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Abstract 

Environmental Impact Assessment consists of assessing the possible effects of a project of 

development on the environment. Statistical methods which are used in this process include 

the ability to detect the magnitude of an impact at the time in which an intervention has 

occurred, and the ability to detect when an intervention has occurred if the time of impact 

is not available. This impact at the time at which the intervention has occurred is also known 

as a ‘changepoint’. This project consists of evaluating methods used to assess the magnitude 

of these ‘impacts’, and the methods which can be used to determine where an impact has 

occurred if the time of impact is not available. 

A number of datasets have been made available for analysis within this thesis, each of these 

datasets are expected to contain impacts within them. By reviewing the techniques and 

methods which are available for statisticians, applications to these datasets were made.  

The classic approach to quantifying the magnitude of change within a series when the time 

of the impact is known is Before-After-Control-Impact design, which uses a dummy variable 

within a linear regression model to determine whether a significant change in mean can be 

detected. This thesis reviewed the history and the approaches used by statisticians when 

using this method, and the adaptions that can be made.  BACI was then applied to our own 

datasets to determine whether a significant change in mean could be detected. 

Many statistical changepoint detection methods are available to statisticians when the 

location of a changepoint, if any, is not known.  By summarising the methods available and 

calculating the power of various methods via a simulation study, a number of changepoint 

detection methods were applied to real life data. 

Finally, various modelling techniques were applied to the available datasets and by 

incorporating terms to indicate the detected location of changepoints, we could determine 

whether adding these terms gives better fitting models. 
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Chapter 1 

Introduction to Changepoint analysis and its 
applications 

 

1.1 What is Environmental Impact Assessment  

 

Environmental Impact Assessment (EIA) is an important policy tool which is used to weigh 

evidence to assess environmental interventions, in both public and private projects. 

Adopted 25 years ago, it is a procedure that ensures that the environmental implications of 

decisions are taken into account before the decisions are made. Furthermore, the 

complexity of the process is increased by the diversity of the disciplines involved, for 

example – environmental science, social science and economics. Because of this diversity of 

disciplines, the decision making procedure and final result should not be based solely on 

scientific grounds but also on social viewpoints. 

‘Environmental Impact Assessment’ is not strictly a statistical tool but may include some 

statistical elements to provide evidence for or against environmental intervention effect on 

the environment. 

Created in 1985, the EIA directive has been changed three times- in 1997, 2003 and 2009. 

Primarily the focus of EIA is to determine whether projects will cause an environmental 

impact by predicting the effects of development. The definition of an EIA as stated by the 

International Association for Impact Assessment is: 

 "The process of identifying, predicting, evaluating and mitigating the biophysical, social, and 

other relevant effects of development proposals prior to major decisions being taken, and 

commitments made."  

 

 

http://en.wikipedia.org/wiki/Biophysics
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It also states the objectives of an EIA are as follows,  

• To ensure that environmental considerations are explicitly addressed and incorporated into 

the development decision making process;  

• To anticipate and avoid, minimize or offset the adverse significant biophysical, social and 

other relevant effects of development proposals; 

• To protect the productivity and capacity of natural systems and the ecological processes 

which maintain their functions; and  

• To promote development that is sustainable and optimizes resource use and management 

opportunities 

 

An EIA is used to weigh up the evidence with respect to both positive and negative 

consequences with regards to environmental impact. In Europe, projects must go through a 

screening process to determine if an EIA is needed. Those projects already listed as an 

‘Annex I’ project must have an EIA carried out; otherwise any project listed as an ‘Annex II’ 

project does not require an EIA (unless stated otherwise). If it is not listed as an Annex I or 

Annex II, consideration is taken on deciding whether there should be an EIA at the discretion 

of the state. For example, Annex I projects would include major power plants, chemical 

works, waste disposal incineration and major roads. Annex II projects would include 

quarries and opencast, some intensive livestock rearing, overhead transmission lines and in 

some cases, wind farms. Furthermore, the location of development is a major factor in the 

decision process as the environmental sensitivity is different in geographical areas. 

Therefore existing land use, relative abundance of natural resources and the absorption 

capacity of the natural environment must be taken into account in deciding if an EIA is 

required. 

If now the statistical nature of an EIA is considered, then there are issues concerning the 

sampling frame over space but also over time. Data can be obtained by sampling from 

various locations around the project site over time, allowing us to determine through 

modelling whether the project has had any effect on the environment.  

In a statistical sense, impact is determined through modelling of the observed data to infer 

whether a change has taken place which can then be linked to the development.  



3 
 

Detecting a change in an environmental time series can be regarded as evidence of change 

attributed to the development or project in question if the ‘experiment’ is designed 

properly. 

There are a number of statistical methods available to identify changes in environmental 

time series. If the time at which an impact is expected to have occurred is available, Before-

After analysis is a simple way of determining whether a significant change in a variable has 

been detected.  When ‘control’ sites are available (sites which are relatively close to the 

impact site but are not affected by the intervention) Before-After-Control-Impact analysis 

can be implemented. A literature review on BACI analysis will be carried out, helping us to 

design our own analysis.  

If the time of impact is not available a change point analysis can be carried out. Change 

point analysis allows us to detect the time at which an impact has occurred if it is present 

within a series. A literature review of various change point methods will be carried out and a 

subset of the methods will be assessed. Three of these methods will be used on the real life 

data after conducting a simulation study to assess their performance. 

Once the time of impact has been located, modelling techniques can be applied including a 

dummy variable which can account for the time at which an impact has occurred. This 

allows the model to ‘jump’ where an impact is present.  

The approaches described above will be assessed and applied in this thesis on a variety of 

environmental contexts including a windfarm development and a global change in air 

quality with the purpose of locating and identify changepoints, determining whether the 

change in response is significant and then modelling the data appropriately. 
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1.2 What is an ‘Impact’ and types of impact 

The potentially impacted data series may or may not contain a shift or change in the 

statistical structure of the data; if the series does contain a shift, we need to incorporate 

such an effect into our models. These changes can be referred to as ‘discontinuities’ or 

‘regime shifts’. The detection of discontinuities or regime shifts, are of great interest to 

those who wish to model time series data efficiently. A change in parameters within a series 

may affect how the series should be modelled as functions may need to be added to 

account for the change. Regime shifts are cases of inhomogeneity from one relatively stable 

state to another. The shifts in the series are not necessarily natural but can also be 

anthropogenic. For example the introduction of a new law or the building of a new structure 

may affect the time series variables by increasing or decreasing the mean for some given 

variable for a short or long period of time, change the slope of the trend, or cause the 

variable of interest to be more noisy after the change point. 

The methods we wish to use depend on the design of the study. There are different ways of 

determining whether an impact has occurred and its magnitude, dependent on the data we 

have. It is therefore in our interests to determine: 

1.) Can we detect a shift in model parameters after this intervention; do the parameters 

revert to their original values after a period of time? 

2.) What is the magnitude of the shift at the point of intervention? 

3.) Is there evidence of trends before and after this intervention; are these trends 

different? 

The time series could potentially contain a combination of steps and trends. The steps may 

be permanent or temporary jumps in mean values and they could be abrupt or gradual 

changes. There may also be trends before and after this intervention, disrupted by the 

intervention itself. These regime shifts could therefore consist of: 

 A  shift in the mean from    to some other values          

 A change in regression (slope) 

 The standard deviation could shift from    to some other value 

 A combination of all 3 
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Examples of such interventions are shown below in figure 1.1 showing the series 

schematically before and after intervention with no variability or seasonal trends. Trends 

that are present are assumed to be caused by the intervention – not by natural cyclic trends 

in the data. 

The three plots on the left of figure 1.1 show shifts in which the series do not decrease back 

to the original value: The top left shows a simple abrupt shift in the mean value, there is no 

trend in this series the mean of the series only shifts after intervention.  

The plot on the left in the centre shows an abrupt shift as well as an increasing linear trend. 

The plot on the bottom left also shows an abrupt shift, but a non-linear increasing trend. 

The three plots on the right of figure 1.1 show series that revert back to their original mean 

value after a period of time. The top right plot shows a temporary change in mean which 

increases for one time unit then reverts abruptly to its original value. The middle right plot 

shows an abrupt change in mean which reverts back to its original value in a linear fashion, 

whereas the bottom right plot reverts back to its original value in a non-linear fashion. 
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Figure 1.1: Examples of interventions 

As specified before, shifts do not necessarily need to be abrupt but can be gradual. For 

example, a gradual increasing linear trend after time   would just be considered a linear 

trend attributed to the intervention. Furthermore just because a mean or trend is constantly 

increasing after intervention does not mean that it will always stay constant or increase, it 

may converge to its original value after a number of time units. 

 A further consideration is the amount of variability in the data. Shifts and trends caused by 

the intervention may be present however a large amount of variability may hide the effects 

of intervention. Furthermore as with all Impact assessments, we must determine whether 

before and after variances differ or are the same, Oaten (2001) addresses this problem in 

his paper ’Temporal and Spatial variation in environmental impact assessment’. It is also 

relevant to consider the problem of identifying whether a trend is actually caused by the 

intervention, or if it is natural. In longer time series it is more apparent which trends are 

natural and which are caused by intervention, however in short series or those that cannot 

be compared with control series this may prove problematic.  
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1.3 Application of techniques 

1.3.1 Overview 

This thesis will apply a variety of change point detection methods and modelling techniques 

to: 

1.) European Monitoring and Evaluation Programme data on Sulphur Dioxide at various 

locations in Europe. 

2.) Whitelee wind farm data on Total Phosphorus, Total Organic Carbon and Nitrate 

Oxide (Murray (2012)). 

1.3.2 European Monitoring and Evaluation Programme (EMEP) 

The EMEP measurement network monitors and evaluates concentrations of air pollutants 

for over 25 years at sites situated across Europe. Many datasets are available on the EMEP 

website which are freely accessible for non-commercial use including heavy metals, 

Persistent Organic Pollutants (POP’s) particulate matter and Volatile Organic Compounds 

(VOC’s)  however within our analysis we will focus on an acidifying and eutrophying 

compound, SO2 (Sulphur dioxide). There may be a presence of discontinuities in the time 

series due to an international convention which limited pollutants in Europe. By assessing 

this time series we can determine whether there are any statistical discontinuities within 

the series using a variety of methods. We will assess 2 datasets from different locations 

within the analysis, one from Great Britain (GB02) and one from Austria (AT02). Log SO2 

values will be used within the analysis, where the analysis will be carried out on around 30 

years’ worth of data.  The data which has been used can be found on the following website:  

http://www.emep.int/. Locations and altitude of the 2 data sets are shown in table 1.1. 

Table 1.1: Locations and altitudes of EMEP stations in Europe. 

Code    Station name                 Latitude      Longitude   Altitude 

AT0002R Illmitz                      47 46  0 N    16 46  0 E     117 

GB0002R Eskdalemuir                  55 18 47 N     3 12 15 W     243 

http://www.emep.int/


8 
 

The sampling frequency of the data shown below in figures 1.2 and 1.3 is daily. Much of the 

data are not available due to sampling problems and therefore has to be estimated using 

modelling techniques. Local linear regression with weights was chosen to estimate the 

missing data within each series. The two series available are shown below, green datapoints 

are real samples whereas red datapoints are estimated from the black line plus random 

variation where the variation is simulated from a normal distribution with variance roughly 

equal to that of the actual data (single imputation). 

 

Daily log SO2 over time can be seen below in figure 1.2 (red datapoints indicate simulated 

data). The variance looks constant over the plot however the mean curve changes around 

1992, this could be because of a decrease in emissions around this time. 

 

 

 

Figure 1.2: Time series of log S02 at AT02 (Superimposed estimated data) 
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Figure 1.3: Time series of log S02 at GB02 (Superimposed estimated data) 

 

Figure 1.3 shows daily log SO2 at the GB02 station. Again, much of the data has been simulated as 

indicated by the red datapoints. There is evidence of a gradual decline until around 2000 when the 

mean curve then starts to increase. 
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1.3.3 Whitelee wind farm 

Whitelee windfarm is a windfarm situated south of Glasgow and is the second largest in 

Europe. Whitelee wind farm’s generating capacity is 322MW. It has 140 turbines, where 

each 65 meters high with a rotor diameter of 90m (a total height of 100 meters per turbine). 

The site is also primarily based on peat and wetlands, 1-7m of peat overlying 2-3m of glacial 

till over the basalt bedrock. The peat can be fluid just 0.5m down from the surface. Peat is a 

natural store of carbon and it is therefore of interest to determine if building on peat 

disrupts natural storage (www.whiteleewindfarm.com). 

It is hypothesised that the disturbance of peat lands by developments of creation of roads, 

insertion of wind turbines and associated forestry may have an impact on the peat land 

structure and have an effect on the rate of decomposition of organic matter. The 

construction of these turbines in mid-2007 may have an effect on the transfer of carbon and 

nutrients from terrestrial to aquatic ecosystems. 

Sampling is currently on-going by Anthony Waldron (The University of Edinburgh) but 

previous to 2011 samples were collected and analysed by Helen Murray (University of 

Glasgow). 

The dataset itself consists of 8 variables across 11 sites giving around 88 time series in total 

(some series are missing).  A list of the 8 variables (in mg/L for all apart from CaCO3 for 

alkalinity) can be found in table 1.2. 

Abreviation             Nutrient 

TOC                   Total organic carbon 

DOC                    Dissolved organic carbon 

POC                    Partial organic carbon 

TP                      Total phosphorus  

SRP                    Soluble reactive phosphorus  

NO3                    Nitrate NO3 

NO2                    Nitrate NO2 

Alkalinity         Alkalinity 

Table 1.2: Whitelee time series variables 
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Analysis will only be carried out on TP, TOC and NO2. The reason for this is that these series 

have the least missing data. Estimating data within the other series would leave us with 

more estimated data than real data. Stations WL13, WL14 and WL1 were chosen since it is 

expected WL13 will be effected most, followed by WL14 and finally WL1. However, this is 

only to determine where a changepoint lies, the overall modelling of the data will include all 

11 sites. 

As turbines and roads started to get built around mid-2007, we expect there will possibly be 

a change point at or after this time. However the type of change is unknown, it could be a 

change in mean, trend, variance or a combination of the three. Furthermore the time series 

may revert to its original state after a number of years which may either be considered a 

second discontinuity whether it is abrupt or gradual. A map of Whitelees sites can be seen in 

figure 2.4. 
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Figure 1.4 a, b: Time series of log Total Phosphorus 

 

Figure 1.4 above shows log Total Phosphorus over time at the 11 sites, split into two plots a 

and b. Around mid-2007 there does seem to be a jump in mean value however it is not clear 

whether the variance or trend parameters change after this point 
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Figure 1.5 a, b: Time series of log Total Organic Carbon 

 

Figure 1.5 shows log Total Organic Carbon over time, at the 11 sites, split into plots a and b. 

It is not clear from these plots whether any change has occurred around mid-2007 however 

there is a clear seasonal trend within the series and the variation between sites is less than 

that of Total Phosphorus. 
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Figures 1.6 a, b: Time series of log Total Nitrate Oxide 

 

Figures 1.6a and 1.6b shows log Nitrate Oxide over time again at the 11 sites. Much of the 

data are missing within these series and therefore local linear regression will be used to 

estimate the missing values. Again, it is not clear whether there is a change in structure after 

mid-2007 however a seasonal cycle does seem present. 

 

 

In all three variables data are missing however this can be easily estimated using local linear 

regression with weights. 
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1.4 Aim of this work 

The aim of this thesis is to evaluate the statistical tools available for impact assessment and 

discontinuity detection, applied within an environmental setting. Current and past methods 

will be compared and contrasted through a literature review and a simulation study. The 

thesis will also consider a variety of statistical testing and modelling approaches and see 

how they can be used within an EIA framework.  

Firstly within chapter 2, Before After Control Impact (BACI) will be applied. A literature 

review summarising the history and adaptations of BACI will be carried out and BACI 

analysis will be carried out on some of the data available.  

Secondly, changepoint analysis techniques will then be reviewed and applied to the data 

within chapter 3. Following the identification of changepoints within the series, the methods 

which have been evaluated previously can then be applied to EMEP data and a number of 

variables from Whitelee wind farm. 

In chapter 4, once these variables are assessed for discontinuities, we can then model them 

using Generalised Additive Modelling techniques. 

Finally, chapter 5 will summarise the results and findings of the various approaches used 

throughout the thesis. 
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Chapter 2 

Before After Control Impact (BACI) design 

2.1 An introduction to BACI 

A very simple and easy to interpret way of determining whether an event had an ‘impact’ on 

the environment is to carry out a Before After Control Impact (BACI) study.  

Not only does BACI analysis allow us to evaluate whether or not an event has changed the 

environment, it also allows us to estimate the magnitude of its effects. 

The theory behind BACI is that we have data before, during and after the ‘event’. We also 

have control sites and ‘impact sites’. These control sites are unaffected by the ‘event’ as 

they are either outside the area which has been affected or are under similar conditions to 

the impact sites but at a different location. The control sites allow us to compare an 

unaffected series with an affected one and would therefore allow us to attribute any change 

in the impact site that is not observed within the control site to the ‘event’. Combined with 

the availability of data before during and after the event, the design allows us to fully 

understand whether the ‘event’ has made a substantial impact on the variables in question 

but the time at which the ‘event’ has occurred must be known. 

Adaptions of BACI have also been used. Some examples of this include studies in which data 

are only available after the event, no control sites are available or only one impact site is 

available with no controls. 

The following section discusses the possible designs that can arise, and a literature review 

discussing the different approaches that have been used. 
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2.2 Literature review on BACI analysis  
 

The statistical model used within BACI is based entirely on the design. BACI analysis was 

firstly used by Green (1979) and has since then been further adapted by a number of 

authors to address various issues involving the number of control sites, number of samples 

and sampling times. Greens original design was basic, with one single sample before and 

one single sample after impact at both a control site and an impact site. Bernstein & Zalinski 

(1983) adapted this design to include multiple samples before and after the impact, 

sampling at paired times for both control and impact sites. Stewart-Oaten et al. (1986) also 

adopted this design but also mentioned that to avoid coincidences with natural cycles 

random sampling must be used (sometimes called BACIP, Osenberg et al. (1994)). Stewart-

Oaten (1986) also considered how to analyse the data using   tests to compare means 

before and after the potential impact.  Further adaptations including the same design as 

Bernstein & Zalinski’s but unpaired samples have been suggested. 

Dealing with spatial and temporal confounding has been addressed by Bernstein & Zalinski 

(1983) and Oaten et al (1986). Beyond BACI designs developed by Underwood (1991) has 

led to advances with association to human activities – designs which use multiple controls 

and are analysed with asymmetrical analysis of variance because of the presence of a single 

disturbed location. An example of the use of both univariate and multivariate asymmetrical 

analyses can be found in Terlizzi et al. (2005) with application to Mediterranean sub tidal 

sessile assemblages. 

The number of impact sites and whether control sites are available will determine how the 

analysis is conducted. The sites in question may all have been affected equally or a 

proportion of these may have been affected by the intervention less than others, or not at 

all. These sites that are not affected are called control sites, and can be used to compare 

natural unaltered trends with those that have been impacted. The presence of these control 

sites determine which design we must consider and which methodology can be used. Within 

this section of the thesis, single series (impact) and multiple series (including only impact 

sites and both impact and control sites) will be assessed and the ways in which each are 

dealt with will be discussed. 
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The analyst may also want to consider the type of impact that the activity in question has. 

Disturbances in the environment can be categorised into two separate areas: Pulse and 

Press disturbances. 

Pulses are short term episodes of disturbance which are then quickly removed, an example 

of this may include oil spills which are quickly removed but for the time that the spill is 

present, the impact is large. This is very different from a Press disturbance which is on-going 

and constant, for example, a daily discharge of a chemical from a power plant for example. 

The two types of disturbances may be very different in terms of the potential effects on the 

variable in question (consult Bender et al. (1984) and Underwood (1989)) and therefore the 

resulting ‘impact’ may have to be treated differently since the magnitude of effects may be 

less apparent within Press disturbances and may be smoother over time. 

In the following sections, each of these different settings are considered in greater detail. 
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2.2.1 Single series 

The simplest method of impact assessment is where we have one single time series. This 

time series is an impact series and is not paired with a control site, and is simply a series of 

observations that contain the intervention. It is therefore a single ‘impact series’, one that 

contains an impact where the time of impact is known. We have data before, during and 

after this intervention hence the name Before-After design.  This simple design does not 

account for any temporal variability or any other causes that could affect the series 

(Underwood (1992)) as it does not have a paired control site, therefore any difference after 

the intervention point   must be attributed to the intervention. Hurlbert (1984) states that a 

design which is used on single site with replicates before and after the impact are 

‘pseudoreplicated’, such that any change in structure may be due to a variety of causes and 

not just the ‘impact’ in question and therefore to counter this several control and impact 

sites must be assessed.  

An example of this design can be seen in figure 2.1 below, with an intervention at   

   (black line is the estimated model without variation). 

 

Figure 2.1: Single simulated series with a change in mean at      

A problem with this design is that environmental trends are common in time series and an 

observed effect may not be due to the intervention. Furthermore, a lack of an observed 

effect may actually indicate an impact since a natural trend may have been interrupted by 

the intervention. 
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For a single series, simple tests can be carried out as a means of formal analysis. The 

simplest method given independent and normally distributed data is the t-test which simply 

calculates whether there is a significant difference in means. To use the ‘two sample t-test’, 

data must be independent, normally distributed and the groups must have equal variance 

(R.A Fisher (1925)). T-tests can be carried out where we have unequal sample sizes and 

variances, but formulas to calculate t are denoted differently because of assumption 

violation; for example the Welch two sample t-test (Welch (1938)) is a test used for unequal 

variances. Equal variance can be formally tested with tests such as Levene's test or the 

Brown–Forsythe test. Non-parametric tests such as the Mann Whitney U or Wilcoxon signed 

rank can also be used when assumptions are violated as mentioned by Ruxton (2006). Oaten 

(1986) states that to simply conduct these tests of before versus after is not appropriate 

since cyclical and long term variation is likely to occur. 

To allow us to detect significant changes in mean and trend (omnibus test), a linear model 

can be fitted to the data and an ANOVA carried out to determine significant factors. This 

method is preferred where we want to determine whether there are significant differences 

between more than two groups, for example, we may have multiple intervention points 

within the analysis which would result in more than two separate groups of data. The 

reason this method is preferred is because by conducting a multiple comparisons 

procedure, we would need to carry out  
 (   )

 
  t-tests (n=number of groups) to obtain the 

same results.  

To allow for the intervention point, an indicator variable must be set up to indicate the 

changepoint. Additivity is an assumption of BACI modelling and Oaten (1986) suggests using 

Tukeys test (an approach used within a two way ANOVA to assess whether the factor 

variables are additively related to the expected value of the response variable) to formally 

test this assumption. This problem is also discussed in Oaten (2002), Oaten (2003) and Smith 

(1993).  
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A simple model for BA design as specified in the Encyclopedia of Environmetrics would be as 

follows in equation 2.1: 

 

           ( )          (2.1) 

   is a binary indicator where    (      )  (     )  

   is the overall mean 

    is the effect of the period  

   ( ) represents time within period ( =1,2,3…                            

 ) 

     is the error term, normally distributed with constant variance. 

This model could then be used within an ANOVA. From the ANOVA, the p-values in the 

output will allow us to determine whether each term is significant or not. These p-values 

were calculated by a series of F tests based on mean squares. Note that the errors are 

assumed to be normally distributed for this model. 

It is important to note that neither t-tests nor ANOVA procedures account for temporal 

variability or serial correlation in the data. This does not apply for the ANOVA if the natural 

trends are taken into account within the model, however as we have stated before any 

change at time point   must be attributed to the intervention as we have no paired control 

series in BA design. 

The standard ANOVA table for this model can be seen below within table 2.1 where mean 

squares are denoted as    and defined as      . 

Source SS Df F 

Period: Before-After      1              

Sampling times                  

Total                  

Table 2.1: ANOVA table for BA design (equation 2.1) 
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2.2.2 Multiple series 

A variation on Before-After design is to sample from a number of sites rather than observe a 

single site over time. This is ultimately the same as Before-After apart from the analysis is 

carried out on   sites rather than 1 site, again each site is sampled in both periods of time 

so that we have   (     ) observations rather than   (     ) observations. As noted 

in the Encyclopedia of Environmetrics a practical problem is whether to view the sites as 

replicates or subsamples – If the focus is on the extent of the impact then the sites are 

selected according to a preset scheme and viewed as replicates. If the sites are selected at 

random then they are viewed as subsamples.  

There are a few differences with BA with multiple sites design compared with a BA design. 

Sites are not all necessarily impact sites; a proportion of the   sites could be control sites, 

allowing us to compare the control sites with the impact sites. If this is the case, the design 

is technically known as BACI (Before After Impact Control) design as we can compare 

controls with impact sites. Furthermore, the fact that there is more than one site lets us 

assume that the resulting change in the series is attributed to the impact rather than 

coincidence since each site may have been impacted to differing extents. A problem with 

this is as noted by Underwood (1992) is that similar changes at a reference site may actually 

be observed by chance, meaning the impact would not be detected while using a reference 

series. Underwood (1992, 1992, 1993, 1994) adapted BACI design further and called his 

analysis ‘Beyond BACI’, a design using multiple control sites to allow researchers to 

distinguish natural from impact induced variability at different temporal scales, however 

this design may be hard to implement due to the fact multiple controls may not always be 

available. The Beyond BACI approach using multiple controls applied in an environmental 

setting can be found within Musco et al. 2009, Knott et al. 2009 and Queiroz et al. 2006 

applied to sewage dumping, water pollution and oil spills respectively. An example where 

two control sites and one impact series is present can be seen within figure 2.2 below. 
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Figure 2.2: Multiple simulated series with a change in mean at      

Red and pink lines represent the control series whereas the black line represents the impact 

series. 

If no control sites are present and only impact sites are present with differing magnitudes of 

change, a plot of all series may look similar to figure 2.3 shown below: 

 

Figure 2.3: Multiple simulated series with a change in mean at       

When considering the control sites which will be used, the design must consider the location 

of this site if variation is significantly different between locations.  It must be located in an 

area with the same temporal and spatial variability as the impact sites but outside of the 

potential impact site as mentioned by Oaten (1986). This can prove a problem, as there is 

almost always natural variability in space as well as time (Underwood (1992)). Another 

problem may be that similar changes at a reference site may actually be observed by 

chance, meaning the impact would not be detected while using a reference series.  These 

measurements are not necessarily paired in time either; if they are we can take the 
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difference series to ultimately remove the seasonal variation (assuming spatial variation is 

constant). Furthermore these sites are not necessarily randomly selected – this introduces 

potential analysis bias as the sites chosen as the impact sites (which are most likely chosen 

for a reason) could potentially harbour systematic differences in their environmental make 

up. Hurlbert (1984) criticises the analysis of designs without randomisation of impact and 

control sites because of this problem and as mentioned in the previous section, 

‘pseudoreplication’ can become an issue if only one control and one impact site is available 

due to the fact that the two sites may have two different temporal trajectories in space and 

therefore more than one control site may be needed. 

In theory truly randomising impact and control sites is hardly possible in a spatial context. In 

almost all cases the purpose in an EIA report is to assess the environmental impact of a man 

made structure or project – it is therefore not in the interests of those conducting the 

project to ‘randomly’ select an impact site as they will have probably chosen that site for a 

reason.  

A variety of models can now be fitted to the data, each including the indicator parameter 

which identifies the point in time that an impact has been found from previous analysis.  

 

As before, simple t-tests and non-parametric methods to determine whether population 

means differ can be used. However, using these methods for BACI and especially BACI 

paired designs are much better indicators of an overall effect since we can calculate t 

statistics for a difference series (impact-control) rather than only on the impact series. 

As stated before, we cannot determine whether there is a presence of trends with these 

tests. 

Linear models can again be fitted to the data and the appropriate ANOVA carried out 

however, if an impact site is available a difference series to remove seasonal trend can be 

calculated, a parameter to deduce whether there is significant trend in the data can be 

included in the model and assessed using the ANOVA. In theory by removing all seasonal 

variation, all that is left in the series is the effects of interaction which can be quantified and 

tested to check for significance of these trends. 
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The Encyclopedia of Environmetrics states that a model that can used for BACI designs is as 

follows. Our response is predicted by an overall mean, the effect of the period (before and 

after), time within period, effect of location (impact of control), the interaction between 

period and location and finally an error term.  

A model for the BACI design as specified would be as in equation 2.2: 

 

            ( )     (  )           (2.2) 

 i is a binary indicator where i=B(before), A(after)  

 j is a binary indicator where j=C(control), I(impact)  

   is the overall mean 

    is the effect of the period  

   ( ) represents time within period (k=1,2,3…   for i=A, k=1,2,3…   for i=B) 

   is the effect of location 

 (  )   is our interaction between period and location 

      is our error term, normally distributed with constant variance. 

 

The appropriate ANOVA can then be used to determine whether there are differences in 

model trajectories between impact and control sites as well as before and after 

intervention. Again, p-values indicate whether each term is significant. 

Within all of the above scenarios sampling times should be selected at random. This is so 

that natural cycles can be accounted for which may confound the analysis if the sampling 

times are fixed and far apart. In terms of including terms for seasonal patterns, harmonics 

can be used relating the response variable to time (Steward-Oaten et al. (1986) and Smith 

(2002)). The ANOVA table for BACI design can be seen in table 2.2. 
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Source SS df F 

Period: Before-After      1  

Location: Control-

Impact 

        

Interaction BA x CI                     

Error          

Total              

Table 2.2: ANOVA table for BACI design (equation 2.2) 

To summarise, if we have BA design with multiple sites we must consider: 

1.) Do we have control sites, if so how many? 

2.) Are the impact and control sites paired in time? 

3.) Are the impact and control sites randomised? 

These factors must be considered as the methods used to analyse the data series are 

dependent on them. Essentially methods for different designs will be similar however the 

way data are treated and the way results are interpreted will be different. 
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2.3 Application of BACI  

2.3.1 Overview 

 

Figure 2.4: Map of Whitelee windfarm 

 

Our investigation at Whitelee can be considered as an application of BACI design. The BACI 

framework here is used to evaluate changes in the determinants Total Phosphorus, Total 

Organic Carbon and Nitrate Oxide following the start of deforesting in the area, the 

insertion of wind turbines and inclusion of roads around Whitelee.  A map of Whitelee wind 

farm can be seen in figure 2.4 which includes positions of wind turbines and the connecting 

roads. Determining whether a site should be regarded as an impact or control site is not 

simple. Control sites should be chosen as those which are similar to impact sites but are not 

likely to be affected by intervention. We will use ‘percentage of deforested area’ around 
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each catchment area as an indicator of whether we can include each site as an impact or 

control site. Table 2.3 below shows the percentage of deforested area at each site (note 

that no data are available for sites WLM or WLQ): 

 

 Disturbance table: Percentage of catchment deforested 

Site WL13 WL14 WL15 WL1 WL2.16.3 WL4.5.6 WL9A WL9D WL17 WL17U 

% Deforested 12.2 10.3 3.5 10.7 13.2 0.8 0.5 2.3 2.0 3.9 

Table 2.3: Disturbance table (Provided by Helen Murray, Glasgow University) 

 

At each of the 11 sites, samples were taken roughly every three weeks. We will choose our 

control sites as those with “Percentage of catchment deforested” less than or equal to 2%, 

which means WL4.5.6, WL9A and WL17 will be chosen as our control sites.  

The first analysis is based on differences between the control and impact sites paired by 

sampling date. The objective is to determine if the mean difference between impact and 

control sites have changed coincident with disturbance. 

 

To obtain an initial impression, a simple before- after comparison of means will be carried 

out. This allows us to determine the overall mean difference at each site and determine 

whether the difference between before and after values at control sites are smaller 

however this does not take into account any change in trend or seasonal pattern at the 

change point. 

 

To build a our model, we need to have a term for the trend, a term to account for seasonal 

pattern, a term to account for the changepoint, a term to distinguish between control and 

impact sites, an interaction between the type of site and the term accounting for the 

changepoint and finally an error term. 

The general form of our statistical model which will be used within our BACI analysis will be 

in the following form: 
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Response =    

Time =    

Month (Factor) =     

 

                                            (2.3) 

 

Where our sites are indicated as            

Our observations are indicated as         

Before or After intervention is indicated by       

Impact and Control sites are indicated by                       

  and   are our overall mean and slope respectively.  

Our observed errors       are assumed to be normally distributed and independent with 

zero mean and constant variance. 

 

Our parameter Indicator (   ) has two levels, 0 and 1 (     ). The row vector is therefore 

in the following form: 

                  

Where the changepoint is indicated by the change in value from 0 to 1. 

 

The parameter Control/Impact (    ) is a row vector with two levels I (impact) and C 

(control) (     ) and is in the following form: 

                 

Which indicates whether a site is a control site or an impact site. 

 

The interaction         allows us to determine whether there is a difference in the change 

of mean before and after the changepoint between impact and control sites. 

 

 

 

 

 

Indicator (Factor) =     

Control/Impact(Factor) =      

Error =       
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2.3.2 Total Phosphorus 

2.3.2.1 Exploratory analysis (TP) 

An initial impression of the data can be obtained by comparing mean values before and 

after the intervention in mid-2007.  

Shown below in figure 2.3 are 11 boxplots, within each there is one box-and-whisker for 

before intervention and one after intervention. Table 2.4 also shows the mean before 

intervention and the mean after at each site, as well as the absolute difference between the 

two values. Absolute differences in bold are those sites that have a % deforested  

of less than 2%. 

 

Figure 2.5: Boxplots of before-after at each site 
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 WL13 WL14 WL15 WL1 WL2.16.3 WL4.5.6 WL9ARD WL9DUN WL17 WLM WLQ 

Before 3.06 3.39 2.86 2.94 2.87 3.35 2.84 2.74 3.24 3.11 3.19 

After 4.54 4.23 3.85 3.82 3.81 4.03 3.33 3.43 3.70 3.87 3.85 

Absolute 
difference 

1.48 0.84 0.99 0.88 0.94 0.68 0.49 0.69 0.46 0.76 0.66 

Table 2.4: Table of means and mean differences 

 

We can note that from both figure 2.3 and table 2.4, the three smallest differences between 

before and after mean values are at sites WL17, WL9ARD and WL4.5.6  in order of 

magnitude. Referring back to the disturbance table, these three sites have % of catchment 

deforested of 2.0, 0.5 and 0.8 respectively – the three smallest percentages. 

The largest differences were found at sites WL13, WL15 and WL2.16.3, with respective % 

catchment deforested of 12.2, 3.5 and 13.2. 

This may indicate that the sites with the smallest percentage of deforested area actually 

have the smallest absolute mean difference in terms of log TP, allowing us to use them as 

control sites. 
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2.3.2.2 BACI Analysis (TP) 

The BACI analysis conducted below consisted of using a model including the terms Decimal 

year, Month, Indicator (Before or After impact), Control/Impact (whether the site is a 

control group or an impact group) and an interaction between Indicator and Control/Impact 

as shown in equation 2.3. 

Table 2.5: BACI Analysis ANOVA (TP) 

 

Firstly, linear model assumptions must be checked for the model above. We can assume 

constant variance as residual values are roughly equally distributed as shown in figure 2.6. 

Normality of residuals can also be assumed from figure 2.7 as the histogram shows that 

residuals do follow a rough normal distribution however there is a slight tail, this is because 

of two outlying values. 

 

Analysis of Variance table 

Term df Sum Sq Mean Sq F-value Pr(>F) 

      

Time 1 21.02   21.020   40.7270 2.666e-10 

Month 11 153.63   13.966   27.0590 < 2.2e-16 

Indicator 1 91.82   91.824 177.9097 < 2.2e-16 

Control/Impact 1 3.03    3.026    5.8626    0.01564 

Interaction term 1 2.30    2.302    4.4600    0.03494 
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Figure 2.6: Residuals vs. Fitted values Figure 2.7: Histogram of residuals 

 

From table 2.5, we can say that all terms within our model are significant with p-values less 

than 0.05. Decimal year is significant, indicating that there is an overall trend. Month is 

significant which means there is a significant seasonal pattern. Our indicator function is 

significant; this means there is an overall mean difference between before and after the 

intervention. 

Our parameter Control/Impact is also significant which means that control and impact sites 

are structurally different (baseline = control). The interaction between Indicator and 

Control/Impact is also significant.  

Intercept Time Indicator 

(after) 

M2 M3 M4 M5 M6 

295.193 -0.146 1.337 -0.029 -0.230 -0.632 0.141 0.699 

M7 M8 M9 M10 M11 M12 Con/Imp 

(Impact) 

Interaction 

0.843 0.824 0.785 0.334 0.282 0.025 0.187 -0.473 

Table 2.6: Table of coefficients (TP) 
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We can now comment on the magnitude of each parameters effects on log TP as shown in 

table 2.6. For each unit increase in Decimal year, log TP decreases by 0.14. If a site is an 

impact site, log TP increases by 0.19. After the changepoint, indicated by the Indicator 

function, log TP increases by 1.337 on average.  

From table 2.5, we can conclude that there is structural difference between control groups 

and impact groups and there is also an overall mean difference before and after the 

proposed impact location in time.  
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2.3.3 Total Organic Carbon 

2.3.3.1 Exploratory analysis (TOC) 

Again by comparing boxplots below and the means within table 2.4  of before and after the 

intervention at mid-2007 we can obtain an initial impression to whether changes can be 

detected and whether larger changes in mean are observed within the impact sites. 

 

Figure 2.8: Boxplots of before-after at each site 
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 WL13 WL14 WL15 WL1 WL2.16.3 WL4.5.6 WL9ARD WL9DUN WL17 WLM WLQ 

Before 3.04 2.94 3.15 2.88 2.95 2.63 2.49 2.09 2.30 2.66 2.67 

After 3.37 3.13 3.30 3.01 3.09 2.74 2.54 2.34 2.66 2.59 2.76 

Absolute 
difference 

0.33 0.19 0.15 0.13 0.14 0.11 0.05 0.25 0.36 0.07 0.09 

Table 2.7: Table of means and mean differences 

 

As specified before, site WL4.5.6, WL9ARD and WL17 had the lowest percentage of 

deforested catchment and it would be expected that these sites would be affected less than 

the others. 

From table 2.7, we can see that WL4.5.6, WL9ARD and WL17 had absolute differences of 

0.11, 0.05 and 0.36. The absolute difference observed within WLARD is the smallest 

absolute difference overall and comparatively to other sites the absolute difference 

observed at WL4.5.6 is also small however the difference observed at WL17 of 0.36 is the 

largest. 

Overall, most absolute differences are small when compared to before and after mean 

values which indicate that there may not be a large jump in the overall mean which would 

make the ‘Indicator’ term within our statistical model insignificant. 

From this exploratory analysis alone, it does not seem that there will be a mean difference 

before and after the changepoint for this variable. 
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2.3.3.2 BACI Analysis (TOC) 

 

Table 2.8: BACI Analysis ANOVA (TOC) 

 

Of the 5 terms within the model, 3 are significant with p-values less than 0.05. These terms 

are Time, Month and Control/Impact. The two terms which are not significant are the 

Indicator function and the interaction between Indicator and Control/Impact. 

Our factor Indicator is not significant which indicates that there is no mean change in log 

TOC around 2007 however our factor Control/Impact is significant indicating that there is 

structural difference between control sites and impact sites. 

The interaction between the indicator function and Control/Impact is not significant either, 

which means there is no difference between the mean levels of log TOC for control and 

impact sites. 

 

 

 

 

 

Analysis of Variance table 

Term df Sum Sq Mean Sq F-value Pr(>F) 

      

Time 1 1.392 1.392 6.291 0.01229 

Month 11 8.692 8.692 39.280 <2e-16 

Indicator 1 0.221 0.221 1.002 0.3170 

Control/Impact 1 19.023 19.024 85.965 <2e-16 

Interaction 1 0.0961 0.096 0.434 0.5100 
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This model can now be reduced so that only significant terms are present.  

Table 2.9: BACI Analysis ANOVA (TOC – reduced model) 

 

Within table 2.9 is an ANOVA for the reduced model for log TOC. Only three terms are 

present all with p-values less than 0.05. The interaction term was removed first and the p-

value for our indicator term reduced only slightly. 

A table of coefficients for our model terms can be seen in table 2.10. 

 

Table 2.10: Table of coefficients (TOC) 

 

We can now comment on the magnitude of each terms effects on log TOC. The term Month 

has 12 levels, representing each month. Therefore, log TOC varies by month. With each unit 

increase in Decimal year, log TOC increases by 0.05. If a site is an impact site, log TOC 

decreases by 0.29 (control sites are included within the intercept). 

 

 

 

 

 

 

 

Analysis of Variance table 

Term df Sum Sq Mean Sq F-value Pr(>F) 

      

Time 1 1.392 1.392 6.295 0.0122 

Month 11 95.615 8.692 39.301 <2e-16 

Control/Impact 1 19.024 19.024 86.014 <2e-16 

Intercept Time M2 M3 M4 M5 M6 M7 M8 M9 M1O M11 M12 Con/Imp 

(Impact) 

-100.48 0.05 -0.3 -0.2 -0.2 -0.1 0.01 0.10 0.43 0.61 0.53 0.36 0.21 -0.29 
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Assumptions for the model above are assessed below. Constant variance can be assumed as 

the spread within the residuals vs. fitted values plot is equal and normality can be assumed 

from the histogram in figure 2.10. 

 

Figure 2.9: Residuals vs. Fitted values Figure 2.10: Histogram of residuals 
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2.3.4 Nitrate Oxide  

 

Figure 2.11: Boxplots of before-after at each site 

 

Boxplots and a table of means can be seen within figures 2.11 and table 2.11 respectively. 

As before, mean changes can be analysed informally to give a subjective impression to 

whether any changes can be found before and after and between impact and control sites. 

 

 

 



41 
 

2.3.4.1 Exploratory analysis (NO2) 

 WL13 WL14 WL15 WL1 WL2.16.3 WL4.5.6 WL9ARD WL9DUN WL17 WLM WLQ 

Before 1.97 1.94 2.14 2.09 1.90 2.44 2.21 1.95 2.27 2.14 1.94 

After 2.56 2.40 2.47 2.25 2.33 2.83 2.02 1.56 2.37 2.23 2.17 

Absolute 
difference 

0.59 0.46 0.33 0.16 0.43 0.39 0.19 0.39 0.10 0.09 0.23 

Table 2.11: Table of means and mean differences 

 

From the table above, our three control sites WL4.5.6, WL9ARD and WL17 have absolute 

differences of 0.39 0.19 and 0.10 respectively. 

Overall, the absolute mean difference for WL17 is second smallest after WLM however the 

absolute mean difference for WL9ARD is fourth smallest and WL4.5.6 is actually fourth 

largest out of 11. 

Subjectively there may possibly be differences between impact and control sites, but overall 

there are some large differences between before and after means. The absolute difference 

for WL13 for example is 0.59 which is large in comparison to the mean value before and 

after. 

Again, we will use WL4.5.6, WL9ARD and WL17 as our controls. 
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2.3.4.2 BACI Analysis (NO2) 

Table 2.12: BACI Analysis (NO2) 

 

 

From table 2.12, our ANOVA table, we can describe each parameters effect within the 

model. Of the 5 parameters, 3 are significant. Time indicates the presence of overall trend 

however this is not significant. Month is significant indicating that a seasonal trend is 

present. Indicator is significant which means that there is a significant jump in the mean at 

mid-2007. Control/Impact is significant, which indicates that there is structural difference 

between control and impact sites. The interaction between Indicator and Control/Impact is 

not significant which means that there is no mean difference between control and impact 

groups at mid-2007. 

This model can now be reduced so that it only contains significant terms. 

 

 

 

 

 

Analysis of Variance table 

Term Df Sum Sq Mean sq F-value Pr(>F) 

      

Time 1 0.742 0.742 2.304 0.1293 

Month 11 124.795 11.342 35.227 <2.2e-16 

Indicator 1 5.795 5.792 17.986 2.24e-05 

Control/Impact 1 4.565 4.564 14.1732 0.0017 

Interaction 1 0.005 0.005 0.168 0.8977 
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Table 2.13: BACI Analysis (NO2 – reduced model) 

Within table 2.13 we can see the ANOVA of our final model to predict log NO2.  All three 

terms within this model are significant with p-values less than 0.05. A table of coefficients 

for our final model can be seen in figure 2.14. 

 

Table 2.14: Table of coefficients (NO2) 

 

We can interpret the model by assessing each estimate of the coefficient for each term. 

As Month has 12 levels, log NO2 varies with each level of this term. If a site is an Impact site, 

log NO2 increases by 0.16. If we wish to estimate after the changepoint, log NO2 increases 

by 0.21 on average. 

 

 

 

 

 

 

 

 

 

 

Analysis of Variance table 

Term df Sum Sq Mean sq F-value Pr(>F) 

      

Month 11 121.466 11.042 34.328 <2.2e-16 

Indicator 1 9.589 9.589 29.811 6.11e-08 

Control/Impact 1 4.565 4.565 14.190 0.000176 

Intercept M2 M3 M4 M5 M6 M7 M8 M9 M1

O 

M11 M12 Indicator 

(After) 

Con/Imp 

(Impact) 

1.39 0.11 0.26 0.46 0.69 0.96 1.08 0.93 1.10 0.84 0.73 0.51 0.21 0.16 
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Again, linear model assumptions must be checked before any analysis can take place. 

Independence is again assumed by design and constant variance can be assumed from 

figure 2.10 as the datapoints do not fan. Normality of residuals can also be assumed as the 

histogram of residuals is bell shaped. 

 

Figure 2.12: Residuals vs. Fitted values Figure 2.13: Histogram of residuals 
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2.4 Conclusions 

To summarise, analysis was carried out on the three variables log Total Phosphorus, log 

Total Organic Carbon and log Nitrate Oxide.  

Dummy variables were set up to indicate where the changepoint was proposed to be 

around mid-2007 and also a variable to indicate whether each site was a control site or an 

impact site. Control sites were chosen as those with the smallest percentages of deforested 

area (<2%). The control sites chosen were the same for all three variables. 

If the variables Indicator and Control/Impact were significant on their own, this indicated 

that there were significant differences before and after the changepoint and significant 

differences between control and impact groups respectively.  

The interaction between Indicator and Control/Impact indicates that there is a significant 

difference before and after the changepoint and the magnitude is dependent on whether 

the site is a control or impact site. 

The table below shows each parameter for each variable and indicates whether each 

parameter within each model is significant or not. This allows us to determine whether 

there are structural differences before and after the changepoint, between control and 

impact groups and finally whether these variables interact. 

 

 Dec.year Month Ind Control/Impact Ind:Control/Impact 

TP Yes Yes Yes Yes Yes 

TOC Yes Yes No Yes No 

NO2 No Yes Yes Yes No 

Table 2.15: Table of significant parameters 

From table 2.15, we can see that all terms within our TP model are significant. Therefore 

there is evidence of a change in mean before and after the changepoint and the magnitude 

of the change depends on whether the site in question is an impact or control site. For our 

TOC model, the indicator function and the two way interaction are not significant. This 
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means that there is no overall change in mean before and after changepoint. Our final 

model, our model for NO2, does not have a significant two way interaction or a significant 

overall trend. This indicates there is no difference between impact and control sites in terms 

of a change in mean at the changepoint at mid-2007. 

In terms of model assumptions, all of our time series models had normality of errors. Within 

our TP residuals, two were outliers however we are still able to assume normality. To 

summarise, seasonal trend was present within all of our series as indicated by the 

significance of Month and there was also an overall structural difference between impact 

and control sites within all three variables as indicated by the Control/Impact term. For each 

variable, model coefficients suggested that variables were higher during the summer 

months than the winter months. There was overall trend present within both TP and TOC 

but not within NO2, and there was an overall mean difference within both TP and NO2 but 

not TOC before and after the changepoint. 

To summarise, models for TP and NO2 showed that there was a significant difference before 

and after the changepoint however there is no evidence to suggest a difference in the TOC 

series. All three series showed significant differences between the control and impact series. 

BACI analysis only allows us to analyse whether a change occurs at a known point in time. If 

this point is not known, it must be estimated. Changepoint analysis allows us to statistically 

detect changes in structure within a time series and there are many methods available to do 

this.  There are also problems with spatial aspects of this analysis. The control sites chosen 

here were simply those which were least affected by deforestation, and were chosen after 

the intervention had taken place. If control sites were chosen before the turbines had been 

set in place and deforestation had occurred, as well as been situated far enough away not to 

be affected by the intervention sites, the analysis would be much more precise. 

Furthermore, temporal correlation is ignored by design which leads to the possibility of 

overstating evidence for associations of interventions. 

The following chapter reviews changepoint analysis and the methods that have been used 

and improved within the past. Three of these techniques will be chosen and applied to a 

simulation study and then applied to the real data. 
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Chapter 3 

Changepoint Analysis overview and Simulation Study 

3.1 Overview of Changepoint Analysis Methods 

The aim of this brief review is to assess current methodologies that are in use within 

environmental impact assessments. It will mainly focus on the statistical disciplines involved 

in determining whether an intervention adversely affects the environmental conditions. We 

will discuss methods used by others in determining the effects of various interventions and 

in the process compare and contrast the situations to which they apply these methods. 

The least complicated analysis may be carried out with the use of regression techniques. For 

example Multiple Linear Regression is a linear modelling technique described by Vincent 

(1996) and slightly modified by Vincent and Gullet (1999). It is used to determine where 

regime shifts, if any, lie within a time series. The technique consists of the application of 

four increasingly complicated linear regression models, including terms for changes in trend 

and mean for example. After the application of each model, the residuals are analysed in 

order to assess fit. Consecutive significant autocorrelations in the residuals identified at low 

lags indicate the poor fit of the model, and in this case the fitted model is rejected and a 

different model is applied.  

 

The use of likelihood criteria may be used to discriminate between a collection of regression 

models and determine which is the best fit to the data. For example, the Bayesian 

Information Criterion was used by Beaulieu (2010) to discriminate between models, as is the 

Akaike Information Criterion throughout statistics; however, Reeves and Chen (2006) state 

that Schwarz Information Criterion (SIC) penalizes more heavily than the AIC and tends to 

yield simpler models within time series. 

The model that minimises the criterion is considered to be the most appropriate, taking into 

account both the number of parameters and the goodness of fit by residuals. The models 

used can incorporate shifts in the mean, variance, trends or combinations of these shifts. 
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In terms of using regression where we have access to a control series, a difference series 

may be calculated and analysis may be carried out on it. Developed by Hinkley (1969), two 

phase regression consisted of a model which accounted for a change point at time  . This 

method has been modified by Sollow (1987), Easterling and Peterson (1995) and later by 

Lund and Reeves (2002). A difference series between the impact and control series is 

calculated. A simple regression model is fitted to the entire difference series and we can 

then obtain the residual sum of squares denoted as      . We then fit two models for each 

data point   : one before and one after    so that we have twice as many models as data 

points.       can then be calculated simply as the minimum of the RSS values from the 

models we have built. A test statistic is then calculated and if the test statistic is above a 

critical value, then we can conclude there is a potential step at the data point corresponding 

to      .  One major drawback mentioned by Marchant (2008) is the models reliance on 

constant variance of the error term, and therefore this method can only be used to 

determine a shift in mean and trend but only if the variance is constant and therefore has 

not been affected by the intervention. Furthermore, it is suggested that any outliers can 

affect the efficiency of the least squares estimates. 

The idea behind two phase regression can also be applied to non-parametric smoothing 

methods where at each point within the series smooths are calculated to the left and right 

of that point. If the difference in the two model trajectory’s at point    is large, this indicates 

the presence of a discontinuity, this approach was first proposed by Hall and Titterington 

(1992) and Muller (1992) with the use of kernel estimates. Many others authors that used 

kernels were Speckman (1994) and Eubank and Speckman (1994) as well as many others. 

Local polynomial regression methods are also widely used such as those in Gregoire and 

Hamrouni (2002a) and Bowman et al. (2003). 

Box and Tiao (1975) themselves developed a method to detect a change or ‘intervention’ at 

some time point. Intervention analysis introduced by Box and Tiao (1975) can be used to 

detect and model possible trends in a set of environmental time series, specifically to 

identify and model whether a statistically significant change in the time series occurs after 

intervention. A quote from Box and Tiao’s 1975 original paper states the outline of the 

problem intervention analysis was intended to solve: 
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“Given a known intervention, is there evidence that change in the series of the kind expected 

actually occurred, and, if so, what can be said of the nature and magnitude of the change?” 

Intervention analysis can be used to model both abrupt and gradual effects within a series 

and can accommodate both temporary and permanent changes. Examples of ‘abrupt’ and 

‘gradual’ effects of intervention can be found in Timothy D Hogan’s paper on U.S fertility 

rates (Hogan (1984)). Further information on the above model can be found in Box & Tiao  

(1975) or work by Abraham (1980) who subsequently extended the results for use on 

multiple time series rather than a univariate case. 

Other techniques have been developed such as the use of cumulative sums (CUSUM) to 

determine the location of changes. Page (1954) firstly used cumulative sums to sequentially 

detect discontinuities and laid the fundamental basis for its use and in 1955 he developed a 

retrospective method. Since then it has been used and developed for discontinuity 

detection for example by Pettitt (1980), Bagshaw and Johnson (1975) and Yashchin (1993) 

for both sequential and retrospective analysis. Inclan and Tiao developed a method in 1994 

which uses the cumulative sum of squares at each data point to detect a change in variance 

and Rodionov (2004) developed STARS, a sequential method of using cumulative sums and t 

statistics to determine the presence of regime shifts. 

CUSUM is widely used within financial analysis and can be used effectively within volatility 

modelling, as varying volatility can be treated as varying error. An example of CUSUM used 

in this context can be seen Inclan et al. (1999) where a GARCH (a model used to characterise 

and model observed time series where the terms within the model are believed to have 

variance) framework for errors was used and CUSUM was used to determine changes in 

variance. The changes in volatility could then be attributed to world events that affect 

various price indexes.  

Recently, many authors have used and developed Bayesian techniques to determine 

whether a change has occurred. Bayesian techniques allow the user to calculate the 

probability of change at each data point within the series.  
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Zhao et al. (2005) used Bayesian analysis with the use of MCMC to model hurricane counts 

by a Poisson process where the rate parameter   is treated as a random variable modelled 

by a gamma distribution.  

There were three hypotheses formulated: no change in the rate, single change in the rate 

and double change in the rate.  A hierarchical Bayesian approach was used to demonstrate 

posterior probabilities of the model parameters for each hypothesis through MCMC. 

Wyse et al. (2010) presented a paper which also used Markov Chain Monte Carlo to perform 

retrospective inference on change point models which are collapsible. Wyse rephrased the 

problem as a stochastic model search over a large model space with the Bayes factors for 

competing models appearing in the acceptance probabilities for the MCMC sampling 

scheme. 

Further application of MCMC to change point detection can be seen in Antock et al. (2008) 

where average year temperatures were analysed applying three models with random 

coefficients. The posterior distribution of the changepoint and other parameters were 

estimated from the random samples generated by the combination of the Metropolis-

Hastings algorithm and the Gibbs sampler. 

De-Lacy et al. (2008) explored the situation where the data could be modelled by multiple 

polynomial regression and by “exploiting” Bayesian theory De-Lacy proposed a method to 

detect discontinuities. The proposed method consisted of applying Bayesian theory to 

compute the marginal posterior distribution of the discontinuity and to detect it as 

maximum a posteriori (MAP).  

Beaulieu et al. (2010) presented the Bayesian Normal Homogeneity Test (BNHT). Beaulieu 

states that BNHT may be applied to a series of ratios or differences between the base series 

and neighbour series as proposed in Alexanderson (1986) (SNHT). Beaulieu changed the 

prior probabilities of no change with p equal to 0.01, 0.05,0.10, 0.25, 0.5, 0.75, 0.90, 0.95 

and 0.99. He found; high prior probabilities of no change resulted in low false detection 

rates on homogeneous series, the test had high power on a series with a single shift, small 

shifts are detectable with a low prior of ‘no change’ and when the test was applied to series 

with more than one shift, as well as a high probability of ‘no change’, it performed well. 
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Other methods for multiple change points such as reversible jump Markov chain Monte 

Carlo (RJMCMC) was first proposed by Green 1995, and was used by Rotondi (2002) and 

more recently by Zhao 2010.  

To approximate the full posterior distributions of change point characteristics, Nam et al. 

(2011) used Finite Markov Chain Imbedding in a Hidden Markov Model setting, and 

accounted for parameter uncertainty via Bayesian modelling and Sequential Monte Carlo. 

Nam states that the combination of the two is computationally efficient and does not 

require estimates of the underlying state sequence. 

With application to socio-economic data, Western & Kleykamp (2003) wanted to model 

political relationships but by also taking into account shifts in institutions, ideas preferences 

or other social conditions. They used a Gibbs sampler and also stochastically sampled from 

the conditional posteriors to obtain regression coefficients in a Monte Carlo experiment. 

Perreault et al. (2000) also used a Gibbs sampler along with a Markovian updating scheme 

for both single change point analyses of a mean, and also of variance. A case study was 

introduced to demonstrate the suitability of the Gibbs sampler in an energy inflow setting 

managed by Hydro-Quebec.  

 

In terms of application to time series data within this thesis, three methods have been 

chosen. All three are used on a single series of data and each is based on different 

framework. 

1.) Local linear regression  

2.) Binary Segmentation Method  

3.) Barry and Hartigan algorithm, based on Bayesian theory 

All three methods are explained in technical detail in the following section. 

The remainder of this chapter will provide technical detail of the three chosen methods 

then apply each to a simulation study and their performance under various conditions can 

be analysed.  
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3.2 Applied Methods 

3.2.1 Local linear regression 

Bowman et al. (2006) developed a method where by using normal kernel smoothing, datum 

which have the largest difference between left and right model trajectories could be used to 

identify the possible presence of discontinuity. He used local linear regression with weights 

at each data point (potential step point t), one model that uses data from the left of point    

and one that uses data from the right, where the weights are taken from a normal density 

function so that attention is focused only on the data lying near   . This is done for each 

data point in the whole series. 

 

We let, 

    (  )         (3.1) 

 

Where   (  ) is a regression function of unspecified smooth shape with a finite number of 

jump points and     (    ). The smoother used to estimate   ( ) is local linear 

regression where we need to solve  

      ∑        (    )   
     (      )   (3.2) 

and take the value of  ̂ as this defines the position of the line at x. The local linear estimator 

can be given by calculating ordinary least squares OLS with weights which gives us the 

general form: 

 ̂( )  
 

 
∑

   (   )   (   )(    )  (      )  

  (   )  (   )   (   ) 
 
      (3.3) 

Where     (   ) is defined by a normal distribution with mean 0 and standard deviation 

h and  

  (   )   ∑(    )   (      )      (3.4) 

If we have extra information on each data point, this can be incorporated into the least 

square function. For example, in Bowman et al. (2004) the precision of each data point in 

radio carbon data is known. Bowman used 
 

  
  so that the problem now becomes: 
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      ∑        (    )   
     (      ) 

 

  
    (3.5) 

which can be solved using weighted least squares to yield the linear smoother m(x).  At each 

point of interest x, we simply calculate local linear estimators to the left and right of x 

yielding   ̂( ) and    ̂( ). If there is a jump at x then we can then calculate  ̂(  ) and 

 ̂(  ) and the basic information on the presence of a discontinuity is contained in    ̂( ) -  

  ̂( )  . A better comparison is achieved when we standardise by the variance of the 

difference such that var   ̂( ) -    ̂( )   (  ) 
     where      (        )   assuming 

the observed    are arranged in an increasing order. If we have        , these 

observations are omitted as well as any     which leaves less than 5 data points for the 

construction of the left or right estimate (i.e if the data point is so far left or right that there 

are less than 5 data points to construct a smooth we stop). 

The test statistic is then: 

  ∑
   ̂( )      ̂( )  

 (  ) ̂ 

 
      (3.6)  

Where the presence of a discontinuity is expressed in the p-value  (      ). The 

distribution for T under the null hypothesis of the discontinuity is a shifted and scaled    

distribution. For further details see Bowman (2006). Our null hypothesis,     is that no 

discontinuities are present. Essentially the choice of h will determine the flexibility of the 

model. If h is too small, the kernels will only take a small number of data points surrounding 

the centre of the kernel into account which will result in a very flexible model. If h is too 

large then the kernel will take too many data points into account and will not be flexible 

enough. As with all methods which are based on smoothing , choosing the smoothing 

parameter is always a problem. We must choose a parameter which captures enough 

variability that we do not accidently detect a changepoint, but we do not want to choose a 

parameter which does not detect a change because it tracks the data too closely. Because of 

this, a variety of values of h will be chosen and the effects on the methods ability to detect 

changepoints will be analysed. 
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3.2.2 Barry and Hartigan algorithm 

Barry and Hartigan (2003) developed an algorithm for change point detection which 

assumes that observations are independent. We let the probability of change at each point   

be given the probability of change   . Essentially the algorithm splits the data into blocks 

such that the mean is the same within each block. By applying the algorithm, we detect 

changepoint between these blocks. Barry and Hartigan state that independent assumptions 

can be weakened since ‘all that is required is that, given the partition and the parameters, 

observations in different blocks are mutually independent’. 

The prior distribution     (the mean of the block beginning i+1 and ending j) is chosen as 

  (   
  

 

   
) . The algorithm uses a partition   (          ) where      indicates a 

changepoint at position    , we initialize      for all     . 

The process starts with a Markov chain. In each step of the Markov chain, at each position  , 

a value    is drawn from the conditional distribution of    given the data and the current 

partition. Following Barry and Hartigan, we let   denote the number of blocks obtained if 

     conditional on   . The transition probability   for the conditional probability of a 

change point at the position i+1 can be obtained from the ratio: 

 

  

    
 

 (     |        ) 

 (     |        )
    (3.7)  

 

Where           and    are the within and between block sums of squares obtained when 

     and      respectively and X is the data. The tuning parameters   and   allow us to 

place restrictions on the priors and may take values between 0 and 1, chosen so that the 

method is effective in situations where there are not many changes (       ) and where 

the changes that do occur are of reasonable size (       ). After each iteration the dataset 

is updated conditional on the current partition. 

No null or alternative hypothesis is specified within this framework but rather a probability 

of a change point being present. Therefore, we must chose cut off points for probabilities of 

change, which will be discussed in the next chapter. 
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3.2.3 Binary Segmentation Method 

Early applications of Binary Segmentation Method include Scott and Knott (1974) and Sen 

and Srivastava (1975). This method uses two separate test statistics to determine if a 

change point has occurred for both single and multiple changepoints.  

Killick (2011) developed an R package which allows users to apply BSM to time series data. 

For the single changepoint series, we consider a changepoint     We will use a likelihood 

ratio test statistic to determine whether there is a change in the series. The use of likelihood 

ratio tests within changepoint analysis was first proposed by Hinkley (1970) and the test 

statistic was firstly used to determine a change in the mean within normally distributed 

data, however Gupta and Tang further developed the test to include changes in variance. 

This method requires us to maximise the log likelihood value under both the null (no change 

detected) and alternative hypotheses (change detected) where the maximum log-likelihood 

value under the null hypothesis is       (      ̂) where  ( ) is the PDF and  ̂ is the MLE of 

the parameters. 

Under the alternative hypothesis we consider a model with changepoint at    where    can 

take any value in the closed set (          ) then the maximum log likelihood for a given 

   is: 

         (  )      (      ̂)]    (3.8) 

Such that we would reject    if     and then estimate the position of the changepoint         

(   ̂ ) as the value of    that maximises   (  ). 

We can modify the single test to maximise   (  ) over   segments allowing us to 

determine the location of multiple changepoints. The method requires us to minimise the 

function: 

∑   (    
   (      )    )    ( )      (3.9) 

Here   is a cost function for a segment and   ( ) is a penalty to guard against over fitting. 

Using notation from the single changepoint section,   may be taken as the negative log 

likelihood and   ( ) may be   .  
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The algorithm shown below applies the single changepoint test and upon identifying a 

change, iteratively implements the test statistic on the sub-segments of the data developed 

by Killick et al (2011). 

 

Input: A set of data of the form (          ) 

 A test statistic  ( ) dependent on the data 

 An estimator of changepoint position  ( ) 

 A rejection threshold (penalty),   

Initialise: Let     and           

Iterate while       

1. Choose an element of  ; denote this element as        

2. If  (    )    remove       from  . 

3. If  (    )    then; 

(a) remove       from   

(b) calculate    ̂(    )     , and add   to  ; 

(c) if     add       to   

(d)  if       add        to   

Output the set of changepoints recorded   

(Taken from Killick (2011)) 

 

In essence the method extends a single changepoint method to multiple changepoints by 

repeating the method on varying subsets of the series iteratively: 

The penalty can take any value, however Killick (2011) uses      ( ) where   is the 

number of observations within the series and   can be arbitrarily changed depending on the 

expected size of the change. 
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3.3 Simulation study 

In this section we will consider how various tests perform at detecting a discontinuity within 

a time series. We wish to determine the effects of changing shape and trend in the series 

change the chances of detecting a discontinuity when it is present within a time series, as 

well as the ability to detect a discontinuity when various model parameters are changed 

such as variance and serial correlation. Of the 6 cases, 3 will not include seasonal trend and 

3 will include seasonal trend which reflect the application areas. 

3.3.1 Statistical model 

Our statistical model which we will use to assess the various approaches can be described 

as: 

     (  )                                   

     (  )                                   

Where the functions   (  )  and   (  )  can be used to describe the trend of the data before 

and after the change point which is denoted as  . These functions will take a variety of 

forms such as straight lines and trigonometric curves to simulate seasonal trends. It is 

reasonable to adopt a simple AR(1) model for the correlation structure for the error, which 

can be described as: 

                (3.10) 

Where    is purely random process such that  (  )    and    (  )     and   is our 

chosen correlation coefficient. Our error term can therefore be fully described as 

   (     ) where   is our correlation matrix. 

In real life situations, the correlation coefficient may have an impact on our ability to 

determine if a discontinuity is present, and therefore it may be necessary to estimate this 

coefficient if the test does not take autocorrelation into account. To do this, we must firstly 

remove the trend that may be present within the data and perform analysis on the leftover 

residual series – this can be done by using both parametric and nonparametric modelling 

procedures. In this distinct case, we wish to determine the effects of changing  .  
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The simulation study will let us analyse the effects of changing this parameter and 

determine whether we must consider estimating this coefficient before performing 

subsequent analysis. In this case we did not estimate   from any of the series, we simply 

vary it to determine its effects on each tests size and power. 

For each distinct case, the chosen test will be run 200 times on uniquely simulated, equally 

spaced data. This allows us to determine the proportion of times the test has correctly 

identified the discontinuity. Probability plots will be constructed to determine the areas 

where the test identified where discontinuities as present. 

Only one parameter will be changed at a time, leaving the rest unchanged. This allows us to 

determine the effects of the change of that single parameter – and subsequently allow us to 

determine which parameters are most suitable to use for our real data. 

3.3.2 Size and power 

The performance of the various tests can be determined by calculating the size and the 

power, given various parameters of the test. Size and power can be described in terms of 

type I (the odds of saying there is not a difference when there is) and type II error (the odds 

of saying there is a changepoint when there is not).  

Size can be calculated as the proportion of times that the test concludes that there is a 

discontinuity when there is in fact not. This can be computed simply by performing the test 

on a simulated series where there is no changepoint. Power can be calculated as the 

proportion of times that the test concludes that there is at least one discontinuity when 

there actually at least one present, and can be calculated by performing the test on series 

with at least one discontinuity. 

In hypothesis terms, we could say: 

                         (                 )  

                       (                 ) 
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3.3.3 Scenarios 

We will perform the various tests on 6 distinct scenarios, listed below. The plots shown are 

without random variation to show the underlying true curves. 

 

 

Figure 3.1: Simulation study scenarios 
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Table 3.1: Simulation study scenarios 

The error is normally distributed with constant variance, where    was estimated from site 

WL13 at Whitelee by simply fitting a local linear regression model to the series and 

calculating the standard deviation from the residuals. Scenarios 1-3 are simple straight lines 

with either a jump in the mean value or change in trend. Scenarios 4, 5 and 6 incorporate 

trigonometric functions to represent seasonality over time, within each case 4 years’ worth 

of data are represented by 4 continuous cycles. 

Scenario 4 has a simple shift in the mean at the change point, with seasonal patterns which 

are identical before and after this point. Scenario 5 has both a shift in the mean and also a 

change in seasonal pattern, with the amplitude changing from 3 to 5 units.  

Scenatio 6 is the most complicated of the cases, with a varying coefficient. This coefficient 

allows us to change the amplitude of the trigonometric curves where the coefficients of the 

sin and cosine functions increase or decrease with time. Technically, cases 4 and 5 can be 

explained by varying coefficient models, however their coefficients are constant. 

 

 

Model Model description 

Scenario 1: Change in intercept                                     
                                      

Scenario  2: Change in slope                                     
                                      

Scenario  3: Change in slope &  intercept                                     
                                      

Scenario  4: Change in slope &  intercept  

with seasonal trend 

                    (
    

  
)          (

    

  
)               

                    (
    

  
)          (

    

  
)                  

 

Scenario  5: Change in slope & mean with 

seasonal trend (change in seasonal 

pattern) 

                    (
    

  
)          (

    

  
)                

                    (
    

  
)          (

    

  
)                   

 

Scenario  6: Change in slope & mean with 

seasonal trend (change in seasonal 

pattern - varying coefficient) 

                    (
    

  
)          (

    

  
)                 

                   (
    

  
)       (

    

  
)                           

 

(   increases from 1 to 2, equally spaced over the 50 datapoints) 
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3.4 Test Conditions 

3.4.1 Test Conditions: Local linear regression (LLR) 

Described in section 3.1, Bowman (2006) developed a test based on local linear regression 

with weights to determine the presence of a discontinuity. We will allow our smoothing 

parameter, the bandwidth of the kernel to take a number of values – this will allow us to 

determine the effect of the smoothing parameter. 

Bowman’s algorithm does not take serial correlation into account when assessing the series 

and by default assumes that data points are independent. The size test will therefore be 

around 5% where there is no serial correlation, however if serial correlation is present this 

may not be the case. A modified version of the test does allow the user to input an estimate 

of the error covariance matrix into the function however since we wish to test the effects of 

correlation on the test we will not use the modified version (preliminary analysis of the 

Whitelee series shows no significant autocorrelation).  

In real life situations, if we wish to use the modified test accounting for serial correlation,   

will have to be estimated, which we will call  ̂  As mentioned previously, this can be 

estimated by modelling the general trend of the data and assessing the residuals. One 

problem with this method is that, especially with non-parametric smoothing techniques 

where the kernel bandwidth must be chosen, the data may actually be over smoothed 

resulting in a lower estimate of the correlation. The opposite is also true in that the data can 

also be under smoothed leaving a hidden function within the data, resulting in a higher 

estimate of the correlation. 

From preliminary analysis we know that we do not have any significant autocorrelation, the 

covariance matrix is simply an   ( ) as shown below: 

  

[
 
 
 
 

          

        

      
     

        ]
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If the true value of    is not known, we must obtain   ̂- our estimate of the correlation, to 

obtain   ̂. 

The smoothing parameter, which in this case is the kernel bandwidth of the weights must 

also be chosen when carrying out this test. This is denoted as  . This parameter determines 

the standard deviation of the kernel, which is a normal probability distribution. This means 

that points that lie close to the point of interest will have more of an influence than points 

lying farther away. 

For scenarios 4-6, smaller values of   will be used since the data has a seasonal cycle. The 

smaller bandwidth allows the smoothed curve to follow the data more closely since points 

that are father away, and therefore less likely to have a relationship with the point of 

interest, will have less influence on the smoothed curve. 

To determine each tests power we have chosen a range of bandwidths to asses. The choices 

represent small moderate and large amounts of smoothing for the regression. 

The simulated data will have the following characteristics: 

Model and data conditions 

Data spacing 
Number of simulations 
Length of time series 

Equally spaced 
100 
100 

Varying parameters 

Error  
Correlation 
Kernel Bandwidth 

   (     ) ,  = 0.35, 0.50, 0.65 
 =0.1, 0.15, 0.2 
                 

Table 3.2: Simulation conditions 

Where within each case, various correlation coefficients, errors and smoothing parameters 

will be used.  
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Scenario 1: Change in mean 

  

  

Correlation = 0 

h   
  Size Power 

10   
  0.07 0.74 

10   
  0.01 0.40 

10   
  0.10 0.31 

12   
  0.06 0.87 

12   
  0.01 0.48 

12   
  0.11 0.34 

14   
  0.04 0.94 

14   
  0.01 0.60 

14   
  0.11 0.39 

16   
  0.05 0.97 

16   
  0.03 0.62 

16   
  0.11 0.45 

18   
  0.05 0.99 

18   
  0.04 0.71 

18   
  0.09 0.48 

 

Correlation = 0.1 

h   
  Size Power 

10   
  0.17 0.91 

10   
  0.13 0.53 

10   
  0.16 0.47 

12   
  0.16 0.95 

12   
  0.14 0.63 

12   
  0.10 0.55 

14   
  0.18 0.95 

14   
  0.13 0.71 

14   
  0.08 0.60 

16   
  0.17 0.97 

16   
  0.13 0.76 

16   
  0.07 0.66 

18   
  0.15 0.97 

18   
  0.12 0.77 

18   
  0.10 0.67 

 

Correlation = 0.2 

h   
  Size Power 

10   
  0.31 0.92 

10   
  0.36 0.78 

10   
  0.41 0.63 

12   
  0.36 0.95 

12   
  0.33 0.83 

12   
  0.38 0.68 

14   
  0.29 1.00 

14   
  0.32 0.85 

14   
  0.38 0.69 

16   
  0.29 0.99 

16   
  0.29 0.89 

16   
  0.34 0.72 

18   
  0.26 0.99 

18   
  0.27 0.88 

18   
  0.36 0.74 

 

Correlation = 0.15 

h   
  Size Power 

10   
  0.18 0.89 

10   
  0.21 0.68 

10   
  0.27 0.58 

12   
  0.17 0.95 

12   
  0.24 0.72 

12   
  0.25 0.65 

14   
  0.15 0.99 

14   
  0.25 0.79 

14   
  0.25 0.71 

16   
  0.17 0.99 

16   
  0.26 0.80 

16   
  0.21 0.72 

18   
  0.14 0.99 

18   
  0.24 0.83 

18   
  0.19 0.71 

 

Table 3.3: Power and size results  (LLR, Scenario 1) 
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Scenario 2: Change in slope 

  

  

Correlation = 0 

h   
  Size Power 

10   
  0.06 0.21 

10   
  0.09 0.15 

10   
  0.05 0.11 

12   
  0.06 0.23 

12   
  0.08 0.16 

12   
  0.05 0.14 

14   
  0.06 0.29 

14   
  0.05 0.17 

14   
  0.03 0.18 

16   
  0.05 0.31 

16   
  0.05 0.18 

16   
  0.04 0.21 

18   
  0.05 0.35 

18   
  0.06 0.21 

18   
  0.0. 0.21 

 

Correlation = 0.1 

h   
  Size Power 

10   
  0.17 0.47 

10   
  0.13 0.26 

10   
  0.16 0.24 

12   
  0.16 0.44 

12   
  0.14 0.25 

12   
  0.10 0.18 

14   
  0.18 0.52 

14   
  0.13 0.26 

14   
  0.08 0.18 

16   
  0.17 0.57 

16   
  0.13 0.27 

16   
  0.07 0.18 

18   
  0.15 0.65 

18   
  0.12 0.28 

18   
  0.10 0.17 

 

Correlation = 0.2 

h   
  Size Power 

10   
  0.31 0.54 

10   
  0.36 0.34 

10   
  0.41 0.47 

12   
  0.36 0.60 

12   
  0.33 0.39 

12   
  0.38 0.42 

14   
  0.29 0.65 

14   
  0.32 0.41 

14   
  0.38 0.40 

16   
  0.29 0.69 

16   
  0.29 0.40 

16   
  0.34 0.41 

18   
  0.26 0.71 

18   
  0.27 0.45 

18   
  0.36 0.37 

 

Correlation = 0.15 

h   
  Size Power 

10   
  0.18 0.49 

10   
  0.21 0.32 

10   
  0.27 0.36 

12   
  0.17 0.50 

12   
  0.24 0.34 

12   
  0.25 0.35 

14   
  0.15 0.52 

14   
  0.25 0.34 

14   
  0.25 0.37 

16   
  0.17 0.59 

16   
  0.26 0.35 

16   
  0.21 0.34 

18   
  0.14 0.66 

18   
  0.24 0.35 

18   
  0.19 0.36 

 

Table  3.4: Power and size results  (LLR, Scenario 2) 
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Scenario 3: Change in slope and mean 

  

  

Correlation = 0 

h   
  Size Power 

10   
  0.06 0.97 

10   
  0.09 0.81 

10   
  0.05 0.61 

12   
  0.06 0.98 

12   
  0.08 0.89 

12   
  0.05 0.77 

14   
  0.06 1.00 

14   
  0.05 0.93 

14   
  0.03 0.78 

16   
  0.05 1.00 

16   
  0.05 0.97 

16   
  0.04 0.81 

18   
  0.05 1.00 

18   
  0.06 0.97 

18   
  0.0. 0.82 

 

Correlation = 0.1 

h   
  Size Power 

10   
  0.17 1.00 

10   
  0.13 0.91 

10   
  0.16 0.67 

12   
  0.16 1.00 

12   
  0.14 0.98 

12   
  0.10 0.74 

14   
  0.18 1.00 

14   
  0.13 0.99 

14   
  0.08 0.79 

16   
  0.17 1.00 

16   
  0.13 0.99 

16   
  0.07 0.84 

18   
  0.15 1.00 

18   
  0.12 0.99 

18   
  0.10 0.87 

 

Correlation = 0.2 

h   
  Size Power 

10   
  0.31 1.00 

10   
  0.36 0.98 

10   
  0.41 0.86 

12   
  0.36 1.00 

12   
  0.33 0.99 

12   
  0.38 0.91 

14   
  0.29 1.00 

14   
  0.32 1.00 

14   
  0.38 0.93 

16   
  0.29 1.00 

16   
  0.29 1.00 

16   
  0.34 0.92 

18   
  0.26 1.00 

18   
  0.27 1.00 

18   
  0.36 0.93 

 

Correlation = 0.15 

h   
  Size Power 

10   
  0.18 1.00 

10   
  0.21 0.96 

10   
  0.27 0.76 

12   
  0.17 1.00 

12   
  0.24 0.98 

12   
  0.25 0.82 

14   
  0.15 1.00 

14   
  0.25 0.99 

14   
  0.25 0.88 

16   
  0.17 1.00 

16   
  0.26 0.99 

16   
  0.21 0.89 

18   
  0.14 1.00 

18   
  0.24 0.99 

18   
  0.19 0.92 

 

Table  3.5: Power and size results  (LLR, Scenario 3) 
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Scenario 4: Change in slope and mean (Seasonal trend) 

  

  

Correlation = 0 

h   
  Size Power 

2.2   
  0.06 0.20 

2.2   
  0.08 0.20 

2.2   
  0.02 0.11 

2.4   
  0.06 0.31 

2.4   
  0.10 0.26 

2.4   
  0.3 0.12 

2.6   
  0.09 0.46 

2.6   
  0.12 0.31 

2.6   
  0.04 0.14 

2.8   
  0.10 0.63 

2.8   
  0.11 0.37 

2.8   
  0.06 0.17 

3   
  0.13 0.76 

3   
  0.13 0.47 

3 .  
  0.06 0.22 

 

Correlation = 0.1 

h   
  Size Power 

2.2   
  0.11 0.53 

2.2   
  0.15 0.32 

2.2   
  0.19 0.31 

2.4   
  0.13 0.63 

2.4   
  0.14 0.38 

2.4   
  0.20 0.31 

2.6   
  0.17 0.74 

2.6   
  0.19 0.45 

2.6   
  0.26 0.32 

2.8   
  0.28 0.89 

2.8   
  0.23 0.58 

2.8   
  0.29 0.38 

3   
  0.42 0.94 

3   
  0.25 0.70 

3   
  0.30 0.42 

 

Correlation = 0.2 

h   
  Size Power 

10   
  0.47 0.82 

10   
  0.41 0.53 

10   
  0.30 0.48 

12   
  0.51 0.86 

12   
  0.46 0.60 

12   
  0.30 0.52 

14   
  0.61 0.92 

14   
  0.47 0.71 

14   
  0.37 0.56 

16   
  0.73 0.96 

16   
  0.54 0.75 

16   
  0.38 0.64 

18   
  0.79 0.97 

18   
  0.62 0.81 

18   
  0.45 0.65 

 

Correlation = 0.15 

h   
  Size Power 

10   
  0.32 0.69 

10   
  0.29 0.39 

10   
  0.31 0.38 

12   
  0.33 0.75 

12   
  0.29 0.45 

12   
  0.30 0.45 

14   
  0.38 0.84 

14   
  0.31 0.50 

14   
  0.31 0.48 

16   
  0.46 0.87 

16   
  0.38 0.65 

16   
  0.36 0.52 

18   
  0.57 0.96 

18   
  0.44 0.72 

18   
  0.45 0.59 

 

Table  3.6: Power and size results  (LLR, Scenario 4) 
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Scenario 5: Change in slope and mean (Seasonal trend – increase in 

amplitude) 

  

  

Correlation = 0 

h   
  Size Power 

2.2   
  0.06 0.21 

2.2   
  0.08 0.14 

2.2   
  0.02 0.06 

2.4   
  0.06 0.37 

2.4   
  0.10 0.17 

2.4   
  0.3 0.12 

2.6   
  0.09 0.56 

2.6   
  0.12 0.22 

2.6   
  0.04 0.15 

2.8   
  0.10 0.77 

2.8   
  0.11 0.34 

2.8   
  0.06 0.19 

3   
  0.13 0.92 

3   
  0.13 0.57 

3 .  
  0.06 0.26 

 

Correlation = 0.1 

h   
  Size Power 

2.2   
  0.11 0.49 

2.2   
  0.15 0.25 

2.2   
  0.19 0.17 

2.4   
  0.13 0.65 

2.4   
  0.14 0.34 

2.4   
  0.20 0.27 

2.6   
  0.17 0.81 

2.6   
  0.19 0.46 

2.6   
  0.26 0.38 

2.8   
  0.28 0.91 

2.8   
  0.23 0.60 

2.8   
  0.29 0.50 

3   
  0.42 0.99 

3   
  0.25 0.75 

3   
  0.30 0.62 

 

Correlation = 0.2 

h   
  Size Power 

10   
  0.47 0.74 

10   
  0.41 0.65 

10   
  0.30 0.45 

12   
  0.51 0.86 

12   
  0.46 0.73 

12   
  0.30 0.50 

14   
  0.61 0.96 

14   
  0.47 0.82 

14   
  0.37 0.59 

16   
  0.73 1.00 

16   
  0.54 0.86 

16   
  0.38 0.68 

18   
  0.79 1.00 

18   
  0.62 0.95 

18   
  0.45 0.82 

 

Correlation = 0.15 

h   
  Size Power 

10   
  0.32 0.66 

10   
  0.29 0.39 

10   
  0.31 0.42 

12   
  0.33 0.80 

12   
  0.29 0.47 

12   
  0.30 0.47 

14   
  0.38 0.92 

14   
  0.31 0.61 

14   
  0.31 0.52 

16   
  0.46 0.98 

16   
  0.38 0.76 

16   
  0.36 0.61 

18   
  0.57 0.98 

18   
  0.44 0.85 

18   
  0.45 0.69 

 

Table  3.7: Power and size results  (LLR, Scenario 5) 
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Scenario 6: Change in slope and mean (Seasonal trend – varying coefficient) 

  

  

Correlation = 0 

h   
  Size Power 

2.2   
  0.06 0.25 

2.2   
  0.08 0.09 

2.2   
  0.02 0.05 

2.4   
  0.06 0.37 

2.4   
  0.10 0.17 

2.4   
  0.3 0.08 

2.6   
  0.09 0.63 

2.6   
  0.12 0.30 

2.6   
  0.04 0.11 

2.8   
  0.10 0.90 

2.8   
  0.11 0.45 

2.8   
  0.06 0.20 

3   
  0.13 0.99 

3   
  0.13 0.72 

3 .  
  0.06 0.29 

 

Correlation = 0.1 

h   
  Size Power 

2.2   
  0.11 0.47 

2.2   
  0.15 0.28 

2.2   
  0.19 0.24 

2.4   
  0.13 0.70 

2.4   
  0.14 0.40 

2.4   
  0.20 0.39 

2.6   
  0.17 0.92 

2.6   
  0.19 0.60 

2.6   
  0.26 0.39 

2.8   
  0.28 0.99 

2.8   
  0.23 0.75 

2.8   
  0.29 0.52 

3   
  0.42 1.00 

3   
  0.25 0.91 

3   
  0.30 0.70 

 

Correlation = 0.2 

h   
  Size Power 

10   
  0.47 0.75 

10   
  0.41 0.58 

10   
  0.30 0.48 

12   
  0.51 0.84 

12   
  0.46 0.71 

12   
  0.30 0.56 

14   
  0.61 0.96 

14   
  0.47 0.78 

14   
  0.37 0.65 

16   
  0.73 0.99 

16   
  0.54 0.92 

16   
  0.38 0.77 

18   
  0.79 1.00 

18   
  0.62 0.98 

18   
  0.45 0.84 

 

Correlation = 0.15 

h   
  Size Power 

10   
  0.32 0.61 

10   
  0.29 0.52 

10   
  0.31 0.38 

12   
  0.33 0.83 

12   
  0.29 0.62 

12   
  0.30 0.40 

14   
  0.38 0.96 

14   
  0.31 0.80 

14   
  0.31 0.53 

16   
  0.46 0.99 

16   
  0.38 0.88 

16   
  0.36 0.60 

18   
  0.57 1.00 

18   
  0.44 0.96 

18   
  0.45 0.75 

 

Table  3.8: Power and size results  (LLR, Scenario 6) 
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3.4.2 Test Conditions: Bayesian Change point Analysis (Barry and 

Hartigan algorithm) 

Described in detail in section 3.2, Barry and Hartigan developed a method based on 

Bayesian analysis to evaluate the probability of discontinuity at each data point within the 

series. 

The hyper parameters   and   are variable and can be changed and tuned assuming that we 

know the number of changes and the magnitude of these changes, however, the 

hyperparameters do have default values in which both are equal to 0.2 (which were found 

to work well by Barry and Hartigan). Since the default value was found to work well for all 

cases, we will keep them constant throughout the simulated tests. 

Furthermore, the number of ‘burn-in’ (number of iterations we throw away at the start of 

an MCMC run) iterations and number of iterations used in the estimation of the posterior 

means are optional with a default number of burn-in iterations at 50 and default number of 

iterations used for the estimation of the posterior means at 500. We will keep these 

constant throughout the tests. 

The conditions under which the cases were simulated are as described below: 

Model and data conditions 

Data spacing 
Number of simulations 
Length of time series 

Equally spaced 
100 
100 

Varying parameters 
Error  
Correlation 
Threshold 

   (     ) ,  = 0.35, 0.50, 0.65 
 =0.1, 0.15, 0.2 
                           

Table 3.9: Simulation conditions 

A fixed threshold value of 0.85 will be used with variable standard deviations and 

correlation coefficients. 
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3.4.3 Test conditions: Binary Segmentation Method 

For BSM, Rebecca Killick (2011) developed a method which uses two separate test statistics 

to determine if a change point has occurred for both single and multiple changepoints. 

The model structures will be the exact same as those tested by LLR & B&H with the same 

variances and correlation structures. 

We will vary the penalty variable where          ( ), allowing the parameter   to take 

the values              . The choice of these values are arbitrary, however they allow the 

test to return reasonable power while the significance lies below our threshold.  
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3.5 Conclusions and Results 

3.5.1 Local Linear Regression 

Overall this test performs very well, especially when a change in mean is present. The test 

perform especially well when a seasonal trend is present as the smooths are able to account 

for the pattern, however in a large number of cases the number of false positives may pose 

a problem especially when correlation is present. As the correlation increases, the test is 

effectively useless since as the number of false positives is so high. The tests size and power 

increases rapidly as the correlation coefficient increases. For example in case 1, size is 

around 0.00-0.10 with a correlation coefficient of 0 however with a correlation coefficient of 

0.2 this increases to around 0.30. The presence of seasonal trend also affects the power of 

the test, however, this increase in power does not mean the test performs better under 

these conditions as the size also increases . Size remains under 0.10 with a correlation 

coefficient of 0 however this increases with a seasonal trend to around 0.60-0.70 in some 

cases.  

When a change in trend is present, the power of the test is not very high. However when 

both a change in trend and mean are present the power within each distinct case is higher 

than the respective power for a change in mean only. 

With seasonal trend, a much smaller kernel bandwidth is needed so that the smooth lines 

can follow the data closer, however, the presence of this trend effects the size so much with 

correlation present that to apply this to real data there must be no correlation or the 

seasonal trend must be removed. 
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3.5.2 Barry & Hartigan algorithm  

A summary of results can be found in table 3.10. Barry & Hartigans algorithm works very 

well when seasonal trend is not present. With a simple change in mean, the power is very 

high (80-90%) with standard deviation equal to 0.35. With larger standard deviation, the 

power rapidly decreases, for example with a simple change in mean with a standard 

deviation equal to 0.65 the power reduces to 0.50; however, the size always remains around 

0 even with larger correlation coefficients. 

With both a change in mean and change in slope and mean, as the threshold increases the 

power decreases and the size stays constant at 0. For example, with both a change in mean 

and slope the power reduces from 0.86 at a threshold value of 0.45 down to 0.27 at a 

threshold of 0.85 (standard deviation equal to 0.65 in both cases). 

With seasonal trend present, size increases under all conditions to the point that the test 

cannot determine whether there is a difference between non present and present change 

points as the power and size are almost identical, especially when seasonal amplitude is 

increased. When seasonal trend is present and the threshold decreases, the power and size 

both decrease at roughly the same rate. 

To use this test effectively, seasonal trend must be removed so that only the change point is 

present along with overall slope and random variation. Under these conditions, the test 

works very well. 
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Table 3.10: Summary of Barry and Hartigan algorithm results (all correlations set to 0.1) 

Change in slope and mean 

Threshold   
  Size Power 

0.45   
  0 1.00 

0.45   
  0 0.98 

0.45   
  0 0.86 

0.55   
  0 1.00 

0.55   
  0 0.86 

0.55   
  0 0.67 

0.65   
  0 0.95 

0.65   
  0 0.79 

0.65   
  0 0.55 

0.75   
  0 0.94 

0.75   
  0 0.70 

0.75   
  0 0.41 

0.85   
  0 0.88 

0.85   
  0 0.53 

0.85   
  0 0.27 

Change in slope and mean 
(seasonal trend) 

 

Threshold   
  Size Power 

0.45   
  1.00 1.00 

0.45   
  1.00 1.00 

0.45   
  1.00 1.00 

0.55   
  1.00 1.00 

0.55   
  1.00 1.00 

0.55   
  1.00 0.98 

0.65   
  0.99 0.98 

0.65   
  0.99 0.98 

0.65   
  0.98 0.96 

0.75   
  0.95 0.93 

0.75   
  0.91 0.97 

0.75   
  0.95 0.92 

0.85   
  0.80 0.75 

0.85   
  0.75 0.81 

0.85   
  0.79 0.73 

Change in slope and mean 
(seasonal trend – varying 

coefficient) 

Threshold   
  Size Power 

0.45   
  1.00 1.00 

0.45   
  1.00 1.00 

0.45   
  1.00 1.00 

0.55   
  1.00 1.00 

0.55   
  1.00 1.00 

0.55   
  0.98 1.00 

0.65   
  1.00 1.00 

0.65   
  0.98 1.00 

0.65   
  0.98 1.00 

0.75   
  1.00 1.00 

0.75   
  0.96 1.00 

0.75   
  0.90 1.00 

0.85   
  0.90 1.00 

0.85   
  0.83 1.00 

0.85   
  0.66 1.00 

Change in mean 

Threshold   
  Size Power 

0.45   
  0 0.95 

0.45   
  0 0.81 

0.45   
  0 0.50 

0.55   
  0 0.97 

0.55   
  0 0.70 

0.55   
  0 0.36 

0.65   
  0 0.80 

0.65   
  0 0.52 

0.65   
  0 0.23 

0.75   
  0 0.64 

0.75   
  0 0.37 

0.75   
  0 0.13 

0.85   
  0 0.53 

0.85   
  0 0.25 

0.85   
  0 0.09 
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3.5.3 Binary Segmentation Method 

A summary of results for BSM with correlations set to 0.1 can be seen in table 3.11. This 

method works extremely well under all conditions. Variance, correlation and the presence 

of seasonal trend do not affect the power or size in any of the cases. Size stayed at 0 

throughout each simulation and power stayed at 1 in all cases apart from one. The only case 

that this method did not perform well was within case 2 where no change was detected 

when in fact there was a change in the slope parameter.  

However, as this study simply identifies whether at least one change point has been 

detected and not where the change point has been detected. Therefore there is a possibility 

that the test is quite sensitive and a larger penalty parameter may need to be used. 

Another problem is that the penalty parameter chosen is arbitrary. Therefore, the chances 

of detecting a changepoint when it is actually present is all down to the penalty chosen. If it 

is too small, it will pick up the smallest changes. If it is too large, it will not pick up even large 

changes. These results are therefore good based on the penalty chosen. 
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Table 3.11: Summary of BSM algorithm results (all correlations set to 0.1) 

Change in mean 

Penalty   
  Size Power 

5   
  0.00 1.00 

5   
  0.00 1.00 

5   
  0.00 1.00 

5.5   
  0.00 1.00 

5.5   
  0.00 1.00 

5.5   
  0.00 1.00 

6   
  0.00 1.00 

6   
  0.00 1.00 

6   
  0.00 1.00 

6.5   
  0.00 1.00 

6.5   
  0.00 1.00 

6.5   
  0.00 1.00 

7   
  0.00 1.00 

7   
  0.00 1.00 

7   
  0.00 1.00 

Change in slope and mean  

Penalty   
  Size Power 

5   
  0.00 1.00 

5   
  0.00 1.00 

5   
  0.00 1.00 

5.5   
  0.00 1.00 

5.5   
  0.00 1.00 

5.5   
  0.00 1.00 

6   
  0.00 1.00 

6   
  0.00 1.00 

6   
  0.00 1.00 

6.5   
  0.00 1.00 

6.5   
  0.00 1.00 

6.5   
  0.00 1.00 

7   
  0.00 1.00 

7   
  0.00 1.00 

7   
  0.00 1.00 

Change in slope and mean 
(seasonal trend) 

 

Penalty   
  Size Power 

5   
  0.00 1.00 

5   
  0.00 1.00 

5   
  0.00 1.00 

5.5   
  0.00 1.00 

5.5   
  0.00 1.00 

5.5   
  0.00 1.00 

6   
  0.00 1.00 

6   
  0.00 1.00 

6   
  0.00 1.00 

6.5   
  0.00 1.00 

6.5   
  0.00 1.00 

6.5   
  0.00 1.00 

7   
  0.00 1.00 

7   
  0.00 1.00 

7   
  0.00 1.00 

Change in slope and mean 
(seasonal trend – varying 

coefficient) 

Penalty   
  Size Power 

5   
  0.00 1.00 

5   
  0.00 1.00 

5   
  0.00 1.00 

5.5   
  0.00 1.00 

5.5   
  0.00 1.00 

5.5   
  0.00 1.00 

6   
  0.00 1.00 

6   
  0.00 1.00 

6   
  0.00 1.00 

6.5   
  0.00 1.00 

6.5   
  0.00 1.00 

6.5   
  0.00 1.00 

7   
  0.00 1.00 

7   
  0.00 1.00 

7   
  0.00 1.00 
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3.5.4 Summary of results 

To conclude, all three tests work well under different conditions. LLR works well when a 

mean change is present and is affected by both correlation and by seasonal trend, especially 

when the amplitude of the trend is increased. When correlation is even slightly higher then 

0, the size increases drastically. Given a series with correlation, the modified test which can 

account for the correlation coefficient should be used.  

B&H works extremely well when seasonal trend is not present however the size increases to 

almost 1 when seasonal trend is present.  It would therefore make sense to remove 

seasonal trend before applying this test to the data. 

BSM works very well even when seasonal trend is present; however when there is no mean 

change then impacts cannot be detected. A simple change in slope parameter was not 

picked up at all (case 2) and therefore this test should only be used when there is a change 

in mean. 

As a recommendation, B&H should not be used when seasonal trend is present. When there 

is a simple change of mean within series, LLR should be used and this test also works 

reasonably well when seasonal trend is present (when seasonal trend is present a smaller 

kernel bandwidth should be used). BSM seems to work well under all conditions however as 

noted before it is possible that the test is sensitive with the penalty parameter used in this 

simulation study. 

Referring back to our simulation results, it makes logical sense to remove the seasonal 

pattern from each series as both LLR and B&H are seriously affected by the presence of 

seasonal trend. 

To remove seasonal trend, a difference series will be calculated (raw series minus the 

seasonal trend modelled by harmonics) by taking the original series and taking away a 

harmonic function of decimal year. 
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3.6 Applications 

The three approaches will now be applied to real life data. Firstly, we will apply the three 

tests in full to the EMEP data. The sites AT02 in Austria and GB02 in Great Britain will be 

used. Each method will be applied in turn and then comparing the results by assessing if 

changepoints that have been detected by each method are at a similar position. 

A changepoint analysis will then be carried out on the Whitelee data, however the full 

analysis will not be shown. A summary of results will be produced and each method can be 

compared.  

3.6.1 EMEP Network 

The EMEP network data was taken from  EMEP’s (http://www.emep.int/) and can be 

accessed publically. For both AT02 and GB02, each data point is the log weekly SO2 which 

was calculated by taking the log of the mean of each week. This smoothed out the seasonal 

pattern within the data. 

Autocorrelation was checked by producing ACF plots. No significant autocorrelation was 

found within either series. 

3.6.1.1 AT02: Illmitz  

AT02 is a site located in Illmitz which is an area at the south eastern tip of Austria, 117 

meters above sea level. Log SO2 data has been taken here and is plotted within figure 3.2, 

both with super imposed estimated values (replaced NA values) and a superimposed local 

linear regression line. A small amount of variability has been added to each data point, 

drawn from a normal distribution with standard deviation representative of the rest of the 

series. The data are daily. 

 

 

 

 

http://www.emep.int/
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Figure 3.2: Log SO2 versus Time at station AT02, superimposed local linear regression line 

and superimposed estimated value (red). 

 

To decrease day to day variability, the log mean weekly average will be taken of data 

allowing seasonal trend to still be visible but variance to decrease. Shown in figure 3.3 is the 

log average SO2 data versus weeks in year. 



79 
 

Figure 3.3: Log weekly average SO2 versus Weeks in year 

We can now apply the three techniques to the data shown above. 

For local linear regression, a number of bandwidths will be chosen to observe the effects on 

the number of flagged discontinuities. For the Bayesian method a number of threshold 

probabilities will also be chosen to observe the effects on the number of flagged 

discontinuities. 
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Local linear regression with weights: Kernel bandwidth     

Firstly, we will assess the time series using local linear regression with kernel bandwidth 

(standard deviation) equal to 2, as determined by the degrees of freedom.  

Table 3.12: Location and size of jumps 

Where the left and right smooths leave the shaded area in figure 3.4 a, suggests the possible 

presence of a discontinuity. Red vertical lines indicate where discontinuities were detected 

and the precise location of these change points can be found in table 3.12. The analysis was 

on a logarithmic scale, and therefore the jumps shown within figure 3.4 are given on a       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 a,b: Log weekly SO2 versus Weeks in year including location of jumps 

Decimal 
year 

1980.772 1989.578 1992.974 1996.082 1999.247 2003.015 2005.850 2005.885 

Jump -7.00 3.07 -10.05 12.19 -5.56 2.67 -4.80 3.92 
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scale. The magnitude each of the points can also be found in table 3.12 but are shown 

visually within figure 3.4b (absolute magnitude has been taken and plotted). Left and right 

smooths may leave the shaded confidence area for large periods of time however 

discontinuities are taken to be the maximum difference between the two smooths, or the 

turning points within figure 3.4b. 

Figure 3.5 helps us to visually interpret the change points and furthermore, to estimate the 

individual non-parametric trend between discontinuities. Local linear regression with 

weights was used for this however the kernel bandwidth was increased to stop the trend 

picking up seasonal variation.  

 

Figure 3.5: Log weekly SO2 versus Weeks in year including change point locations and non-

parametric curves. 

 

Table 3.12 shows the detected change points along with the respective size of jump 

between smooths. Jumps 1, 3 and 4 at 1992.974 (week 50) and 1996.082 (week 4) have the 

largest jumps of 7, 10.05 and 12.19 respectively. All other jumps are less than 5 in absolute 

magnitude.  

Since the size of the kernel bandwidth is relatively low in this case, many discontinuities that 

have been flagged may not actually be change points and seasonal variation may actually 

affect the testing procedure. Increasing the size of the bandwidth  , will allow our 

smoothing function to fit a straighter curve and will not flag a point as a discontinuity when 

in fact it is seasonal variation. 
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Local linear regression with weights: Kernel bandwidth     

By increasing the kernel bandwidth such that more data points are taken into consideration 

when determining the smoothing function, the number of detected change points has   

 Table 3.13: Location and size of jumps 

decreased from 8 to 3. The 3 change points roughly correspond with the first three change 

points within the first analysis where     . Figure 3.6a shows our plotted Log weekly SO2 

with confidence bands and detected change points and figure 3.6b allows us to visually                    

Figure 3.6a, b: Log weekly SO2 versus Weeks in year including location of jumps. Absolute 

value of differences between left and right smooths. 

Decimal year 1980.926 1988.753 1993.530 

Jump -4.75 -9.65 10.29 
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interpret the size of these changes. Table 3.13 shows the location of these jumps along with 

their size. Figure 3.7 is a plot of log weekly SO2 versus weeks in year with superimposed 

change point locations as well as superimposed curves between change points. 

 

Figure 3.7: Log weekly average SO2 versus Weeks in year including change point locations 

and non-parametric curves. 

From figure 3.7 we can see the three change points situated at the 48th week in 1980, the 

39th week in 1988 and the 28th week in 1993. The mean increases from the end of the first 

parametric line through to the second and then increases again from the second to the 

third. After change point 3 at week 28 in 1993 the mean decreases and the non-parametric 

curve shows a negative slope. 

These estimated change points can now be compared with estimated change points as 

detected by Barry and Hartigans algorithm. 
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Bayesian change point analysis: Barry and Hartigan algorithm 

 

 

Figure 3.8: Posterior means and Probabilities of change as calculated by Barry and Hartigans 

algorithm 

Under the exact same conditions in the previous analysis, Barry and Hartigans algorithm was 

used on the log weekly mean SO2 from the EMEP website. The hyper parameters   and   

are both set to their default value of 0.2 (chosen by Barry and Hartigan). The number of 

burn in iterations is set to 50 and the number of iterations after burn in is set to 500 (default 

values). 

 

Figure 3.8 allows a visual interpretation of the posterior means plotted over time as well as 

the locations respective probabilities of a change point occurring at that exact location. A 

number of threshold probabilities are shown below in table 3.14 which allows us to 

determine the number of change points, given an arbitrary threshold value. 
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Table 3.14: Probabilities of change with corresponding locations at various thresholds 

 

     

Figure 3.9: Log weekly SO2 versus weeks in year with superimposed change point locations 

(p>0.90). 

 

It is clear from table 3.14 that as the threshold probability drops the number of change 

points increases. The largest 3 change points are located at week 12 in 2006, week 40 in 

1982 and week 34 in 1984. Change points may also occurred at weeks 21 and 22 in 2005, 

week 12 in 2006 and week 49 in 1993. 

 

 

 

 

Threshold  CP1 CP2 CP3 CP4 CP5 CP6 CP7 

0.95 Probability 0.992  0.964 0.978     

 Location 1982.777  1984.657 2006.240     

         

0.90 Probability 0.992  0.964 0.900 0.912 0.914 0.978  

 Location 1982.777  1984.657 1993.942 2005.415 2005.434 2006.240  

         

0.80 Probability 0.992  0.964 0.866 0.900 0912 0.914 0.978 

 Location 1982.777  1984.657 1984.676 1993.942 2005.415 2005.434 2006.240 
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Binary Segmentation Method 

BSM can now be applied to the time series, which can then be compared with the two 

previous methods. 

 

 

 

 

 

 

Table 3.15: Changepoints detected by BSM 

 

Figure 3.10: Daily log average SO2 versus weeks in year with super imposed changepoint 

locations. 

Three changepoints were detected while using the arbitrary penalty equal to      ( ) 

where   is equal to 10.5. One was located at 1998.201 (week 10), one at 2005.3 (week 15) 

and 1993.29 (week 15). 

 

Binary Segmentation Method 
Location 
(datapoint 
number) 

1054.0000 1424.0000 798.0000 1221.0000 393.0000 

Test statistic 635.0151 112.1629 102.8227 25.75492 23.67609 

Optimal Changepoints 3 

Penalty 92.74975 



87 
 

Comparing LLR, B&H and BSM: AT02 

 

Figure 3.11: Log weekly SO2 versus weeks in year with superimposed change points 

 

Our final figures and plots, figure 3.11 and table 3.16 allow us to interpret the 

discontinuities detected by each method side by side. Vertical lines in black are 

discontinuities indicated by Barry and Hartigans algorithm (bcp), vertical lines in red are 

those as indicated by local linear regression with weights (sm.discontinuity) and blue by 

binary segmentation method (bsm). Of the 11 discontinuities shown in total (two 

discontinuities as indicated by B&H have been merged since they were one week apart) five 

are from B&H, 3 are from local linear regression and 3 by BSM. 

Table 3.16: Location of change points 

 

 

 

LLR estimates a change at 1980.926 (week 48) whereas B&H estimates a change 1.85 years 

later at 1982.777  (week 40). This could possibly be the same point as LLR’s change point is 

estimated to be the maximum difference between left and right smooths but this may not 

LLR 1980.926 1988.753 1993.530   

B&H 1982.777  1984.657 1993.942 2005.424 2006.240 

BSM   1993.29 1998.201 2005.3 
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necessarily be the exact location - figure 3.6 indicates a difference of over |2.5| overlapping 

the same region as B&H’s indication. Another very close comparison can be made in 1993. 

BSM indicates a change at 1993.29 (week 15), LLR indicates a change point at 1993.530 

(week 27) and B&H indicates a change 0.41 years later at 1993.942 (week 48). Again, this 

could possibly be the same change point as figure 10 indicates a difference in smooths 

within this region, overlapping B&H’s proposed value. 

A noticeable difference between methods is that B&H and BSM indicate changes at 2005 

and 2006, whereas LLR does not where the kernel bandwidth is equal to 4. However where 

the kernel bandwidth is equal to 2, LLR indicates changes at 2003.015 (week 1), 2005.850  

(week 44)and 2005.885 (week 46) (refer to table 3.23). 

By comparing the change point indicated by B&H at 2005.424 (week 21)with the change 

point as indicated by LLR (h=2) at 2005.850 (week 44) the difference is small at 0.426 years 

(22 weeks). Referring to table 3.23 is it possible that this is the same point as the plot of 

absolute differences overlaps B&H’s proposed value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 
 

3.6.1.2 GB02: Eskdalemuir  

Eskdalemuir is an area located within Dumfries and Galloway, Scotland near the 

Scottish/English border. As within analysis for AT02, the data plotted below are log daily 

SO2 where the red data is predicted data from a local linear regression model with added 

normal variability representative of the rest of the data. We can therefore define the model 

used to predict the data as shown below as  ̂   ( )     where     (       ).  

 

 

Figure 3.12: Log SO2 versus Time at station GB02, superimposed local linear regression line 

and superimposed estimated values (red). 

 

As before, predicted values were calculated on the series within figure 3.12 then weekly 

averages were calculated afterwards. Both local linear regression, BSM and B&H will be 

used on the series to detect discontinuities. 
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Local linear regression with weights: Kernel bandwidth     

Table 3.17 shows the location and the size of jump from one stable state to another, this 

can be seen visually within figure 3.13. Discontinuities were detected at 1993.423 (week 21), 

1997.686 (week 35) and 2007.068 (week 3), one other discontinuity was detected at 

2003.457 (week 24) however the jump was close to 2.5 and was left out. The kernel 

bandwidth here is equal to 2, equivalent to two standard deviations. 

Table 3.17: Location and size of jumps 

 

 

Figure 3.13a, b: Log weekly SO2 versus Weeks in year including location of jumps. Absolute 

value of differences between left and right smooths. 

Decimal year 1993.423 1997.686 2007.068 

Jump -6.24 13.25 -3.42 
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Figure 3.14: Log weekly SO2 versus Weeks in year including change point locations and non-

parametric curves. 

 

Log weekly SO2 versus weeks in year can be seen in figure 3.14 along with superimposed 

changepoint locations and non-parametric curves between changepoints (local linear 

regression, h=0.8). The first discontinuity is located at 1993.423, the second at 1997.868 

(week 45)and the third at 2007.068 (week 3)although this discontinuity is small in 

comparison to the first and second. 

Until the first change point there is a clear negative trend within the data. Between change 

points 1 and 2 there is an upward curved trend and there is then a positive trend after the 

second change point. 
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Bayesian change point analysis: Barry and Hartigan algorithm 

For B&H we will use three threshold probabilities to determine the location of change points 

within the GB02 series. The location and probabilities of discontinuities can be found in 

figure 3.15. As with AT02, three threshold probabilities will be taken to determine the 

number of change points, all of which can be found in table 3.25. 

 

 

Figure 3.15: Posterior means and Probabilities of change as calculated by Barry and 

Hartigans algorithm 

 

The majority of large probabilities lie before the first change point as detected by local 

linear regression and also around where the second change point was detected. 
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Table 3.18: Probabilities of change with corresponding locations at various thresholds 

Within table 3.18 probabilities of discontinuities and their respective locations are 

contained. Above 0.9, 4 locations were detected. One in 1987, two in 1991 and one in 1996. 

Above 0.95 only 2 locations were detected which were in 1987 and 1991.  

 

Figure 3.16: Log weekly SO2 versus weeks in year with superimposed change point locations 

(p>0.90). 

 

 

 

 

 

 

Threshold  CP1 CP2 CP3 CP4 

0.95 Probability 0.998  0.996    

 Location 1987.699  1991.608   

      

0.90 Probability 0.998  0.904  0.996 0  0.924  

 Location 1987.699  1991.180  1991.608  1996.448  

      

0.85 Probability 0.998  0.904  0.996 0  0.924  

 Location 1987.699  1991.180  1991.608  1996.448  
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Binary Segmentation Method 

The penalty parameter is set to        ( ) here and the maximum number of 

changepoints we can detect will be set to 5. 

 

Table 3.19: Changepoints detected by BSM 

 

Figure 3.17: Log weekly SO2 vs. weeks in year with superimposed changpoint locations 

Three changepoints were detected while using the penalty equal to        ( )  One was 

located at the same point as located by B&H at 2007.395 (week 20), one was located slightly 

later at 2007.542 (week 28) and one was located at 2009.378 (week 19). 

 

 

 

Binary Segmentation Method 
Location 
(datapoint 
number) 

385.0000 1504.0000 1592.0000 992.0000 1374.0000 

Test statistic 270.2248 270.2248 68.83.177 68.12605 68.1205 

Optimal Changepoints 3 
Penalty 92.94298 
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Comparing LLR, B&H & BSM: GB02 

Figure 3.18: Log weekly SO2 versus weeks in year with superimposed change points 

 

We can now compare positions of change points flagged by LLR, B&H (p>0.9) and BSM. Of 

the 12 changepoints, 4 were detected by local Barry and Hartigans algorithm, 3 were 

detected by local linear regression with weights and 5 by BSM, however the discontinuity 

detected in 2007 which is that very last discontinuity shown in figure 3.18, is small. 

 

Table 3.20: Location of change points 

 

 

 

Of the change points detected by LLR and B&H, three sets are relatively close. B&H detects a 

change at 1996.448 whereas LLR detects a change at 1997.686 (week 35), only just over a 

year apart, however BSM detects the same change as B&H at 1996.448 (week 23). Referring 

to figure 3.13 we can see that the curves maximum is at 1997.686 (week 35) however it 

does overlap 1996.448. 

LLR 1993.423 1997.686 2007.068   

B&H 1987.699  1991.180  1991.608  1996.448   

BSM 1985.148 1996.448 2003.559 2005.979 2007.617 
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Another two change points which are relatively close are those situated at 1991.608 (week 

31) and 1991.180 (week 9) detected by B&H and another at 1993.423 (week 21) detected by 

LLR. Again, referring to figure 3.13 the absolute value of the changes detected show that the 

turning point is located at 1993.423 (week 21) however the curve does overlap the value 

detected at 1991.608 (week 31). The change point detected by B&H at 1991.180 (week 9) is 

also within the limits of this curve. 

Three changes are relatively close around 2006, two detected by BSM lie at 2005.979 (week 

50) and 2007.617 (week 32) and one detected by LLR lies at 2007.068 (week 3). 

 

3.6.2 Whitelee Windfarm 

Discussed in detail in section 1.3.4, Whitelee windfarm is a windfarm situated south of 

Glasgow and is one of the largest windfarms in Europe. 

As with the EMEP analysis shown in the previous section, analysis was carried out on the 

Whitelee data. Of the 11 sites, 3 sites were chosen for analysis (WL13, WL14, WL1) such that 

the three changepoints techniques was applied each site. Plots of each variable can be 

found with a corresponding table of changepoints. 
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3.6.2.1 Total phosphorus: Comparing WL13, WL14 and WL1 

 

Figure 3.19: Seasonally adjusted log TP vs. decimal year for stations WL13, WL14 and WL1 

with superimposed changepoint locations. 

Within figure 3.19, seasonally adjusted TP versus decimal year is plotted for the three 

stations at Whitelee. We also have superimposed changepoint locations which can be found 

within table 3.21. For WL13, only one change point was detected using LLR which was 

located at 2007.564 (week 29)and only one changepoint was detected using B&H located at 

2007.395 (week 20), which are relatively close. Three changepoints were detected at this 

station with the use of BSM at 2007.395 (week 20), 2007.542 (week 28) and 2009.378 (week 

19).  For WL14, 5 changepoints were found with LLR but no changepoints were found with 

B&H. Four changes were detected using BSM.  For WL1, one change point was found at 

2007.564 (week 29) with the use of LLR, no change points were detected with B&H and one 

was detected by BSM. 

The most notable result is that at 2007.564 (week 29), changepoints were detected at all 

three stations with the use of LLR, where the changepoint is described as the maximum 

absolute difference between smooths. Furthermore, BSM detected a change very close to 

this value at stations WL13 and WL14, located at 2007.542 (week 28) As this was consistent, 

it is quite clear that there is a shift in the series at this point in mid-2007, at the time where 
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the new turbines were being put into place – this has had an effect on the phosphorus levels 

within the area. 

Another notable result is that within WL13, B&H and BSM detected changes at 2007.395 

(week 20) and within WL14 LLR detected a change at 2007.385. These two values are 

relatively close, and by referring to figure 3.19 (week 20) we can deduce that this is around 

the time where there is an apparent jump in the series. 

To summarise, all three stations have jumps around mid-2007, around the time where new 

turbines were put in place and new roads were being built. It is highly likely that the 

installation of these turbines affected the phosphorus levels within the area. 

Table 3.21: Location of changepoints for stations WL13, WL14 and WL1 

WL13 LLR   2007.564   

 B&H  2007.395    

 BSM  2007.395 2007.542  2009.378 

WL14 LLR 2007.159 2007.385 2007.564 2008.048 2009.512 

 B&H      

 BSM 2007.137 2007.466 2007.542  2009.436 

WL1 LLR   2007.564   

 B&H      

 BSM  2007.446    
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3.6.2.2 Total Organic Carbon: Comparing WL13, WL14 and WL1  

Figure 3.20: Seasonally adjusted log TOC vs. decimal year for stations WL13, WL14 and WL1 

with superimposed changepoint locations. 

 

Table 3.22: Location of changepoints for stations WL13, WL14 and WL1 

WL13 LLR 2006.852 2007.430 2010.126 2010.126   

 B&H       

 BSM       

WL14 LLR  2007.486 2007.997 2010.115   

 B&H 2006.551    2010.704  

 BSM       

WL1 LLR 2006.977  2007.904   2011.067 

 B&H   2009.493   2010.030  2011.030 

 BSM       

 

Overall, 15 changepoints were detected over the three series. 4 were detected within WL13, 

all by LLR where one was detected in 2006, one in 2007 and two in 2010. 5 (week 26) were 

detected within WL14, 3 by LLR and 2 by B&H where LLR detected two in 2007 and one in 

2010 and B&H detected one in 2006 and one in 2010. Finally 6 were detected within WL1 
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where 3 were detected by LLR and 3 by B&H, where LLR detected one in 2006, one in 2007 

and one in 2011 and B&H detected one in 2009, one in 2010 and one in 2011. 

Before 2008, 7 discontinuities were detected, three in 2006 where B&H detected one at 

2006.551 (week 28) (WL14) and two at the end of 2006 at 2006.852 (week 44) (WL13) and 

2006.977 (WL1).  Two discontinuities were detected relatively close to each other at 

2007.430 (WL13) and 2007.486 (WL14) – both by LLR which may indicate a change around 

this time. 

Another area which has two close detected change points is at 2007.997 (week 51) (WL14) 

and 2007.904 (week 47) (WL1), again indicating the possibility of change. 

From 2008 to mid-way through 2009, no discontinuities were detected by either LLR or by 

B&H.  

At 2010.030 (WL1) and 2010.115 (WL14) changes were detected by LLR and B&H 

respectively, which are relatively close. Two other close changes were detected at 2011.030 

(week 1)(WL1) and 2011.067 (week 3) (WL1) by B&H and LLR respectively, which were 

detected within the same series. 

To conclude, there are no large clusters of changes within the series which may indicate no 

changes may be present however a number of changepoints were relatively close to each 

other, namely two in mid-2007, two at the end of 2007, two at the start of 2010 and two at 

the start of 2010, indicating possibility of change at these times. However, no changes are 

expected within 2010 and 2011 so it is probable these are due to random variation. 
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3.6.2.3  NO2:  Comparing WL13, WL14 and WL1  

Figure 3.21: Seasonally adjusted log NO2 vs. Decimal year for stations WL13, WL14 and WL1 

with superimposed changepoint locations. 

Overall 19 discontinuities were detected within the three time series (WL13, WL14, WL1) for 

NO2, detected by the three methods LLR, B&H and BSM. Ten discontinuities were detected 

by LLR , 5 by B&H and 4 by BSM. The majority of discontinuities were detected within late 

2006 and mid-2007, 13 discontinuities were detected within 0.65 years around 2007. 

Another cluster of discontinuities lie around mid-2009 where 4 discontinuities were 

detected within series WL13 and WL14.  

Table 3.23: Location of changepoints for stations WL13, WL14 and WL1 

WL13 LLR 2006.854 2007.307  2009.352 2009.838  

 B&H 2006.929 2007.137     

 BSM  2007.34  2009.378   

WL14 LLR 2006.852   2007.367 2007.866 2009.255   

 B&H 2006.929 2007.058  2009.436   

 BSM  2007.181     

WL1 LLR 2006.852 2007.307     

 B&H       

 BSM  2007.099     

 

From both figures 3.21 and table 3.23, there is evidence to suggest that a discontinuity 

occurred around 2007, and possibly another in mid-2009. 
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3.7 Conclusions 

The simulation study carried out allowed us to determine the strength of each of the three 

tests under certain conditions. Various scenarios were constructed with differing changes in 

mean, trend, seasonal patterns, correlation and variance. The size and power of each test 

was then calculated by simulating data 100 times under the same unique conditions and 

determining the number of times that a changepoint was detected when no change point 

was present and when a changepoint was present respectively.  

Once the three tests were analysed we could determine how they would perform given the 

data we have. Since two of the three tests were affected by seasonal trend, seasonal trend 

was removed within the Whitelee data by modelling the data with harmonic functions. The 

tests were then used on the difference series (original minus trend). The EMEP data did not 

have seasonal trend and therefore tests were used on the raw series. 

Local linear regression was used to estimate missing values within both the EMEP and the 

Whitelee series using a small kernel bandwidth allowing us to follow the trend of each series 

quite closely. Random variation (Gaussian) was added onto the trend since all the data is 

normally distributed. The standard deviation of the random component was calculated by 

taking the standard deviation of the difference series between the estimates for local linear 

regression and the raw data. 

For the EMEP data, the three tests assessed sites AT02 and GB02. For AT02, 11 

discontinuities were found in total. Of the 11, there were two clusters of detected 

changepoints (both containing 3 changepoints each), one cluster in 1993 and one from mid-

2005 to 2006. For site GB02 there are 3 clusters of detected changepoints. One cluster is 

around mid-2006 to mid-2007 (three detected within this range). Another cluster is located 

in 1991 (one at 1991.18 (week 9) and one at 1991.6 (week 31)) with another changepoint 

relatively close at 1993. One more cluster lies around 2006 with one change located at 

2005.9 (week 46), one at 2007.1 (week 5) and another at 2007.6 (week 31). 

For the Total Phosphorus data at Whitelee, two clusters of changepoints are present. One 

large cluster of 12 changepoints were detected in 2007, two at the start of 2007 and ten in 

the middle of 2007.  Another cluster of 3 changepoints are in mid-2009.  
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Total organic carbon at Whitelee did not seem to have any clusters of changepoints but 

rather a spread of changepoints throughout the series. The only two close changepoints 

were located within 2011, one at 2011.067 (week 3) and one at 2011.030 (week 1). 

Nitrate oxide at Whitelee had two large clusters of detected changepoints within the series, 

one around 2007 and one around mid-2009. 13 detected changepoints were found around 

2007, 5 late 2006 and 8 early 2007. 4 changepoints were located around mid-2009 and a 

further 1 in late 2009.  

To conclude, for the EMEP data detected changepoints were relatively spread out with a 

few clusters of detected changes in the series. For the Whitelee series, there were clusters 

of changepoints in both the Total Phosphorus series and the Nitrate Oxide series, but not for 

the Total Organic Carbon series, however from preliminary analysis this was to be expected. 

This similarity in the location of the changepoints indicates that it is likely that the detected 

changes at these clusters are very likely to truly be changepoints rather than the methods 

variation. 
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Chapter 4  

Modelling the trends and changes in determinands at 

Whitelee 

4.1 Introduction 

The purpose of this chapter is to model our time series data with the use of a number of 

modelling techniques. Many modelling techniques are available to do this, parametric, non-

parametric or a combination of both.  

Information gained from previous chapters can be used within our modelling process to 

help build our models, making them a better fit to the data. The use of an           

function for example to indicate a changepoint, used within chapter 2 for our BACI 

modelling and adjusted within chapter 3 using changepoint analysis, can be used to help our 

models move more freely.  

 

Models built within this chapter will be compared and contrasted with the use of various 

criteria, allowing us to adapt and refine then.  

These models will be built logically with the use of this previously gained information, 

including parameters that we know are likely to add value to our models, rather than 

building from the ground up. 

 

Several modelling techniques may be considered while analysing the various time series of 

the three variables TP, TOC and NO2. One of the techniques which will be considered is 

GAM modelling. GAM’s are made of parametric terms and non-parametric smoothing 

terms. This allows for parametric characteristics with the benefit of smooth terms – GAM’s 

are flexible and effective for conducting nonlinear regression. 
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4.1.1 Generalised Additive Models 

For generalised additive models, we assume     (  ) and     some exponential family 

distribution (in this case, they are normally distributed).    can be regarded as our response 

variable,   is our model matrix for any parametric components of our model and   the 

corresponding parameter vector.   
   are regarded as our smooth functions of covariates   . 

Various smoothing functions can be used and the basis can be chosen, where the       is 

defined as the type of smoothing function we use. Within our analysis, we will use 

regression splines and cubic regression splines, the latter when representing seasonal 

variation.  

Representing a smooth function via regression splines requires that   be represented in 

such a way that it becomes a linear model, whereas representing a smooth via a cubic spline 

is made up of sections of cubic polynomial to make a curve. These sections that the sections 

meet are called       and must be chosen, typically evenly spaced through the range of   

values. 

The number of       chosen essentially allows us to control how smooth we would like to 

model our data. The higher the number of      , the smoother our model will become. 

Ideally we would like our spline estimate of    defined as  ̂ to be as close to  as possible 

and thus choose a smoothing parameter that allows us to do this. 

Essentially a GAM is a generalized linear model with a linear predictor including a sum of 

smooth functions of covariates, where the general model structure can be explained by: 

 

       ∑   (   )    
 
          (4.1)  

 

Where   are the parametric coefficients,   is a row of the model matrix for any strictly 

parametric model components,    (   )’s are the smooth terms and there are   of these. 

  ’s are the errors, which in our case are normally distributed. 

However the model may also include interaction terms and factors and be in the form: 

 

                ∑   (   )   
   ∑   (     (   ) )

 
          (4.2) 

Where we have   bivariate terms and a factor with   levels. 
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Coefficients can also vary with one another such that the model is specified in the form, for 

example:  

 

                  (   )           (   )    (       )    (   )            (4.3) 

 

Which would allow   (   ) to interact with        . For instance, if   (   ) was a smooth 

for trend, then allowing   (   ) to vary with         would mean that for each   there 

would be as many different smooth trends as there is levels for        . The term 

  (   )     allows for a varying coefficient where    varies along    (which could be, for 

example, time). If needed, smooth components can also be included as random effects. 

 

Essentially GAM models are a combination of both Generalised Linear Models and Additive 

Models which allow for properties of both. GLM models are flexible generalisations of linear  

models such that the response variable have distributions other than the normal 

distribution. Additive Models (AM) are nonparametric, using a one dimensional smoother to 

build a restricted class of nonparametric regression models. 

 

GAM models retain these properties; the models allow the user to specify a distribution 

other than the normal distribution and also a link function  ( ) relating the expected value 

of the distribution to the predictor variables if our errors are not normal. The functions 

  (  ) may be fit both parametric and non-parametrically and therefore GAMs provide 

potential for better fits than other techniques. 

 

We can use several criterion for model selection, two criteria which can be used for GAM 

models are the Generalised Cross Validation Score and the Akaike Information Criterion. 

The                                    (GCV) is a reasonable approach which was first 

introduced by Craven and Wahba (1979). This criterion allows us to select the smoothness 

parameter and compare GCV scores between models.  

The GCV score can be described as: 

    
 

 
∑ (

    ̂ 
̂

  
 

 
  ( )

)

 

 
          (4.4) 
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Where H is the hat matrix where    (   )    ,   is our matrix of explanatory variables 

(and contains the basis of the smooths) and  ̂ is the estimate of    from fitting all the data 

(Wood (2006)). 

The Akaike Information Criterion (AIC) may also be used. The AIC is described as: 

 

           ( )         (4.5) 

 

Where   is the number of parameters and   is the maximised log likelihood function for the 

estimated model. 

 

Comparisons of models can be judged by both AIC values and GCV scores. Any models 

comparisons where these values are close, an ANOVA based on an F-test can be used as a 

deciding factor  

In a less general sense, our model has normal errors and we know from previous analysis 

that changepoints are present within certain series. For series with a changepoint, we can 

include an           function. The indicator function is a binary categorical variable which 

changes from 0 to 1 after the changepoint. This coupled with some informal analysis will 

allow us to build models logically rather than from the ground up.  

All models were built in the statistical software R. All models were fitted using the     () 

package, which has functions for all of the models listed below. 
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 4.1.2 Varying Coefficient Models 
 
A further issue with modelling environmental data is to determine whether the underlying 

seasonal pattern changes in structure generally and smoothly over time, or whether the 

structure of our model changes after some point in time. This requires some further 

flexibility of our statistical model to account for the change in trend or seasonal pattern for 

example. 

Models that are additive in the regressors but allow the coefficients to change smoothly 

with the value of other variables are called Varying Coefficient Models. The concept of 

allowing coefficients to vary as a function was covered within section 4.1.1 (GAM models) 

and even though GAMs can contain varying coefficients, varying coefficient models in this 

specific section are based on allowing variable to vary with time and or space. Some 

examples of using varying coefficient models to model time series data include Chen and 

Tsay (1993) and Cai, Fan and Li (2000). 

 

We consider models which are linear in the regressors but their coefficients allowed to 

smoothly change with the value of another variable. Suppose we have a random variable 

  whos distribution depends on parameter   as well as predictors            and  

         . We can specify our varying coefficient model in the form 

 

         (  )        (  )      (4.6) 

 

This model says that           change the coefficients of            through functions 

  ( )   ( )      ( ). In some cases the variables    are indistinguishable from the variables 

   and in other cases might be a special variable such as ‘time’ (Hastie et al. (1993)). 
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4.1.3 Generalised Additive Mixed Models 
 
A different approach to estimation and inference with Generalised Additive Models is based 

on representing GAM’s as mixed models.  This can be used where factors within the model, 

in our case ‘Site’, are a random subset from a larger set of values and therefore should not 

be treated as fixed. A GAMM is a Generalised Linear Mixed Model in which part of the linear 

predictor is specified in terms of smooth functions of covariates and if for example the 

terms within a GAMM were to be linear, the GAMM would reduce to a GLMM.  

 

 Suppose we have an outcome variable   which has length  ,   covariates such that    

(           )
 

 associated with fixed effects and a vector   of length   containing 

covariates    associated with random effects. We can then specify a GAMM as: 

 

        (   )      (   )    
           (4.7) 

 

Where each   is assumed to be conditionally independent. 

Further explanation of the above model can be found in Penheiro & Bates (2000) and 

Ruppert et al. (2003). 

 

A key feature of this model is that additive nonparametric functions are used to model 

covariate effects and random effects are used to model correlation between observations. 

The term which could be included as random is Site. This is because our variable Site does 

not include every Site within Whitelee’s windfarm, it is a subset of a larger number of sites. 

Our modelling strategy within this section is to logically build a model given our prior 

knowledge from previous chapters. This model may or may not include seasonally varying 

coefficients.  

Both generalised additive models and varying coefficient models can be seen as special 

cases of generalised additive mixed models.   

This type of model will not be considered within our analysis because neither the AIC or the 

GCV can be calculated for this type of model. This means we cannot compare the mixed 

model directly with the GAM or the VCM. 
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4.2 Results 
4.2.1 Total Phosphorus: Modelling  
 
Within figure 4.1 we can see the overall trend over the years at all 11 sites. There is some 

variation within the sites although the general overall trend seems consistent such that 

there is a dip mid-2007 and perhaps a slight negative trend after this point. 

 

 

 
 

Figures 4.1: Time series of Log Total phosphorus 
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Figure 4.2 shows boxplots of log TP for each month.  There does seem to be a seasonal 

trend which dips in winter and peaks in summer however as the signal is quite weak it is 

hard to tell. All boxplots are approximately symmetrical and some have a few outliers. 

 

 
Figure 4.2: Boxplots of Log Total Phosphorus by Month 

 

 

As described in chapter 1, missing values within the series will be estimated using local 

linear regression with weights plus variance estimated from a random normal where the 

variance is representative of the rest of the series. 
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From work carried out within chapter 3, the observed changepoints can be seen within 

figure 4.3 and table 4.1 where seasonal adjustment was carried out by modelling the peaks 

and dips of summer and winter with a harmonic function and then taking the estimates 

from the original series. 

 
 

 
 
 

Figure 4.3: Time series of seasonally adjusted log TP (WL13, WL14 and WL1) with 

superimposed changepoint locations. 

 
Table 4.1: Location of changepoints for stations WL13, WL14 and WL1 

WL13 LLR   2007.564   

 B&H  2007.395    

 BSM  2007.395 2007.542  2009.378 

WL14 LLR 2007.159 2007.385 2007.564 2008.048 2009.512 

 B&H      

 BSM 2007.137 2007.466 2007.542  2009.436 

WL1 LLR   2007.564   

 B&H      

 BSM  2007.446    
 

The vast majority of changes occur around mid-2007 and there is also a small grouping 

around mid-2009.  
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As turbines were installed and roads built around mid-2007 we will set an indicator function 

to account for a change at this time point.  

 

Below in figure 4.4, a plot of log TP with a superimposed model for seasonal trend is shown 

and in figure 4.5 a plot of log TP with a superimposed model for long term trend is shown. 

These plots allow us to observe differences between sites by allowing both month and time 

to vary with site by including interaction terms. 

 

Initially, we can look at whether the seasonal trend is consistent throughout the series. If 

the mean level between sites crosses at any point, this may be evidence that a change has 

occurred. This can also be said for the long term trend.  

 

To do this, a simple GAM model can be fit to the data where the only parameters taken into 

account are Site as a parametric term and Month as a smooth term. The same can be done 

for long term trend by including a smooth term for Decimal.year instead of month. The 

overall trend for both seasonal and long term components can be found by excluding the 

parametric term Site. 
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Figure 4.4: Time series of log Total Phosphorus (Superimposed seasonal component model) 

 

Within figure 4.4 the seasonal trend for each site is shown using the model  (   (     ))  

         (       )    (       )       . The interaction between the smooth of month 

and site allows predictions to be more fluid such that the seasonal pattern can change with 

each site rather than being fixed. An overall trend can also be seen and is the black 

prediction. Overall, sites follow the same seasonal pattern as each other and each site has a 

different mean level. There is little overlap within the plot, curves are relatively parallel.  

 
 
 
 



115 
 

 
 

 
Figure 4.5: Time series of log Total Phosphorus (Superimposed long term trend component 

model 

 
 
Figure 4.5 shows log total phosphorus over time with a superimposed model which 

estimates the long term trend using  (   (    ))           (             )  

 (             )       . This interaction between the smooth of decimal year and site 

allows the overall trend to vary with each site, rather than being fixed and parallel.  As with 

the seasonal component most sites stay relatively parallel however around mid-2007 there 

are some overlaps and there are also a few around 2010. There is a clear dip mid-2007, 

where the gradient changes from negative to positive at the proposed change at mid-2007. 
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4.2.2 Generalised Additive Models 

Increasingly complicated models were considered within the analysis for the 11 sites each 

with both parametric and smoothing terms within them. ANOVA p-values are calculated 

between models where a p-value below 0.05 indicates that the more complex model should 

be used.   

Taking into account previous analysis in chapters 2 and 3, there is evidence of a change 

point mid-2007. The informal analysis allowed us to observe that the gradient of the smooth 

curve changes between the left and right at this point and that long term seasonal trend 

changes slightly between sites. 

A good starting point will be to include overall terms for Site and an Indicator function. We 

will allow a smooth of Decimal year to vary with Indicator to account for the change in 

gradient, a smooth of Decimal year to vary with Site to allow overall trends between sites to 

vary and smooths of month to vary with both the Indicator and Site to allow the seasonal 

trend to change at the changepoint and between sites. This model may have to be reduced 

if certain terms are not significant. 

 

Table 4.2: GAM models (TP) 

 

Surprisingly, our model with the Indicator terms was a worse fit than a model without these 

terms. This final model was then adjusted by changing the number of knots within each of 

our smoothing parameters to optimise the model. The second model has a lower AIC and 

GCV score. Furthermore, the ANOVA shows a p-value of below 0.05 when comparing 

models, indicating the second model is a better fit.   

 

 

 

Model Description AIC GCV ANOVA  
(p-value) 

 (   (     ))                    

   (             )            
   (       )            
   (                     )
   (             )          (       )        

1841.286 0.3575 --- 

 (   (      ))           (             )    (       )

   (                     )
   (             )          (       )        

1730.866 0.3259 1.797e-05 
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4.2.3 Varying Coefficient Model 

We can adapt and extend our original GAM model to account for a variation in model 

parameters before and after the change point. This can be achieved by allowing the effects 

of each of our covariates to vary with the variable             and will allow variables to 

change before and after this point.  

The term             has been added within the model as a main effect since it is a factor, if 

it was numeric it would not be added since the resulting smooth is not usually subject to a 

centering constraint. However if we wished our model to vary with a numeric term a term 

within the model can be specified as  (           )             which is commonly 

used for smoothing or nonparametric regression on            as stated by Hastie and 

Tibshirani (1993). 

A simple model will be considered where decimal year and month as smooth terms vary by 

the indicator function, allowing the overall trend and seasonal trend to vary at the 

changepoint. 

 Table 4.3: Varying coefficient model (TP) 

 

The varying coefficient model shown above has a GCV of 0.3887 and AIC of 1934.284. Both 

of these values are higher than the final GAM model shown in table 4.5, although this is not 

surprising as this model does not include some of the terms that the GAM model did. 

Therefore, this model will not be considered any further.  

 

 

 

Model Description AIC GCV 

 (   (      ))         

                (             )            
  (       )             

1934.284 0.3887 
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4.2.4 Final model 

 

Our final model has been chosen as the one with the lowest AIC and GCV score which is our 

generalised additive model. This will be used to track total phosphorus over time at the 11 

different sites at Whitelee.  

Smoothing functions will also be presented to show the overall trend, seasonal trend and 

the interaction between these two variables. 

Normality of residuals will also be assessed for the 11 different sites as will the assumption 

of correlated errors. Note that the EDF is the estimated degrees of freedom for our smooth 

terms. 
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Table 4.4: ANOVA table for final model  

GAM Object 
Model:  (   (      ))           (             )    (       )    (                     )  

  (             )          (       )        

 Parameters Estimate   

Parametric 
Coefficients  

  3.637 < 2e-16 *** 

       (    ) 0.579 1.23e-13 *** 

       (    ) 0.398 2.89e-07 *** 
       (    ) 0.022 0.77495 

       (    ) 0.027 0.72077 

       (         ) -0.036 0.63707 

       (       ) 0.251 0.00117 ** 

      (      ) -0.374 1.38e-06 *** 

       (      ) -0.402 2.27e-07 *** 

        (   ) 0.124 0.10765 

        (   ) 0.129 0.09518 . 
    

  EDF  

Smooth Terms  (                 ) 48.620 < 2e-16 *** 

  (          ) 8.446 4.33e-06 *** 
  (                  ) 27.000 8.94e-12 *** 

  (            )      (   ) 0.916 0.0002 *** 

  (            )      (    ) 4.015 2.17e-13 *** 

  (            )      (    ) 2.474 5.47e-06 *** 
  (            )      (    ) 0.916 0.000182 *** 

  (            )      (    ) 5.168 2.60e-05 *** 

  (            )      (        ) 2.276 0.000145 *** 

  (            )      (       ) 2.835 0.000380 *** 

  (            )      (      ) 0.916 0.000366 *** 

  (            )      (      ) 4.491 0.000386 *** 

  (            )       (   ) 3.019 0.000756 *** 
  (            )       (   ) 0.916 0.000245 *** 

  (     )      (   ) 1.153 0.658971 

  (     )      (    ) 0.956 0.671026 

  (     )      (    ) 6.866 0.198697 
  (     )      (    ) 1.623 0.419930 

  (     )      (    ) 7.326 0.057303 . 

  (     )      (        ) 0.956 0.665366 

  (     )      (       ) 0.956 0.670680 
  (     )      (      ) 3.272 0.004020 ** 

  (     )      (      ) 7.802 0.009846 ** 

  (     )       (   ) 0.956 0.664752 

  (     )       (   ) 3.631 0.120702 
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Of the 12 parametric coefficients including the intercept, 6 were significant with p-values 

less than 0.05. The mean level for sites WL15, WL17 WL2.16.3, WLM and WLQ did not 

significantly differ from site WL1 which is included within the intercept. 

 

Of the 25 smooth terms, 16 were significant with p-values less than 0.05. Decimal year, with 

a specified number of knots equal to 50 was highly significant as was the smooth function 

for month with a specified number of knots equal to 12. The interaction between decimal 

year and month was significant which indicates that the seasonal trend differs between 

years. The interaction between decimal year and site was also significant for all levels of the 

factor site, which indicates that the overall trend differs between sites. 

 

The interaction between month and site is only significant for two sites and a further one is 

borderline (WL17). This means that the seasonal trend differs between sites only for 

significant levels of the factor site whereas the rest of the do not have different seasonal 

patterns between sites.  

As this smooth function does have significant terms, we can leave this function within the 

model. 
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Figure 4.6: Prediction estimates and intervals (TP) 
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Figure 4.7: Prediction estimates and intervals (TP) 
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Figure 4.8: Prediction estimates and intervals (TP) 

 
 

Intervals were calculated by multiplying each point by           where    is the standard 

error calculated as     √   where n is the number of observations and   is the sample 

standard deviation.  It is also true that normality is an assumption of a Generalised Additive 

Model although this is relaxed in comparison to a Linear Model. This assumption can be 

informally checked with the use of histograms, and the assumption of uncorrelated errors 

can be evaluated with the use of an ACF plot. 
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Figure 4.9: QQ normal plots of residuals (TP) 

 

Within figure 4.9 QQ normal plots can be seen for each site. Within each plot, normality can 

be assumed since almost all points lie on or near the fitted line with no tailing off of points 

towards the ends. Within WL9DUN there is an outlier however this can be expected. 
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Figures 4.10: ACF plots of residual values at each site for log Total Phosphorus  

 

The ACF plots shown in figure 4.10 show the autocorrelation between lags within the sites 

at Whitelee. Within the 11 plots, there are no significant autocorrelation values and we can 

therefore conclude that the residuals within each site are not correlated with each other. 
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4.2.5 Conclusion (Total Phosphorus) 

From our subjective impression we could determine that log Total Phosphorus had a distinct 

seasonal trend and a slight negative overall trend. Within each month, data was normally 

distributed with a few outliers. From previous analysis, a changepoint located in mid-2007 

was found, this was incorporated into our modelling structure.  

The models which were considered consisted of the terms Site, Indicator, Decimal year and 

Month. Smooth terms and interactions between smooth variables and non-smoothed 

variables were also considered. Varying coefficient models were also considered however in 

the end the GAM model shown below was chosen as our final model: 

 (   (      ))           (             )    (       )    (                     )

   (             )          (       )        

Residuals for this model were normally distributed and ACF plots did not show any 

significant autocorrelation at lags >1. As these assumptions held, the final model could then 

be used to model our data. 
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4.3.1 Total Organic Carbon: Modelling  
 
Figure 4.11 shows the overall series over time where each line represents a different site. It 

is not clear from the plots whether there is a change mid-2007. There does not seem to be a 

shift in mean or change in trend at this point. 

Seasonal variation is clear from the two plots, with peaks in summer and troughs in winter. 

 
 

 
 

Figure 4.11: Log Total Organic Carbon vs. Decimal Year 
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Figure 4.12: Boxplots of Log Total Phosphorus by Month 

 

The boxplot above shoes log TOC by each month. The 12 box-and-whisker diagrams within 

the plot represent each month from January to December. The spread is relatively equal for 

each plot with a few outliers in July, October and November however the rest of the data is 

roughly normally distributed.  

Clearly there is a seasonal trend within the series with low TOC levels around winter and 

high TOC levels in late summer. 
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Figure 4.13: Seasonally adjusted log TOC vs. decimal year for stations WL13, WL14 and WL1 

with superimposed changepoint locations. 

 

 

 

Table 4.5: Location of changepoints for stations WL13, WL14 and WL1 

WL13 LLR 2006.852 2007.430 2010.126 2010.126   

 B&H       

 BSM       

WL14 LLR  2007.486 2007.997 2010.115   

 B&H 2006.551    2010.704  

 BSM       

WL1 LLR 2006.977  2007.904   2011.067 

 B&H   2009.493   2010.030  2011.030 

 BSM       

 

 

Changepoint locations are fairly equally spread along the series within figure 4.13 and there 

does not seem to be and clustering of locations. Of the twelve changepoints, 6 lie to the left 
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of the midpoint and 6 lie to the right. From this evidence there does not seem to be a 

change present. 

 
Initially, we can look at whether the seasonal trend is consistent throughout the series. If 

the mean level between sites crosses at any point, this may be evidence that a change has 

occurred. This can also be said for the long term trend. 

 

To do this, a simple GAM model can be fitted to the data where the only parameters taken 

into account are Site as a parametric term and Month as a smooth term. The same can be 

done for long term trend by including a smooth term for Decimal.year instead of month. 

The overall trend for both seasonal and long term components can be found by excluding 

the parametric term Site. 
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Figure 4.14: Log Total Organic Carbon versus Decimal year (Superimposed long term 
component model) 

 
 
Within figure 4.14, we can see the long term trend for each site at Whitelee including the 

overall trend. Sites WL13, WL15, WL14 and WL1 are all relatively parallel whereas the 

remaining sites do cross and overlap at certain points throughout the series. 
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Figure 4.15: Log Total Organic Carbon versus Decimal year (Superimposed seasonal 
component model) 

 

The seasonal components for each site are plotted above within figure 4.15 where our 

model is specified as  (   (      ))           (       )    (       )       , 

allowing us to see which seasonal patterns differ. Clearly, the overall seasonal pattern is 

strong and for individual sites lines generally sit parallel. 
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4.3.2 Generalised Additive Models 

Several models were considered within the analysis for the 11 sites each with both 

parametric and smoothing terms within them.  

From the BACI modelling earlier, there was no evidence to suggest that a changepoint is 

present within the dataset and from informal analysis no changes can be observed around 

mid-2007, therefore it does not make sense to include an indicator function to identify this 

changepoint. 

ANOVA p-values are calculated between the current model and the previous model where a 

p-value below 0.05 indicates that the more complex model should be used.  

Table 4.6: GAM models (TOC) 

 

It is clear that each additional parameter must be included within the model since both the 

AIC and the GCV reduces in value as each parameter is added. No indicator term has been 

added since there was no evidence to suggest a change after mid-2007. We can change the 

number of knots within our smooth functions to obtain a final GAM model. 

 
Table 4.7: Final GAM model (TOC) 

 
 

 

 

 

 

 

Model Description AIC GCV ANOVA  
(p-value) 

 (   (      ))           (             )    (       )

   (                     )
   (             )        

846.170 
 

0.1339 --- 

 (   (      ))           (             )    (       )

   (                     )
   (             )          (       )        

738.416 0.1214 2.2e-16 

Model Description AIC GCV 

 (   (      ))          (             )    (       )

   (                     )    (             )       

   (       )        

600.5789 0.108 
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4.3.3 Varying Coefficient Model 

We can adapt and extend our original GAM model to account for a variation in model 

parameters before and after the change point. Since there is not enough evidence to 

support a change point around mid-2007, specifying an indicator function will not add any 

value to our statistical model. However, by allowing our parameters to vary with the term 

month we allow the seasonal pattern to change over time. The term      as a numeric 

variable and a parameter on its own will not be added since the resulting smooth is not 

usually subject to a centering constraint. However we can be specify this term as 

 (     )       which is commonly used for smoothing or nonparametric regression on 

           as stated by Hastie and Tibshirani (1993). 

Table 4.8: Varying coefficient model (TOC) 

 

This model has a GCV of 0.1517and AIC of 974.47. Both of these values are higher than the 

final GAM model shown in table 4.8.  

 

 

 

 

 

 

Model Description AIC GCV ANOVA  
(p-value) 

 (   (      ))                  (       )        

  (             )         
1048.59 0.1629 --- 

 (   (      ))                  (       )        

  (             )         
974.47 0.1517 7.439e-15 

*** 
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4.3.4 Final model 

Our final model has been chosen as the one with the lowest AIC and GCV score which is our 

final generalised additive model. This will be used to track total organic carbon over time at 

the 11 different sites at Whitelee.  

Smoothing functions will also be presented to show the overall trend, seasonal trend and 

the interaction between these two variables. 

Normality of residuals will also be assessed for the 11 different sites as will the assumption 

of correlated errors. 
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Table 4.9: ANOVA table for final model (TOC) 

 
 

Model:  (   (      ))           (             )    (       )    (                     )  

  (             )          (       )        

 Parameters Estimate   

Parametric 
Coefficients  

  2.960 < 2e-16 *** 

       (    ) 0.313 2.75e-12 *** 

       (    ) 0.107 0.01558 * 

       (    ) 0.315 2.32e-12 *** 
       (    ) -0.386 < 2e-16 *** 

       (         ) 0.121 0.00625 ** 

       (       ) -0.243 5.11e-08 *** 

      (      ) -0.423 < 2e-16 *** 

       (      ) -0.66 < 2e-16 *** 

        (   ) -0.32 9.49e-13 *** 

        (   ) -0.18 5.02e-05 *** 

    
  EDF  

Smooth Terms  (                 ) 39.677 1.18e-15 *** 

  (          ) 8.4676 0.003737 ** 

  (            )      (   ) 0.9164 0.133485 
  (            )      (    ) 2.6884 0.013000 * 

  (            )      (    ) 1.5558 0.195831 

  (            )      (    ) 2.6491 0.099090 

  (            )      (    ) 8.3385 3.00e-05 *** 
  (            )      (        ) 3.0423 0.2358 

  (            )      (       ) 6.3690 0.0020** 

  (            )      (      ) 7.5349 0.0003*** 

  (            )      (      ) 8.2496 0.0012** 

  (            )       (   ) 7.6226 0.0016** 

  (            )       (   ) 0.9164 0.0992 

  (                  ) 25.7129 7.74e-05*** 
  (     )      (   ) 0.9112 0.8279 

  (     )      (    ) 1.7594 0.3128 

  (     )      (    ) 0.9112 0.2602 

  (     )      (    ) 0.9113 0.5817 
  (     )      (    ) 3.2564 0.1440 

  (     )      (        ) 0.9112 0.9582 

  (     )      (       ) 0.9113 0.4040 

  (     )      (      ) 0.9112 0.2358 
  (     )      (      ) 1.9677 0.1031 

  (     )       (   ) 5.9860 0.0966 

  (     )       (   ) 6.6616 0.2554 
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Even though none of the terms for the interaction between Month and Site are significant, 

when our model with this term is compared with a model without this term within an 

ANOVA, the output suggests using the more complicated model which can be seen within 

table 4.13. 

 

Analysis of Deviance Table 
 
          (   (      ))

          (             )    (       )    (                     )

   (             )          (       )        
          (   (      ))

         (             )    (       )    (                     )

   (             )        

       Resid. Df           Resid. Dev               Df         Deviance                       (  )     
1    863.16                78.669                                       

2    890.58                84.680              -27.418     -6.0107       2.4054    8.076e-05 *** 

 
Table 4.10: Comparing models with and without  (       )        (TOC) 
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Figures 4.16: Prediction estimates and intervals (TOC) 
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Figure 4.17: Prediction estimates and intervals  
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Figure 4.18: Prediction estimates and intervals (TOC) 
 
 

Our final model has been used to predict the 11 TOC series at Whitelee. The model is a good 

fit to the data with separate mean levels for each series, an overall trend, an overall 

seasonal pattern and three varying coefficients. 

The plotted smoothing functions for decimal year, month and their interaction can be seen 

within figures 4.15-4.18.  

 

Autocorrelation is also assessed within figure 4.20. 
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Figure 4.19: QQ normal plots at each site for log Total Organic Carbon  

 

Within figure 4.19 histograms of the residual values between the fitted model and the data 

can be seen. Residuals for all sites are approximately normally distributed and we can 

therefore assume that our models are a good fit to the data. 
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Figures 4.20: ACF plots of residual values at each site for log Total Organic Carbon  

 

The ACF plots shown above show the autocorrelation between residual values at the 11 

sites at Whitelee. Within almost all plots the assumption of no autocorrelation between lags 

can be assumed however at site WLQ and WLM there are significant correlations at lag 1. 

The auto correlation at these two sites is borderline and can be ignored.  
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4.4.5 Conclusion (Total Organic Carbon) 

Of the three variables in which analysis was carried out, log TOC had the strongest seasonal 

signal however the long term trend was roughly horizontal for all sites.  

From chapters 2 and 3, we determined that no changepoint was present and therefore no 

Indicator function was present within any analysis.  

As with log TP, GAM models and varying coefficient models were considered to model log 

TOC. However, the final model used after checking assumptions for normal residuals and 

non-correlated errors is shown below: 

 

 (   (      ))           (             )    (       )    (                     )

   (             )          (       )        

 
This was then used to model each site individually. 
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4.4.1 Nitrate Oxide: Modelling  
 
Figure 4.21 shows the overall series over time where each line represents a different site. 

These series have many missing values however these will be filled in using local linear 

regression with weights. From the plots alone it is not clear whether there is a regime 

change around mid-2007. 

 

 
 
 

Figure 4.21: Log Nitrate Oxide vs. Decimal Year 
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Figure 4.22: Log Nitrate Oxide vs. Decimal Month 

 

 

Figure 4.22 is a boxplot showing 12 months of the year for log NO2. Most months are 

approximately symmetrical with a few residuals. There is a clear seasonal pattern with a 

peak in summer and a trough in winter. 

 

From this plot alone, we can see it is likely that the term Month will be a significant 

predictor of log NO2. 

 

 
 



146 
 

Figure 4.23: Seasonally adjusted log NO2 vs. decimal year for stations WL13, WL14 and WL1 

with superimposed changepoint locations. 

 

Table 4.14 and figure 4.23 show the changepoints located by the three tests. Most change 

points are located around 2007, however there are quite a few which lie around mid-2009. 

Of the 19 changes which were located, 13 lie around 2007 and 4 lie around mid-2009. An 

indicator function will be used within the analysis to account for these changes in 2007 and 

2009 however as shown previously the GAM models may fit well enough without the need 

to these functions. 

 

Table 4.11: Location of changepoints for stations WL13, WL14 and WL1 

WL13 LLR 2006.854 2007.307  2009.352 2009.838  

 B&H 2006.929 2007.137     

 BSM  2007.34  2009.378   

WL14 LLR 2006.852   2007.367 2007.866 2009.255   

 B&H 2006.929 2007.058  2009.436   

 BSM  2007.181     

WL1 LLR 2006.852 2007.307     

 B&H       

 BSM  2007.099     



147 
 

 

 

Figure 4.24: Log Nitrate Oxide versus Decimal year (Superimposed long term trend 
component model 

 

 
Within figure 4.24, we can see the long term trend for each site at Whitelee including the 

overall trend. The model used to describe the data above is described as:  

 (   (     ))           (             )    (             )         such that this model 

allows each site to have a separate overall mean and their own overall trend. 
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Figure 4.25: Log Nitrate Oxide versus Decimal year (Superimposed seasonal component 
model 

 

 

The seasonal components for each site are plotted above within figure 4.25 where our 

model allows us to determine which seasonal patterns differ. The model  (   (      ))  

        (       )    (       )        allows for separate means and separate seasonal 

patterns via sites. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



149 
 

4.4.2 General Additive Models 

Increasingly complicated models were considered within the analysis for the 11 sites each 

with both parametric and smoothing terms within them. ANOVA p-values are calculated 

between the current model and the previous model where a p-value below 0.05 indicates 

that the more complex model should be used. An indicator function has been used to 

separate the two change points that were detected. One has been set at 2007.1 and one at 

2009.3.  All 8 models are shown below in mathematical notation: 

Table 4.12: GAM models (NO2) 

 

It is clear that each additional parameter must be included within the model since both the 

AIC and the GCV reduces in value as each parameter is added. This final model does not 

include the term           as the AIC and GCV values are lower than the previous models. 

 
Table 4.13: Final GAM model (NO2) 

 
 (Note all models assume         (accounting for changes in 2007 and 2009)) 

 

 

 

 

 

 

 

Model Description AIC GCV ANOVA  
(p-value) 

 (   (      ))           (             )    (       )

   (                     )
   (             )          (       )        

761.834 0.171 --- 

 (   (      ))                                
   (             )            
   (       )            
   (                     )
   (             )          (       )        

784.4135 0.176 < 2.2e-16  

Model Description AIC GCV 

 (   (      ))          (             )    (        )

   (                     )    (             )       

   (       )        

616.110 0.146 
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4.4.3 Varying Coefficient Model 

We can adapt and extend our original GAM model to account for a variation in model 

parameters before and after the change point. Since within the previous model the 

indicator function did not add any value to the model, we will not assess this as a term to 

vary our coefficients.  

Table 4.14: Varying coefficient model (NO2) 

 

This has a GCV of 0.2797 and AIC of 1480.761. Both of these values are higher than the final 

GAM model shown in table 4.15.  

 

 

 

 

 

 

 

 

 

 

 

Model Description AIC GCV ANOVA  
(p-value) 

 (   (      ))                  (       )        

  (             )        
1511.74 0.2890 --- 

 (   (      ))                 (       )        

  (             )         
1480.76 0.2797 2.94e-07 *** 
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4.4.4 Final model 

Our final model has been chosen as the one with the lowest AIC and GCV score which is our 

generalised additive shown in figure 4.16. This will be used to track Nitrate Oxide over time 

at the 11 different sites at Whitelee.  

Smoothing functions will also be presented to show the overall trend, seasonal trend and 

the interaction between these two variables. 

Normality of residuals will also be assessed for the 11 different sites as will the assumption 

of correlated errors. 
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Table 4.15: ANOVA table for final model (NO2) 

 
 

Model:  (   (      ))  

         (             )    (        )    (                     )  

  (             )          (       )        

 Parameters Estimate   
Parametric 
Coefficients  

  2.253 < 2e-16 *** 

       (    ) 0.117 0.070708 . 

       (    ) 0.001 0.986498 

       (    ) 0.152 0.019173 * 

       (    ) -0.026 0.687185 
       (         ) -0.043 0.501834 

       (       ) 0.487 1.71e-13 *** 

      (      ) -0.238 0.000255 *** 

       (      ) -0.558 < 2e-16 *** 
        (   ) -0.108 0.095404 . 

        (   ) -0.052 0.415822 

    

  EDF  
Smooth Terms  (                 ) 44.5029 0.000115 *** 

  (          ) 5.558 0.998338 

  (            )      (   ) 0.9975 0.1488 

  (            )      (    ) 1.389 0.0684 
  (            )      (    ) 0.916 0.0709 

  (            )      (    ) 0.916 0.0971 

  (            )      (    ) 4.925 0.0628 

  (            )      (        ) 0.916 0.0875 
  (            )      (       ) 7.608 8.06e-06*** 

  (            )      (      ) 5.302 0.1231 

  (            )      (      ) 6.952 0.000286*** 

  (            )       (   ) 0.916 0.1187 
  (            )       (   ) 7.8879 0.0253 

  (                  ) 18.472 0.655230 

  (     )      (   ) 0.9167 0.420527 
  (     )      (    ) 0.9167 0.226705 

  (     )      (    ) 0.9167 0.387527 

  (     )      (    ) 0.9167 0.153438 

  (     )      (    ) 5.507 0.432802   
  (     )      (        ) 0.9167 0.253150 

  (     )      (       ) 6.352 0.000128 *** 

  (     )      (      ) 0.995 0.739858 

  (     )      (      ) 5.412 0.002324 ** 
  (     )       (   ) 1.496 0.622926 

  (     )       (   ) 1.72 0.251862 
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Figure 4.26: Prediction estimates and intervals (NO2) 
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Figure 4.27: Prediction estimates and intervals (NO2) 
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Figures 4.28: Prediction estimates and intervals (NO2) 
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Figures 4.29: Residual plots at each site for log NO2  

 

Within figure 4.29 QQ normal plots of the residuals using our final model for NO2 can be 

seen. Within almost all plots the points stay on the fitted line. There are a few residuals 

within a number of plots and the residuals for WL1 do tail off slightly. However, overall we 

can assume normality from these plots. 
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Figure 4.30: ACF plots of residual values at each site for log NO2  

 

The ACF plots shown above show the autocorrelation between residual values at the 11 

sites at Whitelee. Within almost all plots the assumption of no autocorrelation between lags 

can be assumed however at site WLQ and WLM there are significant correlations at lag 1. 

The auto correlation at these two sites is borderline and can be ignored. Any other 

significant autocorrelations can also be ignored as these intervals are based on 95% 

confidence. 
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4.4.5 Conclusion (Nitrate Oxide) 

From an initial impression and previous analysis, a changepoint does look present within the 

data with a dip in the data around mid-2007. Seasonal trend is also strong within the series. 

As previous analysis allowed us to determine that a changepoint was present, an Indicator 

function was included within our models using GAMs and varying coefficient models. 

Once our model was assessed and adjusted, the final GAM model shown below was chosen: 

 

 (   (      ))          (             )    (        )    (                     )

   (             )          (       )        

 

However, this model does not include the Indicator function to specify the changepoint. 

After checking assumptions for normality of residuals and non-correlated errors, the model 

was used to predict over each site. 
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4.6 Conclusion: Modelling 

Within this chapter, two modelling approaches were considered to model the Whitelee 

data. Terms for seasonal trend, sites, months, overall trend and to indicator functions were 

used to model each series. Interaction terms and smooth terms were also included. 

 

For all three variables, GAM’s were preferred over varying coefficient models simply 

because the provided a better fit to the data. GAMM’s were not used because there was no 

way to compare their fits with GAM’s and varying coefficient models. 

Changepoints were indicated by a either a binary variable or a variable consisting of three 

levels depending on the number of changepoints present within the data. These ‘indicator’ 

functions allowed us to model a mean change within our series at the point where changes 

lay (these changes were found within chapter 3); however models without these functions 

actually provided a better fit to the data and therefore they were not needed. 

 

All three final GAM models included terms for overall trend and months. This means that 

the levels of TP, TOC and NO2 varied over time, and over each month. 

Site was also included as a parameter in all three final GAM models; therefore the levels of 

the three variables also varied with site meaning different sites around Whitelee had 

different abundances of each determinand. 
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Chapter 5  

Conclusions 

5.1 Overview 

The overall aim of this thesis was to explore changepoint detection techniques, both past 

and present, which are available to statisticians, as well as explore a variety of statistical 

testing and modelling approaches and see how they can be used within an EIA framework. 

The techniques which can be used, specifically to environmental time series, depend on the 

data which are available. The characteristics of each time series need to be examined prior 

to adopting techniques for example; the presence of seasonal trend, the presence of 

autocorrelation, the length of the series and the type of discontinuity expected will all 

impact on the modelling strategy. 

The type of discontinuity can vary in magnitude and can be a change in mean, change in 

trend, change in variance and change in seasonal pattern. More complex discontinuities can 

include a combination of those listed above. We also need to consider whether the 

changepoint needs to be evaluated in a temporal or spatial context, and in a BACI setting, 

whether we have a control site to compare our impact series with. 

The data which were used within this thesis were time series from two contexts. Our first 

dataset obtained from EMEP used sulphur dioxide levels in Austria and England to explore 

the impact of an international convention controlling discharges. The second dataset 

included a number of variables at Whitelee windfarm, namely Total Phosphorus (TP), Total 

Organic Carbon (TOC) and Nitrate Oxide (NO2) to explore the effects (transient of 

permanent) of the windfarm development. 11 sites for each of these variables were 

assessed. Techniques had to be chosen to accommodate the varying characteristics of all of 

these series.  
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5.2 Results 

Of the tests which were explored within the first few chapters of the thesis, three were 

chosen to use on both the EMEP and the Whitelee datasets. The performance of these tests 

was assessed in a simulation study where the type of change (change in mean, change in 

variance etc.), the magnitude of the change, the correlation, the variance and whether or 

not a seasonal trend was present were varied.  By varying and changing the model 

characteristics we were able to determine which tests worked best under certain 

conditions. To summarise, all three tests worked well under different conditions. Our first 

test, Local linear regression, worked well when a mean change was present however the 

size of the test was affected by both correlation and seasonal trend. Barry and Hartigans 

algorithm worked extremely well but the size of the test was drastically affected by the 

presence of seasonal trend. Binary segmentation worked well under all conditions, even 

when seasonal trend and correlation were present. 

Since two of the three tests were affected by the presence of seasonal trend, harmonic 

functions were fit to the data and difference series were calculated for the Whitelee time 

series. The EMEP series were weekly averages so seasonal trend was weak and no 

alterations were needed. 
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5.3 EMEP Results 

Two series were analysed using changepoint detection techniques from EMEP. Firstly, site 

AT02 was analysed which is a site located at the south eastern tip of Austria. In total, 11 

changepoints were detected, 3 by LLR, 5 by B&H and 3 by BSM. One cluster of 3 

changepoints were located in 2003 and another three around the end of 2005. 

Analysis on GB02 resulted in a total of 12 changepoints, three were detected by LLR, 4 by 

B&H and 5 by BSM. Detected changepoints were relatively spread out with no clustering. 

Two separate changepoints by two separate methods (B&H and BSM) detected 

changepoints around half way through 1996. 

From the analysis on GB02, there does not seem to be any evidence to suggest 

changepoints. There is possibly a changepoint mid 2006 as two changepoints were detected 

there however as all other detected changepoints are spread out results do not suggest a 

significant change in model trend. It is possible that changepoints are located in the AT02 

time series, either in 2003 or at the end of 2005 as two separate clusters of changepoints 

were located around these times. 
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5.4 Whitelee results 

Our first analysis performed on Whiteelee was a BACI design experiment. This method 

consists of applying a linear model to the data with terms for indicating whether the point 

of interest is before or after the changepoint (named ‘indicator’), overall trend, month and 

whether a site is a control or an impact site (named ‘control/impact’). Interaction terms 

between the indicator term and the control/impact term were also included. The models 

were then analysed within an ANOVA table and if any of these terms were insignificant, they 

were removed. Model assumptions were analysed using residuals vs. fitted values for 

constant variance and histograms were used to assess normality of residuals. 

The final model applied to our total phosphorus data consisted of all 5 terms including the 

interaction term. All of these terms were significant within an ANOVA table and therefore 

the conclusion was made that mean log TP differed depending on whether it was measured 

before or after the intervention point and it also differed between control and impact sites. 

The final model for TOC included 3 terms, time, month and control/impact. Therefore log 

TOC varied by whether the site was a control or impact site, but not whether the 

measurement was before or after intervention. 

The final model for NO2 included 3 terms, month, indicator and control/impact. Therefore 

log NO2 varied by site and depended on whether the measurement was before or after 

intervention.  

Chapter 3 consisted of a review of various changepoint detection techniques. Of the 

techniques reviewed, three were chosen to analyse our datasets for both the EMEP data 

and the Whitelee data. Local linear regression (LLR), a technique based on normal kernel 

smoothing, Barry and Hartigans (B&H) algorithm based on Bayesian theory and Binary 

Segmentation (BSM) based on likelihood were chosen to analyse the datasets. A simulation 

study was carried out on 6 different scenarios for each of the methods, with each scenario 

becoming increasingly more complicated.  

To summarise, LLR performed well when a change of mean was present and also performed 

satisfactory when seasonal trend was present however the kernel bandwidth had to be 
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reduced when seasonal trend was present. B&H performed very well when seasonal trend 

was not present. When seasonal trend is present within our datasets, a linear model with 

harmonic components was used to remove this trend. BSM performed very well under all 

conditions. 

Once all three methods were applied to log Total Phosphorus, 16 changepoints were 

detected between the three methods with 13 grouped closely in mid-2007 and 3 grouped 

closely in mid-2009. 

15 changepoints were detected within our log Total Organic Carbon data however these 

changepoints were relatively spread out with no clustering. 

For log Nitrate Oxide, 19 changes were detected. 14 were located around 2007 and 5 were 

located mid-2009. 

Modelling was carried out on the Whitelee data using Generalised Additive Models and 

Varying Coefficient models. Changepoints detected from chapter 3 were used within our 

models to indicate where intervention points were found. 

Both modelling techniques used terms for overall trend, month, site, and also indicator 

terms. Smooth functions of these terms and interactions between them were also used. 

Comparisons between models were made with both the AIC and GCV, if there was any 

doubt whether a model should be selected over another, an ANOVA between the two 

models was calculated. 

The final model selected for modelling log TP was a GAM model included terms for site, 

smooths for decimal year and month and a smooth interaction between decimal year and 

month as well as smooths for decimal year and month which vary by site. All of these terms 

were significant within an ANOVA table. For both log TOC and log NO2, the final models 

included terms for site, a smooth term for the overall trend and month as well as a smooth 

term for the interaction between the overall trend and month and terms which allowed 

both the overall trend and month to vary with site. There was no indicator term within 

these models. 
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Overall, the models applied to the three determinands fitted the data well.  Indicator terms 

were not needed in any of the three models since the models tracked the data closely 

enough without the term. After these models were built, prediction estimates and 95% 

confidence intervals were calculated and plotted for each site. Normality of residuals was 

assessed using QQ plots and ACF plots allowed us to check for autocorrelation in the lags. 

Through our BACI analysis, changepoint analysis and modelling through various techniques, 

we can draw together what has been found to identify the effect of the wind farm 

development on the three determinands that have been assessed. If the ‘Indicator’ function 

within the BACI analysis was significant, then this indicates a significant change in mean at 

the point in time that the indicator function changes value from 0 to 1. BACI analysis also 

allowed us to quantify the magnitude of this difference. Furthermore, clustering of 

changepoints within our changepoint analysis section also indicates a significant change in 

model terms. 

Our analysis for Total Phosphorus suggests a changepoint in mid-2007. The significance of 

the ‘Indicator’ function within the BACI analysis and the clustering of changepoints detected 

by LLR, B&H and BSM in mid-2007 indicates a change at this point in time. There does not 

seem to be any evidence to suggest a changepoint within our series for Total Organic 

Carbon. The BACI analysis concluded that the ‘indicator’ term was insignificant and no 

clusters of changepoints were found when our three changepoint detection methods were 

applied. Within the NO2 series, it is likely that there is a changepoint mid-2007. The BACI 

analysis concluded that there was a significant change in mean before and after 

intervention. The changepoint analysis showed clusters in 2007 and a small cluster around 

mid-2009. 

To conclude, there were changepoints identified mid-2007 in both the log Total Phosphorus 

series and the log Nitrate Oxide series since BACI analysis showed a significant change in 

mean at this point and changepoint analysis identified changes at this point in time. The log 

Total Organic Carbon series did not have a changepoint at mid-2007 since there was no 

significant change in mean identified from BACI analysis and there was no clustering of 

changepoints at this time. 
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5.5 Discussion and limitations 

One of the main problems within BACI analysis was determining which sites should be 

considered as impact sites and which should be considered as control sites. BACI analysis 

should be designed from the outset and sites should be set as control or impact sites prior 

to the study beginning. This could not be done in this case as the data had already been 

collected; therefore control sites were selected as those which had the lowest percentage of 

deforested area around the site.  

Missing values were a major concern within the analysis, particularly within the EMEP sites 

where large chunks of data were missing. Local linear regression was chosen to estimate 

missing values, however within the GB02 series much of the data towards the end of the 

series was missing and therefore much of the data towards the end of this series was 

estimated. 

Another problem is the fact that within our changepoint analysis, it is likely that many 

detected changepoints were falsely identified. For example, in the TOC series changepoints 

were detected relatively spread out without any clustering. Further analysis could include 

adjusting the threshold probability for B&H, the smoothing parameter for LLR and the 

penalty for BSM so that it is less likely that a change is falsely detected. 
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