
http://theses.gla.ac.uk/4712/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given
Studies Towards the Total Synthesis of the Amphidinolide C Family of Natural Products

Andrew P. Osnowski BSc (Hons)

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Chemistry
College of Science and Engineering
University of Glasgow

WestCHEM

July 2013
Abstract

The amphidinolide compounds represent an extensive array of marine natural products, a number of which demonstrate potent anti-cancer bioactivity in vitro. Amphidinolide C represents an attractive synthetic target due to a combination of potent bioactivity and complex molecular architecture. This project deals with a modular and convergent total synthesis approach to amphidinolide C from which two synthetic fragments of similar size and complexity, termed ‘northern’ and ‘southern’, were synthesised in a stereoselective fashion. The stereochemical commonality between the branched chains of the 2,5-trans tetrahydrofuran systems found within both fragments, led to the conclusion that a keystone common intermediate could be applied to the synthesis of each. Previous efforts within the group have shown that 2,5-trans tetrahydrofuran-3-ones could be prepared through a diastereoselective rearrangement of a free or metal-bound oxonium ylide generated from a metal carbenoid.

This thesis details the scalable preparation of the intermediate tetrahydrofuranone through tandem oxonium ylide and [2,3]-sigmatropic rearrangement. Subsequent discussions show the applicability of the intermediate to forming the C-(18)—C-(34) fragment of amphidinolide C and the C-(18)—C-(29) fragment of amphidinolide F, through the use of palladium cross-coupling methodology; alternative methods found to prepare the ‘northern’ fragment are also discussed. Additionally, the C-(1)—C-(8) fragment was prepared from the common intermediate system, the key steps in this synthesis involved introduction of the C-(4) methyl group through homogeneous catalytic hydrogenation and Luche reduction to afford the C-(7) alcohol.
Contents Page

Abstract ... i
Acknowledgements ... v
Declaration... vii
Abbreviations Used in Text.. viii

Chapter 1 - Introduction ... 1

1. *Marine Natural Products and Total Synthesis* ... 2
2. *Amphidinolides: Isolation, Bioactivity and Structure* ... 3
3. *Amphidinolide C and Related Compounds* ... 6
4. *Synthetic Efforts Towards the Total Synthesis of Amphidinolide C and Congeners* 8
 4.1 General Remarks ... 8
 4.2 The Roush Group ... 9
 4.3 The Mohapatra Group .. 13
 4.4 The Armstrong Group ... 15
 4.5 The Spilling Group .. 17
 4.6 The Pagenkopf Group ... 21
 4.7 The Ferrié Group .. 23
 4.8 The Carter Group ... 25
5. *Carbenes and Metal Carbenoids* ... 31
 5.1 Carbene Structure .. 31
 5.2 The Generation of Carbenes .. 32
 5.3 Metal Carbenoids .. 33
 5.4 Diazo compounds as Metal Carbenoid Precursors ... 34
 5.5 Formation of α-Diazo Compounds ... 37
6. *Metal Carbenoid Transformations* .. 40
 6.1 Carbenoid Mediated Cyclopropanation ... 40
 6.2 Carbenoid Insertion Reactions .. 42
 6.3 Ylide Formation .. 43
7. *Oxonium Ylides* ... 44
 7.1 Formation of Oxonium Ylides ... 44
 7.2 Reactivity of Oxonium Ylides ... 46
 7.3 [2,3]-Sigmatropic Rearrangements of Oxonium Ylides ... 52
 7.4 Diastereoselectivity of Intramolecular [2,3]-Sigmatropic Rearrangements 54
 7.5 Bicyclic Ring Formation through Stereoselective [2,3]-Sigmatropic Rearrangement 59
 7.6 Stereochemistry of [2,3]-Rearranged Allylic Substituents .. 62
Chapter 2 - Results and Discussion ... 73

9 Clark Group Approach to the Total Synthesis of Amphidinolide C ... 74

10 Preparation of a Common Intermediate ... 76

10.1 Acetonide Protected Target .. 76

10.2 TBS and TBDPS Protected Targets ... 84

11 Diversification of Common Intermediate .. 88

11.1 Synthesis of C-(18)—C-(24) Fragment of Amphidinolide C — C-(21) Ketone Removal.... 88

11.2 Synthesis of C-(18)—C-(26) Fragment — Introduction of C-(24) Stereochemistry 94

11.3 Hydrostannylation and Attempted Stille Coupling ...102

11.4 Synthesis of C-(27)—C-(34) Fragment of Amphidinolide C ...104

11.5 Preparation of the C-(18)—C-(34) Fragment of Amphidinolide C: Sonogashira Cross- Coupling .. 106

11.6 Synthesis of the C-(18)—C-(29) Fragment of Amphidinolide F: Palladium Cross-Coupling Methodology ... 108

11.7 Amphidinolide C: C-(18)—C-(34) Fragment via Alkynylation Methodology 118

11.8 Synthesis of C-(18)—C-(24) PMB Protected Tetrahydrofuran Electrophiles 120

11.9 Amphidinolide C: Synthesis of C-(18)—C-(34) Fragment via Aldehyde Alkynylation 121

11.10 Amphidinolide C: Synthesis of C-(18)—C-(34) Fragment via Weinreb Amide Alkynylation ... 121

11.11 Amphidinolide C: Completion of C-(18)—C-(34) Fragment .. 122

12 Amphidinolide C: Synthesis of the C-(1)—C-(17) Fragment ... 125

12.1 Amphidinolide C: Synthesis of the C-(1)—C-(7) Fragment and Introduction of C-(4) Stereochemistry ... 125

12.2 Installation of C-(4) Methyl Stereochemistry through Asymmetric Hydrogenation 128

12.3 Installation of the C-(7)—C-(8) Diol through Dihydroxylation 130

12.4 Installation of the C-(7)—C-(8) Diol through Allylboration .. 133

12.5 Installation of C-(7) Hydroxyl Stereochemistry ... 135

12.6 Alternative Methodology Towards the Formation of C-(1)—C-(17) Fragment 138

13 Future Work .. 140

13.1 C-(1) Protection ... 140

13.2 C-(13) and C-(15) Protection ... 141

13.3 C-(18) Protection ... 142

13.4 Completion of Amphidinolide C Total Synthesis .. 143

14 Summary and Conclusions ... 145
Acknowledgements

Fruitful projects in chemistry are never wholly the result of a single researcher’s blood, sweat and swearing in the lab (as much as we would like to think so), but are instead built upon a combination of good synthetic planning and a remarkable supporting cast.

Firstly, I would like to thank my supervisor Prof. J. Stephen Clark for allowing me the opportunity to join his group and offering me such an interesting and challenging project, his vision and support have helped tremendously during the course of this work.

Secondly, I would like to say a special thank you to Guang Yang, one of the most tenacious and hard-working chemists I have ever met, for the interesting time that we spent working together on amphinolide C.

The chemistry support staff at Glasgow University do not have the easiest of jobs but somehow make the smooth running of the department look easy. Special thanks to Dr. David Adam (NMR), Jim Tweedy (Mass Spec.), Kim Wilson (CHN analysis) and Ted Eason and Shawn Maidwell (Stores) for providing support and smiles when they were most needed.

Everybody who has worked in the Henderson Lab over the past three years has made a positive impact on this project for which I am genuinely appreciative. A particular note of thanks is due to Dr. David Lindsay and Dr. Alistair Boyer for spending time in proof reading this thesis. For introducing me to the lab and making my first year such a great experience, I would like to extend a special thank you to Dr. Frédérick Nuter for his support and friendship. The social aspects of PhD studies were greatly enhanced by Alistair Boyer, Michael Sparenberg, Filippo Romiti, Chao Xu, Flavien Labre, Ralph Sigerson, Alex Bayle and Raphaëlle Berger who all helped me see the truth in Hemmingway’s immortal words:

“Always do sober what you said you’d do drunk. That will teach you to keep your mouth shut.”

Of the people I have met over the last three years, Paloma Engel Garcia and Anthony Aimon have made the biggest impact on me. Having shared a three-year journey of highs and lows, sobriety and intoxication and most of all amazing friendship, I will be most sorry to say goodbye to them.
Finally, and most importantly, I need to thank those people who will read this section but who will not really appreciate the technical aspects of the rest of the document. Thanks to Niel and Francis, my parents, for their unwavering support of the choices I have made with my life and most specifically for their moral and financial support during the course of my university studies. Thanks also to my brother Stefan who has been a fantastic friend to me and is always there whenever I need him.

The most significant thanks of all are left for my beautiful wife Jane, who knows how much I love her and what she means to me and really has no need to read about it here.
Declaration

I hereby declare that the substance of this thesis has not been submitted, nor is being concurrently submitted, in candidature for any other degree.

I also declare that the work presented in this thesis is the result of my own investigations and when the work of other investigators has been used, this has been fully acknowledged in the text.

Andrew P. Osnowski

Professor J. S. Clark
Abbreviations Used in Text

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>acac</td>
<td>acetylacetonate</td>
</tr>
<tr>
<td>ACHN</td>
<td>1,1′-azobis(cyclohexanecarbonitrile)</td>
</tr>
<tr>
<td>AD</td>
<td>asymmetric dihydroxylation</td>
</tr>
<tr>
<td>AIBN</td>
<td>2,2′-azobis(isobutyronitrile)</td>
</tr>
<tr>
<td>Anal.</td>
<td>Analysis</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl</td>
</tr>
<tr>
<td>atm</td>
<td>atmosphere</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>B$_2$pin$_2$</td>
<td>bis(pinacolato)diborane</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Bp</td>
<td>boiling point</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>calcd.</td>
<td>calculated</td>
</tr>
<tr>
<td>CAN</td>
<td>ceric ammonium nitrate</td>
</tr>
<tr>
<td>CBS</td>
<td>Corey-Bakshi-Shibata ligand</td>
</tr>
<tr>
<td>CIDNP</td>
<td>chemically induced dynamic nuclear polarization</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CSA</td>
<td>camphorsulfonic acid</td>
</tr>
<tr>
<td>Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>DBA</td>
<td>dibenzylideneacetone</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DDBNP</td>
<td>6,6′-didodecylbinaphtholphosphate</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>DET</td>
<td>diethyl tartrate</td>
</tr>
<tr>
<td>DIAD</td>
<td>diisopropyl azodicarboxylate</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>diisobutyl aluminium hydride</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMPU</td>
<td>N,N′-dimethyl-N,N′-propylene urea</td>
</tr>
<tr>
<td>DPEPhos</td>
<td>(oxydi-2,1-phenylene)bis(diphenylphosphine)</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DMS</td>
<td>dimethylsulfide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>dr</td>
<td>diastereomeric ratio</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>EE</td>
<td>1-ethoxyethoxy</td>
</tr>
</tbody>
</table>
ESR electron spin resonance
Et ethyl
Et₂O diethyl ether
EtOAc ethyl acetate
EWG electron withdrawing group
hfacac hexafluoroacetylacetonate
HMDS hexamethyldisilazide
HMPA hexamethylphosphoramide
HRMS high resolution mass spectroscopy
HWE Horner-Wadsworth-Emmons
Hz hertz
IBX 2-iodoxybenzoic acid
IC₅₀ inhibitory concentration of 50%
imid. imidazole
IR infrared
L-selectride lithium tri-sec-butylborohydride
LDA lithium diisopropylamide
lit. literature
LRMS low resolution mass spectroscopy
µg microgram
m molar
mbar millibar
m-CPBA meta-chloroperoxybenzoic acid
MLn generalised metal-ligand centre
Me methyl
MHz megahertz
mL millilitre
MOM methoxymethyl
MPPIM methyl phenylpropyl imidazolidinecarboxylate
Mp melting point
Ms methanesulfonyl
MS molecular sieves
MTBE methyl tert-butyl ether
NHK Nozaki-Hiyama-Kishi
NMO N-methylmorpholine-N-oxide
NMR nuclear magnetic resonance
Pet. petroleum
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG</td>
<td>generalised protecting group</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Piv</td>
<td>pivaloyl</td>
</tr>
<tr>
<td>Pr</td>
<td>propyl</td>
</tr>
<tr>
<td>PMB</td>
<td>para-methoxybenzyl</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PPTS</td>
<td>pyridinium para-toluenesulfonate</td>
</tr>
<tr>
<td>PTTL</td>
<td>N-phthaloyl-tert-leucinate</td>
</tr>
<tr>
<td>Pyr</td>
<td>pyridine</td>
</tr>
<tr>
<td>R</td>
<td>Generalised group</td>
</tr>
<tr>
<td>rac.</td>
<td>Racemic</td>
</tr>
<tr>
<td>R_f</td>
<td>retention factor</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>Red-Al</td>
<td>sodium bis(2-methoxyethoxy)aluminum dihydride</td>
</tr>
<tr>
<td>SAR</td>
<td>structure activity relationship</td>
</tr>
<tr>
<td>SET</td>
<td>single electron transfer</td>
</tr>
<tr>
<td>sp.</td>
<td>species</td>
</tr>
<tr>
<td>TES</td>
<td>triethyldisilyl</td>
</tr>
<tr>
<td>Tf</td>
<td>trifluoromethanesulfonate</td>
</tr>
<tr>
<td>TBAI</td>
<td>tetra-n-butylammonium iodide</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetra-n-butylammonium fluoride</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-butyldiphenylsilyl</td>
</tr>
<tr>
<td>TBS</td>
<td>tert-butylidimethylsilyl</td>
</tr>
<tr>
<td>TBSP</td>
<td>tert-butylphenylsulfonyl pyrrolidinecarboxylate</td>
</tr>
<tr>
<td>Temp.</td>
<td>temperature</td>
</tr>
<tr>
<td>tfacac</td>
<td>trifluoroacetylacetate</td>
</tr>
<tr>
<td>tfacam</td>
<td>trifluoroacetamide</td>
</tr>
<tr>
<td>TFPPTL</td>
<td>N-tetrafluorophthaloyl-tert-leucinate</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TIPS</td>
<td>triisopropylsilyl</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>TPAP</td>
<td>tetra-n-propylammonium perruthenate</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction
Chapter 1: Introduction

1 Marine Natural Products and Total Synthesis

The genesis of life on the Earth is proposed to have begun between 3.9 to 3.5 billion years ago in the primordial oceans of the early planet, leading over time from simple prokaryotic beginnings to the complex biodiversity that is seen in our world today. The success and permanency of marine organisms over this timeframe, in conjunction with evolutionary requirements for intra-species molecular signalling and the essential toxins required for both offensive and defensive purposes, have led to a plethora of complex chemical entities present within the marine environment.

In contrast to terrestrial creatures whose messenger pheromones are by necessity of air transmission relatively simple, low-weight and therefore volatile, marine organisms can extrude much more complex structures into their saline surroundings with the only caveats being the requirement for solubility and potency towards their target. These drug-like attributes of biological potency and aqueous solubility, in addition to the volume of unique chemical structures, have led to the pursuance of marine natural products as possible ligands for receptors associated with human disease states.

Since the completion of the Human Genome Project in 2004, the current consensus is that of the approximate 30,000 proteins coded by the human genome, around 3,000 are designated as disease modifying genes, while only 10% of the total genome is considered ‘druggable’ i.e. susceptible to binding orally bioavailable ligands. The overlap between disease modifying and druggable genes provides a targetable genome of between 600 to 1500 proteins that are amenable to small molecule therapy. The application of natural products as both drugs and lead compounds for drug development is a well-established process within the pharmaceutical industry, and has led to wide-spread screening of numerous marine natural compounds in the challenging search for the drugs of tomorrow.

As of 2012, the structures of approximately 22,000 individual marine natural products have been published of which eight have overcome the hurdles of clinical trials to attain drug approval by US and European regulatory authorities, with numerous others in various phases of clinical development. These compounds span a broad range of structural classes, modes of action and have utilities ranging from anti-cancer to pain relief. Due to the number and array of compound types isolated from the marine environment thus far, combined with the relatively small genomic locus associated with disease states and current capabilities in high-throughput screening, it is axiomatic that marine natural products will continue to play an important role in the pharmaceutical industry as both drugs and lead compounds in the foreseeable future.
Due to the efforts required to isolate relatively small quantities of pure compound from substantial amounts of natural resources, in combination with the necessity of providing a regular supply of bioactive material, modern synthetic techniques are required to supply sufficient quantities of these potentially precious materials for pharmaceutical testing.

2 Amphidinolides: Isolation, Bioactivity and Structure

The amphidinolides are a set of 34 distinct macrolide compounds, harvested from the microalgae *amphidinium sp.* a symbiont found within the inner cells of the flatworm *amphiscolops sp.*, native to the coral reefs of the Okinawan archipelago in southern Japan. Isolation and characterisation of these complex polyoxygenated natural products has been accomplished entirely by Kobayashi and co-workers who have disclosed a structurally diverse range of macrolactones exhibiting, in certain cases, excellent cytotoxic efficacy against tumour cell lines.\(^6\)

Initial assays of amphidinium metabolites were conducted using crude extract mixtures and demonstrated promising anti-neoplastic effects against two distinct cell lines, namely mouse lymphoma L1210 and human epidermoid carcinoma KB. The encouraging cytotoxic activity observed (70–90% inhibition at 3 μg mL\(^{-1}\)) led to large-scale harvesting of various microalgae strains and separation of the molecular components by HPLC. The Y-5 strain of *amphidinium* sp. has proved to be the richest source of amphidinolide macrolides with no less than 15 individual compounds isolated, of which amphidinolides N, B and C (6, 2 and 3) have proven to be amongst the most bioactive members.\(^6a\) To date the cytotoxic mode of action of the amphidinolides remains undetermined though amplified cytotoxicity is more prevalent amongst those macrolides composed of 25 to 27 atoms, as illustrated in Table 1.

Structurally, the macrolactone systems of the amphidinolides vary in size from 12 membered, in the case amphidinolides Q\(^7\) and W,\(^8\) through to the largest known 29 membered amphidinolide M.\(^9\) Despite overall structural differences present within the group, several common features such as multiple sites of unsaturation, the presence of 1,1-disubstituted alkenes and the occurrence of oxacycles (e.g. epoxides, tetrahydrofurans and pyrans) within the macrolactone ring, are manifest throughout the family (Figure 1).
<table>
<thead>
<tr>
<th>Amphidinolide</th>
<th>Macrolactone Size</th>
<th>Murine Lymphoma L1210</th>
<th>Human Epidermoid Carcinoma KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2.0</td>
<td>5.7</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1.4×10^{-4}</td>
<td>4.2×10^{-3}</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>5.8×10^{-3}</td>
<td>4.6×10^{-3}</td>
</tr>
<tr>
<td>D</td>
<td>26</td>
<td>1.9×10^{-2}</td>
<td>0.08</td>
</tr>
<tr>
<td>E</td>
<td>19</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>25</td>
<td>1.5</td>
<td>3.2</td>
</tr>
<tr>
<td>G</td>
<td>27</td>
<td>5.4×10^{-3}</td>
<td>5.9×10^{-3}</td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>4.8×10^{-4}</td>
<td>5.2×10^{-4}</td>
</tr>
<tr>
<td>J</td>
<td>15</td>
<td>2.7</td>
<td>3.9</td>
</tr>
<tr>
<td>K</td>
<td>19</td>
<td>1.7</td>
<td>2.9</td>
</tr>
<tr>
<td>L</td>
<td>5</td>
<td>9.2×10^{-2}</td>
<td>0.1</td>
</tr>
<tr>
<td>M</td>
<td>29</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>N</td>
<td>6</td>
<td>5.0×10^{-5}</td>
<td>6.0×10^{-5}</td>
</tr>
<tr>
<td>O</td>
<td>15</td>
<td>1.7</td>
<td>3.6</td>
</tr>
<tr>
<td>P</td>
<td>15</td>
<td>1.6</td>
<td>5.8</td>
</tr>
<tr>
<td>Q</td>
<td>12</td>
<td>6.4</td>
<td>>10</td>
</tr>
<tr>
<td>R</td>
<td>15</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>S</td>
<td>16</td>
<td>4.0</td>
<td>6.5</td>
</tr>
<tr>
<td>T1</td>
<td>7</td>
<td>18</td>
<td>>20</td>
</tr>
<tr>
<td>U</td>
<td>8</td>
<td>12</td>
<td>>20</td>
</tr>
<tr>
<td>V</td>
<td>14</td>
<td>3.2</td>
<td>7</td>
</tr>
<tr>
<td>W</td>
<td>9</td>
<td>3.9</td>
<td>>10</td>
</tr>
<tr>
<td>X</td>
<td>16</td>
<td>0.6</td>
<td>7.5</td>
</tr>
<tr>
<td>Y</td>
<td>17</td>
<td>0.8</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Table 1
Chapter 1: Introduction

Figure 1

Amphidinolide A

Amphidinolide B

Amphidinolide C

Amphidinolide H

Amphidinolide L

Amphidinolide N

Amphidinolide T1

Amphidinolide U

Amphidinolide W
Chap. 1: Introduction

3 Amphidinolide C and Related Compounds

3.1 Discovery, Bioactivity and Structure

Amphidinolide C was the earliest 25-membered macrolide isolated from *amphidinium* sp. by Kobayashi *et al.* in 1988. Originally obtained as a component of the Y-5 strain of the microalga it was later also found in Y-26, Y-56 and Y-71 strains leading to significant isolable quantities of material that were used subsequently to determine the structure and absolute stereochemistry.

The novel macrolide was tested against both murine lymphoma L1210 and epidermoid carcinoma KB cell lines, exhibiting IC$_{50}$ values of 5.8×10^{-3} and 4.6×10^{-3} μg mL$^{-1}$ respectively. Interestingly, a brief remark also described the ability of amphidinolide C to activate rabbit skeletal muscle actomyosin ATPase activity.

On the assignment of the absolute stereochemistry, again by Kobayashi *et al.*, amphidinolide C was shown to be structurally complex natural product comprising a core 25-membered macrolactone ring, which contains two embedded 2,5-trans substituted tetrahydrofurans and a C-(25)–C-(34) exocyclic tail unit. The macrolactone possesses eleven stereocentres, three of which are secondary hydroxyl groups, two ketone units and a diene system between C-(9)–C-(11) bearing an exocyclic 1,1-disubstituted olefin. The tail fragment accommodates an (E,E)-diene system, a doubly allylic alcohol at the C-(29) position as well as the compound’s second 1,1-disubstututed alkene unit, located at C-(30) (Figure 2).

The core macrolide of amphidinolide C is shared by three closely related congeners C2, C3 and F shown in Table 2. The apparent structural similarity between these compounds does not translate into comparable *in vitro* bioactivity, the significant difference in biological activity between amphidinolides C, C2 and C3, and the chain-truncated amphidinolide F, lies within the tail region of the compound. The doubly allylic alcohol of C-(29) confers potent bioactivity but in its absence, or the removal of the H-bond donor capacity by acetylation, the activity of the parent compound is reduced by approximately 1000 fold. This surprisingly tight SAR illustrates the key importance of the tail region of the compound but does not provide insight into the requisite functionality of the macrolactone in binding to the as yet unknown target receptor. This observation suggests that edited portions of amphidinolide C, particularly those around the northern hemisphere and tail of the compound, may elicit a response in cytotoxicity assays.
Figure 2

<table>
<thead>
<tr>
<th>Amphidinolide</th>
<th>R</th>
<th>Murine Lymphoma L1210</th>
<th>Human Epidermoid Carcinoma KB</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sup>10</sup></td>
<td>3</td>
<td>5.8×10<sup>-3</sup></td>
<td>4.6×10<sup>-3</sup></td>
</tr>
<tr>
<td>C2</td>
<td>10</td>
<td>0.8</td>
<td>3.0</td>
</tr>
<tr>
<td>C3</td>
<td>11</td>
<td>7.6</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>12</td>
<td>Me</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table 2.
4 Synthetic Efforts Towards the Total Synthesis of Amphidinolide C and Congeners

4.1 General Remarks

The potent *in vitro* cytotoxic activity displayed by amphidinolide C *in vitro*, in combination with the complex molecular architecture of the compound, and the relatively small quantities of material available for study, have made it an attractive target for total synthesis. Due to the high degree of structural overlap between congeners of the amphidinolide C and amphidinolide F, efforts towards the synthesis of both compounds are of interest when reviewing the current state of literature regarding these fascinating targets.

Numbering of the amphidinolide C family begins at the carboxy unit of the macrolactone ester C-(1) and continues in a counter-clockwise fashion terminating in the terminal carbon of the exocyclic tail unit, C-(29) in the case of amphidinolide F and C-(34) in that of amphidinolide C. Retrosyntheses of these particular natural products tend towards two very specific starting disconnections, the first along the macrolactone bond and the second on either of the flanking bonds of the C-(18) ketone. These disconnections lead to what will subsequently be described as ‘northern’ and ‘southern’ fragments, for the sake of generality.

The majority of syntheses have focussed on the construction of the 2,5-*trans* tetrahydrofuran units embedded within the macrolide system as a basis for building outwards towards more developed intermediate fragments. To date, no total synthesis of amphidinolide C, C2 or C3 has been disclosed, though a total synthesis of amphidinolide F has been published recently. The ensuing sections detail the work on the synthesis of both ‘northern’ and ‘southern’ fragments of amphidinolide C and F. Where a single group has published on both sections the work is discussed in conjunction.
4.2 The Roush Group

4.2.1 Synthesis of C-(11)—C-(29) Fragment of Amphidinolide F

Roush and co-workers envisaged the retrosynthetic analysis of amphidinolide F shown in Figure 3. Disconnection across the lactone bond and the C-(9)—C-(10) diene system led to a structurally complex C-(10)—C-(29) fragment from which the forward connections were predicted to be achievable through Yamaguchi macrolactonisation and Heck coupling respectively.

The group’s interest in chelate controlled [3+2] annulation reactions between chiral allylic silanes and aldehydes, led to the belief that the 2,5-trans stereochemistry of the northern tetrahydrofuran could be formed using this methodology. The synthesis of tetrahydrofuran 15 was accomplished through tin activation of ethyl glyoxylate and treatment of the complex with allylsilane 13. The desired [3+2]-annulation proceeded in good yield and excellent diastereoselectivity to afford the desired 2,5-trans tetrahydrofuran 15, shown in Scheme 1, the stereochemical outcome of the reaction is guided by the syn-synclinal intermediate 14.

Reduction of the ester functionality was followed by two-step conversion of the alcohol product to alkyl iodide 16 which upon iodide displacement, protiodisilation of the C-Si bond and functional group interchange afforded aldehyde 17.
The synthesis was completed in a further six steps beginning from the boron mediated aldol condensation of the aldehyde with methylketone 18 which proceeded under Felkin-Anh control. The yield and diastereomeric ratio of the addition proved to be excellent, allowing progression of the route through an Evans-Tishchenko reduction of the resultant β-hydroxy ketone. After further manipulation of functional groups, vinyl iodide 21 was ultimately cross-coupled to a stannane under Stille conditions to afford the C-(11)—C-(29) carbon framework of amphotidinolide F (Scheme 2).
4.2.2 Synthesis of the C-(1)–C-(9) Fragment of Amphidinolides C and F

Encouraged by the success of their tin mediated [3+2] annulation in forming the key C-(20)–C-(23) tetrahydrofuran of the Northern fragment of amphidinolide F, Roush and co-workers subsequently focussed on the application of the same methodology to the C-(1)–C-(9) Southern fragment of the macrolactone ring. The greater molecular intricacies of this section of the target, particularly regarding the exocyclic C-(35) methyl group, provided complications in the observed diastereocntrol of the annulation reaction when aldehydes other than ethyl glyoxylate were used (Scheme 3). Although aldehyde 25 was prepared in eleven steps from the 2,5-trans tetrahydrofuran.

Scheme 2
24, the route was considered to be too long and low yielding for practical use in a total synthesis. An alternative method was sought.

![Scheme 3](image)

Prior work conducted by Kobayashi and co-workers towards evaluation of the absolute stereochemistry of amphidinolide C, used a stereocontrolled intramolecular oxa-Michael reaction to construct the C-(3)–C-(6) tetrahydrofuran unit.12b

Roush and co-workers employed an analogous methodology when developing a second generation synthesis of their target tetrahydrofuran (Scheme 4). The α,β-unsaturated ester 26 was prepared by Still-Genari olefination of isopentyl ketal glyceraldehyde thereby providing a chiral-pool starting point for the synthesis. Acid-catalysed ketal deprotection and lactonisation was followed by stereoselective hydrogenation of the endocyclic double bond with Pearlman’s catalyst, TBS protection of the extant hydroxyl gave the lactone 27 as a single diastereoisomer. Reduction of the lactone group delivered an aldehyde which upon treatment with (carbethoxymethylene)-triphenylphosphorane yielded α,β-unsaturated ester 28, the precursor compound required to deliver the 2,5-trans tetrahydrofuran. Treatment of the intermediate with TBAF led to intramolecular cyclisation of the compound in good yield and with a high degree of stereocontrol.12b

![Scheme 4](image)
The high ratio of 2,5-trans tetrahydrofuran formation over the cis diastereomer is largely controlled by the steric effect of the C-(35) methyl group on the preferred conformer of compound 28 generated through 1,3-allylic strain, as illustrated in Figure 4. The stereocontrolled installation of the C-(7)—C-(8) diol was accomplished through the application of Brown’s γ-borylallylborane and was followed by a Tamao-Fleming oxidation. Overall the sequence illustrated in Scheme 4 provided a shorter and higher-yielding synthesis than that of the [3+2] annulation methodology discussed in Scheme 3.

Figure 4

4.3 The Mohapatra Group

4.3.1 Synthesis of the C-(19)—C-(34) Fragment of Amphidinolide C

The initial disconnections in Mohapatra’s strategy for the synthesis of amphidinolide C, were analogous to those previously exploited in Roush’s disconnection of amphidinolide F, leading to a target C-(19)—C-(34) fragment highlighted in Figure 5.21

Scheme 5 shows the forward synthesis of the 2,5-trans tetrahydrofuran ring system. Generally, syntheses of the 2,5-trans tetrahydrofuran functionality of amphidinolide C are conducted in a diastereoselective fashion, unusually Mohapatra’s group decided to pre-form the enatiopure C-(20) and C-(23) stereocentres and combine both through a regioselective, copper triflate catalysed ring opening of the allylic oxirane 33.22
In forming diene 34, the desired stereochemistry at C-(20), C-(23) and C-(24) was introduced early in the synthesis through inexpensive chiral starting materials. The terminal olefins were united by means of metathesis, catalysed by Grubbs second generation catalyst, and the resultant endocyclic olefin reduced by hydrogenation.

Further manipulation of the compound afforded aldehyde 37 which was olefinated with phosphonate ester 40, thereby permitting access to the unsaturated E:E diene ester 38. The synthesis was completed in a further three reactions, the key step of which was the
Nozaki-Hayama-Kishi coupling of the intermediate aldehyde with vinyl iodide 41, providing the C-(19)–C-(34) fragment 39 as a 1:1 mixture of separable C-(29) diastereomers.

4.4 The Armstrong Group

4.4.1 Synthesis of the C-(18)–C-(29) Fragment of Amphidinolide F

2009 saw the publication by Armstrong and co-workers of their work concerning the synthesis of the northern fragment of amphidinolide F, comprising a short synthesis of the 2,5-\(\text{trans}\) tetrahydrofuran system, and unification of the formed fragment with the C-(26)–C-(29) truncated tail section through Wittig olefination.\(^2\) These workers also reflected on the possibility of expanding the C-(18)–C-(29) northern construct of amphidinolide F to enable synthesis of the C-(29)–C-(34) tail of amphidinolide C.

![Figure 6](image)

Armstrong’s retrosynthetic analysis of amphidinolide F followed the prevalent convention of disconnection at the macrolactone bond and adjacent to the C-(18) ketone, in this case between the C-(17)–C-(18) bond, leading to the C-(18)–C-(29) fragment 42, shown in Figure 6.

Synthesis of fragment 42 commenced using the oxidation-olefination procedures of Graham et al.\(^2\)\(^4\) from which dienoate 44 was isolated in acceptable yield with good \(E:Z\) selectivity. Attention subsequently turned to the development of methodology for the selective monodihydroxylation of the diene and subsequent oxa-Michael cyclisation used to form the 2,5-\(\text{trans}\) tetrahydrofuran 46. In the absence of base, the major product isolated from the Sharpless asymmetric dihydroxylation of 44 was diol 45, but in the presence of NaOH the cyclisation reaction proceeded to afford tetrahydrofuran 46.

Although the cyclisation reaction occurred in poor yield and with a low diastereomeric ratio, no 6-\(\text{exo}\) trig cyclisation was reported. Isolation of diol 45 and base mediated cyclisation of the purified material was attempted but no discernible improvement in the diastereomeric ratio of \(\text{cis}\) and \(\text{trans}\) isomers was observed. Iodo etherification of alkene 45 did not provide a markedly better diastereomeric ratio of iodotetrahydrofuran.
47 (trans:cis 3:1) but did allow for enrichment of the desired enantiomer by means of product recrystallization.

Scheme 6

Following several transformations, including radical deiodination, the carbon framework of the C-(18)—C-(29) fragment of amphidinolide F was completed following Wittig olefination of aldehyde 48. A two-step conversion of the ester into dithiane 42 provided the final compound of the sequence. Attempts to extend the potential utility of diene 49 for the synthesis of amphidinolide C were realised through the provision of a synthetic handle on the C-(29) position. As shown in Scheme 7, selenium mediated allylic oxidation afforded the desired allylic alcohol 50 in 70% yield.
4.5 The Spilling Group

4.5.1 Synthesis of the C-(18)–C-(34) Fragment of Amphidinolide C

Spilling’s retrosynthetic analysis of the macrolactone ring of amphidinolide C adhered to the standard disconnection strategy leading to the C-(18)–C-(34) fragment 51.25 Construction of the 2,5-\textit{trans} tetrahydrofuran ring was envisaged as the result of an intramolecular, palladium-catalysed cyclisation of an allylcarbonate with a suitably functionalised alcohol, while introduction of the C-(25)–C-(26) diene by use of phosphonate olefination chemistry was expected. The applicability of HWE olefination to the functionalization of various aldehydes was noted as a potential route towards accessing a number of synthetic analogues, including that of the abbreviated tail region of amphidinolide F. Introduction of the extended C-(29)–C-(34) side chain was anticipated to be performed by Nozaki-Hiyama-Kishi coupling of a suitable vinylic iodide with the appropriate C-(29) aldehyde, in an identical approach to that used by Mohapatra.21

Forward synthesis began from epoxide 52, formed in three steps from 3-buten-1-ol and resolved from the racemic epoxide by use of Jacobsen’s methodology.26 Ring opening with allylmagnesium chloride provided a terminal alkene, which on metathesis with enantiomerically pure phosphonoallylic carbonate 57 using Grubbs’ second generation catalyst yielded \textit{E}-olefin 53. Palladium catalysed decarboxylation of the allylcarbonate led to intramolecular cyclisation through the C-(20) secondary hydroxyl group, thereby forming the 2,5-\textit{trans} tetrahydrofuran diastereomer 54 preferentially. The resultant \textit{E}-vinylphosphonate underwent hydroboration-oxidation with diboron pinacol ester and sodium perborate to afford a 1:1 mixture of C-(24) secondary alcohols, which upon TPAP oxidation provided the \textit{β}-ketophosphonate 55 in good yield.
Scheme 8

With the β-ketophosphonate in hand, attention turned to synthesis of an aldehyde coupling partner and optimisation of the coupling methodology. Prior to construction of the C-(26)—C-(34) segment of amphidinolide C, the group decided to test the viability of using HWE olefination to construct the C-(25)—C-(26) bond by fashioning the northern fragment of amphidinolide F from commercially available 3-methyl-crotonaldehyde 58. A number of ineffective conditions, in which various solvent-base combinations were employed, were examined before the optimal system comprising caesium carbonate and anhydrous isopropanol, permitted access to the desired dieneone. Felkin-Anh controlled 1,2-reduction of the C-(24) ketone functionality was then accomplished by use of L-selectride, providing the C-(18)—C-(29) northern fragment of amphidinolide F 56 as a single diastereoisomer.

The success of the HWE protocol channelled subsequent efforts into the synthesis of an aldehyde that would form the backbone of the C-(26)—C-(34) tail of amphidinolide C. Nozaki-Hiyami-Kishi coupling of aldehyde 59 and vinyl iodide 41 afforded a racemic mixture of doubly allylic alcohol 60 in good yield, the PMB ether was further manipulated to afford the germane aldehyde for provision of the C-(25)—C-(26) bond-forming olefination reaction. Application of the previously optimised HWE conditions allowed for high-yielding formation of an intermediate dieneone 62 and
subsequent L-selectride reduction afforded the desired C-(18)—C-(34) fragment of amphotericin C.

\[
\text{Scheme 9}
\]

4.5.2 Synthesis of the C-(1)—C-(9) Fragment of Amphidinolides C and F

Spilling’s synthesis of the C-(1)—C-(9) fragment of amphidinolides C and F harnessed the power of a nickel catalysed, homoallylic addition reaction of a 1,3-diene to an aldehyde, in order to provide the precursor framework of the southern 3-methyl 2,5-trans tetrahydrofuran fragment of the natural product. As shown in the retrosynthesis (Figure 8), access to the 2,5-trans tetrahydrofuran was viewed as being possible through an intramolecular oxa-Michael addition of \(\alpha,\beta\)-unsaturated ester 65, analogous to that previously employed by Kobayashi\(^{12b}\) and Roush.\(^{19}\)

\[
\text{Figure 8}
\]
The synthesis commenced from the commercially available lactone 66, which underwent DIBAL-H reduction to hemiacetal 67, thereby providing a masked aldehyde bearing the required C-(7)—C-(8) diol stereochemistry of the natural product, for the key homoallylation step (Scheme 10).

Scheme 10

Isoprene underwent stereoselective addition to form 68 through the application of catalytic Ni(acac)$_2$ and stoichiometric triethylborane, to afford a 3:1 mixture of C-(6),C-(7) anti products in favour of the undesired diastereoisomer. The C-(1)—C-(9) fragment 70 was obtained from the isolated minor isomer through cross metathesis of the alkene 68 with methyl acrylate, followed by an oxa-Michael addition to the α,β-unsaturated ester. Stereocontrol of the cyclisation reaction was, as previously discussed, induced by the presence of the C-(35) methyl group (cf. Figure 3).
4.6 The Pagenkopf Group

4.6.1 Synthesis of the C-(18)—C-(34) Fragment of Amphidinolide C

The disconnections employed by Pagenkopf and Mora, illustrated in Figure 9, followed the orthodox macrolactone and C-(17)—C-(18) bond breakages to provide the C-(18)—C-(34) fragment 71 bearing suitable protecting groups. The disconnection between the 2,5-trans tetrahydrofuran and tail region was envisioned to be the result of a stereoselective alkynylation reaction between an aldehyde and an enyne which would be followed by propargylic reduction, while formation of the central tetrahydrofuran was viewed as the product of the intramolecular, cobalt catalysed, oxidative radical cyclisation.

![Figure 9](image)

This synthesis is one of the more succinct routes to access the northern fragment of amphidinolide C allowing for an extremely rapid access to the 2,5-trans tetrahydrofuran using inexpensive starting materials, through an efficient cobalt(II) mediated cyclisation reaction which proceeds with remarkable stereoselectivity (Scheme 11). The same authors have recently reported on the utility of the cobalt cyclisation methodology for the preparation of the C-(3)—C-(6) tetrahydrofuran of the southern fragment of amphidinolide C.

The construction of enyne 82 was accomplished through the nine step sequence detailed in Scheme 12. Installation of the C-(29) stereochemistry was accomplished through reagent controlled reduction, using the (S)-enantiomer of the Corey-Bakshi-Shibata reagent of an intermediate enone system, to provide allylic alcohol 78 in good yield and enantiomeric excess. Manipulation of the silyl protecting groups and formation of the propargylic ester 79 yielded a substrate that was amenable to the copper mediated 1,4-addition of a methyl group, affording the synthetic equivalent of the C-(40) methyl of the natural product. The C-(25)—C-(34) carbon backbone of the tail region of amphidinolide C was completed in a further four steps utilising Corey-Fuchs methodology to afford enyne 82.
The stereoselective addition of lithiated alkyne 84 to aldehyde 77 was accomplished, after painstaking optimisation, to afford the C-(23)–C-(24) 1,2-anti diastereomer 85 as the sole product, in 93% yield (Scheme 13). Mitsunobu inversion of the C-(24) hydroxyl group was followed by treatment with Red-Al, leading to reduction of both the 4-nitrobenzoate group and the propargylic alcohol to form the required 2E,4E-dienol 71. This sequence was reported to allow rapid access to gram scale quantities of the C-(18)–C-(34) fragment of amphidinolide and provides a concise sequence for construction of the 2,5-trans tetrahydrofuran core using cobalt catalysis.
Chapter 1: Introduction

Scheme 13

4.7 The Ferrié Group

4.7.1 Synthesis of the C-(1)–C-(9) Fragment of Amphidinolides C and F

2010 saw the publication of Ferrié and Figadére’s route towards the C-(1)–C-(9) fragment of the macrolide core of amphidinolide C. The disconnection at the lactone bond and at the C-(9)–C-(10) diene locus suggested vinyl stannane as the synthetic goal of the project. Integration of the C-(1) methyl ester was envisaged as the product of C-glycosylation of an acylated hemiacetal, whilst the required 1,2-anti relationship of the C-(6) and C-(7) stereocentres was expected to result from a stereoselective Mukaiyama aldol reaction of a siloxyfuran and a suitably protected enatiopure aldehyde.

Figure 10

The approach taken towards the target 87 began from the TMS triflate catalysed aldol reaction of oxyfuran 89 and D-glyceraldehyde acetonide 88, Scheme 14. The separable diastereomers resulting from the addition reaction, both provided the required 1,2-anti relationship associated with the C-(7)–C-(8) diol, but were formed in a 3:1 mixture of C-(6) isomers. Hydrogenation of the endocyclic alkene bond from the least hindered face generated the required C-(35) methyl stereochemistry, whilst the acidic solvent system led to removal of both the acetonide and TMS groups. Threefold reprotection of
the resultant triol 92 with TBS chloride afforded lactone 93, which upon reduction and acetylation provided a protected hemiacetal precursor to the key TiCl₄ facilitated C-glycosylation reaction. Treatment of the intermediate with the titanium enolate of oxazolidinone 95 resulted in stereoselective access to the desired C-(3) isomer corresponding to the natural product.

Scheme 14

The completion of the synthesis was instigated through cleavage of the terminal TBS ether, partial oxidation of the resulting alcohol and homologation of the resultant aldehyde using the Bestmann-Ohira reagent to provide the alkyne 94 in good yield. The conversion of the alkyne into a synthetic handle for future assembly of the C-(9)—C-(10) bond was accomplished by formation of vinyl stannane 85 through regioselective, molybdenum catalysed hydrostannylation.²²
4.8 The Carter Group

4.8.1 Total Synthesis of Amphidinolide F

2012 saw publication by Carter and Mahapatra on the total synthesis of amphidinolide F, the first member of this sub-family of the amphidinolides to be synthesised.\(^{33}\) The elegant methodology disclosed in the paper, built upon the solid foundations of a preceding publication in which the stereoselective construction of the C-(7)–C-(20) fragment of the macrolactone ring system was described.\(^{34}\) The prior paper had excluded the construction of the 2,5-\textit{trans} tetrahydrofuran ring systems, in favour of defining methodology for the synthesis of the C-(9)–C-(11) diene system, which they noted was difficult to prepare through conventional palladium cross-coupling methodology.\(^{35}\)

The key strategic aspect of the total synthesis lay in the realisation that both the C-(3)–C-(6) and C-(20)–C-(23) tetrahydrofuran systems bore identical stereochemistry, and comparable functionalization on their neighbouring branched chains. This observation suggested that a common intermediate could be used as a keystone compound for the preparation of both northern and southern fragments, thereby reducing both the timeframe and cost of synthesis. The retrosynthesis of amphidinolide F, shown in \textit{Figure 11}, details the requisite northern and southern fragments, in addition to the intermediate 100 that was hoped would be the antecedent to both.
The approach adopted to synthesise the common intermediate began from enyne 100, prepared in seven steps from D-malic acid 101. Sharpless asymmetric dihydroxylation of the E-olefin provided diol 103 as a single diastereoisomer, thereby establishing what would later become the C-(6) and C-(23) stereocentres of the natural product. Treatment of the propargylic alcohol with a sub-stoichiometric quantity of silver tetrafluoroborate, in refluxing benzene, resulted in the the [3,3]-sigmatropic rearrangement of the intermediate silver complex 104 (Scheme 16). The initial stereochemistry and suprafacial shift of the benzoyl ester provided transfer of stereogenicity to the allenyl intermediate 105 allowing for a stereospecific 5-endo-trig cyclisation to the desired dihydrofuran 106. On protection of the secondary alcohol and methanolysis of the benzoyl ester, 2,5-trans tetrahydrofuranone 100 was isolated as a single diastereoisomer.
4.8.1.2 Diversification of Common Intermediate to the C-(15)–C-(29) Northern Fragment

Synthesis of the C-(15)–C-(25) backbone of the Northern fragment began with deletion of the C-(21) carbonyl group. This transformation was achieved through reduction of the group to give a mixture of diastereomeric alcohols followed by radical deoxygenation of the thiocarbamates produced from the alcohols to afford tetrahydrofuran 107 (Scheme 17). Further manipulation of functionality led to aldehyde 108 which underwent Wittig olefination in excellent yield, providing the required diene 98 with the C-(25)–C-(28) (E,E)-stereochemistry found in the natural product.
4.8.1.3 Diversification of Common Intermediate to the C-(1)–C-(14) Southern Fragment

Installation of the C-(35) methyl group was achieved through Mannich reaction of the lithium enolate of 100 with Eschenmoser’s salt, and stereoselective hydrogenation using Wilkinson’s catalyst thereby affording intermediate 110. Deletion of the superfluous carbonyl functionality was again achieved through the use of radical hydride substitution methodology (Scheme 18).

Scheme 18

The C-(9)–C-(14) vinylic iodide 112, prepared using chemistry developed within the group previously, was activated through lithium-halogen exchange and added to aldehyde 111. Alcohol 113, bearing the required C-(8) stereochemistry was fashioned through Felkin-Anh controlled addition and protected as a TBS ether. Further functionalization of compound 114 led to alkyl iodide 99, the electrophilic coupling partner required for the key C-(14)–C-(15) sulfone alkylation step.
4.8.1.4 Union of Northern and Southern Fragments and Completion of Synthesis

Alkylation of sulfone 98 with alkyl iodide 99 proceeded in good yield to provide the C-(1)–C-(29) fragment 115. However, subsequent oxidative desulfurisation, although leading to the clean formation of the C-(18) ketone, afforded a mixture of C-(1) pivaloyl ester protected and deprotected products 116 and 117. Independent manipulation of both compounds to form the pertinent carboxylic acid, was followed by C-(24) TES deprotection setting the stage for a Yamaguchi macrolactonisation which afforded 118 in 65% yield. The synthesis of amphidinolide F 12 was completed in a further three operations comprising the removal of the C-(15) ethoxyethyl ether, oxidation of the resultant secondary alcohol and universal cleavage of the extant TBS ethers.
Scheme 20
5 Carbenes and Metal Carbenoids

5.1 Carbone Structure

Carbenes have been postulated as reaction intermediates since the early days of organic synthesis, when the decomposition of relatively simple precursors led to products that were explainable only through invocation of such transient species. At the most basic level carbenes are divalent carbon species containing a neutral carbon atom bearing two unshared valence electrons.\[^{36}\] Methylene, the simplest member of the family, is a highly reactive and difficult to control reactive intermediate that was first definitively identified and studied in the early 1960s.\[^{37}\] Subsequent studies of functionalised carbenes, have led to a greater understanding of the reactivity of this unique species and have even led to the isolation and study of so-called persistent carbenes. Carbenes can exist in one of two possible electronic structures, namely the singlet and triplet states, shown in Figure 12.\[^{38}\]

![Figure 12](image)

The triplet state contains two unpaired electrons within the σ and p orbitals and resembles a diradical carbon centre in which the dihedral angle between the R groups is generally within the range of 130 to 150º. The triplet state exists when the energy gap between the σ and p orbitals is small allowing for an electron to remain unpaired and inhabit each of the orbitals in accordance with Hund’s rule of maximum multiplicity. By virtue of the unpaired nature of electrons in the triplet state, carbenes of this type are paramagnetic and can be identified by ESR spectroscopy, provided the lifetime of the species is sufficiently long lived.\[^{38}\]

In contrast, if the energy gap between the σ and p orbitals is large the electrons will pair within the σ orbital leading to singlet carbenes. This paired configuration of electrons provides a neutral carbon centre of ambiphilic character (i.e. exemplified by the ability to exhibit both carbocationic and carbanionic behaviour) due to the s orbital lone pair and the vacant p orbitals. The singlet state is generally of higher energy and is therefore of greater reactivity than the triplet state. The increased energy cost of pairing electrons can be mitigated through the ability of the empty p orbital to accept electron density from adjacent electronegative atoms, as illustrated in Figure 13.
thereby perturbing the originally degenerate orbitals on the carbon centre and stabilising the singlet carbene. \(^{39}\)

![Diagram](image)

Figure 13

5.2 The Generation of Carbenes

Carbenes are generally prepared by base induced α-elimination of haloalkanes or through controlled decomposition of nitrogen from a stabilised intermediate. Historically, carbenes were postulated as plausible reaction intermediates based upon experimental observations. Butlerov’s experiments concerning the reaction of copper with methyl iodide afforded ethylene, which was considered to be the result of the dimerization of methylene. \(^{40}\) As early as 1862, Geuther proposed that the basic hydrolysis of chloroform provided dichloromethylene, \(^{41}\) a result that has since been substantiated to proceed via an α-elimination mechanism, as shown in Scheme 21. \(^{42}\)

Trihalomethanes generally provide the best precursor compounds for this type of reaction providing dihalocarbenes as the intermediates. Chloroform can be used to form dichlorocarbene using hydroxide as the base, but formation of alkyl carbenes from alkyl halides requires a more powerful base such as \(t\)-BuLi due to the possibility of alkene formation through β-elimination. \(^{43}\)

![Scheme 21](image)

Scheme 21

The early years of the 20\(^{th}\) century saw work published by Buchner\(^{44}\) and Staudinger\(^{45}\) on the decomposition of diazo compounds and reactions of the intermediate carbene species. Diazo groups can be liberated in the form of nitrogen gas from suitable starting materials through thermolysis and photolysis (Scheme 22). The inherent instability of alkyl diazo groups, and the safety issues associated with their explosive potential and carcinogenicity, \(^{46}\) led to work on more stable precursors such as diazirines \(^{47}\) and sulfonyl hydrazine salts \(^{48}\) which can also undergo photolytic and thermolytic decomposition to
form carbenes. Upon formation, free carbenes are promiscuous in their behaviour towards various functional groups which limits their application in useful synthesis to all but the most simple of compounds.

5.3 Metal Carbenoids

The potential of carbenes to accomplish various synthetically valuable procedures was realised in the early days of organic synthesis, but it was not until the 1960’s when Fischer and Schrock independently stabilised carbenes within the coordination spheres of metal centres, that carbene chemistry became of significant practical use. Metal carbenoids, or metallocarbenes, are reactive intermediates formed by the nucleophilic attack of a diazo compound into the empty orbital of Lewis acidic transition metal centre as shown in Figure 14. Loss of nitrogen from the complex results in a transient metallocarbene species, which is stabilised by back donation from the d-orbitals of the metal centre to the vacant p-orbitals of the carbon centre. Despite exhibiting corresponding reactivity, metal carbenoids have fully tetravalent carbons and cannot therefore be described absolutely as carbenes. In the presence of electron-rich substrates (S:) a reaction proceeds whereby a new carbon—substrate bond is formed and the metal-ligand complex returned to the catalytic cycle.
The high reactivities of metal carbenoids means that they are transient species, generally formed within the reaction and used \textit{in situ} to form the desired products. However, 2001 saw the publication of work by Hofmann in which the relatively long-lived copper carbenoid 123 was prepared and detected in solution by NMR spectroscopy.52 In the same year a stable rhodium carbenoid was isolated by the groups of Snyder and Arduengo and was analysed by X-ray crystallography, providing the first incontrovertible proof of metallocarbene structure.53

![Diagram of metal carbenoid reaction]

5.4 Diazocompounds as Metal Carbenoid Precursors

5.4.1 Electronic character of Metal Carbenoids

The electrophilicity of metallocarbene intermediates has been shown to be of key importance in controlling the chemo-, regio- and stereoselective outcomes of reactions, particularly those involving C-H insertion. The electrophilic character of the intermediate species is determined partly from the ligands used on the metal catalyst and partly from the substituents of the parent diazo compound.54 Metallocarbenes
possessing low electrophilic character display inferior reactivity in comparison to their more electron-poor analogues, but superfluous electrophilicity can lead to significant side-product formation. The mesomeric effect of flanking electron-withdrawing groups offers stabilisation to diazo compounds, thereby providing viable synthetic intermediates for subsequent transformations. The dinitrogen of the diazo functionality is easily liberated by application of photo or thermolytic excitation, and is decomposed readily in the presence of acid catalysis. In the case of alkyl diazo compounds, such as diazomethane, this facile decomposition presents significant safety risks and hence α-diazo carbonyl substrates are the preferred option for the generation of metal carbenoids due to their improved safety profile. Modern synthetic techniques tend towards the preparation of α-diazo carbonyl compounds as a means of both stabilising the diazo group and tuning the electrophilicity of the compounds to deliver useful reactivity. Metallocarbenes derived from these types of compounds can be subdivided into three categories:

1. Acceptor substrates containing an electron-withdrawing group. Generation of metal carbenoid intermediates can be achieved by reaction of various metal catalysts with diazo compounds of the type shown in Figure 16. The general trend of decreasing reactivity of metallocarbenes derived from these types of compounds progresses from α-diazoacetates 124, through α-diazoketones 125 to α-diazoacetamides 126. Extrusion of nitrogen from these compounds can be achieved using a variety of metals to provide moderate electrophilicity in the resulting metal carbenoid, and hence high degrees of reactivity are noted within this class of compound.

![Figure 16](image-url)
2. Acceptor-acceptor substrates containing two electron-withdrawing groups.

Metallocarbenes derived from compounds of the type shown in Figure 17 demonstrate enhanced stability, due to the presence of two electron-withdrawing groups flanking the carbenoid centre. The presence of two electron-withdrawing groups deactivates these compounds towards forming metallocarbenes, hence there is a requirement for highly reactive metal complexes in order to decompose the diazo functionality. The highly electrophilic nature of the resultant species provides increased reactivity when compared to those generated from a single acceptor substrate.\(^{58}\)

![Figure 17](image)

3. Those containing an electron-withdrawing group and an electron-donating group (acceptor-donor substrate)

The third category of metallocarbenes is that covering intermediates derived from α-diazo compounds of type 131 and 132. These compounds remained relatively unexplored until the work of Davies in 1997, when the first example of C-H insertion was reported using these reagents.\(^{59}\) The stabilising influence of the electron-withdrawing group when combined with the resonance donation of an adjacent π-system provides a push-pull system which affords a stabilised metallocarbene. Due to the increased stability of the starting materials, highly reactive metal catalysts are required to convert the diazo functionality into metallocarbenes, but the reactivity of the formed intermediate is moderated, leading to greater chemoselectivity in subsequent transformations.\(^{60}\)
Chapter 1: Introduction

Figure 18

5.5 Formation of α-Diazo Compounds

5.5.1 Diazomethane Formation and Application to α-Diazoketone Formation

In order to access the key diazo functionality, required for the preparation of metal carbenoids, several methods have been developed to introduce the moiety into synthetically useful compounds. The simplest alkyl diazo compound is diazomethane 138 which was traditionally prepared by the base mediated decomposition of N-nitroso-N-methylurea 133 through the method of von Pechmann.\(^{61}\)

The instability of this precursor to shock and temperatures greater than 20 °C led to the development of Diazald® 134 (N-Methyl-N-(p-tolylsulfonyl)nitrosamide) as a more stable alternative.\(^{62}\) The mechanism of diazald decomposition to diazomethane 138, and its subsequent use for the synthesis of α-diazocarbonyl compounds, is shown in Scheme 23. Diazomethane is toxic and explosive, although the risk can be minimised by confining the decomposition reaction within specialised glassware and co-distilling the product with diethyl ether.\(^{63}\) Diazomethane is never isolated pure, but is instead used as a dilute ethereal solution in subsequent transformations. In the case of α-diazo carbonyls 139, this routinely involves the introduction of an activated acetyl group, typically an acid chloride or mixed anhydride, into the bulk solution of diazomethane.
5.5.2 Diazotisation of Amines

Diazo groups can be accessed by treatment of amines with nitrous acid, normally generated through reaction of nitrite salts and aqueous acid at low temperature (Scheme 24).

In the presence of flanking electron-withdrawing groups the resultant diazonium salt can undergo elimination of the acidic proton leading to formation of an α-diazo carbonyl species. Curtius prepared ethyl diazoacetate from glycine ethyl ester hydrochloride using this method as early as 1883. Alternatively, alkyl nitrite reagents can be used to produce α-diazo carbonyl compounds in cases where an organic solvent is preferred over the traditional aqueous solvent systems.

5.5.3 Decomposition of Hydrazones and Oximes

The Bamford-Stevens reaction is a method for the preparation of diazo compounds from corresponding ketones and aldehydes. The preliminary step in the sequence, shown in Scheme 25, requires the formation of a tosyl hydrazone 145 which upon exposure to base decomposes to form the diazo compound 121, through deprotonation and elimination of the p-toluenesulfinate ion. The Bamford-Stevens reaction is generally conducted at elevated temperature and so only stabilised diazo compounds, such as those bearing adjacent aryl substitutions, can be isolated from this reaction. Non-
Chapter 1: Introduction

Stabilised alkyl diazo intermediates undergo thermal decomposition, leading to a carbene based rearrangement of the compound to form olefins. \(^66\)

![Diagram](144\rightarrow \text{TSNH-NH}_2 \rightarrow \text{145} \rightarrow \text{NaOE} \rightarrow \text{121})

Scheme 25

Oxidation of hydrazones offers an alternative route for the preparation of the diazo functionality (Scheme 26). Initially this reaction was reported by Curtius in 1889 using mercuric oxide in the preparation. \(^67\) Subsequent work demonstrated that other heavy metal salts such as \(\text{Pb(OAc)}_4\), \(^{68}\) \(\text{MnO}_2\) \(^{55}\) and \(\text{AgO}\) \(^{69}\) can promote the same transformation. A less toxic variant, in which Swern oxidation conditions are employed, was recently published by Brewer and Javed. \(^70\)

![Diagram](144 \rightarrow \text{NH}_2-NH_2 \rightarrow \text{146} \rightarrow \text{HgO} \rightarrow \text{121})

Scheme 26

An associated reaction is the Forster Reaction in which an oxime is treated with chloroamine to afford the intermediate \(\text{148}\), which readily decomposes to the related diazo compound (Scheme 27). Although diazomethane can be prepared from formaldehyde by this method it has not found widespread applicability. \(^71\)

![Diagram](144 \rightarrow \text{NH}_2-OH \rightarrow \text{147} \rightarrow \text{148} \rightarrow \text{121})

Scheme 27

5.5.4 Regitz Diazo Transfer

Arenesulfonyl azides were shown by Regitz to transfer diazo functionality to suitably activated carbonyl systems (Scheme 28). \(^72\) This methodology is limited to compounds such as malonates and \(\beta\)-ketoesters where the \(\alpha\)-protons are sufficiently acidic for the reaction to proceed. The scope of the Regitz methodology can be augmented through the use of an aldehyde as the second activating group, in which case deacetylation leads to \(\alpha\)-diazo compounds of type \(\text{152}\). \(^73\)
Chapter 1: Introduction

The stabilising influence of the metal-ligand complex in metallocarbenes has led to a proliferation of their synthetic uses over the course of the last thirty years. The three major transformations in which they have been used are cyclopropanation, insertion reactions and in the formation of ylides coupled with their subsequent rearrangement chemistry.

6.1 Carbenoid Mediated Cyclopropanation

Addition of a carbene species to olefin has long been known to afford a cyclopropane, a recurrent motif amongst natural products occurring in plant defence and in synthetic insecticides. In 1958, Simmons and Smith described the reaction of methylene carbenoid, generated by reaction of diiodomethane and a zinc-copper couple, adding to various alkenes to provide cyclopropanes. Subsequent advances in metal carbenoid formation, through decomposition of diazo compounds with chiral metal complexes, has led the way to both enatio- and diasteroselective transformations but a thorough review of which remains outwith the scope of this narrative. Various metals, including Cu, Rh, Ru, Mo, Fe, Co, Ir and Pd have been shown to generate metal carbenoids from diazo compounds, which subsequently undergo cyclopropanation in the presence of alkenes, or cyclopropenation when reacted with alkynes. Additionally, numerous ligands have been developed which can impart chiral information to these reactions leading to enantioselective transformations in both inter and intramolecular fashion.
As shown in Figure 20, upon formation of the metal carbenoid and introduction to an olefin, the complex undergoes concerted [2+1] cycloaddition to afford the cyclopropane system with regeneration of the catalyst.51, 76 Palladium complexes can also be used to decompose diazo compounds to form palladium carbenoids, which although undergoing cyclopropanation reactions, do so through an alternative mechanism involving a formal [2+2] addition of the carbenoid across the alkene, followed by reductive elimination of the metal centre.77

Figure 20

The use of metal carbenoid catalysed cyclopropanation is widespread within literature due to the many applications of the methodology in the total syntheses of natural products. A good example of the synthetic utility of this reaction is Martin’s total synthesis of (+)-ambruticin S 155, an antibiotic derived from *Polyangium cellulosum*. The central divinyl cyclopropane unit of the synthetic product was prepared through an intramolecular, asymmetric dirhodium carboxamide catalysed, cyclopropanation of alkene 153 (Scheme 29).78
6.2 Carbenoid Insertion Reactions

The ability of a carbenoid to insert into R-H bonds (R = C, S, Si, O, N) is a long recognized phenomenon in the field. Early work on carbene C-H insertion reactions focussed on the ability of the carbenes methylene and dichloromethylene to react with simple aliphatic acyclic and cyclic systems. These reactions were found to be chemoselectively and regioselectively uncontrollable, leading to the comment by Doering that “methylene must be classified as the most indiscriminate reagent known in organic chemistry.” The relative stability of metal carbenoids has circumvented this promiscuous behaviour resulting in more controllable reactivity and synthetic utility, in which specific bonds are activated for insertion. Classical C-H insertion reactions were traditionally carried out using copper activation, but the advent of dirhodium complexes as catalysts for the formation of metal carbenoids has led to advances in both the regio- and stereocontrol of this reaction.
Doyle suggested a mechanism for C-H insertion, in which overlap of the p-orbitals of the metal bound centre of the carbenoid with the σ-orbital of the activated C-H bond initiates a three- or four-membered cyclic transition state. The dissociation of the carbenoid-stabilising metal proceeds with concerted migration of the hydrogen atom thereby providing the insertion product and regenerating catalyst (Figure 21).

![Diagram of C-H insertion mechanism]

Figure 21

C-H insertion reactions involving carbenoid intermediates are generally conducted intramolecularly on systems bearing restricted molecular geometry, in order to control the diastereoselectivity of the reaction. C-H Insertion reactions tend towards the formation of five-membered cyclic systems through a pseudo-chair transition state first propose by Taber and co-workers (Figure 22).

![Diagram of five-membered cyclic transition state]

Figure 22

6.3 Ylide Formation

In the presence of Lewis bases, metallocarbenoids have been shown to form ylides or ylide-like intermediates that are prone to undergo subsequent rearrangement chemistry. Ethers, sulfides, tertiary amines, carbonyls and imines have all been shown to provide non-bonding electrons for formation of these short lived intermediates (Figure 23).
Chapter 1: Introduction

Oxonium Ylides

At the most basic level, oxonium ylides are a species bearing a positively charged oxygen atom adjacent to negatively charged carbon atom. Unlike their ammonium and sulfonium counterparts, oxonium ylides are a short lived species which have never been isolated and whose existence is imputed only through isolation of the products they form. Recent years have seen great interest in oxonium ylides as transient synthetic species through the simplified methodologies used in their generation and a better understanding of the synthetic outcomes of their use.\(^8^3\)

7 Oxonium Ylides

7.1 Formation of Oxonium Ylides

7.1.1 Generation of Oxonium Ylides from Oxonium Salts

Two profoundly different methods have been used for the generation of oxonium ylides from readily accessible starting materials, the most prevalent being treatment of a metal carbenoid with an ether. An alternative methodology which gave the earliest verifiable example of oxonium ylide formation, results from the manipulation of simple oxonium salts. Olah reported in the early 1980’s that trimethyloxonium tetrafluoroborate 157 could be deprotonated using sodium hydride to yield methoxyethane 159, the result of a [1,2]-shift of a methyl group from the oxonium centre. This result, combined with the isolation of a product mixture consistent with the transient formation of the oxonium ylide 158, provided evidence of the putative intermediate species (Scheme 30).\(^8^5\)
Supplementary work on the fluoride mediated decomposition of α-silated oxonium salts provided further evidence for the short-lived oxonium ylide species. The synthetic utility of the methodology was, however, severely limited by the restricted functional group tolerance and the high reactivity of the starting materials towards the methylation of nucleophiles.

7.1.2 Generation of Oxonium Ylides from Metal Carbenoids

The oxygen atom of an ether group, by virtue of its non-bonding electrons, acts as a weak Lewis base. Within the confines of conventional chemistry this limits the potential of ethers as nucleophiles, but within the sphere of metallocarbenoid chemistry, ether lone pairs are effective in forming oxonium ylide intermediates. The interaction between the two species is believed to be weak, with the equilibrium lying towards the discrete ether and metallocarbenoid pair (Figure 24). This is corroborated by the ability of metal carbenoids to undergo both cyclopropanation and insertion reactions in ethereal solvents.

![Scheme 30](image)

Figure 24

Although the intermolecular formation of oxonium ylides is usually disfavoured with respect to competitive pathways, the intramolecular formation of cyclic ylide systems, especially when subsequent rearrangement reactions are efficient, can push the equilibrium towards product formation. This type of transformation can be tuned by the choice of both metal and ligand in the carbenoid species.
7.2 Reactivity of Oxonium Ylides

Upon formation, oxonium ylides can undergo a synthetically useful [2,3]-sigmatropic rearrangement or [1,2]-shift (Stevens rearrangement) in the presence of suitable migrating functionality. Side reactions such as β-hydride elimination and deoxygenation of epoxides are also possible. When combined with the competitive reactivity of the parent metal carbenoid, the disadvantages of employing this methodology are evident. However, despite these apparent limitations, valuable studies concerning oxonium ylide chemistry published by several groups, have led to the methodology becoming a useful tool in modern organic synthesis.

7.2.1 Deoxygenation of Epoxides

Wittig and Schlosser described the deoxygenation of phenyloxirane to form styrene using a copper generated carbene in 1962. Subsequent work by Martin and Ganem established a more robust deoxygenation reaction for conversion of epoxides into their associated alkenes using a carbenoid generated from dimethyl diazomalonate and Rh$_2$(OAc)$_4$, or alternatively Rh$_2$(Piv)$_4$. The decomposition of ephemeral oxonium ylide 162, illustrated in Scheme 31, provided good isolated yields of isomerically pure olefins 163 in the presence of labile functionalities such as halides, ketones, acetates and TMS ethers but without secondary cyclopropanation occurring.

![Scheme 31](image)

7.2.2 β-Hydride Elimination of Oxonium Ylides

Several significant migratory reaction pathways can be followed upon the formation of an oxonium ylide. The first of these, β-hydride elimination, results in the degradation of the parent ylide 166 to form an ether 167 and an olefin 168, a generalised sequence for which is illustrated in Scheme 32. This reaction was first reported by Franzen and Fikentscher from the reaction of methylene with diethyl ether.
A more synthetically useful reaction of an oxonium ylide is the Stevens rearrangement, which involves the formal [1,2]-shift of an alkyl group adjacent to the ylide. The net result of the Stevens rearrangement is equivalent to the insertion of a carbene into a C-O ether bond (Scheme 33). The reaction was originally discovered in 1928, during Stevens’ work on ammonium ylides.²²

The Stevens Rearrangement is a high-energy, symmetry-forbidden process under the rules of Woodward and Hoffmann²³ and hence mechanistic explanations have traditionally tended towards rationalisations involving radical pairs.²⁴ CIDNP analysis of the reaction by Iwamura suggested that a singlet radical pair is formed through homolytic degradation of the transient ylide species 171, followed by a recombination of the radicals within the solvent cage to afford the [1,2]-shift product 174.²⁵

Use can be made of the [1,2]-shift reaction of oxonium ylides in forming oxo-bridged ring systems, as has been demonstrated by West and co-workers (Scheme 34).²⁶ Use of rhodium dimers in generating the metal carbenoid intermediate from α-diazoketone 175 led predominantly to C-H insertion products, in preference to oxonium ylide formation. Conversely, Cu(hfacac)₂ afforded the oxo-bridged system 177, through [1,2]-shift of oxonium ylide 176, with retention of starting material stereochemistry. This
stereochemical result was ascribed to the rapid recombination of the putative radical species during rearrangement.

![Scheme 34](image)

7.2.4 Competitive [1,2]-Stevens Rearrangement and [2,3]-Sigmatropic Rearrangement

Although most alkyl groups can migrate in the [1,2]-shift of oxonium ylide systems, benzyl groups have found widespread use as migrating functionality in Stevens rearrangement reactions. West conducted a study, summarised in Scheme 35, on the effect of catalyst selection on the outcome of oxonium ylide rearrangement, in which both the [1,2]-shift of a benzyl group and the [2,3]-sigmatropic rearrangement of an allylic ether function were possible. The study showed that there is a defined preference for formation of the five-membered oxonium ylide 179, where rhodium dimers and Cu(hfacac)$_2$ are used for the formation of the metal carbenoid. In these cases, formation of tetrahydrofuranone 181 resulted from [1,2]-shift of the benzyl group, but generation of the metal carbenoid with Cu(tfacac)$_2$ afforded the six-membered pyranone 182 preferentially. This result is suggestive of an equilibration between five and six-membered oxonium ylides 179 and 180, which allows for formation of the pyranone preferentially when the migratory group facilitates rapid rearrangement.
The preference for the rhodium catalysts for the formation of the furanone system was attributed towards to either, a shift in equilibrium through a stabilisation of the five-membered ylide by the metal centre or a lack of preference towards migrating group where rhodium carbenoids are involved. The differences in reactivity observed through changes to both the metal and ligand in the catalyst suggest that the metal centre is associated with the transient oxonium ylide species.

7.2.4.1 Asymmetric Induction of [1,2]-shifts of Oxonium Ylides

The use of chiral ligands to influence the stereochemical outcome of the [1,2]-shift of oxonium ylides has been explored. Inspired by the moderately enantioselective, intermolecular oxonium ylide ring expansion reactions of Nozaki, Katsuki and co-workers investigated the asymmetric ring expansion of oxetanes, to form tetrahydrofurans. Bipyridine ligand 187 was applied to the copper-catalysed reaction of t-butyl diazoacetate with oxetane 183 and subsequent intermolecular oxonium ylide formation.99

Use of racemic 183 (Scheme 32, entry 1) was expected to result in the kinetic resolution of one enantiomer, yet the ratio of trans 185 and cis products 186 was essentially equimolar. The high degree of enantiomeric excess obtained for each product suggested that the catalyst was interacting in a stereodivergent fashion with each enantiomer of the starting material resulting in a highly enantioselective transformation upon [1,2]-shift. Use of chiral (R)-oxetane (entry 2) led to diastereoselective formation of the trans product with high levels of enatioselectivity, equally use of the (S)-oxetane resulted in preferential formation of the cis
diastereomer, with a correspondingly remarkable level of asymmetric induction (entry 3).

![Scheme 36](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>dr</th>
<th>ee (%)</th>
<th>ee (%)</th>
<th>ee (%)</th>
<th>recovered oxetane</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>59:41</td>
<td>75</td>
<td>81</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(R)-Ph</td>
<td>89:11</td>
<td>92</td>
<td>16</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(S)-Ph</td>
<td>25:75</td>
<td>11</td>
<td>93</td>
<td>87</td>
<td></td>
</tr>
</tbody>
</table>

Scheme 36

The catalyst was believed to induce the formation of a chiral oxonium ylide which underwent [1,2]-rearrangement before oxonium inversion could occur. The group would later apply their ring-expanding [1,2]-shift to a total synthesis of trans-whiskey lactone 188.100
Doyle et al. reported the desymmetrisation of acetonide 189 using the chiral rhodium carboxylate dimer Rh$_2$(4S-MPPIM)$_4$ 191. High yields of the [1,2]-shift product 190 were reported, with an enantiomeric excess of 81%. Small quantities of C-H insertion side products were also produced (Scheme 37).

Scheme 37

The stereoselective [1,2]-shift of an oxonium ylide formed from an acetal, was also explored by Zercher and co-workers in their studies concerning the synthesis of complex bridged bicyclic acetals. Reaction of α-diazo-β-ketoester 192 with Rh$_2$(OAc)$_4$ resulted in the formation the desired [1,2]-shift product 193, which the group noted was the core carbon structure found in the zaragozic acid family of natural products. Employment of Cu(hfacac)$_2$ to generate the oxonium ylide resulted in both the required Stevens rearrangement product as well as the undesired [2,3]-sigmatropic rearrangement product, diene 194.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Temp. (°C)</th>
<th>193</th>
<th>194</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rh$_2$(OAc)$_4$</td>
<td>80</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Cu(hfacac)$_2$</td>
<td>25</td>
<td>42</td>
<td>20</td>
</tr>
</tbody>
</table>
7.3 [2,3]-Sigmatropic Rearrangements of Oxonium Ylides

As discussed briefly in the preceding section, when oxonium ylides are formed in the presence of an allylic function, [2,3]-sigmatropic rearrangement of the intermediate can occur. The initial report of this transformation, by Kirmse and Kapps in 1968, described the intermolecular reaction between allyl ether and the copper derived carbenoid of diazomethane. The major product of the reaction was the mono cyclopropanated adduct, with [2,3]-rearrangement providing the minor side product.\(^{103}\) The synthetic utility of such rearrangements came to the fore in 1986 when Johnson and Pirrup independently reported the intramolecular cyclisation of allylic ethers bearing α-diazo carbonyl group when treated with rhodium acetate. Formation of furanones and pyranones were demonstrated to be achievable through rearrangements of oxonium ylides of type 196, as illustrated in Scheme 39.\(^{104}\)

![Scheme 39](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>n</th>
<th>Yield 197 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CO(_2)Me</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>1</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>CO(_2)Me</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>2</td>
<td>33</td>
</tr>
</tbody>
</table>

Scheme 39
The methodology was extended by Clark and co-workers during studies concerning both rhodium and copper catalysis, for the formation of 2,6-tetrahydropyran-3-ones and larger ring systems.\(^{105}\) Initial studies, based upon the reaction of α-diazoketones of type 198 with various catalysts, demonstrated that tandem oxonium ylide formation and [2,3]-sigmatropic rearrangement was best facilitated by the use of electrophilic copper catalysts, in particular Cu(hfacac)_2. Scheme 40 shows that use of rhodium carboxylate dimers and less electrophilic copper complexes promoted formation of the C-H insertion by-products 200. Application of the optimal copper catalyst to chain extended diazoketone precursors allowed an oxepane-3-one (entry 7) and an oxocan-3-one (entry 8) to be formed, albeit with attendant C-H insertion (entry 7) and in modest yield (entry 8).
Scheme 40

The [2,3]-sigmatropic rearrangement of oxonium ylides does not occur on allylic functionality exclusively; Johnson and Pirrung demonstrated the applicability of the methodology to the formation tetrahydrofuranones bearing a pendant allene, the result of the [2,3]-rearrangement of a propargylic ether (Scheme 41).

Scheme 40

<table>
<thead>
<tr>
<th>Entry</th>
<th>n</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp.</th>
<th>Yield 199 (%)</th>
<th>Yield 200 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Rh$_2$(OAc)$_4$</td>
<td>CH$_2$Cl$_2$</td>
<td>rt</td>
<td>37</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Rh$_2$(OAc)$_4$</td>
<td>THF</td>
<td>reflux</td>
<td>58</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Cu(acac)$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>61</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Cu(tfacac)$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>78</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Cu(hfacac)$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Cu(acac)$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>18</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Cu(hfacac)$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>76</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>Cu(hfacac)$_2$</td>
<td>CH$_2$Cl$_2$</td>
<td>reflux</td>
<td>40</td>
<td>-</td>
</tr>
</tbody>
</table>

Scheme 41

Johnson et al.

Pirrung et al.
Doyle subsequently reported on the application of the [2,3]-sigmatropic rearrangement reaction of propargylic ethers to the formation of allene bearing macrocycle 206 using copper catalysis (Scheme 43). Reaction of rhodium(II) acetate with diazoester 205 led to selective cyclopropenation of the alkyne in a clear example of the importance of catalyst choice in the face of competing reactions.106

![Scheme 43](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Combined Yield (%)</th>
<th>206</th>
<th>207</th>
<th>208</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cu(MeCN)\textsubscript{4}PF\textsubscript{6}</td>
<td>61</td>
<td>75</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>Rh(OAc)\textsubscript{4}</td>
<td>62</td>
<td>0</td>
<td>96</td>
<td>4</td>
</tr>
</tbody>
</table>

Scheme 42

7.4 Diastereoselectivity of Intramolecular [2,3]-Sigmatropic Rearrangements

7.4.1 Application to 2,5-\textit{trans} tetrahydrofuran-3-one Formation

Johnson and Roskamp’s initial report of intramolecular cyclisation reactions through transient oxonium ylides demonstrated that, upon formation of 2,5-tetrahydrofuran-3-ones the 2,5-\textit{trans} diastereomer predominated when dirhodium acetate was employed as the catalyst (Scheme 43, entry 1).104b Clark later reported that copper catalysts could be used in analogous transformations providing both higher yields of the desired products, as well as improved diastereocontrol in forming the 2,5-\textit{trans} diastereoisomer 210 (entries 2 and 3).107
7.4.2 Application to 2,6-trans Tetrahydropyran-3-one Formation

Studies by Clark, the results of which were published in 2003, explored the effect of catalyst choice on the stereoselectivity of 2,6-tetrahydropyran-3-one formation from diazoketones of type 210 (Scheme 44).\(^\text{108}\)

Copper catalysis was again found to promote the formation of oxonium ylides and provide the desired 2,6-trans tetrahydropyran-3-one systems upon [2,3]-sigmatropic rearrangement. The catalyst of choice for 2,5-trans tetrahydrofuran-3-one formation, Cu(acac)\(_2\), afforded good stereoselectivity when applied to diazoketones of type 212.
providing the 2,6-trans diastereomer 213 as the major product albeit in a low yield (entries 1 and 2). Increasing the electrophilic character of the metal carbenoid resulted in increased product yields, augmented formation of the 2,6-trans diastereomer and slightly increased formation of the [1,4]-rearranged side-product 215 (entries 2 and 3), whereas use of a rhodium dimer catalyst reversed the ratio of products to favour the 2,6-cis isomer over the trans diastereomer (entry 5).

7.4.3 Rationalisation of Diastereomeric Outcome

Two models exist to explain the diastereoselectivity of the rearrangement reactions of the oxonium ylides, based on models of a free oxonium ylide, under which [2,3]-rearrangement occurs in a classical fashion and an alternative in which the ylide is associated with the metal-ligand complex of the parent carbenoid.

![Figure 25](image)

Although the possibility exists for attack of the metal carbenoid 216 through either of the diastereotopic ether lone pairs, in practice one predominates to form the energy minimised transition state, in which the R substituent and migrating allylic functionality are located in equatorial positions (Figure 25). The diastereoselectivity of the rearrangement product is believed to originate from migration occurring on the least hindered face of the transition state i.e. that opposite to the bulky R substituent. Preferential formation of the 2,6-trans product suggests [2,3]-sigmatropic rearrangement occurs swiftly upon formation of the oxonium ylide. Furthermore, the trans to cis ratio variation with catalyst system implies that the oxonium ylide is associated to some degree with the metal centre. The stereochemical outcome can be envisaged as proceeding via one of the two possible pathways illustrated. Pathway A shows attack through an etheric lone pair onto the newly formed metal carbenoid and
the resulting metal associated product then rapidly rearranges with concomitant loss of the associated metal-ligand centre. The nature of metal association and stabilisation is not well understood and could derive from either the carbon-metal bond of 217 or the metal enolate 218.

A second possibility exists in which the metal-ligand centre is lost completely to provide a free chiral oxonium ylide 219. Rapid rearrangement of the chiral oxonium system would follow along pathway B to provide the identical kinetic product gained through pathway A. Inversion of an oxonium centre is a phenomenon that is describe within the literature109 and provides the possibility of isomeric chiral oxonium ylides, which upon thermodynamic equilibration would afford diasteromeric product mixtures. The equilibrium between the oxonium ylide and its parent compounds (Figure 24), in addition to the product distributions obtained from intramolecular cyclisation reactions tending towards the predominance of a single diastereoisomer, means that the metal associated model is more likely than formation of a free oxonium ylide. However progression via pathway B and a free oxonium ylide cannot, as yet, be completely discounted.

7.4.4 Application of Diastereoselective [2,3]-Rearrangements to Total Synthesis

West’s studies on the formation of trans-fused polycyclic ethers, of the type found in marine natural products such as gambierol, led to the publication of an iterative approach to the formation of polyethers (Scheme 45).110 Diazoketone 221 was treated under optimised conditions to afford a diasteromeric mixture of oxabicycles 219 and 223, resulting from the formation of an oxonium ylide and subsequent [2,3]-sigmatropic rearrangement, as well as the C-H insertion product 224. Epimerisation of ketones 222 and 223 was followed by stereoselective reduction of the carbonyl group to afford the alcohol 225. Stepwise modification of the pendant groups afforded diazoketone 226, a precursor to a second tandem oxonium ylide-rearrangement sequence, providing access to tricyclic ketone 226.
Chapter 1: Introduction

The Clark group demonstrated the efficacy of the [2,3]-rearrangement reaction of oxonium ylides in total synthesis by using the reaction to construct the 2,6-trans-tetrahydrofuran-3-one core of (±)-decarestrictine L 232 (Scheme 46).111

Scheme 46
7.5 Bicyclic Ring Formation through Stereoselective [2,3]-Sigmatropic Rearrangement

The creation of bicyclic ring systems from suitably fashioned cyclic ethers can be accomplished through use of a tandem oxonium ylide formation/rearrangement strategy. Pirrung demonstrated an efficient route for the preparation of an eight-membered bicyclic ketone 234 from the 2,5-trans tetrahydrofuran 230 (Scheme 47).104a

Scheme 47

An early example of the utility of this ring expansion reaction was published by Clark, who used the methodology to prepare the core bicyclic structure of neoliacinic acid 240.112 The reaction sequence, shown in Scheme 48, used two key carbenoid transformations in the preparation of strategic oxacyclic intermediates. The primary transformation involved the Rh\textsubscript{2}(hfacac)\textsubscript{4} catalysed C-H insertion of diazoketone 235 to form a 2,5-cis tetrahydrofuran-3-one, which was treated with methylmagnesium chloride to afford alcohol 236. After further manipulation of the pendant groups, the stage was set for the second carbenoid transformation, the copper-catalysed oxonium ylide formation and subsequent [2,3]-sigmatropic rearrangement reaction of diazoketone 237. Application of Cu(hfacac)\textsubscript{2} to 237 afforded a mixture of the [1,2]-shift product as well as the desired [2,3]-sigmatropic rearrangement, albeit as a mixture of both E and Z isomers 238ab. The 2,6-cis stereochemistry of the bridgehead protons results from the spatial orientation of the nucleophilic centre with respect to the pendant allylic groups in the transition state (Figure 26). Nucleophilic attack of the allylic group, during the [2,3]-rearrangement is achieved from the proximal position of the six-membered oxonium system, leading to the formation of the cis isomer preferentially.
Both olefin isomers are produced as a consequence of the capacity of the oxonium ylide to rearrange through either of the oxonium ylides 242 or 243 shown in Figure 26. The 3:2 ratio of E and Z isomers is suggestive of a small energy difference in the equilibrium of the transition states that is easily overcome. Subsequent work by Clark on the cladiellin family of natural products showed that the choice of metal and ligand in the carbenoid species is of prime importance in determining the outcome of olefin geometry in this type of transformation, providing evidence of metal association adjacent to the site of oxonium ylide formation. Following isolation of the products, conversion of the E olefin into the more stable Z isomer was found to be achievable using mercaptoethanol and a radical initiator. A similar oxonium ylide rearrangement strategy was also utilised in Clark’s synthesis of the tricyclic core 247 of labiatin A (Scheme 49).
In an elegant example of convergent total syntheses, a recent paper by Clark and co-workers demonstrated how the ratio of E/Z isomers could be tuned through the judicious selection of solvent, temperature and most importantly catalyst. Reaction of $\text{Rh}_2(O_2CCPh)_4$ with diazoketone 248 afforded practical quantities of E-olefin 250 which was used to prepare eight members of the cladiellen family of natural products, the skeleton of which (252) is shown in Scheme 50.\(^\text{113}\)
The use of electrophilic ligands in copper catalysis has allowed the fine tuning of the oxonium ylide formation and rearrangement reaction to afford primarily the Z-olefin 249, previously employed by Clark and co-workers in their synthesis of vigulariol 251. These examples distinctly illustrate the effect of the metal centre on the diastereoselectivity of the reaction and provide further substantiation to a metal associated oxonium ylide intermediate.

7.6 Stereochemistry of [2,3]-Rearranged Allylic Substituents

A study on the transition states generated through oxonium ylide generation and [2,3]-rearrangement of substituted olefins was conducted by Clark and co-workers in 2004. The formation of 2,5-tetrahydrofuran-3-ones, as has been seen, was a well-studied reaction within the group, but the generation of stereochemistry in the allylic substituent through the [2,3]-rearrangement of the ephemeral oxonium ylide was relatively unexplored. An understanding of the nature of the rearrangement transition state, either endo or exo, was therefore of key importance in delivering the desired stereochemistry to the allylic position. In order to access the required stereochemistry of the product, the E-crotyl ether starting material 253a would have to rearrange...
through the \textit{endo} transition state shown in Scheme 51, alternatively the Z crotyl ether 253b would have to pass through an exo transition state.

![Scheme 51](image)

\textbf{Scheme 51}

To evaluate the course of the tandem oxonium ylide formation and [2,3]-sigmatropic rearrangement reaction, the \(E \) and \(Z \)-crotyl ethers 253a and 253b were prepared and treated independently with Cu(acac)\(_2\). As discussed previously, the cyclic oxonium ylide formed from allylic ethers such as 253 rearrange preferentially to afford 2,5-\textit{trans} tetrahydrofuran-3-ones and this diastereoselective outcome was again observed from the experiments conducted. Rearrangem\(\text{ent} \) of \(Z \)-crotyl ether 253b afforded the unwanted diastereomer 254b in good yield and excellent diastereoselective control (75\%, \textit{dr} 95:5), indicating an \textit{endo} transition state predominated the transformation. The desired isomeric product 255a was prepared in both excellent yield and with a high diastereomeric ratio from the \(E \) crotyl ether starting material 253a (88\%, \textit{dr} >92:8). Again, this outcome supported the occurrence of an \textit{endo} transition state during the rearrangement reaction.

The work of Hodgson and co-workers concerning the total synthesis of hyperolactone, an anti-HIV agent, relied upon a similar type of rearrangement reaction to afford the desired stereochemistry at the allylic position. Initial studies on model systems, shown in Scheme 52, supported the preference for an \textit{endo} transition state in the [2,3]-rearrangement of cyclic oxonium ylides, thereby affording tetrahydrofuranones of type 258 in good yield and diastereoselective ratio.\(^{117}\) Optimisation of the reaction conditions for the one-pot process was subsequently allowed for an enantioselective preparation of (−)-hyperolactone.\(^{118}\)
Scheme 52

7.7 Asymmetric Induction of Tandem Oxonium Ylide Formation and [2,3]-Rearrangement

The field of asymmetric induction in carbene reactions has been of intense interest to researchers for many years. Although both cyclopropanation and C-H insertion reactions have been well studied, the application of asymmetric induction in the case of oxonium ylide formation and rearrangement has only advanced within the last two decades. Several reports emerged in the early 1990’s regarding enantio-induction in the [2,3]-sigmatropic rearrangement reaction of chalcogen ylides, particularly those of sulfur and selenium, by means of chiral rhodium, copper and cobalt complexes. Work on oxonium ylides, by comparison, has been sparser.

7.7.1 Intramolecular Enantioselective Transformations

McKervey published the first report of a [2,3]-sigmatropic rearrangement of the oxonium ylide derived from α-diazo-β-ketoesters of type 261a using the binol-phosphate dirhodium(II) complex 263. This reaction afforded 90% isolated yield of the [2,3]-rearranged product 262a with a moderate 30% ee (Scheme 53, entry 1). Both the yield and enantio-induction of the reaction were improved by using the rhodium dimer
264, the ligand of which was derived from D-tert-leucine. Augmented stereoselectivity, through the use of chiral complexes, provides supplementary evidence for the transitional species being a metal-bound oxonium ylide in which the chiral ligands are proximal to the reacting centre. Aromatic α-diazo-β-keto esters, of type 261, have proved to be suitable substrates for comparative studies of enantioselective oxonium ylide and [2,3]-sigmatropic rearrangements, and have been used in several experiments.

Doyle had previously observed that rhodium(II) carboxamide dimers, despite being inferior substrates, apropos diazo decomposition, delivered higher degrees of asymmetric induction in subsequent reactions when compared to rhodium complexes bearing carboxylate ligands. The improved stereochemical outcomes from application of these catalysts were understood to be the result of the closer proximity of the reacting metal centre to the chiral appendages of the ligand, as illustrated by the generalised rhodium carboxamide carbenoid 260.

Inspired by these findings, the group of Moody prepared several chiral rhodium(II) carboxylates, such as 263 and 264, designed to facilitate the rapid decomposition of the diazo moiety to the metal carbenoid, but which secured the pendant chiral ligands in a comparable spatial position to those of carboxamide ligands. Scheme 53 (entries 4 and 5) shows that these ligands provided good conversion of the starting material into the oxonium ylide resulting in the formation of the [2,3]-rearranged product, albeit with low levels of enantioinduction. Hodgson established that enantiomeric excesses of 62% could be achieved by the employment of Rh₂[(R)-DDBNP]₄ 265 as a catalyst (entry 3), whilst the work of Hashimoto and co-workers led to the development of Rh₂[(S)-PTTL]₄ catalyst 268 (entry 6) which afforded 262a in 76% ee when the reaction was conducted at low temperature.
Scheme 53

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>R</th>
<th>Solvent</th>
<th>Temp.</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>263</td>
<td>Me</td>
<td>CH₂Cl₂</td>
<td>reflux</td>
<td>92</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>264</td>
<td>H</td>
<td>Hexane</td>
<td>20 °C</td>
<td>96</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>265</td>
<td>H</td>
<td>Benzene</td>
<td>25 °C</td>
<td>46</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>266</td>
<td>Me</td>
<td>CH₂Cl₂</td>
<td>reflux</td>
<td>92</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>267</td>
<td>Me</td>
<td>CH₂Cl₂</td>
<td>reflux</td>
<td>92</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>268</td>
<td>Me</td>
<td>Toluene</td>
<td>−10 °C</td>
<td>54</td>
<td>76</td>
</tr>
</tbody>
</table>
Calter and Sugathapala demonstrated that an enantioselective rearrangement of an allylic acetal, to form bicyclic ether \(270\), could be accomplished in moderate yield and with modest \(ee\) when performed using Davies' \(\text{Rh}_2[\text{S-TBSP}]_4\) complex \(271\) as the catalyst (Scheme 54).\(^{125}\) Hashimoto subsequently performed an analogous transformation using the \(\text{Rh}_2(\text{S-TFPTTL})_4\) dimer \(272\) as the catalyst, thereby improving dramatically both the yield and enantioselectivity of this novel transformation.\(^{126}\)

![Scheme 54](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temp.</th>
<th>Yield (%)</th>
<th>(ee) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>271</td>
<td>Benzene</td>
<td>reflux</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>272</td>
<td>Toluene</td>
<td>0 °C</td>
<td>93</td>
<td>93</td>
</tr>
</tbody>
</table>

Scheme 54

The stereoselective formation of \(cis\)-macroyclic structure \(274\) was achieved by Doyle in 1998.\(^{127}\) Application of chiral bis-oxazoline ligand \(275\) and a copper(I) salt, to achiral \(\alpha\)-diazoester \(273\) provided chemoselective oxonium ylide formation and [2,3]-rearrangement, the only notable by-product being cyclopropanation of the olefin bond (Scheme 55). Although the reaction proceeded in low yield, the levels of enantioselectivity are notable for a poly-oxygenated system. Replacement of the copper catalyst with a chiral rhodium dimer was ineffective, resulting only in formation of trace amounts of \(274\).
In a rare example of copper-catalysed enantioselective tandem oxonium ylide formation and [2,3]-sigmatropic rearrangement, Clark established that tetrahydrofuran-3-ones could be constructed asymmetrically through decomposition of diazoketone 276, using a catalyst formed in situ from Cu(MeCN)_4PF_6 and diimine ligand 280, to afford 277 in reasonable yield and enantiomeric excess (Scheme 56). The modest induction of asymmetry in aliphatic substrates was also observed when the same catalyst system was applied to aromatic substrate 278. Although a higher yield of benzofuranone 279 was achieved, a decrease in enantiomeric excess was also observed when compared to the non-aromatic substrate 276. The variance in asymmetric induction between substrates was attributed to differences in the reaction pathways, from which high enantiomeric excess was ascribed to a significant metal association with the oxonium ylide, whilst low induction was thought to result from a transition state whose structure corresponded to a free ylide from which partial oxonium inversion occurred.
7.7.2 Intermolecular Stereoselective [2,3]-Rearrangements

Although intramolecular cyclisation reactions involving oxonium ylides have been well studied in terms of reaction outcome and stereochemistry, the intermolecular variant of this type of reaction has, by comparison, received limited attention. The Rh$_2$(OAc)$_4$-catalysed decomposition of ethyl diazoacetate in the presence of either the cis or trans isomer of cinnamyl methyl ether was investigated by Doyle et al. in 1988. The outcome of the resultant tandem oxonium ylide formation and [2,3]-sigmatropic rearrangement reaction, illustrated in Scheme 57, provided evidence that the geometry of the alkene starting material translates into a preference for the 1,2-anti or 1,2-syn product.129

![Scheme 57](image)

In the case of trans cinnamyl methyl ether 281 the major product is the 1,2-anti diastereomer 282, whereas the reaction employing the cis isomer 283 results predominantly in the 1,2-syn isomer 284; the major side product of the reaction was the competitive cyclopropanation of the olefin. Doyle rationalised the highly diastereoselective nature of the reaction through application of the transition state models illustrated in Figure 28.

![Figure 28](image)

The highest energy transition states are those in which an eclipsed conformation exists between the ester group and that of the methyl group, hence transition states B and D are energetically disfavoured over A and C. The cis cinnamyl methyl ether (R^1=Ph, R^2=H) reacts preferentially to form the 1,2-syn product through transition state A due to the minimised steric clash between the ester and phenyl groups, whereas in the case of the trans olefin (R^1=H, R^2=Ph), the 1,2-anti diastereomer is formed preferentially where transition state C is energetically minimised.
In 2006 Quinn et al. published a paper in which stereoselective three-carbon ring expansion of trans divinyl epoxides was accomplished using a [2,3]-sigmatropic rearrangement of an intermolecularly formed oxonium ylide.\(^\text{130}\) Scheme 58 illustrates that the C\(_2\)-symmetry of the epoxide 285, when converted to an intermediate ylide species 287 allows for stereospecific rearrangement to dihydropyran 288 only.

![Scheme 58](image)

Scheme 58

Recent attempts by Njardarson and co-workers, to follow the ring expansion chemistry established by Quinn, demonstrated that oxonium ylides formed intermolecularely from variously sized, asymmetric oxygen containing heterocycles of type 289 and ethyl diazoacetate, did not efficiently undergo [2,3]-rearranged ring expansion, but instead provided a mixture of the desired rearrangement products 290 and the [1,2]-shift products 291.\(^\text{131}\) Moreover, epoxides (entry 1) underwent preferential carbenoid-mediated deoxygenation to afford diene 292 (Scheme 59).

![Product Distribution Table]

<table>
<thead>
<tr>
<th>Entry</th>
<th>n</th>
<th>Ar</th>
<th>Combined Yield (%)</th>
<th>Product Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4-MePh</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Ph</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3:1, trans:cis)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Ph</td>
<td>74</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(trans only)</td>
</tr>
</tbody>
</table>

Scheme 59
Despite the disappointing results of their ring expansion chemistry, the group refocused their attention on the reactivity of ylides generated from symmetric allylic ether \(293 \) (Scheme 60). In accordance with the results of Doyle\(^{129}\) the \(\text{trans} \) stereochemistry of the olefin bonds translated into the preferential formation of the \(\text{anti} \) diastereomer \(295 \) upon [2,3]-sigmatropic rearrangement of the transient ylide. Both rhodium and copper-catalysed decomposition of diazo acetophenone resulted in the formation of oxonium ylides and [2,3]-rearrangement to afford the \(\text{anti} \) diastereomer preferentially. However, the optimal combination of yield and diastereomeric ratio was found to result from the use of \(\text{Cu(tfacac)}_2 \) as the catalyst. The group introduced this reaction as the first stage of their two-step, one-pot, stereoselective formation of dihydropyran \(296 \).

Scheme 60

8 Overview

Metal carbenoid chemistry has, over the past three decades, added a set of highly controllable reactions to the toolkit of organic chemists. The application of a range of metal catalysts, particularly copper and rhodium complexes, for the controlled decomposition of diazo compounds has paved the way towards tuneable reactivity in three key areas, namely cyclopropanation, insertion and ylide formation.

Oxonium ylide formation, and the attendant [1,2]-shift and [2,3]-sigmatropic rearrangement reactions of the short-lived intermediate, have shown excellent practical application to the diastereoselective formation of oxygen-containing heterocycles; of particular note is the formation of 2,5-\(\text{trans} \) tetrahydrofuran and 2,6-\(\text{trans} \) tetrahydropyran systems, which are motifs common to a number of isolated natural products.

One such example is amphidinolide C, a structurally complex marine natural product, which shows promising anti-cancer bioactivity. Several groups have published syntheses of fragments of the natural product, in which various methodologies have been used to construct the two, 2,5-\(\text{trans} \) tetrahydrofurans embedded within the macrolactone.
system. However, until recently the application of oxonium ylide rearrangement towards this target has not been explored.

9 Addendum

Subsequent to completion of this manuscript, a number of papers were published detailing partial and total syntheses of amphidinolides C and F. Primarily, Carter and Mahapatra used methodology analogous to that successfully applied to their synthesis of amphidinolide F to afford the first total synthesis of amphidinolide C.224

September 2013 saw the publication by Fürstner and co-workers on the second total synthesis of amphidinolide F.225 Forsyth and Wu have also published details of their work on the preparation of the C-(1)–C-(14) and C-(15)–C-(25) fragments of amphidinolide C.226
Chapter 2: Results and Discussion
Chapter 2: Results and Discussion

10 Clark Group Approach to the Total Synthesis of Amphidinolide C

Since the inception of this project in 2009, the approach towards the synthesis of amphidinolide C within the Clark group has been designed to be both modular and convergent. In common with Carter and Mahapatra’s approach, our strategy took into account the ‘hidden symmetry’ of the macrolide-embedded 2,5-trans tetrahydrofuran rings. The key feature of our strategy is the use of a common intermediate for the construction of both ‘northern’ and ‘southern’ hemisphere fragments in order that rapid construction of the macrocyclic skeleton could be achieved. The initial retrosynthetic analysis developed by the group, and shown in Figure 29, commences with the two almost ubiquitous disconnections across the lactone bond of the macrolactone and the C-(17)—C-(18) bond adjacent to the ketone of C-(18), thereby affording ‘northern hemisphere’ fragment 297 and ‘southern hemisphere’ fragment 298. Both resultant fragments are of similar size and complexity leading to a highly convergent synthesis. Forward connection would be facilitated firstly at C-(17)—C-(18) through a dithiane alkylation of 297 with alkyl iodide 298 and followed by Yamaguchi macrolactonisation.

The northern hemisphere fragment 297 was further disconnected across the C-(26)—C-(27) bond, with forward connection envisaged through a Heck or Stille coupling reaction, to afford vinyl iodide 300 and a vinyl organometallic reagent 299. Further disconnection of the iodide leads to a strategy involving Negishi carboalumination of alkyne 301. A Stille reagent of type 299 can be envisaged as being derived from hydrostannylation of a propargylic group, which itself is preparable through nucleophilic attack of a suitable alkyne onto an aldehyde at the C-(24) position. An aldehyde of this type can be prepared through various functional group interchanges on 2,5-trans dihydrofuran-3-one 306 which is the product of a copper-catalysed formation and rearrangement reaction of an oxonium ylide, or metal-bound ylide intermediate, formed from α-diazoketone 307, a reaction well studied within the group.
Figure 29
Southern hemisphere fragment 298 was developed from the same dihydrofuran-3-one through disconnection of the C-(10)–C-(11) alkene bond to afford a putative Horner-Wadsworth-Emmons intermediate 302 and methyl ketone 303. The 8-ketophosphonate was disconnected along the protected diol C-(7)–C-(8) bond and the methyl appendage of the furan ring at C-(4), again providing the 2,5-trans dihydrofuranone substrate 306 as the key intermediate in the synthesis. The ketone coupling partner for the HWE reagent was disconnected along the C-(14)–C-(15) bond and can be seen as an advanced intermediate derived from a stereoselective aldol coupling of intermediates 304 and 305.

11 Preparation of a Common Intermediate

11.1 Acetonide Protected Target

An early candidate for a common intermediate system, incorporating the simplified introduction of the required C-(24) stereochemistry, was acetonide 309; this compound was believed to be accessible from the early stage enantiopure glyceraldehyde 88. The use of this starting material would allow, upon tandem oxonium ylide formation and [2,3]-sigmatropic rearrangement of α-diazoketone 308, access to the desired diastereomer from an inexpensive chiral pool starting material at an early stage in the synthesis. In addition to the early establishment of the C-(24) stereochemistry, facile oxidative cleavage of the deprotected diol would afford an aldehyde, which upon manipulation could deliver the foundation of the C-(7)–C-(8)-anti diol subunit of the macrolactone core.

![Figure 30](image-url)
11.1.1 Formation of β-hydroxyester Intermediate - Reduction Methodology

The starting material for this synthetic pathway was 1,2;5,6-diisopropylidene-D-mannitol 310, an easily accessible derivative of D-mannitol (Scheme 61). The bis-acetonide protection of the two terminal 1,2-diol units of D-mannitol was accomplished using 2,2-dimethoxypropane and catalytic tin(II) chloride in refluxing 1,2-dimethoxyethane according to the methods of Schmid and co-workers. The reaction afforded the required 1,2;5,6-diacetal 312 in 58% isolated yield in addition to the 1,2-monoacetal product 311 and the triacetalated material 313 in 9% and 17% yields, respectively. Upon isolation, the diol 312 was subjected to oxidative cleavage, using sodium periodate, to afford the enantiopure (R)-glyceraldehyde acetonide 88. As the procedures became standardised, isolation of the aldehyde, through vacuum distillation, routinely afforded the required compound in yields of up to 87%, with analysis consistent with that described in the literature.

\[
\begin{align*}
\text{310} & \xrightarrow{\text{SnCl}_2, \text{1,2-dimethoxyethane, 99 °C}} \text{312} & \text{311} & \text{313}
\end{align*}
\]

Scheme 61
(R)-Glyceraldehyde acetonide is known to have poor stability and is prone to polymerisation even at low temperatures under a nitrogen atmosphere. In addition to the polymerisation problems, it is also known to form a highly water soluble hydrate in the presence of moisture, resulting in overall loss of material if not handled or stored correctly. Generally, subsequent reactions were performed with freshly distilled material to minimise the potential for loss of aldehyde on prolonged storage. Attainment of sufficient quantities of aldehyde 88 allowed investigations to turn to construction of the 2,5-trans tetrahydrofuran-3-one system 309, for which we required the precursor α-diazoketone 308. Introduction of the ester functionality required for formation of the required α-diazoketone began by reaction of aldehyde 88 with ethyl diazoacetate in the presence of a Lewis acid, to provide β-ketoester 314a. Various Lewis acids have been shown to be useful in achieving this type of C-H insertion reaction, including BF₃·OEt₂, SnCl₂, and NbCl₅; alternative approaches to effecting this transformation have used Cu(II) and Rh(III) exchanged clays and zeolite catalysts. Initial efforts to effect the formation of 314a employed BF₃·OEt₂ as the catalyst afforded complex reaction mixtures from which the desired β-ketoester was isolated in an unsatisfactory 16% yield. The ¹H NMR spectrum of the isolated product showed an equilibrium mixture of β-ketoester 314a and tautomeric enol form 314b. A transformation using stannous chloride as the catalyst, as described originally by Roskamp and Holmquist, resulted in a cleaner reaction and a much improved isolated yield of 81%.

Scheme 62

In order to introduce the required C-5 R-stereochemistry to the target, 2,5-trans tetrahydrofuran-3-one 309, the ketone functionality of 314 was required to undergo stereoselective reduction. Pleasingly, Chikashita and co-workers had previously described an identical reduction reaction in 1989. Their work detailed the low temperature application of L-selectride [LiBH(sec-Bu)₃] for the stereoselective reduction of a series of β-ketoesters, one of which resulted in the attainment of 1,2-syn diastereomer 315a in moderate yield and with excellent diastereoccontrol. The mechanistic rationale for the stereoselective reduction relied on chelation of the
lithium cation with both the carbonyl and the β-ether groups of the acetonide, allowing preferential attack from the less hindered si face. In this fashion, 1,2-syn diastereomer 315a is formed as the major product, whereas coordination through the α-ether and reduction from the re face results in the undesired 1,2-anti diastereomer 315b; both outcomes are illustrated in Figure 31. The results of Chikashita support the conclusion that high facial selectivity is engendered by use of reagents capable of chelation control, whilst reductants composed of poorly chelating metals, such as aluminium (DIBAL-H) and sodium (NaBH₄) show only marginal preference for the 1,2-syn diastereomer.

![Figure 31](image)

In our hands, efforts to replicate these results were unsuccessful despite the use of various batches of L-selectride, solvents, temperatures and work-up conditions; a selection of results are illustrated in Table 3. Reductions using L-selectride and superhydride (entries 1 to 4 and entry 9 respectively) were monitored by TLC upon complete addition of the reductant, at the temperatures specified. In each case TLC analysis indicated consumption of the starting material and conversion to a more polar product. However, on work-up TLC analysis showed only a single spot of identical polarity to the starting material. ¹H NMR analysis of isolated material showed that this was indeed the keto-enol 314, with no desired reduction having taken place. Increasing the concentration of reductant and variation of batch afforded no reaction nor did the extension of reaction time. Allowing the reaction to warm to ambient temperature (entry 3) led only to an intractable mixture from which the reduced product could not be isolated. The change in TLC profile observed during the reaction suggested that
coordination of the substrate and reductant was occurring, but was not followed by delivery of the hydride to the carbonyl group.

Scheme 63

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reductant</th>
<th>Eq. mol.</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>Time (min)</th>
<th>Yield (%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Li(sec-Bu)₃BH</td>
<td>2.0</td>
<td>THF</td>
<td>−78</td>
<td>180</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>Li(sec-Bu)₃BH</td>
<td>2.0</td>
<td>THF</td>
<td>−78</td>
<td>360</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Li(sec-Bu)₃BH</td>
<td>4.0</td>
<td>THF</td>
<td>−78 to rt</td>
<td>300</td>
<td>Decom.</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Li(sec-Bu)₃BH</td>
<td>3.0</td>
<td>Et₂O</td>
<td>−78</td>
<td>60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>NaBH₄</td>
<td>1.1</td>
<td>EtOH</td>
<td>−78</td>
<td>30</td>
<td>95</td>
<td>56:44</td>
</tr>
<tr>
<td>6</td>
<td>NaBH₄</td>
<td>1.1</td>
<td>EtOH</td>
<td>0</td>
<td>30</td>
<td>94</td>
<td>50:50</td>
</tr>
<tr>
<td>7</td>
<td>LiBH₄</td>
<td>1.5</td>
<td>EtOH</td>
<td>−78</td>
<td>30</td>
<td>90</td>
<td>50:50</td>
</tr>
<tr>
<td>8</td>
<td>LiBH₄</td>
<td>1.3</td>
<td>THF</td>
<td>0</td>
<td>30</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>LiBH₃Et</td>
<td>1.1</td>
<td>THF</td>
<td>−40</td>
<td>120</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 3

Less sterically encumbered reducing reagents were then applied to the system. As expected, NaBH₄ delivered full reduction of the ketone but with no stereoselectivity even at low temperature (dr 56:44 syn:anti). LiBH₄ in ethanol (entry 7) afforded no stereoselectivity in the reduction, but like NaBH₄ fully reduced the starting material. Attempts to repeat the reduction in THF at 0 °C did not proceed most likely due to the poor solubility of the reductant (entry 9). Further attempts to pre-chelate the β-ketoester with salts of lithium or zinc prior to reduction were unsuccessful in terms of diasteromeric outcome.
In an effort to advance the synthesis and test subsequent reactivity, efforts were made to isolate each of the diastereomeric β-hydroxyesters \(315_{ab}\). During the course of purifying the products of reduction, attempts were made to separate the mixture by chromatography, but on each occasion attempted isolation was met with failure. It was found that derivatisation of the secondary alcohols as dimethylphenylsilyl ethers, as shown in Scheme 64, allowed for successful part-separation of the diastereomers on a 100 mg scale. On isolation, the discrete products were treated with TBAF to regenerate the secondary alcohols and assignment of structure made by comparison to Herrera’s data for the 1,2-anti diastereomer \(315_b\).^{139}

Scheme 64

11.1.2 Formation of β-hydroxyester - Chiral Auxilliary Methodology

Efforts to render formation of β-hydroxyester \(315_a\) stereoselective were undertaken using the chiral auxiliary procedures established by Sammakia and Zhang.\(^{140}\) Scheme 65 illustrates the synthesis of the acetylated auxiliary unit \(321\), beginning from commercially available cysteine ethyl ester hydrochloride \(317\). Conversion of the starting material through reaction with carbon disufide allowed access to thiazolidinethione \(318\) in reasonable yield; an identical transformation was also accomplished with 1 1-thiocarbonyldiimidazole in a comparable 66% isolated yield.

Tertiary alcohol \(319\) was formed by the addition of a methylcerium nucleophile, generated by combination of methyllithium and anhydrous cerium trichloride, a side-step necessary due to epimerisation of the α-stereocentre through enolisation when using more basic nucleophiles. Addition of the cerium reagent to the ester group provided the required alcohol in 77% yield after recrystallisation from toluene. The
synthesis was completed by TES protection of the extant alcohol and acylation of the thiazolidinethione ring system.

Attempts were made to accomplish the aldol addition of 321 to aldehyde 88 using dichlorophenylborane and (−)-sparteine to generate the enolate. Despite closely following the protocol of Sammakia, only complex reaction mixtures were obtained in each instance. Attempted purification of the reaction residues produced small amounts of material that, by 1H NMR analysis, contained the pertinent peaks of the product, as indicated by comparison to literature values, but also included many other artefacts that were inconsistent with the desired reactivity. Notwithstanding the disappointment of this initial result, a further attempt was made to effect the transformation using stannous triflate and N-ethylpiperidine to form the enolate at −78 °C, prior to addition of a freshly prepared batch of aldehyde. Analysis of an aliquot of reaction mixture showed only the presence of the auxiliary, the aldehyde appearing to have decomposed over a short period of time under the reaction conditions.
11.1.3 Subsequent Syntheses of the β-ketoester Intermediate

As a quantity of the required β-hydroxyester 315a had been isolated cleanly through silyl ether derivitisation, efforts were made to allylate the free hydroxyl function using various procedures. Although treatment of alcohols with allyl bromide in the presence of silver(I) oxide has been used for the mild allylation of various diverse substrates including β-hydroesters,97 in our case no reaction was observed to occur when similar conditions were employed. An alternative approach, in which the allyl cation is generated in situ from allyl trichloroacetimidate in the presence of an acid catalyst has previously been used to form allylic ethers.141 Standard catalysts for this type of transformation include sulfonic acids, but in the case of compounds bearing acetal groups these conditions are too harsh, leading to loss of the protecting group. In related examples, Lewis acids have demonstrated useful reactivity in the formation of benzyl ethers from trichloroacetimidate precursors.142 It was hoped that treatment of alcohol 315a with a freshly prepared batch of allyl trichloroacetimidate in toluene, using Sc(OTf)3 as the catalyst, would afford allyl ether 323. Disappointingly, on prolonged stirring the starting material remained unreacted.

Scheme 66

Allylation of the secondary alcohol was ultimately accomplished via palladium-catalysed generation of the allyl cation from allyl ethyl carbonate in degassed THF,143 as shown in Scheme 66. These conditions allowed high isolable yields of stereopure allyl ether 323 to be obtained. When analogous conditions were applied to a diastereomeric mixture of
β-hydroxyesters 315ab an isolated yield of 98% was achieved, but unfortunately the product diastereomers proved impossible to separate by chromatography.

Attention subsequently turned to the conversion of the ethyl ester to an α-diazoketone via activation of carboxylic acid 324. Frustratingly, when ester 323 was exposed to hydrolysis using potassium hydroxide in alcohol, decomposition of the substrate ensued; the alternative use of potassium trimethylsilanolate as the nucleophile resulted in a sluggish reaction. At this stage, efforts to prepare an acetonide protected common intermediate were abandoned in favour a more practical route towards such an early stage intermediate.

11.2 TBS and TBDPS Protected Targets

The difficulties encountered during the attempted synthesis of 309, from the laborious preparation of aldehyde 88, through the non-stereoselective formation of desired β-hydroxyester 315a and decomposition of the ester 323 on exposure to basic hydrolysis conditions had guided the project towards two significant conclusions. Firstly, the route used to introduce the stereochemistry, into what would become the C-5 position of the target 2,5-trans tetrahydrofuran-3-one, had to be amenable to scalable synthesis due to the early stage nature of the intermediate. Secondly, it was necessary to use a protecting group of greater stability than the originally chosen acetonide; in this case the use of silyl ethers was considered advantageous (Figure 32).
The restructured synthetic route began from the commercially available chiral pool starting material D-malic acid, the enantiomer of which had proved to be a versatile starting material for a previous total synthesis project within the group. The keystone TBS-protected common intermediate 326a was prepared rapidly in seven steps from D-malic acid 101 (Scheme 67). Bis-esterification of the carboxylic acids with methanol and thionyl chloride yielded D-methyl malate 325, the α-hydroxyster of which was selectively reduced using a combination of borane-DMS complex and sodium borohydride through the protocol of Saito and co-workers. The primary alcohol of the resulting diol 328, thus formed, was selectively protected using TBSCl, setting the stage for allylation of the secondary hydroxyl group.

Scheme 67

In the course of preparing a supplementary compound set, in which a TBDPS ether was used in place of the TBS protecting group, it had been found that allylation of this type of secondary alcohol could be achieved using the triflic acid catalysed activation of an allyl trichloroacetimidate (Scheme 68). Using this strategy, 2,5-trans tetrahydrofuran-3-one 327b was prepared in seven steps and with an overall 36% yield.

An initial attempt to convert TBS analogue 329a to allyl ether 330a, using triflic acid as the catalyst, led to a mixture of products through acidic cleavage of the TBS protecting group and non-selective allylation of the resultant diol 328. Further efforts employing CSA or PPTS as the catalyst did not furnish the desired allylated compound. However, high yields of 330a were obtained when the reaction was catalysed by triflic anhydride over the course of five days. An alternative allylation strategy, using the palladium-catalysed decomposition of allyl ethyl carbonate, afforded an inseparable
product mixture containing the desired material and a product that appeared to have resulted from migration of the silyl protecting group to the secondary hydroxyl group.

Scheme 68

Attempted hydrolysis of the methyl ester 330a by exposure to potassium trimethylsilylamine in THF, proved to be too sluggish for an acceptably reproducible procedure (Scheme 67). In contrast saponification using potassium hydroxide proceeded smoothly to afford the carboxylic acid 331a. Subsequent activation of the acid, either as the acid chloride or as a mixed anhydride, and treatment of the intermediate with freshly prepared diazomethane permitted access to the α-diazoketone 326a. The diazoketone was isolated as a green oil, indicating light absorbance in the visible spectrum, whilst the IR spectrum of the compound showed an intense absorption at 2101 cm$^{-1}$ corresponding to the diazo functionality. Both the 1H and 13C NMR spectra showed the presence of the newly formed CH=N group with signals at 5.34 and 55.5 ppm respectively, thereby demonstrating the isolated material was the desired α-diazoketone.

As discussed in the previous chapter, α-diazocarbonyl compounds undergo extrusion of nitrogen to form metal carbenoids in the presence of metal catalysts. In cases of acyclic substrates where allylic ethers are present, these intermediates can then undergo oxonium ylide formation followed by a [2,3]-sigmatropic rearrangement, thereby forming oxygen-containing heterocycles in a highly diastereoselective fashion. In this case, α-diazoketone 326a, when exposed to Cu(acac)$_2$ in refluxing THF, followed this pathway to afford 2,5-trans tetrahydrofuran-3-one 327a in excellent yield and as a single diastereomer (Scheme 69). As shown in Scheme 68, an analogous transformation was conducted to form the TBDPS protected substrate 327b and the NMR data of the compound again showed formation of a single diastereoisomer. Numerous examples within the group have shown that the rearrangement of oxonium ylides of this type...
provide the desired 2,5-trans stereochemistry shown, the data for the isolated compound 327b was supported by these analyses and differed from data corresponding to the alternative 2,5-cis diastereomer.147 Further confirmation of the stereochemistry came from comparison of the data of advanced synthetic intermediates, to those of known compounds and will be discussed presently.

Scheme 69

While the benefits of forming 2,5-trans tetrahydrofuranones through the diastereoselective rearrangement of oxonium ylides is immediately apparent, the practical aspects of the synthesis require brief discussion. The safety hazards of diazomethane generation, both in terms of potential toxicity and explosive risk, require that distillation of the compound is conducted in a well-ventilated fume hood using apparatus with fire-polished jointed glassware. The glassware within our group limits the decomposition of Diazald to 100 mmol, which without loss would provide the equivalent molar concentration of diazomethane. The formation of diazoketone 326a from the mixed anhydride of 331a requires around 10 equivalent moles of diazomethane to maximise product yield, thereby limiting the scale of reaction to 10 mmol scale, equating to 2.7 g of acid 331a as starting material. As 2,5-trans tetrahydrofuranone 327a is a relatively early stage intermediate in our process this scale issue constitutes an early bottleneck in the synthesis. The synthesis of diazoketone 326a was typically conducted in duplicate, and the reactions combined for work up and purification prior to the tandem oxonium ylide and [2,3]-sigmatropic rearrangement reaction.

The decomposition of diazoketone 326a, and rearrangement of the intermediate oxonium ylide to form the 2,5-trans tetrahydrofuran-3-one, generally occurred within thirty minutes if vigorous reflux was maintained throughout the course of the reaction. On occasion the reaction did not proceed, possibly due to inactive catalyst, but in such cases the starting α-diazoketone could be re-isolated almost quantitatively by column chromatography thereby showing the robust stability of 326a to thermolysis alone. The 2,5-trans tetrahydrofuran-3-one 327a was isolated through simple concentration of the solution and direct purification of the residue; isolable yields of 85% to 95% were regularly achieved on reactions of up to 4 grams of α-diazoketone, with no observable
trace of the undesired 2,5-cis diastereomer. Although the possibility existed for a C-H insertion side reaction to form 332, or for an alternative six-membered oxonium ylide formation through 333, the products of neither outcome were observed (Figure 33).

Figure 33

12 Diversification of Common Intermediate

12.1 Synthesis of C-(18)-C-(24) Fragment of Amphidinolide C — C-(21)

Ketone Removal

Figure 34

12.1.1 Reductive Removal of C-(21) Ketone Functionality

In differentiating the common intermediate 323a to provide the ‘northern’ construct 297 (Figure 34), the immediate goal was deletion of the ketone group on what would become the C-(21) position of the natural product. Initial work on this problem was geared towards removal of the functionality through formation of the tosyl hydrazone followed by reduction of the intermediate species; an example of equivalent reactivity on tetrahydrofuranones was reported by McLaughlin in 2002. Although synthesis of the tosyl hydrazone 334 proved facile, reductive removal of the functionality using a number of reducing agents, including NaBH(OAc)₃, NaBH₃CN, and NaBH₄ proved impossible, leading only to intractable product mixtures in each case (Scheme 70).
Scheme 70

12.1.2 Radical Deoxygenation of C-(21) Functionality

An alternative approach to the problem was sought through the radical substitution methodology of Barton and McCombie\(^{153}\) whereby the ketone would be converted into a functional group that would undergo radical cleavage and hydride reduction. Initial anxieties concerning the possibility of cyclisation of the intermediate radical species with the pendant olefin in a 4-\textit{exo} or 5-\textit{endo}-trig fashion,\(^{154}\) would prove to be unfounded in practise (Figure 35).

![Scheme 70](image)

Figure 35

Work on the sequence began with borohydride reduction of the ketone carbonyl group to form a diastereomeric mixture of alcohols on the C-(21) carbon. The diastereomers 341\textit{a} and 341\textit{b} were separable by column chromatography and confirmation of absolute stereochemistry of the system was possible by comparison of the data for the 1,2-\textit{syn} isomer 341\textit{a} with that of a previously characterised sample prepared by Pagenkopf and Wang.\(^{155}\) Subsequent work on the compounds was conducted using the diastereomeric mixture of both alcohols.

The alcohols were converted to their respective xanthate esters 342 by stepwise treatment with base, carbon disulfide and methyl iodide. This intermediate was not
purified but used directly in the subsequent deoxygenation step following work-up and concentration. Using tri-\textit{n}-butyltin hydride and a radical initiator, both AIBN and ACHN proving germane, tetrahydrofuran 342 was deoxygenated smoothly to afford 343. Although the reaction proceeded cleanly to afford the required material, the compound could not be isolated by chromatography without the presence of a malodorous sulfur-containing impurity.

Scheme 71

Isolation of unadulterated tetrahydrofuran substrate was accomplished by fluoride deprotection of TBS ether 343, column chromatography of the resultant alcohol 345 allowing separation of the product from the foul-smelling impurity (Scheme 72). Although this alcohol was used in subsequent test reactions, alcohol 344 was the preferred and strategically required intermediate hence a consequent reprotection of the primary alcohol 345 was necessary, rendering this route synthetically superfluous.

Scheme 72
As the impurity had been shown to be separable from the desired system by rendering the tetrahydrofuran compound more polar, a second approach involving direct transformation of the allyl functionality to primary alcohol 344 was investigated (Scheme 72). Preliminary attempts to effect this transformation involved dihydroxylation of the olefin, with subsequent oxidative cleavage of the intermediate 1,2-diol and reduction of the resultant aldehyde affording alcohol 344 (Scheme 72). Disappointingly, formation of diol 346 failed possibly due to poisoning of the osmium, by the sulphur-based impurity, and so the reaction sequence was abandoned. An alternative approach, in which ozonolysis of the double bond was followed by borohydride reduction of the intermediate trioxolane, gratifyingly allowed access to alcohol 340 in 73% yield over four steps from ketone 327a (Scheme 71). The removal of the C-(21) oxygen substituent to form the desired tetrahydrofuran was confirmed by signals in the 1H NMR spectra at 2.11-2.02 and 1.63-1.53 ppm, integrating to one proton each for the newly formed CH$_2$ group. A single peak in the 13C NMR spectrum at 32.4 ppm, showing HSQC correlation with both C-H signals confirmed the structure of the product.

12.1.3 Orthogonal Protection of the C-(18)—C-(24) Fragment

Masking of the primary alcohol of 344 was accomplished with two distinct protecting groups, namely TBDPS and PMB, in order to expand the potential late stage deprotection strategies for the C-(18) hydroxyl group. Upon protection of the pendant alcohol, the C-(24) TBS ether was removed selectively by means of CSA-catalysed deprotection in the case of bis-silyl ether 347, and by exposure to the fluoride anion in the case of PMB ether 349.
TBDPS ether 348 was used in the preliminary stages of construction of the C-(18)—C-(34) fragment of the natural product, however the optimisation of an orthogonal protecting group strategy for this northern fragment would later require the exploitation of PMB protected ether 350. To this end, an alternative strategy towards the bulk synthesis of the fragment was investigated.

12.1.4 Alternative Strategy in Forming C-(18)—C-(24) Fragment

Due to the strictures of time at the final stages of the project, a more concise approach to the generation of the ‘Northern’ tetrahydrofuran 350 was sought which condensed the synthesis timeframes over those required for the previously discussed diazoketone rearrangement and Barton-McCombie deoxygenation steps. A variation on the procedure of Pagenkopf and Morra28 was used to form 350 in five steps from commercially available 1-butene-4-ol, as shown in Scheme 74. Protection of the alcohol with a PMB group proceeded in good yield and was followed by epoxidation of the alkene using standard m-CPBA methodology. Hydrolytic kinetic resolution of the racemic mixture, using the protocol of Jacobsen,26, 156 delivered the desired oxirane in a 39% yield, the data for which corresponded directly with that previously reported by Spilling and Roy.27 Epoxide ring opening was achieved by the addition of allylmagnesium chloride, and the isolated compound again complemented literature data for the 5-hydroxypent-1-ene 353.27 A diastereoselective, cobalt catalysed cyclisation then delivered the 2,5-trans tetrahydrofuran 350 in a 65% yield, the data for which matched precisely with that of the compound generated through the route involving tandem oxonium ylide and [2,3]-sigmatropic rearrangement chemistry as previously discussed.

Scheme 74

Cobalt-catalysed cyclisations of this type had been investigated in the early 1990’s by Mukaiyama et al.157 In their original paper they reported an oxidative cyclisation of a
number of α-substituted 5-hydroxypent-1-ene starting materials 354, to form 2-hydroxytetrahydrofurans 360 with varying C-5 substitutions (Figure 36).

![Chemical Structure](image)

Figure 36

The excellent stereocontrol of the reaction, affording exclusively the 2,5-trans product, was believed to derive from the minimised steric repulsion encountered between the α-substituent at the 5-position of the radical intermediate 357 and the bound cobalt-ligand complex in the cyclisation step. The NMM catalyst 366 used by Mukaiyama was improved by Pagenkopf by substitution of the NMM amide with NMP to give complex 362. The diastereoselectivity of both catalysts were equivalent, but the NMP group was preferred due to the propensity of the tertiary amine to quaternarise in the presence of alkyl halides. The improved aqueous solubility of the quaternary amine facilitated removal of the catalyst system through simple extraction techniques.

The catalyst was prepared, through the method of Pagenkopf, in three steps, beginning from formation of glyoxylate amide 364 through reaction of ethyl chlorooxoacetate 363 and 1-methylpiperazine. The ester was subsequently reacted with the potassium enolate of pinacolone to afford ligand 365. Ligand exchange to form the cobalt(II) NMP₂ catalyst 362 was accomplished through reaction with cobalt(II) ethylhexanoate, the product being easily isolated by decanting off the mother liquor and washing the product with hexane (Scheme 75).
12.2 Synthesis of C-(18)—C-(26) Fragment — Introduction of C-(24) Stereochemistry

12.2.1 Substrate Controlled Alkynylation

With a range of tetrahydrofuryl alcohols in hand, attention turned to establishment of the C-(24) hydroxyl stereochemistry and the introduction of a synthetic handle to allow access to the C-(25)—C-(28) diene functionality. Formation of propargylic alcohol 363a was envisaged as a route towards creating this synthetic handle, as regio- and stereoselective hydrostannylation of the alkyne would permit test reactions to be conducted on future Stille cross-coupling methodology.

Investigations into the creation of the desired C-(24) stereochemistry began by focussing on the ability of the aldehyde 366 to exert substrate control during the alkynylation through the α-chiral centre at the C-(23) position. It was hoped that through the use of chelation control, Figure 37, that the alkynylation would proceed to afford the desired C-(24) stereochemistry exclusively. To this end, magnesium and lithium acetylides were generated and added to aldehyde 366.
Table 4

Frustratingly, no combination of reagent, additive, temperature or solvent system permitted stereoselective addition of the nucleophile to the aldehyde (Table 4). A single example of the addition of a structurally similar aldehyde to the lithium acetylide in THF at −78 °C afforded a dr of 9:1 in favour of the undesired stereochemistry, albeit in 38% yield; the reaction proved irreproducible when applied to aldehyde 366 (entry 2). The use of a magnesium acetylide (entries 3 and 4) allowed marginal preference for the formation of the desired C-(23)–C-(24) 1,2-syn diastereomer. In contrast, attempts to pre-chelate the aldehyde and tetrahydrofuran ether with magnesium bromide did not provide the desired chelated intermediate for addition of the alkyne nucleophile (entries 5 and 6) and proceeded with a slight preference for the 1,2-anti diastereomer 367b on addition of the nucleophile.

Use of zinc chloride as a ligating additive did not afford either of the propargylic alcohol products, providing only unreacted aldehyde (entry 7). Pagenkopf and Morra would later report that stereoselective addition of a lithium acetylide to a similar aldehyde system...
at −90 °C, using MTBE as solvent, offers a practical route towards the undesired C-(23)—C-(24) 1,2-anti diastereomer, by Felkin-Anh controlled addition.159

Figure 37

12.2.2 Reagent Controlled Alkynylation Reaction

The addition of zinc acetylides into aldehydes is a well-precedented reaction within the literature and has been rendered stereoselective through the use of numerous chiral ligands.160 Alkylzinc compounds have long been known to coordinate to the π-electrons of acetylenes, leaving the terminal hydrogen susceptible to deprotonation by weak tertiary amines. The nucleophiles thus formed can undergo stereoselective addition to carbonyl groups enabled by the ability of the zinc centres to coordinate to the chiral ligand, alkyne and the electrophile.161

Figure 38
Carreira and co-workers eliminated the requirement for pyrophoric alkylzinc reagents, through replacement of the metal source with zinc triflate, and made the addition of the resultant zinc acetylide to aldehydes asymmetric through the use of N-methylephedrine derived ligands.162 Tanaka \textit{et al} would later apply Carreira’s methodology to the addition of zinc acetylides to 2-tetrahydrofuranaldehydes, thereby synthesising propargylic alcohols of the type required for our total synthesis in a stereoselective manner.163 The proposed generalised asymmetric mechanism required to form the desired diastereomer is shown in Figure 38.

![Scheme 77](image)

\textbf{Scheme 77}

Both primary alcohols \textbf{345} and \textbf{348} were used in the investigation of the reaction sequence shown in Scheme 77. Oxidation of the alcohol \textbf{348} to aldehyde \textbf{366} was accomplished in good yield using Dess-Martin periodinane as the oxidant. The analogous oxidation of \textbf{345} proceeded in 83\% yield, with both compounds exhibiting the CHO proton signal at ~9.7 ppm in their respective 1H NMR spectra. Various attempts to effect the asymmetric introduction of trimethylsilyl acetylene using Carreira’s methodology failed, despite meticulous purification of reagents and intermediates, and careful drying of the zinc(II) triflate before use. Three separate batches of zinc(II) triflate were applied to the reaction, because disparities in results obtained from reagent batches was noted in the literature,164 but in each case the tested aldehyde always remained unreacted.
12.2.3 Stereoselective Reductions of Ynones

An alternative approach was taken to generate the C-(24) secondary alcohol stereoselectively through the reduction of an ynone functionality. The reduction of two ynone substrates, TMS protected substrate 370 and deprotected analogue 372, were tested using a variety of reducing reagents. The TMS protected product was prepared easily through the Dess-Martin oxidation of diastereomeric mixtures of propargylic alcohols generated previously (Scheme 78).

Scheme 78

The second substrate 372 was formed by addition of commercially available ethynylmagnesium bromide to the Weinreb amide 371 (Scheme 79). This approach was found to be necessary because oxidation of propargylic alcohols lacking the terminal alkyne TMS group afforded difficult to resolve reaction mixtures; moreover, possible epimerisation of the adjacent C-(23) sterocentre could result from basic methanolysis of the TMS group of ynone 370. Weinreb amide 371 could also be used to prepare ynone 370, providing an improved yield over the propargylic alcohol oxidation method illustrated in Scheme 78.

Scheme 79
With ynone substrates 370 and 372 in hand, attention turned to the stereoselective reduction of the carbonyl functionality using a variety of reagents (Scheme 80). Use of chelating reducing reagents was expected to deliver the undesired 1,2-anti diastereomer through formation of the Cram chelate model, whereas non-chelating reductants under Felkin-Anh control should have allowed for preferential formation of 1,2-syn product. A number of reductants were tested on both systems to assay the selectivity of the reduction; the results are shown in Table 5.

![Scheme 80](image)

The use of L-selectride on ynone 370, provided a marginal preference for the undesired 1,2-anti diastereomer (Table 5, entry 1), however application to 372 yielded a mixture of products in a 1:1 ratio (entry 5). The use of Luche reduction conditions with both 370 and 372 afforded a slight excess of the 1,2-syn product which corresponds to the Felkin-Anh model of reduction (entries 2 and 6). This result was surprising when measured against a similar reduction applied to concurrent work on the ‘southern’ fragment, in which an analogous enone system was reduced with excellent levels of diastereocntrol; this work will be discussed subsequently (Section 12.5, Scheme 109). CBS reduction using both enantiomers of Corey’s methyl-oxazaborolidine ligands, which have previously demonstrated their usefulness in the stereoselective reduction of prochiral ynones, failed to deliver either diastereomer in good ratio (entries 3 and 4).
Table 5

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ynone</th>
<th>Reductant</th>
<th>Temp.</th>
<th>Solvent</th>
<th>Combined Yield (%)</th>
<th>Combined Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>370</td>
<td>L-selectride</td>
<td>−78 °C</td>
<td>THF</td>
<td>82</td>
<td>2 : 3</td>
</tr>
<tr>
<td>2</td>
<td>370</td>
<td>NaBH₄, CeCl₃-7H₂O</td>
<td>−78 °C</td>
<td>MeOH</td>
<td>90</td>
<td>3 : 2</td>
</tr>
<tr>
<td>3</td>
<td>370</td>
<td>BH₃·THF (R)-Me CBS ligand</td>
<td>−78 °C</td>
<td>THF</td>
<td>94</td>
<td>1 : 2</td>
</tr>
<tr>
<td>4</td>
<td>370</td>
<td>BH₃·THF (S)-Me CBS ligand</td>
<td>−78 °C</td>
<td>THF</td>
<td>84</td>
<td>1 : 1</td>
</tr>
<tr>
<td>5</td>
<td>372</td>
<td>L-selectride</td>
<td>−78 °C</td>
<td>THF</td>
<td>90</td>
<td>1 : 1</td>
</tr>
<tr>
<td>6</td>
<td>372</td>
<td>NaBH₄, CeCl₃-7H₂O</td>
<td>−78 °C</td>
<td>MeOH</td>
<td>95</td>
<td>3 : 2</td>
</tr>
</tbody>
</table>

12.2.4 Resolution of Propargylic Alcohols

Notwithstanding the disappointing results obtained when trying to control the C-(24) stereocentre, we had demonstrated that the C-(18)–(26) carbon backbone could be accessed through the chemistry discussed previously, albeit as an inseparable mixture of diastereomeric C-(24) alcohols; a methodology was subsequently sought to deliver the discrete compounds. 2001 saw publication of a paper by Gleason and Ajamian on the use of a cobalt-mediated cycloisomerisation reaction in the formation of dihydrofuran systems. This paper proved to be of particular interest as it discussed the chromatographic isolation of intermediate dicobalt hexacarbonyl-alkyne complexes, the propargylic alcohols of which bore structural similarity to the diastereomeric mixture that we sought to separate.

Treatment of a diasteromeric mixture of propargylic alcohols 367ab with dicobalt octacarbonyl in dichloromethane provided a mixture of separable brown oils, which upon independent oxidation of the complex with NMO allowed for recovery of the isolated compounds as single diastereomers. Curiously, this technique was found to be unsuccessful when applied to diasteromeric mixtures of propargylic alcohols 378ab in which the alkyne terminus was unprotected.
Assignment of the C-(24) hydroxyl stereochemistry was accomplished by analysis of the coupling constants between the C-(23) and C-(24) carbons, and comparison with the literature available for similar systems. The C-(23)–C-(24) syn coupling of the desired diastereomer 367a was measured at $^3J_{HH}=7.5$ Hz, whereas that of the anti product 363b was determined to be $^3J_{HH}=3.3$ Hz. In structurally similar α-tetrahydrofurylpropargylic alcohols, the erythro diastereomer exhibits vicinal coupling constants that are smaller ($^3J_{HH}=2-4$ Hz) than that of the threo diastereomer ($^3J_{HH}=6-8$ Hz). A demonstrative example from the work of Gleason is shown in Figure 40.
Chapter 2: Results and Discussion

Figure 39

The Newman projections of compounds 367a and 367b, illustrated in Figure 39, demonstrate that the disparity in vicinal coupling constants is a product of the dihedral bond angle difference between the two protons.

Figure 40

12.3 Inversion of the 1,2-anti Diastereomer, Hydrostannylation and Attempted Stille Coupling

With both C-(24) diastereomers in hand, attention turned to conversion of the alkyne functionality into a coupling partner for a palladium-catalysed coupling reaction. The original intention of the project was to use a Stille coupling reaction to connect the C-(26) and C-(27) carbons of amphidinolide C. This was originally envisaged as being achievable through transformation of the C-(25)–C-(26) terminal alkyne to a vinyl stannane through a palladium catalysed hydrostannylation. To this end, the TMS protecting group of 367a was cleaved from the alkyne under basic methanolysis conditions, affording propargylic alcohol 378a in excellent yield. In order to maximise the available quantity of alkyne 378a, the undesired stereochemistry of the 1,2-anti
diastereomer 367b was inverted through the protocol of Mitsunobu (Scheme 82). On work-up, the intermediate 4-nitrobenzoate 377 was not isolated but was instead treated with potassium carbonate and methanol to afford simultaneous cleavage of the terminal TMS and 4-nitrobenzoate groups. This two-pot three-step sequence proceeded in 88% yield to provide maximal quantities of alkyne 378a for subsequent work.

![Scheme 82](image)

Scheme 82

Propargylic alcohol 378a was protected as a TES silyl ether and the alkyne converted into E-vinylstannane 380 through a palladium-catalysed hydrostannylation. The regio- and stereochemistry of vinylstannane 380 was confirmed by analysis of the 1H NMR spectrum, the vicinal coupling of the C-(25) and C-(26) alkene protons was measured at $^3J_{HH} = 19.1$ Hz, indicating a trans alkene relationship.

The vinyl iodide partner, required to afford the C-(18)–C-(34) fragment of amphidinolide C upon cross-coupling, had previously been synthesised by Yang but showed signs of instability on prolonged storage. It was decided at this stage to use the commercially available isocrotyl bromide to test the key Stille reaction. The benefit of this strategy extended beyond the safeguarding of precious stock of vinyl iodide precursor as it would also afford access to the C-(18)–C-(29) fragment 381 of amphidinolide F, if the cross-coupling methodology was effective (Scheme 83).
Initial attempts at the Stille cross-coupling of isocrotyl bromide and vinylstannane \(\text{380} \) were entirely unsuccessful, resulting only in the recovery of starting material. Variation in palladium catalyst, as well as an attempted one-pot conversion of alkyne \(\text{379} \) directly into diene \(\text{381} \), in the presence of \(n\text{-Bu}_2\text{SnH} \) and isocrotyl bromide,\(^{169}\) afforded only unreacted vinylic stannane \(\text{380} \).

12.4 Synthesis of C-(27)—C-(34) Fragment of Amphidinolide C

The construction of the PMB protected tail fragment \(\text{382} \) of amphidinolide C was originally accomplished by Yang in six steps from hexanal.\(^{170}\) In the initial stages of the project, an orthogonal protection strategy was envisaged in which a PMB ether was to be used as the protecting group of choice for this C-(29) hydroxyl group and to this end a Lewis acid catalysed activation of PMB imidate was used to shield the allylic alcohol. Reports of problematic PMB deprotection of allylic alcohols in the presence of conjugated dienes,\(^{171}\) which would exist in the C-(25)—C-(29) locus of amphidinolide C, led us to subsequently explore alternative protecting groups for the C-(29) hydroxyl group. Nevertheless, palladium-catalysed methodologies were tested with this analogue in exploratory cross-coupling chemistry with alkyne \(\text{378a} \).
The route to PMB protected vinylic iodide 382 was replicated, with minor variation in step order and alteration of protecting group, to afford the TBS protected analogue 386, as shown in Scheme 84.

Figure 41

Mannich methylation of hexanal afforded enal 79 which upon treatment with the magnesium acetylide of trimethylsilylacetylene, yielded the racemic allylic alcohol 80rac. Enantiopure 80 was then obtained via kinetic resolution of the racemate through Sharpless asymmetric epoxidation of the undesired C-(29) (R)-enantiomer. The highly conjugated secondary alcohol was protected as a TBS ether in excellent yield, affording intermediate 380.

Scheme 84

Removal of the terminal TMS group was accomplished under methanolysis conditions using potassium carbonate as base. Propargylic alcohol 385 was then converted into vinyl iodide 386 through the zirconium-catalysed carboalumination chemistry pioneered by Negishi et al. The water accelerated variant of this reaction described by Wipf.
was used in our case, providing methylated vinyl iodide 386 in poor yield. Although this conversion was reported by Yang to proceed with yields of up to 90%, these results proved impossible to duplicate despite numerous attempts. An alternative preparation of 386 from alkyne 385 using carbostannation/iodination procedures, as previously employed in Fürstner’s synthesis of amphidinolide B1, failed to deliver the required vinyl iodide (Scheme 85).

Scheme 85

12.5 Preparation of the C-(18)—C-(34) Fragment of Amphidinolide C: Sonogashira Cross-Coupling

Our disappointment at the failure of Stille cross-coupling to effect the union of fragment 379 with isocrotyl bromide (Scheme 83) led us to explore alternative procedures to construct the C-(26)—C-(27) bond. Inspection of the intermediate components available to us, led to the conclusion that a possible palladium-catalysed cross-coupling could result from the direct reaction of vinyl halides and alkyne 379.

In 1975, publications from Heck, Cassar, and Sonogashira appeared concerning palladium-catalysed couplings of aryl and vinyl halides to terminal alkynes. Heck and Cassar showed that the cross-coupling reaction could occur in the absence of copper if elevated temperatures were employed for the transformation, while Sonogashira proved that the reaction is accelerated if a copper(I) co-catalyst is employed. The use of copper to couple alkynes was previously known from the Glaser and Cadiot-Chodkiewicz reactions and was exploited by Sonogashira, in combination with the palladium catalytic cycle, to provide a powerful methodology to the organic synthesis community. The Sonogashira coupling, as we were to find, often suffers from the shortcoming of latent alkyne homo-coupling, affording dimeric side-products through the Glaser reaction.
The preliminary work progressed well, as shown in Scheme 86. A test coupling reaction of 7 mg alkyne 378a with the PMB protected vinyl iodide 382 delivered the desired enyne 387 in 64% yield, the coupling of the fragments was confirmed by 1H and 13C NMR analysis of the product. Although the NMR data was in accordance with the desired structure, the sample was visibly contaminated with brown residue, originating from either the palladium catalyst or copper(I) co-catalyst. The crude product was taken forward to the subsequent step, the Red-Al reduction of the propargylic alcohol, to afford the desired (E,E)-dienol 388 in 71% yield. Pagenkopf and Morra had previously demonstrated that this propargylic reduction was a feasible route to forming the C-(25)—C-(28) dienol bonds of amphidinolide C. 159

A further batch of C-(29) PMB protected vinyl iodide 382 was prepared by Guang Yang and attempts to repeat the coupling on larger scale were undertaken. Unfortunately, the reaction did not proceed efficiently allowing only for recovery of starting alkyne 378. The synthesis of 382, through Negishi carboalumination and subsequent PMB protection, was a delicate operation and isolation of the product hampered by the lipophilicity of the reaction residue on chromatography. Additionally, the instability of the vinyl iodide did not facilitate an easy transformation. Initially it was believed that residual PMB-trichloroacetimidate artefacts, resulting from the protection step, were responsible for poisoning the catalyst through coordination of the complex. In order to test this hypothesis, simultaneous Sonogashira couplings of alkyne 378a were undertaken with unprotected racemic and PMB protected enatiopure vinyl iodides. The desired coupling occurred with the unprotected species, albeit in a disappointing 29% yield, whilst the PMB protected intermediate failed to undergo cross-coupling. It was decided at this stage to move the strategy away from the use of the PMB protected vinyl
iodide towards a substrate bearing a protecting group with greater amenability to the synthesis, namely the TBS ether 386 described in Scheme 84.

12.6 Synthesis of the C-(18)–C-(29) Fragment of Amphidinolide F: Palladium Cross-Coupling Methodology

Although cross-coupling of alkyne 378a with vinyl iodide 382 had proved possible, the reaction sequence was largely irreproducible, varying from batch to batch of vinyl iodide. In an attempt to develop a more reproducible methodology, we turned our attention towards the cross-coupling of alkyne 378a with commercially available isocrotyl bromide. In this way, it was hoped that access to the northern fragment of amphidinolide F could be attained before employing the optimised methodology to couple alkyne 378a with the vinyl iodide fragment 386. The conditions previously illustrated in Scheme 83, demonstrate that Stille cross-coupling had failed to provide the C-(18)–C-(29) fragment of amphidinolide F, through reaction of isocrotyl bromide with a vinyl stannane. Despite this failure, it was hoped that palladium-catalysed alkyne cross-coupling could be used to effect an equivalent transformation. The resulting enyne intermediate would then undergo an equivalent C-(24) hydroxyl-controlled propargylic reduction, resulting in the formation of the (E,E)-dienol present in the natural product.
12.6.1 Amphidinolide F: C-(18)–C-(29) Fragment: Copper co-catalysed Palladium Cross-Couplings

We anticipated that Sonogashira methodology would be an appropriate means of cleanly cross-coupling our alkyne and the commercially available isocrotyl bromide coupling partner. Significant problems with this methodology quickly became apparent, when initial test reactions resulted in alkyne dimerisation in the presence of Cu(I) salts and the desired cross-coupled product proved highly elusive at the early stages of the investigation.

Scheme 87

The initial reaction was undertaken using the standard Sonogashira conditions which resulted in cross-coupling of alkyne 378a to vinyl iodide 382 (Scheme 86). TLC analysis showed complete conversion of the alkyne to an unexpectedly more polar product when the reaction was conducted at ambient temperature, using a combination of Pd(PPh$_3$)$_4$ and copper(I) iodide catalysts (Scheme 87, Table 6). Upon isolation and analysis of the newly formed product, it was found that the Glaser homo-coupled product 392 was the sole isolable material from the reaction (entry 1). Variation of catalyst loading, base and temperature were undertaken in accordance with diverse literature procedures (entries 2 to 6). Frustratingly, each adaptation failed to deliver the desired enyne system and the sole result of each of these experiments was, again, Glaser homo-coupling of the starting alkyne. Characterisation of the unwanted product was signposted in the 1H NMR spectrum through loss of the terminal alkyne proton signal at 2.24 ppm, whilst all other signals remained; disappearance of the corresponding alkyne C-H stretch in the FT-IR spectrum, previously observed at 3299 cm$^{-1}$, further substantiated evidence of homo-coupling. The order of addition of reagents was explored, as was pre-stirring of the vinyl bromide with catalyst before slow addition of the alkyne in rigorously degassed solvents. The latter experiment did not result in any
reaction under an argon atmosphere, but on brief exposure to oxygen the homo-coupled dimer formed rapidly. Attempts to convert isocrotyl bromide 385 into the more reactive isocrotyl iodide 390, through treatment with sodium iodide in DMF at 160 °C following the procedures of Liu,181 did not deliver appreciable amounts of the cross-coupled product when the putative vinyl iodide was used in the Sonogashira reaction (Scheme 88).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkyne</th>
<th>Catalyst System</th>
<th>Solvent</th>
<th>Base</th>
<th>Temp.</th>
<th>Yield (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>378a</td>
<td>Pd(PPh₃)₄ [10 mol%] Cu(I)I [10 mol%]</td>
<td>THF</td>
<td>Et₃N</td>
<td>rt</td>
<td>0</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>378a</td>
<td>Pd(PPh₃)₄ [10 mol%] Cu(I)I [5 mol%]</td>
<td>THF</td>
<td>Et₃N</td>
<td>rt</td>
<td>0</td>
<td>Not isolated d</td>
</tr>
<tr>
<td>3</td>
<td>378a</td>
<td>Pd(PPh₃)₄ [10 mol%] Cu(I)Br [5 mol%]</td>
<td>THF</td>
<td>Et₃N</td>
<td>rt</td>
<td>0</td>
<td>Not isolated d</td>
</tr>
<tr>
<td>4</td>
<td>378a</td>
<td>Pd(PPh₃)₄ [10 mol%] Cu(I)I [5 mol%]</td>
<td>THF</td>
<td>Et₃N</td>
<td>50 °C</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>5a</td>
<td>378a</td>
<td>Pd(PPh₃)₄ [10 mol%] Cu(I)I [10 mol%]</td>
<td>Benzene</td>
<td>n-BuNH₂</td>
<td>rt</td>
<td>0</td>
<td>Not isolated d</td>
</tr>
<tr>
<td>6b</td>
<td>378a</td>
<td>Pd(PPh₃)₂Cl₂ [10 mol%] Cu(I)I [5 mol%]</td>
<td>i-Pr₂NH</td>
<td>rt</td>
<td>0</td>
<td>Not isolated d</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>378a</td>
<td>Pd(PPh₃)₄ [5 mol%]</td>
<td>Pyrrolidine</td>
<td>50 °C</td>
<td>75</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>379</td>
<td>Pd(PPh₃)₄ [5 mol%]</td>
<td>Pyrrolidine</td>
<td>50 °C</td>
<td>64</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Yield (%) Yield (%)
391 393

Table 6

For examples of similar conditions see; a. Burke et al.;182 b. Echavarren et al.;183 c. Linstrumelle et al.;184 d. Structure determined from analysis of the crude ¹H NMR spectrum.
12.6.2 Amphidinolide F: C-(18)—C-(29) Fragment: Copper Free Palladium Cross-Couplings

In order to remove copper from the cross-coupling protocols two procedures were investigated. Kumada-type cross-coupling\(^{185}\) did not result in reaction between TES-protected alkyne \(379\) and isocrotyl bromide (Scheme 89). We subsequently explored the application of the Heck alkynylation reaction, sometimes referred to in the literature as a ‘copper-free Sonogashira’ coupling.\(^{186}\)

A number of authors have shown that the cross-coupling of alkynes to aryl and vinyl halides can be accomplished in the presence of \(\text{Pd}^0\) catalyst and a judicious choice of base.\(^{186}\) The traditionally accepted mechanism for the copper-associated Sonogashira coupling is shown in Figure 41. The sequence comprises two catalytic cycles, the upper palladium cycle and the lower copper cycle.
Chapter 2: Results and Discussion

Figure 42

Activation of the alkyne is believed to result from the formation of a copper(I) π-complex, which renders the terminal hydrogen more acidic, and therefore more labile to deprotonation by the ubiquitous amine base. Upon deprotonation and formation of the terminal copper acetylide, the intermediate can then undergo transmetallation with the active palladium complex, formed through oxidative insertion of the Pd⁰ catalyst into the aryl or vinyl halide starting material. Reductive elimination of palladium provides the cross-coupled compound and regenerates the palladium catalyst for further catalytic cycles.
Various groups have demonstrated that the use of copper(I) is not necessary to afford equivalent reactivity and that cross-coupling can proceed in the presence of a Pd0 catalyst and an amine alone.186 Jutand and co-workers studied the course of this cross-coupling methodology and proposed two catalytic cycles that were dependent upon the ability of the amine to act as a ligand for the palladium centre, both cycles are shown in Figure 43.187 Pathway A occurs where the alkyne provides a better ligand to the palladium complex than the amine, resulting in an acetylide that can be deprotonated by the excess base and form the desired product upon reductive elimination. Pathway B is the result of the amine being able to act as a better ligand to the palladium(II) complex than the alkyne, thereby forming a more active intermediate that can accelerate the π-complexation of the alkyne. Deprotonation of the intermediate complex is followed by reductive elimination to form the cross-coupled product and regeneration of the catalyst. The pathway the reaction takes is determined by which complexation is faster, either that of the alkyne or amine, but the net result is the formation of the same cross-coupled product without the possibility of side reaction through Glaser coupling.

Using the procedure of Linstrumelle \textit{et al},184 where pyrrolidine was employed as the reaction solvent and base, TES-protected alkyne 379 was successfully coupled to isocrotyl bromide 389 in 64% yield (\textit{Table 6}, entry 8). The TES ether was shown to be
cleavable on short exposure to CSA to afford the desired, diastereomerically pure, propargylic alcohol 390 in 96% isolated yield. A further cross-coupling with the free hydroxyl propargylic alcohol 378 gratifyingly allowed direct access to the C-(18)—C-(29) carbon backbone of amphidinolide F 390 in 75% yield (entry 7).

Scheme 90

12.6.3 Amphidinolide F: Completion of C-(18)—C-(29) Fragment

The stereospecific formation of \((2E,4E)\)-dienol 395 was accomplished through the application of aluminium hydride reagents; both LiAlH\(_4\) at 30 °C and Red-Al at 0 °C provided the required compound in good yield and with excellent olefin geometry control (Scheme 91). The stereospecificity of this reduction is controlled by the proximal alcohol group, which upon chelation to the aluminium centre allows for transmetallation of the alkyne in a syn fashion.\(^{188}\) Upon hydrolysis of the vinylic aluminium intermediate, the complex decomposed to liberate the C-(25)—C-(26) trans alkene 395. Although in practice both reagents deliver the required dienol system the use of Red-Al was considered to be preferential in this sequence owing to the more facile work-up procedures employed for isolation of the product. The stereochemical assignment of \((E)\)-alkene formation was ascribed based upon the C-(25)—C-(26) coupling constant \(1J_{HH}=15.2\) Hz and comparison of our data to that of previous literature data for compounds used in amphidinolide F fragment preparation.\(^{23,25}\)
Scheme 91

With dieneol 395 in hand, test reactions were attempted in order to access C-(18) dithane target 400. MOM ether protection of the secondary alcohol was accomplished smoothly, as was the subsequent fluoride-mediated deprotection of TPDPS ether to afford primary alcohol 397. Partial oxidation of the alcohol yielded aldehyde 398, a potential C-(18) coupling partner for later syntheses. However, subsequent efforts to form dithiane 400 by treatment of the aldehyde with 1,3-propanedithiol, under Lewis acid catalysis, led to decomposition of the small amount of isolated material. The large loss of sample mass engendered by the removal of the TBDPS group, in conjunction with time limitations, meant that only a single attempt was made to prepare the dithiane 400.
12.6.4 Amphidinolide C: C-(18)—C-(34) Fragment via Copper Free Cross-Couplings

The success of the pyrrolidine-aided cross-coupling reaction in preparing the ‘northern’ C-(18)—C-(29) fragment of amphidinolide F led us to apply the same methodology to the preparation of the C-(18)—C-(39) of amphidinolide C. Table 7 shows the results of the test reactions conducted on various alkyne analogues and vinyl iodide substrates in the preparation of Markush structure 402 (Scheme 92).

![Scheme 92](image)

Table 7

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkyne</th>
<th>R1</th>
<th>R2</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>378a</td>
<td>H</td>
<td>(rac)-OH</td>
<td>77</td>
</tr>
<tr>
<td>2</td>
<td>379</td>
<td>TES</td>
<td>(rac)-OH</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>378a</td>
<td>H</td>
<td>(S)-OTBS</td>
<td>36</td>
</tr>
</tbody>
</table>

As the racemic variant of the C-(29) unprotected vinyl iodide was readily available at the time of testing, two trial cross-couplings were conducted on this substrate. Application of the palladium-catalysed, pyrrolidine-solvated alkynylation methodology to the reaction of alkynes 378a and 379 with the racemic vinyl iodide afforded the cross-coupled product in good yield (Table 7, entries 1 and 2). Although the use of a racemic vinyl iodide initially seems to be of little synthetic value, the application of the methodology to the functionisation of TES-protected alkyne 379 (entry 2) potentially provided a substrate that, it was hoped, could be advantageously exploited through the reaction sequence shown in Scheme 93. A Corey-Bakshi-Shibata reagent-controlled stereoselective reduction of an analogue of the highly conjugated enone system 404 has precedent in the literature and it was hoped that this reaction would deliver the desired C-(29) stereochemistry. As discussed formerly (Section 10.4, Scheme 84), our route towards generating this stereocentre required removal of the undesired enantiomer of 80rac by kinetic resolution, which resulted in substantial loss of potentially useful
material. Although the highly unsaturated ketone 404 was isolable from the oxidation of 403 using manganese dioxide, the intermediate was prone to decomposition on standing, rendering it unusable for the proposed reduction.

Scheme 93

Synthesis of the C-(29) (S)-TBS protected vinyl iodide 381 was accomplished (section 10.4, Scheme 85) and it was subjected to the cross-coupling under the copper-free conditions discussed previously (Table 6, entry 7). Although full consumption of the starting alkyne 374 was observed during the course of the reaction, the isolated yield of the cross-coupled product was only 36%. A second product, in which cross-coupling occurred but from which anomalous loss of the C-(29) OTBS group was also apparent, was also isolated; the structure of this by-product remains undetermined. Yang would subsequently demonstrate that slow addition of alkyne 378ab, facilitated by a syringe pump, to a heated solution of vinyl iodide 386, Pd(PPh3)2Cl2 and Cu(I) resulted in Sonogashira cross-coupling of the reactants in a yield of 82% (Scheme 94).

Scheme 94
12.7 Amphidinolide C: C-(18)—C-(34) Fragment via Alkynylation

Methodology

Although it had been established that palladium cross-coupling methods could be used to prepare the ‘northern’ fragments of both amphidinolides C and F, an alternative methodology was developed concurrently, involving alkynylation of a suitably functionalised tetrahydrofuran, to generate the C-(18)—C-(34) fragment of amphidinolide C.

![Figure 44](image)

We had previously discounted the use of a PMB ether to protect the C-(29) hydroxyl group, due to potential difficulties with removal of the group whilst adjacent to the C-(25)—C-(28) (E,E)-diene. A C-(29) hydroxyl protection as a TBS ether was an appropriate alternative, necessitating the use of a protecting group of greater lability on the C-(24) hydroxyl. This alteration was required as the C-(24) alcohol was required for Yamaguchi esterification at an advanced stage of the synthesis. As both silyl ethers were of inferior stability to the previously used C-(18) TBDPS group, it became strategically necessary to alter the C-(18) functionality to better enable selective deprotection of this key position; as shown previously the C-(18) PMB ether had been prepared from alcohol 344 (Section 10.1.3, Scheme 73). It was decided to use this compound, in the hope that its remoteness from the C-(25)—C-(28) (E,E)-diene would not cause unwanted reactivity during deprotection. The target compound 407 is shown in Figure 44.

12.7.1 Amphidinolide C: Synthesis of the C-(25)—C-(34) Fragment

Construction of the enyne C-(25)—C-(34) fragment was accomplished from the enantiomerically pure alkyne 80 (Scheme 95), an intermediate that had been prepared during the synthesis of vinyl iodide 386. The preliminary reaction in the sequence involved the mercury-catalysed hydrolysis of the terminal alkyne to afford α-hydroxy ketone 408. The possibility of acid-catalysed epimerisation of the adjacent secondary alcohol was a source of concern at this early stage, but other researchers had previously shown that the integrity of an α-chiral centre was preserved in hydrolysis reactions of this type. The methodology of Ley and co-workers in their synthesis of tetronasin was
applied to alkyne 80, allowing isolation of the enantiopure α-hydroxy ketone 408 in good yield.190 Although enolisation of the α-hydroxy stereocentre did not occur, the compound was not amenable to prolonged storage and was used in the following step immediately.

![Chemical reaction diagram]

The C-(29) hydroxyl required the protection of a TBS ether and so attempts were made to directly protect alcohol 408 using either TBS chloride or TBS triflate. However, this approach was found to be impractical through a combination of slow silation, possibly owing to steric factors, and the instability of the starting material. Protection of the secondary hydroxyl was deemed to be advantageous in the ensuing olefination step and so an alternative protecting group was sought. In contrast to the aborted TBS protection, we found that reaction of 408 with TES chloride resulted in full conversion of the starting material into the desired product in less than two hours and in excellent yield.

Horner-Wadsworth-Emmons olefination of methyl ketone 409 with propargylic phosphanate ester 414,191 provided the desired enyne 410. Universal deprotection of the silyl groups was accomplished using a fluoride source and the integrity of the C-(29) hydroxyl stereochemistry was confirmed by Mosher ester analysis of compound 411.192 Clean isolation of 411 was complicated by co-elution with triethysilyl fluoride during
column chromatography but the impurity was found to be removable through protracted drying under high vacuum. As with the attempted TBS protection of \(\text{408} \), the conversion of alcohol \(\text{411} \) into target \(\text{412} \) did not progress with complete conversion. On stirring for three days under the indicated conditions, the desired TBS ether was isolated in an overall 77% yield with 14% recovery of the starting alcohol.

12.8 Synthesis of C-(18)—C-(24) PMB Protected Tetrahydrofuran Electrophiles

Two C-(24) electrophiles were prepared from alcohol \(\text{350} \) in order to explore the chemistry of the C-(18)—C-(34) fragment synthesis. Partial oxidation of the primary alcohol using Dess-Martin periodinane furnished aldehyde \(\text{415} \), which could be subjected to the direct addition of a metallated acetylide to afford the united fragment bearing a C-(24) alcohol. As an alternative, the intermediate aldehyde was further oxidised to the associated carboxylic acid, which upon treatment with \(N,O \)-dimethylhydroxylamine hydrochloride in the presence of HBTU, yielded Weinreb amide \(\text{416} \) as a stable intermediate. The highly conjugated ketone, resulting from coupling of this species to the metallated acetylide of \(\text{412} \), would subsequently be used to explore reductive methodology to deliver the desired C-(24) hydroxyl stereochemistry.

![Scheme 96](image-url)
12.9 Amphidinolide C: Synthesis of C-(18)—C-(34) Fragment via Aldehyde Alkynylation

Direct addition of the lithium acetylide to aldehyde 415 at −78 °C provided a diastereomeric mixture of C-(24) alcohols favouring the undesired C-(24)—C-(25)-anti product. This result did not improve upon the stereoselectivity of acetylide addition reaction discussed previously (Section 10.2.1), but did accord with the previous observation of moderate preference for the undesired anti diastereomer (Scheme 97).

![Scheme 97](image)

12.10 Amphidinolide C: Synthesis of C-(18)—C-(34) Fragment via Weinreb Amide Alkynylation

Addition of the lithium acetylide of enyne 412 to Weinreb amide 416 afforded the C-(24) ketone 418 in excellent yield (Scheme 98). The product was then subjected to various reducing agents to determine the diastereoselectivity of the 1,2-reduction reaction. Despite the previously unexceptional diastereomeric ratios gained through reduction of similar ynonic systems (Section 11.2.3, Scheme 80), results on a related dienone indicated that a stereoselective reduction of 418 might be possible (Section 12.5, Scheme 109).

The results of both the Luche and L-selectride reductions (Table 8, entries 1 and 2) were similar to those recorded previously for substrates 370 and 372 (Table 5). The direct introduction of Red-Al to ynone 418 was expected to result in the 1,2-reduction of the ketone with successive reduction of the consequential propargylic group affording (E,E)-dienol 419. When the reaction was conducted at 0 °C, a marginal preference for the C-(24)—C-(25)-syn diastereomer 419a was observed (entry 3). It was hoped that through reduction of reaction temperature, the diastereoselectivity of the reduction could be improved but the diastereomeric ratio remained constant and afforded only 1,2-carbonyl reduction to the alcohol 417 as a mixture of isomers without the ensuing alkyne reduction.
Scheme 98

Table 8

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reductant</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>Yield (%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaBH₄</td>
<td>MeOH</td>
<td>−78</td>
<td>100</td>
<td>2:1</td>
</tr>
<tr>
<td></td>
<td>CeCl₃, 7H₂O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L-selectride</td>
<td>THF</td>
<td>−78</td>
<td>66</td>
<td>1:1</td>
</tr>
<tr>
<td>3</td>
<td>Red-Al</td>
<td>Et₂O</td>
<td>0</td>
<td>79</td>
<td>2:1</td>
</tr>
<tr>
<td>4</td>
<td>Red-Al</td>
<td>Et₂O</td>
<td>−78</td>
<td>87</td>
<td>2:1</td>
</tr>
</tbody>
</table>

12.11 Amphidinolide C: Completion of C-(18)–C-(34) Fragment

Although no diastereoselectivity had been observed, in either addition of a lithium acetylide to aldehyde 415 or through reduction of ynone 418, significant quantities of both C-(24) diastereomers had been generated in the course of this work. Painstaking chromatography of the mixture allowed for the partial separation of a reasonable quantity of the unwanted 1,2-anti product 417b. Concurrent work on the ‘southern’ fragment had shown that the reduction of a C-5 enone system vicinal to a 2,5-trans tetrahydrofuran, could be accomplished under Felkin-Anh control using Luche reduction conditions (Section 12.5, Scheme 109). The stereoselectivity of this reduction was in direct contrast to the reduction of ynonic systems, previously discussed in Schemes 80 and 98, and suggested a possible solution to the generation of the desired C-(24) stereocentre.
Scheme 99

Propargylic alcohol 417b was reduced with Red-Al to afford the stereopure (E,E)-dienol 419b in good yield. Upon acquisition of the analysis for the C-(24) (S)-diastereomer, oxidation was accomplished using either Dess-Martin periodinane or MnO₂, to provide dienone 420 in 87% or 83% yield depending upon the oxidation technique employed. The 1,2-reduction of the carbonyl group proceeded in excellent yield and with high levels of diastereocoultrol under Luche conditions, thereby providing the required (R)-stereochemistry at the C-(24) stereocentre. This sequence was subsequently shown to be applicable to diasteromeric mixtures of 419a and 419b, thereby rendering the previous attempt to introduce the desired stereochemistry at an early stage in the synthesis entirely obsolete. Protection of the extant C-(24) secondary alcohol as a TES
ether was accomplished with TES triflate in 76% yield, after attempts to afford the same transformation with TES chloride met with incomplete conversion.

With the fully protected C-(18)–C-(34) fragment 407 in hand, the stage was set for what we believed would be the simple removal of the PMB ether and introduction of a dithiane at the C-(18) position. Initial attempts to remove the PMB functionality using traditional single electron transfer reagents such as DDQ and CAN resulted in the decomposition of the precious starting material. It was believed that this type of deprotection strategy was incompatible in the presence of the C-(25)–C-(28) (E,E)-diene system, a belief reinforced by similar observations by Iwasaki et al in their total synthesis of curacin A. Their observation that dienes of this type, even those remote from the PMB group, are incompatible with DDQ and CAN deprotection conditions led them to develop milder conditions to effect the desired transformation. Attempts to replicate Iwasaki’s conditions, using a combination of magnesium bromide diethyl etherate and dimethyl sulfide, resulted in decomposition of the C-(18)–C-(34) fragment 407. Due to the paucity of late-stage material at this point in the project, in combination with the constrained time-frames no further attempts were made to remove the PMB ether from 407.
13 Amphidinolide C: Synthesis of the C-(1)–C-(17) Fragment

Early synthetic planning for the creation of the C-(1)–C-(17) fragment of the macrolide, proposed a disconnection between the C-(10) and C-(11) bonds, which would be constructed through Horner-Wadsworth-Emmons olefination of β-ketophosphonate 302 and an appropriately functionalised methyl ketone. Initial work on this segment of the compound began in the belief that such a connection would be viable, and hence efforts were made to transform the common intermediate 327a into β-ketophosphonate 302, with emphasis on stereoselective formation of the C-(35) methyl group and introduction of the C-(7)–C-(8)-anti diol system.

![Figure 45](image)

13.1 Amphidinolide C: Synthesis of the C-(1)–C-(7) Fragment and Introduction of C-(4) Stereochemistry

The primary goal of the synthesis was incorporation of the methyl group situated at C-(35) with the required C-(4) stereochemistry. To this end, the ketone of the common intermediate 327a was methylenated using a Wittig reaction and gratifyingly diene 423 was afforded in quantitative yield on the first attempt, rendering the testing of alternative olefination methodologies redundant (Scheme 100). It was believed that introduction of the C-(4) stereochemistry could be facilitated by the application of homogeneous catalytic hydrogenation, facially directed by a C-(1)-positioned hydroxyl group. To form this intermediate, the pendant allylic group required conversion to the alcohol 426, without disruption to the newly formed 1,1-disubstituted olefin group (Scheme 100). Unlike the oxidative cleavage of the allyl group in the ‘northern’ fragment, compound 343, which was achieved through ozonolysis, transformation of diene 423 required a more selective approach; we believed that sequential dihydroxylation and periodate cleavage offered a suitable alternative methodology.
Examples in the literature of allylic mono-dihydroxylation in the presence of 1,1-dienes are sparse, with only two examples from the groups of Corey195 and Trost196 detailing equivalent reactivity. Nevertheless, we considered that the less hindered allylic appendage should present the most accessible site for dihydroxylation in our case. A number of dihydroxylation experiments were undertaken, the first using Upjohn conditions197 and the second and third employing commercially available Sharpless asymmetric dihydroxylation reagents;156 the outcomes are summarised in Table 9.

\begin{table}[h]
\centering
\begin{tabular}{lllll}
\hline
Entry & Conditions & Solvent & Temp. & Yield (%) \\
\hline
1 & OsO$_4$ (2 mol\%) & THF, H$_2$O & rt & 64 \\
 & NMO (1.1 eq) & & & \\
2 & AD-Mix α & t-BuOH, H$_2$O & 0 °C & 41 \\
3 & AD-Mix B & t-BuOH, H$_2$O & 0 °C & 43 \\
4 & OsO$_4$ (2 mol\%) & THF, H$_2$O & rt & – \\
 & NaIO$_4$ (2.1 eq) & & & \\
\hline
\end{tabular}
\caption{Table 9}
\end{table}

Dihydroxylation using the standard Upjohn conditions (entry 1) afforded a 64% yield of the desired dihydroxylation product with a diastereomeric ratio of 1:1, as judged by 1H NMR spectroscopy, and 7% recovery of the starting diene. Under these conditions the reaction could not be forced to completion through the addition of further co-oxidant, without a concomitant drop in the isolated yield of the desired product. These results suggested bis-dihydroxylation was taking place in the presence of excess reagent,
leading to lower isolable quantities of the desired product. The use of Sharpless asymmetric dihydroxylation procedures (entries 2 and 3) provided diminished isolated yields of 424 in the case of both α and β mixtures. Application of the Lemieux-Johnson protocol198 in an attempt to directly access aldehyde 425, through a one-pot dihydroxylation and diol cleavage promoted by sodium periodate, led to a complex reaction mixture from which none of the desired product was isolated.

Scheme 101

In an effort to maximise product recovery, we attempted to isolate the putative tetraol 427 thought to be responsible for loss of material in the dihydroxylation step. Stripping of chromatography columns with dichloromethane and methanol, subsequent to isolation of the diol 424, afforded artefacts of the reaction, the complex 1H NMR spectrum of which contained signals corresponding to TBS and tetrahydrofuran groups. Attempts to oxidatively cleave the vicinal diols of the isolated material, thereby affording the dicarbonyl product 428, which it was hoped could be recycled back into the reaction sequence, gave a complex reaction mixture from which the desired material was not isolated (Scheme 101).

Scheme 102
In an attempt to avoid tetraol formation, the sequence of methylenation and dihydroxylation was reversed. *Scheme 102* shows that although the dihydroxylation of alkene 327a was accomplished in excellent yield, subsequent Wittig olefination of the ketone was problematic, not only in terms of the moderate yield of the reaction, but also because partial epimerisation of the adjacent C-(3) tetrahydrofuranyl stereocentre was observed. At this stage we concluded that Upjohn dihydroxylation of diene 423 was a reasonable method for advancing the synthesis. The synthetic sequence was completed through oxidative cleavage of the 1,2-diol 424 and reduction of the intermediate aldehyde 425, providing C-(1) primary alcohol 426 (*Scheme 100*).

13.2 Installation of C-(4) Methyl Stereochemistry through Asymmetric Hydrogenation

With sufficient alkene 426 in hand, the stage was set to introduce the C-(4) stereochemistry, by means of a hydroxyl controlled reduction of the 1,1-disubstituted olefin. From the earliest stage of the project, Crabtree’s complex 430 was identified as the catalyst of choice for this transformation due to its ability to deliver stereoselective hydrogenation through chelation to carbonyl and alcohol groups.\(^{199}\) In our case, we believed that the pendant alkyl alcohol could act as a ligand for the catalyst, thereby delivering hydrogen from the corresponding face.

![Figure 46](attachment:figure46.png)

Figure 46

Early work proved positive with regard to the stereoselective outcome, but the reaction suffered from incomplete conversion. Previous reports had documented the deactivation of catalyst through the formation of a stable and inactive trimeric iridium complex on prolonged exposure to hydrogen (*Figure 46*).\(^{200}\) Assorted reaction conditions were assayed, including variation in the non-coordinating solvent employed, reaction concentration and the rigorous degassing of all solutions used in the transformation. It was found that briefly exposing the catalyst to a hydrogen atmosphere, prior to rapid, dropwise introduction of the olefin, allowed for complete conversion of the samples in less than two hours. The reaction was monitored through \(^1\)H NMR analysis of reaction aliquots, until disappearance of the olefin signals (5.01 and 4.44 ppm), and formation of the C-(4) methyl (doublet at 1.3 ppm) was observed.
The catalyst loading in the preliminary reaction was 12 mol% but it was subsequently found that a loading of 7.5 mol% was as efficacious in terms of both stereoselectivity and yield. It is believed that further reduction in the amount of catalyst could afford equivalent reactivity, though this hypothesis remains untested. In addition to the cost benefit of decreased catalyst loading, anomalous deprotection of the TBS group occurred during column chromatography of the products, where the sample was visibly contaminated with residual catalyst artefacts. Although initially problematic, this issue proved resolvable through minimisation of the required purification steps in the sequence between 426 and 435 (Scheme 103). Upon completion of the hydrogenation reaction, the extant alcohol was directly protected as a TBDPS ether in the same pot. Aqueous acidic work-up of bis-silyl ether 434 and CSA-catalysed deprotection of the C-(7) TBS ether subsequently furnished alcohol 435, in a yield of 66% over three steps.

Scheme 103
13.3 Installation of the C-(7)—C-(8) Diol through Dihydroxylation

With alcohol 435 in hand, attention was turned to the formation of the β-ketophosphonate retron 302 bearing the desired 1,2-anti diol in the C-(7)—C-(8) locus of the natural product (Figure 29). To this end, we planned to test the suitability of applying the Sharpless asymmetric dihydroxylation reaction to the (Z)-α,β-unsaturated ester 437.

Oxidation of alcohol 435 to its associated aldehyde allowed access to olefin 437 through either Wittig reaction with a phosphorane in an alcoholic solvent, or through the Still-Gennari modification of the Horner-Wadsworth-Emmons olefination. Exposure of (methoxycarbonyl)methylene triphenylphosphorane to the intermediate aldehyde allowed for selective formation of the desired (Z)-isomer in good yield (Table 10, entry 1). A one-pot reaction involving tandem oxidation and olefination in dichloromethane, led to a reversal in the stereoselectivity (entry 2), whereas application of the Still-Gennari reagent to the pre-formed aldehyde gave the optimal ratio favouring the (Z)-isomer 437 and the best yield over all three experiments. The (E) and (Z)-isomers proved sufficiently separable by column chromatography to allow access to pure samples of each.

![Scheme 104](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Yield (%)</th>
<th>Z:E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i. Dess-Martin periodinane, CH₂Cl₂, rt</td>
<td>70</td>
<td>95:5</td>
</tr>
<tr>
<td></td>
<td>ii. Ph₃P=CHCO₂Me, MeOH, rt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dess-Martin periodinane, Ph₃P=CHCO₂Me</td>
<td>71</td>
<td>5:95</td>
</tr>
<tr>
<td></td>
<td>CH₂Cl₂, rt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>i. Dess-Martin periodinane, CH₂Cl₂, rt</td>
<td>77</td>
<td>99:1</td>
</tr>
<tr>
<td></td>
<td>ii. (F₃CCH₂O)₂POCH₂CO₂Me, THF, −78 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10
Efforts to dihydroxylate (Z)-alkene 437, to generate the C-(7)–C-(8) 1,2-anti diol, began in the knowledge that Kishi’s empirical model of allylic dihydroxylation, Figure 47, predicted that substrate control would deliver the wrong diastereomer as the major product. The model is based upon the least sterically encumbered, eclipsed conformation 438 being most kinetically accessible prior to, and during, the osmylation transition state.

In this case, the dihydroxylation reagent approaches the face opposite that of the allylic oxygen substituent, due to a minimisation of the electronic repulsion between reactant and substrate. It was hoped, in our case, that the use of the Sharpless’ ligands could override the substrate bias and deliver the desired diastereomer 440. The three reactions shown in Table 11 proceeded in good yield but with poor stereocontrol, dihydroxylation with AD-mix B (entry 2) afforded a mild preference for the unwanted C-(7)–C-(8) (S, R)-diastereomer 441 while AD-mix α afforded equivalent amounts of the diastereomers (entry 1). Most surprisingly, Upjohn dihydroxylation (entry 3), which was expected to deliver the undesired product, according to the Kishi model of allylic substituent control, gave equivalent amounts of each diastereomer. The diastereomers were isolable by careful chromatography and the relative configurations assigned by reduction of the ester group to form triol 442. Comparison of the 1,2,3-triol with a sample of known absolute stereochemistry (sample preparation described in Section 12.5, Scheme 110), as shown in Scheme 106, allowed for structural assignment of each of the products.
Scheme 105

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Solvent</th>
<th>Yield (%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AD-Mix α, MeSO₂NH₂</td>
<td>t-BuOH, H₂O</td>
<td>71</td>
<td>1:1</td>
</tr>
<tr>
<td>2</td>
<td>AD-Mix β, MeSO₂NH₂</td>
<td>t-BuOH, H₂O</td>
<td>71</td>
<td>1:2</td>
</tr>
<tr>
<td>3</td>
<td>OsO₄, NMO</td>
<td>THF, H₂O</td>
<td>81</td>
<td>1:1</td>
</tr>
</tbody>
</table>

Table 11

In an effort to drive the synthesis forward towards the formation of β-ketophosphonate 456, bis-PMB protection of diol 436 was attempted using PMB-trichloroacetimidate and PMB chloride alkylation techniques. Unfortunately both the acid and base mediated reactions afforded intractable mixture of products in each case.
13.4 Installation of the C-(7)—C-(8) Diol through Allylboration

Following disappointing results when attempting to form the C-(7)—C-(8)-anti diol through dihydroxylation methodology, our attention briefly turned to effecting a similar transformation through allylboration procedures. Roush has described the application of γ-alkoxyallylboron reagents to deliver 1,2-anti silanols, which upon Tamao-Fleming oxidation afforded the associated 1,2-anti diol. An example from a 1991 paper inspired us to apply the methodology towards our synthesis of the C-(7)—C-(8) stereocentres.

Scheme 107

Formation of chiral allylboronate 446 began with synthesis of allyl silanol 444 through the reaction of allyl chlorodimethylsilane 443 and cyclohexanol using the procedure of Cella (Scheme 107). Upon deprotonation of the allylic group using Schlosser’s base, the solution was observed to turn from clear to orange-yellow indicating formation of the allylic anion. Subsequent sequential addition of triisopropylborane and (-)-dipropyl D-tartrate was expected to deliver γ-alkoxyallylborane 446. In practice, 1H NMR analysis of the reactions showed mixtures of allylsilane 444 and excess tartrate ester; trace peaks of the desired intermediate, identified by comparison to Roush’s data, were observed but were insubstantial components of the reaction mixtures. Variation of base, temperature, solvent and reaction time failed to deliver the desired product; where pertinent peaks were observed in the 1H NMR spectrum, addition of
aldehyde 436 was undertaken, on each attempt formation of the desired C-(7)—C-(8) silanol 448 was not observed.

A variant of the procedure used in Scheme 107 was attempted in which allyltrimethylsilane was used as the source of the allyl functionality. Following equivalent deprotonation and boration procedures to those used previously, aldehyde 436 was added to the reaction mixture. In this case two separable products were formed cleanly from the reaction. The 1H and 13C NMR spectra of the isolated compounds supports the formation of compound 452 and its diastereomer however the diastereoselectivity of the allylboration reaction was poor, yielding what was essentially an equivalent mixture of products. This sequence was not pursued further owing to the poor diastereoselectivity of the reaction; the relative stereochemistry of the products remains undetemined. Mechanistic considerations, whereby the reaction proceeds via a transition state of type 447, would suggest that the products are the C-(7)—C-(8)-anti diastereomers indicated (Scheme 108).
13.5 Installation of C-(7) Hydroxyl Stereochemistry

The poor diastereoselectivity resulting from the preceding dihydroxylation and allylboration methodologies led us to explore stepwise introduction of the C-(7) and C-(8) stereocentres. This approach began with formation of enone 454 by addition of vinylmagnesium bromide to Weinreb amide 453, prepared in excellent yield by sequential step-wise oxidation of alcohol 435 and HBTU-facilitated coupling of the resultant carboxylic acid to N,O-dimethylhydroxylamine hydrochloride. This piecemeal sequence proved necessary as the alternative approach of vinylmagnesium bromide addition to the intermediate aldehyde 436, followed by an allylic oxidation of the diasteromeric mixture of allylic alcohols (dr 1:1), afforded mixtures that were difficult to purify and delivered significantly lower yields of enone 454 (45% over three steps).

Scheme 109

The efficacious, stereocontrolled introduction of the C-(7) hydroxyl group proved possible through Felkin-Anh reduction of enone 454 under Luche conditions. Excellent isolated yields of allylic alcohol 455 were afforded along with exceptional levels of diastereocontrol. The absolute stereochemistry of the alcohol was determined by application of the modified Mosher protocol.\(^{192}\)
The difference in stereoselectivity of this reduction reaction over that of the previously discussed ynone systems is difficult to rationalise as the two systems offer similar prochiral faces for the approach of a reducing reagent. Logically, if the enone confers greater stereocontrol to the reduction, the pendant olefin group must play a decisive role in the approach of the hydride ion. The C-C bond rotation between the carbonyl and olefin groups allows for several possible conformers to exist, the extremes of which, A and B, are illustrated in Figure 48. At low temperature, and under the Felkin-Anh model, the lowest energy conformation is posited to be B, where the olefin is positioned to minimise allylic strain with the C-(6) \(\beta \)-tetrahydrofuranyl hydrogen. In this way, hydride approach from the \(si \) face is reinforced and stereocontrol is amplified over that of the Felkin-Anh modelled ynone system C.

![Figure 48](image_url)

Protection of the secondary alcohol was accomplished by Lewis acid catalysed activation of PMB-trichloroacetimidate with lanthanum(III) triflate, and the olefin was then dihydroxylated under Upjohn conditions (Scheme 110). As expected, under the allylic dihydroxylation model of Kishi discussed previously, the C-(8) hydroxyl was introduced stereoselectively to afford diol 457. The absolute stereochemistry of the C-(8) stereocentre was determined through selective TBS protection of the C-(9) primary alcohol and application of the modified Mosher protocol to the remaining secondary alcohol.\(^{192}\) Removal of the PMB ether by hydrogenolysis afforded triol 438, as shown in Scheme 106, allowing a determination of the absolute stereochemistry of the \(\alpha,\beta \)-dihydroxyesters 440 and 441 prepared previously. Following protection of the C-(8) secondary alcohol and removal of the terminal TBS group, further steps could have progressed the synthesis towards advanced intermediates such as the \(\beta \)-ketophosphonate 460 or the vinyl stannane 87 prepared by Ferriè\(^{31}\) (Scheme 15). By this stage in the project however, the proposal of forming the C-(9)–C-(11) diene functionality through Horner-Wadsworth-Emmons methodology had been beset by the failure of model reactions to accomplish the required coupling.
Scheme 110
13.6 Alternative Methodology Towards the Formation of C-(1)—C-(17) Fragment

A revised synthetic plan required the creation of a fragment encompassing the necessary stereochemistry and diene geometry of the C-(9)—C-(17) locus of the natural product’s macrolide ring. The generation of a nucleophile from this fragment and addition to a suitably functionalised C-(1)—C-(8) fragment, was believed to be an appropriate method by which to access the desired C-(1)—C-(17) ‘southern’ component of amphidinolide C. The revised synthetic plan required the formation of an electrophilic moiety positioned at C-(8) and to this end, both aldehyde 461 and Weinreb amide 462 were prepared (Scheme 111).

Aldehyde 461 was prepared through oxidative cleavage of the 1,2-diol 457 and was used immediately in the subsequent reaction with the C-(9)—C-(17) fragment 463 prepared by Guang Yang. The Weinreb amide 462 was constructed through Pinnick oxidation of the intermediate aldehyde and condensation of the resultant carboxylic acid with N,O-dimethylhydroxylamine hydrochloride. Although compound 462 was isolated in good yield, partial epimerisation of the PMB protected C-(7) stereocentre was observed intermittently. The problematic reproducibility of this reaction necessitated reliance on aldehyde 461 as the electrophilic moiety required for formation of the C-(8)—C-(9) bond.

Scheme 111
The completion of the C-(1)–C-(17) fragment 466, accomplished by Yang, is shown in Scheme 112 and commenced from the tin-lithium exchange of fragment 463. After formation of the nucleophile, through treatment of stannane 463 with t-butyl lithium, it was added to aldehyde 461. The reaction proceeded in good yield and with excellent levels of stereocontrol, but unfortunately the undesired C-(7)–C-(8) syn diastereomer 464 predominated. The correct stereochemistry was subsequently introduced through oxidation of alcohol 464 to give ketone 465 followed by Luche reduction, under Felkin-Anh control, to provide the C-(1)–C-(17) fragment of the macrolide core with the required stereochemistry. Although the reaction afforded the correct diastereomer, the slow rate of reduction led to a substantial loss of material through decomposition and resulted in a lower than anticipated isolated yield of 466.
14 Future Work

Although the complexities of amphidinolide C have been largely addressed in the work described herein, a total synthesis of the natural product remains an elusive goal. The major difficulty at present lies within the realm of protecting group chemistry, particularly those associated with the C-(1), C-(13) and C-(15) positions.

14.1 C-(1) Protection

Presently, the choice of TBDPS on the C-(1) locus is impractical, owing to the increased stability of this functionality over the other silyl ethers within the two most advanced fragments 407 and 466. As the C-(1) position is destined to become the carboxylic acid precursor required for Yamaguchi cyclisation, it would be beneficial to have this locus protected in an equivalent oxidation state as early as possible to negate the requirement for oxidation at a later, more complex, stage in the synthesis. To this end, a suitable alternative could involve the formation of an oxazoline group at the C-(1) position, as shown in Scheme 113. This heterocycle is stable against nucleophilic attack and generally requires forcing conditions of mineral acid and heat to restore the masked carboxylic acid. Removal of the group under mild conditions can be accomplished if an iminium salt is formed through reaction with an alkyl halide, and the salt treated with aqueous base; an example of this type of deprotection reaction has been used by the Kallmerten group during studies on the synthesis of nargenicins.208

![Scheme 113](image)

Although the current C-(7)-containing fragment 456 is protected as a PMB ether, it would be beneficial to test current methodologies where a TBS protecting group is used in its place. Elimination of PMB ethers from the synthesis may be highly advantageous to
negate the problematic reactivity associated with diene functionality of both ‘northern’ and ‘southern’ fragments. Protection of the C-(7)–C-(8) diol as bis TBS ethers would greatly assist in late-stage global deprotection.

14.2 C-(13) and C-(15) Protection

The 1,3-anti stereochemistry of the C-(13) and C-(15) hydroxyl groups was previously introduced using Evans Me₄NHB(OAc)₃ reagent, but this generates a 1,3-diol which is difficult to protect in a selective fashion. An alternative approach would involve the C-(15) hydroxyl controlled Evans-Tishchenko reduction of ketone 470, an intermediate previously prepared by Guang Yang, which should afford the 1,3-anti product preferentially with the additional benefit of protecting the C-(15) position as an ester; this would allow for the subsequent differential protection of the C-(13) position. As the C-(15) position of amphidinolide C bears a ketone, the stereochemistry of this position is obsolete and hence this site could be protected as a ketal following oxidation of the secondary alcohol (Scheme 114).

![Scheme 114](image)

Upon combination of 475 and 469, formation of the desired C-(8) stereochemistry and protection of the secondary alcohol could be followed by selective cleavage of the C-(17) TBS ether. Conversion of the C-(17) hydroxyl into a leaving group would allow for subsequent formation of the C-(17)–C-(18) bond through dithiane alkylation.
14.3 C-(18) Protection

Although the synthesis of the C-(18)–C-(34) fragment of amphidinolide C had been accomplished, we were unable to deprotect the PMB group of compound 407 using established SET reagents or a combination of MgBr₂ and DMS. Although the literature abounds with methods for removal of PMB groups, the C-(24) and C-(29) hydroxyl protecting groups, in addition to the highly conjugated tail region renders the majority of methodologies unsuitable. A possible approach to effect this deprotection involves the use of Birch reduction, an example of this was reported by Bittman and co-workers in their synthesis of plasmalogens.²¹⁰
Alternatively, as the primary strategy towards formation of the C-(17)—C-(18) linkage relies upon the alkylation of a dithiane, it may be possible to introduce this functionality early in the synthesis, thereby using it as both an alkylation precursor and the C-(18) protecting group. This change could be implemented at the ozonolysis stage through modification of the work-up from sodium borohydride to dimethyl sulfide to afford an intermediate aldehyde 478. Formation of the dithiane and deprotection of the C-(24) TBS group could be accomplished as shown in Scheme 116. Alteration of either of the existing routes, *i.e.* palladium cross-coupling or alkynylation of the C-(24) position, would afford the C-(18)—C-(34) construct 480; a caveat being amendment of the C-(24) alcohol oxidation protocols, from the current Dess-Martin procedure, to a more dithiane friendly alternative.

14.4 Completion of Amphidinolide C Total Synthesis

Alkylation of the dithiane 480 with 477 would set the stage for Yamaguchi lactonisation of the substrate, upon deprotection of the oxazoline and TES moieties. Fragmentation of the oxazoline group, as discussed previously, using a two-step process of alkyliminium salt formation and mild treatment with aqueous base, would afford the C-(1) carboxylic acid. In our case, the application of methyl iodide to system 481 is likely to lead to concomitant loss of the C-(18) dithiane. On Yamaguchi macrolactonisation of the deprotected carboxylic acid with the C-(24) hydroxyl, the challenge would then be deprotection of the ketal and extant TBS ethers. Ketal hydrolysis could be accomplished by simple exposure of the moiety to catalytic acid and would be followed by universal removal of the remaining silyl ethers, using the Et$_3$N·3HF protocol adopted by Carter and Mahapatra in the final step of their synthesis of amphidinolide F (Scheme 117).
Scheme 117
Chapter 2: Results and Discussion

15 Summary and Conclusions

Methodology has been developed which has enabled access to two fragments comprising the complete carbon skeleton of amphidinolides C and F. This thesis has dealt specifically with the stereoselective synthesis of the C-(18)–C-(34) fragment of amphidinolide C 407, the C-(18)–C-(29) fragment of amphidinolide F 397 and the C-(1)–C-(8) fragment 461 of the common macrolide ring system. A key point in the total synthesis work outlined was the employment of a modular synthesis, whereby the natural product was divided into two fragments of equivalent complexity, termed ‘Northern’ and ‘Southern’. Each fragment was constructed through building outwards from a 2,5-trans substituted tetrahydrofuran, both ring systems of which were identified as being advanced synthetic products of an antecedent common intermediate.

The synthesis of the common intermediate 327a was achieved in seven steps from the chiral pool starting material d-malic acid, in an overall 41% yield and with excellent diastereosecontrol. The key step of this synthesis was the diastereoselective [2,3]-sigmatropic rearrangement of an intermediate oxonium ylide, formed through the copper-catalysed decomposition of an α-diazoketone. The common intermediate provided the foundation for the construction of both ‘Northern’ and ‘Southern’ fragments through alteration of the 2,5-vicinal carbon chains and the C-3 positioned ketone.

The C-(18)–C-(34) ‘Northern’ fragments were assembled in a further eleven linear steps from the common intermediate through two methodologies, namely palladium-catalysed cross-coupling of alkyne 378 or alkynylation of aldehyde 415. Transformation of intermediate 327a to either intermediate necessitated deletion of the C-(21) ketone moiety; this was accomplished through the application of radical deoxygenation techniques.
Chapter 2: Results and Discussion

The vinylic iodide cross-coupling partner and alkynylation precursor were both derived from a common propargylic alcohol 80. The C-(29) stereochemistry of this intermediate was achieved through kinetic resolution of the racemic alcohol via the Sharpless asymmetric epoxidation protocol.

Use of Sonogashira or Heck alkynylation cross-couplings between propargylic alcohol 378 and vinyl iodide 386, or through alkynylation of aldehyde 415 using the lithium acetylide of 412, allowed access to systems of type 407, the carbon backbone of the C-(19)–C-(34) fragment of amphidinolide C. Heck alkyne cross-coupling of 378 with commercial isocrotyl bromide afforded access to the C-(18)–C-(29) carbon backbone of amphidinolide F. The desired C-(25)–C-(26) olefin geometry of both fragments was introduced through hydroxyl-controlled propargylic reduction, and the C-(24) stereochemistry of 407 established through Felkin-Anh controlled reduction of a C-(24) dienone. The deprotection of the C-(18) group has provided some problematic reactivity issues, which it is hoped can be resolved in future work. A recent publication from our group has discussed the use of palladium cross-couplings in forming these fragments of amphidinolide C and F.211

The synthesis of the ‘Southern’ C-(1)–C-(8) fragment required the stereoselective introduction of the C-(4) methyl group. This was achieved through a sequence of methylenation, selective dihydroxylation and a substrate controlled hydrogenation reactions. Introduction of the C-(7) and C-(8) anti diol chemistry was attempted with both dihydroxylation and allylboration chemistry. Although both methodologies afforded the desired reactivity, the diastereoselective outcomes were insufficient for a total synthesis route. Stepwise introduction of the C-(7) and C-(8) stereocentres was shown to be achievable through the stereoselective reduction of an intermediate enone, thereby delivering allylic alcohol 455. The C-(8) stereochemistry was introduced through a stereoselective dihydroxylation, the resulting diol 457 proved to be amenable to a change in project strategy by providing the precursor to aldehyde 461.
Nucleophilic addition of Yang’s C(9)–C(17) fragment into aldehyde 461 allowed, with subsequent modification, access to the ‘Southern’ C(1)–C(17) fragment of the macrolide ring 466. This synthesis was recently published in tandem with that of the ‘Northern’ fragment. In summary, a stereoselective formation of the C(18)–C(34) fragment of amphidinolide C, the C(18)–C(34) fragment of amphidinolide F and the C(1)–C(8) fragment common to both macrolides has been achieved. Two of the nine stereocentres discussed in the work originate from the use of D-malic acid as the starting material for a common intermediate species. The remaining stereocentres were introduced through substrate controlled reactions, with the only exception being the C(29) hydroxyl of amphidinolide C, which was introduced through Sharpless epoxidation resolution chemistry. The combined efforts of the Clark group have yielded two fragments corresponding to the complete carbon skeletons of amphidinolides C, C2, C3 and F, with union of ‘Northern’ and ‘Southern’ fragments the last hurdle to be overcome in a total synthesis of these fascinating natural products.
Chapter 3: Experimental Section
General comments

Air and/or moisture sensitive reactions were performed under an atmosphere of Argon in flame dried apparatus. Organic solvents were dried using Pure Solv™ solvent purification systems. All reagents were purchased from commercial suppliers and used without further purification, unless otherwise stated. All reactions were monitored by thin layer chromatography using Merck silica gel 60 covered alumina plates F254. Thin layer chromatography plates were viewed under UV light or were visualised using either potassium permanganate solution or acidic ethanolic anisaldehyde solution. Column chromatography was performed under pressure using silica gel (Fluorochem LC60A, 35-70 micron, 60A) as solid support and HPLC-graded solvents as eluent. Petroleum ether used for column chromatography was 40-60 °C fraction.

IR spectra were recorded using a type IIa diamond single reflection element on a Shimadzu FTIR-8400 instrument. The IR spectrum of the compound (solid or liquid) was directly detected as a thin layer at ambient temperature.

1H NMR spectra were recorded on a Bruker 400 MHz or 500 MHz Spectrospin spectrometer at ambient temperature. The carbon numbering used for the NMR signal assignment of the molecules corresponds to the amphidinolide numbering protocol assigned by Kobayashi; where possible, intermediates are assigned based upon concluding position within the amphidinolide structure. IUPAC numbering is used for the molecule names and generated using ChemAxon’s MarvinSketch 5.12.2 software. Data is reported as follows: chemical shift in ppm relative to CDCl$_3$ (7.26) on the δ scale, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, ap = apparent, or a combination of these), coupling constant(s) J (Hz) and assignment. 13C NMR spectra were recorded on a Bruker 400 MHz or 500 MHz Spectrospin spectrometer at 100 MHz or 125 MHz at ambient temperature and multiplicities were obtained using a DEPT sequence. Data is reported as follows: chemical shift in ppm relative to CHCl$_3$ (77.16) on the δ scale and assignment.

High resolution mass spectra (HRMS) were obtained under EI, FAB, CI and ESI conditions by the analytical services of the University of Glasgow on a Jeol MStation JMS-700 instrument. Low resolution mass spectra (LRMS) were carried out on the same instrument; the intensity of each peak is quoted as a percentage of the largest, where this information was available.

Elemental analyses were carried out on an Exeter Analytical Elemental Analyser EA 440.
1,2:5,6-Di-O-isopropylidene-\(\alpha\)-mannitol.\(^{213}\) (312)

To a slurry of \(\alpha\)-mannitol (50 g, 0.27 mol) in 1,2-dimethoxyethane (120 mL) was added 2,2-dimethoxypropane (80 mL, 0.65 mol) and SnCl\(_2\) (50 mg, 0.26 mmol). The mixture was warmed to 95 °C until a clear solution was obtained (45 minutes approx.) and the heating continued for a further 30 minutes. The reaction was removed from heat and pyridine (100 µl) was added to the solution whilst warm; the reaction was then allowed to cool to rt. The volatile component was removed by distillation at 100 °C (1 atm). The crude material was slurried in CH\(_2\)Cl\(_2\) (360 mL) for 1.5 h, filtered to remove the colourless solid [1,2-isopropylidene-\(\alpha\)-mannitol 311 (5.4 g, 9%)] and the filtrate concentrated to a clear oil which crystallised on standing. Purification of the two-component mixture was achieved by chromatography (pet. ether/EtOAc, 4:1 to 1:1) to provide the desired diacetal 312 as colourless solid (42 g, 58%) and 1,2:3,4:5,6-di-O-isopropylidene-\(\alpha\)-mannitol 313 (13.8 g, 17%) also as a colourless solid.

\(R_f = 0.15\) (pet. ether/EtOAc, 1:1); \([\alpha]^{16}_D +3.1\) (c = 0.96, CHCl\(_3\)); Mp 120-122 °C [lit. 118-120 °C\(^{213}\)]; \(\nu_{\text{max}}\) (powder) 3394, 3279, 2978, 2886, 1373, 1258, 1204, 1065, 856, 656 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.20-4.13 (2H, m, CH=C8), 4.14-4.08 (2H, m, CH=C7), 3.97 (2H, dd, \(J = 8.4, 5.4\) Hz, CH=C8), 3.79-3.69 (2H, m, CH=C6), 2.77 (2H, d, \(J = 6.7\) Hz, OH=C6), 1.40 (6H, s, CH\(_3\)-Me acetonide), 1.34 (6H, s, CH\(_3\)- Me acetonide); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 109.7 (C-C acetonide), 76.5 (CH=C7), 71.4 (CH=C6), 67.0 (CH=C8), 27.0 (CH\(_3\)-Me acetonide), 25.5 (CH\(_3\)-Me acetonide); HRMS (Cl+, isobutane) calcd for C\(_{12}\)H\(_{22}\)O\(_6\) [M+H]\(^{+}\) 263.1494, found 263.1494 (\(\Delta = 0.3\) ppm); LRMS (Cl+, isobutane) \(m/z\) (intensity); 263.4 (100%), 205.3 (45%), 147.2 (20%); Anal. calcd for C\(_{12}\)H\(_{22}\)O\(_6\) C 54.95%, H 8.45%, found C 54.89%, H 8.52%.
Chapter 3: Experimental Section

Chapter 3: Experimental Section

(4R)-2,2-Dimethyl-1,3-dioxolane-4-carbaldehyde. \(^{213}\) (88)

![Chemical Structure](image)

Sodium periodate (16 g, 76 mmol) was added to a stirred solution of diol 312 (10 g, 38 mmol) in CH\(_2\)Cl\(_2\) (75 mL) and saturated aqueous NaHCO\(_3\) (4 mL) at 0 °C; the ice bath was then removed and the mixture stirred for 3 h at rt. MgSO\(_4\) (4.9 g) was added to the reaction mixture, stirred for 20 minutes and removed by filtration. The solids were washed with further CH\(_2\)Cl\(_2\) (20 mL) and the solution carefully concentrated at ambient temperature on a rotary evaporator. Distillation of the crude mixture \textit{in vacuo} afforded the desired aldehyde 88 (8.6 g, 87%) as a clear, colourless oil. \([\alpha]_D^{26} +72.0 \ (c = 1.30, \text{CHCl}_3); \text{Bp} \ 45-48 °C (13 \text{ mbar}) \ [\text{lit.} \ [\alpha]_D^{26} +72-74 °C (44 \text{ mbar})]\) \(^{213}\); \(\nu_{\text{max}}\) (liquid film) 3442, 2989, 1734, 1373, 1211, 1065, 840, 601 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \ 9.70 \ (1\text{H, d, } J = 1.9 \text{ Hz, CH-C}_6), \ 4.41-4.30 \ (1\text{H, m, CH-C}_7), \ 4.15 \ (1\text{H, dd, } J = 8.8, 7.4 \text{ Hz, CH-C}_8), \ 4.08 \ (1\text{H, dd, } J = 8.8, 4.7 \text{ Hz, CH-C}_8), \ 1.47 \ (3\text{H, s, CH}_3-Me acetonide), \ 1.40 \ (3\text{H, s, CH}_3-Me acetonide); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \ 202.1 \ (\text{CH-C}_6), \ 65.9 \ (\text{CH}_3-C_8), \ 26.6 \ (\text{CH}_3-Me acetonide), \ 25.4 \ (\text{CH}_3-Me acetonide) ; \) HRMS (Cl\(^+\), isobutane) calcd for C\(_6\)H\(_{11}\)O\(_3\)[M+H]\(^+\) 131.0708, found 131.0711 (\(\Delta +2.2 \text{ ppm}\)); LRMS (Cl\(^+\), isobutane) \(m/z\) (intensity); 131.2 (100%).

**Ethyl 3-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-3-oxopropanoate.\(^{215}\) (314)

![Chemical Structure](image)

Aldehyde 88 (8.8 g, 68 mmol) in CH\(_2\)Cl\(_2\) (2 mL) was added dropwise to a solution of ethyl diazoacetate (7.5 mL, 71 mmol) and SnCl\(_2\) (1.3 g, 6.8 mmol) in CH\(_2\)Cl\(_2\) (290 mL) at rt. Upon complete addition the mixture was stirred for 1h before the reaction was quenched with brine (150 mL). The mixture was extracted with Et\(_2\)O (2 \times 150 mL), dried (MgSO\(_4\)), filtered and concentrated to a yellow oil. Purification of the residue by chromatography (pet. ether to pet. ether/EtOAc, 19:1) afforded a keto-enol mixture of 314 (8.2 g, 56%) as a clear, colourless oil. \(R_f = 0.39 \ (\text{pet. ether, EtOAc, 4:1}); [\alpha]_D^{25} +80.4 \ (c = 1.03, \text{CHCl}_3) \ [\text{lit.} \ [\alpha]_D^{26} +73.7 \ (c = 1.5, \text{CHCl}_3)]\) \(^{215}\); \(\nu_{\text{max}}\) (liquid film) 2988, 2901, 1745,
Chapter 3: Experimental Section

1720, 1208, 1061, 843, cm$^{-1}$; Ketone: 1H NMR (400 MHz, CDCl$_3$) δ 4.52 (1H, dd, $J = 7.8, 5.2$ Hz, CH-C7), 4.23-4.16 (3H, m, CH-C8 and CH$_2$-OEt), 4.09 (1H, dd, $J = 8.8, 5.2$ Hz, CH-C8), 3.66 (1H, d, $J = 16.4$ Hz, CH$_2$-C5). 3.52 (1H, d, $J = 16.4$ Hz, CH$_2$-C5), 1.48 (3H, s, CH$_3$-Me acetonide), 1.38 (3H, s, CH$_3$-Me acetonide), 1.28 (3H, t, $J = 7.2$ Hz, CH$_3$-OEt); 13C NMR (100 MHz, CDCl$_3$) δ 204.4 (C-C6), 167.3 (C-C4), 111.6 (C-C acetonide), 80.2 (CH-C7), 66.9 (CH$_2$-C8). 61.8 (CH$_2$-OEt), 3.66 (1H, d, $J = 16.4$ Hz, CH$_2$-C5), 3.52 (1H, d, $J = 16.4$ Hz, CH$_2$-C5), 1.48 (3H, s, CH$_3$-Me acetonide), 1.38 (3H, s, CH$_3$-Me acetonide), 1.28 (3H, t, $J = 7.2$ Hz, CH$_3$-OEt); Enol: 1H NMR (400 MHz, CDCl$_3$) δ 11.99 (1H, s, OH-C6), 5.37 (1H, d, $J = 0.8$ Hz, CH-C5), 4.56-4.52 (1H, m, CH-C7), 4.28-4.18 (3H, m, CH-C8 and CH$_2$-OEt), 3.99 (1H, dd, $J = 8.5, 5.8$ Hz, CH-C8), 1.48 (3H, s, CH$_3$-Me acetonide), 1.40 (3H, s, CH$_3$-Me acetonide), 1.28 (3H, t, $J = 7.2$ Hz, CH$_3$-OEt); 13C NMR (100 MHz, CDCl$_3$) δ 175.6 (C-C6), 173.1 (C-C4), 111.0 (C-C acetonide), 88.6 (CH-C5), 74.8 (CH-C7), 68.4 (CH$_2$-C8), 60.7 (CH$_2$-OEt), 26.4 (CH$_3$-Me acetonide), 14.6 (CH$_3$-OEt); HRMS (Cl+, isobutane) calcd for C$_{10}$H$_{17}$O$_5$ [M+H]$^+$ 217.1076, found 217.1078 (Δ +0.9 ppm); LRMS (Cl+, isobutane) m/z (intensity): 217.2 (100%), 199.2 (21%), 159.2 (30%).

Ethyl 3-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-3-(R,S)-hydroxypropanoate. (315)

NaBH_4 (0.9 g, 25 mmol) was added to a solution of ketone 314a (4.9 g, 23 mmol) in EtOH (130 mL) at 0 °C and the mixture stirred for 15 minutes. The volatiles were removed in vacuo and the residue partitioned between Et$_2$O (50 mL) and brine (50 mL). The organic phase was isolated and the aqueous back-extracted with further Et$_2$O (2× 50 mL). The combined organic extracts were dried (MgSO$_4$), filtered and concentrated before purification of the residue by chromatography (pet. ether/EtOAc, 9:1 to 4:1) to give a diasteromeric mixture of alcohols 315a and 315b (4.1 g, 83%, dr 1:1) as a clear oil.

Resolution of β-hydroxy esters through silyl ether derivatisation.

To a stirred solution of diasteromeric alcohols 315 (0.11 g, 0.46 mmol) in DMF (5 mL) at rt was added chloro(dimethyl)phenylsilane (0.11 mL, 0.69 mmol) and imidazole (0.62 g,
0.92 mmol). The mixture was stirred for 1.5 h, concentrated \textit{in vacuo} and purified by chromatography (pet. ether/EtOAc, 97:3) to provide silyl ethers 316a (34 mg, 21%), 316b (53 mg, 33%) and a diastereomeric mixture of both (31 mg, 19%) all as clear, colourless oils.

Ethyl (3R)-3-[[dimethyl(phenyl)silyl]oxy]-3-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]propanoate. (316a)

![Chemical Structure](image)

\(R_f = 0.40 \) (pet. ether, EtOAc, 9:1); [\(\alpha \)]\textsubscript{25}D = +25.0 (c = 1.09, CHCl\textsubscript{3}); \(\nu_{\text{max}} \) (liquid film) 2984, 2902, 1734, 1373, 1208, 1071, 823, 785, 731, 699 cm\(^{-1}\); \(^{1}\)H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \)

- 7.59–7.55 (2H, m, CH‐PhSi),
- 7.47–7.39 (3H, m, CH‐PhSi),
- 4.45–4.22 (1H, m, CH‐C\textsubscript{6}),
- 4.11–4.00 (3H, m, CH\textsubscript{2}‐OEt and CH‐C\textsubscript{7}),
- 3.92 (1H, dd, \(J = 8.4, 6.9 \) Hz, CH‐C8),
- 3.77 (1H, dd, \(J = 8.4, 6.6 \) Hz, CH‐C8),
- 2.50 (1H, dd, \(J = 15.2, 4.0 \) Hz, CH‐C5),
- 1.38 (3H, s, CH\textsubscript{3}‐Me acetonide),
- 1.30 (3H, s, CH\textsubscript{3}‐Me acetonide),
- 1.21 (3H, t, \(J = 7.1 \) Hz, CH\textsubscript{3}‐OEt),
- 0.40 (3H, s, CH\textsubscript{3}‐SiMe),
- 0.39 (3H, s, CH\textsubscript{3}‐SiMe); \(^{13}\)C NMR (125 MHz, CDCl\textsubscript{3}) \(\delta \)

- 171.7 (C‐C\textsubscript{4}),
- 138.3 (C‐PhSi),
- 133.8 (CH‐PhSi),
- 129.9 (CH‐PhSi),
- 128.1 (CH‐PhSi),
- 109.9 (C‐C acetonide),
- 78.0 (CH‐C7),
- 70.6 (CH‐C6),
- 65.5 (CH‐C8),
- 60.9 (CH\textsubscript{2}‐OEt),
- 38.4 (CH\textsubscript{2}‐C5),
- 26.6 (CH\textsubscript{3}‐Me acetonide),
- 25.3 (CH\textsubscript{3}‐Me acetonide),
- 14.5 (CH\textsubscript{2}‐OEt),
- -0.8 (CH\textsubscript{2}‐MeSi),
- -1.0 (CH\textsubscript{3}‐MeSi); HRMS (Cl+, isobutane) calcd for C\textsubscript{18}H\textsubscript{29}O\textsubscript{5}Si \([M+H]^+\) 353.1784, found 353.1788 (\(\Delta = +1.1 \) ppm); LRMS (Cl+, isobutane) \(m/z \) (intensity): 353.3 (5%), 219.2 (100%), 179.2 (23%), 161.2 (44%), 133.2 (24).

Ethyl (3S)-3-[[dimethyl(phenyl)silyl]oxy]-3-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]propanoate. (316b)

![Chemical Structure](image)

\(R_f = 0.44 \) (pet. ether, EtOAc, 9:1); [\(\alpha \)]\textsubscript{24}D = -5.2 (c = 1.07, CHCl\textsubscript{3}); \(\nu_{\text{max}} \) (liquid film) 2985, 2908, 1735, 1373, 1250, 1072, 824, 787, 733, 702 cm\(^{-1}\); \(^{1}\)H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \)

- 7.58–7.54 (2H, m, CH‐PhSi),
- 7.40–7.33 (3H, m, CH‐PhSi),
- 4.17 (1H, ddd, \(J = 7.8, 6.7, 4.1 \) Hz, CH‐C7),
- 4.05–3.91 (4H, m, CH\textsubscript{2}‐OEt, CH‐C6 and CH‐C8),
- 3.72 (1H, dd, \(J = 7.8, 5.5 \) Hz,
CH-C8), 2.61 (1H, dd, J = 15.4, 4.1 Hz, CH-C5), 2.46 (1H, dd, J = 15.4, 7.7 Hz, CH-C5), 1.34 (3H, s, CH3-Me acetonide), 1.31 (3H, s, CH3-Me acetonide), 1.20 (3H, t, J = 7.2 Hz, CH3-OEt), 0.40 (3H, s, CH3-SiMe), 0.40 (3H, s, CH3-SiMe); 13C NMR (100 MHz, CDCl3) δ 171.7 (C-C4), 138.2 (C-PhSi), 133.7 (CH-PhSi), 130.0 (CH-PhSi), 128.1 (CH-PhSi), 109.8 (C-C acetonide), 78.7 (CH-C7), 71.2 (CH-C6), 67.1 (CH2-C8), 60.8 (CH2-OEt), 40.3 (CH2-C5), 26.9 (CH3-Me acetonide), 25.6 (CH3-Me acetonide), 14.5 (CH3-OEt), −0.76 (CH3-SiMe), −0.86 (CH3-SiMe); HRMS (CI+, isobutane) calcd for C18H29O5Si [M+H]+ 353.1784, found 353.1783 (Δ −0.2 ppm); LRMS (CI+, isobutane) m/z (intensity): 353.3 (8%), 337.3 (47%), 295.2 (100%), 275.2 (53%), 217.2 (28%).

Ethyl (3R)-3-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-3-hydroxypropanoate. (315a)

TBAF (3.4 mL of a 1 M solution in THF, 3.4 mmol) was added dropwise to a stirred solution of 316a (1.1 g, 3.1 mmol) in THF (10 mL) at rt and the mixture was stirred for 30 minutes. The reaction was quenched by the addition of H2O (5 mL) and the mixture was extracted with CH2Cl2 (3 × 10 mL). The organic phase was dried (MgSO4), filtered and concentrated to a clear oil. Purification of the residue by chromatography (pet. ether/EtOAc/Et3N, 80:20:1) yielded alcohol 315a (0.58 g, 86%) as a single diastereomer. Rf = 0.17 (pet. ether/EtOAce, 2:1); [α]24D +15.7 (c = 1.14, CHCl3); νmax (liquid film) 3472, 2986, 2901, 1729, 1373, 1250, 1067, 849, 609 cm−1; 1H NMR (400 MHz, CDCl3) δ 4.18 (2H, q, J = 7.1 Hz, CH2-OEt), 4.12 (1H, td, J = 6.5, 4.6 Hz, CH-C7), 4.08-4.00 (2H, m, CH-C6 and CH-C8), 3.85 (1H, dd, J = 8.3, 6.5 Hz, CH-C8), 2.81 (1H, d, J = 5.6 Hz, OH-C6), 2.54 (1H, dd, J = 16.0, 8.3 Hz, CH-C5), 2.48 (1H, dd, J = 16.0, 4.5 Hz, CH-C5), 1.44 (3H, s, CH3-Me acetonide), 1.36 (3H, s, CH3-Me acetonide), 1.27 (3H, t, J = 7.1 Hz, CH2-OEt); 13C NMR (125 MHz, CDCl3) δ 172.2 (C-C4), 110.0 (C-C acetonide), 78.0 (CH-C7), 68.7 (CH-C6), 66.0 (CH2-C8), 61.2 (CH2-OEt), 38.6 (CH2-C5), 26.7 (CH3-Me acetonide), 25.5 (CH3-Me acetonide), 14.5 (CH3-OEt); HRMS (Cl+, isobutane) calcd for C10H19O5 [M+H]+ 219.1232, found 219.1230 (Δ −1.0 ppm); LRMS (Cl+, isobutane) m/z (intensity); 219.2 (100%), 161.2 (70%); Anal. calcd for C10H19O5 C 55.03%, H 8.31%, found C 54.95%, H 8.48%.
Ethyl (3S)-3-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-3-hydroxypropanoate.\(^{216}\) (315b)

The procedure used to prepare 315a provided 315b as a clear, colourless oil in 91% yield. \(R_f = 0.17\) (pet. ether, EtOAc, 2:1); [\(\alpha\)]\(^{25}\)\(_D\) = -13.5 (c = 0.95, CHCl\(_3\)); [lit. [\(\alpha\)]\(^{22}\)\(_D\) = -11.8 (c = 0.6, CHCl\(_3\))]\(^{216}\); \(\nu_{\text{max}}\) (liquid film) 3464, 2986, 2909, 1728, 1373, 1157, 1064, 848, 787 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.18 (2H, q, \(J = 7.1\) Hz, CH\(_2\)-OEt), 4.12–4.05 (1H, m, CH-C\(_8\)), 4.02–3.92 (3H, m, CH-C\(_6\), CH-C\(_7\) and CH-C\(_8\)), 3.15 (1H, d, \(J = 3.7\) Hz, OH-C\(_6\)), 2.70 (1H, dd, \(J = 16.7, 2.8\) Hz, CH-C\(_5\)), 2.47 (1H, dd, \(J = 16.7, 8.6\) Hz, CH-C\(_5\)), 1.41 (3H, s, CH\(_3\)-Me acetonide), 1.34 (3H, s, CH\(_3\)-Me acetonide), 1.28 (3H, t, \(J = 7.1\) Hz, CH\(_3\)-OEt); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 173.2 (C-C\(_4\)), 109.9 (C-C\(_{\text{acetonide}}\)), 77.9 (CH-C\(_7\)), 69.6 (CH-C\(_6\)), 67.0 (CH$_2$-C\(_8\)), 61.2 (CH$_2$-OEt), 37.9 (CH$_2$-C\(_5\)), 27.0 (CH$_3$-Me acetonide), 25.5 (CH$_3$-Me acetonide), 14.5 (CH$_2$-OEt); HRMS (Cl+, isobutane) calcd for C\(_{10}\)H\(_{19}\)O\(_{5}\) [M+H]\(^+\) 219.1232, found 219.1234 (\(\Delta = +0.6\) ppm); LRMS (Cl+, isobutane) \(m/z\) (intensity); 219.2 (100%), 161.2 (65%), 133.2 (26%).

Ethyl (3R)-3-[(4R)-2,2-dimethyl-1,3-dioxolan-4-yl]-3-(prop-2-en-1-yloxy)propanoate. (323)

\(\text{Pd}_2\)(dba)\(_2\) (10 mg, 0.011 mmol) and 1,4-bis(diphenylphosphino)butane (20 mg, 0.046 mmol) were stirred together in degassed THF (2 mL) at rt for 5 minutes. A solution of alcohol 315a (0.10 g, 0.46 mmol) and allyl ethyl carbonate (0.24 g, 1.8 mmol) in degassed THF (1 mL) was added to the catalyst complex and the mixture was heated at 65 °C for 18 h. On cooling to rt the reaction mixture was concentrated and the residue purified directly by chromatography (pet. ether/EtOAc, 20:1 to 9:1) to afford the title allylic ether 323 (89 mg, 75%) as a clear, yellow oil. \(R_f = 0.57\) (pet. ether, EtOAc, 3:1); [\(\alpha\)]\(^{25}\)\(_D\) = +23.2 (c = 1.04, CHCl\(_3\)); \(\nu_{\text{max}}\) (liquid film) 2985, 2901, 1736, 1373, 1257, 1180, 1064, 849 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 5.88 (1H, ddt, \(J = 17.1, \)
10.4, 5.7 Hz, CH-C1), 5.25 (1H, dd, J = 17.1, 1.6 Hz, CH-C1’ trans), 5.15 (1H, dd, J = 10.4, 1.6 Hz, CH-C1’ cis), 4.26 (1H, dt, J = 6.7, 5.6 Hz, CH-C7), 7.31 (2H, q, J = 7.1 Hz, CH2-OEt), 4.11-4.17 (2H, m, CH2-C2), 4.03-3.95 (2H, m, CH-C6 and CH-C8), 3.79 (1H, dd, J = 10.4, 1.6 Hz, CH-C1’ trans), 5.15 (1H, dd, J = 15.7, 7.9 Hz, CH-C5), 1.42 (3H, s, CH3-Me acetonide), 1.35 (3H, s, CH3-Me acetonide), 1.27 (3H, t, J = 7.1 Hz, CH3-OEt); 13C NMR (100 MHz, CDCl3) δ 171.8 (C-C4), 135.0 (CH-C1), 117.4 (CH2-C1’), 109.9 (C-C acetonide), 76.8 (CH2-C2), 76.2 (CH-C7), 76.0 (CH2-C5), 6.8 (CH3-Me acetonide), 25.4 (CH3-Me acetonide), 14.5 (CH3-OEt); HRMS (Cl+, isobutane) calcd for C13H23O5 [M+H]+ 259.1545, found 259.1540 (Δ = −2.2 ppm); LRMS (Cl+, isobutane) m/z (intensity); 259.3 (63%), 201.2 (100%); Anal. calcd for C13H22O5 C 55.03%, H 8.31%, found C 54.95%, H 8.48%.

1,4-Dimethyl (2R)-2-hydroxybutanedioate.217 (325)

Thionyl chloride (30 mL, 0.41 mol) was added dropwise over 30 minutes to a solution of D-malic acid (25 g, 0.19 mol) in methanol (466 mL) at 0 °C and the mixture was stirred for 18 hours at rt. The volatile material was then removed in vacuo and the resulting residue partitioned between CH2Cl2 (200 mL) and saturated aqueous NaHCO3 (200 mL). The organic phase was isolated and the aqueous back-extracted with further CH2Cl2 (100 mL). The combined organic extracts were washed with brine (200 mL), dried (MgSO4) and concentrated to provide the title diester 325 (28 g, 92%) as a pale yellow oil. Rf = 0.48 (EtOAc); [α]23D +16.7 (c = 0.98, MeOH), [lit. [α]25D +9.6 (c = 2.3, EtOH)]218; νmax (liquid film) 3493, 2958, 1730, 1438, 1264, 1212, 1167, 1103 cm−1; 1H NMR (400 MHz, CDCl3) δ 4.54-4.47 (1H, m, CH-C6), 3.81 (3H, s, CH3-MeO), 3.71 (3H, s, CH3-MeO), 3.22 (1H, d, J = 5.6 Hz, OH-C6), 2.87 (1H, dd, J = 16.5, 4.4 Hz, CH-C5), 2.79 (1H, dd, J = 16.5, 6.1 Hz, CH-C5); 13C NMR (100 MHz, CDCl3) δ 173.5 (C-C4), 170.7 (C-C7), 67.0 (CH-C6), 52.7 (CH3-MeO), 51.8 (CH3-MeO), 38.2 (CH2-C5); HRMS (Cl+, isobutane) calcd for C6H11O5 [M+H]+ 163.0606, found 163.0603 (Δ = −2.1 ppm); LRMS (Cl+, isobutane) m/z (intensity); 163.2 (100%), 131.2 (24%), 103.2 (30%); Anal. calcd for C6H10O5 C 44.45%, H 6.22%, found C 44.27%, H 6.28%.
Chapter 3: Experimental Section

Methyl (3R)-3,4-dihydroxybutanoate.219 (328)

\[\text{O} \quad \text{O} \quad \text{OH} \quad \text{OH} \quad \text{O} \quad \text{OH} \]

\[\text{BH}_3\cdot\text{Me}_2\text{S} (17 \text{ mL}, 0.18 \text{ mol}) \text{ was added dropwise to a stirred solution of } \alpha\text{-hydroxyester} \ 325 \ (28 \text{ g}, 0.18 \text{ mol}) \text{ in THF (336 mL) at rt. After complete addition and cessation of gas evolution, the reaction was stirred for 30 minutes. NaBH}_4 \ (0.66 \text{ g}, 18 \text{ mmol}) \text{ was added to the solution in two equal portions at 0 °C, at an interval of five minutes, and the reaction stirred for 3 hours at rt. The reaction was quenched by the addition of methanol (200 mL) and stirred for 10 minutes. The resulting solution was concentrated \textit{in vacuo} and purified by chromatography (EtOAc) to provide the diol 328 (19 g, 83%) as a clear colourless oil. } R_f = 0.23 \ (\text{EtOAc}); [\alpha]_D^{22} +13.8 \ (c = 0.99, \text{ CHCl}_3) \ [\text{lit. } [\alpha]_D^{20} +13.8 \ (c = 2.27, \text{ CHCl}_3)]^8; \nu_{\text{max}} \ (\text{liquid film}) \ 3379, 2955, 2886, 1720, 1442, 1165, 1034, 864 \ cm^{-1}; ^1\text{H NMR} \ (400 MHz, \text{ CDCl}_3) \ \delta \ 4.16-4.09 \ (1\text{H, m, CH–C}_6), 3.72 \ (3\text{H, s, CH}_3–\text{MeO}), 3.71-3.64 \ (1\text{H, m, CH–C}_7), 3.57-3.48 \ (1\text{H, m, CH–C}_7), 3.40-3.33 \ (1\text{H, m, OH–C}_6), 2.57 \ (1\text{H, dd, } J = 16.5, 8.5 \text{ Hz, CH–C}_5), 2.50 \ (1\text{H, dd, } J = 16.5, 4.1 \text{ Hz, CH–C}_5), 2.46-2.33 \ (1\text{H, m, OH–C}_7); ^13\text{C NMR} \ (100 MHz, \text{ CDCl}_3): \delta \ 173.2 \ (\text{C–C}_4), 68.6 \ (\text{CH–C}_6), 65.8 \ (\text{CH}_2–\text{C}_7), 52.1 \ (\text{CH}_3–\text{MeO}), 37.5 \ (\text{CH}_2–\text{C}_5); \text{HRMS (CI+, isobutane) calcd for C}_5\text{H}_{11}\text{O}_4 [M+H]^+ 135.0657, found 135.0656 (Δ −0.9 ppm); LRMS (CI+, isobutane) m/z \ (intensity); 135.2 \ (82%), 103.2 \ (100%); Anal. calcd for C$_5$H$_{10}$O$_4$ C 44.77%, H 7.51%, found C 44.45%, H 7.51%.

Methyl (3R)-4-[(\textit{tert}-butyldimethylsilyl)oxy]-3-hydroxybutanoate.219 (329a)

\[\text{OH} \quad \text{OH} \quad \text{OTBS} \]

To a stirred solution of the diol 328 (7.59 g, 56.6 mmol) in CH$_2$Cl$_2$ (60 mL) at 0 °C were added sequentially \textit{tert}-butyldimethylsilyl chloride (8.96 g, 59.4 mmol), triethylamine (15.8 mL, 113 mmol) and DMAP (1.38 g, 11.3 mmol). The mixture was stirred for 16 h at rt and then diluted with CH$_2$Cl$_2$ (40 mL). The reaction was quenched by the addition of 1M HCl (120 mL). The mixture was extracted with CH$_2$Cl$_2$ (3 × 75 mL) and the organic phases were combined, washed with brine (100 mL), dried (MgSO$_4$) and concentrated under reduced pressure. The residue was purified by flash column chromatography (pet. ether/EtOAc, 20:1) to provide the silyl ether 329a (11.4 g, 80%) as a colourless oil. $R_f = 0.15$ (pet. ether/EtOAc, 9:1); [\alpha]_D^{23} +11.2 \ (c = 1.01, \text{ CHCl}_3), [\text{lit. } [\alpha]_D^{23} +7.38 \ (c = 1.00, \text{ CH}_2\text{Cl}_2)]^{219}; \nu_{\text{max}} \ (\text{liquid film}) \ 3472, 2932, 2862, 1736, 1250, 1173, 1119, 1065, 833, 779
cm−1; 1H NMR (400 MHz, CDCl3) δ 4.12-4.03 (1H, m, CH-C6) 3.71 (3H, s, CH3-MeO), 3.63 (1H, dd, J = 10.0, 4.8 Hz, CH-C7), 3.57 (1H, dd, J = 10.0, 5.7 Hz, CH-C7), 2.85 (1H, d, J = 4.9 Hz, OH-C6), 2.54 (1H, dd, J = 16.0, 5.2 Hz, CH2-C5), 2.49 (1H, dd, J = 16.0, 7.4 Hz, CH2-C5), 0.89 (9H, s, CH3-tBuSi), 0.06 (6H, s, CH3-MeSi); 13C NMR (100 MHz, CDCl3): δ 172.7 (C-C4), 68.7 (CH-C6), 66.3 (CH2-C7), 51.9 (CH2-MeO), 37.9 (CH2-C5), 26.0 (CH2-tBuSi), 18.4 (C-tBuSi), −5.3 (CH3-MeSi), −5.3 (CH3-MeSi); HRMS (Cl+, isobutane) calcd for C11H25O4Si [M+H]+ 249.1522, found 249.1519 (Δ −1.2 ppm); LRMS (Cl+, isobutane) m/z (intensity) 249.2 (100%). Anal. calcd for C11H24O4Si C 53.19%, H 9.74%, found C 53.03%, H 9.83%.

Methyl (3R)-4-[(tert-butyldimethylsilyl)oxy]-3-(prop-2-en-1-yloxy)butanoate. (330a)

To a solution of the alcohol 329a (5.02 g, 20.1 mmol) and allyl trichloroacetimidate (8.72 g, 40.3 mmol) in pet. ether (25 mL) at rt was added triflic anhydride (4 drops). After stirring for 5 days the mixture was filtered, concentrated and purified directly by chromatography (pet. ether/EtOAc, 97.5:2.5) to provide the allyl ether 330a (5.53 g, 95%) as a pale yellow oil. Rf = 0.33 (pet. ether/EtOAc, 9:1); [α]D 23 +11.2 (c = 1.01, CHCl3); νmax. (liquid film) 2932, 2862, 1744, 1250, 1080, 1003, 779, 671 cm−1; 1H NMR (400 MHz, CDCl3) δ 5.88 (1H, ddt, J = 17.1, 10.4, 5.7 Hz, CH2-C1), 5.25 (1H, dq, J = 17.1, 1.5 Hz, CH-C1’ trans), 5.14 (1H, dq, J = 10.4, 1.5 Hz, CH-C1’ cis), 4.14-4.03 (2H, m, CH2-C2), 3.90-3.83 (1H, m, CH-C6), 3.71 (1H, dd, J = 10.4 Hz, 9.5 Hz, CH-C7), 3.68 (3H, s, CH3-MeO), 3.54 (1H, dd, J = 10.4 Hz, 6.1 Hz, CH-C7), 2.61 (1H, dd, J = 15.6, 4.8 Hz, CH-C5), 2.48 (1H, dd, J = 15.6, 7.8 Hz, CH-C5), 0.89 (9H, s, CH3-tBuSi), 0.05 (6H, s, CH3-MeSi); 13C NMR (100 MHz, CDCl3) δ 172.3 (C-C4), 135.2 (CH-C1), 117.0 (CH2-C1’), 76.5 (CH-C6), 71.6 (CH2-C2), 64.8 (CH2-C7), 51.7 (CH2-MeO), 37.5 (CH2-C5), 26.0 (CH2-tBuSi), 18.4 (C-tBuSi), −5.3 (CH3-MeSi), −5.3 (CH3-MeSi); Anal. calcd for C14H26O4Si C 58.29%, H 9.78%, found C 58.19%, H 9.71%.
(3R)-4-[(tert-Butyldimethylsilyl)oxy]-3-(prop-2-en-1-yloxy)butanoic acid. (331a)

To a stirred solution of the ester 330a (26.8 g, 92.9 mmol) in methanol (500 mL) at rt was added a 1 M aqueous solution of KOH (112 ml, 112 mmol). The solution was stirred for 5 h at rt and concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (300 mL) and adjusted to pH 2 with 1 M aqueous HCl. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (2 × 250 mL). The organic phases were combined, dried (MgSO₄) and concentrated. The residue was purified by chromatography (pet. ether/EtOAc, 4:1) to provide the desired carboxylic acid 331a (19.6 g, 77%) as a pale yellow oil. Rₖ = 0.27 (pet. ether/EtOAc, 1:1); [α]D₂⁰ +20.4 (c = 1.02, CHCl₃); νmax (liquid film) 3086, 2862, 1748, 1713, 1466, 1257, 1080, 833, 772 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 11.02 (1H, br s, CO₂H), 5.89 (1H, ddt, J = 17.2, 10.4, 5.7 Hz, CH-C1), 5.27 (1H, qd, J = 17.2, 1.8 Hz, CH-C1′trans), 5.17 (1H, qd, J = 10.4, 1.8 Hz, CH-C1′cis), 4.17-4.06 (2H, m, CH₂-C2), 3.89-3.82 (1H, m, CH-C6), 3.73 (1H, dd, J = 10.4, 5.0 Hz, CH-C7), 3.58 (1H, dd, J = 10.4, 6.0 Hz, CH-C7), 3.68 (1H, dd, J = 15.9, 5.0 Hz, CH-C5), 2.55 (1H, dd, J = 15.9, 7.4 Hz, CH-C5), 0.89 (9H, s, CH₃-BuSi), 0.06 (6H, s, CH₃-MeSi); ¹³C NMR (100 MHz, CDCl₃) δ 176.6 (C-C4), 134.8 (CH-C1), 117.4 (CH₂-C1′), 76.2 (CH₂-C6), 71.6 (CH₂-C2), 64.7 (CH₂-C7), 37.4 (CH₂-C5), 26.0 (CH₃-BuSi), 18.4 (C-BuSi), −5.3 (CH₃-MeSi), −5.3 (CH₃-MeSi); HRMS (Cl+, isobutane) calcd for C₁₃H₂₇O₄Si [M+H]⁺ 275.1678, found 275.1681 (Δ +0.7 ppm); LRMS (Cl+, isobutane) m/z (intensity) 275.3 (6%), 143.2 (100%). Anal. calcd for C₁₃H₂₇O₄Si C 56.90%, H 9.55%, found C 57.03%, H 9.64%.
Diazomethane (138)

Note - Diazomethane was generated from Diazald® within a Sigma Aldrich Daizald kit with fire-polished Clear-Seal® joints. The kit was inspected for cracks and/or chips prior to each use. Each distillation was conducted behind a blast shield.

Solid KOH (13.5 g, 241 mmol) was dissolved in water (52 mL) to which was added Et₂O (67 mL) and 2-ethoxyethanol (67 mL). The flask was warmed to 70 °C in a water bath and a solution of Diazald (17.2 g, 80.2 mmol) in Et₂O (134 mL) was added dropwise over 30 minutes to the basic solution. The ethereal solution of diazomethane was distilled into a conical flask pre-chilled in an ice-bath. Upon completion of the diazomethane distillation, the solution was stored at 0 °C under an argon atmosphere until required.

(4R)-5-[(tert-Butyldimethylsilyl)oxy]-1-diazo-4-(prop-2-en-1-yloxy)pentan-2-one. (326a)

The reaction sequence was performed in duplicate and material was combined for work-up and purification. To a stirred solution of the carboxylic acid 331a (2.5 g, 9.1 mmol) in ether (90 mL), at rt, was added triethylamine (1.3 ml, 9.1 mmol) and isobutylchloroformate (1.3 ml, 9.6 mmol). The reaction mixture was stirred vigorously for 2 h then filtered, to remove precipitates, and added to a freshly distilled ethereal solution of diazomethane (91.1 mmol) at 0 °C. The resultant solution was allowed to stir for 16 h at rt and quenched by the addition of acetic acid (4 mL). The solution was added carefully to a solution of saturated aqueous NaHCO₃ (200 mL) and the ether layer isolated. The aqueous phase was back-extracted with ether (100 mL) and the organic phases were combined, dried (MgSO₄) and concentrated. The residue purified by chromatography (pet. ether/EtOAc, 20:1 to 9:1) to provide the diazo ketone 326a (4.7 g, 86%); [α]₂⁵D +39.6 (c = 1.02, CHCl₃); νₘₐₓ (liquid film) 2955, 2930, 2857, 2101, 1640, 1362, 1346, 1111, 1091, 833, 814, 775 cm⁻¹; ¹H NMR(400 MHz, CDCl₃) δ 5.88 (1H, ddt, J = 17.2, 10.4, 5.7 Hz, CH-C1), 5.34 (1H, br s, CH-C3), 5.25 (1H, dq, J = 17.2, 1.4 Hz, CH-
C1' trans), 5.15 (1H, dq, J = 10.4, 1.4 Hz, CH-C1' cis), 4.12 (1H, ddt, J = 12.6, 5.7, 1.4 Hz, CH-C2), 4.06 (1H, ddt, J = 12.6, 5.7, 1.4 Hz, CH-C2), 3.92-3.84 (1H, m, CH-C6), 3.68 (1H, dd, J = 10.5, 5.1 Hz, CH-C7), 3.58 (1H, dd, J = 10.5, 5.5 Hz, CH-C7), 2.63-2.42 (2H, m, CH2-C5), 0.89 (9H, s, CH3-tBuSi), 0.05 (6H, s, CH3-MeSi); 13C NMR (100 MHz, CDCl3) δ 193.3 (C-C4), 135.1 (CH-C1), 117.0 (CH2-C1'), 76.8 (CH-C6), 71.6 (CH2-C2), 64.9 (CH2-C7), 55.5 (CH3-C3), 43.7 (CH2-C5), 26.0 (CH3-tBuSi), 18.4 (C-tBuSi), -5.2 (CH3-MeSi); LRMS (FAB) m/z (intensity) 299.0 (100%). Anal. calcd for C14H26N2O3Si C 56.34%, H 8.78%, N 9.39%; found C 56.29%, H 8.80%, N 9.41%.

(25,5R)-5-[[((tert-Butyldimethylsilyl)oxy)methyl]-2-(prop-2-en-1-yl)tetrahydrofuran-3-one. (327a)

Diazoketone 326a (1.9 g, 6.4 mmol) in THF (160 mL) was added dropwise to a stirred solution of Cu(acac)2 (0.33 g, 1.3 mmol) in THF (160 mL) at reflux. Following complete addition, the solution was heated for a further 40 minutes and cooled to rt. Concentration in vacuo afforded a residue which was purified directly by chromatography (pet. ether/EtOAc, 20:1) to provide the furanone 327a (1.64 g, 95%, dr>20:1) as a colourless oil. Rf = 0.59 (pet. ether/EtOAc, 4:1); [α]21D −70.2 (c = 1.02, CHCl3); νmax (liquid film) 2932, 2862, 2100, 1759, 1466, 1404, 1257, 1087, 833, 779 cm−1; 1H NMR (400 MHz, CDCl3) δ 5.78 (1H, ddt, J = 17.1, 10.2, 6.9 Hz, CH-C1), 5.26-5.02 (2H, m, CH2-C1'), 4.50-4.44 (1H, m, CH-C6), 4.13 (1H, dd, J = 7.2, 4.5 Hz, CH-C3), 3.91 (1H, dd, J = 10.9, 3.0 Hz, CH-C7), 3.66 (1H, dd, J = 10.9, 2.6 Hz, CH-C7), 2.56-2.42 (3H, m, CH-C2 and CH2-C5), 2.32-2.23 (1H, m, CH-C2), 0.86 (9H, s, CH3-tBuSi), 0.05 (3H, s, CH3-MeSi), 0.04 (3H, s, CH3-MeSi); 13C NMR (100 MHz, CDCl3) δ 215.5 (C-C4), 133.3 (CH-C1), 118.1 (CH2-C1'), 79.7 (CH2-C3), 75.8 (CH-C6), 66.8 (CH2-C7), 38.3 (CH2-C2), 36.4 (CH2-C5), 25.8 (CH3-tBuSi), 18.2 (C-tBuSi), -5.5 (CH3-MeSi), -5.6 (CH3-MeSi); HRMS (CI+, isobutane) calcd for C14H28O3Si [M+H]+ 271.1729, found 271.1731 (Δ +0.4 ppm); LRMS (Cl+, isobutane) m/z (intensity) 271.4 (100%). Anal. calcd for C14H26O3Si C 62.18%, H 9.69% found C 62.20%, H 9.81%.

Chapter 3: Experimental Section
(2S,3S,5R)-5-[[tert-Butyldimethylsilyl]oxy]methyl]-2-(prop-2-en-1-yl) tetrahydrofuran-3-ol. (341a)

(2S,3R,5R)-5-[[tert-Butyldimethylsilyl]oxy]methyl]-2-(prop-2-en-1-yl) tetrahydrofuran-3-ol (341b)

Sodium borohydride (365 mg, 9.66 mmol) was added to a solution of ketone 327a (2.5 g, 9.2 mmol) in ethanol (157 mL) at rt. After stirring for 15 minutes the volatiles were removed in vacuo and the residue was partitioned between CH₂Cl₂ and H₂O (100 mL of each). The resulting diastereomeric mixture of the alcohols was extracted with CH₂Cl₂ (2 × 100 mL) and the combined extracts were washed with brine. The organic phase was dried (MgSO₄) and concentrated to give a colourless oil. The crude material was used in the subsequent step without purification and a small sample of the diastereomeric mixture of alcohols (dr 4:1) was purified (pet. ether/EtOAc 95:5 to 9:1) for characterisation purposes.

341a (C20-C21-syn). Rₘ = 0.27 (pet. ether/EtOAc, 20:1); [α]₀²² +6.4 (c = 1.12, CHCl₃); νₘₐₓ (liquid film) 3409, 2953, 2897, 2857, 1254, 1085, 833, 775 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.86 (1H, dddd, J = 17.2, 10.2, 7.2, 6.6 Hz, CH-C¹₈), 5.17 (1H, dq, J = 17.2, 1.6 Hz, CH-C¹₈' trans), 5.10 – 5.06 (1H, m, CH-C¹₈' cis), 4.32 – 4.24 (2H, m, CH-C²₃ and CH-C²₁), 3.89 (1H, td, J = 7.1, 2.8 Hz, CH-C²₀), 3.68 (1H, dd, J = 10.8, 4.3 Hz, CH-C²₄), 3.61 (1H, dd, J = 10.8, 4.1 Hz, CH-C²₄), 2.50 – 2.34 (2H, m, CH₂-C¹₉), 2.08 (1H, ddd, J = 13.4, 8.6, 4.7 Hz, CH-C²₂), 1.99 (1H, ddd, J = 13.4, 7.0, 1.1 Hz, CH-C²₂), 1.57 (1H, d, J = 6.0 Hz, OH-C²₁), 0.89 (9H, s, CH₃-tBuSi), 0.05 (6H, s, CH₃-MeSi); ¹³C NMR (100 MHz, CDCl₃) δ 134.9 (CH-C¹₈), 117.1 (CH₂-C¹₈'), 82.1 (CH-C²₀), 77.6 (CH-C²₃), 73.5 (CH-C²₁), 65.7 (CH₂-C²₄), 37.2 (CH₂-C²₂), 33.9 (CH₂-C²₁₉), 26.1 (CH₃-tBuSi), 18.5 (CH₃-MeSi), -5.2 (CH₃-MeSi); HRMS (CI+, isobutane) calcd for C₁₄H₂₈O₃Si [M+H]⁺ 273.1886, found 273.1887 (Δ +0.3 ppm); LRMS (CI+, isobutane) m/z (intensity) 273.4 (100%). Anal. calcd for C₁₄H₂₈O₃Si C 61.72%, H 10.36% found C 61.32%, H 10.55%.

341b (C20-C21-anti). Rₘ = 0.31 (pet. ether/EtOAc, 20:1); [α]₀²² -40.7 (c = 1.06, CHCl₃); νₘₐₓ (liquid film) 3445, 2953, 2929, 2857, 1472, 1254, 1088, 832, 776 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.81 (1H, ddt, J = 17.2, 10.3, 7.0 Hz, CH-C¹₈), 5.12 – 5.05 (2H, m, CH₂-C¹₈'), 4.29 – 4.24 (1H, m, CH-C²₃), 4.23 (1H, d, J = 10.9 Hz, OH-C²₁), 4.10 – 4.01 (1H, m,
A diastereomeric mixture of the alcohols 341 (1.95 g, 7.16 mmol, dr 70:30) in THF (2 mL) was added dropwise to a stirred suspension of NaH (1.51 g of a 60% dispersion in mineral oil, 37.8 mmol) in THF (143 mL) at 55 °C. Following complete addition, the mixture was heated at reflux for 30 minutes and carbon disulfide (4.30 mL, 71.6 mmol) was added. The mixture was heated for a further 30 minutes and iodomethane (4.52 mL, 71.6 mmol) was added dropwise. Heating was continued for an additional 2 h and the mixture was then cooled to rt and the reaction was quenched by slow addition of H₂O (100 mL). The organic component was extracted with ether (3 × 120 mL) and the extracts were washed with brine (100 mL) then dried (MgSO₄) and concentrated. The residual crude xanthate was used without further purification.

The crude xanthate was dissolved in toluene (243 mL) and 1,1’-azobis(cyclohexanecarbonitrile) (1.38 g, 5.66 mmol) and n-Bu₃SnH (5.80 mL, 21.5 mmol) were added sequentially. The mixture was placed in a pre-heated oil bath at 110 °C and the mixture was heated at reflux for 2 h. The mixture was cooled to rt and concentrated in vacuo. The resultant dark residual material was purified directly by chromatography (pet. ether/EtOAc, 99:1) to give the tetrahydrofuran 343 contaminated with a malodorous impurity. A small amount of material was purified for characterization purposes and the rest was used in the subsequent step without further purification. R_f = 0.46 (pet. ether/EtOAc, 99:1); [α]_D^21 = -10.4 (c = 1.00, CHCl₃); ν_max (liquid film) 2955, 2928, 2857, 1471, 1252, 1084, 833, 775, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃)
δ 5.81 (1H, ddt, J = 17.2, 10.2, 7.0 Hz, CH-C18), 5.12-5.01 (2H, m, CH2-C18'), 4.06 (1H, tt, J = 6.7, 5.0 Hz, CH-C23), 4.01 (1H, ddt, J = 7.7, 6.4, 6.1 Hz, CH-C20), 3.63 (1H, dd, J = 10.5, 4.6 Hz, CH-C24), 3.55 (1H, dd, J = 10.5, 5.4 Hz, CH-C24'), 2.39-2.30 (1H, m, CH-C19), 2.25-2.16 (1H, m, CH-C19), 2.04-1.93 (2H, m, CH-C21 and CH-C22), 1.80-1.68 (1H, m, CH-C21), 1.62-1.51 (1H, m, CH-C21), 0.89 (9H, s, CH3-tBuSi), 0.05 (6H, s, CH3-MeSi); 13C NMR (100 MHz, CDCl3) δ 135.3 (CH-C18), 116.8 (CH2-C18'), 79.4 (CH-C23), 78.9 (CH-C20), 66.1 (CH2-C24), 40.4 (CH2-C19), 31.4 (CH2-C21), 28.2 (CH2-C22), 26.1 (CH3-tBuSi), 18.5 (C-tBuSi), −5.1 (CH3-MeSi); HRMS (CI+, isobutane) calcd for C14H29O2Si [M+H]+ 257.1937 found 257.1934 (Δ −1.00 ppm); LRMS (CI+, isobutane) m/z (intensity) 257.4 (100%); Anal. calcd for C14H28O2Si C 65.57%, H 11.00% found C 65.81%, H 11.05%.

2-[(2R,5R)-5-[[tert-Butyldimethylsilyloxy]methyl]tetrahydrofuran-2-yl]ethan-1-ol. (344)

Ozone was bubbled through a solution of the alkene 343 dissolved in a mixture of methanol and CH2Cl2 (50% v/v, 120 mL) until the solution turned a purple/blue color. The solution was purged with argon for 15 minutes to dissipate the colour, warmed to 0 °C and sodium borohydride (1.60 g, 43.0 mmol) was then added slowly in small portions over 10 minutes. The mixture was then stirred for 1 h and the reaction was quenched by the addition of solid NH4Cl (4 g). The precipitated solids were removed by vacuum filtration and the solvent was evaporated to give an opaque white oil that was then purified by chromatography (pet. ether/EtOAc, 4:1 to 1:1) to afford alcohol 344 (1.36 g, 73% over 4 steps) as a colourless oil. Rf = 0.39 (pet. ether/EtOAc, 1/1); [α]D23 −2.9 (c = 0.99, CHCl3); νmax (liquid film) 3440, 2953, 2930, 2857, 1469, 1253, 1079, 834, 775, 668 cm⁻¹; 1H NMR (400 MHz, CDCl3) δ 4.19-4.06 (2H, m, CH-C20 and CH-C23), 3.84-3.76 (2H, m, CH2-C18), 3.59 (2H, d, J = 4.8 Hz, CH2-C24), 2.96 (1H, dd, J = 6.6, 4.3 Hz, OH-C18), 2.11-2.02 (1H, m, CH-C21), 2.02-1.92 (1H, m, CH-C22), 1.79-1.69 (3H, m, CH2-C19 and CH-C22), 1.63-1.53 (1H, m, CH-C21), 0.89 (9H, s, CH3-tBuSi), 0.06 (6H, s, CH3-MeSi); 13C NMR (100 MHz, CDCl3) δ 80.1 (CH-C23), 79.6 (CH-C20), 65.9 (CH2-C24), 62.1 (CH2-C18), 37.4 (CH2-C19), 32.4 (CH2-C21), 27.8 (CH2-C22), 26.1 (CH3-tBuSi), 18.5 (C-tBuSi), −5.2 (CH3-MeSi); HRMS (Cl+, isobutane) calcd for C13H29O3Si [M+H]+ 261.1886 found 261.1883, (Δ −1.20 ppm); LRMS (Cl+, isobutane) m/z (intensity) 261.4 (100%), 203.3 (22%), 129.3 (14%); Anal. calcd for C13H28O3Si C 59.95%, H 10.84% found C 59.99%, H 10.89%.
Chapter 3: Experimental Section

tert-Butyl([(2R,5R)-5-[2-[(tert-butyldiphenylsilyl)oxy]ethyl]tetrahydrofuran-2-yl]methoxy)dimethylsilane. (347)

A solution of alcohol 344 (0.26 g, 1.0 mmol), tert-butyldiphenylsilyl chloride (0.29 mL, 1.1 mmol), Et$_3$N (0.21 mL, 1.5 mmol) and DMAP (25 mg, 0.20 mmol) in CH$_2$Cl$_2$ (10 mL) was stirred for 17 h at rt. The reaction was quenched by the addition of 1 M aqueous HCl (10 mL) and the mixture was extracted with CH$_2$Cl$_2$ (3 × 10 mL). The organic extracts were then dried (MgSO$_4$) and concentrated. Chromatographic purification of the residual material by chromatography (pet. ether/EtOAc, 99:1) afforded the desired silyl ether 347 (466 mg, 92%) as a colourless oil.

R$_f$ = 0.47 (pet. ether/EtOAc, 3:1); [α]$^{21}_D$ −1.9 (c = 0.98, CHCl$_3$); ν_{max} (liquid film) 2955, 2929, 2856, 1471, 1256, 1082, 1006, 835, 775, 736, 699, 613 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.68–7.64 (4H, m, CH-PhSi), 7.44–7.34 (6H, m, CH-PhSi), 4.13–4.06 (1H, m, CH-C$_{20}$), 4.04 (1H, tt, J = 6.9, 5.0 Hz, CH-C$_{23}$), 3.80–3.70 (2H, m, CH$_2$-C$_{18}$), 3.62 (1H, dd, J = 10.5, 5.0 Hz, 1H, CH-C$_{24}$), 3.53 (1H, dd, J = 10.5, 5.0 Hz, CH-C$_{24}$), 2.05–1.82 (3H, m, CH-C$_{21}$, CH-C$_{22}$ and CH-C$_{19}$), 1.76–1.63 (2H, m, CH-C$_{19}$ and CH-C$_{22}$), 1.55–1.45 (1H, m, CH-C$_{21}$), 1.07 (9H, s, CH$_3$-tBuSi), 0.92 (9H, s, CH$_3$-tBuSi), 0.08 (6H, s, CH$_3$-MeSi); 13C NMR (100 MHz, CDCl$_3$) δ 135.7 (CH-PhSi), 134.1 (C-PhSi), 129.7 (CH-PhSi), 127.7 (CH-PhSi), 79.0 (CH-C$_{23}$), 76.8 (CH-C$_{20}$), 66.2 (CH$_2$-C$_{24}$), 61.6 (CH$_2$-C$_{18}$), 38.8 (CH$_2$-C$_{19}$), 32.1 (CH$_2$-C$_{21}$), 28.3 (CH$_2$-C$_{22}$), 27.0 (CH$_3$-tBuSi), 26.1 (CH$_3$-tBuSi), 19.3 (C-^i^BuSi), 18.5 (C-^i^BuSi), −5.1 (CH$_3$-MeSi); HRMS (CI+, isobutane) calcd for C$_{29}$H$_{47}$O$_3$Si$_2$ [M+H]$^+$ 499.3063 found 499.3062 (Δ −0.5 ppm); LRMS (Cl+, isobutane) m/z (intensity) 499.6 (68%), 421.5 (100%).

[(2R,5R)-5-[2-[(tert-Butyldiphenylsilyl)oxy]ethyl]tetrahydrofuran-2-yl]methanol. (348)

To a solution of the bis silyl ether 347 (0.10 g, 0.20 mmol) in a mixture of methanol and CH$_2$Cl$_2$ (2 mL, 50% v/v) at 0 °C was added camphor sulfonic acid (14 mg, 0.06 mmol). The mixture was stirred for 2 h and the reaction was quenched by the addition of triethylamine (0.01 mL). The mixture was concentrated in vacuo and the residual material was purified by chromatography (pet. ether/EtOAc, 3:1) to provide the alcohol.
Alcohol 348 (50 mg, 0.14 mmol) was dissolved in CH$_2$Cl$_2$ (4 mL) and the solution was treated with a single portion of Dess-Martin periodinane (79 mg, 0.19 mmol) for 1 h at rt. The volatiles were removed in vacuo and the resulting residue suspended in ether (5 mL). The precipitates were removed by filtration and the mixture was concentrated. The crude aldehyde 362 was dissolved in an ethereal solution of magnesium bromide, prepared by the dropwise addition of 1,2-dibromoethane (0.10 mL, 1.1 mmol) to magnesium turnings (27 mg, 1.1 mmol) in ether (0.8 mL) at rt. A solution of MeLi (0.35 mL of a 1.6 M solution in THF, 0.56 mmol) was cooled to 0 °C in an ice bath and ethynyltrimethylsilane (0.09 mL, 0.6 mmol) was then added dropwise. The mixture was cooled to −30 °C and a second batch of ethereal magnesium bromide solution (prepared as before) was added and the mixture stirred for 5 minutes. The magnesium-aldehyde complex was added to the solution of the metallated alkyne at −78 °C and the mixture was stirred for an additional 30 minutes. The mixture was allowed to slowly warm to rt over 45 minutes and the reaction was quenched by addition of saturated aqueous NH$_4$Cl solution (7 mL). The organics were extracted with ether (3 × 5 mL), dried (MgSO$_4$) and concentrated. Purification of the residual material by chromatography afforded a mixture (70:30) of the diastereomeric alcohols 367ab (48 mg, 71%) as a colourless liquid.
Diastereomer separation by formation of cobalt hexacarbonyl complexes.

A mixture of propargylic alcohols (0.21 g, 0.44 mmol, dr 1:1) and dicobalt octacarbonyl (0.18 g, 0.52 mmol) in CH₂Cl₂ (5 mL) was allowed to stir for 1.5 h at ambient temperature. The volatiles were removed in vacuo and the resulting brown residue was purified directly by chromatography (pet. ether/EtOAc, 97.5:2.5) to provide separate cobalt hexacarbonyl complexes of the diastereomeric propargylic alcohols. The complexes, thus formed, were dissolved individually in CH₂Cl₂ (5 mL) and treated with NMO (615 mg, 5.25 mmol). After stirring for 1 h at rt the resulting purple mixtures were concentrated and purified directly by chromatography (pet. ether/EtOAc, 3:1) to afford the alcohols 363a (92 mg, 43%) and 363b (87 mg, 42%) as colourless oils.

(1R)-1-[(2R,5R)-5-{2-[tert-Butyldiphenylsilyl]oxyethyl}tetrahydrofuran-2-yl]-3-(trimethylsilyl)prop-2-yn-1-ol. (367a)

Rᶠ = 0.21 (pet. ether/EtOAc, 9:1); [α]₂⁴D −53.7 (c = 2.20, CHCl₃); νmax (liquid film) 3410, 3070, 2955, 2936, 2889, 2862, 1465, 1427, 1389, 1249, 1103, 1080, 845, 698, 609 cm⁻¹;
¹H NMR (400 MHz, CDCl₃) δ 7.69–7.64 (4H, m, CH-PhSi), 7.45–7.35 (6H, m, CH-PhSi), 4.20–4.10 (2H, m, CH-C₂₀ and CH-C₂₄), 4.00 (1H, ap q, J = 6.8 Hz, CH-C₂₃), 3.82–3.71 (2H, m, CH₂-C₁₈), 2.44 (1H, d, J = 3.5 Hz, OH-C₂₄), 2.13–2.00 (2H, m, CH-C₂₁ and CH-C₂₂), 1.90–1.68 (3H, m, CH₂-C₁₉ and CH-C₂₂), 1.60–1.52 (1H, m, CH-C₂₁), 1.05 (9H, s, CH₃-ButSi), 0.17 (9H, s, CH₃-MeSi);
¹³C NMR (100 MHz, CDCl₃) δ 135.7 (CH-PhSi), 134.0 (C-PhSi), 129.8 (CH-PhSi), 127.8 (CH-PhSi), 103.5 (C-C₂₅), 90.7 (C-C₂₆), 81.7 (CH-C₂₃), 77.1 (CH-C₂₀), 66.2 (CH-C₂₄), 61.3 (CH₂-C₁₈), 38.5 (CH₂-C₁₉), 32.1 (CH₂-C₂₁), 28.3 (CH₂-C₂₂), 27.0 (CH₃-ButSi), 19.4 (C-ButSi), 0.0 (CH₃-MeSi); HRMS (Cl⁺, isobutane) calcd for C₂₈H₄₁O₃Si₂ [M+H]⁺ 481.2594, found 481.2592 (Δ −0.4 ppm); LRMS (Cl⁺, isobutane) m/z (intensity) 481.5 (94%), 403.4 (100%).
(1S)-1-[(2R,5R)-5-{2-[[tert-Butyldiphenylsilyl]oxy]ethyl]tetrahydrofuran-2-yl]-3-(trimethylsilyl)prop-2-yn-1-ol. (367b)

\[\text{Rf} = 0.22 \text{ (pet. ether/EtOAc, 9:1); } [\alpha]_{D}^{26} +14.8 \text{ (c = 2.20, CHCl}_3); \nu_{\text{max}} \text{ (liquid film) } 3406, 3075, 2955, 2889, 2862, 1469, 1427, 1388, 1249, 945, 841, 744, 698, 613 \text{ cm}^{-1}; \]
\[^{1}H \text{ NMR (400 MHz, CDCl}_3) \delta 7.70-7.65 \text{ (4H, m, CH-PhSi), 7.45-7.36} \text{ (6H, m, CH-PhSi), 4.41} \text{ (1H, dd, } J = 5.9, 3.3 \text{ Hz, } \text{CH-C} 24) \text{, 4.27 (1H, tt, } J = 7.7, 5.8 \text{ Hz, CH-C20), 4.09} \text{ (1H, td, } J = 7.4, 3.3 \text{ Hz, CH-C23), 3.81-3.72} \text{ (2H, m, CH-C18), 2.34 (1H, dd, } J = 5.9, 1.3 \text{ Hz, OH-C24), 2.12 (1H, dq, } J = 11.7, 5.8 \text{ Hz, CH-C21), 2.04-1.97} \text{ (2H, m, CH-C22), 1.84 (1H, ddt, } J = 13.2, 7.9, 5.7 \text{ Hz, CH-C19), 1.72 (1H, dq, } J = 13.2, 6.6 \text{ Hz, CH-C19), 1.62-1.53} \text{ (1H, m, CH-C21), 1.05 (9H, s, CH}_3\text{-tBuSi), 0.16 (9H, s, CH}_3\text{-MeSi); } ^{13}C \text{ NMR (100 MHz, CDCl}_3) \delta 135.7 \text{ (CH-PhSi), 134.0 (C-PhSi), 134.0 (C-PhSi), 129.7} \text{ (CH-PhSi), 127.8 (CH-PhSi), 103.7 (C-C25), 90.9 (C-C26), 80.7 (CH-C23), 78.3 (CH-C20), 65.1} \text{ (CH-C24), 61.4 (CH}_2\text{-C18), 38.8 (CH}_2\text{-C19), 32.4 (CH}_2\text{-C21), 27.0 (CH}_2\text{-BuSi), 26.7 (CH}_2\text{-C22), 19.3 (C-BuSi), 0.0 (CH}_3\text{-MeSi); HRMS (CI+, isobutane) calcd for } C_{28}H_{41}O_3Si_2 [M+H]^+ 481.2594 \text{ found } 481.2593, (\Delta -0.2 \text{ ppm); LRMS (CI+, isobutane) } m/z (\text{intensity}) 481.5 (93\%), 403.4 (100\%).

To a stirred solution of the TMS protected alkyne 367a (600 mg, 1.25 mmol) in wet methanol (34 mL) was added solid K$_2$CO$_3$ (431 mg, 3.12 mmol). The mixture was stirred for 2 h at rt after which time the volatiles were removed in vacuo and residual material was partitioned between CH$_2$Cl$_2$ (20 mL) and saturated NH$_4$Cl solution (20 mL). The organic phase was isolated and the aqueous phase extracted with further CH$_2$Cl$_2$ (3 × 20 mL). The combined organic extracts were dried (MgSO$_4$) and filtered. Removal of solvent gave a residue which was purified by chromatography (pet. ether/EtOAc, 3:1) to afford the alkyne 378a (499 mg, 98%) as a colourless oil. \[\text{Rf} = 0.26 \text{ (pet. ether/EtOAc, 3:1); } [\alpha]_{D}^{26} -0.73 \text{ (c = 2.15, CHCl}_3); \nu_{\text{max}} \text{ (liquid film) } 3428, 3299, 3064, 2931, 2883, 2860, 1468, 1428, 1389, 1105, 941, 821, 741, 702 \text{ cm}^{-1}; \]
\[^{1}H \text{ NMR (400 MHz, CDCl}_3) \delta 7.69-7.64 \text{ (4H, m, CH-PhSi), 7.46-7.35} \text{ (6H, m, CH-PhSi), 4.21-4.12} \text{ (2H, m, CH-C20 and CH-C24), 4.04} \text{ (1H, ap q, } J = 6.9 \text{ Hz, CH-C23), 3.82-3.71} \text{ (2H, m, CH-C21), 2.48 (1H, br d, } J = 4.2 \text{ Hz).} \]
Hz, OH-C24), 2.42 (1H, d, J = 2.2 Hz, CH-C26), 2.14-2.01 (2H, m, CH-C21 and CH-C22), 1.90-1.68 (3H, m, CH2-C19 and CH-C22), 1.63-1.52 (1H, m, CH-C21), 1.05 (9H, s, CH3-tBuSi); 13C NMR (100 MHz, CDCl3) δ 135.7 (CH-PhSi), 134.0 (C-PhSi), 133.9 (C-PhSi), 129.8 (CH-PhSi), 127.8 (CH-PhSi), 82.1 (C-C25), 81.4 (CH-C23), 77.2 (CH-C20), 73.8 (C-C26), 65.4 (CH-C24), 61.2 (CH2-C18), 38.4 (CH2-C19), 32.1 (CH2-C21), 28.2 (CH2-C22), 27.0 (CH3-tBuSi), 19.3 (C-tBuSi); HRMS (Cl+, isobutane) [M+H]+ calcd for C25H33O3Si 409.2199 found 409.2200 (Δ +0.3 ppm); LRMS (Cl+, isobutane) m/z (intensity) 409.4 (100%), 383.4 (54%), 331.4 (66%), 305.4 (31%), 253.3 (22%).

(1S)-1-[(2R,5R)-5-[2-([(tert-Butyldiphenylsilyl)oxy]ethyl]tetrahydrofuran-2-yl]prop-2-yn-1-ol (378b)

The procedure used to prepare 378a was used to provide 378b in 88% yield. Rp = 0.26 (pet.ether/EtOAc, 3:1); [α]25D +1.0 (c = 1.75, CHCl3); νmax (liquid film) 3401, 3306, 2957, 2931, 2857, 1427, 1085, 823 cm⁻¹; 1H NMR (400 MHz, CDCl3) δ 7.72-7.67 (4H, m, CH-PhSi), 7.48-7.37 (6H, m, CH-PhSi), 4.42 (1H, ddd, J = 6.2, 3.5, 2.3 Hz, CH-C24), 4.35-4.27 (1H, m, CH-C20), 4.10 (1H, td, J = 7.4, 3.5 Hz, CH-C23), 3.84-3.73 (2H, m, CH2-C18), 2.40 (1H, d, J = 2.2 Hz, CH-C26), 2.32 (1H, d, J = 6.2 Hz, OH-C24), 2.17-2.08 (1H, m, CH-C21), 2.07-1.97 (2H, m, CH2-C21 and CH-C22), 1.90-1.81 (1H, m, CH-C19), 1.79-1.70 (1H, m, CH-C19), 1.64-1.53 (1H, m, CH-C22), 1.05 (9H, s, CH3-tBuSi); 13C NMR (100 MHz, CDCl3) δ 135.7 (CH-PhSi), 134.0 (C-PhSi), 134.0 (C-PhSi), 129.7 (CH-PhSi), 127.8 (CH-PhSi), 82.0 (C-C25), 80.6 (CH-C23), 78.1 (CH-C20), 74.2 (C-C26), 64.7 (CH-C24), 61.3 (CH2-C18), 38.7 (CH2-C19), 32.4 (CH2-C21), 27.0 (CH3-tBuSi), 26.9 (CH2-C22), 19.4 (C-tBuSi); HRMS (Cl+, isobutane) calcd for C25H33O3Si [M+H]+ 409.2199 found 409.2201 (Δ +0.4 ppm); LRMS (Cl+, isobutane) m/z (intensity) 409.4 (65%), 383.4 (51%), 351.4 (36%), 331.4 (100%), 305.4 (66%), 253.3 (27%), 227.3 (15%), 199.2 (9%); Anal. calcd for C25H32O3Si C 73.49%, H 7.89% found C 73.38%, H 7.78%.
(2R,5R)-5-{2-[(tert-Butyldiphenylsilyl)oxy]ethyl} tetrahydrofuran-2-carboxylic acid.

A single portion of Dess-Martin periodinane (1.37 g, 3.23 mmol) was added to a solution of alcohol 348 (1.04 g, 2.71 mmol) in CH₂Cl₂ (51 mL) and the mixture stirred for 2 h at rt. The reaction was quenched with saturated aqueous NaHCO₃ (30 mL) and the mixture was extracted with CH₂Cl₂ (2 × 30 mL). The combined organic extracts were dried (MgSO₄) and concentrated. The crude residue was passed through a plug of silica gel (pet. ether/EtOAC, 9:1) and the concentrated solution was used as isolated in the following step.

To a solution of the aldehyde and 2-methyl-2-butene (2.30 mL, 21.7 mmol) in t-BuOH (13.5 mL) was added a prepared solution of NaClO₂ (1.83 g, 16.2 mmol, 80% pure) and NaH₂PO₄.2H₂O (2.76 g, 17.7 mmol) in H₂O (27 mL). The mixture was stirred for 1.5 h at rt, concentrated in vacuo and partitioned between CH₂Cl₂ (30 mL) and H₂O (30 mL). The organic phase was isolated and the aqueous phase was back-extracted with further CH₂Cl₂ (2 × 20 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated to give a clear, colourless oil that was used directly in the following step.

Rᶠ = 0.15 (EtOAc); [α]₂⁰¹⁺¹⁺⁺₁₆.₁ (c = 1.15, CHCl₃); νₘₐₓ (liquid film) 2957, 2957, 2934, 2875, 1734, 1468, 1428, 1267, 736, 704 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.69–7.63 (4H, m, CH‐PhSi), 7.47–7.36 (6H, m, CH‐PhSi), 4.47 (1H, dd, J = 8.0, 6.3 Hz, CH‐C₂₃), 4.38–4.31 (1H, m, CH‐C₂₀), 3.83–3.73 (2H, m, CH₂‐C₁₈), 2.41–2.32 (1H, m, CH‐C₂₂), 2.14–2.03 (2H, m, CH‐C₂₁ and CH‐C₂₂), 1.91–1.83 (1H, m, CH‐C₁₉), 1.75 (1H, td, J = 13.5, 6.0 Hz, CH‐C₁₉), 1.67–1.59 (1H, m, CH‐C₂₁), 1.05 (9H, s, CH₃‐BuSi); ¹³C NMR (125 MHz, CDCl₃) δ 176.5 (C‐C₂₄), 135.7 (CH‐PhSi), 133.8 (C‐PhSi), 133.7 (C‐PhSi), 129.8 (CH‐PhSi), 127.8 (CH‐PhSi), 78.9 (CH‐C₂₀), 76.3 (CH‐C₂₃), 61.0 (CH₂‐C₁₈), 38.2 (CH₂‐C₁₉), 31.6 (CH₂‐C₂₁), 30.1 (CH₂‐C₂₂), 27.0 (CH₃‐BuSi), 19.3 (C‐BuSi); HRMS (Cl⁺, isobutane) calcd for C₂₂H₃₁O₄Si [M+H]⁺ 399.1991 found 399.1995, (Δ +0.9 ppm).
The crude carboxylic acid was dissolved in CH$_2$Cl$_2$ (21 mL) to which was added sequentially DIPEA (1.34 mL, 7.71 mmol), N$_2$O-dimethylhydroxylamine (341 mg, 3.49 mmol) and HBTU (1.51 g, 3.49 mmol) at rt. The mixture was stirred for 18 h and the reaction was quenched with 1 M HCl (15 mL). This mixture was extracted with CH$_2$Cl$_2$ (3 × 20 mL) and the combined organic extracts were dried (MgSO$_4$), filtered and concentrated. Purification of the resultant residue was achieved by chromatography (pet. ether/EtOAc, 2:1) to afford the title Weinreb amide 371 (949 mg, 79% over three steps) as a clear, colourless oil. $R_f = 0.15$ (pet. ether/EtOAc, 1:1); $[\alpha]_{D}^{24}$ −2.2 (c = 1.00, CHCl$_3$); $\nu$$_{\text{max}}$ (liquid film) 2957, 2933, 2875, 1677, 1469, 1428, 1109, 1078, 704 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.68–7.64 (4H, m, CH–PhSi), 7.44–7.34 (6H, m, CH–PhSi), 4.84–4.77 (1H, m, CH–C$_{23}$), 4.35–4.25 (1H, m, CH–C$_{20}$), 3.77 (2H, t, $J = 6.7$ Hz, CH–C$_{18}$), 3.68 (3H, s, CH$_3$–MeO), 3.18 (3H, s, CH$_3$–MeN), 2.24–2.00 (3H, m, CH$_2$–C$_{22}$ and CH–C$_{21}$), 2.00–1.91 (1H, m, CH–C$_{19}$), 1.75 (1H, dq, $J = 13.3$, 6.7 Hz, CH–C$_{19}$), 1.61–1.51 (1H, m, CH–C$_{21}$), 1.04 (9H, s, CH$_3$–tBuSi); 13C NMR (100 MHz, CDCl$_3$) δ 174.1 (C–C$_{24}$), 135.6 (CH–PhSi), 134.0 (C-PhSi), 133.9 (C-PhSi), 129.6 (CH-PhSi), 127.7 (CH-PhSi), 78.2 (CH-C$_{20}$), 74.8 (CH-C$_{23}$), 61.5 (CH$_2$-C$_{18}$), 61.4 (CH$_3$-MeO), 38.5 (CH$_2$-C$_{19}$), 32.4 (CH$_3$-MeN), 31.7 (CH$_2$-C$_{21}$), 29.4 (CH$_2$-C$_{22}$), 26.9 (CH$_3$-tBuSi), 19.2 (C-3BuSi); HRMS (Cl+, isobutane) calcd for C$_{25}$H$_{36}$NO$_4$Si [M+H]$^+$ 442.2413 found 442.2413 (Δ −0.1 ppm); LRMS (Cl+, isobutane) m/z (intensity) 442.5 (72%), 363.4 (100%).

To a solution of n-BuLi (1.1 mL of a 2.5 M soln. in hexanes, 2.8 mmol) in of THF (1 mL) at 0 °C was added dropwise trimethylsilylacetylene (0.45 mL, 3.2 mmol). The reaction mixture was stirred for 30 minutes and transferred to a solution of Weinreb amide 371 (0.95 g, 2.2 mmol) in THF (60 mL) at −78 °C. The mixture was stirred for 1 h then the
reaction was quenched by the addition of 1 M aqueous HCl (10 mL) and the mixture was allowed to warm to rt. The solution was extracted with CH₂Cl₂ (3 × 30 mL), dried (MgSO₄), filtered and concentrated. The crude residue was purified by chromatography (pet. ether/EtOAc, 20:1 to 9:1) to yield the desired ynone 370 (0.88 g, 86%) as a clear, colourless oil. Rf = 0.34 (pet. ether/EtOAc, 9:1); [α]²⁵D +7.8 (c = 1.00, CHCl₃); νmax (liquid film) 2957, 2933, 2875, 1677, 1469, 1428, 1109, 1078, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.65 (4H, m, CH−PhSi), 7.44–7.36 (6H, m, CH−PhSi), 4.47 (1H, dd, J = 8.4, 6.0 Hz, CH-C₂), 4.33 (1H, dq, J = 8.1, 6.3 Hz, CH-C₂), 3.77 (2H, t, J = 6.5 Hz, CH-C₂), 2.33–2.25 (1H, m, CH-C₂), 2.11–2.02 (2H, m, CH-C₂ and CH-C₂), 1.95 (1H, dq, J = 13.3, 6.5 Hz, CH-C₂), 1.74 (1H, dq, J = 13.3, 6.5 Hz, CH-C₂), 1.64–1.55 (1H, m, CH-C₂), 1.04 (9H, s, CH₃-tBuSi), 0.22 (9H, s, CH₃-MeSi); ¹³C NMR (100 MHz, CDCl₃) δ 189.0 (C-C₂), 135.7 (CH-PhSi), 133.9 (C-PhSi), 129.7 (CH-PhSi), 127.8 (CH-PhSi), 101.8 (C-C₂), 100.3 (C-C₂), 83.7 (CH-C₂), 78.9 (CH-C₂), 61.4 (CH₂-C₂), 38.5 (CH₂-C₂), 31.4 (CH₂-C₂), 29.6 (CH₂-C₂), 27.0 (CH₂-tBuSi), 19.3 (C-tBuSi), −0.7 (CH₂-MeSi); HRMS (Cl⁺, isobutane) calcd for C₂₈H₃₉O₃Si₂ [M+H]+ 479.2437 found 479.2434, (Δ −0.8 ppm).

A solution of Weinreb amide 371 (160 mg, 0.36 mmol) in THF (10 mL) was cooled to −78 °C and ethynylmagnesium bromide (1.1 mL, 0.54 mmol) was added dropwise. The mixture was stirred for 2.5 h and the reaction was quenched with 1 M aqueous HCl (5 mL). The mixture was allowed to warm to rt and extracted with CH₂Cl₂ (2 × 10 mL). The combined organic extracts were dried (MgSO₄), filtered and concentrated to afford a residue that was purified by chromatography (pet. ether/EtOAc, 9:1) to provide the desired ynone 372 as a clear, colourless oil (131 mg, 90%). Rf = 0.18 (pet. ether/EtOAc, 9:1); [α]²⁵D +2.8 (c = 1.00, CHCl₃); νmax (liquid film) 3269, 2956, 2932, 2878, 2092, 1677, 1469, 1427, 1109, 1078, 704 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.64 (4H, m, CH−PhSi), 7.45–7.35 (6H, m, CH−PhSi), 4.47 (1H, dd, J = 8.3, 6.1 Hz, CH-C₂), 4.37–4.30 (1H, m, CH-C₂), 3.85–3.71 (2H, m, CH₂-C₂), 3.26 (1H, s, CH-C₂), 2.37–2.24 (1H, m, CH-C₂), 2.13–2.01 (2H, m, CH-C₂ and CH-C₂), 1.94–1.87 (1H, m, CH-C₂), 1.76 (1H, td, J = 13.6, 6.1 Hz, CH-C₂), 1.66–1.55 (1H, m, CH-C₂), 1.08–1.02 (9H, m, CH₃-tBuSi); ¹³C
NMR (125 MHz, CDCl₃) δ 189.0 (C-C₂₄), 135.9 (CH-PhSi), 134.1 (C-PhSi), 130.0 (CH-PhSi), 128.0 (CH-PhSi), 83.8 (CH-C₂₃), 81.9 (CH-C₂₆), 80.1 (C-C₂₅), 79.0 (C-C₂₀), 61.4 (CH₂-C₁₈), 38.5 (CH₂-C₁₉), 31.6 (CH₂-C₂₁), 29.6 (CH₂-C₂₂), 27.2 (CH₃-BuSi), 19.5 (C-BuSi).

(1R)-1-[(2R,5R)-5-[(tert-Butyldiphenylsilyl)oxy]ethyl]tetrahydrofuran-2-yl]-5-methylhex-4-en-2-yn-1-ol (390)

1-Bromo-2-methyl-1-propene (0.25 mL, 2.4 mmol) was added to a suspension of Pd(PPh₃)₄ (4.3 mg, 3.9 μmol) in pyrrolidine (0.70 mL) and the mixture was stirred until homogeneous. The alkyne 378 (32 mg, 0.78 mmol) in pyrrolidine (0.70 mL) was added to the solution and the reaction mixture was warmed to 50 °C in a pre-heated oil bath for 20 h. The mixture was cooled to rt and the reaction was quenched by the addition of saturated NH₄Cl solution (3 mL) and extracted with ether (3 × 3 mL). The organic extracts were combined and dried (MgSO₄). Purification of the residue by chromatography (pet. ether/ether, 1:1) afforded the enyne 390 (27 mg, 75%) of a colourless oil. R_f = 0.15 (pet.ether/ether, 3:1); [α]²¹ D +4.4 (c = 1.20, CHCl₃); ν_max (liquid film) 3414, 2958, 2930, 2858, 1471, 1428, 1389, 1100, 823, 704 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.69–7.64 (4H, m, CH-PhSi), 7.45–7.36 (6H, m, CH-PhSi), 5.27–5.25 (1H, m, CH-C₂₇), 4.34–4.30 (1H, m, CH-C₂₄), 4.19–4.12 (1H, m, CH-C₂₀), 4.03 (1H, ap q, J = 7.1 Hz, CH-C₂₇), 3.81–3.73 (2H, m, CH₂-C₁₈), 2.44 (1H, d, J = 3.7 Hz, OH-C₂₄), 2.13–2.02 (2H, m, CH-C₂₁ and CH-C₂₂), 1.86–1.68 (3H, m, CH₂-C₁₉ and CH-C₂₂), 1.87 (3H, s, CH₃-C₂₉), 1.79 (3H, s, CH₃-C₃₅), 1.61–1.53 (1H, m, CH-C₂₁), 1.04 (9H, s, CH₃-BuSi); ¹³C NMR (125 MHz, CDCl₃) δ 149.6 (C-C₂₈), 135.7 (CH-PhSi), 134.0 (C-PhSi), 127.8 (CH-PhSi), 104.7 (CH-C₂₇), 89.0 (C-C₂₆), 83.8 (C-C₂₅), 81.9 (CH-C₂₃), 77.0 (CH-C₂₀), 66.4 (CH-C₂₄), 61.3 (CH₂-C₁₈), 38.5 (CH₂-C₁₉), 32.2 (CH₂-C₂₁), 28.4 (CH₂-C₂₂), 27.0 (CH₃-BuSi), 24.9 (CH₃-C₂₉), 21.2 (CH₃-C₃₅), 19.4 (C-BuSi); HRMS (Cl+, isobutane) calcd for C₂₉H₃₉O₃Si [M+H]⁺ 463.2668 found 463.2673, (Δ +0.9 ppm); LRMS (Cl+, isobutane) m/z (intensity) 463.7 (17%), 445.3 (100%).
(1R,2E)-1-[(2R,5R)-5-{2-[(tert-Butyldiphenylsilyl)oxy]ethyl}tetrahydrofuran-2-yl]-5-methylhexa-2,4-dien-1-ol. (395)

Lithium aluminium hydride (0.22 mL of a 1 M solution in THF, 0.22 mmol) was added dropwise to a stirred solution of alkyne 390 (50 mg, 0.11 mmol) in THF (2 mL) at 0 °C. The mixture was stirred at 0 °C for 1 h and then at 30 °C for an additional 1 h. The reaction was quenched at 0 °C by the addition of H₂O (1 mL) followed sequentially by 10% aq. NaOH (2 mL) and further H₂O (3 mL). The mixture was diluted with Et₂O (7 mL) and MgSO₄ (200 mg) was added; the mixture was then stirred for 15 minutes. The solids were removed by filtration and washed with further Et₂O. The filtrate was concentrated and the resultant residue was purified by chromatography (pet. ether/Et₂O, 2:1) to yield the diene 395 (35 mg, 70%) as a colourless oil. R_f = 0.21 (pet.ether/Et₂O, 3:1); [α]_D²¹ +3.6 (c = 1.50, CHCl₃); ν_max (liquid film) 3456, 2957, 2928, 2909, 2857, 1471, 1427, 1081, 957, 822, 736 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.70–7.64 (4H, m, CH-PhSi), 7.45–7.35 (6H, m, CH-PhSi), 6.53 (1H, ddd, J = 15.2, 11.0, 0.8 Hz, CH-C₂₆), 5.83 (1H, dd, J = 11.0, 0.8 Hz, CH-C₂₇), 5.46 (1H, dd, J = 15.2, 6.9 Hz, CH-C₂₅), 4.18–4.10 (1H, m, CH-C₂₀), 3.96–3.90 (1H, m, CH-C₂₄), 3.83–3.71 (3H, m, CH₂-C₁₈ and CH-C₂₃), 2.53 (1H, d, J = 2.6 Hz, OH-C₂₄), 2.07–1.99 (1H, m, CH-C₂₁), 1.97–1.88 (1H, m, CH-C₂₂), 1.88–1.80 (1H, m, CH-C₁₉), 1.79 (3H, s, CH₃-C₂₉), 1.77 (3H, s, CH₃-C₃₅), 1.76–1.70 (1H, m, CH-C₁₉), 1.67–1.48 (m, 2H, CH-C₂₁ and CH-C₂₂), 1.07 (9H, s, CH₃-³⁵BuSi); ¹³C NMR (125 MHz, CDCl₃) δ 136.2 (C-C₂₈), 135.8 (CH-PhSi), 134.3 (C-PhSi), 134.2 (C-PhSi), 129.7 (CH-PhSi), 129.3 (CH-C₂₆), 128.8 (CH-C₂₅), 127.8 (CH-PhSi), 124.8 (CH-C₂₇), 82.0 (CH-C₂₃), 76.6 (CH-C₂₀), 75.7 (CH-C₂₄), 61.5 (CH₂-C₁₈), 38.8 (CH₂-C₁₉), 32.4 (CH₂-C₂₁), 28.2 (CH₂-C₂₂), 27.1 (CH₃-³⁵BuSi), 26.1 (CH₂-C₂₉), 19.4 (C-³⁵BuSi), 18.5 (CH₃-C₃₅); HRMS (ESI⁺) calcd for C₂₉H₴₁O₃Si [M]⁺ 464.2747 found 464.2737, (Δ –2.0 ppm).
A solution of alcohol 395 (26 mg, 0.056 mmol), chloromethyl methyl ether (21 µl, 0.28 mmol) and DIPEA (58 µl, 0.34 mmol) in CH₂Cl₂ (2 mL) was heated at 55 °C for 15 h. The mixture was cooled to rt and the reaction was quenched with saturated aqueous NH₄Cl (3 mL) and extracted with CH₂Cl₂ (3 × 4 mL). The combined organic extracts were dried (MgSO₄), filtered, concentrated and the residue was purified by chromatography (pet. ether/Et₂O, 9:1) to afford the desired MOM ether 396 (24 mg, 84%). Rᵣ = 0.36 (pet. ether/Et₂O, 3:1); [α]⁺²⁶ = −35.6 (c = 1.10, CHCl₃); νmax (liquid film) 2957, 2931, 2884, 2857, 2362, 1472, 1428, 1109, 1037, 823, 704 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68–7.64 (4H, m, CH–PhSi), 7.44–7.35 (6H, m, CH–PhSi), 6.45 (1H, dd, J = 15.2, 11.0 Hz, CH–C₂₆), 5.83 (1H, d, J = 11.0 Hz, CH–C₂₇), 5.38 (1H, dd, J = 15.2, 7.6 Hz, CH–C₂₅), 4.72 (1H, d, J = 6.7 Hz, CH–MOM), 4.58 (1H, d, J = 6.7 Hz, CH–MOM), 4.16–4.08 (1H, m, CH–C₂₀), 4.04–3.96 (2H, m, CH–C₂₃ and CH–C₂₄), 3.82–3.70 (2H, m, CH₂–C₁₈), 3.36 (3H, s, CH₃–MOM), 1.99 (1H, tdd, J = 8.3, 5.7, 3.2 Hz, CH–C₂₁), 1.94–1.86 (2H, m, CH–C₁₉ and CH–C₂₂), 1.78 (3H, s, CH₃–C₃₅), 1.76 (3H, s, CH₃–C₂₉), 1.74–1.62 (2H, m, CH–C₁₉ and CH–C₂₂), 1.54–1.45 (1H, m, CH–C₂₁), 1.04 (9H, s, CH₃–'BuSi); ¹³C NMR (125 MHz, CDCl₃) δ 136.8 (C–C₂₈), 135.9 (C–PhSi), 134.3 (C–PhSi), 131.2 (C–C₂₆), 129.9 (C–PhSi), 127.9 (C–PhSi), 126.8 (C–C₂₅), 124.8 (C–C₂₇), 93.9 (CH₂–MOM), 80.8 (CH–C₂₃), 79.4 (C–C₂₄), 77.0 (C–C₂₀), 61.8 (CH₂–C₁₈), 55.6 (CH–MOM), 38.9 (CH₂–C₁₉), 32.4 (CH₂–C₂₁), 28.7 (CH₂–C₂₂), 27.2 (CH₃–'BuSi), 26.4 (CH₂–C₂₉), 19.5 (C–'BuSi), 18.7 (CH₃–C₃₅).
To a stirred solution of silyl ether 396 (24 mg, 47 µmol) in THF (1 mL) was added TBAF (52 µl of a 1 M soln. in THF, 52 µmol). The mixture was stirred for 4 h at rt and the reaction was quenched with saturated aqueous NH₄Cl (2 mL). The reaction mixture was extracted with Et₂O (3 × 5 mL). The combined extracts were washed with saturated aqueous NaHCO₃ (5 mL) and brine (5 mL), dried (MgSO₄) and concentrated. Purification of the residue by chromatography (pet. ether/Et₂O, 1:3) provided alcohol 397 (12 mg, 99%) as a pale yellow oil. R₂ = 0.22 (pet. ether/Et₂O, 1:2); [α]D²⁶ − 47.0 (c = 1.20, CHCl₃); νmax (liquid film) 3426, 2917, 2882, 2853, 1035 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.45 (1H, dd, J = 15.2, 11.0 Hz, CH-C₂₆), 5.82 (1H, dd, J = 11.0, 0.7 Hz, CH-C₂₇), 5.37 (1H, dd, J = 15.2, 8.0 Hz, CH-C₂₅), 4.72 (1H, d, J = 6.7 Hz, CH-MOM), 4.57 (1H, d, J = 6.7 Hz, CH-MOM), 4.16 (1H, dq, J = 8.3, 6.1 Hz, CH-C₂₀), 4.07 (1H, dd, J = 14.2, 6.5 Hz, CH-C₂₃), 4.02 (1H, dd, J = 14.2, 8.0 Hz, CH-C₂₄), 3.81-3.75 (2H, m, CH-C₁₈), 3.39 (3H, s, CH₃-MOM), 2.85 (1H, br s, OH-C₁₈), 2.09-2.01 (1H, m, CH-C₂₁), 1.97-1.88 (1H, m, CH-C₂₂), 1.80-1.65 (3H, m, CH₂-C₁₉ and CH₂-C₂₂), 1.78 (3H, s, CH₃-C₃₅), 1.76 (3H, s, CH₃-C₂₉), 1.56 (1H, ddt, J = 11.9, 9.9, 8.2 Hz, CH-C₂₁); ¹³C NMR (100 MHz, CDCl₃) δ 137.1 (C-C₂₈), 131.4 (CH-C₂₆), 126.5 (CH-C₂₅), 124.7 (CH-C₂₇), 94.0 (CH₂-MOM), 81.4 (CH-23), 79.9 (CH-C₂₀), 79.3 (CH-C₂₄), 62.1 (CH₂-C₁₈), 55.7 (CH₂-MOM), 37.7 (CH₂-C₁₉), 32.6 (CH₂-C₂₁), 28.4 (CH₂-C₂₂), 26.3 (CH₃-C₂₉), 18.7 (CH₃-C₃₅).

Dess-Martin Periodinane (45 mg, 89 µmol) was added in one portion to a stirred solution of alcohol 397 (24 mg, 0.11 mmol) in CH₂Cl₂ (1.5 mL) and stirred for 1 h at rt. The
reaction was quenched by addition of saturated aqueous NaHCO₃ (2 mL) and the mixture was extracted with Et₂O (3 × 2 mL). The combined organic extracts were dried (MgSO₄), and concentrated to give a residue that was purified by chromatography (pet. ether/Et₂O, 1:2) affording the title acetaldehyde 398 as a colourless, opaque oil (19 mg, 80%). Rf = 0.29 (pet. ether/Et₂O, 1:2); \(\nu_{\text{max}} \) (liquid film) 2916, 2887, 2848, 1725, 1442, 1378, 1149, 1098, 1032 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl₃) \(\delta \) 9.81 (1H, t, \(J = 2.2 \) Hz, CH-C18), 6.46 (1H, dd, \(J = 15.2, 11.0 \) Hz, CH-C26), 5.83 (1H, dd, \(J = 11.0, 0.7 \) Hz, CH-C27), 5.37 (1H, dd, \(J = 15.2, 8.2 \) Hz, CH-C25), 4.73 (1H, d, \(J = 6.7 \) Hz, CH-MOM), 4.58 (1H, d, \(J = 6.7 \) Hz, CH-MOM), 4.41 (1H, ddt, \(J = 8.4, 6.9, 5.7 \) Hz, CH-C20), 4.08 (1H, dd, \(J = 14.1, 6.8 \) Hz, CH-C23), 4.05-3.99 (1H, m, CH-C24), 3.39 (3H, s, CH₃-MOM), 2.72 (1H, ddd, \(J = 16.4, 6.9, 1.9 \) Hz, CH-C19), 2.57 (1H, ddd, \(J = 16.4, 5.7, 1.9 \) Hz, CH-C19), 2.19-2.10 (1H, m, CH-C21), 2.01-1.92 (1H, m, CH-C22), 1.78 (3H, s, CH₃-C29 or C35), 1.76 (3H, s, CH₃-C29 or C35), 1.76-1.70 (1H, m, CH-C22), 1.55 (1H, ddt, \(J = 12.1, 9.7, 8.4 \) Hz, CH-C21); \(^{13}\)C NMR (100 MHz, CDCl₃) \(\delta \) 201.5 (CH-C1), 137.2 (C-C28), 131.6 (CH-C26), 126.4 (CH-C25), 124.7 (CH-C27), 93.9 (CH₃-MOM), 81.5 (CH-C23), 79.3 (CH-C24), 74.6 (CH-C20), 55.6 (CH₃-MOM), 49.8 (CH₂-C19), 32.5 (CH₂-C21), 28.6 (CH₂-C22), 26.3 (CH₃-C35), 18.7 (CH₃-C35).

\[\text{TBDPSO} \]
\[\text{OH} \]

\[\text{CH} \]

\[\text{TBDPSO} \]
\[\text{OH} \]

\[\text{CH} \]

To a stirred solution of propargylic alcohol 378 (62 mg, 0.15 mmol), Et₃N (42 µl, 0.30 mmol) and DMAP (1.6 mg, 0.26 µmol) in CH₂Cl₂ (2 mL) was added TESCl (33 µl, 0.20 mmol). The mixture was stirred for 1.5 h at rt and the reaction was quenched by the addition aqueous 0.5 M HCl (3 mL). The reaction mixture was extracted with CH₂Cl₂ (3 × 5 mL) and the combined organic extracts were washed with brine (10 mL), dried (MgSO₄) and concentrated. Purification of the residue was achieved by chromatography (pet. ether/EtOAc, 20:1) yielding the desired silyl ether 379 (71 mg, 91%) as a clear, colourless oil. \(R_f = 0.45 \) (pet. ether/Et₂O, 9:1); [\(\alpha \)]\(^{25}\)₅ \(D \) -9.3 (c = 0.99, CHCl₃); \(\nu_{\text{max}} \) (liquid film) 3310, 2956, 2932, 2875, 1472, 1428, 1083, 824, 701 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl₃) \(\delta \) 7.69 - 7.61 (4H, m, CH-PhSi), 7.44 -7.35 (6H, m, CH-PhSi), 4.39 (1H, dd, \(J = 5.8, 2.1 \) Hz, CH-C24), 4.22-4.14 (1H, m, CH-C20), 4.01 (1H, td, \(J = 7.0, 5.8 \) Hz, CH-C23), 3.79-3.70 (2H, m, CH₂-C18), 2.33 (1H, d, \(J = 2.1 \) Hz, CH-C26), 2.10 -2.00 (2H, m, CH-C21 and
CH-C22), 1.99-1.83 (2H, m, CH-C19 and CH-C22), 1.69 (1H, m, CH-C19), 1.54-1.45 (1H, m, CH-C21), 1.04 (9H, s, CH3-1BuSi), 0.96 (9H, t, J = 7.9 Hz, CH3EtSi), 0.64 (6H, q, J = 7.9 Hz, CH2EtSi); 13C NMR (125 MHz, CDCl3) δ 135.9 (CH-PhSi), 134.3 (C-PhSi), 129.9 (CH-PhSi), 127.9 (CH-PhSi), 83.8 (C-C25), 81.5 (CH-C23), 77.6 (CH-C20), 73.4 (CH-C26), 66.1 (CH-C24), 61.7 (CH2-C18), 38.9 (CH2-C19), 32.5 (CH2-C21), 28.1 (CH2-C22), 27.2 (CH3-1BuSi), 19.5 (C-1BuSi), 7.0 (CH3EtSi), 5.1 (CH2EtSi).

{[(1R,2E)-1-[(2R,5R)-5-{2-[(tert-Butyldiphenylsilyl)oxy]ethyl}tetrahydrofuran-2-yl]-3-(tributylstannyl)prop-2-en-1-yl]oxy}triethylsilane. (380)

To a stirred solution of alkyne 379 (30 mg, 57 μmol) in THF (0.5 mL) at 0 °C was added Pd(PPh3)2Cl2 (0.4 mg, 0.6 μmol) and n-Bu3SnH (17 μL, 63 μmol). The reaction was stirred for 15 minutes before direct purification by column chromatography (pet. ether/Et3N, 99:1) to afford vinyl stannane 380 (35 mg, 74%) as a clear, colourless oil. Rf = 0.35 (pet. ether); [α]D24 +0.62 (c = 0.97, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.69–7.63 (4H, m, CH-PhSi), 7.44–7.34 (6H, m, PhSi), 6.21 (1H, dd, J = 19.1, 1.2 Hz, CH-C26), 5.98 (1H, dd, J = 19.1, 5.4 Hz, CH-C25), 4.09-4.00 (2H, m, CH-C20 and CH-C24), 3.90-3.96 (1H, m, CH-C23), 3.75 (2H, t, J = 6.5 Hz, CH2-C18), 1.98-1.90 (1H, m, CH-C21), 1.90-1.80 (2H, m, CH-C19 and CH-C22), 1.73-1.64 (2H, m, CH-C19 and CH-C22), 1.52-1.41 (7H m, CH2-C21 and CH2-1BuSn), 1.35-1.24 (6H, m, CH2-1BuSn), 1.04 (9H, s, CH3-1BuSi), 0.93 (9H, t, J = 7.9 Hz, CH2EtSi), 0.90-0.85 (15H m, CH3-1BuSn and CH3-1BuSn), 0.58 (6H, q, J = 7.9 Hz, CH2EtSi); 13C NMR (125 MHz, CDCl3) δ 147.7 (CH-C25), 135.7 (CH-PhSi), 134.1 (C-PhSi), 134.0 (C-PhSi), 129.6 (CH-PhSi), 129.3 (CH-C26), 127.7 (CH-PhSi), 81.9 (CH-C23), 78.4 (CH-C24), 76.8 (CH-C20), 61.7 (CH-C18), 38.9 (CH2-C19), 32.4 (CH-C21), 29.3 (1BuSn), 27.4 (1BuSn), 27.0 (CH3-1BuSi), 19.3 (C-1BuSi), 13.9 (1BuSn), 9.6 (1BuSn), 7.0 (CH3EtSi), 5.08 (CH2EtSi); HRMS (ESI+, MeOH:H2O) calcd for C43H74O3Si2Sn [M+Na]+ 837.4096, found 837.4091, (Δ +4.7 ppm).
(1R,4E)-1-[(2R,5R)-5-[(tert-Butyldiphenylsilyl)oxy]ethyl]tetrahydrofuran-2-yl]-5-methyl-7-methylidene-1-[(triethylsilyl)oxy]undec-4-en-2-yn-6-ol. (402)

To a stirred solution of vinyl iodide 80rac (30 mg, 0.11 mmol), Pd(PPh$_3$)$_4$ (3.0 mg, 0.024 mmol) Et$_3$N (0.65 mL) and CuI (1.2 mg, 0.049 mmol) in THF (2 mL) was added alkyne 375 (25 mg, 0.049 mmol) in THF (0.5 mL) dropwise. The mixture was stirred at rt for 16 h and the reaction was quenched by the addition of 0.5 M aqueous HCl (2 mL). The organic component was extracted with CH$_2$Cl$_2$ (2 × 5 mL), dried (MgSO$_4$) and concentrated. The resultant brown residue was purified by chromatography (pet. ether/EtOAc, 3:1) to afford the enyne 402 (12 mg, 45%) as a brown oil. R$_f$ = 0.60 (pet. ether/Et$_2$O, 1:1); $\nu$$_{max}$ (liquid film) 3439, 2956, 2931, 2875, 2364, 1461, 1429, 1110, 1085, 739, 704 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 7.68–7.64 (4H, m, CH–PhSi), 7.44–7.35 (6H, m, CH–PhSi), 5.65 (1H, d, J = 0.9 Hz, CH–C$_{27}$), 5.11 (1H, s, CH–C$_{41}$), 4.96 (1H, s, CH–C$_{41}$), 4.59–4.51 (1H, m, CH–C$_{24}$), 4.50 (1H, s, CH–C$_{29}$), 4.16 (1H, td, J = 12.3, 6.2 Hz, CH–C$_{20}$), 4.04 (1H, td, J = 12.9, 6.9 Hz, CH–C$_{23}$), 3.75 (2H, t, J = 6.5 Hz, CH$_2$–C$_{18}$), 2.10–2.01 (2H, m, CH–C$_{21}$ and CH–C$_{22}$), 1.99–1.81 (4H, m, CH–C$_{19}$, CH–C$_{22}$ and CH$_2$–C$_{31}$), 1.75 (3H, s, CH$_3$–C$_{40}$), 1.74–1.64 (1H, m, CH–C$_{19}$), 1.61 (1H, br s, OH–C$_{29}$), 1.50 (1H, dq, J = 11.3, 8.8 Hz, CH–C$_{21}$), 1.44–1.35 (2H, m, CH$_2$–C$_{32}$), 1.36–1.26 (2H, m, CH$_2$–C$_{33}$), 1.04 (9H, s, CH$_3$–BuSi), 0.96 (9H, t, J = 7.9 Hz, CH$_3$–EtSi), 0.89 (3H, t, J = 7.3 Hz, CH$_3$–C$_{34}$), 0.64–0.59 (6H, m, CH$_2$–EtSi); 13C NMR (125 MHz, CDCl$_3$) δ 150.7 (C–C$_{30}$), 149.2 (C–C$_{28}$), 135.9 (CH–PhSi), 135.9 (CH–PhSi), 134.3 (C–PhSi), 134.3 (C–PhSi), 129.9 (CH–PhSi), 129.8 (CH–PhSi), 128.0 (CH–PhSi), 111.4 (CH$_2$–C$_{41}$), 106.8 (CH–C$_{27}$), 93.4 (C–C$_{25}$), 82.6 (C–C$_{26}$), 81.8 (CH–C$_{23}$), 79.3 (CH–C$_{29}$), 77.5 (CH–C$_{20}$), 66.9 (CH–C$_{24}$), 61.8 (CH$_2$–C$_{18}$), 38.9 (CH$_2$–C$_{19}$), 32.5 (CH$_2$–C$_{21}$), 31.5 (CH$_2$–C$_{31}$), 30.4 (CH$_2$–C$_{32}$), 28.3 (CH$_2$–C$_{22}$), 27.2 (CH$_3$–BuSi), 22.9 (CH$_2$–C$_{33}$), 19.5 (C–BuSi), 15.5 (CH$_3$–C$_{40}$), 14.3 (CH$_3$–C$_{34}$), 7.1 (CH$_3$–EtSi), 5.1 (CH$_3$–EtSi); HRMS (FAB+, NOBA, NaI) calcd for C$_{41}$H$_{62}$O$_4$Si$_2$Na [M+Na]$^+$ 697.4085, found 697.4073, (Δ –1.6 ppm).
Chapter 3: Experimental Section

2-Methylidenehexanal. 221 (79)

![Methylidenehexanal structure]

Hexanal (24.0 mL, 20.0 g, 200 mmol), dimethylamine hydrochloride (19.6 g, 240 mmol) and formaldehyde (19.4 g, 240 mmol, 37% w/w soln. in H₂O) were heated together at 55 °C for 16 hours. The mixture was cooled to rt and extracted with Et₂O (3 x 50 mL) and concentrated to afford the desired aldehyde 79 (19.6g, 87%) as a clear, pale yellow oil. R_f = 0.42 (pet. ether/EtOAc, 9:1); ν_max (liquid film) 2957, 2929, 2862, 1696, 1463, 945 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.53 (s, 1H, CH-C₂₉), 6.24 (1H, d, J = 0.5 Hz, CH-C₄₁), 5.98 (1H, t, J = 7.6 Hz, CH₂-C₃₁), 1.45-1.35 (2H, m, CH₂-C₃₂), 1.35-1.23 (2H, m, CH₂-C₃₃), 0.91 (3H, t, J = 7.2 Hz, CH₃-C₃₄); ¹³C NMR (125 MHz, CDCl₃) δ 194.9 (CH-C₂₉), 150.6 (C-C₃₀), 134.0 (CH₂-C₄₁), 30.0 (CH₂-C₃₂), 27.6 (CH₂-C₃₁), 22.4 (CH₂-C₃₃), 13.9 (CH₃-C₃₄); LRMS (Cl+, isobutane) m/z (intensity) 113.2 (100%) 101.2 (20%) 83.2 (10%) 71.1 (18%) 69.1 (9%) 61.0 (5%).

(±)-4-Methylidene-1-(trimethylsilyl)oct-1-yn-3-ol. (rac-80)

Isopropylmagnesium bromide (116 mL of a 2.0 M solution in THF, 0.23 mol) was added dropwise to a stirred solution of trimethylsilylacetylene (24.6 g, 251 mmol) in THF (50 mL) at 0 °C. After complete addition of the Grignard reagent, the mixture was warmed to rt for 2 h before being added to a stirred solution of 2-methylidenehexanal 79 (20.0 g, 179 mmol) in THF, (50 mL) at 0 °C. The mixture was stirred for 30 minutes and then warmed to rt and stirred for a further 2 h. The reaction was quenched with a saturated aqueous solution of NH₄Cl (100 mL). The mixture was extracted with Et₂O (3 x 100 mL) and the organic extracts were combined and dried (Na₂SO₄) then concentrated in vacuo. The residue was purified by chromatography (pet. ether/EtOAc, 100:1 to 50:1) to afford the propargylic alcohol rac-80 (30.2 g, 81%) as a pale yellow oil.
Chapter 3: Experimental Section

(3S)-4-Methylidene-1-(trimethylsilyl)oct-1-yn-3-ol.\(^{28}\) (80)

To a solution of racemic allyl alcohol rac-80 (12.7 g, 60.6 mmol) and (+)-DET (1.55 mL, 9.08 mmol) in CH\(_2\)Cl\(_2\) (454 mL), was added powdered 4 Å molecular sieves (3.8 g). The mixture was cooled to −30 ºC and freshly distilled Ti(Oi-Pr)\(_4\) (1.79 mL, 6.06 mmol) was added. The mixture was stirred for 2 h before addition of TBHP (3.0 mL of a 5.6 M solution in CH\(_2\)Cl\(_2\), 17 mmol). The resulting solution was placed at −20 ºC until \(^1\)H NMR showed > 65% conversion of starting material to product. The reaction was quenched by the addition of aqueous 1 M NaOH (250 mL) and extracted with CH\(_2\)Cl\(_2\) (3 × 250 mL). The combined organic extracts were washed with brine (250 mL), dried (MgSO\(_4\)) and concentrated in vacuo. The residue was purified by flash chromatography (pet. ether/EtOAc, 20:1) to give of enantiopure allyl alcohol 80 (4.51 g, 35%, 98% ee) as a colourless oil. \([\alpha]^{25}_D +3.6 \ (c = 1.01, \ \text{CHCl}_3); \ R_f = 0.54, \ (\text{pet. ether/EtOAc, 4:1}) \; \nu_{\max} \ (\text{liquid film}) \ 2958, 2931, 2173, 1379, 1249, 1041, 1008, 839, 759, 731, 698, 671, 626 \ \text{cm}^{-1}; \ \nu_{\max} ^{1} \ (400 \ \text{MHz, CDCl}_3) \ 5.27 \ (1H, s, \text{CH-}C41), \ 4.94 \ (1H, s, \text{CH-}C41), \ 4.81 \ (1H, d, J = 6.3 \ Hz, \text{CH-}C29), \ 2.19 \ (2H, t, J = 7.6 \ Hz, \text{CH}_2-C31), \ 1.92-1.86 \ (1H, m, \text{OH-}C29), \ 1.54-1.45 \ (2H, m, \text{CH}_2-C32), \ 1.41-1.31 \ (2H, m, \text{CH}_2-C33), \ 0.92 \ (3H, t, J = 7.3 \ Hz, \text{CH}_3-C34), \ 0.18 \ (9H, s, \text{CH}_3-MeSi); \ ^{13} \text{C NMR} \ (100 \ \text{MHz, CDCl}_3) \ 148.2 \ (C-C30), \ 111.5 \ (\text{CH}_2-C41), \ 104.8 \ (C-C27), \ 90.9 \ (C-C28), \ 66.2 \ (C-C29), \ 31.6 \ (\text{CH}_2-C31), \ 30.2 \ (\text{CH}_2-C32), \ 22.6 \ (\text{CH}_2-C33), \ 14.1 \ (\text{CH}_3-C34), \ -0.1 \ (\text{CH}_3-C1 \ TMS); \ LRMS (Cl+, isobutane) \ m/z \ (intensity) \ 211.2 \ (20\%) \ 193.2 \ (100\%), \ 151.2 \ (72\%).

[(3S)-3-[(tert-Butyldimethylsilyl)oxy]-4-methylideneoct-1-yn-1-yl]trimethylsilane.\(^{28}\) (384)

To a solution of alcohol 80 (0.40 g, 1.9 mmol) in CH\(_2\)Cl\(_2\) (27 mL) was added imidazole (0.30 g, 4.4 mmol), DMAP (23 mg, 0.19 mmol) and tert-butyldimethylsilyl chloride (1.3 g, 0.87 mmol) at 0 ºC, the reaction mixture was allowed to warm to rt and stirred for 25 h. The reaction was quenched by the addition of 1 M aqueous HCl (20 mL) and the mixture was extracted with CH\(_2\)Cl\(_2\) (3 × 20 mL). The extracts were combined, washed with brine, dried (MgSO\(_4\)) and concentrated. The resulting residue was purified by
chromatography (pet. ether/Et₂O, 99:1) to give the desired silyl ether 384 (0.61 g, 98%) as a colourless oil. \(R_f = 0.76 \) (pet. ether/ether, 40:1); [\(\alpha \)] \(_{D}^{29} \) = -40.9 (c = 1.05, CHCl₃); \(\nu_{\text{max}} \) (liquid film) 2958, 2929, 2857, 1653, 1464, 1249, 1070, 1029, 834, 775, 759 cm\(^{-1}\); \(^1H \) NMR (500 MHz, CDCl₃) \(\delta \) 5.23 (1H, s, CH\(-\text{C}41\)), 4.87–4.85 (1H, m, CH\(-\text{C}29\)), 4.80 (1H, s, CH\(-\text{C}41\)), 2.14 (2H, dd, \(J = 8.2, 7.2 \) Hz, CH\(-\text{C}31\)), 1.53–1.43 (2H, m, CH\(-\text{C}29\)), 1.39–1.30 (2H, m, CH\(-\text{C}33\)), 0.92 (9H, s, CH\(-\text{tBuSi}\)), 0.91 (3H, t, \(J = 7.3 \) Hz, CH\(-\text{C}34\)), 0.16 (9H, s, CH\(-\text{MeSi}\)), 0.15 (3H, s, CH\(-\text{MeSi}\)), 0.13 (3H, s, CH\(-\text{MeSi}\)); \(^{13}C \) NMR (125 MHz, CDCl₃) \(\delta \) 148.5 (C\(-\text{C}30\)), 110.4 (CH\(-\text{C}41\)), 105.9 (C\(-\text{C}27\)), 89.9 (C\(-\text{C}28\)), 66.6 (CH\(-\text{C}29\)), 31.5 (CH\(-\text{C}31\)), 30.2 (CH\(-\text{C}32\)), 26.0 (CH\(-\text{tBuSi}\)), 22.7 (CH\(-\text{C}33\)), 18.5 (C\(-\text{tBuSi}\)), -0.1 (CH\(-\text{MeSi}\)), -4.2 (CH\(-\text{MeSi}\)), -4.6 (CH\(-\text{MeSi}\)).

tert-Butyldimethyl[[[(3S)-4-methylideneoct-1-yn-3-yl]oxy]silane. 28 (385)

To a solution of the TMS-protected alkyne 384 (892 mg, 2.75 mmol) in wet MeOH (25 mL) was added K\(_2\)CO\(_3\) (950 mg, 6.85 mmol) at rt. The mixture was stirred for 2 h and then concentrated in vacuo. The residue was partitioned between CH\(_2\)Cl\(_2\) (20 mL) and 1\(\text{M} \) aqueous HCl (20 ml) and the organic phase isolated. The aqueous solution was extracted with CH\(_2\)Cl\(_2\) (3 \(\times \) 20 mL) and the combined organic extracts were then dried (MgSO\(_4\)) and concentrated. The resulting crude material was purified by chromatography (pet. ether/EtOAc, 99:1) to provide the alkyne 385 (652 mg, 94%) as a colourless oil. \(R_f = 0.65 \) (pet. ether/EtOAc, 20:1); [\(\alpha \)] \(_{D}^{20} \) = -29.1 (c = 1.02, CHCl₃); \(\nu_{\text{max}} \) (liquid film) 3313, 2958, 2929, 2857, 1646, 1252, 1071, 835, 776 cm\(^{-1}\); \(^1H \) NMR (500 MHz, CDCl₃) \(\delta \) 5.22 (1H, s, CH\(-\text{C}41\)), 4.89–4.87 (1H, m, CH\(-\text{C}29\)), 4.81 (1H, s, CH\(-\text{C}41\)), 2.44 (1H, d, \(J = 2.2 \) Hz, CH\(-\text{C}27\)), 2.23–2.11 (2H, m, CH\(-\text{C}31\)), 1.52–1.42 (2H, m, CH\(-\text{C}32\)), 1.40–1.30 (2H, m, CH\(-\text{C}33\)), 0.92 (3H, t, \(J = 7.2 \) Hz, CH\(-\text{C}34\)), 0.92 (9H, s, CH\(-\text{tBuSi}\)), 0.15 (3H, s, CH\(-\text{MeSi}\)), 0.12 (3H, s, CH\(-\text{MeSi}\)); \(^{13}C \) NMR (125 MHz, CDCl₃) \(\delta \) 148.5 (C\(-\text{C}30\)), 110.4 (CH\(-\text{C}41\)), 84.2 (C\(-\text{C}28\)), 73.0 (CH\(-\text{C}29\)), 66.1 (CH\(-\text{C}29\)), 31.2 (CH\(-\text{C}31\)), 30.1 (CH\(-\text{C}32\)), 25.9 (CH\(-\text{tBu TBS}\)), 22.7 (CH\(-\text{C}33\)), 18.5 (C\(-\text{tBuSi}\)), 14.1 (CH\(-\text{C}34\)), -4.6 (CH\(-\text{MeSi}\)), -5.0 (CH\(-\text{MeSi}\)); HRMS (Cl+, isobutane) calcd for C\(_{15}\)H\(_{29}\)OSi [M+H]\(^{+}\) 253.1987, found 253.1983 (\(\Delta = -0.2 \) ppm); LRMS (Cl+, isobutane) m/z (intensity) 253.3 (100%), 195.2 (63%), 121.2 (64%); Anal. calcd for C\(_{15}\)H\(_{28}\)OSi C 71.36%, H 11.18%, found: C 71.37%, H 11.24%.
(3S)-3-Hydroxy-4-methylideneoctan-2-one. (408)

![Chemical Structure](image)

To a solution of alkyne 80 (1.2 g, 5.7 mmol) in acetone (57 mL), was added in one portion, a predissolved solution of yellow HgO (0.62 g, 2.9 mmol) in 0.75 m aqueous H$_2$SO$_4$ (27 mL). The mixture was warmed to 60 °C for 30 minutes, cooled to rt and the reaction was quenched by the addition of 1 m aqueous HCl (10 mL). The mixture was extracted with CH$_2$Cl$_2$ (3 x 15 mL), dried (MgSO$_4$) and concentrated. Flash chromatography purification of the residue (pet. ether/Et$_2$O, 3:1) provided ketone 408 (0.77 g, 86%) as a clear colourless oil $R_f = 0.32$ (pet. ether/Et$_2$O, 1:1); $[\alpha]_{D}^{26} +340.5$ (c = 1.18, CHCl$_3$); ν_{max}(liquid film) 3457, 2958, 2930, 2864, 1714, 1357, 1182, 1084 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 5.22 (1H, s, CH–C$_{41}$), 5.12 (1H, s, CH–C$_{41}$), 4.59 (1H, d, $J = 4.4$ Hz, CH–C$_{29}$), 3.84 (1H, d, $J = 4.4$ Hz, OH–C$_{29}$), 2.18 (3H, s, CH$_3$–C$_{40}$), 2.15–1.98 (1H, m, CH–C$_{31}$), 1.84–1.74 (1H, m, CH–C$_{31}$), 1.47–1.36 (2H, m, CH$_2$–C$_{32}$), 1.35–1.25 (2H, m, CH$_2$–C$_{33}$), 0.89 (3H, t, $J = 7.3$ Hz, CH$_3$–C$_{34}$); 13C NMR (125 MHz, CDCl$_3$) δ 208.4 (C–C$_{28}$), 146.8 (C–C$_{30}$), 115.9 (CH$_2$–C$_{41}$), 82.7 (CH–C$_{29}$), 30.1 (CH$_2$–C$_{31}$), 29.9 (CH$_2$–C$_{32}$), 24.9 (CH$_3$–C$_{34}$), 22.6 (CH$_2$–C$_{33}$), 14.0 (CH$_3$–C$_{34}$); HRMS (CI+, isobutane) calcd for C$_9$H$_{16}$O$_2$ $[M+H]^+$ 157.1228, found 157.1232 (Δ +2.0 ppm); LRMS (CI+, isobutene) m/z (intensity); 157.3 (100%), 139.2 (42%).

(3S)-4-Methylidene-3-[(triethylsilyl)oxy]octan-2-one. (409)

![Chemical Structure](image)

Chloro triethylsilane (1.2 mL, 7.4 mmol) was added dropwise, at 0 °C, to a solution containing alcohol 408 (0.77 g, 4.9 mmol), DIPEA (1.3 mL, 7.4 mmol) and DMAP (0.60 g, 4.9 mmol) in CH$_2$Cl$_2$ (10 mL). Upon complete addition the solution was warmed to rt and stirred for 90 minutes. The reaction was quenched by addition of H$_2$O (20 mL) and extracted with CH$_2$Cl$_2$ (2 x 20 mL). The combined organic extracts were washed with brine (10 mL), dried (MgSO$_4$) and concentrated. The resultant residue was purified by chromatography (pet. ether/Et$_2$O, 99:1) to provide the title silyl ether 409 (1.3 g, 98%) as a pale yellow oil. $R_f = 0.51$ (pet. eth./Et$_2$O, 20:1); $[\alpha]_{D}^{27} -140.2$ (c = 0.96, CHCl$_3$); ν_{max}(liquid film) 2955, 2938, 2877, 1719, 1237, 1070, 1003, 726 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ...
CDCl$_3$ δ 5.33 (1H, s, CH-C41), 5.06–4.95 (1H, m, CH-C41), 4.38 (1H, s, CH-C329), 2.11 (3H, s, CH$_3$-C40), 2.01–1.97 (1H, m, CH-C31), 1.95–1.87 (1H, m, CH-C31), 1.51–1.24 (4H, m, CH$_2$-C32 and CH$_2$-C33), 0.94 (9H, t, \(J = 7.9 \) Hz, CH$_3$-EtSi), 0.89 (3H, t, \(J = 7.2 \) Hz, CH$_3$-C34), 0.60 (6H, q, \(J = 7.9 \) Hz, CH$_2$-EtSi); 13C NMR (125 MHz, CDCl$_3$) δ 209.5 (C-C28), 146.9 (C-C30), 111.6 (CH$_2$-C41), 82.2 (CH$_2$-C29), 31.4 (CH$_2$-C31), 29.9 (CH$_2$-C32), 23.7 (CH$_3$-C40), 22.6 (CH$_2$-C33), 14.1 (CH$_3$-C34), 6.8 (CH$_3$-EtSi), 4.8 (CH$_2$-EtSi).

Diethyl (3-(trimethylsilyl)prop-2-yn-1-yl)phosphonate.

To a solution of diethyl phosphite (5.7 mL, 44 mmol) in THF (14 mL) was added dropwise NaHMDS (44 mL of a 1 M soln. in THF, 44 mmol) at −10 °C and stirred for 1 h. Propargyl bromide (7.2 mL, 44 mmol) was added dropwise to the solution and the mixture was stirred for a further 1 h. The reaction was quenched by the addition of H$_2$O (50 mL) and the mixture was extracted with Et$_2$O (2 × 50 mL). The combined organic extracts were dried (MgSO$_4$), filtered and concentrated. Purification of the residue by flash chromatography (pet. ether/Et$_2$O, 9:1 to 1:4) provided 414 (7.6 g, 69%) as a pale yellow oil; \(R_f = 0.25 \) (Et$_2$O); \(\nu_{\text{max}} \) (liquid film) 2982, 2961, 2933, 2900, 2179, 1248, 1019, 837, 759, 640 cm$^{-1}$; \(^1\)H NMR (500 MHz, CDCl$_3$) δ 4.23–4.15 (4H, m, CH$_2$-OEt), 2.80 (1H, d, \(J = 22.3 \) Hz, CH$_2$-C27), 1.36 (1H, t, \(J = 7.1 \) Hz, CH$_3$-OEt), 0.16 (9H, s, CH$_3$-MeSi); \(^{13}\)C NMR (125 MHz, CDCl$_3$) δ 96.1 (C-C26), 88.3 (C-C25), 63.2 (CH$_2$-OEt), 63.1 (CH$_2$-OEt), 19.6 (CH$_3$-OEt), 16.5 (CH$_3$-MeSi); HRMS (EI+) calcd for C$_{10}$H$_{21}$O$_3$PSi [M]$^+$ 248.0998, found 248.0998, (Δ −3.3 ppm); LRMS (EI+) m/z (intensity); 248.0 (12%), 233.3 (100%), 205.0 (30%), 177.0 (84%).

Triethyl([[(3E,5S)-4-methyl-6-methylidene-1-(trimethylsilyl)dec-3-en-1-yn-5-yl]oxy])silane.

To a solution of diethyl phosphite (5.7 mL, 44 mmol) in THF (14 mL) was added dropwise NaHMDS (44 mL of a 1 M soln. in THF, 44 mmol) at −10 °C and stirred for 1 h. Propargyl bromide (7.2 mL, 44 mmol) was added dropwise to the solution and the mixture was stirred for a further 1 h. The reaction was quenched by the addition of H$_2$O (50 mL) and the mixture was extracted with Et$_2$O (2 × 50 mL). The combined organic extracts were dried (MgSO$_4$), filtered and concentrated. Purification of the residue by flash chromatography (pet. ether/Et$_2$O, 9:1 to 1:4) provided 414 (7.6 g, 69%) as a pale yellow oil; \(R_f = 0.25 \) (Et$_2$O); \(\nu_{\text{max}} \) (liquid film) 2982, 2961, 2933, 2900, 2179, 1248, 1019, 837, 759, 640 cm$^{-1}$; \(^1\)H NMR (500 MHz, CDCl$_3$) δ 4.23–4.15 (4H, m, CH$_2$-OEt), 2.80 (1H, d, \(J = 22.3 \) Hz, CH$_2$-C27), 1.36 (1H, t, \(J = 7.1 \) Hz, CH$_3$-OEt), 0.16 (9H, s, CH$_3$-MeSi); \(^{13}\)C NMR (125 MHz, CDCl$_3$) δ 96.1 (C-C26), 88.3 (C-C25), 63.2 (CH$_2$-OEt), 63.1 (CH$_2$-OEt), 19.6 (CH$_3$-OEt), 16.5 (CH$_3$-MeSi); HRMS (EI+) calcd for C$_{10}$H$_{21}$O$_3$PSi [M]$^+$ 248.0998, found 248.0998, (Δ −3.3 ppm); LRMS (EI+) m/z (intensity); 248.0 (12%), 233.3 (100%), 205.0 (30%), 177.0 (84%).
addition of H₂O (15 mL). The mixture was warmed to rt and extracted with Et₂O (3 x 15mL). The combined organic extracts were washed with brine (20 mL) and dried (MgSO₄). The solution was filtered, concentrated and the residue was purified by chromatography (pet. ether/Et₂O, 99:1) to provide the title enyne 410 (1.4 g, 82%) as a clear, colourless oil. Rₓ = 0.73 (pet. Ether/Et₂O, 20:1); [α]D²⁷ +2.1 (c = 1.00, CHCl₃); νmax (liquid film) 2956, 2877, 2137, 1458, 1248, 1103, 1073, 839, 725 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.72-5.69 (1H, m, CH-C27), 5.07 (1H, s, CH-C41), 4.87 (1H, s, CH-C41), 4.44 (1H, s, CH-C29), 1.98-1.87 (1H, m, CH-C31), 1.81-1.76 (1H, m, CH-C31), 1.74 (3H, s, CH₂-C40), 1.42-1.34 (2H, m, CH₂-C32), 1.34-1.24 (2H, m, CH₂-C33), 0.93 (9H, t, J = 7.9 Hz, CH₃-EtSi), 0.89 (3H, t, J = 7.2 Hz, CH₃-C34), 0.57 (6H, q, J = 7.9 Hz, CH₂-EtSi), 0.01 (9H, s, CH₃-MeSi); ¹³C NMR (125 MHz, CDCl₃) δ 153.1 (C-C28), 149.3 (C-C30), 110.6 (CH₂-C41), 105.3 (CH-C27), 103.2 (C-C26), 97.8 (C-C25) 79.7 (CH-C29), 29.9 (CH₂-C32), 29.7 (CH₂-C31), 25.6 (CH₂-C33), 15.3 (CH₂-C40), 14.0 (CH₂-C34), 6.8 (CH₂-EtSi), 4.7 (CH₂-EtSi), 0.1 (CH₂-TMS); HRMS (Cl⁺, isobutane) calcd for C₂₁H₄₁O₇I₂ [M+H⁺] 365.2696, found 365.2698, (Δ +0.2 ppm); LRMS (Cl⁺, isobutane) m/z (intensity); 365.4 (25%), 233.3 (9%), 113.2 (32%), 73.1 (100%); Anal. calcd for C₂₁H₄₀O₇I₂ C 69.16%, H 11.05%, found C 68.93%, H 11.12%.

(3E,5S)-4-Methyl-6-methylidenedec-3-en-1-yn-5-ol. (411)

![Structure of 3E,5S)-4-Methyl-6-methylidenedec-3-en-1-yn-5-ol. (411)](image)

To a solution of silyl alkyne 410 (0.31 g, 0.84 mmol) in THF (5 mL) at rt was added TBAF (1.8 mL of a 1 m solution in THF, 1.8 mmol). The mixture was stirred for 30 minutes and the reaction was quenched by the addition of H₂O (5 mL). The mixture was extracted with Et₂O (3 x 5mL), the combined extracts washed with brine (10 mL), dried (MgSO₄), and concentrated. Purification of the residue by chromatography (pet. ether/Et₂O, 20:1 to 9:1) provided the title compound 411 (0.14 g, 91%) as of clear, colourless oil; Rₓ = 0.30 (pet. eth./Et₂O, 3:1); [α]D²⁵ +4.8 (c = 1.02, CHCl₃); νmax (liquid film) 3359, 3310, 2957, 2872, 2860, 2103, 1648, 1024, 904, 633, cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.67-5.65 (1H, m, CH-C27), 5.13 (1H, s, CH-C41), 4.99-4.97 (1H, m, CH-C41), 4.54 (1H, d, J = 3.0 Hz, CH-C29), 3.11 (1H, d, J = 2.2 Hz, CH-C25), 1.98 (1H, dt, J = 15.6, 7.7 Hz, CH-C31), 1.87 (1H, dt, J = 15.6, 7.7 Hz, CH-C31), 1.81 (3H, s, CH₂-C40), 1.67 (1H, m, C₂₉-OH), 1.48-1.37 (2H, m, CH₂-C32), 1.37-1.27 (2H, m, CH₂-C33), 0.90 (3H, t, J = 7.3 Hz, CH₃-C34); ¹³C NMR (125 MHz, CDCl₃) δ 152.8 (C-C28), 148.9 (C-C30), 111.5 (CH₂-C41), 185
105.6 (CH-C27), 81.5 (CH-C25), 81.2 (C-C26), 79.1 (CH-C29), 31.2 (CH₂-C31), 30.2 (CH₂-C32), 22.7 (CH₂-C33), 15.5 (CH₃-C40), 14.1 (CH₃-C34); HRMS (Cl+, isobutane) calcd for C₁₂H₁₉O [M+H]^+ 179.1436, found 179.1434 (Δ −0.2 ppm); LRMS (Cl+, isobutene) m/z (intensity); 179.2 (12%), 161.2 (100%).

Mosher Ester Preparation—General Procedure

To a solution of secondary alcohol (0.012 mmol) dissolved CH₂Cl₂ (1 mL) was added Et₃N (3.0 µL, 0.018 mmol) and a single crystal of DMAP. (S)-MTPA chloride (3.6 mg, 0.014 mmol) was added to the solution and the mixture stirred overnight at rt. The reaction was quenched by the addition of water (1 mL) and extracted with Et₂O (2 × 2 mL). The organic layer was washed sequentially with 1 M HCl (1 mL), NaHCO₃ sat. aq. (1 mL) and brine (1 mL). The solution was dried over MgSO₄, and concentrated. The (R)-MTPA ester was purified by flash chromatography on silica gel and analysed by ¹H-NMR on isolation.

The (S)-MTPA ester was prepared from (R)-MTPA chloride using an identical procedure.
Mosher Ester Analysis of 411

\[\Delta \delta SR (=\delta S - \delta R) \]

<table>
<thead>
<tr>
<th></th>
<th>(\delta S)-ester (PPM)</th>
<th>(\delta R)-ester (ppm)</th>
<th>ppm</th>
<th>Hz (400 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-C25</td>
<td>3.16</td>
<td>3.13</td>
<td>0.03</td>
<td>+12</td>
</tr>
<tr>
<td>CH-C27</td>
<td>5.80</td>
<td>5.81</td>
<td>0.13</td>
<td>+4</td>
</tr>
<tr>
<td>CH\textsubscript{2}-C40</td>
<td>1.84</td>
<td>1.74</td>
<td>0.10</td>
<td>+40</td>
</tr>
<tr>
<td>CH-C41</td>
<td>4.98</td>
<td>5.05</td>
<td>-0.07</td>
<td>-28</td>
</tr>
<tr>
<td>CH-C41</td>
<td>5.01</td>
<td>5.16</td>
<td>-0.15</td>
<td>-60</td>
</tr>
<tr>
<td>CH\textsubscript{2}-C31</td>
<td>1.82</td>
<td>1.91</td>
<td>-0.09</td>
<td>-36</td>
</tr>
<tr>
<td>CH\textsubscript{2}-C32</td>
<td>1.36</td>
<td>1.42</td>
<td>-0.06</td>
<td>-24</td>
</tr>
<tr>
<td>CH\textsubscript{2}-C33</td>
<td>1.25</td>
<td>1.30</td>
<td>-0.05</td>
<td>-20</td>
</tr>
<tr>
<td>CH\textsubscript{2}-C34</td>
<td>0.87</td>
<td>0.89</td>
<td>-0.025</td>
<td>-8</td>
</tr>
</tbody>
</table>

\textbf{(S)-MTPA ester:} \(^1H \) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 7.54-7.45 (2H, m, CH-Ph MTPA), 7.44-7.34 (3H, m, CH-Ph MTPA), 5.80 (1H, s, CH-C27), 5.00-4.97 (1H, m, CH-C41), 5.01 (1H, s, CH-C41), 4.98 (1H, s, CH-C29), 3.54 (3H, s, MeO MTPA), 3.16 (1H, d, \(J = 2.2 \) Hz, CH-C25), 1.84 (3H, s, CH\textsubscript{2}-C40), 1.84-1.79 (2H, m, CH\textsubscript{2}-C31), 1.42-1.30 (2H, m, CH\textsubscript{2}-C32), 1.30-1.17 (2H, m, CH\textsubscript{2}-C33), 0.87 (2H, t, \(J = 7.2 \) Hz, CH\textsubscript{3}-C34).

\textbf{(R)-MTPA ester:} \(^1H \) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \) 7.55-7.45 (2H, m, CH-Ph MTPA), 7.44-7.36 (3H, m, CH-Ph MTPA), 5.81 (1H, s, CH-C27), 5.07-5.04 (1H, m, CH-C41), 5.16 (1H, s, CH-C41), 5.05 (1H, s, CH-C29), 3.54 (3H, s, CH\textsubscript{2}-MeO MTPA), 3.13 (1H, d, \(J = 2.2 \) Hz, CH-C25), 1.93-1.90 (2H, m, CH\textsubscript{2}-C31), 1.74 (3H, s, CH\textsubscript{3}-C40), 1.47-1.35 (2H, m, CH\textsubscript{2}-C32), 1.37-1.18 (2H, m, CH\textsubscript{2}-C33), 0.89 (3H, t, \(J = 7.3 \) Hz, CH\textsubscript{3}-C34).
tert-Butyldimethyl[[(3E,5S)-4-methyl-6-methylidenedec-3-en-1-yn-5-yl]oxy]silane.

(412)

To a solution of allylic alcohol 411 (0.36 g, 2.0 mmol) in DMF (10 mL) was added imidazole (0.27 g, 4.0 mmol) and TBSCI (0.36 g, 2.4 mmol) and the mixture stirred for 36 h at rt. The reaction was quenched by the addition of H₂O (5 mL) and the mixture was extracted with pet. ether (3 x 10 mL). The combined organic extracts were washed sequentially with aqueous 1 M HCl (15 mL) and saturated aqueous NaHCO₃ (15 mL) and dried (MgSO₄). The solution was concentrated and the residue was purified by chromatography (pet. ether to pet. ether/Et₂O, 3:1) to provide the title compound 412 as a clear colourless oil (0.45 g, 77%) and recovered starting material (49 mg, 14%); Rₚ = 0.40 (pet. eth); [α]₂⁸D +8.2 (c = 1.00, CHCl₃); νmax (liquid film) 3315, 2929, 2858, 2109, 1647, 1427, 1252, 1091, 869, 834, 774, 675 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.65-5.63 (1H, m, CH₂-C₂₇), 5.07 (1H, s, CH₂-C₄₁), 4.89 (1H, d, J = 1.2 Hz, CH₂-C₄₁), 4.44 (1H, s, CH₂-C₂₉), 3.08 (1H, d, J = 2.2 Hz, CH₂-C₂₅), 1.97-1.87 (1H, m, CH₂-C₃₁), 1.83-1.76 (1H, m, CH₂-C₃₁), 1.76 (3H, s, CH₃-C₄₀), 1.45-1.35 (2H, m, CH₂-C₃₂), 0.87 (3H, t, J = 7.2 Hz, CH₃-C₃₄), 0.89 (9H, s, CH₃-ᵗBuSi), 0.03 (3H, s, CH₃-MeSi), 0.02 (3H, s, CH₃-MeSi); ¹³C NMR (125 MHz, CDCl₃) δ 153.9 (C-C₂₈), 149.2 (C-C₃₀), 111.1 (CH₂-C₂₇), 104.5 (CH₂-C₂₅), 101.7 (CH₂-C₂₉), 80.2 (CH₂-C₂₅), 80.1 (CH₂-C₂₉), 30.1 (CH₂-C₃₁), 29.9 (CH₂-C₃₂), 25.9 (CH₃-ᵗBuSi), 22.7 (CH₂-C₃₃), 18.4 (CH₃-ᵗBuSi), 15.4 (CH₂-C₄₀), 14.2 (CH₂-C₃₄), −4.9 (CH₃-MeSi), −5.0 (CH₃-MeSi); HRMS (Cl+, isobutane) calcd for C₁₈H₃₃OSi [M+H]+ 293.2300, found 293.2307, (Δ +0.6 ppm); LRMS (Cl+, isobutene) m/z (intensity); 293.4 (100%), 279.4 (41%), 253.3 (58%), 161.2 (46%); Anal. calcd for C₁₈H₃₂OSi C 73.90%, H 11.03%, found C 74.16%, H 11.15%.

(350)

To a suspension of NaH (7.5 mg, 0.18 mmol) in THF (3mL) was added alcohol 344 (24 mg, 0.092 mmol) in THF (0.5 mL). The suspension was stirred for 5 minutes at rt before addition of TBAI (3.3 mg, 0.009 mmol) and PMBCl (16 mL, 0.11 mmol). The mixture was
stirred for 16 hours and the reaction was quenched by the addition of H2O (3 mL). The reaction mixture was extracted with Et2O (3 x 5 mL), washed with brine (10 mL), dried (MgSO4) and concentrated. The crude residue was dissolved in THF (2 mL) and TBAF (0.1 mL of a 1 M solution in THF, 0.1 mmol) was added and the mixture stirred for 30 minutes at rt. The reaction was quenched with H2O (2 mL) and the mixture extracted with Et2O (3 x 2 mL). The combined organic extracts were dried (MgSO4), filtered and concentrated and the crude residue purified by column chromatography (pet. eth/Et2O, 9:1) to afford alcohol 350 (17 mg, 49% over two steps) as a clear, colourless oil. \[\text{RF} = 0.25 \text{ (Et2O); } [\alpha]_{24}^{24} = -21.9 \text{ (c = 0.96, CHCl3); } \nu\text{max (liquid film) 3440, 2937, 2866, 1612, } \]

1512, 1244, 1081, 1031, 818 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl3) \(\delta \) 7.26 (2H, d, \(J = 8.7 \) Hz, CH-PMB Ar), 6.88 (2H, d, \(J = 8.7 \) Hz, CH-PMB Ar), 4.44 (2H, s, CH\(_2\)-PMB alkyl), 4.13–4.03 (2H, m, CH-C\(_{20}\) and CH-C\(_{23}\)), 3.80 (3H, s, CH\(_3\)-PMB alkyl), 3.62 (1H, ddd, \(J = 11.4, 7.1, 3.3 \) Hz, CH-C\(_{24}\)), 3.56 (1H, m, CH-C\(_{18}\)), 3.54 (1H, m, CH-C\(_{18}\)), 3.52–3.44 (1H, m, CH-C\(_{24}\)), 2.10–2.01 (1H, m, CH-C\(_{21}\) and CH-C\(_{22}\)), 1.77 (1H, dtd, \(J = 12.4, 7.0, 5.4 \) Hz, CH-C\(_{19}\)), 1.71–1.51 (2H, m, CH-C\(_{21}\) and CH-C\(_{22}\)); \(^{13}\)C NMR (125 MHz, CDCl3) \(\delta \) 159.3 (C-PMB Ar), 130.8 (C-PMB Ar), 113.9 (CH-PMB Ar), 79.0 (CH-C\(_{23}\)), 76.8 (CH-C\(_{20}\)), 72.8 (CH\(_2\)-PMB alkyl), 67.4 (CH\(_2\)-C\(_{24}\)), 65.2 (CH\(_2\)-C\(_{18}\)), 55.4 (CH\(_3\)-PMB alkyl), 36.0 (CH\(_2\)-C\(_{19}\)), 32.4 (CH\(_2\)-C\(_{21}\)), 27.6 (CH\(_2\)-C\(_{22}\)); HRMS (EI+) calcd for C\(_{15}\)H\(_{21}\)O\(_4\) [M]\(^+\) 266.1518, found 266.1515, (\(\Delta = 0.3 \) ppm).

(2S)-2-[2-[(4-Methoxyphenyl)methoxy]ethyl]oxirane.\(^{25}\) (52)

\(m\)-CPBA (18 g, 0.11 mol) was added portionwise over 15 minutes to a solution of alkene 352 (10 g, 52 mmol) in CH\(_2\)Cl\(_2\) (120 mL) at 0 °C, on warming to rt the mixture was stirred for 14 h. The resultant precipitates were removed by filtration and washed with cold CH\(_2\)Cl\(_2\) (50 mL). The filtrate was concentrated and pet. ether (150 mL) was added to the flask and the mixture stirred for a further 30 minutes at rt. Filtration and concentration yielded a yellow solid that was purified by chromatography (pet. ether/Et\(_2\)O, 9:1 to 4:1) to afford the intermediate racemic epoxide (6.4 g, 59%) as a yellow oil.

To a solution of (S,S)-N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt (II) (0.15 g, 0.25 mmol) in CH\(_2\)Cl\(_2\) (3.1 mL) was added AcOH (28 \(\mu \)L, 0.50 mmol), under an open atmosphere, and the mixture was stirred for 30
minutes at rt. Concentration of the mixture in vacuo afforded a black residue, which was then dried for 20 minutes under high vacuum and dissolved in THF (7 mL). The catalyst solution was added to the concentrated epoxide (5.3 g, 25 mmol) and stirred until uniform mixing was achieved. The mixture was cooled to 0 °C and H2O (0.25 mL, 14 mmol) was added dropwise over 15 minutes, the mixture was then stirred for 72 h at rt and purified directly by chromatography (pet. ether/Et2O, 9:1 to 4:1) to yield the enantiopure epoxide 52 (2.1 g, 39%, ee >90%) as a clear, colourless oil (Rf = 0.32 (pet. ether/Et2O, 1:1); [α]D24 +14.9 (c = 1.02, CHCl3) [lit. [α]D24 +13.9 (c = 1.0, CHCl3)]14; νmax (liquid film) 2998, 2933, 2837, 1611, 1512, 1244, 1086, 1032, 818 cm⁻¹; 1H NMR (500 MHz, CDCl3) δ 7.26 (2H, d, J = 8.6 Hz, CH-PMB Ar), 6.88 (2H, d, J = 8.6 Hz, CH-PMB Ar), 4.46 (2H, s, CH2-PMB alkyl), 3.81 (3H, s, CH3-PMB alkyl), 3.62–3.57 (2H, m, CH2-C18), 3.08–3.04 (1H, m, CH-C20), 2.78 (1H, dd, J = 4.8, 4.1 Hz, CH-C21), 2.52 (1H, dd, J = 4.8, 2.7 Hz, CH-C21), 1.93–1.87 (1H, dd, J = 4.8, 2.7 Hz, CH-C21), 1.77 (1H, m, CH-C19); 13C NMR (125 MHz, CDCl3) δ 159.6 (C-PMB Ar), 130.8 (C-PMB Ar), 129.6 (CH-PMB Ar), 73.1 (CH2-PMB alkyl), 67.1 (CH2-C18), 55.6 (CH3-PMB alkyl), 50.4 (CH-C20), 47.4 (CH2-C21), 33.3 (CH2-C19).

(3R)-1-[(4-Methoxyphenyl)methoxy]hept-6-en-3-ol.25 (353)

Allylmagnesium chloride (6.7 mL of a 2 M solution, 13.4 mmol) was added dropwise, over 10 minutes to a stirred solution of epoxide 52 (1.8 g, 1.9 mmol) in THF (81 mL) at 0 °C. The mixture was stirred for 1 h and the reaction was quenched with saturated aqueous NH4Cl (50 mL). The mixture was extracted with Et2O (3 × 50 mL), washed with brine (75 mL), dried (MgSO4) and concentrated. The resultant residue was purified by column chromatography (pet. ether/Et2O, 9:1 to 3:1) to afford the desired secondary alcohol 353 (1.9 g, 86%) as a clear oil. Rf = 0.19 (pet. ether/Et2O, 1:1); [α]D24 +12.7 (c = 1.01, CHCl3); νmax (liquid film) 2998, 2933, 2837, 1611, 1512, 1244, 1086, 1032, 818 cm⁻¹; 1H NMR (400 MHz, CDCl3) δ 7.25 (2H, d, J = 8.7 Hz, CH-PMB Ar), 6.88 (2H, d, J = 8.7 Hz, CH-PMB Ar), 5.84 (1H, ddt, J = 17.1, 10.2, 6.7 Hz, CH-C23), 5.03 (1H, ddd, J = 17.1, 3.4, 1.6 Hz, CH-C24 trans), 4.96 (1H, ddd, J = 10.2, 3.4, 1.2 Hz, CH-C24 cis), 4.45 (2H, s, CH2-PMB alkyl), 3.85–3.78 (1H, m, CH-C20), 3.80 (3H, s, CH3-PMB alkyl), 3.73–3.67 (1H, m, CH-C18), 3.66–3.59 (1H, m, CH-C18), 2.92 (1H, d, J = 3.2 Hz, OH-C20), 2.26–2.06 (2H, m, CH2-C22), 1.76–1.71 (2H, m, CH2-C19), 1.64–1.46 (2H, m, CH2-C21); 13C NMR (100 MHz, CDCl3) δ 159.4 (C-PMB Ar), 138.8 (CH-C23), 130.2 (C-PMB Ar), 129.5
(CH-PMB Ar), 114.7 (CH-C24), 114.0 (CH-PMB Ar), 73.1 (CH2-PMB alkyl), 71.1 (CH2-C20), 69.1 (CH2-C18), 55.4 (CH2-PMB alkyl), 36.7 (CH2-C21), 36.5 (CH2-C19), 30.1 (CH2-C22); HRMS (EI+) [M]+ calcd for C15H22O3 250.1569, found 250.1574 (Δ +1.1 ppm).

[(2R,5R)-5-[2-[(4-Methoxyphenyl)methoxy]ethyl]tetrahydrofuran-2-yl]methanol. (350)

To a solution of Co(NMP)2 358 (0.43 g, 0.76 mmol)223 in i-PrOH (76 mL) under an O2 atmosphere was added alkenol 349 (1.9 g, 7.6 mmol) in i-PrOH (5 mL) and t-BuOOH. The mixture was heated at 55 °C for 17 h, cooled to rt and MeI (0.47 mL, 7.6 mmol) was added to the mixture. The reaction was quenched by the addition of H2O (50 mL), and the mixture was extracted with CH2Cl2 (4 × 50 mL). The combined organic extracts were dried (MgSO4), concentrated to give a residue that was purified by column chromatography (pet. ether/Et2O, 4:1 to 1:1) to afford tetrahydrofuran 346 (1.3 g, 65%) as a clear oil. The 1H, 13C NMR and optical rotation data matches the previously characterised sample. (2R,5R)-5-[2-[(4-Methoxyphenyl)methoxy]ethyl]tetrahydrofuran-2-carboxylic acid.

Dess-Martin periodinane (0.94 g, 2.2 mmol) was added to a solution of alcohol 350 (0.45 g, 1.7 mmol) of CH2Cl2 (22 mL). The mixture was stirred for 2 h at rt and the reaction was quenched with NaHCO3 (10 mL). The mixture was extracted with Et2O (3 × 30 mL) and the combined layers were dried (MgSO4) and concentrated before filtration through a silica gel pad (pet. ether/Et2O, 1:1) to provide a clear, colourless oil. The product was dissolved in a solution of t-BuOH (8.5 mL) and 2-methyl-2-butene (1.4 mL, 13.6 mmol) to which was added dropwise a solution of NaClO2 (0.92 g, 10.2 mmol) and NaH2PO4·H2O (1.7 g, 11.1 mmol) in H2O (17 mL). The mixture was stirred for 2 h at rt and then the reaction was concentrated in vacuo and partitioned between CH2Cl2 (10 mL) and H2O (10 mL). The organic phase was isolated and the aqueous phase was back-extracted with further CH2Cl2 (3 × 10 mL). The combined organic extracts were dried (MgSO4) and concentrated to provide the intermediate carboxylic acid (0.33 g, 69% over two steps) as a clear, colourless oil. Rf = 0.14 (Et2O); [α]D25 +12.5 (c = 1.02, CHCl3);
ν_{max} \text{ (liquid film)} 2938, 2932, 2870, 1723, 1512, 1245, 1080, 818, 751 \text{ cm}^{-1}; ^1\text{H NMR (500 MHz, CDCl}_3\) δ 7.25 (2H, J = 8.7 Hz, CH-PMB Ar), 6.88 (2H, J = 8.7 Hz, CH-PMB Ar), 4.52-4.47 (1H, m, CH-C23), 4.44 (2H, s, CH2-PMB alkyl), 4.33-4.26 (1H, m, CH-C20), 3.81 (3H, s, CH3-PMB alkyl), 3.60-3.53 (2H, m, CH2-C18), 2.43-2.34 (2H, m, CH-C21 and CH-C22), 2.14-2.04 (2H, m, CH-C21 and CH-C22), 1.93-1.78 (2H, m, CH2-C21), 1.70-1.61 (1H, m, CH-C21); ^13\text{C NMR (125 MHz, CDCl}_3\) δ 174.6 (C-C24), 159.6 (C-PMB Ar), 130.7 (C-PMB Ar), 129.4 (CH-PMB Ar), 114.1 (CH-PMB Ar), 79.2 (CH-C20), 76.6 (CH-C23), 73.0 (CH2-PMB alkyl), 66.9 (CH2-C18), 55.5 (CH2-PMB alkyl), 35.5 (CH2-C19), 31.7 (CH2-C21), 30.0 (CH2-C22); HRMS (EI+, isobutane) calcd for C_{15}H_{20}O_5 [M+H]^+ 280.1311, found 280.1314, (Δ +1.2 ppm).

(2R,5R)-N-Methoxy-5-{2-[(4-methoxyphenyl)methoxy]ethyl}-N-methyltetrahydrofuran-2-carboxamide. (416)

A solution of the carboxylic acid (0.32 g, 1.1 mmol), N,O-dimethyhydroxylamine.HCl (0.21 g, 2.2 mmol), HBTU (0.43 g, 2.2 mmol) and DIPEA (0.84 mL, 4.8 mmol) in CH2Cl2 (13 mL) was stirred for 16 h at rt. The reaction was quenched by the addition of saturated aqueous NH4Cl (10 mL) and the mixture was extracted with CH2Cl2 (2 × 10 mL). The combined extracts were dried (MgSO4), concentrated and the resultant residue was purified by column chromatography (pet. ether/Et2O 1:1 to Et2O) to afford of the Weinreb amide 416 (0.33 g, 88%) as a clear, colourless oil. Rf = 0.27 (Et2O); [α]^{24}_D = −3.63 (c = 1.17, CHCl3); ν_{max} \text{ (liquid film)} 2938, 2857, 1674, 1513, 1247, 1079, 1033, 819 \text{ cm}^{-1}; ^1\text{H NMR (500 MHz, CDCl}_3\) δ 7.25 (2H, J = 8.7 Hz, CH-PMB Ar), 6.88 (2H, J = 8.7 Hz, CH-PMB Ar), 4.85-4.79 (1H, m, CH-C23), 4.43 (1H, s, CH2-PMB alkyl), 4.42 (1H, s, CH2-PMB alkyl), 4.28 (1H, ddd, J = 13.1, 7.3, 5.7 Hz, CH-C20), 3.80 (3H, s, CH3-PMB alkyl), 3.70 (3H, s, CH3-MeO), 3.62-3.53 (2H, m, CH2-C18), 3.19 (3H, s, CH3-MeN), 2.24-2.16 (1H, m, CH-C22), 2.16-2.02 (2H, m, CH-C21 and CH-C22), 1.93 (1H, ddd, J = 12.8, 10.3, 6.4 Hz, CH-C19), 1.82 (1H, dtd, J = 12.8, 7.3, 5.7 Hz, CH-C19), 1.62-1.53 (1H, m, CH-C21); ^13\text{C NMR (125 MHz, CDCl}_3\) δ 173.2 (C-C24), 159.4 (C-PMB Ar), 151.0 (C-PMB Ar), 129.3 (CH-PMB Ar), 114.0 (CH-PMB Ar), 78.4 (CH-C20), 75.1 (CH-C23), 72.9 (CH2-PMB alkyl), 67.7 (CH2-C18), 61.5 (CH3-MeO), 55.5 (CH2-PMB alkyl), 35.9 (CH2-C19), 31.8 (CH3-MeN and CH2-C21), 29.4 (CH2-C22); HRMS (Cl+, isobutane) calcd for C_{17}H_{26}NO_5 [M+H]^+ 324.1811, found 324.1806, (Δ−1.4 ppm); LRMS (Cl+, isobutene) m/z (intensity): 324.3 (17%), 292.2 (16%), 241.2 (16%), 216.2 (10%), 204.2 (20%), 172.2 (28%), 121.1 (100%).
(4E,6S)-6-[(tert-Butyldimethylsilyl)oxy]-1-[(2R,5R)-5-[[4-methoxyphenyl]methoxy]ethyl]tetrahydrofuran-2-yl]-5-methyl-7-methylideneundec-4-en-2-yn-1-one. \(\text{(414)} \)

To a stirred solution of alkyne \(\text{412} \) (0.36 g, 1.2 mmol) in of THF (4 mL) at 0 °C was added dropwise \(n \)-BuLi (0.37 mL of a 2.5 m solution in hexane, 1.2 mmol). The reaction was stirred 30 minutes and transferred to a precooled \(-78 \)^\circ\text{C} solution of Weinreb amide \(\text{416} \) (0.20 g, 0.62 mmol) in of THF (4 mL). The solution was stirred for a further 30 minutes and the reaction was quenched with a saturated aqueous solution of \(\text{NH}_4 \text{Cl} \) (5 mL). The mixture was extracted with \(\text{Et}_2\text{O} \) (2 x 10 mL), the combined organic phases were washed with brine, dried (\(\text{MgSO}_4 \)) and concentrated. The crude residue was purified by chromatography (pet. ether to pet. ether / \(\text{Et}_2\text{O} \), 2:1) to provide ynone \(\text{418} \) as a clear, colourless oil (0.33 g, 95%).

\(R_f = 0.46 \) (pet. ether / \(\text{Et}_2\text{O} \), 2:1); \(\left[\alpha \right]_{25}^{25} +19.2 \) (c = 1.00, \(\text{CHCl}_3 \)); \(\nu_{\max} \) (liquid film) 2954, 2929, 2857, 1664, 1614, 1513, 1247, 1086, 867, 835, 776 cm\(^{-1}\); \(^1\)H NMR (500 MHz, \(\text{CDCl}_3 \)) \(\delta \) 7.25 (2H, d, \(J = 8.7 \) Hz, \(\text{CH}‐\text{PMB Ar} \)), 6.87 (2H, d, \(J = 8.7 \) Hz, \(\text{CH}‐\text{PMB Ar} \)), 5.86 (1H, s, \(\text{CH}‐\text{C}27 \)), 5.08 (1H, s, \(\text{CH}‐\text{C}41 \)), 4.93 (1H, d, \(J = 1.3 \) Hz, \(\text{CH}‐\text{C}41 \)), 4.55–4.49 (2H, m, \(\text{CH}‐23 \) and \(\text{CH}‐\text{C}29 \)), 4.44 (2H, d, \(J = 5.4 \) Hz, \(\text{CH}2‐\text{PMB alkyl} \)), 4.33–4.25 (1H, m, \(\text{CH}‐\text{C}20 \)), 3.80 (3H, s, \(\text{CH}3‐\text{PMB alkyl} \)), 3.63–3.53 (2H, m, \(\text{CH}2‐\text{C}18 \)), 2.35–2.25 (1H, m, \(\text{CH}‐\text{C}22 \)), 2.14–2.03 (2H, m, \(\text{CH}‐\text{C}21 \) and \(\text{CH}‐\text{C}22 \)), 2.00–1.90 (2H, m, \(\text{CH}‐\text{C}19 \) and \(\text{CH}‐\text{C}31 \)), 1.86 (3H, s, \(\text{CH}3‐\text{C}40 \)), 1.68–1.56 (1H, m, \(\text{CH}‐\text{C}21 \)), 1.46–1.36 (2H, m, \(\text{CH}‐\text{C}32 \)), 1.36–1.25 (2H, m, \(\text{CH}‐\text{C}33 \)), 0.91 (9H, s, \(\text{CH}3‐\text{t-BuSi} \)), 0.90 (3H, t, \(J = 7.2 \) Hz, \(\text{CH}3‐\text{C}34 \)), 0.04 (3H, s, \(\text{CH}3‐\text{MeSi} \)), 0.04 (3H, s, \(\text{CH}3‐\text{MeSi} \)); \(^{13}\)C NMR (125 MHz, \(\text{CDCl}_3 \)) \(\delta \) 189.3 (\(\text{C}‐\text{C}24 \)), 161.0 (\(\text{CH}‐\text{PMB Ar} \)), 159.5 (\(\text{CH}2‐\text{PMB alkyl} \)), 148.9 (\(\text{C}‐\text{C}30 \)), 14.1 (\(\text{CH}3‐\text{C}34 \)), \(-4.8 \) (\(\text{CH}3‐\text{MeSi} \)), \(-5.0 \) (\(\text{CH}3‐\text{MeSi} \)); HRMS (Cl+, isobutane) calcd for \(\text{C}_{33}\text{H}_{51}\text{O}_5\text{Si} \) [\(\text{M}+\text{H}\)]\(^+\) 555.3506, found 555.3511, (\(\Delta +0.9 \) ppm); LRMS (Cl+, isobutene) \(m/z \) (intensity); 555.3 (100%).
Dess-Martin periodinane (0.21 g, 0.48 mmol) was added as a single portion to a stirred solution of alcohol 350 (0.10 g, 0.38 mmol) in CH₂Cl₂ (5 mL) at rt. The mixture was stirred for 2 h and the reaction was quenched by the addition of a saturated aqueous NaHCO₃ (5 mL). The mixture was extracted with Et₂O (3 × 5 mL) and the organic extracts were dried (MgSO₄) and concentrated. The residue was purified by chromatography (pet. ether/Et₂O, 1:1) to afford the corresponding aldehyde.

The aldehyde was dissolved in THF (1.5 mL) and cooled to -78 °C. n-BuLi (0.16 mL of a 2.5 M solution in hexanes, 0.40 mmol) was added dropwise to a solution of alkyne 412 (0.12 g, 0.40 mmol) in THF (2 mL) at 0 °C and the mixture was stirred for 15 minutes before cooling to −78 °C. A solution of the aldehyde in THF (1.5 mL) was added dropwise to the alkyne anion and the mixture was stirred for a further 15 minutes before the reaction was quenched by the addition of saturated aqueous NH₄Cl (3 mL). On warming to rt the mixture was extracted with Et₂O (3 × 5mL) and the organic extracts were washed with brine (10 mL), dried (MgSO₄) and concentrated. The residue was purified by chromatography (pet. ether/Et₂O, 2:1) to afford a diastereomeric mixture of propargylic alcohols (0.15 g, 71%, dr C₂₃-C₂₄ anti:syn, 3:2). Partial separation of the isomers by chromatography (pet. ether/Et₂O, 4:1) allowed for isolation of the pure C₂₃,C₂₄-anti diastereomer 417b. Rₛ = 0.25 (pet. ether/Et₂O, 1:1); [α]²⁵_D +13.1 (c=2.05, CHCl₃); νₘₐₓ (liquid film) 3491, 2955, 2929, 2857, 2364, 1613, 1513, 1247, 1080, 871, 835, 775, 732 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.25 (2H, d, J = 8.6 Hz, CH‐PMB Ar), 6.87 (2H, d, J = 8.6 Hz, CH‐PMB Ar), 5.65 (1H, s, CH‐C₂₇), 5.07 (1H, s, CH‐C₄₁), 4.87 (1H, d, J = 1.4 Hz, CH‐C₄₁), 4.61-4.55 (1H, m, CH‐C₂₄), 4.43 (3H, s, CH₃-PMB alkyl and CH‐C₂₉), 4.22 (1H, tt, J = 7.7, 5.5 Hz, CH‐C₂₀), 4.16 (1H, td, J = 7.3, 3.4 Hz, CH‐C₂₃), 3.80 (3H, s, CH₃-PMB alkyl), 3.54 (2H, t, J = 6.5 Hz, CH₂-C₁₈), 2.36 (1H, d, J = 5.4 Hz, OH-C₂₄), 2.15-2.07 (1H, m, CH-C₂₁), 2.07-1.99 (2H, m, CH₂-C₂₂), 1.96-1.83 (2H, m, CH-C₁₉ and CH-C₃₁), 1.81-1.73 (2H, m, CH-C₁₉ and CH-C₃₁), 1.71 (3H, s, CH₃-C₄₀), 1.66-1.53 (1H, m, CH-C₂₁), 1.38 (2H, m, CH₂-C₃₂), 1.34-1.23 (2H, m, CH₂-C₃₃), 0.89 (3H, t, J = 7.2 Hz, CH₃-C₃₄), 0.89 (9H, s, CH₃-¹BuSi), 0.01 (6H, s, CH₃-MeSi); ¹³C NMR
(125 MHz, CDCl$_3$) δ 159.3 (C- PMB Ar), 152.6 (C-C30), 149.2 (C-C28), 130.7 (C-PMB Ar), 129.4 (CH-PMB Ar), 113.9 (CH-PMB Ar), 111.0 (CH$_2$-C41), 104.9 (CH-C27), 90.7 (C-C26), 83.8 (C-C25), 81.0 (CH-C23), 80.1 (CH-C29), 78.4 (CH-C20), 72.8 (CH$_2$-PMB alkyl), 67.4 (CH$_2$-C18), 65.3 (CH-C24), 55.4 (CH$_2$-PMB alkyl), 36.0 (CH$_2$-C19), 32.4 (CH$_2$-C21), 30.1 (CH$_2$-C32), 30.0 (CH$_2$-C31), 26.8 (CH$_2$-PMB alkyl), 22.7 (CH$_2$-C33), 18.4 (CH$_3$-tBuSi), 15.4 (CH$_3$-C40), 14.2 (CH$_3$-C34), −4.9 (CH$_3$-MeSi), −5.0 (CH$_3$-MeSi); HRMS (FAB+, NOBA) calcd for C$_{33}$H$_{53}$O$_5$Si [M+H]$^+$ 557.3662, found 557.3662, (Δ +0.0 ppm).

(15,2E,4E,6S)\text{-}6\text{-}[[\text{tert}-\text{Butyldimethylsilyloxy}]\text{-}1\text{-}[[2R,5R]-5\text{-}[2\text{-}[\text{4-methoxyphenyl}]\text{methoxy}]\text{ethyl}]\text{tetrahydrofuran}-2\text{-}y1]-5\text{-}methyl-7\text{-}methylideneundeca-2,4\text{-}dien-1\text{-}ol. (419b)

To a solution of propargylic alcohol 417b (68 mg, 0.12 mmol) in Et$_2$O (2 mL) at 0 °C was added Red-Al (74 mg of a >65% wt. solution in toluene, 0.24 mmol) and the solution stirred for 45 minutes. The reaction was quenched by addition of saturated aqueous NH$_4$Cl (5 mL) and the mixture was extracted with Et$_2$O (2 × 10 mL). The combined organic extracts were washed with brine (10 mL), dried (MgSO$_4$), filtered and concentrated. The crude residue was purified (pet. ether/Et$_2$O, 1:1) to provide of the desired dienol 419b (59 mg, 88%) as a clear, colourless oil (88%). $R_f = 0.23$ (pet. ether/Et$_2$O, 1:1); [α]2_23 D = −7.3 (c = 1.01, CHCl$_3$); ν_{max} (liquid film) 3432, 2955, 2929, 2857, 1613, 1513, 1247, 1074, 834, 774, 732 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 7.26 (2H, d, $J = 8.7$ Hz, CH-PMB Ar), 6.88 (2H, d, $J = 8.7$ Hz, CH-PMB Ar), 6.52 (1H, ddd, $J = 15.2$, 11.0, 1.2 Hz, CH-C26), 6.07 (1H, d, $J = 11.0$ Hz, CH-C27), 5.59 (1H, dd, $J = 15.2$, 6.6 Hz, CH-C25), 5.10 (1H, s, CH-C41), 4.85 (1H, s, CH-C41), 4.44 (2H, s, CH$_2$-PMB alkyl), 4.40 (1H, s, CH-C29), 4.32-4.39 (1H, m, CH-C24), 4.14 (1H, tdd, $J = 11.4$, 6.8, 4.5 Hz, CH-C20), 4.04-3.98 (1H, m, CH-C23), 3.80 (3H, s, CH$_3$-PMB alkyl), 3.55 (2H, t, $J = 6.5$ Hz, CH$_2$-C18), 2.20 (1H, br s, OH-C24), 2.11-2.02 (1H, m, CH-C21), 1.93-1.83 (4H, m, CH-C19, CH$_2$-C22 and CH-C31), 1.83-1.72 (2H, m, CH-C19 and CH-C31), 1.60 (3H, d, $J = 0.8$ Hz,
CH₃-C40), 1.59-1.50 (1H, m, CH-C21), 1.42-1.34 (2H, m, CH₂-C32), 1.33-1.24 (2H, m, CH₂-C33), 0.89 (9H, s, CH₃-BuSi), 0.88 (3H, t, J = 7.4 Hz, CH₃-C34), 0.02 (3H, s, CH₃-MeSi), 0.01 (3H, s, CH₃-MeSi); ¹³C NMR (125 MHz, CDCl₃) δ 159.3 (C-PMB Ar), 149.7 (C-C30), 139.6 (C-C28), 130.7 (C-PMB Ar), 130.3 (CH-C25), 129.4 (CH-PMB Ar), 128.4 (CH-C26), 124.9 (CH-C27), 113.9 (CH-PMB Ar), 109.9 (CH₂-C41), 81.5 (CH-23), 80.8 (CH-C29), 77.8 (CH-C20), 73.6 (CH-C24), 72.8 (CH₂-PMB alkyl), 67.4 (CH₂-C18), 55.4 (CH₃-PMB alkyl), 36.2 (CH₂-C19), 32.4 (CH₂-C21), 30.9 (CH₂-C31), 30.2 (CH₂-C32), 26.0 (CH₂-BuSi), 25.7 (CH₂-22), 22.7 (CH₂-C33), 18.4 (C-BuSi), 14.2 (CH₂-C34), 12.2 (CH₂-C40), −4.9 (CH₃-MeSi); HRMS (CI+, isobutane) calcd for C₃₃H₅₅O₅Si [M+H]⁺ 559.3819, found 559.3808, (Δ −1.9 ppm).

(2E,4E,6S)-6-[(tert-Butyldimethylsilyl)oxy]-1-[(2R,5R)-5-[(4-methoxyphenyl)methoxy]ethyl]oxolan-2-yl]-5-methyl-7-methylideneundeca-2,4-dien-1-one. (420)

Dienol 419 (0.19 g, 0.34 mmol, dr 1:1) was dissolved in CH₂Cl₂ (6 mL) to which was added Dess-Martin periodinane (0.17 g, 0.40 mmol) and mixture allowed to stir for 1 h at rt. The reaction was quenched with saturated aqueous NaHCO₃ (5 mL) and the mixture was extracted with Et₂O (2 × 10 mL). The combined organic extracts were dried (MgSO₄) and concentrated. Purification of the residue by chromatography (pet. ether/Et₂O, 4:1) yielded the title dienone 420 (0.16 g, 87%) as a clear, colourless oil. Rf = 0.25 (pet. ether/Et₂O, 3:1); [α]D²⁴ +15.1 (c = 0.98, CHCl₃); νmax (liquid film) 2954, 2929, 2857, 1681, 1613, 1585, 1247, 1079, 835, 775, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (1H, dd, J = 15.2, 11.8 Hz, CH-C26), 7.26 (2H, d, J = 8.7 Hz, CH₂-PMB Ar), 6.88 (2H, d, J = 8.7 Hz, CH₂-PMB Ar), 6.52 (1H, d, J = 15.2 Hz, CH-C25), 6.32 (1H, dd, J = 11.8, 0.8 Hz, CH-C27), 5.11 (1H, s, CH-C41), 4.90 (1H, d, J = 1.0 Hz, CH-C41), 4.57-4.50 (1H, m, CH-C23), 4.47 (1H, s, CH₂-C29), 4.45 (2H, s, CH₂-PMB alkyl), 4.44 (2H, s, CH₂-PMB alkyl), 4.23 (1H, ddd, J = 13.1, 7.2, 5.8 Hz, CH-C20), 3.80 (3H, s, CH₃-PMB alkyl), 3.59 (2H, t, J = 6.5 Hz, CH₂-C18), 2.32-2.21 (1H, m, CH-C22), 2.09-1.72 (6H, m, CH₂-C19, CH-C21, CH-C22 and CH₂-C31), 1.76 (3H, d, J = 1.0 Hz, CH₃-C40), 1.66-1.55 (1H, m, CH-
C21), 1.43-1.33 (2H, m, CH2-C32), 1.33-1.23 (2H, m, CH2-C33), 0.90 (9H, s, CH3-tBuSi), 0.87 (3H, t, J = 7.2 Hz, CH3-C34), 0.03 (3H, s, CH3-MeSi), 0.02 (3H, s, CH3-MeSi); 13C NMR (100 MHz, CDCl3) δ 201.6 (C-C24), 159.3 (C-PMB Ar), 151.7 (C-C30), 149.1 (C-C28), 140.0 (CH-C26), 130.7 (C-PMB Ar), 129.4 (CH-PMB Ar), 124.0 (CH-C25), 123.9 (CH-C27), 113.9 (CH-PMB Ar), 111.0 (CH2-C41), 82.7 (CH-C23), 80.9 (CH-C29), 78.4 (CH-C20), 72.9 (CH2-PMB alkyl), 67.4 (CH2-C18), 55.4 (CH3-PMB alkyl), 35.8 (CH2-C19), 31.7 (CH2-C21), 30.4 (CH2-C32), 30.1 (CH2-C31), 29.7 (CH2-C22), 25.9 (CH3-tBuSi), 22.7 (CH2-C33), 18.4 (CH3-tBuSi), 14.1 (CH2-C34), 13.4 (CH2-C34), 13.4 (CH2-C40), 12.9 (CH3-MeSi), 12.9 (CH3-MeSi); HRMS (CI+, isobutane) calcd for C33H53O5Si [M+H]+ 557.3662, found 557.3661 [(Δ −0.9 ppm); LRMS (CI+, isobutene) m/z (intensity): 557.5 (100%), 425.4 (32%), 243.3 (39%).

(1R,2E,4E,6S)-6-{[(tert-Butyldimethylsilyl)oxy]-1-[2R,5R]-5-{2-{[(4-methoxyphenyl) methoxy]ethyl}tetrahydrofuran-2-yl]-5-methyl-7-methylideneundeca-2,4-dien-1-ol. (419a)

\[
\text{To a solution of dienone 420 (0.16 g, 0.30 mmol) and CeCl}_3.7\text{H}_2\text{O (0.15 g, 0.41 mmol) in methanol (34 mL) at } -78 \, ^\circ\text{C was added, in one portion, NaBH}_4 (16 mg, 0.41 mmol). The reaction mixture was stirred for 30 minutes, concentrated and partitioned between Et}_2\text{O (10 mL) and saturated aqueous NH}_4\text{Cl (10 mL). The organic layer was isolated and the aqueous phase back-extracted with further Et}_2\text{O (2 } \times \text{ 10 mL). The combined organic extracts were dried (MgSO}_4\text{) and concentrated to afford dienol 419a (0.16 g, 100%, } \text{dr}>10:1\text{) as a clear, colourless oil. } R_f = 0.33 \text{ (pet. ether/Et}_2\text{O, 1:1); } [\alpha]^{22}_D = -9.8 \text{ (c = 1.90, CHCl}_3\text{); } \nu_{\text{max}} \text{ (liquid film) 3438, 2954, 2929, 2857, 1612, 1513, 1247, 1073, 834, 774, cm}^{-1}; 1\text{H NMR (500 MHz, CDCl}_3\text{) } \delta 7.26 (2H, d, J = 8.6 Hz, CH-PMB Ar), 6.88 (2H, d, J = 8.6 Hz, CH-PMB Ar), 6.54 (1H, ddd, J = 15.1, 11.0, 0.8 Hz, CH-C26), 6.07 (1H, d, J = 11.0 Hz, CH-C27), 5.57 (1H, dd, J = 15.1, 7.2 Hz, CH-C25), 5.11 (1H, s, CH-C41), 4.85 (1H, s, CH-C41), 4.44 (2H, s, CH2-PMB alkyl), 4.40 (1H, s, CH-C29), 4.09 (1H, dt, J = 7.6, 6.5 Hz, CH-C20), 3.96 (1H, t, J = 7.2 Hz, CH-C24), 3.87 (1H, ap q, J = 7.2 Hz, CH-C23), 3.80 (3H, s, CH3-PMB alkyl), 3.56-3.53 (2H, m, CH2-C18), 2.62 (1H, br s, OH-C24), 2.11-2.00 (1H, 197}
m, CH-C21), 2.00-1.72 (5H, m, CH2-C19, CH-C22 and CH-C31), 1.71-1.50 (2H, m, CH-C21 and CH-C22), 1.60 (3H, s, CH3-C40), 1.42-1.33 (2H, m, CH2-C32), 1.33-1.22 (2H, m, CH2-C33), 0.89 (9H, s, CH3-BuSi), 0.87 (3H, t, J = 7.2 Hz, CH3-MeSi), 0.00 (3H, s, CH3-MeSi); 13C NMR (125 MHz, CDCl3) δ 159.5 (C-PMB Ar), 149.9 (C-C30), 140.0 (C-C28), 130.9 (C-PMB Ar), 130.7 (CH-C25), 129.6 (CH-PMB Ar), 129.2 (CH-C26), 125.1 (CH-C27), 114.1 (CH-PMB Ar), 110.1 (CH2-C41), 82.1 (CH-C23), 81.0 (CH-C29), 76.9 (CH-C20), 75.9 (CH-C24), 73.0 (CH2-PMB alkyl), 67.6 (CH2-C18), 55.6 (CH3-PMB alkyl), 36.1 (CH2-C19), 32.6 (CH2-C21), 31.1 (CH2-C31), 30.4 (CH2-C32), 28.4 (CH2-C22), 26.2 (CH3-BuSi), 22.9 (CH2-C33), 18.6 (C-Bu), 14.4 (CH3-C34), 12.4 (CH3-C40), -4.67 (CH3-MeSi), -4.72 (CH3-MeSi); HRMS (El+) calcd for C33H52O4Si [M-H2O]+ 540.3630, found 540.3639, (Δ +0.7 ppm).

(5S,6E,8E,10R)-12,12-Diethyl-5-(hex-1-en-2-yl)-10-[(2R,5R)-5-{2-[(4-methoxyphenyl)methoxy]ethyl}tetrahydrofuran-2-yl]-2,2,3,3,6-pentamethyl-4,11-dioxa-3,12-disilatetradeca-6,8-diene. (407)

To a stirred solution of alcohol 419a (47 mg, 0.08 mmol) and 2,6-lutidine (29 µl, 0.25 mmol) in CH2Cl2 (2 mL) at rt was added TES triflate (23 µl, 0.10 mmol). The solution was stirred for 2 h and the reaction was quenched with 0.5 m aqueous HCl (5 mL). The mixture was extracted with Et2O (2 × 5 mL), the combined organic layers were dried (MgSO4) and concentrated to a crude residue that was purified by chromatography (pet. ether/Et2O, 3:1) to yield of the title compound 407 (43 mg, 76%) as a clear colourless oil and unreacted starting alcohol (10 mg, 21%). Rf = 0.36 (pet. ether/Et2O, 9:1); [α]D25 −9.5 (c = 1.00, CHCl3); νmax (liquid film) 2954, 2929, 2875, 2857, 1613, 1513, 1247, 1078, 834, 774, cm−1; 1H NMR (500 MHz, CDCl3) δ 7.26 (2H, d, J = 8.7 Hz, CH-PMB Ar), 6.05 (1H, d, J = 11.0 Hz, CH-C27), 5.65 (1H, d, J = 11.5 Hz, CH-C25), 5.12 (1H, s, CH-C41), 4.85 (1H, s, CH2-C41), 4.45 (1H, d, J = 11.5 Hz, CH-PMB alkyl), 4.41 (1H, d, J = 11.5 Hz, CH-PMB alkyl), 4.40 (1H, s, CH-C29), 4.16 (1H, t, J = 5.5 Hz, CH-C24), 4.04-3.97
Chapter 3: Experimental Section

(1H, m, CH-C20), 3.97-3.92 (1H, m, CH-C23), 3.80 (3H, s, CH3-PMB alkyl), 3.60-3.50 (2H, m, CH2-C18), 2.00-1.93 (1H, m, CH-C21), 1.92-1.67 (6H, m, CH2-C19, CH2-C22 and CH2-C31), 1.58 (3H, d, J = 0.9 Hz, CH3-C40), 1.53-1.44 (1H, m, CH2-C21), 1.42-1.34 (2H, m, CH2-C32), 1.33-1.24 (2H, m, CH2-C33), 1.23-1.24 (2H, m, CH2-C31), 1.58 (3H, d, J = 0.9 Hz, CH3-C40), 0.87 (3H, m, J = 7.2 Hz, CH3-C34), 0.95 (9H, t, J = 7.9 Hz, CH3-EtSi), 0.89 (9H, s, CH3-tBuSi), 0.87 (9H, s, CH3-tBuSi), 0.86 (9H, s, CH3-tBuSi); 13C NMR (125 MHz, CDCl3) δ 159.3 (C-PMB Ar), 149.8 (C-C30), 138.4 (C-C28) 132.3 (CH-C25), 130.9 (C-PMB Ar), 129.4 (CH-PMB Ar), 127.4 (CH-C26), 125.5 (CH-C27), 113.9 (CH-PMB Ar), 109.7 (CH2-C41), 82.1 (CH-C23), 80.8 (CH-C29), 77.0 (CH-C20), 75.8 (CH-C24), 72.8 (CH2-PMB alkyl), 67.8 (CH2-C18), 55.7 (CH3-PMB alkyl), 36.1 (CH2-C19), 32.4 (CH2-C21), 31.1 (CH2-C31), 30.3 (CH2-C32), 27.6 (CH2-C22), 26.0 (CH3-tBuSi), 22.7 (CH2-C33), 18.4 (C-tBuSi), 14.2 (CH3-C34), 12.0 (CH3-C40), 7.0 (CH2-EtSi), 5.1 (CH2-EtSi), −4.9 (CH3-MeSi), −4.9 (CH3-MeSi); HRMS (EI+) [M]+ calcd for C39H68O5Si2 672.4605, found 672.4612, (Δ +1.0 ppm).

t-BuOK (25 mL of a 2 M solution in THF, 50 mmol) was added to a suspension of methyltriphenylphosphonium bromide (18 g, 50 mmol) in THF (83 mL) at rt and stirred for 1 h. A solution of the ketone 327a (4.5 g, 17 mmol) in THF (65 mL) was added to the suspension of the ylide at rt and the mixture was stirred for 30 minutes. The reaction was quenched by the addition of H2O (100 mL) and the mixture was extracted with EtOAc (3 × 200 mL). The organic extracts were dried (MgSO4) and concentrated in vacuo, and the residue was purified by chromatography (pet. ether/EtOAc, 20:1) to provide the desired diene 423 (4.5 g, 100%) as a colourless oil. Rf = 0.49 (pet. ether/EtOAc, 20:1); [α]D22 −53 (c = 0.99, CHCl3); νmax. (liquid film) 3078, 2954, 2929, 2858, 1667, 1471, 1254, 1077, 834, 814, 775, cm⁻¹; 1H NMR (400 MHz, CDCl3) δ 5.86 (1H, ddt, J = 17.1, 10.2, 6.9 Hz, CH-C1), 5.14-5.04 (2H, m, CH2-C1'), 5.00 (1H, q, J = 2.2 Hz, CH-C35), 4.86 (1H, q, J = 2.2 Hz, CH-C35), 4.50-4.43 (1H, m, CH-C3), 4.18-4.11 (1H, m, CH-C6), 3.64 (1H, dd, J = 10.4, 4.6 Hz, CH-C7), 3.53 (1H, dd, J = 10.4, 6.1 Hz, CH-C7), 2.69-2.61 (1H, m, CH-C5), 2.54-2.46 (1H, m, CH-C5), 2.41-2.25 (2H, m, CH2-C2), 0.88 (9H, s, CH3-tBuSi), 0.05 (6H, s, CH3-MeSi); 13C NMR (100 MHz, CDCl3) δ 150.8 (C-C4), 134.8 (CH-C1), 117.2 (CH2-C1'), 105.2 (CH2-C35), 80.1 (CH-C3), 78.1 (CH-C6), 65.5 (CH2-C7), 40.3 (CH2-C2), 35.2 (CH2-C5), 26.0 (CH3-tBuSi), 18.5 (C-tBuSi), −5.2 (CH3-...
MeSi); HRMS (Cl+, isobutane) calcd for C₁₅H₂₉O₂Si [M+H]⁺ 269.1937, found 269.1933 (Δ −1.3 ppm). Anal. calcd for C₁₅H₂₈O₂Si C 67.11%, H 10.51%, found C 67.10%, H 10.57%.

3-[(2S,5R)-5-[[tert-Butyldimethylsilyl]oxy]methyl]-3-methylidenetetrahydrofuranyl-2-yl]propane-1,2-diol. (424)

OsO₄ (0.88 mL of a 4% aqueous solution, 0.15 mmol) was added to a solution of diene 423 (2.2 g, 8.2 mmol) and NMO (1.2 g, 10 mmol) in a mixture of THF (100 mL) and H₂O (11 mL), and the mixture was stirred for 16 h at rt. The reaction was quenched by the addition of solid Na₂SO₃ (3.2 g) and the mixture was allowed to stir for 30 minutes before being partitioned between CH₂Cl₂ (125 mL) and H₂O (100 mL). The organic phase was extracted with CH₂Cl₂ (2 × 100 mL), dried (MgSO₄) and concentrated. The residue was purification by chromatography (pet. ether/EtOAc, 1:1 to 1:3) to give a diasteromeric mixture of diols 424 (1.6 g, 64%, dr = 1:1) as a colourless oil. Analyses were conducted on a diastereomeric mixture of C₁ alcohols. Rᵣ = 0.21 (pet. ether/EtOAc, 1:1); νₖₑₑₑ (liquid film) 3387, 3078, 2954, 2931, 2862, 1667, 1249, 1072, 833, 779, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.03 (0.5H, q, J = 2.2 Hz, CH‐C₃₅), 5.01 (0.5H, q, J = 2.2 Hz, CH‐C₃₅), 4.86 (0.5H, q, J = 2.2 Hz, CH‐C₃₅), 4.84 (0.5H, q, J = 2.3 Hz, CH‐C₃₅), 4.71–4.62 (1H, m, CH‐C₃), 4.23–4.15 (1H, m, CH‐C₆), 4.03–3.91 (1H, m, CH‐C₁), 3.87 (0.5H, d, J = 1.6 Hz, OH‐C₁), 3.69–3.50 (4H, m, CH₂‐C₁' and CH₂‐C₇), 3.15 (0.5H, d, J = 4.1 Hz, OH‐C₁'), 2.73–2.60 (1H, m, CH₂‐C₅), 2.58–2.45 (1H, m, CH₂‐C₅), 2.37 (0.5H, t, J = 5.9 Hz, OH‐C₁'), 2.20 (0.5H, t, J = 6.2 Hz, OH‐C₁'), 1.92 (0.5H, dd, J = 8.2, 3.3 Hz, CH‐C₂), 1.88 (0.5H, dd, J = 8.2, 3.3 Hz, CH‐C₂), 1.78–1.63 (1.5H, m), 0.89 (4.5H, s, CH₃‐tBuSi), 0.88 (4.5H, s, CH₃‐BuSi), 0.06 (3H, s, CH₃‐MeSi), 0.05 (3H, s, CH₃‐MeSi); ¹³C NMR (100 MHz, CDCl₃) δ 150.8 (C‐C₄), 150.5 (C‐C₄), 150.4 (CH‐C₃₅), 105.3 (CH‐C₃₅), 80.3 (CH‐C₃), 78.4 (CH‐C₆), 78.4 (CH‐C₆), 78.2 (CH‐C₆), 78.2 (CH‐C₆), 71.6 (CH‐C₁), 70.0 (CH‐C₁), 67.0 (CH₂‐C₁'), 66.6 (CH₂‐C₁'), 65.4 (CH₂‐C₇), 65.3 (CH₂‐C₇), 38.3 (CH₂‐C₂), 37.7 (CH₂‐C₂), 34.9 (CH₂‐C₅), 34.5 (CH₂‐C₅), 26.0 (CH₃‐BuSi), 18.4 (C‐BuSi), −5.2 (CH₃‐MeSi); HRMS (Cl+, isobutane) calcd for C₁₅H₃₀O₄Si [M+H]⁺ 303.1991, found 303.1996 (Δ +1.4 ppm). Anal. calcd for C₁₅H₃₀O₄Si C 59.56%, H 10.00%, found C 59.26%, H 9.95%.

N (2S,5R)-5-{[tert-Butyldimethylsilyl]oxy}methyl]-3-methylidenetetrahydrofuran-2-yl]acetaldehyde. (425)

Sodium periodate (3.5 g, 16 mmol) was added to a stirred solution of the diol 424 (2.5 g, 8.3 mmol) in a mixture of THF (141 mL) and H₂O (35 mL) and the mixture was stirred for 1.5 h at rt. The mixture was diluted with H₂O and extracted with Et₂O (2 × 75 mL). The organic extracts were dried (MgSO₄) and concentrated, and the resulting crude aldehyde was used in the following step. A small sample was purified by chromatography (pet. ether/EtOAc, 4:1) for characterization purposes. νmax. (liquid film) 2953, 2931, 2894, 2857, 1666, 1727, 1254, 1076, 836, 775 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.79 (1H, t, J = 2.3 Hz, CH–C1), 5.06 (1H, q, J = 2.2 Hz, CH–C35), 4.93–4.88 (1H, m, CH–C3), 4.87 (1H, q, J = 2.2 Hz, CH–C35), 4.18 (1H, dddd, J = 7.3, 5.6, 5.2, 4.5 Hz, CH–C6), 3.64 (1H, dd, J = 10.6, 4.5 Hz, CH–C7), 3.60 (1H, dd, J = 10.6, 5.2 Hz, CH–C7), 2.73–2.64 (3H, m, CH₂–C2 and CH–C5), 2.62–2.54 (1H, m, CH–C5), 0.88 (9H, s, CH₃-tBuSi), 0.05 (3H, s, CH₃-MeSi), 0.05 (3H, s, CH₃-MeSi); ¹³C NMR (100 MHz, CDCl₃) δ 201.3 (C–C1), 150.3 (C–C4), 105.9 (CH₂–C35), 78.5 (CH–C6), 75.8 (CH–C3), 65.5 (CH₂–C7), 49.3 (CH₂–C5), 34.7 (CH₂–C2), 26.0 (CH₃-BuSi), 18.5 (C–BuSi), −5.2 (CH₃-MeSi), −5.2 (CH₂-MeSi).

2-[(2S,5R)-5-[[tert-Butyldimethylsilyl]oxy]methyl]-3-methylidenetetrahydrofuran-2-yl]ethan-1-ol. (426)

The crude aldehyde 425 was dissolved in wet EtOH (92 mL) and solid NaBH₄ (0.33 g, 8.7 mmol) was added. The mixture was stirred for 1 h at rt, concentrated and then partitioned between CH₂Cl₂ (50 mL) and H₂O (50 mL). The phases were separated and the aqueous phase was extracted with further CH₂Cl₂ (2 × 25 mL). The combined organic extracts were dried (MgSO₄) and concentrated. The residue was purified by chromatography (pet. ether/EtOAc, 3:1) to provide the alcohol 426 (1.8 g, 80% over two steps) as a colourless oil. Rf = 0.19 (pet. ether/EtOAc, 3:1); [α]D 36° ~42.8 (c = 1.00, CHCl₃); νmax. (liquid film) 3426, 3078, 2931, 2855, 1667, 1466, 1249, 1065, 833, 772 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.01 (1H, q, J = 2.2 Hz, CH–C35), 4.84 (1H, q, J = 2.2 Hz, CH–C35).
Chapter 3: Experimental Section

C35), 4.65-4.59 (1H, m, CH-C3), 4.17 (1H, dddd, J = 7.1, 6.1, 5.1, 5.0 Hz, CH-C6), 3.88-3.76 (2H, m, CH2-C1), 3.63 (1H, dd, J = 10.6, 5.0 Hz, CH2-C7), 3.59 (1H, dd, J = 10.6, 5.1 Hz, CH2-C7), 2.84 (1H, dd, J = 7.0, 4.2 Hz, OH-C1), 2.69-2.61 (1H, m, CH-C5), 2.55-2.47 (1H, m, CH-C5), 1.89-1.74 (2H, m, CH2-C2), 0.88 (9H, s, CH3-BuSi), 0.05 (6H, s, CH2-MeSi); 13C NMR (100 MHz, CDCl3) δ 151.0 (C1), 105.1 (CH2-C35), 81.0 (CH-C6), 78.2 (CH-C3), 65.3 (CH2-C7), 61.7 (CH2-C1), 37.1 (CH-C2), 34.8 (CH2-C5), 26.0 (CH3-BuSi), 18.4 (C1-BuSi), −5.2 (CH3-MeSi); HRMS (CI+, isobutane) calcd for C14H29O3Si [M+H]+ 273.1886, found 273.1885 (Δ −0.4 ppm); Anal. calcd for C14H28O3Si C 61.72%, H 10.36%, found C 61.71%, H 10.41%.

2-[(2S,3R,5R)-5-[[(tert-Butyldimethylsilyl)oxy]methyl]-3-methyltetrahydrofuran-2-yl]ethan-1-ol\(^{21}\) (433)

Crabtree’s catalyst (0.25 g, 0.27 mmol) was dissolved in CH2Cl2 (160 mL) under an atmosphere of argon. The argon was evacuated and replaced with H2; purging/H2 replacement was repeated twice more. The mixture stirred for under the hydrogen atmosphere until a visible lessening in color intensity was observed (~10 min), at which point the alkene 426 (1.00 g, 3.67 mmol) in CH2Cl2 (6 mL) was added dropwise to the solution of the catalyst. After 2 h, an aliquot (0.3 mL) was removed from the reaction vessel, dried in vacuo and analyzed by 1H NMR to ensure that alkene reduction had occurred. The reaction mixture was used directly in the following step; an aliquot was purified for characterization purposes. Rf = 0.21 (pet. ether/EtOAc, 4:1); [α]\(^D\) = −14.0 (c = 1.01, CHCl3). ν\(\text{max. (liquid film)}\) 3425, 2956, 2928, 2903, 2857, 1473, 1251, 1103, 1049, 938, 833, 814, 774 cm\(^{-1}\); 1H NMR (500 MHz, CDCl3) δ 4.08 (1H, ddt, J = 9.1, 6.6, 4.7 Hz, CH-C6), 3.83-3.74 (2H, m, CH2-C1), 3.62 (2H, d, J = 4.7 Hz, CH2-C7), 3.57 (1H, td, J = 9.1, 2.8 Hz, CH-C3), 2.82 (1H, dd, J = 7.0, 4.0 Hz, OH-C1), 2.10 (1H, dt, J = 12.2, 6.6 Hz, CH2-C5), 1.95-1.88 (1H, m, CH-C4), 1.88-1.82 (1H, m, CH2-C2), 1.65 (1H, dddd, J = 14.0, 9.1, 8.0, 4.7 Hz, CH2-C2), 1.41 (1H, ddd, J = 12.2, 10.9, 9.1 Hz, CH2-C5), 1.02 (3H, d, J = 6.5 Hz, CH3-C35), 0.91 (9H, s, CH3-BuSi), 0.07 (6H, s, CH3-MeSi); 13C NMR (125 MHz, CDCl3) δ 86.0 (CH-C3), 79.1 (CH-C6), 66.2 (CH2-C7), 62.0 (CH2-C1), 40.4 (CH-C4), 37.0 (CH2-C5), 35.7 (CH2-C2), 26.1 (CH3-BuSi), 18.5 (C1-BuSi), 16.2 (CH3-C35), −5.1 (CH3-MeSi), −5.2 (CH3-MeSi); HRMS (CI+, isobutane) calcd for C14H31O3Si [M+H]+ 275.2042, found 275.2041 (Δ −0.5 ppm).
Chapter 3: Experimental Section

tert-Butyl([(2R,4R,5S)-5-{2-{(tert-butyl)diphenylsilyl}oxy}ethyl]-4-methyltetrahydrofuran-2-yl]methoxy)dimethylsilane. (434)

The H₂ atmosphere was replaced with argon before the sequential addition of Et₃N (0.47 mL, 3.39 mmol), TBDPSCl (1.05 mL, 4.03 mmol) and DMAP (0.12 g, 0.94 mmol). The resulting mixture was stirred for 36 h at rt and then concentrated. The residue was partitioned between CH₂Cl₂ (50 mL) and 1 M aqueous HCl (50 mL), the phases were separated and the organic extracts were further extracted with CH₂Cl₂ (50 mL). The combined organic layers were dried (MgSO₄) and concentrated. The reaction mixture was used directly in the following step; an aliquot was purified for characterization purposes. Rᵥ = 0.55 (pet. ether/EtOAc, 4:1); [α]ᵦ²₄ −12.8 (c = 1.02, CHCl₃); νₘₐₓ. (liquid film) 2955, 2929, 2885, 2857, 1472, 1428, 1252, 1107, 834, 776, 737, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.65 (4H, m, CH-PhSi), 7.44–7.34 (6H, m, CH-PhSi), 3.98 (1H, ddt, J = 9.0, 6.3, 5.0 Hz, CH-C₆), 3.87–3.75 (2H, m, CH₂-C₃), 3.62 (1H, dd, J = 10.5, 5.0 Hz, CH-C₇), 3.55 (1H, dd, J = 10.5, 5.0 Hz, CH-C₇), 3.53 (1H, dd, J = 8.7, 3.2 Hz, CH-C₃), 2.10 (1H, dt, J = 12.2, 6.7 Hz, CH-C₅), 1.90–1.78 (2H, m, CH₂-C₄ and CH-C₂), 1.72–1.62 (1H, m, CH-C₂), 1.36 (1H, ddd, J = 12.2, 10.8, 9.0 Hz, CH-C₅), 1.04 (9H, s, CH₃-⁻BuSi), 1.00 (3H, d, J = 6.5 Hz, CH₃-C₃5), 0.88 (9H, s, CH₃-⁻BuSi), 0.04 (6H, s, CH₃-MeSi); ¹³C NMR (100 MHz, CDCl₃) δ 135.7 (CH-PhSi), 134.3 (C-PhSi), 134.2 (C-PhSi), 129.6 (CH-C₆), 82.3 (CH-C₃), 78.5 (CH-C₆), 66.4 (CH₂-C₇), 61.6 (CH₂-C₁), 40.0 (CH-C₄), 37.7 (CH₂-C₅), 37.3 (CH₂-C₂), 27.0 (CH₃-⁻BuSi), 26.1 (CH₃-⁻BuSi), 19.3 (C-⁻BuSi), 18.5 (C-⁻BuSi), 16.5 (CH₂-C₃5), −5.0 (CH₃-MeSi), −5.1 (CH₃-MeSi); Anal. calcd for C₃₀H₄₈O₃S₂ C 70.26%, H 9.43% found C 70.38%, H 9.56%.

[(2R,4R,5S)-5-{2-[(tert-Butyl)diphenylsilyl]oxy}ethyl]-4-methyltetrahydrofuran-2-yl]methanol. (435)

The crude bis-silyl ether 434 was dissolved in a mixture of CH₂Cl₂ (50 mL) and MeOH (50 mL) and cooled to −10 °C. Solid CSA (0.16 g, 0.68 mmol) was added and the resulting mixture was stirred for 3 h. The reaction was quenched by the addition of Et₃N (0.40 mL, 2.9 mmol) and warmed to rt. The volatiles were removed *in vacuo* and the residue
was purified by flash chromatography (pet. ether/EtOAc, 9:1 to 3:1) to provide the alcohol 435 (0.98 g, 66% over 3 steps). $R_f = 0.22$ (pet. ether/EtOAc, 3:1); $[\alpha]_D^{24} = -17.4$ (c = 1.00, CHCl$_3$); v_{max}. (liquid film) 3435, 2956, 2857, 1473, 1427, 1111, 823, 737, 700 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.70-7.65 (4H, m, CH-PhSi), 7.45-7.35 (6H, m, CH-PhSi), 4.03 (1H, dtd, $J = 9.3, 6.3, 3.2$ Hz, CH-C6), 3.86-3.77 (2H, m, CH$_2$-C1), 3.61 (1H, ddd, $J = 11.5, 7.1, 3.2$ Hz, CH-C7), 3.58 (1H, td, $J = 8.8, 3.1$ Hz, CH-C3), 3.49-3.41 (1H, m, CH-C7), 2.10-2.02 (1H, m, CH-C5), 1.96-1.80 (2H, m, CH$_2$-C4 and CH-C2), 1.70-1.61 (1H, m, CH-C2), 1.33 (1H, ddd, $J = 12.1, 10.7, 9.3$ Hz, CH-C5), 1.05 (9H, s, CH$_3$-tBuSi), 1.02 (3H, d, $J = 6.5$ Hz, CH$_3$-C35); 13C NMR (100 MHz, CDCl$_3$) δ 135.7 (CH-PhSi), 135.7 (CH-PhSi), 134.0 (C-PhSi), 134.0 (C-PhSi), 129.7 (CH-PhSi), 127.8 (CH-PhSi), 127.8 (CH-PhSi), 129.7 (CH-PhSi), 82.1 (CH-C3), 78.4 (CH-C6), 65.4 (CH$_2$-C7), 61.3 (CH$_2$-C1), 40.2 (CH-C4), 37.2 (CH$_2$-C2), 36.7 (CH$_2$-C5), 27.0 (CH$_3$-tBuSi), 19.4 (C-tBuSi), 16.5 (CH$_3$-C35); HRMS (Cl+, isobutane) calcd for C$_{24}$H$_{35}$O$_3$Si $[\text{M+H}]^+$ 399.2355, found 399.2354, (Δ −0.5 ppm).

Dess-Martin periodinane (96 mg, 0.22 mmol) was added to a solution of alcohol 435 (45 mg, 0.11 mmol) in CH$_2$Cl$_2$ (6 mL) at rt and the reaction mixture was stirred for 2 hours at rt. The reaction was quenched by the addition of saturated aqueous NaHCO$_3$ (5 mL) and the mixture was extracted with CH$_2$Cl$_2$ (2 x 5 mL). The combined organic extracts were dried (MgSO$_4$), concentrated and used crude in the following step.1H NMR (400 MHz, CDCl$_3$) δ 9.62 (1H, d, $J = 2.2$ Hz, CH-C7), 7.70-7.65 (4H, m, CH-PhSi), 7.45 - 7.36 (6H, m, CH-PhSi), 4.22 (1H, td, $J = 8.2, 2.2$ Hz, CH-C6), 3.85 (2H, dd, $J = 7.3, 5.4$ Hz, CH$_2$-C1), 3.69 (1H, td, $J = 8.5, 3.2$ Hz, CH-C3), 2.33 (1H, dt, $J = 12.6, 7.6$ Hz, CH-C5), 1.99-1.83 (3H, m, CH$_2$-C2 and CH-C4), 1.60-1.52 (1H, m, CH-C5), 1.05 (9H, s, CH$_3$-tBuSi), 1.03 (3H, d, $J = 6.6$ Hz, CH$_3$-C35); 13C NMR (100 MHz, CDCl$_3$) δ 203.4 (C-C7), 135.7 (CH-PhSi), 135.7 (CH-PhSi), 134.0 (C-PhSi), 133.9 (C-PhSi), 129.7 (CH-PhSi), 127.8 (CH-PhSi), 84.0 (CH-C3), 81.8 (CH-C6), 61.1 (CH$_2$-C1), 39.4 (CH-C4), 36.8 (CH$_2$-C2), 36.2 (CH$_2$-C5), 27.0 (CH$_3$-tBuSi), 19.4 (C-tBuSi), 16.4 (CH$_3$-C35).

204
Methyl (2Z)-3-[(2R,4R,5S)-5-{2-[(tert-butyldiphenylsilyl)oxy]ethyl}-4-methyltetrahydrofuran-2-yl]prop-2-enoate. (437)

To a solution of methyl \(P,P\)-bis(2, 2, 2-trifluoroethyl)phosphonoacetate (23 \(\mu \)L, 0.11 mmol) and 18-crown-6 (0.15 g, 0.55 mmol) in THF (1.5 mL) cooled to −78 °C was added a solution of KHMDS (0.18 mL of a 0.6 M solution in THF, 0.11 mmol). The reaction mixture was stirred for 10 minutes before the addition of the crude aldehyde 436 (0.22 mmol) in THF (2 mL). Stirring was continued for 1 hour at −78 °C before the mixture was warmed to rt and quenched with aqueous saturated \(\text{NH}_4\text{Cl} \) (5 mL). The mixture was extracted with Et\(_2\)O (3 x 5 mL), dried (MgSO\(_4\)) and concentrated to provide a clear oil containing \(Z/E \) isomers in a ratio of 99:1. The mixture was purified on SiO\(_2\) (pet. ether/EtOAc 30/1) to provide \(Z \)-unsaturated ester 437 (38 mg, 77%) as a clear, colourless oil. \(R_f = 0.38 \) (pet. ether/ EtOAc, 9:1); [\(\alpha \)]\(_D^{29}\) −6.4 (c = 2.05, CHCl\(_3\)); \(\nu_{max} \) (liquid film) 2955, 2923, 2856, 1720, 1427, 1196, 1178, 1105, 1088, 1007, 700, 613 cm\(^{-1}\); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.69-7.66 (4H, m, CH-PhSi), 7.44-7.34 (6H, m, CH-PhSi), 6.29 (1H, dd, \(J = 11.7, 7.3 \) Hz, CH-C7), 5.74 (1H, dd, \(J = 11.7, 1.5 \) Hz, CH-C8), 5.40-5.34 (1H, m, CH-C6), 3.85-3.80 (2H, m, CH\(_2\)-C1), 3.70 (3H, s, CH\(_3\)-MeO), 3.68 (1H, td, \(J = 8.6, 3.2 \) Hz, CH-C3), 2.51 (1H, dt, \(J = 12.1, 6.7 \) Hz, CH-C5), 2.00-1.89 (1H, m, CH-C4), 1.85 (1H, dt, \(J = 13.9, 7.4, 3.2 \) Hz, CH-C2) 1.68 (1H, dtd, \(J = 13.9, 8.6, 5.5 \) Hz, CH-C2), 1.28 (dd, \(J = 12.1, 10.3, 7.5 \) Hz, 1H, CH-C5), 1.05 (9H, s, CH\(_3\)-BuSi), 1.02 (3H, d, \(J = 6.5 \) Hz, CH-C35); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \) 166.5 (C-C9), 152.8 (CH-C7), 135.7 (CH-PhSi), 134.2 (C-PhSi), 134.2 (C-PhSi) 129.6 (CH-PhSi), 127.8 (CH-PhSi), 118.3 (CH-C8), 82.6 (CH-C3), 74.9 (CH-C6), 61.4 (CH\(_2\)-C1), 51.4 (CH\(_3\)-OMe), 41.5 (CH\(_2\)-C5), 40.1 (CH-C4), 37.2 (CH\(_2\)-C2), 27.0 (CH\(_3\)-BuSi), 19.4 (C-BuSi), 16.6 (CH\(_2\)-C35); HRMS (Cl+, isobutane) [M+H]\(^+\) calcd for \(C_{27}H_{37}O_5Si \) 453.2461, found 453.2462 (\(\Delta +0.1 \) ppm); LRMS (Cl+, isobutane) m/z (intensity); 453.5 (76%), 375.4 (100%).

The E isomer was isolated from mixtures resulting from the reaction of aldehyde 436 and methyl (triphenylphosphoranylidene)acetate (Scheme 104). $R_f = 0.25$ (pet. ether/EtOAc, 9:1); $[\alpha]_D^{24} +9.8$ (c = 2.15, CHCl$_3$); ν_{max} (liquid film) 2955, 2929, 2857, 1724, 1427, 1269, 1109, 1088, 823, 700, 613 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 7.71–7.67 (4H, m, CH–PhSi), 7.47–7.31 (6H, m, CH–PhSi), 6.92 (1H, dd, $J = 15.6$, 5.2 Hz, CH–C7), 6.02 (1H, dd, $J = 15.6$, 1.5 Hz, CH–C8), 4.55–4.49 (1H, m, CH–C6), 3.83 (2H, dd, $J = 7.4$, 5.5 Hz, CH$_2$–C1), 3.74 (3H, s, CH$_3$–OMe), 3.68 (1H, td, $J = 8.8$, 3.1 Hz, CH–C3), 2.30 (1H, dt, $J = 12.1$, 6.7 Hz, CH–C5), 1.94 (1H, ddt, $J = 10.4$, 8.8, 6.7 Hz, CH–C4), 1.87 (1H, dtd, $J = 13.9$, 7.4, 3.1 Hz, CH–C2), 1.67 (1H, ddt, $J = 13.9$, 8.6, 5.4 Hz, CH–C2), 1.42–1.34 (1H, m, CH–C5), 1.05 (9H, s, CH$_3$–iBuSi), 1.02 (3H, d, $J = 6.5$ Hz, CH$_3$–C35); 13C NMR (125 MHz, CDCl$_3$) δ 166.9 (C–C9), 149.5 (CH–C7), 135.7 (CH–PhSi), 134.2 (C–PhSi), 134.2 (C–PhSi), 129.7 (CH–PhSi), 127.8 (CH–PhSi), 119.3 (CH–C8), 82.7 (CH–C3), 76.7 (CH–C6), 61.2 (CH$_2$–C1), 51.7 (CH$_3$–OMe), 41.4 (CH$_2$–C5), 40.4 (CH–C4), 37.2 (CH$_2$–C2), 27.0 (CH$_3$–iBuSi), 19.4 (C–iBuSi), 16.4 (CH$_3$–C35); HRMS (Cl+, isobutane) [M+H]$^+$ calcd for C$_2$H$_7$O$_3$Si$_4$ 453.2461, found 453.2465 ($\Delta = 0.8$ ppm); LRMS (Cl+, isobutane) m/z (intensity); 453.5 (26%), 375.4 (100%).
Methyl (2S,3R)-3-[(2R,4R,5S)-5-[2-[(tert-butylidiphenylsilyl)oxy]ethyl]-4-methyltetrahydrofuran-2-yl]-2,3-dihydroxypropanoate. (440)

Methyl (2R,3S)-3-[(2R,4R,5S)-5-[2-[(tert-butylidiphenylsilyl)oxy]ethyl]-4-methyltetrahydrofuran-2-yl]-2,3-dihydroxypropanoate. (441)

OsO₄ (5.0 μL of a 4% aqueous solution 0.86 μmol) was added to a solution of α,β-unsaturated ester 437 (19 mg, 0.043 mmol) and NMO (6.1 mg, 0.051 mmol) in a solution of in THF (1 mL) and H₂O (0.1 mL). The mixture was stirred for 3 days at rt and quenched by the addition of solid Na₂SO₃ (22 mg). On stirring for 30 minutes the solution was diluted with CH₂Cl₂ (3 mL) and H₂O (2 mL), the organic phase isolated and the aqueous phase back-extracted with further CH₂Cl₂ (2 x 5 mL). The solution was dried (MgSO₄), filtered and concentrated before purification by chromatography (pet. ether/EtOAc, 3:1) to afford 7,8-anti diols 440 (9 mg, 43%) and 441 (8 mg, 38%) both as clear oils.

440: Rₚ = 0.29 (pet. ether/EtOAc, 2:1); [α]²⁵_D −16.8 (c = 1.15, CHCl₃); νₚₚₚₚ (liquid film) 3464, 2955, 2930, 2858, 1739, 1429, 1269, 1107, 1082, 823, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.62 (4H, m, CH‐PhSi), 7.44–7.35 (6H, m, CH‐PhSi), 4.26 (1H, dd, J = 9.4, 4.2 Hz, CH‐C₈), 4.00 (1H, ddd, J = 9.7, 6.1, 3.6 Hz, CH‐C₆), 3.80–3.76 (2H, m, CH₂−C₁), 3.74 (3H, s, CH₃−MeO), 3.74–3.68 (1H, m, CH‐C₇), 3.61 (1H, td, J = 8.8, 3.0 Hz, CH‐C₃), 3.27 (1H, d, J = 9.4 Hz, OH‐C₈), 2.62 (1H, d, J = 8.2 Hz, OH‐C₇), 2.10 (1H, dt, J = 12.3, 6.1 Hz, CH‐C₅), 1.93–1.78 (2H, m, CH‐C₂ and CH‐C₄), 1.65–1.56 (2H, m, CH‐C₂ and CH‐C₅), 1.04 (9H, s, CH₃−tBuSi), 1.02 (3H, d, J = 6.5 Hz, CH₃−C₃S); ¹³C NMR (100 MHz, CDCl₃) δ 172.9 (C‐C₉), 135.7 (CH‐PhSi), 134.0 (CH‐PhSi), 129.8 (CH‐PhSi), 129.8 (CH‐PhSi), 127.8 (CH‐PhSi), 127.8 (CH‐PhSi), 83.3 (CH‐C₃), 77.8 (CH‐C₆), 73.7 (CH‐C₇), 73.6 (CH‐C₈), 61.2 (CH₂−C₁), 52.5 (CH₃−MeO), 39.9 (CH‐C₄), 37.4 (CH₂−C₅), 37.1 (CH₂−C₂), 27.0 (CH₃−tBuSi), 19.3 (C−tBuSi), 16.2 (CH₃−C₃S); HRMS (Cl+, isobutane)
calcd for C_{27}H_{39}O_{6}Si [M+H]^+ 487.2516, found 487.2517 (Δ +0.2 ppm); LRMS (CI+, isobutane) m/z (intensity); 487.4 (100%), 409.4 (40%), 375.4 (26%), 331.3 (53%).

441: \(R_y = 0.18 \) (pet. ether/EtOAc, 2:1); [\(\alpha \)]_{D}^{25} = -23.6 (c = 0.95, CHCl_3); \(\nu_{max} \) (liquid film) 3441, 2955, 2857, 1738, 1429, 1259, 1225, 1107, 1084, 822, 736 cm\(^{-1}\); 1H NMR (400 MHz, CDCl_3) δ 7.68–7.63 (4H, m, CH-PhSi), 7.45–7.35 (6H, m, CH-PhSi), 4.34–4.25 (1H, m, CH-C8), 3.99 (1H, ddd, \(J = \) 9.0, 7.8, 6.4 Hz, CH-C6), 3.80–3.68 (3H, m, CH_2-C1 and CH-C7), 3.67 (3H, s, CH_3-MeO), 3.51 (1H, td, \(J = \) 8.8, 3.1 Hz, CH-C3), 3.21 (1H, d, \(J = \) 5.3 Hz, OH-C7), 2.38 (1H, d, J = 7.2 Hz, OH-C8), 2.25 (1H, dt, J = 12.7, 6.4 Hz, CH-C5), 1.92–1.83 (1H, m, CH-C4), 1.83–1.72 (1H, m, CH-C2), 1.66–1.47 (2H, m, CH-C2 and CH-C5), 1.04 (9H, s, CH_3-tBuSi), 1.01 (3H, d, J = 6.5 Hz, CH_3-C35); 13C NMR (100 MHz, CDCl_3) δ 173.1 (C-C9), 135.7 (CH-PhSi), 135.7 (CH-PhSi), 127.8 (CH-PhSi), 82.8 (CH-C3), 77.3 (CH-C6), 75.5 (CH-C7), 72.7 (CH-C8), 61.4 (CH_2-C1), 52.6 (CH_3-MeO), 40.1 (CH-C4), 38.7 (CH_2-C5), 37.2 (CH_2-C2), 27.0 (CH_3-tBuSi), 19.3 (C-tBuSi), 16.4 (CH_3-C35); HRMS (CI+, isobutane) calcd for C_{27}H_{39}O_{6}Si [M+H]^+ 487.2516, found 4487.2514 (Δ −0.5 ppm); LRMS (CI+, isobutane) m/z (intensity); 487.4 (88%), 409.4 (44%), 375.4 (30%), 331.3 (100%).

(2R,4R,5S)-5-[2-[(tert-Butyldiphenylsilyl)oxy]ethyl]-4-methyltetrahydrofuran-2-carboxylic acid.

Dess-Martin periodinane (498 mg, 1.18 mmol) was added in a single portion to a stirred solution of alcohol 435 (390 mg, 0.98 mmol) in CH_2Cl_2 (18 mL). The mixture was stirred at rt for 1.5 h, quenched with saturated aqueous NaHCO_3 (20 mL) and extracted with CH_2Cl_2 (2 × 25 mL). The combined organic extracts were dried (MgSO_4), filtered, concentrated and the residue used directly in the following step.

To a solution of aldehyde and 2-methyl-2-butene (0.83 mL, 7.8 mmol) in t-BuOH (4.8 mL) was added dropwise a solution of NaClO_2 (0.67 g, 80% purity, 6.0 mmol) and NaH_2PO_4·2H_2O (1.0 g, 6.4 mmol) in H_2O (9.7 mL). The mixture was stirred at rt for 1 h, concentrated and partitioned between CH_2Cl_2 (20 mL) and H_2O (15 mL). The aqueous phase was isolated and extracted with further CH_2Cl_2 (20 mL). The combined organic extracts were dried (MgSO_4) and concentrated to give the title carboxylic acid which
was used directly in the following step. $R_f = 0.12$ (pet. ether/EtOAc, 1:1); $[\alpha]_{D}^{25} +11.9$ (c = 2.70, CHCl$_3$); ν_{max} (liquid film) 3050, 2957, 2930, 2857, 1721, 1427, 1107, 1088, 937, 823, 736, 700 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 7.68-7.64 (4H, m, CH-PhSi), 7.46-7.37 (6H, m, CH-PhSi), 4.42-4.33 (1H, m, CH-C6), 3.84-3.77 (3H, m, CH$_2$-C1 and CH-C3), 2.53 (1H, dt, $J = 12.8, 7.4$ Hz, CH-C5), 2.03-1.94 (1H, m, CH-C4), 1.87 (dtd, $J = 14.4, 7.4, 3.1$ Hz, 1H, CH-C2), 1.74-1.63 (2H, m, CH-C2 and CH-C5), 1.05 (9H, s, CH$_3$-tBuSi), 1.04 (3H, d, $J = 6.6$ Hz, CH$_3$-C35); 13C NMR (125 MHz, CDCl$_3$) δ 174.5 (C-C7), 135.7 (CH–PhSi), 133.8 (C–PhSi), 129.9 (CH-PhSi), 129.8 (CH-PhSi), 127.9 (CH-PhSi), 127.8 (CH-PhSi), 84.4 (CH-C3), 75.8 (CH-C6), 60.8 (CH$_2$-C1), 39.9 (CH-C4), 38.6 (CH$_2$-C5), 36.6 (CH$_2$-C2), 27.0 (CH$_2$-BuSi), 19.3 (C-3BuSi), 16.1 (CH$_3$-C35); HRMS (Cl+, isobutane) calcd for C$_{24}$H$_{33}$O$_4$Si [M+H]$^+$ 413.2148, found 413.2151, ($\Delta +0.7$ ppm).

(2R,4R,5S)-5-[2-[(tert-Butyldiphenylsilyl)oxy]ethyl]-N-methoxy-N,4-dimethyltetrahydrofuran-2-carboxamide. (453)

To a solution of the intermediate carboxylic acid (crude 0.98 mmol) in CH$_2$Cl$_2$ (8 mL) was added sequentially DIPEA (0.48 mL, 2.7 mmol), N,O-dihydroxylamine hydrochloride (0.12 g, 1.3 mmol) and HBTU (0.55 g, 1.3 mmol). The resulting mixture was stirred for 19 h at rt and the reaction was quenched with 1 M HCl (10 mL). The mixture was extracted with CH$_2$Cl$_2$ (2 x 20 mL) and the organic phases were combined and washed with brine (20 mL), then dried (MgSO$_4$) and concentrated. Purification of the residue by chromatography (pet. ether/EtOAc, 9:1 to 4:1) afforded the desired the Weinreb amide 453 (0.33 g, 75% over three steps) as a colourless oil. $R_f = 0.16$ (pet. ether/EtOAc, 3:1). $[\alpha]_{D}^{25} -10.3$ (c = 1.24, CHCl$_3$). ν_{max} (liquid film) 3050, 2958, 2933, 2857, 1672, 1467, 1427, 1109, 1089, 740, 705, 613 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$) δ 7.69-7.64 (4H, m, CH-PhSi), 7.63-7.33 (6H, m, CH-PhSi), 4.79-4.70 (1H, m, CH-C6), 3.90-3.78 (2H, m, CH$_2$-C1), 3.73 (1H, dt, $J = 8.5, 3.5$ Hz, CH-C3), 3.64 (3H, s, CH$_3$-MeO), 3.18 (3H, s, CH$_3$-MeN), 2.34 (1H, dt, $J = 12.2, 7.4$ Hz, CH-C5), 1.96-1.85 (2H, m, CH-C4 and CH-C2), 1.80-1.70 (2H, m, CH-C2 and CH-C5), 1.04 (9H, s, CH$_3$-tBuSi), 1.03 (3H, d, $J = 6.5$ Hz, CH$_3$-C35); 13C NMR (125 MHz, CDCl$_3$) δ 174.1 (C-C7), 135.7 (CH-PhSi), 135.6 (CH-PhSi), 134.2 (C-PhSi), 134.0 (C-PhSi), 129.6 (CH-PhSi), 127.7 (CH-PhSi), 83.5 (CH-C3), 74.2 (CH-C6), 61.5 (CH$_2$-C1), 61.5 (CH$_3$-MeO), 39.7 (CH-C4), 38.1 (CH$_2$-C5), 36.8 (CH$_2$-C2), 32.5 (CH$_3$-MeN), 27.0 (CH$_3$-BuSi), 19.3 (C-3BuSi), 16.1 (CH$_3$-C35); HRMS (Cl+, isobutane) calcd for
C_{26}H_{38}NO_{3}Si[M+H]^+ 456.2570, found 456.2571 (Δ +0.2 ppm).

1-[(2R,4R,5S)-5-{2-[(tert-Butyldiphenylsilyl)oxy]ethyl}-4-methyltetrahydrofuran-2-yl]prop-2-en-1-one. (454)

To a solution of Weinreb amide 453 (2.5 g, 5.5 mmol) in THF (150 mL) at −78 °C was added dropwise vinylmagnesium bromide (7.2 mL of a 1 M solution in THF, 7.2 mmol). The mixture was stirred for 1 h and the reaction was then quenched by the addition of 1 M aqueous HCl (75 mL). The mixture was allowed to warm slowly to rt and the organic component was extracted with CH_{2}Cl_{2} (3 × 100 mL). The combined organic extracts were washed with brine (150 mL), dried (MgSO_{4}) and then concentrated. Purification of the residue by chromatography (pet. ether/EtOAc, 9:1) afforded the title enone 454 (2.2 g, 86%) as a colourless oil. R_{f} = 0.16 (pet. ether/EtOAc, 20:1); [α]^{25}_D +20.5 (c = 1.50, CHCl_{3}); v_{max.} (liquid film) 3071, 2932, 2862, 1697, 1612, 1466, 1396, 1103, 702, 609 cm^{-1}; ^{1}H NMR (400 MHz, CDCl_{3}) δ 7.70–7.66 (4H, m, CH-PhSi), 7.45–7.35 (6H, m, CH-PhSi), 6.74 (1H, dd, J = 17.5, 10.6 Hz, CH-C8), 6.38 (1H, dd, J = 17.5, 1.7 Hz, CH-C9 trans), 5.76 (1H, dd, J = 10.6, 1.7 Hz, CH-C9 cis), 4.50 (1H, dd, J = 8.8, 7.6 Hz, CH-C6), 3.88–3.83 (2H, m, CH_{2}-C1), 3.72 (1H, td, J = 8.5, 3.3 Hz, CH-C3), 2.39 (1H, dt, J = 12.5, 7.6 Hz, CH-C5), 2.00–1.85 (2H, m, CH-C4 and CH-C2), 1.70 (1H, ddt, J = 13.9, 8.5, 5.4 Hz, CH-C2), 1.59 (1H, ddd, J = 12.5, 10.3, 8.8 Hz, CH-C5), 1.05 (9H, s, CH_{3}-tBuSi), 1.02 (3H, d, J = 6.6 Hz, CH_{3}-C35); ^{13}C NMR (100 MHz, CDCl_{3}) δ 201.3 (C-C7), 135.7 (CH-PhSi), 135.7 (CH-PhSi), 134.1 (C-PhSi), 134.0 (C-PhSi), 131.6 (CH-C8), 129.7 (CH-PhSi), 129.7 (CH_{2}-C9), 127.8 (CH-PhSi), 83.7 (CH-C3), 81.6 (CH-C6), 61.1 (CH_{2}-C1), 39.7 (CH-C4), 38.3 (CH_{2}-C5), 36.8 (CH_{2}-C2), 27.0 (CH_{3}-tBuSi), 19.4 (C-^1BuSi), 16.3 (CH_{3}-C35); HRMS (Cl+, isobutane) calcd for C_{26}H_{35}O_{3}Si [M+H]^+ 423.2355, found 423.2359 (Δ +0.9 ppm).
(1R)-1-[(2R,4R,5S)-5-[2-[(tert-Butyldiphenylsilyl)oxy]ethyl]-4-methyltetrahydrofuran-2-yl]prop-2-en-1-ol. (455)

To a solution of enone 454 (0.26 g, 0.63 mmol) and CeCl₃.7H₂O (0.25 g, 0.68 mmol) in MeOH (63 mL) at −78 °C was added solid NaBH₄ (26 mg, 0.68 mmol) in a single portion. The mixture was stirred for 1 h at −78 °C and then warmed to rt and concentrated in vacuo. The residue was partitioned between CH₂Cl₂ (20 mL) and H₂O (20 mL), the organic phase isolated and the aqueous phase was extracted with further CH₂Cl₂ (2 × 20 mL). The combined organic extracts were washed with brine (30 mL), dried (MgSO₄) and concentrated to afford the desired allylic alcohol 455 (0.27 g, 99%, dr > 9:1) as a colourless oil. R_f = 0.40 (pet. ether/EtOAc, 3:1); [α]₂⁴_D −12.0 (c = 1.00, CHCl₃); ν_max. (liquid film) 3466, 3071, 2958, 2930, 2858, 1427, 1109, 1089, 1027, 994, 926, 823, 739, 703 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.69–7.65 (4H, m, CH-PhSi), 7.45–7.36 (6H, m, CH-PhSi), 5.76 (1H, ddd, J = 17.2, 10.5, 6.1 Hz, CH-C₈), 5.36 (1H, dt, J = 17.2, 1.5 Hz, CH-C₉ trans), 5.19 (1H, dt, J = 10.5, 1.5 Hz, CH-C₉ cis), 3.93–3.87 (1H, m, CH-C₇), 3.84–3.74 (3H, m, CH₂-C₁ and CH-C₆), 3.59 (1H, td, J = 8.9, 2.9 Hz, CH-C₃), 2.48 (1H, d, J = 3.0 Hz, OH-C₇), 2.10–2.02 (1H, m, CH-C₅), 1.95–1.82 (2H, m, CH-C₂ and CH-C₄), 1.63 (1H, ddt, J = 13.9, 8.9, 5.2 Hz, CH-C₂), 1.32 (1H, ddd, J = 12.2, 10.8, 9.1 Hz, CH-C₅), 1.05 (9H, s, CH₃-BuSi), 1.01 (3H, d, J = 6.5 Hz, CH₃-C₃₅); ¹³C NMR (125 MHz, CDCl₃) δ 136.7 (CH-C₈), 135.7 (CH-PPh₃), 134.1 (C-PPh₃), 134.0 (C-PPh₃), 129.7 (CH-PPh₃), 127.8 (CH-PPh₃), 117.1 (CH₂-C₉), 82.1 (CH-C₃), 81.0 (CH-C₆), 76.3 (CH-C₇), 61.2 (CH₂-C₁), 40.4 (CH-C₄), 37.5 (CH₂-C₅), 37.0 (CH₂-C₂), 27.0 (CH₃-BuSi), 19.4 (C-BuSi), 16.4 (CH₂-C₃₅); HRMS (Cl⁺, isobutane) calcd for C₂₆H₃₇O₃Si 425.2512 [M+H]⁺, found 425.2509 (Δ = 0.7 ppm).
Mosher Analysis of Alcohol 455

\[
\Delta \delta_{SR} = (\delta_S - \delta_R)
\]

<table>
<thead>
<tr>
<th></th>
<th>(\delta S)-ester (PPM)</th>
<th>(\delta R)-ester (ppm)</th>
<th>ppm</th>
<th>Hz (400 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH-C9 trans</td>
<td>5.42</td>
<td>5.26</td>
<td>0.16</td>
<td>+64</td>
</tr>
<tr>
<td>CH-C9 cis</td>
<td>5.31</td>
<td>5.22</td>
<td>0.09</td>
<td>+36</td>
</tr>
<tr>
<td>CH-C8</td>
<td>5.84</td>
<td>5.65</td>
<td>0.19</td>
<td>+76</td>
</tr>
<tr>
<td>CH-C6</td>
<td>4.02</td>
<td>4.01</td>
<td>0.01</td>
<td>+4</td>
</tr>
<tr>
<td>CH-C5</td>
<td>1.97</td>
<td>2.06</td>
<td>-0.09</td>
<td>-36</td>
</tr>
<tr>
<td>CH-C5</td>
<td>1.23</td>
<td>1.29</td>
<td>-0.06</td>
<td>-24</td>
</tr>
<tr>
<td>CH-C4</td>
<td>1.84</td>
<td>1.90</td>
<td>-0.06</td>
<td>-24</td>
</tr>
<tr>
<td>CH(_3)-C35</td>
<td>0.92</td>
<td>1.00</td>
<td>-0.08</td>
<td>-32</td>
</tr>
<tr>
<td>CH-C3</td>
<td>3.49</td>
<td>3.54</td>
<td>-0.05</td>
<td>-20</td>
</tr>
<tr>
<td>CH-C2</td>
<td>1.78</td>
<td>1.82</td>
<td>-0.04</td>
<td>-16</td>
</tr>
<tr>
<td>CH-C2</td>
<td>1.62</td>
<td>1.66</td>
<td>-0.04</td>
<td>-16</td>
</tr>
<tr>
<td>CH(_2)-C1</td>
<td>3.75</td>
<td>3.76</td>
<td>-0.01</td>
<td>-4</td>
</tr>
<tr>
<td>(^t)Bu-C1 (^t)BuSi</td>
<td>1.03</td>
<td>1.03</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

(S)-MTPA ester: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.68-7.63 (4H, m, CH-PhSi), 7.54-7.50 (2H, m, CH-Ph MTPA), 7.43-7.33 (6H, m, CH-PhSi), 7.33-7.27 (3H, m, CH-Ph MTPA), 5.84 (1H, d, ddd, \(J = 17.5, 10.6, 7.1\) Hz, CH-C8), 5.46-5.38 (2H, m, CH-C7 and CH-C9 trans), 5.31 (1H, d, \(J = 10.6\) Hz, CH-C9 cis), 4.02 (1H, td, \(J = 9.2, 6.4\) Hz, CH-C6), 3.81-3.69 (2H, m, CH\(_2\)-C1), 3.49 (1H, dd, \(J = 8.9, 3.0\) Hz, CH-C3), 3.46 (3H, d, \(J = 0.8\) Hz, CH\(_3\)-MeO MTPA), 2.02-1.94 (1H, m, CH-C5), 1.87 - 1.81 (1H, m, CH-C4), 1.81-1.75 (1H, m, CH-C2), 1.67-1.58 (1H, m, CH-C2), 1.28-1.18 (1H, m, CH-C5), 1.03 (9H, s, CH\(_3\)-\(^t\)BuSi), 0.92 (3H, d, \(J = 6.5\) Hz, CH\(_3\)-C35).
(R)-MTPA ester: 1H NMR (400 MHz, CDCl$_3$) δ 7.66-7.62 (m, 4H, PhSi), 7.56-7.52 (m, 2H, Ph MTPA), 7.43-7.33 (6H, m, PhSi), 7.33-7.28 (3H, m, Ph MTPA), 5.65 (1H, ddd, $J = 17.3, 10.6, 6.8$ Hz, CH-C8), 5.37 (1H, $t = 7.4$ Hz, CH-C7), 5.26 (1H, dt, $J = 17.3, 1.2$ Hz, CH-C9 trans), 5.22 (1H, dt, $J = 10.6, 1.2$ Hz, CH-C9 cis), 4.05-3.97 (1H, m, CH-C6), 3.82-3.69 (2H, m, CH$_2$-C1), 3.54 (1H, $td, J = 9.0$, 2.9 Hz, CH-C3), 3.47 (3H, d, $J = 1.0$ Hz, CH$_2$-MeO MTPA), 2.10-2.01 (1H, m, CH-C5), 1.93-1.86 (1H, m, CH-C4), 1.86-1.78 (1H, m, CH-C2), 1.71-1.60 (1H, m, CH-C2), 1.33-1.24 (1H, m, CH-C5), 1.03 (9H, s, CH$_3$-BuSi), 1.00 (3H, d, $J = 6.5$ Hz, CH$_3$-C35).

tert-Butyl[(2-[2S,3R,5R]-5-[(1R)-1-[(4-methoxyphenyl)methoxy]prop-2-en-1-yl]-3-methyltetrahydrofuran-2-yl]ethoxy]diphenylsilane. (456)

To a stirred solution of allylic alcohol 455 (0.10 g, 0.24 mmol) and p-methoxybenzyltrichloroacetimidate (99 mg, 0.35 mmol) in CH$_2$Cl$_2$ (10 mL) was added La(OTf)$_3$ (7.2 mg, 0.012 mmol) and the mixture stirred at rt for 6 h. The reaction was quenched by the addition of H$_2$O (5 mL) and the mixture extracted with CH$_2$Cl$_2$ (3 × 5 mL), washed with brine (10 mL) and dried (MgSO$_4$). Concentration afforded a residue that was purified by chromatography (pet. ether/EtOAc, 98:2) to yield the title ether 456 (0.11 g, 82%) as a colourless oil. $R_f = 0.72$ (pet. ether/EtOAc, 3:1); [α]$_D^{24}$ = -19.1 ($c = 0.98$, CHCl$_3$); $ν_{max}$. (liquid film) 3071, 2956, 2931, 2857, 1612, 1513, 1246, 1108, 1084, 1035, 999, 926, 822, 739, 703 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 7.70-7.65 (4H, m, CH-PhSi), 7.43-7.33 (6H, m, CH-PhSi), 7.24 (2H, m, $J = 8.7$ Hz, CH-PMB Ar), 6.81 (2H, d, $J = 8.7$ Hz, CH-PMB Ar), 5.79-5.69 (1H, m, CH-C5), 5.30-5.24 (2H, m, CH$_2$-C9), 4.59 (1H, d, $J = 11.9$ Hz, CH-PMB alkyl), 4.40 (1H, d, $J = 11.9$ Hz, CH-PMB alkyl), 4.00 (1H, dt, $J = 9.4$, 4.0 Hz, CH-C6), 3.89-3.78 (2H, m, CH$_2$-C1), 3.77 (3H, s, CH$_3$-PMB alkyl), 3.75-3.70 (1H, m, CH-C7), 3.54 (1H, td, $J = 8.4$, 3.3 Hz, CH-C3), 1.99 (1H, dt, $J = 12.3$, 6.4 Hz, CH-C5), 1.90-1.78 (2H, m, CH-C2 and CH-C4), 1.69 (1H, ddt, $J = 13.7$, 8.4, 5.8 Hz, CH-C2), 1.42-1.28 (1H, m, CH-C5), 1.04 (9H, s, CH$_3$-BuSi), 0.98 (3H, d, $J = 6.5$ Hz, CH$_3$-C35); 13C NMR (100 MHz, CDCl$_3$) δ 159.1 (C-PMB Ar), 135.7 (CH-PhSi), 135.6 (CH-C8), 134.3 (C-PhSi), 134.2 (C-PhSi), 131.0 (C-PMB Ar), 129.6 (CH-PhSi), 129.6 (CH-PhSi), 129.3 (CH-PMB Ar), 127.7 (CH-PhSi), 118.6 (CH$_2$-C9), 113.8 (CH-PMB Ar), 82.5 (CH-C7), 82.3 (CH-C3), 79.9 (CH-C6), 70.2 (CH$_2$-PMB alkyl), 61.6 (CH$_2$-C1), 55.4 (CH$_3$-PMB alkyl), 39.7 (CH-C4), 37.4 (CH$_2$-C5), 37.1 (CH$_2$-C2), 27.0 (CH$_3$-BuSi), 19.4 (C- BuSi), 16.4 (CH$_3$-C35); HRMS (Cl+), isobutane) calcd for C$_{34}$H$_{60}$O$_5$Si [M+H]$^+$ 545.3087, found 545.3079 (Δ -1.5 ppm).
A solution of alkene \(456\) (82 mg, 0.15 mmol) and NMO (19 mg, 0.16 mmol) dissolved in a mixture of THF (2.0 mL) and \(H_2O\) (0.2 mL) was treated with OsO\(_4\) (17 \(\mu\)l of a 4% aqueous solution, 3.0 \(\mu\)mol) and the solution was stirred for 18 h at rt. The reaction was quenched by the addition of solid \(Na_2SO_3\) (60 mg) and the mixture was stirred for 30 minutes. The mixture was extracted with \(CH_2Cl_2\) (3 \(\times\) 10 mL) and this was washed with brine (15 mL), dried (\(MgSO_4\)) and concentrated. The crude residue was purified by chromatography (pet. ether/EtOAc, 3:1 to EtOAc) to afford the title diol \(457\) (76 mg, 88%) as a viscous yellow oil. \(R_f = 0.21\) (pet. ether/EtOAc, 1:1); \([\alpha]^{23}_D -1.3\) (c = 0.96, \(CHCl_3\)); \(\nu_{\text{max}}\) (liquid film) 3404, 2954, 2931, 2855, 1612, 1514, 1247, 1105, 1084, 1035, 823, 737, 701, 688 cm\(^{-1}\); \(^1\)H NMR (400 MHz, \(CDCl_3\)) \(\delta\) 7.68 – 7.62 (4H, m, CH‐PhSi), 7.44 – 7.32 (6H, m, CH‐PhSi), 7.23 (2H, d, \(J = 8.7\) Hz, CH‐PMB Ar), 6.85 (2H, d, \(J = 8.7\) Hz, CH‐PMB Ar), 4.63 (1H, d, \(J = 11.2\) Hz, CH‐PMB alkyl), 4.55 (1H, d, \(J = 11.2\) Hz, CH‐PMB alkyl), 4.14 (1H, dt, \(J = 10.0, 5.5\) Hz, CH‐C6), 3.82 – 3.74 (3H, m, CH\(_2\)‐C1 and CH‐C8), 3.79 (3H, s, CH\(_3\)‐PMB alkyl), 3.71-3.63 (3H, m, CH‐C3 and CH‐C9), 3.54 (1H, t, \(J = 5.5\) Hz, CH‐C7), 3.28 (1H, d, \(J = 6.3\) Hz, 1H, OH‐C8), 2.32 (1H, dd, \(J = 6.7, 5.8\) Hz, OH‐C9), 2.03 (1H, dt, \(J = 12.2, 5.5\) Hz, CH‐C5), 1.94-1.77 (2H, m, CH‐C2 and CH‐C4), 1.67-1.58 (1H, m, CH‐C2), 1.56-1.48 (1H, m, CH‐C5), 1.02 (3H, d, \(J = 6.5\), CH\(_3\)‐C35), 1.04 (9H, s, CH\(_3\)‐BuSi); \(^1^3\)C NMR (125 MHz, \(CDCl_3\)) \(\delta\) 159.5 (C‐PMB Ar), 135.7 (CH‐PhSi), 134.1 (C‐PhSi), 134.0 (C‐PhSi), 130.5 (C‐PMB Ar), 129.7 (CH‐PMB Ar), 129.7 (CH‐PhSi), 127.8 (CH‐PhSi), 114.0 (CH‐PMB Ar), 82.7 (CH‐C3), 80.5 (CH‐C7), 79.0 (CH‐C6), 73.7 (CH\(_2\)‐PMB alkyl), 71.5 (CH‐C8), 63.9 (CH\(_2\)‐C9), 61.3 (CH\(_2\)‐C1), 55.4 (CH\(_3\)‐PMB alkyl), 39.7 (CH‐C4), 37.2 (CH\(_2\)‐C2), 37.0 (CH\(_2\)‐C5), 27.0 (CH\(_3\)‐BuSi), 19.3 (C‐BuSi), 16.4 (CH\(_3\)‐C35); Anal. calcd for \(C_{34}H_{46}O_6Si\) C 70.55%, H 8.17%, found C 70.61%, H 8.01%.

(2R,3R)-3-[(2R,4R,5S)-5-[2-[(tert-Butyldiphenylsilyl)oxy]ethyl]-4-methyl tetrahydrofuran-2-yl]-3-[(4-methoxyphenyl)methoxy]propane, 1,2-diol. (457)
tert-butyl[(2R,3R)-3-[(2R,4R,5S)-5-2-{[(tert-butyldiphenylsilyloxy)ethyl]-4-methyltetrahydrofuran-2-yl]-2-hydroxy-3-{[(4-methoxyphenyl)methoxy]propoxy}dimethylsilane. (458)

To a solution of diol 457 (69 mg, 0.12 mmol) in CH₂Cl₂ (2 mL) was added sequentially Et₃N (25 µl, 0.18 mmol), DMAP (1.5 mg, 0.012 mmol) and TBSCl (20 mg, 0.13 mmol) and the mixture was stirred for 24 h at rt. The reaction was quenched with 1 M aqueous HCl (5 mL), extracted with CH₂Cl₂ (2 × 5 mL) and dried (MgSO₄). On filtration and concentration, the residue was purified by chromatography (pet. ether/EtOAc, 99:1 to 9:1) to yield the silyl ether 458 (44 mg, 53%) as a clear colourless oil. Rₛ = 0.29 (pet. ether: EtOAc, 9:1); [α]D²³ −8.5 (c = 1.85, CHCl₃); νmax (liquid film) 3480, 2951, 2931, 2860, 1248, 1078, 1035, 829, 699, 611 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.63 (4H, m, CH‐PhSi), 7.42–7.32 (6H, m, CH‐PhSi), 7.24 (2H, d, J = 8.7 Hz, CH‐PMB Ar), 6.83 (2H, d, J = 8.7 Hz, CH‐PMB Ar), 4.59 (2H, s, CH₂‐PMB), 4.19 (1H, ddd, J = 10.0, 6.2, 4.2 Hz, CH‐C6), 3.85–3.76 (3H, m, CH₂‐C1 and CH‐C8), 3.79 (3H, s, CH₃‐PMB), 3.68 (2H, m, CH₂‐C9), 3.67–3.64 (1H, td, J = 8.6, 3.3 Hz, CH‐C3), 3.42 (1H, dd, J = 5.0, 4.2 Hz, CH‐C7), 3.07 (1H, d, J = 5.8 Hz, OH‐C8), 2.00 (1H, dt, J = 12.0, 6.2 Hz, CH‐C5), 1.90–1.77 (2H, m, CH‐C2 and CH‐C4), 1.70–1.61 (1H, m, CH‐C2), 1.61–1.53 (1H, m, CH‐C5), 1.03 (9H, s, CH₃‐BuSi), 1.00 (3H, d, J = 6.5 Hz, CH₃‐C35), 0.88 (9H, s, CH₃‐BuSi), 0.05 (3H, s, CH₃‐MeSi), 0.04 (3H, s, CH₃‐MeSi); ¹³C NMR (125 MHz, CDCl₃) δ 159.3 (C‐PMB Ar), 135.7 (CH‐PhSi), 134.2 (C‐PhSi), 134.1 (C‐PhSi), 130.9 (C‐PMB Ar), 129.7 (CH‐PMB Ar), 129.6 (CH‐PhSi), 127.7 (CH‐PhSi), 113.8 (CH‐PMB Ar), 82.5 (CH‐C3), 79.6 (CH‐C7), 78.6 (CH‐C6), 73.2 (CH₂‐PMB alkyl), 72.2 (CH‐C8), 64.3 (CH₂‐C9), 61.5 (CH₂‐C1), 55.4 (CH₂‐PMB alkyl), 39.8 (CH‐C4), 37.3 (CH₂‐C2), 37.3 (CH₂‐C5), 27.0 (CH₃‐BuSi), 26.1 (CH₃‐BuSi), 19.3 (C₆H₅), 18.4 (C₆H₅), 16.4 (CH₂‐C35), −5.2 (CH₃‐MeSi), −5.2 (CH₃‐MeSi); HRMS (FAB, NOBA) calcd for C₄₀H₆₁O₆Si₂ [M+H]+ 693.4006, found 693.4011, (Δ +0.7 ppm).
Mosher Ester Analysis of Alcohol 458

Δδ SR (=δ_S - δ_R)

<table>
<thead>
<tr>
<th></th>
<th>δ S-ester (PPM)</th>
<th>δ R-ester (ppm)</th>
<th>ppm</th>
<th>Hz (500 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH<sub>3</sub>-C9 MeSi</td>
<td>0.05</td>
<td>0.02</td>
<td>0.03</td>
<td>+15</td>
</tr>
<tr>
<td>CH<sub>3</sub>-C9 MeSi</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>+10</td>
</tr>
<tr>
<td>CH<sub>3</sub>-C9 iBuSi</td>
<td>0.85</td>
<td>0.83</td>
<td>0.02</td>
<td>+10</td>
</tr>
<tr>
<td>CH-C9</td>
<td>4.00</td>
<td>3.96</td>
<td>0.04</td>
<td>+20</td>
</tr>
<tr>
<td>CH-C9</td>
<td>3.87</td>
<td>N/A</td>
<td>N/A</td>
<td>NA</td>
</tr>
<tr>
<td>CH-C7</td>
<td>3.43</td>
<td>3.61</td>
<td>-0.18</td>
<td>-90</td>
</tr>
<tr>
<td>CH-C7 PMB-CH<sub>2</sub></td>
<td>4.34</td>
<td>4.57</td>
<td>-0.23</td>
<td>-115</td>
</tr>
<tr>
<td>CH-C7 PMB-CH<sub>2</sub></td>
<td>4.29</td>
<td>4.53</td>
<td>-0.24</td>
<td>-120</td>
</tr>
<tr>
<td>CH-C7 PMB-CH<sub>3</sub></td>
<td>3.76</td>
<td>3.78</td>
<td>-0.02</td>
<td>-10</td>
</tr>
<tr>
<td>CH-C7 PMB-Ar</td>
<td>7.03</td>
<td>7.17</td>
<td>-0.14</td>
<td>-70</td>
</tr>
<tr>
<td>CH-C7 PMB-Ar</td>
<td>6.74</td>
<td>6.8</td>
<td>-0.06</td>
<td>-30</td>
</tr>
<tr>
<td>CH-C6</td>
<td>3.91</td>
<td>4.04</td>
<td>-0.13</td>
<td>-65</td>
</tr>
<tr>
<td>CH-C5</td>
<td>1.93</td>
<td>2.02</td>
<td>-0.09</td>
<td>-45</td>
</tr>
<tr>
<td>CH-C5</td>
<td>1.45</td>
<td>1.51</td>
<td>-0.06</td>
<td>-30</td>
</tr>
<tr>
<td>CH-C4</td>
<td>Not assignable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH<sub>3</sub>-C35</td>
<td>0.97</td>
<td>0.99</td>
<td>-0.02</td>
<td>-10</td>
</tr>
<tr>
<td>CH-C3</td>
<td>3.55</td>
<td>3.57</td>
<td>-0.02</td>
<td>-10</td>
</tr>
<tr>
<td>CH-C2</td>
<td>Not assignable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH-C2</td>
<td>1.62</td>
<td>1.64</td>
<td>-0.02</td>
<td>-10</td>
</tr>
<tr>
<td>CH<sub>3</sub>-C1 iBuSi</td>
<td>1.03</td>
<td>1.04</td>
<td>-0.01</td>
<td>-5</td>
</tr>
</tbody>
</table>
(S)-MTPA ester: 1H NMR (500 MHz, CDCl$_3$) δ 7.67-7.64 (4H, m, CH-PhSi), 7.64-7.59 (2H, m, CH-Ph MTPA), 7.43-7.31 (9H, m, CH-PhSi and CH-Ph MTPA), 7.03 (2H, d, J = 8.6 Hz, CH-PMB Ar), 6.74 (2H, d, J = 8.6 Hz, CH-PMB Ar), 5.22 (1H, dt, J = 7.3, 3.3 Hz, CH-C8), 4.34 (1H, d, J = 10.9 Hz, CH-PMB alkyl), 4.29 (1H, d, J = 10.9 Hz, CH-PMB alkyl), 4.00 (1H, dd, J = 11.8, 2.8 Hz, CH-C9), 3.95-3.86 (1H, m, CH-C6), 3.87 (1H, dd, J = 11.8, 7.3 Hz, CH-C9), 3.85-3.77 (2H, m, CH$_2$-C1), 3.76 (3H, s, CH$_3$-PMB alkyl), 3.62 (3H, s, CH$_3$-MeO MTPA), 3.55 (1H, td, J = 8.8, 2.9 Hz, CH-C3), 3.43 (1H, dd, J = 5.0, 3.3 Hz, CH-C7), 1.93 (1H, dt, J = 11.6, 6.6 Hz, CH-C5), 1.84-1.75 (2H, m, CH-C2 and C4), 1.66-1.58 (1H, m, CH-C2), 1.49-1.41 (1H, m, CH-C5), 1.03 (9H, s, CH$_3$-iBuSi), 0.97 (3H, d, J = 6.4 Hz, CH$_3$-C35), 0.85 (9H, s, CH$_3$-i' BuSi), 0.05 (3H, s, CH$_3$-MeSi), 0.04 (3H, s, CH$_3$-MeSi).

(R)-MTPA ester: 1H NMR (500 MHz, CDCl$_3$) δ 7.67-7.63 (4H, m, CH-PhSi), 7.58-7.55 (2H, m, CH-Ph MTPA), 7.42-7.31 (9H, m, CH-PhSi and CH-Ph MTPA), 7.17 (2H, d, J = 8.6 Hz, CH-PMB Ar), 6.80 (2H, d, J = 8.6 Hz, CH-PMB Ar), 5.21 (1H, dt, J = 7.3, 3.5 Hz, CH-C8), 4.57 (1H, d, J = 11.1 Hz, CH-PMB alkyl), 4.53 (1H, d, J = 11.1 Hz, CH-PMB alkyl), 4.04 (1H, dt, J = 9.8, 5.7 Hz, CH-C6), 3.96 (1H, dd, J = 11.6, 3.5 Hz, CH-C9), 3.88-3.79 (3H, m, CH$_2$-C1 and CH-C9), 3.78 (3H, s, CH$_3$-PMB alkyl), 3.64-3.58 (1H, m, CH-C7), 3.57 (1H, td, J = 8.8, 2.9 Hz, CH-C3), 3.49 (3H, s, CH$_3$-MeO MTPA), 2.02 (1H, dt, J = 11.8, 6.6 Hz, CH-C5), 1.88-1.78 (2H, m, CH-C2 and C4), 1.68-1.60 (1H, m, CH-C2), 1.54-1.48 (1H, m, CH-C5), 1.04 (9H, s, CH$_3$-iBuSi TBDPS), 0.99 (3H, d, J = 6.5 Hz, CH$_3$-C35), 0.83 (9H, s, CH$_3$-iBuSi), -0.02 (3H, s, CH$_3$-MeSi), -0.02 (3H, s, CH$_3$-MeSi).

(2S)-2-[(2R,4R,5S)-5-{2-[[tert-Butyldiphenylsilyloxy]ethyl]-4-methyltetrahydrofuran-2-yl]-2-[(4-methoxyphenyl)methoxy]acetaldehyde. (461)

Sodium periodate (73 mg, 0.34 mmol) was added to a solution of diol 457 (0.10 g, 0.17 mmol) in a mixture of THF (2.6 mL) and H$_2$O (0.30 mL) at rt. The mixture was stirred for 30 minutes at rt and then diluted with H$_2$O (3 mL). The mixture was extracted with CH$_2$Cl$_2$ (4 × 4 mL) and the organic extracts were dried (MgSO$_4$). The mixture was concentrated to afford the crude aldehyde which was used directly in the following step. R$_f$ = 0.41 (pet. ether/EtOAc, 1:1). ν$_{max}$ (liquid fim) 2957, 2931, 2857, 1731, 1612, 1513, 1248, 1105, 1034, 1008, 909, 822, 732, 700 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 9.67 (1H, d, J = 1.7 Hz, CH-C8), 7.70-7.63 (4H, m, CH-PhSi), 7.45-7.33 (6H, m, CH-PhSi), 7.26 (2H, d, J = 8.6 Hz, CH-PMB Ar), 6.86 (2H, d, J = 8.6 Hz, CH-PMB Ar), 4.68 (1H, d, J =
11.7 Hz, CH-PMB alkyl), 4.56 (1H, d, J = 11.7 Hz, CH-PMB alkyl), 4.24 (1H, ddd, J = 9.3, 6.3, 4.5 Hz, CH-C6), 3.80 (3H, s, CH3-PMB alkyl), 3.82-3.71 (3H, m, CH2-C1 and CH-C7), 3.64 (1H, td, J = 8.6, 3.1 Hz, 1H, CH-C3), 2.06 (1H, dt, J = 12.2, 6.7 Hz, CH-C5), 1.89-1.79 (2H, m, CH-C4 and CH-C2), 1.69-1.52 (2H, m, CH-C2 and CH-C5), 1.05 (9H, s, CH3-tBuSi), 1.02 (3H, d, J = 6.5 Hz, CH3-C35); 13C NMR (100 MHz, CDCl3) δ 203.7 (C-C8), 159.6 (C-PMB Ar), 135.7 (CH-PhSi), 134.2 (C-PhSi), 134.1 (C-PhSi), 129.9 (CH-PhSi), 129.7 (CH-PMB Ar), 129.5 (C-PMB Ar), 127.7 (CH-PhSi), 114.0 (CH-PMB Ar), 84.9 (CH-C7), 82.8 (CH-C3), 77.7 (CH-C6), 73.0 (CH2-PMB alkyl), 61.3 (CH2-C1), 55.4 (CH3-PMB alkyl), 39.6 (CH-C4), 37.0 (CH2-C2), 36.7 (CH2-C5), 27.0 (CH3-tBuSi TBDPS), 19.3 (C-tBuSi), 16.2 (CH3-C35).

(1R,2R)-1-[(2R,4R,5S)-5-{2-[(tert-Butyldiphenylsilyl)oxy]ethyl}-4-methyl methyltetrahydrofuran-2-yl]propane-1,2,3-triol. (442)

Palladium on carbon (14 mg, 10% wt.%) was added to a solution of PMB ether 457 (137 mg, 0.24 mmol) in methanol (2.5 mL) under a nitrogen atmosphere. The flask was purged and refilled with hydrogen and the process repeated two times. The mixture was stirred for 16 h at rt and the reaction mixture was filtered through celite, concentrated and purified by chromatography (pet. ether/Et2O, 1:3) to afford triol 442 (35 mg, 32%) as a clear oil. Rf = 0.22 (Et2O); [α]D28 = -18.3 (c = 1.70, CHCl3); νmax. (liquid film) 3401, 2957, 2930, 2857, 1473, 1427, 1072, 700 cm⁻¹; 1H NMR (500 MHz, CDCl3) δ 7.70–7.64 (4H, m, CH-PhSi), 7.45–7.35 (6H, m, PhSi), 4.06 (1H, ddd, J = 9.8, 6.2, 3.8 Hz, CH-C6), 3.85–3.77 (2H, m, CH2-C1), 3.72 (2H, t, J = 5.3 Hz, CH2-C9), 3.66-3.60 (2H, m, CH-C3 and CH-C8), 3.53 (1H, ddd, J = 7.2, 5.5, 3.8 Hz, CH-C7), 2.66 (1H, d, J = 7.3 Hz, OH-C8), 2.46 (1H, d, J = 7.2 Hz, OH-C7), 2.31-2.22 (1H, m, OH-C9), 2.07 (1H, dt, J = 12.4, 6.2 Hz, CH-C5), 1.97-1.90 (1H, m, CH-C4), 1.89-1.82 (1H, m, CH-C2), 1.69-1.59 (2H, m, CH-C2 and CH-C5), 1.07 (9H, s, CH3-tBuSi), 1.04 (3H, d, J = 6.5 Hz, CH3-C35); 13C NMR (125 MHz, CDCl3) δ 135.8 (CH-PhSi), 134.2 (C-PhSi), 134.2 (C-PhSi), 129.8 (CH-PhSi), 127.8 (CH-PhSi), 83.2 (CH-C3), 78.1 (CH-C6), 74.1 (CH-C7), 73.3 (CH-C8), 64.1 (CH2-C9), 61.3 (CH2-C1), 40.2 (CH-C4), 37.6 (CH2-C5), 37.4 (CH2-C2), 27.1 (CH3-tBuSi), 19.4 (C-tBuSi), 16.3 (CH3-C35); HRMS (Cl+, isobutane) calcd for C26H39O5Si [M+H]+ 459.2567, found 459.2561 (Δ -1.3 ppm).
(1R,2R)-1-[(2R,4R,5S)-5-{2-{(tert-Butyldiphenylsilyl)oxy}ethyl]-4-methyl methyltetrahydrofuran -2-yl]propane-1,2,3-triol. (442)

LiAlH₄ (2.0 mg, 0.53 mmol) was added to a stirred solution of ester 441 (17 mg, 0.035 mmol) in THF (1 ml) at rt. The mixture was stirred for 1 h and was quenched by the sequential addition of H₂O (0.1 mL), 10% aqueous NaOH (0.1 mL), H₂O (0.1 mL) and MgSO₄ (0.2 g). The solution was filtered and the ¹H NMR spectra of the compound matched that of the previously characterised material.
Appendix 1: Selected NMR Spectra

(4R)-5-{[(tert-Butyl(dimethyl)silyl)oxy]-1-diazo-4-(prop-2-en-1-xyloxy)pentan-2-one.
(326a)

(4R)-5-{[(tert-Butyl(dimethyl)silyl)oxy]-1-diazo-4-(prop-2-en-1-xyloxy)pentan-2-one.
(326a)
Appendix 1: Selected NMR Spectra

[(2R,5R)-5-[(tert-Butyldiphenylsilyloxy)ethyl]tetrahydrofuran-2-yl]methanol.

(348)

[Chemical structure image]

[(2R,5R)-5-[(tert-Butyldiphenylsilyloxy)ethyl]tetrahydrofuran-2-yl]methanol.

(348)

[Chemical structure image]
Appendix 1: Selected NMR Spectra

\[\text{tert-Butyl(dimethyl)\{[(3E,5S)-4-methyl-6-methylidenecyclo-hex-1-en-5-yl]oxy\}silane.} \] (412)

\[\text{tert-Butyl(dimethyl)\{[(3E,5S)-4-methyl-6-methylidenecyclo-hex-1-en-5-yl]oxy\}silane.} \] (412)
Appendix 2: Published Journal Articles

Synthesis of the C-18–C-34 Fragment of Amphidinolides C, C2, and C3

J. Stephen Clark,* Guang Yang, and Andrew P. Osnowski

WestCHEM, School of Chemistry, Joseph Black Building, University of Glasgow,
University Avenue, Glasgow G12 8QQ, United Kingdom
stephen.clark@glasgow.ac.uk

Received February 21, 2013

The amphidinolides are macrocyclic natural products extracted from symbiotic dinoflagellates of the genus Amphidinium cultivated from the Okinawan flatworms of the Amphileptus species. Several members of this diverse group of macrolides exhibit potent cytotoxicity and possess other biological activities, but in most cases the substantial quantities of material required in order to fully establish their therapeutic potential are not available.1 Amphidinolide C2 (1) and the closely related congeners amphidinolides C2 (2), C3 (3), and F5 (4) are particularly attractive targets for total synthesis because of their powerful in vitro activities and the synthetic challenges that their complex molecular architectures present (Figure 1). Several groups have reported syntheses of fragments of these natural products,2b–d,2e,2f but only very recently has a total synthesis of one member of the family, amphidinolide F (4), been published.2g

Amphidinolide C was isolated by Kobayashi et al. in 1958 and was found to possess cytotoxic activity against both murine lymphoma and epidermoid carcinoma KB cell lines.2h Subsequently, the absolute and relative configurations of this and the other natural products in the series were established and their bioactivities were determined, and...
providing insights into the structure–activity relationships (SARs) within this unique set of compounds.

![Chemical structure of amphi (top) and mone (middle) anions and epo (bottom) carboxylic acid](image)

Figure 1. Amphi (top) and mone (middle) anions and epo (bottom) carboxylic acid

The 25-membered macro lactone core of amphi C contains two 2,5-trans substituted tetrahydrofurans embedded in its structure and an unsaturated side chain (C-25 to C-34). The significant differences in biological activity between amphi C, C2, and F result from structural variations in the side-chain region of these compounds. The C-29 hydroxyl group confers potent bioactivity on amphi C, and the absence of this substituent or removal of its H-bond donor capacity by acetylation results in a 1000-fold reduction in activity (Figure 1). This observation regarding the SAR encouraged us to adopt a modular synthetic approach in which the side chain of amphi C and analogues would be constructed using Pd-catalyzed coupling reactions.

The retrosynthetic analysis of amphi C is shown in Scheme 1. Initial disconnection of the lactone C=O bond and the C-17−C-18 bond leads to the ‘southern’ and ‘northern’ fragments I and II respectively. Simplification of the ‘northern’ fragment II leads to the diene III, and further disconnection of the C-26—C-27 bond provides a vinylc halide v and a propargylic alcohol iv. The latter can be obtained from a trans 2,5-disubstituted dihydrofurano and a type generated by a highly diastereoselective metal-mediated reaction of the diaco ketone viii. In the overall synthetic plan, it is expected that dihydrofurano will serve as a precursor to the C-1 to C-7 portion of the southern fragment I, allowing both key tetrahydrofurans-containing fragments to be prepared from a common intermediate. A similar strategy was employed by Carter and Mahaparia in their very recent total synthesis of amphi C.

Scheme 1. Retrosynthetic Analysis of Amphi C

The requisite dihydrofurano was prepared from dimethyl α-malate (Scheme 2). Selective reduction of the α-hydroxy ester using the procedure by Saito et al. provided a diol, the primary hydroxyl group of which was protected to give the TBS ether. The remaining secondary hydroxyl group was then allylated using the acid-catalyzed reaction of an imidate to afford the allyl ether. Saponification of the ester provided the carboxylic acid, and activation of this as a mixed anhydride followed by treatment with a solution of diazomethane gave the diaco ketone. Treatment of this compound with Cu(acac)2 in THF at reflux afforded the dihydrofurano as a single isomer in high yield.

Following the synthesis of the ketone, the first challenge was the deletion of the carbonyl group from the ring to provide the tetrahydrofuran corresponding to the C-18 to C-24 subunit of amphi C. Initial attempts to perform removal of the ketone were undertaken by formation of a tosyl hydrazine followed by

Appendix 2: Published Journal Articles

Scheme 2. Synthesis of trans-Dihydrofuranone 10

Scheme 3. Synthesis of Propargylic Alcohol 16

reduction. However, this approach was unsuccessful and so the use of radical deoxygenation methods was explored (Scheme 3). The ketone 10 was reduced to a diastereomeric mixture of alcohols 11 that were then converted into the corresponding xanthate esters. Treatment of this mixture under Barton-McCombie conditions delivered the deoxygenated tetrahydrofuran 12. Oxidation and reduction then afforded the alcohol 13 in an overall yield of 73% over four steps, with minimal purification necessary. Protection of the primary alcohol as a tert-butylidiphenylsilyl ether followed by selective acid-catalyzed removal of the TBS group generated the alcohol 14. Oxidation of the primary alcohol using the Dess-Martin protocol provided the aldehyde 15 required for the addition of an alkyl nucleophile.

Several sets of reaction conditions were examined in an effort to perform a stereoselective nucleophilic attack on the aldehyde 15. Attempted reagent-controlled introduction of the alkynyl using Carreira’s alkynylation protocol did not proceed efficiently. Efforts to achieve substrate control by using various alkynyl nucleophiles and reaction conditions were not successful; a 1:5:1 mixture of the diastereomeric propargylic alcohols 16a and 16b was obtained from the reaction performed with magnesium trimethylhydrazymine in THF at −78 °C. Oxidation of the mixture of alcohols to the corresponding ynone proceeded in good yield, but attempted stereoselective ketone reduction using a s-selectride or under Luche conditions at −78 °C resulted in little stereoc柄ol (1:1 and 1.5:1 of 16a:16b, respectively).

Following preparation of the propargyl alcohols 16a,b, attention turned to the synthesis of the vinlyl iodide coupling partner 19 (Scheme 4). Hexanal was methylenated under Mannich conditions and the resulting enol was subjected to the Grignard addition of TMS acetylene to provide a racemic mixture of propargylic alcohols 17. Kinetic resolution was then performed using Sharpless asymmetric epoxidation, and the allylic alcohol (S)-17 was obtained with 98% ee. TBS protection of the secondary alcohol, removal of the TMS group, and subjection of the resulting terminal alkyne to modified Negishi carboamination and iodination conditions provided the unstable E-vinyl iodide 19 stereoselectively and in good yield.

Although it was possible to separate the diastereomeric alcohols 16a,b, the mixture was used in the subsequent step. Coupling of the vinlyl iodide 19 to a mixture of the propargylic alcohols 16a,b under Sonogashira conditions was achieved in 82% yield (Scheme 5). The propargylic alcohol functionality of the coupled products 20a,b allowed stereoselective reduction of the alkyne to be achieved using Red-Al to give the desired E-configured alkenes 21a,b. Oxidation of the diastereomeric mixture of allylic alcohols to give the enone was accomplished in quantitative yield using the Dess-Martin periodinane. A subsequent stereoselective Luche reduction of the diene provided the alcohol 21a corresponding to the entire C-18

[References]

The power of the Sonogashira coupling reaction for the installation of a range of t2 units was further illustrated by the construction of the C-18—C-29 fragment of amphirolide F (Scheme 6). In this case, a copper-free variant of the Sonogashira reaction was used to couple 1-bromo-2-methylene to the alkyne 16a. This modification to the procedure was required because significant homocoupling of the alkyne was encountered when the reaction was performed in the presence of copper iodide. When pyridine was used as the solvent, clean coupling occurred to provide 22 in 75% yield. The propargylic alcohol was reduced to the corresponding 5-allyl alcohol 23 in an analogous manner to the reduction of 20a,b (Scheme 5).

In summary, we have synthesized the C-18—C-34 fragment of amphirolide C and the C-18—C-29 fragment of amphirolide F using routes in which diastereoselective rearrangement of the diazo ketone 9 is used to construct the key trans-2,5-disubstituted tetrahydrofururan. The entire 'northern' fragments 21a and 23 were constructed from 16 using Sonogashira coupling reactions to install the side chains found in the natural products. Stereo-selective enone reduction was used to control the stereochemistry at C-24 in the case of the C-18—C-34 fragment of amphirolide C.

Acknowledgment. The authors acknowledge WestCHEM, CSC, EPSRC, and the University of Glasgow for funding.

Supporting Information Available. Experimental procedures and data for 7—23. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.
Appendix 2: Published Journal Articles

Synthesis of the C-1—C-17 Fragment of Amphidinolides C, C2, C3, and F

J. Stephen Clark,* Guang Yang, and Andrew P. Osnowski

WestCHEM, School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
stephen.clark@glasgow.ac.uk

Received February 21, 2013

ABSTRACT

The C-1—C-17 fragment of amphidinolides C, C2, C3, and F has been constructed from a trans-2,6-disubstituted dihydropyranone prepared by diastereoselective rearrangement of a free or metal-bound oxonium ylide generated from a metal carbeneid. The dihydropyranone was converted into an aldehyde corresponding to the C-1—C-8 framework, and this was coupled to the C-8—C-17 unit by nuclophilic addition of a vinyl anion.

Amphidinolides C, C2, C3, and F are structurally related members of a large family of marine natural products isolated from microalgae of amphidium sp. (Figure 1). Amphidinolide C possesses substantial anticancer activity (IC50 values < 0.01 µg mL−1 against certain cell lines).1

Figure 1. Amphidinolides C, C2, C3, and F.

The unique structures and bioactivities of amphidinolides C, C2, C3, and F have aroused significant interest in their syntheses, and several groups have reported syntheses of fragments of the compounds.2 Very recently, Carter and Mahapatra completed a synthesis of amphidinolide F in which a common intermediate was used to prepare both tetrahydrofurans.

The macrocyclic lactone common to amphidinolides C, C2, C3, and F (1–4, Figure 1) contains two trans-2,5-disubstituted tetrahydrofurans. The similarity of the rings inspired us to design a synthesis in which a readily accessible dihydrofurane bearing suitable functionality would serve as a common intermediate for the construction of two acyclic fragments of similar size and complexity, thus laying the foundations for convergent and efficient total synthesis of all four natural products. This approach has been validated recently by Mahapatra and Carter who completed their total synthesis of amphidinolide F from a common tetrahydrofuran intermediate.7

Scheme 1. Retrosynthetic Analysis of Amphidinolide C

The retrosynthetic analysis of amphidinolide C is shown in Scheme 1. As described in the preceding paper, initial disconnection of the lactone C–O bond and the C-17–C-18 bond gives the ‘northern’ and ‘southern’ fragments II and I. Disconnection of the ‘southern’ fragment I through the C-4–C-9 bond leads to the vinyl organosilane compound III and the aldehyde IV. The vinyl organosilane compound III can be converted into the ene y, implying regioselective hydrometallation of the alkene in the forward direction. Disconnection through the C-10–C-11 alkyne and oxidation at C-13 then reveals the β-hydroxy ketone VI. Subsequent aldol disconnection between C-14 and C-15 leads to the aldehyde VIII and the ketone IX, both of which can be prepared from chiral pool materials. The aldehyde IV can undergo two one-carbon disconnections to give the ketone X which corresponds to the intermediate used in our synthesis of the ‘northern’ fragment.8 Consequently, the intermediate prepared by diastereoselective rearrangement of a free or metal-bound oxonium ylide, generated by intramolecular cyclization of a copper carbene,9 will be used for the preparation of both the ‘northern’ and ‘southern’ fragments II and I.

Scheme 2. Construction of the C-1–C-7 Fragment

The dihydrofuranone 5 corresponding to the C-1–C-7 fragment was prepared from dimethylmalonate in six steps as described in the preceding paper.8 Wittig methylation of the ketone 5 proceeded to afford diene 6 in quantitative yield (Scheme 2). Selective dihydroxylation of the

side-chain alkenes was achieved in 64% yield, and the resulting diol was then subjected to oxidative cleavage. The intermediate aldehyde was reduced with NaBH$_4$ to provide the alcohol 7, which was to be subjected to hydrogenation of the methylene group to install the C-4 methyl substituent. The stereochemical outcome hydrogenation reactions through reversible coordination to hydroxyl or carbonyl groups is preceded, and gratifyingly this approach proved to be successful in our case. Hydrogenation of the allicene 7 using Crabtree’s catalyst (12 mol %) afforded the saturated product as a single isomer, and this compound was then converted into the alcohol 8 in good yield by silylation of the hydroxy group with tert-butylidiphenylsilyl chloride and subsequent cleavage of the TBS ether.

The carboxylic acid 9 was prepared from the alcohol 8 by sequential Dess-Martin and Pinnick oxidation reactions. Subsequent HBTU-mediated coupling of the carboxylic acid 9 to x,α-dimethyldihydroxamine afforded the Weinreb amide 10. Treatment of this amide with vinylmagnesium bromide resulted in the formation of the corresponding enone. An alternative synthesis of the enone by sequential oxidation of alcohol 8 to the aldehyde, addition of vinylmagnesium bromide, and oxidation of the resulting diastereomeric mixture of alcohols afforded material that was difficult to purify in 53% yield. A Luche reduction of the enone resulted in the deact formation of the required diastereomer (dr > 9:1) and was followed by PMB protection of the allylic alcohol by a Lewis acid catalyzed reaction with a trichloroacetimidate. Construction of the aldehyde 12, which corresponds to the C-1–C-8 fragment, was completed by dihydroxylation of the allicene followed by oxidative cleavage of the 1,2-diol.

Scheme 3. Synthesis of Ketone 16 and Aldehyde 19

Scheme 4. Construction of the C-9–C-17 Fragment

Synthesis of the C-9–C-17 fragment began with construction of the fragments shown in Scheme 3. The commercially available ester 13 was first α-methylated stereoselectively (dr > 10:1) and in high yield. The hydroxyl group of the resulting β-hydroxy ester 14 was then protected, and the alcohol was converted to the Weinreb amide 15. Transformation of the amide into the target methyl ketone 16 was accomplished cleanly and in high yield by reaction of the amide 15 with methylmagnesium bromide. Aldehyde 19, the requisite aldol coupling partner, was prepared from the Roche ester 17. Protection of the hydroxyl group as a TBS ether was followed by conversion of the ester into the Weinreb amide 18. Reduction of the Weinreb amide with Dibal-H at low temperature afforded the aldehyde 19. Aldol condensation of the aldehyde 19 with the boron enolate generated from the methyl ketone 16 proceeded in excellent yield and afforded the β-hydroxy ketone 20 as a single diastereoisomer (Scheme 4), presumably as a consequence of reinforcing 1,4- and 1,5-stereinduction. Stereoselective directed ketone reduction with triethylammonium triacetoxoborohydride afforded the anti-1,3-diol with a high level of diastereoselectivity (dr > 25:1). Silylation of both hydroxyl groups was accomplished by treatment of the diol with tert-butyldimethylsilyl triflate, and the PMB ether was cleaved with DDQ under standard conditions. Oxidation of the resulting secondary alcohol 21 afforded the corresponding ketone, and this was subjected to Horner–Wadsworth–Emmons olefination with phosphonate 22 (E/Z > 15:1). Removal of the trimethylsilyl group with potassium carbonate in wet methanol afforded the C-9–C-17 terminal alkyne 23, and subsequent palladium-catalyzed hydrostannylation with tributyltin hydride afforded the vinyl stannane 24 in good yield.17

Appendix 2: Published Journal Articles

Fragment coupling to complete the entire C1–C17 fragment was performed as shown in Scheme 5. Subjection of the vinyl stannane 24 to tin–lithium exchange and addition of the lithiated intermediate to the aldehyde 12 afforded the alcohol 25 with high diastereoselectivity (dr > 10:1). The configuration of the newly created stereogenic center at C-8 was assigned as S based on comparison of NMR data with those of closely related compounds prepared by Carter and Mahapatra during their recently reported total synthesis of amphidinolide F. Thus, it was clear that the diastereomer of the required alcohol had been obtained and inversion of configuration at the C-8 stereogenic center was required. Oxidation of the alcohol with Dess–Martin periodinane afforded the corresponding enone, and highly diastereoselective 1,2-reduction of the carbonyl group under Luche conditions afforded the alcohol 26 (dr > 15:1) with the required R configuration at the C-8 stereogenic center. The stereoochemical outcome of the ketone reduction reaction was confirmed by comparison of the 1H and 13C NMR data obtained for the diastereomeric alcohols 25 and 26 with those of the closely related compound (C1–C14 fragment) prepared by Mahapatra and Carter.7,8

In summary, the C1–C17 fragment of amphidinolide C has been prepared in an efficient and stereoselective fashion. An important feature of this synthesis is the use of

(18) For tabulated selected NMR data, see Supporting Information.
(19) Luche reduction of the enone prepared from the alcohol 25 was very slow, and some decomposition occurred. The yield of 37% is unoptimized.

Supporting Information Available. Experimental procedures and data for 6–12, 14–16, 18–21, and 23–26, plus intermediate compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.
References Used in Text

References Used in Text

Bertrand, G. *Carbene chemistry: from fleeting intermediates to powerful reagents*, Marcel Dekker Incorporated, **2002**.

Kirmse, W. *Carbene chemistry*, Academic Press, **1964**.

References Used in Text

144 Clark, J. S. Fessard, T. C., Wilson, C. *Org. Lett.* 2004, 6, 1773-1776.

147 Fessard, T. C. University of Nottingham 2005.

170 Yang, G. University of Glasgow 2013.

246

References Used in Text

Catalyst prepared according to the methodology discussed within Reference 158.

