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Abstract 

This thesis is devoted to presenting the application of the Genetic Programming (GP) 

paradigm to a class of Digital Signal Processing (DSP) problems. Its main contributions 

are 

• a new methodology for representing Discrete-Time Dynamic Systems (DDS) as expres

sion trees. The objective is the state space specification of DDSs: the behaviour of a 

system for a time instant t ~ to is completely accounted for given the inputs to the 

system and also a set of quantities which specify the state of the system. This means 

that the proposed method must incorporate a form of memory that will handle this 

information. 

For this purpose a number of node types and associated data structures are defined. 

These will allow for the implementation of local and time recursion and also other 

specific functions, such as the sigmoid commonly encountered in neural networks. An 

example is given by representing a recurrent NN as an expression tree. 

• a new approach to the channel equalisation problem. A survey of existing methods for 

channel equalisation reveals that the main shortcoming of these techniques is that they 

rely on the assumption of a particular structure or model for the system addressed. This 

implies that knowledge about the system is available; otherwise the solution obtained 

will have a poor performance because it was not well matched to the problem. 

This gives a main motivation for applying GP to channel equalisation, which is done 

in this work for the first time. Firstly, to provide a unified technique for a wide class 

of problems, including those which are poorly understood; and secondly, to find alter

native solutions to those problems which have been successfully addressed by existing 

techniques. 

In particular, in the equalisation of nonlinear channels, which have been mainly ad

dressed with Neural Networks and various adaptation algorithms, the proposed GP 

approach presents itself as an interesting alternative. 

• a new way of handling numerical parameters in GP, node gains. A node gain is a 

numerical parameter associated to a node that multiplies its output value. This concept 



was introduced by (Sharman and Esparcia-Alcazar 1993) and is fully developed here. 

The motivation for a parameterised GP is addressed, together with an overview of how it 

has been addressed by other authors. The drawbacks of these methods are highlighted: 

there is no established way of determining the number of parameters to use and their 

placement; further, unused parameters can be unnecessarily adapted while, on the other 

hand, useful ones might be eliminated. The way in which node gains overcome these 

problems is explained. An extra advantage is the possibility of expressing complex 

systems in a compact way, which is labelled "compacting effect" of node gains. 

The costs of node gains are also pointed out: increase in the degrees of freedom and 

increased complexity. This, in theory, results in an increase of computational expense, 

due to the handling of more complex nodes and to the fact that an extra multiplication 

is needed per node. These costs, however, are expected to be of, at most, the same 

order of magnitude as those of the alternatives. 

Experimental analysis shows that random node gains may not be able to achieve all 

the potential benefits expected. It is conjectured that optimisation of the values is 

needed in order to attain the full benefits of node gains, which brings along the next 

contribution . 

• a mathematical model is given for an adaptive GP. As concluded from the previous 

point, adaptation of the values of the node gains is needed in order to take full advan

tage of them. A Simulated Annealing (SA) algorithm is introduced as the adaptation 

algorithm. This is put in the context of an analogy: the adaptation of the gains by SA 

is equivalent to the learning process of an individual during its lifetime. 

This analogy gives way to the introduction of two learning schemes, labelled Lamarckian 

and Darwinian, which refer to the possibility of inheriting the learned gains. 

The Darwinian and Lamarckian learning schemes for GP are compared to the standard 

GP technique and also to GP with random node gains. Statistical analysis. done 

for both fixed and time-varying environments, shows the superiority of both learning 

methods over the non-learning ones, although it is not possible at this stage to determine 

which of the two provides a better performance. 

• a number of interesting results in the channel equalisation problem. These are com

pared to those obtained by other techniques and it is concluded that the proposed 

method obtains better or similar performance when extreme values (maximum fitness 

or minimum error) are considered. 
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Chapter 1 

Introduction 

1.1 Overview 

As developments in the communications field succeed one another at a fast pace, the engineer 

is faced with increasingly complex problems which often cannot be approached with existing 

("classical") techniques. 

Natural algorithms present themselves as an alternative where more conventional methods 

fail. These are techniques that aim at exploiting some analogy to natural processes, based 

on the premise that Nature always finds robust solutions to existing problems. 

This thesis develops an application of two such techniques, Genetic Programming (GP) 

and Simulated Annealing (SA), to a class of Digital Signal Processing problems. This chapter 

is meant as a brief introduction to both methods. 

Firstly, the abstract class of Evolutionary Computation techniques is presented in section 

1.2. Further down in the hierarchy is the class of Genetic Algorithms (GAs), whose main 

features are described in 1.3. Section 1.4 focuses on Genetic Programming. A succinct review 

of its characteristics is followed by an enumeration of the reasons that make it worth studying. 

One of main characteristics of GP, the representation via expression trees, is then studied 

here in more detail. Section 1.5 presents the SA algorithm, its main features and possible 

variants. 

Finally, section 1.6 gives the summary of the thesis. 

1 



CHAPTER 1. INTRODUCTION 2 

1.2 Background on Evolutionary Computation 

Evolutionary Computation techniques employ simulated evolution to solve a wide variety 

of problems. The guiding principle of these techniques is the Darwinian survival of the 

fittest. Darwinian evolution is intrinsically a robust search and optimisation mechanism. 

Biological species have solved problems that involve chaos, chance, temporality and nonlinear 

interactivity (Fogel 1994). These characteristics are shared by many engineering problems, 

for which there exist no heuristic solutions or they provide unsatisfactory results. 

In the neo-Darwinian paradigm, evolution is driven by four basic processes: reproduction, 

mutation, competition and selection. These processes are mimicked by Evolutionary Com

putation techniques, which are usually divided into three main groups: genetic algorithms, 

evolutionary programming and evolution strategies. All three techniques employ a popula

tion of candidate solutions 1 and explore the search space by successive application of one or 

more variation operators. 

While evolutionary programming and evolution strategies rely on mutation as the main 

variation operator, genetic algorithms are characterised by the strong emphasis placed on 

crossover. Crossover refers to the exchange of genetic information between two or more 

individuals (the parents) resulting in a number of new ones (the children). 

Within the main class of genetic algorithms, a subclass that stands on its own right is 

Genetic Programming (GP). The next sections begin by summarising the main characteristics 

of GAs and then proceed with the specific features of GP. 

1.3 Genetic Algorithms ( G As) 

The introduction of GAs is generally attributed to Holland (1975), although other authors 

had previously proposed similar algorithms to simulate genetic systems2 . 

The implementation of a GA is typically done as follows: 

1. A fitness function is defined to rate the performance of any potential solution to the 

problem at hand. 

2. An initial population of prospective solutions is generated at random. Candidate solu

tions are also referred to as individuals or chromosomes, with elements called genes. 

3. A new population is generated by selecting individuals from the previous one, in a way 

that gives preference to individuals with higher fitness values.3 

1 And for this reason they lend themselves easily to parallelisation. 
2See (Fogel 1994) for references 
3 Alternatively, the problem could also be expressed in terms of the minimisation of some cost function. 

Because traditionally GAs and GP are implemented as maximisation problems the same approach will be 
taken here 
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4. Crossover is implemented by selecting random pairs among the population and ex

changing segments of data between them. 

5. Mutation takes place by changing the value of a randomly selected gene with a given 

probability 

6. Steps 3 through 5 are repeated until some termination criterion is met (either a solution 

is found or time has expired). 

For a more in-depth study of GAs the reader is referred to (Goldberg 1989). 

1.4 Genetic Programming 

1.4.1 Characteristics 

As said above, GP is a subclass of the standard GA (Koza 1992, Koza 1994). The main 

characteristics that give it a separate status are usually listed as 

I objective I The goal of GP is to evolve a program, in contrast with the standard GA, whose 

aim is usually to evolve data. The term program is taken in a loose sense, and can 

mean such dissimilar items as a mathematical function or a game playing strategy. 

I representation I the individuals evolved in GP are symbolic expression trees, or S-trees, 

written in polish notation. This is explained in detail below. 

I operators I due to the use of a tree representation, the crossover operator in GP is syntax

constrained. This means that only crossovers that produce syntactically correct trees 

are allowed. 

Although there have been other approaches to program induction using evolutionary 

techniques, there are a number of characteristics that make GP worth studying. (O'Reilly 

1995) lists them as follows: 

• GP is robust, in the sense that it has been shown to perform successfully on a wide 

range of problems, providing a single, unified approach. 

• GP uses a variety of expressive primitives, or node types (see below). 

• Because it works with primitives, the representation of GP is more flexible than others 

such as Learning Classifier Systems (LCS) or Neural Networks (NNs). LCSs use if-then 

rules and NNs weights and network connections; hence they require that the solution 

"fits to" these specialised structures.4 

The next section describes the expression trees and their components. 

4Incidentally, it will be shown later that structures such as NNs can be evolved by GP 
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1.4.2 Expression Tree and Node Vector. 

Definition 1.1 A symbolic expression tree (or, for brevity, an S-tree or tree) is a vari

able length string of symbols written in polish (prefix) notation which is constructed according 

to certain grammar rules. 

Definition 1.2 A node vector, n 

is an alternative representation for an expression tree, where: 

£ E ~ is the length of the tree, 

ni : ~A(n;) ==>~, ni E 0; i = 0 ... £ - 1 

'\{nd is the arity i.e. the number of arguments (or inputs) of ni 

o is a set of allowed operations 

The symbols ni that constitute the tree/vector are called nodes. 

Definition 1.3 A node n is a primitive function with one output and '\(n) inputs. 

The set of operations 0 can be represented as the union of two subsets: 

(1.1 ) 

(1.2) 

which are usually referred to as function set and terminal set, respectively. The terminal set 

is characterised by 

'\(n) = 0 VnE OT ( 1.3) 

and the function set by 

>.{n} > 0 ( 1.4) 

For n to be a syntactically correct tree, two necessary and sufficient conditions must be 

satisfied. These are described below. 

I Completeness I The sum of the arities of all the nodes in the tree must be equal to the 

length of the tree minus one, i.e. 

£-1 

L A(ni) = e-1 (1.5 ) 
i=O 

The completeness condition guarantees that the tree is complete, that is, there are no 

missing arguments. Equation 1.5 can be easily deduced from the following facts: 
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1. the length of the tree must be at least equal to 1 + ),(no), where ),(no) is the arity of 

the first node (or root) 

2. any given node ni must have a number of succeeding nodes greater than or equal to its 

arity ),(ni). 

Definition 1.4 A node ni is connected to another node nj if 1) ni is an argument to nj 

or 2) ni is an argument to a node that is connected to nj 

Definition 1.5 A subtree of length £ and root ni is the set comprising ni and the f - 1 

succeeding nodes connected to it. 

I Hierarchical connectivity I The sum of the arities of the nodes preceding a given node 

ni, 0 < i < £ - 1, must be greater than i, i.e. 

i 

L::),(nj) > i Vi 0 < i < £ - 1 ( 1.6) 
j=O 

For i = f - 1 the equality applies; this is the completeness condition. 

The connectivity condition ensures that all subtrees in a vector are connected to the root 

node by way of preceding nodes, i.e. there are no isolated subtrees. 

Examples of correct and incorrect trees are the following 

{+ + a b * c d} 

{+ + a b * c} 

{+ a b * c } 

====> correct: a + b + (c· d) 

====> incorrect: doesn't comply completeness condition 

====> incorrect: doesn't comply connectivity condition 

The vectorial representation lends itself easily to mathematical treatment. Nevertheless, 

in standard GP the preferred representation is the polish notation. A characteristic of this 

type of notation is that it renders parentheses unnecessary. Using them, however, increases 

the readability of the expressions and for this reason they are widely applied. In this way, 

the first tree in the previous example would be represented as: 

(+ (+ a b) (* cd)) 

Any function can be written as an expression tree or node vector, provided that appro

priate nodes are defined. For example, the two-input function 

(1. 7) 

can be represented as a vector as follows 

ii = {+, xl, *, k, x2} (1.8) 
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Figure 1.1: A simple expression tree representing equation 1.7. 

or as an expression tree 

(+ xl (* k x2)) 

This tree is shown graphically in figure 1.1. 

6 

The output of the tree for a given pair of values of Xl ~nd X2 would be the value of 

f(xI, X2) for those particular values. If Xl and/or X2 are time-varying, the output of the 

tree is a time series. 

Definition 1.6 To evaluate a tree in a particular environment (i. e. the problem at hand) 

is to obtain the output value of the function it represents. 

Definition 1. 7 A branch of length l and root ni is a subtree satisfying the Completeness 

and Hierarchical Connectivity conditions with respect to its root ni, i. e. 

l+i-l 

LA(nj) = l-1 
j=i 

l+i-l 

L A(nj) > k 
j=i 

In the example above, the subtree 

Vk : i < k < l + i-I 

(* k x2) 

is a branch, as it can be seen as a tree in itself. 

(1.9) 

(1.10) 

This definition is useful when specifying the mechanics of the crossover operator. Crossover 

is restricted by the fact that only syntactically correct trees can be generated. In practice, this 

means that only whole branches (and not just subtrees) can be exchanged; this is considered 

as the main feature of Genetic Programming. 

1.5 Background on Simulated Annealing 

Simulated Annealing (SA) is a stochastic searching strategy based on an analogy to the 

annealing process in statistical mechanics (i.e. the behaviour of systems with many degrees 

of freedom in thermal equilibrium at a finite temperature). 
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If a molten substance is cooled quickly (rapid quenching), it will solidify into a defective 

crystal. However, if the substance is slowly cooled, thermal diffusion will cause agitation of 

the particles, which will probabilistically fall into minimum energy configurations. 

In simulated annealing, a system is "heated" up to its melting point and then the tem

perature is slowly reduced; the system being allowed to reach thermal quasi- equilibrium in 

each temperature step. The thermal noise is simulated by introducing random perturbations, 

the variance of which is dependent on the temperature. 

First introduced by (Metropolis et al. 1953) it was not until the 80's that it became 

extensively applied to a number of optimisation problems (Kirkpatrick et al. 1983, Szu and 

Hartley 1987). 

A Simulated Annealing algorithm is characterised by the following: 

1. a perturbation-generating probability distribution 

2. an acceptance/rejection probability distribution 

3. a cooling schedule 

For a full account of the SA algorithm, the reader is referred to appendix A. 

1.6 Summary of the thesis. 

Chapter 2 provides the key for the representation of Discrete-Time Dynamic Systems as 

expression trees, which constitutes the first main contribution of this thesis. 

First of all the objective is enunciated as the state space specification of DDSs: the 

behaviour of a system for a time instant t ~ to is completely accounted for given the inputs 

to the system and also a set of quantities which specify the state of the system. This means 

that the GP must incorporate a form of memory that will handle this information. 

For this purpose a number of node types and associated data structures are defined. 

These will allow for the implementation of local and time recursion and also other specific 

functions, such as the sigmoid commonly encountered in neural networks. An example is 

given by representing a recurrent NN as an expression tree. 

Chapter 3 introduces the channel equalisation problem, for which two examples will be 

given. A survey of existing methods for channel equalisation reveals that the main short

coming of these techniques is that they rely on the assumption of a particular structure or 

model for the system addressed. This implies that knowledge about the system is available; 

otherwise the solution obtained will have a poor performance because it was not well matched 

to the problem. 

This gives a main motivation for applying GP to channel equalisation, which is done in 

this work for the first time. Firstly, to provide a unified technique for a wide class of problems, 
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including those which are poorly understood; and secondly, to find alternative solutions to 

those problems which have been successfully addressed by existing techniques. 

Chapter 4 presents the second main contribution of this thesis: a new way of handling 

numerical parameters in GP, node gains. A node gain is a numerical parameter associated 

to a node that multiplies its output value. This concept was introduced by (Sharman and 

Esparcia-Alcazar 1993) and is fully developed here. 

The motivation for a parameterised GP is addressed, together with an overview of how it 

has been addressed by other authors. The drawbacks of these methods are highlighted: there 

is no established way of determining the number of parameters to use and their placement; 

further, unused parameters can be unnecessary adapted while, on the other hand, useful ones 

might be eliminated. The way in which node gains overcome these problems is explained. 

An extra advantage is the possibility of expressing complex systems in a compact way, which 

is labelled "compacting effect" of node gains. 

The costs of node gains are also pointed out: increase in the degrees of freedom and 

increased complexity. This, in theory, results in an increase of computational expense, due 

to the handling of more complex nodes and to the fact that an extra multiplication is needed 

per node. These costs, however, are expected to be of, at most, the same order of magnitude 

as those of the alternatives. 

Experimental analysis shows that random node gains may not be able to achieve all the 

potential benefits expected. It is conjectured that optimisation of the values is needed in 

order to attain the full benefits of node gains. This sets the scene for the following chapter. 

In Chapter 5 a Simulated Annealing (SA) algorithm is introduced as a means of adapting 

the values of the node gains. This, the third main contribution of this thesis, is put in the 

context of an analogy: the adaptation of the gains by SA is equivalent to the learning process 

of an individual during its lifetime. This analogy gives way to the introduction of two learning 

schemes, labelled Lamarckian and Darwinian, which refer to the possibility of inheriting the 

learned gains. Both are compared to the standard GP technique and also to GP with random 

node gains. The comparison shows the superiority of both learning methods, although it is 

not possible at this stage to determine which of the two provides a better performance. 

In Chapter 6, the channel equalisation problem is revisited and more results are provided 

using the full node gain GP+SA method. These results are compared to those obtained 

by other techniques and it is concluded that the proposed method obtains better or similar 

performance when extreme values (maximum fitness or minimum error) are considered. 

Finally, Chapter 7 presents a summary of the conclusions and outlines areas of future 

research. 



Chapter 2 

Representing Discrete-Time 

Dynamic Systems as Expression 

Trees 

2 .1 Introduction 

This chapter is concerned with providing a representation for Discrete-Time Dynamic Sys

tems (DDS's) as symbolic expression trees, which are the structures typically employed by 

Genetic Programming. These S-trees, or individuals, are computer programs written in the 

language defined by the representation (Kinnear 1994). The fitness function then executes 

these programs to assign a performance measure, or fitness value, to each one of them. 

The S-trees are composed of nodes whose interpretation will be specific of the problem. 

The aim of this chapter is to provide definitions of the node types that will allow for the 

representation of discrete-time systems. 

The rest of the chapter is structured as follows. Section 2.2 provides a description of the 

systems that are to be represented as S-trees. Section 2.3 focuses on the components of the 

S-trees: what requirements they must satisfy and the various kinds of nodes that will be 

employed in the remainder of this work. Section 2.4 describes the data structures needed by 

the nodes defined in Section 2.3 and how they operate when the S-tree is executed. In Section 

2.5 an example is presented. Section 2.6 gives some details of the software implementation 

and finally Section 2.7 concludes the chapter. 

9 



CHAPTER 2. REPRESENTING DDS'S AS EXPRESSION TREES 10 

2.2 State Space Specification of Discrete-Time Dynamic Sys

tems 

Consider a single output single input discrete-time system with input X t and output Yt, as 

shown in figure 2.1. 

XI --~1 .... __ S_Y_S_TE_M_----,~ YI 

Figure 2.1: A single input single output system. 

The state of the system at instant to is defined as a set of quantities which, together 

with the input for all instants t ~ to , uniquely determines the output for all instants t ~ to 

(Priestley 1988). 

The system can be described by the equations: 

St+l = A{st} + B{xt} 

Yt = C{st} + D{xt} 

(2.1 ) 

(2.2) 

where Xt is the input vector, Yt is the output vector and St is the state vector. The func

tions A(·), B(·)' CO and D{·) are matrices whose components are scalar-valued nonlinear 

functions. 

The aim of this chapter is to express equations 2.1 and 2.2 in a way that can be handled 

by Genetic Programming, so that discrete-time dynamic systems can be evolved. 

This is done by writing the function that provides the current system output, Yt , as an 

expression tree. The components of the state and input vectors are updated and saved using 

special data structures. 

Although for simplicity in the remainder of this work only single input / single output 

systems are considered, the techniques introduced could be easily extended to multiple input 

multiple output systems. 

The following sections discuss in detail the components of the expression trees and the 

necessary data structures. 

2.3 Node types 

2.3.1 Requirements 

The nature of the nodes ni has to be adapted to the problem at hand. In the case of Discrete

Time Dynamic Systems (or, in particular, Digital Signal Processing algorithms) they must 

be chosen so that the representation system has the following main characteristics: 
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1. the ability to capture the dynamics of the system, which is of vital importance in DSP. 

2. an efficient way to represent and adapt the parameters of the system. 

The former is achieved by the combined use of special tree nodes and data structures that 

endow the system with memory and local and time recursion ability. 

This section is concerned with the definition of such a class of nodes, the associated data 

structures will be dealt with in section 2.4. The second requirement is the subject of chapters 

4 and 5. 

2.3.2 Basic node types 

To represent Discrete-Time Dynamic Systems the following sets of operations are of interest: 

OF = { +, -, *, /, *2, /2, +1, -1, nIN, psh, Z, fN, avgN } (2.3) 

is the function set and 

OT = { 1, eN, xN, yN, stkN, argN } (2.4) 

is the terminal set. 

The basic types are those used to implement arithmetic operations. These are addition, 

+, subtraction, -, multiplication, *, and protected division, / 1. Other basic types used 

throughout this work are increment, +1, decrement, -1, double, *2, and half, /2. The meaning 

of the other nodes is as follows. 

2.3.3 Time recursion nodes 

These node types allow access to previous values of inputs, outputs and other internal vari

ables. The index N, which will appear in what follows, represents an integer in a user-defined 

range, [0·· . Nmax ], where the value Nmax varies according to the type of node . 

• Input node, xN, and output node, yN, are terminals (>. = 0) representing the input to 

and output from the system, respectively, both delayed by N samples. 

xN = Xn-N 

yN = Yn-N 

(2.5) 

(2.6) 

• Delay node, Z, is a function of arity 1 returning the value of its argument delayed by 

one time sample. 

(2.7) 

The implementation of these nodes requires the use of two kinds of data structures (registers 

and stacks) which will be described in section 2.4. 

IThe protected division returns the quotient between the first argument and the second when the latter is 
different from zero, and zero otherwise. Alternatively, in the second case a high value could be returned. 
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2.3.4 Local recursion nodes 

With the yN, nodes defined in the previous section recursion from the output of the tree can 

be achieved by accessing the output value N instants before. This section introduces nodes 

that allow for local recursion within the tree. These are called psh and stkN. The former 

is a function of arity 1; when evaluated it pushes the value returned by the branch below it 

onto a stack. The latter is a terminal (Le. its arity is zero) and returns the value of the Nth 

position in the stack. 

Internal recursion is important for developing modular solutions to certain problems. For 

example, the biquadratic digital filter section in canonical form is described by the coupled 

equations, (Proakis and Manolakis 1992), 

Pn = Xn + Cl' Pn-l + C2 . Pn-2 

Yn = Pn + C3'Pn-l +Q'Pn-2 

A possible tree coding for equations 2.8 and 2.9 using psh and stkN nodes is, 

(2.8) 

(2.9) 

(+ (psh I (+ xO (+ (* cl stkO) (* c2 (Z stkO»» )(+ (* c3 stkO) (* 

c4 (Z stkO»» 

In this expression tree, the sub-tree framed evaluates the term Pn and pushes this value 

onto the stack memory ready for the next cycle. The stkO node therefore returns the value, 

Pn-l, which can be delayed by the Z node to get Pn-2. 

It could be argued that an equivalent result can be achieved by using Z, x and Y nodes 

only. In DSP practice, however, this would imply a loss of significant digits in the obtained 

parameters which doesn't occur when internal recursion is used (Proakis and Manolakis 1992). 

An alternative way of achieving internal recursion would be keeping track of the output 

of every node in the tree in each evaluation (thereby eliminating the need for psh nodes) 

and defining a node type, similar to stk, that would address this information in the next 

evaluation. This is left for further study. 

2.3.5 Special nodes 

The nodes defined above are sufficient for the representation of discrete-time systems. It is 

interesting, however, to define other node types to perform special functions. A few of these 

are introduced here . 

• Non-linear transfer function, nlN, implements a sigmoid function, 

1 - exp-l3x ((3 ) 
g(x} = -l3x = tanh -x 

1 + exp 2 
(2.10) 

where the amount of non-linearity (3, is a linear function of the index N as follows 

N 
(3(N) = (3lo + -tv. ((3hi - (3/0), (3 E [(3lo ... (3hi] (2.11) 

max 
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The range [,810' .. ,8hi] , is partitioned into Nmax equally spaced subintervals that provide 

Nmax+1 possible values for ,8; the parameter N simply addresses each of these values, 

e.g. for nl0 ,8 = ,810 and for nlNmax ,8 = ,8hi' 

The numerical values used throughout this work are 

,8hi = 10 

,810 = 0.1 

Nmax = 255 

(2.12) 

(2.13) 

(2.14) 

so NO represents the curve tanh(0.05x) and N255 represents tanh(5x); the latter is 

approximately equivalent to the sign function, while the former gives a very smooth 

transition between -1 and 1. 

The sigmoid function implemented by the nlN node is of interest when it is an objective 

to evolve functions with the structure of a Neural Network. 

• Function node, fN, executes the Nth subroutine tree. These, also called automatically 

defined functions (Koza, 1994) are in every respect the same as any other function used 

by the main tree except that they can have a variable number of arguments. Subroutine 

trees are intrinsic to a particular main tree and are created and evolve together with 

it, not being accessible by any other trees. Thus, an expression tree would be properly 

defined as the set of a main tree and all its associated subroutine trees, if any. 

Function nodes are important in addressing the problem of scalability, (Le. the in

crement in the size of the expression trees as the complexity of the system increases). 

Code reuse by means of function nodes provides a compact way of expressing repetitive 

tasks, so complex systems can be expressed as small trees. 

• Argument node, argN, is the Nth argument to a function node. These appear only in the 

definition of the function as terminals and are replaced by their corresponding values 

in the main tree. 

• Average node, avgN, returns the average of its N inputs. 

• Constant node, eN, returns the Nth entry of a constant table, whose values can be 

randomly initialised or preselected by the user. 
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Table 2.1: The Function and Terminal Node Set for Signal Processing Systems 

Symbol Arity Description Symbol Arity Description 

(-\) (-\) 

System input data. 

+ - 2 Addition, 
xN 0 N indicates the de-, 

Subtraction layt· (e.g. x2 returns 
X n-2) 

Multiplication, Previous output from 
Division the expression tree. 

*, / 2 If second argument is yN 0 The index N indicates 
0, then the node out- the delay (e.g. y2 re-
put is set to zero or a turns Yn-2) 
large maximum value 

+1,-1 1 Increment, Z 1 Unit sample time de-
Decrement lay 

*2, /2 1 Multiply, psh 1 Push the argument 
Divide by two value onto the stack 

Constant value. 
N is an index to a ta-
ble of constants whose 

Retrieve the Nth item 
eN 0 values may be prede- stkN 0 from the stack. fined or chosen at ran-

dom. 

Non-linear transfer 
function. 

1 N indicates the variable 
Execute the Nth func-

nlN fN 
amount of non- tion tree. 

linearity. 

avgN :j: N The average of its N argN 0 The Nth argument to 
arguments. a function tree. 

tThe suffix N that appears in many of the node symbols is an integer in a user defined range. 
:j:The nodes fN, argN and avgN are not used in the present implementation. 
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2.4 Data structures 

A number of structures are necessary to handle data and keep track of the state of the 

dynamic system. These are: 

registers Fixed-size vectors that store current and previous values of inputs and outputs. 

These values are read by xN and yN nodes. 

local recursion reading and writing stacks In order to maintain data coherency, two 

stacks are used whose size equals the maximum number of psh nodes allowed in a tree. 

In a given iteration of the evaluation process (e.g. for the nth input) one of the stacks is 

used for writing whenever a psh node is encountered; the other stack is used for reading 

whenever an stk is encountered. In the next evaluation (for the n + Ith input) the two 

stacks are swapped and what was written before is now read. 

Z reading and writing stacks The Z stacks have as many positions as Z nodes appear in 

a particular tree (up to a certain maximum). During the evaluation of a tree, when 

a particular Z node is found the value at the associated position of the reading stack 

is returned as output of the node and its input is stored in the same position of the 

writing stack. 

constant table A fixed vector that stores the values which will provide the output of eN 

nodes. 

Since the trees are evaluated sequentially2 the data structures are common for all trees. 

At the beginning of the evaluation process of a particular tree the registers are set to zero 

and the stacks are empty. The constant table has been initialised with random (or prefixed) 

values. 

An evaluation iteration begins by reading and storing the current system input onto the 

top position of the X (or input) register. 

As explained, any xN or yN nodes will read their return values from the Nth position of 

the relevant register; stkN nodes read theirs from the Nth position of the reading stack and 

psh nodes write the value of their argument onto the current position of the writing stack, 

returning that same value. 

Z nodes work with both Z stacks simultaneously: the input value is written onto the 

current position of the writing stack and the return value is read from the same position of 

the reading stack. 

The evaluation iteration ends by storing the output value of the tree onto the top position 

of the Y register. Then the registers are shifted one position back3 and the reading and writing 

2 At this stage no parallel processing is considered 
3This is more efficiently implemented by means of a circular buffer; thus, rather than shifting the whole 

contents of the register, a single pointer is advanced 
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Table 2.2: Node types for DSP and their associated data structures 

node I arity I action reads from writes to 

xN 0 retrieve Nth value of the X regis- X register -
ter 

yN 0 retrieve Nth value of the Y regis- Y register -
ter 

z 1 push value of argument to Z writ- Z reading stack Z writing stack 
ing stack 
retrieve same position of Z read-
ing stack 

psh 1 push value of argument to stack - writing stack 

stkN 0 retrieve Nth position of the stack reading stack -

eN 0 retrieve Nth constant value constant table -

stacks are swapped, leaving the system ready for the next iteration. 

Due to the mechanics of the process all the values stored in the Z stacks will be used 

during evaluation. This is not the case for the local recursion stacks, as there might be more 

psh nodes than the highest N for stk nodes. The opposite is also possible: the value of N 

might be higher than one plus the number of psh nodes. In this case, N is clipped to one 

minus the number of psh nodes; if there are none, then all stk return zero. 

This means that redundancy might arise, e.g. a tree could have stk nodes but no psh 

ones, or vice versa. This could be avoided if, as explained in section 2.3.4, the output of all 

nodes was stored. Further study would be required to show which way of proceeding is more 

efficient in terms of memory requirements and computation expense. 

Figure 2.2 shows the state of the system during evaluation of a tree when processing a 

certain sample i. For the next sample, i + 1, the registers are shifted one position and the 

reading and writing stacks are swapped (so that what was written in iteration i can be read 

in iteration i + 1). 
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Figure 2.2: The tree above and its associated structures represent the equations 

Pn Xn-2 + Yn-l 

Yn = CO· Pn-3 . (Xn-2 + Yn-d 

17 

The first step in obtaining the output at instant i consists of reading the input signal 
at i and storing it in the X register. Evaluation ends by storing the calculated output 
of the tree in the Y register, swapping the stacks and shifting the registers. Note 
that the combination of psh and stk nodes produces internal recursion. Also note 
how the output depends not only on the current input value but also on what was 
stored in the stacks and registers, which provide the state of the system. The only 
structure that remains unaltered through evaluation is the constant table. This is 
initialised with random or predetermined values at the beginning of the run 



CHAPTER 2. REPRESENTING DDS'S AS EXPRESSION TREES 18 

2.5 Example - A Recurrent Neural Network 

It has been shown that a three-node recurrent neural network can be used as an efficient 

signal processor for equalisation of noisy non-linear communications channels, (Kechriotis et 

ai. 1994). The system architecture of such a neural network is shown in Figure 2.3. Using 

the node definitions given above, one way of expressing this asa GP tree is to use function 

nodes as follows, 

y = (+f1(*cO(+£2£3))) 

£1 = (psh ( n11 avg4 ( xO stkO stkl stk2 ))) 

£2 = (psh ( n12 avg4 ( xO stkO stkl stk2 ))) 

£3 = (psh ( n13 avg4 ( xO stkO stkl stk2 ))) 

Figure 2.3: A Fully Recurrent Neural Network. 
Each processing cell labelled PI to P3 implements a sigmoidal transfer function on the 
average of the cell's input values. The connecting links have independent strengths 
labelled Wij' The system output is taken from cell P3 and the input is applied to each 
cell simultaneously. 

Here, each cell in the network is represented by its own function (fl, f2 and f3) which 

are invoked by the main tree, y. The main tree executes the tree associated to each function, 

but only returns the value of the output node, which is represented by function fl (assuming 

cO = 0). The psh nodes in each function tree store the computed cell outputs on the stack, 

and these are accessed from the previous cycle using the stkN nodes. 

Note that, for simplicity, the weights in the neural network have not been represented in 

the tree; the way to do this will be explained in chapter 4. Here it is sufficient to point out 

that each occurrence of a node (e.g. every stkO node that appears in the tree) has a different 

weight value, so that all the Wij would be expressed. 

Thus, the basic set of GP node definitions shown above is able to code for recurrent 

neural network architectures. This leads to the possibility that neural networks and other 

such systems can be evolved by GP. 
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2.6 Software implementation 

The software used in the experiments presented in this work is an extensively modified version 

of GPCPP4, a package developed by Adam Fraser of the University of Salford. GPCPP4 was 

the only public domain GP package in C++ existing at the time of starting this research. 

This was thought interesting for two reasons. First, due to the possibility of developing and 

working with an Object Oriented GP package. And second, because it would allow linking 

with software for Signal Processing that had already been developed in C++ by the author. 

Converting GPCPP4 into GP+SA, the code required for the experiments described later 

in this thesis, involved major modifications which were undertaken by this author. Of these, 

some were necessary, others were meant to facilitate the understanding of what the program 

was doing and the rest were conceived in order to ease the realisation of experiments. 

A summary of these modifications is described in the following sections. 

2.6.1 Main additions 

These mainly involved creating the necessary structures the DSP operations would use. 

Input, output and desired output signals These are instances of previously created class 

Signal and are used during evaluation to calculate the fitness of each individual. The 

first two provide the values for xN and yN nodes; the first and last are equal for all 

individuals and the middle one is particular of each one. 

Registers and stacks Two registers are needed for keeping track of previous values of the 

inputs and outputs, which are associated to xN and yN nodes. Two stacks handle psh 

and stkN nodes and two more handle Z nodes. The way these structures work is shown 

in figure 2.2. 

Node gains As will be explained in chapter 4, each node may have a gain value associated 

to it. This is the basis of the learning approach using SA 

Indexing Some of the nodes differ only by a parameter (e.g. xl and x2), so instead of 

redefining them for each value, the parameter is accessed by an index. 

Fitness type and return value of a node These were defined as unsigned int in GPCPP4, 

but due to the nature of the problems tackled in this work and the fact that the im

plementation is done in a PC with a Pentium processor, their type can be changed to 

double. 

2.6.2 Other improvements 

Initialisation In GPCPP4 a few parameters values were read from an initialisation file, 

others were passed from the command line and the vast majority were part of the code 
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itself, which meant that when a minor change in a variable was made it was necessary 

to recompile the whole program. 

This has been eased by the introduction of a new class, EnvironmentManager. An 

instance of this class is created for each run, which is in charge of reading all the 

necessary parameters from an initialisation file and passing them to wherever they are 

needed. 

An example of an initialisation file is given in appendix E. 

Termination criteria In GPCPP4 the termination criterion was simply reaching a given 

number of generations. This does not seem appropriate for two reasons. First of all, in 

steady state GP there is no proper definition of "generation" (it was artificially defined 

as a number of crossovers, including the ones that were aborted, equal to the population 

size). And second, the number of generations is just a form of time limit, which does not 

give any information on whether an optimal solution has been reached or not. Instead, 

five other criteria are introduced, as follows 

• maximum fitness criterion, t fit 

tfit = (maxi(fitnessi) ~ MAX..FITNESS) where i E [O,PopulationSize -1] 

(2.15 ) 

• minimum Bit-Error-Rate criterion, tber 

tber = (mini(BE~) ::; MIN...BER)where i E [0, PopulationSize - 1] (2.16) 

• time limit criterion, ttlim 

ttlim = (elapsed_time ~ TIME...LIMIT) (2.17) 

• maximum number of births criterion, tNbirths 

t Nbirths = (births ~ BIRTH...LIMIT) (2.18) 

where births is the number of individuals born 

• user request criterion, tu 

tu = (kbhitO n (getcharO == S)) (2.19) 

i.e. tu = 1 when the user presses s 
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The global termination criterion, te , is defined as the combination of one or several 

individual criteria. 

te is checked every time after a number of births equal to Reportinglnterval. The 

program is stopped if any of the individual criteria is met. The values of the vari

ables (MAX-FITNESS, MIN..BER, TIME...LIMIT, BIRTH...LIMIT and Reportinglnterval) 

are read from the initialisation file (see Appendix E for an example). 

ReadTree This is a read-and-evaluate routine used to calculate the fitness, output and/or 

bit-error-rate of any given tree after evolution. Its importance stems from two reasons: 

firstly, it allows to test solutions with a set of data different from that used during 

evolution; secondly, it serves as a test of the performance of the main program. 

2.7 Conel usions 

It has been shown here how the equations describing discrete-time systems can be represented 

as symbolic expression trees. Various kinds of node types and their associated data structures 

have been described to complete the representation system. The power of this system has 

been illustrated by an example, the coding of a Recurrent Neural Network as a list of S-trees. 

So far, the first of the necessary requirements described in Section 2.3.1 has been fulfilled, 

namely capturing the dynamics of discrete-time systems. Further chapters will cover the 

second requirement: the representation and adaptation of the parameters of the systems. 



Chapter 3 

Channel Equalisation 

3.1 Introduction 

This chapter investigates the application of GP to channel equalisation. This is an application 

of great topical interest to the Signal Processing community. A review of the literature shows 

that currently a variety of algorithms are applied to this problem. These include neural 

networks (NNs), infinite impulse response (IIR) filters and finite impulse response (FIR) 

filters. 

All these techniques provide tailored solutions to particular problems: a specific model 

structure (linear or nonlinear) is assumed and then the associated parameters are optimised 

by some adaptation algorithm. The success of each method at solving the problem at hand is 

then highly dependent not only on the characteristics of the algorithm, but also on whether 

or not the structure adopted is convenient for the problem at hand. 

Under these circumstances it seems appealing to search for a general technique that can 

be applied to a wide class of problems. This implies being able to adapt the structures of the 

solutions and not only the parameters. 

For this reason, the channel equalisation problem presents itself as an ideal test bed for 

the Genetic Programming method. 

A number of applications will be presented here that have been addressed in the past 

with different equalisation methods. It will be shown in this work that all these applications 

will be tackled within a unified GP-based approach. 

The chapter is structured as follows. Section 3.2 provides a background of current ap

proaches to channel equalisation, pointing out the interest of applying GP to this problem. 

In Section 3.3 the implementation of GP in channel equalisation is explained. Section 3.4 

concentrates on two specific problems to which the proposed method was successfully applied. 

Some conclusions are given in section 3.5 and finally section 3.6 summarises the chapter. 

22 



CHAPTER 3. CHANNEL EQUALISATION 23 

3.2 Background on Channel Equalisation 

Intersymbol interference (lSI) is a phenomenon that arises when information is transmitted 

through bandwidth limited communication channels. If left uncompensated, lSI can be an 

important source of errors. All the techniques devoted to removing lSI at the receiver's end 

are called channel equalisation techniques (Proakis 1995, p. 636, Haykin 1996, p. 217). 

input 
---..---1 

unknown 
channel 

C(·) 

observed 
signal 

" Yt 

'------t Z 
Xt·d reference (input) 

Figure 3.1: The Channel Equalisation Problem. 

equalising 
filter 
H(·) 

switch 
closed during 

training 

" estimated input Xu 

+ 
error 

The unobservable input sequence, x, is distorted by the channel C(·) and corrupted 
by the additive noise, n. The objective of the equalising filter is to restore x from 
the noisy observations, y. The lower part of the diagram indicates a signal path used 
during trained adaptation of the restoring filter. 

Figure 3.1 shows the block diagram of a generic equalising system. Initially, the system 

undergoes a training process, which involves sending a known signal (the training sequence) 

that acts as a reference. The error is calculated as the difference between this signal and the 

actual output of the equaliser. 

Once the training process is finished, the transmission of the data begins. At this stage 

some form of test signal can be transmitted, in order to measure the performance of the 

equaliser and the success of the training. 

3.2.1 Linear equalisation 

A common technique for removing lSI is labelled linear equalisation and consists of adapting 

the coefficients of a transversal, or FIR, filter (see Figure 3.2) until some cost function is 

minimised. For the problem to be easily addressed mathematically, the cost function must 

be a linear function of the filter's coefficients. A popular choice is the mean squared error 

(MSE). 

Let the error signal, {f.k}, be the difference between some desired response {dk} and the 
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actual filter output, {Yn}. 

(3.1 ) 

The MSE is defined as 

MSE = E(€~) (3.2) 

where E(·) is the mathematical expectation. 

Figure 3.2: An n-tap FIR digital filter. The filter coefficients are represented by bi and z-l 

represents a unit time delay. 

The problem can be formulated as follows. Given a channel whose transfer function is 

C(z) the ideal equaliser must comply that its transfer function H(z) is the inverse of C(z), 

i.e. 

1 
H(z) =

C(z) 

This is referred to as inverse filtering. 

(3.3) 

If the channel impulse response is modelled as an Auto Regressive (AR) process, the 

effective transfer function of the channel is 

1 
C(z) = bo + bl . Z-l + b2 . Z-2 ... + bn . z-n (3.4) 

In this case the appropriate equaliser is an FIR filter as follows 

(3.5) 

A widely used method for adapting the coefficients {b i } for this class of problems is the 

recursive least squares (RLS) algorithm (see appendix D for details). 

When the channel is better modelled as a moving average (MA) or, more generally, as 

an auto regresive moving average (ARMA) system, an equaliser such as the one given in 

equation 3.5 may not be sufficient, even when the number of taps (n) is high. In such cases, 

an IIR equaliser may be employed, such as the one given by 3.6 

bo + b1 . z-l + ~ . z-2 ... bn . z-n 
H (z) = --=----=-----:---=---~---

ao + al . z-l + a2 . z-2 ... am' z-m (3.6) 



CHAPTER 3. CHANNEL EQUALISATION 25 

Despite providing reduced computational complexity, IIR equalisers have been tradition

ally less employed because the two fundamental approaches to the adaptation of the coeffi

cients ai and bj, known as equation-error and output-error methods, present major problems 

(Shynk 1989). The equation-error approach can lead to biased estimates of the coefficients. 

On the other hand, the output-error approach can converge to a local minimum of the error 

surface (which is not quadratic and may have multiple local minima), leading to an incorrect 

estimate of the coefficients. A trade-off must be found between the two. 

Furthermore, adapting the coefficients of an IIR equaliser involves an additional problem: 

stability must be guaranteed by ensuring that all poles of H(z) are inside the unit circle. 

Recently other approaches have been taken to the adaptation of IIR equalisers, such as 

Evolutionary Programming (EP) (Chelapilla et al. 1997), Genetic Algorithms (GAs) (Etter 

et al. 1982, Ma and Cowan 1996) and Simulated Annealing (SA) (Nambiar and Mars 1992), 

showing the potential of these techniques. 

Both instances of inverse filtering (with FIR and IIR equalisers) are dependent on two 

factors: 

1. the channel CO is linear 

2. the inverse of C(z) is realisable. This implies that C(z) has no zeros on or outside the 

unit circle; if it did, its inverse H(z) would have poles on or outside the unit circle, and 

would therefore be oscillatory or unstable. 

An additional problem appears when the channel has deep spectral nulls, i.e. zeros inside 

but close to the unit circle. Linear equalisers tend to compensate a deep null by placing a 

high gain at that frequency. This results in noise enhancement and a poor performance. 

3.2.2 Nonlinear equalisation 

In other situations the channel C will have nonlinear distortion. Such channels are found, for 

example, in data transmission over digital satellite links, especially when the signal amplifiers 

operate in their high gain limits (Kechriotis et al. 1994). If the distortion is severe, linear 

equalisers perform poorly. Nonlinear equalisers must then be employed but, in general, the 

mathematical treatment of such models is complex. 

An alternative has been found in neural networks. Neural networks, such as multilayer 

perceptrons (MLPs) and Radial Basis Function (RBF) networks have been applied to channel 

equalisation. This is done at the expense of turning the equalisation problem into a classifica

tion one: the transmitted data are assumed to be symbols belonging to some finite alphabet 

and the network, acting as a classifier, must determine which symbol was transmitted. 

One important drawback of NNs lies in the determination of the structure: there exists 

no established procedure for determining the number of layers and nodes (Mulgrew 1996). 



CHAPTER 3. CHANNEL EQUALISATION 26 

The second main problem of MLPs and RBF networks is their being feedforward struc

tures. When nonlinearity is the main impairment, feedforward NNs perform well. This is 

the case of the examples reported in (Chen et al. 1990, Gibson et al. 1991, Theodoridis et 

al. 1995). It was shown how, for the high levels of noise involved in these examples, nonlinear 

classifiers were required. 1 

However, for higher values of the signal to noise ratio (SNR) (as should be expected in a 

telephone channel, for instance) the need for nonlinear compensation is balanced or overcome 

by the need for recurrence, or feedback. 

To be able to cater for this, feedforward NNs require a large number of nodes, which 

increases their complexity. This hinders the study of their behaviour, as well as their hardware 

implementation, which prevents their use in real time applications (Nair and Moon 1997a, 

Nair and Moon 1997b, Nair and Moon 1995). 

More recently, equalisation with recurrent neural networks (RNNs) has also been reported 

in the literature (Kechriotis et al. 1994, Parisi et al. 1997). Their less wide use is due to the 

complexity of the training algorithm, which may become unstable. 

RNNs have the advantage of being more compact than their feed forward counterparts, 

but the issue of determining the structure remains. 

3.2.3 A new approach 

In view of all the problems involved in linear and nonlinear equalisation methods, it is de

sirable to find an equalisation technique that allows for adaptation of the structure, while 

catering at the same time for recurrence and nonlinearity. 

Thus, taking into account the properties of Genetic Programming and the tree represen

tation described in chapters 1 and 2, the scene is set for addressing the channel equalisation 

problem with GP. 

3.3 Genetic Programming in Channel Equalisation 

In the equalisation methods shown above, the structure of the equalising filter had to be 

selected by the user. Another constraint regarded the selection of a cost function to guide 

the adaptation process. This was chosen in order to ease mathematical tractability. It is the 

aim of this section to show how these constraints are relaxed when applying GP. 

3.3.1 Fitness function 

It was shown in chapter 2 how discrete time systems could be represented as expression trees 

to be evolved by GP. All that is necessary now in order to employ GP in channel equalisation 

1 As pointed out above, these constitute cases of the detection problem, rather than equalisation. 
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is to define a suitable fitness function. This will be a measure of the "goodness" of the 

candidate solutions. 

In early implementations of GAs and GP the fitness was used directly as the probability 

of survival, hence it was defined in the interval [0,1]. This is no longer the case in the present 

implementation, but, for the sake of convenience, the same interval has been adopted. Thus, 

the fitness range is constant and independent of the problem tackled 2. 

A simple way of achieving this is to define a cost function J(-) as some suitable error 

measure and then calculate the fitness, f, as follows 

1 
f=l+J 

Hence, for J ~ 0, this results in 0 ~ f ~ 1. 

(3.7) 

In linear equalisation the cost function had to be a linear function of the equaliser's 

coefficients, thus the wide use of the MSE. On the other hand, GP is not restricted by such 

constraints and any error measure can be used. These include 

• the maximum absolute error, 

or MABS; this criterion is usually referred to as Hoo or minimax (Proakis 1995, p. 607), 

• the average absolute error, 

• and the average exponential error, 

An alternative definition of fitness stems from viewing the equalisation problem as a 

decision problem or a pattern classification task and is based on the bit-error rate (BER), 

which is defined as the fraction of misclassified symbols in the transmitted sequence3 . This 

exploits the binary nature of the transmitted data, which is assumed to belong to the alphabet 

{-I, 1 }. 

Since BER E [0,1] , f may be defined as 

f = 1- BER (3.8) 

2The interest of this will be seen in further chapters. 
31.e. the number of incorrectly classified symbols divided by the total number of symbols in the transmitted 

sequence 
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which again results in 0 ::; f ::; 1. 

This may be contrasted with NN implementations, in which the MSE is generally em

ployed during training but the performance tested using the BER. 

Other characteristics of the output signal, such as the frequency response, can also be used 

to define a fitness function. Any of these criteria can be employed in isolation or combined 

with others. This is regarded as an important advantage of evolutionary techniques over 

classical methods. 

3.4 Experiments 

3.4.1 Objectives 

Experiments were conducted using two channels with different characteristics. The aims 

of the experiments were as follows. Firstly, to show how G P can be applied to channel 

equalisation using the node types and data structures described in chapter 2. Secondly, 

to study the structure of the systems thus obtained and compare them with that of the 

theoretical equalising filters. To attain this aim, the impulse response and the response to 

a sinewave are studied. And finally, to compare the performance of the GP-evolved filters 

with that of a number of FIR filters, with different numbers of taps, adapted by the RLS 

algorithm. 

3.4.2 Theoretical equalising filters 

For the first experiment the channel model employed is 

1 
Yn = 2 (Xn +xn-d (3.9) 

Because the output of the channel is the average of the current and previous inputs, it 

will be referred to as averaging channel. 

This channel has a zero on the unit circle. Hence, its inverse will have a pole on the unit 

circle, which means the ideal equaliser its an oscillator, whose difference equation is 

Yn = 2·xn - Yn-l (3.10) 

The second experiment involved a nonlinear channel, modelled by the following equations 

Yn = Cn + 0.15 . c~ + 0.01 . c~ + nn 

en = 0.3482· Xn + 0.8704· Xn-l + 0.3482· Xn-2 

Figure 3.3 gives the model for this channel. 

(3.11) 

(3.12) 

Because the channel is nonlinear its inverse is not defined; hence there is no theoretical 

equaliser for this channel. 
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n 

_x_~ linear channel ....... --:;....y----~ 

Figure 3.3: Model for the nonlinear channel used in the experiments 

3.4.3 A veraging channel 

No noise 

A pseudo-random binary signal (PRBS) of 250 samples was used to train both a G P equaliser 

and eight FIR- RLS equalisers, whose order ranged from 3 to 10 taps. 

The set up for the GP run is summarised in Table 3.1. 

The GP-evolved equaliser was as follows: 

( (NL232 ( + Xl ( + ( NL232 ( + STKl Xl ) ) ( + ( Yo ( - ( + ( Yo 

( - ( + Xl ( + XO XO ) ) STK3 ) 1 ) ( + ( + ( NL232 ( - ( + Xl 

XO ) STK3 ) ) ( + XO ( + ( + ( + XO ( + ( Yo ( - ( - Xl ( + XO Xl 

) ) X2 ) 1 ) ( - Xl ( • ( Yo XO STKO ) ( -1 ( +1 XO ) ) ) ) ) ) ( 

+ ( Yo ( - ( + ( Yo ( - ( + Xl ( + ( + XO Xl ) STK3 ) ) STK3 ) 1 ) 

( + ( + ( NL232 ( - ( + Xl XO ) STK3 ) ) XO ) Xl ) ) Yl ) 1 ) ( 

+ ( + XO Xl ) XO ) ) ) XO ) ) ) STK3 ) ) Yl ) 1 ) Xl ) ) ) ) ) 

The fitness of this tree at the end of the evolution process (Le. with the training signal) 

was 1. 

The length of the tree is 91 and its depth is 21, but this can be reduced by editing and the 

tree greatly simplified. In particular, it must be noticed that, since there are no psh nodes, 

the value of stkO, stkl and stk3 is zero. The simplified tree is shown in figure 3.4. 

The GP equaliser was then tested with a PRBS of 1000 samples and the performance 

compared with that of several FIR-RLS equalisers with different number of taps. The results 

are summarised in Table 3.2. The GP-evolved equaliser beats the smaller FIR equalisers, 

both in terms of BER and fitness (which is equivalent to MSE). Although some of the longer 
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FIR equalisers also achieve a BER of zero, their fitnesses are consistently below l. 

We now proceed to study the behaviour of the GP equaliser in more detail. First we 

study the impulse response, which is plotted in figure 3.5. 

Figure 3.5 shows that the G P equaliser is indeed an oscillator, as was the ideal inverse of 

equation 3.10. Furthermore, the two impulse responses (the theoretical and the obtained by 

GP) only differ in the first sample. 

Next, the response to a sinewave of equation 

Sn = sin(O.ln) 

is plotted in figure 3.6. 

It can be observed that, as would be expected due to the presence of NL nodes, the 

obtained solution is nonlinear, since the response to a sinewave is a square wave rather than 

another sinewave. It can also be concluded that the GP equaliser behaves as a saturated 

amplifier. 

Signal to noise ratio SNR = 5 dB 

The GP-evolved equaliser for this case was as follows 

( ( NL74 ( + XO ( + C2 Xl ) ) ) ) 

where C2 is 2. This tree is shown in figure 3.7. 

This tree is much smaller than the one in the previous example. This is motivated by the 

phenomenon of noise enhancement (Gibson et al. 1991), which, in highly noisy environments, 

causes that equalisers of high order have a higher error than lower order ones. Hence, in this 

situation, a smaller, lower order equaliser would be preferable. The same can be observed for 

FIR-RLS equalisers. 

The performance of the GP and RLS equalisers is given in table 3.3. It can be noticed 

that GP achieves similar performance than the RLS algorithm for this case. 
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Table 3.1: Set up for noiseless and SNR=5dB cases of the averaging channel (C(z) = 0.5 + 0.5· 
z-l) equalisation experiment 

Function set 
+ - * % +1 -1 *2 /2 1 Z 
PSH NLO ... NL255 

Terminal set § 
XO ... X3 Y1. .. Y2 
CO ... C255 STKO ... STK4 

{3 limits for NL nodes {3hi = 10 {3/o = 0.1 

Population size 500 

Mutation probability 0.01 

at creation: maximum depth = 6 
Size restrictions at crossover: none 

output of the channel when fed 
Input signal (X) with a Pseudo-Random Binary Sig-

nal (PRBS) 

Reference signal the same PRBS delayed by one sample 

Fitness function 1 O~f~l l+MSE 

N umber of training samples 250 

maximum fitness = 1 
Termination criterion for each run or 30 minutes of CPU time 

Number of testing samples 1000 

§The 256 entries in the constant table are chosen uniformly within the interval [-1,1] 



CHAPTER 3. CHANNEL EQUALISATION 32 

Figure 3.4: A GP equaliser for the averaging channel C(z) = ~ (1 + z-l) (after editing). The 
value of the constant CO is taken to be 8 and the node NL232 implements the function 
tanh( 4.55x) 
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Table 3.2: Performance summary of FIR-RLS and GP-evolved equalisers for averaging channel 
-noiseless case 

2 

1.5 

~ 0.5 

:E 0 
'is. 
E 
ttl -0.5 

-1 

-1.5 

-2 

Ie 

o 

Equaliser I fitness BER 

FIR 3 taps 0.800076 0.065 

FIR 4 taps 0.832898 0.033 

FIR 5 taps 0.855144 0.019 

FIR 6 taps 0.873442 0.003 

FIR 7 taps 0.888787 0 

FIR 8 taps 0.900752 0 

FIR 9 taps 0.909973 0 

FIR 10 taps 0.918320 0 

GP-evolved 1 0 

.~ • : ; 

" " 

o ,.... 
sample 

; 

j, 

10 ,.... 

." 

j, .. 
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Figure 3.5: Impulse response of GP equaliser for averaging channel - Noiseless case 
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Figure 3.6: Output of GP equaliser when fed with a sinewave 

8 

34 

Figure 3.7: A GP equaliser for averaging channel with SNR = 5 dB. The value of C2 is 2 and the 
node NL74 implements the function tanh{1.49x}. 
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Figure 3.8: Impulse response of GP equaliser for averaging channel - SNR = 5 dB 
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Figure 3.9: Response to a sinewave of GP equaliser for averaging channel - SNR = 5 dB 
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Table 3.3: Performance summary of GP-evolved and FIR-RLS equalisers for averaging channel 
(SNR= 5dB). The test signal was a PRBS of 1000 samples 

Equaliser I fitness BER 

FIR 3 taps 0.659632 0.158 

FIR 4 taps 0.65997 0.157 

FIR 5 taps 0.657134 0.169 

FIR 6 taps 0.65505 0.179 

FIR 7 taps 0.653528 0.181 

FIR 8 taps 0.653275 0.18 

FIR 9 taps 0.65321 0.185 

FIR 10 taps 0.654391 0.178 

GP-evolved 0.648368 0.179 
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3.4.4 Nonlinear channel 

For this channel the definition of fitness employed was based on the BER rather than the 

MSE, as was the case for the previous example. Hence, 

f = 1- BER (3.13) 

The linear part of the channel, given by equation 3.12, is a mixed phase channel. Such 

channels are usually equalised introducing a delay in the reference (Chen et al. 1990). This, 

however, was not done here in order to show the potential of the GP method. 

The set up for the GP run is summarised in Table 3.4. 

The equaliser obtained was 

( ( - ( - ( + ( - XO Cll ) ( - Xo ( z xo ) ) ) ( / ( NL123 ( Z 

C17 ) ) xo ) ) 1 ) ) 

where C11 = -0.577828 and C17 = 1.40172. 

This is shown in figure 3.10 

During evolution the fitness of this tree was 1, i.e. the BER was O. The tree was then 

tested with a further 1000 samples, for which the fitness based on the MSE and the BER 

were measured, giving values of 0.213564. and 0, respectively. 
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Table 3.4: Set up for nonlinear channel equalisation experiment 

Function set 
+ - * 7. +1 -1 *2 
PSH NLO ... NL255 

/2 1 Z 

Terminal set § 
XO ... X3 Y1. .. Y2 
CO ... C255 STKO ... STK4 

f3 limits for NL nodes f3hi = 10 f310 = 0.1 

Population size 500 

Mutation probability 0.01 

at creation: maximum depth = 6 
Size restrictions at crossover: none 

output of the channel when fed 
Input signal (X) with a Pseudo-Random Binary Sig-

nal (PRBS) 

Reference signal the same PRBS 

Fitness function f = 1- BER O~f~l 

N umber of training samples 250 

Termination criterion for each run maximum fitness = 1 
or 30 minutes of CPU time 

N umber of testing samples 1000 

§The 256 entries in the constant table are chosen uniformly within the interval [-1,1] 
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Figure 3.10: A GP equaliser for the nonlinear channel given by equations 3.11 and 3.12 (no noise). 
The values of the constants are C11 = -0.577828 and C17 = 1.40172. The node 
NL123 implements the function tanh(2.44x) 

3.5 Conclusions 

It has been shown here how GP can be applied to channel equalisation using the node types 

defined in chapter 2. 

G P serves to overcome problems of classical equalisation techniques by allowing the struc

ture of the solution to evolve rather than being preselected by the user. In this way, nonlinear 

and recursive structures can be obtained. 

Stability monitoring is intrinsic to the evolution process: unstable candidate solutions 

will yield a high value of the error and therefore a low fitness and will eventually be culled 

from the population. 

However, in the examples presented here the evolved solutions tended to be complex or 

did not yield a good performance. It would be desirable to decrease complexity in some 
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cases (in order to increase readability and facilitate possible implementation) and improve 

the performance in others. 

This points will be addressed in later chapters. 

3.6 Summary 

Channel equalisation is a commonly encountered problem in digital communications and a 

number of techniques to address it have been extensively reported in the literature. These 

techniques tend to perform well under certain assumptions but they all share a common 

failing: the structure of the solution must be determined in advance. Also, the cost function 

employed for adaptation of the structure's parameters must be selected in order to ease 

mathematical treatment. 

GP has been presented here as a way to avoid these problems. Because the structure of 

potential solutions is allowed to evolve, nonlinearity and recurrence can arise without being 

specifically introduced by the designer. Also, the selection of a fitness, or alternatively, a cost 

function, is not restricted by the constraints of other methods: any user-defined function that 

associates a candidate solution to a numerical value can be employed. 

The application of GP to channel equalisation has been illustrated with two examples, 

which show the great potential of the method. 

Issues of interest are reducing the complexity of the solutions and improving their perfor

mance. These will be dealt with in further chapters. 



Chapter 4 

Node gains 

4.1 Introduction 

This chapter introduces node gains (Sharman and Esparcia-Alcazar 1993) as a means of 

representing the values of numeric parameters in Genetic Programming. 

Firstly the motivations for a parameterised GP are explained. This is followed by a review 

of previous approaches to parameter estimation in GP, whose drawbacks are subsequently 

analysed. These shortcomings justify the exploration of alternatives and it is in this context 

that node gains are introduced. 

The concept of node gains will be explained and it will be shown how they waive the 

shortcomings of other techniques, as well as attaining other benefits. 

The costs of node gains will also be analysed and it will be shown how these can be 

outweighed by the advantages. 

Experimental analysis will show that although not all the potential benefits are achieved 

at this preliminary stage, developments in forthcoming chapters will guarantee that this is 

the case. 

4.2 Parameter estimation in Genetic Programming 

4.2.1 Motivation for a parameterised GP 

Let us assume a simple GP system, which employs the following function set: 

OF = {+, -, *, / } (4.1 ) 

and the terminal set 

OT = {X} (4.2) 

where X is a variable (e.g. an input to the system). 

41 
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Even though no constant numerical values are explicit in this representation, they can be 

implicitly generated, as shown in the following examples. 

Consider the tree in figure 4.1. This, assuming X "# 0, codes for the number 1. Corre

spondingly, the tree in figure 4.2 codes for the number zero. 

Figure 4.1: A tree representing the number one 

Figure 4.2: A tree representing the number zero 

Any rational number can be expressed by combinations of such trees. For instance, the 

number 0.5 could be expressed as shown by figure 4.3. 

Figure 4.3: A tree representing the number 0.5 

If more complicated numbers, say 0.5137, are required, the size of the tree becomes larger. 

This leads to an increase in both computation and evolution time. Clearly this is not a very 

efficient way of proceeding - a different way of handling numerical parameters would be 

desirable. 
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4.3 Background 

The first attempt at introducing numerical values in GP was done by Koza (1992), who 

defined an ephemeral random constant, ~, as a terminal node which is assigned a random 

value every time it appears in the first generation. These values remain constant for the rest 

of the run. 

A problem with this approach is that the number and values of the available parameters 

depend on what happens in the first generation. Also, constants may be eliminated from 

(selected out of) the population but they cannot be created. 

Although these two problems may be addressed by introducing a point mutation operator 

or some form of adaptation of the values, Koza did not apply any of these. This was somewhat 

justified by the simple nature of the problems he addressed. 

Successive approaches to the numerical parameter problem can be classified into two main 

categories. 

In the first one numerical parameters are included in the terminal set, i.e. the return 

value of specific terminal nodes is a number. 

In the second one, they are expressed as a constitutive part of specific functions or ter

minals, Le. the definition of certain nodes involves numerical parameters. 

Combinations of both can also be found. In all cases, some sort of adaptation can be 

performed, by means of classical or evolutionary techniques. 

An example of category I are the ephemeral random constants described above: the value 

returned by the ~ node is the numerical parameter itself. 

The nonlinear node nIN, described in chapter 2, can be used to illustrate category II. As 

explained, this node implements the function 

1 - exp-Ih ((3 ) 
1 + exp-,Bx = tanh '2x (4.3) 

where (3 is a linear function of the index N, 

N 
(3{N) = (3/0 + ~((3hi - (3/0), 

max 
(4.4) 

Thus, the parameter (3 (or, correspondingly, the index N) is a constitutive part of (or 

implicit in) the function nlN i.e. the parameter is used to calculate the return value of the 

node but it is not the return value itself. 

The first category includes the works of Angeline (1996), Chellapilla (1997) and Chellapilla 

et al. (1997) in Evolutionary Programming, and Montana and Czerwinski (1996) and Howard 

and D'Angelo (1995) in GP. 

Angeline (1996), Chellapilla (1997) and Chellapilla et al. (1997) employ a numerical 

terminal similar to Koza's ephemeral random constant with the difference that its value can 

be modified by a mutation operator. The operator selects a single real valued numerical 
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terminal in a given tree and adds to it Gaussian noise with a particular variance (typically 

equal to 0.1). 

Montana and Czerwinski (1996) and Howard and D'Angelo (1995) define a number of 

parameters associated to each individual tree. The values of these parameters are encoded in 

an appropriate way and evolved by means of a Genetic Algorithm. Each tree has its own set 

of values for the parameters, although these mayor may not be present in the tree structure. 

The tree in figure 4.4 illustrates this idea. 

11001 11100 01001 00010 
aO a1 a2 a3 

Figure 4.4: In this system, an individual is represented by the pair of a tree and a binary string. 
The terminal set in this system includes the nodes aO.. a3. These nodes can be 
present in any tree but the actual values returned by them are encoded in the binary 
string and hence they are specific to each tree. In this particular tree only aO and a2 
are present, which means the resources devoted to store and adapt the values of al 
and a3 are wasted (Howard and D'Angelo 1995). 

In the second category can be cited Andre (1994), Nguyen and Huang (1994), Gray et al. 

(1997), Iba et al. {1994} and Marenbach et al. (1996). Because the parameters are part of 

certain nodes and these are defined for particular problems, the methodologies become very 

problem-specific. 

For instance, both Gray et al. and Marenbach et al. address system identification and 

control problems and for this purpose implement nodes that represent first and second order 

systems, time delays etc. An example is given in figure 4.5. 

A different approach is that of Andre (1994) in the field of pattern recognition. It employs 

a class of functions, ifdfn, whose associated parameters, dfn, are not numerical values but 

two dimensional arrays of pixels ("hit-miss" matrices). 

Nguyen and Huang (1994) apply GP to evolve 3-D aeroplane models. In their implemen

tation a number of dummy functions serve the purpose of holding certain parameters. For 

instance, the function SketchBody holds three parameters (midbodyLength, tailLength and 

bodyDiameter) which are relevant to the task of designing the body of the plane. 

Iba et al. 's implementation for system identification involves nodes whose transfer func

tions are polynomials of the node's two input arguments, as seen in figure 4.6. 

A less clear example of category II is provided by the work of Koza et al. (1997b). They 

apply GP to evolve electronic circuits and for this purpose use a number of component

creating functions. These functions have one or more arguments, one of which is numerical 



CHAPTER 4. NODE GAINS 45 

Figure 4.5: Model for a dynamic system. The function S2 represents a second order system of 
£ f· K ·w

2 h . d . K d transler unction 82 + 2wne + wa; t e parameters associate to It are ,Wn an {. 

Td represents a time delay of transfer function e-8T ; the associated parameter is T 
(Marenbach et al. 1996). 

Figure 4.6: A polynomial GP node. The output of NODEl is given by the equation Yl = ao + 
alXl + a2X2 + a3XI X2 + a4xI + a5x~ Every inner node carries a set of six associated 
parameters, ao ... a5 (Iba et al. 1994). 

and determines the value of the created component (see figure 4.7). 

The argument VI is an arithmetic performing subtree, composed only of arithmetic func

tions (addition and subtraction) and random constants. In this sense, this implementation 

seems to correspond to category I (where parameters are numerical terminals) but it has been 

included here because only certain specific functions make use of the arithmetic-performing 

subtrees; it can therefore be considered that the numerical parameter is part of the function. 

An approach which can't be classified into any of the two categories is the one taken by 

McKay et al. (1996) and Riden et al. (1997). They define a model structure, some parts of 

which are evolved by GP; the rest are parameters that are determined by other means. 

4.3.1 Problems with existing prameter representation methods 

Many of these approaches involve a (predefined) fixed number of parameters per tree (or per 

function). This is appropriate in some cases, where knowledge about the problem is available 
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Figure 4.7: The C function creates a capacitor whose value is determined by mapping the numer
ical argument VI onto an appropriate range of values (Koza et at. 1997b). 

and the nature of the relevant parameters is understood a priori. This is the case of Gray 

et al. (1997), Marenbach et al. (1996), Nguyen and Huang (1994) and Koza et al. (1997b). 

For instance, in Nguyen and Huang's problem it seems only logical that, when designing a 

aeroplane, an important parameter should be its length. 

In other cases, however, the determination of what parameters are relevant and should 

be included in the prospective solution is done in a rather arbitrary way. In this group fall 

Howard and D'Angelo (1995) and Andre (1994); for instance the latter employs six hit-miss 

matrices, but there doesn't seem to be a justification for the election of this particular number. 

It seems desirable to find an alternative mechanism that avoids or rationalises the 

selection of the parameters. This was the first goal of the work described in this chapter. 

Further problems are posed by the use of numerical terminals. In the case of constant 

terminals, as explained above, everything depends on whether the user's choice is appropriate 

or not, or, for randomly selected terminals, what the situation is in the first generation. 

Numerical terminals face the problem of being placed in a position where no possible 

mutation can obtain any improvement in the performance. An otherwise useful terminal 

risks being selected out of the population due to this misplacement and the highly extended 

technique of assigning less probability to terminal crossover points, also termed leaf crossover 

(Koza 1992, pp. 114-116), seems designed to make matters worse (Angeline 1996). 

As an example, let us suppose a model for the system represented in figure 4.8 is desired. 

~'-------------'~. ~ 
Figure 4.8: A first order system. 

Yn 
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The system difference equation is given by 4.5. 

Yn = Xn - 0.681 . Yn-l (4.5) 

This system can be represented as a tree, using the nodes described in chapter 2. This is 

shown in figure 4.9. 

Figure 4.9: A tree representing a first order system (xn + CO . Yn), with a numerical terminal. 

The system equation for this tree is given by equation 4.6. 

Yn = Xn + CO . Yn-l (4.6) 

so the tree will be a model for the system in Figure 4.9 as long as the value of CO is approxi

mately -0.681. Consider, however, what the situation would be if the numerical terminal CO 

happens to be in the "wrong" place, as shown in figure 4.10. 

Figure 4.10: Another tree representing a similar system (CO· Xn + Yn). 

The system equation for this tree is: 

Yn = CO . Xn + Yn-l (4.7) 

Even if the value of CO is -0.681, this tree does a very bad job at approximating the 

system in figure 4.8, so its fitness will be low. This could be waived by exchanging the values 

of xO and yl using some sort of permutation operator. Alternatively, the terminal CO could 

still be of use if placed in another tree by leaf crossover. 
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These procedures are discouraged in standard GP (Koza 1992) and the last one in partic

ular is purposely avoided in many implementations. In such a situation, it is unlikely that the 

subtree (* xO CO) will be disrupted and, because it confers no advantage to the individual 

carrying it, it is to be expected that it will eventually disappear from the population, which 

results in the loss of a useful constant. 

This situation highlights two problems: parameter misplacement and possibility of 

loss of parameters. 

4.3.2 Adaptation 

Most techniques reviewed above employ some form of adaptation of the parameters: Gaus

sian mutation (Angeline 1996, Chelapilla 1997, Chelapilla et at. 1997), genetic algorithms 

(Montana and Czerwinski 1996, Howard and D'Angelo 1995, Andre 1994, Nguyen and Huang 

1994), genetic programming (Koza et at. 1997b), simulated annealing (Gray et al. 1997) or 

classical regression techniques (Iba et al. 1994, Marenbach et al. 1996, McKay et al. 1996, Hi

den et al. 1997). 

However, adaptation seems rather pointless in the case of the "misplaced parameter" 

explained in the previous section. 

In other cases (Howard and D'Angelo 1995, Andre 1994) it is possible to spend computa

tional effort adapting parameters that are not used by the structure (as exemplified by figure 

4.4), to no avail. This points at the fourth objective to attain: avoiding the unnecessary 

adaptation of unused parameters. 

4.3.3 Summary of objectives 

The problems thus exposed seem justification enough to investigate possible alternative meth

ods of handling numerical parameters. The questions to be answered (i.e. the objectives to 

be attained) by such a method can be listed as follows: 

1. how to determine the number of parameters to use 

2. how to prevent the parameters from being selected out of the population 

3. how to avoid the unnecessary adaptation of unused parameters 

4. how to rationalise the placement of parameters 

These questions are fully answered by the introduction of node gains. 
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4.4 Node gains 

4.4.1 Concept 

This is an approach that diverges from the two categories explained above and for this reason 

it has not been included in the previous review. Node gains were introduced by Sharman and 

Esparcia-Alcazar (1993) and subsequently developed in Sharman, Esparcia-Alcazar and Li 

(1995) and Esparcia-Alcazar and Sharman (1996, 1997a,b) and Esparcia-Alcazar (1997). 

The concept of node gains was inspired by work in the Neural Networks field. In a Neural 

Network, numerical parameters in the form of weights are associated to the links between 

neurones, so that the data are modified as they pass from one neurone to another through 

the net. 

In GP it is equivalent and representation-wise more convenient to define node gains as 

follows: 

Definition 4.1 A node gain is a numerical parameter that multiplies the output value of a 

node. 

Let us consider the link between the output of a node labelled P and the input to a parent 

(or upper) node labelled Q. The link has a strength of Opq and the relationship between the 

value at the output of node P, x, and the input to node Q, y, is 

y = Opq· x (4.8) 

This is shown graphically in figure 4.11. 

Figure 4.11: Graphic representation of a node gain. 

For the purposes of this work the gains will be real numbers; this is no limitation, however, 

as complex, integer or binary gains can be implemented in the same way. 

Definition 4.2 A gain vector, g, is a vector of node gains associated to a node vector of 

the same length, ii, so that the ith component of g, gi, is the gain of the ith component of ii, ni. 

Thus, a GP individual I consists of the pair of vectors 

1= ( n,g) (4.9) 
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where 

ii = {no nl .. . 

9 = {90 91 .. . 

4.4.2 Benefits of node gains 

nl-l } 

91-1 } 9i E!R i=0 ... £-1 

50 

(4.10) 

(4.11) 

By introducing node gains, all the questions posed in the previous section have been answered, 

namely: 

• no decision must be taken regarding the number of parameters: there are as many gains 

as nodes. 

• the parameters cannot disappear from the population, since they are attached to the 

nodes. 

• all parameters have an influence on the output; there are no unused parameters. 

• because all the nodes have a gain value, the placement of the parameters is not an issue. 

Let us go back to the first order system of figure 4.8. A tree to represent such a system, 

considering node gains is shown in figure 4.12. 

Figure 4.12: A tree representing a first order system, using node gains. 

The system equation is now: 

Yn = 90 . (91 . xn + 92' Yn-l) (4.12) 

Note that, using an adequate adaptation algorithm, it will always be possible to find a 

set of gains (Le. a gain vector, g) that accurately models the system. 

For example, the pair 

ii = {+, xO, y1 } 

9 = {0.5, 2.0, -1.362 } 

or, in compact polish notation: 

( [0.5] + [2.0] xO [-1.362] y1 ) 

represents a model for the system. 

(4.13) 

(4.14) 
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This is also equivalent to the system represented by the tree in figure 4.9, making CO = 

-0.681. There is a striking difference, however: the tree in figure 4.9 

ii = {+, xO, *, yl, CO } (4.15) 

requires two extra nodes. 

Besides, if other parameters were of interest, such as the ones present in equation 4.12, 

further constants and multiplication nodes should be introduced. 

This leads us to an important characteristic of the node gain approach: by using node 

gains the same system can be represented by shorter, more compact trees. This "compacting 

effect" can affect the performance of the method in two ways: 

• shorter subtrees are less susceptible of disruption by crossover 

• handling shorter trees is less computer intensive. 

4.4.3 Implementation issues 

• Initialisation 

When creating a random tree for the initial population the node gains can also be 

initialised at random 1 or set to a predefined value (typically I). 

• Genetic operators for node gains 

Two approaches can be taken to crossover when working with node gains. The first 

one involves considering the gains as part of the structure; since a gain is attached to 

a specific node, it "moves" with it as a result of crossover. 

The second approach regards the gains in a more independent manner; thus, when a 

tree is created by crossover, the gains are reinitialised at random. This distinction will 

become of interest later, when an adaptation algorithm is introduced. 

Mutation can also be implemented for node gains. A gain can be selected for mutation 

in the same way as a node. The mutation itself can be done by either replacing the 

current value by a randomly generated one or by adding a random quantity to it, in the 

same way as done by Angeline (1996), Chellapilla (1997) and Chellapilla et at. {1997}. 

• Extensions 

It has been considered so far that every node has a gain value. This does not necessarily 

have to be so: only certain nodes or types of nodes may have gains (in the same way as 

in neural networks) and these would be marked by a "gain flag". The remaining gains 

would be set to unity. 

lThe gain values g; could, for instance, be obtained from normal (g; '" N(I, 0"2)) or uniform (g; '" U( -1,1)) 
distributions 
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4.4.4 Cost of node gains 

The achievements related in the previous sections have come at three costs: 

• increased complexity of the nodes: a node must carry the value of the gain 9i as well 

as the information on its type. 

• increase in the computational cost, due to the additional multiplication operation per 

node 

• increase in the degrees of freedom, equal to the number of nodes. This highlights the 

need for an adaptation algorithm to obtain adequate values for the gains. 

It must be pointed out that these should not be considered in an absolute manner, but 

they must be compared separately to the different costs generated by the other possible 

approaches to the numerical values problem. It is an objective of this work to investigate 

whether the costs are overcome by the advantages brought by the use node gains. 

With regard to the first point, the increase in complexity of the node representation 

is considered to be comparable (i.e. of the same order of magnitude) to the complexity 

introduced by the alternatives. More efficient ways of handling numerical parameters imply 

that either more complex structures are used or more knowledge about the problem at hand 

is available. 

As per the second point, it will be shown that, despite the increased dimensionality, 

searching in the gain space using a continuous adaptation algorithm can, for certain problems, 

be easier and more efficient than searching in discrete spaces, as exemplified by crossover. 

The reason is that for continuous spaces the fitness landscape is smoother than for discrete 

ones, i.e. small (big) changes in the parameters produce small (big) changes in the fitness, 

on average. 

This applies as well to other continuous parameter adaptation schemes as the ones used by 

Angeline (1996), Chellapilla (1997), Chellapilla et at. (1997), Gray et at. (1997), Marenbach 

et at. (1996) and Iba et at. (1994) and partly by McKay et at. (1996) and Hlden et at. 

(1997). 

4.5 Experimental analysis 

4.5.1 Objective 

The purpose of this section is to make an experimental comparison between standard GP 

and the proposed node gain GP, in which all nodes have a gain value. 

The objectives of this comparison are threefold: 

• expose the shortcomings of standard GP, that make it desirable to find a different way 

of handling numerical parameters 
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• show the benefits of node gains, both immediate and potential, in terms of the fitness 

of the obtained solutions. 

• determine whether the size of the solutions obtained by the node gain method is bigger 

or smaller than the standard GP ones. 

4.5.2 Method 

To attain these objectives a symbolic regression experiment is devised. This consists in 

approximating a function y(x) given a number of points (x, y), where x is uniformly sampled 

from the interval [x/o, Xhi]. The solutions obtained are then tested with an extra set of pairs 

(x, y), sampled from the same interval. 

The experiment is done in two parts; for the first one the function to be approximated is 

as follows: 

y = 2x2 + 3x + 1 (4.16) 

The second part aims at approximating the function 2 

y = 2.718· x 2 + 3.1416· x + 1.3579 ( 4.17) 

In both cases the set up of the experiment is the same, as summarised in table 4.1. 

4.5.3 Results 

• Fitness 

When performing the first part of the experiment using standard GP, the solutions 

obtained in all runs but one achieved a fitness of 1 in the test (the one that didn't, 

had a fitness value close to zero). On the other hand, when the same was repeated for 

part 2 of the experiment, one tenth of the runs got solutions with fitness values close 

to zero and the maximum fitness of all was 0.997. Thus, just changing the numerical 

parameters in the problem causes a significant degradation in the performance of the 

obtained solutions. 

Part 2 of the experiment was also repeated using the node gain GP method. In this 

case, one third of the runs (ten in each set of thirty) obtained solutions with fitnesses 

close to zero, but at least one run in each set of thirty obtained a solution with a fitness 

value greater than 0.999, i.e. greater than the maximum obtained by standard GP. 

A t-test with a significance of 0.05 was performed for each set of thirty runs, with the 

conclusion that the mean of the fitnesses obtained by standard GP is higher than that 

of the fitnesses obtained by node gain GP. 

2This is similar to an example given by Koza (1992). However, due to an erratum in the transcription of 
that work it is impossible to establish any comparisons. 
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Therefore it can be concluded that, on the average, the solution fitness in standard 

GP is higher than in node gain GP; however, the latter can achieve higher maximum 

values. This justifies further investigation into this technique . 

• Size 

To allow for a size comparison between the two methods, the runs were conducted 

without any size restrictions (as opposed to the common practice in GP). 

The shortest solution of all, whose length was equal to 5 nodes, was obtained by node 

gain GP. It is interesting to note that the fitness of this solution was 0.829, i.e. much 

higher than the 2.61E-06 scored by the shortest standard GP solution, whose length 

was 7. 

A t-test is used for part 2 of the experiment to compare standard GP with node gain 

GP as per the length of the obtained solutions. The result indicates that the average of 

the solution size in standard GP is smaller than its counterpart in node gain GP, with 

a significance of 0.05. Thus, the "compacting effect" described in section 4.4.2 is not 

present on average. 
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Table 4.1: Set up for symbolic regression experiments 

Function set + - * % +1 -1 *2 /2 1 

Terminal set t XO co ... C255 

Nodes with gain all 

Population size 500 

Mutation probability 0 

at creation: maximum depth = 4 
Size restrictions at crossover: none 

Fitness function t 1 05:/5:1 l+MSE 

Number of training samples 10 pairs (x, y) where x = U(-l,l) 

N umber of runs § Two sets of 30 

Termination criterion for each run 5000 births 

N umber of testing samples 100000 pairs (x, y) where x = U( -1,1) 

tThe 256 entries in the constant table are chosen uniformly within the interval 
[-1,1] 
tThe MSE or mean squared error is the average of the squared differences 
between the expected and the obtained values of y. 
§The number of runs was chosen equal to 30 so that the Central Limit Theorem 
allows for the application of the t-test, even though the involved distributions 
may not be normal (Devore 1995, p. 235). 

55 
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4.6 Conclusions 

Experimental analysis shows that there is a significant degradation in the performance of 

standard GP when problems involving rational parameters (as opposed to integers) are tack

led. This is considered to be justification enough for the investigation of new approaches to 

handling numerical parameters. 

The introduction of node gains does not necessarily bring an advantage over standard 

GP, and, on the average, it proves to be disadvantageous. However, the results show the 

potential benefits that can be attained, exemplified by a higher maximum fitness and a 

smaller minimum size. 

Although the use of node gains has many potential benefits, these are difficult to attain 

if the values of the gains are random: adaptation is needed if we want to take full advantage 

of the node gains. 

4.7 Summary 

The problem of handling numerical parameters in G P has been identified and various different 

approaches to it have been reviewed. 

A number of problems of several or all of these approaches have been listed: identifying the 

parameters to evolve, ensuring that these parameters are not lost during the search, ensuring 

that there is no adaptation of unused parameters and rationalising the way parameters are 

placed. 

An alternative approach is presented in the form of node gains. A node gain (similar to 

link weights in neural networks) is a numerical parameter associated to a node that multiplies 

the output value of the node. 

Introducing node gains solves the problems listed above and also produces another effect: 

a given system can be described using smaller trees. This reduction in size has been named 

"compacting effect". 

The costs involved are an increase in the complexity of the node representation and also 

in the degrees of freedom of the system. It will be proven that these disadvantages are far 

outweighed by the benefits. 

Experimental results show that the potential advantages can be lost if the node gain 

values are left at random. This highlights the need for an adaptation algorithm. 

An issue is thus left open: what the adaptation (or learning) algorithm should be. This 

will be discussed in the following chapter. 



Chapter 5 

Adaptive GP 

5.1 Introduction 

This chapter is devoted to the issue of adapting the node gains via an optimisation algorithm. 

For this purpose, an analogy between such an algorithm and the learning processes in nature 

is established. 

Let us begin by defining what is going to be understood by learning in the remainder of 

this work. 

Definition 5.1 In node gain GP, learning is the adaptation of the gain vector by means of 

an optimisation algorithm. In this work the algorithm employed for this purpose is Simulated 

Annealing. 

The chapter is structured as follows. In section 5.2 the motivation for adapting the gains, 

as concluded in Chapter 4, is summarised. 

Section 5.3 focuses on the relationship between learning and adaptation. The first part 

of the section concentrates on the effects of learning in natural systems and how these effects 

can be exploited in artificial ones. The second half is devoted to the simulation of learning 

in artificial systems. A brief summary of previous models and their main shortcomings is 

followed by an account of how these shortcomings have been addressed by the proposed 

method, the limitations of which are also stated. 

Section 5.5 extends the natural analogy of Darwinian evolution to the hypothetical domain 

of Lamarckian inheritance. The way to implement such a scheme is explained. 

In Section 5.6 the Simulated Annealing algorithm is presented as an adaptive learning 

method and its implementation in node gain GP is discussed. Section 5.7 presents an experi

mental comparison between the Lamarckian and Darwinian learning methods and two other 

forms of GP: standard GP and GP with random node gains. Several measures of performance 

are presented and statistical analysis performed on them. 

Finally, some conclusions are given in section 5.8 and section 5.9 summarises the chapter. 

57 
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5.2 Motivation 

In Chapter 4 node gains were introduced and it was shown how they give GP the potential of 

getting higher fitnesses and smaller solution sizes. However, statistical tests showed that this 

potential was not exploited on average: the mean of the solutions fitnesses was smaller and 

that of the sizes bigger when using node gains, as opposed to setting all gains to 1. It was 

concluded that leaving the node gains at random brought no real advantage while making 

the system more complex. 

Thus, it was established that, in order to get full advantage of the potential benefits of 

node gains, an adaptation algorithm was needed to adjust the gain values. 

Because GP is based on an analogy to the evolutionary processes of a population of 

individuals, it is interesting to exploit the analogy further and equate the adaptation of 

the gain values to the learning of single individuals. The rest of the chapter is devoted to 

establishing this analogy and explaining the adaptation algorithm used. 

5.3 Natural and artificial learning 

5.3.1 Analogies 

Atmar (1994) defines natural learning as the selective retention of behaviours that have been 

accumulated through stochastic trial and error. It is a process inherent to and indistinguish

able from evolution itself. 

Following this definition, three forms of learning can be observed in natural evolution: 

Phylogenetic learning, where the learned knowledge is stored in the species genetic code; 

the time scale of this process is the lifetime of a species. 

Sociogenetic learning, where the knowledge is stored in the form of social culture; the 

time scale is the lifetime of a group. 

Ontogenetic learning, where the knowledge is stored in an individuals memory; the time 

scale is the lifetime of the individual. 

The first type of learning, phylogenetic learning, is implicit in the Genetic Programming 

algorithm. Attempts have also been made at modelling the second type of learning by 

providing GP with a notion of culture (Spector and Luke 1996, and others). 

This chapter will be concerned with the simulation of the third type, ontogenetic learn

ing, which from now on will be referred to simply as learning. The key idea is to provide 

each individual with the opportunity to adapt to its environment and modify its behaviour 

accordingly. 

Individual learning affects the whole population in various ways. For instance it has 

been postulated (Anderson 1995) that one effect is the decrease in the reproduction rate, 
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as time devoted to learning cannot be spent in reproduction 1. More importantly, learning 

can also influence evolution. The process by which learning assists the integration of genetic 

components of behaviours into the gene pool has been termed Baldwin effect (Hinton and 

Nowlan 1987, Belew 1990, French and Messinger 1994, Anderson 1995, Parisi and Nolfi 1996). 

The effect of learning in fixed environments is a speed up in the search for the optimum, 

because instead of a phylogenetic (and possibly blind) search for an optimal genotype, the 

optimal phenotype can be found via an ontogenetic ("directed") search. 

However, the main advantage of learning comes in variable environments. 

From the individual's point of view, learning allows it to adapt to the new environment 

and therefore increases its chances to survive under the modified conditions. 

From the population's point of view, it is attributed to learning the maintenance of 

genotypic diversity (Anderson 1995). This means there will be a higher probability that at 

least some of the genotypes will have a high fitness under the new environment, than in the 

case where only few genotypes were present before the change took place. 

5.3.2 Simulating learning 

Many attempts have been made at artificially modelling the natural learning processes, both 

to gain insight into the learning process itself (Hinton and Nowlan 1987, Belew 1990, French 

and Messinger 1994, Anderson 1995, Parisi and Nolfi 1996) or to exploit its potential benefits 

when applied to engineering problems (Boers et al. 1995, Gruau and Whitley 1993, Lucas 

1996). Most of these models involve significant simplifications of the complexity of natural 

learning. In particular, criticism to (Hinton and Nowlan 1987)'s classical simulation, learning 

the weights of a neural network, is based on three points (Parisi and Nolfi 1996): 

1. learning consists of random changes, each learning trial being independent of the result 

of previous ones (there isn't a "learning path"). 

2. there is no environment and therefore no phenotype, only genotype. Hinton & Nowlan's 

search for a particular neural network is in reality a search for a particular bit string. 

3. the evolutionary task and the learning task coincide: good performance on the learning 

task implies high fitness. 

Various authors have addressed these points, mainly the first two, in different ways. In 

the model presented here, the first one is overcome by the use of Simulated Annealing as 

learning algorithm, as will be shown below. The solution to the second criticism is implicit in 

the aim of the method, which is to find a solution to an engineering problem - this constitutes 

the environment. For this same reason, the third point is of less relevance here than in the 

1 While I sit here writing this thesis, other people are breeding 
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case of simulations that aim at studying the learning process itself, and therefore will be 

overlooked. 

Two additional points apply to the proposed method. First, the individual learns at no 

cost to itself. The cost to the user is the increase in computational time required to produce 

a given number of individuals. But, from an engineering point of view, this is irrelevant if 

less "births" are needed to reach a solution. 

Second, the amount of effort an individual devotes to learning is controlled externally: 

it is neither congenital to the individual nor controlled by it. This issue can be addressed 

by modifying the implementation such that the amount of learning effort is regulated by a 

"learning gene" . 

Another interesting development would be to run the simulation in parallel and allow the 

individuals to learn or reproduce "at will". These concerns are left for future study. 

5.4 Basic details of Adaptive GP 

Let fi E N be a syntactically correct vector of nodes (according to the rules given in section 

1.4.2) and let 9 E 9 be a vector of gains. Define the function £( iJ) to be the number of 

elements in a vector iJ. An individual genotype h E 1£ can be represented as the pair of 

vectors 

h = (fi,g) £(fi) = £(9) (5.1 ) 

We now proceed to define a GP phenotype. Let e E £ be the environment in which a GP 

individual operates. In the context of Digital Signal Processing, the environment is the input 

data sequence and the training output (if required). 

The fitness function, f E F, is 

f :1£x£-+ (0 ... 1) (5.2) 

Let w be a learning algorithm: 

w:1£x£xF-+g (5.3) 

The above learning algorithm produces a new set of gain values for a given individual and 

fitness function in a particular environment. Details of a Simulated Annealing algorithm will 

be given in appendix A. 

An individual phenotype, P E 'P, is represented as the 4-tuple: 

if = ( h, f, w, r ) (5.4) 

Hence, before learning we have 

f=(h,e')=f((fi,g} e') (5.5) 
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and after learning 

(5.6) 

where 

h = ii, w(h, et} .... , ( .... ) (5.7) 

where el is the environment used for learning and e2 is the environment where it will operate 

afterwards. 

Finally, we define a reproduction function as 

r (5.8) 

or, alternatively, as 

r (5.9) 

depending on whether or not the learned gain values are inherited during crossover (details 

given in section 5.5). 

5.5 Darwinism vs. Lamarckism 

In standard GP evolution takes place following Darwinian rules. Darwinian evolution is a 

two-step process, taking place as follows, (Gould 1980) 

1. random genetic variations take place, caused by recombination and mutation only 

2. selection (natural or artificial) favours the survival of the fittest, or rather, the culling 

of the less fit (Atmar 1994), among these variants. 

The former implies that individual learning does not affect the genetic material and 

therefore cannot be inherited. 

On the other hand, another classical theory of evolution, Lamarckism, is essentially a 

theory of directed variation. In the face of an environmental change, an organism would 

react by incorporating preferentially favourable genetic information, which would then be 

transmitted to offspring. The latter, also known as "inheritance of acquired characters", has 

taken over the meaning of the word Lamarckism, and it is by this definition that we will use 

it. 

Although Lamarckian evolution (in any of its meanings) has not been observed in bio

logical history2, it can be said that the evolution of human culture (or learning in higher 

2 Although genetic changes can be due to exposure to radiation or chemical agents, these changes are 
random, not directed. (Gould, 1980) 
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mammals} is Lamarckian in character: knowledge is transmitted from one generation to 

another. 

Lamarckian evolution is implemented in the GP ISA system by allowing the annealed 

node gains to be inherited by the offspring. In Darwinian evolution, the gains are set to 1 or 

initialised with random values before the annealing takes place and are not inherited. 

Let T1 and T2 be two syntactically correct trees selected for crossover, with lengths f and 

m respectively, and whose expressions are: 

T1 { ih { n1,0 n1,1 nl,(l-2) nl,(l-1)} 
{5.1O} -

91 { = gl,O gl,l gl,(l-2) gl,(l-1)} 

{ ih = { n2,0 n2,1 n2,(m-2) n2,(m-1)} 
T2 -

92 { 
{5.11} 

= g2,0 g2,1 g2,(m-2) g2,(m-1)} 

Let us assume that T1 is acting as the "mother" and T2 as the "father"; this means T1 

provides the root of the tree and T2 the branch to swap. Further assume that the crossover 

points are i, O::S i < f, for T1 and j, O::S j < m, for T2. 

Let the subtrees starting at i and j comprehend all the nodes up to p and q in their 

respective trees. 

The result of the crossover, T 1x2 , is a tree of length f - p + q, whose expression is: 

T 1x2 -
{ ~lX2 = { n1,0 n1,(i-1) n2,j n2,(j+Q-1) n1,(i+p) nl,(l-l)} {5.12} 

glx2 = { gl,O gl,(i-1 g2,j g2,(j+q-1) gl,(i+p) gl,(l-1)} 

The gain vector gl-;2 has components inherited from T1 and T2. In an alternative scheme, 

the components of gl-;2 would be set to 1 or initialised with random values. These two ways 

of proceeding are labelled here Lamarckian and Darwinian learning schemes. 

Using the notation given in section 5.4, the Darwinian learning scheme implies defining 

the reproduction function r as follows 

r = r(ri} {5.13} 

i.e. r is only a function of the node vector rio On the other hand, in Lamarckian evolution 

r = r{ri, w{h, e)} {5.14} 

r is a function of the genotype h modified by the learning function w in the environment e 

5.6 Learning by Simulated Annealing 

The reasons why Simul3:ted Annealing was chosen as a learning algorithm are twofold. On 

the computational front, due to the simplicity of implementation. On the philosophical front, 

due to the similarity to the learning process in nature, in several ways. 
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First, as an individual undergoes annealing, the probability of a big gain jump decreases. 

This is in accordance with what is observed in nature: the amount that an individual can 

learn decreases in time. 

Second, big decreases in fitness are mainly restricted to the early stages of the learning 

process. Pursuing the natural analogy, when the individual is young it can still accept a 

decrease in "status" but that is less likely as it grows older. 

Finally, the starting point of each iteration depends on the outcome of the previous one: 

the process is cumulative. 

For details on the implementation of the SA algorithm see Appendix A. 

5.7 Experimental analysis 

5.7.1 Four methods 

This section provides results obtained by four different methods. The first one is the standard 

GP algorithm, in which the gains are fixed and equal to 1. This is referred to as NGNL (no 

gains - no learning). The other three methods employ node gains, whose values are initialised 

at random in the first population. 

In the second method studied the gain values remain fixed (save in the case of a random 

mutation) and thus are inherited by the offspring. This is labelled RGNL (random gains -

no learning). 

The remaining two methods employ learning of the gains. In the Darwinian learning 

scheme the gains are also initialised at random for every individual that is born and then 

subjected to annealing. In Lamarckian learning the annealed gains of the parents are 

inherited by the offspring, which then undergo their own annealing process. 

The four methods will be applied to three channel equalisation problems, as explained 

in Chapter 3. The reader is also referred to (Sharman, Esparcia-Alcazar and Li 1995) and 

(Esparcia-Alcazar and Sharman 1996, Esparcia-Alcazar and Sharman 1997b) . 

The GP settings for these experiments are shown in Table 5.1, while Table 5.2 gives the 

SA settings. 

5.7.2 Fixed environments 

Overview 

Strictly speaking a fixed environment would be one in which the population has reached equi

librium, i.e. the average fitness remains constant. When tackling DSP or other engineering 

problems, however, the behaviour in the equilibrium is not usually observed. The concern in 

these cases is finding an optimal solution; hence, the process is stopped once it is considered 

that no further improvement can be achieved. 
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Table 5.1: Settings for four method comparison 

Function set + - * Yo +1 -1 *2 /2 

Terminal set 1 XO ... X3 Y1 Y2 CO . .. C6 

C7 ... C255 (NGNL only)t 

Constant table 0.1 0.5 2 10 -1 3 0.7 

Population size 500 

of a node: 0.01 
Mutation probabilities of a gain: a 

0.01 (RGNL only) 
at creation: maximum depth = 4 

Size restrictions at crossover: maximum depth = 6 

Fitness function t f - 1 
- l+MSE O~f~l 

Number of training samples (ed§ 70 

Signal to Noise (SNR) ratio 30 dB 

LC1: 50 runs 

N umber of runs NLC: 24 runs 
LC1 --+ LC2: 51 runs 

Termination criterion for each run node evaluations 

Number of testing samples (e2) § 10100 

tEntnes 7 to 255 m the constant table for NGNL are chosen umformly wlthm 
the interval [-1,1] 
:j:The MSE or mean squared error is the average of the squared differences 
between the expected and the obtained values of the output. 
§The first 20 and 100 samples are rejected for fitness calculation as transient 

64 
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Table 5.2: Annealing settings for Darwinian and Lamarckian methods. 

Learning Probability I 

Perturbation Distribution Cauchy 

Perturbation Scheme Elastic 

Cooling schedule Exponential 

Starting Temperature (To) 2 

Temperature Decay (0) 0.99 

Learning Iterations (maxlterations) 400 

Trials per temperature (maxTrials) I 

Maximum Invariant Fitness Trials 20 

In the particular case of the experiments related here we are interested in both the so

lutions and the evolutionary process itself. A fixed environment will then be defined as a 

GP run of the channel equalisation problem in which the unknown channel does not change 

for the duration of the run. The run proceeds for up to a given number of node evalua

tions (as explained below) regardless of whether or not a suitable solution has been found or 

equilibrium has been reached. 

Two cases are studied: a linear channel (LCI) and a nonlinear one (NLC). The difference 

equations for these channels are 

for LCI and 

Xn = Yn + 0.9· Yn-l 

Pn = Yn + 0.6· Yn-l + 0.5· Pn-l 

Xn = Pn + 0.15· Pn-2 

(5.15) 

(5.16) 

(5.17) 

for NLC, where Yn and Xn are the inputs to the channel and equaliser respectively at instant 

nand nn is the additive white Gaussian noise. 

Study of the performance 

The study of the performance can be divided into two aspects. The first one is related to 

how well the solutions obtained perform with unseen data, i.e. the generalisation ability. 
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Table 5.3: Comparison of results (50 runs for LCl) 

fitness BER fitness discr:rancy I 
(in test) (in test) (after evolution) 

Darwinian 0.9765 0 0.9825 0.0018 
Lamarckian 0.9679 0.00806 0.9704 0.0002 
RGNL 0.9731 0.00006 0.9890 0.0037 
NGNL 0.8231 0.03045 0.8933 0.0487 

Table 5.4: Comparison of results (24 runs for NLC) 

fitness BER fitness discrepancy 
(in test) (in test) (after evolution) d 

Darwinian 0.9620 0.00564 0.9816 0.0013 
Lamarckian 0.9261 0.01071 0.9620 0.0052 
RGNL 0.7418 0.02920 0.9655 0.2090 
NGNL 0.8049 0.10371 0.9303 0.0336 

It is a matter of discussion among the GP community whether or not the existence of 

local learning schemes decreases the generalisation ability (and therefore the quality) of the 

potential solutions. Some argue that learning will cause overfitting of the training data and 

therefore, when the data is changed, the performance will be poor because the solution was 

biased towards the training data. 

In order to test whether or not this is the case with the Darwinian and Lamarckian 

learning schemes, each experiment was run a number of times using 70 samples (of which the 

first 20 were rejected for the fitness calculation as transient). The termination criterion for 

evolution was a number of node evaluations equal or exceeding a given limit (1e8 for LCl, 

3e8 for NLC). 

The solutions were tested with a further 10100 samples (of which the first 100 are rejected) 

to obtain a fitness value and a bit-error-rate. These two values themselves provide a measure 

of "how good" the solutions are. 

The fitness in the test was also compared with the one obtained during evolution and the 

discrepancy measured as follows: 

1 ~ 2 
d = N ~ (fitnesstest - fitnessafter evaluation) (5.18) 

N 

where N is the number of runs. 

This gives an idea of how well the fitness during evolution can predict the subsequent 

behaviour of the solutions obtained by each method, therefore being a measure of reliability. 

Tahles 5.3 and 5.4 give the averages of these values. 
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Table 5.5: Success rates for LCl and NLC 

LC1 NLC 
(50 runs) (24 runs) 

Darwinian 1 0.92 
Lamarckian 0.96 0.83 
RGNL 1 0.92 
NGNL 0.78 0.76 

These results show that, on average, Darwinian learning outperforms the other methods, 

the differences being more noticeable in the case of NLC, which is a more difficult problem. 

On the other hand, the discrepancy in LC1 is lower for Lamarckian learning, whereas in NLC 

the lowest value corresponds to Darwinian learning; both results show that learning methods 

generalise better than non learning ones. 

The second aspect in measuring the performance is the success rate. This is given by 

the ratio of successful runs over the total number of runs. We define a successful run as one 

in which the fitness of the best solution measured during the evolution is greater than an 

arbitrary value, here chosen as 0.9. The values are shown in Table 5.5. 

Darwinian learning maintains the advantage because it has both high success rates and 

low discrepancies. RGNL has higher success rates than Lamarckian learning, but on the 

other hand, as shown in the previous tables, it also has a greater discrepancy, which makes 

its solutions less reliable. 

5.7.3 Variable environments 

Overview 

A variable environment is one in which the unknown channel is modified during the run. 

The implementation of this is as follows. Evolution proceeds as explained in the previous 

section for LC1, up to 108 node evaluations approximately. Then a new set of data is 

generated for the modified channel LC2. LC2 has the same structure as LC1 but one of 

its coefficients is slightly different in absolute value and has opposite sign. The difference 

equation for LC2 is 

Yn = Xn - 0.99· Xn-l (5.19) 

The population is then re-evaluated and re-annealed and evolution continues for approxi

mately up to 3 . 108 node evaluations. 
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Table 5.6: Comparison of results in a variable environment. Averages of 51 runs for LCl --+ LC2 

fitness BER fitness discrepancy 
(in test) (in test) (after evolution) d 

Darwinian 0.9078 0.002047 0.9592 0.0030 
Lamarckian 0.8930 0.001986 0.9606 0.0208 
RGNL 0.8296 0.038525 0.9146 0.0313 
NGNL 0.6062 0.195249 0.7719 0.1242 

Table 5.7: Success rates (51 runs for LCI --+ L(2) 

Darwinian 0.9608 
Lamarckian 0.9804 
RGNL 0.8431 
NGNL 0.5882 

Study of the performance 

The solutions are tested as explained before with 10100 samples generated for the channel 

LC2. A comparison of the solution performances is given in table 5.6. 

Darwinian learning maintains the advantage, both in fitness and reliability, clearly over 

RGNL and NGNL and slightly over Lamarckian learning. 

After studying the success rates, given in Table 5.7, it turns out that the Darwinian 

learning scheme has a slightly lower probability of success than Lamarckian learning. Nev

ertheless, the performance of the solutions obtained by this method is higher due to the low 

discrepancy. 

5.7.4 Analysis 

The results obtained in previous sections are analysed statistically by means of a Kruskal

Wallis test. This is a mUltiple comparison non parametric test (Conover 1980), which means 

the k populations compared are not assumed to have normal distributions. The details of 

the test are given in Appendix C. Briefly, the hypotheses tested are as follows: 

Ho : All of the k populations compared are identical 

Ha : At least one of the populations tends to yield larger observations than at least one of 

the other populations (i.e. the k populations do not have identical means) 

For a confidence level of 0.1 the result of the test for all three cases studied was rejection 

of Ho. A procedure was then employed to determine which pairs of populations tended to 

differ. The results, for the same confidence level, are summarised in Table 5.8. 
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Table 5.8: Multiple comparisons with the Kruskal-Wallis test 

Methods LCl NLC LCl-tLC2 
Darwinian Lamarckian same same same 
Darwinian RGNL same different different 
Darwinian NGNL different different different 

Lamarckian RGNL same different different 
Lamarckian NGNL different different different 

RGNL NGNL different different different 

The conclusion is that, for this confidence level, the Darwinian and Lamarckian learning 

schemes cannot be distinguished. Also, in the case of LC1, RGNL cannot be distinguished 

from either the Darwinian or Lamarckian learning schemes. 

5.7.5 Influence of learning on evolution. 

To trace the influence of learning on evolution a new variable is introduced: the fitness at 

birth or Jab. The statistics of the Jab will be compared to those of the fitness after learning, 

or Jit. With no learning, Jit = Jab. We are interested in the variations in the distributions 

of J it and Jab as the run proceeds. 

For this study 24 runs are performed for Darwinian, and Lamarckian learning and RGNL 

with the same set up shown in tables 5.1 and 5.2. 

In this case the emphasis is not placed on the solution but on the evolutionary process 

itself and therefore the experiments run for a longer time. In practise the termination criterion 

for evolution is a number of node evaluations greater than or equal to 3 . 108 . 

The distributions for LC1 are shown in Figures 5.1 and 5.2. The distributions for NLC 

showed similar results and are not displayed to avoid repetition. 

It can be seen that the J it distribution moves to the right as the run proceeds. This 

displacement is slowest in Darwinian learning and fastest in RGNL. In more difficult problems 

we have observed that the fit distribution in RGNL doesn't reach the higher values of the 

scale. Instead, it gets "stuck" at suboptimal values. 

The Jab distribution shows an increasing peak at zero in Darwinian learning. This means 

that individuals that can learn are selectively preferred to those that are naturally fit. The 

opposite occurs in Lamarckian learning: the Jab distributions are displaced towards the right, 

as would be expected. 

In both cases the displacement of the Jab distributions is much slower than that of the Jit 

for RGNL (remember that for RGNL Jit = Jab). This shows how the presence of learning 

slows down the evolution of the genotype. 
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'0 
6 
Z 

Darwinian 

fItneSS values 

Lamarckian 

fitness values 

figure 5.2: Evolution olthe Jab for DarWinian (top) and Lamarckian (bottom) learning. Averaged 

histograms for initial, middle and linal stages of the run. 
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5.7.6 Further comments: Extending the analogy 

A number of limitations apply to our simulations, in particular: 

• all individuals have the same probability of learning (equal to 1) 

• the maximum number of annealing iterations is fixed 

• in the experiment with varying environment, the unknown channel is modified only 

once. 

It would be of great interest to relax these constraints, as well as, as already mentioned, 

letting the individuals "decide" on their own learning and parallelise the simulation. Fur

ther work will aim at achieving these objectives, which would be easily incorporated in the 

implementation. 

5.8 Conclusions 

In complex engineering problems where node gains become necessary, an adaptation algo

rithm is required to optimise the values of these gains. By drawing an analogy between such 

an adaptation algorithm and the learning process in nature, one is able to envisage the way 

in which individual adaptation affects the whole system. 

A step beyond the natural analogy is the introduction of Lamarckian inheritance, which 

is easily implemented in the node gain GP system. 

The learning algorithm is implemented by means of Simulated Annealing, due to its 

similarities to natural learning. It also offers a number of possibilities in the selection of 

parameters and different schedules used, in contrast with the GP algorithm which is somewhat 

more rigid. 

Introducing SA in the node gain GP system provides a faster way of finding solutions to 

engineering problems and a more robust one in the case of variable environments. 

Applying a learning algorithm might not be advisable in all cases. Two general decision 

rules as per when to employ learning can be given: 

• when the performance of a system is sensitive to parameter variations; for instance, 

when a wrong selection of parameters can make a system unstable 

• when environmental changes are expected; for instance in equalisation in mobile sys

tems, where the unknown channel is constantly varying. 

Two possible learning schemes for GP have been addressed here, namely Darwinian and 

Lamarckian. It has been shown that, in the examples presented, using node gains provides 

better results than those obtained by standard GP. Furthermore, the use of learning improved 

the performance in the two more complex problems addressed. 
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A measure of the generalisation ability has been introduced which shows that overfitting 

is not a problem in any of the learning schemes presented; on the contrary, both generalise 

better than the non learning methods. This might be due to the fact that the solutions 

obtained with any of the learning schemes tend to be smaller than those obtained without 

learning. Further analysis is required to prove this point. 

Although statistical tests do not allow us to reach a conclusion as to which performs 

better, the Darwinian scheme looks intuitively more indicated for a variety of problems, as 

the more robust of the two. 

5.9 Summary 

The optimisation of node gains has been transformed by a useful analogy into the learning 

of individuals in a given population. The analogy is exploited to investigate what the effects 

of such an optimisation algorithm will be on the GP system. Potential benefits have been 

discussed, which point out to the situations when it is most convenient to use a learning 

algorithm. Also, the limitations of the analogy have been discussed. 

The implementation of learning via simulated annealing has been justified with the various 

properties that make SA an interesting learning algorithm. 

Experimental analysis has aimed at comparing learning and non learning methods via 

three equalisation problems. This has been done using various performance measures and 

statistical analysis. On the whole, the superiority of the learning techniques has been shown. 



Chapter 6 

Further Results in Channel 

Equalisation 

6.1 Introduction 

This chapter revisits the channel equalisation problem presented in Chapter 3. The objective 

is to provide further results in this problem using GP enhanced with node gains and Simulated 

Annealing and compare them with those provided by the existing bibliography. 

The chapter is structured as follows. Section 6.2 gives an overview of three channel 

equalisation problems, pointing out the interest of applying GP to them. Sections 6.3, 6.4 

and 6.5 concentrate on three specific problems that have been addressed by other authors 

and to which the proposed method was successfully applied. Section 6.6 compares the results 

of presented in the previous sections to those given by the literature. Conclusions are given 

in section 6.7 and finally section 6.8 summarises the chapter. 

6.2 Overview 

The examples discussed in this chapter are cases for which it has been shown (Chen et 

al. 1990, Gibson et al. 1991, Gibson et al. 1989, Theodoridis et al. 1995) that nonlinear 

equalisation techniques can provide better results than linear ones. The unknown channel to 

equalise will be: 

• a linear channel with high levels of noise. 

• a linear partial response channel. 

• a nonlinear channel. 

The results yielded by the proposed method will be compared to those obtained by training 

a 20-tap (19 th order) Finite Impulse Response (FIR) equaliser with the Recursive Least 

Squares (RLS) algorithm, as done in (Kechriotis et al. 1994). 
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Table 6.1: Annealing settings for all channel equalisation experiments 

Perturbation Type Cauchy 

Perturbation Scheme Elastic 

Starting Temperature (To) 1.5 

Cooling Schedule Inverse linear 

Scale perturbation by 0.2 

Annealing Iterations (maxlterations) 100 

Trials per temperature (maxTrials) 5 

Maximum Invariant Fitness Trials 20 

The set up for the experiments is as follows. A training signal of 250 samples is used 

to train both a FIR-RLS and a GP+SA equalisers. For the latter, the first 50 samples are 

rejected as transient in the calculation of the fitness during the evolution process. 

After adaptation, a further 100100 samples of a signal of the same noise realisation are 

processed by both filters and the bit-error rate calculated (rejecting the first 100 samples in 

both cases). 

The parameters of the Simulated Annealing algorithm, which are given in Table 6.1, are 

common to all three examples. l 

6.3 Linear' channel with high noise 

Let us consider the linear minimum phase channel described by the transfer function 

H(z) = 1 + 0.7z- 1 (6.1) 

In the low noise situation it is possible to find an equaliser for this channel to any specified 

accuracy by employing a finite impulse response (FIR) filter of sufficient length (or order). 

When the noise is high, however (i.e. the signal to noise ratio, SNR, is lower than 10 dB) the 

phenomenon of noise enhancement appears, which means that any increase in order results 

lThis can be done because, due to the way it was defined in chapter 3, the fitness always lies in the interval 
[0,1]. If the fitness had different limits for each problem, the annealing settings (in particular, the starting 
temperature, To) should be modified accordingly 
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Table 6.2: Values of the bit-error rate obtained by equalisers for the channel H(z) = 1 + 0.7z- 1 

over 30 runs. 

average BER minimum BER 
SNR(dB) FIR-RLS GP+SA FIR-RLS GP+SA 
2.5 0.126724 0.129697 0.11284 0.10519 
5 0.071622 0.082892 0.06121 0.05491 
7.5 0.033807 0.034803 0.02731 0.01299 
10 0.009246 0.014868 0.00653 0.0012 

in a decrease in efficiency of the equaliser (Gibson et al. 1991). It is therefore interesting to 

try and find low order equalisers which employ some form of nonlinearity. 

Results for different values of the SNR are given in Table 6.2 and shown graphically in 

Figure 6.1. Average and minimum values of the BER for 30 runs (per point) are presented, 

showing that the GP+SA method can obtain lower minimum values than the FIR-RLS, 

especially for values of the SNR of 7.5 and 10 dB. 

For values of the SNR below these the noise is too high for the equalisation method to 

make a significant difference. For values above, both methods give consistently BERs of zero, 

so the comparison loses meaning. Nevertheless, it is interesting to note that in these cases 

several GP+SA equalisers yielded a fitness of 1 (i.e. MSE = 0), while this was never achieved 

by any of the FIR-RLS equalisers. 
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Table 6.3: Set up for linear channel (H{z) =1+0.7z-1 ) equalisation experiment 

Function set + - * Yo +1 -1 *2 
PSH NLO ... NL255 

/2 1 Z 

Terminal set§ Xo ... X3 Y1 Y2 CO ... C255 STKO ... STK4 

{3 limits for NL nodes {3hi = 10 {3/o = 0.1 

Nodes with Gain X Y STK C NL 

Population size 500 

Mutation probability 0.01 

Size restrictions at creation: maximum depth = 4 
at crossover: maximum length = 25 

Fitness functiont 1 O~f~1 l+MSE 

Input signal (X) 
output of the channel when fed with a 
Pseudo-Random Binary Signal (PRBS) 

Reference signal the same PRBS delayed by one sample 

250 samples; 
N umber of training samples the first 50 are not considered for fitness 

calculation. 

N umber of runs 30 

Termination criterion for each run 30 minutes of CPU time 

100100 samples; 
N umber of test samples the first 100 are not considered for fitness 

calculation. 

§The 256 entries in the constant table are chosen uniformly within the interval [-1,1] 
tThe MSE or mean squared error is the average of the squared differences between 
the values of the output (Y) and those of the reference signal. 
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Figure 6.1: Average and minimum values of the BER obtained by GP+SA and RLS equalisers for 
the channel H(z) = 1 + O.7z- 1 over 30 runs (per point). 
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Figure 6.2: An equalising filter for the channel H(z) = 1 + O.7z- 1. The node NL135 

represents the function tanh(2.67x). Note that, although the channel is 
linear, the equaliser is nonlinear. In the presence of high levels of noise (in 
this case, the SNR was 7.5 dB), nonlinear equalisers can perform better 
than linear ones (Chen et at. 1990, Gibson et at. 1991, Gibson et at. 1989, 
Theodoridis et at. 1995). 
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6.4 Partial response channel 

The transfer function of partial response channels has zeros on the unit circle. Such channels 

are frequently encountered in magnetic recording (Kechriotis et al. 1994) and since the inverse 

of the channel is undefined, there exists no linear filter that would sufficiently equalise them. 

Therefore nonlinear methods have to be used to reconstruct the originally transmitted signal. 

Following (Kechriotis et al. 1994) the channel employed in the experiments had the trans

fer function 

H{z} = 1 - 2 . z-l + z-2 (6.2) 

This channel has a double zero on the unit circle. 

The performance of the proposed method was compared to that of the RLS algorithm, 

first for the noiseless case and then for different realisations of the signal to noise ratio. Thirty 

runs were performed in all cases and the values of the bit-error rate obtained are given in 

Table 6.4. 

Table 6.4: Values of the bit-error rate obtained by equalisers for the channel H(z} = 1- 2· z-l + 
z-2 over 30 runs. 

average BER minimum BER 
SNR(dB) RLS GP+SA RLS GP+SA 

10 0.07537 0.10266 0.06197 0.0014 
12.5 0.06866 0.09047 0.05944 0 
15 0.05895 0.08109 0.04295 0 

17.5 0.05135 0.11199 0.04356 0 
20 0.04471 0.07155 0.03426 0 

22.5 0.03498 0.06836 0.02914 0 
00 0.00623 0.07644 0.00515 0 

A t-test was used to compare the two methods in the absence of noise showing that the 

average BER of the solutions was lower for the RLS algorithm. However, none of the RLS 

solutions obtained a BER of zero, while, on the other hand, this was achieved by a number 

of the GP+SA solutions. 

One of the solutions obtained by the proposed method is shown in Figure 6.3. 

In view of these results, the question that arises is as follows: If GP+SA can outperform 

the RLS algorithm by such a margin, why isn't the average BER of the GP+SA solutions 

much lower? The reason is that in many cases the algorithm converges towards a solution 

that is suboptimal, despite having a relatively high fitness. In the present case, the deceptive 

solution had the form shown in Figure 6.5. 

This solution arose for various values of n and the gains of 90 and 91. One possible cause 

for this is that the algorithm did not run for long enough to reach the optimum. A compromise 
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Table 6.5: Set up for partial response channel (H(z) = 1- 2· Z-l + z-2 ) equalisation experiment 

Function set + - * Yo +1 -1 *2 /2 1 Z PSH 

NLO ... NL255 

Terminal set XO ... X3 Y1. .. Y2 CO ... C255 

STKO ... STK4 

f3 limits for NL nodes f3hi = 10 f3lo = 0.1 

Nodes with Gain X Y STK C NL 

Population size 500 

Mutation probability 0.01 

Size restrictions 
at creation: maximum depth = 4 
at crossover: maximum length = 25 

Fitness function 1 O~f~l l+MSE 

Input signal (X) 
output of the channel when fed with a 
Pseudo-Random Binary Signal (PRBS) 

Reference signal the same PRBS delayed by one sample 

550 samples (noiseless); 250 (with noise) 
N umber of training samples the first 50 are not considered for fitness 

calculation. 

N umber of runs 30 

Termination criterion for each run 
30 min. of CPU time (with noise); 
60 min. (noiseless) 

100100 samples; 
Number of test samples the first 100 are not considered for fitness 

calculation. 
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Figure 6.3: An equalising filterfor the channel H(z) = 1-2z-1 +z-2. The node NL185 
represents the function tanh{3.64x). This was obtained with a training sig
nal of SNR = 12.5 dB and when tested with signals of other SNR realisations 
(10, 12.5, IS, 17.5 and 20 dB), yielded a BER of zero in every case but one 
(for SNR = 10dB the BER was 0.00159). The other solutions were similar 
in structure to this one. 
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must then be found between a bigger number of shorter runs and a smaller number of longer, 

and possibly more successful ones. 
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Figure 6.4: Average and minimum BER for different SNR realisations obtained by GP+SA 
and RLS equalisers over 30 runs (per point). The channel employed was H(z) = 
1 - 2z-1 + z-2. Note that in this case the minimum BER is displayed using a 
linear scale and not in the commonly employed logarithmic scale, because most 
of the values for GP+SA are zero. 

Figure 6.5: A suboptimal equaliser for the channel H(z) = 1 - 2z- 1 + z-2 
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6.5 Non linear channel 

Nonlinear channels are the obvious cases to tackle with nonlinear equalisation techniques. 

Such channels are frequently encountered in data transmission over digital satellite links, 

especially when the signal amplifiers operate in their high-gain limits (Kechriotis et al. 1994). 

The channel used in the experiments (Kechriotis et al. 1994, Chen et al. 1990) follows the 

model shown in Chapter 3 (Figure 3.3) and is given by equations 6.3 and 6.4. 

Yn = 0.3482· Xn + 0.8704· Xn-l + 0.3482· Xn-2 

Yn = Yn + 0.2 . Y~ 

(6.3) 

(6.4) 

The channel output, Y , is further corrupted by the addition of white Gaussian noise. 

The procedure for training and testing for GP+SA and the RLS algorithm is as explained 

for the linear channel and the settings for this problem are the same as those given in Table 

6.3. 

The values of the bit-error-rate obtained are given in Table 6.6 and displayed graphically 

in Figure 6.7. From it we can conclude that GP equalisers outperform linear equalisers trained 

by the RLS algorithm, both on the average and the minimum values. 

An example of a solution obtained by the proposed method is given in Figure 6.6. This 

tree was obtained with a training signal whose SNR was 15 dB. Other solutions obtained for 

various SNR realisations had a similar structure, with an NL node at the top and a subtree 

with a + (or -) node at the root and Yl and XO nodes as branches. 

Table 6.6: Values of the bit-error rate obtained by equalisers for the nonlinear channel given by 
equations 6.3 and 6.4. 

average BER minimum BER 
SNR(dB) RLS GP+SA RLS GP+SA 

5 0.153082 0.131444 0.13183 0.12431 
7.5 0.111524 0.093784 0.09914 0.08232 
10 0.084465 0.064212 0.06722 0.04311 

12.5 0.055214 0.044546 0.04454 0.01466 
15 0.039135 0.026311 0.02155 0.00349 

17.5 0.028946 0.016541 0.01095 0.00025 
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Figure 6.6: An equalising filter for the channel H{z) = 0.3482 + 0.8704z- 1 + 0.3482z-2 with 
nonlinear gain d2 = 0.2. The node NL212 represents the function tanh{4.16x). 
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Figure 6.7: Average and minimum values of the BER for the channel H(z} = 0.3482 + 
0.8704z- 1 +0.3482z-2 with nonlinear gain d2 = 0.2. Results obtained by GP+SA 
and RLS equalisers over 30 runs (per point). 
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6.6 Comparison 

A comparison with the results obtained by (Kechriotis et al. 1994) and (Parisi et al. 1997) is 

attempted here. Such a task is not easy, due to the difficulty in obtaining reliable measures 

from published results. Furthermore, the methods employed by (Kechriotis et al. 1994) and 

(Parisi et al. 1997) are based on a different philosophy than that of the GP+SA method 

presented here. 

The minimum BER results achieved by the proposed method were consistently lower 

that the average values obtained by (Kechriotis et al. 1994) and minimum values of (Parisi 

et al. 1997) for the linear and partial response channels, and similar for the nonlinear one. 

However, the average results only outperformed those of (Kechriotis et al. 1994) for the 

high noise cases (SNR ~ 7.5 dB) of the linear channel. 

This is consistent with our expectation. Further adjustments in the method are needed 

to achieve optimal performance in these problems. 

6.7 Conclusions 

The node gain GP+SA method has proven successful in a number of difficult channel equali

sation problems. However, it must be pointed out that superior performance of the proposed 

method over other techniques such as the RLS algorithm is not necessarily observable on the 

average (except perhaps in the case of the nonlinear channel of section 6.5) but rather on the 

extremes i.e. maximum fitness or minimum error across runs. GP+SA runs can be deceptive, 

but they can also lead to interesting solutions that would not be found by other techniques. 

As a consequence and in order to guarantee success, a number of runs must be performed. 

This is not the case of the RLS algorithm, as shown by the small variance of the solution's 

fitness across runs. 

The improvement in the performance gained by the use of GP+SA sufficiently justifies its 

use in channel equalisation instead of a less computationally expensive technique such as the 

RLS algorithm, as long as the specific situation allows for a number of runs to be performed 

and for the user to select the best solution of all of them. 

As a summary of characteristics of the proposed method can be cited, first of all, that the 

structure of the adaptive filter is evolved, which allows for exploration of the configuration 

space. 

Second, the possibility of using various criteria (even simultaneously) for measuring the 

fitness, not necessarily based on the mean squared error as is the case with the RLS algorithm. 

These could involve other measures of the error (such as the maximum absolute error or H 00, 

the bit-error rate etc.) or other criteria such as the Fourier transform, correlation coefficients 

etc. This is important when non Gaussian signals are involved or when the mean squared 

error is not a meaningful source of information. 
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Third, the performance is relatively independent on the number of samples used in the 

training stage. GP+SA can produce good results even with small sample sizes, which is never 

the case of RLS and other algorithms. 

All these good features could not come without drawbacks. The first one is the com

putational expense of the proposed method. In a field such as communications, this is a 

major inconvenient. However, other applications of signal processing do not have such time 

constraints, so GP+SA could be successfully applied in those cases. In any case, it must 

be pointed out that other techniques that are widely employed nowadays were regarded as 

impractically time-consuming in their early days. 

And second, success is not guaranteed. Despite being a powerful technique there always 

exists the possibility of deception, however small. This can be minimised by selecting carefully 

the fitness function and the parameters of GP evolution (such as maximum tree size, sample 

size etc.). Furthermore, if , as has been said, it is possible to perform a number of runs, the 

risk of deception is minimal and the most convenient solution can be chosen. 

6.8 Summary 

This chapter has been devoted to the problem of channel equalisation. The shortcomings 

of existing techniques have been exposed and the main requirements to demand of a new 

method enumerated. 

A description of the problem has been followed by an account of particular cases of 

equalisation, exemplified by three channels, both linear and nonlinear. Results have been 

obtained both with the proposed method and a classical technique, the RLS algorithm, 

showing the great potential of the former, especially in the case of nonlinear channels. 

Disadvantages of the proposed method, such as the computational effort involved, have 

also been pointed out and it has been concluded that, upon the whole, the method deserves 

further investigation. 



Chapter 7 

Conclusions and further work 

7.1 Conclusions 

This thesis has been devoted to attaining the following objectives: 

• presenting a new methodology for representing Discrete Dynamic Systems (DDS) as 

expression trees 

• introducing a new way to represent numerical parameters in expression trees, in the 

form of node gains 

• implementing a Simulated Annealing algorithm that performs local learning by adapting 

the values of the node gains 

In chapter 2 it was shown how the equations describing discrete time systems can be 

represented as symbolic expression trees, or S-trees. Various kinds of node types and their 

associated data structures were described to complete the representation system. 

The power of this system was illustrated by an example, the coding of a Recurrent Neural 

Network as a list of S-trees. This covered a first main requirement: capturing the dynamics 

of discrete-time systems. 

Chapter 3 showed how GP can be applied to channel equalisation using the node types 

defined in chapter 2. GP serves to overcome problems of classical equalisation techniques by 

allowing the structure of the solution to evolve rather than being preselected by the user. In 

this way, nonlinear and recursive structures can be obtained. 

Stability monitoring is intrinsic to the evolution process: unstable candidate solutions 

will yield a high value of the error and therefore a low fitness and will eventually be culled 

from the population. 

However, in the examples presented in this chapter the evolved solutions tended to be 

complex or did not yield a good performance. This points out to the convenience of achieving 
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a decrease in complexity in some cases (in order to increase readability and facilitate possible 

implementation) and an improvement in the performance in others. 

Chapters 4 and 5 covered a second main requirement: the representation and adaptation 

of the parameters of the systems. 

Experimental analysis done in chapter 4 showed that there is a significant degradation 

in the performance of standard GP when applied to problems involving rational parameters, 

rather than integers. This justified the investigation of new approaches to handling numerical 

parameters. 

Even though the introduction of node gains did not necessarily bring an advantage over 

standard GP, the results showed the potential benefits that can be attained, exemplified by 

a higher maximum fitness and a smaller minimum size. These benefits are difficult to attain 

if the values of the gains are random, hence the need for adaptation to take full advantage 

of node gains. 

Such an algorithm was introduced in chapter 5. Here an analogy was drawn between an 

adaptation algorithm for the node gains and the learning process in nature. In this way one 

is able to envisage how individual adaptation affects the whole system. 

A step beyond the natural analogy was the introduction of Lamarckian inheritance, whose 

implementation in the node gain G P system was presented here. 

The learning algorithm was implemented by means of Simulated Annealing, chosen due 

to its similarities to natural learning. It also offers a number of possibilities in the selection of 

parameters and different schedules used, in contrast with the GP algorithm which is somewhat 

more rigid. 

Introducing SA in the node gain GP system provided a faster way of finding solutions to 

engineering problems and a more robust one in the case of variable environments. 

Two general decision rules as to when to apply a learning algorithm were given: 

• when the performance of a system is sensitive to parameter variations; for instance, 

when a wrong selection of parameters can make a system unstable 

• when environmental changes are expected; for instance in equalisation in mobile sys

tems, where the unknown channel is constantly varying. 

Two possible learning schemes for GP were addressed here, namely Darwinian and Lamar

ckian. It was shown that, in the examples presented, using node gains provided better results 

than those obtained by standard G P. Furthermore, the use of learning improved the perfor

mance in the two more complex problems addressed. 

A measure of the generalisation ability was introduced which showed that overfitting is 

not a problem in any of the learning schemes presented; on the contrary, both generalised 

better than the non learning methods. This might be due to the fact that the solutions 
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obtained with any of the learning schemes tended to be smaller than those obtained without 

learning. Further analysis is required to prove this point. 

Although statistical tests did not allow us to reach a conclusion as to which performed 

better, the Darwinian scheme looked intuitively more indicated for a variety of problems, as 

the more robust of the two. 

In chapter 6 node gain GP+ SA method was successfully applied to a number of difficult 

channel equalisation problems. However, it must be pointed out that superior performance 

of the proposed method over other techniques such as the RLS algorithm is not necessarily 

observable on the average but rather on the extremes i.e. maximum fitness or minimum error 

across runs. GP+SA runs can be deceptive, but they can also lead to interesting solutions 

that would not be found by other techniques. 

The improvement in the performance gained by the use of GP+SA sufficiently justifies its 

use in channel equalisation instead of a less computationally expensive technique such as the 

RLS algorithm, as long as the specific situation allows for a number of runs to be performed 

and for the user to select the best solution of all of them. 

As a summary of characteristics of the proposed method can be cited, first of all, that the 

structure of the adaptive filter is evolved, which allows for exploration of the configuration 

space. 

Second, the possibility of using various criteria (even simultaneously) for measuring the 

fitness, not necessarily based on the mean squared error as is the case with the RLS algorithm. 

These could involve other measures of the error (such as the maximum absolute error or H 00, 

the bit-error rate etc.) or other criteria such as the Fourier transform, correlation coefficients 

etc. This is important when non Gaussian signals are involved or when the mean squared 

error is not a meaningful source of information. 

Third, the performance is relatively independent on the number of samples used in the 

training stage. GP+SA can produce good results even with small sample sizes, which is never 

the case of RLS and other algorithms. 

All these good features also involve drawbacks. The first one is the computational expense, 

which, in a field such as communications, is a major inconvenient. However, other applications 

of signal processing do not have such time constraints, so GP+SA could be successfully 

applied in those cases. It must also be pointed out that other techniques that are widely 

employed nowadays, were regarded as impractically time-consuming in their early days. 

The second drawback is that success is not guaranteed. Despite being a powerful technique 

there always exists the possibility of deception, however small. This can be minimised by 

selecting carefully the fitness function and the parameters of GP evolution (such as maximum 

tree size, sample size etc.). Furthermore, if, as has been said, it is possible to perform a number 

of runs, the risk of deception is minimal and the most convenient solution can be chosen. 
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7.2 Further work 

This work has left open a number of interesting threads for future research. Some of them 

are summarised below. 

On the theoretical front, further work remains to be done on the adaptation (or learning) 

process. On the one hand, it would be interesting to determine the differences between Dar

winian and Lamarckian evolution. This might help to give an insight as to why Lamarckian 

evolution is not observed in nature. 

Also, a number of changes could be easily introduced in the implementation to make the 

adaptation process more similar to learning in Nature. 

As per the implementation, another interesting point would be to introduce an umber 

of mutation operators, as done by (Chelapilla 1997), and hence produce a hybrid Genetic

Evolutionary Programming engine. This would help understand the relative importance of 

crossover and mutation operators in a tree-based evolutionary system. 

On the applications front, the proposed method has still to be tried on a number of 

Digital Signal Processing problems, only a few of which have been attempted by this author 

(Esparcia-Alcazar 1997, Esparcia-Alcazar and Sharman 1996). These would include noise 

cancellation, interference removal, blind equalisation and others. 

Also, applications in other areas, such as Control, could benefit by the introduction of 

the proposed method. 



Appendix A 

Implementation of the SA 

algorithm 

In section 1.5 the main characteristics of a Simulated Annealing algorithm were listed as 

follows: 

• a perturbation-generating probability distribution. 

• an acceptance/rejection probability distribution. 

• a cooling schedule. 

These are described here in more detail. First, the main SA algorithm is outlined is section 

A.1. Section A.2 proceeds giving an account of the two most commonly employed probability 

distributions for the generation of the perturbations, the normal and the Cauchy-Iorentzian, 

and those used for acceptance/rejection (Boltzmann and Fermi-Dirac) In section A.3 three 

different cooling schedules are described and their dependence on the choice of perturbation

generating probability distribution. 

Finally, section A.4 introduces a new feature which is specific to the adaptation of gain 

vectors, the perturbation scheme. Two such schemes, labelled independent and elastic, are 

described here. 

A.I Main algorithm 

The SA algorithm for expression trees works as follows: 

1. Initialise parameters (To, maxTrials, trials, maxlterations, iterations, see below) 

2. Perturb §( i) to get §( i) 

3. Evaluate the fitness, f(i) using the perturbed gain vector §(i) 
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4. If (f{i) 2: f{i) then accept the perturbation: g{i + 1) = g{i) and continue 

else accept the perturbation with probability Po; and continue 

5. If trials> maxTrials then trials = 0 

else trials++ and go back to step 2 

6. Reduce the temperature T according to annealing schedule 

7. If iterations < maxlterations then iterations++ and go back to step 2. 

The algorithm is summarised in figure A.!. 
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Initialise 
paratreters 

Perturb gain vector 
Accept or reject 

according to criterion 

Adjust Temperature 
Reset trials 

YES 

NO 

NO 

Figure A.I: The Simulated Annealing algorithm 
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A.2 Perturbation-generating and acceptance/rejection prob

ability distributions 

With regard to the generation of the perturbation it is usual to distinguish between classical 

SA (CSA), which employs a normal distribution, and fast SA (FSA), employing a Cauchy

lorentz ian distribution. The latter allows for big "jumps" in the perturbations, which might 

be more convenient for escaping local optima. 

The acceptance/rejection probability can be calculated using the Boltzmann distribution 

-t:.E 
expliT 

as in (Kirkpatrick et al. 1983), or the Fermi-Dirac distribution 

1 

exp#+l 

as in (Szu and Hartley 1987), where ~E is the increase in energy involved in the transition 

and k is Boltzmann's constant. For the purposes of this work ~E will be substituted with 

-~f , (Le. the decrease in fitness) and k will be taken equal to l. 

Because the fitness always lies in the interval [0,1] then -~f E [-1, 1], but only the sub 

interval [0, 1] is considered, due to the fact that the probability is only invoked when the 

transition involves a decrease in fitness (Le. ~f < 0). 

In the region -~f » T (e.g. when -~f is close to 1 and T is close to 0) the Fermi

Dirac distribution becomes identical with the Boltzmann one (Dekker, 1958, pp. 213-215). 

Elsewhere the former lies below the latter, which means the Fermi-Dirac distribution provides 

a more conservative annealing schedule than the Boltzmann distribution. 
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Figure A.2: Acceptance probabilities using the Boltzmann and Fermi-Dirac distributions at three 
different temperatures: 3, 0.03 and 0.015. These temperatures correspond to itera
tions 0, 100 and 200 for a cooling schedule inversely linear in time (T = ~) with 
starting temperature To = 3. 
The Fermi-Dirac graph is always below the Boltzmann one, which means decreases 
in fitness are less likely to be accepted, thus resulting in a more greedy algorithm. 
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A.3 Cooling schedules 

The choice of distribution places a lower bound on the cooling schedule: the temperature 

T should change no faster than In(~~l) for CSA and n~l for FSA, where To is the starting 

temperature and n the number of iterations. The first schedule is called inverse logarithmic 

in time and the second inverse linear in time. It is obvious that the latter provides a faster 

reduction in temperature, hence the name fast SA. However, a faster decrease in temperature 

also means that more effort should be spent to restore equilibrium. This is measured by the 

number of accepted trials per temperature step or, more simply, by the total number of trials 

per temperature step. 

Another popular cooling schedule consists of setting the number of trials to 1 and updating 

the temperature as 

n = 1,2 ... (A.l) 

where a (the decay) is typically between 0.9 and 0.99 (van Laarhoven 1988). This will be 

referred to as an exponential cooling schedule. 

The termination criterion for the algorithm can be expressed in terms of a given number 

of iterations or a maximum number of invariant trials. In this work both criteria will be used. 

Thus, three basic parameters must be set: the starting temperature, To, the maximum 

number of trials per temperature, maxTrials, and the maximum number of iterations (or 

temperature steps), maxIterations. If the exponential cooling schedule is used, a further 

parameter to set is the decay, a. 

A.4 Perturbation schemes 

Two schemes for generating perturbations are devised, which will be referred to as "indepen

dent" and "elastic". 

Independent perturbations: The components of the gain vector are random variables 

whose distribution is dependent only on the temperature. The amount of perturbation 

received by the gain of a particular node is therefore independent of the perturbations 

received by the gains of other nodes inside the same tree. 

The algorithm for generating independent perturbations is as simple as: 

1. Generate random values for Pi (e.g. from N(O, aT), a E ~) 

2. The new gain vector is g = g + P 

Elastic perturbations: For these, the vectorial nature of the gains in a given tree is taken 

into account. The global perturbation affecting a tree is a vector whose modulus is 

a constant that depends only on the temperature. The individual components of the 
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vector (i.e. the way the perturbation is distributed among the different nodes) are 

random and their distribution is independent of the temperature. This vector is then 

added to the node gain vector, g. 
The algorithm is as follows: 

1. Calculate the amount of perturbation, p = f (T) 

2. Generate random values for qi (e.g. from N(O, 1) ) 

3. Calculate q2 = L:i q; 

4. Find f3 such that f3 = E 
q 

5. Scale f3 by the length of the vector 

6. Calculate the individual components of the vector: Pi = f3 . qi 

7. The new gain vector is § = § + P 

Therefore if a specific node gain is affected by a big perturbation ("stretching") then 

elsew here in the tree other nodes are affected by small ones ("shrinking"), hence the 

denomination "elastic". 

Although no statistical analysis has been carried out so far to compare both perturbation 

schemes, the elastic one seems to provide a more successful annealing. 



Appendix B 

Statistical analysis for Chapter 4 

B.l Two sample t-test 

Assumptions 

The data consists of two random samples of sizes m and n. Usually, the two samples are 

supposed to come from normal distributions, but because the size of both samples is 30 the 

Central Limit Theorem can be applied (Devore, 1995, p. 234). 

Assuming both samples have different variances, a variant of the t-test called the Smith

Satterthwaite test of approximate level a can be employed. 

Hypotheses 

Ho: The difference between the two populations,l means is ~o, Jll - Jl2 = ~o 

Ha: 1. Jll - Jl2 > ~o 

2. Jl1 - Jl2 < ~o 

3. jL1 - jL2 i ~o 

Test statistic 

The test statistic value is calculated as 

tf = x - y - ~o 
2 2 
~+~ m n 

where Jl1 and Jl2 are the sample means and 81 and 82 are the sample standard deviations 

1 Here, methods 
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for populations 1 and 2, respectively. The degrees of freedom are given by 

Decision rule 

Reject Ho and accept the alternative hypothesis Ha when 

2. t ~ -ta,1I 

3. either t ~ tf!. II or t < -tf!. II 
2' - 2' 

where ta is the Q quantile of the t distribution with IJ degrees of freedom. 

B.2 t-tests for fitness 

Two sets of 30 runs each are realised. First, the t-test is performed for the fitness values. 

The results of the test for the first set of runs are given in table B.l. 

Table B.1: t-Test for fitness: Two-Sample Assuming Unequal Variances 

node gain GP standard GP 

Mean 0.5728 0.8978 

Variance 0.2210 0.0594 

Observations 30 30 

Hypothesised Mean Difference 0 

Degrees of freedom 44 

t Statistic -3.3616 

P(T ~ t) one-tail 0.0008 

t Critical one-tail 1.6802 

P(T ~ t) two-tail 0.0016 

t Critical two-tail 2.0154 

Since the statistic t < -tcritica/ for one and two tails, the conclusion of the test is to 

accept Ha, i.e. the mean of the fitnesses for node gain GP is lower than for standard GP. 

E(ngGP) < E(stdGP) (B.1) 
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Table B.2: t-Test for fitness: Two-Sample Assuming Unequal Variances 

node gain GP standard GP 

Mean 0.6222 0.8129 

Variance 0.1774 0.1068 

Observations 30 30 

Hypothesised Mean Difference 0 

Degrees of freedom 55 

t Statistic -1.9594 

P{T ~ t) one-tail 0.0276 

t Critical one-tail 1.6730 

P{T ~ t) two-tail 0.0551 

t Critical two-tail 2.0040 

For the second set of runs, the test is shown in table B.2. Here t < -tcritical for one tail 

and > for two tails, so the test is inconclusive. 
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B.3 t-tests for length 

The same procedure is followed here for the solution lengths. In this case and for both sets of 

runs t > tcritica/ for one and two tails, so the conclusion is to accept Ha, i.e. the average length 

of the solutions obtained by node gain GP was greater than those obtained by standard GP. 

Table B.3: t-Test for length: Two-Sample Assuming Unequal Variances 

node gain GP standard GP 

Mean 93.9 37.7333 

Variance 4953.9552 879.5126 

Observations 30 30 

Hypothesised Mean Difference 0 

df 39 

t Statistic 4.0279 

P{T:S t) one-tail 0.0001 

t Critical one-tail 1.6849 

P{T :S t) two-tail 0.0003 

t Critical two-tail 2.0227 
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Table 8.4: t-Test for length: Two-Sample Assuming Unequal Variances 

node gain GP standard GP 

Mean 81.7667 42.4667 

Variance 8199.6333 1391.7057 

Observations 30 30 

Hypothesised Mean Difference 0 

Degrees of freedom 39 

t Statistic 2.1979 

P{T ~ t) one-tail 0.0170 

t Critical one-tail 1.6849 

P{T ~ t) two-tail 0.0340 

t Critical two-tail 2.0227 



Appendix C 

Statistical analysis for Chapter 5 

C.l The Kruskal-Wallis test 

The data consist of k random samples of possibly different sizes (Conover 1980, pp. 229-231). 

Denote the ith random sample of size ni by Xii' Xi2' ... , X in .. , 
Let N denote the total number of observations, 

(C.1) 

Assign rank 1 to the smallest of the totality of N observations, rank 2 to the second 

smallest and so on, to the largest of all N observations, which receives rank N. Let R( X ij ) 

represent the rank assigned to X ij . Let ~ be the sum of the ranks assigned to the ith sample. 

k 

~ = LR(Xij) (C.2) 
j=1 

Compute Ri for each sample. 

Assumptions 

1. All samples are random samples from their respective populations. 

2. In addition to independence within each sample, there is mutual independence among 

the various samples. 

3. Either the k population distribution functions are identical, or else some of the popu

lations1 tend to yield larger values than other populations do. 

I Here, methods 
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Hypotheses 

Ho: All of the k population distributions are identical. 

versus 

Ha: At least one of the populations tends to yield larger observations than at least one of 

the other populations. 

The alternative hypothesis can be also stated as follows: 

Ha: The k populations do not all have identical means. 

Test statistic 

This is defined as 

T=~( k Rl_N(N+l)2) 
S2 Ln. 4 

i=l t 

(C.3) 

where 

(C.4) 

Decision rule 

The approximate quantiles may be obtained from the chi-square (X2 ) distribution with k - 1 

degrees of freedom. Reject Ho at the level a if T exceeds the 1 - a quantile thus obtained. 

Multiple comparisons 

If and only if the null hypothesis is rejected, the following procedure may be used to determine 

which pairs of populations tend to differ. It can be said that populations i and j seem to be 

different if the following inequality is satisfied 

(C.5) 

where ~ and Rj are the rank sums of the two samples, tl-~ is the 1 - ~ quantile of the 

t distribution with N - k degrees of freedom. This procedure is repeated for all pairs of 

populations. The same a level is used here as in the Kruskal-Wallis test. 

C.l.I Kruskal-Wallis test for LCI 

The critical region of approximate size a = 0.01 corresponds to values of T greater than the 

0.99 quantile of the chi-square random variable with k - 1 = 3 degrees of freedom, which can 
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be obtained from tables and is equal to 11.34. 

The number of runs per method, n, is 50, which yields a total number of observations, N, of 

N = 200 

The value of S2 is 

S2 = 3349.997 

This yields a T of 

T = 43.37 

which clearly leads to a rejection of Ho. Now the multiple comparison procedure can be used. 

The value of the tl-!! quantile can be obtained from a t-distribution table. The degrees 
2 

of freedom can be calculated as 

N - k = 200 - 4 = 196 

The table does not provide this value, so the quantile will be approximated using an 

infinite number of degrees of freedom, which yields the following value for tl-!! 
2 

to.995 = 2.576 

Because all the ni's are the same, equal to n, the right hand side of inequality C.5 remains 

the same for all comparisons, its value being 26.57. The values of the left hand side of C.5 

for each method and the results of the comparison are given in table C.l. 

Table C.1: Multiple comparison for LCI. Critical value: 26.57 

Methods I Statistic I Result I Conclusion I 
Darwinian Lamarckian 0.68 < same 
Darwinian RGNL 16.71 < same 
Darwinian NGNL 54.79 > different 

Lamarckian RGNL 17.39 < same 
Lamarckian NGNL 54.11 > different 

RGNL NGNL 71.5 > different 

C.1.2 Kruskal-Wallis test for NLC 

The value of n is 24 which results in an N of 96.The value of T is 

T = 17.15 
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For the same level of confidence, Q = 0.01, the quantile is the same as before, 11.34, which 

results in the rejection of Ho· 

The number of degrees of freedom for the comparison can be calculated as 

N - k = 96 - 4 = 92 

The table provides values for 60 and 120 degrees of freedom, which are 

to.995,60 = 1.671 

to.995,120 = 1.658 

Of these, we will take 1.671 as the more restrictive. The values of the statistic for each 

method and the results of the comparison are given in table C.2. 

Table C.2: Multiple comparison for NLC. Critical value: 1.671 

Methods I Statistic I Result I Conclusion I 
Darwinian Lamarckian 9.89 < same 
Darwinian RGNL 23.23 < different 
Darwinian NGNL 30.45 > different 

Lamarckian RGNL 13.33 < different 
Lamarckian NGNL 20.56 > different 

RGNL NGNL 7.23 > different 

C.1.3 Kruskal-Wallis test for LCI --+ LC2 

The value of n in this case is 51 which yields an N of 204. The computed value of T is 

T = 55.544 

and the quantile for Q = 0.01 is the same as in the previous section, 11.34. This results again 

in the rejection of Ho. 

To obtain the value of the tl-Q: quantile, the degrees of freedom can be calculated as 
2 

N - k = 204 - 4 = 200 

As before, the quantile will be approximated for the t distribution with an infinite number 

of degrees of freedom, which yields the same value for tl-Q:, 
2 

to.995 = 2.576 

The right hand side of inequality C.5 is equal to 25.85. The values of the left hand side 

for each method, together with the results of the comparison, are given in table C.3. 
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Table C3: Multiple comparison for LCl--tLC2. Critical value: 25.85 

Methods I Statistic I Result I Conclusion I 
Darwinian Lamarckian 0.67 < same 
Darwinian RGNL 29.78 > different 
Darwinian NGNL 74.92 > different 

Lamarckian RGNL 30.45 > different 
Lamarckian NGNL 75.59 > different 

RGNL NGNL 45.14 > different 



Appendix D 

Recursive Least Squares algorithm 

for adapting Finite Impulse 

Response filters 

Figure 0.1: An n-tap FIR digital filter. The filter coefficients are represented by bi and z-l 

represents a unit time delay. 

The estimate of the transmitted symbol at time t is given by (Kechriotis et al., 1994) 

N-l 
, '""', T, 
Xt = L..J CkYt-k = C Ye,t (D.l) 

k=O 

where: 

(D.2) 

and 

Ye,t = [Yt Yt-l ... Yt-N+1] (D.3) 

During the adaptation period, at every time instant t, the filter's error 

(D.4) 
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is calculated along with the Kalman gain vector kt and the inverse of the correlation matrix 

Ph via the recursive equations: 

kt = 
Pt-1y; t , (Do5) AT P, A* 

W + Ye,t t-lYe,t 

~ [pt- 1 - ktY;'tPt-I] (Do6) 

where 0 < W < 1 is the forgetting factor, "*,, denotes here the complex conjugate and "T" 

denotes the transpose of a vector 0 

Finally the filter's coefficients are updated via: 

(Do7) 
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Sample initialisation file 

[Environment Manager Parameters] 

Action(evolution/execution): evolution 

PopulationSize: 500 

TournamentSize: 7 

CreateRandomPopulation(yes/no): yes 

ReadPopulationFromFile: ini.pop 

CreationType(variable/grov/rampedhalf/rampedvar/rampedgrov/unilength): VARIABLE 

MaxDepthForCreation: 4 

MaxLengthForCreation: 30 

MinLengthForCreation: 3 

LimitDepthAtCrossover: no 

MaxDepthForCrossover: 9 

LimitLengthAtCrossover: yes 

MaxLengthForCrossover: 30 

ADFs: 0 

NodeMutationProbability: 1 

GainMutationProbability: 1 

UseOperations: + - * 7. +1 -1 *2 /2 X Y 1 

GainNodes: X Y 1 

MaximumlnputDelays: 3 

MaximumOutputDelays: 2 

MaximumStackNodes: 5 

MaximumConstants: 7 

MaximumConstantValue: 2 
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MaximumGainValue: 2 

HigherBetaValue: 10 

LowerBetaValue: 0.1 

MaximiseSpeed: yes 

RunSilent: yes 

TerminationCriterion(fitness/time/births/nodeEvals/ber/any): births 

StopWhenFitness: 0.9 

TimeLimit: 30 

BirthLimit: 100000 

MaxNodeEvaluations: 50000000000 

Reportinglnterval(births): 500 

FitnessType(MSE/CMA/BER/MABS): MSE 

CalculateBitErrorRate: no 

StopWhenBitErrorRate: 0 

VarianceAnalysisOfOutput(YES/NO): no 

KurtosisAnalysisOfOutput(YES/NO): no 

TransientDiesAfterSample: 5 

DataSource(generate/read): generate 

GenerateDataForChannel: f:/anna/signal-l/channe-l/galesia.chn 

SignalLengthForGeneration: 15 

SNRForGeneration(dB): 30 

NoiseType(white/coloured/none): WHITE 

NoiseColouringFilter: f:/anna/expts/more/noisecolour.chn 

DelayReferenceBy(samples): 1 

ReadInputToGPfrom: c:/gp97/coloured/dirtyl0.txt 

ReadDesiredOutputFrom: c:/gp97/coloured/origl0.txt 

SaveActualOutputln: gpout.txt 

SaveConstantTableln: constab.txt 

ChangeDataDuringRun: no 

ChangeDataAfter(births): 200000 

ChangeDataAfter(NodeEvals): 100000000 

GenerateDataForSecondChannel: basic2.chn 

ReadNewInputToGPfrom: dirtyle3.txt 

ReadNewDesiredOutputFrom: origle3.txt 
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SaveInitialPopulationIn: c:/temp/ini.pop 

SaveFinalPopulationIn: c:/temp/fin.pop 

SaveBestIndividualIn: c:/temp/best.txt 

SaveEvolutionDataIn: c:/temp/evol.txt 

SaveBirthsData: yes 

BirthsLogFile: c:/temp/births.txt 

MaxCrossoverTrials: 1 

NodeGainsAreRandom: yes 

DefaultGainValue: 1 

InheritNodeGains: no 

ConstantTableIsRandom: no 

CO= 0.1 Cl= 0.5 C2= 2 C3= 10 C4= -1 C5= 3 C6= 0.7 

LearningMethod(anneal/hillclimb/none): none 

UseGrantScheme: no 

LearningProbability: 1 

InitialLearningProbability: 1 

PerturbationType(GAUSS/CAUCHY): CAUCHY 

PerturbationScheme(ELASTIC/INDEPENDENT): ELASTIC 

StartingTemperature: 3 

TemperatureDecay: 0.99 

PerturbationScalingFactor: 0.2 

LearningIterations: 100 

TrialsPerTemperature: 5 

MaxInvariantFitnessTrials: 20 

AnimateLearning: no 
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