soil are less marked than for piles in a homogeneous soil. 

A significant influence on the response of closely spaced pile groups (ie 

spacings less than 5 pile diameters) subjected to lateral loading is represented by a 

'shadowing' effect. This effect is thought to be related to the influence of the leading 

row of piles on the yield zones developed in the soil ahead of the trailing row of piles, 

as shown in Fig. 1.2. Because of this overlapping of failure zones, the front row will be 
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pushing into virgin soil while the trailing row will consist of piles pushing into soil 

which is in the shadow of the front row piles. A consequence of this loss of soil 

resistance for piles in a trailing row is that the leading piles in a group will carry a 

higher proportion of the overall applied load than the trailing piles. This effect also 

results in gap formation behind the closely spaced piles and an increase in group 

deflection. 

This feature of behaviour has been observed in fmite element analyses (Brown 

& Shie, 1990b), model tests (Barton, 1982; Cox et al., 1984) and full-scale tests 

(Brown et al., 1987; Rollins et al., 1998), for pile spacings of 2 to 3 pile diameters. 

However, Brown & Shie and Cox et al. show that the shadowing effect rapidly 

decreases as the spacing between piles increases and becomes insignificant for spacing 

greater than 6 pile diameters. 

1.3.3 Effects of pile cap 

In his Rankine Lecture, Poulos (1989) stated that the effect on group settlement of 

the pile cap being in contact with the soil is relatively small unless the pile spacing is large 

and the group is relatively smalL It has been shown that, even for piles at an unusually large 

centre-to-centre spacing of 10 diameters, the reduction in settlement due to cap contact is 

only about 5%. Therefore, for practical purposes and at working loads, the influence of pile 

cap contact can be ignored. 

A rigorous boundary element analysis of a compressible pile group including a rigid 

smooth ground contacting cap (Butterfield & Banerjee, 1971b) shows that the load 

displacement characteristics of similar pile groups with floating or contacting caps are 

slightly different, resulting in an increase of the system stiffness of only 5-15%. Although 

significant load may be carried by the cap (up to 30 - 50% depending on the group size and 

pile spacing), there is a corresponding decrease in load transfer in the upper region of each 

pile. The two effects compensate, giving only marginally greater stiffness of the overall 

foundation compared with a pile group with a free-standing pile cap. 

This finding has been subsequently validated by model tests (Ghosh, 1975; 

Abdrabbo. 1976) and field tests on large buildings in London Clay (Cooke et al., 1981). 

The field tests in London Clay show that the increase in load to settlement stiffness of a pile 
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raft foundation over the corresponding group of free-standing piles is less than the increase 

in ultimate bearing capacity and is unlikely to be greater than 30%, irrespective of the pile 

spacing. Further, it is shown that the proportion of load carried by the pile cap drops from 

an initial value of about 50% down to a long-term value of 23%. 

Several methods of analysis are available to give an estimate of the bearing 

contribution of the cap. An approximate method, widely used in practice due to its 

simplicity, has been proposed by Randolph (1983a), in which the separate stiffnesses of the 

raft and the pile group are combined. The method is based on the use of average interaction 

factors between the pile and pile cap and takes no account of the detailed load distribution 

under the cap or the precise pattern of loads carried by the piles. The stiffness of the piles 

can be easily combined to give estimates of the overall stiffness and the proportion of load 

carried by each component. Comparison of the approach with more rigorous solutions 

shows good agreement for a 9-pile group. One disadvantage of the method is that it only 

gives total settlement, no attempt being made to assess differential settlements or bending 

moments in the raft 

In order to estimate the overall raft stiffness, pile group efficiency charts have been 

presented by Butterfield & Douglas (1981) and Fleming et al. (1992), while closed-form 

analytical solutions for circular or rectangular rafts have been introduced by Poulos & 

Davis (1974). 

Poulos & Davis (1980) proposed an 'equivalent pier approach' which allows the 

analysis of large pile groups by replacing the full number of piles by a small number of 

equivalent piers. Such an approach allows an estimate of differential settlements, which are 

often critical to design and therefore need to be reduced to an acceptable level. A more 

rigorous approach proposed by Randolph & Clancy (1993) provides a method of 

calculating the differential settlements of a piled raft from an analysis of the raft alone and a 

subsequent factorisation to account for the overall reduction in settlements due to the 

presence of the piles. This method has been termed the 'combined pile group and raft' 

approach. 

A recent study of Clancy & Randolph (1996) presents two approximate methods 

for the analysis of piled raft foundations: the first method combines the separate responses 

of the piles and raft in isolation; the second uses an equivalent-piered raft approach to 
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reduce greatly the number of piles analysed. Both methods provide good predictions of 

overaU piled raft stiffness and load-sharing between the piles while differential settlements 

are underestimated. Although these approximate methods are computationaUy efficient and 

simple to use, a full piled raft analysis is suggested to ensure the accuracy of the results. 

One of the first attempts to analyse rigorously the problem of pile group-pile cap 

interaction was presented by Ottaviani (1975) using three-dimensional finite elements, but 

this was restricted to a maximum of 15 piles because of enormous computational cost. 

In order to reduce computational resources, several hybrid approaches have been 

proposed, for instance the combination of BEM and FEM proposed by Hain & Lee (1978) 

and EI-Mossallamy & Franke (1997). 

A hybrid finite element-elastic continuum-load transfer approach including 

allowance for bending of the raft has been proposed by Griffiths et al. (1991). In this 

approach, the piles are modelled with one-dimensional rod finite elements, the pile-soil 

contact is represented at node points by linear load-transfer springs and the raft is 

subdivided into two-dimensional 'thin' plate elements. The three kinds of interactions, 

namely, pile-soil-pile, pile-soil-raft and raft-soil-raft are accounted for using the elastic 

theory of Mindlin (1936). The results from the analysis compared with the approximate 

method proposed by Randolph (1983a) show correct trends in terms of foundation 

stiffness, but a tendency for the approximate analysis to underpredict the amount of load 

carried by the raft by up to 30%, especially for low values of the pile-soil stiffness ratio. 

However, even with the development of hybrid methods which include allowance 

for bending of the pile cap, the applicability of complete numerical analyses to practical 

problems remains deficient, due to the considerable computer resources required for large 

piled foundations. It is therefore essential to employ approximate methods that represent 

extrapolation of more rigorous analyses. 

1.4 A review of methods of pile group analysis 

The complexity of the problem of pile-soil interaction has meant that generally 

some form of numerical method of analysis has to be resorted to. This section attempts 

to present a classification of these methods and examine similarities and differences 

among them. 
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Numerical techniques for estimating the performance of piled foundations fall 

into two main categories: continuum based approaches, such as FEM and BEM, and 

load-transfer approaches. The second category encompasses methods which are 

phenomenological by nature. The soil is treated not as a continuum but merely as a 

source of resistance to deformation of the pile. These methods, which are based on the 

so-called Winkler (1867) idealization of the soil, employ load-transfer functions to 

represent the relationship between the load at any point along the pile shaft and the 

corresponding deformation of the soil at that point. 

This category is attractive in its flexibility, enabling non-linear and inhomogeneous 

soil conditions to be incorporated easily (ie the t-z or p-y curve methods of analysis). The 

main drawback to this approach is that no direct tests can be conducted to establish force­

displacement relationships along the pile-soil interface for that particular pile and soil 

type - these curves must be back calculated from the data obtained by conducting pile 

load tests. Thus, a significant amount of engineering judgement is needed when formulating 

these curves for site conditions which differ markedly from the recorded field tests. In 

addition, disregard of continuity through the soil oversimplifies the problem and makes it 

impossible to fmd a rational way to quantify the interaction effects between piles in a group. 

In order to overcome these limitations, solutions based on finite element (Ottaviani, 

1975; Randolph, 1977) and boundary element (Poulos, 1968; Butterfield & Banerjee, 

1971a) modelling of the soil continuum have been proposed. These solutions provide an 

efficient means of retaining the essential aspects of pile interaction through the soil 

continuum and hence a more realistic representation of the problem. Further, the 

mechanical characteristics to be introduced into the model have now a clear physical 

meaning and they can be measured directly. 

1.4.1 Load-transfer method 

The load-transfer or modulus of subgrade reaction method has been probably the 

most widely adopted technique for the analysis and design of single piles, especially where 

non-linear soil behaviour has to be considered and/or soil stratification is complicated. The 

approach is unable to deal with pile groups and recourse has to be made to 'hybrid' 
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methods in which a continuum model is adopted to evaluate interaction effects between 

piles. 

The approach models the soil behaviour using load-transfer functions which relate 

the load per unit length of pile which is transferred to the soil at any depth along the pile, to 

the displacement of the pile at that depth. Thus, a load-transfer function is not a soil 

property but instead gives the overall effect of the soil continuum as seen by the pile at a 

specific depth, and hence this function will depend on the pile properties and loading 

conditions as well as the soil properties. 

1.4.1.1 Load-transfer analysis for axially loaded piles 

The use of the load-transfer method for the analysis of axially loaded single piles is 

based on an idea first proposed by Coyle & Reese (1966). Currently, several procedures are 

available to generate the relationship between shear stress at the pile shaft (load transfer, t) 

and pile displacement, z, along the pile shaft and at the tip. 

In the load-transfer method the pile is modelled as a system of one-dimensional rigid 

elements, connected by linear springs to represent pile shortening. Castelli et al. (1992) 

showed that inclusion of non-linear springs to account for pile shortening does not produce 

significant differences. However, use of non-linear springs is critical to model the soil 

resistance in skin friction and end-bearing, as indicated in Fig. 1.3. 

The governing differential equation for the axial displacement of a single pile may 

be written as: 

where 

Ep = Young's modulus of pile, 

Ap = cross sectional area of pile, 

w = axial displacement, 

z = depth coordinate, 

(1.6) 

kv = modulus of subgrade reaction of soil for vertical loading in units of 

forcellength2. 
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The governing differential equation may be solved by means of a finite difference 

approximation to obtain the relevant stiffness matrices for the pile and the soil (Meyer et 

ai., 1975). Although a consistent formulation of soil element matrix is more accurate, a 

lumped equivalent formulation in which the soil stiffness is lumped at the nodal points of 

the elements, will be adequate in most practical problems. Effects of soil nonlinearity may 

be simulated by using non-linear springs at the pile nodes. In order to represent different 

sizes of pile element and varying pile properties, a finite element representation of the pile 

may be more convenient (Smith, 1982). 

The approximate solution to Equation (1.6) is then solved using the incremental 

tangent stiffness approach by inputting lumped values of soil spring tangential reaction 

modulus kv at each node for each pile-head load or displacement increments. The modulus 

kv, which is a function of the load level, may be evaluated using t-z curves from a field test 

on an instrumented pile. However, such a test is expensive and 'standard' t-z curves are 

usually employed in practice. 

Work by Kraft et al. (1981) indicates that load-transfer curves may be constructed 

following the theoretical work of Randolph & Wroth (1978), in which the influence of pile 

shaft and pile base is considered separately. An empirical approach by Vijayvergiya (1977) 

proposes a form of t-z curve applicable to both side and end springs. A comparison of 

normalized theoretical and empirical curves (Ha & O'Neill, 1983) shows that the 

theoretical curve agrees well with the curve proposed by Coyle & Reese (1966), but differs 

markedly from the empirical curve by Vijayvergiya. This difference is mainly due to the 

higher Zc (the critical displacement required to mobilize the maximum shaft resistance) in 

the empirical curve. 

An efficient approach is outlined by Fleming (1992). This work, which is an 

extension of an idea first developed by Chin (1970), proposes a load-transfer method based 

on the use of linear-fractional (hyperbolic) functions to describe individual shaft and base 

performance. By a simple method of linkage, based on the fact that a linear-fractional 

function requires only definition of its origin, its asymptote and either its initial slope or a 

single point on the function, conventional elastic soil parameters and ultimate loads may be 

used to describe total performance. However, it has recently been recognised (England, 
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1993; Heming, 1997) that a double linear-fractional function (one related to shaft friction 

and another to end-bearing) would prove much more successful, as shown by analysis of 

over a thousand pile tests. 

1.4.1.2 Load-transfer analysis for laterally loaded piles 

The load-transfer approach for the analysis of laterally loaded single piles, known as 

the p-y curve method (where p is the lateral soil resistance and y the lateral pile 

displacement), is similar to the axially loaded case. The principles of the technique were 

established during the 1960's (Reese & Matlock, 1960; Matlock & Haliburton, 1964) and it 

has been used extensively since then, mainly to meet the demands of the oil industry for the 

design of offshore pile foundations. 

This technique models the pile as a vertical beam supported on horizontal (generally 

non-linear) springs representing the soil resistance, as indicated in Fig. 1.4. The governing 

differential equation for the deflection u of a laterally loaded pile is given by: 

where 

(1.7) 

Ep = Young's modulus of pile, 

/p = second moment of area of pile section, 

u = lateral displacement, 

z = depth coordinate, 

kh = modulus of subgrade reaction of soil for horizontal loading in units of 

forcellength2
, 

d = width or diameter of pile. 

The approximate solution to Equation (1.7) is then solved using the incremental tangent 

stiffness approach, in the same way as for the axially loaded case. The modulus kh' which 

varies at different load levels, may be evaluated using p-y curves obtained from back­

analysis of a field test or empirical p-y curves. Procedures for the construction of these 
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empirical p-y curves have been presented by Reese et al. (1974) for piles in sand and by 

Matlock (1970) and Sullivan et al. (1979) for piles in clay. 

This technique is widely used and it is recommended by the American Petroleum 

Institute (API) Code RP 2A (1984) for the design of pile foundations for offshore 

platforms, mainly with a view to assessing the effects of cyclic loading. However, such 

analyses are relatively complicated and time-consuming, and are rarely justifiable for 

onshore applications. 

1.4.1.3 Extension to pile groups 

In addition to the empiricism of load-transfer approaches, another major limitation 

of representing the soil by an equivalent spring is that no information is available from the 

analysis regarding the deformation pattern around the pile. Thus, it is not possible to 

evaluate the interaction between neighbouring piles in a group. In order to overcome this 

limitation, hybrid methods have been proposed, in which the use of elasticity to estimate 

interaction effects is combined with a load-transfer approach to determine single pile 

behaviour. 

One of the first attempts to solve the problem was developed by Focht & Koch 

(1973) who used the p-y approach for single piles, but considered pile-soil-pile interaction 

using a modification of the interaction factor approach proposed by Poulos (1971 b). They 

suggested the following equation to obtain the deflection of each pile of the group, 

assuming the soil to act elastically: 

where 

(1.8) 

P A: = deflection of the k -th pile. 

15 F = the unit reference displacement of a single pile under a unit horizontal 

load, computed by using the elastic theory, 

Hj = lateral load on pile j, 
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a pHi = interaction factor between pile j and k (fixed-head condition), as 

suggested by Poulos (1971 b), 

R = relative stiffness factor, 

Hk = the lateral load on pile k, 

n = number of piles in the group. 

The relative stiffness factor R is the ratio of the groundline deflection of a single pile 

computed by the p-y approach to the deflection computed by the Poulos method. In both 

instances, the lateral load on the single pile is the total lateral load acting on the pile group 

divided by the number of piles. It may be observed that, in the outlined approach, 

nonlinearity in the group response is only related to the behaviour of the pile head, and is 

thus not consistent with the stress level in the soil along the piles. Furthermore, the 

interaction factor approach only gives the loads and bending moments at the pile heads but 

not their variations along the piles. These variations need to be approximated by using 

single pile solutions with the corresponding pile head loads and bending moments. 

An improved method of analysis, including extension of the analysis to axially 

loaded pile groups, has been suggested by O'Neill et al. (1977), in which the soil response 

at the individual piles is modelled using load transfer curves (t-z or p-y curves), while pile­

soil-pile interaction is approximated by 'softening' the stiffnesses of the load-transfer curves 

with an empirical factor based on added soil displacements obtained from single pile 

solutions. Thus, an iterative procedure is required whereby the single pile load-transfer 

curves are continuously softened as a result of group effects. 

A refinement of this approach has been presented by Chow (1986a) and Leung & 

Chow (1987) in which the individual pile response is obtained by a load-transfer technique 

while pile-soil-pile interaction is considered directly using Mindlin's solution. It may be 

noted that by taking small load/displacement increments, the accuracy of the solutions is 

adequate for practical purposes without the need to iterate. Good agreement is observed 

when comparing this method with the commonly used interaction factor approaches for the 

computation of pile groups embedded in a homogeneous, isotropic half space. 

A simplified hybrid load-transfer approach for the analysis of linear and non-linear 

responses of axially loaded pile groups has been presented by Lee (1993). In this approach, 
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the non-linear single pile response is represented by a simple hyperbolic pile-soil model 

The shaft and base flexibility coefficients are considered separately, and semi-analytical 

c1osed-fonn solutions are derived to calculate these flexibility coefficients. The interaction 

between piles is evaluated explicitly by calculating, for pairs of identical piles, the average 

shaft and base flexibility coefficients. 

An alternative method for closely spaced pile groups subjected to lateral loading has 

been proposed by Brown et al. (1987) who apply p-y multipliers to account for group 

shadowing effects. This method represents a convenient way of predicting the loss of soil 

resistance in piles within trailing rows. Thus, it is possible to reduce the computed load­

carrying capacity of the piles in a group relative to the single pile capacity, as observed in 

load test results. 

In conclusion, the load-transfer approach may be regarded as a link between the 

interpretation of full-scale pile tests and the design of similar piles rather than a general 

design tool for 'class A' (Lambe, 1973) predictions. In fact, more general use of the 

method is restricted by the difficulty of evaluating suitable values of the coefficient of 

sub grade reaction from intrinsic soil properties. 

1.4.2 Finite element method 

The finite element method (Zienkiewicz, 1971) is theoretically the most powerful 

tool available to the pile designer, in which a variety of constitutive soil models can be 

employed and such aspects as soil inhomogeneity and anisotropy can be considered. In 

addition, the complete history of the pile may be simulated, ie the processes of installation, 

reconsolidation of the soil following installation, and subsequent loading of the pile (eg 

Nystrom, 1984). 

One of the first attempts to use three-dimensional finite elements for the analysis of 

a pile group under vertical loading was presented by Ottaviani (1975), but this was limited 

to a group of 15 piles embedded in a linear elastic homogeneous soil by the enonnous 

computer cost due the complexity of the single element stiffness computation and to the 

large number of elements needed to represent realistically a three-dimensional structure, as 

indicated in Fig. 1.5. The method has been used with some success for the analysis of a 

vertically loaded symmetrical pile group by idealising a ring of piles as a continuous annulus 
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of equivalent stiffness and the same total surface area as the piles which it replaces (Naylor 

& Hooper, 1974). 

However, the most useful and economically viable application of FEM is in the 

analysis of an axisymmetric pile foundation, ie a single cylindrical pile. In fact, the cost of a 

finite element analysis increases sharply as the transition is made from a two-dimensional to 

a three-dimensional problem. As a result, most finite element analyses of piles have been of 

vertically loaded cylindrical piles (see, for example, Ottaviani, 1972; Lee, 1973; Poulos, 

1979; Jardine et al., 1986). Brown & Shie (l990a, 1990b) presented analyses of laterally 

loaded single piles and small pile groups and proposed constitutive models for soil which 

include two types of plasticity models to represent either undrained loading of saturated 

clay or drained loading of sands. In addition, frictional interface elements are used to 

provide for slippage and gapping at the pile-soil interface. The three-dimensional nature of 

the problem and the high degree of nonlinearity which is present require an enormous 

computational effort (eg a mesh with 10,000 degrees of freedom has been used for the 

single pile) and preclude the routine use of such techniques in design. 

Zienkiewicz (1971) proposed to analyse the effect of non-axisymmetric loading of 

an axisymmetric structure, without the expense of a full three-dimensional treatment, by 

using techniques of Fourier analysis. 

Combined finite element and theoretical solutions have also been applied to piles 

and pile groups by the extensive work of Randolph and his associates (Randolph, 1977, 

1981, 1983a, 1983b, 1987, 1994; Randolph & Wroth, 1978, 1979, 1982; Clancy & 

Randolph, 1996; Guo & Randolph, 1997). Approximate analytical solutions for the axial 

and torsional response of single piles are based on the assumption that the load transfer 

down the pile shaft may be treated separately from that at the pile base. The load-settlement 

response for the pile base is obtained directly from the Boussinesq's (1885) solution for a 

point load acting on the surface of an elastic half-space. The pile shaft response is 

determined by considerations of vertical equilibrium (Cooke, 1974; Frank, 1974; 8aguelin 

et al., 1975). To evaluate the response of piles to lateral loading, Randolph has fitted the 

results of a parametric study using FEM by simple algebraic expressions giving the ground 

level deflection and rotation due to applied lateral load and moment. In order to extend 

such analyses to deal with pile groups, theoretical interaction factors are deduced from the 
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results of finite element analyses and expressed in terms of simplified expressions. By 

evaluating the interaction factors for all the possible pairs of piles in the group and by 

superimposing the effects, it is possible to yield the overall stiffness of the group. 

Although the outlined approach of Randolph and associates is confined to the 

assumption of linear elastic soil behaviour, it is widely used in practice due to its 

economy and simplicity. Instead, a complete FEM solution of the pile group problem is 

not possible in practice because of enormous computational cost and complexity. It 

may be concluded that FEM is essential for clarifying the mechanism of load transfer from 

the pile to the surrounding soil but, especially for pile groups, is not readily applicable to 

practical problems. The considerable effort of data preparation and the enormous 

computational effort (especially if non-linear soil behaviour is to be considered) make the 

cost of analysing realistic pile groups using FEM prohibitively expensive and restrict its 

applications to single piles. 

1.4.3 Boundary element method 

A reasonable compromise between the inadmissible simplicity of load-transfer 

approaches and the disproportionate complexity of FEM is provided by boundary element 

methods, in which the characteristics of the soil response are represented in a lumped form 

by ascribing the behavioural features of the soil to the pile-soil interface elements. This 

approach, based on a surface discretization scheme, provides a complete problem solution 

in terms of boundary values only (specifically at the pile-soil interface), with substantial 

savings in computing time and data preparation effort. Thus, for three-dimensional 

problems involving low surface area to volume ratios, such as those found in pile 

foundation problems, BEM represents a simpler and more efficient approach than FEM. 

Indeed, most of the existing formulations for pile analysis are of the boundary element type 

and hence the approach is widely used in practice. 

In FEM the differential equation governing the behaviour of an elastic medium are 

solved by discretizing the continuum into a number of elements or node modules. By 

contrast, BEM relies on one or more particular, exact solutions of the whole continuum. By 

superposing a number of these particular solutions, distributed over the surface of the 
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elastic body (ie the pile-soil interface), the boundary conditions may be satisfied and an' 

exact solution generated. 

Most of BEM analyses are based on the consideration of the pile and the 

surrounding soil domains separately and then compatibility and equilibrium conditions are 

imposed at the interface. The elastic solution of Mindlin (1936) is often employed to relate 

the stress and displacements fields due to a point load acting in the interior of a 

homogeneous elastic half-space. This solution is particularly convenient for analysing the 

pile problem since the boundary conditions along the (unloaded) ground surface are 

automatically satisfied. This has led to its widespread use in the analysis of piles and pile 

groups since 1970' s, mainly due to the work of Poulos and Banerjee with respective 

associates. It should be emphasised that Mindlin's solution is strictly valid for a 

homogeneous soil. However, in practice, the influence of soil inhomogeneity is often 

approximated using some averaging of the soil moduli (Banerjee, 1978; Poulos, 1979; 

Chow, 1986a, 1987a; Yamashita et al., 1987). 

There are other known solutions of an elastic continuum, besides that developed by 

Mindlin. Chan et al. (1974) formulated, by the technique of integral transforms, the 

solution of a layered half space subjected to a concentrated force acting in the interior of 

the system. This solution has been applied to pile problems by Banerjee (1978), Banerjee & 

Davies (1978), Chin (1988), Chin & Poulos (1991) and Chow et al. (1990). Banerjee 

(1976) outlined a method based on Kelvin's (1848) solution for a point load acting in the 

interior of an infinite elastic continuum, which enables the analysis of piles embedded in a 

layered soil. Using this method, it is possible to analyse the problem of a pile in a Gibson 

soil by treating the soil as a number of homogeneous layers (Banerjee & Davies, 1977). The 

main drawback to this approach is that the stress resultants are distributed over each 

interface between the layers and so the total number of equations to be solved is 

considerably greater than for the case of a pile in a homogeneous soil. Thus, the analysis is 

very expensive in terms of computational cost 

An outline of the principles involved in the BEM analysis of axially and laterally 

loaded piles is given below. 
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Axially loaded piles. It is assumed that the pile and the soil are initially stress-free and that 

no residual stresses exist in the pile resulting from its installation. As regards the soil 

domain, a set of distributed stress resultants acting at the boundary of the pile is considered, 

as indicated in Fig. 1.6a. These stress resultants, which may be regarded as shear stresses 

down the pile shaft and normal stresses at the pile base, are assumed to be symmetric about 

the pile vertical axis and are constant over each element of the pile-soil interface. The 

greater the number of these elements, ie the finer the discretization of the pile-soil interface, 

the more accurate the final solution will be. Making use of the Mindlin's solution, the 

vertical displacement of the mid-point of each pile element may be calculated by integrating 

the effects of all the stress resultants. 

The pile, at present regarded as a free-standing cylindrical pile, is subjected to equal 

and opposite stress resultants along its boundary, balanced by the applied axial load, as 

shown in Fig. 1.6b. In addition, from elasticity, compression of the pile under this axial 

loading may be calculated at the same points as the displacements were calculated in the 

soil. 

If conditions at the pile-soil interface remain elastic and no slip or local yield occurs 

at any of the elements, it is possible to match these two displacement fields and satisfy 

overall equilibrium and hence values of the unknown stress resultants may be calculated. 

The final step replaces the soil from within the pile-soil boundary with the actual pile. The 

key-point of the method is that, if tractions are applied at the interface so that the 

deformation is compatible with that of the free-standing pile under equal and opposite 

tractions, then it is immaterial whether there is pile or soil inside the shaded region of Fig. 

1.6c. 

Laterally loaded piles. The approach to laterally loaded piles is similar to that for 

axially loaded piles except that an equivalent pile is considered, as proposed by Poulos 

(1971 a). Referring to Fig. 1.7, the pile is idealized as an infinitely thin strip of the same 

diameter (or width) and bending rigidity as the prototype pile. Normal stress intensities 

are assumed to act on both faces of the strip pile and, if purely elastic conditions 

prevail, compatibility of the horizontal displacement fields is considered. It is also 

assumed that the soil at the back of the pile near the ground surface adheres to the pile. 
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An approximate method of allowing for pile-soil separation is outlined by Poulos & 

Davis (1980). 

The earliest contribution to the analysis of pile behaviour by BEM is due to Poulos and 

his associates (Poulos, 1968, 1971a, 1971b, 1973, 1974, 1975, 1976, 1977, 1979, 

1980a, 1980b, 1982, 1988, 1989, 1990, 1993, 1994; Poulos & Davis, 1968, 1974, 

1980; Poulos & Mattes, 1969, 1971; Poulos & Hewitt, 1986; Mattes & Poulos, 1969). 

This work has resulted in a wealth of information on the response characteristics of 

pile foundations. The approach, based on Mindlin's solution, adopts the procedure 

outlined above to evaluate the axial and lateral response of single piles and also to 

calculate interaction factors between pairs of adjacent, identical piles. A method has 

also been developed by Poulos & Hewitt (1986) to evaluate axial interaction between 

dissimilar piles in a group. 

Poulos & Davis (1980), for pairs of identical piles embedded in a homogeneous 

elastic soil, provide useful design charts for the calculation of the interaction factors as 

a function of the pile spacing, the relative pile-soil stiffness and the geometric 

characteristics of the piles. Allowance is also made for the effects of a finite base layer, 

enlarged pile bases and variation of the Poisson's ratio. 

For a group of piles, the interaction factors calculated for all the possible pairs of 

piles in the group may be superimposed and used together with the single pile stiffnesses to 

yield an overall stiffness of the group. This approach, termed 'the interaction factor 

method', is widely used in practice due to its relative simplicity and economy compared 

with the complete BEM approach of Banerjee and associates (the latter approach is 

discussed below). 

A modified form of the interaction approach has been described by Poulos (1988). 

This approach considers that, in reality, the soil between piles undergoes smaller strains and 

is likely to be stiffer than near the pile-soil interface, and hence interaction between the piles 

will consequently be reduced. In order to take into account these effects, different 

horizontal values of soil Young's modulus are used to determine the single pile behaviour 

and the interaction factors. This approach allows a better agreement between measured and 

calculated group settlements (Poulos, 1989). 
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Poulos (1980b, 1990) presented an extension of the outlined linear elastic approach 

to include soil nonlinearity, in an approximate manner, by limiting the stresses at the pile­

soil interface, specifically shear stresses for axial loading and normal stresses for lateral 

loading. However, the analysis is limited to groups of 25 piles due to enormous 

computational resources needed to analyse larger groups (Poulos, 1993). 

It should be emphasised that the interaction factor approach is a fairly approximate 

procedure because the interaction coefficients of each pair of piles do not take into account 

the simultaneous presence of all the piles in the group. In order to overcome this limitation, 

the work of Banerjee and his associates solves the problem of pile-soil-pile interaction by 

taking into account the simultaneous interaction of all the piles of the group with the 

surrounding soil. In this category of methods, termed 'complete' analysis methods, the 

behaviour of each pile is considered in detail by evaluating, by means of Mindlin's 

solution, its displacement from the stress resultants on all the piles of the group. Thus, 

piles of different length, diameter and/or stiffness within a group may be easily 

incorporated. The analysis is generally based on the assumption that all piles are 

connected by a rigid cap which imposes the same head deformations and prevents 

differential head rotation. 

For axially loaded piles and pile groups, a rigorous (linear elastic) analysis has been 

proposed by Mattes (1969, 1972) and Butterfield & Banerjee (1970, 1971a, 1971b), in 

which both vertical and radial displacement compatibility are considered, and a normal 

stress system should also then be imposed on the pile elements. Thus, the contribution 

to vertical displacements from the radial stress resultants and vice versa must be 

considered too. However, Mattes (1972) and Poulos (1977) showed that this more 

sophisticated analysis produces a load-deformation behaviour and distribution of shear 

stress along the pile that are almost identical with those from a simpler analysis that 

considers only vertical displacement compatibility. Only for relatively short piles 

(length to diameter ratio less than 25) does the inclusion of radial displacement 

compatibility have any effect on the solutions, and even in such cases the effect is 

unimportant from a practical point of view. Therefore, in subsequent work, the 

contribution of radial resultant stress has been ignored. 
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Banerjee & Driscoll (1975, 1976, 1977) presented a complete analysis of a pile 

group under general loading conditions (ie vertical loads, horizontal loads and 

moments) in the assumption of linear elastic soil behaviour. The analysis of raked piles 

is carried out by considering two sets of stress resultants, one parallel to the sides of 

the pile and the other normal to the pile, and then the horizontal and vertical 

components of these stresses are taken; this enables Mindlin's solution to be applied in 

order to produce horizontal and vertical displacement fields. For a single raking pile, 

the horizontal displacements due to vertical stress components and vice versa are 

assumed to be negligible (Banerjee & Driscoll, 1974). 

Banerjee & Davies (1980) have also described an approximate non-linear 

method of analysis in which, by means of an incremental and iterative procedure, the 

effects of yielding and slipping are introduced by distributing initial stresses over 

volume cells and distributing initial surface tractions over slip-surfaces, respectively. 

However, the method is restricted to small pile groups due to enormous computational 

resources required to analyse the response of large groups of piles. 

In conclusion, even in linear elastic hypothesis of soil behaviour, the 

computational resources required to perform the complete analysis described above 

become excessive for all but the simplest foundation systems. 

1.5 Computer programs for pile group analysis 

The complexity and magnitude of pile group problems have necessitated the use of 

computer programs based on the methods outlined in the previous sections. Currently, a 

number of computer programs are available, by which pile groups under general loading 

conditions (ie vertical loads, horizontal loads and moments) may be analysed in order to 

give estimates of the deformations and load distributions among the piles. Such programs 

have led to a much better understanding of the factors which affect the performance of a 

pile group and have enabled parametric studies (in the linear elastic range) to be 

undertaken. 

Computer programs for the analysis of pile groups vary in the type of approach 

used and in the sophistication of treatment of different aspects of group behaviour. A brief 
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description of some of the programs which are currently widely available, and for which 

some comparison of results has been undertaken, is given below. 

• PGROUP (Banerjee & Driscoll, 1976) is based on a complete BEM solution of the pile 

group, ie the simultaneous effect of all elements of all the piles within the group is 

considered. The soil, which is assumed to behave linearly elastically, may be variously 

idealised as a homogeneous, Gibson or two-layered material. The effect of a (rigid) cap in 

contact with the ground may be analysed. Pile group systems of up to 200 piles (vertical or 

raked), up to 100 cap elements and up to 400 degrees of freedom may be analysed. This 

program is, in principle, the most rigorous of the programs discussed - in practice, the 

computational resources required to perform the analysis become excessive for all but the 

simplest foundation systems, thereby precluding its use for routine design problems. 

• DEFPIG (Poulos, 1980a) is based on a simplified BEM approach for the analysis of single 

piles and the use of interaction factors for two equally loaded identical piles. The program 

is limited to groups of up to 160 identical piles. Initial calculation of the individual pile 

stiffnesses and interaction factors involves a large amount of computing time, even for a 

relatively small pile group. The program can handle, in an approximate manner, non­

homogeneous soil profiles, by an averaging procedure using Mindlin's solution, and non­

linear pile-soil response, by limiting the stresses at the pile-soil interface. However, use of 

the non-linear option of the code is restricted to groups of 25 piles because it needs 

enormous computational resources. Pile cap elements may be included for vertical loading. 

• PIGLET (Randolph. 1987) is based on approximate analytical solutions that are either 

derived theoretically or fitted to FEM results to give single pile response. Pile-soil-pile 

interaction is based on interaction factors determined from expressions fitted to the results 

of finite element analyses. The program can analyse groups of up to 300 vertical or raked 

piles. which are all of same length. The soil is modelled as an elastic material. with a linear 

variation of stiffness with depth. Rigid or flexible pile cap (for vertical loading only) may be 

considered while the effects of pile cap-soil interaction are neglected. Since the program 
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makes use of previously derived solutions, computing time is reasonable, the main 

limitation being the assumption of linear elastic soil behaviour . 

• GRUPPALO (Mandolini & Viggiani, 1997) is based on a hyperbolic load-settlement 

relationship for the single pile response and the use of interaction factors to evaluate group 

effects. The soil is modelled as a horizontally stratified elastic medium. The non-linear 

behaviour of the single pile is simply obtained by fitting the results of loading tests with a 

hyperbolic function (Chin, 1970), while the interaction between pairs of piles is evaluated 

by means of a linear elastic BEM model The code is restricted to axially loaded pile 

groups. 

It is worth noting that the interaction factor approach (employed in DEFPIG, PIGLET and 

GRUPPALO) produces the following limitations: 

(a) The superposition of the two-pile interaction factors to determine the pile group 

response is approximate only, as the reinforcing effect of intervening piles in a group is 

ignored; such an approach leads to an overestimation of interaction between piles; 

(b) The use of interaction factors becomes questionable for cases in which not all the piles 

are identical; 

(c) The interaction factor approach only gives the loads and bending moments at the pile 

heads, but not their distributions along the piles; these may only be approximated 

utilising the single pile solutions with the corresponding pile head loads and bending 

moments. 

These limitations can be removed by adopting a complete BEM or FEM analysis of the 

group (for example, that employed in PGROUP). 

Other computer codes, such as PILGPI (O'Neill et al., 1977) and the ones 

developed by Chow (1987b, 1987c), propose a hybrid approach in which load-transfer non­

linear springs are used to obtain the response of the individual piles and a continuum model 
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is used to detennine the effects of interaction between the piles. Their main disadvantages 

lie in the assessment of the value of the modulus of subgrade reaction from intrinsic soil 

properties and the computational effort required to analyse large groups. 

1.6 Concluding remarks 

Application of available numerical methods to realistic pile group problems is 

deficient because these are mainly restricted to linear elastic analyses and relatively 

small groups of piles. With respect to the first limitation, it should be emphasised that 

the assumption of a linear elastic soil model is unrealistic for most soils and the choice 

of a suitable secant soil modulus is by no means straightforward. In addition, for pile 

group systems designed according to the deformation-based approach, and hence 

characterised by a low safety factor, consideration of soil nonlinearity becomes 

compulsory. Further, current methods suffer from limitations imposed by the number of 

piles in the group and the global dimension of the problem which render such analyses 

computationally inefficient. 

It is expected that the numerical method developed in this thesis will remove 

these restrictions, thereby leading to an improved understanding of pile group 

behaviour and considerable savings in construction costs. 
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(a) (b) 

Fig. 1.3 Load-transfer analysis of pile under axial loading V. (a) Actual pile. (b) Pile 

modelled as a system of rigid elements connected by springs. Soil resistance modelled as 

external springs. 

H H 

(a) (b) 

Fig. 1.4 Load-transfer analysis of pile under lateral loading H. (a) Actual pile. (b) Pile 

modelled as a vertical beam supported on horizontal springs. 
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Fig. 1.5 Three-dimensional finite element mesh for a vertically loaded 3 x 2 pile group 

(after Ottaviani, 1975). 
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Fig. 1.6 Schematic diagram of boundary element approach for an axially loaded pile. (a) 
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Fig. 1.7 Boundary element analysis of a pile under horizontal loading H and moment M. 

(a) Actual pile. (b) Pile idealised as a thin strip. 
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2.1 Summary 

Formulation ofthe non-linear BEM analysis 

CHAPTER 2 

Formulation of the 

non-linear BEM analysis 

This Chapter describes the proposed boundary element method formulation for 

the non-linear analysis of pile groups embedded in cohesive soils and subjected to 

general loading conditions (ie vertical and horizontal loads and moments). This 

formulation has been implemented in a computer program called PGROUPN. The 

analysis is capable of determining the load-displacement and rotation response of the 

pile cap and the loads and moments carried by the individual piles of the group. Soil 

inhomogeneity and nonlinearity are accounted for in the analysis, in an approximate 

manner. 

2.2 Introduction 

A complete boundary element approach, implemented in the computer program 

PGROUPN, is presented for the non-linear analysis of realistic pile groups embedded in 

cohesive soils (specifically fully saturated clay under undrained conditions) and 

subjected to any combination of vertical loads, horizontal loads and moments. The 

program, given the geometry of the piles, their stiffness and the soil stiffness profile, 

computes the pile cap load-displacement and rotation response and the distribution of 

stresses, loads and moments in the individual piles of the group. The soil may be 

idealized as a homogenous or a Gibson soil which, optionally, may be underlaid by a 

rigid base. The piles are assumed to be rigidly connected by a rigid cap (a reasonable 

assumption in most cases) which imposes the same horizontal head displacements and head 

rotations for all piles, while differential vertical head displacements are solely due to 

rotation of the rigid cap. The pile cap is assumed to be clear of the soil (the so-called 'free-
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standing cap'), ie the effects of interaction between cap and soil are neglected. This is a 

plausible assumption in most practical situations where it is customary to ignore the 

resistance offered by the superficial soil layers. For this purpose, it is possible to specify a 

gap between the pile cap and the effective ground surface. Piles may have different 

geometries (length, external and internal diameter, base diameter) and may be inclined in 

the direction of horizontal loading. 

The analysis is based on the indirect formulation of BEM, as fIrst proposed for 

pile group analysis by ButterfIeld & Banerjee (1971a). The approach employed in this 

thesis may be regarded as an extremely efficient extension of the complete BEM 

algorithm proposed by Banerjee & Driscoll (1976), and implemented in the computer 

program PGROUP. 

It has been shown that application of the complete BEM solution to large pile 

groups is uneconomical due to enormous computational resources. This restricts its 

use in normal design (ButterfIeld & Douglas, 1981; Randolph, 1994; Mandolini & 

Viggiani, 1997). By contrast, one of the main features of the proposed analysis lies in 

its capability to adopt a complete BEM approach while retaining a highly 

computationally efficient code, and this renders the analysis of large groups 

economically viable with an ordinary desktop computer. 

The other innovative aspect of the proposed analysis is the inclusion of the non­

linear continuum response of the surrounding soil by means of a stepwise linear incremental 

procedure. A signifIcant simpliftcation of the method is that, although assumed limit stress 

conditions at the pile-soil interface are satisfied, the yield conditions within the soil 

continuum are not explicitly satisfIed. However, previous work on BEM analysis of pile 

foundations (Poulos & Davis, 1968; Poulos, 1980b; Chow, 1986a; Davies & Budhu, 1986; 

Lee, 1997) indicates that the errors engendered by this approach are slight and the method 

is capable of capturing all of the essential features of the problem. The non-linear analysis 

is based on an elastic-perfectly plastic model for the soil, which is assumed to behave 

linearly elastic at small strain levels, but fails when the stresses at the pile-soil interface 

reach certain limiting values, namely, bearing failure in the compression zone (ie the 

base for the axial response and the shaft for the lateral response) and shear failure in 

the slip zone (ie the shaft for the axial response). 
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The main modifications to the BEM algorithm developed by Banerjee & 

Driscoll (1976) may be summarised as follows: 

1) Various strategies adopted for achieving efficiency gains: (a) the pile base is 

represented by one (circular) element only; (b) the diagonal soil flexibility terms are 

calculated via analytical integration of the singular Mindlin functions; (c) the off­

diagonal soil flexibility terms are evaluated by approximating the continuously 

distributed loads by equivalent point loads acting at the pile nodes; (d) use of Bernoulli­

Euler beam theory for pile domain discretization and analytical integration of the 

singular functions; (e) exploitation of similarities in forming single-pile flexibility 

matrices; (0 more efficient calculation of the unit boundary condition vector; (g) 

pile-soil system solved via LU decomposition; 

2) Inclusion of non-linear soil response. 

2.3 Soil model 

It is assumed, for simplicity, that the soil behaves as an elastic-perfectly plastic 

material. While such a simple model cannot fully describe the behaviour of soils, it is 

sufficiently accurate for most practical boundary-value problems. 

The soil parameters required in the analysis are the profIles of the undrained 

shear strength (CII) and the Young's modulus (E,), while the Poisson's ratio (v,) is 

assumed to be constant throughout the pile depth. Two possibilities are included: 

homogeneous soil, with CII and E, assumed constant throughout the pile depth, or a 

Gibson soil, with ell and Es assumed to vary linearly with the depth (z) below ground 

level: 

ell = ellD +CZ (2.1) 

(2.2) 
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where Cwo and E.o are the undrained shear strength and Young's modulus at the ground 

surface, respectively, and c and m are constants. The Gibson soil would typically be 

representative of a normally consolidated or lightly overconsolidated clay, whereas the 

uniform soil might be more representative of a heavily overconsolidated clay. 

2.4 Method of analysis 

The basic requirements for developing a boundary element formulation for 

elastostatics are a reciprocal identity between two elastic states, such as the reciprocal 

work theorem, and a fundamental point force solution of the governing differential 

equation of the problem (for statics it may be readily obtained from the Navier-Cauchy 

equation as a special case). The synthesis of the reciprocal identity and the point force 

solution may be accomplished in two separate ways, namely, the direct and the indirect 

BEM methods. The direct method (Rizzo, 1967; Cruse 1969, 1973, 1974; Lachat & 

Watson, 1976) is formulated in terms of physical quantities such as displacements and 

tractions, while the indirect method (Massonet, 1965; Butterfield & Banerjee, 1970, 

1971a, 1971b; Banerjee & Driscoll, 1976) is based on 'fictitious' quantities as source 

densities (eg displacement gradients). However, the formal equivalence of the two 

methods can be established quite easily using the reciprocal work theorem. 

The approach presented in this thesis, based on the indirect formulation of BEM, 

involves the selection of an elementary singular solution of the governing differential 

equation of the problem. Then, by distributing this singular solution in terms of an arbitrary 

density function (traction vectors) over the surface of a given domain, a general solution in 

terms of the arbitrary function is developed. These point force solutions can be conceived 

as influence coefficients which express the displacement at any point (field point) in the 

solid due to a point load acting at any other point (load point), in terms of the coordinates 

of the load and field points and the elastic properties of the solid. With reference to the 

present problem, which involves an unloaded ground surface, it is convenient to adopt the 

solution of Mindlin (1936) for a point load within a semi-infinite medium, whose elastic 

properties are defmed by the shear modulus G. and the Poisson's ratio v •. 

The proposed approach is based on a linear elastic analysis which is then 

extended to allow approximately for soil nonlinearity by means of an incremental 
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procedure. The method involves discretization of the pile-soil interface into a number of 

surface elements - this number must be the same for each pile in the group, 

irrespective of pile length (refer to Fig. 2.1). The behaviour of each element is considered 

at a node which is located at the mid-height of the element on the centre line of the pile. 

The stress on each element is assumed to be constant, as shown in Fig. 2.2. According to 

widely accepted methods of pile group analysis (Banerjee & Driscoll, 1976; Poulos, 

1980a; Randolph, 1987), it is assumed that there is no coupling between axial and 

lateral response of each pile element. As regards the axial response of the single pile, 

the pile-soil interface is discretized into a number N of shaft cylindrical elements over 

which axial shear stresses are applied, while the base is represented by a circular (disc) 

element over which normal stresses are acting. This is a ftrst simpliftcation of the 

analysis of Banerjee & Driscoll (1976) in which the base may also be subdivided into a 

number of elements. As regards the lateral response, the pile is assumed to be a thin 

rectangular strip which is subdivided into a number N of rectangular elements. Only normal 

stresses on the compressive face are considered. Further, if the pile base is assumed to be 

smooth, the effects of the tangential components of stresses over the base area can be 

ignored. Thus, each pile is characterised by (2N+ 1) surface elements. 

In the proposed analysis, the soil and pile compliance equations are evaluated 

separately and then compatibility and equilibrium are imposed at the interface. Given unit 

boundary conditions, ie unit value of vertical displacement, horizontal displacement or 

rotation of the pile cap, these equations are solved, thereby leading to the distribution of 

stresses, loads and moments in the piles for any loading condition. 

2.4.1 Soil domain 

Assuming purely linear elastic soil behaviour, the soil deformations at the pile­

soil interface nodes can be related to the soil tractions via integration of the Mindlin's 

kernel (Mindlin, 1936), yielding (eg Banerjee & Driscoll, 1976): 

(2.3) 

where 
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{Us} = column vector of soil displacements of size (2N+ 1), 

{tJ = column vector of soil tractions of size (2N+ 1), 

[ Gs ] = square matrix, of size (2N+ I) X (2N+ 1), of soil flexibility coefficients 

obtained via integration of the Mindlin's kernel for the axial and lateral 

response (for further details see Appendix 2.1), 

N = number of pile shaft elements per pile. 

The off-diagonal flexibility coefficients of [G.] are evaluated by approximating the 

influence of the continuously distributed loads by discrete point loads applied at the nodal 

points along the centerline of the piles; the rationale being that, at some distance, their 

effects on the soil displacements are indistinguishable. The accuracy of this assumption has 

been verified for pile groups by Chow (1986a) and Leung & Chow (1987). Instead, the 

approach of Banerjee & Driscoll (1976) considers distributed stresses over the pile-soil 

interface. 

The diagonal terms of the flexibility matrix [G.] are calculated via analytical 

integration of the singular Mindlin functions (see Appendix 2.1), which has yielded very 

accurate results with considerable saving of computing time. This is one of the innovative 

features of the proposed analysis and represents a significant advance over previous work 

where these have been integrated numerically (ie Butterfield & Banerjee, 1971a; Banerjee 

& Driscoll, 1976), since these singular integrals require considerable computing resources, 

especially for large pile groups. 

It is worth noting that the soil flexibility matrix [G.] obtained from Mindlin's 

solution is fully populated (in the initial stage of elastic loading) in contrast with the load­

transfer methods which suppose a diagonal flexibility matrix. 

Approximate treatment for non-homogeneous soil. Mindlin's solution is strictly applicable 

to homogeneous soil conditions. However, in practice, this limitation is not strictly adhered 

to, and the influence of soil non-homogeneity is often approximated using some averaging 

of the soil moduli. In this thesis, non-homogeneity of the soil is taken into account in the 

manner proposed by Poulos (1979). In the evaluation of the influence of one loaded 

element on another, the value of soil modulus is taken as the mean of the values at the two 
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elements. This approximation is particularly adequate in problems where the soil stiffness 

increases linearly with depth (Gibson soil) and it is widely accepted to analyse pile groups 

under general loading conditions (see, for example, Poulos ,1980a; Leung & Chow, 1987; 

Chow, 1986a, 1986c, 1987b). It should be emphasised that this approximate solution 

becomes inaccurate if large differences in soil modulus exist between adjacent elements or 

if a soil layer is overlain by a much stiffer layer (Poulos, 1989). 

Approximate treatment for layer of finite depth. The elements of the soil flexibility matrix 

[G .. ] calculated as previously described (refer to Equation (2.3» apply only for a soil mass 

of infinite depth. However, Mindlin's solution may be used to obtain approximate solutions 

for a layer of finite thickness by employing the Steinbrenner approximation (Steinbrenner, 

1934) to allow for the effect of the underlying rigid base in reducing the soil displacements 

(poulos, 1968, 1977, 1980a, 1989; Poulos & Davis, 1968). From this approximation, the 

flexibility coefficient (O!(H» relating axial displacement for a nodal point i in a layer of 

depth H due to axial stress on element j is given by: 

where 

(2.4) 

0;(00) is the flexibility coefficient relating axial displacement for a nodal point i 

due to axial stress on elementj in a semi-infinite mass; 

G.Hj
(-) is the flexibility coefficient relating axial displacement for a point within 

the semi-infinite mass directly beneath i at a depth H below the surface due 

to axial stress on element j. 

Thus, the adjusted coefficients of [Gs ] are introduced into Equation (2.3). It should be 

emphasised that for piles bearing directly on a stiffer stratum, ie H = L (where L is the pile 

length), this approximation becomes less reliable (Poulos & Davis, 1968; Poulos, 1977), 

and alternative approaches have to be employed (eg the 'mirror-image' technique described 

by Poulos & Davis, 1980). 
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2.4.2 Pile domain 

If the displacements of the pile-soil interface are known, then Equation (2.3) can be 

solved directly. But these displacements can be specified only for perfectly rigid piles - for 

most practical situations, piles cannot be considered as rigid and hence we must couple 

Equation (2.3) with a corresponding set obtained from the considerations of the axial and 

flexural rigidity of the pile domain (Banerjee & Driscoll, 1976). 

This can be accomplished by considering the piles as simple beam-columns rigidly 

fixed at their heads to the pile cap. Following the subdivision of the pile shaft into N 

number of elements, the displacements and tractions at the pile-soil interface nodes can be 

related to each other via the Bernoulli-Euler beam theory (eg Ahmad et al., 1985), yielding: 

where 

{ U p J = column vector of pile displacements of size (2N+ 1 ), 

{t p} = column vector of pile tractions of size (2N+ 1), 

(2.5) 

[ G p] = square matrix, of size (2N+ 1) x (2N+ I), of flexibility coefficients obtained 

via integration of the Bernoulli-Euler kernel for the axial and flexural 

response of the pile (for further details see Appendix 2.2), 

{B} = column vector, of size (2N+ 1), of pile displacements due to unit boundary 

displacements and rotation of the pile cap (see Section 2.4.3). 

The coefficients of the pile flexibility matrix [ G p] are calculated via analytical integration of 

the Bernoulli-Euler kernel It is worth noting that use of the elementary (Bernoulli-Euler) 

beam theory for pile domain discretization is computationally more efficient than the finite 

difference approximation adopted in the analysis of Banerjee & Driscoll (1976). 

2.4.3 Solution of the pile-soil system 
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In order to couple these equations for the pile domain (2.5) with those for the soil 

domain (2.3), compatibility and equilibrium at the pile-soil interface must be invoked. The 

equilibrium condition implies that the tractions acting on the soil are equal and opposite to 

the tractions acting on the pile: 

(2.6) 

Compatibility at the pile-soil interface implies that the displacements of the soil are equal to 

the displacements of the pile: 

(2.7) 

If the conditions of equilibrium (2.6) and compatibility (2.7) are substituted into the 

Equation (2.3) for the soil domain, Equations (2.3) and (2.5) can be combined and the 

following set of m(2N+ I) simultaneous linear equations can then be written for the group 

of m piles: 

{tp}=-[Gp+Gsr{B} (2.8) 

where 

{t p} = column vector of pile tractions due to unit boundary conditions of 

size (m xM), 

= (2N+ 1) is the total number of elements per pile, 

= fully populated (m x M) x (m x M) square flexibility matrix of the 

group, 

{B} = column vector of unit boundary conditions of size (m x M). 

The assembly of the global flexibility matrix [G p + Gs ] for a group of m = 2 piles with a 

number N of pile shaft elements (per pile) can be described by the following expression: 
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(G;,t.l +(G;,t.l (0:')1.1 ( G;')~2 (G:)1.2 

[Gp +G.]= 

where 

(G
QQ

) 
P 1.1 

(G
QQ

) • 1.1 

(G;)I.I 

(G;")I.I 

(0;)1.1 

(G;')1.2 

(G:t.1 (0;)1.1 +(~L.I ( <1.") 1.2 (~L2 

( G;o)2.1 (0:)2.1 ( a; )2,2 +( G.(JtJ )2,2 ( G:')2,2 

(o:a)2.1 ( 0:)2,1 (o:a)2,2 (G,: )2,2 +(0:)2.2 

= single-pile submatrix, of size (N+ 1) X (N+ 1), of flexibility 

coefficients relating axial displacements and axial tractions of 

pile 1 for pile domain, 

= single-pile submatrix, of size (N+ 1) x (N+ 1), of soil flexibility 

coefficients relating axial displacements and axial tractions of 

pile 1, 

= single-pile submatrix, of size (N+ 1) x N, of soil flexibility 

(2.9) 

coefficients relating axial displacements and transverse tractions 

of pile 1, 

= single-pile submatrix, of size N x (N+ 1), of soil flexibility 

coefficients relating transverse displacements and axial tractions 

of pile 1, 

= single-pile submatrix, of size N x N, of flexibility coefficients 

relating transverse displacements and transverse tractions of pile 1 

for pile domain, 

= single-pile submatrix, of size N x N, of soil flexibility coefficients 

relating transverse displacements and transverse tractions of pile 1, 

= interaction submatrix, of size (N+ 1) x (N+ I), of soil flexibility 

coefficients expressing axial displacements of pile 1 due to axial 

tractions on pile 2, 
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= interaction submatrix, of size (N+ 1) x N, of soil flexibility 

coefficients expressing axial displacements of pile 1 due to 

transverse tractions on pile 2, 

= interaction submatrix, of size N x (N+ 1), of soil flexibility 

coefficients expressing transverse displacements of pile 1 due to 

axial tractions on pile 2, 

= interaction submatrix, of size N x N, of soil flexibility coefficients 

expressing transverse displacements of pile 1 due to transverse 

tractions on pile 2. 

The average coefficients of the single-pile flexibility submatrices (G:') ,( G;a ) ,(G:' ) 
1.1 1.1 2.2 

and (G: L.2 are of the order of 104 times the average coefficients of the remaining 

submatrices (see, for example, Banerjee & Driscoll, 1977). Thus, in the present analysis, 

these submatrices can be assumed to be zeros without introducing any serious errors. This 

physically means that, in the evaluation of the single pile response, the contribution of axial 

displacements due to transverse tractions and transverse displacements due to axial 

tractions can be ignored. 

The analysis described above needs prescribed displacements of the pile cap. 

However, for most problems, it is the loading that is specified. Therefore we need to 

establish the relationship between the displacements of the cap and the applied loading. 

This can be accomplished by successively applying unit vertical displacement w, unit 

horizontal displacement u and unit rotation 6 to the pile cap with the corresponding rigid 

body displacements of the pile group {B} as shown in Fig. 2.3, and calculating the vertical 

load, horizontal load and moments necessary to equilibrate the system of stresses 

developed. In practice, the unit vertical displacement, the unit horizontal displacement and 

the unit rotation problems are solved independently, so that {t p J and {B} are represented 

by three column vectors (one for each unit boundary condition). Thus, Equation (2.8) can 

be written as: 
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where 

{t;} = -(Gp +Gsr {BI:} (2.10) 

{t; } = three vectors, each of size (m x M), of unknown pile tractions due to 

unit vertical displacement, unit horizontal displacement and unit 

rotation of the pile cap, 

k = 1,2,3 (it represents the three unit boundary conditions), 

[ G p + Gs ] = fully populated (m x M) x (m x M) square flexibility matrix of the pile 

group, 

{ BI: } = three vectors, each of size (m x M), of unit vertical displacement, unit 

horizontal displacement and unit rotation of the pile cap. 

In order to obtain the pile tractions, the system of Equations (2.10) may be solved using a 

direct LU decomposition approach. Integrating the axial and transverse tractions, yields the 

distribution of pile head axial and shear forces and moments (due to unit boundary 

conditions): 

where 

N+I 

F;,I: = L A"it!i 
i=1 

N 

F,I: = LA,J! 
i=1 

N 

M,I: = LAtit!Zi 
i=1 

F"I: = pile head axial force due to unit boundary conditions, 

F,I: = pile head shear force due to unit boundary conditions, 

M,I: = pile head moment due to unit boundary conditions, 

N = number of pile shaft elements per pile, 

A. = shaft area of the pile element i, 
III 
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t;j = pile axial tractions acting on element i due to unit boundary conditions, 

A,; = transverse area of the pile element i, 

tt~ = pile transverse tractions acting on element i due to unit boundary 

conditions, 

Zj = depth of the centre of pile element i. 

The set of Equations (2.11) can be written for each pile. Then, in order to obtain the 

system of vertical loads V k, horizontal loads Ht and moments Mk acting on the cap that 

are necessary to equilibrate the stresses developed in the piles, the sum of the vertical and 

horizontal components of the pile head axial and shear forces and moments of each pile is 

perfonned, yielding: 

where 

'" 
Vk = L(Fak cos, + F,k sin,) = Slk 

j=l 

'" 
Hk = l ( - F"k sin ~ + F/ cos ~) = S2lc 

j=l 

'" 
Mk = L(Mt

k + Vk X (c - gtan,) - Ht xg) = S3k 
j=l 

v k = vertical load acting on the cap due to unit boundary conditions, 

Hk = horizontal load acting on the cap due to unit boundary conditions, 

Mk = moment acting on the cap due to unit boundary conditions, 

, = angle of rake of the pile, 

(2.12) 

c = horizontal distance of the pile head from the vertical axis of symmetry of 

the pile cap, 

g = depth of overhang of the pile cap, 

m = number of piles in the group. 

Thus, if an external loading system V, H and M is acting on the cap, the corresponding 

vertical displacement w, horizontal displacement u and rotation (J of the cap are related via: 
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(2.13) 

where the coefficients Sjk of the (3 x 3) matrix represent the system of equilibrating forces 

as discussed previously. The matrix [S] can be described as the global stiffness matrix of 

the pile group system which may be used as boundary conditions to the analysis of 

superstructures. By inverting the [S] matrix, it is possible to obtain the global flexibility 

matrix [F] of the pile group system and hence the vertical displacement, the horizontal 

displacement and rotation of the pile cap may be obtained for any loading condition: 

where 

(2.14) 

w, u, 8 = (3 x 1) vector of vertical displacement, horizontal displacement and 

rotation of the pile cap, 

[ F] = (3 x 3) global flexibility matrix of the pile group system, 

V, H, M = (3 xl) vector of extemalloads and moments acting on the pile cap. 

By virtue of Maxwell's reciprocal theorem, the (3 x 3) global flexibility matrix [F] of 

Equation (2.14) must be symmetric. Also, for symmetrical vertical pile groups, it must be 

112 = 121 = 131 = IJ3 == 0, indicating that the interaction between vertical and horizontal 

loads is negligible. However, for non-symmetrical pile groups, there is considerable 

interaction between these loadings (Banerjee & Driscoll, 1976). 

In order to obtain the real tractions acting on the piles, pile tractions due to unit 

boundary conditions from Equation (2.10) must be scaled by a factor represented by the 

vector of vertical displacement w, horizontal displacement u and rotation 6 of the cap 
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obtained from Equation (2.14). Therefore, for each pile, axial and transverse tractions can 

be expressed as: 

where 

(2.15) 

t~ = pile axial tractions acting on element i, 

t! = pile axial tractions acting on element i due to unit vertical displacement, 

unit horizontal displacement and unit rotation of the pile cap (k = 1,2,3), 

w, u, 8 = vertical displacement, horizontal displacement and rotation of the cap, 

t: = pile transverse tractions acting on element i, 

t! = pile transverse tractions acting on element i due to unit vertical 

displacement, unit horizontal displacement and unit rotation of the 

pile cap (k = 1,2,3). 

Finally, integrating the axial and transverse tractions acting on the piles, yields the values of 

the axial forces F,., shear forces F, and bending moments M, acting at the top of each 

element i for each pile: 

(2.16) 

where 

F: = axial forces acting at the top of pile element i, 

F,i = shear forces acting at the top of pile element i, 

51 



CHAPTER 2 Fomudation o(rhe non-linear BEM analysis 

M: = bending moments acting at the top of pile element i, 

hi = height of the pile element i (given by Lj divided by N, where Lj is the 

length of pile j and N is the number of pile shaft elements per pile)_ 

2.4.4 Limit stresses 

It is assumed that the elastic equations described above are valid until the tractions 

on the pile-soil interface reach certain limiting values (Poulos, 1980b; Davies & Budhu, 

1986; Lee, 1997). For cohesive soils, the limiting bearing stress on the compressive zone 

(ie the pile base for the axial response and the pile shaft for the lateral response) can be 

expressed as: 

(2.17) 

while the limiting shear stress ('skin friction') in the slip zone (ie the pile shaft for the 

axial response) is taken as: 

where 

tllS =aC" 

N c is the bearing capacity factor, 

C" is the undrained shear strength, 

a is an empirical adhesion factor. 

(2.18) 

A distinction should be made about the choice of the appropriate value of the bearing 

capacity factor (N). As regards the evaluation of the end-bearing pressure beneath the 

pile, Nc may be assumed to be equal to 9 for depths relevant for piles. This value has been 

confirmed in tests in London Clay (Skempton, 1959) and is widely accepted in practice (eg 

Fleming et ai., 1992; Tomlinson, 1994). In evaluating the limiting lateral pressure, the 

bearing capacity factor (N c) is assumed to increase linearly from 2 at the surface to a 

constant value of 9 at a depth of 3 pile diameters and below, much as was originally 
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suggested by Brorns (1964)_ This assumption is made to avoid the introduction of 

additional soil parameters which are included in more sophisticated solutions (eg Matlock, 

1970; Randolph & Houlsby, 1984)_ In many cases, however, the suggested values for the 

limiting lateral pressure lead to a profile of Nc which corresponds to that adopted in the 

present analysis (Fleming et al., 1992). 

Methods of estimating the adhesion factor (a) and the undrained shear strength 

(C,,) for use in Equations (2.17) and (2.18) are discussed in Section 6.3. 

2.4.5 Extension to non-linear soil behaviour 

The linear elastic analysis described above can be extended to include non-linear 

effects by generalising an idea first proposed by Poulos & Davis (1968) and applied to pile 

foundation problems by Poulos (1980b), Chow (1986a), Chow (1987c), Davies & Budhu 

(1986) and Lee (1997). In the present analysis, the boundary element equations used for 

the linear response are solved incrementally while enforcing the conditions of yield, 

equilibrium and compatibility at the pile-soil interface. 

2.4.5.1 Current analysis 

Since the pile is assumed to remain elastic during loading, the pile flexibility matrix 

[ G p] is unaltered. It is possible to incorporate the effects of soil yielding, in an approximate 

manner, by assuming that the interface behaviour at an element is perfectly linear until the 

stresses on the pile surface equal certain limiting values (determined from Equations (2.17) 

and (2.18». For these elements which have gone plastic, no more increment in tractions is 

permitted. This can be accomplished by applying the extemalload incrementally so that the 

soil flexibility matrix [Gs ] changes as one or more elements reach the yield conditions. The 

remaining elastic elements are those given by the Mindlin's solution and there is no further 

interaction through the soil between these elements and the yielded elements in the pile 

group. It may be noted that the manner in which the non-linear response of the pile group is 

obtained is approximate. In fact, the yielding of an element introduces a discontinuity in the 

material property. Thus, the use of Mindlin's solution to determine the remaining elastic 

flexibility coefficients is only approximate. 
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It should be emphasised that this method enforces load transfer to the elastic 

elements in that the element which has failed can take no additional load and the increase in 

load is thus redistributed between the remaining elastic elements until all elements have 

failed. This procedure will generate a load-deformation curve to failure as yielding along 

the pile-soil interface progresses. 

Thus, the non-linear (elasto-plastic) response of the group may be obtained by 

casting the linear equations described in the previous sections in incremental form (as 

indicated by the superposed dot) and solving using small load increments, as depicted in 

Fig. 2.4. 

Soil dol1Ulin 

where 

Assuming purely elastic soil behaviour, Equation (2.3) becomes: 

{ ~. } = column vector of incremental soil displacements of size M, 

{~} = column vector of incremental soil tractions of size M, 

(2.19) 

[ G. 1 = elastic soil flexibility matrix, of size M x M, obtained from Mindlin's 

solution, 

M = (2N+ I) is the total number of elements per pile, 

N = number of pile shaft elements per pile. 

As one or more elements at the interface reach the yield conditions at the end of an 

increment, the elastic soil flexibility matrix [G.l will be altered. In this case, there will be no 

dependence of the soil displacements of the remaining elastic elements {';;} on the soil 

tractions of the yielded elements {t=}, ie {t=} = 0 (where the superposed 'e' and 'n' 

indicate elastic and non-linear conditions, respectively). In addition, it is assumed that the 

54 



CHAPTER 2 Fonnulation ofthe non-linear BEM analysis 

elastic soil flexibility submatrix [G:~], ie the submatrix fonned by the remaining elastic 

coefficients, is unaltered by yielding of other elements (ie these coefficients are still 

calculated from the elastic solution of Mindlin). Thus, the elastic soil displacements {u·: } 
may be written as: 

(2.20) 

where 

L = number of elements which have yielded in a pile, 

{~:} = column vector of incremental elastic soil displacements of size (M-L), 

[G:~] = (M-L) x (M-L) square flexibility submatrix of coefficients corresponding 

to those soil elements which remain elastic, 

{t:} = column vector of incremental elastic soil tractions of size (M-L). 

Pile domain 

Since the pile is assumed to remain elastic during loading, the pile flexibility matrix 

of Equation (2.5) is unaltered (ie [Gp ] is an elastic matrix). However, for convenience, in 

order to relate the soil and the pile matrices, [G p] may be partitioned as follows (eg Lee, 

1997): 

(2.21) 

where 
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{u·; } = column vector, of size (M-L), of incremental pile displacements 

corresponding to the elastic soil elements, 

{u; } = column vector, of size L, of incremental pile displacements corresponding 

to the plastic soil elements, 

[G;"] = pile flexibility submatrix, of size (M-L) x (M-L), of coefficients 

corresponding to the elastic soil elements, 

[G;" ] = pile flexibility submatrix, of size L x (M-L), of coefficients corresponding 

to the plastic soil elements, 

[G;'] = pile flexibility submatrix, of size (M-L) x L, of coefficients corresponding 

to the plastic soil elements, 

[G;" ] = pile flexibility submatrix, of size L x L, of coefficients corresponding to 

the plastic soil elements, 

{t;} = column vector, of size (M-L), of incremental pile tractions corresponding 

to the elastic soil elements, 

{t=} = column vector, of size L, of incremental pile tractions corresponding to 

the plastic soil elements, 

{Be} = column vector, of size (M-L), of incremental pile displacements (due to 

unit boundary displacements and rotation of the cap) corresponding to the 

elastic soil elements, 

{8ft
} = column vector, of size L, of incremental pile displacements (due to unit 

boundary displacements and rotation of the cap) corresponding to the 

plastic soil elements. 

Solution of the pile-soil system 
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The non-linear response of the group may be obtained by coupling the equations 

describing the non-linear load-displacement behaviour of the soil with the linear elastic 

equations describing the pile behaviour. In order to couple these equations for the pile 

domain (2.21) with those for the soil domain (2.20), compatibility and equilibrium at the 

elastic pile-soil interfaces must be invoked while enforcing the yield conditions. 

After each load increment, if the stress state in the soil violates the limiting stresses, 

then elastic equations are no longer valid and an elasto-plastic solution of the problem has 

to be formulated. Soil yielding can be reached in one or more elements at the pile-soil 

interface if, at any increment, the soil tractions equal the limiting values defined in 

Equations (2.17) and (2.18): 

(2.22) 

where 

t s = soil tractions, 

t sy = limiting stresses defmed in Equations (2.17) and (2.18). 

This check of soil tractions must be done for each element of the pile, and those elements in 

which the yield criteria are satisfied can be regarded as plastic or yielded. 

Equilibrium condition at the pile-soil interface implies that the tractions acting on 

the soil are equal and opposite to the tractions acting on the pile: 

(2.23) 

(2.24) 

where Equation (2.24) shows that, for those elements which have gone plastic, no more 

increment in tractions is pennitted. 

Compatibility at the pile-soil interface implies that the soil displacements are equal 

to the pile displacements: 
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(2.25) 

(2.26) 

where Equation (2.26) shows that compatibility condition for the yielded elements is no 

longer satisfied as the plastic soil displacements are undetermined (ie there are no unique 

solutions ). 

Thus, invoking Equation (2.24), Equation (2.21) may be rewritten as follows: 

(2.27) 

(2.28) 

If the elastic conditions of equilibrium (2.23) and compatibility (2.25) are substituted into 

the Equation (2.20) for the soil domain, Equations (2.20) and (2.27) can be combined (in 

the same way as for the linear elastic analysis), and the following set of simultaneous linear 

equations can then be written for the group of m piles: 

(2.29) 

where [G;e + G;e], which is a square matrix of size m(M-L) x m(M-L) (where L is the 

number of soil elements which has gone plastic), represents the global flexibility matrix of 

the pile group. This set of equations may be regarded as the non-linear (elasto-plastic) 

equivalent of the linear elastic set of Equations (2.8). It is worth noting that, having solved 

58 



CHAPTER 2 Formulation ofthe non-linear BEM analysis 

Equation (2.29) for it; } , the pile displacements corresponding to the yielded soil elements 

{u·; } may be evaluated using Equation (2.28). 

In order to keep the size of the global flexibility matrix of the pile group used in 

Equation (2.29) equal to the full elastic size (m x M) X (m X M), the PGROUPN analysis 

solves the non-linear problem by setting the appropriate rows and columns (ie those 

corresponding to the soil elements which have yielded) in the elastic global flexibility matrix 

[Gp + G.l (from Equation (2.8» to zero. This procedure, which results in {t;} = 0, is the 

equivalent of solving Equation (2.29). 

It should be emphasised that, in the same way as for the elastic analysis, the 

incremental pile tractions {t;} from Equation (2.29) are due to unit boundary conditions 

(ie vertical displacement, horizontal displacement and rotation of the cap), and hence {t; } 

and {s·} are represented by 3 column vectors (one for each unit boundary condition). 

From Equation (2.29), by following a procedure similar to the elastic algorithm 

(described in Equations (2.11) to (2.15», it is possible to calculate the 'real'increment (ie 

.i 
not due to unit boundary conditions) in pile tractions t pi. The current (resultant) axial and 

transverse tractions acting on the element i of each pile can then be calculated by 

summation, yielding: 

(2.30) 

where 

ti = current axial and transverse tractions acting on pile element i, 

.i 
t i = incremental axial and transverse tractions acting on pile element i at the 

59 



CHAPT£R2 Fonnulation ofthe non-linear BEM analysis 

load incrementj, 

J = current total number of load increments (J = 1, NINC), 

NINe = total number of load increments. 

In the same way, at the end of each increment, the current displacements and rotation of 

the pile cap and the current forces and moments acting on piles are computed by updating 

these values from the data for the previous increment. 

2.4.5.2 Approach by Davies & Budhu (1986) 

A similar approach has been applied to single piles under static lateral loading by 

Davies & Budhu (1986) and then extended to the case of cyclic loading by Lee (1997). The 

essence of the method is described below. 

Soil domain 

As one or more elements at the pile-soil interface reach the yield conditions (ie the 

limiting stresses) at the end of an increment, the non-linear (elasto-plastic) relationship 

between soil displacements and soil tractions is written: 

where 

(2.31 ) 

M = total number of elements for a pile, 

L = number of elements which have yielded in a pile, 

{;;} = column vector of incremental elastic soil displacements of size (M-L), 

{u·; } = column vector of incremental plastic soil displacements of size L, 

[G •• ] = non-linear (elasto-plastic) soil flexibility matrix, of size M x M 

(where (*) denotes that this matrix is different from the elastic soil 

flexibility matrix [G.]), 
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{t:} = column vector of incremental elastic soil tractions of size (M-L), 

{t;} = column vector of incremental plastic soil tractions of size L. 

The non-linear soil flexibility matrix [G ... ] may be obtained by means of the procedure 

outlined below_ At each increment, if the current pile tractions reach the limiting values in 

one or more elements: 

a) Invert the elastic soil flexibility matrix [Gs ] in order to obtain the soil stiffness matrix 

b) Set the rows and columns (corresponding to the yielded soil elements) of the soil 

stiffness matrix [K. 1 to zero. In fact, the matrix [Ks 1 may be partitioned as follows: 

(2.32) 

where [K.] is the partitioned soil stiffness matrix of size M x M. 

Invoking Equation (2.24), noting that the plastic soil displacements are arbitrary, 

and making the assumption that the (incremental) displacement of any single element does 

not induce traction change at yielded elements, it is possible to write: 

[K;e] = 0 

[K;]=O 

and, invoking symmetry: 
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c) Invoking Equations (2.33) and (2.34), and making the assumption that the elastic 

stiffness submatrix [K;e] is unaltered by yielding of other elements (ie these coefficients are 

still calculated from the elastic solution of Mindlin), Equation (2.32) can be written as: 

(2.35) 

It may be noted that, in Equation (2.20) (used in the current analysis described in Section 

2.4.5.1), it is the elastic flexibility submatrix [G;e] which remains unchanged, whereas in 

the approach by Davies & Budhu it is the elastic stiffness submatrix [K;e] which is 

unaltered. In addition, the Davies & Budhu approach also requires the assumptions 

described above in Equations (2.33) and (2.34) which are less satisfactory (physically) than 

those made to write Equation (2.20). 

Inverting Equation (2.35) yields: 

(2.36) 

where [G;:] = [K;e r . In Equation (2.31), it is worth noting that the flexibility submatrices 

[G:: 1, [G;: ] and [G;'] are undetermined terms, as the inverse of zero terms from 

Equations (2.33) and (2.34) will be infinity. This suggests that the soil displacements for 

the yielded elements cannot be determined. However, as discussed above, this is not a 

major concern as the pile displacements corresponding to the yielded soil elements, le 

{u·; }, may still be evaluated using Equation (2.28). 

Pile domain 
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In the same way as described in Section 2.4_5.1, Equations (2.27) and (2.28) are 

obtained. 

Solution of the pile-soil system 

In the same way as described m Section 2.4.5.1, enforcing compatibility and 

equilibrium at the elastic pile-soil interfaces via Equations (2.23) and (2.25), Equations 

(2.27) and (2.36) can be coupled to give: 

(2.37) 

where [G;: + G;~], which is a square matrix of size m(M-L) x m(M-L) (where L is the 

number of soil elements which has gone plastic), represents the global flexibility matrix of 

the pile group. 

It is worth noting the differences between Equation (2.37) and the formulation 

adopted in the current analysis (Equation (2.29», ie [G;~] * [G;:]. In fact, the tenn [G;e] 

simply represents the elastic flexibility submatrix obtained from Mindlin's solution, 

whereas, in the approach by Davies & Budhu, the term [G;:] is obtained by inverting the 

elastic soil flexibility matrix [Gs ] (thus obtaining the corresponding soil stiffness matrix 

[Ks ), deleting the rows and columns of [Ks) which correspond to the yielded soil 

elements, and inverting again to obtain [G;:] for use in Equation (2.37). 

However, if the outlined approach of Davies & Budhu is applied to the present 

problem, this will result, at some load increments, in an increase of the pile group (or single 

pile) system stiffness (refer to Equation (2.13») as yielding along the pile-soil interface 

progresses. This inconsistent behaviour is observed in most of the numerical simulations 

carried out on single piles under axial loading and pile groups subjected to either vertical or 

horizontal loads, whereas the load-deflection curves obtained for laterally loaded single 

piles show a physically plausible trend. Numerical simulations which show these features of 

behaviour are presented in Section 3.6. 
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2.4.5.3 Modification of the Davies & Budhu approach 

It has been found that the approach proposed by Davies & Budhu (1986) may be 

slightly modified in order to give physically acceptable results, as described below. In this 

modified formulation, it is assumed that the soil stiffness submatrix [K;'] (refer to 

Equation (2.32» is not zero (as proposed by Davies & Budhu), but it is still given by the 

elastic theory. Physically, in the modified formulation, it is assumed that the traction change 

at any single elastic element due to the (incremental) displacement of any yielded element is 

still given by the elastic theory, ie the soil stiffness submatrix [K;'] is unaffected by 

yielding within the soil. This assumption corresponds to setting only the appropriate rows 

in the stiffness soil matrix [K.] (of Equation (2.32» to zero. Making this hypothesis, and 

following a procedure similar to that described in Section 2.4.5.2. it is possible to obtain a 

physically tenable load-deformation response for single piles and pile groups under either 

vertical or horizontal loads. 

By comparison, the original approach by Davies & Budhu assumes that [K;'] = 0 

(Equation (2.34», and this corresponds to setting the appropriate columns in the soil 

stiffness matrix [K.] (of Equation (2.32» to zero as well as the corresponding rows. This 

physically implies that, in a general pile group, the (incremental) traction at any single 

• • 
elastic element (t; ) induced by the (incremental) displacement of any yielded element (u; ) 

is neglected. Therefore, in this case, the stiffness soil matrix [K.] is simply formed by the 

elastic submatrix [K;"], whereas the other submatrices [K;'], [K;"] and [K:"] (which 

express the influence of plastic elements) are all zero. 

It should be emphasised that the outlined modification to the Davies & Budhu 

approach takes into account an interaction effect between elastic and plastic soil elements, 

ie [K:'] * O. This implies that, in order to couple the equations for the pile and soil 

domains. the compatibility condition between plastic pile and soil displacements has to be 

invoked, ie: 
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(2.38) 

Equation (2.38) means that no relative movement of pile and soil in the slip or compression 

zone at the pile-soil interface takes place once the stress state in the soil violates the 

limiting stresses. Thus, in the outlined modification to the Davies & Budhu approach, the 

non-linear response is simply obtained by limiting the soil tractions at the pile-soil interface, 

and there will be no mismatch in the displacements of the pile and soil elements at 

interfaces which have reached the limiting stress conditions. 

However, as already pointed out by other workers (eg Poulos, 1977; Poulos & 

Davis, 1980; Chow, 1986a), it is more realistic to assume that the compatibility condition 

will no longer hold for those soil elements where the yield criteria are satisfied. In addition, 

as observed above, the formulation depicted in Section 2.4.5.1 requires some physical 

assumptions which are more satisfactory than those employed in either the Davies & Budhu 

approach or its modified version. Thus. the formulation outlined in Section 2.4.5.1 will be 

adopted in this thesis. 

A comparison of load-deformation curves obtained by adopting the approach 

put forward in this thesis, the Davies & Budhu approach and the modified Davies & 

Budhu approach for single piles and pile groups under either axial or lateral loading is 

presented in Section 3.6. 

2.5 Concluding remarks 

A formulation of the indirect BEM approach for the linear and non-linear analysis 

of pile groups under general loading conditions has been presented. The analysis is capable 

of predicting the load-displacement behaviour of a group of piles (which are assumed to be 

connected by a rigid free-standing cap), and the distribution of stresses, loads and moments 

in the individual piles of the group. 

The proposed solution, which may be regarded as an extension of the linear elastic 

analysis of Banerjee & Driscoll (1976), presents an incremental procedure to simulate the 

effects of soil nonlinearity while retaining continuity within the soil through a complete 

boundary element analysis of the pile group. The analysis models the soil at the interface as 
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an elastic-perfectly plastic material - by comparison with a purely linear elastic analysis, 

the present method requires only one additional soil parameter to be completely defined, ie 

the undrained shear-strength distribution with depth. This parameter is routinely measured 

in soils investigation. The pile is assumed to remain elastic during loading. 

It is believed that the current analysis will remove the limitations of current 

solutions, whose application is mainly restricted to linear elastic analysis and relatively small 

pile groups. Further, the proposed method, taking into account the continuous nature of 

pile-soil interaction, eliminates the uncertainty of empirical load-transfer approaches and 

provides a simple design tool based on conventional soil parameters. 
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Appendix 2.1 

Analytical integration of singular Mindlin's 

solution 

ZB 

.. 

ZB 

.. 
· . . . : .. ... . . 
• • · 

:x · 
· VZ 

.. •• 7 Y 

x 
. ........................... ~ 

ro=~x2+y2 

R, =~r} +(ZA -Z8)2 

R2 = ~ro2 + (ZA + Z8)2 

Fig. A2.1-1 Geometry for Mindlin problem. 

Mindlin's solution (Mindlin, 1936) is adopted to determine the coefficients of the soil 

flexibility matrix [Gs ] in Equation (2.3). These flexibility coefficients express the 

displacement at any point (field point A) within a homogeneous, isotropic elastic half-
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space due to a point load acting at any other point (load point B), in terms of the 

coordinates of the load and field points and the elastic properties of the solid, namely, 

the shear modulus G. and the Poisson's ratio v. (refer to Fig. A2.1-1). 

Mindlin's solution becomes singular whenever the field point A and the load 

point B coincide, ie R/ = O. One of the original features of the analysis put forward in this 

thesis is the analytical integration of the singular Mindlin functions, which has yielded very 

accurate results with significant saving of computing time. This represents a significant 

advance over previous work where these have been integrated numerically (see, for 

example, Butterfield & Banerjee, 1971a; Banerjee & Driscoll, 1976), since these singular 

integrals require considerable computing resources, especially for large pile groups. 

Integration of Mindlin's equations makes it possible to compute the vertical 

displacement at the nodal point of each element due to vertical forces distributed uniformly 

over a cylindrical area (for the pile shaft) and a circular area (for the pile base), and the 

horizontal displacement at the nodal point of each element due to horizontal forces 

distributed uniformly over a rectangular area in the YZ plane. The derivation of these 

equations, which may have other applications, is presented here in full. 

The vertical displacement w at the nodal point A caused by a vertical point load 

P at B may be expressed as: 

w(A) = G(A, B)P(B) (A2.1-1) 

where G(A, B) is given by Mindlin's solution: 

(A2.1-2) 

For distributed (constant) tractions t over a surface S, we obtain: 
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w(A) = I(B)JJ G(A,B)dS(B) (A2.1-3) 
s 

where the axial tractions t are distributed over a cylindrical shaft area of the pile-soil 

interface for the pile shaft solution, and over a circular area for the pile base solution. 

The singular part G* (A, B) of Mindlin's solution may be expressed as: 

1 
where C is a constant equal to -----

16n G.(l-v.) 

Pile shaft solution (vertical response) 

(A2.1-4) 

In order to integrate the expression (A2.1-4), it is convenient to choose the 

origin of coordinates at the nodal point A, thus: 

Z -0 A -

and, for simplicity: 

ZB = Z 

Thus, R. can be expressed as (refer to Fig. (A2.1-1)): 

where ro represents the pile radius. 

Thus. (A2.1-4) becomes: 
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G* A B) -1 3 
- 4v s + Z 2 ] 

(, - ~ 2 2 (2 2 )3/2 
ro +Z ro +Z 

(A2.1-5) 

and the following surface integral has to be evaluated: 

JI * JI[ 3-
4v

s Z2 r G (A,B)dS(B) = C ~ 2 2 + (2 2)312 (B) 
5 5 ro +Z ro +Z 

(A2.1-6) 

where S is the cylindrical surface of the pile shaft element. 

The two integrals in (A2.1-6) are evaluated (in polar coordinates) separately. 

The first integral yields: 

1 211" hl2 1 
(3 - 4v,) If ~ 2 2 dS(B) = (3 - 4v. ) J J ~ 2 2 rodzdt'J = 

s ro + Z 0 -1112 ro + z 

2n To (3 - 4v, )[lnlz + ~Z2 + r; 11:::2 = 

2~r.(3-4V.{ln( i+F)-ln( -~ +~~ +r.' )] = 

h+~h2 +4r02 h+.Jh2 +d 2 

2nTo(3-4v,)ln 12 2 =nd(3-4v,)ln I 
-h+",h +4ro -h+'Vh2 +d2 

where h is the height of the pile shaft element (which is given by the pile length L 

divided by the number of pile shaft elements N) and d is the pile shaft diameter. 

The second integral yields: 

2 2lr 11/2 2 11/2 2 

JJ-_Z ----::-:=-dS(8) = J J Z r dzdt'J = 2n r J Z d 
( 2 2 ) 3/2 (2 2 ) 3/2 0 0 (2 2) 312 Z 

s ro + Z 0 -/t/2 ro + Z -11/2 To + Z 

This integral can be evaluated by substitution - if we let z = To tan t'J, then: 
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Thus: 

The above integral can be evaluated by parts - we let: 

Thus: 

u = tand, dv = sinddd, du = sec2 d dd, v = -cosd 

If'CII.a/tld 

J [ .0] IJrdan ItId tan d sin d dd = - cos d tan u -arctan ItId + 
-UCWI/tld 

arctan ItId 

J cosdsec 2 ddd = 
-If'CII.nhld 

If'CII.Dhld h 
[ • ]If'CII.Dhld J.o d·a 2' [I 1.0 I]uctanlald -smd_lf'CII.altld+ secu u=- smarctan

d
+ nsecu+taniJ -uctaoltld= 

-1f'CII..hld 

. h ( h h) ( h h) -2 sm arctan - + In sec arctan - + - -In sec arctan - - - = 
d d d d d 

h h 
sec arctan - + -

-2 sin arctan ~ + In ~ ~ 
sec arctan - - -

d d 

It may be observed that there is no need to keep the absolute value as the terms in 

brackets will be positive. 

Thus, the final expression of (A2.1-6) is: 

1 h h] h + .Jh2 + d 2 h sec arctan - +-
II G*{A, B)dS( B) = Clr (3 - 4v s )In .J - 2 sin arctan - + In d d 
s -h + h

2 
+d

2 
d sec arctan !!. _ ~ 

d d 
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Pile base solution 

For a vertical point load acting on the pile base, considering that ZA = ZB' 

analytical integration of the singular part G* (A, B) of Mindlin's solution (from (A2-

1.4» yields: 

where 

S is the circular surface of the pile base element, 

RJ is the distance between the field point A (at the centre of the base element) 

and the load point B, 

rb is the pile base radius, 

db is the pile base diameter. 

Pile shaft solution (horizontal response) 

The horizontal displacement u at A caused by a horizontal point load Q at B 

may be expressed as: 

u(A) = G(A,B)Q(B) (A2.1-7) 

where G(A, B) is given by Mindlin's solution: 

(A2.1-8) 

where x is the distance between A and B in the direction of the X axis. 

For distributed (constant) tractions t over a surface S, we obtain: 
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u(A) = t(B) J G(A, B)dS(B) (A2.1-9) 
s 

where the lateral tractions t are distributed over the idealised rectangular surface on the 

YZ plane (refer to Fig. A2.1-2). 

Considering that on the YZ plane x = 0, the singular part G* (A, B) of Mindlin's 

solution may be expressed as: 

G* (A,B) = C 3 -R
4V 

s 

1 

(A2.1-1O) 

where RJ is the distance between the field point A (at the centre of the rectangular area) and 

the load point B. Thus, the following surface integral has to be evaluated: 

JJ G*(A,B)dS(B) = C(3-4V s )JJ ~(B) 
s s ~ 

(A2.1-11) 

where S is the idealised rectangular surface of dimension h x d. 

D 

Surface S; 

__________________ ~C __ _______________________ ) h 

c 
Y 

Fig. A2.1-2 Geometry for pile shaft solution (horizontal response). 
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The integral in (A2.I-II) may be evaluated as the sum of 4 integrals: 

II ~(B) = 4 II ~. (B) 
s R, S* R, 

where S· is the rectangular surface (ADBC) of dimension h x d . 
2 2 

(A2.I-I2) 

The integral in (A2.I-I2) may be evaluated as the sum of the integrals over the 

triangular surfaces S; (the triangle ABC) and S; (the triangle ADB), as indicated in 

Fig. (A2.I-2). Thus, (A2.I-I2) becomes: 

4II~·(B)=4[II~;(B)+ II~;(B)] 
s. R, s' R, s' R, 

I Z 

(A2.1-l3) 

The two integrals in (A2.I-I3) are evaluated (in polar coordinates) separately. In the 

first integral, if we let d = Rl cos tJ (where tJ varies from zero to {3 = arctan!!" ), then: 
2 d 

d 
R, = -sect} 

2 

Thus, the first integral becomes: 

!sec" 1 fJ ~ <") 1 fJ 2 d fJ JJ ~;(B) = I I -R,dR,dtJ =1 I dR,dtJ =-1 sec tJ dtJ = 
S; R, 0 0 R, 0 0 2 0 

d fJ d d ( h h) -[ln~ec t} +tantJ 1]0 = -In(sec{3 + tan{3) = -In secarctan-+-
2 2 2 d d 

By following a similar procedure, the second integral in (A2.I-I3) becomes: 

IJ I. h ( d d) ~2 (B) = -In sec arctan - + -
~R, 2 h h 
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Thus, the fmal expression of (A2.1-11) is: 
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Appendix 2.2 

Bernoulli-Euler beam theory 

y 

A Z 
x 

A • ~ 

Zo 

! 
p 

if 
B 

z 

-
(a) (b) 

Fig. A2.2-1 Definition of influence function parameters: (a) vertical load, (b) 

horizontal load. 

Bernoulli-Euler beam theory is adopted to determine the pile flexibility matrix [G p ] 

(refer to Equation (2.5» for the axial and flexural response of the pile (see, for 

example, Ahmad et al .• 1985). These flexibility coefficients express the displacement at 

any point A due to a point load acting at any other point B, in terms of the depth 

coordinates of A and B and the Young's modulus Ep of the pile (refer to Fig. A2.2-1). 

Thus. the vertical displacement w at A caused by a vertical point load P at B 

may be expressed as: 

w(A) = G(A. B)P(B) (A2.2-1) 

where G(A,B) is an influence function given by the elementary (Bernoulli-Euler) beam 

theory: 
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(A2.2-2) 

(A2.2-3) 

where Ap is the cross-sectional area of the pile. 

For distributed (constant) tractions t over a surface S, we obtain: 

w(A) = t(B) J G(A, B)dS(B) (A2.2-4) 
s 

where the axial tractions t are distributed over a cylindrical shaft element of the pile. 

As regards the horizontal response, the horizontal displacement u at A caused 

by a horizontal point load Q at B may be expressed as: 

u(A) = G(A,B)Q(B) (A2.2-5) 

where G(A, B) is an influence function given by the elementary (Bernoulli-Euler) beam 

theory: 

(A2.2-6) 

(A2.2-7) 

where Jp is the second moment of area of the pile. 

For distributed (constant) tractions t over a surface S, we obtain: 
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u(A) = t(8) J G(A, 8)dS(8) (A2.2-8) 
s 

where the lateral tractions t are distributed over the idealised rectangular pile element 

on the YZ plane. 

The above integrations are trivial and may be performed analytically. 
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FIGURES CHAPTER 2 
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Fig. 2.t A typical pile group problem. 
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Pile axis 
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Shaft diameter ---- d 
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Formulation ofthe non-linear BEM analysis 
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Transverse soil tractions 
acting on element 3 

------ Transverse soil tractions 
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./ ~ Base diameter 

Fig. 2.2 Discretization of the pile-soil interface into N :: 6 shaft elements. 
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Fig. 2.3 Application of unit boundary displacements and rotation to the pile cap. 
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External load 

'----- PGROUPN solution 

Displacement 

Fig. 2.4 Incremental solution scheme of the PGROUPN analysis. 
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CHAPTER 3 

Numerical implementation 

3.1 Summary 

This Chapter describes the numerical implementation of the non-linear BEM 

formulation in a computer program called PGROUPN. The computational procedure and 

the main subroutines involved are presented, together with a description of how to use 

the program and typical illustrative results. 

3.2 Introduction 

The incremental BEM solution described in Chapter 2 has been implemented in 

a numerical code called PGROUPN. The code represents an extension of the computer 

program PGROUP developed by Banerjee & Driscoll (1976), which has been entirely 

rewritten in a more efficient way in order to render the analysis of large groups 

economically viable with an ordinary desktop computer - the main modifications 

proposed for achieving efficiency gains are summarised in Section 2.2. In addition, 

non-linear soil response has been introduced by means of a stepwise linear incremental 

procedure. 

The program is intended for the non-linear analysis of pile groups under vertical 

loads, horizontal loads and moments. The proposed BEM algorithm involves the 

discretization of the pile-soil interface into elements and the calculation and assembly 

of the soil and pile flexibility matrices for each pile. By imposing equilibrium and 

compatibility conditions at the elastic pile-soil interfaces, and checking the state of 

each element during the loading increment, the stress increments at the pile-soil 

interface can be determined, and hence the pile displacements, loads and moments can 

be easily evaluated. 

Effects of soil nonlinearity are included, in an approximate manner, by means of 

a stepwise linear incremental procedure in which the global flexibility matrix [G p + Gs ] 
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is modified as one or more elements reach the yield conditions. Various strategies are 

adopted in order to achieve efficiency gains, thereby leading to an economically viable 

analysis even if nonlinearity effects are simulated in large pile group problems. 

3.3 General description of the computer program PGROUPN 

3.3.1 Scope of the program 

The computer program PGROUPN allows for the non-linear analysis of pile 

groups of large dimensions, embedded in cohesive soils (specifically fully saturated clay 

under undrained conditions) and sUbjected to any combination of vertical loads, horizontal 

loads and moments. The program, given the pile group geometry, the stiffness of the piles, 

the external loads (ie vertical and horizontal loads and moments) and the surrounding soil 

conditions (ie the Young's modulus Es, the Poisson's ratio Vs and the undrained shear 

strength e,,), will compute the pile head deformations and the distribution of axial force, 

shear force and bending moment along the individual piles. The program also calculates the 

overall stiffnesses of the group which can then be used as boundary conditions for the 

superstructure analysis. 

The soil is assumed to behave as an elastic-perfectly plastic material whose stiffness 

may be constant or may vary linearly with depth (Gibson soil). The influence of a soil layer 

of finite thickness may be examined. The piles are rigidly fixed to a rigid pile cap (a 

reasonable assumption in most practical cases) which imposes the same horizontal head 

displacements and head rotations for all piles, while differential vertical head displacements 

are solely due to rotation of the rigid cap. Piles may have different geometries (length, 

external, internal and base diameter) and may be raked in the direction of horizontal 

loading. Moreover, the pile group may be free-standing, ie an appreciable gap may exist 

between the pile cap and ground level. 

3.3.2 Computational procedure 

Sign conventions 
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The sign conventions adopted for loads, moments, tractions, displacements and 

rotations are shown in Fig. 3.1. 

Procedure 

The computational procedure implemented in the PGROUPN program may be 

described in terms of the following steps. 

Step (1) 

Read all the input data: type of analysis (ie 'Linear' or 'Non-linear'), number m of 

piles, number n of pile types (refer to Section 3.4.6), number N of pile shaft elements 

per pile (this must be the same for each pile in the group, irrespective of pile length), 

number NINC of equal load increments (only if the type of analysis is 'Non-linear' and 

hence an incremental procedure is required), pile group geometry, stiffness of the piles, 

extemalloads and surrounding soil conditions (refer to Table 3.1). 

Step (2) 

If 'Non-linear' analysis is selected, the values of limiting stresses at the nodal points of 

each element are determined as follows: 

where 

limit bearing stress 

limit shear stress 

N c is the bearing capacity factor, 

C" is the undrained shear strength, 

a is an empirical adhesion factor. 

(3.1) (2.17bis) 

(3.2) (2.18 bis) 
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3.3.2.1 Soil domain 

Step (3) 

Numerical implementation 

Set up the fully elastic soil flexibility matrix [Gsl (see Equation (2.3» via integration of 

the Mindlin's solution (Mindlin, 1936). Coefficients of the soil flexibility matrix [Gs l, which 

includes the single-pile matrices and the interaction matrices, are calculated for each pile 

and then assembled in the global soil flexibility matrix of the group. For piles of equal 

length, diameter and rake, the single-pile soil flexibility matrices need be formed only once 

and copied into the global soil flexibility matrix corresponding to the identical piles. This 

reduces the computation time for large groups significantly in that the single-pile flexibility 

coefficients need not be calculated each time for each of the other identical piles. Further, if 

a number of piles within a group are identified as behaving in identical fashion (due to 

symmetries) or approximately identical fashion, then the number n of pile types can be set 

at less than the number m of piles in Step (1) (for further details refer to Section 3.4.6). The 

size of the global soil flexibility matrix of the group may then be reduced by performing a 

matrix condensation (as depicted in Fig. 3.2), thereby leading to substantial savings of 

computing time in the following steps of the analysis (Banerjee & Driscoll, 1976). This will 

yield a fully populated n(2N+ 1) x n(2N+ 1) square matrix [ Gs l. 

3.3.2.2 Pile domain 

Step (4) 

Set up the fully populated pile flexibility matrices [G p] for each pile type (see Equation 

(2.5». Coefficients of [G p], which correspond to the single-pile flexibility matrices, are 

calculated via integration of the Bernoulli-Euler (beam theory) kernel, with the beam 

assumed as a circular section, and then assembled in the global pile flexibility matrix of the 

group. This will yield a n(2N+ 1) x n(2N+ 1) square matrix [G p ]. Computation time may be 

reduced by exploiting similarities in forming the single-pile matrices for piles of equal 

length and diameter, as described for the soil domain. 

3.3.2.3 Unit boundary conditions 
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Step (5) 

Define the three vectors {Bt } , each of size n(2N+ 1), due to unit vertical displacement, unit 

horizontal displacement and unit rotation of the pile cap (see Equation (2.10». 

3.3.2.4 Solution of the pile-soil system 

A stepwise linear incremental procedure (as indicated by the superposed dot) is 

introduced to simulate the effects of soil nonlinearity. For a purely linear elastic analysis, 

the number of load increments (NINC) is equal to 1. 

Step (6) 

Calculate the incremental pile tractions due to unit boundary conditions by solving the 

following set of equations via LU decomposition: 

where 

{tet
p

} 

(3.3) (2.10 bis) 

= three vectors, each of size n(2N+l), of incremental pile tractions due 

to unit vertical displacement, unit horizontal displacement and unit 

rotation of the pile cap, 

k = 1, 2, 3 (it represents the three unit boundary conditions), 

[ G p + Gs ] = fully populated n(2N+ 1) x n(2N+ 1) square flexibility matrix of the pile 

group, 

{Bel} = three vectors, each of size n(2N+ 1), of unit vertical displacement, unit 

horizontal displacement and unit rotation of the pile cap. 

It should be emphasised that [G p + Gs ] is initially a fully populated elastic matrix. The 

effects of nonlinearity are introduced at Step (16). 
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Step (7) 

.1; 

Separate the incremental pile tractions t p due to unit boundary conditions into axial 

.1; .1; 

tractions t ai and transverse tractions t ti . 

Step (8) 

Integrate the incremental axiaVtransverse pile tractions obtained from Equation (3.3), 

thereby leading to the incremental pile head axia1lshear forces and moments (due to unit 

boundary conditions): 

where 

• I; N+I .1; 

Fa = LAaitai 
i=1 

• I; N .1; 

Ft = LAti tti 
i=1 

• I: N .1: 

MI = LAti ttiZi 
i=1 

• I; 

(3.4) (2.11 bis) 

Fa = three vectors, each of size n, of incremental pile head axial force due to 

unit boundary conditions, 

• I: 
F t = three vectors, each of size n, of incremental pile head shear force due 

to unit boundary conditions, 

• I; 

M I = three vectors, each of size n, of incremental pile head moment due to unit 

boundary conditions, 

Aai = shaft area of the pile element i, 

.1; 

t ai = three vectors, each of size n(N+ 1), of incremental pile axial tractions 

acting on element i due to unit boundary conditions, 

A,i = transverse area of the pile element i, 

.1: 

tli = three vectors, each of size (n x N), of incremental pile transverse tractions 

acting on element i due to unit boundary conditions, 
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Z; = depth of the centre of pile element i. 

Step (9) 

• k • k 

Calculate the system of (incremental) vertical loads V ,horizontal loads H and moments 

• k 

M acting on the cap that are necessary to equilibrate the (incremental) stresses developed 

in the piles. This may be accomplished by summation of the vertical and horizontal 

components of the pile head axiallshear forces and moments due to unit boundary 

conditions of each pile: 

j=1 

.k m.k .k • 

H = L ( - Fa sin, + F, cos tP) = S 2k (3.5) (2.12 bis) 
j=1 

.k m .k .k • .1:. 

M = L ( M, + V X (c - g tan tP) - H X g) = S 3k 

j=l 

where 

.k 
V = incremental vertical load acting on the cap due to unit boundary 

conditions, 

• k 

H = incremental horizontal load acting on the cap due to unit boundary 

conditions, 

• l 

M = incremental moment acting on the cap due to unit boundary conditions, 

, = angle of rake of the pile, 

c = horizontal distance of the pile head from the vertical axis of symmetry of 

the pile cap, 

g = depth of overhang of the pile cap (see Fig. 2.1), 

m = number of piles in the group. 
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• 
The coefficients S iJ: represent the system of (incremental) equilibrating forces discussed 

above. Therefore, the (3 x 3) matrix [s ] can be regarded as the (incremental) global 

stiffness matrix of the pile group system: 

• • • • • 
V SII SI2 SI3 W 

• • • • • 
H S21 S22 S23 U (3.6) (2.13 bis) 

• • • • • 
M S31 S32 S33 tJ 

where 

• • • 
V, H, M = incremental extemalloads and moments acting on the pile cap 

(given by totalloadlmoment divided by number of load increments), 

• 
[S] = (3 x 3) incremental global stiffness matrix of the pile group system, 

• • • 
w, U, tJ = incremental vertical displacement, horizontal displacement and rotation 

of the pile cap. 

Step (10) 

Invert the [s ] matrix and calculate the incremental vertical displacement, horizontal 

• • 
displacement and rotation of the pile cap produced by the increments of loading V, H and 

• 
M: 

• • • • • 
W III 112 IJ3 V 

• • • • • 
U = 121 /22 /23 H (3.7) (2.14 bis) 

• • • • • 
tJ /31 /32 /33 M 
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where the matrix in Equation (3.7) is the (3 x 3) incremental global flexibility matrix [F ] 
of the pile group system. 

Step (11) 

In order to calculate the incremental real tractions acting on the piles, the incremental pile 

tractions due to unit boundary conditions from Equation (3.3) are scaled by a factor 

• 
represented by the incremental vector of vertical displacement w, horizontal displacement 

~ and rotation J of the cap obtained from Equation (3.7). Therefore, for each pile type, 

the incremental axiaVtransverse tractions can be expressed as: 

where 

.; .1. .2. .3 . 
to = to; w+ to; U+ to; " 
.i .1. .2. .3. 
tt = tt; w+ tt; u+ tt; " 

(3.8) (2.15 bis) 

= vector, of size n(N+ 1), of incremental axial tractions acting on pile 

elementi, 

.1: 
to; = three vectors, each of size n(N+ 1), of incremental pile axial tractions 

acting on element i due to unit boundary conditions (k = 1, 2, 3), 

• • • w,u," = incremental vertical displacement, horizontal displacement and rotation 

of the pile cap, 

.; 
t t = vector, of size (n x N), of incremental transverse tractions acting on pile 

element i, 

.1: 
tti = three vectors, each of size (n x N), of incremental pile transverse tractions 

acting on element i due to unit boundary conditions (k = 1,2,3). 

Step (12) 
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Integrate the axiaVtransverse incremental tractions acting on the piles obtained from 

. 
Equation (3.8), thereby leading to the (incremental) values of the axial forces Fa, shear 

• • 
forces Ft and bending moments M, acting at the top of each element i for each pile type: 

where 

• i • ;+1 .i 

Fa = Fa +A~ ta 
• i • ;+1 ei 

Ft = F, + A: t, 
• ; • ;+1 .• i hi • ;+1 . 

M,=Mt -A;ttX--FI xh' 
2 

• j 

(3.9) (2.16 his) 

Fa = vector, of size n(N+ 1), of incremental axial forces acting at the top of 

pile element i, 

• j 
F, = vector, of size (n x N), of incremental shear forces acting at the top of pile 

element i, 

• j M 1 = vector, of size (n x N), of incremental bending moments acting at the top 

of pile element i, 

h j = height of the pile element i (given by Lj divided hy N, where Lj is the 

length of pile j and N is the number of pile shaft elements). 

Step (13) 

By summation, calculate the current (resultant) axiaVtransverse tractions acting on pile 

element i for each pile type, yielding: 

where 

J .i 
tj = Ltj 

j=1 

(3.10) (2.30 his) 

tj = vector, of size n(2N+ 1), of current axiaVtransverse tractions acting on pile 

element i, 
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.j 

ti = vector, of size n(2N+ 1), of current axiaVtransverse tractions acting on pile 

element i at the load incrementj, 

J = current total number of load increments (J = I, NINC), 

NINe = total number of load increments. 

In the same way, the current displacements and rotation of the pile cap and the current 

axiaYshear forces and moments acting on piles are calculated by summation of the 

incremental values. 

Step (14) 

Check that pile cap equilibrium between current applied loads and current total reactions of 

the piles is satisfied. 

Step (15) 

Test whether an element i has yielded by introducing a flag I pi as: 

where 

(3.11) 

I pi is a flag which detennines whether (in the next increment) an element i should 

be regarded as elastic or plastic, 

t$i (= -t pi) are the current soil tractions acting on the i-th element, 

t$iy are the limiting stresses acting on the i-th element, as defined in Equations 

(2.17) and (2.18), 

H[x] is the 'Heaviside function' which assumes the following values: 

H[x] = 0 

H[x] = 1 

if x < 0 (ie the element i remains elastic), 

if x> 0 (ie the element i yields). 
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Step (16) 

Set up zero the rows and columns of the global flexibility matrix [G p + Gs ] (from Equation 

(3.3» corresponding to those soil elements which have yielded. The incremental procedure 

restarts from Step (6). 

3.3.3 Structure of the program 

The computer program PGROUPN is written in Salford Fortran 77 language, 

containing approximately 4000 lines. The program represents an extension of the 

numerical code PGROUP by Banerjee & Driscoll (1976), which has been entirely 

rewritten in order to make it more computationally efficient and to include the effects 

of soil nonlinearity (these modifications are summarised in Section 2.2). The only 

subroutines which do not alter the original structure are those labelled SORT, 

UNLOAD, RGSCAL, GLOAD and EQUIB. Such subroutines have the task of 

evaluating the actual pile displacements, loads and moments having already obtained 

the stresses due to unit boundary conditions (Steps (7) to (12». In addition, various 

bugs in the version PGROUP 2.0 by Banerjee & Driscoll (1977) have been sorted out (as 

depicted in Appendix 3.1). 

Only a brief description of the main subroutines involved m the PGROUPN 

algorithm will be given here (see Fig. 3.3). 

Subroutine DRIVER 

• Call for Subroutines INPUT, SVEC, ASSMBI. GDASSI and UNITSC at the start 

of the analysis; 

• Call for Subroutines SOLVER, SORT, UNLOAD, RGSCAL, GLOAD, UPDATE 

and EQUIB for incremental analysis; 

• Call for Subroutines PLOTY and PLOTH to print plots. 

Subroutine INPUT 

• Step (l): readslwrites all input data to a file. A description of required input data is 

given in Table 3.1. 
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Subroutine SVEC 

• Step (2): detennine the limiting stresses for the soil elements. 

Subroutine ASSMBI 

• Step (3): set up the single-pile and the interaction soil flexibility matrices [G.] for 

each pile via integration of the Mindlin's kernel (Mindlin, 1936) (via Subroutines 

HSINGH, VSINGH and APILE), and assemble in the global soil flexibility matrix 

[ Gs ] of the group. If sets of pile types are exploited, a matrix condensation is 

perfonned (refer to Fig. 3.2). 

Subroutine GDASSI 

• Step (4): set up the pile flexibility matrix [Gp ] via integration of the Bernoulli-Euler 

(beam theory) kernel for each pile type (via Subroutine DMATX), and assemble in 

the global pile flexibility matrix [G p] of the group. 

Subroutine UNITSC 

• Step (5): compute the vectors of unit boundary conditions for each pile type. 

Subroutine SOLVER 

• Step (6): compute the incremental pile tractions due to unit boundary conditions for 

each pile type (for a linear elastic analysis, the number of increments is assumed to 

be equal to 1). 

Subroutine SORT 

• Step (7): extract the incremental axiaVtransverse pile tractions due to unit boundary 

conditions. 

Subroutine UNLOAD 

• Step (8): compute the incremental pile head axiaVshear forces and moments due to 

unit boundary conditions for each pile type. 
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Subroutine RGSCAL 

• Step (9): compute the (incremental) global stiffness matrix of the pile group system; 

• Step (10): compute the incremental vertical displacement, horizontal displacement 

and rotation of the pile cap. 

Subroutine GLOAD 

• Step (11): compute the incremental 'real' pile tractions for each pile type; 

• Step (12): compute the distribution of the incremental axiaVshear forces and 

moments for each pile type. 

Subroutine UPDATE 

• Step (13): compute the current (resultant) axiaVtransverse pile tractions, the current 

displacements and rotation of the pile cap and the distribution of the axiaVshear 

forces and moments for each pile type; 

• Call for Subroutine PLAST (see below); 

• Write output data to a file. 

Subroutine EQUm 

• Step (14): check that pile cap equilibrium is satisfied; 

• Return back to Subroutine SOLVER for the next increment. 

Subroutine PLAST 

• Step (15): check for yielded soil elements; 

• Step (16): set up zero rows and columns of the global flexibility matrix [G p + Gs ] 

corresponding to yielded soil elements. 

3.3.4 Limitations imposed by the method used 

The program has the following limitations: 
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(a) The non-linear analysis is restricted to pile groups embedded in cohesive soils, 

specifically fully saturated clay under undrained conditions, which can be defined by the 

shear strength Cu, the Young's modulus Es = Eu and the Poisson's ratio Vs (this is 

generally taken as 0.5). The linear elastic analysis can be an undrained analysis of clays 

or a drained analysis of clays or sands (with suitable choice of Es and us); 

(b) The piles can be raked in one plane only, namely the XZ plane (refer to Fig. 2.1). 

Banerjee & Driscoll (1977) suggested that it is possible, in an approximate manner, to 

analyse pile groups with piles raked in two directions by considering the angle of rake in 

the plane of the applied horizontal loads and moments and assuming that the angle of 

rake is equal to the angle between the projection of the piles on to the plane of 

horizontal loads and moments, and the vertical axis. This will lead to an overestimate of 

displacements and moments; 

(c) The applied horizontal load and moment must all act in one plane (ie the XZ plane). In 

order to analyse approximately pile groups subjected to horizontal loads and moments in 

two directions, Banerjee & Driscoll (1977) suggested separating the problem into two 

parts and obtaining the fmal results by applying the principle of superposition; 

(d) The pile slenderness ratios (ie the ratio of pile length to shaft diameter) should not be 

less than 5 (refer to Butterfield & Banerjee, 1971a); 

(e) In the analysis of single piles under axial loading and pile groups under either axial or 

lateral loading, the height of the pile shaft element should not be less than twice the shaft 

diameter (see Sections 4.3.1.1 and 5.2). 

3.3.5 Maximum problem size 

The maximum problem size is governed by the following parameters: 

(a) Maximum number of piles in a group (m) = 500 
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(b) Maximum number of pile types in a group (n) = 100 

(c) Maximum number of pile shaft elements per pile (N) = 50 

(d) Maximum number of degrees of freedom (do/) = 2000 

(e) Maximum number of (equal) load increments (NINC) = 1000 

NOTE: do! is represented by the number of simultaneous linear equations which are to be 

generated and solved by the program, ie n(2N+ 1). 

3.4 Input 

3.4.1 General description 

The amount of data input required by the program is minimal. The input data, which 

include specification of the pile group geometry and properties, loading conditions and soil 

properties are handled by an interactive set of subroutines specially designed to reduce the 

effort needed for data preparation. The application offers the possibility of using previous 

input data which become temporary defaults - thus, if the User wishes to examine the 

effect of changing only a few input values, he/she does not need to re-enter all of the data. 

If no previous data are used, then default values are adopted. 

3.4.2 System of units adopted 

The program is independent of units. Any consistent set of units can be chosen by 

the User. For instance, if the soil and pile moduli are expressed in kPa, the pile geometry 

must be expressed in metres, the loads in kN and the moments in kNm. The angle of rake 

of the piles is defined in degrees. 

3.4.3 Type of analysis 
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The User may choose between two types of analysis: (a) Linear elastic analysis; (b) 

Non-linear analysis. If 'Non-linear' analysis is selected, the number of (equal) load 

increments (NINe) needs to be entered. 

3.4.4 Pile group configuration 

Groups containing up to 500 piles may be analysed. The piles may be arranged in 

any geometrical configuration, ie in a rectangular grid plan (with the possibility of adding 

and/or removing piles) or in a random plan, provided that the pile group remains 

symmetrical about the XZ plane (refer to Fig. 2.1). Although the individual piles may have 

different diameters and lengths as well as different angles of rake, the resulting arrangement 

must also be symmetrical about the XZ plane. 

The pile coordinates are defined at the intersection of the centre of the pile and the 

ground level The piles are rigidly connected to the pile cap which is itself assumed to be 

rigid. The cap is assumed to be free-standing and non-effective (ie the effects of interaction 

between pile cap and soil are not considered). A depth of overhang (g) of the cap (given by 

the vertical distance between the underside of the pile cap and the ground level) may be 

specified where the superficial soil layers are ineffective or where the group loads are 

applied above ground level. 

3.4.5 Geometry of the piles 

Piles may have different geometries but all are assumed to be constructed from the 

same material, ie all piles have the same Young's modulus (Ep). The pile length (L) is the 

embedded length of the pile. The base diameter (db) may be different from the shaft 

diameter (d). An internal diameter (di) may be specified in order to take into consideration 

hollow piles (for solid piles the internal diameter is zero). Piles of non-circular cross­

sections can also be investigated by representing them as equivalent cylindrical piles. Piles 

may be vertical or raked in the XZ plane (refer to Fig. 2.2). The angle of rake (<;) is defined 

in degrees and is deemed to be positive if the rotation of the pile is clockwise, ie if the X­

coordinate of the pile head is greater (algebraically) than the X-coordinate of the pile base. 

Vertical piles have zero rake. 
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Repeated data, ie pile lengths, base diameters, shaft diameters (internal and 

external) and pile rake angles, need not be re-submitted, thus greatly facilitating data 

preparation for large pile groups. 

3.4.6 Identification of pile types 

Computing time may be greatly reduced by exploiting symmetries between piles 

which are supposed to carry equal loads, a feature which is particularly significant for large 

pile groups. In most pile groups, n sets of pile types may be identified whose members 

carry identical loads to each other under all group loading conditions. Such sets of piles 

may be identified by an unique number in the input data, ie by the same 'Pile type number'. 

An example of correct pile numbering for a 3 x 3 pile group is given in Fig. 3.4a. It 

is worth noting that although under vertical centroidal loading only three sets of pile types 

would be required, such a pile numbering (depicted in Fig. 3.4b) is inadequate because, as 

stated above, the pile numbering must be valid for all loading conditions (in fact, under 

horizontal loading, the pile group tries to rotate and hence piles at the edges will be loaded 

in tension and compression). 

Frequently, for reasons of economy or of difficulty in identifying piles which act 

identically, it is possible to identify sets of piles which only carry approximately equal loads. 

It should be emphasised that the identification of pile types is the key to the efficient 

application of the program to large pile groups, and hence the User should strive to specify 

the minimum number of pile types consistent with the required accuracy of the solution. 

3.4.7 Loading 

The group loads are applied to the pile cap and may consist of any combination of 

vertical load (V), horizontal load (H) and moment (M), all acting in the XZ plane through 

the group centroid (refer to Fig. 2.1). An eccentric vertical load may be specified by 

entering the X-coordinate of its location on the cap. A vertical load in the direction of the 

positive Z-axis, a horizontal load in the direction of the positive X -axis and a clockwise 

moment in the XZ plane (viewed from 'negative V') are all assumed to be positive. 

3.4.8 SoU layer 
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The soil may be idealised as a homogeneous or non-homogeneous (Gibson type) 

material. The soil properties are described by the profiles of the Young's modulus (E3) and 

the undrained shear strength (C,,), and by the constant values of the Poisson's ratio (v3 ) and 

the adhesion factor (a). A finite depth (H) of soil layer may be specified. 

3.5 Output 

The normal output of the PGROUPN program consists of the following data: 

(a) The input data; 

(b) The resultant global stiffness and flexibility (3 x 3) matrices (described in Equations 

(3.6) and (3.7), respectively) which may be used for superstructure analysis; 

(c) The resultant displacements and rotation of the pile cap; 

(d) A table with the resultant cap displacements and rotation at each load increment; 

(e) The resultant pile shaft shear/normal stresses of each pile element, starting at the top 

element, ie at the ground level; 

(f) The fmal identification state (ie elastic or plastic) of each pile element; 

(g) The resultant axialIshear forces and bending moment acting at the top of each pile 

element, starting from the top element. In the case of free-standing portions of the piles 

being specified, the moment at each pile-head cap joint will be given by the moment at 

the top of the first pile element plus the moment due to the transverse load at the first 

pile element multiplied by the free-standing height (ie the depth of overhang of the cap); 

(h) The load-displacement curves of the pile cap (using graphics subroutines). 
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In addition, the User may choose to print the soil limiting stresses (from Equations (3.1) 

and (3.2» and the current (resultant) quantities (b), (c), (d), (e), (f) and (g) at each load 

increment 

3.6 Typical illustrative results 

In order to show typical results from PGROUPN and, also, to make a comparison 

between the results obtained by adopting the approach put forward in this thesis, the 

approach by Davies & Budhu (1986) and the modified Davies & Budhu approach 

(which are described in Section 2.4.5), the load-deformation curves of single piles and 

2 x 2 pile groups in homogeneous soil are presented in Figs. 3.5 to 3.8. The details of 

the input parameters are as follows: 

Pile diameter (d) 

Centre-to-centre pile spacing (s) 

Pile Young's modulus (Ep) 

Soil Poisson's ratio (vs) 

EleN 

Adhesion factor (a) 

=lm 

=3m 

=25 GPa 

=0.5 

= 100 

=0.5 

In order to cover a wide range of pile geometries and pile-soil relative stiffnesses, 

ratios of Ud = 20, 80, and K = Ep/Es = 100, 20000 have been selected. Thus, four 

cases may be identified, as depicted in Table 3.2. 

As regards pile discretization, for single piles under axial loading and pile 

groups under either axial or lateral loading, the height-to-diameter ratio (hid) of the 

pile shaft element adopted here is 2, whereas, for laterally loaded single piles, hid = 1 

(as shown later in Sections 4.3.1.1,4.4.1.1 and 5.2). 

In all the numerical simulations presented in this thesis, the computational work is 

done on a Pentium 133 MHz with 16 Mb RAM, and using the Lahey Fortran 3.0 compiler. 

It has been found that about 200 load increments (NINC) are generally sufficient to 

achieve convergence of the PGROUPN solution process. 
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Figures 3.5 to 3.8 show load-deformation curves which are typical of relatively 

rigid (Cases 1, 2 and 4) and relatively flexible (Case 3) single piles and pile groups. For 

instance, in an axially loaded flexible pile, high shear stresses occur near the top of the pile, 

and hence the effects of soil yielding are evident from the start of loading. This results in a 

markedly non-linear load-settlement response. Instead, in a rigid pile, the distribution of 

shear stresses is relatively uniform with depth, thereby resulting in a nearly elastic-perfectly 

plastic load-settlement response. 

It is evident that, if the approach proposed by Davies & Budhu (1986) for laterally 

loaded single piles is applied to the pile group problem, this will result, at some load 

increments, in an apparent increase of the pile group stiffness as yielding along the pile-soil 

interface progresses. This inconsistent behaviour has been observed in most of the 

numerical simulations carried out on single piles under axial loading and pile groups 

SUbjected to either vertical or horizontal loads, and it is more evident for relatively rigid 

piles. Instead, the load-deflection curves of laterally loaded single piles show a plausible 

trend which is similar to that obtained using the current approach. 

It is worth noting that the modified Davies & Budhu approach produces a plausible 

load-deformation behaviour for all the cases analysed. However, as discussed in Section 

2.4.5.3, this approach is discarded as it requires some physical assumptions which are less 

satisfactory than those employed in the current approach. 

3.7 Concluding remarks 

The non-linear BEM analysis has been successfully implemented in the computer 

program PGROUPN using the procedure described above. The boundary element algorithm 

proposed by Banerjee & Driscoll (1976) has been extended in order to increase 

computational efficiency and to include the effects of soil nonlinearity by means of a 

stepwise linear incremental procedure. The structure of the algorithm is outlined, together 

with a general description of the input data required and the results of the analysis. In the 

following chapters, the validity and generality of the proposed approach will be examined 

by comparison with alternative numerical methods and field tests. 
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Appendix 3.1 

Inaccuracies in the numerical code PGROUP 2.0 

In order to familiarise with the boundary element algorithm for pile group analysis, the 

computer program PGROUP (version 2.0) by Banerjee & Driscoll (1977) has been carefully 

examined. A brief description of some inaccuracies found in the algorithm is given below. 

(a) In Subroutine GDASSI (which computes the pile flexibility matrix [G p]), the variable 

DEP (which is equal to the free-standing length of the pile) should be divided by costfJ in 

order to take into account the pile rake, ie it should be: 

DEP= DEP 
costfJ 

where tfJ is the angle of rake of the pile. 

(A3.1-I) 

In addition, the columns (N-l) and N (where N corresponds to the number of pile 

shaft elements per pile) of the pile flexibility matrix [ G p] are slightly in error and, 

consequently, the [G p] matrix is not symmetric. This error may be due to the finite 

difference form adopted for the pile domain in PGROUP 2.0. 

(b) In Subroutine UNITSC (which defines the unit boundary condition vector), the term 

COX sin tfJ has been omitted in the definition of the transverse column vector due to unit 

rotation of the pile cap. Therefore, the correct expression is: 

BVEC(Nl, 3) = COX sin tfJ - DEP - AL(NK) x (FIl- 0.5) I FN 
costfJ 
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Numerical implementation 

BVEC(Nl, 3) is the transverse column vector due to unit rotation of the cap, 

N 1, Fll indicate the appropriate element of the column vector, 

COX is the horizontal distance of the pile head from the vertical axis of symmetry 

of the pile cap, 

DEP is the depth of overhang of the pile cap, 

AL is the pile length, 

NK indicates the pile number, 

FN is the number of pile shaft elements per pile. 

(c) In subroutine UNLOAD (which computes the pile head axiaVshear forces and moments 

due to unit boundary conditions for each pile type), the term (-DEPtant/J) has been 

omitted in the calculation of COUPLE. Therefore, the correct expression is: 

aJUPlE=SUMx2A(NK)HOW+(ALOADcost/J+1l.OADsint/J)(COX-DEPmnt/J) 

-(1WADcost/J - ALOADsin t/J)DFP 

where 

(A3.1-3) 

COUPLE is the moment acting on the cap due to unit boundary conditions, 

SUM x 2A(NK)HOW represents the pile head moment due to unit boundary 

conditions, 

ALOAD are the pile head axial forces due to unit boundary conditions, 

TWAD are the pile head shear forces due to unit boundary conditions. 

The term (-DEPtant/J) has also been omitted in the analogous calculation of COUPLE in 

Subroutine EQUIB. 
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TABLES CHAPTER 3 

Table 3.1 Input data for the PGROUPN program. 

DESCRIPTION 

Number of piles (m) 

Number of pile types (n) 

Number of pile shaft elements per pile (N) 

Depth of overhang of the pile cap (g) 

Type of analysis: 
• 0 = Linear elastic 
• 1 = Non-linear 

... only if the type of analysis is 'Non linear': 

Number of equal load increments (NINe) 

... for each pile i (i = 1, m): 

Pile i type number 

Pile i embedded length (L;) 

Pile i external diameter (d;) 

Pile i internal diameter (dii) 

Pile i base diameter (db;) 

Pile i rake (tA) 

x-coordinate of pile i at ground level 

y-coordinate of pile i at ground level 
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VARIABLE 

NPILES 

NS 

N 

PCXYZ(3) 

LPLAS 

NINC 

KK(i) 

PLEN(i) 

PDIA(i) 

PDII(i) 

PDIB(i) 

RAKE(i) 

CORD(i,l) 

CORD(i,2) 

continued ... 
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DESCRIPTION 

Pile Young's modulus (Ep) 

Depth of soil layer (II) 

Soil Young's modulus at ground level (Eso) 

Rate of increase of soil Young's modulus with depth (m) 

Soil Poisson's ratio (v,) 

Vertical load on cap (V) 

Horizontal load on cap (II) 

Moment on cap (M) 

x-coordinate of vertical load on cap 

... only if the type of analysis is 'Non-linear': 

Undrained shear strength at ground level (Cuo) 

Numerical imolementation 

VARIABLE 

EP 

PIAYER 

ESS 

ESZ 

PM 

SCALE(J,J) 

SCALE(l,2) 

SCALE(J,3) 

SCALE(J,4) 

CUS 

Rate of increase of undrained shear strength with depth (c) CUZ 

Adhesion factor (a) CUA 
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Table 3.2 Input data for comparison between approaches. 

Case Ud K 

1 20 100 

2 20 20,000 

3 80 100 

4 80 20,000 
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FIGURES CHAPTER 3 

(Depicted loads and 
moment are all positive) 

Ground level 

Axial soil 
tractions (+ve) 

M 

H 

z 

tst " . Transverse soIl 
tractions (+ve) 

w 

(Depicted displacements and 
rotation are all positive) 

Fig. 3.1 Sign conventions for a pile. 
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Piles Pile types L 1 0 1 

x 

2 0 2 

3 0 1 

(a) 

{Gst
l {G.)l.2 {Gst

3 

[Gs1 = {Gst
J {Gst 2 {Gs )2;3 

{Gsfl {G.)3.2 {Gs)3.3 

(b) 

(c) 

Fig. 3.2 Condensation of the global soil flexibility matrix [Gs 1 for a group of m = 3 piles 

with n = 2 pile types. (a) Pile group geometry. (b) Non-condensed global soil flexibility 

matrix [Gs ]' (c) Condensed global soil flexibility matrix [Gs ] after exploiting symmetries 

between piles (NOTE: {Gs t is the single-pile (pile i) soil flexibility matrix of size (2N+ 1) 

x (2N+ 1); {G. t i is the interaction (between pile i and pile j) soil flexibility matrix of size 

(2N+ 1) x (2N+ 1); N is the number of pile shaft elements per pile). 
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DRIVER 

INPUT 

SVEC 

ASSMBI 

GDASSI 

UNITSC 

... continued 
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SOLVER 

SORT 

UNLOAD 

RGSCAL 

GLOAD 

UPDATE PLAST 

EQUIB 

Fig. 3.3 Structure of the PGROUPN program with its subroutines (NOTE: n = number of 

pile types, NINe = number of equal load increments). 
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L 
X 

01 05 

06 

0 1 0 5 

(a) 

01 

02 

0 1 0 1 

(b) 

Fig. 3.4 Selection of pile types for a 3 x 3 pile group. (a) Valid numbering. (b) Invalid 

numbering. 
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Fig. 3.5 Compari on of load- ettlement curves for axially loaded single piles. 

114 



CHAPTER 3 Numerical implementation 
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Fig. 3.6 Comparison of load-deflection curves for laterally loaded single piles (NOTE: 

These are 'flexible' pile , ie the length of the pile does not affect the response under 

lateral loading (fo r fu rther details, ee Section 4.4.1). Thus, the load-deflection curves 

fo r Ca e 3 and 4 are the arne a for Cases 1 and 2, respectively). 
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CHAPTER 4 

Numerical results - single piles 

4.1 Summary 

This Chapter presents the numerical results obtained by the PGROUPN program 

from linear and non-linear analyses of single piles subjected to axial and lateral loads. 

The accuracy and generality of the proposed approach have been verified by 

comparison with alternative numerical solutions. The influence of major parameters on 

the behaviour of single piles has then been investigated, and a series of parametric 

studies is presented. Furthermore, the optimal pile discretization under axial and lateral 

loading has been examined. 

4.2 Introduction 

A number of well-established methods are now available to analyse, with 

different degrees of rigour, the linear and non-linear behaviour of single piles subjected 

to either axial or lateral loading. The objective of this Chapter is to assess the validity 

and accuracy of the current approach by comparison with some of the existing 

numerical methods. This represents an essential step in order to proceed with greater 

confidence to the extension of the analysis to pile groups, where the limitations of 

current approaches quickly become apparent. 

The numerical accuracy of the proposed solution depends on the number of 

degrees of freedom allowed for the structure, ie the accuracy with which an infmitely 

redundant structure is idealized by a structure containing a fmite number of degrees of 

freedom. In the boundary element method (employed in the PGROUPN analysis), 

remarkably few degrees of freedom are required to obtain good accuracy. For this 

purpose, pile discretization is investigated in order to determine the optimal height (h) 

to width (ie the diameter d) ratio of the pile shaft element, such that computational 

efficiency may be achieved. Thus, the height h of the pile shaft element is given by: 
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L 
h=­

N 

Numerical results -smgle piles 

(4.1) 

where L is the pile length and N is the number of shaft elements which has been 

adopted to discretize the pile. 

In the linear elastic range, the influence of major parameters, such as enlarged 

base diameter, pile rake and fmite-soil layer depth, is examined, and charts showing 

how the deformation of a pile depends on the various parameters of pile geometry and 

pile-soil relative stiffness are presented in non-dimensional form. In the non-linear 

range, the load-deformation response and load transfer are investigated. 

As regards the Poisson's ratio of the soil (v,), this is a necessary input 

parameter into analyses that involve the elastic solution of Mindlin. Its effect is 

generally quite minor for piles under axial loading as the axial displacement of a pile 

depends primarily on the soil shear modulus G, and is relatively unaffected by 

variations in Poisson's ratio (with G, held constant). This is in contrast with a laterally 

loaded pile, where the horizontal displacement depends on the (horizontal) Young's 

modulus, E. = 2G.(1+v.). In this thesis, unless otherwise specified, the value of the soil 

Poisson's ratio (v,) is taken as 0.5, which is the appropriate value for fully saturated 

clay under undrained conditions (for further details see Section 3.3.4a). 

4.3 Piles under axial loading 

The initial step of the validation of the proposed approach consists of a 

comparison of the axial response of a single pile predicted by the PGROUPN program 

against published numerical solutions. 

4.3.1 Linear solution 

The behaviour of an axially loaded pile in an elastic soil is governed largely by 

the following dimensionless parameters: 

(a) The length-to-diameter ratio Ud; 
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(b) The relative pile-soil stiffness K = Ep/Es, where Ep is the pile Young's modulus and Es 

is the soil Young's modulus - typical values of the stiffness ratio K, calculated for 

various types of pile and soil, are given in Table 4.1 (after Poulos & Davis, 1980). The 

relative pile-soil stiffness may also be expressed by the ratio A. = E/Gs, which is related 

to K by the expression A. = 3K (under the assumption that Vs = 0.5). It may be noted 

that, in comparing the PGROUPN results with those obtained by other authors, sometimes 

K is used whereas at other times A. is used (depending on what the other authors have 

used). 

4.3.1.1 Convergence of numerical solution 

One of the key points for the correct application of the PGROUPN analysis is the 

optimal definition of the number N of pile shaft elements. This definition is crucial for the 

efficient application of the method to large pile groups where the requirement of limiting 

the computational time is preponderant. 

In order to investigate the convergence of the numerical solution provided by the 

PGROUPN program for different values of N, the head settlements of a floating pile 

characterised by different values of K = Ep/Es and Ud have been computed with different 

values of shaft element height-to-diameter ratios hid. The pile (0.5 m in diameter) is loaded 

by an axial force of 10 MN acting at the top and is embedded in a deep homogeneous 

elastic soil mass with a Young's modulus (Es) of 1 GPa. 

The pile-head settlement calculated from PGROUPN are shown in Tables 4.2 and 

4.3. The following characteristics of behaviour are observed: 

(a) Settlements decrease with increasing hid, ie with decreasing N; 

(b) Settlements decrease with increasing the relative pile-soil stiffness K; 

(c) Settlements decrease with increasing Ud. 
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Tables 4.2 and 4.3 show that, even for hid = 6, corresponding to a very coarse 

discretization of the pile, the results differ very little from those given by a much finer 

discretization, such as hid = 2. In fact, the results for hid = 2 and those for hid = 6 differ by 

only 1.6%. 

Moreover, it is critical to observe that values of hid ratio less than 2 (the 'shaded' 

area in Tables 4.2 and 4.3) produce numerical instability, resulting in oscillation of shear 

stresses along the lower part of the pile, as depicted in Figs. 4.1 and 4.2 for a pile 

characterised by a Ud ratio of 25 and for K = 100 (compressible pile) and K = 10,000 

(relatively rigid pile), respectively. 

Such an unstable profile of shear stress along the pile for hid ratios less than 2 is 

associated with the values of terms in the soil flexibility matrix [Os], obtained from 

Mindlin's solution (refer to Equation (2.3». This may be partially attributed to an 

approximation involved in the PGROUPN analysis: in the application of Mindlin's solution, 

the field point (ie the point at which the displacement is calculated) should be located at the 

mid-height of the element along the pile-soil interface but, because the pile is narrow 

compared with its length, all positions may be referred to the mid-height of the element on 

the centre line of the pile (eg D' Appolonia & Romualdi, 1963). This approximation is 

necessary to allow the analytical integration of the singular Mindlin functions, thereby 

leading to significant savings in computational costs. Instead, if the field point is located 

along the pile-soil interface, the integration is conveniently evaluated only numerically 

(poulos & Davis, 1980). The error generated by this approximation is represented by the 

pile radius, ie the horizontal distance of the centre line of the pile from the pile shaft 

surface. Consequently, the effects of this approximation will become less significant for 

slender pile elements. This is confirmed by the results obtained using a version of PGROUPN 

which assumes the field point to be located along the pile-soil interface. It has been found 

that the discrepancies between the two approaches are negligible for hid ratios equal or 

greater than 2. Instead, using the solution with the field point located along the pile-soil 

interface for hid ratios less than 2, the instability of shear stress along the lower part of the 

pile is greatly reduced. 

Based on these observations, it may be concluded that the number N of shaft 

elements to discretize a pile subjected to axial loading must be such that: 
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(4.2) 

where h is the height of the pile shaft element and d its diameter. 

Another test on accuracy of the solution may be carried out by observing the 

symmetry of the pile stiffness and flexibility (3 x 3) matrices described in Equations (2.13) 

and (2.14). In the present test, these matrices have been found to be symmetric to within 

3% for hid = 2 (fine discretization) and to within 10% for hid = 6 (coarse discretization), 

over the entire range of K and Ud ratios. 

From the computational (time) point of view, the required CPU (central processor 

unit) time is about 1 s for the finest pile discretization adopted (ie N = 50 for the pile with 

Ud = 50 and hid = 1). Thus, for the linear analysis of single piles, computational costs 

are negligible. 

It may be concluded from this study that the optimal number N of shaft 

elements to discretize a single pile under axial loading appears to be: 

L 
N=-

2d 

4.3.1.2 Pile settlement 

(4.3) 

Figure 4.3 shows the effect of the stiffness ratio A. = E/Gs on the load-settlement 

behaviour of plain piles embedded in a deep homogeneous soil mass over a range of Ud 

ratios. The normalised load-settlement ratios PIGst/w (where P is the applied axial load and 

w is the pile head settlement) calculated by PGROUPN are compared with those predicted by 

the more rigorous BEM analysis of Butterfield & Banerjee (1971a) (for further details, see 

Section 1.4.3). It may be noted that the effect of the stiffness ratio A is negligible for 

relatively short piles (Ud < 20), ie a relatively short pile behaves as a rigid pile, regardless 

of its relative pile-soil stiffness. The three sets of solutions are in close agreement, the 

average difference being less than 3%. However, it should be emphasised that, in this 

thesis, the results from the other methods are taken by measurement from published 

diagrams. This suggests that inaccuracies of about 2% may be expected. 

122 



CHAPTER 4 Numerical resulu -single piles 

Figures 4.4 and 4.5 compare the load-settlement ratios of a single pile over a range 

of slenderness ratios Ud for homogeneous and Gibson soils, respectively. In the Gibson 

soil, the shear modulus increases from zero (at the ground surface) to G.L at the level of the 

pile base. The Poisson's ratio is taken as 0.3. 

Results from PGROUPN are compared with those obtained by the approach of 

Fleming et al. (1992), which is based on the analytical work of Randolph (1977), and the 

BEM approaches of Poulos (1979) and Poulos & Davis (1980), which may be considered 

to have approximately the same degree of rigour as PGROUPN for single piles. The 

agreement between solutions is close, the greatest potential for differences appearing to be 

for relatively short piles (Ud < 20). The higher values of pile stiffness obtained by Poulos 

(1979) and Poulos & Davis (1980) for long compressible piles may, in part, be attributed to 

the coarse discretization of the very long piles, leading to numerical inaccuracies. In 

addition, as observed by Fleming and colleagues, the scope for error when using a number 

of multiplicative factors taken from charts based on logarithmic scale should be considered. 

It is worth noting that there are combinations of slenderness ratio (Ud) and stiffness 

ratio (A.) beyond which further increase in pile length produces no increase in the load­

settlement ratio of the pile, ie the pile starts behaving as if it were infinitely long, with no 

load reaching the lower region. 

An application of the closed-form expression derived from Randolph (1977) to 

estimate the head settlement of a pile in non-homogeneous elastic soil has been reported by 

fleming et al. (1992). The details of the input parameters are: 

Pile embedded length (L) 

Pile free-standing length (g) 

Pile diameter (d) 

Pile Young's modulus (Ep) 

Soil Young's modulus at surface (£$0) 

Rate of increase of soil Young's modulus with depth (m) 

Soil Poisson's ratio (v.) 

Applied axial load (P) 
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The pile-head settlement w calculated by PGROUPN is: 

w=3.51 mm 

which is about 3% more than the value (w = 3.40 mm) calculated from the closed-form 

expression developed by Randolph. 

Poulos & Davis (1980) have compiled an extensive collection of charts showing 

how the (elastic) settlement of a pile depends on the various parameters of pile geometry 

and relative pile-soil stiffness. 

The head settlements of a floating pile have been computed as a function of the 

ratio Ud and the relative pile-soil stiffness K = EpIE •. The pile (0.5 m in diameter) is loaded 

by an axial force (P) of 10 MN acting at the top and is embedded in a deep homogeneous 

elastic soil mass with a Young's modulus (E.) of 1 GPa. 

Table 4.4 shows the comparison between the pile head settlements predicted by the 

Poulos & Davis analysis and PGROUPN. It is indicated that the settlement decreases as Ud 

and K increase. Further, as already observed above, the value of K has greater influence on 

the pile settlement with increasing Ud. For the case Ud = 25, there is an excellent 

agreement between the two solutions, for both relatively compressible (K = 1000) and 

relatively rigid (K = 10,000) pile. For the case Ud = 10 (relatively short pile), the 

agreement is not as close, even if the predicted settlements from the two solutions are 

within 3%. 

4.3.1.3 Load transfer 

For a pile in a deep uniform soil mass, the distributions of shear stress (-r.) along the 

shaft predicted by PGROUPN and Butterfield & Banerjee (1971a) are shown in Figs. 4.6 and 

4.7 for Ud = 20, 80, respectively. Again, for the shorter pile (Ud = 20), the effect of the 

stiffness ratio (.t) is seen to be negligible, and the agreement between solutions is close. 

Figure 4.7 shows similar curves for a longer pile (Ud = 80) with .t = 60,000 and .t = 00, for 

which the pile is almost incompressible and the shear stresses are relatively uniform. 

However, for .t = 6000, the longer pile becomes relatively compressible and high shear 
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stresses occur near the top of the pile. The agreement between the solutions is reasonable, 

the maximum difference being less than 10%. 

Figures 4.8 and 4.9 show the predicted shear stress ('t"$) and axial load (Pz) 

distributions along the shaft of a pile with a Ud ratio of 25. The results for the 

homogeneous soil profile are calculated for a relative pile-soil stiffness K = E/E$ of 1000. 

In the Gibson soil, the soil modulus increases from zero (at the surface) to E$L = 2E$ at the 

level of the pile base (where EI is the average soil modulus over pile depth). As already 

observed, for the homogeneous soil, the distribution of shear stress is relatively uniform 

with depth, whereas for the Gibson soil the shear stresses increase almost linearly with 

depth. The similarity between the stress distribution and the distribution of soil modulus 

may justify why load transfer approaches can give good predictions of pile behaviour 

(poulos, 1989). An excellent agreement between the two solutions is obtained. 

4.3.1.4 Finite-layer depth 

The influence of a finite-layer depth (H = 2L) on the settlement of a pile in Gibson 

soil is examined in Fig. 4.10. The pile head settlement (w) is expressed in terms of the ratio 

Ip = (wdEsL )I P, where P is the applied vertical load and ElL is the soil modulus at the 

]evel of the pile base. The results are calculated for a relative pile-soil stiffness K = E/EIL of 

1000, with the soil modulus at the surface assumed to be zero. 

Results from the PGROUPN analysis, which is based on the approximate solution of 

Steinbrenner (1934) (see Section 2.4.1) to allow for the effect of a rigid stratum, are 

compared with a similar BEM approach proposed by Poulos (1989), a FEM analysis 

reported by Poulos (1979) and the BEM solution of Banerjee & Davies (1977), which 

treats the Gibson soil as a series of homogeneous layers - it should be emphasised that the 

last two solutions are very expensive in terms of computational cost. A good agreement 

between the solutions is obtained, the greatest potential for differences being for relatively 

short piles (Ud < 20). 

4.3.1.5 Critical length 

There is a critical length (I.e) for a pile subjected to axial loading, beyond which 

further increase in length produces no further reduction in settlement. This limiting situation 
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corresponds to the case where the pile starts behaving as if it were infinitely long, with no 

load reaching the lower region. For a floating pile embedded in a homogeneous soil, the 

critical length may be given by the approximate expression (Hull, 1987): 

Lld= --p ( 
n:KA )0.5 

c d2 
(4.4) 

where Ap is the area of pile cross-section and K = E/E$ is the relative pile-soil stiffness. 

For circular piles, Equation (4.4) can be written as: 

Lc I d = 1.57 XO.s (4.5) 

In order to investigate the agreement between the values of Lc given by Equation (4.5) and 

those predicted by PGROUPN, the head settlements of a floating pile in homogeneous soil 

have been computed as a function of the length-to diameter ratio Ud and the relative pile­

soil stiffness K. 

The head settlements (w), as calculated from PGROUPN, are plotted in non­

dimensional form in Fig. 4.11 (where WlO is the pile head settlement calculated for Ud = 

10). From this plot, the values of the pile critical length obtained from the PGROUPN 

analysis may be extrapolated. These values agree well with the values of Lc calculated by 

Hull using Equation (4.5), and reported in Table 4.5. 

4.3.1.6 Raking piles 

The load-settlement behaviour of a raking pile predicted by the PGROUPN 

analysis has been compared with that calculated according to the method suggested by 

Poulos & Davis (1980). The angles of rake employed in the numerical simulation are qJ 

= 15°, 30°. The following numerical example has been evaluated: 

Pile length (L) 

Pile diameter (d) 

Pile Young's modulus (Ep) 
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Constant soil Young's modulus (E.) 

Applied vertical load (P) 

= 1 GPa 

=lOMN 

Common practice in evaluating the single pile response is to treat the axial and lateral 

response of the pile separately (Poulos & Davis, 1980; Fleming et al., 1992). Thus, the 

response of a raking pile to load may be determined by taking the components of load 

parallel and normal to the pile axis. This approximate procedure is also supported by 

the analytical work of Evangelista & Viggiani (1976), which shows that the axial and 

lateral deformation response of a pile is almost independent of the angle that the pile 

makes with the ground surface, for angles of rake up to about 30°. 

Based on these observations, Poulos & Davis derived the following expression 

to evaluate the vertical head displacement (w) of a raking pile under vertical load (P): 

where: 

PI,v 
w=--

E,L 

I .. v = I pA cos 2 t/J + I pN sin 2 t/J , 

IpA = ILl d = 1.975 (from the charts provided by Poulos & Davis), 

I pN = I pH = 8.18 (from the charts provided by Poulos & Davis). 

(4.6) 

The values of the pile head settlement (w) calculated from Equation (4.6) are reported 

in Table 4.6. If the same (approximate) procedure of considering the axial and normal 

components of the applied vertical load is adopted in the PGROUPN analysis, the pile 

head settlements may be evaluated, as shown in Table 4.6 (refer to PGROUPN (A & 

N», In addition, the values obtained from the exact PGROUPN solution are reported. 

The three sets of solutions are in excellent agreement for t/J = 15°, whereas small 

discrepancies arise from increasing the angle of rake to t/J = 30°, thereby confIrming the 

observations by Evangelista & Viggiani. It is also of interest to note that the head 

settlement of the vertical pile (tP = 0) is about one-half of the head settlement of the raking 

pile with tP = 30°, 
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4.3.1.7 Under-reamed piles 

The applicability of the PGROUPN analysis to piles with enlarged bases (under­

reamed piles) is examined. In order to analyse the behaviour of an under-reamed pile, the 

base has been considered as a circular (disc) element of diameter db which can be greater 

than the shaft diameter (d) of the pile. This is an idealisation of a real under-reamed pile, 

where the effect of friction acting on the surface of the side slope may be significant -

usual specifications require that the side slope should make an angle of 60° or more with 

the under-ream floor (Fleming et al., 1992), as depicted in Fig. 4.12. 

Figures 4.13 and 4.14 show the effect of the stiffness ratio (A. = E/G.) and the 

slenderness ratio (Ud) on the load-settlement behaviour of piles in homogeneous soil over 

a range of base-to-shaft diameter ratios (1 :s; d,/d :s; 4). The load-settlement ratios calculated 

by PGROUPN are compared with those predicted by the rigorous analysis of Butterfield & 

Banerjee (1971a) in which greater accuracy may be achieved by dividing the base into a 

number of unifonnly loaded concentric rings and considering the displacements due to each 

ring. By comparison, PGROUPN considers a simple circular (disc) element to represent the 

pile base. In spite of this approximation, the agreement between solutions is close, the 

maximum difference being about 2% for the relatively long piles (Ud = 80). Again, it is 

worth noting that the effect of A for the relatively short piles (Ud = 20) is negligible. 

These differences between solutions are more marked in the prediction of the 

percentage of the total load carried by the pile base «PH) x 100), which is slightly 

underestimated in the more approximate PGROUPN analysis, as depicted in Figs. 4.15 and 

4.16 for A. = 6000 and A. = 30,000, respectively. However, this divergence becomes less 

marked for Ud ratios greater than 20. 

4.3.2 Non-Unear solution 

'The numerical experiments undertaken above are valid only for a linear elastic 

analysis. In reality, at normal working loads (of the order of 40% of the ultimate load), 

non-linear behaviour of the soil generally does not have considerable influence on single 

pile (and pile group) settlement. However, as the loading increases, the divergence from 

elastic conditions becomes more marked and nonlinearity effects result in an increase in the 
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settlement, especially for relatively compressible piles (Poulos, 1989; Mandolini & 

Viggiani, 1997). 

4.3.2.1 Comparison with FEM and BEM analyses 

In comparing non-linear solutions for single pile response to axial loading, the 

problem examined is that reported by Poulos (1989) in his Rankine Lecture. This 

numerical example offers an excellent opportunity to validate the PGROUPN approach 

in the non-linear range and, also, to investigate the influence of soil model. 

The test pile is 30 m long, 0.75 m in diameter and is embedded in a homogeneous 

soil layer 50 m deep. The initial tangent modulus of the soil (for very low strains) is 1056 

MPa, Poisson's ratio is assumed to be equal to 0.49, and a constant limiting shaft resistance 

of 220 kPa is adopted. Two values of pile Young's modulus are considered, Ep = 30 GPa 

and Ep = 30,000 GPa (the latter would be unrealistically stiff in practice). It has been found 

that about 200 load increments are sufficient to achieve convergence of the PGROUPN 

solution process - the resulting CPU time is about 4 s. 

Figures 4.17 and 4.18 show the computed pile head load-settlement response, 

together with the results from a non-linear load-transfer analysis (Guo & Randolph, 1997) 

and from a FEM analysis (Jardine et al., 1986) involving the use of a non-linear elastic­

perfectly plastic soil model, the LPC2 model, in which the Young's modulus decreases 

markedly from an initial value of 1056 MPa as the axial strain level increases (reaching a 

value of 83 MPa at an axial strain of 0.2%, at which point the soil yields and then behaves 

perfectly pbstically at a yield stress of 110 kPa). The LPC2 model described by Jardine and 

colleagues is representative of a stiff low plasticity clay with an overconsolidation ratio of 

2. In addition, Figs. 4.17 and 4.18 show the load-settlement curves obtained by Poulos 

(1989) who performed the following three boundary element analyses: (a) an elastic­

perfectly plastic continuum-based interface model (similar to PGROUPN), using a constant 

soil Young's modulus of 1056 MPa; (b) a hyperbolic non-linear continuum-based interface 

model, using an initial tangent soil Young's modulus of 1056 MPa and a constant shaft 

resistance of 220 kPa; (c) a load-transfer approach in which the interface response at each 

element is elastic-perfectly plastic, the linear portion being derived from the initial tangent 

soil modulus of 1056 MPa. 
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It is worth noting that, for the more compressible (and realistic) pile, all the BEM 

analyses are capable of predicting a very similar load-settlement response to that obtained 

from the FEM analysis which utilizes a non-linear constitutive model of soil behaviour. For 

the stiffer pile, the agreement between the curves is not as close, the greatest potential for 

differences being for loads of more than one-half of the ultimate; in particular, the 

hyperbolic model (curve (b» and, to a lesser extent, the FEM model predict larger 

settlements than the other three solutions. It is clear that, for very stiff piles, the details of 

the pile-soil interface model have a greater influence on the load-settlement response than 

for more compressible piles (Poulos, 1989). 

It is also of interest to note that PGROUPN calculates a value of the ultimate load 

(P,.) of about 16.6 MN. This value agrees well with that calculated by means of the 

commonly used formula for ultimate pile capacity: 

where 

p" = P" + P. = A"q" + As -r. = 16.4 MN 

Pb = ultimate base capacity, 

Ps = ultimate shaft capacity, 

Ab = area of the pile base, 

qb = end-bearing pressure, 

As = area of the pile shaft, 

-r s = average limiting shear stress down the pile shaft 

(4.7) 

FInally, Fig. 4.19 shows the mobilization of shaft resistance -rIC,. at a load level PIP. = 0.5 

(where P is the applied axial load). The results show that the distribution of shear stress 

predicted by PGROUPN is very consistent with that obtained from the FEM analysis of 

Jardine and colleagues. 

4.4 Piles under lateral loading 

For piles subjected to lateral force (and/or moment), the dominant design 

criteria are the (maximum) pile-head deflection and the maximum bending moment. 
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The bending moment is required in sizing the pile, and the deflection is important with 

regard to the serviceability of the supported structure. In addition, the magnitude of 

the deflection would be instructive in regard to the ability of the soil to respond to 

somewhat higher loads. 

In this section, the validity of the proposed PGROUPN approach for laterally 

loaded single piles has been verified by comparison with available numerical analyses. 

First numerical solutions in the linear elastic range are considered, and then the analysis 

is extended to examine the significant influence of soil nonlinearity. 

4.4.1 Linear solution 

In practical applications, the deformations and induced bending moments of a 

pile under lateral load are confined to the upper part of the pile, seldom extending 

beyond about 10 pile diameters below the ground surface (Randolph, 1981; Fleming et 

al., 1992). As such, the length of the pile is rarely a relevant parameter when 

developing solutions for laterally loaded piles, and hence the (linear elastic) behaviour 

of the pile is mainly governed by the relative stiffness between pile and soil. 

In view of this consideration, it should be emphasised that the numerical 

solutions presented below are valid for all piles which are longer than the critical length 

(Lc) beyond which the pile behaves as if it were infmitely long, ie the pile length no 

longer affects the response under lateral loading. Such piles are termed 'flexible'. 

4.4.1.1 Convergence of numerical solution 

In order to investigate the convergence of the numerical solution provided by the 

PGROUPN program for different values of the number of pile shaft elements (N), the head 

deflection and the maximum bending moment of a free-head floating pile have been 

calculated over a practical range of pile stiffness ratios, ie 500 S A. = EIGs S 104 (where Ep 

is the pile Young's modulus, which is taken as 25 GPa, and Gs is the soil shear modulus). 

The pile (0.5 m in diameter) is loaded by a lateral force of 1 MN acting at the top and is 

embedded in a deep homogeneous elastic soil mass. 

The pile-head deflections and the maximum bending moments calculated from 

PGROUPN are shown in Tables 4.7 and 4.8, respectively, as a function of A. and hid (where 
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h is the height of the pile shaft element and d the pile diameter). The following 

characteristics of behaviour are observed from the PGROUPN analysis: 

(a) Deflections and maximum moments increase with increasing hid, ie with decreasing N; 

(b) Deflections and maximum moments increase with increasing the pile stiffness ratio.t 

Table 4.7 shows that the pile deflections converge for an aspect ratio of unity (hid = 1). 

Taking the results for hid = 1 as the reference solution, Tables 4.7 and 4.8 show that for 

hid ratios of 2, 3 and 4 the pile deflections are overestimated by 4%, 15% and 39%, 

respectively, and the corresponding maximum moments are overpredicted by 9%, 17% and 

25%, respectively. These values refer to the mean of the percentage values over each .t 

It is worth noting that, for the laterally loaded pile, the accuracy of pile 

discretization has a greater influence on the solution than for the case of an axially loaded 

pile, especially for more compressible piles. 

It may be concluded from this study that the correct number N of shaft elements 

to discretize a laterally loaded pile appears to be: 

L 
N=-

d 
(4.8) 

which corresponds to an aspect ratio of unity (ie hid = 1). An aspect ratio of unity has 

also been employed in a similar work by Davies & Budhu (1986) and Lee (1997). 

4.4.1.2 Pile deflection 

A parametric study has been performed for laterally loaded free-head piles in 

homogeneous and Gibson soils. In order to avoid needing different solutions for 

different values of Poisson's ratio (v,), Randolph (1981) introduced a modulus G: as 

follows: 

(4.9) 

132 



CHAPTER 4 Numerical results -single piles 

where G, is the soil shear modulus. The analogous expression for Gibson soil is: 

m* = m(l +3vs /4) (4.10) 

where m is the rate of increase of shear modulus with depth. In the solutions presented 

below, the soil shear modulus at ground level is assumed to be zero for the Gibson soil. 

Figure 4.20 shows a comparison of the computed head deflections (u) of a pile 

(ro in radius) subjected to lateral force (H) and embedded in homogeneous soil. Some 

discrepancies are observed between the results predicted by PGROUPN and the fmite 

element fitted algebraic expressions of Randolph (1981). This divergence may, in part, 

be attributed to the different idealization of the pile when considering lateral loads: in 

the three-dimensional analysis of Randolph, bearing stress on the front face of the pile, 

shear stress along the sides and tension stress in the soil adjacent to the back face of the pile 

are all taken into account, whereas in PGROUPN the pile is assumed to be a thin rectangular 

strip and only the stress on the compressive face is considered. This may partially explain 

why the pile deflections predicted by PGROUPN are generally greater than those predicted 

by a three-dimensional analysis. Such an approximation simplifies the analysis and results in 

significant savings in computational costs, especially if soil nonlinearity is to be considered 

in pile group problems. Over the range of pile stiffness ratios commonly encountered in 

practice (500 S A,.* = EplG: S 1<f), the discrepancies between PGROUPN and Randolph 

predictions vary from 27% (at A,.* = 500) to 8% (at ;'* = 104
). 

Better agreement is found with the BEM analysis of Poulos (1971 a), in which 

the pile is idealized as a rectangular thin strip. It is worth noting that the results of 

Poulos show some dependence of the predicted pile deflections on the pile length, even 

for relatively flexible piles where the pile length should not affect the ground level 

deflections. This divergence may partially be attributed to numerical inaccuracies of the 

solution due to a coarse discretizing of the longer piles (Randolph, 1981; Evangelista 

& Viggiani, 1916). 

Figure 4.21 shows similar trends for the ground level deformations of laterally 

loaded piles in Gibson soil. It should be emphasised that in the BEM analysis of Poulos 
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(1973) the displacement of a point is obtained from the Mindlin solution using the 

elastic moduli at that point, whereas the BEM analysis of Banerjee & Davies (1978) 

adopts a more rigorous numerical approach to account for soil inhomogeneity, ie it 

employs the solution of Chan et al. (1974) for a layered half space. 

4.4.1.3 Load transfer 

Figures 4.22-4.23 (free-head pile) and Fig. 4.24 (fixed-head pile) show typical 

moment distributions along a pile (Ud = 25) subjected to lateral force (H) or moment 

(M) and embedded in a homogeneous soil. The profiles of normalized bending 

moments are evaluated as a function of a stiffness ratio (KR ), defmed as follows 

(Poulos, 1971 a): 

(4.11) 

where /p is the second moment of area of the pile and E, is the soil Young's modulus. 

The results are plotted for a stiffness ratio KR = 1, which corresponds to a very stiff 

pile, and for KR = 10-4, which corresponds to piles commonly encountered in practice, 

ie flexible piles. It is worth noting the pronounced effects of variation of KR on the two 

sets of solutions. The agreement with the BEM analysis of Poulos & Davis (1980) is 

close. It should be emphasised that, for a fixed-head pile, the maximum moment occurs 

at the pile head where the restraint is provided. 

4.4.1.4 Critical length 

A value of the critical length (I.e) for laterally loaded single piles has been deduced 

from the finite element analyses of Randolph (1981): 

(Homogeneous soil) (4.12) 

(Gibson soil) (4.13) 
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where G: and m* have been defined in Equations (4.9) and (4.10), respectively. 

In order to investigate the agreement between these values and those predicted by 

PGROUPN, the head deflections of a pile in a homogeneous soil have been computed as a 

function of the length-to diameter ratio Vd and over a practical range of pile stiffness 

ratios, ie 500 :5: l* = E/G: :5: 104
• The pile head deflections (u), as calculated from 

PGROUPN, are plotted in non-dimensional form in Fig. 4.25 (where U4 is the pile deflection 

calculated for Vd = 4). From this plot, the values of the pile critical length obtained from 

the PGROUPN analysis may be extrapolated. These values agree well with the values of Lc 

calculated by Randolph using Equation (4.12), and reported in Table 4.9. 

4.4.1.5 Raking piles 

Raking piles are often used to provide the necessary support to structures which 

are subjected to lateral forces. The load-deflection behaviour of a raking pile predicted 

by the PGROUPN analysis has been compared with that calculated according to the 

method suggested by Poulos & Davis (1980), similarly to the vertically loaded case. 

The angles of rake employed in the numerical simulation are tP = 15°, 30°. The following 

numerical example has been evaluated: 

Pile length (L) 

Pile diameter (d) 

Pile Young's modulus (Ep) 

Constant soil Young's modulus (Es) 

Applied horizontal load (N) 

= 12.5 m 

=0.5m 

= 5000 GPa 

= 1 GPa 

=IOMN 

By taking the components of load parallel and normal to the pile axis, Poulos & Davis 

derived the following expression to evaluate the horizontal displacement (u) of a raking 

pile under horizontal load (N): 

(4.14) 
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where: 

1 hH = 1 pA sin 2 9 + I pH cos 2 9 , 

I"" = ILl d = 1.975 (from the charts provided by Poulos & Davis), 

IpN = IpH = 8.18 (from the charts provided by Poulos & Davis). 

Table 4.10 shows the values of the pile head deflection (u) calculated from Equation 

(4.14). If the same (approximate) procedure of considering the axial and normal 

components of the applied horizontal load is adopted in the PGROUPN analysis, the pile 

head deflections may be evaluated, as shown in Table 4.10 (refer to PGROUPN (A & 

N». In addition, the values obtained from the exact PGROUPN solution are reported. 

The agreement between the three sets solutions is satisfactory for 9 = 15°, 

whereas the differences become more significant for 9 = 30°. 

4.4.1.6 Rigid piles 

If the pile length is less than its critical length, the pile is tenned 'rigid'. The 

behaviour of a laterally loaded rigid pile embedded in a homogeneous elastic soil has been 

studied and a comparison between the results predicted by PGROUPN (which is based on an 

indirect BEM approach) and those obtained by the direct BEM approach of Abedzadeh & 

Pak (1995) is presented. 

For a single pile subjected to lateral loading, the stiffness matrix [K] can be 

expressed as: 

{H} [KHH KH/rl 1I u} 
M = K AlH KAlAl Jl t1 

where H, M, u and " are respectively the lateral load, the applied bending moment, the 

lateral displacement and the rotation at the top of the pile. 

Abedzadeh & Pak have calculated the elements of the [K] matrix for a rigid short 

pile embedded in a homogeneous elastic half-space by means of an exact BEM formulation, 

which involves the solution of three coupled Fredholm integral equations at the pile-soil 
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interface. These stiffness coefficients are shown in Fig. 4.26 as a function of the lid ratio, 

together with the values obtained from PGROUPN (using a very high value of the pile 

modulus Ep to simulate a rigid pile). Consistent with Maxwell's reciprocal theorem, the 

values of KHM and KMH cannot be distinguished graphically at this scale. 

It is worth noting that the percentage difference between the two solutions 

decreases as the lid ratio increases. One possible explanation of this divergence for low 

values of lid, which correspond to very short piles, is that the treatment of the base is 

different: in PGROUPN the base is assumed to be smooth (ie zero tractions), while 

Abedzadeh & Pak demonstrate that the tractions are infinite at the base. It may be 

concluded that, for practical pile geometries (typically lid> 20), the results obtained here 

justify the simplifications arising from the assumption of a smooth base. 

4.4.2 Non-linear solution 

It is widely recognised that a linear analysis is of limited validity for laterally 

loaded piles since the actual load-deflection behaviour is markedly non-linear, even at 

low load levels. 

4.4.2.1 Comparison with a BEM analysis 

Poulos & Davis (1980) proposed a series of BEM solutions which enable the 

load-deflection behaviour of a laterally loaded pile to be calculated, assuming the soil 

to be an elastic-perfectly plastic material (such as in the PGROUPN analysis). The 

theoretical results are presented as a series of graphs of elastic influence factors 

(already utilised for some of the comparisons in Section 4.4.1) and modification factors 

for soil yield. Using these graphs, the non-linear load-deflection behaviour of a 

relatively rigid (KR = 10-2) and relatively flexible (KR = 10.4) pile in homogeneous soil 

has been calculated, as shown in Figs. 4.27 and 4.28, respectively. The details of the 

input parameters are as follows: 

Pile length (L) 

Pile diameter (d) 

Pile Young's modulus (Ep) 
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E/C,. =200 

For the PGROUPN analyses, it has been found that about 100 load increments are sufficient 

to achieve convergence of the solution process - the resulting CPU time is about 3 s. For 

consistency with the Poulos & Davis analysis, the PGROUPN program has been modified in 

order to adopt an uniform profile of the limiting lateral pressure along the whole length of 

the pile, ie tsc = 9C,. (refer to Section 2.4.4). In addition, it must be remembered that, in 

the numerical simulations described in this thesis, the effects of pile yielding are not 

considered, ie the pile is assumed to remain elastic. 

Figures 4.27 and 4.28 show the typical features of behaviour of laterally loaded 

piles: for relatively rigid piles (KR = 10-2
), the effect of soil yielding is relatively 

unimportant, and an elastic solution may be adequate to predict deflections at ordinary 

working loads; for relatively flexible piles (KR = 10-4), which are the piles commonly 

encountered in practice, the consideration of local yield of the soil is essential, even for 

low load levels. The agreement with the Poulos & Davis analysis is satisfactory, with a 

general tendency of PGROUPN to predict smaller head deflections. 

Figure 4.29 shows the profile of the normalized bending moments along a 

relatively rigid pile (KR = 10-2
) subjected to lateral force (H) and embedded in a 

homogeneous soil. Poulos & Davis presented their results for different load levels 

B/H,., where the ultimate lateral load capacity of the pile B,. (if failure occurs by failure 

of the soil) is deduced from statical considerations. For the input parameters described 

above (with the only difference that the pile length is 12.5 m), the value of By deduced 

from the graphs by Poulos & Davis is 362 kN. It is worth noting that, at failure, the 

maximum value of normalized moment (MIHL) is about twice the elastic value (ie that 

for B/H,. S; 0.38). A generally good agreement between solutions is observed. 

4.5 Concluding remarks 

A generally good agreement has been found by comparing the axial and lateral 

response of single piles obtained from the proposed PGROUPN approach with that derived 

from available numerical solutions in the linear elastic and non-linear range. Having 

validated the PGROUPN program for single piles (where existing numerical methods are 
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successful), it is now possible to proceed with greater confidence to the analysis of pile 

groups, where current numerical approaches are deficient. 

As regards pile discretization, a number of pile shaft elements which corresponds to 

a height-to-diameter ratio hid of 2 has been found to be suitable to evaluate the single-pile 

axial response, whereas a hid ratio of 1 is recommended for the single-pile lateral response, 

regardless of the total pile length. 

In the non-linear analyses, the number of load increments which is necessary to 

achieve convergence of the solution process is relatively small. In fact, from the numerical 

simulations described above, it has been found that about 200 load increments are sufficient 

in the evaluation of the axial response, whereas about 100 load increments are adequate for 

the lateral response. This results in negligible computational costs for the case of single 

piles. 
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TABLES CHAPTER 4 

Table 4.1 Typical values of K = Ep/Es for solid piles (after Poulos & Davis, 1980) (NOTE: 

For hollow or H-piles, multiply these values by the ratio of area of pile section Ap to area 

bounded by outer circumference of pile). 

Pile material 
Soil type 

Steel Concrete 

Soft clay 60,000 6000 

Medium clay 20,000 2000 

Stiff clay 3000 300 

Loose sand 15,000 1500 

Dense sand 5000 500 

Table 4.2 Test of convergence for head settlements (in mm) of single pile in homogeneous 

soil with Ud = 25 (NOTE: The 'shaded' area represents non-admissible values of the hid 

ratio, ie those values which produce oscillations of shear stresses along the pile). 

hid 
K 

1 1.5 1.75 2 2.5 3 4 6 

10,000 1.62 1.58 1.54 I 1.53 1.52 1.51 1.50 1.50 

1000 1.83 1.79 1.15 I 1.74 1.73 1.72 1.71 1.71 

100 3.32 325 3.22 I 3.21 3.20 3.19 3.20 3.23 
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Table 4.3 Test of convergence for head settlements (in mm) of single pile in homogeneous 

soil with K = 1000 (NOTE: The 'shaded' area represents non-admissible values of the hid 

ratio, ie those values which produce undulations of shear stresses along the pile). 

hid 
Ud 

1 1.5 1.75 2 2.5 3 4 6 

50 1.35 1.31 1.31 1.30 1.30 1.29 1.29 1.29 

25 1.83 1.79 1.75 1.74 1.73 1.72 1.71 1.71 

10 3.24 3.14 3.04 3.02 2.99 2.96 2.94 2.93 

Table 4.4 Comparison between solutions for head settlements (in mm) of single pile in 

homogeneous soil. 

PGROUPN Poulos & Davis PGROUPN Poulos & Davis 
K (1980) (1980) 

Ud=25 Ud=25 Ud= 10 Ud=10 

10,000 1.53 1.52 2.93 2.86 

5000 1.55 1.54 2.94 2.86 

1000 1.74 1.72 3.02 2.93 

Table 4.5 Values of the critical slenderness ratio (Lrld) proposed by Hull (1987) for piles 

in homogeneous soil. 

K =: E;lEs 100 1000 10,000 

~d 15.7 49.6 157.2 
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Table 4.6 Comparison between solutions for head settlements (w) of single pile in 

homogeneous soil as a function of the pile rake (tfJ). 

w(mm) 
q, 

PGROUPN PGROUPN (A & N) Poulos & Davis 
(1980) 

0 1.55 1.55 1.58 

15u 1.92 1.91 1.91 

30u 3.02 2.89 2.82 

Table 4.7 Test of convergence for head deflections (in cm) of flexible pile in homogeneous 

soil. 

A. hId 

0.5 1 1.5 2 2.5 3 4 6 

500 0.92 0.91 0.94 1.00 1.07 1.23 1.66 3.57 

5000 5.88 5.76 5.78 5.85 5.95 6.14 6.61 8.39 

10,000 10.2 10.0 10.0 10.1 10.2 10.4 10.9 12.8 

Table 4.8 Test of convergence for maximum bending moment (in kNm) along a flexible 

pile in homogeneous soil. 

A. hid 

0.5 1 1.5 2 2.5 3 4 6 

500 320 316 355 384 396 409 432 526 

5000 608 606 615 595 635 688 737 777 

10,000 735 727 724 745 722 n9 856 917 
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Table 4.9 Values of the critical slenderness ratio (41d) proposed by Randolph (1981) for 

piles in homogeneous soil. 

A: = E,.IG: 500 5000 10,000 

Lc/d 5.9 11.4 13.9 

Table 4.10 Comparison between solutions for deflections (u) of single pile in homogeneous 

soil as a function of the pile rake (til). 

u(mm) , 
PGROUPN PGROUPN (A & N) Poulos & Davis 

(1980) 
0 6.93 6.93 6.54 

15u 6.68 6.56 6.21 

30" 5.95 5.59 5.30 
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FIGURES CHAPTER 4 
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Fig. 4.1 Distribution of shear stress along an axially loaded pile (K = 1(0) in homogeneous 

oil. 
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Fig. 4.3 Comparison of load settlement ratios calculated by PGROUPN with that of 

Butterfield & Banerjee (1971a) for single pile in homogeneous soil. 
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Fig. 4.4 Comparison of load ettlement ratios calculated by PGROUPN with those of 

Aeming el al. (1992) and Poulo & Davis (1980) for single pile in homogeneous soil. 
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Fig. 4.5 Comparison of load settlement ratios calculated by PGROUPN with those of 

Fleming et al. (1 992) and Poulos (1979) for single pile in Gibson soil. 
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Fig. 4.6 Comparison of haft hear tress distribution calculated by PGROUPN with that of 

Butterfield & Ban rjee (l97 1a) for ingle pile (Ud = 20) in homogeneous soil. 
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Fig. 4.7 Comparison of shaft shear stress distribution calculated by PGROUPN with that of 

Butterfield & Banerjee (1971a) for ingle pile (Ud = 80) in homogeneous soil. 
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Fig. 4. Comparison of haft hear tre distribution calculated by PGROUPN with that of 

Poulo (19 9) for ingle pile (Ud = 25) in homogeneous and Gibson soils. 
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Fig. 4.9 Comparison of axial load distribution calculated by PGROUPN with that of Poulos 

(1989) for ingle pile (Ud = 25) in homogeneous and Gibson soil. 
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Fig. 4.13 Comparison of load settlement ratios calculated by PGROUPN with that of 

Butterfield & Banerjee (1971 a) for under-reamed piles (A = 6(00) in homogeneous soil. 

Fig. 4.14 Comparison of load ettlement ratios calculated by PGROUPN with that of 

Butterfield Banerjee (1971 a) for under-reamed piles (A = 30,(00) in homogeneous soil. 
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Fig. 4.16 Comparison of proportion of load taken up by pile base calculated by PGROUPN 

with that of Butterfield & Banerjee (1971a) for under-reamed piles (A = 30,(00) in 

homogeneou oil. 
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CHAPTERS 

Numerical results - pile groups 

5.1 Summary 

The validity of the proposed PGROUPN analysis has been verified by comparison 

with alternative numerical solutions for pile groups subjected to axial and lateral loads. 

Benchmark solutions in the linear and non-linear range are presented, and the 

significant influence of soil nonlinearity on load distribution among piles in a group is 

highlighted. 

5.2 Introduction 

The PGROUPN program has proved capable of matching the results of other 

methods of analysis for the problem of a single pile under axial or lateral loading. 

However, as the majority of piled foundations will consist not of a single pile but of a 

group of piles, it is essential to study the effects of interaction between neighbouring 

piles in a group. In fact, it has long been recognised that groups of piles tend to deform 

more than a proportionally loaded single pile. This is because neighbouring piles will be 

within each others' displacement fields and hence the load per pile to generate a given 

displacement will be reduced. 

In the linear elastic range, this Chapter examines the validity of the proposed 

approach by comparison with some of the existing methods for pile groups under axial 

or lateral loading. In addition, the behaviour of a pile group subjected to simultaneous 

axial load, lateral load and moment is examined. 

Very little numerical work has been published to show the effects of soil 

nonlinearity on pile group response. Therefore, the accuracy of the proposed approach in 

the non-linear range may only be examined by comparison with well-documented case 

histories, for some of which alternative numerical analyses have been performed. This 

comparative study is presented in Chapter 6. However, some non-linear results, as 
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predicted by PGROUPN, are now presented with the primary aim of highlighting the relevant 

influence of soil nonlinearity on load distribution among piles in a group. 

Thus, the main objectives of this Chapter may be summarised as follows: 

a) Linear elastic range: validation of POROUPN by comparison with alternative 

numerical solutions; 

b) Non-linear range: use of POROUPN to investigate aspects of pile group behaviour 

not previously studied, with particular emphasis on the load distribution within the 

group of piles. 

As regards pile discretization, for the axial response, the height-to-diameter ratio (hid) 

of the pile shaft element employed in the numerical simulations presented below has 

been selected according to the recommendations given in Section 4.3.1.1, ie a hid ratio 

of 2. For the lateral response, the recommended value of hid from the single pile 

analyses is 1 (refer to Section 4.4.1.1); however, for a laterally loaded pile group, piles 

at the edges of the group are loaded in tension and compression, ie the axial and lateral 

response are related; thus, in order to avoid the numerical instabilities mentioned in 

Section 4.3.1.1, a hid ratio of 2 has been adopted throughout. 

Furthermore, it must be remembered that the value of Poisson's ratio (vs) 

adopted in the numerical examples presented in this thesis is 0.5, unless otherwise 

stated. This is the appropriate value for fully saturated clay under undrained conditions. 

5.3 Pile groups under axial loading 

An examination of the accuracy of the POROUPN solution against published 

numerical methods is presented. First the effect of two neighbouring piles is 

investigated, and then the analysis is extended to general pile group problems. 

In order to present solutions in the non-linear range by means of the simple 

elastic-perfectly plastic soil model adopted in the POROUPN analysis, it is convenient to 

introduce the parameter P,IP •• where Pg is the total axial load acting on the group and 

P. is its ultimate axial-load capacity. The ratio P glP" represents the applied load level 
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of the pile group, while its inverse is the overall safety factor against failure of the 

group. 

5.3.1 Two-pile interaction analysis 

The degree of interaction between two equally loaded, identical piles may be 

expressed as an interaction factor, a, dermed as the ratio of the additional settlement 

induced in the single pile due to load on an adjacent pile, to the settlement of the single 

pile under its own load. 

Figures 5.1 to 5.7 show the linear elastic interaction factors (a) plotted against 

the normalized pile spacing (sid) for a variety of pile slenderness ratios (Ud) and 

relative stiffnesses between pile and soil (K = ErIEs). It has been found that the 

interaction effect is more significant for more rigid piles and for decreasing pile 

spacing. Moreover, it can be observed that the interaction factors for Gibson soil are 

significantly smaller than those obtained for homogeneous soil conditions; as pointed 

out by Randolph & Wroth (1979), this difference may be partially attributed to the 

higher proportion of load taken by the base of a pile in a Gibson soil compared to a 

homogeneous soil. 

In particular, Figs. 5.1 and 5.2 show a comparison of the PGROUPN results (in 

homogeneous soil) with those predicted by the BEM analysis of Poulos & Davis 

(1980) for various pile slenderness ratios (Ud = 25, 50) and pile-soil relative 

stiffnesses (K = 100, 1000 and 00, which corresponds to a perfectly rigid pile). The 

solutions are in good agreement except for long, very compressible piles (ie Ud = 50, 

K = 1(0), where the present analysis gives slightly lower interaction factors than the 

Poulos & Davis analysis. In the evaluation of the two-pile interaction factors, the Poulos 

& Davis approach may be considered to have approximately the same degree of rigour as 

PGROUPN. However, it should be emphasised that in the PGROUPN analyses a hid ratio 

of 2 has been adopted throughout (where h is the height of the pile shaft element); this 

discretization corresponds to 12 or 25 pile shaft elements for Ud = 25 or 50, 

respectively. Instead, the Poulos & Davis solutions are obtained using a coarser pile 

discretization of 10 shaft elements, irrespective of pile length. 
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Figures 5.3 and 5.4 compare the interaction factors calculated by PGROUPN 

with those obtained by the semi-analytical approach of Randolph & Wroth (1979), 

based on the superposition of individual pile displacement fields, and the BEM analysis 

of Randolph (1977), which is similar to the PGROUPN approach. The piles are rigid (ie 

K = 00) and are embedded in an elastic soil mass with a Poisson's ratio (v,) of 0.4. 

Figure 5.3, which refers to piles in homogenous soil, shows that the semi-analytical 

model of Randolph & Wroth tends to underpredict the interaction between piles 

compared to the boundary element analyses of Randolph and PGROUPN, especially for 

piles of Ud > 20. Figure 5.4, which refers to piles (Ud = 20) in homogeneous soil and 

Gibson soil (with zero stiffness at the ground surface), shows that PGROUPN gives 

lower interaction factors than Randolph & Wroth, especially at large spacings. 

Figure 5.5 shows the interaction factors for rigid piles (Ud = 25) embedded in a 

homogeneous soil stratum, with a finite-layer depth H = 2.5L (where L is the pile 

length). The results from PGROUPN compare favourably with the BEM analysis of 

Poulos (1968) and the hybrid approach by Chow (l987c), in which load-transfer curves 

are used to model the individual pile response and a FEM solution is adopted to 

evaluate the interaction between piles. 

Figures 5.6 and 5.7 show the interaction factors for two piles embedded in a 

Gibson soil (with zero stiffness at the surface) for various pile slenderness ratios (Ud = 

20, 40) and pile-soil relative stiffnesses (E/E,L = 100, 10000, where E,L is the soil 

Young's modulus at the level of the pile base). The surrounding soil is characterised by a 

finite-layer depth of H = 2L and a Poisson's ratio of 0.3. It may be observed a 

generally good agreement with the BEM solution of Poulos (1979), in which the soil 

modulus is taken as the mean of the moduli at the influenced and influencing nodes in 

Mindlin's solution (such as in PGROUPN), and the more rigorous solutions of Banerjee 

(1978), which employs the solution of Chan et al. (1974) for a layered half space (refer to 

Section 1.4.3), and Chow (1987c) (described above). 

It has been customary to examine the effects of interaction between piles for 

soil which may be assumed to be linear elastic. The author is not aware of the existence 

of published results which show the interaction effect between piles when the linear 

elastic assumption is no longer valid at high load levels. Therefore, the influence of soil 
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nonlinearity on the interaction factors (a) for two equally loaded identical piles (with d 

= I m, Ep = 25 GPa) embedded in a homogeneous soil is studied using the PGROUPN 

analysis. For this purpose, the following typical parameters are chosen: 

Undrained shear strength (ell) 

Adhesion factor (a) 

=50kPa 

=0.5 

Figures 5.8 to 5.11 show the interaction factors (a) as a function of the applied load 

level Pg/P" (where Pg is the total axial load acting on the group of two piles and Py is 

its ultimate axial-load capacity) for different values of the pile slenderness ratio (Ud = 

25, 50), the relative pile-soil stiffness (K = E,/EI = 100, 1000 and 00) and the 

dimensionless pile spacing (sId = 2.5, 5). 

It may be observed that, for the longer and more compressible pile (ie Ud = 50 

and K = 100), the reduction in the interaction factor becomes significant at relatively 

low load levels. For instance, Fig. 5.10 shows that, at a normalized pile spacing (sid) of 

2.5, the interaction factor (a) starts to decrease at a load level PIP" = 0.2, reducing to 

about 50% of its elastic value at half the ultimate load. Instead, for the more rigid piles 

(K = 1000 and 00), the values of a are constant until a load level of about 0.9 is 

reached, and thereafter they reduce quite dramatically. This difference is a consequence 

of the fact that the load-settlement response of a relatively rigid pile is nearly linear 

until the ultimate load is reached; instead, for a relatively compressible pile, the load­

settlement response is markedly non-linear, even at low load levels (refer to Section 

3.6). 

5.3.2 Pile group settlement 

In order to analyse a general pile group, the majority of available numerical codes 

are based on the superposition of the two-pile interaction factors (see, for example, DEFPIG 

by Poulos, 1980a; PIGLET by Randolph, 1987; GRUPPALO by Mandolini & Viggiani, 1997 

- for further details see Section 1.5). This procedure is obviously fairly approximate 

because, in calculating the interaction between two piles, it ignores the reinforcing effect of 

intervening piles in the group and hence produces an overestimation of the interaction 
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among piles. In contrast, in the complete BEM approach employed in PGROUP (Banerjee & 

Driscoll, 1976) and PGROUPN, pile-soil-pile interaction is evaluated by taking into account 

the simultaneous presence of all the piles in the group, thereby leading to a more realistic 

representation of pile group behaviour. 

For a 3 x 3 pile group in a homogeneous linear elastic soil, Table 5.1 compares the 

group settlement obtained by PGROUPN with those predicted from the numerical codes 

DEFPIG, PIGLET and PGROUP. The piles have a Ud ratio of 40, a sid ratio of 3 and are 

embedded in a homogeneous elastic soil layer with a Poisson's ratio of 0.49. The group 

settlement (w) is expressed in tenns of the dimensionless parameter Ig: 

I = wdEs 

g P , 
(5.1) 

where P g is the total axial load acting on the group. 

Very good agreement between the different solutions is observed, for both very 

compressible (K = E/E, = 30) and very stiff (K = 30,(00) piles in a semi-infinite and in a 

finite soil layer (HIL = 1.67, where H is the depth of soil layer and L is the pile length). An 

exception is the PIGLET analysis for the very compressible pile group, in which case the 

predicted settlement is significantly greater than the other three solutions. 

Figures 5.12 and 5.13 show solutions for the settlement of square pile groups in a 

(linear elastic) Gibson soil with zero stiffness at the surface and a E,lEsL ratio of 1000 (EsL 

is the soil Young's modulus at the level of the pile base); in this case, the value of E, in 

Equation (5.l) refers to E,L. Figure 5.12 considers a finite soil layer (HIL = 2), while Fig. 

5.13 considers a semi-infmite soil layer. The piles have a Ud ratio of 40 and a sid ratio of 3. 

The PGROUPN solution is compared with the results predicted from DEFPIG (which 

adopts the mean of the soil moduli at the influenced and influencing nodes in Mindlin's 

solution), the semi-analytical approach employed in PIGLET and the complete BEM 

solution of Banerjee & Davies (1977), which adopts a more rigorous, but computationally 

expensive, method to model soil inhomogeneity (refer to Section 1.4.3). Reasonable 

agreement between the four sets of solutions is observed. 
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Figure 5.14 shows the group settlement ratio Rs (ie the ratio of the settlement of the 

group to that of an isolated single pile at the same average load - refer to Equation (1.3» 

as a function of the Ud ratio and the number of piles in the group for typical pile and soil 

properties (sid = 4, HIL = 2, linear elastic Gibson soil with a Poisson's ratio of 0.3, zero 

stiffness at the surface and a E/E'L ratio of 1(00). It is observed that Rs increases as both 

Ud and the number of piles increase. Also, the influence of Ud is small when Ud exceeds 

25. Some differences in the calculated values of Rs are evident as the group size increases; 

however, as already mentioned above, the code DEFPIG is based on the interaction factor 

approach and hence overevaluates the interaction among piles, especially for large groups 

(see, for example, Poulos, 1993; Randolph, 1994; Mandolini & Viggiani, 1997). 

Figures 5.15 and 5.16 (after Randolph, 1994) show the computed overall pile group 

stiffness for square groups of piles embedded in a homogeneous elastic soil, with Ud = 25, 

EIGs = 1000 (where Gs is the soil shear modulus) and sid = 2.5 and 5. The pile group 

stiffness is normalized as kl( sGs.J;), where kp is the ratio of the total vertical load acting 

on the group to the average settlement of the group and n is the number of piles in the 

group. In the analyses of GRUPPALO and PIGLET, axial interaction effects between piles 

have been assumed to become insignificant for pile spacing (s) greater than a limiting value 

Smax, as defined in Equation (1.2). Therefore, in the interests of consistency, the same 

approach has been applied to the PGROUPN analysis. It is worth noting that, due to the 

limited size of the pile groups examined, the value of Smax does not influence the PGROUP 

solution. 

As already observed above, DEFPIG grossly underestimates the group stiffness, 

especiaDy for the wider pile groups (sid = 5); this may be partially attributed to the fact that 

the code does not include a maximum interaction spacing (smax). Reasonable agreement 

between PGROUPN and GRUPPALO is evident. Also, it is worth noting that results from 

PGROUPN are in excellent agreement with PGROUP, but the latter is limited to groupS of 8 x 

8 piles, due to the magnitude of computer resources required to analyse larger groups 

(Butterfield & Douglas, 1981; Randolph, 1994; Mandolini & Viggiani, 1997). In contrast, 

PGROUPN took about 150 CPU s for the 20 x 20 pile group (considering the symmetry of 

the pile arrangement). This observation is of great significance because it demonstrates the 
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applicability of the complete BEM approach to large pile groups, whereas previous work 

(ie PGROUP) was restricted to small pile groups. 

Further, it may be noted that, for very large pile groups, where the ratio of pile 

group width to pile length becomes much greater than unity, the group stiffness should 

approach that of a shallow foundation. This would correspond to a limiting stiffness of 

about 4.5 (Fraser & Wardle, 1976), as indicated in Figs. 5.15 and 5.16. 

In the non-linear range, the main features of load-settlement behaviour of axially 

loaded pile groups are described in Section 3.6, and typical load-settlement curves are 

shown in Fig. 3.7. Comparisons with load-settlement curves obtained from alternative 

numerical analyses (and field test data) are described in Chapter 6. 

5.3.3 Load distribution 

A consequence of the interaction between piles is that, for piles loaded through a 

rigid pile cap, the piles near the edge of the group take a higher proportion of the applied 

load than the piles near the centre (refer to Section 1.3.2.1). However, an important 

drawback of the linear elastic methods of pile group analysis is that they result in a 

considerable overestimation of the load concentration at the outer piles and hence in an 

overconservative design. In fact, consideration of soil nonlinearity results in a reduction of 

the pile-soil system stiffness, the reduction being greater for piles at a greater load level, ie 

for the outer piles. Consequently, as the load level increases, the load distribution to the 

individual piles of the group becomes more uniform if compared with the one obtained by 

the linear elastic approach. This feature has been demonstrated both theoretically and 

experimentally (see, for example, Caputo & Viggiani, 1984; Chow, 1986a, 1986b, 1987c; 

Poulos, 1988, 1989, 1993; Randolph, 1994). 

In order to analyse the distribution of load in an axially loaded group of piles in a 

homogeneous elastic soil, the following dimensionless parameters are of interest: PI(GJilw), 

A., Ud and sid - where P is the axial load acting on the individual pile head, GJ is the soil 

shear modulus, W is the group settlement and .It = Ep/Gs is the stiffness ratio. In Fig. 5.17, 

the load distribution predicted by the proposed computer program PGROUPN for a 3 x 3 

pile group is compared to the rigorous BEM solution by Butterfield & Banerjee (l971a), 

the semi-analytical approach by Randolph & Wroth (1979) and the hybrid approach by 
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Chow (1986a), in which the individual pile response is modelled using load-transfer curves 

and the group interaction is determined based on Mindlin's solution. The results are 

calculated for A. = 6000 and a normalized pile spacing sid = 2.5. Except for some 

discrepancy in the solution of Randolph & Wroth, reasonably good agreement is obtained 

between the solutions. 

The significant effects of soil nonlinearity on the axial load distribution, as predicted 

by PGROUPN, are investigated in Figs. 5.18 to 5.22. Figure 5.18 shows the load distribution 

(where P is the axial load acting on the individual pile head and Pav is the average axial load 

acting on each pile head) between a group of 3 x 3 piles, having a length (L) of 25 m, a 

diameter (d) of 1 m and a Young's modulus (Ep) of 25 GPa. The piles are embedded in a 

homogeneous soil layer characterised by a Young's modulus (£s) of 25 MPa - this 

corresponds to a relative pile-soil stiffness (K = Ep/E,) of 1000. 

In the linear elastic range, results from POROUPN compare favourably with those 

predicted by the interaction factor approach of Poulos & Davis (1980). It is observed that, 

as the normalized pile spacing (sid) increases, the load distribution becomes more uniform, 

the load on the outer piles decreasing while the load on the centre piles increases. This is a 

consequence of the fact that the group interaction decreases for increasing pile spacing. 

In order to examine the effects of soil nonlinearity (using PGROUPN) for the 

homogeneous soil profile (Figs. 5.18 to 5.21), typical values of E/Cu = 1000 and a = 0.5 

have been chosen. Figure 5.18 shows the predicted load distribution as a function of the 

load level P/p .. , where Pg is the total axial load acting on the group and Pu is its ultimate 

axial-load capacity (in this case, the predicted value of PI' is about 11 MN). It is evident 

that consideration of the non-linear response yields a reduction in the load concentration at 

the comer piles (pile 1) and a more even load distribution. Clearly, the higher the load level, 

the higher the reduction in the load concentration at the comer piles obtained by the non­

linear analysis. 

Figures 5.19 to 5.21 show the effect of varying the following parameters: the pile­

soil relative stiffness (K = Ep/Es), the Ud ratio and the number of piles. Figure 5.19 shows 

the load distribution when K is increased from 1000 to 00 (this has been obtained by 

adopting a very large value of £p); Figure 5.20 has been obtained by considering K = 1000 

and increasing the pile length (L) from 25 to 50 m (in this case the predicted value of Pu is 
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about 20 MN); Figure 5.21 has been obtained by increasing the number of piles from 9 to 

25, while the values of K and Ud are 1000 and 25, respectively (in this case the predicted 

value of PM is about 30 MN). 

For the initial elastic response, good agreement is generally obtained with the (linear 

elastic) BEM solution of Poulos & Davis (1980), which is based on the interaction factor 

approach. The following characteristics of behaviour are observed: 

a) (Fig. 5.19) Nonuniformity of load distribution increases with increasing the pile-soil 

relative stiffness (K); this is a consequence of the fact that interaction effects increase 

with increasing K (refer, for example, to Figs. 5.1 and 5.2). In this case, inclusion of 

non-linear soil response yields a significant reduction in the load concentration at the 

comer piles. It may be observed that a negative load is obtained for the centre pile (pile 

3) at low values of sid and low load factors; however, it is doubtful whether negative 

loads would occur in practical cases (Poulos & Davis, 1980); 

b) (Fig. 5.20) The load distribution becomes more uniform as Ud increases; this is a 

consequence of the fact that the interaction effect decreases with increasing Ud (as 

shown in Figs. 5.1 and 5.2). In this case, the effects of soil nonlinearity are less marked 

except for very high load levels (P/pu = 0.9); 

c) (Fig. 5.21) The load distribution is considerably influenced by the number of piles in the 

group. the major influence being that the ratio of the load on the comer piles (pile 1) to 

the average pile load increases as the number of pile increases; inclusion of non-linear 

soil response yields a significant reduction in the load concentration at the corner piles, 

even at relatively low load levels. Clearly, in this case, a linear elastic solution would be 

inappropriate. 

It is evident that these features reflect the characteristics of the two-pile interaction, ie the 

higher the degree of interaction between piles, the higher the load concentration at the 

outer piles and hence the nonuniformity of load distribution. As a consequence, the effects 

of nonlinearity, which result in a reduction of the load concentration at the outer piles and 

169 



CHAPTER 5 Numerical results pile groups 

hence in a more unifonn load distribution, will be more significant for groups where the 

nonunifonnity of load distribution is more evident 

Finally, Fig. 5.22 shows the load distribution between a group of 3 x 3 piles 

embedded in a Gibson soil where the Young's modulus increases from zero (at the surface) 

to 50 MPa at the level of the pile base. The piles have a length (L) of 25 m, a diameter (d) 

of 1 m and a Young's modulus (Ep) of 25 GPa. In order to examine the effects of soil 

nonlinearity, as predicted by PGROUPN, values of E/C" = 1000 (over pile depth) and an 

adhesion factor a = 0.5 have been assumed. The calculated value of p" is about 13 MN. 

It is worth noting that the predicted load distribution is more unifonn than for the 

case of a homogeneous soil with the same average Young's modulus over pile depth (refer 

to Fig. 5.18). As already pointed out in Section 5.3.1, this is a consequence of the fact that 

the interaction factors for Gibson soil are significantly smaller than those obtained for 

homogeneous soil. Finally, it may be observed that the effects of soil nonlinearity become 

significant at very high load levels (PIP" = 0.9), especially for the central pile (pile 3). 

5.4 Pile groups under lateral loading 

The validity and accuracy of the PGROUPN analysis against alternative numerical 

solutions are presented. First the effect of two neighbouring piles is investigated, and 

then the analysis is extended to pile groups. 

As the length of a pile is rarely a relevant parameter in calculating its response under 

Jateralloading, only piles which are longer than their critical length (ie flexible piles) are 

considered (for further details refer to Section 4.4.1). In addition, it is essential to observe 

that the rotational stiffness of pile groups is usually high, due to the size and stiffness of the 

pile cap, and hence the interaction between so-called 'fixed-head' (ie zero rotation) piles is 

of most relevance in practice. Therefore, the numerical solutions presented below refer only 

to the analysis of fixed-head piles subjected to lateral load. However, the PGROUPN 

approach cannot be applied to groups of piles which are free to rotate, ie 'free-head' piles 

(only free-head single piles can be analysed). 

Further, it should be emphasised that the presentation of the theoretical non­

linear results in terms of the applied load level H,IH" (where H, is the total lateral load 

acting on the group and H. is its ultimate lateral-load capacity) is no longer 

170 



CHAPTER 5 Numerical results pile groups 

appropriate, since a (flexible) pile deflects excessively or fails by yielding of the pile 

section before this value of H" can be developed. 

5.4.1 Two-pile interaction analysis 

The interaction factor (a) is defined, in a similar manner to that for axially loaded 

piles, as the fractional increase in deflection of a pile due to the presence of a similarly 

loaded neighbouring pile. In the numerical solutions presented below, the interaction 

factors (for flexible, fixed-head piles) are calculated as a function of the pile and soil 

properties, the distance between the piles and, unlike for axially loaded piles, the direction 

of loading. 

Figures 5.23 and 5.24 show the linear elastic interaction factors (a) plotted 

against the dimensionless pile spacing (sId) as a function of the direction of loading (/3 
= 0, 90°) and the pile-soil relative stiffness (K = Ep/E, = 80, 8000) for homogeneous 

soil conditions. Figures 5.25 and 5.26 show similar solutions for piles in a (linear 

elastic) Gibson soil, with zero stiffness at the surface, for the cases Ep/EsL = 20, 20000, 

where E,L is the soil Young's modulus at the level of the pile base. 

For the cases considered, a number of features are worthy of note: (a) the 

interaction for piles on a line normal to the direction of loading (/3 = 90°) (see inset to 

Fig. 5.23) at a given spacing is significantly less than that for piles along the line of 

loading (/3 = 0); (b) the interaction effect is more significant for more rigid piles and for 

decreasing pile spacing; (c) the interaction for piles in a soil with stiffness proportional 

to depth is less than that for piles in homogeneous soil. 

In the solutions presented above, results from the PGROUPN analysis are 

compared with the finite element fitted algebraic expressions of Randolph (1981), with 

subsequent modifications (Randolph, 1983b), and the hybrid approach by Chow 

(1987c), in which load-transfer curves are used to model the individual pile response 

and a FEM solution is adopted to evaluate the interaction between piles. 

There is generally good agreement between the solutions, although the 

interaction factors calculated from PGROUPN at close spacings tend to be 

underpredicted compared with the FEM solutions. As already pointed out by Randolph 

(1981), one possible explanation of this divergence is the idealization of the pile as a 
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thin strip for the PGROUPN analysis. This has the effect of increasing the amount of soil 

between piles compared with the three-dimensional FEM analyses, thus leading to 

lower interaction factors at close spacings. Moreover, it may be noted that, at large 

spacings, the PGROUPN solution leads to slightly higher interaction factors than those 

calculated from the fmite element analyses. This divergence between FEM and BEM 

analyses for large spacings has already been noted by Randolph (1977). 

5.4.2 Pile group deftection 

As pointed out in Section 1.3.2.2, the analysis of laterally loaded pile groups is 

complicated by the interaction between rotational and lateral displacement of the group. 

Thus, only if rotation of the pile cap (and hence axial translation of the piles) is prevented, 

do the piles deflect purely horizontally. For this case ('fixed-head pile groups'), it is 

possible to define the group deflection ratio R •• ie the ratio of the deflection of the group to 

that of an isolated single pile at the same average load (refer to Equation (1.5». 

Figures 5.27 and 5.28 show the group deflection ratio (Ru) for square fixed-head 

groups of piles (sid = 3) embedded in linear elastic homogeneous soil and Gibson soil (with 

zero stiffness at the surface), respectively. The group deflection ratios (Ru) are plotted over 

a range of pile stiffness ratios, represented by different values of the critical slenderness 

ratio (Ura = 10, 30), as defined in Equations (4.12) and (4.13). It is observed that Ru 

increases as the number of piles increases. Moreover, values of Ru reflect the higher 

interaction between stiffer piles and for homogeneous soil conditions, as already observed 

for the two-pile interaction and for the axially loaded case. 

Results from PGROUPN are compared with those obtained by Fleming et ai. (1992) 

(based on the work of Randolph, 1981, 1983b), in which pile-soil-pile interaction is 

evaluated via superposition of interaction factors determined from expressions fitted to the 

results of FEM analyses. It is observed that the PGROUPN analysis predicts smaller values 

of the group deflection ratio (R,,). A preliminary explanation may be found in the already 

observed differences between lateral interaction coefficients at close spacings (refer to Figs. 

5.23 to 5.26). Another explanation may be found in the already discussed limitations of the 

interaction factor approach which does not take into account the reinforcing effects of all 
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the group piles and hence overevaluates the interaction among piles (refer to Section 

5.3.2). 

In the non-linear range, the main features of the load-deflection response of laterally 

loaded pile groups are described in Section 3.6, and typical load-deflection curves are 

shown in Fig. 3.8. Comparisons with the load-deflection behaviour obtained from 

alternative numerical approaches (and field test data) are presented in Chapter 6. 

5.4.3 Load distribution 

The computed lateral load distribution to the individual piles in fixed-head pile 

groups is examined by comparison with alternative methods in the linear elastic range, and 

the influence of soil nonlinearity, as predicted by PGROUPN, is discussed. It should be 

emphasised that the numerical simulations presented below take no account of possible 

failure by yielding of the pile section, ie the pile is assumed to remain elastic. Figures 5.29 

to 5.33 show the lateral load distribution (where H is the lateral load acting on the 

individual pile head and Hav is the average lateral load acting on each pile head) as a 

function of the normalized pile spacing (sid) for square groups of piles, having a length (L) 

of 25 m, a diameter (d) of 1 m and a Young's modulus (Ep) of 25 GPa. The charts are 

presented for constant values of the stiffness ratio KR = EpI/EsL
4

, where Jp is the second 

moment of area of pile section and Es is the soil Young's modulus (refer to Equation 

(4.11)). 

Figures 5.29 to 5.31 show typical lateral load distribution for different stiffness 

ratios (KR = IO-S
, 10-2

) and number of piles in the group. In order to examine the effect of 

soil nonlinearity, values of the undrained shear strength (e,,) of 100, 10 and 100 kPa and 

total lateral load (Hg) of 10, 8 and 18 MN are arbitrarily assumed for the PGROUPN 

analyses in Figs. 5.29,5.30 and 5.31, respectively. 

It is evident that the characteristics of behaviour are similar to those of axially 

loaded pile groups. In fact, as the pile spacing increases, the load distribution becomes 

more unifonn, the load on the outer piles decreasing while the load on the centre piles 

increases. Further, nonuniformity of load distribution becomes more marked for less 

flexible groups and for increasing the number of piles in the group. Again, consideration 

of the non-linear response yields a reduction in the load concentration at the comer piles 
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and a more uniform load distribution to the individual piles of the group - such an 

uniformity of load distribution to the group piles becomes more marked with increasing the 

load level. 

It is worth noting that the PGROUPN elastic solutions compare favourably with the 

complete BEM approach of Burghignoli & Desideri (1995), while the agreement with the 

hybrid method of Leung & Chow (1987), in which the individual pile response is modelled 

using load-transfer curves and the group interaction is determined based on Mindlin's 

solution, is reasonable except for closely spaced pile groups. Instead, some discrepancies 

are observed with the BEM solution of Poulos & Davis (1980), based on the interaction 

factor approach. 

As already observed (refer to Section 1.4.3), the interaction factor approach solves 

the group problem by calculating the displacement influence coefficients for each pair of 

piles in the group and by merely overlapping the effects. Instead, the complete approach 

(such as that employed in PGROUPN), by considering the simultaneous presence of all the 

piles within the group, is able to account for the reinforcing effect of the piles. The resulting 

greater uniformity of load distribution to the individual piles of the group obtained by the 

latter approach may be explained with the following example (as demonstrated theoretically 

by Burghignoli & Desideri). Consider a group of, say, 9 identical, free piles arranged in a 

square configuration. If a lateral load is applied to one pile of the group and its head 

displacement is calculated, it is observed that the central pile (the most affected by the 

presence of the other piles) will be SUbjected to a significant reduction of the head 

displacement due to the greater stiffness of the surrounding soil, 'reinforced' by the 

presence of the other piles. This characteristic of behaviour is in agreement with the greater 

homogeneity of load distribution obtained by the complete approach in the case in which 

the same group of piles are connected by a rigid cap. In fact, the increased stiffness of the 

central pile results in a higher proportion of the applied load taken by the pile and hence in 

a more uniform load distribution when compared with the interaction factor approach. It is 

clear that this reinforcing effect of the piles becomes more significant for closely spaced pile 

groups. 

Therefore, it may be concluded that each pile interacts with the surrounding soil 

with a twofold effect: on the one hand, the displacement of the other piles tends to increase 
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as a result of the stresses transferred to the surrounding soil (this increase can be expressed 

in tenns of 'interaction factors'); on the other, by stiffening the medium in which the piles 

are placed, the effects of interaction with the other piles are reduced. The latter aspect 

cannot be reproduced in the interaction factor method and it can only be accounted for by a 

complete BEM (or FEM) approach. Moreover, the results presented in this thesis show 

that these reinforcing effects are more significant in a laterally loaded pile group than in an 

axially loaded one. 

The numerical examples described above refer to relatively stiff (KR = 10-2
) and 

relatively flexible (KR = 10-5) piles. In order to analyse piles commonly encountered in 

practice, Fig. 5.32 adopts a stiffness ratio (KR) of 104
, which corresponds to a (constant) 

soil modulus (E,) of 31 MPa. For this case, typical values of Cu = 50 kPa and Hg = 10 MN 

are chosen to illustrate the influence of soil nonlinearity. 

The idealization of the soil as a material with stiffness proportional to depth (and 

zero stiffness at ground level) is probably a better assumption than that of a homogeneous 

soil when considering lateral loading (see, for example, Poulos & Davis, 1980; Randolph, 

1981). This is due to the fact that the large strains which occur in the soil close to the pile 

head will reduce the relevant soil modulus to a low value. Figure 5.33 shows the load 

distribution for fixed-head piles in a Gibson soil where the soil modulus and the undrained 

shear strength increase from zero (at the surface) to E,L (= 2E,) = 62 MPa and CuL (= 2Cu) 

= 100 kPa at the level of the pile base (where E, and CII are the values adopted for the 

homogeneous soil profile described above). The non-linear results are calculated for a 

total lateral load acting on the group (H6) of 8 MN. As already observed for axially loaded 

pile groups, the predicted load distribution is more uniform than for the case of a 

homogeneous soil with the same average Young's modulus over pile depth (refer to Fig. 

5.32). This is a consequence of the fact that the interaction factors for Gibson soil are 

seen to be significantly smaller than those obtained for homogeneous soil conditions. 

5.5 Pile groups under general loading conditions 

1be deformations and the load distribution of a 12-pile group under general loading 

conditions, ie a combination of axial load, lateral load and moment, are examined in the 

linear elastic range. Banerjee et al. (1981) provided some output of the PGROUP program 
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(version 3.0), which is the most rigorous of the numerical codes currently available (refer to 

Section 1.5). This offers an excellent opportunity to make an accurate comparison with the 

results obtained from PGROUPN. The details of the input parameters are (refer to Fig. 5.34): 

Number of pile types (n) 

Number of pile shaft elements per pile (N) 

Length (L) of raked piles (pile types labelled 1,2,3) 

Length (L) of vertical piles (pile types labelled 4, 5, 6, 7) 

Angle of rake (,) of pile types 1,2, 3 

Pile diameter (d) 

Pile spacing (centre-to-centre) 

Pile Young's modulus (Ep) 

Young's modulus of the homogeneous soil (£s) 

Vertical load on cap (V) 

Horizontal load on cap (H) 

Moment on cap (M) 

Eccentricity of vertical load 

=7 

=4 

=lOm 

=9m 

= 14° 

=0.3m 

=0.9m 

= 24GPa 

=9MPa 

= 200kN 

=50kN 

=20kNm 

=0.3m 

It may be noted that, according to the recommendations given in Section 3.4.6, the central 

pile in the row of piles labelled 1 would be identified with a different pile type number, ie 

the ideal number of pile types (n) would be 8. However, Banerjee and colleagues have 

adopted the pile numbering depicted in Fig. 5.34 in order to give an example of how the 

size of the problem may be reduced by making use of symmetries between piles which only 

carry approximately equal loads. 

Table 5.2 compares the settlement (w), deflection (u) and rotation (8) of the pile 

group calculated by the two computer programs, while Figs. 5.35, 5.36 and 5.37 compare 

the distribution with depth of axial load, transverse load and bending moment, respectively. 

Excellent agreement between the two solutions is evident, thereby confirming the accuracy 

of the proposed PGROUPN approach for linear elastic analysis. 

5.6 Concluding remarks 
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The response of pile groups subjected to axial and lateral loads has been examined. 

A generally good agreement is observed when comparing the proposed POROUPN solution 

with alternative numerical procedures for the computation of the response of pile groups 

embedded in a linear elastic half-space. In the non-linear range, benchmark solutions are not 

available in the literature and therefore a check of the overall accuracy of the present 

approach may only be obtained by comparison with well-documented field load tests, for 

some of which other numerical studies have been published. Nevertheless, some results 

from POROUPN were presented in order to highlight the significant influence of soil 

nonlinearity on the load distribution to the individual piles of the group. 

The results presented herein demonstrate that a complete BEM approach can be 

economically applied to large pile group systems, whereas previous work (ie PGROUP) was 

limited to problems of small dimensions because of enormous computational resources. 

One of the main advantages of a complete analysis method over the interaction factor 

approach (such as that employed in DEFPIG and PIGLET) is that it fully accounts for the 

simultaneous presence of all the group piles and hence considers their reinforcing effect. 

Instead the interaction factor approach solves the group problem by merely superposing the 

two-pile interaction factors. This results in an overestimation of the interaction effect 

between piles in a group. thereby leading to larger group deformations and a less uniform 

distribution of loads to the individual piles. 

In addition, inclusion of soil nonlinearity demonstrates a further reduction of the 

load concentration at the outer piles and a more even load distribution to the group piles if 

compared with the one predicted by a linear elastic approach. These observations are of 

basic importance in practice because they offer the prospect of significant improvements in 

design procedures and potential saving of materials. 

As regards computing costs, it has been observed that about 100 load increments 

are generally sufficient to achieve a converged solution of the PGROUPN analyses. The 

average CPU time for the non-linear numerical simulations presented above is about 15 s, 

thereby demonstrating the efficiency of the proposed approach for routine design problems. 
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TABLES CHAPTER 5 

Table 5.1 Comparison between solutions for settlement of 3 x 3 pile group m 

homogeneous soil (Ud = 40, sId = 3, V, = 0.49). 

Values of 10 

Method HIL = 1.67 Semi-infinite soil layer 

K=30 K=30,OOO K=30 K=30,OOO 

PGROUPN 0.057 0.019 0.066 0.028 

PGROUP 0.063 0.020 0.067 0.025 

PIGLET NA NA 0.105 0.026 

DEFPIG 0.058 0.021 0.069 0.029 

Table 5.2 Comparison with PGROUP for 12-pile group in homogeneous soil under 

general loading conditions. 

w(mm) u(mm) 9 (radians x 10.0
) 

PGROUPN 2.04 -o.n 7.33 

PGROUP 2.03 -0.78 7.20 
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Fig. 5.2 Axial interaction factors for piles in homogeneous soil (Ud = 50). 
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Fig.5.3 Axial interaction factors for rigid piles (K = 00) in homogeneous soil (vs = 0.4). 
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Fig. 5.4 Axial interaction factors for rigid piles (Ud = 20, K = 00) in homogeneous and 
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Fig. 5.5 Axial interaction factors for rigid piles (Ud = 25, K = 00) in homogeneous soil 

layer of finite depth (H = 2.5L). 
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Fig. 5.6 Axial interaction factor for pile (Ud = 20) in Gibson soil layer (vs = 0.3) of 

finite depth (H = 2L). 
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Fig. 5.8 Influence of oil nonlinearity on axial interaction factors for piles (Ud = 25, sid = 

2.5) in homogeneou soil. 

L82 



CHAPTER 5 Numerical results pile groups 

0.5 

0.4 

0.3 

es 

02 

....... K=100 

0.1 -&-K= 1000 

__ Rigid pile 

0 
0 02 0.4 0.6 0.8 

PglPu 

Fig. 5.9 Influence of soil nonlinearity on axial interaction factors for piles (Ud = 25, sid = 

5) in homogeneous soil. 
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Fig. 5.10 Influence of oil nonlinearity on axial interaction factors for piles (Ud = 50, sid 

= 2.5) in homogeneou oil. 
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Fig. 5.11 Influence of soil nonlinearity on axial interaction factors for piles (Ud = 50, sid 

= 5) in homogeneous soil. 
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Fig. 5.13 Comparison between solutions for pile group settlement in Gibson soil layer of 

semi-infinite depth (Ud = 40, sid = 3, E,IEsL = 1000). 
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Fig. 5.20 Comparison of axial load distribution to individual pile in 3 x 3 pile group in 

homogeneou oil (K = 1000, Ud = 50). 
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CHAPTER 6 

Comparison with field test data 

6.1 Summary 

The proposed PGROUPN approach is employed to back-analyse two published 

case histories. These studies refer to the prediction of the load-deformation response 

and the pile load distribution with depth of axially and laterally loaded piles and pile 

groups. In addition, results from PGROUPN are compared with those obtained from 

numerical methods proposed by other workers. The estimate of the appropriate soil 

parameters to be employed for the present analysis is discussed. 

6.2 Introduction 

This Chapter examines the applicability of the proposed PGROUPN approach to 

practical problems by means of a comparison with pile-load test results from published 

case histories. A review of the published literature reveals few cases in which 

measurements have been made of the deformation behaviour and load distribution of 

pile groups in cohesive soil under either axial or lateral loading. Two well known case 

histories have been identified - these have already been used by other authors as a 

benchmark to assess the accuracy of methods of pile group analysis: 

• Field tests by O'Neill et al. (1982); 

• Field tests by Matlock et al. (1980). 

For each of these cases, the soil conditions of the site were studied carefully, in order 

to assess the appropriate soil profile and geotechnical parameters to be adopted in the 

present analysis. In addition, the predictions of other workers are discussed and 

compared with those obtained by the proposed approach. 
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The critical question of estimation of soil parameters is also addressed, and 

attention is focused on correlations between these parameters and commonly available 

in-situ test data. 

6.3 Selection of soil parameters 

In predicting the behaviour of pile foundations, the designer is faced with a 

number of decisions, including the selection of the method of analysis and the soil 

parameters to be adopted. However, it has long been recognised that the latter aspect 

is generally of greater importance than the method of analysis, provided that a soundly 

based method is employed (Poulos, 1989; Fleming et al., 1992). 

The proposed PGROUPN approach is intended for the non-linear analysis of pile 

foundations in cohesive soils, specifically fully saturated clay under undrained 

conditions. One of the main advantages of the PGROUPN analysis over more common 

load-transfer (t-z or p-y) approaches is that it can simulate the essential non-linear 

features with a minimum number of soil parameters whose physical meanings are clear, 

ie the initial Young's modulus (E,), the undrained shear strength (CII ) and the Poisson's 

ratio (v,), 

It is widely recognised that the most reliable means of determining these 

parameters, in particular E, and C., is by backfiguring from the results of full-scale pile 

load tests. However, in most practical situations, it is not possible to carry out such 

testing, at least in the preliminary stages of design. In such cases, resort is made to 

parameters derived from laboratory or in-situ test data. 

6.3.1 Young's modulus (E.) 

The PGROUPN analysis is based on a non-linear (elastic-perfectly plastic) 

interface model. In this case, previous experience shows that the initial (tangent) value 

of Young's modulus (E,) may be successfully employed in the prediction of the initial 

stiffness of the load-deformation curve of pile foundations (see, for example, Poulos & 

Davis. 1980; Poulos. 1989; Mandolini & Viggiani, 1997). The initial soil modulus E, is 

also regarded as 'low strain' (ie less than about 0.00 1 %) modulus (Jardine et al., 1984, 

1986; Randolph. 1994). The use of an initial value of E, represents an advantage over a 
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purely linear elastic analysis which requires a secant value of E" relevant for normal 

working conditions. In fact, the choice of an appropriate secant value of E, is by no 

means straightforward. 

It is now well-understood that the values of E, determined from conventional 

triaxial tests with external measurement of axial strain of the soil sample (which is 

highly inaccurate at strains less than about 0.1 %) are usually much smaller (typically 

one-fourth to one-tenth) than the initial tangent modulus. The most reliable means of 

obtaining the low strain shear modulus (Go), which is connected with E, by the formula 

E, = 2Go (l + v.), is to carry out cross-hole shear wave measurements. Mandolini & 

Viggiani (1997) showed that there is a substantial agreement between low strain shear 

moduli derived from cross-hole data and those backfigured from pile loading tests, 

with a trend of the latter to fit the lower limit of the geophysical measurements. 

If shear wave velocity measurements are not available, dynamic triaxial 

compression tests or resonant-column tests of undisturbed soil samples in laboratory 

are usually performed. Recent developments in the local measurement of small strains 

in the triaxial apparatus (Goto et al., 1991; Cuccovillo & Coop, 1997) and in the 

bender element technique (Viggiani & Atkinson, 1995) have assisted in closing the gap 

between the static and dynamic measurement of shear moduli. In fact, it has been 

demonstrated that both static shear moduli and dynamic shear moduli are almost 

identical when precise measurements are made at very low shear strain levels of the 

order of lO's (Abiss, 1981; Burland, 1989, Tatsuoka & Kohata, 1995; Lo Presti, 1995; 

Jamiolkowski et al., 1995). 

However, all of these means of measuring shear moduli are expensive and time­

consuming, and require specialised techniques. Consequently, a number of empirical 

relationships have been proposed between low strain shear modulus (as determined 

from shear wave velocities) and parameters obtained from conventional in-situ and 

laboratory test results. Considering that the Poisson's ratio under undrained conditions 

is definite, ie v, = 0.5 (refer to Section 6.3.2), it is found convenient to express such 

correlations in terms of the initial Young's modulus (E,) rather than the initial shear 

modulus (Go). 
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Various correlations between E, and SPT N-value have been proposed in Japan 

and the USA (Ohsaki & Iwasaki, 1973; Imai & Tonouchi, 1982; Sykora & Koester, 

1986). Based on this work, Wroth et al. (1979) and Randolph (1994) proposed the 

following correlation: 

E = 36No.a 
$ 

[MPa] (6.1) 

However a linear correlation may be adopted for convenience, as suggested by 

Hirayama (1991, 1994) and Poulos (1993, 1994): 

E$ = 14N [MPa] (6.2) 

Alternatively, the initial soil modulus may be correlated with the results of the cone 

penetration test, as proposed by Randolph (1994): 

E = 15(10 )0.6 • qc [MPa] (6.3) 

where qc is the cone resistance (in MPa). This correlation is broadly consistent with 

recommendations by Imai & Tonouchi (1982). 

However, it is often more convenient to correlate the initial soil modulus with 

the undrained shear strength (e.), and the following correlation is suggested by 

Hirayama (1991, 1994) and Poulos (1993, 1994): 

E. = 1500e .. (6.4) 

Several other correlations have been proposed, ie E, = 1500-3000e .. (Jardine et al., 

1986), E. = 1200-2700e. (Kuwahara, 1991), E. = 1900e. (Kagawa, 1992). Thus, 

Equation (6.4) may give appropriate average values which are on the safe side. 

However, it must be stated that such empirical correlations (Equations (6.1) to 

(6.4» can only be expected to provide an approximate estimate of initial soil modulus 
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and hence their use may only be recommended in practice in some cases as follows 

(Gazetas, 1991): 

a) In feasibility studies and preliminary design calculations; 

b) For fmal design calculations in big projects as supplementary data or in small 

projects as main data; 

c) For initial data in back analyses; 

d) To provide an order-of-magnitude check against the experimentally determined 

values. 

It should be emphasised that such correlations refer to the vertical response of pile 

foundations. More research is needed to defme reliable correlations to determine the 

initial Young's modulus of the soil in the horizontal direction. This modulus is, in 

general. greater than the initial vertical modulus - for instance, in London Clay, the 

initial horizontal modulus is about twice the initial vertical modulus (Atkinson, 1975). 

However. in order to take into account the higher strains associated with 

laterally loaded piles, the empirical correlations commonly adopted for non-linear 

analyses propose values of the horizontal modulus which are smaller (typically one­

tenth) than the initial vertical moduli, ie: 

E, = 250-400C. (Poulos & Davis, 1980) 

E, = 5Q-200C. (Reese & Desai, 1977) 

It is expected that high values of EJC. are associated with highly plastic stiff clays. 

Although the PGROUPN analysis is intended for pile groups embedded in an 

isotropic soil medium. it can be used for obtaining the approximate response to loading 

of pile groups in an anisotropic soil (ie the soil modulus in the horizontal direction is 

different from that in the vertical direction) by considering the horizontal and vertical 

behaviour separately and applying superposition (Banerjee & Driscoll, 1977). 

203 



CHAPTER 6 Comparison with field test data 

6.3.2 Poisson's ratio (vs ) 

Poisson's ratio of the soil is a necessary input parameter into analyses that 

involve elastic continuum theory, but its effect is generally quite minor when the 

solutions are expressed in terms of Young's modulus rather than shear modulus. It is 

widely recognised that the appropriate value of V, for fully saturated clays under 

undrained conditions is 0.5 (see, for example, Ohsaki & Iwasaki, 1973; Poulos, 1989). 

6.3.3 Undrained shear strength (C.) and adhesion factor (a) 

The limiting stresses dermed in Section 2.4.4 are based on values of the 

undrained shear strength determined from conventional laboratory tests: 

limit bearing stress 

(6.5) (2.17 bis) 

limit shear stress (skin friction) 

tss = aC" (6.6) (2.18 bis) 

As regards driven piles, Fleming et al. (1992) observe that the value of a deduced from pile 

load tests appears to reduce from unity or more for piles in clay of low strength, down to 

0.5 or below for clay of strength above about 100 kPa. The American Petroleum Institute 

(API) Code RP 2A (1984) suggests a value of the adhesion factor (a) equal to 1 for ell S 

25 kPa and to 0.5 for e. ~ 70 kPa, and a linear variation in between. Semple & Rigden 

(1984) observed that only a fraction of the pile load tests contained in the 1984 API data 

base refer to driven steel pipe piles in cohesive soil profiles. They therefore propose a value 

of the adhesion factor (a) equal to 1 for e" S 35 kPa and to 0.5 for ell ~ 80 kPa, and a 

linear variation in between. Based on published and unpublished records of pile loading 

tests, Tomlinson (1994) has compiled charts which establish a relationship between a and 

e. for different types of clay. 
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However, it has been recognised that the appropriate value of a depends not strictly 

on the shear strength of the clay, but on its past stress history and overconsolidation ratio 

(OCR) (Randolph et al., 1979; Randolph & Wroth, 1981; Kraft, 1982; Fleming et al., 

1992). This may conveniently be represented by the strength ratio (Cu I O'~) of the soil, 

where O'~ is the effective overburden stress (Randolph & Wroth, 1982). From the analysis 

of load tests on driven piles, Randolph & Murphy (1985) plotted the adhesion factor (a) 

against the average in-situ strength ratio (CII. I O'~). From these plots, Fleming and 

colleagues derived a general expression for the value of a (as a function of ell. I O'~) in 

closed form. For normally consolidated clay located at great depth or overconsolidated 

clay. Semple (1980) proposed a diagram for evaluating the value of a in terms of average 

OCR along the pile shaft 

Turning to bored piles, Fleming and colleagues propose that the average adhesion 

factor (a) may be approximately taken as 0.7 times the value for driven piles. For piles in 

stiff overconsolidated London Clay, it has been customary to assume an a value of 0.45 

(Skempton, 1959). This value is based on C. determinations on unconsolidated-undrained 

triaxial tests perfonned on standard 38mm diameter specimens. However, a large number 

of pile loading tests carried out by Building Research Establishment (refer to Patel, 1989, 

1992) has shown that l00mm samples are more likely to intersect the natural fissures in 

London Clay and hence they give a more reliable estimate of the strength of the clay mass. 

'These tests demonstrate that values of C. from the l00mm samples are about 23% lower 

than the 38mm samples, and hence it is concluded that higher adhesion factors (a = 0.6) 

may be employed. 

It may be noted that effective stress approaches which relate the skin friction to 

the in-situ effective stress state have been proposed for both driven and bored piles (eg 

Chandler, 1968; Burland. 1973; Meyerhof, 1976; Fleming et al., 1992). However, for piles 

in clay. a total stress approach is still commonly applied (Poulos, 1989; Fleming et al., 

1992). This is mainly due to the difficulties in estimating the radial effective stresses and 

interface angles of friction at the point of failure (Chow, 1997). 

Some correlations between the skin friction and the results of standard 

penetration or cone penetration tests have been proposed (Shioi & Fukui, 1982; 
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Schmertmann, 1978; De Ruiter & Beringen, 1979; Bustamante & Gianeselli, 1982). 

However, it should be emphasised that wide variations exist between some of these 

correlations (Poulos, 1989; Fleming et al., 1992). 

6.4 Comparison with O'Neill et ale (1982) 

O'Neill et al. (1982) reported the results of axial loading tests on full-scale single 

piles and pile groups driven into stiff overconsolidated clay. Figure 6.1 summarises the 

geotechnical data at the test site which was located at the University of Houston (after 

Poulos, 1989). Geotechnical data are available from standard penetration tests, cone 

penetration tests, pressuremeter tests, unconsolidated-undrained triaxial tests, laboratory 

consolidation tests and seismic cross-hole tests (refer to Mahar & O'Neill, 1983). 

All piles were closed-ended tubular steel pipes with an external radius of 137 mm, a 

wall thickness of9.3 mm and a penetration depth of 13.1 m. Nine of the piles were installed 

in a 3 x 3 configuration with centre-to-centre spacing s = 3d (where d is the external 

diameter of the piles). The piles were connected to a massive reinforced concrete block, 

thus enforcing a condition of equal displacements of the piles in the group. There was a 

clearance of 0.9 m between the pile cap and the ground surface. Each of the two single 

piles was insta1led at opposite sides of the 9-pile group at a distance of about 3.7 m from 

the group centre pile. The two single piles and the 9-pile group were loaded to failure in 

compression on three occasions, approximately 18, 80 and 108 days after installation. The 

results discussed below refer to the first of these tests. Within six days after the final 9-pile 

test, a 5-pile subgroup consisting of the centre edge piles (piles 2 in Fig. 6.3) plus the 

centre pile (pile 3), and a 4-pile subgroup consisting of the centre edge piles only were 

tested to failure. The details of the pile parameters and the group configuration are as 

follows: 

Embedded length of piles (L) 

Pile external diameter (d) 

Pile internal diameter (dj ) 

Centrc-to-ccntrc pile spacing (s) 

Depth of overhang of the pile cap (g) 
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Young's modulus of steel piles (Ep) =21OGPa 

For all the PGROUPN analyses, the number of pile shaft elements per pile (N) has been 

selected according to the recommendations given in Section 4.3.1.1, ie N = 24. It has 

been found that about 200 load increments (NINC) are generally sufficient to achieve 

convergence of the PGROUPN solution process. The resulting (average) computing time 

for the numerical simulations on the 9-pile group is about 120 s (using a Pentium 133 

MHz with 16 Mb RAM). 

6.4.1 Current analysis 

A prediction of the load-settlement response and the load distribution for the 

reference single piles and the pile groups described above is proposed. The profiles of Es 

and C. employed in the present study are based on the geotechnical data reported by 

Poulos (1989) in his Rankine Lecture (refer to Fig. 6.1): 

a) The seismic cross-bole data are used to estimate a profile of the initial soil modulus (Es), 

which has been assumed to vary linearly with depth from 100 MPa at the surface to 400 

MPa at the pile base; 

b) The Poisson's ratio is taken as 0.5 (relevant for fully saturated clay under undrained 

conditions); 

c) The undrained shear strength profiles deduced from unconsolidated-undrained triaxial 

tests in the laboratory and from pressuremeter tests showed quite different trends. In the 

current analysis, the interpreted shear strength profile is based primarily on 

unconsolidated-undrained tests as tbe method used to predict pile capacity is based on 

this kind of strength tests (Kraft et al., 1981). Thus, the assumed undrained shear 

strength profile is C. = 40.3 kPa at the surface, increasing linearly to C. = 174.4 kPa at 

the level of the pile base, as deduced from a regression analysis over pile depth. It may 

be noted that such a profile, which is very similar to that suggested by Poulos (ie C. = 
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53 kPa at the surface, increasing linearly to CII = 147 kPa at the pile base), represents a 

elUde approximation of the actual scattered profile; 

d) The average value of the adhesion factor (a) is taken as 0.5. This is based on a 

correlation of a with CII (rather than with C" I O"~), as discussed in Section 6.3.3 (API 

Code RP 2A, 1984; Semple & Rigden, 1984; Fleming et ai., 1992). 

Thus, the soil parameters to be used in the present study may be summarised as follows: 

Young's modulus at ground level (Eso) 

Rate of increase of Young's modulus with depth (m) 

Poisson's ratio (vs) 

= 100 MPa 

= 23 MPa per metre 

=0.5 

Undrained shear strength at ground level (CliO) = 40.3 kPa 

Rate of increase of undrained shear strength with depth (c) = 10.2 kPa per metre 

Adhesion factor (a) =0.5 

Figures 6.2 and 6.3 show a generally good agreement between the computed and measured 

load-settlement behaviour of the average of the two reference single piles and the pile 

groups. It is worth noting that the response of the pile group is more linear than that of the 

single pile, and this feature of behaviour becomes more marked with increasing the number 

of piles in the group. This trend has already been observed by Randolph (1994). 

1be axial load distribution between the piles in the 9-pile group at a working load of 

2.58 MN and at a load nearing failure of 5.66 MN are presented in Figs. 6.4 and 6.5, 

showing a fair agreement between the computed and measured values. It is worth noting 

that, at a working load level, the largest loads occurred in the corner piles and the smallest 

in the centre pile. Closer to the failure load of the pile group, the load distribution amongst 

the piles is fairly even. Of course, at this load level, the degree of accuracy of the analysis 

would to a large extent depend on the agreement between the assumed ultimate pile 

capacities and the actual values in the field. For instance, O'Neill and colleagues observe 

that the centre pile carried the highest load at failure, as contrasted to the lowest at working 
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load, due to a slightly higher end-bearing load that may have resulted from higher effective 

confining stresses in the soil in the interior of the group. 

It should be emphasised that Poulos (1989) does not present numerical results in 

the non-linear range. However, the next section shows a comparison of the PGROUPN 

results with those predicted by alternative non-linear analyses. 

6.4.2 Prediction by previous workers 

Further application of the PGROUPN approach is examined by comparison with the 

results obtained from alternative numerical analyses. The test reported by O'Neill and 

colleagues was analysed by Chow (1986a) by means of a hybrid method in which the 

response of the individual piles is modelled using the load-transfer method and the 

interaction between the piles is effected using Mindlin's solution. The test was also 

analysed by the same author (Chow, 1987c) using a hybrid approach in which load­

transfer curves are used to model the individual pile response and a FEM solution is 

adopted to evaluate the interaction between piles. 

In order to ensure consistency between analyses, the set of soil properties employed 

by Chow (1986a) and Chow (1987c) is used in this study, as described below. The soil 

Young's modulus at the surface is 144 MPa, increasing linearly at the rate of 23.6 MPa per 

mette, as deduced from the cross-hole data interpreted by Kraft et al. (1981). The soil 

Poisson's ratio is taken as 0.5. The undrained shear strength is CII = 47.9 kPa at the surface, 

increasing linearly to C. = 239 kPa at the pile base. An end-bearing pressure of 2.15 MPa 

(= 9C.) has been adopted. Back analysis of the average of the two reference single pile 

tests gave an average a = 0.34 for the shaft resistance. Thus: 

Young's modulus at ground level (EJo) 

Rate of increase of Young's modulus with depth (m) 

Poisson's ratio (v,) 

Undrained shear strength at ground level (CliO) 

= 144 MPa 

= 23.6 MPa per metre 

=0.5 

= 47.9 kPa 

Rate of increase of undrained shear strength with depth (e) = 14.6 kPa per metre 

Adhesion factor (a) = 0.34 
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Figures 6.6 and 6.7 show a generally good agreement between the computed and measured 

load-settlement behaviour of the reference single pile, the 4-pile subgroup (piles 2) and the 

9-pile group. If these results are compared with those obtained in the previous section 

(refer to Figs. 6.2 and 6.3), it is observed that an equally good fit of load-settlement curves 

for both single piles and pile groups can be obtained using two different combinations of E, 

and e,.. In particular, the profile of undrained shear strength proposed by Chow (1986a, 

1987c), which is based on back-analysis of the reference single pile tests, predicts an 

ultimate capacity of the single piles and the pile groups which is similar to the prediction 

described in Section 6.4.1. 

Figures 6.8 and 6.9 report the computed and measured axial load distribution with 

depth among the piles in the 9-pile group at a working load of 2.58 MN and at a load 

nearing failure of 5.66 MN, respectively. In addition, Tables 6.1 and 6.2 show the 

computed and measured axial loads taken by the individual pile heads in the linear and non­

linear range. It is worth noting that, even at a working load level of 2.58 MN, the mild 

nonlinearity in the computed solution has a relevant influence on the load distribution, and 

improves on the agreement between the computed and the measured values. Closer to the 

failure load of the pile group, the effect of nonlinearity is to cause a redistribution of the 

loads in the individual piles of the group, leading to a more uniform distribution. At this 

load level, the linear elastic solutions are not strictly applicable, but the actual trend is well 

reflected in the non-linear solutions. 

The test reported by O'Neill and colleagues was analysed by Hirayama (1991) by 

means of a method which considers the effect of induced non-homogeneity due to pile 

settlements on pile-soil and pile-soil-pile interactions. The calculated soil moduli are 

introduced in a non-linear BEM analysis based on a hyperbolic interface model. 

The set of soil properties adopted by Hirayama is as follows: the assumed 

undrained shear strength profile is C,. = 53 kPa at the surface, increasing linearly to e,. = 
147 kPa at the level of the pile base (as suggested by Poulos, 1989); the end-bearing 

pressure is equal to 9C,.; the adhesion factor is evaluated in terms of average OCR, as 

proposed by Semple (1980), ie a = 0.5; the initial soil modulus is evaluated on the basis of 

the empirical correlation E, = 1500C,. (refer to Equation (6.4». The Poisson's ratio is 

taken as 0.5. Thus: 
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Young's modulus at ground level (E,o) 

Rate of increase of Young's modulus with depth (m) 

Poisson's ratio (v,) 

Undrained shear strength at ground level (CliO) 

COtnDQrison with field test data 

= 79.5 MPa 

= 10.8 MPa per metre 

=0.5 

= 53 kPa 

Rate of increase of undrained shear strength with depth (c) = 7.2 kPa per metre 

Adhesion factor (a) = 0.5 

Figures 6.10 and 6.11 compare the computed and measured load-settlement response 

of the single pile and the 9-pile group. It is worth noting that the two numerical 

solutions compare favourably. However, for the 9-pile group, the measured initial 

response is stiffer than the response computed by Hirayama and PGROUPN. 

6.4.3 AppUcation of empirical correlations for determining E, 

The influence of the method of determination of the soil Young's modulus has 

been investigated by using the correlations described in Section 6.3.1 (Equations (6.1) 

-(6.4», and employing the PGROUPN analysis. 

For all analyses, the assumed undrained shear strength profile is C. = 53 kPa at the 

surface, increasing linearly to C. = 147 kPa at the level of the pile base (as suggested by 

Poulos, 1989), while the assumed adhesion factor (a) is 0.5 (refer to Section 6.4.1). The 

Poisson's ratio is taken as 0.5. Four different distributions of soil modulus with depth 

are deduced from Equations (6.1 )-(6.4) as follows: 

a) (Equation 6.1) The interpreted values of N are 5 at the surface and 25 at the pile base, 

as deduced from the SPT profile shown in Fig. 6.1; this yields a profile of E, which 

varies linearly with depth from 130.5 MPa at the surface to 472.8 MPa at the level of the 

pile base; 

b) (Equation 6.2) A profile of E, which varies linearly with depth from 70 MPa at the 

surface to 350 MPa at the level of the pile base (with N = 5 at the surface, N = 25 at the 

pile base); 
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c) (Equation 6.3) The interpreted values of cone resistance are qc = 1.6 MPa at the 

surface and qc = 4.2 MPa at the level of the pile base, as deduced from the CPT 

profIle shown in Fig. 6.1; this yields a profIle of E, which varies linearly with depth 

from 79 MPa at the surface to 141 MPa at the level of the pile base; 

d) (Equation 6.4) Based on the profile of e" described above, the assumed soil 

modulus profIle is E, = 79.5 MPa at the surface, increasing linearly to 221 MPa at the 

pile base. 

Figures 6.12 and 6.13 show the computed load-settlement behaviour of the single pile 

and the 9-pile group. It is immediately apparent that the closest predictions are given 

by the correlation Es = 36No.a [MPa]. In general, the measured initial response is 

stiffer than that calculated by means of the empirical correlations. Such differences are 

more evident for the 9-pile group than for the single pile. This suggests that an 

accurate evaluation of E, is crucial in predicting the behaviour of large pile groups. As 

already observed in Section 6.3, the most satisfactory procedure for assessing the soil 

modulus is by bacldiguring from the results of full-scale pile load tests. However, the 

present study suggests that the value of E" as derived from seismic cross-hole data, may 

be successfully employed in the prediction of the pile settlement. thereby confirming 

the fIndings of Mandolini & Viggiani (1997). 

It is worth noting that the observed discrepancies between the measured values 

and those calculated by means of the empirical correlations tend to be on the 

conservative side, ie the predicted settlements are larger than the actual settlements. 

Finally. it may be observed that the numerically predicted curves in Fig. 6.13 are 

almost linear up to the failure load, whereas the measured response attains more 

curvature. 

6.S Comparison with Matlock et ale (1980) 

Because of the high cost and logistical difficulty of conducting lateral load tests 

on pile groups, relatively few full-scale load test results are available in the literature to 
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show the deformation behaviour and load distribution within a pile group embedded in 

cohesive soil. In addition, the majority of these tests refer to piles which are loaded 

under free-head conditions (ie zero moment), whereas the PGROUPN analysis applies to 

piles which are rigidly connected to the cap. The choice is therefore restricted to a 

comparison with the field tests conducted by Matlock et al. (1980), although these 

experiments refer to closely spaced pile groups in which shadowing effects are 

significant. Such effects, which consist of overlapping of failure zones and a consequent 

increase of group deflections, cannot be readily reproduced in the PGROUPN model (for 

further details refer to Section 1.3.2.2). 

1be lateral load tests reported by Matlock and colleagues refer to a single pile, 5-

pile and IO-pile circular groups embedded in soft clay. Figures 6.14 and 6.15 summarise the 

geotechnical data at the test site which was located at Harvey, Louisiana. To avoid organic 

mate~ the soil around the piles was excavated and the 'mudline' established at 2.4 m (8 

ft in Fig. 6.14) below the ground surface. 

All piles were tubular steel pipes with an external radius of 84 mm, a wall thickness 

of 7.1 mm and a penetration depth of 11.6 m. The centre-to-centre spacing was 3.4 and 1. 8 

pile diameters for the 5-pile and 100pile groups, respectively. Pile-head deflections were 

enforced at two elevations (one at 0.23 m above the groundline, ie at the level of the lower 

support, and the other near the pile top) by a special loading device to simulate pile-head 

~traints typical of offshore structures, as described in Figs. 6.16 and 6.17. In order to 

simulate the above-mentioned ~traint imposed by the experimental setup, an applied 

moment M has been considered at the level of the lower support for the single pile. The 

assumed value of M is such that Mni = -0.8125 m (where H is the applied lateral load), as 

deduced by the measurement of M = -26 kNm by Matlock and colleagues for H = 32 kN. 

As observed by Poulos &. Randolph (1983). the loading support system may be assumed to 

apply the same relative restraint to the group piles (between the free-head and fixed-head 

cases) as to the single piles. Thus, the pile cap loading conditions consist of a lateral load 

and associated restraining moment of H = 140 kN, M = -114 kNm for the 5-pile group, 

and H = 250 kN. M = -203 kNm, for the to-pile group. 

In tim study. the set of soil parameters used follows that reported by Bogard & 

Matlock (1983) and employed by Leung & Chow (1987), as shown below: an approximate 
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linearly increasing profile of the undrained shear strength is deduced from an in-situ vane­

shear device, while an empirical correlation factor of EICII = 150 is adopted for the 

Young's modulus of soft clay. A Poisson's ratio of 0.5 and an adhesion factor (a) of 0.5 

have been adopted. Thus, the input parameters for the PGROUPN analysis are: 

Embedded length of piles (L) 

Pile external diameter (d) 

Pile internal diameter (di ) 

Depth of overhang of the pile cap (g) 

Young's modulus of steel piles (Ep) 

Young's modulus at ground level (E80) 

Rate of increase of Young's modulus with depth (m) 

Poisson's ratio (VI) 

= 11.6 m 

= 0.1680 m 

= 0.1538 m 

=0.23 m 

= 210GPa 

= 1575 kPa 

= 390 kPa per metre 

=0.5 

Undrained shear strength at ground level (ClIO) = 10.5 kPa 

Rate of increase of undrained shear strength with depth (c) = 2.6 kPa per metre 

Adhesion factor (a) =0.5 

For all the PGROUPN analyses, the number of pile shaft elements per pile (N) has been 

selected according to the recommendations given in Section 5.2, ie N = 34. It has been 

found that about 100 load increments (NINC) are sufficient to achieve a converged 

solution of the PGROUPN analyses. The resulting CPU time for the numerical 

simulations on the 100pile group is about 200 s (using a Pentium 133 MHz with 16 Mb 

RAM). 

Figures 6. 18, 6.19 and 6.20 compare the measured average pile head load­

det1cction curves for the single pile, the 5-pile and 100pile groups, respectively, with those 

predicted by PGROUPN and the hybrid approach of Leung & Chow, in which the individual 

pile response is modelled using load-transfer (p-y) curves and the group interaction is 

determined based on Mindlin's solution. It is worth noting that, due to the effect of pile­

soil-pile interaction, the computed response of the pile group becomes more linear with 

increasing the number of piles in the group. This trend has already been observed in axially 

loaded pile groups. Reasonably good agreement with the measured values is achieved for 
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the single pile. while the PGROUPN response for the 5-pile and to-pile groups is too stiff at 

high load levels. Such discrepancies (also noted in the solution of Leung & Chow) may be 

partially attributed to shadowing effects, which lead to increased group deflections. In 

addition, the nonlinearity of the group results from the experiments as compared with the 

near linear PGROUPN curves may also be related to soil disturbance caused by installation. 

Figures (6.21) to (6.23) compare the computed and measured profile of bending 

moments along the piles under the loading conditions described above. For the pile groups, 

the profiles of bending moment refer to pile 1 (see Fig. 6.17). However, Matlock and 

colleagues observed that the variations of shear and bending moment among the piles of the 

groups were found to be very smalL This feature of behaviour is well reflected in t~ 
PGROUPN solutions. The diagrams show that PGROUPN underestimates the maximum 

positive bending moment by about 50% for the pile groups, while a close agreement 

between computed and measured values is obtained for the single pile. As pointed out by 

Rollins et al. (1998), who performed similar load tests on closely spaced pile groups, this 

divergence may in part be attributed to group effects that become more significant as 

displacements increase and failure zones begin to overlap. The group effects cause the soil 

to behave as a softer material, leading to higher moments particularly at larger depths 

below the ground level Finally, it should be emphasised that the experimental method of 

controlling moments to the pile head is fraught with difficulty and the moments are also 

strongly influenced by lateral movement as well as rotation. Therefore, the single-pile 

predictions are probably the most reliable results provided by Matlock and colleagues. 

6.6 Concluding remarks 

Application of the PGROUPN analysis to two well documented published case 

histories has shown that the suggested method is capable of giving reasonable 

estimates of the load-deformation response and load distribution of pile groups in 

cohesive soil under either axial or lateral loading. It has been shown that the PGROUPN 

solution avoids exaggeration of pile loads at group extremities which is common with linear 

elastic models. and predicts a more realistic load distribution to the individual piles of the 

group. 
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The proposed code is numerically efficient and exploits the capacity of modern 

desk top computers to provide a full continuum solution to large group problems in 

short time. One of the main features of the PGROUPN analysis is that it can simulate the 

essential non-linear features with a minimum number of soil parameters whose physical 

meaning is clear. By comparison with a purely linear elastic analysis, the present method 

requires only one additional soil parameter to be completely defined, ie the undrained 

shear-strength (ell) distribution with depth. This parameter is routinely measured in soils 

investigation. [n addition, it should be emphasised that, in a linear elastic model, the 

selection of appropriate secant soil moduli is difficult. Instead, the proposed non-linear 

solution requires specification of the initial tangent soil modulus (E3)' The present study 

suggests that the value of E., as derived from seismic cross-hole data, may be 

successfully employed in the prediction of the pile group settlement. Alternatively, 

approximate values of E. may be deduced from empirical correlations with 

conventional in-situ and laboratory test results. 

These features of PGROUPN represent an advantage over more common load­

transfer (hybrid) approaches (eg those proposed by Chow and his co-workers), which 

are limited by the questionable assessment of the value of the modulus of subgrade 

reaction from intrinsic soil properties and the computational effort required to analyse 

large groups. 
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TABLES CHAPTER 6 

Table 6.1 Comparison of axial load distribution to individual pile heads in 9-pile group at 

a working group load of 2.58 MN. 

Method Average pile loads (kN) 

Corner pile Edge pile Centre pile 

Measured (O'Neill et aI., 1982) 294 285 267 

Chow (19868): Non-linear 295 284 269 

PGROUPN (Non-linear) 295 283 266 

Chow (19868): Linear 315 274 229 

PGROUPN (Linear) 311 275 237 

Table 6.2 Comparison of axial load distribution to individual pile heads in 9-pile group at 

a group load nearing failure of 5.66 MN. 

Method Average pile loads (kN) 

Corner pile Edge pile Centre pile 

Measured (O'Neill et aI., 1982) 635 608 696 

Chow (19868): Non-linear 631 629 626 

PGROUPN (Non-linear) 633 627 622 

Chow (19868): Linear 690 600 502 

PGROUPN (Linear) 681 603 520 
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Fig. 6.1 Summary of geotechnical data at University of Houston test site (after Poulos, 

1989). 

218 



CHAPTER 6 

700 

600 

500 

z 400 ~ 

"0 
111 

300 0 
...J 

200 

100 

0 
0 2 

Comparison with field test data 

3 

~Measured (O'Neill at aI., 1982) 

__ PGROUPN 

4 5 6 7 

Settlement: mm 

8 

Fig. 6.2 Comparison between predicted and measured load-settlement behaviour of single 

pile. 

7 

6 

5 

Z 4 
~ 

-0 
.9 3 

2 

o 2 

9-pilegoup 

5-pile subgroup 

4-pile subgroup 

-a-Measured (O'Neill at aI., 1982) 

--PGROUPN 

4 6 
Settlement: mm 

8 10 

s s 

8
21 

2 03 2 

1 2 1 

Fig. 6.3 Comparison between predicted and measured load-settlement behaviour of pile 

group. 

219 



CHAPT£R6 Comparison with field test data 

Axial load: kN 
(a) Comer pile 

0 50 100 150 200 250 300 350 
0 

E 2 

a; 
> 4 
~ 

B 6 + 
~ 
"a' 
J 8 
0 

~ 10 
&; 

a. 
cP 12 ... 0 

14 -

(b) Edge pile 
0 50 100 150 200 250 300 350 

0 

E 2 

~ " 
6 

a. 
~ 

8 

.8 
~ 

10 

G) 

0 12 

14 

(e) Centre pile 
0 50 100 150 200 250 300 350 

0 

E 2 

a; 
~ " 

6 

a. 
8 

10 

& 
0 12 

14 

--- (0' lIetaJ., 1~ --PGROUPN 

I .4 m n n pre and me ured axial load distribution m 9-pile 

p I v- r in 'r up 1 d f _. M 

22 



CHAPTER 6 Comparison with field test data 
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CHAPTER 7 

Conclusions 

7.1 Summary and concluding remarks 

The application of current numerical methods to realistic pile group problems is 

deficient because these are mainly restricted to linear elastic analyses (eg PIGLET, 

PGROUP) or relatively small pile groups (eg DEFPIG, PGROUP). Several hybrid 

approaches have recently been proposed, in which load-transfer (non-linear) functions 

are used to model the individual pile response and a continuum solution is adopted to 

determine the group interaction. The main drawback to these approaches is the 

problematic evaluation of the modulus of subgrade reaction from intrinsic soil 

propenies - this modulus may only be obtained by using empirical parameters or by 

backfiguring from the results of pile load tests. 

In this thesis. an attempt at removing these limitations has been made. A computer 

program (called PGROUPN) has been developed, by which large groups of piles under 

general loading conditions may be investigated by means of a non-linear analysis. The 

program. given the pile group geometry, the stiffness of the piles, the external loads and the 

surrounding soil conditions. computes the pile head deformations and the distribution of 

loads and moments along the individual piles. 

The main features of the proposed PGROUPN analysis are as follows: 

a) The numerical code is based on a complete BEM approach and may be regarded as a 

generic descendant of the computer program PGROUP (Banerjee & Driscoll. 1976) 

which has been extended in order to make the analysis numerically efficient and to 

include the effects of soil nonlinearity. The strategies adopted for achieving 

efficiency gains are as follows: (I) the pile base is represented by one (circular) 

element only; (2) the diagonal soil flexibility terms are calculated via analytical 

integration of the singular Mindlin functions; (3) the off-diagonal soil flexibility 
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terms are evaluated by approximating the continuously distributed loads by equivalent 

point loads acting at the pile nodes; (4) use of Bernoulli-Euler beam theory for pile 

domain discretization and analytical integration of the singular functions; (5) 

exploitation of similarities in forming single-pile flexibility matrices; (6) more 

efficient calculation of the unit boundary condition vector; (7) pile-soil system 

solved via LV decomposition. As regards the inclusion of non-linear soil response, 

this has been accomplished, in an approximate manner, by means of a stepwise 

linear incremental procedure in which the global flexibility matrix [G p + Gs ] is 

modified as one or more elements at the pile-soil interface reach the yield conditions; 

b) Any combination of vertical loads, horizontal loads and moments may be applied to 

the pile cap. This makes the program particularly suitable for the design of road 

bridges (with adjacent embankments) and similar work on railways - in these 

circumstances, horizontal loads can be large and associated with a range of vertical 

loading conditions; 

c) The piles are assumed to be rigidly connected by a rigid free-standing cap (a reasonable 

assumption in most cases) which imposes the same head displacements and prevents 

differential head rotation. Piles may have different geometries (length, external and 

internal diameter, base diameter) and may be inclined in the direction of horizontal 

loading; 

d) The non-linear analysis may be applied to pile groups embedded in cohesive soil, 

specifically ruDy saturated clay under undrained conditions. The soil at the interface is 

modelled as an elastic-perfectly plastic material, which is assumed to behave linearly 

elastic at small strain levels, but fails when the stresses at the pile-soil interface reach 

certain limiting values (determined from a limit equilibrium analysis). The analysis only 

requires the definition of three soil parameters whose physical meanings are clear, ie the 

(initial tangent) Young's modulus Eft the Poisson's ratio v. and the undrained shear 

strength C.. This represents a significant advantage over more common load-transfer 

233 



CHAPTER 7 COIIClusions 

approaches which are based on either empirical parameters or the results of full-scale 

pile load tests; 

e) PGROUPN exploits the capacity of modern desk top computers to provide a full 

continuum solution in short time, whereas previous work (ie PGROUP) was restricted 

to problems of small dimensions because of enonnous computational resources; 

f) A 'complete' approach, ie a simultaneous consideration of all elements of all the piles 

within the group, avoids the superposition problems which occur with interaction 

factors (eg in PIGLET and DEFPIG), permitting the stiffening effect of piles within 

the soil mass to be taken into account; such an approach has the desirable effect of 

avoiding exaggeration of corner loads in large groups in both the horizontal and vertical 

senses. In addition, inclusion of nonlinearity effects further reduces the load 

concentration at the outer piles and predicts a more uniform load distribution to the 

individual piles of the group. These observations are of basic importance in practice 

because they offer the prospect of tangible improvements in design procedures and 

potential saving of materials; 

g) Application of the PGROUPN analysis to two well documented published case 

histories has shown that the suggested method is capable of giving reasonable 

estimates of the load-deformation response and load distribution of pile groups in 

cohesive soil under either axial or lateral loading. This lends some confidence in 

using the analysis in practice. 

7.2 Recommendations for future work 

The research in this thesis has been exclusively theoretical, relying on either 

alternative numerical analyses or published data from pile tests in order to substantiate 

the proposed model of pile group behaviour. It is clear that the most important aspect 

of any future work must be to achieve a full validation and calibration of the PGROUPN 

analysis by identifying. instrumenting and monitoring real structures. For this purpose, 
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arrangements are being proposed in conjunction with the Transport Research 

Laboratory and Kvaemer Cementation Foundations Ltd. 

Additional technical features which might be added to the program are: 

a) Development of a graphical user interface for input data and the presentation of 

results; 

b) Extension of the non-linear analysis to deal with frictional soil (sands or drained 

analysis in clays) by introducing revised expressions of the limiting bearing stress 

and skin friction; 

c) Extension of the model to handle multi-layered soils, for instance by using the 

analytical solution for a layered half space formulated by Chan et al. (1974) or the 

approximate procedure proposed by Lee & Poulos (1990); 

d) Treatment of end-bearing piles by adopting the mirror-image technique (eg Poulos 

& Davis. 1980); 

e) Inclusion of soil-raft interaction effects: in the linear elastic range, this may easily be 

accomplished by using a BEM approach (Banerjee & Driscoll, 1976); in the non­

linear range, the BEM algorithm of PGROUPN may be coupled with a FEM approach 

(Hain & Lee, 1978; Griffiths et ai., 1991; EI-Mossa11amy & Franke, 1997; Viggiani, 

1998); 

f) Incorporation of shadowing effects for closely spaced pile groups under lateral 

loading by using empirical parameters to simulate the loss of soil resistance in piles 

within trailing rows (Brown et ai., 1987); 

g) Inclusion of cyclic loading effects (refer, for instance, to a similar work developed 

for single piles by Lee. 1997). 
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