Un1ver51ty

Qf Glasgow

Esparcia Alcazar, Anna Isabel (1998) Genetic programming for adaptive
digital signal processing. PhD thesis.

http://theses.gla.ac.uk/4780/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.qgla.ac.uk/
theses@gla.ac.uk

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4780/

GENETIC PROGRAMMING
FOR
ADAPTIVE DIGITAL SIGNAL PROCESSING

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND ELECTRICAL ENGINEERING
OF GLASGOW UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Anna Isabel Esparcia Alcdzar
May 1998

© Copyright 1998 by Anna Isabel Esparcia Alcazar
All Rights Reserved

A Angel, Pepa y Alicia.

Abstract

This thesis is devoted to presenting the application of the Genetic Programming (GP)

paradigm to a class of Digital Signal Processing (DSP) problems. Its main contributions

are

¢ a new methodology for representing Discrete-Time Dynamic Systems (DDS) as expres-
sion trees. The objective is the state space specification of DDSs: the behaviour of a
system for a time instant ¢ > ¢ is completely accounted for given the inputs to the
system and also a set of quantities which specify the state of the system. This means
that the proposed method must incorporate a form of memory that will handle this

informadtion.

For this purpose a number of node types and associated data structures are defined.
These will allow for the implementation of local and time recursion and also other
specific functions, such as the sigmoid commonly encountered in neural networks. An

example is given by representing a recurrent NN as an expression tree.

e a new approach to the channel equalisation problem. A survey of existing methods for
channel equalisation reveals that the main shortcoming of these techniques is that they
rely on the assumption of a particular structure or model for the system addressed. This
implies that knowledge about the system is available; otherwise the solution obtained

will have a poor performance because it was not well matched to the problem.

This gives a main motivation for applying GP to channel equalisation, which is done
in this work for the first time. Firstly, to provide a unified technique for a wide class
of problems, including those which are poorly understood; and secondly, to find alter-
native solutions to those problems which have been successfully addressed by existing

techniques.

In particular, in the equalisation of nonlinear channels, which have been mainly ad-
dressed with Neural Networks and various adaptation algorithms, the proposed GP

approach presents itself as an interesting alternative.

¢ a new way of handling numerical parameters in GP, node gains. A node gain is a

numerical parameter associated to a node that multiplies its output value. This concept

was introduced by (Sharman and Esparcia-Alcdzar 1993) and is fully developed here.

The motivation for a parameterised GP is addressed, together with an overview of how it
has been addressed by other authors. The drawbacks of these methods are highlighted:
there is no established way of determining the number of parameters to use and their
placement; further, unused parameters can be unnecessarily adapted while, on the other
hand, useful ones might be eliminated. The way in which node gains overcome these
problems is explained. An extra advantage is the possibility of expressing complex

systems in a compact way, which is labelled “compacting effect” of node gains.

The costs of node gains are also pointed out: increase in the degrees of freedom and
increased complexity. This, in theory, results in an increase of computational expense,
due to the handling of more complex nodes and to the fact that an extra multiplication
is needed per node. These costs, however, are expected to be of, at most, the same

order of magnitude as those of the alternatives.

Experimental analysis shows that random node gains may not be able to achieve all
the potential benefits expected. It is conjectured that optimisation of the values is
needed in order to attain the full benefits of node gains, which brings along the next

contribution.

a mathematical model is given for an adaptive GP. As concluded from the previous
point, adaptation of the values of the node gains is needed in order to take full advan-
tage of them. A Simulated Annealing (SA) algorithm is introduced as the adaptation
algorithm. This is put in the context of an analogy: the adaptation of the gains by SA

is equivalent to the learning process of an individual during its lifetime.

This analogy gives way to the introduction of two learning schemes, labelled Lamarckian

and Darwinian, which refer to the possibility of inheriting the learned gains.

The Darwinian and Lamarckian learning schemes for GP are compared to the standard
GP technique and also to GP with random node gains. Statistical analysis, done
for both fixed and time-varying environments, shows the superiority of both learning
methods over the non-learning ones, although it is not possible at this stage to determine

which of the two provides a better performance.

a number of interesting results in the channel equalisation problem. These are com-
pared to those obtained by other techniques and it is concluded that the proposed
method obtains better or similar performance when extreme values (maximum fitness

or minimum error) are considered.

ii

Acknowledgements

First and foremost I would like to thank my supervisor, Dr. Ken Sharman, whose experience,
eagerness and passion for science were always an inspiration to me. From his obsession with
perfection I also hope to have benefited (it would only be fair, since it has tortured me so
often) and I sincerely hope he will not consider his efforts wasted.

Thanks also to Dr. David Fogel, who showed the utmost patience and helped me a great
deal with the statistical analysis, and to Professors Wilkinson and Murray-Smith, who gave
me some useful hints.

To my colleagues and people from Glasgow University, who helped to alleviate the sorrows
of student life, to name but a few: Euan, Gary, Graham, Tom (my favourite technician) and
the lads from the Centre for Music Technology. Special mention to Iain and Henrik, who
helped me with IATEX , to Jests, who provided many an interesting philosophical discussion
and to the popmobility teachers in the Sports and Recreation Service, who helped me keep
fit while working on this thesis.

Last but not least, thanks to my parents and my sister, who were an endless source of
support, both moral and financial. I hope they’ll be proud enough to shed a few tears over
this thesis.

iii

Contents

Abstract

Acknowledgements

1 Introduction

1.1
1.2
1.3
1.4

1.5
1.6

Overview e e
Background on Evolutionary Computation,
Genetic Algorithms (GAs)
Genetic Programming Lo
1.4.1 Characteristics e
1.4.2 Expression Tree and Node Vector.
Background on Simulated Annealing

Summary of the thesis. 00 0oL

2 Representing DDS’s as Expression Trees

2.1
2.2
2.3

24
2.5
2.6

2.7

Introduction
State Space Specification of Discrete-Time Dynamic Systems
Node types e
23.1 Requirements
2.3.2 Basicnodetypes
2.3.3 Timerecursionnodes
234 Localrecursionnodes,
23.5 Specialnodes
Data structures
Example - A Recurrent Neural Network
Software implementation L
2.6.1 Main additions
2.6.2 Other improvements,

Conclusions

iv

ifi

N O R W W NN e

3 Channel Equalisation

3.1 Introduction

3.2 Background on Channel Equalisation
3.2.1 Linear equalisation
3.2.2 Nonlinear equalisation
323 Amnewapproach
3.3 Genetic Programming in Channel Equalisation
3.3.1 Fitness function
34 EXperiments. v v v it
3.41 Objectives
3.4.2 Theoretical equalising filters
3.43 Averagingchannel 0L
3.44 Nonlinear channel
3.5 Conclusions e
3.6 Summary

4 Node gains

4.1 Introduction. o v i it e e
4.2 Parameter estimation in Genetic Programming
4.2.1 Motivation for a parameterised GP
43 Background
4.3.1 Problems with existing prameter representation methods
4.3.2 Adaptation
4.3.3 Summary of objectives
44 Nodegains oo v v i it
441 Concept e e
442 Benefitsofnodegains
4.4.3 Implementationissues
444 Costofnodegains
4.5 Experimental analysis
4.5.1 Objective e
452 Method
453 Results

4.6 Conclusions

4.7 Summary

5 Adaptive GP
5.1 Introduction
5.2 Motivation

22
22
23
23
25
26
26
26
28
28
28
29
37
39
40

41
41
41
41
43
45
48
48
49
49
50
o1
92
52
52
53
53
56
56

9.3 Natural and artificial learning

5.3.1 Analogies

5.3.2 Simulating learning L
9.4 Basic details of Adaptive GP
5.5 Darwinism vs. Lamarckism
9.6 Learning by Simulated Annealing
9.7 Experimental analysis
.71 Fourmethods
5.72 Fixed environments
5.7.3 Variable environments oL L
574 Analysis
5.7.5 Influence of learning on evolution.
5.7.6 Further comments: Extending the analogy
9.8 Conclusions e
9.9 Summary

Further Results in Channel Equalisation

6.1 Introduction. e
6.2 OVeIVIEW v o o i e e
6.3 Linear channel with highmnoise
6.4 Partial response channel Lo
6.5 Nonlinearchannel
6.6 Comparison
6.7 Conclusions v v i e
6.8 Summary

Conclusions and further work
7.1 Conclusions v v v v e e
7.2 Further work o 0 o

Implementation of the SA algorithm

Al Main algorithm e
A.2 Perturbation-generating and acceptance/rejection probability distributions
A3 Cooling schedules v v v v v e e e

A4 Perturbation SChemeS « v v v v e e e

Statistical analysis for Chapter 4
B.1 Two sample t-test
B.2 t-tests for fitness
B.3 t-tests for length

vi

74
74
74
75
80
84
87
87
88

89
89
92

C Statistical analysis for Chapter 5
C.1 The Kruskal-Wallis test
C.1.1 Kruskal-Wallis test for LC1

C.1.2 Kruskal-Wallis test for NLC

D RLS algorithm for adapting FIR filters

E Sample initialisation file

Bibliography

C.1.3 Kruskal-Wallis test for LC1 — LC2

vii

105
105
106
107
108

110

112

115

List of Tables

2.1
2.2

3.1

3.2

3.3

3.4

4.1

5.1
5.2
5.3
5.4
5.5
5.6

5.7
5.8

6.1
6.2

6.3
6.4

6.5

The Function and Terminal Node Set for Signal Processing Systems
Node types for DSP and their associated data structures

Set up for noiseless and SNR=5dB cases of the averaging channel (C(z) =
0.5 + 0.5-27!) equalisation experiment L.
Performance summary of FIR-RLS and GP-evolved equalisers for averaging
channel —noiseless case

Performance summary of GP-evolved and FIR-RLS equalisers - averaging
channel, SNR=5dB

Set up for nonlinear channel equalisation experiment

Set up for symbolic regression experiments

Settings for four method comparison
Annealing settings for Darwinian and Lamarckian methods.
Comparison of results (50 runs for LC1)
Comparison of results (24 runs for NLC),
Success rates for LCland NLC

Comparison of results in a variable environment. Averages of 51 runs for LC1

Success rates (Bl runsfor LC1 — LC2)
Multiple comparisons with the Kruskal-Wallis test

Annealing settings for all channel equalisation experiments
Values of the bit-error rate obtained by equalisers for the channel H(z) =
1407z 7 over 30 runs. L e e
Set up for linear channel (H(z) =1+0.72z-1) equalisation experiment
Values of the bit-error rate obtained by equalisers for the channel H(z) =
1—2-27 427 20ver 30TUns.
Set up for partial response channel (H(z) = 1 —2- 27! + 272) equalisation

EXPETIMENt« v o e e e e e e e e

viii

76

6.6

B.1
B.2
B.3
B.4

Ci1
C.2
C3

Values of the bit-error rate obtained by equalisers for the nonlinear channel

given by equations 6.3 and 6.4. 84
t-Test for fitness: Two-Sample Assuming Unequal Variances 101
t-Test for fitness: Two-Sample Assuming Unequal Variances 102
t-Test for length: Two-Sample Assuming Unequal Variances 103
t-Test for length: Two-Sample Assuming Unequal Variances 104
Multiple comparison for LC1. Critical value: 26.57 107
Multiple comparison for NLC. Critical value: 1.671 108
Multiple comparison for LC1—-LC2. Critical value: 25.85 109

ix

List of Figures

1.1 A simple expression tree representing equation f(z1,72) =21 +k-z2 6
2.1 A single input single output system. 10
2.2 Tree and associated data structures 17
2.3 A fully recurrent Neural Network 18
3.1 The Channel Equalisation Problem 23
3.2 Ann-tap FIR digital filter 24
3.3 Model for nonlinear channel 29
3.4 A GP equaliser for the averaging channel C(z) = L4y 32
3.5 Impulse response of GP equaliser for averaging channel — Noiseless case . . . 33
3.6 Output of GP equaliser when fed with a sinewave 34
3.7 A GP equaliser for averaging channel -SNR=5dB 34
3.8 Impulse response of GP equaliser for averaging channel - SNR =5dB 35
3.9 Response to a sinewave of GP equaliser for averaging channel - SNR = 5dB 35
3.10 GP equaliser for nonlinear channel 39
4.1 A tree representing the numberone 42
4.2 A tree representing the number zero, 42
4.3 A tree representing the number 0.5 42
44 An individual represented by a tree and a binary string 44
4.5 Model for a dynamic system 45
46 A polynomial GPnode o 45
4.7 A capacitor-creating function 46
4.8 Afirst order system.o e 46
4.9 A tree representing a first order system (z, + C0-y,), with a numerical terminal. 47
4.10 Another tree representing a similar system (CO-Zp +yn). -+ « - « -+ 47
4.11 Graphic representation of anode gain. 49
4.12 A tree representing a first order system, using node gains. 50

5.1

5.2

6.1
6.2
6.3
6.4
6.5
6.6

6.7

Al
A2

D.1

Histograms showing the evolution of the fitness for Darwinian, Lamarckian
and RGNL methods
Histograms showing the evolution of the fitness at birth for Darwinian and

Lamarckian learning oo

Average and minimum values of the BER for linear channel|
A GP equalising filter for the channel H(z) =1+0.72"1
A GP equalising filter for the channel H(z) =1-22"1+272 . . . |
Average and minimum BER values for partial response channel
A suboptimal equaliser for the channel H(z) =1-2z"1+2"2 | . |
An equalising filter for the channel H(z) = 0.3482+0.870427! +0.34822~2 with
nonlinear gain d2 = 0.2. The node NL212 represents the function tanh(4.16z).

Average and minimum BER values for partial response channel |

The Simulated Annealing algorithm

Acceptance probabilities employed in Simulated Annealing.

An n-tap FIR digital filter

xi

Chapter 1

Introduction

1.1 Overview

As developments in the communications field succeed one another at a fast pace, the engineer
is faced with increasingly complex problems which often cannot be approached with existing
(“classical”) techniques.

Natural algorithms present themselves as an alternative where more conventional methods
fail. These are techniques that aim at exploiting some analogy to natural processes, based
on the premise that Nature always finds robust solutions to existing problems.

This thesis develops an application of two such techniques, Genetic Programming (GP)
and Simulated Annealing (SA), to a class of Digital Signal Processing problems. This chapter
is meant as a brief introduction to both methods.

Firstly, the abstract class of Evolutionary Computation techniques is presented in section
1.2. Further down in the hierarchy is the class of Genetic Algorithms (GAs), whose main
features are described in 1.3. Section 1.4 focuses on Genetic Programming. A succinct review
of its characteristics is followed by an enumeration of the reasons that make it worth studying.
One of main characteristics of GP, the representation via expression trees, is then studied
here in more detail. Section 1.5 presents the SA algorithm, its main features and possible
variants.

Finally, section 1.6 gives the summary of the thesis.

CHAPTER 1. INTRODUCTION 2

1.2 Background on Evolutionary Computation

Evolutionary Computation techniques employ simulated evolution to solve a wide variety
of problems. The guiding principle of these techniques is the Darwinian survival of the
fittest. Darwinian evolution is intrinsically a robust search and optimisation mechanism.
Biological species have solved problems that involve chaos, chance, temporality and nonlinear
interactivity (Fogel 1994). These characteristics are shared by many engineering problems,
for which there exist no heuristic solutions or they provide unsatisfactory results.

In the neo-Darwinian paradigm, evolution is driven by four basic processes: reproduction,
mutation, competition and selection. These processes are mimicked by Evolutionary Com-
putation techniques, which are usually divided into three main groups: genetic algorithms,
evolutionary programming and evolution strategies. All three techniques employ a popula-
tion of candidate solutions ! and explore the search space by successive application of one or
more variation operators.

While evolutionary programming and evolution strategies rely on mutation as the main
variation operator, genetic algorithms are characterised by the strong emphasis placed on
crossover. Crossover refers to the exchange of genetic information between two or more
individuals (the parents) resulting in a number of new ones (the children).

Within the main class of genetic algorithms, a subclass that stands on its own right is
Genetic Programming (GP). The next sections begin by summarising the main characteristics

of GAs and then proceed with the specific features of GP.

1.3 Genetic Algorithms (GAs)

The introduction of GAs is generally attributed to Holland (1975), although other authors
had previously proposed similar algorithms to simulate genetic systems?.

The implementation of a GA is typically done as follows:

1. A fitness function is defined to rate the performance of any potential solution to the

problem at hand.

2. An initial population of prospective solutions is generated at random. Candidate solu-

tions are also referred to as individuals or chromosomes, with elements called genes.

3. A new population is generated by selecting individuals from the previous one, in a way

that gives preference to individuals with higher fitness values.3

'And for this reason they lend themselves easily to parallelisation.

%See (Fogel 1994) for references

3 Alternatively, the problem could also be expressed in terms of the minimisation of some cost function.
Because traditionally GAs and GP are implemented as maximisation problems the same approach will be
taken here

CHAPTER 1. INTRODUCTION 3

4. Crossover is implemented by selecting random pairs among the population and ex-

changing segments of data between them.

5. Mutation takes place by changing the value of a randomly selected gene with a given

probability

6. Steps 3 through 5 are repeated until some termination criterion is met (either a solution

is found or time has expired).

For a more in-depth study of GAs the reader is referred to (Goldberg 1989).

1.4 Genetic Programming

1.4.1 Characteristics

As said above, GP is a subclass of the standard GA (Koza 1992, Koza 1994). The main

characteristics that give it a separate status are usually listed as

The goal of GP is to evolve a program, in contrast with the standard GA, whose
aim is usually to evolve data. The term program is taken in a loose sense, and can

mean such dissimilar items as a mathematical function or a game playing strategy.

[;presentatiﬂ the individuals evolved in GP are symbolic expression trees, or S-trees,

written in polish notation. This is explained in detail below.

due to the use of a tree representation, the crossover operator in GP is syntax-

constrained. This means that only crossovers that produce syntactically correct trees

are allowed.

Although there have been other approaches to program induction using evolutionary

techniques, there are a number of characteristics that make GP worth studying. (O’Reilly

1995) lists them as follows:

e GP is robust, in the sense that it has been shown to perform successfully on a wide

range of problems, providing a single, unified approach.
e GP uses a variety of expressive primitives, or node types (see below).

e Because it works with primitives, the representation of GP is more flexible than others
such as Learning Classifier Systems (LCS) or Neural Networks (NNs). LCSs use if-then
rules and NNs weights and network connections; hence they require that the solution

“fits to” these specialised structures.*

The next section describes the expression trees and their components.

4Incidentally, it will be shown later that structures such as NNs can be evolved by GP

CHAPTER 1. INTRODUCTION 4

1.4.2 Expression Tree and Node Vector.

Definition 1.1 A symbolic expression tree (or, for brevity, an S-tree or tree) is a vari-
able length string of symbols written in polish (prefiz) notation which is constructed according

to certain grammar rules.
Definition 1.2 A node vector, i

i ={ngny - ng_1} (1.1)
is an alternative representation for an expression tree, where:

¢ € N is the length of the tree,
ni:%)‘("‘)=> R, ne®; i=0...£-1
A(n;) is the arity i.e. the number of arguments (or inputs) of n;

O is a set of allowed operations

The symbols n; that constitute the tree/vector are called nodes.
Definition 1.3 A node n is a primitive function with one output and A(n) inputs.
The set of operations O can be represented as the union of two subsets:
O =0rpUO0r (1.2)

which are usually referred to as function set and terminal set, respectively. The terminal set

is characterised by

A(n) = 0 Vn € Or (1.3)
and the function set by

A(n) > 0 vn € Of (1.4)

For 7i to be a syntactically correct tree, two necessary and sufficient conditions must be

satisfied. These are described below.

Completeness| The sum of the arities of all the nodes in the tree must be equal to the

length of the tree minus one, i.e.

&

-1

Ani) =£-1 (1.5)

Il
<)

i

The completeness condition guarantees that the tree is complete, that is, there are no

missing arguments. Equation 1.5 can be easily deduced from the following facts:

CHAPTER 1. INTRODUCTION 5

1. the length of the tree must be at least equal to 1 + A(ng), where A(ng) is the arity of

the first node (or root)

2. any given node n; must have a number of succeeding nodes greater than or equal to its

arity A(n;).

Definition 1.4 A node n; is connected to another node nj if 1) n; is an argument to n;

or 2) n; is an argument to a node that is connected to n;

Definition 1.5 A subtree of length £ and root n; is the set comprising n; and the ¢ — 1

succeeding nodes connected to it.

Hierarchical connectivim The sum of the arities of the nodes preceding a given node

n;, 0<i<£—1, must be greater than 1, i.e.
i
Y A(ny) > Vi 0<i<l-1 (1.6)
-

For 1 = £ — 1 the equality applies; this is the completeness condition.

The connectivity condition ensures that all subtrees in a vector are connected to the root
node by way of preceding nodes, i.e. there are no isolated subtrees.

Examples of correct and incorrect trees are the following

{+ + ab*c d} = correct: a+b+ (c-d)
{+ +ab=*c} =—> incorrect: doesn’t comply completeness condition
{+ab=*c} == incorrect: doesn’t comply connectivity condition

The vectorial representation lends itself easily to mathematical treatment. Nevertheless,
in standard GP the preferred representation is the polish notation. A characteristic of this
type of notation is that it renders parentheses unnecessary. Using them, however, increases
the readability of the expressions and for this reason they are widely applied. In this way,
the first tree in the previous example would be represented as:

(+ (+ab) (*cd)
Any function can be written as an expression tree or node vector, provided that appro-

priate nodes are defined. For example, the two-input function
f(z1,22) =21 + k- 22 (L.7)
can be represented as a vector as follows

A = {+, 71, *, k, 2} (1.8)

CHAPTER 1. INTRODUCTION 6

Figure 1.1: A simple expression tree representing equation 1.7.

or as an expression tree
(+ x1 (* k x2))
This tree is shown graphically in figure 1.1.
The output of the tree for a given pair of values of z; and z3 would be the value of

f(z1, z2) for those particular values. If z; and/or z2 are time-varying, the output of the

tree is a time series.

Definition 1.6 To evaluate a tree in a particular environment (i.e. the problem at hand)

is to obtain the output value of the function it represents.

Definition 1.7 A branch of length £ and root n; is a subtree satisfying the Completeness

and Hierarchical Connectivity conditions with respect to its root n;, i.e.

£4i—1
Yo Any) = £-1 (1.9)
j=i
£+i—-1
Yo Amny) >k Vk: i<k<l+i-1 (1.10)
J=

In the example above, the subtree
(> k x2)
is a branch, as it can be seen as a tree in itself.
This definition is useful when specifying the mechanics of the crossover operator. Crossover
is restricted by the fact that only syntactically correct trees can be generated. In practice, this
means that only whole branches (and not just subtrees) can be exchanged; this is considered

as the main feature of Genetic Programming.

1.5 Background on Simulated Annealing

Simulated Annealing (SA) is a stochastic searching strategy based on an analogy to the
annealing process in statistical mechanics (i.e. the behaviour of systems with many degrees

of freedom in thermal equilibrium at a finite temperature).

CHAPTER 1. INTRODUCTION 7

If a molten substance is cooled quickly (rapid quenching), it will solidify into a defective
crystal. However, if the substance is slowly cooled, thermal diffusion will cause agitation of
the particles, which will probabilistically fall into minimum energy configurations.

In simulated annealing, a system is “heated” up to its melting point and then the tem-
perature is slowly reduced; the system being allowed to reach thermal quasi- equilibrium in
each temperature step. The thermal noise is simulated by introducing random perturbations,
the variance of which is dependent on the temperature.

First introduced by (Metropolis et al. 1953) it was not until the 80’s that it became
extensively applied to a number of optimisation problems (Kirkpatrick et al. 1983, Szu and
Hartley 1987).

A Simulated Annealing algorithm is characterised by the following:
1. a perturbation-generating probability distribution

2. an acceptance/rejection probability distribution

3. a cooling schedule

For a full account of the SA algorithm, the reader is referred to appendix A.

1.6 Summary of the thesis.

Chapter 2 provides the key for the representation of Discrete-Time Dynamic Systems as
expression trees, which constitutes the first main contribution of this thesis.

First of all the objective is enunciated as the state space specification of DDSs: the
behaviour of a system for a time instant ¢ > £o is completely accounted for given the inputs
to the system and also a set of quantities which specify the state of the system. This means
that the GP must incorporate a form of memory that will handle this information.

For this purpose a number of node types and associated data structures are defined.
These will allow for the implementation of local and time recursion and also other specific
functions, such as the sigmoid commonly encountered in neural networks. An example is
given by representing a recurrent NN as an expression tree.

Chapter 3 introduces the channel equalisation problem, for which two examples will be
given. A survey of existing methods for channel equalisation reveals that the main short-
coming of these techniques is that they rely on the assumption of a particular structure or
model for the system addressed. This implies that knowledge about the system is available;
otherwise the solution obtained will have a poor performance because it was not well matched
to the problem.

This gives a main motivation for applying GP to channel equalisation, which is done in

this work for the first time. Firstly, to provide a unified technique for a wide class of problems,

CHAPTER 1. INTRODUCTION 8

including those which are poorly understood; and secondly, to find alternative solutions to
those problems which have been successfully addressed by existing techniques.

Chapter 4 presents the second main contribution of this thesis: a new way of handling
numerical parameters in GP, node gains. A node gain is a numerical parameter associated
to a node that multiplies its output value. This concept was introduced by (Sharman and
Esparcia-Alcazar 1993) and is fully developed here.

The motivation for a parameterised GP is addressed, together with an overview of how it
has been addressed by other authors. The drawbacks of these methods are highlighted: there
is no established way of determining the number of parameters to use and their placement;
further, unused parameters can be unnecessary adapted while, on the other hand, useful ones
might be eliminated. The way in which node gains overcome these problems is explained.
An extra advantage is the possibility of expressing complex systems in a compact way, which
is labelled “compacting effect” of node gains.

The costs of node gains are also pointed out: increase in the degrees of freedom and
increased complexity. This, in theory, results in an increase of computational expense, due
to the handling of more complex nodes and to the fact that an extra multiplication is needed
per node. These costs, however, are expected to be of, at most, the same order of magnitude
as those of the alternatives.

Experimental analysis shows that random node gains may not be able to achieve all the
potential benefits expected. It is conjectured that optimisation of the values is needed in
order to attain the full benefits of node gains. This sets the scene for the following chapter.

In Chapter 5 a Simulated Annealing (SA) algorithm is introduced as a means of adapting
the values of the node gains. This, the third main contribution of this thesis, is put in the
context of an analogy: the adaptation of the gains by SA is equivalent to the learning process
of an individual during its lifetime. This analogy gives way to the introduction of two learning
schemes, labelled Lamarckian and Darwinian, which refer to the possibility of inheriting the
learned gains. Both are compared to the standard GP technique and also to GP with random
node gains. The comparison shows the superiority of both learning methods, although it is
not possible at this stage to determine which of the two provides a better performance.

In Chapter 6, the channel equalisation problem is revisited and more results are provided
using the full node gain GP+SA method. These results are compared to those obtained
by other techniques and it is concluded that the proposed method obtains better or similar
performance when extreme values (maximum fitness or minimum error) are considered.

Finally, Chapter 7 presents a summary of the conclusions and outlines areas of future

research.

Chapter 2

Representing Discrete—Time

Dynamic Systems as Expression
Trees

2.1 Introduction

This chapter is concerned with providing a representation for Discrete-Time Dynamic Sys-
tems (DDS’s) as symbolic expression trees, which are the structures typically employed by
Genetic Programming. These S-trees, or individuals, are computer programs written in the
language defined by the representation (Kinnear 1994). The fitness function then executes
these programs to assign a performance measure, or fitness value, to each one of them.

The S-trees are composed of nodes whose interpretation will be specific of the problem.
The aim of this chapter is to provide definitions of the node types that will allow for the
representation of discrete-time systems.

The rest of the chapter is structured as follows. Section 2.2 provides a description of the
systems that are to be represented as S—trees. Section 2.3 focuses on the components of the
S-trees: what requirements they must satisfy and the various kinds of nodes that will be
employed in the remainder of this work. Section 2.4 describes the data structures needed by
the nodes defined in Section 2.3 and how they operate when the S—tree is executed. In Section
2.5 an example is presented. Section 2.6 gives some details of the software implementation

and finally Section 2.7 concludes the chapter.

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES 10
2.2 State Space Specification of Discrete-Time Dynamic Sys-
tems

Consider a single output single input discrete-time system with input X; and output Y;, as

shown in figure 2.1.

X, *—){ SYSTEM — Y,

Figure 2.1: A single input single output system.

The state of the system at instant t; is defined as a set of quantities which, together
with the input for all instants ¢t > ¢, , uniquely determines the output for all instants ¢ > ¢
(Priestley 1988).

The system can be described by the equations :

St+1 = A(s¢) + B(x¢) (2.1)
ye = C(s¢) + D(x:) (2.2)

where x; is the input vector, y; is the output vector and s, is the state vector. The func-
tions A(-), B(-), C(-) and D(-) are matrices whose components are scalar-valued nonlinear
functions.

The aim of this chapter is to express equations 2.1 and 2.2 in a way that can be handled
by Genetic Programming, so that discrete-time dynamic systems can be evolved.

This is done by writing the function that provides the current system output, y; , as an
expression tree. The components of the state and input vectors are updated and saved using
special data structures.

Although for simplicity in the remainder of this work only single input / single output
systems are considered, the techniques introduced could be easily extended to multiple input
multiple output systems.

The following sections discuss in detail the components of the expression trees and the

necessary data structures.

2.3 Node types

2.3.1 Requirements

The nature of the nodes n; has to be adapted to the problem at hand. In the case of Discrete-
Time Dynamic Systems (or, in particular, Digital Signal Processing algorithms) they must

be chosen so that the representation system has the following main characteristics:

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES 11

1. the ability to capture the dynamics of the system, which is of vital importance in DSP.

2. an efficient way to represent and adapt the parameters of the system.

The former is achieved by the combined use of special tree nodes and data structures that
endow the system with memory and local and time recursion ability.

This section is concerned with the definition of such a class of nodes, the associated data
structures will be dealt with in section 2.4. The second requirement is the subject of chapters
4 and 5.

2.3.2 Basic node types

To represent Discrete-Time Dynamic Systems the following sets of operations are of interest:
Or ={+, —, % /, 2, /2, +1, —1, nlN, psh, Z, £N, avgN } (2.3)

is the function set and
Or = {1, cN, xN, yN, stkN, argN } (2.4)

is the terminal set.

The basic types are those used to implement arithmetic operations. These are addition,
+, subtraction, -, multiplication, *, and protected division, / !. Other basic types used
throughout this work are increment, +1, decrement, -1, double, *2, and half, /2. The meaning

of the other nodes is as follows.

2.3.3 Time recursion nodes

These node types allow access to previous values of inputs, outputs and other internal vari-
ables. The index N, which will appear in what follows, represents an integer in a user-defined

range, [0- -+ Nmqz), where the value Ny,,; varies according to the type of node.

o Input node, xN, and output node, yN, are terminals (A = 0) representing the input to

and output from the system, respectively, both delayed by N samples.
XN = z,.n (2.5)
W = yon (2.6)
e Delay node, Z, is a function of arity 1 returning the value of its argument delayed by
one time sample.
Z(argn) = argn_ (2.7)

The implementation of these nodes requires the use of two kinds of data structures (registers

and stacks) which will be described in section 2.4.

The protected division returns the quotient between the first argument and the second when the latter is
different from zero, and zero otherwise. Alternatively, in the second case a high value could be returned.

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES 12

2.3.4 Local recursion nodes

With the yN, nodes defined in the previous section recursion from the output of the tree can
be achieved by accessing the output value N instants before. This section introduces nodes
that allow for local recursion within the tree. These are called psh and stkN. The former
is a function of arity 1; when evaluated it pushes the value returned by the branch below it
onto a stack. The latter is a terminal (i.e. its arity is zero) and returns the value of the Nt
position in the stack.

Internal recursion is important for developing modular solutions to certain problems. For
example, the biquadratic digital filter section in canonical form is described by the coupled

equations, (Proakis and Manolakis 1992),
Pn = 2zn + C1-Pn-1 +C2 P2 (2.8)
YUn. = pn + €3-Pn-1 + C4-Pn2 (2.9)

A possible tree coding for equations 2.8 and 2.9 using psh and stkN nodes is,

(+ (psh [(+ x0 (+ (* c1 stk0) (* c2 (Z stk0)))) |)(+ (* c3 stk0) (x
c4 (2 stk0))))

In this expression tree, the sub-tree framed evaluates the term p, and pushes this value
onto the stack memory ready for the next cycle. The stk0 node therefore returns the value,
Pn—1, which can be delayed by the Z node to get pn_s.

It could be argued that an equivalent result can be achieved by using Z, x and Y nodes
only. In DSP practice, however, this would imply a loss of significant digits in the obtained
parameters which doesn’t occur when internal recursion is used (Proakis and Manolakis 1992).

An alternative way of achieving internal recursion would be keeping track of the output
of every node in the tree in each evaluation (thereby eliminating the need for psh nodes)
and defining a node type, similar to stk, that would address this information in the next

evaluation. This is left for further study.

2.3.5 Special nodes

The nodes defined above are sufficient for the representation of discrete-time systems. It is
interesting, however, to define other node types to perform special functions. A few of these

are introduced here.

e Non-linear transfer function, nlN, implements a sigmoid function,

1 —exp~h= _ J¢]
g(z) = T+ exp Pz tanh (51:) (2.10)

where the amount of non-linearity 3, is a linear function of the index N as follows

BN = Buo+ oo (Bhi = o)y € [fio - Pu] .11)

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES 13

The range [Bio - - - Bri), is partitioned into Npqe, equally spaced subintervals that provide
Npaz41 possible values for (3; the parameter N simply addresses each of these values,
e.g. for n10 [= fj, and for nlNmax 3 = f,.

The numerical values used throughout this work are

Bri = 10 (2.12)
B = 0.1 (2.13)

so NO represents the curve tanh(0.05z) and N255 represents tanh(5z); the latter is
approximately equivalent to the sign function, while the former gives a very smooth

transition between -1 and 1.

The sigmoid function implemented by the nlN node is of interest when it is an objective

to evolve functions with the structure of a Neural Network.

o Function node, N, executes the Nt* subroutine tree. These, also called automatically
defined functions (Koza, 1994) are in every respect the same as any other function used
by the main tree except that they can have a variable number of arguments. Subroutine
trees are intrinsic to a particular main tree and are created and evolve together with
it, not being accessible by any other trees. Thus, an expression tree would be properly

defined as the set of a main tree and all its associated subroutine trees, if any.

Function nodes are important in addressing the problem of scalability, (i.e. the in-
crement in the size of the expression trees as the complexity of the system increases).
Code reuse by means of function nodes provides a compact way of expressing repetitive

tasks, so complex systems can be expressed as small trees.

o Argument node, argN, is the N th argument to a function node. These appear only in the
definition of the function as terminals and are replaced by their corresponding values

in the main tree.
e Average node, avgN, returns the average of its N inputs.

e Constant node, cN, returns the Ny, entry of a constant table, whose values can be

randomly initialised or preselected by the user.

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES

Table 2.1: The Function and Terminal Node Set for Signal Processing Systems

Symbol | Arity | Description Symbol | Arity | Description
(A) (A)
System input data.
+ - 9 Addition, xN 0 N indicates the de-
’ Subtraction layt. (e.g. x2 returns
mn—2)
Multiplication, Previous output from
Division the expression tree.
x, / 2 If second argument is yN 0 The index N indicates
0, then the node out- the delay (e.g. y2 re-
put is set to zero or a turns y,—2)
large maximum value
1. -1 1 Increment, 7 1 Unit sample time de-
’ Decrement lay
2. /2 1 Multiply, psh 1 Push the argument
’ Divide by two value onto the stack
Constant value.
N is an index to a ta-
ble of constants whose .
o Retrieve the Nt* jtem
cN 0 values may be prede- | gstkN 0 ; the stack
fined or chosen at ran- rom the stack.
dom.
Non-linear transfer
function. "
1N] N indicates the N variable Execute the N** func-
amount of non- tion tree.
linearity.
. th
avgh 1 N The average of its N argh 0 The N . argument to
arguments. a function tree.

14

1The suffix N that appears in many of the node symbols is an integer in a user defined range.
{The nodes £N, argN and avgN are not used in the present implementation.

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES 15

2.4 Data structures

A number of structures are necessary to handle data and keep track of the state of the

dynamic system. These are:

registers Fixed-size vectors that store current and previous values of inputs and outputs.

These values are read by xN and yN nodes.

local recursion reading and writing stacks In order to maintain data coherency, two
stacks are used whose size equals the maximum number of psh nodes allowed in a tree.
In a given iteration of the evaluation process (e.g. for the n* input) one of the stacks is
used for writing whenever a psh node is encountered; the other stack is used for reading
whenever an stk is encountered. In the next evaluation (for the n + 1t* input) the two

stacks are swapped and what was written before is now read.

Z reading and writing stacks The Z stacks have as many positions as Z nodes appear in
a particular tree (up to a certain maximum). During the evaluation of a tree, when
a particular Z node is found the value at the associated position of the reading stack

is returned as output of the node and its input is stored in the same position of the
writing stack.

constant table A fixed vector that stores the values which will provide the output of cN

nodes.

Since the trees are evaluated sequentially? the data structures are common for all trees.

At the beginning of the evaluation process of a particular tree the registers are set to zero
and the stacks are empty. The constant table has been initialised with random (or prefixed)
values.

An evaluation iteration begins by reading and storing the current system input onto the
top position of the X (or input) register.

As explained, any xN or yN nodes will read their return values from the N** position of
the relevant register; stkN nodes read theirs from the N** position of the reading stack and
psh nodes write the value of their argument onto the current position of the writing stack,
returning that same value.

Z nodes work with both Z stacks simultaneously: the input value is written onto the
current position of the writing stack and the return value is read from the same position of
the reading stack.

The evaluation iteration ends by storing the output value of the tree onto the top position

of the Y register. Then the registers are shifted one position back? and the reading and writing

2 At this stage no parallel processing is considered
3This is more efficiently implemented by means of a circular buffer; thus, rather than shifting the whole
contents of the register, a single pointer is advanced

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES 16

Table 2.2: Node types for DSP and their associated data structures

node | arity | action reads from writes to
xN 0 | retrieve N** value of the X regis- X register -
ter
yN 0 retrieve N value of the Y regis- Y register -
ter
z 1 push value of argument to Z writ- | Z reading stack | Z writing stack
ing stack
retrieve same position of Z read-
ing stack
psh 1 push value of argument to stack - writing stack
stkN 0 retrieve N** position of the stack | reading stack -
cN 0 retrieve N** constant value constant table -

stacks are swapped, leaving the system ready for the next iteration.

Due to the mechanics of the process all the values stored in the Z stacks will be used
during evaluation. This is not the case for the local recursion stacks, as there might be more
psh nodes than the highest N for stk nodes. The opposite is also possible: the value of N
might be higher than one plus the number of psh nodes. In this case, N is clipped to one
minus the number of psh nodes; if there are none, then all stk return zero.

This means that redundancy might arise, e.g. a tree could have stk nodes but no psh
ones, or vice versa. This could be avoided if, as explained in section 2.3.4, the output of all
nodes was stored. Further study would be required to show which way of proceeding is more
efficient in terms of memory requirements and computation expense.

Figure 2.2 shows the state of the system during evaluation of a tree when processing a
certain sample 7. For the next sample, i + 1, the registers are shifted one position and the
reading and writing stacks are swapped (so that what was written in iteration 7 can be read

in iteration ¢ + 1).

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES

o
k 1
!

CN-1 0
ee— e —
CN _J reading stack «:.:» writing stack
constant table swap

current
Yi shift
Y2

X register

Key
<+~ - read item
“%—— write item

oy 0212 StOTAGE
management

Figure 2.2: The tree above and its associated structures represent the equations

Dn
Yn

Tn-2 + Yn—1

CO-pn-3 (Tn-2 + yYn-1)

17

The first step in obtaining the output at instant 1 consists of reading the input signal
at ¢ and storing it in the X register. Evaluation ends by storing the calculated output
of the tree in the Y register, swapping the stacks and shifting the registers. Note
that the combination of psh and stk nodes produces internal recursion. Also note
how the output depends not only on the current input value but also on what was
stored in the stacks and registers, which provide the state of the system. The only
structure that remains unaltered through evaluation is the constant table. This is

initialised with random or predetermined values at the beginning of the run

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES 18

2.5 Example - A Recurrent Neural Network

It has been shown that a three-node recurrent neural network can be used as an efficient
signal processor for equalisation of noisy non-linear communications channels, (Kechriotis et
al. 1994). The system architecture of such a neural network is shown in Figure 2.3. Using
the node definitions given above, one way of expressing this as-a GP tree is to use function

nodes as follows,

(+ £f1 (*x cO (+£2 £3)))

f1 = (psh(nll avgd (xO stkO stkl stk2)))
f2 = (psh (nl2avgs (x0 stkO stkl stk2)))
£3 = (psh (nl3 avg4 (x0 stkO stkl stk2)))

Figure 2.3: A Fully Recurrent Neural Network.
Each processing cell labelled P1 to P3 implements a sigmoidal transfer function on the
average of the cell’s input values. The connecting links have independent strengths
labelled w;;. The system output is taken from cell P3 and the input is applied to each
cell simultaneously.

Here, each cell in the network is represented by its own function (£1, £2 and £3) which
are invoked by the main tree, y. The main tree executes the tree associated to each function,
but only returns the value of the output node, which is represented by function f1 (assuming
¢0 = 0). The psh nodes in each function tree store the computed cell outputs on the stack,
and these are accessed from the previous cycle using the stkN nodes.

Note that, for simplicity, the weights in the neural network have not been represented in
the tree; the way to do this will be explained in chapter 4. Here it is sufficient to point out
that each occurrence of a node (e.g. every stkO node that appears in the tree) has a different
weight value, so that all the w;; would be expressed.

Thus, the basic set of GP node definitions shown above is able to code for recurrent
neural network architectures. This leads to the possibility that neural networks and other

such systems can be evolved by GP.

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES 19

2.6 Software implementation

The software used in the experiments presented in this work is an extensively modified version
of GPCPP4, a package developed by Adam Fraser of the University of Salford. GPCPP4 was
the only public domain GP package in C++ existing at the time of starting this research.
This was thought interesting for two reasons. First, due to the possibility of developing and
working with an Object Oriented GP package. And second, because it would allow linking
with software for Signal Processing that had already been developed in C++ by the author.

Converting GPCPP4 into GP+SA, the code required for the experiments described later
in this thesis, involved major modifications which were undertaken by this author. Of these,
some were necessary, others were meant to facilitate the understanding of what the program
was doing and the rest were conceived in order to ease the realisation of experiments.

A summary of these modifications is described in the following sections.

2.6.1 Main additions
These mainly involved creating the necessary structures the DSP operations would use.

Input, output and desired output signals These are instances of previously created class
Signal and are used during evaluation to calculate the fitness of each individual. The
first two provide the values for xN and yN nodes; the first and last are equal for all

individuals and the middle one is particular of each one.

Registers and stacks Two registers are needed for keeping track of previous values of the
inputs and outputs, which are associated to xN and yN nodes. Two stacks handle psh
and stkN nodes and two more handle Z nodes. The way these structures work is shown

in figure 2.2.

Node gains As will be explained in chapter 4, each node may have a gain value associated

to it. This is the basis of the learning approach using SA

Indexing Some of the nodes differ only by a parameter (e.g. x1 and x2), so instead of

redefining them for each value, the parameter is accessed by an index.

Fitness type and return value of a node These were defined as unsigned int in GPCPP4,
but due to the nature of the problems tackled in this work and the fact that the im-
plementation is done in a PC with a Pentium processor, their type can be changed to

double.

2.6.2 Other improvements

Initialisation In GPCPP4 a few parameters values were read from an initialisation file,

others were passed from the command line and the vast majority were part of the code

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES 20

itself, which meant that when a minor change in a variable was made it was necessary

to recompile the whole program.

This has been eased by the introduction of a new class, EnvironmentManager. An
instance of this class is created for each run, which is in charge of reading all the
necessary parameters from an initialisation file and passing them to wherever they are

needed.

An example of an initialisation file is given in appendix E.

Termination criteria In GPCPP4 the termination criterion was simply reaching a given
number of generations. This does not seem appropriate for two reasons. First of all, in
steady state GP there is no proper definition of “generation” (it was artificially defined
as a number of crossovers, including the ones that were aborted, equal to the population
size). And second, the number of generations is just a form of time limit, which does not
give any information on whether an optimal solution has been reached or not. Instead,

five other criteria are introduced, as follows
e maximum fitness criterion, ¢y;

trit = (maz;(fitness;) > MAX_FITNESS) where i € [0,PopulationSize — 1]
(2.15)

e minimum Bit-Error-Rate criterion, fpe,
toer = (min;(BER;) < MIN BER)where i € [0,PopulationSize — 1] (2.16)

o time limit criterion, ¢;,,

tiim = (elapsed_time > TIME LIMIT) (2.17)
e maximum number of births criterion, typirths
t Nbirths = (births > BIRTHLIMIT) (2.18)

where births is the number of individuals born

e user request criterion, t,
ty = (kbhit() N (getchar() == s)) (2.19)

i.e. t, = 1 when the user presses s

CHAPTER 2. REPRESENTING DDS’S AS EXPRESSION TREES 21

The global termination criterion, t., is defined as the combination of one or several

individual criteria.

tc is checked every time after a number of births equal to ReportingInterval. The
program is stopped if any of the individual criteria is met. The values of the vari-
ables (MAX_FITNESS, MIN.BER, TIME LIMIT, BIRTH_LIMIT and ReportingInterval)

are read from the initialisation file (see Appendix E for an example).

ReadTree This is a read-and-evaluate routine used to calculate the fitness, output and/or
bit-error-rate of any given tree after evolution. Its importance stems from two reasons:
firstly, it allows to test solutions with a set of data different from that used during

evolution; secondly, it serves as a test of the performance of the main program.

2.7 Conclusions

It has been shown here how the equations describing discrete-time systems can be represented
as symbolic expression trees. Various kinds of node types and their associated data structures
have been described to complete the representation system. The power of this system has
been illustrated by an example, the coding of a Recurrent Neural Network as a list of S-trees.

So far, the first of the necessary requirements described in Section 2.3.1 has been fulfilled,
namely capturing the dynamics of discrete-time systems. Further chapters will cover the

second requirement: the representation and adaptation of the parameters of the systems.

Chapter 3

Channel Equalisation

3.1 Introduction

This chapter investigates the application of GP to channel equalisation. This is an application
of great topical interest to the Signal Processing community. A review of the literature shows
that currently a variety of algorithms are applied to this problem. These include neural
networks (NNs), infinite impulse response (IIR) filters and finite impulse response (FIR)
filters.

All these techniques provide tailored solutions to particular problems: a specific model
structure (linear or nonlinear) is assumed and then the associated parameters are optimised
by some adaptation algorithm. The success of each method at solving the problem at hand is
then highly dependent not only on the characteristics of the algorithm, but also on whether
or not the structure adopted is convenient for the problem at hand.

Under these circumstances it seems appealing to search for a general technique that can
be applied to a wide class of problems. This implies being able to adapt the structures of the
solutions and not only the parameters.

For this reason, the channel equalisation problem presents itself as an ideal test bed for
the Genetic Programming method.

A number of applications will be presented here that have been addressed in the past
with different equalisation methods. It will be shown in this work that all these applications
will be tackled within a unified GP-based approach.

The chapter is structured as follows. Section 3.2 provides a background of current ap-
proaches to channel equalisation, pointing out the interest of applying GP to this problem.
In Section 3.3 the implementation of GP in channel equalisation is explained. Section 3.4
concentrates on two specific problems to which the proposed method was successfully applied.

Some conclusions are given in section 3.5 and finally section 3.6 summarises the chapter.

22

CHAPTER 3. CHANNEL EQUALISATION 23

3.2 Background on Channel Equalisation

Intersymbol interference (ISI) is a phenomenon that arises when information is transmitted
through bandwidth limited communication channels. If left uncompensated, ISI can be an
important source of errors. All the techniques devoted to removing ISI at the receiver’s end

are called channel equalisation techniques (Proakis 1995, p. 636, Haykin 1996, p. 217).

A

noise
. unknown ne L+ equalising . . <
input X channel Yk observed filter estimated input s-d
signal -
CcQ) + A H(")
Vi
g +
......... error.
€
Z.d Xy.q reference (input) x -
switch
closed during
training

Figure 3.1: The Channel Equalisation Problem.

The unobservable input sequence, z, is distorted by the channel C(-) and corrupted
by the additive noise, n. The objective of the equalising filter is to restore x from

the noisy observations, . The lower part of the diagram indicates a signal path used
during trained adaptation of the restoring filter.

Figure 3.1 shows the block diagram of a generic equalising system. Initially, the system
undergoes a training process, which involves sending a known signal (the training sequence)
that acts as a reference. The error is calculated as the difference between this signal and the
actual output of the equaliser.

Once the training process is finished, the transmission of the data begins. At this stage
some form of test signal can be transmitted, in order to measure the performance of the

equaliser and the success of the training.

3.2.1 Linear equalisation

A common technique for removing ISI is labelled linear equalisation and consists of adapting
the coefficients of a transversal, or FIR, filter (see Figure 3.2) until some cost function is
minimised. For the problem to be easily addressed mathematically, the cost function must
be a linear function of the filter’s coefficients. A popular choice is the mean squared error
(MSE).

Let the error signal, {€x}, be the difference between some desired response {d;} and the

CHAPTER 3. CHANNEL EQUALISATION 24

actual filter output, {y,}.
€n =Yn —dn (3.1)
The MSE is defined as
MSE = E() (3.2)

where E(-) is the mathematical expectation.

Xy rd z . Ah S

Figure 3.2: An n-tap FIR digital filter. The filter coefficients are represented by b; and z~!
represents a unit time delay.

The problem can be formulated as follows. Given a channel whose transfer function is
C(z) the ideal equaliser must comply that its transfer function H(z) is the inverse of C(z),

i.e.

H(z) =

0] (3.3)

This is referred to as inverse filtering.
If the channel impulse response is modelled as an Auto Regressive (AR) process, the

effective transfer function of the channel is
1

C(Z)zb0+b1'z_1+b2-z‘2---+bn-z—" (3.4)
In this case the appropriate equaliser is an FIR filter as follows
H(z)=bp+bi-z7 ' +by- 272 . 4 b, 27" (3-5)

A widely used method for adapting the coefficients {b;} for this class of problems is the
recursive least squares (RLS) algorithm (see appendix D for details).

When the channel is better modelled as a moving average (MA) or, more generally, as
an auto regresive moving average (ARMA) system, an equaliser such as the one given in
equation 3.5 may not be sufficient, even when the number of taps (n) is high. In such cases,
an IIR equaliser may be employed, such as the one given by 3.6

bo+by -z +by-272 by 27"
ag+a -zl +ay-z7%2-cap-2z™

H(z) =

(3.6)

CHAPTER 3. CHANNEL EQUALISATION 25

Despite providing reduced computational complexity, IIR equalisers have been tradition-
ally less employed because the two fundamental approaches to the adaptation of the coeffi-
cients a; and b;, known as equation-error and output-error methods, present major problems
(Shynk 1989). The equation-error approach can lead to biased estimates of the coefficients.
On the other hand, the output-error approach can converge to a local minimum of the error
surface (which is not quadratic and may have multiple local minima), leading to an incorrect
estimate of the coefficients. A trade-off must be found between the two.

Furthermore, adapting the coeflicients of an IIR equaliser involves an additional problem:
stability must be guaranteed by ensuring that all poles of H(z) are inside the unit circle.

Recently other approaches have been taken to the adaptation of IIR equalisers, such as
Evolutionary Programming (EP) (Chelapilla et al. 1997), Genetic Algorithms (GAs) (Etter
et al. 1982, Ma and Cowan 1996) and Simulated Annealing (SA) (Nambiar and Mars 1992),
showing the potential of these techniques.

Both instances of inverse filtering (with FIR and IIR equalisers) are dependent on two

factors:

1. the channel C(‘) is linear

2. the inverse of C(z) is realisable. This implies that C(z) has no zeros on or outside the
unit circle; if it did, its inverse H(z) would have poles on or outside the unit circle, and

would therefore be oscillatory or unstable.

An additional problem appears when the channel has deep spectral nulls, i.e. zeros inside
but close to the unit circle. Linear equalisers tend to compensate a deep null by placing a

high gain at that frequency. This results in noise enhancement and a poor performance.

3.2.2 Nonlinear equalisation

In other situations the channel C will have nonlinear distortion. Such channels are found, for
example, in data transmission over digital satellite links, especially when the signal amplifiers
operate in their high gain limits (Kechriotis et al. 1994). If the distortion is severe, linear
equalisers perform poorly. Nonlinear equalisers must then be employed but, in general, the
mathematical treatment of such models is complex.

An alternative has been found in neural networks. Neural networks, such as multilayer
perceptrons (MLPs) and Radial Basis Function (RBF) networks have been applied to channel
equalisation. This is done at the expense of turning the equalisation problem into a classifica-
tion one: the transmitted data are assumed to be symbols belonging to some finite alphabet
and the network, acting as a classifier, must determine which symbol was transmitted.

One important drawback of NNs lies in the determination of the structure: there exists

no established procedure for determining the number of layers and nodes (Mulgrew 1996).

CHAPTER 3. CHANNEL EQUALISATION 26

The second main problem of MLPs and RBF networks is their being feedforward struc-
tures. When nonlinearity is the main impairment, feedforward NNs perform well. This is
the case of the examples reported in (Chen et al. 1990, Gibson et al. 1991, Theodoridis et
al. 1995). It was shown how, for the high levels of noise involved in these examples, nonlinear
classifiers were required.!

However, for higher values of the signal to noise ratio (SNR) (as should be expected in a
telephone channel, for instance) the need for nonlinear compensation is balanced or overcome
by the need for recurrence, or feedback.

To be able to cater for this, feedforward NNs require a large number of nodes, which
increases their complexity. This hinders the study of their behaviour, as well as their hardware
implementation, which prevents their use in real time applications (Nair and Moon 1997a,
Nair and Moon 19976, Nair and Moon 1995).

More recently, equalisation with recurrent neural networks (RNNs) has also been reported
in the literature (Kechriotis et al. 1994, Parisi et al. 1997). Their less wide use is due to the
complexity of the training algorithm, which may become unstable.

RNNs have the advantage of being more compact than their feedforward counterparts,

but the issue of determining the structure remains.

3.2.3 A new approach

In view of all the problems involved in linear and nonlinear equalisation methods, it is de-
sirable to find an equalisation technique that allows for adaptation of the structure, while
catering at the same time for recurrence and nonlinearity.

Thus, taking into account the properties of Genetic Programming and the tree represen-
tation described in chapters 1 and 2, the scene is set for addressing the channel equalisation
problem with GP.

3.3 Genetic Programming in Channel Equalisation

In the equalisation methods shown above, the structure of the equalising filter had to be
selected by the user. Another constraint regarded the selection of a cost function to guide
the adaptation process. This was chosen in order to ease mathematical tractability. It is the

aim of this section to show how these constraints are relaxed when applying GP.

3.3.1 Fitness function

It was shown in chapter 2 how discrete time systems could be represented as expression trees

to be evolved by GP. All that is necessary now in order to employ GP in channel equalisation

! As pointed out above, these constitute cases of the detection problem, rather than equalisation.

CHAPTER 3. CHANNEL EQUALISATION 27

is to define a suitable fitness function. This will be a measure of the “goodness” of the
candidate solutions.

In early implementations of GAs and GP the fitness was used directly as the probability
of survival, hence it was defined in the interval [0,1]. This is no longer the case in the present
implementation, but, for the sake of convenience, the same interval has been adopted. Thus,
the fitness range is constant and independent of the problem tackled 2.

A simple way of achieving this is to define a cost function J(:) as some suitable error

measure and then calculate the fitness, f, as follows

1
f= 137 (3.7)

Hence, for J > 0, this results in 0 < f < 1.
In linear equalisation the cost function had to be a linear function of the equaliser’s
coefficients, thus the wide use of the MSE. On the other hand, GP is not restricted by such

constraints and any error measure can be used. These include
e the maximum absolute error,
max |€;f
or MABS; this criterion is usually referred to as Ho, or minimax (Proakis 1995, p. 607),

e the average absolute error,
1 XN
5 O el
i=1
e and the average exponential error,
1 N 2
— —|eil
N Z €
i=1

An alternative definition of fitness stems from viewing the equalisation problem as a
decision problem or a pattern classification task and is based on the bit-error rate (BER),
which is defined as the fraction of misclassified symbols in the transmitted sequence?. This
exploits the binary nature of the transmitted data, which is assumed to belong to the alphabet
{-1,1}.

Since BER € [0,1] , f may be defined as

f=1-BER (3.8)

2The interest of this will be seen in further chapters.
3].e. the number of incorrectly classified symbols divided by the total number of symbols in the transmitted
sequence

CHAPTER 3. CHANNEL EQUALISATION 28

which again results in 0 < f <1.

This may be contrasted with NN implementations, in which the MSE is generally em-
ployed during training but the performance tested using the BER.

Other characteristics of the output signal, such as the frequency response, can also be used
to define a fitness function. Any of these criteria can be employed in isolation or combined
with others. This is regarded as an important advantage of evolutionary techniques over

classical methods.

3.4 Experiments

3.4.1 Objectives

Experiments were conducted using two channels with different characteristics. The aims
of the experiments were as follows. Firstly, to show how GP can be applied to channel
equalisation using the node types and data structures described in chapter 2. Secondly,
to study the structure of the systems thus obtained and compare them with that of the
theoretical equalising filters. To attain this aim, the impulse response and the response to
a sinewave are studied. And finally, to compare the performance of the GP-evolved filters
with that of a number of FIR filters, with different numbers of taps, adapted by the RLS

algorithm.

3.4.2 Theoretical equalising filters
For the first experiment the channel model employed is
1
Yn = 3 (T + Tn-1) (3.9)

Because the output of the channel is the average of the current and previous inputs, it
will be referred to as averaging channel.
This channel has a zero on the unit circle. Hence, its inverse will have a pole on the unit

circle, which means the ideal equaliser its an oscillator, whose difference equation is
Yn = 2-Tp —~ yn_y (3.10)
The second experiment involved a nonlinear channel, modelled by the following equations

yn = cn+015:¢2+0.01-¢ +n, (3.11)
0.3482 - T, + 0.8704 - z,_, + 0.3482 - 2, 2 (3.12)

Cn

Figure 3.3 gives the model for this channel.
Because the channel is nonlinear its inverse is not defined; hence there is no theoretical

equaliser for this channel.

CHAPTER 3. CHANNEL EQUALISATION 29

~>

X y
—)I linear channel
-_— (.)2
i d

2

] () _,@_
d

3

Figure 3.3: Model for the nonlinear channel used in the experiments

3.4.3 Averaging channel
No noise

A pseudo-random binary signal (PRBS) of 250 samples was used to train both a GP equaliser
and eight FIR- RLS equalisers, whose order ranged from 3 to 10 taps.
The set up for the GP run is summarised in Table 3.1.

The GP-evolved equaliser was as follows:

((NL232 (+ X1 (+ (NL232 (+ STKL X1)) (+ (% (- C+ (%
(-(C+X1 (+X0X0))STK3) 1) (+ (+ (NL232 (- (+ X1
X0) STK3)) (+X0 (+ (+ (+X0 (+ (% (- (-Xt (+X0x1
))X2) 1) (-X1 (* (% XOSTKO) (-1 (+1X0)))))) (
+ (hC-C+(C%hC-(C+X1 (+(+X0X1L)STK3)) STK3) 1)
(+ (+ (NL232 (- (+ X1 X0) STK3)) X0) X1)) Y1) 1) (
+ (+X0Xt)X0)))X0)))STK3))YL)1)X1)))))

The fitness of this tree at the end of the evolution process (i.e. with the training signal)
was 1.

The length of the tree is 91 and its depth is 21, but this can be reduced by editing and the
tree greatly simplified. In particular, it must be noticed that, since there are no psh nodes,
the value of stk0, stkl and stk3 is zero. The simplified tree is shown in figure 3.4.

The GP equaliser was then tested with a PRBS of 1000 samples and the performance
compared with that of several FIR-RLS equalisers with different number of taps. The results
are summarised in Table 3.2. The GP-evolved equaliser beats the smaller FIR equalisers,

both in terms of BER and fitness (which is equivalent to MSE). Although some of the longer

CHAPTER 3. CHANNEL EQUALISATION 30

FIR equalisers also achieve a BER of zero, their fitnesses are consistently below 1.

We now proceed to study the behaviour of the GP equaliser in more detail. First we
study the impulse response, which is plotted in figure 3.5.

Figure 3.5 shows that the GP equaliser is indeed an oscillator, as was the ideal inverse of
equation 3.10. Furthermore, the two impulse responses (the theoretical and the obtained by
GP) only differ in the first sample.

Next, the response to a sinewave of equation
Sn = sin(0.1n)

is plotted in figure 3.6.

It can be observed that, as would be expected due to the presence of NL nodes, the
obtained solution is nonlinear, since the response to a sinewave is a square wave rather than
another sinewave. It can also be concluded that the GP equaliser behaves as a saturated

amplifier.

Signal to noise ratio SNR = 5 dB

The GP-evolved equaliser for this case was as follows

((NL74 (+ X0 (+C2X1))))

where €2 is 2. This tree is shown in figure 3.7.

This tree is much smaller than the one in the previous example. This is motivated by the
phenomenon of noise enhancement (Gibson et al. 1991), which, in highly noisy environments,
causes that equalisers of high order have a higher error than lower order ones. Hence, in this
situation, a smaller, lower order equaliser would be preferable. The same can be observed for
FIR-RLS equalisers.

The performance of the GP and RLS equalisers is given in table 3.3. It can be noticed

that GP achieves similar performance than the RLS algorithm for this case.

CHAPTER 3. CHANNEL EQUALISATION 31

Table 3.1: Set up for noiseless and SNR=5dB cases of the averaging channel (C(z) = 0.5 + 0.5
2~1) equalisation experiment

+ - % Y% +1 -1 x2 /21 2Z
PSH NLO...NL255

Function set

X0...X3 Y1...Y2

inal set
Terminal set § CO...C255 STKO...STK4

B limits for NL nodes Bhi = 10 B = 0.1
Population size 500
Mutation probability 0.01

at creation: maximum depth = 6
Size restrictions at crossover: none

output of the channel when fed

Input signal (X) with a Pseudo-Random Binary Sig-
nal (PRBS)
Reference signal the same PRBS delayed by one sample
. . 1
Fitness function TTSE 0<f<1
Number of training samples 250

o maximum fitness = 1
Termination criterion for each run or 30 minutes of CPU time

Number of testing samples 1000

§The 256 entries in the constant table are chosen uniformly within the interval [-1,1]

CHAPTER 3. CHANNEL EQUALISATION 32

Figure 3.4: A GP equaliser for the averaging channel C(z) = 1 (1 + z7') (after editing). The
value of the constant CO is taken to be 8 and the node NL232 implements the function
tanh(4.55z)

CHAPTER 3. CHANNEL EQUALISATION

33

Table 3.2: Performance summary of FIR-RLS and GP-evolved equalisers for averaging channel

—noiseless case

Equaliser fitness BER
FIR 3 taps | 0.800076 0.065
FIR 4 taps | 0.832898 0.033
FIR 5 taps | 0.855144 0.019
FIR 6 taps | 0.873442 0.003
FIR 7 taps | 0.888787 0
FIR 8 taps | 0.900752 0
FIR 9 taps | 0.909973 0
FIR 10 taps | 0.918320 0
GP-evolved | 1 0

15 1

IRERRERRE

amplitude
(=)

-1.5 1

Figure 3.5: Impulse response of GP equaliser for averaging channel — Noiseless case

15

20

CHAPTER 3. CHANNEL EQUALISATION 34

amplitude

40
60
80

100

sample

Figure 3.6: Output of GP equaliser when fed with a sinewave

()
VN

Figure 3.7: A GP equaliser for averaging channel with SNR = 5 dB. The value of C2 is 2 and the
node NL74 implements the function tanh(1.49z).

CHAPTER 3. CHANNEL EQUALISATION

0.75 -
0.5
0.25 -

XXX XXX XX XXXXXXXXXXX

amplitude
o

-0.25 1
-0.5 1
-0.75 1

20

sample

Figure 3.8: Impulse response of GP equaliser for averaging channel - SNR = 5 dB

1.2 T

08 1+
06
04 1
02 1

amplitude
o

0.2 1
-0.4 1
-0.6 +
0.8 1

1.2 +

60
80
100

sample

Figure 3.9: Response to a sinewave of GP equaliser for averaging channel - SNR = 5 dB

35

CHAPTER 3. CHANNEL EQUALISATION

36

Table 3.3: Performance summary of GP-evolved and FIR-RLS equalisers for averaging channel

(SNR= 5dB). The test signal was a PRBS of 1000 samples

Equaliser fitness BER
FIR 3 taps | 0.659632 0.158
FIR 4 taps | 0.65997 0.157
FIR 5 taps | 0.657134 0.169
FIR 6 taps | 0.65505 0.179
FIR 7 taps | 0.653528 0.181
FIR 8 taps | 0.653275 0.18
FIR 9 taps | 0.65321 0.185
FIR 10 taps | 0.654391 0.178
GP-evolved | 0.648368 0.179

CHAPTER 3. CHANNEL EQUALISATION 37

3.4.4 Nonlinear channel

For this channel the definition of fitness employed was based on the BER rather than the

MSE, as was the case for the previous example. Hence,
f=1- BER (3.13)

The linear part of the channel, given by equation 3.12, is a mixed phase channel. Such
channels are usually equalised introducing a delay in the reference (Chen et al. 1990). This,
however, was not done here in order to show the potential of the GP method.

The set up for the GP run is summarised in Table 3.4.

The equaliser obtained was

((-(=-(+(-X0C11) (-X0(CZX0))) (/ (NL123 (Z
C17)) X0)) 1))

where C11 = -0.577828 and C17 = 1.40172.

This is shown in figure 3.10

During evolution the fitness of this tree was 1, i.e. the BER was 0. The tree was then
tested with a further 1000 samples, for which the fitness based on the MSE and the BER

were measured, giving values of 0.213564. and 0, respectively.

CHAPTER 3. CHANNEL EQUALISATION

Table 3.4: Set up for nonlinear channel equalisation experiment

+ -« Y +1 -1 %2 /2172
PSH NLO...NL255

Function set

X0...X3 Y1...Y2

Terminal set § C0...C255 STKO...STK4

B limits for NL nodes Bri =10 Bio = 0.1
Population size 500
Mutation probability 0.01

at creation: maximum depth = 6
Size restrictions at crossover: none

output of the channel when fed

Input signal (X) with a Pseudo-Random Binary Sig-
nal (PRBS)

Reference signal the same PRBS

Fitness function f=1-BER 0<f<1

Number of training samples 250

maximum fitness = 1

Termination criterion for each run
or 30 minutes of CPU time

Number of testing samples 1000

§The 256 entries in the constant table are chosen uniformly within the interval [-1,1]

CHAPTER 3. CHANNEL EQUALISATION 39

Figure 3.10: A GP equaliser for the nonlinear channel given by equations 3.11 and 3.12 (no noise).

The values of the constants are C11 = -0.577828 and C17 = 1.40172. The node
NL123 implements the function tanh(2.44z)

3.5 Conclusions

It has been shown here how GP can be applied to channel equalisation using the node types
defined in chapter 2.

GP serves to overcome problems of classical equalisation techniques by allowing the struc-
ture of the solution to evolve rather than being preselected by the user. In this way, nonlinear
and recursive structures can be obtained.

Stability monitoring is intrinsic to the evolution process: unstable candidate solutions
will yield a high value of the error and therefore a low fitness and will eventually be culled
from the population.

However, in the examples presented here the evolved solutions tended to be complex or

did not yield a good performance. It would be desirable to decrease complexity in some

CHAPTER 3. CHANNEL EQUALISATION 40

cases (in order to increase readability and facilitate possible implementation) and improve
the performance in others.

This points will be addressed in later chapters.

3.6 Summary

Channel equalisation is a commonly encountered problem in digital communications and a
number of techniques to address it have been extensively reported in the literature. These
techniques tend to perform well under certain assumptions but they all share a common
failing: the structure of the solution must be determined in advance. Also, the cost function
employed for adaptation of the structure’s parameters must be selected in order to ease
mathematical treatment.

GP has been presented here as a way to avoid these problems. Because the structure of
potential solutions is allowed to evolve, nonlinearity and recurrence can arise without being
specifically introduced by the designer. Also, the selection of a fitness, or alternatively, a cost
function, is not restricted by the constraints of other methods: any user-defined function that
associates a candidate solution to a numerical value can be employed.

The application of GP to channel equalisation has been illustrated with two examples,
which show the great potential of the method.

Issues of interest are reducing the complexity of the solutions and improving their perfor-

mance. These will be dealt with in further chapters.

Chapter 4

Node gains

4.1 Introduction

This chapter introduces node gains (Sharman and Esparcia-Alcizar 1993) as a means of
representing the values of numeric parameters in Genetic Programming.

Firstly the motivations for a parameterised GP are explained. This is followed by a review
of previous approaches to parameter estimation in GP, whose drawbacks are subsequently
analysed. These shortcomings justify the exploration of alternatives and it is in this context
that node gains are introduced.

The concept of node gains will be explained and it will be shown how they waive the
shortcomings of other techniques, as well as attaining other benefits.

The costs of node gains will also be analysed and it will be shown how these can be
outweighed by the advantages.

Experimental analysis will show that although not all the potential benefits are achieved
at this preliminary stage, developments in forthcoming chapters will guarantee that this is

the case.

4.2 Parameter estimation in Genetic Programming

4.2.1 Motivation for a parameterised GP

Let us assume a simple GP system, which employs the following function set:
O = {+, — %/} (4.1)
and the terminal set
Or = {X} (4.2)

where X is a variable (e.g. an input to the system).

41

CHAPTER 4. NODE GAINS 42

Even though no constant numerical values are explicit in this representation, they can be
implicitly generated, as shown in the following examples.
Consider the tree in figure 4.1. This, assuming X # 0, codes for the number 1. Corre-

spondingly, the tree in figure 4.2 codes for the number zero.

A

Figure 4.1: A tree representing the number one

i

Figure 4.2: A tree representing the number zero

Any rational number can be expressed by combinations of such trees. For instance, the

number 0.5 could be expressed as shown by figure 4.3.

Figure 4.3: A tree representing the number 0.5

If more complicated numbers, say 0.5137, are required, the size of the tree becomes larger.
This leads to an increase in both computation and evolution time. Clearly this is not a very

efficient way of proceeding - a different way of handling numerical parameters would be

desirable.

CHAPTER 4. NODE GAINS 43

4.3 Background

The first attempt at introducing numerical values in GP was done by Koza (1992), who
defined an ephemeral random constant, R, as a terminal node which is assigned a random
value every time it appears in the first generation. These values remain constant for the rest
of the run.

A problem with this approach is that the number and values of the available parameters
depend on what happens in the first generation. Also, constants may be eliminated from
(selected out of) the population but they cannot be created.

Although these two problems may be addressed by introducing a point mutation operator
or some form of adaptation of the values, Koza did not apply any of these. This was somewhat
justified by the simple nature of the problems he addressed.

Successive approaches to the numerical parameter problem can be classified into two main
categories.

In the first one numerical parameters are included in the terminal set, i.e. the return
value of specific terminal nodes is a number.

In the second one, they are expressed as a constitutive part of specific functions or ter-
minals, i.e. the definition of certain nodes involves numerical parameters.

Combinations of both can also be found. In all cases, some sort of adaptation can be
performed, by means of classical or evolutionary techniques.

An example of category I are the ephemeral random constants described above: the value
returned by the R node is the numerical parameter itself.

The nonlinear node nlN, described in chapter 2, can be used to illustrate category II. As
explained, this node implements the function

Loexp _ on (8 4
1+ exphz — anh | 5z (4.3)

where 3 is a linear function of the index N,

BIN) = flo+ 5o (Bri = i), BE[Bio - B (4.4

max

Thus, the parameter 3 (or, correspondingly, the index N) is a constitutive part of (or
implicit in) the function nlN i.e. the parameter is used to calculate the return value of the
node but it is not the return value itself.

The first category includes the works of Angeline (1996), Chellapilla (1997) and Chellapilla
et al. (1997) in Evolutionary Programming, and Montana and Czerwinski (1996) and Howard
and D’Angelo (1995) in GP.

Angeline (1996), Chellapilla (1997) and Chellapilla et al. (1997) employ a numerical
terminal similar to Koza's ephemeral random constant with the difference that its value can

be modified by a mutation operator. The operator selects a single real valued numerical

CHAPTER 4. NODE GAINS 44

terminal in a given tree and adds to it Gaussian noise with a particular variance (typically
equal to 0.1).

Montana and Czerwinski (1996) and Howard and D’Angelo (1995) define a number of
parameters associated to each individual tree. The values of these parameters are encoded in
an appropriate way and evolved by means of a Genetic Algorithm. Each tree has its own set
of values for the parameters, although these may or may not be present in the tree structure.

The tree in figure 4.4 illustrates this idea.

{11001 T 11100 | 01001 | 00010 |

& 0 a0 al a2 a3
@)

Figure 4.4: In this system, an individual is represented by the pair of a tree and a binary string.
The terminal set in this system includes the nodes a0 .. a3. These nodes can be
present in any tree but the actual values returned by them are encoded in the binary
string and hence they are specific to each tree. In this particular tree only a0 and a2
are present, which means the resources devoted to store and adapt the values of al
and a3 are wasted (Howard and D'Angelo 1995).

In the second category can be cited Andre (1994), Nguyen and Huang (1994), Gray et al.
(1997), Iba et al. (1994) and Marenbach et al. (1996). Because the parameters are part of
certain nodes and these are defined for particular problems, the methodologies become very
problem-specific.

For instance, both Gray et al. and Marenbach et al. address system identification and
control problems and for this purpose implement nodes that represent first and second order
systems, time delays etc. An example is given in figure 4.5.

A different approach is that of Andre (1994) in the field of pattern recognition. It employs
a class of functions, ifdfn, whose associated parameters, dfn, are not numerical values but
two dimensional arrays of pixels (“hit-miss” matrices).

Nguyen and Huang (1994) apply GP to evolve 3-D aeroplane models. In their implemen-
tation a number of dummy functions serve the purpose of holding certain parameters. For
instance, the function SketchBody holds three parameters (midbodyLength, tailLength and
bodyDiameter) which are relevant to the task of designing the body of the plane.

Iba et al.’s implementation for system identification involves nodes whose transfer func-
tions are polynomials of the node’s two input arguments, as seen in figure 4.6.

A less clear example of category II is provided by the work of Koza et al. (1997b). They
apply GP to evolve electronic circuits and for this purpose use a number of component-

creating functions. These functions have one or more arguments, one of which is numerical

CHAPTER 4. NODE GAINS 45

(® (62
@
()

Figure 4.5: Model for a dynamic system. The function S2 represents a second order system of

. w? . .
transfer function ;g-ﬁi:“’g;—wg; the parameters associated to it are K, w, and &.

Td represents a time delay of transfer function e~*T; the associated parameter is T
(Marenbach et al. 1996).

Figure 4.6: A polynomial GP node. The output of NODE1 is given by the equation y; = ag +
a1Z1 + 6272 + a3Z122 + a4x? + a5z Every inner node carries a set of six associated
parameters, ag - a5 (lba et al. 1994).

and determines the value of the created component (see figure 4.7).

The argument V'1 is an arithmetic performing subtree, composed only of arithmetic func-
tions (addition and subtraction) and random constants. In this sense, this implementation
seems to correspond to category I (where parameters are numerical terminals) but it has been
included here because only certain specific functions make use of the arithmetic-performing
subtrees; it can therefore be considered that the numerical parameter is part of the function.

An approach which can’t be classified into any of the two categories is the one taken by
McKay et al. (1996) and Hiden et al. (1997). They define a model structure, some parts of

which are evolved by GP; the rest are parameters that are determined by other means.

4.3.1 Problems with existing prameter representation methods

Many of these approaches involve a (predefined) fixed number of parameters per tree (or per

function). This is appropriate in some cases, where knowledge about the problem is available

CHAPTER 4. NODE GAINS 46

Figure 4.7: The C function creates a capacitor whose value is determined by mapping the numer-
ical argument V1 onto an appropriate range of values (Koza et al. 1997b).

and the nature of the relevant parameters is understood a priori. This is the case of Gray
et al. (1997), Marenbach et al. (1996), Nguyen and Huang (1994) and Koza et al. (1997b).
For instance, in Nguyen and Huang’s problem it seems only logical that, when designing a
aeroplane, an important parameter should be its length.

In other cases, however, the determination of what parameters are relevant and should
be included in the prospective solution is done in a rather arbitrary way. In this group fall
Howard and D’Angelo (1995) and Andre (1994); for instance the latter employs six hit-miss
matrices, but there doesn’t seem to be a justification for the election of this particular number.

It seems desirable to find an alternative mechanism that avoids or rationalises the
selection of the parameters. This was the first goal of the work described in this chapter.

Further problems are posed by the use of numerical terminals. In the case of constant
terminals, as explained above, everything depends on whether the user’s choice is appropriate
or not, or, for randomly selected terminals, what the situation is in the first generation.

Numerical terminals face the problem of being placed in a position where no possible
mutation can obtain any improvement in the performance. An otherwise useful terminal
risks being selected out of the population due to this misplacement and the highly extended
technique of assigning less probability to terminal crossover points, also termed leaf crossover
(Koza 1992, pp. 114-116), seems designed to make matters worse (Angeline 1996).

As an example, let us suppose a model for the system represented in figure 4.8 is desired.

Xn @ |+ n

1
L—O.681 z

Figure 4.8: A first order system.

CHAPTER 4. NODE GAINS 47

The system difference equation is given by 4.5.
Yn = Ty — 0.681 : yn_; (4.5)

This system can be represented as a tree, using the nodes described in chapter 2. This is

shown in figure 4.9.

(&)

(x9 (%)
@ ®

Figure 4.9: A tree representing a first order system (x, + C0 - yy), with a numerical terminal.
The system equation for this tree is given by equation 4.6.
Un =Zn +CO-yn_1 (4.6)

so the tree will be a model for the system in Figure 4.9 as long as the value of CO0 is approxi-
mately -0.681. Consider, however, what the situation would be if the numerical terminal C0

happens to be in the “wrong” place, as shown in figure 4.10.

®
&
& ®

Figure 4.10: Another tree representing a similar system (CO - x5 + yn)-

&)

The system equation for this tree is:

Yn = CO0- Ty + Yn—1 (4.7)

Even if the value of CO is -0.681, this tree does a very bad job at approximating the
system in figure 4.8, so its fitness will be low. This could be waived by exchanging the values
of x0 and y1 using some sort of permutation operator. Alternatively, the terminal CO could

still be of use if placed in another tree by leaf crossover.

CHAPTER 4. NODE GAINS 48

These procedures are discouraged in standard GP (Koza 1992) and the last one in partic-
ular is purposely avoided in many implementations. In such a situation, it is unlikely that the
subtree (* x0 CO) will be disrupted and, because it confers no advantage to the individual
carrying it, it is to be expected that it will eventually disappear from the population, which
results in the loss of a useful constant.

This situation highlights two problems: parameter misplacement and possibility of

loss of parameters.

4.3.2 Adaptation

Most techniques reviewed above employ some form of adaptation of the parameters: Gaus-
sian mutation (Angeline 1996, Chelapilla 1997, Chelapilla et al. 1997), genetic algorithms
(Montana and Czerwinski 1996, Howard and D’Angelo 1995, Andre 1994, Nguyen and Huang
1994), genetic programming (Koza et al. 1997b), simulated annealing (Gray et al. 1997) or
classical regression techniques (Iba et al. 1994, Marenbach et al. 1996, McKay et al. 1996, Hi-
den et al. 1997).

However, adaptation seems rather pointless in the case of the “misplaced parameter”
explained in the previous section.

In other cases (Howard and D’Angelo 1995, Andre 1994) it is possible to spend computa-
tional effort adapting parameters that are not used by the structure (as exemplified by figure
4.4), to no avail. This points at the fourth objective to attain: avoiding the unnecessary

adaptation of unused parameters.

4.3.3 Summary of objectives

The problems thus exposed seem justification enough to investigate possible alternative meth-
ods of handling numerical parameters. The questions to be answered (i.e. the objectives to

be attained) by such a method can be listed as follows:
1. how to determine the number of parameters to use
2. how to prevent the parameters from being selected out of the population
3. how to avoid the unnecessary adaptation of unused parameters
4. how to rationalise the placement of parameters

These questions are fully answered by the introduction of node gains.

CHAPTER 4. NODE GAINS 49

4.4 Node gains

4.4.1 Concept

This is an approach that diverges from the two categories explained above and for this reason
it has not been included in the previous review. Node gains were introduced by Sharman and
Esparcia—Alcazar (1993) and subsequently developed in Sharman, Esparcia-Alcdzar and Li
(1995) and Esparcia-Alcdzar and Sharman (1996, 19974,b) and Esparcia-Alcazar (1997).
The concept of node gains was inspired by work in the Neural Networks field. In a Neural
Network, numerical parameters in the form of weights are associated to the links between
neurones, so that the data are modified as they pass from one neurone to another through

the net.

In GP it is equivalent and representation-wise more convenient to define node gains as

follows:

Definition 4.1 A node gain is a numerical parameter that multiplies the output value of a

node.

Let us consider the link between the output of a node labelled P and the input to a parent
(or upper) node labelled Q. The link has a strength of a,, and the relationship between the

value at the output of node P, x, and the input to node Q, y, is
y = apq T (48)

This is shown graphically in figure 4.11.

Figure 4.11: Graphic representation of a node gain.

For the purposes of this work the gains will be real numbers; this is no limitation, however,

as complex, integer or binary gains can be implemented in the same way.

Definition 4.2 A gain vector, g, is a vector of node gains associated to a node vector of

the same length, i, so that the i* component of §, g, is the gain of the i*h component of 71, n;.

Thus, a GP individual I consists of the pair of vectors

I'=(1,g) (4.9)

CHAPTER 4. NODE GAINS 50

where

1)

— {no ny - nf—l} (410)
={g990 " g1} g ER i=0...0-1 (4.11)

@

4.4.2 Benefits of node gains

By introducing node gains, all the questions posed in the previous section have been answered,

namely:

e no decision must be taken regarding the number of parameters: there are as many gains

as nodes.

e the parameters cannot disappear from the population, since they are attached to the

nodes.
e all parameters have an influence on the output; there are no unused parameters.
e because all the nodes have a gain value, the placement of the parameters is not an issue.

Let us go back to the first order system of figure 4.8. A tree to represent such a system,

considering node gains is shown in figure 4.12.

2 g1 2
(+) X - Yn
gi g
@ : g2 ﬂ

2

Figure 4.12: A tree representing a first order system, using node gains.
The system equation is now:

Yn = go (g1 Tn + 92 Yn-1) (4.12)

Note that, using an adequate adaptation algorithm, it will always be possible to find a
set of gains (i.e. a gain vector, §) that accurately models the system.

For example, the pair

St
ll

{+, x0, y1} (4.13)
7 = {05, 20, —1.362} (4.14)

or, in compact polish notation:
([0.5] + [2.0] x0O [-1.362] y1)

represents a model for the system.

CHAPTER 4. NODE GAINS 51

This is also equivalent to the system represented by the tree in figure 4.9, making C0 =

—0.681. There is a striking difference, however: the tree in figure 4.9
i = {+, x0, *, y1, CO } (4.15)

requires two extra nodes.

Besides, if other parameters were of interest, such as the ones present in equation 4.12,
further constants and multiplication nodes should be introduced.

This leads us to an important characteristic of the node gain approach: by using node
gains the same system can be represented by shorter, more compact trees. This “compacting

effect” can affect the performance of the method in two ways:
e shorter subtrees are less susceptible of disruption by crossover

o handling shorter trees is less computer intensive.

4.4.3 Implementation issues

e Initialisation
When creating a random tree for the initial population the node gains can also be

initialised at random! or set to a predefined value (typically 1).

e Genetic operators for node gains

Two approaches can be taken to crossover when working with node gains. The first
one involves considering the gains as part of the structure; since a gain is attached to
a specific node, it “moves” with it as a result of crossover.

The second approach regards the gains in a more independent manner; thus, when a
tree is created by crossover, the gains are reinitialised at random. This distinction will
become of interest later, when an adaptation algorithm is introduced.

Mutation can also be implemented for node gains. A gain can be selected for mutation
in the same way as a node. The mutation itself can be done by either replacing the
current value by a randomly generated one or by adding a random quantity to it, in the
same way as done by Angeline (1996), Chellapilla (1997) and Chellapilla et al. (1997).

¢ Extensions
It has been considered so far that every node has a gain value. This does not necessarily
have to be so: only certain nodes or types of nodes may have gains (in the same way as
in neural networks) and these would be marked by a “gain flag”. The remaining gains

would be set to unity.

!The gain values g; could, for instance, be obtained from normal (g; ~ N(1, o?)) or uniform (g; ~ U(~1,1))
distributions

CHAPTER 4. NODE GAINS 52

4.4.4 Cost of node gains
The achievements related in the previous sections have come at three costs:

e increased complexity of the nodes: a node must carry the value of the gain g; as well

as the information on its type.

e increase in the computational cost, due to the additional multiplication operation per

node

e increase in the degrees of freedom, equal to the number of nodes. This highlights the

need for an adaptation algorithm to obtain adequate values for the gains.

It must be pointed out that these should not be considered in an absolute manner, but
they must be compared separately to the different costs generated by the other possible
approaches to the numerical values problem. It is an objective of this work to investigate
whether the costs are overcome by the advantages brought by the use node gains.

With regard to the first point, the increase in complexity of the node representation
is considered to be comparable (i.e. of the same order of magnitude) to the complexity
introduced by the alternatives. More efficient ways of handling numerical parameters imply
that either more complex structures are used or more knowledge about the problem at hand
is available.

As per the second point, it will be shown that, despite the increased dimensionality,
searching in the gain space using a continuous adaptation algorithm can, for certain problems,
be easier and more efficient than searching in discrete spaces, as exemplified by crossover.

The reason is that for continuous spaces the fitness landscape is smoother than for discrete
ones, i.e. small (big) changes in the parameters produce small (big) changes in the fitness,
on average.

This applies as well to other continuous parameter adaptation schemes as the ones used by
Angeline (1996), Chellapilla (1997), Chellapilla et al. (1997), Gray et al. (1997), Marenbach
et al. (1996) and Iba et al. (1994) and partly by McKay et al. (1996) and Hlden et al.
(1997).

4.5 Experimental analysis

4.5.1 Objective

The purpose of this section is to make an experimental comparison between standard GP
and the proposed node gain GP, in which all nodes have a gain value.

The objectives of this comparison are threefold:

e expose the shortcomings of standard GP, that make it desirable to find a different way

of handling numerical parameters

CHAPTER 4. NODE GAINS 53

e show the benefits of node gains, both immediate and potential, in terms of the fitness

of the obtained solutions.

o determine whether the size of the solutions obtained by the node gain method is bigger

or smaller than the standard GP ones.

4.5.2 Method

To attain these objectives a symbolic regression experiment is devised. This consists in
approximating a function y(z) given a number of points (z, y), where z is uniformly sampled
from the interval [z, Zhi]. The solutions obtained are then tested with an extra set of pairs
(z,y), sampled from the same interval.

The experiment is done in two parts; for the first one the function to be approximated is

as follows:
y=2z+3z+1 (4.16)
The second part aims at approximating the function 2
y = 2.718 2% + 3.1416 -z + 1.3579 (4.17)

In both cases the set up of the experiment is the same, as summarised in table 4.1.

4.5.3 Results

¢ Fitness
When performing the first part of the experiment using standard GP, the solutions
obtained in all runs but one achieved a fitness of 1 in the test (the one that didn’t,
had a fitness value close to zero). On the other hand, when the same was repeated for
part 2 of the experiment, one tenth of the runs got solutions with fitness values close
to zero and the maximum fitness of all was 0.997. Thus, just changing the numerical
parameters in the problem causes a significant degradation in the performance of the

obtained solutions.

Part 2 of the experiment was also repeated using the node gain GP method. In this
case, one third of the runs (ten in each set of thirty) obtained solutions with fitnesses
close to zero, but at least one run in each set of thirty obtained a solution with a fitness

value greater than 0.999, i.e. greater than the maximum obtained by standard GP.

A t-test with a significance of 0.05 was performed for each set of thirty runs, with the
conclusion that the mean of the fitnesses obtained by standard GP is higher than that
of the fitnesses obtained by node gain GP.

2This is similar to an example given by Koza (1992). However, due to an erratum in the transcription of
that work it is impossible to establish any comparisons.

CHAPTER 4. NODE GAINS 54

Therefore it can be concluded that, on the av