
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

Kelly, Tom (2014) Unwritten procedural modeling with the straight
skeleton. PhD thesis.

http://theses.gla.ac.uk/4975/

Copyright © and moral rights for this thesis are retained by Tom Kelly

All contents not marked © other parties is released under the Creative
Commons CC-BY 3.0 license

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4975/

Unwritten Procedural Modeling
with the Straight Skeleton

This thesis has been composed by the student —

Tom Kelly

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Computing Science

College of Science and Engineering

May 2013

c© Tom Kelly. All contents not marked c© other parties is released under

the Creative Commons - BY 3.0 license

Available online http://goo.gl/whgo6j

Abstract

Creating virtual models of urban environments is essential to a disparate range of ap-

plications, from geographic information systems to video games. However, the large

scale of these environments ensures that manual modeling is an expensive option.

Procedural modeling is a automatic alternative that is able to create large cityscapes

rapidly, by specifying algorithms that generate streets and buildings. Existing proce-

dural modeling systems rely heavily on programming or scripting — skills which many

potential users do not possess. We therefore introduce novel user interface and geo-

metric approaches, particularly generalisations of the straight skeleton, to allow urban

procedural modeling without programming.

We develop the theory behind the types of degeneracy in the straight skeleton, and

introduce a new geometric building block, the mixed weighted straight skeleton. In

addition we introduce a simplification of the skeleton event, the generalised intersection

event. We demonstrate that these skeletons can be applied to two urban procedural

modeling systems that do not require the user to write programs.

The first application of the skeleton is to the subdivision of city blocks into parcels.

We demonstrate how the skeleton can be used to create highly realistic city block

subdivisions. The results are shown to be realistic for several measures when compared

against the ground truth over several large data sets.

The second application of the skeleton is the generation of building’s mass models.

Inspired by architect’s use of plan and elevation drawings, we introduce a system that

takes a floor plan and set of elevations and extrudes a solid architectural model. We

evaluate the interactive and procedural elements of the user interface separately, finding

that the system is able to procedurally generate large urban landscapes robustly, as

well as model a wide variety of detailed structures.

Ron Poet, Peter Wonka, Paul Cockshott & Pascal Müller:

for letting me build some crazy things.

The Crow Road:

for keeping me sane while building them.

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Hypothesis . 4

1.3 Contributions . 4

1.4 Overview . 4

2 Readings: A Spectrum of Proceduralisation 8

2.1 General Purpose Programming Languages 9

2.2 Formal String Grammars . 10

2.3 Graph Grammars . 11

2.4 L-Systems . 15

2.5 Shape Grammars . 21

2.6 Split Shape Grammars . 27

2.7 Data Flow Programming . 32

2.8 Simulation Approaches . 40

2.9 Inverse Procedural Modeling . 44

2.10 Combinatory Modeling . 46

2.11 Shape Deformation . 49

2.12 Geometry Construction . 52

2.13 Digital Libraries . 56

2.14 Summary . 57

2.15 Approach . 58

3 Various Skeletons 61

3.1 Ways of Shrinking Polygons . 62

3.2 The Straight Skeleton . 63

3.2.1 Constructing the Straight Skeleton 65

3.2.2 Computational Complexity of the Straight Skeleton 74

3.2.3 Straight Skeleton Degenerate Events 75

3.2.4 The Generalised Intersection Event 78

3.3 The Positively Weighted Straight Skeleton 84

3.3.1 Introduction . 84

3.3.2 The PCE event revisited . 87

3.4 The Negatively Weighted Straight Skeleton 90

3.5 The Mixed Weighted Straight Skeleton 91

3.5.1 Point degeneracies . 93

3.5.2 Removing Parallel Adjacent Edges 96

3.5.3 The Pincushion Problem . 100

3.6 Summary . 106

4 Procedural Generation of Parcels 108

4.1 Introduction . 109

4.2 Existing Parcel Subdivision Techniques 111

4.2.1 Evaluating Parcel Subdivisions 113

4.3 Block Subdivision . 114

4.3.1 Inputs, Outputs and Goals . 114

4.3.2 Skeleton-based Subdivision . 116

4.4 Results . 125

4.5 Summary . 140

5 Procedural Extrusions 142

5.1 Introduction . 142

5.2 Related work . 146

5.3 User Interface Description . 152

5.3.1 Overview . 152

5.3.2 Plans and Profiles . 153

5.3.3 Anchors . 156

5.3.4 Plan Edits . 156

5.3.5 Positioning Decorative Details 158

5.4 Splitting the active plan . 160

5.5 Computing Procedural Extrusions . 161

5.5.1 Definitions . 161

5.5.2 Overview . 162

5.5.3 Description of Events . 164

5.5.4 Generalised Intersection Event 165

5.5.5 Edge Direction Events . 169

5.5.6 Profile Offset Events . 170

5.5.7 Anchor events . 173

5.5.8 Plan Edit Events . 176

5.5.9 Mesh Anchors . 178

5.5.10 Subdivision Events . 179

5.6 Evaluation . 182

5.6.1 GIS Evaluation . 186

5.6.2 Interactive Evaluation . 189

5.6.3 Artistic Evaluation . 198

5.6.4 Notable external applications 201

5.7 Comments . 203

5.8 Summary . 205

6 Conclusion 207

6.1 Summary of Objectives . 207

6.2 Contributions . 209

6.3 Future Work . 212

A Appendix - input for interactive UI evaluation 214

B Appendix - artists’ comments on the procedural extrusions system 216

B.0.1 User 1 . 216

B.0.2 User 2 . 217

Bibliography 220

List of Figures

1.1 Hour glasses at the London Science Museum. 1

1.2 Shrinking a polygon to form the straight skeleton 5

1.3 CityEngine results . 6

1.4 Large scale GIS results . 6

2.1 A Java program . 9

2.2 A formal string grammar . 10

2.3 A formal grammar derivation . 10

2.4 The Chomsky Hierarchy . 11

2.5 A simple graph grammar . 13

2.6 An algebraic production rule . 13

2.7 An algebraic production rule . 14

2.8 A simple L-system . 16

2.9 Evaluation terms in a context sensitive L-system 16

2.10 Turtles in L-systems . 17

2.11 A L-system description . 17

2.12 Evaluation of a L-system’s string grammar 18

2.13 The output of several L-systems . 18

2.14 An example of a complex L-system . 19

2.15 A simple façade shape grammar . 23

2.16 Evaluations of a shape grammar . 23

2.17 The use of shape grammars to position trees on an circle 24

2.18 A parametric shape grammar production rule 24

2.19 Dead ends in the Palladian grammar 26

2.20 CGA Shape’s scope . 29

2.21 The evaluation of a split shape grammar 30

2.22 An instance locator . 31

2.23 The over-compartmentalisation problem in shape grammars 32

2.24 A data flow graph . 33

2.25 A token based data flow graph . 34

2.26 The Labview graphical data flow language 35

2.27 The Scratch visual programming language 36

2.28 The OpenDX visual programming language 37

2.29 Editing the parametrisations of the model in Fig. 2.30 38

2.30 A Grasshopper data flow graph . 39

2.31 Data matching in Grasshopper . 40

2.32 Conway’s game of Life . 41

2.33 A Wolfram class VI automata . 41

2.34 An urban modeling pipeline . 43

2.35 Simulating the growth of a city . 44

2.36 Texture Synthesis . 47

2.37 Issues with combinatory Modeling . 49

2.38 Image warping . 50

2.39 Mesh modeling techniques . 55

2.40 A model from a library . 56

3.1 Different ways to shrink a polygon. 63

3.2 Purple cubic crystals of fluorite . 64

3.3 2D crystal growth. 64

3.4 Shrinking a polygon to form the straight skeleton 65

3.5 The straight skeleton of various polygons 66

3.6 Straight skeleton terminology . 66

3.7 A moving plan edge . 68

3.8 A badly formed plan . 68

3.9 Constructing the straight skeleton . 69

3.10 Split and edge events . 69

3.11 Not all direction plane intersection are active plane events 70

3.12 The implicit active plan . 71

3.13 Reconstructing skeleton faces . 71

3.14 Pseudo-code for the SS algorithm . 72

3.15 A complex straight skeleton . 73

3.16 Aicholzer’s triangulation algorithm . 74

3.17 Eppstein’s Motorcycle Graphs . 75

3.18 Various degenerate situations . 76

3.19 An example of the loop of two situation 77

3.20 An issue with parallel consecutive edges 78

3.21 Perturbing event sequences may lead to wildly different results 78

3.22 Adjacent edges in an event form chains 79

3.23 Chains approaching an event . 80

3.24 Intra chain pointer manipulation . 81

3.25 Inter chain pointer manipulation . 81

3.26 Algorithm for the generalised intersection event. 82

3.27 Results of the GIE . 83

3.28 Positively weighted straight skeleton terminology 85

3.29 A PWSS may contain holes . 85

3.30 PWSS faces may not be monotone . 86

3.31 A plan that leads to a PCE, a. The algorithm must choose between the

red (middle figure) or yellow (right figure) faces to dominate. 87

3.32 Global coordination requirement in PCEs 88

3.33 A PWSS PCE . 89

3.34 A PWSS PCE . 91

3.35 Degenerate events in the PWSS and MWSS 92

3.36 Unbounded MWSS . 92

3.37 The GIE doesn’t work on the PWSS 93

3.38 A point degeneracy . 94

3.39 Enclosing chains . 94

3.40 Several solutions to the MWSS . 95

3.41 Manual examples of good MWSS solutions 96

3.42 Ordering chains around the event . 97

3.43 Global coordination of a solution with parallel edges 98

3.44 Removing zero area chains . 99

3.45 A MWSS event that cannot be fairly solved 99

3.46 The sector property . 100

3.47 Edges become rays in the pincushion problem 101

3.48 The Pincushion diagram . 102

3.49 PWSS events may not have unique solutions 103

3.50 A brute force approach to the pincusion problem 104

3.51 Brute force application . 105

3.52 The 5 Star Pincushion . 106

4.1 Two parcel types . 110

4.2 Previous parcel generation approaches 112

4.3 A perimeter block’s depth . 117

4.4 A perimeter block’s depth . 118

4.5 Strips sharing a block’s corner . 120

4.6 A problem with tolerances . 122

4.7 A problem with naive strip splitting . 123

4.8 Assignment in a perimeter subdivision 123

4.9 Skeleton parcel subdivision pseudocode. 124

4.10 A problem with naive strip splitting . 126

4.11 Data sources used for evaluation . 126

4.12 Pasadena data set . 129

4.13 Pasadena results . 130

4.14 Naper data set . 131

4.15 Naper results . 132

4.16 Wynnefield data set . 133

4.17 Wynnefield results . 134

4.18 Germantown data set . 135

4.19 Germantown results . 136

4.20 Details of subdivision deficiencies . 137

4.21 Non-local parcel features. 138

4.22 Details from the skeleton subdivision 139

5.1 A house created using procedural extrusions. 144

5.2 Plans and profiles of two architectural models 145

5.3 Horizontal edges are common in architectural form 147

5.4 Examples of buildings modeled in Sketchup 148

5.5 Mesh editing may not preserve face planarity. 148

5.6 Failure cases with extrude tool . 149

5.7 CSG failure cases . 150

5.8 Modeling building roofs with the medial axis. 151

5.9 Example PE plans and profiles. 152

5.10 The PE GUI. 153

5.11 A non-monotonic profile . 155

5.12 An example of anchors . 157

5.13 Adding a chimney using plan edits. 157

5.14 Sharing anchors . 159

5.15 The subdivision event UI . 161

5.16 PE pseudocode . 163

5.17 PE algorithm pointers . 164

5.18 Architectural footprints often lead to degenerate events 166

5.19 Epsilon error parameters . 167

5.20 PE ambiguities . 168

5.21 Near horizontal edge direction events 170

5.22 Profile Offset events . 171

5.23 Calculating offset events . 172

5.24 Anchors defining positions . 175

5.25 Anchors and plan edits . 176

5.26 Plan edits update the corner data structure 177

5.27 The advantages of natural steps . 177

5.28 Using the natural step for genus change 178

5.29 An interior step with a genus change 178

5.30 Adding decorative meshes using anchors 179

5.31 Subdivision events . 180

5.32 The subdivision event for creating relative and absolute partitions . . . 181

5.33 An example of subdivision events for roofs 182

5.34 A range of structures possible with the PE systems 183

5.35 An PE American condo . 184

5.36 PEs for architectural elements . 185

5.37 The PE for artistic rendering . 185

5.38 GIS evaluation input data . 187

5.39 The GIS UI for large scale profile assignment 187

5.40 Automatic profile assignment . 188

5.41 Large scale GIS results . 189

5.42 Failure modes in the automated case 189

5.43 Results of interactive evaluation (1) . 190

5.44 Results of interactive evaluation (2) . 191

5.45 Results of interactive evaluation (3) . 192

5.46 Further source material for interactive evaluation 193

5.47 Usability issues with PEs . 194

5.48 Discontinuities in the modeling space 196

5.49 Artist’s use of PEs . 199

5.50 Further artistic use of PEs . 200

5.51 Clockwork Empires video game. 202

5.52 Integration with Houdini. 203

5.53 Comparison of PEs with previous systems 204

5.54 The PE as an automated data-loss system 205

A.1 The source material for interactive evaluation 215

1

Chapter 1

Introduction

1.1 Motivation

Figure 1.1: Hour glasses at the London Science Museum.

We may ask ourselves how we would create a single model that could create all of

the hour glasses in Figure 1.1. This is the goal in procedural geometric modeling –

we have no definitive way to do this today, but in this document we hope to take

some steps towards a solution.

Whilst a standard 3D work flow might allow a user to create a single hour glass

of a specific dimension and design, a procedural modeling system might let a user

create an algorithm that produces a glass of any given dimension.

Procedural geometric modeling (PGM) is a field studying algorithms that compute

geometry. A procedural model consists of a sequence of parametrised operations that

are able to automatically construct a variety of geometric forms.

The additional level of abstraction offered by PGM has significant benefits over single-

instance modeling, but introduces a number of challenges. The advantages of PGM

1.1. Motivation 2

include:

• An arbitrary quantity of geometry can be created to describe a virtual environ-

ment in constant time; the time it takes to construct the procedural model.

• The removal of the existing restriction that the size of a virtual environment is

proportional to the time spent creating it.

• The quality of the environment is consistent at no additional cost.

• Procedural geometry tools could lead to runtime environment generation. A

virtual world can be generated as the user explores it, giving an experience with

more variety and less repetition to the user [97].

• Procedural methods offers the potential to generate content that reacts to various

stimuli. For example it could respond to current hardware availability, to users’

level of expertise, the length of their attention span, or the medium on which it

is presented.

One particular application that has become a testbed for the concepts of PGM is urban

modeling. In 2010, half of the people in the world lived in cities, and this fraction is

increasing. Cities form the backdrops to large portions of our lives; the way they

are designed, how they look, how we think about them, and how we get around them

directly affects us all. With the rise of computer graphics, creating cityscapes in virtual

worlds has become a common task in a wide range of disciplines such as architecture,

city planning, 3D cartography, video games and cinema.

However, creating virtual representations of cityscapes is expensive. At the crudest

level, paying an artist to attach a door-handle to every door in every building in a

town is costly. Alternately we may obtain 3D city geometry by reconstructing pho-

tographs, but obtaining the photos is difficult, and the results often have a lot of noise.

Furthermore, the cities that we wish to model may not yet exist, may have only existed

before the invention of photography, or be entirely fictional. PGM offers a solution to

these issues by promising to generate large quantities of characteristic geometry very

quickly. The real world applications of urban procedural modeling are growing, recent

examples include —

• Masdar is a new city, designed and built entirely on undeveloped land outside

Abu Dhabi. The initial project is intended to be completed in 2015 and will cover

106m2[266]. Given the large quantity of architecture that had to created, one of

the designers turned to PGM, in the form of CityEngine[66] to design the Swiss

Quarter of the city[67].

1.1. Motivation 3

• Video games can use procedural technology to create new locations as the player

explores. For example Dwarf Fortress [78] generates the terrain, structures and

inhabitants of a virtual world procedurally. In this situation the key advantage is

that a player may continually explore and discover unique structures, that neither

they, nor anyone else, have seen before.

• When the first Superman movie was filmed in 1978 computer graphics were in

their infancy. To give the appearance of Superman flying, Christopher Reeve was

composited on top of footage from New York City, as a stand in for the fictional

city of Metropolis. In contrast the 2013 release of Man of Steel portrayed the

same fictional city, this time generated using the PGM tools Houdini[219] and

CityEngine[103]. The advantages of PGM in this situation is that an entirely

unrecognisable yet realistic fictional city could be created. Additionally, because

the model was digital it could be realistically destroyed by a physical simulation

of the alien invaders.

Given the promise of PGM, it makes sense to question why it isn’t the standard tech-

nique for geometry creation. Designing procedural models is more complex; the de-

signer must not just design a single item of geometry, but a continuum. Current

state-of-the-art systems rely extensively on programming paradigms for users to con-

struct useful and powerful procedural models. In summary, the drawbacks of current

PGM include —

• Designers must undertake the more complex task of designing a class of geometry,

rather than a single instance.

• Traditional artists are not familiar with classical methods of describing algo-

rithms, such as programming languages.

• Traditional software engineers do not possess a classically trained sense of aes-

thetic.

• There are a large number of use cases of PGM, with each likely to require different

solutions.

In this thesis we are concerned with removing several of these drawbacks, specifically

the requirement that current PGM systems require considerable programming exper-

tise.

1.2. Hypothesis 4

1.2 Hypothesis

We propose that a geometric construct, the straight skeleton, and its generalisations,

are a powerful technique for the creation of PGM systems that are accessible to people

without programming skills. Systems exploiting these skeletons and variations thereof

are able to generate large scale, varied and highly realistic results within the domain

of urban procedural modeling.

1.3 Contributions

Our contributions to the corpus while examining the above hypothesis include:

• A simplification of existing straight skeleton events, the generalised intersection

event.

• A novel skeleton, the mixed weighted straight skeleton.

• A method and evaluation of a system for procedural modeling of city lot shapes

using the straight skeleton.

• A method and evaluation for the procedural modeling of architectural shells using

the MWSS.

The papers written in the course of this thesis were:

• Interactive Architectural Modeling with Procedural Extrusions [121]

• Procedural Generation of Parcels in Urban Modeling [252]

1.4 Overview

To lay the ground for this work Chapter 2 examines existing work, and describes the

properties of existing procedural systems. We continue to analyse the straight skeleton

in Chapter 3 and to apply the skeleton to the problem of urban procedural modeling

in Chapters 4 and 5.

The following chapter samples the wide range of tools available for the generation of

3D geometry. In particular we observe that an offset mechanism driven by the straight

skeleton is a powerful accompaniment to a written programming language. This insight

lead us to examine skeletons in greater detail.

1.4. Overview 5

Figure 1.2: Left: A shrinking polygon. Right: The arcs of the straight skeleton (blue)
are formed by tracing the edges of the shrinking polygon.

The straight skeleton is a geometric construct that subdivides a 2D shape, as introduced

in Fig. 1.2. In Chapter 3 we analyse this construct and develop the theory behind the

types of degeneracy encountered when computing the straight skeleton. By relaxing the

constraints on this structure we introduce a novel variation, the mixed weighted straight

skeleton. In addition we introduce a simplification of existing skeleton events, the

generalised intersection event. These skeletons have interesting non-trivial properties,

such as being able to split concave shapes into two, introducing holes into faces, and

leaving behind “arcs” which form part of the centrelines of a shape. It is these emergent

properties that we found we could exploit to create an expressive range of procedural

geometry.

The first application of these properties is to the problem of subdividing city blocks

to many parcels of land. We introduce the first complete algorithms and evaluation

of block subdivision within computer graphics. In addition, we demonstrate how sub-

division can take place without additional end user programming by presenting a pa-

rameterised algorithm that utilises the straight skeleton, as illustrated in Fig. 1.3. The

results of this system are presented at the end of Chapter 4, and evaluated favourably

again real-world subdivisions and existing block subdivision schemes.

The second application is the creation of solid architectural models. By using a novel

generalisation of the straight skeleton, Chapter 5 demonstrates how to create complex

architectural models, containing features such as buttresses, chimneys, bay windows,

columns, pilasters, and alcoves. We introduce two user interfaces, one for the interactive

specification of such geometry, and another for the procedural generation architectural

models from floorplans over wide areas, as shown in Fig. 1.4. The system is evaluated

both for its expressiveness, by modeling a wide range of existing architecture, and

robustness, by automatically generating a large cityscape.

We conclude in Chapter 6, arguing that procedural geometric modeling without written

programming languages is possible using the straight skeleton. Systems exploiting these

1.4. Overview 6

Figure 1.3: The results of our parcel subdivision algorithm within CityEngine. Left:
The parcel subdivision generated with both skeleton (bottom left of grey line) and OBB
(top right) techniques; the colouring denotes relative area. Right: the result of the urban
procedural modeling pipeline within CityEngine.

Figure 1.4: We present an interactive procedural modeling system that is able to
model difficult architectural surfaces, such as roof constructions. This figure shows
procedural extrusions applied to 6000 floorplans synthesised from a GIS database of
Atlanta. Procedural trees were added for decoration.

1.4. Overview 7

skeletons and variations thereof are able to generate large scale, varied, and highly

realistic results within the domain of urban procedural modeling.

8

Chapter 2

Readings: A Spectrum of

Proceduralisation

This chapter introduces some of the technical background of procedural modeling

within the field of graphics. Procedural modeling is a broad subject that borrows

from many established fields; we give an overview of the subject’s context within a

broad spectrum of proceduralisation.

This spectrum leads from general purpose languages to a specific instance of a model.

At one extreme we visit general models that are able to create a wide variety of geom-

etry, for example a programming language (not to be confused with a single program

in a language) is capable of creating any geometry we can describe. As we progress

we visit models that only work within a specified domain or produce models similar to

an example. At the most specific end of our spectrum we visit “models” that are only

single instances, such as a 3D mesh of a bunny.

A general language can describe any computable geometry, while an instance is a

single, unchanging, object. However an instance is ready to use, while a language takes

considerable specialisation to create any results. Furthermore, an instance requires no

intelligence on the part of the user and guarantees good results, while a fully general

language requires lots of intelligence and provides no assurances as to the final quality

of the geometry.

In line with the content of the thesis this section will provide an emphasis on those

techniques relevant to urban procedural modeling, although context is provided by

sketches of the surrounding topics. We begin by examining the most general geometry

production systems — languages, grammars and their variants, before moving onto

the more specific combinatory modeling approaches, simulation and inverse procedural

modeling techniques. The most specific techniques form the end of our spectrum —

shape deformation and 3d tools.

2.1. General Purpose Programming Languages 9

public void pa int (Graphics2D g)
{

int count = 1 ;
do
{

g . r o t a t e (Math . PI/2) ;
g . s c a l e (1+ (count /100.) ,1+ (count / 1 0 0 .)) ;
for (double d : new double [] {0 , Math . PI })
{

g . r o t a t e (d) ;
g . t r a n s l a t e (−50, 0) ;
g . draw (new Arc2D . Double (−5, −5, 10 , 10 , 90 , 180 , Arc2D .OPEN)) ;
g . t r a n s l a t e (50 , 0) ;

}
} while (count++ < 2 0) ;

}

Figure 2.1: A small example of a 2D geometric program in Java.

There are two common uses of the word model in PGM — to represent some

system that may create some geometry (“a grammatical model of architecture”),

and to refer to the geometry itself (“the 3D bunny model”). In this chapter we

will attempt to only use the former description, reserving model as a synonym for

system to avoid confusion.

2.1 General Purpose Programming Languages

We first encounter an extreme – the general purpose programming language. Pre-

dominantly these languages are text-string based and Turing complete[245], such as

FORTRAN[114], Haskell[110] or Java[86], Fig. 2.1. Appropriate libraries and inter-

faces allow these languages to create descriptions of geometric objects.

Being general, these languages can describe any computable geometry. However doing

so is quite complex, especially for users unable to write programs. In particular a

random string is most likely not a valid program, while a particular random program

will be unlikely to create geometric output.

There are a wide variety of libraries available to generate geometry via a general pur-

pose programming language. Many of the original library functions were intended

to interface with graphics hardware such as OpenGL[270], others were languages for

realistic rendering, such as RenderMan[247]. More recently higher level interfaces

have emerged such as Open Inventor[262] and the Generative Modeling Language[105]

(GML). Havemann introduced GML to construct procedural graphical primitives via

Euler operations to generate meshes, which may be interrupted as multi-resolution

2.2. Formal String Grammars 10

N = A,B
Σ = a, b
S = A

P =
A → Bb
A → a
B → Ab

Figure 2.2: A Chomsky type 3 grammar that produces a regular language. A rule
x→ y indicates that the symbol x may be replaced by the symbol y.

string via rule
A S
Bb A → Bb

Abb B → Ab
Bbbb A → Bb

Abbbb B → Ab
abbbb A → a

Figure 2.3: The derivation of a string in the language defined in Fig.2.2. The lan-
guage defined is the symbol a, followed by an even number of the symbol b; there are
an infinite number of strings in this language.

subdivision surfaces. GML has been applied to several procedural domains such as

Gothic windows[106], castles[81] and underground infrastructure[155].

2.2 Formal String Grammars

Procedural modeling has been strongly influenced by the study of grammars. There

are a wide range of grammars, each with different properties[44, 204], however a geo-

metrically useful subset is given by the Chomsky hierarchy[42]. A formal grammar is

a concise definition of a language. A language is a (often infinite) set of all the allow-

able strings of symbols from a fixed alphabet. Eventually we will introduce geometric

interpretations of these strings for PGM, but formal grammars are concerned with

the generation of these strings alone. The range of languages expressible by formal

grammars are a subset of those recognisable by the general languages, a specialisation

within our procedural spectrum.

A formal grammar consists of a set of non-terminal symbols, N , a set of terminal

symbols, Σ, a set production rules, P , and a start symbol, S ∈ N . An example is given

in Fig. 2.2.

The initial string consists of a single character, S, which is repeatedly altered by the

production rules. During this manipulation the current string consists of a mix of

2.3. Graph Grammars 11

Chomsky designation rule format language name
type 3 n1 → σ1 (left) regular

n2 → n3σ2

type 2 n4 → φ•1 context free
type 1 φ•2n5φ

•
3 → φ•2φ

•
4φ
•
3 context sensitive

type 0 φ•5 → φ•6 recursively enumerable

Figure 2.4: The Chomsky hierarchy of grammars. σx ∈ Σ, nx ∈ N and φx ∈ Σ ∪N .
Repeated elements from a group are marked •.

terminal and non-terminal symbols. When only terminal symbols remain in the string

the production terminates. The final string is a member of the language defined by the

grammar. We evaluate the earlier example in Fig. 2.3.

Different classes of languages can be defined by different forms of production rules.

The example in Fig. 2.2 is a type-3 grammar in the Chomsky hierarchy. A type-3

language may replace a single non-terminal symbol, with either a terminal symbol, or

a non-terminal symbol followed by a terminal.

Type-3 grammars define the set of regular languages. A more expressive grammar may

be allowed to replace the symbol with a longer string (a type-2 language), examine the

context of the single symbol to be replaced (type 1), or replace any string with any

other (type 0). Chomsky named this increasingly powerful hierarchy of grammars as

types 2, 1 and 0, as shown in Fig 2.4. Each expresses a super-set of the languages of

the previous type by relaxing the restrictions on the context of the replaced symbols.

There are a wide variety of other string rewriting systems[124]. For example, if we re-

move the distinction between terminal and non-terminal symbols, and the requirement

for a single starting symbol, then we instead have a semi-Thue process [49]. Another

variation is a parallel grammar, which applies a rule to every symbol in the string with

each iteration. If we use a parallel context sensitive grammar over a symbol set con-

sisting of the binary digits, then we have cellular automata[268], a popular example

of which is Conway’s game of life[80]. 3D cellular automata have been used to create

procedural models of creeping plants[90]. Alternately every production rule in a gram-

mar may manipulate attributes associated with a specific instance of a symbol, leading

to attributed grammars [126]. Finally we may operate on graphs, instead of strings,

leading to the concept of graph-grammars.

2.3 Graph Grammars

Graph Grammars specialise the concept of string grammars to include a topological

element. Instead of replacing a symbol or string, we replace a node or sub-graph of a

2.3. Graph Grammars 12

graph. Therefore a graph grammar defines a language (a set of) of graphs.

Pfaltz and Rosenfeld introduced graph grammars as web grammars in their 1969

paper[186], although their terminology is no longer in popular use. In a similar manner

to formal string grammars, the paper describes production rules as triples consisting

of a left target graph, a replacement right graph, and an embedding function.

This embedding function describes how the edges to and from a sub-graph of the

host matching the left graph will relate to edges in its replacement, the right graph.

However, the paper by Pfaltz et al. does not define the structure of this embedding

statement, rather descriptions are given in prose. There are a large number of such

embeddings function and much of the remainder of the theoretical work on graph

grammars concerns itself with the different forms this embedding function may take.

For our purposes a graph, γ, consists of a set of nodes and edges between these nodes.

The set of nodes, P , is labelled by a finite alphabet, V . As with string grammars, these

labels are either in the set of terminals, Σ, or non-terminals, N . The set of directed

edges, E, consists of pairs in (p1, p2) where p1, p2 ∈ P , and are optionally labelled from

V .

A graph grammar is a 4-tuple, G = (V,N, γ0, R), where γ0 is the initial graph and R

is a set of production rules. A production rule r = (γl, γr, E), consists of the left and

the right graphs, and an embedding function, E.

As with formal string grammars, the host graph is initially γ0, and production rules

are applied until no more nodes or edges with non-terminal symbols exist. A simple

graph grammar is given in Fig. 2.5, defining a simple lattice-like language of graphs.

However, without well defined embedding functions several questions are unanswered.

For example, as each rule is applied, are any edges from the host graph to the right

hand side of the graph created? or how are edges to the removed left graph treated?

The two main competing approaches to embedding functions are set-theoretic and al-

gebraic. The algebraic approach utilises category theory to define gluing functions[62],

while the set-theoretic approach utilises set-expressions to define the embedding func-

tion, typified by [169]. We refer the reader to the citations for the full details, but

demonstrate a single production rule from each in Fig. 2.6 and Fig. 2.7.

As with string grammars, there are a large number of variations on the theme of

graph grammars. L-systems (Sec. 2.4) inspired parallel graph grammars [61]. These

divide the graph into covering subgraphs, each of which matches the right hand side

of one production rule; each rule is then applied at the same time, in parallel with

one another. Negative application conditions [170, 94] specify situations in which a

particular rule should not be applied. Programmed graph grammars, as introduced by

2.3. Graph Grammars 13

c

a

b

a

b

A

B

a

b

A

B

A

B

C

a

b

a

b

a

b

a

b

a

b

a

b

A

B

a

b

c

a

b

cCinitial host graph, γ0 =

production rules, R =

c

c

cc

c

V = {A,B,C, a, b, c}, N = {A,B,C}

Figure 2.5: Left: an overly simple graph grammar, overlooking embedding rules.
Right: several graphs in the language defined by this grammar. Note edge labels are not
shown here.

R =

A

B C

a

b c

d

A

B C

a

b c

a

b d

a

b d

a

b c

d

γ0 = = result

1

2 3

1

2 3

1

2 3

Figure 2.6: The application of an set-theoretic production rule, R, using the double
pushout method[62]. Note that numeric values establish node identity in these diagrams.
Top row: the two stages in the production rule. Top left: the left graph to match. Top
middle: any nodes to be renamed have their labels removed and edges to be deleted are
removed. Top right: the new labels and edges are applied. Bottom: the application of
R to a graph (bottom right).

2.3. Graph Grammars 14

γ0 =R =
1 2 3 4 5

A a b b a

ri = (5; Rj Li ∪ Li (1)) A

B

C

i

j

i

lj = (B Li (1); 3, 4)

B

C
j

2 3 4 5
a b b ai

j j

lj = (B Li (1); 3, 4)

ri = (5; Rj Li ∪ Li (1))

B

C
j

2 3 4 5
a b b aiA

B

C

i

j

1

B

B

C
j

2 3 4 5
a b b aiA

B

C

i

j

1

B

C
j

2 3 4 5
a b b aiA

B

C

i

j

1

B

C
j

2 3 4 5
a b b ai

j j

ii

node replacement

Figure 2.7: The application of an algebraic production rule using the system specified
by Nagl[169]. First row: the rule, R which consists of the left graph, the right graph,
and the embedding components lj, ri. Numeric node identities are given outside each
node in the rule. The graph we will apply the rule to is γ0, replacing the node labelled
A with the right graph (second row). Third row: the application of the embedding lj
creates new edges by walking over the graph (dashed arrows). The origin of the walk is
the node with identity 1, traversing all outbound edges labelled i and filtering for nodes
labelled B. The destinations are the nodes with identity 3 and 4, the new edges are
shown in bold. The embedding ri proceeds similarly, except the ∪ operator performs
two walks to use as the destinations. The resulting graph is given in the bottom right.

2.4. L-Systems 15

Göttler[88], take this concept further and replace the set of production rules with a list

of production rules to be applied sequentially, via conditional statements or loops.

Unfortunately identifying matching subgraphs in graphs (to identify the portion of

graphs to be replaced) is an instance of the computationally NP-complete subgraph

isomorphism problem. While there are situations where this complexity is alleviated,

such as in the case of planar graphs[64], this complexity may be a reason that graph

grammars are not widely used in PGM. Another problem is that graph grammars are

no more expressive than string grammars as there is an encoding of any graph in string

form (typically an adjacency matrix). This string representation may be manipulated

in equally expressive ways via a type 0 string grammar.

In spite of these shortcomings there are several graphical applications of graph gram-

mars, such as the design of technical diagrams[87], production of system flow dia-

grams [56], the design of a visual languages[91] and CAD-systems[92]. In particular

graph grammars offer a topological-oriented description of the otherwise geometry ori-

ented shape-grammars[279], introduced in Sec. 2.5.

2.4 L-Systems

Lindenmayer-systems [142] introduced a parallel string replacement grammar in 1968,

specifically motivated by the study of plant growth. Unlike the sequential model de-

scribed by Chomsky, every biological cell in a plant may divide simultaneously. To

simulate this, a production rule is applied to every symbol in the string concurrently.

Meanwhile in the 1980’s the computer graphics field was producing tree models, these

were lacking a formal grammar, such as the tendril-like forms in [119], or the detailed

models of specific varieties of trees in [27]. In 1986 L-systems were combined with

graphical techniques[193] to produce a graphical interpretation of a grammar’s lan-

guage. This combination of a string grammar and a turtle became synonymous with

the term L-system. In binding their domain to graphics, and usually botany, L-systems

are a more specialised system than formal grammars, the first true procedural geomet-

ric modeling system we examine.

A basic L-system specifies a parallel string replacement grammar, a number of iter-

ations, a starting string, and a turtle interpreter to create graphical output. Unlike

grammars their output is a single result, rather than a language. We define an example

L-system in Fig. 2.8,

The string replacement grammar doesn’t contain any terminal symbols, and is parallel

in that at every derivation step every symbol in the string is replaced by a matching rule.

2.4. L-Systems 16

n = 8
δ = 90◦

initial string = F
production rule = F → F+FF+

Figure 2.8: The description of a simple L-system.

F
1: F+FF+
2: F+FF++F+FF+F+FF++
3: F+FF++F+FF+F+FF+++F+FF++F+FF+F+FF++F+FF++F+

FF+F+FF+++

Figure 2.9: The first three terms in the evaluation of the string grammar of Fig. 2.8.

The grammar also differs from a formal string grammar in that there is no distinction

between terminal and non-terminal symbols. Instead, a fixed count of parallel rule

applications occur, Fig. 2.9, after which the string is interpreted by a turtle.

A turtle uses this string to create geometry by evaluating one symbol of the string

at a time, using a left-to-right ordering. The turtle’s 2D location and rotation is

manipulated by each symbol in turn, creating geometry as a side effect, Fig. 2.10.

Typical mappings for symbols are F to move the turtle a unit length in the forwards

direction creating a line segment as it moves, + or − to rotate the turtle an angle, δ,

clockwise or counter-clockwise respectively, [to store the turtle’s current location and

orientation on a stack, and] to restore it’s location and orientation by popping the top

location from the stack.

To summarise, a simple L-system is defined by an initial string, S, a number of rule

applications, n, a set of production rules, P and a rotation angle, δ.

An extension to these basic L-systems is context sensitivity for the string grammar,

reminiscent of a move from a type 2 formal grammar in the Chomsky hierarchy to type

1. For example to state that a b between an a and a c should be replaced with a d we

would use the notation:

a 〈 b 〉 c → d

For example, given the context sensitive L-system in Fig. 2.11, we may evaluate the

string grammar as in Fig. 2.12, and finally produce our geometric output, Fig. 2.13.

The result from these systems is generally pleasing given the compact description, and

simulates a discrete form of growth as successive evaluations occur. The book The

Algorithmic Beauty of Plants [194], from which this example was taken, gives a very

detailed introduction to the modeling of flora using L-Systems.

A basic L-system has several limitations, including a lack of environmental sensitivity,

2.4. L-Systems 17

n = 1 n = 2 n = 3 n = 4

n = 8

F F+ F+F F+FF F+FF+

Figure 2.10: Top, left-right: incrementally constructing a graphical interpretation of
a string using a turtle. Bottom: the turtle’s evaluation of terms 1,2,3,4 and 8 of the
L-system in Fig. 2.8

n = 39
δ = 22.5◦

#ignore = +-F
initial string = F1F1F1

production rules =

0 〈 0 〉 0 → 1
0 〈 0 〉 1 → 1[-F1F1]
0 〈 1 〉 0 → 1
0 〈 1 〉 1 → 1
1 〈 0 〉 0 → 0
1 〈 0 〉 1 → 1F1
1 〈 1 〉 0 → 1
1 〈 1 〉 1 → 0
? 〈 + 〉 ? → -
? 〈 - 〉 ? → +

Figure 2.11: A self-sensitive string grammar (example 1.31,b from TABOP[194]).

2.4. L-Systems 18

F1F1F1
1: F1F0F1
2: F1F1F1F1
3: F1F0F0F1
4: F1F0F1[-F1F1]F1
5: F1F1F1F1[+F0F1]F1
6: F1F0F0F0[-F1F1F1]F1
7: F1F0F1F1[-F1F1][+F1F0F1]F1
8: F1F1F1F1F0[+F0F1][-F1F1F1F1]F1
9: F1F0F0F1F1F1[-F1[-F1F1]F1][+F0F0F0F1]F1
10: F1F0F1[-F1F1]F1F0F0[+F0[+F0F1]F1][-F0F1F1[-F1F1]F1]F1

Figure 2.12: Some statements given in the language. The evaluation of the grammar
given in Fig. 2.11 for the first 10 iterations.

Figure 2.13: The turtle evaluations of the different L-Systems given by n =
0, 3...36, 39, as computed in Fig. 2.11. Consecutive systems are evaluated in a dif-
ferent frame, rotated clockwise from vertical. Each evaluation is drawn a factor of 0.7
times smaller than its predecessor.

2.4. L-Systems 19

initial string: A(0, 0)
production rules:
1 : A(x, i)→ S(x)B(x, i)A(x+ ∆, i+ 1)
2 : S(x)→ @R(0, 1, 0, 0, 0, 1) + (Y (x))&(P (c))F (δ(x))
3 : B(x, i) : {

if (i%2 == 0) θ = 0;
else θ = 90;
} → [/(θ)L(x, i)R(x, i)]

4 : L(x, i) : {
if(i%2 == 0){
angle = ϕL(x);
length = hL(x);
}else{
angle = (ϕL(x) + ϕR(x)) ∗ 0.5;
length = (hL(x) + hR(x)) ∗ 0.5;
} → [+ (angle) Organ (length)]

5 : R(x, i) : {
if(i%2 == 0){
angle = ϕR(x);
length = hR(x);
}else{
angle = (ϕL(x) + ϕR(x)) ∗ 0.5;
length = (hL(x) + hR(x)) ∗ 0.5;
} → [/(180) + (angle) Organ (length)]

Figure 2.14: A parameterised programmable L-system from[13] to model the biological
phenomena of decussate phyllotaxis. The necessity of referring to the previous iteration
adds considerable complexity.

2.4. L-Systems 20

non-realistic rendering and a complex grammar editing process. To overcome these,

L-systems have been periodically extended. The remainder of this section explores

some of these extensions and their applications:

• Context sensitive. As described above, symbol replacement can occur based on

the surrounding elements.

• Stochastic. Each production rule is given a corresponding probability with which

it occurs on each iteration[276]. For example the branching characteristics of a

tree may be encoded in a stochastic L-system[196], or the choice of which building

to place on a given parcel of land[180] may be made stochastically. While a basic

L-system is deterministic in that it always creates the same output, a stochastic

L-system may produce different output every time it is evaluated.

• 3D. By using a three dimensional turtle, instead of the two dimensional standard,

three dimensional geometry can be created. For example, [195] uses a two-axis

rotation system to manoeuvre the turtle in 3D, while using L-system rules to

determine the developmental cycles.

• Parametric. Here each symbol is given a set of parameters, and a replacement

can only take place if a logical statement associated with the parameters is true

[100]. Parametric L-systems are comparable to the parallel case of attributed

formal grammars[126]. These parameters can model the flow of morphogens

such as genes or hormones[34].

• Table. These use a variable table of production rules to simulate step-changes

in the applicable rules. For example one table may model the plant in a winter

(non-flowering) state, and another the summer (flowering) state.

• Map. This early approach to produce a graphical interpreter for L-systems uses

a parallel grammar to manipulate a geometric graph as “cells”[141]. Because this

system works directly on geometry it is unnecessary to interpret the results using

a turtle. Map L-systems are a geometric analog of graph grammars, see Sec. 2.3.

• Environmentally sensitive. There has been a large quantity of work to allow

L-systems to interact with their virtual environments. Table-L-systems provide

a discrete phase-transition in response to external stimuli, while context sensi-

tive L-systems give only topological self-sensitivity. L-systems that are physically

constrained by their environment are introduced by [196], although the effect of

the plant on the environment are not modelled. To address this issue, bidirec-

tional information exchange is introduced by [167], using physical simulations to

2.5. Shape Grammars 21

describe the availability of water and light to developing foliage and root sys-

tems. Geometrically self-sensitive L-systems are used by Parish[180] to generate

road networks; these modify a production rule with both global goals and local

geometric constraints.

As they have been extended to overcome their limitations, L-systems have become

increasing complex. One case study is that of phyllotaxis, the pattern that plant

organs (leaves or flowers) form around the stem; in particular decussate phyllotaxis

alternates between pairs of leaves at 90◦. It is instructive to compare an L-system

for a phenomena such as decussate phyllotaxis from Fig. 2.14, to the same description

in a general purpose language, Fig 2.1. It becomes clear that it is more complex to

represent this phenomena in parallel production systems than in Java. This suggests

an issue for the designer of the L-system in comprehending the consequences of an edit

to an L-system. To address this usability issue, there is limited work to reconstruct

L-systems from an image representations [220, 210] or user sketches[13], avoiding the

issue of writing grammars altogether.

The above argument suggests L-systems are an over simplification of botanical sys-

tems, that are not gracefully extended to all observed plant models. It is strengthened

by recent research into physical simulation to model the Auxin hormones that cause

phyllotaxis[216]. More generally, algorithmic botany has moved away from L-systems,

towards deeper physical simulations such as the simulation of tropisms in [179] or

geometric simulation of the apical meristem (growing tip of a plant shoot) in [171].

There are similarities between programming an L-system and multicore (parallel) pro-

gramming. In particular the current string is reminiscent of the shared state of some

parallel models of computing, and developmental delay[195] is similar to message pass-

ing. The similarities suggest that some of the problems of multicore programming may

be present when designing large L-systems. These may include synchronisation issues,

dead and live locks, as well as race conditions.

2.5 Shape Grammars

In the previous sections we have examined grammars that are formed by production

rules over strings of symbols (formal grammars and L-systems), as well as graphs. In

contrast, shape grammars consist of production rules that match and replace certain

shapes in a figure. The high level description of the grammar remains the same —

a start state is given, and production rules transform it to a shape in the language;

however the states and rules are expressed as shapes rather than graphs or symbols.

2.5. Shape Grammars 22

Stiny and Gips created the concept of shape grammars in 1971[227]. They have since

been used in a relatively unchanged form to design a wide range of procedural models

within academia. We may position shape grammars in our spectrum of proceduralisa-

tion by noting that like L-systems they are constrained to the construction of geometry.

They are also Turing complete[84].

In comparison to L-systems, shape grammars are indeed grammars. They specify a

language, a set of valid statements, but do not say which specific sentence should be

generated at a particular evaluation. The order of the rules applied may be determined

manually or automatically depending on the application.

The formalism behind a shape grammar eventually[223] came to consist of a set of

shapes, S, a set of symbols, L, an initial labelled shape, γ0, and a set of production

rules, R; each production rules takes the form α→ β. The left hand side, α, specifies

zero or more labelled shapes, (S, L)∗, that are matched against the current shape. The

right hand side, β gives a labelled or unlabelled replacement, ∈ (S, L)+ ∪ S+. As

with the previous grammars, we begin with γ0, applying rules until all symbols have

been removed. At this point the current shape, γ is an element in the language defined

by the grammar.

In contrast to L-Systems, the production rules are not applied in parallel to all matching

instances, rather in a serial manner reminiscent of Chomsky grammars[41]. Given the

lack of restrictions on the context of the shape, we may see similarities to a type-0

Chomsky grammar.

An example of a very simple façade shape grammar is given in Fig. 2.15, left, using the

symbols L = N, T . We show the evaluation of one shape in the language in Fig. 2.15,

right, by repeated production rule application until no symbols remain. Various other

shapes in the language are shown in Fig. 2.16.

A single grammar production rule can often be matched to an infinite number of

positions on the current shape by matching subshapes. For example a rule containing

an arc may be positioned at an infinite number of points around a circle, as in Fig. 2.17.

Given this flexibility of rule application, it is a natural that the categorisation of the

different varieties of shape-grammars concerns itself with the mechanism for matching

α against the current shape, γ, the subshape problem. Common variations include:

• the shapes that may be matched — such as only lines, rectangles or curves in 2D

or 3D,

• the type of matching that occurs — whether only whole shapes (such as rectan-

gles), or subshapes (such as one corner of a rectangle), may also be matched. The

2.5. Shape Grammars 23

T

T

T

T

T

rule 1

rule 2

rule 3

rule 4

rule 5

rule 6

rule 7

rule 8

initial shape

TT T

TT T

T T

T T

T T

T T

rule 1

rule 2

rule 4

(2) rule 8

(2) rule 6

T

T

T

initial shape

T T

T

T

T

T

T

T

T

T

T

T

T

T

T

Figure 2.15: Left: We introduce a shape grammar consisting of 8 shape rules. The
shapes on the left of each arrow may be replaced by the shapes on the right of the same
arrow. Right: An example derivation of this shape grammar that creates a bungalow.
The number of applications of a rule are specified in parentheses.

a b c

(4) rule 1
rule 2
rule 3
(9) rule 7
(4) rule 6

(3) rule 1
rule 2
rule 5
(3) rule 7
(2) rule 6
(5) rule 8

rule 1
rule 2
rule 4
(2) rule 8
(2) rule 6

d

...

(*) rule 1
rule 2
rule 3
(*) rule 6
(*) rule 8

Figure 2.16: Four evaluations of the shape grammar given in Fig. 2.15, with the
rules that created them.

2.5. Shape Grammars 24

A A
AA

...

Figure 2.17: Left: A shape grammar production rule that positions a tree on an
arc. Right: If we allow subshape matching under rotation we may position trees at an
infinite number of locations on a circle. We show the result of several applications of
the production rule upon a circle.

(x
2
, y

2
)

(x
3
,
y 3

)

(x
4 , y

4)
(x

5
,
y 5

)

(x
1 , y

1)

(x
6 , y

6)
(x

7
,
y 7

)

(x
10
,
y 10

)
(x

8 , y
8)(x

9 , y
9)

(x
2
, y

2
)

(x
3
,
y 3

)

(x
4 , y

4)
(x

5
,
y 5

)

(x
1 , y

1)

Figure 2.18: A single parametric shape grammar production rule inspired by[223].
The accompanying schemata might specify that the new point (x6, y6) lies on the line
between existing points (x1, y1) and (x2, y2), and similarly for the other new points.
This parametrisation permits a language of nested pentagons to be defined.

advantage of subshape matching is that it allows more “emergent” (unexpected)

shapes to be generated,

• the transform we are allowed to apply to alpha to locate a match — such as

isometries, rigid transforms or affine transforms, and

• whether any parametrisation of α is allowed.

These parametric shape grammars [223] are variants which allow the arbitrary parametri-

sation of production rules. We show an example parametric rule in Fig. 2.18. There

are no computational limits placed on these rules, and are typically expressed in the

corpus by prose[222], or omitted entirely[72]. These parametrisations can be also used

to limit the repetition of rules, for example by adding area or height conditions.

The computational complexity of finding potential matches of α in the current shape,

γ, the subshape problem, is well studied. The matching of whole labelled shapes has

2.5. Shape Grammars 25

a linear computational complexity in the number of the current shapes. Therefore

there are well developed algorithms and systems for matching rectilinear[131, 130] and

curved 2D shapes. However parametric subshape recognition is NP-hard[279], even in

the case of a rectilinear shape vocabulary. This has not stopped implementations of

the parametric case in 2D[153]. The theory of shape recognition in 3D is addressed by

[132], against straight line figures only, while [37] introduces an implementation that

limits their use to circles and arcs. The issue of subshape matching with general curves

and surfaces in 3D is still unaddressed in the literature.

Despite these complexity issues, shape grammars have been widely applied in academia.

The initial examples were artistic drawings[227] and 2D architectural plans[225]. These

were extended to 3D isometric plans of houses, generated using parametric shape

grammars[128]. 3D shape grammars are less common, and tend to be simple, such as

modeling historic soft drink bottles[37]. A wide range of applications have been found

for shape grammars include modeling the morphospace of chair-backs[125], Harley

Davidson motorbikes[198], and coffee machines[3].

A subtlety of shape grammars are their termination criteria. The language specified

by the grammar does not contain all possible evaluations of rule sequences, but only

those shapes that do not contain symbols. There are sequences of production rule

applications in Stiny’s well cited Palladian grammar[225] that lead to dead-ends in

which the grammar can never terminate, Fig. 2.19. Of particular issue is the fact that

there are no guarantees as to how many times we might have to evaluate statements

in the grammar before a valid result in the language is generated.

The lack of a mechanism to specify situations in which a rule cannot be applied causes

additional difficulties with self intersection and termination (negative application con-

ditions in graph grammar terminology). A shape grammar rule with a β that is a

superset of the corresponding α gives rise to an infinite language. We present an exam-

ple in Fig. 2.16d, in which the façade may be indefinitely tall. This poses the problem

of how to stop a sequence like this from intersecting other geometry, especially in

non-parametric shape grammars.

Because of the requirement for shapes in the language to not contain symbols, and

the infinite nature of certain shape grammars, we may characterise shape grammars

as a search through some shape-space. The order of search can either be manually

defined (as in most of the corpus) or automated to produce figures automatically[89].

Regardless of the mechanism for choosing rules, sequences of rules will behave in one

of the following ways:

• All symbols will be removed, and a figure that the grammar describes will be

produced.

2.5. Shape Grammars 26

O

A’

A AO

(0,0).A

A’

O

A’

O

rule 1

rule 2

rule 7

rule 6

(0,0).A

A’

O

O

O

P B

P

P

P
B

rule 11

rule 1
rule 3
(2) rule 5
rule 4

(3) rule 7
rule 6

(4) rule 10
(2) rule 8

Figure 2.19: Top Left: An example from Stiny’s Palladian shape grammar[225].
Bottom left, right: Example rule sequences in the same shape grammar that lead to
dead ends. After these rules, there is no way to remove the symbols •, or O, leading
to evaluations of the grammar that are not in the language.

2.6. Split Shape Grammars 27

• Symbols remain in the figure, but no further rules may be applied. The evaluation

stalls at this invalid shape (Fig.2.19).

• The evaluation continues endlessly. Either by force or choice the sequence of

applied rules is unending, and evaluation continues indefinitely. There are similar

situations in formal grammars, graph grammars and L-systems.

Other common issues surrounding the use of shape grammars are well summarised by

[84], for example

• the subshape and termination problems introduced above,

• the design of an adequate interface for the construction and application of shape

grammars,

• the lack of robust implementations for parametrised shape grammars,

• the difficulty in application to non-linear geometry, such as curved surfaces,

• the lack of a standardised shape-description, and finally,

• the lack of production grade or commercial systems for working with shape gram-

mars.

2.6 Split Shape Grammars

The computational complexity of classical shape grammars seems to have limited their

use to small scale academic projects. However in 2003, Wonka et al. created a spe-

cialisation of shape grammars, split shape grammars [269], with lower complexity. To

simplify their computation, these extend set grammars, initially within a 2D domain

of labelled nested shapes and using only whole-shape matching. These grammars have

been shown to be well suited to large urban environments, and façade generation in

particular.

As the name implies, a split shape grammar consists of production rules that take a

labelled shape and split it into a number of covering labelled shapes. Unlike a shape

grammar these labels are categorised as terminal or non-terminal. This delegation of

area to subsequent rules continues down a hierarchy until only shapes with terminal

symbols remain.

A principle assumption is that this hierarchical split operation is well suited to the gen-

eration of designed structures. There is ample justification for this assumption in the

2.6. Split Shape Grammars 28

literature of early urban modeling pipelines, such as the book A Pattern Language[9],

which introduces a hierarchy of 35 guidelines for the design of of urban areas, ranging

from “major city structures” and “common land” to “structure of the floor and walls”

and “furnishing”:

“The elements of this language are entities called patterns. Each pattern describes a

problem which occurs over and over again in our environment, and then describes the

core of the solution to that problem, in such a way that you can use this solution a

million times over without ever doing it the same way twice.”

The book is representative of the architectural literature in that it purports to present

solutions to urban design problems, without providing sufficient details for an compu-

tational implementation, for example:

“Pattern 10...Do this by means of collective regional policies which restrict the growth

of downtown areas so strongly that no one downtown can grow to serve more than

300,000 people.”

This hierarchical split approach to urban languages presented by A Pattern Language

is quite pervasive in the computer graphics literature, with examples such as [70], [97],

[11], and [180] using variations on the theme of a hierarchical urban decomposition.

Returning to Wonka’s 2003 paper[269], we observe that this concept of a strict hierarchy

in urban design is exploited to simplify shape grammars.

Compared to shape grammars, split shape grammars have the advantages of fast com-

putation and no dead-ends during the evaluation. The subshape problem is bypassed

by using a set grammar[224] in which matching takes place based on a whole shape and

a symbol. This removes the emergent behaviour of subshape matching, but permits

finding all possible shape matches in time linear to the size of the existing figure. While

certain split shape grammars may be evaluated endlessly, if they do terminate they are

guaranteed to supply a valid shape.

Müller et al.’s later influential paper, Procedural Modeling of Buildings [164], extends

the concept of a split shape grammar to 3D and introduces a written formalism for split

shape grammars, CGA Shape. The system has gained widespread use and notoriety as

it has been successfully commercialised[66].

A CGA Shape grammar consists of an initial labelled shape and a set of production

rules, each with a certain priority. All the applicable rules with the highest priority

are executed before others; this priority mechanism is exploited to produce differing

2.6. Split Shape Grammars 29

y

x

y

x

z

3: hex
Subdiv(“x”,1r,1r,1r)
{A|A|A}

2: hex
Comp(“sidefaces”) {A}

1: hex
T(1,0,0)
S(0.4, 0.5, 0.5)
I(“hex”)

Figure 2.20: The current scope in a CGA Shape grammar defines a frame and extent
for the production rules. Given the initial 3D scope, shown in the top left, and the initial
geometry, top middle, we show the result of three production rules. Rule one translates
and scales the frame before adding another hexagonal prism of dimension specified by
the transformed frame. Rule two performs a component split, creating 2D faces, giving
them each their own 2D frame. Rule three subdivides the current shape along the x axis
into 3 equally high prisms, and matching scopes.

geometry based on the required level of detail. Models with higher details are generated

by executing rules with lower priority.

To define the reference frame for the production of geometry, a scope is introduced

that defines a frame, as well as an extent, as in Figure 2.20. This is reminiscent of

an L-system’s turtle. When geometry is created, the scope defines the size, location

and orientation. When the current shape is split, the scope defines the orientation and

number of splits.

A production rule of a given priority in CGA Shape consists of a unique ID, a parametric

symbol to match on, an optional condition, a labelled successor shape that is generated,

and a probability with which the rule will be applied: id: predecessor : cond

successor : prob. The successor operation has an involved syntax that is able to

manipulate the scope via transforms, splits, repeats and dimension reduction. A 2D

example is given in Fig. 2.21. The condition is used to limit the applicability of the

rule, for example to shapes of a certain size, or if certain occlusion conditions are met.

These occlusion queries form a domain-specific environmental sensitivity that is used,

for example, to stop the production of windows occluded by roof geometry. This is the

only context sensitivity available in the system.

Split shape grammars have been successfully applied to the reconstruction of several

historical sites such as Mayan ruins[168], the ancient Roman city of Pompeii[163, 58]

2.6. Split Shape Grammars 30

façade

u

u

l

a

w w w w

w w w w

w d w w

wt
wm

wb

dm
dt

wl

wr
wc

dl
dc

dr

1: façade Subdiv(“X”, 2, 0.2, 1r, 1r){l|a|u|u}
2: u Repeat(“Y”, 1.5){w}
3: l Subdiv(“Y”, 1.5, 1.5, 1.5, .1.5){w|d|w|w}
4: w Subdiv(“X”, 0.3, 1r, 0.1){wt|wm|wb}
5: d Subdiv(“X”, 1r, 0.3){dt|dm}
6: wm Subdiv(“Y”, 0.15, 1r, 0.15){wl|wc|wr}
7: dm Subdiv(“Y”, 0.15, 1r, 0.15){dl|dc|dr}
8: wc I(“window”)
9: dc I(“door”)

Figure 2.21: The production of a façade in CGA, top, via the given grammar, bottom.
Rule 1 splits the façade into 3 floors and a architrave (top middle). Rules 2 & 3 create
repeating windows and doors according the floor (top right), while rules 4–7 further
refine the window and door positions. Rules 8 & 9 position geometry to create the
doors and windows (middle right).

2.6. Split Shape Grammars 31

Figure 2.22: The instance locators of Lipp et al. [144] identify a component by its
position in a derivation tree (left). After each production rule the index referred to
(dashed lines) can be stored relative to the start, middle or end of the split sequence.
The instance locator can be used to store modification to a procedural object, such as a
modification to the style of a window, right.

and Malay houses[206]. Novel uses of split shape grammars include the presenta-

tion of uncertainty in archaeological findings by presenting several derivations of a

grammar[96], and animatable articulated objects structures[112].

Writing the production rules for split grammars is somewhat involved and required

specialist knowledge. Several attempts have been made to simplify the process. The

first presents the production rules as a graph[183], giving an understanding of the

relationship between application possibilities of the rules. However using this system

requires the user to comprehend the underlying grammar before using it. An alternative

is given by Lipp et al.[144], who allows the user to construct a grammar by editing an

example instance. By constraining the modeling tools to those that may be translated

to production rules, the user is able to quickly produce a PGM without interacting

with the grammar itself. When a user edits a single feature in an example instance,

this edit must be encoded into the grammar, in a persistent manner. To do this Lipp

introduces instance locators to store user edits in a split shape grammar, Fig 2.22.

Strict hierarchy and over-compartmentalisation can cause problems when working with

shape grammars[107]. For example sharing information about the number of elements

in a façade, as in Fig. 2.23, left. Additional difficulties are caused by problems placing

objects over two or more disjoint portions of the hierarchy, as in Fig. 2.23, right. In

these situations it is necessary to re-write the grammar to add a new shape, or to

add some portion of the shape to two separate portions of the hierarchy. Recently

work has begun to address this issue by creating connection patterns between portions

of two different shape grammars[129]. The problem of over-compartmentalisation is

uniquely critical to split shape grammars; while some shape grammars do use such a

hierarchy[225], many do not[146, 128].

2.7. Data Flow Programming 32

Figure 2.23: Left: The strict hierarchy may cause problems for coordinating features,
as in this evaluation of the grammar of Fig. 2.21, showing a lack of synchronisation
between the ground floor and upper windows. Right: The over-compartmentalisation
means that it is impossible to place some features that cross over the hierarchy’s bounds,
such as positioning an intercom near the door (black rectangle).

2.7 Data Flow Programming

Data-flow graphs are a model of parallel computation introduced as an alternative to

the classical von Neumann model.

Written imperative programming languages are typically a 1D sequence of symbols

which explicitly sequence instructions. This ordering of instructions is typically asso-

ciated with the von Neumann model, which executes a single instruction at a time. In

contrast, a parallel model of computation may execute many instructions concurrently.

To schedule the execution of a single instruction, a general requirement is that the

instruction’s inputs are available — whether they have been entered by the user or

calculated by a previous instruction. The necessity of the inputs’ availability creates

a dependence of the following instruction on the previous instructions’ execution, and

may be represented as a data flow from the previous function to the next, as in Fig. 2.24.

In this way data flow languages are declarative, allowing the executing system’s sched-

uler to determine the order of operations given the data flow constraints.

We introduce data flow languages, and in particular graphical data flow languages for

geometry as a typical example of a general non-written PGM system, before looking

at an example commercial application. The topic of data flow programming occupies a

wide range of our procedural spectrum. A data flow language with loops may be Turing

complete, and has many applications from parallel programming to task scheduling.

However there are a number of implementations that are graphical and geometrical —

their user interface is a graphical graph editor, and their output is geometrical. These

are the use cases that are of most interest to PGM, being of similar generality to shape

grammars, being concerned with the graphical domain.

2.7. Data Flow Programming 33

a b c d

mul mul

add

1 2

3

Figure 2.24: A data flow graph that calculates ab+cd given the mathematical conven-
tion that multiplication instructions are performed before addition. The circular nodes
are instructions, while the directed edges are the data flows. An inbound edge is an in-
put to the instruction, while an outbound edge is a use of the output. Each instruction
requires that all of their inputs be present before calculating an output. For example
instruction 3 requires both instruction 1 and instruction 2 to be complete. However the
order of the operations are not specified in a data flow graph, so the execution order
may be 123, 213 or instruction 1 and 2 may be executed in parallel before 3.

There are several varieties of data-flow graphs in the literature, we shall briefly examine

the token based model of Dennis from [54], introduced in 1974. Fig. 2.25 shows an

example graph for generating nested rectangles, showing examples of splitting and

combining data flow arcs. A token based data flow model models the arcs in data flow

graphs as FIFO queues of tokens. Each token is associated with a value, in our example

this value is either a rectangle or a Boolean. When a node has a token available on

each of its inputs it removes these tokens from its input arcs, computes an output, and

adds a token representing this output to any output arcs. The FIFO queues may be

initialised with tokens before the system is executed (as Fig. 2.25e). Ensuring that the

correct sets of input tokens arrive at the front of the FIFO queues at the same time

is challenging for the user, as demonstrated by the involved select/distribute syntax

of our example. This sequencing issue is one that will occur frequently in data flow

graphs.

We note that the graph of Fig 2.25 can only be used for the generation of one figure

at a time because of loops, negating the advantages of parallelism. This is somewhat

mitigated by the use of tags[54, 259], in which each invocation of the graph uses tokens

with different tags, allowing the same instruction node to execute on different sets of

input concurrently.

An alternative data flow model offers a different way to mitigate the sequencing issue,

by removing loops from data flow graphs. The structural data flow model[47] models

arcs as arbitrary and possibly infinite data structures. As computations are completed,

2.7. Data Flow Programming 34

area > 3 shrink rect

distribute

display

input rect

tf

select
false

f

a

bc

d
e

f

t

g
h

Figure 2.25: A token based data flow graph (left) that generates nested rectangles
(right). The data flow graph takes an input rectangle (a), shrinks and positions it (b)
or terminates if the area is less than a constant (c), otherwise the sequence repeats itself.
The sequencing issue of whether to take a new input rectangle, or iterate on the existing
is addressed by the select and distribute nodes. The select node (d) outputs either the
new input rectangle, or the result of a previous iteration, based on the horizontal input;
it is initialised with a token of value false (e) to initially take a new input rectangle.
The distribute node (f) sends the output of the shrunk rectangle to one of two locations,
based on the result of the area test. It is either discarded (g), or output (h) and used
in a subsequent iteration via the select node (d).

2.7. Data Flow Programming 35

Figure 2.26: A visual data flow diagram used for controlling the temperature of a
virtual water tank.

these data structures are updated, and their values used by subsequent nodes. Struc-

tural data flow diagrams do not require loops as the token based systems do, however

this comes at the cost of storage; all computed values are retained by the data struc-

tures. Additionally nodes must be equipped with the logic to comprehend the, possibly

involved, input data structures.

While textual systems, such as LAU[188] and CAJOLE[101], focused on parallelism

and efficiency, another early justification for data flow programming was ease of use.

Curiously the development of easy to use graphical user interfaces to data flow lan-

guages preceded these formal written languages. In particular Sutherland introduced a

data flow editor[230] in 1966, 8 years before Dennis’ work. This system used a light-pen

to edit the structure of data flow graphs, and define functions by drawing nodes and

arcs. There followed many graphical data flow research languages, with examples such

as the Graphical data-driven Programming Language[48] and Grunch[50], a graphical

interface to CAJOLE. Many of the graphical programs were more visually complex

than their textural counterparts. In particular embedding a data flow graph into the

plane often leads to the crossing (without connecting) of graph arcs, making reading

the graph quite difficult. However this did not stop the use of graphical data flow

languages in industry, with systems such as Prograph[152] for general programming

and LabVIEW[113] as a digital laboratory, Fig 2.26.

There are several interesting diversions at this point that are beyond the scope of this

chapter:

• Data flow graph editors cannot express anything more than a written language (at

their most expressive they are still only Turing complete) despite their additional

dimensions. However many authors make the claim that graphical programming

is easier as it is more difficult to introduce syntax errors than when writing text

based programs.

2.7. Data Flow Programming 36

Figure 2.27: A random walk (red line, top right) programmed in the Scratch visual
programming language[200]. Statements are chosen from the palette on the left to be
added to the program in the centre. The execution of the program is performed by the
cat sprite in a turtle-like manner, top right. Note that invalid expressions may not be
programmed, for example there is no attachment point to add a further operation after
a “loop forever” statement.

• There are a significant number of graphical editors for imperative programming[234,

85]. These exploit the ease of use of graph-based systems to appeal to, for ex-

ample, those new to programming. For example Scratch[200] shown in Fig. 2.27

is able to create geometry. These control graphs describe the sequence of op-

erations, rather than the data dependencies, usually allowing side effects and

mutable data structures which data flow programming largely avoids.

• We may create graph based graphical visualisations of many aspects of a pro-

gram. For example the data structures may be modelled by the Unified Modeling

Language (UML) or we may animate the flow of data[209]. These are analytical,

not generative, applications of graphs to programming.

As graphical hardware advanced it became clear that the graphical editing of data flow

programs was a good candidate for creating geometric programs. To clarify, not only

is the program edited graphically, but also creates geometric output. These systems

provide a widely used example of PGM without written programs, albeit under another

name.

The Fabrik Programming Environment[149] allowed 2D graphics, user interfaces, and

their elements, such as scroll bars, to be constructed within a dataflow environment,

but suffered from “poor performance”. Conman[95] utilised data flow graphs on more

complex graphics hardware to create 3D objects. A user of the system could construct

nodes that interact with the user, allowing user interface sliders, 2D curve editors, and

arbitrary scripts to create 3D objects. Later Lovejoy et al. used the Prograph data

2.7. Data Flow Programming 37

Figure 2.28: An example of data flow being used to configure the visualisation of
a surface via OpenDX. The two paths the data takes through the graph construct the
isosurface and surface velocity, before combining them into the single 3D view.

flow language to control a 2D turtle[148], and Abram et al. use data flow languages to

visualise 3D data[2]. More recently, data-flow as a programming paradigm has seen use

in the graphics literature. For example, the strict hierarchy and lack of side effects in

split shape grammars can be modelled as a visual graph[183]. In [24] a message-passing

approach, reminiscent of data-flow programming, is used to connect otherwise disjoint

L-systems.

Perhaps more significantly, the data flow model is used extensively in recent commercial

software; 3D modeling packages frequently utilise some form of data flow graph as an

alternative to scripting languages. Both Alias’ Maya’s Hypergraph and Blender’s Nodes

use data flow graphs to describe causality within complex kinematic systems, and the

relationships between different texture channels. OpenDX[237] uses data flow graphs to

allow users to quickly visualise data sets of a wide variety of types, as in Fig 2.28. The

hierarchical compartmentalisation makes shape grammars a target for data flow graph

editors, as implemented in CityEngine[66]. A more general dataflow programming

system is given by the likes of Generative Components[25] or Grasshopper[46].

2.7. Data Flow Programming 38

v3v2v1

Figure 2.29: The result of varying the parameters v1, v2 & v3 in the Grasshopper
parametric model of Fig. 2.30.

To conclude this discussion of data flow graphs we introduce details of Grasshopper to

give an indication of the typical tools available in these languages. Grasshopper uses a

structural data flow graph to describe procedural geometry. We give an example of a

Grasshopper data flow graph in Fig 2.30, to create the geometry of a procedural truss

bridge in Fig 2.29.

The structures transmitted along the arcs are nested lists, each nested to a depth

specified at compile time. Because only lists with the same nesting depth can be used

as inputs to the same function, Grasshopper’s UI indicates the nesting depth by the

type of line between nodes (undecorated, double or dashed lines for single elements,

lists-of-elements or lists-of-lists-of-elements respectively), as in Fig 2.30. To address

the sequencing issue, when an operation node takes more than one input Grasshopper

specifies several data-matching techniques, demonstrated in Fig. 2.31, based on the

number of evaluations of the operation — either the shortest, longest, or product of

the sizes of the inner most list. In addition there are a number of operations for

re-ordering or selecting elements from the data structure, marked by ∗ in Fig. 2.30.

However they are only able to manipulate elements in the inner-most list; more complex

patterns require writing programs to order the nested lists.

As an aside we note that data flow programming in no way alleviates the standard

numerical computation issues, as witnessed by the removal of a small delta in two

places of the computation, marked ‡ in Fig. 2.30.

2.7. Data Flow Programming 39

*

*

‡
v
1

v
2

v
3

F
ig
u
re

2
.3
0
:

T
op

:
A

gr
ap

hi
ca

l
ge

om
et

ri
c

da
ta

fl
ow

gr
ap

h
in

G
ra

ss
ho

pp
er

.
T

he
m

od
el

is
co

n
tr

ol
le

d
by

th
re

e
n

u
m

er
ic

pa
ra

m
et

er
s
v
1,
v
2

&
v
3,

co
n

tr
ol

li
n

g
th

e
n

u
m

be
r

of
ve

rt
ic

al
be

am
s,

th
e

cu
rv

e
of

th
e

ar
ch

an
d

th
e

n
u

m
be

r
of

ho
ri

zo
n

ta
l

be
am

s
re

sp
ec

ti
ve

ly
.

B
ot

to
m

:
T

he
tr

u
ss

st
ru

ct
u

re
ge

n
er

at
ed

,
co

lo
u

r
co

de
d

to
in

di
ca

te
th

e
gr

ap
h

n
od

es
th

at
cr

ea
te

d
th

e
ge

om
et

ry
,

st
ar

ti
n

g
w

it
h

th
e

gr
ey

re
ct

an
gl

e
in

pu
t

to
th

e
sy

st
em

(t
op

,
fa

r
le

ft
).

2.8. Simulation Approaches 40

Figure 2.31: Data matching in Grasshopper. When joining the horizontal truss
members, three techniques are offered — Left to right: Shortest list, longest list and
cross reference.

2.8 Simulation Approaches

Creating grammars to describe man made objects is somewhat natural, as we are able to

encode the design process that a human may go through to create an object. However

there are many non-designed artifacts that we may wish to model in a procedural

manner, for example terrains, the historical growth of cities or damage to trees and

plants. Simulation approaches to procedural modeling involve the imitation of observed

processes to approximate the interactions within a model, and between the model and

its environment.

Simulation is used in a wide variety of ways to create geometry; we have already

seen examples of grammars simulating the growth of plants using L-systems[51] and

complex systems via data flow graphs[113]. We might even consider that searching

through grammar derivations is a simulation of the human design process. This section

explores a collection of systems that have simulation in common.

A very simple form of simulation are cellular automata; a specific example is provided

by Conway’s Game of Life[80] in which every simulation step updates a 2D array of

cells (boolean values) using very simple rules. As illustrated in Fig. 2.32, these simple

rules are executed in parallel on every update step, possibly changing the value of a

cell. Despite the simplicity of the rules, different starting values for the cell yields a

wide range of persistent and varied forms.

Attempting to program Conway’s Game of Life for a particular purpose is often quite

involved, however it delights in the unexpected behaviours that may be observed as

the simulation progresses. These unexpected or emergent behaviours have been better

studied in simpler still automata, such as those 1D systems studied by Wolfram[267].

Fig. 2.33 shows certain very simple rules creating complex patterns. There are 256

similar sets of rules, and this example is one of two examples that exhibit these emergent

properties, generating aperiodic, non-local structures.

Emergent behaviour seems to be very powerful as it produces intricate patterns from

2.8. Simulation Approaches 41

0-1
2-3
4-8

pr
ev

io
us

ne
ig
hb

ou
rs

ne
xt

0-2
3
4-8

n=0

n=10 n=200

Figure 2.32: Left: Conway’s Game of Life[80] simulation takes place on a 2D grid,
the transition from a living (black) to a dead (white) state occurs based on the current
state and the eight neighbours (top). Middle: The glider pattern, which self-propagates
along a diagonal as the simulation progresses. Right: A space-filling pattern by Hartmut
Holzwart, at simulation steps 0, 10 and 200.

. . .

Figure 2.33: A Wolfram cellular automata defines a transition over a 1D sequence
of cells who are either alive (black), or dead (white). Left: In this particular case “rule
30” specifies these eight transitions given a context of three cells (the cell to the left,
the cell itself and the cell to the right). Middle: When applied in parallel these rules
mutate a start state consisting of a single black cell in a deterministic manner. Right:
We may repeat this procedure a large number of times to generate an complex emergent
system of local structures throughout the right hand side of the pyramid.

2.8. Simulation Approaches 42

very concise descriptions. For these reasons simulation seems to lie on a cusp on

our spectrum of procedural modeling. Those general models that we have already

examined, may exhibit emergent behaviour, while those that follow are less likely to.

However, by definition, emergent behaviours are not intended. It is difficult to engineer

these system with particular properties; perhaps the only way of working with these

systems is to have a large library with known behaviours, and to select the system with

the most desirable properties.

Turing’s work on emergent patterns in physically based simulations[244] suggests that

this library approach may be the one favoured by natural selection; appropriating

emergent patterns into situations where they are evolutionary advantageous. However

these approaches have not found much traction in the computer graphics and procedu-

ral modeling mainstream. Examples are limited to corpora to texture synthesis [154]

and the physical simulation of plants. Smith et al. construct a time-based 3D growth

simulation of the meristem (growing tip of a plant’s shoot) in [216]. By modeling the

flow of growth hormone auxin through this region, and the geometric changes that

it produces, the model produces a realistic geometry demonstrating several modes of

Phyllotaxis.

As well as simulating the processes within a plant, there is also a body of work that

simulates the environment surrounding a plant. 3D (voxel) cellular automata may

be used to model the intersection, proximity and occlusion of a plant[90]. Traumatic

events, such as branches breaking may be modeled as step events during the simulated

growth of a plant[51]. The growth of a tree through a volume can be simulated as

a space colonisation algorithm[205] while structural simulation can create balanced

trees[104]. Finally some systems simulate the interaction between both internal and

external factors; for example work by Prusinkiewicz et al. growth[167] simulates both

the plant-state, via L-systems, and exogenous factors such as the availability of daylight

and water.

Another frequently simulated domain are cities. Many systems exist for modeling land

use, populations and travel costs within cities[255, 212]. Mostly these use grids of data

points, or fixed-structure cells to represent design and layout, some even use cellular

automata to model these processes[8, 108].

The introduction of PGM to urban modeling simulations has allowed the creations of

detailed visualisations of the resulting cityscapes that change over time. Typically geo-

metric city simulations follow the same procedural urban modeling “waterfall” pipeline

as time-static procedural cities[180], an example of which is given in Fig. 2.34. Major

roads, such as motorways and A-roads provide access to a quarter, an area with partic-

ular characteristics. Access within the quarter is provided by minor B-roads. The area

2.8. Simulation Approaches 43

Major Roads

Quarters

Minor Roads

Blocks

Parcels

Mass Models

Façades

Figure 2.34: A typical urban modeling pipeline, similar to [260] and [250].

between B-roads becomes blocks, which are further split into parcels of land. Finally

buildings are positioned on the lots — the 3D geometry described by mass models, each

face of which is then assigned a façade. When working with discrete time-step simula-

tions, as in the 2D model by Vanegas et al.[249] or 3D model by Weber et al.[260], it

is necessary to repeat this course to fine hierarchy with every time step. Examples of

Weber’s resulting land-use and transport map are given in Fig. 2.35.

This concept of a single pipeline is a gross simplification of the processes that occur

within a real city, in which many other factors are considered — for example major

roads must take into account and avoid historical buildings. However the waterfall

pipeline is a computationally efficient system with proven results. A system that al-

lows for interactive feedback between users of the simulation and the system itself is

presented by Vanegas et al.[251]. The user may edit values in the simulation using

a paintbrush tool, after which the simulation then commences and the system brings

the underlying behavioural and urban models back into equilibrium under the new

assumptions. This is a useful urban planning tool for quickly examining the results of

decisions, such as building new roads in neighbourhoods.

A further use for simulation at the building level is for the investigation of the physical

strength of a system. For example we may wish to:

• identify the safe range of parameters in a parametric model, such that our building

is able to support itself[264].

• design a truss structures to support certain loads[215].

2.9. Inverse Procedural Modeling 44

year 10 year 20 year 30 year 40

Figure 2.35: The work of Weber et al. (c©2009) simulating the geometric growth of
a city[260].

• find self-supporting free-form surfaces[254] that are sufficiently strong to be con-

structed.

• build furniture that is both stable and durable[246].

Each of these systems allow the user to specify a model and then simulation is used

to search for physically stable variation. This approach blends artistic human design

elements with automated reasoning about the properties of such a design.

Finally we find systems that use simulation for interior design. Two recent systems at-

tempt to position a given set of furniture in room by maximising an evaluation function.

Merrel et al.[158] encode various interior design guidelines, such as the distance chairs

should be from one another to permit conversation. Starting from a user suggestion,

the system is able to find a solution that accommodates these guidelines. Alternately

Yu et al.[278] learn pairwise relationships between items of furniture from several exam-

ples, and include occlusion constraints to ensure clear paths between doorways. Both

of these systems simulate a walk through an evaluation function by Markov Chain

Monte-Carlo sampling. While this is perhaps not simulation in the classical sense, it

may be seen as simulating a human designer’s exploration of the design decisions.

2.9 Inverse Procedural Modeling

As we have seen, the creation of procedural models is quite involved, requiring consid-

erable knowledge of grammars and languages. Recently there have been attempts to

generate procedural models from real world examples, the process of inverse procedu-

ral modeling. As with much of the shape grammar literature, the focus has been on

applications to the urban environment.

The data from the input examples may have been captured via multiple cameras and

terrestrial or aerial LiDAR (LIght Detection And Ranging, Sec. 2.12 contains further

2.9. Inverse Procedural Modeling 45

details); therefore it may contain significant quantities of noise. Identifying features in

this data is the first challenge, for urban environments in particular repeated features

are of significant importance. Recent techniques[159, 184] for identifying such fea-

tures in noisy data cluster the transforms between similar local features to determine

prevalent transforms. To reduce noise in the input data, RANSAC[71] is a popular

algorithm, and is utilised by GlobFit[138] to clean meshes making assumptions about

features such as planar surfaces, repeated distances and shared angles. Finally we can

form descriptions of 3D meshes as a tree of such patterns and symmetries[258] for

compression and error correction.

The grammar extraction techniques presented in this section mainly use the models

derived to compress data, rectify noisy captured data, or to extrapolate data to fill

holes. There has been relatively little work to re-target the extracted procedural models

to create novel geometry.

Before we examine systems that derive entire grammars themselves, we note that there

is a quantity of work on fitting parametric models to existing data. In the field of

urban layout reconstruction Aliaga et al.[12] learn descriptive parameters for a road

network via statistical analysis; this is then used to create new road maps. Alterna-

tively a template shape grammar may be parameterised to match input from vision

techniques[151].

The construction of grammars from examples has proved difficult, and the majority of

solutions rely on meta-heuristic techniques to search for a suitable candidate. Typically

these techniques repeatedly manipulate the grammar and compare the current results

with the noisy input data. In early work, Dick et al.[55] fit a grammar from several

images using a reversible jump Markov chain Monte-Carlo technique. The grammar

used is relatively simple — a set of walls formed the model, and each wall having a

set of associated decorations. The work is notable as it was able to reconstruct unseen

portions of buildings. Another system that uses a simple grammar and rjMCMC is

that of Ripperda et al.[202, 203] who utilise minimum description length of the derived

grammar as an evaluation criteria. By simplifying the grammar to an assignment

of a parameterised mass model to a number of quads covering the floor plan, [133]

successfully used rjMCMC to reconstruct large cities from aerial data.

More generally, rjMCMC has been recently used to force the derivation of an arbitrary

stochastic context free grammars to posses some specific qualities[232]; for example the

silhouette of a derived tree to some specified shape.

An alternative meta-heuristic for creating grammars are evolutionary algorithms. Si-

mon et al.[213] exploit a Pareto evolutionary algorithm to evolve a façade shape gram-

mar matching a number of images. In this system the appearance from multiple views,

2.10. Combinatory Modeling 46

and the depth correspondence form the evaluation (evolutionary fitness) function.

An incidental generation of grammars occurs in several places in the urban reconstruc-

tion literature. As [99] and [22] typify, the grammar complements the bottom-up land-

mark cluster analysis with a top-down grammatical description of the scene, enhancing

feature extraction. An alternative approach[239] is to only apply the bottom-up clus-

tering analysis, using the grammar to describe the properties derived from the input

data.

To avoid the need for meta-heuristics entirely Müller et al.[165] use the concept of

mutual information to identify repeating patterns in images of façades. The presence

of strong horizontal or vertical lines is used to determine the split-locations to generate

a CGA Shape grammar. This leads to a compact representation of the façade that can

be manually extrapolated to 3D. Another assumption that simplifies the construction

of grammars is that of a Manhattan World[248], in which all objects are orthogonal

polyhedra.

Müller’s automated extraction of façades is one example of using the extracted gram-

mars to re-target content. In this case the resulting façade could be re-sized arbitrarily.

Another example is Style Grammars [11]; a building grammar is created from 3D ge-

ometry, such that it may be retargetted to a different floorplan or height. This system

works principally by analysing the 1D patterns of sequences within a shape-grammar

like environment to predict a split rule for the resulting grammar. Finally Vstava et al.

extract L-systems from 2D vector designs by identifying similar components and then

analysing the transforms between them[220]. These L-systems may then be edited to

create unique new designs.

Inverse procedural modeling has the potential to create models that may be retargetted

to model novel situations, such as constructing buildings of different heights or floor

plans. However the results are, by design, derivative of the examples provided. For this

reason we may consider inverse procedural techniques to be more specific than general

purpose or simulation systems, yet more general than geometry capture or modeling

systems.

2.10 Combinatory Modeling

A subset of the inverse procedural modeling techniques that have an emphasis on

usability are combinatory modeling techniques. Combinatory modeling assembles sub-

components of example objects to create unique new geometries. These techniques fall

into one of three broad categories based on the level of input that the user is required

to supply.

2.10. Combinatory Modeling 47

Figure 2.36: Texture synthesis by the method of Wei et al.[261]. Left: An example
tree bark texture. Middle: The results of the synthesis. Synthesising a pyramid of
textures helps preserve large features. Right: Each pixel in a scan-line ordering of the
new texture is synthesised in turn. The feature vector of the red pixel is shown in the
bottom right, This will be compared to the example texture to identify a suitable colour
for the pixel.

Combinatory modeling obtains its procedural element from the choices made during

automated assembly. When there is a choice of the choice of parts to attach, a range

of designs may result. However, whatever algorithm is used to make the derivation

choice, the result can only comprise subcomponents of the examples. For this reason

combinatory modeling is a very domain specific technique in our procedural spectrum.

Early work in combinatory modeling was inspired by the 2D case of synthesising tex-

tures. Given an example texture in the form of a bitmap, texture synthesis aims to

generate additional bitmaps that are at the same time characteristically similar to the

input and yet unique. As in Fig. 2.36, the standard technique is to grow an image

from an example texture by combining pixels from the example in a novel order, based

on their neighbourhood. To synthesise a certain pixel adjoining the patch, local pixels

from the patch form a feature vector. This is compared against all possible vectors in

the example texture to find the best match[59, 261].

Variations of texture synthesis include image quilting [60], which creates a reasonably

coherent grid of overlapping square texture tiles from the example texture. A minimum

error cut then determines the exact boundary through the overlapping pixels. An

alternative approach is to ensure that the tiles are always positioned in such a way

that adjacent borders do not contain discontinuities. An example of this approach is

Wang tiles[43].

When attempting the synthesis of 3D mesh-based geometry, local features, such as

those in texture synthesis, have been successful in reconstructing small missing patches

2.10. Combinatory Modeling 48

of meshes[208] using iterative refinement of nearest neighbour search and blending tech-

niques. The synthesis of entire objects has been attempted by tiling 3 space with com-

patible cuboids, with early examples using Wang Cubes [211]. Later examples by Mer-

rell et al.[156] use learnt adjacencies between neighbouring cuboids. Merrell extended

his work to arbitrary meshes[157], from which common adjacencies are extracted, and

a backtracking search constructs a new model consistent with these adjacencies. The

system is able to create a large quantity of architectural models with only a single

mesh as input, and no further user interactions. However the work with tiling geome-

try retains the limitation that only transformations allowed by the tiling, rather than

arbitrary transforms, are present in the output.

Domain specific tools use specialised techniques to relax this limitation and consider

non-local portions of the geometry when combining portions of meshes. Two notable

examples by Aliaga et al. synthesise city layouts, and façades. The first system[11]

extracts statistics about the roads and parcels in an example city layout and and uses

them to synthesise new portions of a city. The gaps between the roads are filled with

textured parcels generated using a Voronoi tessellation; the textures for these parcels

are taken from similar shapes from the example, and morphed to fit. Given a seg-

mented 3D façade the second system[11] decomposes it into a simple split grammar by

identifying 1D patterns, which can be retargetted to new geometry or floor plans. More

recently work has taken place to allow “intertwined” 1D sequences of elements over

such a façade, allowing for more irregular elements to be represented in a retargettable

fashion[140].

To overcome tiling limitations general symmetry analysis techniques have been devel-

oped [159] to identify compatible (symmetrical) subcomponents and valid location sites,

from an example model[30]. To address the subsequent issue of controlling which of

several subcomponents is positioned at a certain site, systems such as those by Kaloger-

akis et al. introduce a probability based approach[118] which learns the conditional

probability of certain classes of geometry being adjacent, and the spacial relationship

between the parts. To gather these probabilities, a large number of examples with

subcomponents are required, but the result is a realistic combination of those subcom-

ponents. For example when working with a corpus of aeroplanes, propellers are not

combined with jet-engined chassis.

In contrast to these unsupervised combinatory modeling techniques, interactive com-

binatory modeling of arbitrary meshes is addressed by Funkhouser et al.[75]. This

work introduces a tool-chain to allow the user to quickly create detailed models using

subcomponents from existing libraries. A shape-based search finds components in a

database, and both positioning and mesh blending tools are provided to the user to

align and attach those subcomponents to the existing model. This work is later ex-

2.11. Shape Deformation 49

Figure 2.37: Two geometry errors with combinatory modeling systems. Left: From
[118], the rigging of this novel boat is not attached to the deck because there is no
mechanism to deform subcomponents. Right: From [140], if subcomponents are not
carefully selected it is easy for the large scale geometry to contain undesirable patterns,
such as the roof on this model of the Parthenon Images c©their respective authors.

tended to search for 2D sketched profiles of shapes in a library[135]. Other systems

specialise in the interactive synthesis by example of repeating 1D systems[176] and the

use of genetic programming to inspire the exploration of subcomponent-space[272].

An obvious limitation of combinatory approaches is that they are only capable of

imitating local and global patterns that have already been observed. While these

systems are very successful in combining geometry in new and interesting ways, they

are also limited by various geometric cases, where geometric continuity is required

between the subcomponents, as demonstrated in Fig. 2.37.

2.11 Shape Deformation

Moving towards more specific procedural modeling techniques we may decide to only

manipulate existing geometry, rather than attempting to design geometry from first

principles . Shape deformation is the continuous manipulation of an existing geometry.

Typically these models create a range of designs as they deform a shape, and so are a

more general procedural tool than geometry construction techniques.

Recent work has begun to explore the overlap between combinatory and shape defor-

mation techniques. Bokeloh et al. continued their work on identifying symmetry[29]

to exploit these repetitions to deform models, typically architectural, that contain du-

plicated elements. These repeats are often reminiscent of combinatory modeling tech-

niques. For example [30] resizes a repeating 1D sequence by repeating symmetrical

elements, either chosen randomly, or by a user. An alternative interface is given in [31]

which introduces sliding dockers as user positionable handles to deform meshes with

repeating elements. An underlying elastic deformation is combined with constraints

2.11. Shape Deformation 50

Figure 2.38: An example of the ‘morphing system of Beier and Neely[23]. Left: Two
images (black) and their control points (pink, blue). Right: The result of a 50% warp
between the two.

to preserve observed symmetries, such as straight lines or 1D repeating patterns. The

most recent system in Bekeloh’s series of papers [32] uses a linear system to maintain

basic relationships, after factoring out 1D or 2D repeating elements.

The first 2D image warping method was created by D. Smythe for the movie Wil-

low [217] in 1988; it was used to smoothly deform a goat into an ostrich, and finally

a tortoise. The user specifies the location of key points between the images by posi-

tioning a grid, and the system would create an image at a certain interval between the

examples, allowing the features to flow to different locations smoothly. To achieve this

effect the grid was smoothly interpolated between the two states, and the content of

the meshes blended. A similar technique was presented in 1992[23], that used discrete

handles instead of a grid, that weighs each pixel’s location relative to each handle. An

example is given in Fig. 2.38. A recent system by Igarashi et al. has a different goal; to

allow an image to be deformed as rigidly as possible[111]. This is applied to examples

to allow the interactive animation of images. A pair of linear solvers allow a mesh to

retain a physical rigidity, while being retargetted to a new shape. An alternative im-

age deformation technique is image resizing. Seam carving is a 2D technique to resize

images, whilst retaining the most important features[21]. By discarding low-energy

seams from an image, the most interesting features of an image can be retained, at the

cost of global distortions.

One of the earliest system to deform 3D objects was created by Sederberg[207]. This

scheme, analogous to the 2D system of Smithe, utilises a 3D lattice positioned over the

object to be deformed. By moving the points of this lattice, the geometry within can

be smoothly reshaped without introducing discontinuities. This technique is global, in

that the entire mesh is deformed when a lattice point is manipulated. Another global

technique[33] allows the user to position handles on the 3D mesh. After moving these

to a new location the system deforms the mesh such that it again touches the handles.

One issue with global deformations is that it is difficult for two physically local sections

of geometry to have different deformations without interference. For example, when

2.11. Shape Deformation 51

deforming the middle finger of a hand, it is likely that the index finger will also be

repositioned. A response to this was a local deformation — skeleton based deformation

techniques, in which portions of a 3D mesh are deformed in response to only a subset

of the skeleton. Different portions of the mesh are associated with different portions

of the skeleton, allowing for nearby verticies to be manipulated by entirely different

deformations. There are many different methods for defining a skeleton —

• In early work[136] the bones that comprise the skeleton are coordinate frames

defined by the user.

• Later systems[26, 277] use the medial axis of the mesh to define a skeleton as a

“shrunk” version of the mesh that can be animated and reconstructed.

• Lastly we may analyse a mesh to discover mechanical joints, and the joint limits

that may be present[273], to associate the correct portions of the skeleton with

the mesh.

One issue that is common to most deformation techniques, but skeleton based defor-

mation in particular, is the undesirable self-intersection of the mesh under aggressive

editing. Various approaches have been suggested to address this issue, including chang-

ing the weights near a sharp bend in the skeleton[136], or deforming the mesh based

on self-proximity[277].

Both the local and global techniques examined so far have been unable to identify and

preserve the symmetries and patterns present in man-made objects. To this end, there

have been several recent efforts to create tools specifically targeted to the deformation

of man-made objects. For example Cabral et al.[35] resize meshes using constraints

that specify that the angles must remain constant, and the edge lengths must remain

as similar to the original as possible. These linear systems can then be solved at

interactive rates to allow urban geometry to be resized by a number of user-placed

handles. iWires[77] instead analyse the geometry of the given object, to extract a

number of wire-like handles that can be used to deform the object. The analysis

reveals the symmetries between the wires visible in the shape, and these may then be

retained under user edits. Given a model that has a number of constraints, such as

orthogonality or planarity, Habbecke et al[93] present a method for deformation when

the user drags an arbitrary vertex. A combination of a linear model and compressed

sensing are used to ensure as few verticies as possible are moved.

Some mesh representations, such as planar quad (PQ) meshes, have underlying con-

straints on the location of verticies. PQ meshes require that all the faces of a mesh are

planar quads, and are useful when, for example, we wish to build curved glass roofs

2.12. Geometry Construction 52

from a patchwork of planar tiles. Yang et al[274] introduce a framework for deforming

such meshes by exploring a high dimensional space. This space is bounded by the

given constraints, and may be explored via 2D maps. The resulting mesh is found by

projecting back to 3D.

As a form of deformation parametric modeling is an often-overlooked subject in both

general academia and computer graphics[105]. Computer aided design (CAD) systems

are used to design 3D geometry in many industries. Typically these operate on similar

principles to geometrical modeling, but with the end goal of producing domain specific

results, such as AutoCAD[18] for standard-compliant architect’s plans, ArcGIS[17]

for maps, or Mastercam[218] for computer numerical controlled (CNC) fabrication

machines. Parametric modeling is an extension to CAD to consider the design of

elements where parameters may vary, producing a range of objects, as in procedural

modeling. This offers a way for a draftsman to encode domain knowledge into a

model[14]; as they work the designer specifies which measurements are parametric,

and the constraints that are necessary for each measurement. As with PGM, there is

no standard format for parametric components[134].

An example of a deformation technique that is typically used to create a single in-

stance of a 3d mesh is digital sculpting. Commercial projects such as zBrush[187] and

Mudbox[20] provide the best example of this technique — users are able to manipulate

a 2.5D or 3D mesh by drawing strokes on the surface to mark the location of deforma-

tions. Typically users can push and pull the surface, as when sculpting a real-world

deformable material, such as clay. These tools are used widely by 3D mesh artists to

create highly detailed models, for example, reconstructing extinct animals from their

fossil remains[221].

2.12 Geometry Construction

Towards the most specific end of our procedural spectrum the systems we examine

do not create true procedural models, but only create a single geometric instance,

such as a 3D mesh. Typically every new geometric instance will require significant

human interaction. We begin our overview of this expansive subject by looking at

some examples of domain specific geometry modeling tools, then sample some geometry

capture methods, and finally examine 3D mesh construction techniques.

An overwhelming variety of domain specific geometric modeling tools are available.

Chen et al. exploit tensor field editing systems to design street networks in an urban

environment[38], exploiting the literature on the subject to build a novel urban geome-

try design tool. The Arches [185] framework presents a novel representation of terrains,

2.12. Geometry Construction 53

as well as sculpting and editing tools to manipulate the mass of of rocks, or introduce

features such as cracks. Another domain that has been approached is to allow the easy

modeling of flexible objects[257], by reducing the degrees of freedom that such objects

have in an intelligent manner.

Freeform architectural surfaces are characterised by large smooth curved areas, that are

not regular geometric structures. The work in graphics on these surfaces is largely con-

nected to modeling these surfaces as 3D meshes, with each face, having certain physical

properties. The faces are often constructed of planar glass sheets, often quadrilateral.

These surfaces are well represented by PQ meshes, but many mesh editing techniques

do not guarantee these planarity properties. One approach by Pottman et al. is to op-

timise a given thin PQ mesh such that each quad is within some planar tolerance[147],

another is to allow the user to explore the space of such meshes[274]. The generation

of thick, offset, surfaces to PQ meshes is studied in later work[190]. Instead of PQ

meshes, we may wish to construct our freeform surfaces from bendable strips of flexi-

ble material[192], or use such strips to create geodesic patterns[191]. These techniques

use elements of simulation to create one-time models, with a typical example being the

simulation of a cost function for the physical manufacture of the mesh faces[63]. The

authors present a cost function based on the reuse of face shapes and deviation from

the specified design.

A quantity of work aims to reconstruct 3D objects from 2D plans[275]. We may, for

example attempt to interpret 2D vector plans, typically created by CAD software, into

plausible 3D objects. Lewis et al.[137] introduce techniques to re-structure plans in such

a way as to make the data suitable for extrusion. However if we only possess a bitmap

image of the plan, without any of the meta-data associated with vector plans, a range

of machine vision techniques must be used to identify the different features[57]. These

techniques have also been used for rapid video-game environment construction[73].

Academic projects also explore sketch based deformation techniques, such as Keraut et

al.[123] who utilise shape from shading techniques to allow users to construct 3D meshes

from their 2D drawings of an object lit from several angles. More recent work allows

users to deform 3D meshes by sketching the position of highlights or silhouettes[83]. An

alternative to sketch based deformation, is the photo based approach of Xu et al.[271],

who use a photo to deform a 3D mesh to replicate the form of a certain 2D image.

This is achieved by decomposing the symmetry of the mesh and re-aligning it to the

silhouette given in the photograph.

Utilising 2D images to aid in 3D geometry synthesis forms an extensive sub-field of

geometry capture from sources such as single photographs, sets of photographs, LiDAR

and GPS data. In Sec. 2.9 we explored several systems that exploit a procedural

2.12. Geometry Construction 54

model as a reconstruction tool; there is considerable overlap between such systems and

the geometry reconstruction techniques given here that reconstruct a static 3D mesh.

A thorough treatment of this spectrum of reconstruction techniques is given in[166],

although we now give an overview.

Manual reconstruction from a single photograph is quite unconstrained and so relies

on domain specific information to produce useful results. Early attempts[109] required

further human assistance and exploited assumptions about objects always touching a

known floor to infer depth. More recent attempts exploit domain specific properties,

such as the strong rectilinear nature of façades[165], or the symmetrical nature of a

certain class of buildings[116] to automatically reconstruct geometry.

Given several photographs we may reconstruct a 3D point cloud over the surface of a

building, using techniques such as structure from motion[53]. To construct accurate

meshes from a low number of images, together with user interaction, one approach is

to use such 3D data as a mesh modeling aid. The Façade[52] system pioneered this

approach, using several images, with edges identified by the user, to reconstruct the

geometry from basic blocks. Another approach is given by Sinha et al.[214] who allow

the user to sketch polygonal faces that are then fitted to the recovered 3D point cloud

using the RANSAC algorithm. This is then followed by automated texture extraction

from the source images. A similar vision approach is used in [177] to reconstruct a

coarse 3D representation of a building site, such that the user can sketch the walls of

a building on embedded 2D planes.

To perform fully automatic reconstruction, we may make assumptions about the ge-

ometry in the scene. For example Werner et al.[263] assume an architectural scene

with a few principle edge directions. To automate reconstruction from general images,

generally a larger set of images are required. For example, an automated version of

the Façade system uses dense polygonal reconstruction from several photographs[189];

this is sufficient detail to reconstruct a coarse mesh of a single building. Larger scale

reconstructions require using hundreds or thousands of photographs to reconstruct ur-

ban areas in fine detail. Gathering sufficient data for these approaches is challenging,

with researchers using image-sharing websites[4], crowdsourced calibrated capture[115]

and novel games[242] to collect a sufficient number of images covering the geometry to

be reconstructed.

An alternative to optical photography is LiDAR reconstruction. LiDAR uses laser

range finding to plot a depth-map of some geometry. Common examples include street

level LiDAR for façade reconstruction[197], and aerial LiDAR for urban[280] or forest

environments[161].

The industry default 3D mesh creation techniques are mesh construction tools, these

2.12. Geometry Construction 55

a

b

c

d

e

f

g

h

i
j

k

Figure 2.39: A slightly contrived mesh construction workflow to create a house (cen-
tre). The walls, windows, door and roof are created using lofting, constructive solid
geometry, bevelling and manual modeling tools respectively.

have become ubiquitous, with commonly used commercial packages such as Maya[19],

Blender[74] and Sketchup[240]. In the most part this chapter has been discussing more

general alternatives to these techniques, however this tool chain is used to create the

majority of 3D geometry in use today.

A typical workflow to create a 3D mesh of a house in a is show in Fig 2.39. To create

the roof (Fig 2.39, ab), a user may manually add verticies (red points), and select

groups of verticies to form faces. Rotational, translational and scaling tools allow

these elements to positioned appropriately, (c). A door may be constructed using the

bevel tool. A cross section and path are defined (d) using manual modeling techniques;

an application of the bevel tool then sweeps the same cross section along the profile,

creating faces (ef). The loft tool is similar but takes a list of curves with the same

topology, but changing geometry (g) and creates solid faces between them (hi). The

loft tool creates the walls of the house, but to inset the windows we use constructive

solid geometry tools[238] to subtract the volume of a set of carefully positioned cuboids

(j) from the result of the loft operation (k). We note that there is no correct choice of

2.13. Digital Libraries 56

Figure 2.40: A single model by Bob1938 from the Timble 3D Warehouse[241], that
was found using the search term “Victorian house”. The time to find and download
the model was 30 seconds, a significant improvement on many of the PGM systems
presented in this chapter. c©Bob1938.

tool for each geometric element. For example manual vertex construction could have

been used for the entire mesh, or the walls could have been constructed via CSG over

an appropriate set of cuboids.

However a wide variety of research is still undertaken to create meshes, here we only

present a small sample. For example, given only a 2D sketch of a 3D object, recon-

struction is an under constrained problem; a problem that Structured Annotations [82]

approaches by asking the user to annotate a sketch to provide more constraints. Alter-

nately FiberMesh[172] approaches construction using a sketch-and reconstruct cycle.

A novel tool is the application of texture cloning to 3D to allow interactive mesh ge-

ometry copying from one mesh to another[231]. Finally Li et al.[139] address the issue

of the manipulation of irregular verticies in near-PQ meshes to achieve aesthetic or

structural benefits.

2.13 Digital Libraries

The most specific extreme of our spectrum of PGM contains libraries of objects. Given

the range of geometry creation systems available it should be not surprising that repos-

itories such as TurboSquid [243] contain upwards of 200,000 3D meshes.

Given such a variety of geometry, some search tools are required to allow users to locate

the geometry they require. Most of the commercial websites such as Trimble Ware-

house[241] or Turbosquid use text based search, an example result is show in Fig. 2.40.

However searching large collections of 3D meshes remains a active research area. The

seminal work in this area by Funkhouser et al.[76] indexes and retrieve meshes by

sketches or example models. The rotation invariant properties of spherical harmonics

are used to construct easily indexed feature vectors. An alternative feature descriptor

2.14. Summary 57

is given by [174], which uses the low frequencies of the depth map of the rendered

object. The rendering stage ensures the system is robust to irregular meshes, such as

those which contain holes. A different approach is to exploit the continuous variability

in a set of models to allow users to explore the set of models interactively, as in [175].

For example, users navigate from one airplane mesh to another by indicating that they

wish the wings to be further forwards on the fuselage. Recently fuzzy correspondences

have been introduced as a technique for exploring a library of meshes uses regions of

interest that the user specifies on an example model.

Because each model in the library has been manually created, they are free from many

of the artifacts that recovered geometry may contain. Furthermore they are free from

many technical concerns that come with many of the more general procedural systems,

such as termination criteria in the case of shape grammars. However, the user faces

several other issues in using this content — for example, given an existing lot in a

city finding a house of the correct style to fit, depends on the contents of the library.

Generating a large cityscape may require repeating objects from the library, or mixing

meshes of different styles and level of detail.

2.14 Summary

In general there are many axes on which we can classify the work on procedural mod-

eling, such as quantity of human interaction, or applicability to real-time situations.

However in this chapter we have introduced one such axis — a continuum of procedural

specialisation from the general purpose to the specific.

We have given examples examining the range of geometry that may be generated

with each system. From general purpose programming languages, that only happen

to be used for geometry creation, through complex grammar and inverse procedural

techniques, to simply finding the closest possible item of geometry in a library. Unfor-

tunately it is hard to make a quantitive argument about the trade off between power

and ease of use over this spectrum. This is due to the difficulty in capturing ease of use

information given the wide range of users’ abilities (both programming and artistic),

and in quantifying the range of results that a system can create. We may imagine

some future work in which users create a model with each system in the spectrum, and

we then evaluate the time it took the user, the fidelity, and the range of geometry the

created model creates.

Complicating matters we have observed an increasing number of cross over systems in

recent years — combining separate parts of this spectrum to increase the utility of the

system. For example,

2.15. Approach 58

• grammars are used in urban reconstruction via inverse modeling to more tightly

fit geometry.

• the 3D meshes created by tools can be positioned to form a facade using a shape

grammar, that itself is implemented in a general purpose programming language.

• simulation is used to evaluate the results of L-systems to create models of trees.

Given the broad range of geometry synthesis systems available today, users would be

well advised to find the most specific technique that has the required flexibility. For

example a video game artist may wish to “synthesise a large set of alien tower blocks”

with a shape grammar, a town planner may wish to “visualise this area of a city after a

10% increase in public transport usage” using simulation techniques, or residents may

only care to “visualise the new statue outside the town hall” using mesh construction

tools.

In our introduction we stated that in order to be useful, existing procedural systems

required users to write computer programs. With this spectrum of proceduralisation,

we can see a strong correlation between general, powerful systems and the requirement

to write computer programs. The most general geometry creation techniques, Sec. 2.1

to 2.7, require users to program. The type of programming involved was quite varied;

we have encountered systems that use a conventional language, a shape grammar, or a

data flow graph to specify an algorithm. Conversely, the the most specific techniques,

Sec. 2.8 to 2.13 do not require any programming. The user is able to generate a smaller

variety of geometry, often confined to a single domain. However they are able to create

models using a variety of easier to master techniques such as graphical editing (in the

case of shape deformation or geometry construction), discrete selection (in the case

of digital libraries or combinatory modeling approaches), or by selecting a number of

parameters (in the case of simulation systems).

If we start from the premise that we wish to build a system that is as general as possible

without writing a computer program in any form, we find the state-of-the-art in the

middle of such a spectrum.

2.15 Approach

We wish to possess a system that is as expressive as a split shape grammar, or data

flow programming system, but inspired by the types of user interface present in the

simulation or inverse procedural modeling approaches. Inspiration for a such a system

was forthcoming from Havemann’s thesis[105]. This provides some convincing examples

2.15. Approach 59

that an offset mechanism driven by the straight skeleton was a powerful accompaniment

to a written programming language. After studying a variety of man made objects

inside and outside an urban environment, it became clear that some generalised offset

mechanism could describe many features of man-made geometry.

The straight skeleton has a simulation-like definition, in which a 2D shape is shrunk

until it disappears, leaving behind it a subdivision of the original shape. The output is

promising because it was closely correlated to the input, and is quite predictable and

easy to understand via a user interface. However the skeleton also had some interesting

non-trivial outcomes, such as being able to split concave shapes into two, introducing

holes into faces, and leaving behind “arcs” which form part of the centrelines of a shape.

It is these emergent properties that we found we could exploit to create an expressive

range of geometry.

Chapter 3 introduces our detailed examination of the straight skeleton, the kind of

events that we observe as it shrinks, and the kind of degeneracies that occur if we

are unlucky. We continue to examine how the straight skeleton can be generalised so

that it becomes a more powerful modeling tool in more situations, whilst keeping its

desirable properties.

Given a theoretical understanding of the geometry, we continue to apply the skeleton

to the domain of urban procedural modeling. The urban domain has several prop-

erties which make it ideal for modeling with skeletons. Given the polygonal output

required for many tool-chains used to create 3D environments, the straight edges of

many architectural forms was appealing. Cityscapes also offer a more semantically and

geometrically demanding domain than, for example flora — façades have constraints

such as only locating doors at street level, and unlike procedurally generated botany,

the self-intersection of buildings is undesirable. Finally the urban landscape is well

documented, which facilitates easy to obtain reference material and comparisons.

Our first application of the straight skeleton to an urban domain was in identifying the

centerline of city blocks so that they could be split into lots. Existing systems assumed

a simpler model, in which the block was repeatedly split into two pieces, however

such a system was unable to represent the characteristic centrelines. In Chapter 4 we

examine a novel technique for the subdivision of city blocks using the straight skeleton.

The straight skeleton is combined with geometric construction techniques to give a

parameterised algorithm for city lot formation.

We continue into Chapter 5 to apply a generalisation of the straight skeleton to the

construction of solid buildings that may be located within such lots. The similarity

of the of the straight skeleton to a building’s roof is exploited and extended to gen-

erate a wide variety of interesting architectural forms. Repeated applications of the

2.15. Approach 60

skeleton are guided by user defined plans and profiles to generate buildings. The gen-

eralisations of the skeletons that we introduce prove to be robust building blocks for a

novel yet expressive system.The emergent properties of the skeleton gives very intricate

forms simple constructive definitions. These forms prove to be robust enough for large

scale cityscape generation, and capable of generating a wide variety of observed urban

structures.

61

Chapter 3

Various Skeletons

This section contains both literature survey and novel components. As introduced

in Interactive Architectural Modeling with Procedural Extrusions [121] I contribute

both the general intersection event and the mixed weighted straight skeleton. Fur-

ther contributions are the analysis of the weighted skeleton degeneracies, as “pub-

lished” in a blog post, and the description of the pincushion problem.

The straight skeleton is a geometric subdivision of a 2D shape, based on the notion of

“shrinking” the shape. In the following we will introduce the skeleton, its properties,

degenerate cases, computational complexity, and how to construct it. We extend the

standard definition of straight skeleton in several steps, introducing a hierarchy of

several skeletons, each of which is a generalisation of the previous. These generalisations

introduce additional degeneracies which we catalogue and suggest techniques to resolve.

Given the spectrum of geometry creation tools explored in Chapter 2, we were searching

for an expressive yet simple to use tool that would lie in the centre of our spectrum of

proceduralisation. It had to be general enough to create a width range of useful results,

but easily controllable without the need for specialist training. As we stumbled upon

the idea of offsetting geometry, and were introduced to existing results[105] relating to

the straight skeleton modeling the roofs of buildings, it became clear that the skeleton

had the potential of being a powerful modeling tool. The close relation between offsets

and the straight skeleton, introduced in Sec. 3.2 formed a powerful argument for this

particular geometric primitive having a wide range of modeling applications.

Discovering that the straight skeleton was also heavily used for roofs, we examined how

the skeleton could be extended to a larger domain. In the first case we noted that the

walls below a skeleton-created roof could be modelled either by an extrusion operation

3.1. Ways of Shrinking Polygons 62

or by the scaling the roof in the vertical direction until it became almost vertical. From

this point we explored the generalisation of per-edge slopes in the skeleton. Because

the definition of such a structure remained inherently simple and geometric the natural

user interface wasn’t programmatic, but instead visual.

In this chapter we examine the straight skeleton in detail and formally introduce a

hierarchy of skeletons, each of which takes the same basic information as input, but

expresses a wider range of geometric forms than the previous skeleton. In taking this

approach we can technical problems underlying the key skeleton concepts of offsetting,

or shrinking, a polygon.

3.1 Ways of Shrinking Polygons

There are many ways in which to shrink a polygon. Fig. 3.1 illustrates four published

techniques which translate shrinking edges in a self-parallel manner. These techniques

only vary in their treatment of reflex corners:

a) Given that each edge moves towards the inside of the polygon (green), parallel to

itself (white arrows), a multitude of techniques can be imagined by changing the

handling of the corners.

b) The medial axis [28]. A reflex vertex becomes a parabola as it shrinks, maintaining

a constant distance from the original polygon. The medial axis itself is a skeleton

defined as the set of all points within the polygon which are equidistant to two or

more points on the boundary of the polygon.

c) The straight skeleton[6] (SS), moves reflex verticies with the intersection of the two

adjacent edges. We investigate further properties of the straight skeleton in Sec. 3.2.

d) The linear axis [233] introduces hidden edges into reflex corners of the skeleton to

approximate the medial axis using only straight line segments. These hidden edges

immediately grow to “blunt” such verticies, reducing their “speed” as the polygon

shrinks.

e) A weighted variation of the straight skeleton (WSS) was introduced by similarly

timed later papers by both Eppstein and Erickson [65], as well as Aicholzer and

Aurenhammer [7]. Both papers only give a passing mention to WSS and degenerate

cases are not introduced. The edges of the WSS are assigned independent speeds

for shrinking, which shall be examined further in Sec. 3.3.

3.2. The Straight Skeleton 63

a b c

d e

Figure 3.1: Techniques to shrink a polygon (a). These include the medial axis (b),
straight skeleton (c), linear axis (d) and weighted straight skeleton (e). The result of
using each technique to shrink the polygon by a small distance is shown (the light green
areas are lost to the shrinking process).

Our interest here is in the straight skeletons (SS and WSS), as these structures do not

introduce curved or additional edges, and, as demonstrated in Chapters 4 and 5, are

well suited to modeling certain classes of man-made objects as 3D meshes.

3.2 The Straight Skeleton

Let us consider the growth of a crystal, as in Fig. 3.2. As Aichholzer observed in [7], if

we were to watch such a crystal growing we would see that each face grows outwards

in a self-parallel manner, and the edge between two such faces moves outwards as the

intersection of these faces. Thijssen et al.[236] earlier explored the statistical properties

of such growth in crystals, introducing a 2D proxy for the original 3D geometry, Fig. 3.3.

This model of self-parallel growth is the reverse of the process that is performed to

calculate the straight skeleton, which is calculated by the shrinking of a polygon.

The straight skeleton (SS) is a 2d graph of arcs generated from this shrinking of a

polygon. Each of the edges of the polygon moves towards the interior at a constant

speed in a self-parallel manner. Occasionally the topology of the polygon changes as

we observe events such as an edge shrinking to zero length. As shown in Fig. 3.4, the

movement of the corners of the decaying polygon trace out the “skeleton” itself. These

arcs describe the path of the verticies as the polygon shrinks. Several examples are

3.2. The Straight Skeleton 64

Figure 3.2: Composite grey cubit crystals of galena with purple cubic crystals of
fluorite. Cave-in-rock, Hardin Co., Illinois, USA.

Figure 3.3: Given a set of square seeds (grey) on a line, the polycrystalline growth
moves outwards (green), and the movement of the corners traces out lines (blue).

3.2. The Straight Skeleton 65

Figure 3.4: Left: A shrinking polygon. Right: The arcs of the straight skeleton (blue)
are formed by tracing the edges of the shrinking polygon.

shown in Fig. 3.5.

3.2.1 Constructing the Straight Skeleton

The SS is a graph of straight edges in R2. However we can interpret it as a terrain – a

set of faces in R3 which form a “landscape”[6], Fig. 3.6 right. This approach is taken

as it allows a comparison between the standard, unweighted straight skeleton, and

the various types of weighted straight skeletons (WSS), a generalisation introduced in

Sec. 3.3. The terrain constructed touches the polygon on each edge, and the projection

of the edges of the terrain onto the polygon forms the 2D straight skeleton.

The shrinking process is modeled as a sweep plane that rises with constant speed from

the input polygon, carrying with it the evolving shape. Each edge of the polygon moves

inwards with a constant speed relative to the sweep plane motion. The sweep plane

rises and the polygon shrinks, encountering various topological events. Eventually the

polygon shrinks to nothing and the skeleton is complete. The terrain approach allows

the events to be modelled as the intersection of three planes, rather than three 2D

edges, allowing the geometry of Chapter 5 to be constructed trivially.

To distinguish between the under constrained term “polygon” and a similar structure

with additional constraints, we introduce a plan, Fig. 3.6. A plan is a planar partition

(a straight line planar embedding of a planar graph) that divides the plane into finite

inside and infinite outside regions. A plan is a set of polygons consisting of corners

and edges, these are embedded in a plane parallel to the xy (“ground”) plane, so that

all corners of a plan have the same z (height) value. The jth polygon is described

by nj polygon corners cji ∈ R3 with 1 ≤ i ≤ nj. Each corner cji is connected to the

next corner (according to the polygon orientation) by an edge eji . The loops of edges

are oriented counter-clockwise, but polygons describing holes are oriented clockwise.

Additional bounded regions may be recursively located inside a hole. When discussing

3.2. The Straight Skeleton 66

Figure 3.5: A variety of polygons (green) and their straight skeletons (blue).

plans, indices are treated cyclically, so that in a polygon with corners cj1, cj2, and cj3,

the vertex cj4 means cj1.

Unlike the medial axis, there is no trivial description as to whether a particular point

within a polygon lies on the SS arcs. Instead, the skeleton is defined in the literature

as the result of the process of shrinking a polygon. That is, the only description of the

SS we have, is the algorithm for its construction.

To construct the skeleton, a sweep plane rises vertically from the input plan. This

sweep plane carries with it an active plan that defines cross sections of the terrain.

input plan

face

straight skeleton

arc

active plan

input-edge

corner

roof model

Figure 3.6: Straight skeleton terminology. The input plan defines the starting state of
the construction, while the active plan defines the state part way through the shrinking
process. The final straight skeleton is a 2D graph consisting of arcs adjacent to faces.
The roof model is an alternative 3D representation, the projection of which onto the
ground plane forms the 2D straight skeleton.

3.2. The Straight Skeleton 67

This 3D approach was first suggested by Eppstein et al. [65], although in spirit similar

to the original 2D proposal by Aichholzer[6], with data structures inspired by Felkel

and Obdržálek[68]. However we use our own notation for continuity. The output of the

system is a series of skeleton faces that make up the 3D terrain. The edges between

the faces are named arcs after Aichholzer et al.[6], a term that we shall use in both 2D

and 3D interpretations of the skeleton.

As the SS is constructed, the sweep plane rises with constant speed, and the active

plan shrinks. In the case of the basic straight skeleton every plan edge moves with a

constant and uniform speed towards the interior of the polygon. As both the speed

of the sweep plane and plane edges are constant, each plan edge remains within the

same 3D plane. One of these direction planes is associated with, and intersects, every

edge in the input plan. As both the speed with which the sweep plane rises and the

movement of the edges is equal, the direction plane associated with each edge eji forms

an angle π/4 with the input plane. Each skeleton face lies in one of these direction

planes. To obtain a steeper or shallower roof from the SS we may scale the faces in the

Z direction appropriately.

At all times in this shrinking process we must ensure that the active plan remains well

formed. That is:

• The enclosed region remains to the left of every directed edge.

• No edge intersects another edge, with the exception of touching the neighbouring

edges only at shared corners.

• Every enclosed region has a positive, finite and non-zero area.

• There must be a finite number (zero or more) of such enclosed regions.

In the SS every active plan edge has the same constant, positive, speed. As the edges

move, the corners remain defined by the intersection of the adjacent direction planes

and the current sweep plane, as in the plans of Fig. 3.7. Therefore each corner in the

active plan, cji , moves between events with a constant, and often unique, speed and

slope relative to the input plan.

Fig. 3.8 shows that as sweep plane rises and the active plan shrinks, the plan may

become badly formed (red). To ensure that the active plan remains well formed, we

detect when more than two or more edges intersect and we make topological changes

to the active plan. We call these events ; as introduced by Aicholzer et al. [6] there are

two types of event:

3.2. The Straight Skeleton 68

x x
x x

x
x

Figure 3.7: As the active plan shrinks, the edges move with a constant speed. Several
plans (left, middle, right) are shown (green), along with their shape at a later time
(grey lines). In a certain time, every edge moves the same distance (x), but movement
of the corners is defined as the intersection of the corners and so the distance moved
typically varies. Very sharp reflex or acute angles between edges may cause corners
to move with high speed (right). This speed approaches infinite as the interior angle
approaches 2π from below, or 0 from above.

a

b

Figure 3.8: Left: the anti-clockwise oriented input plan. Middle: The active plan
at a split event (orange). Right: Without a split event, a portion of the active plan
becomes badly formed. There are self-intersections at a and b, and the red region is
defined by a clockwise loop; that is, the edges define an infinite inside region outside
the red area.

3.2. The Straight Skeleton 69

a

b

d

f

(adf)

(abc)

1.

2.

3.

(acd)

c

(def)

(acd)

e
(def)

Figure 3.9: Left: the straight skeleton is given by arcs (blue lines) tracing the verticies
of a shrinking polygon (black lines). Each edge moves with a constant speed towards
the interior of the polygon, and as it does the topology of the polygon changes in several
different ways (dark green lines), during events. Right 1-3: The calculation of the SS
is primarily a sequence of such events.

• Edge events occur as the length of an edge shrinks to zero. When a plan edge

shrinks to zero the direction planes defined by three consecutive (linked by cor-

ners) edges collide (Fig. 3.9, 2).

• Split events take place when two adjacent direction planes, and one non adjacent

direction plane collide (Fig. 3.9, 3). These split the region bounded by the active

plan into two parts.

.

We can describe these events in terms of the local plan around the direction plane

a
c

a

b

c, d

d
b

before during after

Figure 3.10: Edge (a) and split (b) events that occur as a polygon shrinks. Peaks
(c & d) comprise three co-sited edge events.

3.2. The Straight Skeleton 70

Figure 3.11: The active plan in two configurations in which intersection of unbounded
direction planes (intersection with active plan shown as red, cyan and orange lines) does
not lead to an event as they occur outside the bounds of the associated edges.

intersection point, Fig. 3.10. Here we see the local active plan region before, during

and after edge events (a), split events (b) as well as peaks (c & d). As these peaks

may be considered to be three edge events occurring together, we classify them as edge

events.

Each of these events is witnessed by the intersection of three direction planes. However

not all intersections between three unbounded direction planes indicate an event. As

identified in Fig. 3.11, we must be sure that the faces intersect within the bounds of

the associated edges on the active plan. Also of interest to optimisation is that at least

one pair of adjacent plan-edges must be involved; an SS event consists of three edges,

at least two of which must be adjacent.

Every event creates one or more output arcs, a portion of the boundary of a terrain

face. Every arc is the boundary between two faces.

We present a crude algorithm in Fig. 3.14 that maintains this queue as new corners are

introduced by events. We defer describing the event handling in detail until Sec. 3.2.4,

noting that Felkel [68] simply gives a terse set of manipulations to the data structure

in the case of edge or split events.

The active plan is stored in a data structure that holds the corners of each polygon in

a doubly linked list, as illustrated in Fig. 3.12. There is such a list for every polygon

and associated holes. Each corner, therefore, has a pointer to its next and previous

corners (assuming counterclockwise order), as well as a pointer to its previous and next

direction planes. The corner is a point in R3 at the lowest intersection of the adjacent

plan edges. We may find the position of a corner in the active plan by intersecting the

corner’s next and previous direction planes with the sweep plane. Correspondingly,

an edge on the active plan is given by the positions of two consecutive corners in the

linked list. In this manner the linked list implicitly stores the active plan at the sweep

3.2. The Straight Skeleton 71

Figure 3.12: Left: The initial set of corners (yellow circles) and points in the doubly
linked list (yellow arrows) that make up the input plan. Not shown are the pointers
to the adjacent direction planes. Centre: As the sweep plane rises, and various events
occur the active plan may split. Corners are added and removed from the linked lists.
Here two linked lists store an active plan with two polygons (yellow, purple lists). Right:
By projecting the intersection of the corner’s direction planes onto the sweep plan, we
store the implicit active plan (purple, yellow polygons)

Figure 3.13: Left: After all events have been processed, every arc is associated with
two input plan edges. Middle: A single input plan edge has a set of edges, which may
be traversed (right) in a counter clockwise direction to construct a face (right, orange).

plane, via corners at or below the plane.

To simulate the rising sweep plane approaching events, a priority queue ordered by

height (z) is kept, specifying triplets of edges colliding at a certain height. We assume

that the queue only holds one event for each unique set of colliding direction planes.

Before an event is processed, the algorithm checks that it is at or above the sweep plane,

and within the current bounds of each face — previous edge events may even have

removed the edges and their direction planes entirely. The details of the HandleEvent

routine of Fig. 3.14 are introduced in the following section, which may add arcs to

faces, and add or remove corners and edges from the active plan. Arcs are stored in

a list associated with each input-edge; events add arcs to these lists. The algorithm

continues until all events in the queue have been processed. After all events have been

processed we traverse an input-edge’s arcs in a counter clockwise direction to determine

the 3D face. This process is illustrated in Fig 3.13.

Given a “random” or irregular input plan these two (split and edge) event types are

the only features we are likely to see, Fig. 3.15. This is because the skeleton of irregular

3.2. The Straight Skeleton 72

Main begin
Q = new priority queue;
sweepZ = 0;
foreach corner c in active plan do

CreateGIEEvents (c, Q);

while !Q.empty() do
event = FindNextEvent(Q);
event.removePlanesNotInActiveplan();
event.removePlanesOutOfBounds();
if event.getPlanes().size() ≥ 3) and
event.z ≥ sweepZ then

newCorners = HandleEvent(event);
sweepZ = event.z;
foreach corner c in newCorners do

CreateEvents(c, Q);

foreach edge e in input plan do
ReconstructFace (e);

end
CreateGIEEvents(corner c, queue Q) begin

p1 = c.nextEdge.getPlane();
p2 = c.prevEdge.getPlane();
foreach direction-plane p3 in the input do

location = Intersect (p1, p2, p3);
Q.insert (new Event(location, p1, p2, p3));

end

Figure 3.14: Pseudo-code for the SS algorithm

polygons rarely have events where more than 3 faces meet at one point.

3.2. The Straight Skeleton 73

Figure 3.15: The straight skeleton of a complex plan in which only three faces meet
at every node in the graph.

3.2. The Straight Skeleton 74

3.2.2 Computational Complexity of the Straight Skeleton

The algorithm presented in the previous section, Fig. 3.14, runs in a time complexity of

O(n2 log n), where the number of input plan corners is n. This is due to the observation

that there are a maximum of n events that must each search for new adjacent planes

to intersect (O(n2)), and insert any new events into the priority queue (log n). Filling

the priority queue initially also takes O(n2 log n) time.

Originally Aichholzer et al. presented a similar analysis in 2D[6], and a variation

with a similar result[5]. These papers also prove the above lemma stating the number

of events is O(n). It is also given that calculating the SS of a convex polygon is

possible in O(n log n) time since an edge on the active plan will only intersect with its

neighbours. The higher complexity in the concave case is caused by the propagation of

reflex verticies, and the requirement to identify which other edge they intersect with.

The following year Aichholzer and Aurenhammer[7] introduced an elegant method that

triangulates the active plan.The key observation is that every event is witnessed by a

shrinking triangle reaching zero area and collapsing, Fig 3.16. By keeping a list of

triangles, ordered by their collapse time, the propagation of the offset (wavefront) is

simulated. This would give a linear time complexity, except that the collapse of certain

triangles does not signify an event. Due to an inability to place a non-trivial bound

on these flip events, the algorithm has a total time complexity of O(n3 log n). Recent

research has lead to strong evidence that such an algorithm delivers O(n) performance

in practice[178].

Eppstein and Erickson[65] introduced the sweep-plane component used in the previous

algorithm to construct a 3D terrain. This was augmented by a powerful closest-pairs

data structure and advanced ray-casting techniques to give a sub-quadratic time com-

plexity of O(n1+ε + n8/11+εr9/11+ε), where r is the number of reflex verticies, and ε is

a arbitrarily small constant controlling time/space trade off. Given that r is of order

O(n), and as ε approaches 0, a time complexity of O(n17/11) is achieved.

Figure 3.16: Aicholzer introduced a triangulation based algorithm[7] for the calcu-
lation the Straight Skeleton in 1996. As the shape shrinks, the events (above; left to
right) are each witnessed by a collapsing triangle in the triangulation (bordered by white
lines). By ordering the triangles by their collapse time, it is possible to identify a correct
sequence of events.

3.2. The Straight Skeleton 75

Figure 3.17: Eppstein’s motorcycle[65] graph divides the polygon (left) into concave
regions, considering only the reflex verticies (orange points) and their propagation (or-
ange line) with time. These propagation lines may not be crossed by another vertex, if
they do the vertex terminates (red points). The time complexity of constructing such a
graph is introduced as O(n3/2). The resulting tessellation of the polygon may then be
used as an acceleration structure when constructing the straight skeleton.

Eppstein and Erickson also introduced a model of the problematic reflex verticies -

that of calculating the motorcycle graph. A brief introduction is given in Fig. 3.17.

Chen and Vigneron[40] continued this work to produce an algorithm that isolates parts

of the skeleton based on the motorcycle graph. Chen’s algorithm to calculate the

motorcycle graph in a time of O(r
√
r log r) leads to a randomised algorithm to calculate

the skeleton with a lower bound of O(n log2 n+ r
√
r log r).

Recently Huber et al. introduced a robust, implementation-oriented approach with

time complexity O(n2 log n), which exhibited O(n log n) in practice. The algorithm

introduces additional Steiner verticies to account for the effects of reflex verticies.

3.2.3 Straight Skeleton Degenerate Events

Thus the algorithm presented in Sec. 3.2.1, in line with the literature, is applicable to

general input plans, however in contrived degenerate situations, we may see complex

arrangements of active plan edges intersecting at a point. The previous work leaves

these events badly defined; here we detail several observed situations: loops of two,

many edges colliding and parallel consecutive edges. In contrast, the following Sec.

3.2.4 will introduce a general intersection event which calculates a well-formed active

plan after all events – edge and split events, as well as the degenerate cases introduced

here.

The literature is limited in its discussion of events. The original work by Aichholzer[6]

describes split and edge events, but does not describe an algorithm to compute them.

Eppstein[65] presents the many edges colliding degeneracy, under the classification

vertex events, but does not detail an algorithm to resolve them. Only the work by

3.2. The Straight Skeleton 76

a

b

a

b

before during after

c

d

e

**

**

**

c, d

e

Figure 3.18: In degenerate situations, more than three edges will collapse at one
time (a,b & e). We also note that sometimes the active plan collapses to a loop of two
(c,d & e). We show these coincident edges as curved lines, with asterisks.

Felkel[68] explicitly addresses the topology manipulation at events, but then does not

discuss degenerate events, beyond a special check for loops of two. As we introduce

generalisations of the straight skeleton, these degenerate events and the algorithms

used to resolve them become more important.

Fig 3.18, c,d and e, shows one degenerate case in which the active plan becomes a region

with only two edges and zero area, a loop of two degeneracy. A more involved example

is shown in 3.19. After all the events at a certain height, parallel edges may cause the

active plan to become partially or entirely composed of these zero-area regions. Felkel

at al.[69] require a special case to identify and remove these degeneracies.

Another type of degeneracy occurs as four or more plan edges collide at a point, the

many edge degeneracy. Several connected edges may intersect at the same time, as

illustrated in Fig 3.18 a, in which only the first and last edges exist after the event, as

the intermediate edges shrink to zero length. Alternatively we may see reflex verticies

in the input plan form several connected sets of edges involved in a single event, as in

Fig 3.18, b. These types of events are ignored in some of the earlier work[6], introduced

3.2. The Straight Skeleton 77

Figure 3.19: A more complex example of a straight skeleton, left, that creates a zero
area plan, right. Note that the curved line segments are in reality straight, but again
drawn as curved segments to represent the topology.

as a third type of vertex event in [65], and dramatically changes the expected time

complexity of the algorithm in [40].

A final degenerate case occurs when adjacent, yet parallel, edges in the active plan

become consecutive, the parallel consecutive edge (PCE) degeneracy. Fig. 3.20 demon-

strates such a case. Because we have defined the movement of corners over the ac-

tive plan, the intersection of the adjacent direction planes, the intersection of parallel

collinear edges neighbouring a corner is a line, rather than point, causing a special case

to arise. Existing work[6] leaves the outcome undefined. It appears that there are two

resolutions techniques applicable to this degeneracy:

• The separate solution shown in Fig. 3.20, left-centre. After the PCE, the faces

remain separated by an arc. This approach maintains a single face for every edge

in the input plan. However defining the movement of such a vertex is problematic

as the adjacent direction planes are coincident.

• The merge solution illustrated in Fig. 3.20, right-centre. When a PCE occurs,

the two faces are joined together. This has the advantage that no vertex is cre-

ated with parallel adjacent edges. However this removes the one-to-one mapping

between the edges in the input plan and the output skeleton faces.

In the unweighted case a further resolution is to define a special case for this situation.

In this case the corner would move perpendicularly to both the neighbouring plan

edges, towards the interior of the plan. This is inelegant, and is not able to generalise

to the weighted case in Sec. 3.3.

3.2. The Straight Skeleton 78

a

Figure 3.20: Left: The PCE problem: What is the resolution to the event marked
a? Left-Centre: The separate rule. Right-Centre: the merge rule. Right: When there
are PCE in the active plan, a resolution must still be applied to determine the initial
direction and speed of the corner.

Figure 3.21: Figure from [65], demonstrating that perturbing the sequence of events
at a point (orange), rather than solving them together, may lead to wildly different
results (left).

It is interesting to note that [6] seems to exclude such PCE in the input, however

there is no easy way to tell if parallel edges will become consecutive as the skeleton is

constructed. By symmetry we would expect to see PCEs in the input computed using

the same solution, as illustrated in Fig. 3.20, right.

The PCE resolution technique chosen in a given SS implementation will depend on the

desired properties of the resulting skeleton.

In order to process any of these degenerate events it may be suggested that we per-

turb the active plan slightly. However, as in Fig. 3.21 from Eppstein and Erickson[65],

there are situations in which small perturbations cause undesirable large changes in

the resulting skeleton. In this situation two input reflex corners form a third reflex

corner during evaluation. It is therefore necessary for a single event to process colli-

sions between many direction planes. The earlier Fig.3.5, bottom right, gives another

example where successive pairs of reflex corners meet, are resolved, and carry on to

create additional reflex corners.

3.2.4 The Generalised Intersection Event

This section demonstrates that we can unify the split, edge and vertex events into

a generalised intersection event (GIE). This avoids the involved categorisation in the

3.2. The Straight Skeleton 79

Figure 3.22: Two regions of active plans corresponding to Fig. 3.18b on the left and
Fig. 3.18a on the right. We can group the active plan edges involved in an event into
chains (red, yellow and blue edges) by asking which edges are consecutive in the linked
list data structure.

literature and allows a single algorithm to compute well formed results, even when

events contain loop of two, PCE or many edge degeneracies.

The GIE is consistent with the split and edge events observed on the active plan.

We begin by defining chains of edges that are involved in an event, Fig. 3.22. A

chain is a list of consecutive edges that are colliding at the event. They are ordered

corresponding to the edge’s direction. These form the partial boundary to our possibly

bounded topological disc region of the active plan that is collapsing at the event.

In the case of the SS we can order the chains themselves around the event’s location,

Fig. 3.23 d. That is the chains themselves may be ordered in a cyclic list. We can

note that after an event the last edge in the preceding chain, and the first edge in the

following chain become adjacent, Fig. 3.23 c and e.

The intuition behind the GIE is that at an event’s location, an inside area on the active

plan collapses and transitions to an outside area. As this occurs, adjacent chains that

before bounded interior regions split in two, with the two halves of adjacent chains

now bounding an exterior region. These newly created chains do not intersect each

other as their single shared vertex is moving away from the event’s location, in a

unique direction. This direction is bounded by the two edges of the new chains, as in

Fig. 3.23 d, and ensures a solution free of self-intersections. Therefore, our algorithm

first removes edges that shrink to zero length, and then “cycles” the chains in such a

manner to bound the interior regions.

To resolve an event using the GIE we firstly pre-process the edges involved in the

clustered intersection events into a set of chains. A chain defines a connected portion

of the active plan boundary involved in the event. A chain, hi, is a list of consecutive

active plan edges, εi1...ε
i
hmaxi

. A cyclic chain list, b, contains all such chains, h1...hbmax

(we assume a cyclic index). The chain list is ordered by the edge’s orientation around

the intersection. After this pre-processing we perform the following sequence of steps,

a pseudocode summary is given in Fig. 3.26.

3.2. The Straight Skeleton 80

a b c

f

α β A
B

Γγ

d e

Figure 3.23: As three chains approach an event (a, orange), we can imagine the
active plan at the event (b), or the degenerate plan if no event takes place (c). We
observe that the last edge in the previous chain and the first edge in the following chain
become adjacent, also that every chain is split into two (f). Given that the angles
between adjacent chains (d, α, β & γ) may not overlap and that all edges are moving
towards the interior, the directions of the new inter-chain verticies (e, A, B & Γ) are
unique and non-intersecting. Hence the new topology (f) does not self-intersect.

• Intra chain step (Fig. 3.24): Within each chain, any edges in the middle (not

the first or the last edge in a chain) shrink to 0-length and are removed from the

active plan. Formally, we remove all interior edges from a chain hi, leaving only

the start, εi1, and the end, εihmaxi , of the chain. That is, if hmaxi ≥ 3, then edges

εi2..ε
i
hmaxi−1 are removed from the active plan, being replaced by a new corner at

the event location, connecting the end of εi1 to the start of εihmaxi .This leaves only

chains of length one or two remaining.

• One chain step: Chains of 1 edge are split at the location of the event. All chains

are now of length 2.

• Inter chain step (Fig. 3.25): We split each each chain into two and connect the

start of the last edge in the previous chain to the end of the first edge in the

following chain. The chains therefore swap an edge with their neighbour; all

chains remain of length two. Formally the inter-chain stage takes place between

each adjacent pair of chains, hx and hx+1 in the cyclic chain list b. For each pair

of adjacent chains we create a new corner at the event location and connect the

start of the last edge in the proceeding chain, εxhmaxx , and the end of the first edge

in the following chain, εx+1
1 . Finally the inter-chain stage finishes by removing

any unreferenced corners from the active plan.

• PCE step: We resolve any newly parallel consecutive edges according to the

merge or separate solutions.

3.2. The Straight Skeleton 81

a

b

c

Figure 3.24: The intra chain step removes all edges in the interior of a chain, joining
the first edge to the last. Left: The edges a,b and c intersect at the orange point. The
corner’s next and previous pointers are shown (black arrows). Right: New arcs are
added from the old corners to the intersection location (blue lines), and the pointers
are manipulated to remove the central edge, b.

ab

c

d

e

Figure 3.25: An intra chain manipulation followed by an inter chain manipulation,
colouring as Fig. 3.24. Left: the active plan before the event. Middle: Additional arcs
are created during the intra chain stage. Right: The pointer manipulations swap edges
with their neighbours around the intersection point.

3.2. The Straight Skeleton 82

Because more than three planes may meet at a single point, we must modify the

FindNextEvent routine of Fig. 3.14 to search Q for all co-sited events. The new event

contains all directions planes that intersect at one point. Because Q is ordered by

sweep plane height, we are able to find such planes efficiently.

HandleEvent(EventCluster ec) begin
RemoveAllInactiveEdgesFromCluster(ec);
chainList = BuildEdgeChains(ec);
if chainList.countEdges() < 3 then

return;

/*intra chain stage*/
foreach chain chainj in chainList do

foreach consecutivePairOfCorners ck, cl in chainj do
AddSkeletonArc(ec.location, cl);
cl.inactive = true;

PerformOneChainStep();
/*inter chain stage*/
foreach consecutive chainj , chaink in chainList do

c1 = firstCornerOfLastEdgeOf chainj ;
c2 = firstCornerOfSecondEdgeOf chaink;
cnew = createNewCorner(ec.location);
cnew.prevDirectionPlane = c1.nextDirectionPlane;
cnew.nextDirectionPlane = c2.nextDirectionPlane;
InsertCornerBetween(cnew, c1, c2);

PerformPCE();
return newCorners();

end

Figure 3.26: Algorithm for the generalised intersection event.

The single GIE event with PCE handling allows the active plan to remain well-formed

after both collisions with more than three edges involved, and successfully handles the

loop of two situation, as in Fig. 3.27.

3.2. The Straight Skeleton 83

Figure 3.27: The results (right column) of applying the GIE to several different types
of situation (left column). From the top: an edge event, a split event, a peak event, one
pair of collapsing non-parallel edges, a three chain situation, four pairs of collapsing
non-parallel edges and an event that includes a straight line and parallel edges. Bold
solid coloured lines show chains both before and after.

3.3. The Positively Weighted Straight Skeleton 84

3.3 The Positively Weighted Straight Skeleton

The positively weighted straight skeleton (PWSS) is a variation of the straight skeleton.

Each edge is allowed to move with an independent speed towards the interior the

bounded region as the sweep plane rises. The PWSS was introduced in [7] and [65] as

the weighted straight skeleton, however for reasons that will become clear in the next

chapter the naming convention in this document has been altered. Neither of these

publications investigate any of the new features and degeneracies that may occur with

the weighted skeleton. Later work[16] addresses only the convex cases.

The increased degrees of freedom that varying the edge speeds introduces, again leads to

a new class of degeneracies. As with the SS, there are a class of PWSS-like constructions

which are similar, except in their behaviour when certain borderline events arise. We

have already seen one example in the case of the SS, the parallel consecutive edge

degeneracy, which can be solved using either the merge or separate rules. The new

class of degeneracies that occur in the PWSS are a generalised version of these SS PCE

events.

3.3.1 Introduction

To enable independently weighted edges we must introduce another degree of freedom

for every edge in the input plan, eji . This is an angle, θji , which measures the angle be-

tween the vertical (perpendicular to the input plan), and the direction plane, Fig. 3.28.

As the edges may not move over the active plan with unbounded speed, we enforce the

limit 0 ≤ θ < π
2
.

Because of the etymology of straight skeleton terminology we use the terms angle and

weight interchangeably to refer to the speed of propagation of an edge in the active

plan.

The construction of the PWSS is identical to the SS for nearly all events. However it

is instructive to note that the resulting skeletons may have different properties. For

example, as shown in Fig. 3.29, the skeleton faces may contain holes. This necessitates

a new approach to constructing the faces of the terrain, in which we traverse all arcs

that have been created and assigned to an input edge. As in the SS case, we tra-

verse the face boundary counter clockwise, starting from the input plan edge. Finally

all remaining arcs are traversed, and oriented, in a counter-clockwise manner on the

associated direction plane to form holes.

Compared to the faces of the unweighted skeleton, the faces of the PWSS have a more

complex geometry. For example, Aichholzer proved in [6] that every face of the SS

3.3. The Positively Weighted Straight Skeleton 85

θji

direction plane
eji

Figure 3.28: In the PWSS, every input edge is associated with an angle that defines
the slope of the associated face.

Figure 3.29: Top: The 3D terrains or roof models of two skeletons. Bottom: Their
corresponding 2D PWSSs. Left column: An unweighted skeleton. Right: A PWSS in
which one face (red) has a shallow angle which causes it to contain a hole.

3.3. The Positively Weighted Straight Skeleton 86

Figure 3.30: A PWSS in which a face (red area) is non-monotone with respect to
it’s associated input plan edge (red line).

is monotone with respect to the edge that lies on the input plan, however this is not

the case with the PWSS. Fig. 3.30 introduces an input plan in which reflex corners

and steep angled edges combine to cause a shallow edge to become non-monotone with

respect to its edge.

Although degenerate cases do not occur frequently, the additional degrees of freedom

that the PWSS has over the SS allows more input plans to become degenerate, given

particular direction plane angles. The output of all possible PWSSs are are a superset

of all possible SS; the possible PWSS events are also a superset of the SS events. As

with the SS, given a random input plan, we are likely to see only events involving three

edges. However, the degenerate cases become more intricate, and must be addressed

on a global scale. It is hard to defend the use of the PWSS when a complete algorithm

for all possible plans cannot be given, and so we continue to introduce, and suggest

resolutions to, these PCE-like events.

3.3. The Positively Weighted Straight Skeleton 87

3.3.2 The PCE event revisited

The parallel consecutive edge problem of the SS can again be observed in the PWSS.

Recall that this degenerate case arises when two (or more) neighbouring edges in the

active plan become colinear upon the sweep plane. This happens, for example, when

edges previously separating the colinear edges are eliminated, via the intra-chain step

of the GIE.

A PCE event may occur in the same manner as in the SS, as in the earlier Fig. 3.20,

as well as new situations introduced by the varying edge speeds. The input plan edges

which cause the degeneracy no longer need to be colinear since a faster moving edge

may catch up a slower edge in the PWSS. Therefore there are a larger range of input

plans that lead to PCEs in the PWSS than the SS, as illustrated in Fig 3.31.

a

Figure 3.31: A plan that leads to a PCE, a. The algorithm must choose between the
red (middle figure) or yellow (right figure) faces to dominate.

If the two neighbouring and colinear edges bound different sides of a region, the output

is an arc. This arc is a roof-ridge and the computation proceeds as normal – at the

opposite end of the ridge the two edges will collide again. This is not a degenerate

event; we can distinguish the regular “roof ridge” case from a degenerate event by

examining the relative directions of the directed edges in a plan. However, when the

edges have the same orientation (they bound the same side of a region) we are not

able to determine the direction of the subsequent arc, Fig. 3.31. The intersection

of the adjacent direction planes is a horizontal line, parallel with the sweep plane,

which causes the direction of the new corner to be under-constrained. For example in

Fig. 3.31, left, it is unclear, at point a, whether the corner should move to the left, or

the right.

It is unhelpful to examine situations where the edges are nearly parallel for guidance. As

the angle between the edges approaches π/2 from different directions, we get suddenly

different results. Either one or the other edge will be predominant. This singularity

means that the limiting case is of little help when resolving the degeneracy.

3.3. The Positively Weighted Straight Skeleton 88

b c

Figure 3.32: A PCE that requires global coordination to resolve. If the events at b
and c do not coordinate, we may end up with non-enclosed regions on the plan (middle).
To address this issue one edge is globally determined to dominate, right.

To complicate matters further, more that two edges may become parallel and consecu-

tive upon the sweep plane at a single height. If these events are addressed separately, we

may create further PCE degeneracies, leaving a poorly defined skeleton face, Fig. 3.32

middle. Therefore the PCE degeneracies need to be solved consistently and globally.

This requirement for a global solution sets the PWSS apart from the SS, which can be

constructed from local events that occur at a single point.

Our strategy to resolve this degeneracy replaces the set of PCEs with one or more of

the approaching edges, which share a single angle. We take inspiration from our merge

resolution of the unweighted SS PCE to combine these skeleton faces.

Given a set of edges that form the PCE degeneracy, {ejn} ∈ PCE, and their angles,

{θjn}, we identify one angle, Θ = f({θjn}) | ejn ∈ PCE. The edges and faces associated

with Θ, are merged, and the remaining edges and faces are removed from the active

plan.

To select this angle, Θ, we propose using a priority scheme, f , derived from the angles of

the edges. This scheme selects one or more edges with the same angle. We then use the

SS merge solution (Sec. 3.2.3) to combine these faces, and remove the others. Fig. 3.32,

illustrates the case in which each angle is unique, whilst Fig. 3.33 demonstrates a

situation in which Θ is shared between two edges.

Typical priority schemes for f are:

• volume maximising (lowest θ), or

• volume minimising (highest θ).

The choice of ordering scheme, f , very much depends on the application for which the

PWSS is being used for. This PCE resolution method is the most convenient of a large

3.3. The Positively Weighted Straight Skeleton 89

d e

Figure 3.33: Left: A PCE degeneracy with two edges sharing an angle (red), and
a shallower edge (yellow). Middle: Using the scheme f = volume maximising, Θ
is chosen to be the angle of the red edges. Therefore the two red edges and their
faces are merged, and the yellow face is removed. Appropriate arcs are added to the
output. Right: There are many alternate consistent resolution systems apart from the
one presented here.

number of alternatives. We can imagine other schemes, Fig 3.33, right, but find ours

is a simple and practical approach.

3.4. The Negatively Weighted Straight Skeleton 90

3.4 The Negatively Weighted Straight Skeleton

In passing we may also note that the same degeneracies and techniques are applicable

to the negatively weighted straight skeleton (NWSS), an example of which is show in

Fig. 3.34 left. This skeleton is the dual of the PWSS, representing an ever-growing

polygon. We omit further details of this structure here due to its similarity to the

PWSS. Indeed, we obtain the same 2D skeleton by taking the PWSS of weighted

polygon, and the NWSS of the same polygon with each edge’s direction reversed, a

situation illustrated in Fig.3.34, right.

3.5. The Mixed Weighted Straight Skeleton 91

Figure 3.34: Left: A negatively weighted straight skeleton (NWSS), in which every
edge, eji is associated with an direction plane specified by an angle θji ≤ 0. Right:
The skeleton constructed is identical (barring degeneracies) to a PWSS in which every
edge’s direction is reversed, and θji is negated.

3.5 The Mixed Weighted Straight Skeleton

The final variation of the SS we will introduce is the mixed weighted straight skeleton

(MWSS). This new structure allows the angle of the direction planes, θ, to be positive

or negative over edges in a single plan. Thus regions of the active plan can shrink

inwards or grow outwards. Once again the increased degrees of freedom introduce new

types of degeneracy. This section introduces some of the issues surrounding these point

degeneracies, presents an algorithm for simplifying them, and introduces one theorem

as to the solution of such cases.

As in the PWSS case, θ is limited in the MWSS to avoid infinitely fast edges on the

active plan, allowing only −π
2
< θ < π

2
. Therefore a θ < 0 implies that an active plan

edge is moving away from the interior of the polygon, a θ = 0 implies an edge that does

not move, and a θ > 0 implies an edge is moving towards to interior of the polygon.

Fig. 3.35 gives an example of both a PWSS and MWSS.

The MWSS enables a wider variety of 3D terrains to be defined; the set of skeletons

definable are a superset of the SS, PWSS and NWSS schemes. For example the active

plan can grow, as well as shrink, or can be a mixture of both. Therefore certain

MWSSs may not terminate after the final event; the enclosed area may continue growing

indefinitely as the sweep plane rises. It is an open problem to determine if a given

MWSS will terminate if it contains any values of θ < 0, without executing the skeleton

algorithm itself. Fig. 3.36 gives an example in which the resolution of a borderline case

differentiates between an non-terminating skeleton, and a terminating one.

As with the PWSS, the active plan can split as the sweep plane rises. But as Fig. 3.35

shows, like the NWSS, MWSS regions can merge.

3.5. The Mixed Weighted Straight Skeleton 92

Figure 3.35: . Left: A complex event in a PWSS, over a plan (green). Right: A
MWSS in which four areas merge to become one. Note that the 3D models are the
resulting terrains of a skeleton as some MWS skeletons are difficult to illustrate in 2D.

Figure 3.36: MWSS that are bounded (left) and unbounded (right). The red face
grows to an infinite area as the sweep plane rises. A small perturbation to the input
plans is the only difference between the input plans, all θ value are equal. The PCE
event which occurs along the orange line determines the behaviour of the skeleton.

3.5. The Mixed Weighted Straight Skeleton 93

We note in passing that MWSS events exist in which no resolution is necessary. The

edges intersect only at the event, but not after it. We disregard these grazing events

in what follows, as they are trivial to test for and may be simply ignored.

Given the additional degrees of freedom available in the MWSS we expect to encounter

the degenerate situations observed in the SS and PWSS cases. In addition there are

are a new class of point degeneracies observable

3.5.1 Point degeneracies

Given the additional degrees of freedom available in the MWSS, it is unsurprising that

the GIE solution no longer solves all situations. Fig. 3.37 gives one simple example

event in which the GIE causes the active plan to become badly formed.

Indeed every edge of an arbitrary input plan may be coerced to collide at single point

by altering the values of θ. A more complex example of a simple event is introduced

in Fig. 3.38, which shows a possible event with many edges colliding. Here we can see

chains of edges representing bounded, as well as unbounded areas, loops, and chains

surrounding other chains, colliding at a simple event.

If all the edges are moving inwards or outwards, as with the PWSS or NWSS, the

SS GIE introduced in Sec. 3.2.4 is still suitable. However in the complex degenerate

events that may occur with some angles of θ > 0 and some θ < 0, another algorithm

is needed. Fig. 3.40 gives one such situation and a number of plausible solutions.

Figure 3.37: A MWSS topology at (left) and after (middle, right) an event (orange)
that is not suitable for the GIE. The GIE output (middle, purple) is self-intersecting,
and thus badly formed. A non-intersecting solution does exist (right).

3.5. The Mixed Weighted Straight Skeleton 94

* *

Figure 3.38: Left: The active plan just before an event. A complex set of chains
collide at a single event (orange). Right: after the intra-chain step and one-chain step
of the GIE the topology is simplified. Note that the curved edges marked with an asterisk
represent the topology of two colinear straight edges.

φ

a

b
γ

Figure 3.39: We describe the chain a as enclosing chain b, as b lies inside a, and
therefore φ < γ, φ < π radians. The chains are shown here before a collision at the
orange point.

3.5. The Mixed Weighted Straight Skeleton 95

a b c d e

before during after

Figure 3.40: Above: Four chains collide at an event (orange point). The desired plan
topology after the event is unclear. We must keep the interface edges (above, right: bold
green arrows) in the same locations to remain compatible with the remainder of the plan.
Below: There are many possible options for the topology change at the event. (Note
that we show the active plan a time after the event). Some solutions use existing edges,
others create new zero length edges (below: red shadows). During the event these edges
have zero length, but subsequently grow).

Characteristics that are logical in an algorithm for such events include:

1. The plan remains well formed.

2. Consistency with the SS when all angles are a positive constant.

3. Consistency with the PWSS when all angles are positive.

4. Consistency with the NWSS when all angles are negative.

5. Invariance to rotation of the plan. As with the the straight skeleton the result of

an event should not depend on the orientation of the plan.

6. No creation of new zero length edges during the event. The SS, PWSS and NWSS

do not introduce additional edges; for consistency, neither should the MWSS.

We have been unable to find a elegant general solution to this problem!

We hypothesise that it is always possible to find a solution in the events we encounter.

Fig. 3.41 shows several events and potential solutions, however an algorithm to compute

these events has not been discovered. In particular it is condition 6, finding solutions

that do not introduce zero length edges, that rules out many obvious algorithms.

3.5. The Mixed Weighted Straight Skeleton 96

Figure 3.41: Several example events and solutions that do not require 0-length edges
to be introduced into the active plan. The geometry (green area) is shown after the
event, and consists of length 2 chains colliding. A good solution for each topology is
shown in purple. All examples except that in top, middle, fail when the GIE is used.

We continue by introducing one further processing step that simplifies these point

degeneracies by removing parallel edges. Finally we conclude by introducing a concise

description of the unsolved problem, given this simplified event.

3.5.2 Removing Parallel Adjacent Edges

As per the GIE introduced in Sec. 3.2.4 the topology of the event can be simplified by

the intra chain and one chain steps. These steps simulate the plan as the sweep plan

reaches the height of the event. Zero length edges, including chains that form a closed

loop are removed and chains of length 1 are split, leaving a homogeneous topology of

chains of length 2.

At an event all the edges involved in the collision approach the location in an ordering

defined by the edge’s orientation. Fig. 3.42, left, shows the orientation-ordered points

for Fig. 3.38. Any edges that do not approach according to their angle must have

been removed by an earlier collision, Fig. 3.42, right. This property is known as the ≥
approaching edges property. This refers to the fact that the angle between consecutive

edges around an intersection is equal to, or greater than, zero.

The simplification we would like to perform is the removal of edges which are adjacent

and parallel as they approach the event. That is when two parallel edges separated by

0◦ approach an event from the same side. The area between these edges approaches

zero near the event. If we connect these adjacent edges together, the event at the other

end of the parallel lines will remove the loop in its intra chain stage. Therefore it can

3.5. The Mixed Weighted Straight Skeleton 97

Figure 3.42: As the chains of edges in the MWSS approach the event (orange) they
become ordered (left). If this were not the case (right), they would have intersected
during an separate earlier event (red).

be ignored for the purposes of this event. After we remove these lines, we can say

that the event has the > approaching edges property as all the angles between adjacent

approaching edges are greater than zero.

This basic approach is hampered by the fact that more than two parallel edges may

be adjacent at an event. If there are an even number of such edges at one event,

the adjacent pairs of edges can be connected together to enclose a region under the

sweep plane, as in Fig. 3.43. However if there are an odd number of edges, one edge

must be chosen that is not connected to another and remains. This decision should

be independent of the order co-heighted events are processed in, and must discard the

same edge globally. Here we present two resolutions:

• interior bias: The pairs of lines surrounding an interior region of the plan are

always connected.

• exterior bias: The pairs of lines surrounding an exterior region of the plan are

always connected.

The earlier example in Fig. 3.38, is resolved using these two resolutions as shown in

Fig. 3.44. Note that although the edges remaining have the same orientation, they may

have different speeds. A consequence of the necessity of choosing an interior or exterior

bias is that otherwise symmetrical plans may produce an asymmetrical outcome after

an event. For example Fig 3.45 shows a plan that before the event is not changing

area, but after will either be gaining, or losing area if the interior or exterior biases are

chosen respectively.

3.5. The Mixed Weighted Straight Skeleton 98

a

c
e

g

d

b

f

(acd)

(acef)

(abcfg)

v

w

x

y

Figure 3.43: Given a plan before the event (top left) that leads to a number of events
with parallel adjacent edges at the same height (top right, red blue and yellow circles), a
deterministic and reproducible decision must be made as to which of the parallel edges
are connected. The solutions given are to connect the parallel adjacent lines with an
interior bias (bottom left) or exterior bias (bottom right). The areas v, w, x and y are
all removed by subsequent events.

3.5. The Mixed Weighted Straight Skeleton 99

* * *

* * *

*
*

*
*

*
*

Figure 3.44: After the intra chain step and one chain steps, we have a simplified
topology (top, left). The chains are shown just before the event for clarity. The black
lines connect (asterisked) edges which would become adjacent and parallel at the event.
We convert these pairs of edges into single chains as shown. We either use the interior
bias (top right) or exterior bias (bottom left). After any subsequent events at the same
height are processed we are left with simplified topology (bottom right, for exterior bias).

Figure 3.45: A MWSS event that has unchanging area before the event, but will
either grow or shrink after, depending on the resolution strategy.

3.5. The Mixed Weighted Straight Skeleton 100

3.5.3 The Pincushion Problem

Once an event has been prepared in the above way, we wish to process it in such a way

that the plan remains well formed after the event. This is an unsolved problem; this

section makes only definitions and observations.

Given a valid event that has been pre-processed such that it has the > approaching

edges property, the pincushion problem is to devise an algorithm that always finds a

solution that does not introduce new zero length edges in to the active plan. First we

will show that the plan remains topologically invariant after an event, and then that

we can draw a circle around all possible intersections of edges involved in the event.

This “pincushion” circle, with “pin” edges leading into it encapsulates the problem of

solving a general MWSS event.

As the sweep plane rises towards an event, after it has processed any previous events,

the topology of the edges does not change. By definition the plan is well-formed

before the event, with no self-intersections. Furthermore we can note that there are no

topological changes as the sweep plane approaches the height; such changes would be

witnessed by other events. Of more consequence is that topological invariance may also

be observed after the event. That is, if we do not handle the event, the geometry after

the event only scales, rather than changing topology. We call this the sector property

of SS events, and is introduced in Fig 3.46. The sector property is summarised in the

trivial statement “between events, no events occur”.

The sector property follows from two previous definitions:

• The edges move over the plan in a self-parallel manner, at a constant speed.

• The edges involved in an event pass through the event’s location at the event

Applying these two definitions allows us to make the trivial observation that all inter-

sections between any pairs of edges move directly away from the intersection point after

before during after 1 after 2

Figure 3.46: The plan (green triangles) undergoes an event (orange). The sector
property states that topology of the edges remains unchanged after the event if we make
no attempts at solving it (after 1, 2).

3.5. The Mixed Weighted Straight Skeleton 101

Figure 3.47: A PWSS event in which the only solution requires the extension of edges
(dashed line) from their unmodified post-event topology.

the event, each with constant speed. Therefore the order of crossings of any subset of

involved edges remains invariant, along with the topology.

We may note in passing that there are three topologies of the edges involved in the

event - before, at and after. The topology at the event only occurs for a single sweep-

plane height, at an instant in time. We define the pincushion problem on the topology

after the event.

To find solutions in the MWSS case it is necessary to extend some of the edges. An

example where this is required is shown in Fig. 3.47.

Given the invariant topology at some time after the event in question, there are only

a finite number of edges involved. If we intersect all the edges we obtain a finite

number of possible intersection points that may make up the solution. We discount

non-intersections between parallel edges. Therefore we may attempt to encapsulate our

problem by drawing a circle that encompasses all these possible intersection points. An

example of the resulting pincushion diagram is given in Fig. 3.48. From the edge of

the circle, an even number of unbounded edge-rays are ordered by angle around the

perimeter. Rays are used since we may have to extend some of the line segments.

There are an even number of rays, for each edge of the active plan that enters and

leaves the circle.

A trivial observation is that for any successful solution only odd-numbered rays may

intersect even number rays and vice versa (for any ordering around the perimeter of

the pincushion). This matches the intuition that the orientation of the edges within

the active plan determines which other edges they may intersect with. To this end we

may colour the rays in the diagram with alternating colours; rays may only connect

with other rays of the other colour, but may not cross any other rays as in Fig. 3.48

bottom row.

In a valid solution all pairs of rays in the pincushion diagram are connected to form

chains of length 2, in such a way that the chains do not cross. We hypothesise that

it is always possible to solve the pincushion problem. Given a such a solution we can

update the active plan in all situations.

3.5. The Mixed Weighted Straight Skeleton 102

m1

m2

m3

m4

m5

m6

f1f2

f3

f4

f5

f6

Figure 3.48: Top Left: It is possible to draw a circle around all possible edges that in-
tersect at an event. Top Middle, Right: Given the sector property, we may summarise
the topology as rays entering the pincushion circle. Bottom Left: We may assign al-
ternating colours to rays around the circle. Bottom Middle: A pincushion diagram
coloured in this way. Bottom Right: A solution to this pincushion consisting of the
intersections {(m2, f1), (m1, f2), (f3,m4), (m3, f4), (m6, f5)(m5, f6)}

The solution is not unique, as in Fig. 3.49. Given a number of solutions we may chose

to use the criteria of Sec. 3.5 to determine which solution is most suitable for our

application.

A brute force search program has been written to search for valid edge pairs to intersect.

Fig. 3.50 details an algorithm that applies the intra-chain stage of the GIE to all

allowable subsets of edges in the event. This algorithm, together with a visual interface,

as in Fig. 3.51, never failed to find a solution to a valid pincushion arrangement.

However, without a proof that there is always a solution to the pincushion problem we

can not be certain that the brute force approach will always return a valid active plan.

Another approach is a constructive methodology to incrementally add the next pair of

rays to an already valid solution, given some arbitrary order of rays. Since we theorise

that all such arrangements have a valid solution, such a solution should be possible.

However a counter example was found in the “5-star” structure of Fig. 3.52. Attempting

to incrementally add rays around the circumference, always keeping a valid solution

with those lines already processed, either is not possible, or does not terminate; it is

necessary to solve the system globally. In this case the GIE provides such a solution.

We therefore believe that a global solution must be found, rather than an iteratively

constructed one.

The failures of the GIE, brute force, and incremental approaches to the pincushion

3.5. The Mixed Weighted Straight Skeleton 103

Figure 3.49: Given the post-event topology (top left), and the corresponding pincush-
ion diagram (top right), there are three different solutions that do not introduce zero
length lines (bottom).

3.5. The Mixed Weighted Straight Skeleton 104

BruteForceEvent (Event event) begin
pincusion = preprocess(event);
Set<Set<Set<Chain>>> combinations = all covering combinations of pincushion.chains();
foreach Set <Set<Chain>> GIEChains in combinations do

Set<Chain> resolvedChains = new emptySet();
foreach Set<Chain> chain in GIEChains do

resolvedChains.add(interChainStage (chains));

if noChainsIntersect(resolvedChains) then
return resolvedChains;

return null;
end

Figure 3.50: A brute force approach to the pincusion problem. We hypothesise that
it will never return null.

problem are disappointing. Ultimately the lack of proof that the events of the MWSS

have well formed solutions is problematic to the definition of the MWSS. However

we may take solace that these are very degenerate situations and solutions that do

introduce zero length edges are common.

The pincushion problem was discussed with David Eppstein, author of [65] and

Antoine Vigneron, author of [40].

3.5. The Mixed Weighted Straight Skeleton 105

b

a

c

Figure 3.51: A user interface to the pincusion event solver. Top Left: The users
selects a resolution algorithm (a), draws the edges involved in the event around the
event location (b), and selects the time relative to the event (c). Top Right: The
system simulates the topology at the event. Bottom: The system shows the solutions
given by the GIE (Left) and brute force algorithms (Right) in purple after the event.

3.6. Summary 106

a b c d e

f g

Figure 3.52: The “5 star” event arrangement of edges, shown after the event (a),
and the corresponding pincushion diagram (b). A constructive approach, which takes
an arbitrary ordering of edges (c, grey lines) and attempts to maintain a valid solution
with each additional line (d), runs into problems when it cannot alter a past result (e).
The correct solution in this case (f,g) must be found globally, and happens to be the
same as the GIE solution.

3.6 Summary

In this chapter we have explored a certain class of skeletons, formed by allowing the

edges of a 2D shape to move in a self-parallel manner. By observing intersection events

as the edges collapse we are able to trace out the arcs of the skeletons. Indeed it is by

the simulation of the edge movements that we are able to evaluation skeletons. We may

go so far as to describe the skeleton as a “procedural geometric construct”. However

the fact that we will use such a construct for “procedural modeling” would make such

a description less than helpful.

By specifying different constraints over the speed of these edges, distinct classes of

behaviour can be witnessed. Four varieties of the straight skeleton have been introduced

– the unweighted straight skeleton, the positively weighted skeleton, the negatively

weighted straight skeleton, and the mixed weighted straight skeleton. These skeletons

form a tree of generalisation as the requirements on the angle of the direction planes

are relaxed; SS ⊆ PWSS ⊆ MWSS and NWSS ⊆ MWSS. Of these different geometric

constructs only the SS was well previously well described in the literature.

In the non-degenerate case of the of SS, PWSS and NWSS we have simplified existing

algorithms by introducing a GIE that specifies a general behaviour given an arbitrary

topology of collapsing edges. However each additional generalisation has also brought

with it new degenerate cases which we have presented, and found resolution strategies

for. These have included the parallel consecutive edge event, many edge degeneracy,

point degeneracy and parallel adjcent edges. However in the deepest, most unlikely,

3.6. Summary 107

degenerate cases we were unable to suggest a general solution for the MWSS, managing

only to formulate the pincushion description. Although we tried, we were unable to

create either a proof that the pincushion problem was solvable or not.

The skeletons studied here also contain interesting properties, such as the SS splitting

faces into two, the PWSS introducing holes into faces, and the MWSS allowing faces

to merge together and split apart. We may also observe that many of the skeletons

output resemble fragments of man made structures. The arcs between the faces of the

output, the skeleton itself, serves as a polygonal partition of the polygon, influenced by

a distance field. We take insipration from this fact in the following Chapter 4, where

we use the arcs to partition city blocks into parcels. The offset 2D polygons generated

in the shrinking process are reminsicent of man made arches or frames, while the 3D

terrain model resembles building’s roofs. In addition we find that it is possible to halt

the evaluation of the MWSS at any point, creating a new form of extrusion between

two plans. It is this observation that will lead us to the ideas in Chapter 5, using the

MWSS for solid building modeling.

108

Chapter 4

Procedural Generation of Parcels

The work in this chapter was based on a collaborative project published in the

paper Procedural Generation of Parcels in Urban Modeling [252]. I contributed the

skeleton parcel subdivision algorithm and implementation, the statistical fitting

mechanism and the comparative analyses.

This chapter introduces a method for the procedural generation of city parcels from city

blocks. Within an interactive procedural modeling environment the method reproduces

parcel subdivisions in a distinct style, given a small number of user specified parameters

and no additional user programming. The work was motivated by the real world need

of a commercial procedural modeling system, CityEngine[66], a procedural cityscape

generator. A fast, robust and realistic block subdivision scheme was required for the

product. Given the interesting properties that we observed in the straight skeleton in

previous Chapter 3, it seemed a natural choice to solve some of the geometric problems

that block subdivision presented.

To create a virtual cityscape a classical “waterfall” urban PGM pipeline utilises dis-

crete stages to first create course features, which specify the inputs to finer elements.

A typical pipeline features main roads, between which quarters are divided further by

minor roads. Between these small roads, city blocks lie. These are subdivided indi-

vidual lots, lots into footprints and from footprints, buildings . An overview of these

stages is given in Fig. 2.34. In this chapter we address one aspect of this pipeline — the

critical problem of creating realistic city lots from blocks within an interactive PGM

system.

Here we introduce a novel method of block subdivision. We utilise the geometric self

sensitivity of the straight skeleton to generate Modernist style parcel subdivisions. We

also present a recursive-split approach to create traditional parcel subdivisions, which

4.1. Introduction 109

is presented here in order to provide a state of the art implementation of a subdivision

scheme for comparison. The complete system is able to retain parcel identity under

interactive user edits such as moving a street intersection, and is robust enough for

integration into a commercial procedural modeling tool. We conclude the chapter by

comparing the results of these subdivision techniques against real-world examples.

One of the challenges in procedurally generating parcels is creating geometry that is

adaptive to the block shape. In particular identifying the centrelines of rows of parcels

within irregular blocks is essential to many observed block subdivisions. We found

that the straight skeleton provided a very powerful and stable centreline detection

mechanism, that was well suited to interactive modeling.

4.1 Introduction

The urban procedural modeling pipeline has been widely applied to several fields in-

cluding virtual environments, urban reconstruction and architecture. While there have

been numerous systems for the generation of street networks[38], buildings[164] and

facades[165], there has been relatively little attention paid to the generation of parcels

from city blocks. Those systems which do exist are either not responsive to the block

geometry, unrealistic, or are not easily controlled. Increasing the fidelity and speed of

parcel subdivision benefits the quality and speed of the entire urban modeling pipeline.

Our high-level approach was to emulate two distinct modes of block subdivision from

the urban planning literature. Carmona[36] identifies two such modes:

• Modernist patterns position “buildings as separate pavilions freestanding in a

more generalised type”, examples are given in Fig. 4.1, left. This design often

appears “in its pure form when built on greenfield sites”, and is generally used

in lower density neighbourhoods that are homogeneously planned. The parcels

will typically be rectangular, have street access at the front, and neighbour other

blocks at the sides.

• Traditional patterns of subdivision are characterised by a “generalised highly

connected mass” and “streets and squares and a small-scale, finely meshed street

grid”. As demonstrated in Fig. 4.1, right, this design is prevalent in historic cities

and unplanned high density areas. The parcels may or may not have street access,

with small lanes and courtyards offering access to occupants. Often traditional

subdivision patterns emerge in an ad hoc manner, rather than the block being

designed, as is common with Modernist patterns.

4.1. Introduction 110

Figure 4.1: Clockwise from top left: Glasgow, Shanghai, Param, and Nevada
(c©Google Maps). Left: Modernist parcel subdivisions. Right: Traditional parcel subdi-
visions.

4.2. Existing Parcel Subdivision Techniques 111

We present an algorithm to model the modernist pattern, and refer the reader to

[252] for the details of the traditional subdivision algorithm. As Carmona notes there

is something of a continuum between these two ideals – “Indeed, it is not clear at

what point space between buildings becomes open space containing buildings”. Both

designs are often observed with a uniform structure with rectangular, quadrilateral or

sometimes polygonal shape[45].

After discussing the several parcel subdivision schemes in the corpus in the follow-

ing Sec. 4.2, we will detail the inputs and outputs to our two subdivision systems in

Sec. 4.3. The Modernist subdivision style forms the basis for the skeleton subdivision

algorithm, detailed in Sec. 4.3.2, while the traditional style is approximated by the

oriented bounding box (OBB) algorithm of [252]. Concluding, the application of these

techniques to real-world block patterns is presented and evaluated in Sec. 4.4.

4.2 Existing Parcel Subdivision Techniques

The existing literature addressing procedural parcel subdivision comes mostly from

computer graphics. Given a city block as a polygon, the task is to subdivide it into

a number of non-overlapping parcel-polygons, giving the user control via a number of

parameters.

Fig. 4.2 gives several examples of existing automated parcel subdivision techniques.

The first approach that the authors are aware of, from within computer graphics, by

Parish and Müller[181] (Fig. 4.2, brown), has gained the most traction and variations.

The parcel is recursively split into two using straight lines (top, with darker splits

created before lighter ones). The variations include different criteria for selecting the

line to split a region and the termination criteria, although the literature often gives

trivial treatment to the details —

• Parish chooses to split perpendicular to the longest pair of edges that are ap-

proximately parallel, until the resulting parcels are below a specified area.

• Weber[260] et al. assume mostly rectilinear parcels and select the longest edge

adjacent to a street, before splitting perpendicular to this edge at a randomly

displaced midpoint. If the resulting parcels do not have an undesired aspect ratio,

they are accepted, otherwise another randomly displaced midpoint is attempted.

Once the parcels are below a user specified area the process terminates.

• Vanegas et al.[251] use the population count and number of jobs to estimate the

area in their subdivision scheme at which recursion halts.

4.2. Existing Parcel Subdivision Techniques 112

Figure 4.2: Comparison of the skeleton subdivision approach to existing approaches.
From left to right, the input, the parcel subdivision techniques from [181, 122, 12, 265]
and our result which gives realistic result of Modernist parcel subdivision on concave
blocks.

Another early approach was to use area division based on a number of sites. The

Voronoi [253] diagram of a set of sites is a geometrical construct that associates every

point on the plane with the nearest site. The area spanned by points associated with

a single site is known as a cell. These Vornoi cells have been used to generate street

networks from a set of sites sampled by population density[229], as well as being used

to specify parcel boundaries[122] (Fig. 4.2, yellow). Because the cells boundaries are

rarely rectangular, the results are not characteristic of observed parcel subdivisions.

An alternative application of the Vornoi concept is given by Aliaga et al.[12] (Fig. 4.2,

green). He observes that blocks often have a centreline dividing two strips of parcels

on either side leads. This line is approximated by the fitting of an oriented bounding

box (OBB), minimising the space between the box (a rectangle) and the block, and

using the centreline of the box. Voronoi sites are then positioned on either side of this

line and the cells become the parcels. The assumption of a straight line as a centreline

fails for concave blocks, as in Fig. 4.2, and still suffers from non-rectangular blocks in

some situations.

In general the urban modeling community has performed block subdivision manually

according to desired patterns[235, 182]. Those systems that have been created are

very limited in their realism and available styles[256, 98, 150]. One such example,

[265], again fits an OBB to the block and generates a centreline. As shown in Fig. 4.2,

blue, these strips are then divided to approximate a certain parcel width, specified

4.2. Existing Parcel Subdivision Techniques 113

by a user-defined parameter, and clipped to the block’s perimeter. The system also

generates additional access roads, a property that we do not wish to emulate since

this is an earlier stage of the urban procedural modeling pipeline. This system again

fails on concave parcels, and is inflexible to the local geometry of the parcel boundary.

The remainder of the work from the urban modeling community has focused on parcel

subdivision of coarse raster-grid environments[127, 10, 160], which are not detailed

enough to use for visualisation purposes.

If we wish to interactively edit a city we are faced with the further problem of retaining

consistency under edits. We wish that changes to the road network, when edited

interactively, only minimally affect the associated parcels created. When the changes to

the shape of a block are small Lipp[143] utilises mesh-warping techniques to deform the

existing parcel subdivision to the new geometry while keeping the topology intact. We

are not aware of any techniques in the literature that allow for larger scale interactive

editing. The problem of retaining the identity of individual parcels between user edits

is also unaddressed.

We find the existing work somewhat limited in the lack of interactive features and

ability to deal with planned Modernist parcel subdivisions over concave parcels. We

continue by introducing our solutions to these issues.

4.2.1 Evaluating Parcel Subdivisions

Due to both the nature of procedural modeling and its relatively new appearance in

the computer graphics world, evaluating any results is often difficult. Typical evalua-

tion techniques are to show the results of the procedural system alongside real world

data, such as photographs and plans[165, 226, 39], or to perform subjective studies to

explore whether the results of a system correlate to a non-procedural workflow or user

intuition[144, 278, 158]. The objective evaluation of procedural content has yet to be

addressed in a detailed and consistent way.

Currently a new procedural systems are introduced with a high frequency in very

different domains. Therefore there has been little requirement to compare systems

within the same domain. In addition, attempting to evaluate content that ideally has

the property of being “characteristically similar” to some example, and yet still “varied

and unique” is a challenging and somewhat contradictory goal. Evaluating where any

given system lies in relation to these two extrema is an interesting problem that has

not yet been addressed.

Our literature survey failed to identify any evaluation system for procedurally gener-

ated block subdivision. Due to the lack of existing material that evaluates procedural

4.3. Block Subdivision 114

content in general, and procedural parcel subdivisions in particular, we introduce three

per-lot metrics that we will use to evaluate our block subdivisions. These metrics were

chosen because of their:

• Objectivity — the statistics are not subject to opinion.

• Ease of computation — because the test data sets are large, each of the heuristics

must be fast enough to compute for every lot in a city.

• Clarity — the metrics are all sufficiently simple to implemented quickly by future

researchers on the subject.

Therefore the per-lot metrics we have chosen are:

• Area — measured in m2.

• Aspect ratio — given the smallest bounding box that encloses each lot, this is

the ratio of the longest to shortest side.

• Neighbour count — the number of unique lots that the lot shares an edge with.

Lots adjacent only at verticies are not counted.

4.3 Block Subdivision

This section introduces the technical background to our parcel subdivision schemes.

We first detail the data structures used for the input and output of the system, and

the requirements of the output. We continue to discuss both the skeleton and OBB

based subdivision algorithms.

4.3.1 Inputs, Outputs and Goals

The input to the system is a set of city blocks, generated by the previous stage in the

urban modeling pipeline, while the output is a set of parcel polygons, suitable for the

next stage of the pipeline, creating mass models. Our system is able to fulfil these

conditions, while delivering statistically similar subdivisions over concave city blocks,

controlled interactively by a few parameters.

The previous stage of the urban procedural modeling pipeline delivers a street-network,

in our case a planar graph, (V,E), of verticies, V , and edges, E. These verticies lie in

the same plane in R2, at the road intersections. The roads represented by the edges in

4.3. Block Subdivision 115

E, posses a width, and may be straight or curved. We expect that the graph is planar,

and no two roads intersect, giving a 1:1 mapping between the faces of (V,E) and the

set of blocks. The topology of city blocks is therefore formed by the faces of (V,E);

unbounded faces are not considered at this time.

Taking the geometry of a street (street width, sidewalks, intersections) surrounding

the block, B, the street modeling subsystem creates a simple polygon describing the

border of the block, C(B). The polygonal border approximates curving streets and

any features of the street geometry, such as pavements. This boundary is formed of

m verticies C(B) = {b1, b2, . . . , bm} in a counter-clockwise direction. Note that such

street modeling is a previous stage in the urban modeling pipeline, and like the following

stage of mass-model generation is not addressed here. Every edge in the boundary is

associated with a street in E, and a set of parameters. In our implementation we

recompute the faces, blocks, and parcels as the street network is edited, or the block

parameters adjusted.

The city block, B, is associated with various parameters. Each of these may be specified

by the user or extracted from example block subdivisions. The parameters include:

• the algorithm to subdivide the block into parcels, either skeleton or OBB

• parcel area bounds, (Amin, Amax): The upper and lower bounds on the area of

the resulting parcels.

• minimum parcel width, (Wmin,Wmax): The upper and lower bounds on the length

of the sides of the oriented bounding box of a parcel.

• split irregularity, ω: The deviation of a split edge from its default position, nor-

malised in [0, 1]. Larger values result in the split being further away from the

mid-point and a larger variety of parcel areas.

• various algorithm subdivision specific parameters.

The output of the system is a set of polygons describing the new parcels. For every B

a set of n parcels, L = {l1, l2, . . . , ln}, are created that exactly cover B with no overlap;

that is
⋃n
i=1 li = B and ∀li,lj∈L(li ∩ lj = ∅). Every parcel, l, is a simple planar polygon.

Modern procedural urban modeling systems make use of non-flat terrain and roads. In

this situation, we vertically project the blocks onto the plane before subdivision and

re-project the output parcels onto the terrain after. We assume that the terrain is a

height field and thus sufficiently flat to preserve the planar and covering properties of

the blocks and parcels.

4.3. Block Subdivision 116

To replicate the two patterns suggested by urban design work (Sec. 4.1) we introduce

two independent algorithms to transform each B to a L. Our implementation was in

the Java language, within the procedural modeling system provided by CityEngine[66].

The straight skeleton (“SS” or “skeleton”) algorithm produces procedural Modernist

subdivisions, and is introduced in Sec. 4.3.2. The central assumption of the algorithm

is that each parcel has a similar street-frontage. The distance that each parcel occupies

behind this frontage is the parcel depth. If the depth is shallow, the block becomes a

perimeter block, with a semi-private patio area in the centre of the block. An example

of such a block is given at the top left of Fig. 4.1. If the depth is high, there is no

patio area, but instead often observe a centreline in the subdivision, with a row of

parcels on either side. An example of this is shown in the bottom left of Fig. 4.1. The

skeleton parcel algorithm uses either a partial or complete application of the straight

skeleton to model perimeter and centreline blocks respectively. Typically the result of

this algorithm is rectangular blocks on rectilinear street patterns, and “wedge” shaped

blocks on curved streets.

4.3.2 Skeleton-based Subdivision

The straight skeleton subdivision algorithm generates Modernist parcel division. Our

approach is to generate a contiguous area for a row of parcels along a street (we refer to

these areas as strips) before slicing these strips along the adjacent street into parcels.

This approach ensures that every parcel has street access, and that the length of street-

frontage is similar for every parcel.

We observe that both perimeter blocks and centreline blocks contained such strips, and

that both can be generated by varying the depth of a block from the street. However

determining borders between these strips, both parallel and orthogonal to the street,

is an involved problem —

• We observe that at corners of blocks near street intersections one strip will give

priority to another to ensure more rectangular blocks

• To control the style of subdivision to be centreline or perimeter, the depth of the

blocks from the street must also be generated as specified.

• A special case in our algorithm is the treatment of narrow blocks, in this situation

only a single strip is generated. The narrow-block threshold parameter identifies

the parcels in which this behaviour is appropriate.

Our insight into this problem came after we observed that the arcs of the partial straight

skeleton included a lot of the information that we required to identify the centrelines.

4.3. Block Subdivision 117

Figure 4.3: Left: The medial axis (dashed lines) of a polygon (solid green lines)
describes points equidistant from the boundaries of the polygon (grey circles). We note
that the curved (red) arcs of the medial axis require rasterisation for use in a polygonal
environment and that they generate sharp corners in the faces (shaded regions). Right:
The equivalent straight skeleton contains no curved arcs, and includes arcs for reflex
corners.

This lead to the solution presented here which uses a partial straight skeleton to specify

the depth of the strips, but cleans up the “diagonal edges” generated near the corners

to create more realistic rectangular strips.

There were several alternatives to the unweighted skeleton for generating centrelines.

One possible alternative was the medial axis. The axis would introduce curved sections

into our geometry, Fig. 4.3, leading to awkward “sharp” corners in medial axis faces

which would have required intensive filtering to rectify. These sharp corners in faces

occur on very simple concave polygons. A further disadvantage to the medial axis

was the algorithm’s origin as a bitmap image filtering tool [28]. Only recently have

algorithms emerged that calculate geometry explicitly [117, 199], however the output of

these systems includes parabolic segments. Given that the typical 3D pipeline operates

on polygons, parabolic sections would require rasterisation before use in the typically

polygonal procedural modeling pipeline. Such rasterisation comes with involved checks

for geometric consistency. Finally such medial axis algorithms do not create arcs for

reflex verticies, and so are unable to “guide” the splitting of strips in the same manner

as skeleton faces.

A further alternative was the weighted straight skeleton. This would have enabled

us to move the centreline relative to each of the edges of the block, and to create

perimeter blocks with different depths on each road. The weighted straight skeleton

proved problematic for two reasons; firstly there was no easy mechanism to assign such

depths to each road, and second there were no known commercial weighted skeleton

implementations available at the time of publication.

The skeleton subdivision uses the following parameters in addition to those in Sec. 4.3.1.

4.3. Block Subdivision 118

a
b

doffset

Figure 4.4: Left: The straight skeleton of a polygon, showing C(B) (black line).
Right: A partial application of the straight skeleton computes the offset contour C ′(B)
(dashed lines) at distant doffset. Note that the contour may split the innermost, or
patio, region into several portions (a,b). The individual faces of the straight skeleton
conform to our definition of a strip, and we may take the supporting edges to be portions
of the boundary of input polygon. We take these faces to be the initial set of α-strips.

• The maximum parcel depth, doffset, determining whether the centreline or perime-

ter styles of subdivision occur.

• A street priority scheme, either StreetWidth or StreetLength. This specifies the

direction in which diagonal edges should be resolved.

Applying the Straight Skeleton

To define the depth of the strips, the user defines a perpendicular distance doffset from

the block contour C(B) to an inwards offset contour C ′(B). This value corresponds

to the maximum depth (distance from the road to the rear) of the parcels. If doffset is

sufficiently large (e.g., infinity), then the area enclosed collapses and the rear side of

any resulting parcel will be directly adjacent to another parcel, leading to centrelines

between rows of parcels. Alternately, if the doffset value is sufficiently small, the partial

skeleton application defines a closed inner patio region, with no direct access to roads.

This inner region may be disconnected if the initial block is concave, as in Fig. 4.4 right,

and can be further partitioned using an arbitrary subdivision style. While setting an

infinite value for doffset is typical and better complies with the first parcel variety,

inner patios are not uncommon and we designed our skeleton-based subdivision to

also support them. The contour C ′(B) is calculated (via the CGAL[1] library) by a

partial application of the straight skeleton to C(B) to offset distance doffset, as shown

in Fig. 4.4, by computing the intersection of the roof model of [6] with a horizontal

plane at a specific height.

The arcs of the skeleton application specify the division of the region between C(B) and

C ′(B) into a set of strip polygons. We initially refer to these as α-strips, to differentiate

them from the β-strips, from which we have removed some diagonal edges. These strips

are an intermediate value in our algorithm, representing a group of parcels with their

4.3. Block Subdivision 119

primary frontage on the same logical street. Collectively they form a single connected

region.

Formally we define a strip, si, as a simple polygonal area within B, such that a single

connected length of the polygon’s boundary forms part of C(B). These lengths are the

supporting edges, ψ(si), of si. A block’s cyclic list of n strips, LS(B) = s1 . . . sn, is such

that it covers the area between C(B) and C ′(B) completely and without overlap. The

list LS(B) is ordered counter clockwise, such that the last supporting edge of si and

first of si+1 are adjacent edges of C(B). Note that we take i+ 1 to mean (i+ 1) mod n

in the context of a cyclic list data structure.

We initialise LS(B) from the faces of the straight skeleton used to compute C ′(B).

We observe that these faces fulfil the strip properties — bounded by the arcs of the

skeleton, and supported by an edge of C(B). Any strip in LS(B) may be combined

with either of its neighbours and the union retains the strip properties; therefore we

may union adjacent faces in LS(B) according to whether they lie on the same logical

street, e ∈ E in our street graph. In this manner we create a single α-strip for every

logical street, as in Fig. 4.5, b.

Removing Diagonal Edges

The α-strips computed from the skeleton faces suffer from diagonal edges at the inter-

section of logical streets as shown in Fig. 4.5, b. As illustrated in Figure 4.5 c-g, we

correct these edges, by modifying LS(B) to transfer a near-triangular region from the

strip on one side of an offending edge to the strip on the other side. We refer to these

corrected strips as β-strips.

Let the shared supporting vertex between each pair of α-strips si and si+1, be des-

ignated vi. The shared boundary of these two strips forms the diagonal edges we

are concerned with, one end of which is vi. We provide a classification T (vi) ∈
{Previous, Next, None}, to specify which of the pair of strips will gain the region,

and which will lose the same region. A vertex with the property Previous (respectively

Next), will assign a region to the previous (next) strip, given the counter-clockwise

vertex ordering. No action is taken with a value of T (vi) =None.

The values of T (vi) may be assigned by one of two street priority schemes, determined

by a per-block parameter specified by the user. When the angle of the supporting edges

at vi is reflex we always assign T (vi) =None. For the remaining v, we choose between

the following two schemes:

• StreetWidth. If the average width of the street edges associated with the sup-

porting edges of si is greater (respectively lesser) than those of si+1 then T (vi) =

4.3. Block Subdivision 120

P

N

P N

N

a

c

P

g

d e f

b

z
z

Figure 4.5: The α-strips (solid colours, b) are recovered from the skeleton (a) and log-
ical streets (bold lines, b). This leaves undesirable diagonal edges, such as that between
the brown and green alpha-strips. Given the classification T (vi) ∈ None, Previous (P)
or Next (N), we reassign regions (shaded, c), to create the set of β-strips. In the
example (c-e) we use the classification scheme StreetLength, specifying the direction
Previous. The subsequent splits are computed over these β-strips (f).

4.3. Block Subdivision 121

Previous (Next).

• StreetLength. If the length of the supporting edges of si is greater (respectively

lesser) than those of si+1 then T (vi) =Previous (Next).

We find that in most most urban environments the parcels face the most important

and thus widest street; therefore we use the StreetWidth scheme by default. There

are situations in which this assumption is not suited. For example, residential street

patterns in which parcels prefer to face the quieter, and longer, residential streets,

rather than the wider and busier access-streets. In our experiments it proved difficult

to make this distinction automatically, so we allow the user to assign this parameter

manually.

Given the parameter T (vi), we calculate the direction in which to reassign the region,

shown in Fig. 4.5, c, creating the set of β-strips. The region is removed from strip sx,

where sx = si if T (vi) =Next, or sx = si+1 if T (vi) =Previous. The region is removed

by cutting between two points. The primary point is the location on the boundary

of both si and si+1 that is furthest, at distance z, from C(B), (Fig. 4.5, d). The

secondary point is located on C(B) at a distance z from vi along psi(sx). The region

is then unioned to the strip sy where sy = si+1 if T (vi) =Next, or sy = si if T (vi) =

Previous. Finally we recompute the skeleton arcs to remain perpendicular to the local

edges in ψ(sy), (Fig. 4.5, f), in order to ensure we are able to guide the subsequent

splits in the following stage (Fig. 4.5, g). After processing each pair of adjacent strips

in LS(B), we are left with the list of β-strips.

Strips with a small supporting edge are rarely observed, and so are undesirable. If a

strip loses area to both neighbouring strips, and the distance between the secondary

points is small, we move the secondary points to the same location. A threshold

distance of 2Wmin determines whether we move both points to the point closest to their

mean location on ψ(sy). This ensures that the entire strip is reassigned to its neighbours

(Figure 4.5b, cyan and brown). Such a strip is removed from LS(B). On small lots this

routine may introduce “zig-zag” artifacts, these are resolved as in Fig. 4.6.

Splitting Strips into Parcels

To subdivide the β-strips into parcels, a set of points are sampled approximately

equidistantly on ψ(si), as shown in Fig. 4.7. Rays from these points, perpendicu-

lar to the nearest edges of ψ(si), split the β-strip into parcels. We “snap” rays to

nearby verticies to create cleaner geometry. The distance between the points is nor-

mally distributed around (Wmin +Wmax)/2, with σ2 = 3ω, and clamped to the length

of ψ(si). This process adds a random displacement to the ray-origin points to create

4.3. Block Subdivision 122

z

a b c d

Figure 4.6: The green and yellow strips take enough area from the blue and red
strips to trigger their removal, as z become less than 2Wmin (ab). If we move the
secondary point to a mean location, we may be left with “zig-zag” artifacts after the
strip is removed (c). In this situation we average the location of the primary points
(d). Given that the distance between these primary points is small, we have found that
this causes very few problems.

less uniform parcels. To prevent local perturbations in ψ(si) adversely affecting the

parcel geometry, we limit the rays to each skeleton face. If the ray crosses a skeleton

edge, it follows the edge to the boundary of the strip, as illustrated in Fig. 4.7b.

There are several special cases that are handled independently as post processing steps:

• There are situations in which the block is too shallow to accommodate the two

rows of parcels assumed by the algorithm. In this case we group shallow parcels

and replace them with parcels generated similarly to the skeleton subsequent split

technique.

• Triangular parcels and parcels with small areas are repeatedly unioned with their

neighbours until they are either larger than the minimum area (Amin), neither

small nor triangular, or there is only one remaining parcel. We union such parcels

with the adjacent parcel with which it shares the longest boundary.

As illustrated in Fig. 4.8, the diagonal edge removal and the splitting of strips into

parcels works in the same way regardless of the value of doffset, that is whether we use

a partial or a full skeleton application.

The pseudocode for the complete skeleton subdivision algorithm is given in Fig. 4.9.

4.3. Block Subdivision 123

Figure 4.7: The split operation divides a β-strip’s area (solid colour) into parcels
with rays (dashed lines). Top: The naive approach leads to unrealistic splitting as an
eccentric local normal to the supporting edge (bold lines) may propagate in an uncon-
trolled manner. Bottom: We constrain split-lines to the skeleton faces they are within
to achieve a more realistic effect.

Figure 4.8: Our algorithm to compute the partial skeleton (left), remove diagonal
edges (middle) and split the strips (right) demonstrated on a block with a patio region.

4.3. Block Subdivision 124

subdivSkeleton(B)

L← ∅
SS ← computeSkeletonOffset(C(B), doffset)
LS ← ∅
for each face f ∈ SS do

Append convertToStrip (f) to LS
end for
LS2← mergeOnLogicalStreets (LS)
LS3← fixDiagonalEdges (LS2)
for each strip s in LS3 do

slice (s)
end for
processSmallLargeOrTriangularParcels(LS, Amin, Amax)

fixDiagonalEdges(LS)

for each strip si ∈ LS do
vi ← vertex between si and si+1

t← triangular portion at vi
if T (vi) = Previous then

assign t to si
end if
if T (vi) = Next then

assign t to si+1

end if
end for
for each strip si ∈ LS do

if ψ(si) < 2Wmin then
remove si from LS
merge primary verticies

end if
end for

slice(s)

origins← sample ψ(s) by n((Wmin +Wmax)/2, 3ω)
remainder =

⋂
offset faces of s

for each point p ∈ origins do
normal← average normal of B near p
Create a ray, r, from p, in direction normal
[left|right]← slice remainder by r
Append left to L
remaining ← right
Append remaining to L

end for

Figure 4.9: Skeleton parcel subdivision pseudocode.

4.4. Results 125

4.4 Results

In this section we evaluate the two subdivision algorithms against real-world data.

The presented algorithms are able to generate a wide range of styles of subdivision,

depending on the block shape and attributes selected. Fig. 4.10 illustrates the effects

of altering several parameters over a constant synthetic block. However this level of

evaluation is insufficient if we wish to demonstrate the ability to synthesise blocks in a

particular style observed in the real world.

The evaluation of PGM is an interesting proposition — we do not wish to produce the

same result as the input, but instead to generate a quantity of realistic geometry of a

particular style. While there is the question of evaluation against fictional (unobserved)

styles for stylistic or inspirational reasons, we came to the conclusion that the most

important criteria was realism with respect to real-world data. This was especially

true since we desired to evaluate the urban design theory that our algorithms are

based upon.

We use an implementation of our algorithms within the CityEngine package to recre-

ate subdivisions over urban areas with known data. Some of the parameters for the

algorithms are automatically derived, others were manually set. Several statistical mea-

sures were evaluated over the whole area, and per-parcel, to quantify the differences

between the observed and procedural subdivisions. These measures are visualised over

maps to assist in objective analysis of the quality of block subdivision.

The sources of the observed (ground-truth) parcel subdivisions are given in Fig. 4.11,

mainly GIS Government databases. The use of North American cities was due to

the ease of accessing parcel data in a suitable format, with the older cities, such as

Philadelphia, contrasting with newer cities, such as Pasadena. Neighbourhoods with

a consistent and locally representative subdivision style were selected for study within

these cities. A number of GIS data irregularities were present, such as overlapping

parcels, long thin parcels or small gaps between parcels; these were manually removed.

The workflow consists of the following steps:

1. The road networks and blocks are traced from the GIS data, and street widths

manually assigned.

2. Per-block statistics are extracted from the GIS data for the mean and standard

deviation of both the parcel area (Ā, sA) and minimum width (W̄ , sW). Assuming

a rectangular parcel, these figures are sufficient to estimate the average aspect

ratio of the parcels within a block.

4.4. Results 126

a

b

d

e

c

f

g

Figure 4.10: Examples of varying different attributes of OBB (a,b) and skeleton,
subdivision (c-g); a large and small difference between Amin and Amax (a); the effect
of enforcing street access (b); low or high parcel-width (c); editing the street widths, to
change T (vi) (d); editing the criteria for shallow-parcel removal (e); low or high value
of doffset (f); a higher value of ω, and a variety of subdivision styles in the patio region
(g).

Name Location Data Source Algorithm Figs
Pasadena California, Propriety Skeleton 4.12, 4.13

USA Esri dataset
Naperville Illinois, Esri “Local Skeleton 4.14, 4.15

USA Govt Basemaps”
Wynnefield Philadelphia, Pennsylvania Skeleton & OBB 4.16, 4.17

Pennsylvania, USA Dept. of Records
Germantown Philadelphia, Pennsylvania OBB 4.18, 4.19

Pennsylvania, USA Dept. of Records

Figure 4.11: Data sources used in the evaluation of our system.

4.4. Results 127

3. The values of block subdivision parameters in the procedural model are set;

Amin = Ā− ksA, Amax = Ā+ ksA, Wmin = W̄ − ksW , Wmax = W̄ + ksW , where

k is a positive constant that in our examples was set to 2.

4. The algorithm and remaining parameters, including ω, are manually assigned

using interactive feedback given from the system.

5. We calculate our statistical measures from the resulting subdivision – i) block

area (m2) ii) block aspect ratio (longest side on a fitted OBB/shortest side) and

iii) the number of neighbours each parcel has (a neighbouring block is defined as

being within 0.5m of another block’s boundary).

The results of this process are shown in Figures 4.12–4.19.

Pasadena is a relatively modern city, and has many areas that are well classified as

having a Modernist parcel subdivision. Fig. 4.12 shows the location of area studied,

and the aggregate results of observed and procedurally generated lots. The histograms

plot the frequency of blocks having certain areas or aspect ratios, while the bar-chart

plots a similar measure for the discrete neighbouring parcel count. Note that horizontal

axes of the histograms are logarithmic, while the horizontal axes of the bar-chart are

linear. The corresponding observed and procedural subdivisions are shown in Fig. 4.13.

Per-block shading illustrates each of the three statistical measures for the observed and

procedural parcels. Generally we found that our statistical measures agreed with our

intuition that the subdivision was generating very similar results. The accuracy of the

aggregate statistics was particularly high in this data set.

The example of Naperville was chosen as a good example of a Modernist subdivision

with a specific depth, Figs. 4.14 and 4.15. Many of the residential parcels in the

observed subdivision neighbour a golf course to the rear leading to fixed-depth offsets.

The notable statistical misfit here is that a lower number of procedural parcels were

generated than observed, most probably due the changing street-frontage present in

the real world data.

To perform a direct comparison of the skeleton and OBB techniques we chose a middle-

class neighbourhood in Philadelphia with a range of parcel styles. Figs. 4.16 and 4.17

document the comparison of both subdivision techniques against ground truth. We

observe that the aggregate aspect ratio of the straight skeleton subdivision is closer

to the observed distribution than that of the OBB. However the parcel level statistics

show that both techniques produce reasonable distributions for all three statistical

measures. We observe that the OBB technique produces more of the highly irregular

patterns present in the larger lots in the top right of the example area, while the

4.4. Results 128

skeleton is able to generate the curving centrelines observed in the small lots to the

bottom left.

The final example uses Germantown, Philadelphia, as an example of a traditional lot

subdivision. The results are illustrated in Figs. 4.18 and 4.19. Again we observe that

the OBB technique generates a flatter aggregate aspect ratio histogram, but in this

case this distribution matches the ground data well; this is supported by the per-parcel

statistics.

4.4. Results 129

area(m2) aspect ratio neighbour count

Procedural

Observed

1 7 49 34
6

24
27

1.
00

1.
50

2.
24

3.
35

5.
02

0 2 4 6 8 10 12

Figure 4.12: Location and aggregate statistics for the Pasadena data set. Images
c©Google Maps.

4.4. Results 130

0.00

4259.59

8519.18

12778.77

17038.36

0.00

1.88

3.75

5.63

7.50

0.00

3.00

6.00

9.00

12.00

area(m2)

ratio

neighbour count

Observed Procedural

Figure 4.13: Results for the Pasadena procedural parcels generated using the skeleton
algorithm.

4.4. Results 131

ar
ea

(m
2
)

as
p

ec
t

ra
ti

o
n
ei

gh
b

ou
r

co
u
n
t

O
b
se

rv
ed

P
ro

ce
d
u
ra

l

1

7

48

33
6

23
34

1.
00

1.
48

2.
20

3.
27

0
2

4
6

8
10

F
ig
u
re

4
.1
4
:

L
oc

at
io

n
an

d
ag

gr
eg

at
e

st
at

is
ti

cs
fo

r
th

e
N

ap
er

vi
ll

e
da

ta
se

t.
Im

ag
es

c ©
G

oo
gl

e
M

ap
s.

N
ot

e
th

e
tr

u
n

ca
te

d
n
ei

gh
b

ou
r

co
u
n
t

ho
ri

zo
n

ta
l

ax
is

.

4.4. Results 132

0.00

4056.16

8112.31

12168.47

16224.63

0.00

1.80

3.59

5.39

7.19

0.00

5.75

11.50

17.25

23.00

area(m2)

ratio

neighbour count

Observed Procedural

Figure 4.15: Results for the Naperville procedural parcels generated using the skeleton
algorithm.

4.4. Results 133

1.
00

1.
58

2.
51

3.
97

6.
28

6

31

17
4

96
8

ar
ea

(m
2
)

as
p

ec
t

ra
ti

o
n
ei

gh
b

ou
r

co
u
n
t

P
ro

ce
d
u
ra

l
(S

S
)

O
b
se

rv
ed

0
2

4
6

8
10

P
ro

ce
d
u
ra

l
(O

B
B

)

1 F
ig
u
re

4
.1
6
:

L
oc

at
io

n
an

d
ag

gr
eg

at
e

st
at

is
ti

cs
fo

r
th

e
W

yn
n

efi
el

d
da

ta
se

t.
Im

ag
es

c ©
G

oo
gl

e
M

ap
s.

4.4. Results 134

0.00

1349.50

2699.00

4048.50

5398.00

0.00

2.49

4.97

7.46

9.95

0.00

4.00

8.00

12.00

16.00

area(m2)

ratio

neighbour count

Observed Procedural (Skeleton) Procedural (OBB)

Figure 4.17: Results for the Wynnefield procedural parcels generated using the skele-
ton and OBB algorithms.

4.4. Results 135

1

8

63

49
7

39
39

ar
ea

(m
2
)

1.
58
2.

50
3.

95
6.

25

as
p

ec
t

ra
ti

o
n
ei

gh
b

ou
r

co
u
n
t

1.
00

0
2

4
6

8
10

P
ro

ce
d
u
ra

l

O
b
se

rv
ed

12

F
ig
u
re

4
.1
8
:

L
oc

at
io

n
an

d
ag

gr
eg

at
e

st
at

is
ti

cs
fo

r
th

e
G

er
m

an
to

w
n

da
ta

se
t.

Im
ag

es
c ©

G
oo

gl
e

M
ap

s.
N

ot
e

th
e

ve
rt

ic
al

ly
tr

u
n

ca
te

d
pr

oc
ed

u
ra

l
as

pe
ct

ra
ti

o.

4.4. Results 136

0.00

7800.75

15601.50

23402.25

31203.00

area(m2)

0.00

2.47

4.94

7.42

9.89

ratio

0.00

6.75

13.50

20.25

27.00

neighbour count

Observed Procedural

Figure 4.19: Results for the Germantown procedural parcels generated using the OBB
algorithm.

4.4. Results 137

The subdivision methods introduced all successfully imitate real world subdivisions.

However certain cases in the above examples demonstrate deficiencies. Fig. 4.20 shows

three examples common to all algorithms:

• Left, shows that we do not model parcels with private access roads. The central

observed parcel has a lane to the bottom right. Often parcels recorded in GIS

data include a narrow stretch of land for access, these deeply concave polygons

are not modelled by our system at all. Indeed, both the algorithms do to not

include considerations of such polygons.

• Centre, illustrates an artifact related to statistical extraction. The large lot (blue)

skews the statistical mean and deviation to cause the subdivision to create larger

lots with high variation.

• Right, demonstrates the importance of selecting a suitable algorithm for the shape

of block. The OBB subdivision here creates unrealistic interior parcels, and is

unable to identify a realistic centreline.

observed

procedural

Germantown
bottom right

Pasadena
mid-left

ratio

Wynnefield (OBB)
mid-left

area area

Figure 4.20: General issues arising from our subdivision algorithms illustrated by
cropped portions of earlier images.

4.4. Results 138

A further feature that we do not take into account is the modeling of non-local features.

For example Fig. 4.21 identifies a straight centreline that continues between blocks.

Inspection of various maps suggests that this appears to be caused by a power-line

running throughout the neighbourhood, dictating the boundary of the parcels. These

features are not modeled by our algorithms, and do not form a significant part of the

urban planning literature, but seem to be very visible in certain circumstances.

Figure 4.21: Non-local features are not modeled by our system in the Pasadena data
set. Left: observed. Right: modeled (as Fig. 4.13)

.

4.4. Results 139

The skeleton algorithm in particular provided some very accurate block subdivision,

due in part to the additional information available about street priorities. Fig. 4.22

examines various aspects of the skeleton subdivision.

• Column 1 demonstrates that other split-direction heuristics are possible. The

observed data in this cases slices strips in a uniform direction, regardless of the

local street normal. The parcels of the procedural model adjacent to the right

road are also of a peculiar shape. This artifact occurs when diagonal edges do

not snap together when there is a small street frontage.

• Column 2 shows a further split-heuristic. The Naperville area statistics make it

clear the the designers desired parcels of constant area, unlike our algorithm which

attempt to assign equal street frontage. This suggests that another parameter

for selecting the split heuristic may be desirable.

• Column 3 shows a complex concave block in which the skeleton subdivision cen-

treline was very faithful to the observed data.

• Column 4 illustrates a complex example from Naperville that was very also sim-

ilar to observed data, especially when we compare the number of neighbouring

parcels.

neighboursarea

Observed

Procedural

Naperville
mid-left

Naperville
bottom right

area

Pasadena
bottom right

neighbours

Wynnefield (SS)
bottom right

Figure 4.22: Cropped portions of earlier results images, examining various aspects
of the skeleton subdivision.

4.5. Summary 140

4.5 Summary

We have demonstrated the application of the straight skeleton to the generation of city

parcel layouts. After examining a number of real world parcel subdivisions we were able

to classify them into several distinct types. One of these types, the traditional style,

was modelled via extensions to published OBB subdivision algorithms. The second

type posed more of a challenge. These modernist block subdivisions were observed to

possess a predominant centerline separating two strips lots on either side of a block. In

order to model these lines several options were considered. Eventually it was decided

to use the straight skeleton to model these centrelines for several reasons. The geo-

metric sensitivity of the skeleton ensured that the entire block was taken into account

when calculating centrelines, therefore even complex concave blocks were realistically

divided. The presence of robust commercial implementations of the straight skeleton

algorithm was also an advantage. In addition, because the skeleton could be intuitively

understood by users as the “limit of an offset”, we ensured a smooth parametrisation

between patio and non-patio lot subdivisions via a single parameter.

We have quantitatively evaluated these two lot subdivision systems over a range of

North American real-world data. For four kilometer-scale data sets we generated pro-

cedural parcels from GIS-supplied city block data. We were then able to analyse the

differences between these parcels by visualising the areas, aspect ratios, and the number

of neighbours of both the real and procedural subdivisions. We found that after auto-

matically fitting several parameters, the new procedural models compared favourably

across our metrics . The most frequently observed deficit in our system was the inabil-

ity to simulate concave parcel subdivisions in a manner similar to observed data; we

hypothesise that additional simulation elements in the subdivision process may resolve

this issue. The presented algorithms allow interactive editing and have proven robust

enough for integration into a commercial procedural modeling system.

Future work may include —

• mixing the two subdivision styles within a single block,

• modeling inter-block phenomena, such as a preferred split direction or features

such as power cables or administrative boundaries,

• selecting the most appropriate subdivision algorithm automatically from exam-

ples; this could be extended to the extraction of all of the parameters, such as

street priorities, given examples, or

• adjusting the skeleton subdivision to deliver constant-area, rather than constant-

street-access solutions.

4.5. Summary 141

Having demonstrated one domain, block subdivision, in which the straight skeleton

provides a compelling interactive procedural modeling tool, we continue in the fol-

lowing chapter to examine another domain — that of constructing mass models from

floorplans.

142

Chapter 5

Procedural Extrusions

This section is based on the paper Interactive Architectural Modeling with Proce-

dural Extrusions [121], co-authored with Peter Wonka.

5.1 Introduction

Given the contribution of the skeleton to the success of modeling city block subdivi-

sion, a natural question is to ask which other urban domains it may contribute to the

modeling of?

Recall again the urban procedural modeling pipeline of Fig. 2.34, in which streets

subdivide land into blocks, algorithms such as those in the previous chapter divide the

blocks into parcels, parcels are converted to footprints, and footprints are used to create

mass models of buildings. Here we are interested in the final stage of this waterfall

pipeline, creating solid 3D buildings from 2D footprints. To do this procedurally, that

is for an arbitrary footprint or plan, without programming is the challenge we address

here. To approach this problem we take inspiration from artists’ plan and elevation

drawings, and the flexibility of the mixed weighted straight skeleton of Chapter 3. The

combination of these techniques allows us to interactively create robust 3D procedural

models parameterised by the footprints.

We introduce an application of the MWSS to the interactive procedural modeling

of architectural forms. The procedural extrusion (PE) system procedurally generates

solid 3D meshes by extruding building footprints. Such an application of the straight

skeleton to the creation of architectural surfaces allows for the generation of difficult

architectural surfaces such as curved roofs, overhanging roofs, dormer windows, inte-

rior dormer windows, roof constructions with vertical walls, buttresses, chimneys, bay

5.1. Introduction 143

windows, columns, pilasters, and alcoves. The system comprises of a user interface to

specify procedural extrusions manually as well as a tool for the automated generation

of large procedural cityscapes from their footprints. Extensions to the the sweep plane

algorithm of Chapter 3 are utilised to robustly compute a wide range of two-manifold

architectural surfaces.

The procedural extrusion system is both an interactive and procedural modeling tool

for such architectural surfaces. Procedural geometric modeling offers several advan-

tages over traditional static modeling of architectural forms. PGM descriptions of

objects allow us to edit meshes at a higher semantic level; for example, editing wall

angles rather than vertex coordinates, whilst ensuring constraints are enforced, such as

polygon planarity. Additionally we can preserve subsequent edits while allowing earlier

edits to be modified; such as changing the slope of a roof after a chimney has been

created upon it, without adjusting the chimney. Nevertheless, the biggest advantage

of procedural modeling over static modeling is the creation of large scale cityscapes,

without a proportional increase in designer effort. Many of the current PGM systems,

such as CGA Shape[164], require end user programming. In contrast, the PE system

provides an interactive graphical tool, instead of a programming language, to specify

geometry. This lowers the barriers of entry to PGM, allowing more people to create

procedural content.

Architectural surfaces are often deeply concave and contain complex architectural fea-

tures such as overhanging roofs, dormer windows, interior dormer windows, roof con-

structions with vertical walls, buttresses, chimneys, bay windows, columns, pilasters,

and alcoves. These intricate surfaces have not previously been available as watertight

meshes in procedural environments. Systems such as shape grammars[223, 162, 145]

have tended to concentrate on the combinatorial, rather than the geometric aspects of

architecture generation, and are not able to generate such geometry themselves. Typ-

ically these systems rely on pre-existing meshes that are instanced, positioned, and

scaled to appropriate locations.

Given buildings, such as in Fig. 5.2, it is not obvious how to construct 3D models

of these structures. Procedural extrusions provide a novel parametrisation of such

buildings by taking inspiration from architects’ drawings consisting of floorplans and

elevations.

The first major component of the system is presented in Sec. 5.3 and allows the user

to interactively draw a floorplan, and assign an arbitrary profiles to each plan edge.

Nested sets of plans and profiles allow features such as dormer windows and alcoves

(Fig. 5.2, orange) to be modeled. Interactive modeling via the user interface allows

the expressiveness of the system to be explored in depth. We evaluate the interactive

5.1. Introduction 144

Figure 5.1: Procedural extrusions allow a footprint (2d plan) to be extruded to form
the walls and roof of a house (inset). Meshes and procedural details can then be attached
(main).

5.1. Introduction 145

Figure 5.2: These two examples show architectural surfaces overlayed with the user
input. Plans (green), profiles (blue), natural steps (orange) and offset events (red) are
specified in the user interface. The output of our system is an architectural shell (grey).

5.2. Related work 146

portion of the PE system in Sec. 5.6 by modeling 50 various structures from a catalogue,

as well as seeking opinions from users as to the properties of the system.

In order to combine arbitrary plans and profiles, the second component of the system is

a collection of algorithms to construct 3D meshes from the specified plans and profiles.

These algorithms utilise a variety of repeated applications of the MWSS (Chapter 3,

Sec. 3.5) to create a geometry modeling system. We take the sweep-plane that is

used to calculate the MWSS and introduce additional types of user specified events.

These algorithms are presented in Sec. 5.5.1. To study the real-world stability of

these algorithms we evaluate PEs over a large scale data of 6000 building footprints

in Sec. 5.6. Here we note that the computational geometry community emphasises

provably correct algorithms and therefore often favours rational arithmetic. In contrast,

our work consists of heuristic algorithms that emphasise computational speed and are

geared towards a floating point implementation. While our heuristics include various

mechanisms to make the results more robust, it is possible that the computations can

fail. For example, in the Atlanta data set of 6000 footprints we noted that two roof

planes were not computed correctly. The approximate nature of our floating point

computation also results in roof planes being moved by millimetres.

We conclude with a description of external applications to which others have success-

fully applied components of the PE system.

The contributions of our work are:

• the design of the system and tools to enable procedural modeling of complex

architectural surfaces.

• the set of tool choices to enable procedural modeling of complex architectural

surfaces.

• heuristic algorithms to generate a polygonal mesh from the user specification that

is approximately consistent with the input data.

• the evaluation of the system on a collection of examples to verify its practical

utility, and to identify configurations that are difficult to model with our tools.

5.2 Related work

In this section we describe and examine some common techniques applied to archi-

tectural modeling and analyse some of the properties of the resulting architectural

meshes.

5.2. Related work 147

Figure 5.3: In many buildings’ geometries, there are many horizontal edges (green).
Many faces of such geometry are coplanar to one or two such edges. In this case, only
the red faces do not do not have such a horizontal edge.

We may make the observation that many architectural and man-made objects have

a common property: There are many horizontal edges to the geometry, and the faces

between such edges are rectangular and coplanar. For example Fig. 5.3 shows one

building with many horizontal edges and associated faces.

There are several properties that we find desirable in computer models of architec-

tural structures. We assume to use polygonal mesh models, since these are common,

somewhat standard in industry, and are those which hardware (GPU) acceleration is

designed to accommodate. “Nice” 3D meshes commonly have the following properties:

• Planar faces: Each face lies entirely within a single plane.

• Water-tight: There are no holes in the mesh, all adjacent faces are connected via

a shared edge, and all adjacent edges are connected via a shared vertex.

• No self-intersections: No part of the mesh protrudes through another; the only

parts of the mesh that touch are adjacent in the mesh data structure.

To describe such meshes, basic 3D modeling tools such as as those introduced in

Sec. 2.12 may be used. Tools such as manual vertex modeling, extrusion, lofting, and

constructive solid geometry have all been used to model architecture in 3D modeling

tools such as Maya[19], Sketchup[240], and Blender[74]. Several examples of buildings

created with the Sketchup modeling tool are shown in Fig. 5.4.

• Manual vertex and face specification gives users the tools to create and position

verticies in R3. These tools allow unrestricted mesh creation, but it is possible,

and even common, for such tools to create non-planar polygons, non-watertight,

5.2. Related work 148

Figure 5.4: Several typical building meshes created using Sketchup[240], and found
in Trimble Warehouse[241] using the search “Victorian house”. From left to right the
buildings were created by users wiccan, DILBERT, bob1938, Paulwall and bob1938.
Buildings have had garden geometry and textures removed to allow comparison with
our results. c©2013 Google.

Figure 5.5: Given a mesh (left), translating a single point(orange) may result in one
or more non-planar faces(right).

or self-intersecting meshes. Often additional post-processing stages must be ap-

plied to check for these conditions, and resolving them is left to the user. Fig. 5.5

illustrates how moving a single vertex may result in several non-planar faces.

• Extruding a plan-polygon either in a single direction or along a 3D path, Fig. 5.6,

left, is another method to construct meshes with rectangular faces. Careful po-

sitioning of the plan and profile can produce meshes with the desired horizontal

edge property. An extrusion tool creates an instance of the plan at each ver-

tex of the path. It continues to create a rectangular face between the pairs of

corresponding plan edges from adjacent plan-instances.

However there are some problems with the extrusion tool. If the path rotates, the

faces of the resulting geometry may not be planar, Fig. 5.6, centre. Additionally,

when modelling walls and roofs, the plans and profiles are not changed in response

to the geometry; self-intersections may occur, such as when modeling roofs —

the crest of the roof may either fall short, or overshoot as in Fig. 5.6, right. Such

5.2. Related work 149

p1
1

p2
1

p1
2

p1
2

Figure 5.6: Left: A plan polygon (green) is extruded along a single segment path
(blue). Rectangular faces are created between adjacent instances of the polygon. The
above verticies p1

1, p2
1, from the first instance, and p1

2 and p2
2, from the second, form the

orange rectangle. Centre: If the path rotates an instance, faces may not be planar. Note
that the non-planar quads are depicted here as triangles. Right: Using a more complex
path, geometry with strong horizontal lines can be created. However self-intersections
and holes in the geometry are evident in this example, such as near the roof line of this
mesh, and above the concavity in the plan.

deficiencies with geometry created by the extrude tool must be identified and

removed manually, possible with manual vertex and face edits.

Levelshop[73] is a rapid video game level prototyping tool that uses extrusions,

together with user defined 2D plans. Because of the above problems with extru-

sion, it is limited to relatively simple geometry.

• A modification to the extrusion algorithm allows for different profiles to be used

at each vertex on the profile. This loft tool allows more user interaction, so

that when the geometry does self-intersect, the profiles may be manually edited.

Lofts are a modeling primitive extensively used in 3D modeling packages. As

when extruding there are no guarantees that the result of a loft will not self-

intersect. The manual editing of profiles can be quite involved as it requires the

user to specify additional segments for some of the polyline instances as well as

specifying corresponding topologies for face creation.

• Another popular method for geometry creation is constructive solid geometry [15]

to form objects from the addition and subtraction of geometry elements. CSG

has been used by several systems since to create urban modeling tools. Sugihara

and Hayashi[228] create roofs on orthogonal geometry by unioning roofs after

rectangular decomposition. This approach is adapted to building reconstruction

in [133], by computing the CSG union of elements from a library of 3D roof-form

blocks.

5.2. Related work 150

a

b

c

e

f

g

d

Figure 5.7: The expressiveness of a constructive solid approach, given a single input
primitive (a) is limited. For example, we may wish to elongate the primitive. A CSG
union operation could only construct a mesh with several peaks (b), while a scale op-
eration would also adjust the slope of the roof in an unrealistic manner (c), however
we probably prefer a result closer to the straight skeleton (d). In a second example, the
union (e) is not the same as the SS (f), and introduces unwanted, water collecting,
horizontal edges into the roof-line. More complex examples (g) cannot be created at all,
since they are not locally similar to the available primitive.

The advantages of CSG are that manifold results are guaranteed, and that all the

output faces are subsets of the input faces. Thus if the input faces are planar,

then so will the result. The disadvantage is, however, that the range of results

are limited by the available CSG primitives, as illustrated in Fig. 5.7.

As introduced in Chapter 2 there are a wide range of languages and grammars for spec-

ifying geometry. Many of these systems, such as CGA Shape[164], are concerned with

the combinatorial and positional aspects of the modeling, rather than the geometric

elements. For example, CGA may specify the location of the roof, but would rely on

extrude operations to specify the mass model and other geometric routines to calculate

the roof geometry.

Several systems exist to deform existing architectural meshes into new configura-

tions [93, 35, 77], additional detail is given in Chapter 2. For example, in [93] Habbecke

and Kobbelt introduce a mesh deformation tool that constrains specified edges to re-

main, for example, coplanar, horizontal or vertical. The system constructs a linear

system that may be deformed in real time. These deformation tools, however, do not

solve the problem of creating geometry to be deformed in the first place.

Previous systems have applied the straight skeleton to the modeling of architectural

roofs. Laycock and Day[173] use the SS to define roofs over arbitrary floorplans, and

adjust the positions of the verticies to create Gable roofs. Havemann[105] uses an

5.2. Related work 151

Figure 5.8: A comparison of modeling roofs with the medial axis, left, and the straight
skeleton, right. The corresponding 2D geometries are shown above.

application of the SS with uniform negative weights, followed by an application with

uniform positive weights to create overhanging roofs. Our goals are similar to these

approaches and we contribute new extensions to the straight skeleton to avoid the need

for Laycock’s vertex adjustment and to extend the skeleton beyond roof modeling to

an interactive procedural modeling system for entire architectural meshes.

An alternative to the SS for offsetting areas is the medial axis[28]. As discussed in

Sec. 4.3.2, there are several technical limitations to using the medial axis in the polyg-

onal domain. In addition we may wish to study the aesthetic reasons for not using

the medial axis; we can ignore these technical limitations to create a model such as

demonstrated in Fig. 5.8. In this model we observe that there are many unrealistic

curved roof ridges, both when viewing the model from the top or the sides. These

unrealistic curved edges make the medial axis much less suitable for modeling the roofs

of buildings than the straight skeleton. In addition we note that the method used

to visualise the medial axis for Fig. 5.8 created 65,000 polygons, compared to the 80

polygons created by the SS algorithm. This large difference in model complexity was

caused by the terrain used to model the roof from a 2D bitmap image of a medial axis

computation. It may be possible to create such 3D models using the medial axis with

fewer polygons, but we are unaware of any such published techniques.

5.3. User Interface Description 152

g

h i
e fa b j k

l

nd

c m

green
purple

red
blue

orange

step

Figure 5.9: Three example buildings constructed in our user interface. We demon-
strate multiple profiles on a simple plan (abcd), modeling overhangs (efghi) and anchors
(jklmn). Simple profiles (ab) are applied to the green and purple edges of the plan (c)
to create the geometry (d). Overhangs are defined using an additional pair of profile
polylines associated with every edge (ef) to create typical roof geometry (hi). Anchors
(magenta circles) are defined on the profile (j) and the plan (l) to position features. In
this example the anchors position a rectangular natural step (m) with a profile (k) that
creates a roof-window (n).

5.3 User Interface Description

To control the underlying application of MWSS instances, the PE system utilises a

graphical user interface. This section introduces the interface, and how it can be used

to model single instances of complex watertight architectural meshes, we call shells.

The MWSS algorithms are largely motivated by the desirable user interface commands,

and so the user interface provides a motivation for the technicalities in the following

sections. These new event types specified by the UI are explained in Sec. 5.5.

5.3.1 Overview

Our UI originates from the observation that simple roofs can be defined by a aerial

plan, and an angle for the roof. We combined this line of enquiry with the study of

architect’s drawings that combine plan drawings from above, and elevation images from

the four sides. The plan specifies the footprint of the structure, while the observed roof

angle is often present in the elevations. Exploring this observation, one may extract

angles and heights from other locations on the profile in an architectural elevation, such

as the height of the walls. However, architects typically produce a small number of

elevations, typically one for each cardinal direction, and this provides insufficient detail

for reconstruction. For example when the footprint of the house contains concavities,

cardinal elevations under-constrain the resulting solid shape. The premise of the PE

system is to create solid geometry from a plan and per plan-edge profiles, as in Fig. 5.2.

The plans and profiles are evaluated by a rising sweep plane algorithm, in a manner

5.3. User Interface Description 153

Figure 5.10: The interactive interface during the design of a temple. The right
window contains the output preview whilst the left window contains the plan and the
profile editors.

similar MWSS, of Sec. 3.5. As the sweep plane rises, it carries with it an active plan

which combines the different profiles to create a solid polygonal mesh.

The complete UI, including the MWSS implementation, is available online[120].

5.3.2 Plans and Profiles

The complete user interface, as illustrated in Fig. 5.10 and provides:

• the current plan,

• the current profile,

• a 3D preview of the current architectural shell,

• tools to add, remove and move verticies in the plan and profile,

• tools to associate profiles with plan edges,

• options to add and remove profiles

• options to add events to the profile and plan using anchors. There are several

different types of discrete UI events, introduced below, which are enacted as the

sweep plane rises past them.

• Finally the UI also provides standard save, load, and export functionality.

We shall continue to use the definition of a plan introduced in Sec. 3.2.1 — a linked

list of verticies that define the counter-clockwise boundaries of enclosed regions. In

5.3. User Interface Description 154

the PE system, every edge in the plane is also associated with a profile. A profile is

a collection of polyline segments that define a cross-section of the building through

the associated plan edge. As the user edits the plan or profile, the system shows

the resulting architectural shell in a 3D preview window. The following Sec. 5.5.3

will introduce edge direction events into the sweep plane algorithm, each of which is

specified by a profiles vertex.

Fig. 5.9, c, shows an example of a plan and two profiles, a & b. In the 2D plan,

different colours show the association between the plan-edges and profiles. Each profile

is automatically assigned a colour upon creation, and the plan-edge is drawn with this

colour.

Because of the underlying sweep-plane algorithm we must constrain the profiles to be

monotonic in the vertical (z) direction; horizontal polylines are allowed as a special

case. The underlying procedural extrusions grow architecture upwards from an input-

plan. Therefore, a downwards moving line-segment is meaningless. In order to creating

buildings with overhanging roofs, such as the temple of Fig. 5.10, there were two design

directions that could have been taken:

1. Allow the user to draw arbitrary polylines as profiles that can go up or down in

the vertical direction. These would be automatically decomposed into monotonic

profiles;

2. Force the user to explicitly model profiles as multiple polylines where each poly-

line must be monotonic in the vertical direction.

Given several examples, it became clear that when design 1 was used it was difficult to

coordinate different profiles, each with an overhang, to occur at the same height. This

case is relatively common, so design 2 was chosen. All the polylines in a profile are,

therefore, monotonic; polylines that represent overhangs on different profiles all start

from the same height. The height is marked in the user interface by a white circle, as

in Figs. 5.10 & 5.9 e & f. The height of all overhangs starting from the same elevation

can be changed by moving the position of this circle.

We will explain the process of modeling overhangs using the second example in Fig. 5.9

efhg & i. The user creates the input floor plan shown in (g). The edges in this plan are

colour coded as either red or blue. A red edge will be extruded according to the red

profile (e) and the blue edges will be extruded according to the blue profile (f). The

final architectural shell is shown in (h) and (i). The red profile and the blue profile

each consist of three polylines. Each of these polylines is monotonic in the vertical

direction. In the red profile we can see that one of the polylines has two segments that

5.3. User Interface Description 155

Figure 5.11: A profile offset event simulates a non-monotonic profile by manipu-
lating the active plan at the height of the event and adding an additional overhanging
region (top left). In this example the front and back edges of the roof have been dis-
abled from taking part in the offset. One profile offset event (a,b) may define a shared
starting height for one roof with two different angles. Coordinating this offset event be-
tween profiles allows for a single parameter to control the roof height (c; several heights
shown).

are completely horizontal. Modeling horizontal segments is transparent to the user, but

will be handled as special case later in the implementation. Modeling overhangs is an

explicit operation. The overhang is modeled by inserting two new polylines into both

profiles at a certain height. In the user interface this is one atomic insertion operation.

When the user adds an overhang to one profile, via a right-click menu, then all profiles

will obtain two new polylines at the same height. These two polylines bound the inside

and outside of the overhanging area in the active plan. The user can independently edit

the new polylines for each profile, whilst only the starting height remains synchronised.

The interface allows users to disable edges so that they do not contribute to the offset

boundary, an example of which is shown in Fig. 5.11. The profile associated with edges

adjoining such disabled edges is specified once for the entire offset. Both the edge

disable option and adjoining edge profile are manipulated via the right-click menu.

Computing these non-monotonic sections of the profiles is somewhat involved as the

user interface does not specify the offset region in absolute coordinates, but rather

relative to current edges in the active plan. Sec. 5.5.6 will introduce these profile offset

events, and a solution to computing the corresponding 3D meshes via sub-applications

of the WSS to the current active plan outline.

5.3. User Interface Description 156

5.3.3 Anchors

There are several categories of UI operation that perform actions at specific locations

on the 3D architectural model being constructed. For example we may wish to position

a decorative mesh at a specific location, make local change to the active plan in order

to induce dormer windows into a roof, or we may wish to divide the active plan into

separate parts at a certain height. The difficulty here is that these locations must

be persistent to changes in the input plan, profile changes and re-calculations of the

architectural shell. This is called the persistence problem in procedural systems[145],

and we introduce anchors as a partial solution in our system.

An anchor is created, after specifying the event type, by selecting a point on the plan,

or on the corresponding profile polylines. In Fig. 5.9 (jklm & n), the anchors are shown

as magenta circles on a floor plan edge and a profile edge. A plan anchor and profile

anchor together specify the location of a feature, in this case a roof window. Fig. 5.12

shows how an anchor on the plan (a), and the profile (b), may be combined to specify

a location (c). A profile anchor alone specifies an event at a the specified height, for

example splitting the active plan into two halves. In either case, if the corresponding

profile anchor is no longer associated with an edge in the active plan at the specified

height, then it will not be instanced. Furthermore, if the edge on which an anchor was

placed has been split, then the event may occur two or more times.

5.3.4 Plan Edits

Editing the active plan at a specific location allows a wide range of local features to be

created on the architectural shell. These edit-events are plan edits ; they are specified

by a plan-edit-plan and profile, a plan/profile anchor pair to position the edits, and a

step type. The step type specifies one of two options for inserted edges into the active

plan, with different advantages:

• Forced steps insert an arbitrary set of edges into the plan.

• Natural steps offer a range of simple shapes that can be inserted, and come with

a guarantee not to cause self-intersecting geometry.

The details of the differences between these two step types are discussed later. Fig. 5.9

(jklm & n) show a plan edit with a forced step being used to create a roof window.

Fig. 5.13 illustrates that, as well as adding additional regions into the plan, plan edits

may also remove regions. Here we use a plan edit to specify a square portion of the

roof to be removed. This square is replaced by a square plan region, and associated

5.3. User Interface Description 157

a

b

c

Figure 5.12: Positioning a feature, c, using plan anchor a and profile anchor b on
the complex surface of a bay window.

Figure 5.13: Left: The plan (solid green line) and profiles (blue lines) define the
shape of the structure. The anchors (orange) locate the chimney (red). A natural step
is inserted into the building at the anchored location (dashed green lines). Middle: The
finished 3d geometry, showing the profiles for the new edges. Right: Alternative natural
step which adds an additional rectangle into the plan (dashed green lines) to specify a
chimney.

5.3. User Interface Description 158

profiles, such that a chimney is formed as the sweep plane rises. If the input plan

has several repeated elements, such as bay windows or buttresses, plan edits give a

convenient tool for defining the repeated plan and profile once, whilst repeating it at

a number of different anchored locations; for example the creation of the buttresses of

Fig. 5.34.

5.3.5 Positioning Decorative Details

Another application of anchors is to specify the location of architectural details. Sets

of anchors can be used to mark the location of anchor points of decorative meshes. For

example the top and bottom elements in a grid of windows of Fig. 5.14. This figure also

provides an example of re-using plan and profile anchors to ensure that the decorative

meshes are positioned in a regular pattern. By using a pair of anchors to specify

the top and bottom of each window mesh on the facade, the user specifies that the

windows have a particular height. In general, we may use tuples of anchors to specify

the position of control bones to provide a variety of deformations to decorative meshes.

The mesh deformation takes place using per-bone vertex weights[136], imported into

the PE system in the MD5 file format. Typically these are created using an external

modeling tool; the examples in this chapter were created with Blender[74].

A user interface parameter allows the users to specify the scale of the decorative meshes

on the architectural shell. This is useful when working with decorative meshes from a

library with varying scales.

While pairs of anchors can be used to specify points on the architectural shell, individual

faces of the shell can be identified by adding tags to the appropriate profile segment.

These are shown as small triangles in the user interface, a cyan coloured example is

shown in Fig. 5.15. After the complete manifold is computed, the faces that were

generated from the specified profile segment are post-processed in a particular way, for

example to add tiles to the roof.

5.3. User Interface Description 159

Figure 5.14: Above: Plan (blue) and profile (green) anchors define the attachment
points (purple) for decorative meshes. By sharing plan and profile anchors, the attach-
ment points may be constrained to the same horizontal or vertical line. Below: The
window and pillar meshes are deformed by the attachment points to increase the variety
in the model.

5.4. Splitting the active plan 160

5.4 Splitting the active plan

A subdivision event splits the area enclosed by the active plan into several sections at a

particular height. It is used to model buildings that rely on an internal structures, such

as “saw tooth” roofs. The user defines a set of offsets, which bound the newly created

regions on the active plan. As with profile offset events, the challenge in implementing

subdivision events is in creating a robust result for all possible active plan topologies;

again a second application of PE are used to define these offset region boundaries.

When creating a subdivision event the user specifies the following using the interface

of Fig. 5.15:

• A height for the subdivision event, specified by a profile anchor.

• A map that defines the new profiles in the subdivision application of procedural

extrusions, from the existing profiles.

• A set of tags applied to these new profiles which specify the new regions of the

subdivided plan.

• A map that specifies new profiles for the new regions.

5.5. Computing Procedural Extrusions 161

Figure 5.15: The subdivision event UI. Left: The plan and subdivision profile. Right:
The UI for specifying the new profile map, and tags for specifying the new regions and
associated profiles for their side, bottom and top edges. Inset: The resulting 3D model.

5.5 Computing Procedural Extrusions

Given the UI input, this section details the procedural extrusion system which generates

the output geometry. It begins by defining the terminology used, the inputs and the

outputs of the main algorithm. The section continues with a description of the different

events generated automatically and by the user, and how each event type is computed.

5.5.1 Definitions

We shall use the terminology of Chapter 3, briefly introducing it again, and extending it

where appropriate. Broadly, the inputs are the plans and profiles defined, for example,

by the UI, while the output of the system is an architectural shell in 3d Euclidean

space with a xyz world coordinate system. The up direction is along the z axis.

A (floor) plan is a planar subdivision (a straight line planar embedding of a planar

graph) that divides a plane into inside and outside regions. A plan has corners and

oriented edges. A plan is embedded in a plane parallel to the xy-plane (the ground

plane), so that all corners of a plan have the same z (height) value. We require that the

boundaries of a plan are a non-intersecting collection of oriented polygons. The inside is

on the left-hand side of each oriented polygon edge. The polygons are oriented counter-

clockwise, but polygons describing holes are oriented clockwise. Additional bounded

regions may be recursively located inside a hole. The jth polygon is described by nj

polygon corners cji ∈ R3 with 1 ≤ i ≤ nj. Each corner cji is connected to the next

corner (according to the polygon orientation) by an implicitly defined edge, eji . In the

following, indices should be treated cyclically, such that a polygon with corners cj1, cj2,

5.5. Computing Procedural Extrusions 162

and cj3, the corner cj4 means cj1.

Each edge in a plan is associated with a direction plane, dpji , which contains the edge.

Since we will be using it to evaluate a MWSS, it is defined by an angle θ such that

−π/2 ≤ θ ≤ π/2. A vertical direction plane has θ = 0, whilst a direction plane oriented

towards the inside (outside) satisfies θ > 0 (θ < 0 respectively). The angle is measured

between the direction plane and a vertical plane that also contains the edge, as in

previous Fig. 3.28.

A profile is a set of polylines that is used to control the direction plane of an edge.

A polyline is modeled in a local 2d wz-coordinate system and consists of a list of m

points ti. The location of point i is (ti.w, ti.z) and we require, for monotonicity, that

ti.z ≤ ti+1.z. The polyline defines m− 1 angles, θ1..θm−1. The angle θi is calculated as

the clockwise angle between a vertical line and the line ti to ti+1. The angle lies in the

range −π/2 ≤ θi ≤ π/2, and the final angle is constrained such that θm−1 > 0. This

final condition ensures that the MWSS terminates.

5.5.2 Overview

This section describes the input, output, and an outline of the PE algorithm.

Input

The input of the algorithm is a (floor) plan, called the input plan, profiles associated

with the edges of the input plan, profile offset events, and anchor events. Anchor events

specify the location of plan edits, a mesh instance or subdivision event.

Output

The main output of the algorithm is an architectural shell (3d mesh) in the xyz world

coordinate system. In the non-degenerate case the shell is watertight and two-manifold.

The architectural shell is a polygonal mesh stored in a half-edge data structure. The

half-edge data structure stores a set of vertices in R3, a set of input edges and skeleton

arcs between the vertices, and a set of planar faces which may contain holes. Faces are

defined by a counter-clockwise ordering of arcs.

Outline

The algorithm is an extension of the MWSS algorithm introduced in Chapter 3. As

well as the automatic events that occur in the MWSS, the event queue also contains

5.5. Computing Procedural Extrusions 163

user interface events. As before, the core algorithm repeatedly takes the next event

from the queue, allowing it to update the active plan as well as insert additional events

into the queue if necessary. Fig. 5.16 gives the algorithm in pseudocode form.

Main begin
Q = new priority queue;
sweepZ = 0;
foreach corner c in active plan do

CreateGIEEvents (c, Q);

CreateUserEvents(queue Q)
while !Q.empty() do

event = FindNextEvent(Q);
event.updateActivePlan();
event.updateEventQueue(Q);

foreach edge e in input plan do
ReconstructFace (e);

end
CreateUserEvents(queue Q) begin

foreach Profile p in user profiles do
foreach ProfileOffsetEvent poe in p do

Q.insert (new ProfileOffsetEvent(poe));

foreach vertex v in p do
Q.insert (new EdgeDirectionEvent(p, v));

foreach AnchorEvent ae in user anchor events do
Q.insert (new AnchorEvent(ae));

end

Figure 5.16: Pseudo-code for main loop of the PE algorithm, an extension of
Fig. 3.14

The priority queue orders events by their z height, thus simulating the rising sweep

plane. By allowing additional edges to be added by the user to the rising active plan,

the MWSS is extended to describe a wide range of architectural forms. Therefore the

PE algorithm is equivalent to a succession of MWSS skeletons stacked on top of each

other, along the z axis.

Once all the events in the priority queue have been processed the algorithm termi-

nates. The skeleton faces defined by the events are post processed and output. This

post processing involves identifying holes, positing decorative meshes and applying the

textures specified by user tags.

Data structures

The first significant data structure is the plan data structure, which encodes the active

plan on the sweep plane, as in [69] and Chapter 3. This structure is a doubly linked

list of corners. Each corner has a pointer to the next corner, the previous corner, and

a pointer to its previous and next direction planes, Fig. 5.17. At the beginning of the

5.5. Computing Procedural Extrusions 164

corners

linked list of corners

direction planes

direction plane pointers

output arcs

Figure 5.17: The plan data structure, shown part way through the sweep. A linked
list of corners describes each enclosed region. In addition every corner has a reference to
the previous and next direction planes, each associated with an edge on the active plan.
Skeleton arcs are output by events, and are used to reconstruct the 3D architectural
shell.

algorithm the input plan is specified by the building floorplan. During the algorithm,

the sweep rises from the input plan and this data structure is updated to encode any

changes to the active plan.

The second important data structure is a priority queue, Fig. 5.16 Q, that sorts events

by ascending height. GIE events are automatically created, while user events (edge

direction events, profile offset events and anchor events) are defined by the user.

5.5.3 Description of Events

As the sweep plane ascends it encounters several different types of events, introduced

in this section. The two major classes of events are those automatically inserted to

ensure the area on the active plan remains well formed, and those specifically inserted

by the user.

The automatic events are the general intersection events — our generalisation of split,

edge[69] and vertex events[65], as introduced in Sec. 3.2.4. These events are created

whenever a new event is added to the active plan.

The user events are specified in various portions of the user interface. There are five

types of UI event:

5.5. Computing Procedural Extrusions 165

• Edge direction events occur at profile polyline verticies. Such an event updates

the direction plane associated with a set of edges in the active plane

• Profile offset events occur at heights specified by user edits. Intuitively, a profile

offset event results in additional inside regions being added to the active plan at

the specified height.

• Anchor events come in a further three varieties:

– Plan edit anchors modify the active plan to insert architectural features

such as chimneys, or dormer windows into the shell.

– Mesh anchors specify attachment points for decorative meshes.

– Subdivision event anchors divide the active plan into a number of pieces.

They occur over the entire active plan at a height given by the anchor.

We continue to detail each of these event types.

5.5.4 Generalised Intersection Event

The GIE is an automatic type of event, introduced previously in Sec. 3.2.4. Here we

introduce the implementation details required for a robust implementation in a floating

point environment. We chose a double-precision floating point environment, instead

of an exact computation paradigm, such as CGAL[1], as it was both simpler to work

with, and faster — a benefit for the rapid computation of large environments. The

main robustness tool we use are epsilon tolerances.

Generalised intersection events perform topological changes on the active plan to ensure

that it never self-intersects as the sweep plane ascends. These events are automatic,

and inserted whenever new edges are added to the active plan. For example, all user

specified events that add edges to the output, will also check for potential GIE events

involving those new edges.

Chapter 3 introduces the limitations of the GIE. Indeed there are many MWSS situa-

tions in which the GIE does succeed in forcing the active plan to remain well formed.

Despite this we found the GIE a remarkably robust solution to the complex events

created by architectural plans and profiles.

Input: The input of a generalised intersection event is a point l ∈ R3, and a set of

three or more direction planes, f , whose associated direction planes intersect at l. The

point l is calculated as the centre of the clustered volume.

Output: The output of a generalised intersection event is an updated active plan.

This represents the bounded region on the sweep plane after the event.

5.5. Computing Procedural Extrusions 166

a
b c

d
e f

g

h

i

jk

l

mn

o

p

a

b

c

d

(abcde)
e

(defgijkl)

(ghi)(abcdlmno)(aop)

Figure 5.18: Left: Five faces forming an intersection event. Right: Events can
interfere with each other if they have the same height, in this case the four points that
share a roof ridge.

Epsilon Tolerances

As part of the GIE we remove any out of bounds edges from the edge set, f . It is

possible for the line defined by the intersection of the direction plane and the sweep

plane to pass close to l, however the line-segment defined by the associated active

plan edge may not. Because the intersections are detected using unbounded direction

planes, there may be edges in f that do not approach l on the active plan. Such edges

are removed from f .

A small epsilon range, ε1, expands the active plan edge and ensures that collisions occur

reliably over the floating point precision range. On our inputs of footprints measured

in meters around the origin we found ε1 = 10−5 a sufficient margin. If ε1 becomes

too large, the chances of the extended edges intersecting with unintended geometry

increases.

In addition, we use expanded bounds for intersection location clustering. This addresses

two stability problems:

• In symmetrical inputs made up of regular polygons, such as often found in archi-

tectural plans, it is very common for more than three direction planes to meet at

a point. To avoid degenerate output in a floating point situation it is necessary

to identify intersections whose locations are close together, and treat these as a

single event. Fig. 5.18, left, illustrates an example of such a building footprint.

• Second, direction plane intersections that are far apart from each other can inter-

fere if they are close to one other in height, Fig. 5.18, right. It is also necessary

to detect and handle these events at the same height to resolve the parallel con-

secutive edge degeneracies.

To address the two previously mentioned event detection problems, we cluster the

events in both vertical and horizontal directions. We poll the priority queue to collect

5.5. Computing Procedural Extrusions 167

ε2

ε3

Figure 5.19: When an event is processed we simultaneously extract all intersection
events within a height of ε2. Then we cluster all events that are within a cylinder of
radius ε3 and height ε2.

all intersection events whose height, z, is within some threshold, ε2, of the initial event.

Second, we cluster all the events according to their location after projection onto the

xy sweep plane. The clustered volume is therefore a cylinder of radius ε3 and height

ε2. Fig. 5.19 illustrates this clustering step. We found that values of ε2 = 10−4 and

ε3 = 10−6 gave the best reliability. There are certain pathological inputs which cause

this clustering stage to fail. An example would be a row of events, each within ε2 of

another, which could contain an arbitrary number of events.

PCE resolution

As introduced in Sec. 3.3.2, the MWSS is poorly defined in several situations. Different

modeling choices lead to different ambiguous-case resolution strategies, Fig. 5.20. In

particular when modeling architecture the parallel consecutive edge degeneracies need

to resolved in an architecture viable way. We found that the volume maximising ap-

proach tended to be the most desirable default for architecture situations; we take the

lowest valued θ when resolving the PCE. We hypothesise that this case is observed

most commonly since it maximises the space inside the building.

5.5. Computing Procedural Extrusions 168

Figure 5.20: Two identical bay windows that lead to the same two events (red
circles) involved in a degenerate PCE situation (red line). To resolve the PCE situation,
a single edge must be chosen to replace the others. The building on the left (right)
resolves the ambiguity using the volume maximising (respectively minimising) priority
technique. The resulting unused section of the original profile is shown in orange. Note
that in each case, two ambiguous events occur at the same height, and must create
globally consistent output.

5.5. Computing Procedural Extrusions 169

5.5.5 Edge Direction Events

A set of edge direction events are created for each profile. An edge direction event

updates the angle and direction planes of a set of edges. There are two types of

edge direction event, standard and near horizontal. Standard edge direction events are

constructed from a single angle in the plan, while a near horizontal edge direction event

is constructed from two consecutive angles and a distance. These values are calculated

from the profile polyline.

Standard edge direction events

Input: A set of edges, f , in the active plan, each associated with the same profile and

a single new angle for all the edges, γ.

Output: A new active plan which replaces the original.

For each of these edges eji ∈ f , we update the associated direction plane by setting its

angle, θji to γ. The implicit edge, eji , continues to propagate over the sweep plane with

a new speed, as defined by the new angle.

Near horizontal edge direction events

When the angle associated with an edge, θ, approaches ±π/2, standard edge direction

events face a problem as two parallel (horizontal) direction planes do not intersect to

form a line. Additionally, as the angle approaches these limits the algorithm computes

the intersections of near coplanar planes, causing numerical instability. To resolve this

issue, as illustrated in Fig. 5.21, we use a secondary application of a MWSS to calculate

the horizontal section of the profile. To do this we first increase the angles according

to the length of the horizontal profile segment, then calculate the secondary MWSS,

and finally project the result onto the original sweep plane.

Input: A set of edges in the active plan, f , associated with the profile, a distance, d,

a direction angle, γ, and a following angle, ζ. The angle γ ≈ π/2 (γ ≈ −π/2) specifies

the direction of the horizontal as towards the inside (respectively outside) of the active

plan. ζ specifies the angle of the following non-horizontal edge event.

Output: A new active plan which replaces the original.

First we create a temporary plan as a copy of the active plan. For each edge in the

original plan, eji , and associated angle θji , the temporary plan has an edge Ej
i , and

associated angle Θj
i . Secondly we update the angles in the temporary plan according

to the following mapping:

5.5. Computing Procedural Extrusions 170

a b c d

Figure 5.21: The horizontal section desired (b) can be created by a secondary ap-
plication of a MWSS to calculate the offset in the given direction. After flattening (c)
unchanged edges (red, d) are ignored.

Θj
i =


tan−1(d) if eji ∈ f and γ > 0

− tan−1(d) if eji ∈ f and γ < 0

0 otherwise

The secondary MWSS extrudes the temporary plan for a height of one unit. The

temporary active plan is projected onto, and replaces, the active plan in the original

procedural extrusion instance. That is, eji is replaced by Ej
i if it exists in the updated

plan, otherwise eji is removed from the active plan. The location of Ej
i is projected onto

the original active plan. Finally the values of θ in the original skeleton are updated

using the mapping:

θji =

{
ζ if eji ∈ f
θji otherwise

Occasionally multiple edge direction events occur at the same height. In this situation

the direction events are sequenced by the order of user creation.

5.5.6 Profile Offset Events

Profile offset events specify the start of overhangs. The difficulty of specifying and

handling profile offset events comes from the procedural definition. While it is easy

to specify overhangs for a given region, the geometry must produce good results for a

wide range of building footprints, and adjust itself according to the user editing the

plan. Our technique must procedurally perform changes to the active plan without

creating badly formed self-intersections.

At a profile offset event, an additional inside region, called an offset region, is inserted

into the active plan (see Fig. 5.22). Two offset boundaries are grown from the active

plan to enclose the new offset region. We introduce new edges and corners into the

active plan to represent this newly enclosed region on the sweep plane. The new edges

are classified as inside, outside, or side, depending if the edge stems from the first

5.5. Computing Procedural Extrusions 171

e

h

c

i

d

g

j
f

a

b

Figure 5.22: Some meshes that can be computed from an input plan (a) using profile
offset events. Buildings b and c are shown in two orientations. By creating two offset
boundaries (e) that define an offset region (h), an overhanging roof (b) can be generated
from an arbitrary plan (a). If two edges are disabled in the profile offset event, open-
ended roofs can be created (c,f,i). Finally, by offsetting inside the active plan, walled
roofs can be created (d,g,j).

5.5. Computing Procedural Extrusions 172

a

b

c

d

Figure 5.23: The recursive application of procedural extrusions (b) to a plan (a)
from Fig. 5.22 (c). The faces between z = 1 and z = 2 are projected onto the primary
active plan (c), before being merged (d). Zero area faces (blue and purple) are removed,
and profiles assigned based on the origin of the edge. In (d) green edges are assigned
profile inside, red profile outside and blue profile side.

boundary, the second boundary, or are at the side-edge of an offset region.

Input: A map for each edge in the active plan, eji to a tuple, tji = {disabledji ,
dist insideji , dist outside

j
i , profile inside

j
i , profile outside

j
i} and a single

profile side. The variable disabledji is a Boolean value that specifies if the offset region

associated with this edge is present in the output; dist insideji and dist outsideji are

real values that define distance and direction from the active plan of the inside and

outside offset boundaries; profile insideji , profile outside
j
i and profile side are pro-

files. We require that all values of dist insideji and dist outsideji have the same sign;

a positive (negative) sign indicates an offset (respectively inset) of the active plan. To

ensure proper topology on the active plan, the distance, dist inside, is constrained to

be non-zero.

Output: The output of an offset event is an updated active plan, typically with the

additional region defined either inside or outside of the input active plan.

We create a temporary plan as a copy of the primary (input) active plan. For each edge

in the primary plan, eji , the temporary plan has an edge Ej
i , and an associated profile,

profile recursiveji . Edge Ej
i is constructed by projecting eji onto the plane z = 0. The

profile profile recursiveji defines the angles Θj
i = tan−1(dist insideji) at z = 0, and

Θj
i = tan−1(dist outsideji) at z = 1. We execute a recursive application of procedural

extrusions using the temporary plan as input. It is executed from height 0 to 2, to

5.5. Computing Procedural Extrusions 173

create a temporary output shell. Before continuing we correct the orientation to ensure

that counter-clockwise loops enclose an inside region; the orientation of each face in

the shell is reversed (the counter-clockwise ordering of vertices in the half edge data

structure is reversed to a clockwise ordering). Faces of the shell between the planes

z = 1 and z = 2 are projected onto the primary active plan, forming the offset region.

This process is illustrated in Fig. 5.23.

The projection associates each tuple, tji , with an offset region in the primary active

plan. The entire offset region is bounded by the projected edges, r. Additionally the

projection defines a 1:1 mapping between the new edges, ekl ∈ r, and a subset of the

temporary shell’s arcs Akl . We remove from the primary active plan any edges in r that

enclose an offset region of area 0 or that are associated with a tuple containing a value

of disabledji = true. We update the profile, profileji , associated with each edge, eji , in

the primary active plan according to the function:

profileji =


profileji if eji /∈ r

profile insideji if Aji lies in the plane z = 1

profile outsideji if Aji lies in the plane z = 2

profile side otherwise

Finally we merge adjacent parts of the offset region to avoid self-intersections. We

remove the corresponding edges and corners from the active plan.

5.5.7 Anchor events

Anchors define the location of features, such as plan edits, decorative meshes, or sub-

division events. The plan and profile anchors specified in the user interface are used in

different combinations to define either an event that happens at a certain height, or an

event that happens at a particular point on the mesh. Subdivision events are triggered

at a certain height by a profile anchor on an active profile. In contrast, plan edits and

decorative meshes are placed at points by both a profile and plan anchor.

Finding parametrised locations on a surface that are robust to subsequent edits in

the floor plan is challenging. The manifold of the structure may not reach any given

point in space because, for example, the anticipated active plan edge may have been

removed by previous events. Therefore, to position features in a manner robust to plan

and profile edits the user positions a pair of two dimensional anchors, Fig. 5.12.

The profile anchor defines a plane parallel to the sweep plane, at the anchor’s z height.

When the sweep plane reaches this height we trigger height-events. If there is an

5.5. Computing Procedural Extrusions 174

associated plan anchor, it is evaluated upon the current active-plan to give the xy

coordinates.

We allow the user to select from two types of plan anchor — relative and absolute. A

relative anchor’s location is a fraction of its length on the active plan edge, Fig. 5.24

middle row, left. If the edge is represented in the active plan at the specified height,

the feature is instanced. Absolute anchors are defined on an input plan edge, and

define a plane perpendicular to this edge, Fig. 5.24 bottom row, left. The intersection

of this plane and the corresponding edge in the active plan at the height specified by

the profile anchor defines the instance location. Because an active plan edge may grow,

it is possible to position absolute anchors beyond the ends of the input plan edge.

Relative and absolute anchors each define a different co-ordinate system on faces of

the architectural shell, Fig. 5.24 centre column. Each system is a more natural way to

express certain patterns with different geometric properties:

• Relative plan edge anchors: if an edge is present at the height, the operation will

occur at least once. If a split event has taken place on the corresponding edge,

it may take place more than once, 5.24, middle row, right. This makes relative

anchors suitable for features that must always exist, however having multiple

instances of certain features may be inconvenient.

• Absolute plan edge anchors: these may occur once or zero times at a certain

height. At a certain height the corresponding plan anchor may no longer define

a perpendicular plane that intersects the corresponding edge in the active plan.

Hence the absolute anchors may not be suitable for referencing features that must

exist, 5.24, bottom row, right.

It is also desirable to be able to position features on the surfaces created by plan edits,

introduced in the following section. In this situation we may define plan anchors for

the new edges introduced by the plan edits, Fig. 5.25. We translate instances of the

profiles associated with the plan event by the height of the event. This also moves the

associated profile anchors. These anchors may define additional plan edits, leading to

a possibly recursive sequence of plan edits.

5.5. Computing Procedural Extrusions 175

x1

y1

x2

y2

re
la

ti
ve

p
la

n
an

ch
or

s
ab

so
lu

te
p
la

n
an

ch
or

s
an

ch
or

s

Figure 5.24: Top row: plan anchors (green) and profile anchors (blue) combine
to locate a feature (purple). If the edge is not in the active plan at a given height,
the feature may not be instanced (red). Middle row: Relative plan anchors define a
proportional coordinate system relative to the input plan edge’s length, x1

y1
= x2

y2
(left).

However some features may be repeated (right). Bottom row: Absolute plan anchors
define a rectilinear grid over the shell, however they may not be always instanced (red).

5.5. Computing Procedural Extrusions 176

α

Figure 5.25: A plan edit may be defined by a plan segment and a profile (left). The
geometry arising from the edit may be parametrised in several ways, here we show the
use of relative plan anchors (middle). The profiles associated with the plan event are
offset by some value, α, such that feature locations are positioned relative to the start
of the plan event (right).

5.5.8 Plan Edit Events

Plan edits introduce discrete changes to the active plan at specified heights. We de-

scribe how plan edits operate efficiently and detail two methods to define them.

Input: Plan and profile anchors defines the location, or locations of the step. In

addition the step type (natural or forced), and step geometry is specified. Natural

steps have an additional distance parameter.

Output: The output of a plan edit event is an updated active plan, with its boundary

altered by the step.

When performing a plan edit, some edges are deleted, some edges are moved, and some

edges are inserted, Fig. 5.26. The new edges are at the height of the current sweep

plane.

Our user interface offers two types of plan edits. Inserting an arbitrary shape gives

the largest variety of geometric designs. However these forced steps offer no guarantees

that the resulting active plan will not self intersect and create an invalid topology. The

challenge comes again from the procedural nature of our approach and the fact that

the edit has to work for all input plans. Natural steps offer a solution to this problem

by using a recursive application of procedural extrusions to insert edges into the active

plan.

Natural steps are calculated on the active plan at a given height by amending a small

(typically 10−3 by 10−3) protrusion. This is offset by a recursive application of proce-

dural extrusions such that it does self intersect, Fig. 5.27, similar to the edge direction

events of Sec. 5.5.5. This recursive PE application is constructed by assigning θ = 0

to all edges not part of the feature, and a user defined θ to those edges in the protru-

5.5. Computing Procedural Extrusions 177

a

b

c

Figure 5.26: Inserting a plan edit into the active plan during execution. a) The plan
data structure (blue dots, green arrows) implicitly defines the active plan (cyan). b) To
insert new edges into the active plan, corresponding edges are linked into the plan data
structure. c) The resulting architectural shell.

a b c

d e f

Figure 5.27: Given an intricate plan, calculating a robust perturbation is challeng-
ing. Forced steps are positioned at the location of the anchors (a, orange). These
are combined with the boundary. However many geometry artifacts are undesirable (c,
red) in an architectural situation. Given natural steps at certain positions (a, orange),
small changes to the boundary are made (d), which are then grown (e) using a recursive
application of procedural extrusions, to create more natural geometry (f).

5.5. Computing Procedural Extrusions 178

Figure 5.28: Given a natural step feature location, a, we may insert a small pro-
trusion, d, intro the active plan. It is possible to assign weights (black arrows) to the
edges in such a way that the geometry becomes disconnected. This changes the genus
of the active plan, and creates a suitable footprint for a buttress or similar (d).

a b c d

Figure 5.29: If we combine an step towards the interior of the active plan with a
genus change, we can create a suitable plan edit to represent a chimney or similar.
Note that the length of the black arrows indicates the relative speeds of the natural step
offset.

sion. The resulting temporary active plan is calculated at a specific height, and this is

incorporated into the original active plan. The new edges in the active plan have the

relevant profiles assigned to them.

We have discovered that natural steps can create a wide range of geometry in this

robust manner. Buttresses and other disjoint regions can be created by growing the

protrusion in such a manner that it disconnects itself, Fig. 5.28. The chimney plans

of Fig. 5.13, can be grown by combining this disjoint region with an inwards step,

Fig. 5.29.

5.5.9 Mesh Anchors

In order to add intricate details to the architectural shells, anchors may also be used to

position decorative meshes. A range of simple parametrisations is given by positioning

5.5. Computing Procedural Extrusions 179

Figure 5.30: The four example meshes used in the evaluation. The meshes are
parametrised via control points (blue and green circles) and can be instanced to different
sizes.

a number of bones which deform the mesh. For example we can increase the height of

a pillar without deforming the capitals, as in Fig. 5.30, left.

Input: A mesh with n bones, a scale factor, g, and n anchor locations, where n ≥ 1.

Output: As the sweep plane passes, the location and orientation of each anchor is

recorded. During the post processing stage, if all n anchors are recorded, the mesh is

instanced with the scale factor g applied to each bone.

5.5.10 Subdivision Events

We may also wish to subdivide a given primary active plan into a number of discrete

areas. Like profile offset events these occur over the entire active plan at a specific

height, but are specified in the UI using profile anchors rather than the profile polylines.

A recursive PE application is again used to ensure a robust manipulation of the active

plan, Fig. 5.31. The boundaries of these new subdivision regions are then assigned

profiles corresponding to a combination of their originating primary active plan edge

profiles and their classification as top, bottom or side edges in the subdivision output

shell.

Input: A map from each profile present on the active plan to a subdivision pro-

file, m, and a set of tags, tx ∈ t0..ttmax, attached to subdivision profile segments

5.5. Computing Procedural Extrusions 180

Figure 5.31: The subdivision of the primary active plan is triggered at height by a
profile anchor (left: grey circle) into two new regions to create a sawtooth roof. Given
the primary profiles (left: purple green orange), the map m specifies the subdivision
profiles, (right, arrows), from which we can calculate the subdivision PE (right). The
result is projected back to the original active plan, replacing the original geometry, and
assigned new profiles. Finally the original sweep plane continues to rise, creating the
final mesh (left).

with properties, (profile bottom, profile top, profile side, merge bottom, merge top,

merge side)x. The map is specified such that m(profile1) = profile2, where profile1

is a profile in the primary active plan before the subdivision event, and profile2 is a

subdivision profile. The Boolean values, merge bottom, merge top, merge side, spec-

ify whether the subdivision region should be merged with the corresponding abutting

region. The tags, tx, are optionally assigned to a set of polyline segments in the

subdivision profiles to mark faces in the subdivision shell, Fig. 5.31. The profiles,

profile bottom, profile top and profile side are assigned to the newly created subdi-

vision regions in the primary plan.

Output: The output of a subdivision event is a new primary active plan.

Each edge in an output shell can be classified as top, bottom or side according to to

how it was created. Horizontal edges created by the input plan or edge direction events

are classified as top or bottom, depending on their orientation, while all other edges in

the output shell are classified as side.

We create a new, recursive application of procedural extrusions, the subdivision appli-

cation. Initially this is a copy of the primary active plan, translated to height 0. We

update the profile associated with each edge in the subdivision active plan according

to the map, m. We then execute this instance of procedural extrusions to create a 3d

shell. Each face in the subdivision shell may have a subdivision tag, tx associated with

5.5. Computing Procedural Extrusions 181

α

β

γ

Figure 5.32: We may use different profiles to divide an irregular plan into regions
defined by relative or absolute measures. Above: by assigning the angle on the profile
of one edge to be twice the speed (red) of another (purple) we may create a region of
relative size 1

3
= α

β
(top left, pink). Below: By only using the lower section of a profile

curve, an absolute subdivision of γ units may be created.

it, which specifies how it is merged into the primary active plan, and which profiles the

new edges have.

Each secondary PE face is projected it onto the primary active plan, possibly combining

with adjacent regions according to the merge tags associated with tx. The profiles of

these new regions on the active plan are given by the profile bottom, profile top and

profile side members of the tuple.

We note that subdivision events are a generalisation of profile offset events. That

is, it is possible to create a profile offset event using a subdivision event. However

subdivision events cannot be easily incorporated into the user interface profile curves,

and are much more involved for the user because of the specification of m and tx.

Subdivision events are a flexible method of creating relative or absolute portions of a

plan. By assigning profiles with angles of a certain ratio, we can split the active plan

into relatively sized areas, Fig. 5.32 top. Alternately we can only use a certain polyline

segment of the profile to create an area of absolute dimension, Fig. 5.32 bottom. By

combing both these techniques, a wide range of shapes can be created. Fig. 5.33 gives

an example of a relative subdivision event in a modeling context.

5.6. Evaluation 182

Figure 5.33: A procedural model that creates a row of houses from a spline. In
this case the street was generated by four points defining the street’s curve. Seed points
were grown using another application of the skeleton to create the building footprints.
Relative subdivision events were used to split the roof plan into three areas.

5.6 Evaluation

Given the PE system consisting of the user interface, and the algorithms to process the

user specified events into an architectural shell, we continue to evaluate the usefulness

of the system. Initial results such as Fig. 5.34 shows many typical architectural shells

that are not possible using just the straight skeleton, or extrude operations alone.

The earlier Fig. 5.33 also illustrates how we may generate architecture along a curved

street, a challenge for systems such as CGA Shape. We can also create buildings with

horizontal roof overhangs, such as Fig. 5.35. The alcoves and columns illustrate how

disconnected regions can merge together and interact. This is possible because the

MWSS can grow as well as shrink, unlike the SS, which can only shrink.

More eccentric uses of the PE system can also be imagined. Many other designed

forms contain the strong horizontal edges that inspired this SS approach. By rotating

the plan, such that the sweep plane moves horizontally rather than vertically, we may

model objects such as windows or moldings, Fig. 5.36. As an illustration of the ability

to compute extrusions on complex plans we may use a thresholded image as a plan, as

in Fig. 5.37, to create artistic representations of images.

However, in order to perform a more objective evaluation of the PE system, three

different approaches were taken. Firstly, Sec. 5.6.1 we examine the use of PEs as an

5.6. Evaluation 183

Figure 5.34: From top, left: buttress, dormer windows, flying buttress, bay windows,
curved plan, eight faces meeting on a symmetrical footprint with a chimney, hipped roof,
curved roof, a horizontal overhang, an overhanging gable, standard gable and interior
dormer windows

5.6. Evaluation 184

Figure 5.35: Inset: the output of our procedural extrusions using a complex foot-
print, horizontal sections and plan edits. We are able to create pillars, covered parking
and alcoves respectively. Main: A procedural condo with roof texture surrounded by
procedural trees

5.6. Evaluation 185

Figure 5.36: Using a creative set of profiles, a wide range of architectural features
can be modelled. By setting the input in a vertical plane, and carefully designing per-
pendicular profiles these windows and details may be extruded.

Figure 5.37: A thresholded image (inset) was used as the plan, with one of two
profiles randomly assigned, to create this artistic image.

5.6. Evaluation 186

automated GIS procedural modeling system, secondly Sec. 5.6.2 describes our experi-

ences of PEs as an interactive tool. Finally Sec. 5.6.3 describes the use of the PEs by

artists, and documents their opinions of the system.

5.6.1 GIS Evaluation

In order to evaluate the usefulness of the PE system for procedural modeling, we devel-

oped and evaluated a tool that generates 3D meshes given a Geographic Information

System data-set of building footprints.

GIS User Interface

To generate and apply appropriate profiles to the footprints, we developed a secondary

GIS UI. The graphical interface allows users to to apply sets of profiles and anchors

to existing plans semi-automatically. Given a set of floorplans from a GIS or similar

database, Fig. 5.38, the user can specify a machine to assign profiles and anchors to

each building plan. Each machine defines a certain style of building, such as Victorian,

industrial or Dutch. The tools to assign machines are:

• Directly: this sets the assigned machine to all the selected plans.

• Painting: after selecting a set of plans to paint, the user selects a machine type

from a palette, a brush size, and is then able to assign the machines to profiles

by painting over the centrum of each plan with the brush.

• By size: After selecting a set of plans, the user can execute a program that assigns

machines based on the area enclosed by the floorplans. For example, the smallest

buildings may become garden sheds and the largest become factories.

• Randomly: The user is given an option to select a fraction of the currently selected

plans randomly. This allows, for example, 10% of the plans in a particular area

of the city are assigned machines to create Victorian properties.

Each machine utilises several items of meta-data from the GIS database to enable the

assignment of profiles to each edge and other features described by the anchors. The

most important datum is an orientation label applied to each edge. This is assigned

by an angle computed by orienting the building to the nearest street and mapping the

normal vectors of the footprint edges to the unit disk. We assign labels for the front,

left, right and back of the building, Fig. 5.40. Furthermore short edges at the front

5.6. Evaluation 187

Figure 5.38: Typical GIS data. In this case this is a subset of the floorplans of build-
ings in Atlanta (black), which have subsequently been marked up with road data(green).

Figure 5.39: The GIS UI allows different sets of profiles (right) to be assigned to
different footprints (left). Users are able to edit the sets of profiles that are used to
generate the architectural shells.

5.6. Evaluation 188

Figure 5.40: Left: Given a plan (solid green) and a road (thick grey line), we
assign a set of different profiles (red: front, blue: back, green: right, yellow left, with
light and dark shades specifying long and short edges). Centre: the naive ordering
assigns a label based on the orientation. Right: the long and short labels are assigned
by considering triples of consecutive edges. If the first and last edge of the triple have
the same orientation, and the second has a shorter length than the first or third, then
the assignment of the second edge is changed to a short edge of the same orientation
as the first.

and side of the building are assigned the appropriate profile for their direction. These

labels are then mapped by each machine onto profiles.

The positioning of anchors representing machines is also delegated by these labels.

Profile anchors are specified on the associated profiles, while the plan-anchors are

positioned by short Java programs which specify an interval to repeat anchors at —

for example to create a row of windows, or a door and several windows.

GIS results

Using our GIS UI tool we were able to apply PEs to a large scale cityscape. We created

a procedural model using about 6000 footprints from Atlanta (see Fig. 5.41). We used

our interactive system to apply 4 different machines to generate different styles of

architecture to the footprints.

The resulting geometry has three million polygons, 4 different building styles, took 20

minutes user modeling time, 10 minutes to compute the procedural extrusions, and

15 minutes to render. The automated system used GIEs, horizontal and normal edge

direction events, as well as anchor events. One limitation was that we were not able

to find a rendering infrastructure to render such a detailed model. We therefore had

to omit the decorative meshes from all but the nearest structures. The PE system

was implemented in Java and we measured the running times of our system on a 64bit

5.6. Evaluation 189

Figure 5.41: We present an interactive procedural modeling system that is able to
model difficult architectural surfaces, such as roof constructions. This figure shows
procedural extrusions applied to 6000 floorplans synthesised from a GIS database of
Atlanta. Procedural trees were added for decoration.

Figure 5.42: The two observed examples of missing geometry. Note the missing roof
sections in both buildings.

2.6GHz CPU.

The system efficiently created a large quantity of architectural geometry. However, we

were able to identify several geometry failures by manual inspection, as in Fig. 5.42.

It is likely that these cases were caused by floating point errors, or our use of GIE

for event resolution. Typically these errors expressed themselves as missing sections of

roof, or very tall, self-inverted roof lines.

5.6.2 Interactive Evaluation

While procedural evaluation of the PE shows the algorithmic stability and potential for

large scale cityscapes, it does not explore the range of forms that can be created. To

this end we performed an evaluation of the range of forms that our user interface was

able to successfully model. In order to do this we modeled 50 buildings, and recorded

the issues encountered.

5.6. Evaluation 190

F
ig
u
re

5
.4
3
:

T
he

ex
am

pl
e

ca
se

s
an

d
m

od
el

in
g

st
at

is
ti

cs
.

v
V

er
ti

ce
s

in
m

od
el

ed
pl

an
(a

dd
it

io
n

al
ve

rt
ic

es
);

l
P

ol
yg

on
s

in
m

od
el

ed
pl

an
(p

ol
yg

on
s

in
li

br
ar

y
pl

an
);

p
N

u
m

be
r

of
pr

ofi
le

se
ct

io
n

s
in

m
od

el
;

s
N

u
m

be
r

of
n

at
u

ra
l

st
ep

s
de

si
gn

ed
(n

u
m

be
r

of
n

at
u

ra
l

st
ep

ap
pl

ic
at

io
n

s)
;

o
N

u
m

be
r

of
off

se
t

ev
en

ts
.

5.6. Evaluation 191

F
ig
u
re

5
.4
4
:

E
xa

m
pl

es
co

n
ti

n
u

ed
fr

om
F

ig
.

5.
43

.

5.6. Evaluation 192

F
ig
u
re

5
.4
5
:

E
xa

m
pl

es
co

n
ti

n
u

ed
fr

om
F

ig
.

5.
44

.

5.6. Evaluation 193

Figure 5.46: Sample aerial photographs of buildings used for modeling examples 46
to 50 in Fig. 5.30. a,b) Stockholm, c) Copenhagen, d) Edinburgh, e) Vienna. c©2013
Google.

Each building was modeled from a plan and a perspective image. A set of four simple

meshes were used to add detail to the structures, these meshes are illustrated earlier

in Fig. 5.30. The events used for modeling were edge direction events, profile offset

events, natural steps and decorative mesh anchors.

We undertook the evaluation with the goal that all major geometric features from

the elevation drawings should be present, although smaller details (such as cornices,

plumbing and decorative windows) were excluded. We traced the plans into the inter-

active system directly, or via aerial views of the property. The construction of profiles

and positioning of features was performed “by eye” by the author of this thesis.

The first 45 buildings were taken from a library of ready designed architectural styles for

family homes[102], Appendix A. We modeled the first example in each of the categories

in the library. These categories included styles as diverse as ranch or Dutch (Fig. 5.43,

examples 13 and Fig. 5.44 32 respectively), however much of the stylistic content was

dependent on architectural details that were replaced with our simple meshes.

Because the library plans were generic American templates, they had predominantly

90◦ and 45◦ degree angles between floorplan edges. That is, the design was not con-

strained by environmental features. To provide more challenging examples, we chose

an additional five buildings from European cities that had irregular plans (Fig. 5.45, ex-

amples 46-50). These buildings were modeled from satellite and aerial views, Fig. 5.46.

The modeling times ranged from 20 to 120 minutes with a mean time of 63 minutes.

Features on the input plan smaller than approximately 30cm were not modeled. We

also recorded a number of additional metrics for each building: the number of vertices

in the input plan and in the model; the number of corner-loops in the input and in the

model; the number of profiles in the model, the number of offset events, the number

of natural step templates and the number of instances of those steps. These statistics

are given in Fig. 5.43–5.45.

5.6. Evaluation 194

Figure 5.47: a) The red roof face is not described in the input polygon(left). By
creating a small change to the input polygon we can create the desired face (green). b)
left: edges can be expected to collide at a certain height (green polygons), right: however
when these edges are involved in other events (such as those from the red polygon), there
may be undesired consequences, here a non-terminating polygon. c) Some structures
(such as dormer windows and chimneys) do not obey the volume-maximising resolution
to the ambiguous case, in this situation we have to lower the ambiguous case priority
of some edges (blue) to get the desired result. d) A face (yellow) may be shared between
two profiles (blue lines), defining co-planar profile sections requires patience on behalf
of the user.

Observations

It was possible to model all the buildings using the PE system, although the long

modeling times reflect the fact that constructing some roof lines was complex. The

results are of a similar detail and use cases as those taken from Trimble Warehouse

in Fig. 5.4, when compared without textures or surrounding garden geometry. We

continue to describe some of the problems encountered, and conclude with a breakdown

of the modelling of a single building.

The most common issue when modeling was the construction of structures that con-

tained edges not specified in the input plan, as shown in Fig. 5.47 a. In these circum-

stances it was necessary to add extra edges to model these features. These would either

be added in the plan, leading to the difference between the vertices in the input plans

and the model in several of the examples, or by natural steps at certain heights.

In several circumstances one face relies upon another, spatially separated, face to halt

its propagation at the correct time; that is, an edge is fated to meet another, as in

Fig. 5.47, b. When another feature blocks, or changes the course of one of these faces,

the other may not terminate, or collide in an unexpected location. These fated edges

lead to potentially undesirable intermediate outputs while editing.

Modeling circular arches was difficult because any adjustment in the width of the arch,

would have to be accompanied by a re-scaling of the profiles. Modeling techniques such

as shape grammars are able to retain such semantic information to automate such a

process, and it is possible to imagine a similar system for the procedural extrusions.

It is not convenient to model a roof that is held only by a large number of pillars,

5.6. Evaluation 195

because it is not easy to model the transition from pillars to the roof. For example,

pergolas, such as those in Fig. 5.44, example 31, contain no walls to allow the plan to

generate a roof. These were not a large part of our data set, and were approximated

by walled structures of similar volume.

It was occasionally necessary to override our default of a volume maximising priority in

the ambiguous case. For example, in the case of a chimney stack or a dormer window

of Fig. 5.47, c. To do this we used tags to specify high priority and low priority profile

segments. This approach proved simple compared to the alternative of specifying a

priority for every pair of segments.

It was relatively easy to split one edge into two by inserting a step event in the edge.

In contrast, we found the reverse case quite tricky; allowing two profiles to merge to

one. This situation is illustrated in Fig. 5.47, d. We see this architectural feature as

two different profiles to merge at the top of a shorter roof in Fig. 5.43, example 3, and

Fig. 5.44, example 20. To design a profile with a face co-planar to another is difficult,

especially if the second edge starts from an edge parallel, but not colinear to the first.

Natural steps proved very versatile for inserting edges into the polygons. For example,

Fig. 5.44 example 34, required a new edge internal to the plan for the back-facing wall

of the tower. By positioning a wide square natural step on the end of the building, it

was possible to split the polygon into two. One partition became the tower, and the

other the remainder of the roof structure.

Most small edits to the plans and profile lead to small changes in the geometry and

topology of the output mesh. However while modeling these example buildings there

were noticeable situations where there were discontinuities — small user edits causing

large changes such as altering the number of output faces, or their connectivity. From

a geometric perspective these occur in the MWSS when two or more reflex verticies (or

a non-reflex vertex with negative weights) pass each other. From a user perspective we

have identified several situations where such discontinuities have affected the modeling

process.

The first type of discontinuity arise from the PCE degeneracy of Sec. 3.2.3. When two

adjacent edges, which are nearly parallel have different θ values, the behaviour of the

resulting roof can be erratic as the angle between the edges is set to slightly greater

than, or less than zero. In practice these edges do not appear often in architecture.

When they do, it is often possible to add a perpendicular edge to lessen the chaotic

behaviour, illustrated in Fig. 5.47, a. Another class of discontinuity emerges when an

overhanging roof suddenly merges with some adjacent geometry, as in Fig. 5.48, left. In

this situation, moving a single vertex a short distance can cause the active plan to gain

or lose several verticies. Finally, we observed the discontinuities in the straight skeleton

5.6. Evaluation 196

Figure 5.48: Small changes in the plans can cause large changes in the results. Left:
One such discontinuity caused by two portions of an overhanging roof merging. Right:
Reflex skeleton arcs can also cause discontinuities.

identified by Eppstein in [65], illustrated here by Fig. 3.21, in several configurations

while constructing models. A simplified version of such a case is illustrated in Fig. 5.48,

right.

While modeling we typically encountered one or two of these cases in each of the

examples. However, given the interactive feedback of the system, it was relatively

simple to adjust verticies to understand, and so avoid the degeneracy.

The Modeling Process

After a number of models were created, several distinct phases of modeling became

clear. A description of these stages during an 80 minute modeling workflow for a

model similar to number 34 follows:

1. 5 minutes — Planning and creation of a rough mass model with a single profile,

consisting of only 2 segments, on all plan edges. The plan is traced from the

given example plan, and the profile is heavily edited to achieve the best fit.

2. 10 minutes — Massive features requiring natural steps were inserted, in the case

of model 34, this was the tower over the garage, but in other models features

such as overhangs without matching footprints are created at this stage.

3. 5 x 5 Minutes — For each major edge in the plan, the profile was updated to

match the example images. Once the new profile was created it was copied to

5.6. Evaluation 197

other edges with similar profiles in the plan. Often a profile could be re-used or

edited, because similar profiles were found around a building. Portions of the

profile could also be shared. For example, the bottom of a façade without an

adjoining roof may be re-used on another edge of the profile that does require

a roof. This stage was iterated through five times, each time making smaller

additions, corrections, and taking into account previous changes.

4. 10 minutes — Additional smaller edges were added to the profile. Again, inter-

active feedback enables feedback as to the result of each change.

5. 15 minutes — Smaller natural steps were positioned for decorative elements such

as roof elements and chimneys. It was possible to re-use main-plan profiles for

several of the new plan edges introduced by the steps.

6. 15 minutes — The meshes were positioned using anchors. This was complicated

by concave faces, with the need to switch between different anchor types. In

addition, the user interface required manually selecting the file to apply, and

selecting the appropriate anchors for each window. For grids of windows this was

time consuming, but could be easily automated in future work.

These 6 stages were typical of many of the 50 models. However there where exceptions;

in one example it was necessary to re-start after it became clear that a feature that was

modeled by a stage in a profile polychain, would have to be modelled by a natural step

instead. In another example, a deviation from this workflow was caused by problematic

discontinuities becoming a problem in stage 5, which meant that the user had to return

to stage 1.

After stage one, a reasonable low-quality model was almost always present. While the

resemblance to the given example model was sometime dubious, the results at this

stage were obviously “house-like”. In general, throughout the modeling process, the

3D output that the user worked was obviously a building, and the mesh was mostly

watertight. When modeling in a non-domain-specific tool, such as with Blender in

Sec. 2.12, this is rarely the case. These tools often leave non-planar faces, gaps in

geometry and intermediate geometry visible throughout the workflow to distract the

user from the object being constructed.

A particularly useful feature of the UI is the fast iteration that it allows in all workflow

stages. For example, in stage 1 it was useful to quickly examine the results of several

different profiles in quick succession, and make a decision as to which was best. In

stage 3 it was useful to be able to slowly reduce the scale of edits, converging in on a

solution with each iteration. Finally fast interactive iteration also helps negates some

5.6. Evaluation 198

of the problems with discontinuities that may occur; it is easy to quickly backtrack

and explore the geometry which causes a particular discontinuity, whether it is desired

or not.

5.6.3 Artistic Evaluation

The final evaluation technique was intended to investigate the usability of the system

by those unfamiliar with procedural modeling. We employed two artists to use the

system part time for four weeks. These users reported that it took between 5 hours

and 3 weeks to become competent with the tool, given a short three page user guide.

Brief telephone calls were made with the artists, and no direct tutoring occurred.

During this training the artists were able to create a number of interesting forms,

Fig. 5.49. Finally they were asked to create some complex example meshes, Fig. 5.50.

To create these complex examples the artists created their own custom meshes to

attach. This took the total modeling time to 30 hours for both artists, although the

time spend using the procedural extrusion system ranged from 5-10 hours. The time

saved compared to standard mesh modeling techniques was estimated by the artists to

be between 5 and 15 hours.

Whilst this approach only gives a coarse qualitative metric, it shows the applicability

of the procedural extrusions in the real world. The final interviews with the artists are

recorded in Sec. B. Both artists commented that the PE system was faster to use than

commercial generic mesh modeling packages.

5.6. Evaluation 199

Figure 5.49: The artists’ example work while learning to use procedural extrusions.
Note the wide range of roof shapes easily expressed in the system.

5.6. Evaluation 200

Figure 5.50: The final projects from user 1 (above) and user 2 (below). These took
“10 hours” and “5-10” of work with the PE system.

5.6. Evaluation 201

5.6.4 Notable external applications

Procedural extrusions have been used in external academic and commercial projects.

Fig. 5.51 illustrates the intended use of procedural extrusions in the video game Clock-

work Empires [79]. This project, which is still in development, extends on the work

presented here by including texturing, and forced termination at specified height —

“caps”, stop the user creating run-away geometry that may become very tall.

In an academic project, our PE library has been integrated into the skylineEngine[201],

implemented in Houdini3D[219]. This project allows basic plans and profiles to be

defined inside the Houdini environment, as in Fig. 5.52.

5.6. Evaluation 202

Figure 5.51: c©2012, 2013, Gaslamp Games. Clockwork Empires[79] uses procedural
extrusions to generate buildings from user specified footprints. Top: The user designs
a footprint. Bottom Left: the resulting mesh. Bottom Right: Another in-game building
in context.

5.7. Comments 203

Figure 5.52: c©Gustavo Patow 2012. The integration of our PE implementation with
Houdini. Top: Two views of a Raccolet style house, and the graph that generates it.
Bottom: Two views of a “sea view” style house.

5.7 Comments

A significant decision made early on in the development of the PE system was to choose

between an exact arithmetic or a floating point implementation. Our floating point

implementation is well suited to interactive modeling applications because it prioritises

interactive update speeds over high precision. An exact arithmetic approach may be

important to give theoretical guarantees and such an alternative implementation would

be very valuable. Posing a particular problem to such a rigorous approach is the lack

of a solution for a generic MWSS – the pincushion problem of Sec. 3.5.3.

An informative perspective on the PE system is to consider the MWSS as a system

for automated and domain-appropriate information loss. The user inserts data into

the system, in the form of UI specified events, and the MWSS removes it in an archi-

tecturally appropriate manner. As the sweep plane rises, MWSS events such as split

and edge events remove edges (and information) from the active plan. Concurrently

the input plan, edge direction events, profile offset events and subdivision events insert

additional information into the active plan. This contrast invites the description of PE

as an automated information loss system. The user specifies the places to insert addi-

tional data, while the MWSS is utilised to remove it in an architecturally-meaningful

5.7. Comments 204

Figure 5.53: Left: Straight skeleton; Middle: Straight Skeleton with angle changes;
Right: Procedural extrusions

manner. An example is given in Fig. 5.54.

An interesting challenge is that it is possible, and indeed probable, that the façades

generated the PE system are not rectangular. The large variety of shapes that a

façade can take leads to issues integrating the PE system with other approaches which

expect shapes to be rectangular, such as CGA Shape. While the system of deformable

meshes and anchors has been successful in positioning elements, describing a repeating

facade over an irregular polygon is still a matter for research. This problem has been

particularly evident when integrating PEs with Houdini.

5.8. Summary 205

Figure 5.54: A procedural extrusion model of a haunted house. The green lines show
where data is inserted into the rising sweep plane, and the red lines show where an user
event removes data.

5.8 Summary

In contrast to the previous chapter, which used the straight skeleton for modeling

parcel subdivisions, this chapter has introduced an application of the MWSS to the

modeling of complex architectural shells.

We took inspiration from the range of man-made objects that contain offset surfaces,

and observed that the strong horizontal edges in many common architectural forms

can be generated by offsetting the plan of such a building. This lead us to the same

conclusion of many architects: that plans and elevations (profiles) are a very effective

way of representing a wide range of structures. Given the theoretical foundations of

straight skeletons in Chapter 3, and the success in implementing a block subdivision

scheme in Chapter 4, it was possible to envisage a system where the geometric self-

sensitivity and expressive power of the MWSS was exploited to combine a plan and

multiple profiles into a 3D mesh. The 3D terrain model of the MWSS itself proved

very capable at creating mass models of many complex buildings, and in particular

roof structures.

Existing modeling techniques, such as the extrude operation and Havemann’s[105] roof

modeling constrain the direction of the extrudes to angles above the sweep plane. By

using profile offset events and horizontal edge direction events, the PE system can

simulate arbitrary non-monotonic elevations. This dramatically increases the range of

5.8. Summary 206

shapes possible. Theoretically it is possible to encode an arbitrary mesh into a system

of PEs, with an arbitrary sweep plane direction. This is, however, future work.

There were several limitations of this basic approach, which necessitated various in-

novations. In order to create overhanging and even hollow roofs, we used various

sub-applications of the straight skeleton to define the required geometry in a proce-

dural manner. Another issue was that the façades of the output geometry were not

rectangular, making it difficult for conventional systems, such as split shape grammars,

to position windows and doors. To resolve this issue we introduced several types of

anchors, giving different parametrisations of skeleton faces. To model the windows

and doors themselves we resorted to a bone based technique which could deform and

position decorative meshes across buildings.

Because the entire PE input was geometrically defined, it was possible to describe

the system entirely with a graphical editor for plans and profiles. We were able to

illustrate that the complete PE system is both usable and useful to people without

significant programming experience. The expressibility of the system was successfully

evaluated by modeling a large number of sample buildings from a catalogue with our

user interface. We were eventually able to model all of our sample buildings using our

UI.

In addition to demonstrating that the PE system is suitable for interactive architectural

modeling, we also illustrate that it is suitable for kilometer scale procedural cityscape

visualisation. We built a framework to generate large scale geometry given a set of

floorplans provided from a GIS source. In this system we observed minimal errors

and proved that the PE system was robust enough for large scale procedural geometry

creation.

The theoretical problems underlying the specification of MWSS events have had min-

imum impact on the usefulness of the PE system. While a few failures cases were

encountered in the large scale GIS test case, this issue has not caused significant prob-

lems during software development or evaluation.

We believe that the PE system is the first to provide a solution for the procedural

modeling of walls, roofs, and complex architectural elements from arbitrary building

footprints. The main contribution of this chapter is the design of a set of tools that

extend the basic extrude operation into one that is geometrically self-sensitive. These

tools are able to model a wide range of architectural surfaces that may have not been

expressible with previous PGM systems.

207

Chapter 6

Conclusion

6.1 Summary of Objectives

In this dissertation we examined the straight skeleton as a procedural modeling tech-

nique. We proposed that the straight skeleton is a powerful PGM primitive that is

useful in a variety of situations to users who are unable or unwilling to write classical

computer programs. In particular we suggested that skeletons are able to create highly

realistic results within the domain or urban procedural modeling.

To pursue this goal, Chapter 2 studied the wide variety of geometric modeling tools

available, forming a spectrum of proceduralisation. We saw a strong correlation be-

tween this spectrum and the requirement that users must write computer programs.

Those systems that required programming were the most general and expressive, while

those that didn’t were easier to use and more specialised. This led to the realisation

that the concept of a “procedural system” was poorly defined between these two ex-

tremes. Eventually we took the stance that the “most procedural” systems lay in the

middle of this spectrum, those that gave the most expressive power, with the simplest

possible interaction. When we examined a variety of man-made objects, it became

clear that some generalised offset mechanism may be able to describe many features of

man-made geometry.

This offset mechanism was formalised in Chapter 3, which introduced the protagonist

of this dissertation, the straight skeleton. A theoretical diversion at this point led us

to examine the types of events that occur in generalisations of the straight skeleton.

This line of enquiry led to both positive and negative outcomes. We discovered a novel

skeleton with unique categories of events that would prove to be usefully applied to

urban modelling, but at the same time we showed that there were some situations

in which we could not define this new skeleton well. This mixed weighted straight

6.1. Summary of Objectives 208

skeleton, however, proved to be a very flexible and powerful modeling primitive.

The SS was applied to two urban PGM scenarios. We were not able to apply our

techniques to a wider range of applications due to time limitations. The first application

was given in Chapter 4 and described how to use the straight skeleton to subdivide

city blocks into parcels. The direction of this work was heavily motivated by the

requirements of the commercial CityEngine PGM system. This lead to a real-time

system with an emphasis on robust results for application to industry requirements.

Chapter 5 introduced the second application of the SS, in particular the mixed weighted

straight skeleton, to the modeling of buildings themselves. This work was strongly mo-

tivated by our offset observations, and the relationships between the straight skeleton

and the classical form of buildings’ roofs. As we explored the modeling possibilities of

the MWSS we found several varied and related techniques for its application to archi-

tectural modeling. Given our emphasis on procedural modeling we showed how cities

could be reconstructed from their floorplans using this approach.

Both the systems we have applied the MWSS to have proven robust and flexible enough

to generate kilometer-scale geometry procedurally. The block subdivision system was

shown to reproduce particular subdivision styles over several expansive real-world ex-

amples, whilst the procedural extrusion system was able to generate a cityscape of

multiple building styles from given building footprints. In both systems additional

variation could be added without programming – either by changing parameters, or

by editing polylines. Importantly, in both systems a wide range of inputs were shown

to create domain-meaningful output; a wide range of inputs created output with an

urban appearance.

These systems utilising the straight skeleton take a position in the spectrum of procedu-

ralisation, of Chapter 2, that would otherwise require a written programming. While

the urban modeling domain of applications in this dissertation pushes the skeleton

based systems towards the specific end of the spectrum of generality; both the parcel

subdivision and procedural extrusion systems have shown —

• self sensitivity: Usually reserved for very general procedural modeling system, the

SS is a geometrically self-sensitive construct. Because any part of the perimeter

of the polygon may affect the resulting skeleton, the skeleton responds to any

change in the perimeter. This is particularly true of the MWSS used in the PE

system.

• themselves capable of producing a wide range of results within their domain:

Both systems were tested on a wide range of input data, and were able to create

6.2. Contributions 209

realistic procedural approximations in the parcel subdivision and architecture

domains.

• that they are useful without programming: The systems require no end user

programming. The procedural extrusion system was demonstrated to be useful

to users with no programming expertise, while the parcel subdivision was shown

to be able to extract the required parameters automatically.

In addition the SS and MWSS proved to be intuitive geometric elements in the inter-

active systems. Users were able to understand the logic behind the centreline position

in the parcel subdivision system, and were satisfied with the way it moved when the

block’s boundary was interactively edited. Similarly, users of the procedural extrusion

system were able to control the MWSS, without understanding the underlying geome-

try, or algorithms, involved. Even when chaotic configurations were encountered, users

were able to interactively modify the plans to explore and understand what was causing

the instability.

6.2 Contributions

The general intersection event

Chapter 3 introduced our contributions to straight skeleton theory.

The SS is formed by shrinking a polygon, and allowing each edge to move towards the

interior with a constant speed. By generalising SS we encounter the positively weighted

straight skeleton. In this case each individual edge could move with an independent, if

positive speed. For this case we introduced novel degeneracies as well as a simplification

of existing events for computing the PWSS. This general intersection event was able

to calculate the result of all PWSS events encountered, with fewer special cases.

This unification of existing skeleton events allows for both more general events and more

general skeletons, such as the PWSS. In addition the resulting algorithm is simpler and

easier to implement.

The mixed weighted straight skeleton

When we again generalised the PWSS we discovered the mixed weighted straight skele-

ton, a novel skeleton which allowed the edges to move either towards the interior of the

plan, or toward the exterior. These new skeletons had interesting geometric features

6.2. Contributions 210

such as splitting faces into two, introducing holes into faces, or allowing faces to merge

together and split apart.

The degeneracies in the MWSS were quite involved, including one category of events

which appeared to have no “nice” solution. We introduced the pincushion problem as

a description of this situation.

This mixed weighted skeleton is relevant to many modeling tools which extrude 3D

surface geometry. In addition we continue to use and evaluate the MWSS as a powerful

PGM tool in Chapter 5.

A city block-to-lot subdivision system and evaluation

We introduced a system for city block to lot subdivision in Chapter 4.

Within this system we used the SS to model the block centrelines. The geometric

sensitivity of the skeleton ensured that the entire block was taken into account when

calculating centrelines, therefore even complex concave blocks were realistically divided.

The presence of commercial robust implementations of the straight skeleton algorithm

was also an advantage. In addition, because the skeleton could be intuitively under-

stood by users as the “limit of an offset”, we ensured a smooth parametrisation between

patio and non-patio lot subdivisions via a single parameter. Users were able to mod-

ify a small number of parameters to change the characteristics of the subdivision, or

automatically extract such statistics from existing subdivisions.

We quantitatively evaluated two block subdivision systems over a range of North Amer-

ican real-world data. Analysis of the generated parcels was performed by visualising

the areas, aspect ratios, and the number of neighbours of both the real and procedural

subdivisions. We found that after automatically fitting several parameters, the new

procedural models compared favourably across our metrics. In addition, we found local

lot arrangements that were very close to the baseline data.

The most frequently observed deficit in our subdivision system was the inability to

model parcel subdivisions with external patterns in a manner similar to observed data.

For example power-lines or rivers create divisions between sets of lots that our subdivi-

sion schemes are unable to model. We hypothesise that additional simulation elements

in the subdivision process may resolve this issue. Another issue was the inability to

move the centreline closer to either one side of the block or the other, this would have

created better matches when the strips of a lot were of different depths. Selecting the

corner priority was a further weakness in the system; we did not develop a mechanism

to extract the priority of the streets at the corners from the example data automatically.

6.2. Contributions 211

This application and evaluation of the skeleton to modeling block subdivision is the

first within computer graphics, and presents a baseline for future work in this area. In

addition our integration of the system within a commercial product allows a high level

of robustness and interoperability with other GIS systems. For example the product

has been used by commercial special effects houses and architects worldwide.

A method for the modeling of architectural shells using the MWSS

Our final contribution is the procedural extrusion architectural shell modeling system

of Chapter 5.

By applying the 3D interpretation of the MWSS to this problem, we created the pro-

cedural extrusion system. It proved very capable at creating mass models of many

complex buildings, and in particular roof structures.

The procedural extrusion system applies the MWSS in a variety of ways to create

procedural models. Basic buildings without overhangs can be assembled by stacking

truncated MWSS geometry. In order to create over-hangs or hollow roofs we use

a sub-application of the MWSS to robustly create the offsets. Lastly, to introduce

new features at a certain height, plan events can use the MWSS to create a robust

perturbation of the buildings geometry. To model the windows and doors themselves

we resorted to a deformable bone-based system which could “stretch” decorative meshes

across models. These meshes were external to our system, and had to be created using

an external 3D package.

Because the entire PE input is geometric, it is possible to describe the system entirely

with a graphical editor for plans and profiles. We were able to evaluate the system

and show that it is both usable and useful to people without significant programming

experience. The expressibility of the system was successfully evaluated by modeling a

large number of sample buildings from a catalogue with our user interface. In addition,

we also illustrated that PEs are suitable for kilometer scale procedural cityscape visual-

isation. We built a framework to generate large scale geometry given a set of floorplans

provided from a GIS source. In this framework we observed minimal geometric errors

and proved that the PE system was useful for robust large scale procedural geometry

creation.

There were several limitations of the basic approach. One is that conventional program-

ming was used to position the decorative meshes on the large scale evaluation project.

Ideally this could be specified graphically, in a per-plan-edge manner. However, ac-

counting for different ways of repeating elements over varied geometry is challenging.

Another issue was that the façades of the output geometry were not rectangular, mak-

ing it difficult for conventional systems, such as split shape grammars, to position

6.3. Future Work 212

windows and doors. To resolve this issue we introduced several types of anchors, giv-

ing different parametrisations of façades. Finally our evaluations also showed that our

floating point implementation of the MWSS had some numerical issues, and would

occasionally fail to generate a polygon. An arbitrary precision implementation would

lessen these issues, at the expense of execution time.

The ease of use of the PE system, combined with its proven expressivness and suitability

to large-scale geometry creation are rare. Because of these features, concepts from the

procedural extrusion system have been adopted by commercial video game creators

and a research PGM system. Finally, the system provides a concrete application and

validation of our theoretical work on the MWSS.

6.3 Future Work

There is a wide variety of work still to be undertaken in understanding the application

of the SS to procedural modeling. The most obvious direction to undertake would be

to attempt to combine the work of Chapter 4 and Chapter 5. Given the wide range of

polygon subdivision results in Sec. 5.5.10, we may ask “is there a general language of

offsets?” Such a language may be applicable to parcel subdivision, footprint extrusion,

and other urban modeling situations. When we consider the objects in the home, it

may be that a large number of the frames, borders, skirting boards and other features

can be created using such a system.

More specific future work might attempt to combine the techniques documented in this

dissertation with the more mainstream shape grammar modeling systems. In particular

extending CGA Shape[164] to work intuitively with non-rectangular façades, such that

the MWSS can become a primitive within the large existing libraries of CGA Shape

operations. We suspect that it is possible to construct such an irregular façade only

using some language of skeletons.

With the PE system it would be most advantageous to be able to generate unique

plans and profiles, or even position and repeat the anchors. This problem is quite

challenging, and solutions may involve shape grammars, pattern synthesis or even by-

example modeling.

One further avenue for future work is to question whether the techniques introduced

in this dissertation are applicable to other domains. Geometric techniques to simulate

other types of skeleton, such as the medial axis, with the straight skeleton[233] offer the

promise of being able to model more curved forms in unison with the human-designed

appearance of the SS. In particular exploring 3D growth mechanisms, such the 3D

WSS, offer some interesting avenues of research into the modeling the growth of flora

6.3. Future Work 213

and fauna. However, it becomes clear quite quickly that the first stumbling block of

the 3D WSS is the degeneracy caused by a valency four mesh vertex — an imaginative

solution would be required!

An early problem in our studies was that of evaluating procedural content. This dis-

sertation has used several different methods for evaluation — comparing statistical

measures against ground truth with the lot subdivision project, examining the ability

to recreate the ground truth exactly in the PE UI demonstration, or subjective analysis

of procedural output as in the PE GIS evaluation. Because PGM has no requirement

to reconstruct such a ground truth, only create a novel, yet characteristically valid

geometry, objective evaluation is difficult. The trade off between producing realistic

or novel geometry is probably something the user wants to control very closely. The

“best” solution probably changes for each application of procedural technology and is

thus highly subjective. It may depend on the amount of user input desirable, the re-

quired speed or the level of detail required. Future work in this direction would be very

useful, although there is a question as to whether we need better, more photo-realistic

procedural systems for it to begin.

One extreme application of the WSS may be in the classification of data points, from

the field of machine learning. In 2D we can imagine using a skeleton to “colonise”

the space around each data point. The area composed of skeleton faces would form

a classification boundary. This would be somewhat similar to a weighted Voronoi

diagram, but with the potential to change the propagation weights based on direction,

propagation distance, or a property of the data point. The initial problem is how to

generalise the skeleton higher dimensions efficiently.

214

Appendix A

Appendix - input for interactive UI

evaluation

215

Figure A.1: The input plans and profiles to Fig. 5.43—5.45. c©2012 ePlans.

216

Appendix B

Appendix - artists’ comments on

the procedural extrusions system

Please note that the artists refer to the procedural extrusion system as “the skeleton

program” or similar.

B.0.1 User 1

In less than 3 sentences, describe your artistic training (eg: university

course and any relevant work experience you’ve done) My artistic training

consists of a bachelors of fine arts degree in 3-D Imaging and Animation from Arizona

State University, as well as a certificate in computer gaming. Relevant work experi-

ence includes creating all artistic assets for a stroke patient rehabilitation interactive

videogame for the Arizona State University Biomedical Research Facility.

How much programming experience have you had (eg: none? max-scripting?

c++?) My personal programming experience consists of one meager class in flash pro-

gramming for videogames that I was not extremely successful at.

How long did it take you to become competent at using the tool? After

being given a list of hot keys and experimenting with the program, it took roughly

three weeks to become comfortable with multiple profiles and floor plan pieces while

using the program.

Was the skeleton program easy to use (compare to using Max/Maya/S-

ketchup)? Compared to Max or Maya the program has a much softer learning curve,

from interface aspects to object creation. For the sole purpose of creating buildings and

architecture, the skeleton program appears more expedient than the normal modeling

programs due to automated steps it takes in completing and triangulated the meshes.

217

How long did it take you to create you current projects (the mansion or the

oriental house). How much of this time was creating the meshes. How much

of this time was using the skeleton program? To create my brick mansion and

final renders took roughly twenty to twenty five hours. Creating my meshes (windows,

door, cornice, chimney) only took about four to five hours in Maya. It took about

10 hours using the skeleton program to create the mansion mesh itself, but that was

due to changing it repeatedly and experimenting with 10+ profiles and how they align.

The latter 10 hours or so was spent in Maya first creating textures, then a 10 piece

lighting unit, and then creating quality renders for the paper.

Would it have taken longer to create these models without the skeleton

program? Yes, it would have taken quite a while longer to create the mesh in Maya,

and I can assume that the triangulation and face count wouldn’t be as low either. It

probably would take at least twice the amount of time due to the roof most of all, to

create all the angles seamlessly and uniformly.

Would the tool be a useful addition to current 3D modeling packages? The

tool would be very useful for a 3-D Environment modeling package. Being able to

export an OBJ file, it would be very easy to populate the background of an environment

with buildings that differed just enough that they didn’t look like duplicates, but not

so high poly that it would slow down a game engine.

Any other comments about the skeleton program? Overall the program has

quite a lot of potential, if only for a specific set of uses. The only suggestions I had is

to find a way to make the measurements more exact than just the align to grid system,

whether it’s just a soft grid in the background, or an actual numerical system that

can be manipulated. This goes for the profile view as well. One thing that makes it

very easy in Maya is you can always move things in exact, straight lines, which is very

useful for low poly creation. Occasionally I would find that my building swelled at the

top compared the bottom, or one side was actually just a shade shorter than the other

even though they look identical on the floor plan.

B.0.2 User 2

In less than 3 sentences, describe your artistic training (eg: university

course and any relevant work experience you’ve done): I have taken a number

of traditional art classes including Drawing, Painting, Sculpture, Color Theory as well

as 2D and 3D Design. I have also completed 4 classes in 3D Modeling and Animation,

and have been using 3D programs for over 5 years.

218

How much programming experience have you had (eg: none? max-scripting?

c++?) I have taken introductory courses in Visual Basic, C++, Java and Action

Script. I am also familiar with HTML and CSS.

How long did it take you to become competent at using the tool? With only

the Note document it took me about 5 hours to get a decent understanding of the

program. I think that a video guide would cut down on this time quite a bit, as well

as give a user a much better grasp of the program.

Was the skeleton program easy to use (compare to using Max/Maya/S-

ketchup)? Yes, the skeleton program was easy to use compared to Max and Maya.

How long did it take you to create you current projects (the mansion or

oriental house). How much of this time was creating the meshes. How

much of this time was using the skeleton program? I would say that it took

be about 20 to 30 hours to get the oriental house to where it is now. I would say the

majority of this time was spent creating the meshes, 15 to 20 hours and 5 to 10 hours

using the skeleton program.

Would it have taken longer to create these models without the skeleton

program? I think that it would have taken me longer to get my model to the same

level of completion without the skeleton program. I would say traditional modeling

techniques would add at least 5 hours of work.

Would the tool be a useful addition to current 3D modeling packages? This

would be a great addition to Max or Maya, the speed with which it allows you to create

buildings

Any other comments about the skeleton program? Overall I think that the core

idea behind the skeleton program is really great, and for the most part the execution of

the program is equally great. The ease with which you can create a building and then

tweak it until it is exactly what you are looking for is extremely useful. In its current

state, I think the meshes are the weakest part of the Skeleton program. The main reason

I say this is because as it currently stands, the application of meshes doesnt really save

you that much time compared to creating and attaching them within a separate 3D

program. If I were using this program in the industry my preferred pipeline would be

something along the lines of the below.

• Use the Skeleton program to create the basic shape of a building

• Create any dormer-window like protrusions (if implemented again)

• Apply roof tiles where appropriate within the skeleton program

219

• Export the building as an .obj file

• Import building into Max or Maya

• Build the detail meshes for the building on top of the imported building

• Duplicate, rotate, and transform the meshes to flesh out all the desired details.

This only difference between the above pipeline and the current pipeline is that cur-

rently I build a mesh, skin it, export it, and then attach it within the skeleton program.

I think that the removal of the need to skin and weight the meshes makes up for the

need to manually duplicate, rotate, and transform them.

Ultimately, in a perfect software, I would love to be able to create meshes and then

apply them to my models in a 3D environment instead of the two 2D environment the

Skeleton program uses. In other words, I would want the ability to create the anchor

points directly on the mesh in the 3D view of the Skeleton program.

BIBLIOGRAPHY 220

Bibliography

[1] CGAL, Computational geometry algorithms library. www.cgal.org, February

2008.

[2] G. Abram and L. Treinish. An extended data-flow architecture for data analysis

and visualization. In Proceedings of the 6th conference on Visualization’95, page

263. IEEE Computer Society, 1995.

[3] M Agarwal and J Cagan. A blend of different tastes: the language of coffeemakers.

Environment and Planning B: Planning and Design, 25(2):205–226, March 1998.

[4] S. Agarwal, N. Snavely, I. Simon, S.M. Seitz, and R. Szeliski. Building rome in

a day. In Computer Vision, 2009 IEEE 12th International Conference on, pages

72–79. Ieee, 2009.

[5] O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gärtner. Straight skeletons

of simple polygons. In Proc. 4th Internat. Symp. of LIESMARS, pages 114–124,

1995.

[6] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Grtner. A novel type of

skeleton for polygons. Journal of Universal Computer Science, 1(12):752–761,

1995.

[7] Oswin Aichholzer and Franz Aurenhammer. Straight skeletons for general polyg-

onal figures in the plane. In Computing and Combinatorics, pages 117–126.

Springer-Verlag, 1996.

[8] S. Al-Kheder, J. Wang, and J. Shan. Fuzzy inference guided cellular automata

urban-growth modelling using multi-temporal satellite images. International

Journal of Geographical Information Science, 22(11-12):1271–1293, 2008.

[9] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Lan-

guage: Towns, Buildings. Oxford University Press, later printing edition, August

1977.

Bibliography 221

[10] K. Alexandridis, B.C. Pijanowski, and Z. Lei. Assessing multiagent parcelization

performance in the mabel simulation model using monte carlo replication exper-

iments. Environment and Planning B: Planning and Design, 34(2):223, 2007.

[11] Daniel G. Aliaga, Paul A. Rosen, and Daniel R. Bekins. Style grammars for

interactive visualization of architecture. IEEE Transactions on Visualization

and Computer Graphics, 13(4):786–797, 2007.

[12] Daniel G. Aliaga, Carlos A. Vanegas, and Bedřich Beneš. Interactive example-

based urban layout synthesis. ACM Transactions on Graphics, 27(5):1–10, 2008.

[13] Fabricio Anastacio, Przemyslaw Prusinkiewicz, and Mario Costa Sousa. Sketch-

based interfaces and modeling (sbim): Sketch-based parameterization of l-

systems using illustration-inspired construction lines and depth modulation.

Computer Graphics, 33(4):440–451, 2009.

[14] R. Anderl and R. Mendgen. Modelling with constraints: theoretical foundation

and application. Computer-Aided Design, 28(3):155–168, 1996.

[15] Peter R Atherton. A scan-line hidden surface removal procedure for constructive

solid geometry. SIGGRAPH Computer Graphics, 17(3):73–82, 1983.

[16] Franz Aurenhammer. Weighted skeletons and fixed-share decomposition. Com-

puter Geom. Theory Appl., 40(2):93–101, 2008.

[17] Autodesk. ArcGIS. www.esri.com/software/arcgis, accessed (14/8/12).

[18] Autodesk. AutoCAD. www.autodesk.co.uk/autocad, accessed (14/8/12).

[19] Autodesk. Autodesk Maya. usa.autodesk.com/maya, accessed (14/8/12).

[20] Autodesk. Mudbox. http://www.autodesk.com/mudbox, accessed (14/8/12).

[21] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing.

ACM Transactions on Graphics, 26(3):10, 2007.

[22] S. Becker. Generation and application of rules for quality dependent façade

reconstruction. ISPRS journal of photogrammetry and remote sensing, 64(6):640–

653, 2009.

[23] T. Beier and S. Neely. Feature-based image metamorphosis. Computer Graphics,

26(2):35–42, 1992.

[24] B. Beneš, O. Št’ava, R. Měch, and G. Miller. Guided procedural modeling. In

Computer Graphics Forum, volume 30, pages 325–334. Wiley Online Library,

2011.

Bibliography 222

[25] Bentley. Generative Components. www.bentley.com/en-

GB/Products/GenerativeComponents/, accessed (14/8/12).

[26] J. Bloomenthal. Medial-based vertex deformation. In Proceedings of the 2002

ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 147–

151. ACM, 2002.

[27] Jules Bloomenthal. Modeling the mighty maple. SIGGRAPH Computer Graph-

ics, 19(3):305–311, 1985.

[28] Harry Blum. A transformation for extracting new descriptors of shape. Models

for the Perception of Speech and Visual Form, pages 362–380, 1967.

[29] M. Bokeloh, A. Berner, M. Wand, H.P. Seidel, and A. Schilling. Symmetry

detection using feature lines. In Computer Graphics Forum, volume 28, pages

697–706, 2009.

[30] M. Bokeloh, M. Wand, and H.P. Seidel. A connection between partial symmetry

and inverse procedural modeling. ACM Transactions on Graphics, 29(4):104,

2010.

[31] Martin Bokeloh, Michael Wand, Vladlen Koltun, and Hans-Peter Seidel. Pattern-

aware shape deformation using sliding dockers. ACM Transactions on Graphics,

30:123:1–123:10, December 2011.

[32] Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and Vladlen Koltun. An

algebraic model for parameterized shape editing. ACM Transactions on Graphics,

31(4):XXX, August 2012.

[33] P. Borrel and D. Bechmann. Deformation of n-dimensional objects. In Proceed-

ings of the first ACM symposium on Solid modeling foundations and CAD/CAM

applications, pages 351–369. ACM, 1991.

[34] G.H. Buck-Sorlin, O. Kniemeyer, and W. Kurth. Barley morphology, genetics

and hormonal regulation of internode elongation modelled by a relational growth

grammar. New Phytologist, 166(3):859–867, 2005.

[35] M. Cabral, S. Lefebvre, C. Dachsbacher, and G. Drettakis. Structure-preserving

reshape for textured architectural scenes. In Computer Graphics Forum, vol-

ume 28, pages 469–480. Wiley Online Library, 2009.

[36] M. Carmona. Public places, urban spaces: the dimensions of urban design. Ar-

chitectural Press, 2003.

Bibliography 223

[37] HH Chau, X. Chen, A. McKay, and A. de Pennington. Evaluation of a 3d shape

grammar implementation. Design computing and cognition, 4:357–376, 2004.

[38] Guoning Chen, Gregory Esch, Peter Wonka, Pascal Muller, and Eugene Zhang.

Interactive procedural street modeling. ACM Transactions on Graphics, 27(3),

2008.

[39] Guoning Chen, Gregory Esch, Peter Wonka, Pascal Müller, and Eugene

Zhang. Interactive procedural street modeling. ACM Transactions on Graph-

ics, 27(3):103:1–9, 2008.

[40] S.W. Cheng and A. Vigneron. Motorcycle graphs and straight skeletons. In Pro-

ceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms,

pages 156–165. Society for Industrial and Applied Mathematics, 2002.

[41] N. Chomsky. Three models for the description of language. Information Theory,

IRE Transactions on, 2(3):113–124, January 1956.

[42] N. Chomsky. On certain formal properties of grammars*. Information and con-

trol, 2(2):137–167, 1959.

[43] M.F. Cohen, J. Shade, S. Hiller, and O. Deussen. Wang tiles for image and

texture generation. ACM Transactions on Graphics, 22(3):287–294, 2003.

[44] Complexity zoo, January 2011. [online] http://qwiki.stanford.edu, retrieved

1/1/12.

[45] G. Curdes. Stadtstruktur und Stadtgestaltung. Kohlhammer, 1997.

[46] Scott Davidson. Grasshopper. http://www.grasshopper3d.com/, accessed

(14/8/12).

[47] AL Davis and RM Keller. Data flow program graphs. Computer, pages 26–41,

1982.

[48] AL Davis and SA Lowder. A sample management application program in a

graphical data driven programming language. Digest of Papers Compcon Spring,

81:162–167, 1981.

[49] M. Davis, R. Sigal, and E.J. Weyuker. Computability, complexity, and languages:

fundamentals of theoretical computer science. Morgan Kaufmann, 1994.

[50] MD de Jong and CL Hankin. Structured data flow programming. ACM SIG-

PLAN Notices, 17(8):18–27, 1982.

Bibliography 224

[51] Phillippe de Reffye, Claude Edelin, Jean Françon, Marc Jaeger, and Claude

Puech. Plant models faithful to botanical structure and development. In SIG-

GRAPH ’88: Proceedings of the 15th annual conference on Computer graphics

and interactive techniques, pages 151–158, New York, NY, USA, 1988. ACM.

[52] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering

architecture from photographs: a hybrid geometry- and image-based approach. In

Proceedings of the 23rd annual conference on Computer graphics and interactive

techniques, SIGGRAPH ’96, pages 11–20, New York, NY, USA, 1996. ACM.

[53] F. Dellaert, S.M. Seitz, C.E. Thorpe, and S. Thrun. Structure from motion

without correspondence. In Computer Vision and Pattern Recognition, 2000.

Proceedings. IEEE Conference on, volume 2, pages 557–564. IEEE, 2000.

[54] J. Dennis. First version of a data flow procedure language. In Programming

Symposium, pages 362–376. Springer, 1974.

[55] A.R. Dick, PHS Torr, and R. Cipolla. Modelling and interpretation of architec-

ture from several images. International Journal of Computer Vision, 60(2):111–

134, 2004.

[56] J.J. Dolado and F.J. Torrealdea. Formal manipulation of forrester diagrams

by graph grammars. Systems, Man and Cybernetics, IEEE Transactions on,

18(6):981 –996, nov/dec 1988.

[57] P. Dosch, K. Tombre, C. Ah-Soon, and G. Masini. A complete system for the

analysis of architectural drawings. International Journal on Document Analysis

and Recognition, 3(2):102–116, 2000.

[58] K. Dylla, B. Frischer, P. Mueller, A. Ulmer, and S. Haegler. Rome reborn 2.0: A

case study of virtual city reconstruction using procedural modeling techniques.

Computer Graphics World, 16:25, 2008.

[59] A.A. Efros and T.K. Leung. Texture synthesis by non-parametric sampling.

In Computer Vision, 1999. The Proceedings of the Seventh IEEE International

Conference on, volume 2, pages 1033–1038. Ieee, 1999.

[60] Alexei A. Efros and William T. Freeman. Image quilting for texture synthesis

and transfer. In Proceedings of ACM SIGGRAPH 2001, pages 341–346, 2001.

[61] H. Ehrig and H.J. Kreowski. Parallel graph grammars. In Automata, Languages,

Development, pages 425–442. Amsterdam: North Holland, 1976.

Bibliography 225

[62] H. Ehrig, M. Pfender, and H.J. Schneider. Graph-grammars: An algebraic ap-

proach. In Switching and Automata Theory, 1973. SWAT’08. IEEE Conference

Record of 14th Annual Symposium on, pages 167–180. IEEE, 1973.

[63] Michael Eigensatz, Martin Kilian, Alexander Schiftner, Niloy J. Mitra, Helmut

Pottmann, and Mark Pauly. Paneling architectural freeform surfaces. ACM

Transactions on Graphics, 29:45:1–45:10, July 2010.

[64] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. In

Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms,

pages 632–640. Society for Industrial and Applied Mathematics, 1995.

[65] David Eppstein and Jeff Erickson. Raising roofs, crashing cycles, and playing

pool: applications of a data structure for finding pairwise interactions. In SCG

’98: Proceedings of the fourteenth annual symposium on Computational geometry,

pages 58–67, New York, NY, USA, 1998. ACM.

[66] Esri. Esri CityEngine. www.esri.com/software/cityengine/index.html, accessed

(14/8/12).

[67] Esri. Swiss village for masdar city. http://www.esri.com/software/cityengine/

resources/casestudies/swiss-village accessed (3/5/13).

[68] P. Felkel and S. Obdržálek. Straight skeleton implementation. In Proceedings of

Spring Conference on Computer Graphics, pages 210–218, 1998.

[69] Petr Felkel and Stepan Obdrzalek. Straight skeleton implementation. In Pro-

ceedings of Spring Conference on Computer Graphics, pages 210–218, 1998.

[70] Dieter Finkenzeller. Detailed building facades. IEEE Computer Graphics and

Applications, 28:58–66, 2008.

[71] M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography. Commu-

nications of the ACM, 24(6):381–395, 1981.

[72] U. Flemming. More than the sum of its parts: the grammar of queen anne houses.

Environment and Planning B, 14:323–350, 1987.

[73] Harvey Fong. Levelshop: From grid paper to playable. Game Developers Con-

ference, 2011.

[74] Blender Foundation. Blender. www.blender.org, accessed (14/8/12).

Bibliography 226

[75] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,

S. Rusinkiewicz, and D. Dobkin. Modeling by example. In ACM Transactions

on Graphics, volume 23, pages 652–663. ACM, 2004.

[76] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and

D. Jacobs. A search engine for 3d models. ACM Transactions on Graphics,

22(1):83–105, 2003.

[77] Ran Gal, Olga Sorkine, Niloy Mitra, and Daniel Cohen-Or. iWires: An analyze-

and-edit approach to shape manipulation. ACM Transactions on Graphics (pro-

ceedings of ACM SIGGRAPH), 28(3):1–10, 2009.

[78] Bay 12 Games. Dwarf fortress. http://www.bay12games.com/dwarves/, accessed

(10/8/13).

[79] Gaslamp Games. ClockworkEmpires. http://www.gaslampgames.com/2012/08/27/clockwork-

empires-the-press-release/ accessed (10/10/12).

[80] M. Gardner. The fantastic combinations of john conway’s new solitaire game

“life”. Scientific American, 223:120–123, October 1970.

[81] Björn Gerth, René Berndt, Sven Havemann, and Dieter W. Fellner. 3d modeling

for non-expert users with the castle construction kit v0.5. In VAST 2005: 6th

International Symposium on Virtual Reality, Archaeology and Intelligent Cultural

Heritage, pages 49–58, November 2005.

[82] Y. Gingold, T. Igarashi, and D. Zorin. Structured annotations for 2d-to-3d mod-

eling. ACM Transactions on Graphics, 28(5):148, 2009.

[83] Y. Gingold and D. Zorin. Shading-based surface editing. In ACM Transactions

on Graphics, volume 27, page 95. ACM, 2008.

[84] J. Gips. Computer implementation of shape grammars. In NSF/MIT Workshop

on Shape Computation, 1999.

[85] Google. Google Blockly. code.google.com/p/blockly, accessed (14/8/12).

[86] J. Gosling and H. McGilton. The java language environment: A white paper.

1995. Sun Microsystems, 1996.

[87] H. Göttler. Attributed graph grammars for graphics. In Graph-Grammars and

their Application to Computer Science, pages 130–142. Springer, 1983.

[88] H. Göttler. Graphgrammatiken in der Softwaretechnik: Theorie und Anwendun-

gen, volume 178. Not Avail, 1988.

Bibliography 227

[89] T. Grasl and A. Economou. Palladian graphs. In Future cities: proceedings of

the 28th Conference on Education in Computer Aided Architectural Design in

Europe, September 15-18, 2010, Zurich, Switzerland, ETH Zurich, page 275. vdf

Hochschulverlag AG, 2010.

[90] N. Greene. Voxel space automata: modeling with stochastic growth processes

in voxel space. In SIGGRAPH ’89: Proceedings of the 16th annual conference

on Computer graphics and interactive techniques, pages 175–184, New York, NY,

USA, 1989. ACM.

[91] Herbert Gttler. Graph grammars, a new paradigm for implementing visual lan-

guages. In Nachum Dershowitz, editor, Rewriting Techniques and Applications,

volume 355 of Lecture Notes in Computer Science, pages 152–166. Springer Berlin

/ Heidelberg, 1989.

[92] Herbert Gttler, Joachim Gnther, and Georg Nieskens. Use graph grammars

to design cad-systems! In Hartmut Ehrig, Hans-Jrg Kreowski, and Grzegorz

Rozenberg, editors, Graph Grammars and Their Application to Computer Sci-

ence, volume 532 of Lecture Notes in Computer Science, pages 396–410. Springer

Berlin / Heidelberg, 1991.

[93] M. Habbecke and L. Kobbelt. Linear analysis of nonlinear constraints for inter-

active geometric modeling. Proceedings Eurographics., XXX 2012.

[94] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application

conditions. Fundamenta Informaticae, 26(3):287–313, 1996.

[95] P.E. Haeberli. Conman: a visual programming language for interactive graphics.

In ACM SIGGRAPH Computer Graphics, volume 22, pages 103–111. ACM, 1988.

[96] S. Haegler, P. Müller, and L. Van Gool. Procedural modeling for digital cultural

heritage. Journal on Image and Video Processing, 2009:4–4, 2009.

[97] Evan Hahn, Prosenjit Bose, and Anthony Whitehead. Persistent realtime build-

ing interior generation. In sandbox ’06: Proceedings of the ACM SIGGRAPH

symposium on Videogames, pages 179–186, NY, USA, 2006. ACM.

[98] Jan Halatsch, Antje Kunze, and Gerhard Schmitt. Using shape grammars for

master planning. In John S. Gero and Ashok K. Goel, editors, Design Computing

and Cognition ’08, pages 655–673. Springer Netherlands, 2008.

[99] Feng Han and Song-Chun Zhu. Bottom-up/top-down image parsing by attribute

graph grammar. In ICCV, pages 1778–1785, Washington, DC, USA, 2005. IEEE

Computer Society.

Bibliography 228

[100] J.S. Hanan and P. Adviser-Prusinkiewicz. Parametric L-systems and their ap-

plication to the modelling and visualization of plants. The University of Regina

(Canada), 1992.

[101] C.L. Hankin and HW Glaser. The data flow programming language cajole-an

informal introduction. ACM Sigplan Notices, 16(7):35–44, 1981.

[102] Hanley Wood, LLC. eplans.com, sept 2010. http://www.eplans.com.

[103] Sarah Harries. Man of steel: Procedural city building and destruction, 2013.

[104] John C. Hart and Brent Baker. Structural simulation of tree growth and response.

In In: Proceedings International Conference on Shape Modeling and Applications,

pages 7–11. Springer-Verlag, 1996.

[105] S. Havemann. Generative Mesh Modeling. PhD thesis, TU Braunschweig, 2005.

[106] Sven Havemann and Dieter Fellner. Generative parametric design of gothic win-

dow tracery. Shape Modeling and Applications, International Conference on,

0:350–353, 2004.

[107] B. Hohmann, U. Krispel, S. Havemann, and D. Fellner. Cityfit: High-quality

urban reconstructions by fitting shape grammars to images and derived textured

point clouds. In Proceedings of the 3rd ISPRS Workshop. Citeseer, 2009.

[108] M. Honda, K. Mizuno, Y. Fukui, and S. Nishihara. Generating autonomous time-

varying virtual cities. In Cyberworlds, 2004 International Conference on, pages

45–52. IEEE, 2004.

[109] Y. Horry, K.I. Anjyo, and K. Arai. Tour into the picture: using a spidery mesh

interface to make animation from a single image. In Proceedings of the 24th

annual conference on Computer graphics and interactive techniques, pages 225–

232. ACM Press/Addison-Wesley Publishing Co., 1997.

[110] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M.M.

Guzmán, K. Hammond, J. Hughes, T. Johnsson, et al. Report on the program-

ming language haskell: a non-strict, purely functional language version 1.2. ACM

SigPlan notices, 27(5):1–164, 1992.

[111] T. Igarashi, T. Moscovich, and J.F. Hughes. As-rigid-as-possible shape manipu-

lation. In ACM Transactions on Graphics, volume 24, pages 1134–1141. ACM,

2005.

Bibliography 229

[112] M. Ilč́ık, S. Fiedler, W. Purgathofer, and M. Wimmer. Procedural skeletons:

kinematic extensions to cga-shape grammars. In Proceedings of the 26th Spring

Conference on Computer Graphics, pages 157–164. ACM, 2010.

[113] National Instruments. Labview. www.ni.com/labview, accessed (14/8/12).

[114] International Business Machines Corporation. General information manual; pro-

grammer’s primer for FORTRAN automatic coding system for the IBM 704 data

processing system. IBM Corporation, pub-IBM:adr, 1957.

[115] A. Irschara, C. Zach, M. Klopschitz, and H. Bischof. Large-scale, dense city

reconstruction from user-contributed photos. Computer Vision and Image Un-

derstanding, 2011.

[116] Nianjuan Jiang, Ping Tan, and Loong-Fah Cheong. Symmetric architecture mod-

eling with a single image. ACM Transactions on Graphics, 28(5):113:1–113:8,

December 2009.

[117] R Joan-Arinyo, L Pérez, and J Vilaplana. Computing the medial axis transform

of polygonal domains by tracing paths. 1999.

[118] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen

Koltun. A probabilistic model for component-based shape synthesis. ACM Trans-

actions on Graphics, 31(4):XXX, August 2012.

[119] Yoichiro Kawaguchi. A morphological study of the form of nature. In SIG-

GRAPH ’82: Proceedings of the 9th annual conference on Computer graphics

and interactive techniques, pages 223–232, New York, NY, USA, 1982. ACM.

[120] Tom Kelly. Siteplan. https://code.google.com/p/siteplan/.

[121] Tom Kelly and Peter Wonka. Interactive architectural modeling with procedural

extrusions. ACM Transactions on Graphics, 30(2):14:1–14:15, April 2011.

[122] Tom W A Kelly. City architecture generation. Master’s thesis, University of

Bristol, 2006.

[123] B. Kerautret, X. Granier, and A. Braquelaire. Intuitive shape modeling by shad-

ing design. In Smart Graphics, pages 923–923. Springer, 2005.

[124] J.W. Klop and R. de Vrijer. Term rewriting systems. Cambridge Univ Pr, 2003.

[125] T. W. Knight. The generation of hepplewhite-style chair-back designs. Environ-

ment and Planning B, 7(2):227–238, 1980.

Bibliography 230

[126] D.E. Knuth. Semantics of context-free languages. Theory of Computing Systems,

2(2):127–145, 1968.

[127] D.W. Ko, H.S. He, and D.R. Larsen. Simulating private land ownership frag-

mentation in the missouri ozarks, usa. Landscape ecology, 21(5):671–686, 2006.

[128] H Koning and J Eizenberg. The language of the prairie: Frank lloyd wright’s

prairie houses. Environment and Planning B: Planning and Design, 8(3):295–323,

1981.

[129] L. Krecklau and L. Kobbelt. Procedural modeling of interconnected structures.

In Computer Graphics Forum, volume 30, pages 335–344. Wiley Online Library,

2011.

[130] R. Krishnamurti. The arithmetic of shapes. Environment and Planning B: Plan-

ning and Design, 7(4):463–484, 1980.

[131] R. Krishnamurti. The construction of shapes. Environment and Planning B,

8:5–40, 1981.

[132] R. Krishnamurti and CF Earl. Shape recognition in three dimensions. Environ-

ment and Planning B: Planning and Design, 19(5):585–603, 1992.

[133] F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny. Structural

approach for building reconstruction from a single dsm. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 32(1):135–147, 2010.

[134] G. Lee, R. Sacks, and C.M. Eastman. Specifying parametric building object

behavior (bob) for a building information modeling system. Automation in con-

struction, 15(6):758–776, 2006.

[135] J. Lee and T. Funkhouser. Sketch-based search and composition of 3d models. In

Eurographics Workshop on Sketch-Based Interfaces and Modeling, pages 97–104.

The Eurographics Association, 2008.

[136] J.P. Lewis, M. Cordner, and N. Fong. Pose space deformation: a unified approach

to shape interpolation and skeleton-driven deformation. In Proceedings of the

27th annual conference on Computer graphics and interactive techniques, pages

165–172. ACM Press/Addison-Wesley Publishing Co., 2000.

[137] R. Lewis and C. Séquin. Generation of 3d building models from 2d architectural

plans. Computer-Aided Design, 30(10):765–779, 1998.

Bibliography 231

[138] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N.J. Mitra. Globfit:

consistently fitting primitives by discovering global relations. In ACM Transac-

tions on Graphics, volume 30, page 52. ACM, 2011.

[139] Yuanyuan Li, Eugene Zhang, Yoshihiro Kobayashi, and Peter Wonka. Editing op-

erations for irregular vertices in triangle meshes. ACM Transactions on Graphics,

29:153:1–153:12, December 2010.

[140] Jinjie Lin, Daniel Cohen-Or, Hao Zhang, Cheng Liang, Andrei Sharf, Oliver

Deussen, and Baoquan Chen. Structure-preserving retargeting of irregular 3d ar-

chitecture. ACM Transactions on Graphics, 30(6):183:1–183:10, December 2011.

[141] A. Lindenmayer and G. Rozenberg. Parallel generation of maps: Developmental

systems for cell layers. In Graph-grammars and their application to computer

science and biology, pages 301–316. Springer, 1979.

[142] Aristid Lindenmayer. Mathematical models for cellular interactions in devel-

opment ii. simple and branching filaments with two-sided inputs. Journal of

Theoretical Biology, 18(3):300–315, March 1968.

[143] M. Lipp, D. Scherzer, P. Wonka, and M. Wimmer. Interactive modeling of city

layouts using layers of procedural content. In Computer Graphics Forum, vol-

ume 30, pages 345–354. Wiley Online Library, 2011.

[144] Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive visual editing of

grammars for procedural architecture. ACM Transactions on Graphics, 27(3):1–

10, 2008.

[145] Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive visual edit-

ing of grammars for procedural architecture. ACM Transactions on Graphics,

27(3):102:1–10, 2008. Article No. 102.

[146] Hua Liu, Qing Wang, Wei Hua, Dong Zhou, and Hujun Bao. Building Chinese

Ancient Architectures in Seconds. In International Conference on Computational

Science, pages 248–255, 2005.

[147] Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping

Wang. Geometric modeling with conical meshes and developable surfaces. ACM

Transactions on Graphics, 25(3):681–689, 2006.

[148] R. Lovejoy. Turtle graphics implementation using a graphical dataflow program-

ming approach(M. S. thesis). Master’s thesis, Navel Postgraduate School, 1992.

Bibliography 232

[149] F. Ludolph, Y.Y. Chow, D. Ingalls, S. Wallace, and K. Doyle. The fabrik pro-

gramming environment. In Visual Languages, 1988., IEEE Workshop on, pages

222–230. IEEE, 1988.

[150] S. Marshall. Cities design and evolution. Urban design and planning. Routledge,

2009.

[151] M. Mathias, A. Martinovic, J. Weissenberg, and L.V. Gool. Procedural 3d build-

ing reconstruction using shape grammars and detectors. In 3D Imaging, Model-

ing, Processing, Visualization and Transmission (3DIMPVT), 2011 International

Conference on, pages 304–311. IEEE, 2011.

[152] S. Matwin and T. Pietrzykowski. Prograph: a preliminary report. Computer

Languages, 10(2):91–126, 1985.

[153] J.P. McCormack and J. Cagan. Supporting designers’ hierarchies through para-

metric shape recognition. Environment and Planning B, 29(6):913–932, 2002.

[154] H. Meinhardt and M. Klingler. A model for pattern formation on the shells of

molluscs. Journal of Theoretical Biology, 126(1):63–89, 1987.

[155] E. Mendez, G. Schall, S. Havemann, D. Fellner, D. Schmalstieg, and S. Jung-

hanns. Generating semantic 3d models of underground infrastructure. Computer

Graphics and Applications, IEEE, 28(3):48–57, 2008.

[156] Paul Merrell. Example-based model synthesis. In I3D ’07: Proceedings of the

2007 symposium on Interactive 3D graphics and games, pages 105–112, New

York, NY, USA, 2007. ACM.

[157] Paul Merrell and Dinesh Manocha. Continuous model synthesis. ACM Transac-

tions on Graphics, 27(5):1–7, 2008.

[158] Paul Merrell, Eric Schkufza, Zeyang Li, Maneesh Agrawala, and Vladlen Koltun.

Interactive furniture layout using interior design guidelines. ACM Transactions

on Graphics, 30:87:1–87:10, July 2011.

[159] N. J. Mitra, L. Guibas, and M. Pauly. Partial and approximate symmetry de-

tection for 3d geometry. In ACM Transactions on Graphics, volume 25, pages

560–568, 2006.

[160] F. Morgram and D. O’Sullivan. Using binary space partitioning to generate

urban spatial patterns. In 4th International Conference on Computers in Urban

Planning and Urban Management, 2009.

Bibliography 233

[161] F. Morsdorf, E. Meier, B. Kötz, K.I. Itten, M. Dobbertin, and B. Allgöwer.

Lidar-based geometric reconstruction of boreal type forest stands at single tree

level for forest and wildland fire management. Remote Sensing of Environment,

92(3):353–362, 2004.

[162] Müller, Wonka, Haegler, Ulmer, and Van Gool. Procedural modeling of buildings.

ACM Transactions on Graphics, 25(3):614–623, 2006.

[163] Pascal Müller, T Verneenooghe, Andy Ulmer, and Luc Van Gool. Spatial re-

lations and grammars. In International Workshop on Recording, Modeling and

Visualization of Cultural Heritage, pages 287–297, 2005.

[164] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.

Procedural modeling of buildings. ACM Transactions on Graphics, 25(3):614–

623, 2006.

[165] Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool. Image-based pro-

cedural modeling of facades. ACM Transactions on Graphics, 24(3):85, 2007.

[166] P. Musialski, P. Wonka, D.G. Aliaga, M. Wimmer, L. van Gool, W. Purgath-

ofer, N.J. Mitra, M. Pauly, M. Wand, D. Ceylan, et al. A survey of urban

reconstruction. In Eurographics 2012-State of the Art Reports, pages 1–28. The

Eurographics Association, 2012.

[167] Radomı́r Měch and Przemyslaw Prusinkiewicz. Visual models of plants interact-

ing with their environment. In SIGGRAPH ’96: Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques, pages 397–410, New

York, NY, USA, 1996. ACM.

[168] P. Mller, T. Vereenooghe, P. Wonka, I. Paap, and L. Van Gool. Procedural

3d reconstruction of puuc buildings in xkipch. In Eurographics Symposium on

Virtual Reality, Archaeology and Cultural Heritage (VAST), pages 139–146. EG,

2006.

[169] M. Nagl. Formal languages of labelled graphs. Computing, 16(1):113–137, 1976.

[170] M. Nagl, G. Engels, R. Gall, and W. Schäfer. Software specification by graph

grammars. In Graph-Grammars and Their Application to Computer Science,

pages 267–287. Springer, 1983.

[171] J. Nakielski. Tensorial model for growth and cell division in the shoot apex.

Pattern Formation in Biology, Vision and Dynamics, pages 252–267, 2000.

Bibliography 234

[172] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Fibermesh: designing freeform

surfaces with 3d curves. In ACM Transactions on Graphics, volume 26, page 41.

ACM, 2007.

[173] Laycock University Of, R. G. Laycock, and A. M. Day. Automatically generating

roof models from building footprints, 2003.

[174] R. Ohbuchi, M. Nakazawa, and T. Takei. Retrieving 3d shapes based on their

appearance. In Proceedings of the 5th ACM SIGMM international workshop on

Multimedia information retrieval, pages 39–45. ACM, 2003.

[175] M. Ovsjanikov, W. Li, L. Guibas, and N.J. Mitra. Exploration of continuous vari-

ability in collections of 3d shapes. In ACM Transactions on Graphics, volume 30,

page 33. ACM, 2011.

[176] S. Owada, F. Nielsen, and T. Igarashi. Copy-paste synthesis of 3d geometry with

repetitive patterns. In Smart Graphics, pages 184–193. Springer, 2006.

[177] P. Paczkowski, M.H. Kim, Y. Morvan, J. Dorsey, H. Rushmeier, and C. OSul-

livan. Insitu: sketching architectural designs in context. ACM Transactions on

Graphics, 30(6):182, 2011.

[178] P. Palfrader, M. Held, and S. Huber. On computing straight skeletons by means

of kinetic triangulations. Algorithms–ESA 2012, pages 766–777, 2012.

[179] Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan Lane,

Radomı́r Měch, and Przemyslaw Prusinkiewicz. Self-organizing tree models for

image synthesis. ACM Transactions on Graphics, 28(3):1–10, 2009.

[180] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In SIG-

GRAPH ’01: Proceedings of the 28th annual conference on Computer graphics

and interactive techniques, pages 301–308, New York, NY, USA, 2001. ACM.

[181] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In Eugene Fi-

ume, editor, Proceedings of ACM SIGGRAPH 2001, pages 301–308. ACM Press,

2001.

[182] D.G. Parolek, K. Parolek, and P.C. Crawford. Form-based codes: a guide for

planners, urban designers, municipalities, and developers. J. Wiley & Sons, 2008.

[183] G. Patow. User-friendly graph editing for procedural modeling of buildings.

Computer Graphics and Applications, IEEE, 32(2):66 –75, march-april 2012.

Bibliography 235

[184] Mark Pauly, Niloy J. Mitra, Johannes Wallner, Helmut Pottmann, and

Leonidas J. Guibas. Discovering structural regularity in 3d geometry. In SIG-

GRAPH ’08: ACM SIGGRAPH 2008 papers, pages 1–11, New York, NY, USA,

2008. ACM.

[185] A. Peytavie, E. Galin, J. Grosjean, and S. Merillou. Arches: a framework for

modeling complex terrains. In Computer Graphics Forum, volume 28, pages

457–467. Wiley Online Library, 2009.

[186] J.L. Pfaltz and A. Rosenfeld. Web grammars. In Proceedings of the 1st in-

ternational joint conference on Artificial intelligence, pages 609–619. Morgan

Kaufmann Publishers Inc., 1969.

[187] Pixologic. ZBrush. http://www.pixologic.com/zbrush, accessed (14/8/12).

[188] A. Plas, D. Comte, O. Gelly, and JC Syre. Lau system architecture: A par-

allel data driven processor based on single assignment. In Proceedings of the

International Conference on Parallel Processing, pages 293–302, 1976.

[189] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and

R. Koch. Visual modeling with a hand-held camera. International Journal of

Computer Vision, 59(3):207–232, 2004.

[190] H. Pottmann, Y. Liu, J. Wallner, A. Bobenko, and W. Wang. Geometry of multi-

layer freeform structures for architecture. In ACM Transactions on Graphics,

volume 26, page 65. ACM, 2007.

[191] Helmut Pottmann, Qixing Huang, Bailin Deng, Alexander Schiftner, Martin Kil-

ian, Leonidas Guibas, and Johannes Wallner. Geodesic patterns. ACM Transac-

tions on Graphics, 29:43:1–43:10, July 2010.

[192] Helmut Pottmann, Alexander Schiftner, Pengbo Bo, Heinz Schmiedhofer, Wen-

ping Wang, Niccolo Baldassini, and Johannes Wallner. Freeform surfaces from

single curved panels. ACM Transactions on Graphics, 27(3):76:1–76:10, August

2008.

[193] P. PRUSINKIEWICZ. Graphical applications of l-systems. In Canadian Infor-

mation Processing Society Graphics Interface 1986, pages 247–253, 1986.

[194] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.

Springer Verlag, 1991.

Bibliography 236

[195] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Development models of herba-

ceous plants for computer imagery purposes. In ACM SIGGRAPH Computer

Graphics, volume 22, pages 141–150. ACM, 1988.

[196] Przemyslaw Prusinkiewicz, Mark James, and Radomı́r Měch. Synthetic topi-

ary. In SIGGRAPH ’94: Proceedings of the 21st annual conference on Computer

graphics and interactive techniques, pages 351–358, New York, NY, USA, 1994.

ACM.

[197] S. Pu and G. Vosselman. Knowledge based reconstruction of building models

from terrestrial laser scanning data. ISPRS Journal of Photogrammetry and

Remote Sensing, 64(6):575–584, 2009.

[198] M.J. Pugliese and J. Cagan. Capturing a rebel: modeling the harley-davidson

brand through a motorcycle shape grammar. Research in Engineering Design,

13(3):139–156, 2002.

[199] M. Ramanathan and B. Gurumoorthy. Constructing medial axis transform of

planar domains with curved boundaries. Computer-Aided Design, 35(7):619 –

632, 2003.

[200] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Bren-

nan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch: program-

ming for all. Communications of the ACM, 52(11):60–67, 2009.

[201] R Ridorsa and G Patow. skylineEngine. http://ggg.udg.edu/skylineEngine/,

accessed (10/1/13).

[202] N. Ripperda. Determination of facade attributes for facade reconstruction. Inter-

national Archives of Photogrammetry, Remote Sensing and Spatial Information

Sciences, 37(B3a):285–290, 2008.

[203] N. Ripperda and C. Brenner. Application of a formal grammar to facade recon-

struction in semiautomatic and automatic environments. In Proceedings of the

12th AGILE Conference on GIScience, 2009.

[204] G. Rozenberg and A. Salomaa. Handbook of formal languages: Beyond words,

volume 1. Springer Verlag, 1997.

[205] Adam Runions, Brendan Lane, and Przemyslaw Prusinkiewicz. Modeling trees

with a space colonization algorithm. In Eurographics Workshop on Natural Phe-

nomena, 2007.

Bibliography 237

[206] S. Said and M.R. Embi. A parametric shape grammar of the traditional

malay long-roof type houses. International Journal of Architectural Computing,

6(2):121–144, 2008.

[207] T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric models.

ACM Siggraph Computer Graphics, 20(4):151–160, 1986.

[208] A. Sharf, M. Alexa, and D. Cohen-Or. Context-based surface completion. In

ACM Transactions on Graphics, volume 23, pages 878–887. ACM, 2004.

[209] B. Shizuki, M. Toyoda, E. Shibayama, and S. Takahashi. Smart browsing among

multiple aspects of data-flow visual program execution, using visual patterns

and multi-focus fisheye views. Journal of Visual Languages and Computing,

11(5):529–548, 2000.

[210] I. Shlyakhter, M. Rozenoer, J. Dorsey, and S. Teller. Reconstructing 3d tree

models from instrumented photographs. Computer Graphics and Applications,

IEEE, 21(3):53–61, 2001.

[211] P.G. Sibley, P. Montgomery, and G.E. Marai. Wang cubes for video synthesis

and geometry placement. In ACM SIGGRAPH 2004 Posters, page 20. ACM,

2004.

[212] DC Simmonds. The design of the delta land-use modelling package. Environment

and Planning B, 26:665–684, 1999.

[213] Loic Simon, Olivier Teboul, Panagiotis Koutsourakis, Luc Van Gool, and Nikos

Paragios. Parameter-free/pareto-driven procedural 3d reconstruction of buildings

from ground-level sequences. In Computer Vision and Pattern Recognition. IEEE,

2012.

[214] S.N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys. Interactive 3d

architectural modeling from unordered photo collections. In ACM Transactions

on Graphics, volume 27, page 159. ACM, 2008.

[215] Jeffrey Smith, Jessica Hodgins, Irving Oppenheim, and Andrew Witkin. Creating

models of truss structures with optimization. ACM Transactions on Graphics,

21(3):295–301, July 2002.

[216] R.S. Smith, S. Guyomarc’h, T. Mandel, D. Reinhardt, C. Kuhlemeier, and

P. Prusinkiewicz. A plausible model of phyllotaxis. Proceedings of the National

Academy of Sciences of the United States of America, 103(5):1301–1306, 2006.

Bibliography 238

[217] D.B. Smythe. A two-pass mesh warping algorithm for object transformation and

image interpolation. Technical report, ILM Computer GRaphcis Department,

Lucasfilm, 1990.

[218] CNC Software. AutoCAD. www.mastercam.com, accessed (14/8/12).

[219] Side Effects Software. Houdini. http://www.sidefx.com/index.php, accessed

(10/1/13).

[220] O. Št’ava, B. Beneš, R. Měch, D.G. Aliaga, and P. Krǐstof. Inverse procedural

modeling by automatic generation of l-systems. In Computer Graphics Forum,

volume 29, pages 665–674. Wiley Online Library, 2010.

[221] J.S. Steyer, M. Boulay, and S. Lorrain. 3d external restorations of stegocephalian

skulls using zbrush: The renaissance of fossil amphibians. Comptes Rendus

Palevol, 9(6-7):463–470, 2010.

[222] G. Stiny. Ice-ray: A note on the generation of chinese lattice designs. Environment

and Planning B, 4:89–98, 1977.

[223] G Stiny. Introduction to shape and shape grammars. Environment and Planning

B Planning and Design, 7(3):343–351, 1980.

[224] G. Stiny. Spatial relations and grammars. Environment and Planning B: Plan-

ning and Design, 9(1):113–114, 1982.

[225] G Stiny and W J Mitchell. The palladian grammar. Environment and Planning

B: Planning and Design, 5(1):5–18, January 1978.

[226] G. Stiny and W. J. Mitchell. The grammar of paradise: on the generation of

mughal gardens. Environment and Planning B, 7:209–226, 1980.

[227] George Stiny and James Gips. Shape grammars and the generative specification

of painting and sculpture. In Segmentation of Buildings for 3DGeneralisation.

In: Proceedings of the Workshop on generalisation and multiple representation ,

Leicester, 1971.

[228] Kenichi Sugihara and Yoshitugu Hayashi. Automatic generation of 3d building

models with multiple roofs. Tsinghua Science and Technology, 13(Supplement

1):368 – 374, 2008.

[229] J. Sun, X. Yu, G. Baciu, and M. Green. Template-based generation of road

networks for virtual city modeling. In Proceedings of the ACM symposium on

Virtual reality software and technology, pages 33–40. ACM, 2002.

Bibliography 239

[230] W.R. Sutherland. On-line graphical specification of computer procedures. PhD

thesis, MIT, 1966.

[231] K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur, and O. Sorkine.

Geobrush: Interactive mesh geometry cloning. In Computer Graphics Forum,

volume 30, pages 613–622. Wiley Online Library, 2011.

[232] J.O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and V. Koltun. Metropolis

procedural modeling. ACM Transactions on Graphics, 30(2):11, 2011.

[233] Mirela Tănase and Remco C. Veltkamp. A straight skeleton approximating the

medial axis. 3221:809–821, 2004.

[234] S.L. Tanimoto and M.S. Runyan. Play: an iconic programming system for chil-

dren. In Visual Languages, pages 191–205. Plenum Press: New York, 1986.

[235] D.A. Thadani, L. Krier, and A. Duany. The language of towns & cities: a visual

dictionary. Rizzoli, 2010.

[236] J. M. Thijssen, H. J. F. Knops, and A. J. Dammers. Dynamic scaling in poly-

crystalline growth. Phys. Rev. B, 45(15):8650–8656, Apr 1992.

[237] D. Thompson, J. Braun, and R. Ford. OpenDX: Paths to Visulization: Mate-

rial Used for Learning OpenDX-the Open Derivate of IBM’s Visualization Data

Explorer. Visualization an imagery solutions, 2001.

[238] RB Tilove and A.A.G. Requicha. Closure of boolean operations on geometric

entities. Computer-Aided Design, 12(5):219–220, 1980.

[239] A. Toshev, P. Mordohai, and B. Taskar. Detecting and parsing architecture at

city scale from range data. In Computer Vision and Pattern Recognition (CVPR),

2010 IEEE Conference on, pages 398–405. IEEE, 2010.

[240] Trimble. SketchUp. www.sketchup.com, accessed (14/8/12).

[241] Trimble. Trimble (formally google) warehouse. www.sketchup.google.com, ac-

cessed (14/8/12).

[242] K. Tuite, N. Snavely, D.Y. Hsiao, N. Tabing, and Z. Popovic. Photocity: Training

experts at large-scale image acquisition through a competitive game. In Proceed-

ings of the 2011 annual conference on Human factors in computing systems, pages

1383–1392. ACM, 2011.

[243] TurboSquid. Turbosquid.com. www.turbosquid.com, accessed (14/8/12).

Bibliography 240

[244] A. M. Turing. The chemical basis of morphogenesis. Philosophical Transactions

of the Royal Society of London. Series B, Biological Sciences, 237(641):37–72,

1952.

[245] Alan M. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265,

1936.

[246] N. Umetani, T. Igarashi, and N.J. Mitra. Guided exploration of physically valid

shapes for furniture design. ACM Transactions on Graphics, 31(4):86, 2012.

[247] S. Upstill. The renderman companion. Addison-Wesley Reading, MA, 1990.

[248] C.A. Vanegas, D.G. Aliaga, and B. Benes. Building reconstruction using

manhattan-world grammars. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 358–365. IEEE, 2010.

[249] C.A. Vanegas, D.G. Aliaga, B. Benes, and P. Waddell. Visualization of simu-

lated urban spaces: Inferring parameterized generation of streets, parcels, and

aerial imagery. Visualization and Computer Graphics, IEEE Transactions on,

15(3):424–435, 2009.

[250] C.A. Vanegas, D.G. Aliaga, P. Wonka, P. Müller, P. Waddell, and B. Watson.

Modeling the appearance and behaviour of urban spaces. In Computer Graphics

Forum, volume 29, pages 25–42. Wiley Online Library, 2010.

[251] Carlos A. Vanegas, Daniel G. Aliaga, Bedřich Beneš, and Paul A. Waddell. Inter-

active design of urban spaces using geometrical and behavioral modeling. ACM

Transactions on Graphics, 28:111:1–111:10, December 2009.

[252] Carlos A. Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel G. Aliaga, and

Pascal Mller. Procedural Generation of Parcels in Urban Modeling. Computer

Graphics Forum, 31(2):681–690, 2012.

[253] G Voronoi. Nouvelles applications des paramtres continus la thorie des formes

quadratiques. J. reine angew. Math., 133:97–178, 1907.

[254] E. Vouga, M. Höbinger, J. Wallner, TU Graz, TU Wien, and H. Pottmann.

Design of self-supporting surfaces. ACM Transactions on Graphics, 31(4):XXX,

August 2012.

[255] Paul Waddell. Urbansim: Modeling urban development for land use, trans-

portation and environmental planning. In Journal of the American Planning

Association, volume 68, pages 297–314, 2002.

Bibliography 241

[256] D. Walker and T. Daniels. The Planners Guide to CommunityViz: The Essen-

tial Tool for a New Generation of Planning. Orton Family Foundation Books.

American Planning Association, 2011.

[257] He Wang and Taku Komura. Manipulation of flexible objects by geodesic control.

Computer Graphics Forum, 31(2pt2):499–508, May 2012.

[258] Y. Wang, K. Xu, J. Li, H. Zhang, A. Shamir, L. Liu, Z. Cheng, and Y. Xiong.

Symmetry hierarchy of man-made objects. In Computer Graphics Forum, vol-

ume 30, pages 287–296. Wiley Online Library, 2011.

[259] Ian Watson and John Gurd. A prototype data flow computer with token labelling.

Managing Requirements Knowledge, International Workshop on, 0:623, 1979.

[260] Basil Weber, Pascal Mueller, Peter Wonka, and Markus Gross. Interactive geo-

metric simulation of 4d cities. Computer Graphics Forum, April 2009.

[261] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vector

quantization. In Kurt Akeley, editor, Proceedings of ACM SIGGRAPH 2000,

pages 479–488. ACM Press, 2000.

[262] J. Wernecke. Open inventor c++ reference manual. United States of America,

1994.

[263] T. Werner and A. Zisserman. New techniques for automated architectural re-

construction from photographs. Computer Vision ECCV 2002, pages 808–809,

2002.

[264] Emily Whiting, John Ochsendorf, and Frédo Durand. Procedural model-

ing of structurally-sound masonry buildings. ACM Transactions on Graphics,

28(5):112:1–112:9, December 2009.

[265] Rohan Wickramasuriya, Laurie A. Chisholm, Marji Puotinen, Nicholas Gill, and

Peter Klepeis. An automated land subdivision tool for urban and regional plan-

ning: Concepts, implementation and testing. Environmental Modelling & Soft-

ware, (0):–, 2011.

[266] Wikipedia. Masdar city. http://en.wikipedia.org/wiki/Masdar-City accessed

(3/8/13).

[267] S. Wolfram and M. Gad-el Hak. A new kind of science. Applied Mechanics

Reviews, 56:B18, 2003.

Bibliography 242

[268] Stephen Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys.,

55:601–644, Jul 1983.

[269] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. Instant

architecture. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 669–

677, New York, NY, USA, 2003. ACM.

[270] M. Woo, J. Neider, T. Davis, D. Shreiner, and OpenGL Architecture Review

Board. OpenGL Programming Guide. Addison Wesley, 1999.

[271] K. Xu, H. Zheng, H. Zhang, D. Cohen-Or, L. Liu, and Y. Xiong. Photo-inspired

model-driven 3d object modeling. In ACM Transactions on Graphics, volume 30,

page 80. ACM, 2011.

[272] Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. Fit and diverse:

Set evolution for inspiring 3d shape galleries. ACM Transactions on Graphics,

31(4):XXX, August 2012.

[273] Weiwei Xu, Jun Wang, KangKang Yin, Kun Zhou, Michiel van de Panne, Falai

Chen, and Baining Guo. Joint-aware manipulation of deformable models. ACM

Transactions on Graphics, 28(3):35:1–35:9, July 2009.

[274] Yong-Liang Yang, Yi-Jun Yang, Helmut Pottmann, and Niloy J. Mitra. Shape

space exploration of constrained meshes. ACM Transactions on Graphics,

30:124:1–124:12, December 2011.

[275] X. Yin, P. Wonka, and A. Razdan. Generating 3d building models from ar-

chitectural drawings: A survey. Computer Graphics and Applications, IEEE,

29(1):20–30, 2009.

[276] T. Yokomori. Stochastic characterizations of e0l languages. Information and

Control, 45(1):26–33, 1980.

[277] S. Yoshizawa, A. Belyaev, and H.P. Seidel. Skeleton-based variational mesh

deformations. In Computer Graphics Forum, volume 26, pages 255–264. Wiley

Online Library, 2007.

[278] Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F.

Chan, and Stanley J. Osher. Make it home: automatic optimization of furniture

arrangement. ACM Transactions on Graphics, 30:86:1–86:12, July 2011.

[279] K. Yue, R. Krishnamurti, and F. Gobler. Computation-friendly shape grammars.

Proceedings of CAAD futures, 2009.

Bibliography 243

[280] Q.Y. Zhou and U. Neumann. Fast and extensible building modeling from air-

borne lidar data. In Proceedings of the 16th ACM SIGSPATIAL international

conference on Advances in geographic information systems, page 7. ACM, 2008.

