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SUMMARY

This thesis is a compilation of several behavioural and physiological studies of

fighting in a species of African cichlid fish, Tilapia zillii. The behavioural studies are

concerned with explaining the functional significance and behavioural organisation of

fighting. The physiological studies are concerned with attempting to elucidate the

mechanisms that underlie the expression of aggressive behaviour. My aim is show

how these two levels of study are related and why it is important to maintain a

balance between them in the study of animal behaviour.

Chapter 2 reports a senes of laboratory experiments that investigated how

asymmetries in body size and gonadal state influence the fighting strategies of male T.

zillii, Fights between animals over limited resources often end in victory to the larger

contestant. Game theory predicts that relative body size is assessed during the fight

and thus also determines fight duration and intensity. However, if the contestants

differ in the value they place on the disputed resource, this can override the effects of

relative body size. In the experiment described here, relative gonad weight was a

much stronger predictor of fight outcome than relative body size. This suggests that

males with large gonads fight harder to defend their territory, implying that the value

of a territory is a function of the gonadal state of the individual. Despite this, a

detailed behavioural analysis suggested that relative body size is assessed through a

behaviour termed 'mouth wrestling'. In addition to persisting in the fight, smaller

contestants escalated to a higher degree (in terms of biting), especially if they went on

to win the tight. Winners and losers differed consistently with regard to a behaviour



termed mouth locking, suggesting that through this behaviour the fish were assessing

an asymmetry related to the intention to persist with the fight, although I could not

demonstrate that this was related to relative gonad weight.

Chapter 3 was undertaken with the aim of gaining information on the social structure

and occurrence of aggressive behaviours in a semi-natural environment. To this end, a

study was made of the social interactions of a group of male fish allowed free range

over approximately ten metres of artificial 'river bed' during a four week period.

Under these conditions, the social structure of T. zillii may be described as a loose

group with an unstable dominance hierarchy. Aggression is a major component of this

species' time budget, with different acts and degrees of escalation probably

functioning to establish, challenge and maintain dominance relationships within the

hierarchy. The expression of territorial behaviour appeared to be conditional upon

social status (only the two top ranked males were seen to dig nests and consistently

court females). One escalated fight was observed between the two highest ranked fish,

but it was not clear whether this was a territorial dispute, a challenge for the top

position, or a dispute over both. Thus, while the immediate reasons for escalated

fighting between male T. zillii depends upon the social and physical environment, it is

probably ultimately caused by competition for mating opportunities.

Chapter 4 deals with the issue of how body size and gonadal state relate to life-history

aspects of the animal by means of a morphometric analysis. The analysis provided

evidence to suggest that there was a trade off between gonad size and the storage of

fat It is not clear whether this relationship arises from a direct energetic trade-off or
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is a result of adopting different behavioural strategies. I also explored the relationship

between behaviour, morphology and somatic and reproductive condition. It was

possible to predict gonadal state on the basis of mouth morphology which may

explain why so much fighting involves use of the mouth in this species.

In Chapter 5 I studied the proximate costs of fighting in terms of physical injury and

the metabolic consequences of engaging in a energetically demanding activity. In

relation to injuries incurred during fights, losers suffered greater scale loss than

winners, especially if the loser was larger than its opponent. In relation to energy

metabolism, fighting resulted in significant depletion of total sugar reserves from the

muscle and the liver (compared to unfought controls). It appears that the muscle

energy reserves are respired anaerobically, as was evident from the accumulation of

lactate in the muscle. Interestingly, losers had significantly higher levels of lactate

than winners. Together, the data on injury and metabolic state suggest that fighting is

costly for both winners and losers, but that this is especially marked for losers. These

data are discussed in relation to models of animal decision-making and it is concluded

that the summation of different proximate costs incurred during fighting is likely to

underlie the making of decisions such as continuing, giving up or escalating the fight.

In Chapter 6 I report a study of plasma concentrations of gonadal steroids in T. zillii

in relation to fighting and gonadal state. The gonadal steroids, particularly the

androgens, have been shown to be associated with aggression in a wide range of

species and seemed like obvious candidates for the mechanism by which gonadal state

influences behaviour Blood samples were taken from fish immediately after fighting
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and the plasma concentrations of the following gonadal steroids were then determined

by radioimmunoassay: testosterone (T), l l-ketotestosterone (1IkT) and 17a,20~-

Dihydroxy-4-pregnen-3-one (17,20-P) and estradiol (Ez). T concentrations did not

correlate with GSI and no differences were detected between winners, losers and

unfought controls. II kT concentrations were on average twice those of T and

negatively correlated to GSI, although winners, losers and controls were not

significantly different. T and II kT concentrations were positively correlated with

each other but 17,20-P and Ez levels were too low to be accurately measured. It

appears that in T. zillii, II kT is the major androgen as it is in most other mature male

teleosts.While the present results suggest that these sex steroids may playa role in

physiological regulation of testicular maturation, they do not support the idea that

these steroids are the mechanism by which GSI influences aggressive behaviour.

In Chapter 7 I review the main conclusions of the previous chapters. I then offer my

personal opinion on how the different levels and approaches taken throughout the

study interrelate and collectively reinforce each other and why integration between

disciplines is important in the study of animal behaviour.
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CHAPTER 1

GENERAL INTRODUCTION, AIMS AND ORGANISATION

1.1 Animal aggression

1.1.1 The definition ofanimal aggression

There has been much debate over the definition of what constitutes an aggressive

behaviour (see, for example, Archer, 1988; Huntingford & Turner, 1987). However,

in the context of this project, I consider a functional definition axiomatic. The

function of aggressive behaviour is to win or defend resources that are important for

the survival and reproduction of the individual. Resources are won or successfully

defended by imposing costs upon the competitor to such a degree that it withdraws

from the conflict. Therefore, the definition used throughout this thesis of an

aggressive behaviour is; any act from one individual toward a conspecific that either

inflicts cost or carries information about the intention to inflict cost.

1.1.2 Perspectives Oil animal aggression

There can be few aspects of behavioural biology that have attracted as much study

from so many different angles as animal aggression has done. Behavioural ecologists

have widely explored the functional significance of animal aggression and the cost-

benefit approach (particularly in the form of evolutionary game theory) has provided

a strong unifying framework. The more causal aspects of the study of animal



aggression have yet to reach a similar level of unification. Since the early days of

ethology, a central issue has been to understand the motivational organisation of the

spectacular nature and intensity of aggressive interaction. Ideas based on motivational

theory have, to some extent, been replaced by models of physiological control of the

expression of aggressive behaviour. Understanding of the physiology of aggression

has been making rapid progress with the development of techniques to measure

biochemical responses such as the release of hormones and neurotransmitters.

While this intense research effort has generated a vast literature, a synthesis between

disciplines has been slow to emerge. Functional, motivational and physiological

aspects of aggression are considered throughout this thesis and the emphasis of the

research reported here is on the integration and synthesis of the different approaches

and levels of study.

In this chapter, I review the general literature surrounding the study of aggression and

the different levels of approach taken to study it. I then introduce the study species,

with particular reference to its aggressive behaviour. Finally, I discuss the general

approach taken in this project and the specific aims of the individual chapters.

1.2 Levels of study of animal behaviour

1.2.1 Tinbergen 'sfour questions

There are four different levels of biological enquiry that are essential to the study of

behaviour (Tinbergen, 1964) The first level is causal analysis, in terms of the
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proximate mechanisms and physiological control of the expression of behaviour. The

second is functional analysis, in terms of the survival or reproductive value the

behaviour confers to the individual. The third is developmental analysis, in terms of

the behavioural changes associated with the process of learning and changes in the

animal's life history. The final level is phylogenetic (evolutionary history) analysis, in

terms of the patterns of behavioural similarity between species that arise as a

consequence of their common descent. Tinbergen considered all four levels as equally

important and as mutually reinforcing, but in the scope of the present project, only

causal and functional approaches could be addressed.

1.2.2 Causal questions about behaviour

One of the main challenges of ethology has been to understand how animals are

organised so that they are able to make the appropriate choice of behaviour in

different circumstances. According to the classical ideas about the proximate

causation of behaviour, behaviour was thought to be expressed as the result of

specific internal and external stimuli (Tinbergen, 1951). These stimuli contributed

toward motivational drives such hunger, sex and aggression. As only one behaviour

can be expressed at anyone time, the tendencies were thought to compete for

expression; the motivational drive with the most stimulation gained expression at the

expense of the others. These ideas are still discussed (for example, Baerends, 1993;

Tyrrell, 1993) and one model serves to illustrate the approach with specific reference

to aggression. Fighting is modelled as a competition between the conflicting

motivational tendencies to attack (aggression) and to flee (fear). Both tendencies arise

during a fight but vary independently of each other. The absolute levels and the
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balance between the tendencies to attack and flee determine which animal eventually

flees and how escalated the fight becomes (Baerends, 1975). Maynard Smith &

Reichert (1984) applied such a model to their observations of conflict between spiders

and achieved a good qualitative fit with the empirical data. Figure 1.1 is a graphical

representation of the model. The spider has six behavioural options; Locate, Signal,

Threaten, Contact, Retreat and Withdraw permanently. The expression of Locate,

Signal, Threaten and Contact depend upon the absolute level of aggression, whereas

the expression of Retreat and Withdraw permanently depend upon the balance of

aggression and fear; when fear is just greater than aggression, the spider Retreats, and

if this difference increases beyond a certain threshold it Withdraws permanently.

Tendency to attack
(aggression)

Contact

Withdraw
permanently

Threaten

Signal

Locate

Tendency to flee
(fear)

Figure l.t Graphical representation of Maynard Smith & Reichert's (1984)
conflicting tendency model of fighting (after Huntingford & Turner, 1987). The
balance of A of F determine whether the animal fights or escapes and, provided A >
F, the absolute level of A determines the level of escalation (Contact being the most
escalated).



The idea that motivational tendencies for different behaviours competed for

expression received a quantitative revision by McFarland & Houston (1981). Their

'state-space' approach set ideas about motivation within a functional framework.

Incorporating the element of functional significance was a major conceptual advance,

for it enabled one to see how ultimate goals are reached by proximate means.

McFarland & Houston's ideas can be summarised as follows; causal factors are

variables resulting from the animal's perception of the external environment and

variables relevant to the animal's internal environment. These combine to form a

motivational state variable, which provides the animal with information relevant for

making functional decisions. Decision rules are specific responses to a given level of

a motivational state variable. For example, low blood sugar and the sight of food are

causal factors that combine to increase the motivational state variable 'hunger' and

the decision rule 'feed' is executed provided that feeding is the animal's best option

for the current level of hunger. McFarland & Houston were able to offer some

empirical support for their theories, but only for easily defined and measured

motivations such as hunger and thirst.

Elwood & Neil (1992) extended the state-space approach to fighting, where the

immediate cost associated with fighting is the relevant motivational state variable for

making decisions on whether to continue, escalate or flee from the fight. They tested

their ideas with data from hermit crabs fighting over the shells in which they live. The

two dimensions of the model are the crab's estimate of the costs of fighting and its

estimate of the value of disputed shell. Elwood and Neil manipulated costs by varying

the degree in size asymmetry, and resource value by manipulating the size of the shell
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being disputed. Fight outcomes and durations predicted by the model were similar to

those observed in experiments.

As techniques for the measurement of physiological parameters became available, the

causal analysis of behaviour started to make greater headway. Much success was

gained at demonstrating the relationship between the endocrine system and the

expression of behaviour (see Nelson, 1995 for review). The role of the hormones,

most notably the androgen steroids, in the mediation and control of aggressive

behaviour has long been established, but it is only in recent years that the subtleties

and complexities of androgen action have been appreciated (see general view by

Wingfield et al., 1994).

A perhaps more neglected area in the physiological control of aggression is the role of

energy metabolism. Escalated fighting is an energetically intensive activity and little

is known about how strategic decision-making during fighting is influenced by

energetic exhaustion. However, in the last few years there have been a number of

studies directed specifically at determining the energetic consequences of fighting in a

broad range of taxa (see reviews by Haller, 1995 and Huntingford, et al., 1995). In

addition to suggesting that energy metabolism is a significant component of the cost

of fighting, there is evidence that visual contact with an opponent and aggressive

display may serve to prepare the body for fighting by mobilising energy reserves.

Neural approaches to unravelling the mechanisms underlying behavioural responses

have been successful in a number of invertebrates. For example, in crayfish it has
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been shown how the giant lateral neurone (which controls the expression of

behaviours seen in aggressive contexts) is modulated by the neurotransmitter

serotonin In relation to the outcome of aggressive interactions (Edwards, 1995).

Experimentally increasing serotonin causes adoption of aggressive postures and

inhibition of the tail flip escape response in subordinate individuals (Huber, 1995;

Yeh et al., 1996). In fish, serotonin has also been linked with the modulation of

aggressive behaviours (Winberg & Nilsson, 1993), but its exact mechanism of action

is not known.

One rarely studied aspect of the causal control of behaviour is its functional

morphology, that is to say, its anatomical basis. The musculoskeletal and neural

organisation of the opercular flaring display of Siamese fighting fish (Betta

splendensi has been investigated by Ma (1995). This study suggests that the bones

involved in generating the display have undergone extreme modification from their

derived structure (in comparison to other fish that do not gill-flare) in order to

facilitate the display. In addition to understanding the proximate control of behaviour,

such an approach gives insight into how morphologically constrained or plastic a

behaviour is. This can be very important for understanding the potential for

modification of behaviour by selection, as well as suggesting why certain behaviours

are associated with particular parts of the body.

1.2.3 Functional questions about animal aggression

Evolutionary change of behaviour by natural selection will occur provided there is

heritable genetic variation for the behavioural trait and that this variation gives rise to
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differential reproductive success. It is in relation to evolution by natural selection that

the functional significance of behaviour is analysed. Behavioural Ecology studies

what it is about behaviour that confers an advantage to the survival or reproduction of

the individual. The concept of behavioural adaptation assumes that natural selection

favours behaviour patterns that promote reproductive success, given the various

constraints contingent with the animal's biology (Krebs & Davies, 1991).

The acquisition of resources such as food, territories and mates have important

consequences for the reproductive success of individuals. In ecological circumstances

where such resources are limited in space or time, competition between individuals

inevitably arises and often leads to aggressive interactions (Grant, 1993). Much of the

variation in individual reproductive success in the population is thus determined by

the outcome of aggressive interactions. Aggressive behaviour and the morphologies

associated with it are, therefore, likely to be under strong selection pressures.

It is not, however, always obvious what is the best aggressive behavioural option in

conflicts, because the costs and benefits of behaving in a particular way depend upon

how other individuals in the population are behaving (Archer & Huntingford, 1993).

The more aggressive an individual is, the greater chance it has of defeating a rival,

but if all rivals are equally aggressive then an aggressive strategy may incur

unacceptably high costs. Such situations lead to frequency dependent selection

pressures and to analyse such situations it is necessary to employ evolutionary game

theory (Maynard Smith, 1982). The key concept behind this kind of modelling is the

evolutionarily stable strategy (ESS). An ESS has the property such that, if all



members of the population adopt it, then no 'mutant' strategy can invade the

population through the action of natural selection.

The original model of Maynard Smith & Price (1973) - the hawk-dove game - is still

the best illustration of the principles of an ESS. Consider a population in which there

are two different fighting strategies in equal numbers, one that always attacks and

does not withdraw unless injured - the hawks, and one which only displays and

withdraws if attacked - the doves. Pairs of the population then meet at random to

contest resources. If a hawk meets a dove, the dove withdraws uninjured and the

hawk wins the resource. If a dove meets a dove, they display at a low cost and there is

a 50 / 50 chance for each contestant to win the resource. If a hawk meets another

hawk, there is a 50 / 50 chance of injuring the opponent and winning the resource or

getting injured and losing the resource. Clearly, hawk always beats dove, so dove

cannot be an pure ESS, but equally hawk cannot be an pure ESS either, because if

most of the population are hawks then the dove strategy does better because it avoids

the high costs of injury. The population will eventually come to rest at a ratio of

hawks to doves where the net benefits of playing each strategy are equal. This ratio of

strategies is then the ESS, rather than anyone strategy.

The early game theory models were invaluable in showing why ESS modelling is

essential for understanding frequency dependent behaviour, but the correspondence

between the model strategies and the behavioural complexities of real animal fights

was weak. A step in bringing game theory further into line with the behavioural

complexity that ethologists had characterised was first taken by Parker (1974). It was
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well known that contestants usually differ in their ability to defend the resource or

their 'resource holding potential' (RHP) and that this is often closely coupled with

body size and strength. Parker proposed that in an asymmetric fight, an individual

would benefit if it could estimate its RHP relative to its opponent, thus allowing it to

withdraw from the fight early on if its RHP is lower (and avoid paying the extra costs

of continuing to fight in vain), or attack with a high probability of winning when its

RHP is greater.

Enquist & Leimer (1983) expanded the general idea in a model called the Sequential

Assessment Game. They hypothesised that the process of information acquisition

takes time because there is a certain amount of error in displays or aggressive

behaviours as these are imperfectly correlated with fighting ability. The acquisition

of information is modelled in a way similar to statistical sampling, such that the

estimate becomes better with each repetition of the behaviour.

The Sequential Assessment Game is the game theory model that goes furthest toward

a functional explanation of the complexity of animal fights. The model is attractive

because it can also accommodate other factors, for instance, asymmetries in the value

the contestants place on the resource (Enquist & Leimer, 1987). However, what is

most important about this model is that it invokes a causal mechanism. The estimate

of RHP is a dynamic state variable that determines a contestant's choice among

aggressive actions. The model, therefore, also makes predictions about the

mechanisms underlying strategic decision-making.
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1.2.4 !.iI/kinK causal andfunctional questions

So far, causal and functional questions have been considered separately and many

researchers are content to work either at the functional or causal level. However,

some argue that such a dichotomy is artificial and emphasise the importance of

integration between the two approaches (Davies, 1991; Huntingford, 1991). Whatever

adaptive features a functional analysis of behaviour can identify must be realised by a

mechanism that ensures the execution of the appropriate behavioural action. This

argument applies with equal force in reverse; no matter how well a physiological

analysis can characterise a behavioural control mechanism, the student of animal

behaviour can gain little from this understanding if the outcome of the mechanism

cannot be related to the functional biology of the animal.

1.2.5 Howfunctional studies can gain insight .from causal analysis

There is a growing awareness of the benefits to be reaped from the integration of

causal and functional approaches to animal behaviour (Huntingford, 1993). In recent

years behavioural ecologists have found it necessary to turn to the mechanisms

underlying behaviour in order to understand its functional significance. An example

may make this point clearer. In the field of sexual selection, it is common for

researchers to demonstrate females preference for males with the most exaggerated

secondary sexual traits. It is argued that these traits are honest signals of male quality,

because they are somehow costly and thereby confer a handicap upon the bearer,

leading to only the fittest males being able to incur such a handicap (Harvey &

Bradbury, 1991). However, sometimes it is not obvious why a trait should be costly

and, therefore, honest. For instance, female three spined sticklebacks prefer males
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with brighter red throats (Millinski & Bakker, 1990). Why should a red throat be

honestly indicative of a males fitness? It has recently been discovered that the red

throat of the male stickleback is expressed under the control of androgen steroids

(Borg & Mayer, 1995). It has also been demonstrated that high androgen levels have

a detrimental effect on immunocornpetance, that is to say the individual's resistance

to parasites and disease (Moller & Saino, 1994). Thus, males in poor condition and

low immunocompetance cannot afford a bright red throat and the red throat becomes

an honest signal of male fitness because only the fittest can afford to bear them.

Hence, we can see why red throats should have evolved in the first place. In this case,

causal reasoning was essential in the functional interpretation of the problem.

1.2.6 Why behavioural mechanisms are the logical level to study the evolution of

behaviour

Provided a behavioural phenotype is variable and has a heritable basis, natural

selection will act upon its functional consequences. However, from this argument it

does not follow that that we can predict how the behaviour will evolve. Behaviour is

modified by selection through a parallel modification of the underlying morphology

and physiological mechanisms (Cosmides & Tooby, 1987). Although, we are long

way from a complete understanding of the mechanisms that control behaviour, it is

clear that some functionally distinct behaviours can be interrelated on a physiological

level. Thus, modifying the mechanistic basis to attain a change in one behaviour may

concomitantly modify another behaviour. The functional significance of the original

behavioural change must be revised to take into account the changes in the correlated

behaviour. Studying behavioural evolution at the mechanistic level makes explicit the
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constraints and hence selection potential of behavioural strategies. Constraints and

adaptation should be considered with equal importance in our attempts to understand

the evolution of behaviour. This is the approach I have endeavoured to follow in the

present study of fighting in male Tilapia zillii.

1.3 Aggression in Cichlid fish

The family of teleost fish, the Cichlidae, are a good group of animals to study in

relation to aggressive behaviour. The family is subdivided into the 'Old World'

cichlids that are found throughout Africa, the Middle East and parts of Asia, and the

'New World' cichlids that are found throughout Central and South America. The

astonishing interspecific diversity in social organisation and behaviours such as

courtship, parental care and aggressive interaction make them an interesting and

popular family of fish to study. Since the seminal studies of Baerends & Baerends-

Van Roon (1951), aggression research has been, and still is being, carried out on

many species of Old and New World cichlids (see Keenleyside, 1991, for review).

The Tilapias are an Old World group of cichlids comprising three genera, Tilapia,

Sarotheradon and Oreochromis (Trewavas, 1983). The Tilapia sp. are substrate

spawners, whereas the Sarotherodon and Oreochromis sp. are mouth brooders (Lowe-

McConnell, 1959). My study species, Tilapia zillii (Gervais, 1848) is naturally

distributed throughout the lake systems of the Northern and Western Africa (Fryer &

lies, 1972: Philippart & Ruwet, 1982). When sexually mature, males establish and

aggressively defend territories along the lake side in which they dig (with their

mouths) spawning nests. Females are attracted to spawn in the pit and there is often a
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prolonged period of courtship involving continued excavation of the nest (Bruton &

Gophen, 1991). It is a monogamous species, with the female laying her eggs on a

carefully cleaned area or stone in the pit. Both parents then guard and fan the eggs.

Once the eggs have hatched, the parents guard the fry for a period of at least three

weeks (in captivity, pers. obs.). Breeding occurs all year round in equatorial regions,

but may be arrested during cooler months in more Northerly latitudes (R. H Lowe

McConnell, pers. cornrn.). In equatorial regions, reproduction peaks during the wet

season, but no information is available as to the length of time between broods

(Siddiqui, 1979).

Territories are likely to be very important to reproduction and because of the

investment in lengthy periods of courtship, nest digging and parental care, the

territory is likely to be keenly defended against any intruders. It should be noted that

most of the information on the social system and breeding biology of this species

comes exclusively from Bruton & Gophen and Siddiqui's field studies and these were

by no means exhaustive in their investigations. Thus, there are undoubtedly many

unknown aspects of the behavioural biology of T. zillii.

T zillii exhibits dramatic and variable colour patterns that become particularly

striking during breeding and aggressive interactions. The causation and function of

these patterns has been linked to multiple aspects of social interaction (Hulscheimer-

Emeis, 1992), although it remains to be seen whether the changes observed during

fighting function in the assessment of asymmetries.
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There has not been a systematic study of aggressive behaviour in T. zillii either in the

laboratory or in the wild. However, it is likely that, as with other cichlids (reviewed

by Turner & Robinson, in prep.), most aggressive interactions are rapid chases or

threat displays, with occasional escalated fights occurring when the ownership of a

territory is disputed. Aggressive interactions probably also occur in non-territorial

contexts, particularly in relation to social hierarchies and over competition for food.

There is a high degree of interspecific conservatism in cichlid fighting behaviour,

even between the Old world and New world genera. Cichlids in which fighting has

been studied in detail include Oreochromis mossambicus (Turner & Huntingford,

1986; Turner, 1994), Hemichromis bimaculatus (Baerends & Baerends Van Roan,

1950) and a New world species, Nannacara anoma/a (Jakobssen et aI., 1979). In

some of these species, fighting consists of distinctive phases, for example Nannacara

auomala whereas in others, for example, Oreochromis mossambicus this temporal

'phase' structure is less clear. Nevertheless, many of the behaviour patterns are

similar. Fighting begins with contestants raising fins and inflating the branchiostegal

membranes below the operculum. Escalation to the next phase is usually defined by

the appearance of mouth wrestling. This involves the fish grappling with each other

by the mouth and trying throw back the opponent. In the final phase the fish are seen

to chase each other nose-to-tail in circles, attempting to bite one another. The fight

can end at any point in these phases, usually with the sudden decision by one fish to

tlee.
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T. zillii are well suited to the study of aggression. They will establish territories and

spawn readily in captivity. It is therefore a technically straightforward procedure to

stage fights between pairs of males in the laboratory aquarium, simply by allowing

them to establish territories on either side of a removable partition. Like many other

tilapia, they are extremely hardy fish and thus unlikely to present any serious

husbandry difficulties. As with other cichlids, they have a complex but distinctive

repertoire of aggressive behaviours and colour pattern changes that lend well to the

detailed behavioural analysis of fighting. As was pointed out earlier, one slightly

unfortunate aspect of this species is that rather little is known regarding aggression

and social structure. However, providing this kind of information was one of the aims

of the project.

1.4 Aim of this research project

1.4.1 Philosophy of approach

I am interested in understanding behavioural mechanisms. Tackling this problem

requires linking different levels of study. To start with, it requires an explanation of

the functional significance of the behaviour. This then needs to be accounted for in

terms of proximate behavioural organisation and this in turn needs to be accounted for

in terms of underlying physiology. Thus, I set about designing my experiments in

light of what is understood about the functional significance of aggression. Within

this functional framework, I have investigated behavioural organisation and possible

underlying physiological causes, with the aim of directly relating function to

behaviour and behaviour to physiology.
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1.4.2 Specific aims ofthe project

[ undertook the behavioural studies of this project with the objective of providing new

information on aggression in the species and also to demonstrate the functional

significance of aggression in T zillii. My first aim was to test game theory predictions

regarding the broad features of animal fights, such as the outcome, duration and

intensity in relation to relative body size and the value of the contested resource.

Relative body size is a variable that is amenable to study because it involves little

more than staging fights between individuals of varying sizes. Subjective resource

value is more difficult to manipulate experimentally because sometimes it is the case

that it is not the absolute value of the resource that is important but the relative value

of the resource to a particular individual. For instance, a territory in which to spawn is

obviously of greater value to a mature fish than to an immature fish. Such internally-

generated variation in resource value may occur in male T. zillii where there is large

variation in both testis development and size (gonadal state). Thus, it was in relation

to relative body size and gonadal state that the present experiments were undertaken.

In addition to testing the broad predictions of game theory, I also undertook a detailed

analysis of behaviour with the aim of testing behavioural predictions of game theory

regarding the assessment of asymmetries. To understand how short-term behavioural

exchanges allow fights to be resolved was an important objective.

Since knowledge of how animals behave in nature is essential to interpreting the

functional significance of what they do, and since there is only minimal information

available on aggression and social organisation in T zillii. a further aim was to extend
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the present project to include a study of aggression and social structure in a serru-

natural environment.

The physiological studies aimed to elucidate the behavioural mechanisms underlying

aggression in this species. The first study was a simple morphometric analysis of the

relationships between internal body variables such as fat reserves and gonadal state.

The second was a study of biochemical consequences of energy metabolism in

relation to fighting. Finally, a study of sex steroid hormones present in the plasma of

the fish was under taken in an attempt to relate gonadal state to aggressive behaviour

in these fish. Overall, I have aimed to relate variation in physiology to variation in

behaviour and functional context.

1.4.3 Organisation of the thesis

Chapters 2 and 3 both describe behavioural studies of fighting and aggression in male

T. zillii. Chapter 2 reports the methods and results of the core behavioural study of the

thesis. This was a series of controlled laboratory experiments that involved the

staging of fights between male fish that varied in relative body size and gonadal state.

A detailed analysis of the fight structure and behavioural content was undertaken in

relation to the predictions of game theory regarding relative body size and

assessment. Chapter 3 reports the findings of a semi-natural investigation of social

structure, aggression and territoriality of a group of fish in an artificial river. The next

three chapters deal with the physiological aspects of the project. Chapter 4 is an

investigation of the relationship between external morphology and the internal state of

the fish in relation to fighting. Chapter 5 reports a study of the consequences that
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fighting imposes for energy metabolism. Chapter 6 reports a study that investigated

the associations between a number of sex steroid hormones and gonadal state and the

possibility of their role in the regulation of fighting. Finally, Chapter 7 is a general

discussion of previous chapters and an attempt to synthesise the various aspects of

this research project.
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CHAPTER 2

FIGHTING AND ASSESSMENT: THE EFFECTS OF ASYMMETRIES IN

BODY WEIGHT AND GONADAL STATE

2.1 Introduction

2.1.1 Aims and content

In this chapter, I first review the aspects of game theory that are important to the

interpretation of the present research. I then report the main experiment that forms the

core of this thesis. The aim of the experiment was twofold; firstly, to account for

variation in the outcome, duration and intensity of fights in functional terms and

secondly, to demonstrate the proximate behavioural means by which fights are

organised and resolved.

2.1.2 The effect ofrelative hody size and assessment strategies

It is a regular finding in studies of animal aggression that disputes over resources are

won by the larger individual. Examples can be found throughout the animal kingdom,

for instance, in teleost fish (Koops & Grant, 1993), in crustaceans (Pavey & Fielder,

1996) and in ungulates (Barrette & Vandal, 1990). Contestants with larger bodies

than their opponent are physically stronger and hence able to inflict greater costs on

their rival and incur lesser costs themselves. In game theory terms, a size asymmetry

leads to differences in 'resource holding potential' or RHP of the contestants (Parker,

1974; Maynard Smith, 1982)
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One group of ideas about how the fight is resolved is by the assessment of relative

RHP. Parker (1974) first proposed that in an asymmetric fight, an individual benefits

from assessing relative RHP because when its RHP is lower, it can withdraw from the

tight early on and avoid paying the extra costs of continuing to fight in vain, and

when its RHP is greater, it can attack with a high probability of winning. RHP is

assessed through visual, audio and contact cues, for example, lateral displaying in

cichlid fish (Enquist & Jakobsson, 1986), croaking in toads (Davies & Halliday,

1978) and antler locking in red deer (Clutton Brock et al., 1979). However, there was

a problem with Parker's initial model because it assumed the contestants to have

perfect information upon which to base their decisions. This means that escalated

contests between asymmetric individuals would never happen because the weaker

contestant would give up right away.

Hammerstein & Parker (1982) proposed one way out of this dilemma by introducing

a stochastic element to the model to accommodate the fact that contestants cannot

have perfect information. In the Asymmetric War of Attrition model, resolution is

attained by a 'who has more to gain and less to lose by persisting in the fight' rule.

The contestant that persists longest wins and persistence time is a function of the ratio

of benefits to costs of fighting. A contestant is assigned to playa 'good' role if its

benefit to cost ratio is higher than its opponent, that is to say, it has more to gain. The

opponent, who has less to gain, plays the 'bad' role. The good role always wins and

the bad role always loses. Contestants assess their own role and persist for a greater or

lesser duration accordingly. However, because information is not perfect, the
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contestants can occasionally mistake their own role for that of their opponent,

especially if the difference in cost/benefits between roles is small. Therefore,

escalated fights should be expected to occur from time to time.

Enquist & Leimer (1983) proposed an alternative way of modelling error-prone

assessment and considered the question of how information on relative RHP is

acquired. The key insight of their Sequential Assessment Game is that the information

obtained from the performance of a display accumulates in a manner akin to statistical

sampling, that is to say, to start with the estimate is very poor but improves with each

repetition of the behaviour before reaching an asymptote. The reliability of the

information increases with the cost of performing the behaviour; thus fight structure

and escalation is modelled as a sequence of behaviours beginning with those that

provide the most information for the least cost. If the information contained in the

first behaviours is insufficient to determine the asymmetry, then the contestants

escalate to the next most cost effective behaviours. Therefore, the fight progresses in

a sequence of phases of increasing cost, with fight duration and degree of escalation

being a function of how asymmetrical the contestants are; a very accurate estimate is

required to detect a very small difference and hence a negative correlation between

tight duration and RHP asymmetry is predicted. Thus, the Sequential Assessment

Game makes a number of novel predictions, gives a functional account for the process

of escalation and finds support from empirical studies in a few species including three

cichlid fish (Enquist, et al., 1990; Koops & Grant, 1993; Turner, 1994), a spider

(Leimer et al.. 1990) and an insect (Englund & Olssen, 1990). It has, therefore,

largely superseded alternative models and has become a very influential model itself.
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2.1.3 I he effect ofsubjective resource value. . . .

There are occasions when difference in body size does not predict the outcome of

fights and this is usually when there is an asymmetry in the value that contestants

place on the disputed resource (the subjective resource value - RV). The more the

resource means for the survival and reproduction of the individual, the harder the

individual is expected to fight to win or defend the resource. Enquist & Leimer

(1987) expanded their model to incorporate the effect of variation in RV. An increase

in RV acts to increase the degree of precision of the relative RHP estimate that is

accepted as a criterion for giving up. This results in the opponent that places less

value on the resource becoming more likely to give up first. As a better estimate

requires more time and more costly behaviours, it is predicted that an overall

increased RV leads to increased average fight duration and the degree of escalation.

In nature, asymmetries in the subjective value of a disputed resource can arise under a

number of circumstances. For example, when bald eagles gather to feed upon post-

spawned salmon, newly arrived and unfed individuals will often supplant larger

opponents that have fed to satiation (Hansen, 1986). Alternatively, a territory or mate

may become extremely valuable at certain times if the opportunity to reproduce is

temporally or physiologically constrained. For example, male elephants show

individual periodicity in coming into reproductive condition (musthe) which only

happens for a few weeks a year (Poole & Moss, 1982). During this period females

become extremely valuable for a musthing male, which becomes extraordinarily

aggressive toward other males, resulting in it temporarily rising in the dominance
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hierarchy. There are a number of studies where the effect of resource value on

fighting decisions has been empirically investigated: hermit crabs defending shells of

differing qualities (Elwood & Neil, 1992), male spiders fighting over mating access to

females (Leimer et al., 1991) and blue footed booby chicks that vary in their food

intake needs (Rcdriguez-Girones et al., 1996). The results generalise, supporting the

predictions concerning fight length, degree of escalation and probability of victory in

relation to RV

2.1.4 Criticism ofthe empirical testing (~lgame theory models

By its treatment of asymmetries in RHP and RV, game theory has provided a

conceptual framework that makes robust, generalisable and testable predictions of the

broad features of animal fights, such as their length, intensity and outcome. There is,

however one main criticism to be made about the empirical testing of the idea that the

function of the complex nature of fights is to allow assessment of asymmetries. In my

opinion, not enough attention has been paid to contact interaction during fighting.

Contact interactions (rather than displays) are where most accurate information is

likely to be exchanged during assessment. In the majority of studies contact

interactions are recorded as 'mutual occurrences' (for example, mouth wrestling in

cichlids, Koops & Grant, 1993; Enquist et al., 1990), but to convincingly demonstrate

that the function of such interactions is to allow assessment, it is necessary to tease

out the individual components of the interaction and to see if the outcomes for each

individual correspond to the asymmetry that is hypothesised to be being assessed. It is

possible to uncouple individual contributions in such interactions if a means of

assigning individuals to winning and losing individual bouts can be achieved. This is
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difficult because of the speed at which fighting happens, but can be tackled if the

fight has been recorded on film. By measuring the outcomes for individuals of contact

behaviours the assessment hypothesis can be tested in a new way.

2.1.5 Objectives and design of the study

The first objective of this experiment was to investigate the broad predictions game

theory makes regarding fight outcome, duration and intensity in relation to

asymmetries in body size and resource value. To this end, a series of fights was

staged in which I controlled for external territory quality, but varied the degree of

asymmetry in body size and gonadal state (assumed to be related to resource value -

see section 1.4.2) of the contestants. The second objective was to test the game theory

ideas regarding assessment and the resolution of fights. To this end, I video-filmed

the tights in order to obtain detailed behavioural data and information on colour

pattern changes. The first experiment described was a pilot study that was used to

refine the experimental set up for the main experiment that is centre piece of this

chapter.
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2.2 Pilot experiment

Before I could design a controlled experiment, it was necessary to establish under

what circumstances the fish would tight. Assuming that the fish fight over territories,

and since the length of time that an occupant has been on its territory is known to

intluence fighting strategies (for example, Barlow et al., 1986), it was necessary to

know how long the fish take to establish a territory and defend it. In addition, it was

necessary to have a rough idea of the range of size asymmetries that would be likely

to result in tights, since fights are unlikely to start between highly asymmetric

opponents. To this end, a series of encounters were staged that varied in both the time

the fish had been on their territory and the size asymmetry of the pair. A further aim

of this pilot experiment was to construct a mutually exclusive and exhaustive

catalogue of behaviours and colour patterns that were be observed during fighting.

2.2.1 Materials and methods

The procedure for staging tights was basically the same as that given for the main

experiment (see sections 2.3.1, below). To investigate the length of time it would take

for a fish to establish its territory, three groups of pairs were allowed to establish for a

period of 24 hours (n = 9 pairs), 48 hours (n = 9 pairs) and 7 days (n = 3 pairs).

Weight asymmetry ranged from 2 to 75 % (larger-smaller/smaller).

2.2.3 Results

Out of the nine attempts to stage fights in the 24 hour settling group, only three

actually resulted in fights and these were not highly escalated and relatively short (the

longest was 220 seconds) Out of nine possible tights in the 48 hours group, five
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resulted in escalated tights with durations ranging from 206 to 1214 seconds. Out of

three fights in the 7 days group, three resulted in escalated tights, all of which lasted

for more than 1000 seconds. The maximum weight asymmetry that resulted in a fight

was 51 %. From these first results I decided that a 7 day establishing period and

maximum of 50 % weight difference would be most likely to result in escalated

fighting. The ethogram of aggressive behaviours is presented in Table 2.2. I (see also

Figure 2.2. I for a photograph of mouth wrestling) and I have illustrated the colour

patterns in Figure 2.2.2.

Table 2.2.1 Ethogram of behaviours seen during staged fights (continued over)

Behaviour Description

lateral
display

tail-beat

quiver

zig-zag

mouth
wrestle

The displaying fish erects its dorsal and anal fins, inflates its
branchiostegal membranes and erects its operculae. The fish often
swim with exaggerated movements and in parallel with each other.

The opponents align head to tail and beat their tails at each other.

The fish suddenly makes side-to-side movements with its head pointed
downward, followed by a levelling of the body with rapid undulations
of the musculature.

The tish rapidly accelerates, brakes, turns direction, accelerates and
brakes again.

The initiating fish turns to approach its opponent, opens its mouth
wide and attempts to make contact. The opponent usually responds by
opening its mouth wide. The fish push against each other and
whichever fish succeeds in pushing back its opponent is classed as the
winner.

Bite The fish lunges at its opponent, mouth open and snaps the mouth shut
upon contact. Inflicting bites and avoiding being bitten results in nose-
to-tail chasing.
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Table 2.2.l Ethogram of behaviours seen during staged fights (continued)

Behaviour Description

mouth
lock

The fish approach each other, mouths open and attempt to grip each
other by the lips. Once the grip is made, the mouth is shut and the
opponents do not attempt to push their opponent. The lock is
eventually broken by one fish which folds its fins and makes a rapid
side-to-side shake of the head and body.

pause The fish stop all activity, remaining in close contact with each other.
Pausing often follows a mouth-lock.

Figure 2.2.1 Photograph taken by the author of mouth wrestling between a pair of
male T zillii.
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Figure 2.2.2 Illustration of colour patterns expressed by T zillii during fighting (top).
Lower illustration shows fish in neutral colouration prior to fighting (scale IS

approximately 1:1). The different eye patterns are shown in the bottom right corner
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2.3 A study of the effects of asymmetries in body size and gonadal state on

fighting and assessment in male T. zillii

2.3.1 Materials and methods

2.3.1.1 Fish culture and husbandry

The original stock of Tilapia zillii was obtained from Lake Manzala In Northern

Egypt by Dr Brendan McAndrew, University of Stirling. The fish used In all

experiments were sexually mature males raised either in the tropical aquarium.

Institute of Aquaculture, University of Stirling or by myself in the tropical aquarium

at D.E.E.8, University of Glasgow. Prior to experiments the fish were maintained in a

large ( 150 x 60 x 80 em) glass stock tank. Water temperature was maintained at 27 ±

1QC and water quality was maintained by an external power filter. Light regime was

12: 12 lightdark (although, due to technical failure, this was unreliable for part of the

duration of the main experiment). Stock feeding was carried out twice a day with

commercially available pellets occasionally substituted with blood worm, lettuce or

dandelion leaves.

2.3.1.2 SIoKiIlK.fiKhfS

The fish we used were all from a one year old cohort of sexually mature males raised

at the Institute of Aquaculture, University of Stirling. Experiments were carried out

under UK Home Office project licence No. PPL 60/01126 (to Prof. Huntingford) and

personal licence No. PIL 60/04983 (to myself). Thirty six pairs of fish were selected
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on the basis of weight (20 - 140 g) to give a range of size differences varying between

o - 35 % (heavier - smaller/smaller). Individuals were marked by subcutaneous

injection of alcian blue dye (with a pan-jet marker) to aid identification. The pairs

were then placed in glass contest tanks (lOO x 40 x 30 cm), one fish on either side of a

removable opaque partition. To minimise territory variation, each side contained only

gravel for nest building and each fish was rationed to eight food pellets per day. The

water was aerated and quality maintained by an external power filter. We avoided

any owner - intruder asymmetries by allowing each pair to 'own' their territory for 7

days. After this time the partition was raised and the ensuing fight video-filmed. The

fish were separated immediately after one fish had lost the fight (which happens

suddenly, with a clear behavioural switch, see below) and then killed either by an

overdose of benzocaine or by immersion in liquid nitrogen if they were to be used for

metabolic study (see Chapter 5). The fish were later weighed and dissected in order to

weigh the testis and calculate the gonadosomatic index (GSI), (testes weight as a

percentage of total body weight).

2.3.2 Results

2.3.2.1 Fight structure and behavioural content

The basic structure of fights between male T zillii was typical of many cichlid fish

(see Baerends & Baerends Van Roan, 1951), consisting of three broad phases (see

component behaviours in Table 2.2.1). The first was a period of display, in which the

fish raised their tins and inflated their opercular membranes. The contestants often

swam in parallel with exaggerated movements, beating at each other with their tails. It
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was not uncommon for the fish to show courtship activities toward an intruder. This,

together with the fact that no physical contact was made, suggests that behaviour in

the display phase should not be regarded as escalated fighting. The duration of this

phase was very variable (see Table 2.3.1) and all but one fight escalated beyond this

stage.

Table 2.3.1 Descriptive statistics of duration (in seconds) of phases in fights.

Phase Median Interquartile range rrummum maximum n
display 209 100 - 1855 25 10529 35
mouth wrestle 582 325-916 I16 2182 35
carousel 527 305 - 908 64 1904 34
total escalated 912 690 - 1665 178 2694 35
overall total 1896 1114 - 3704 265 13062 35

Escalated fighting began abruptly with the next phase, termed the 'mouth wrestling'

phase (see Table 2.3.1), where contestants engaged in multiple bouts of grappling

with open mouths. The first fish to open its mouth was considered to initiate the bout.

A fish could attempt to initiate a bout but not actually engage in mouth wrestling, as

the opponent may avoid the challenge; conversely, sometimes a bout was initiated

simultaneously by both fish. An individual was deemed to win the bout if it

succeeded in pushing its opponent backwards. The duration of the mouth wrestling

phase was defined as the time from initiation of the first bout, to the time at which 75

% of the total number of bouts of mouth wrestling had been initiated. This cut off was

chosen because there is an obvious decrease in the frequency of initiating around this

point.
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The final phase, termed the 'carouselling' phase, was judged to begin after the 75 %

cut off point for the mouth wrestling phase and was terminated with the fleeing of one

of the contestants (median duration of this phase is given in Table 2.3.1). Typically,

the fish rapidly chased each other nose-to-tail attempting to bite one another. Bites

were only scored if they actually landed upon the opponent. Also in this phase there

were frequent acts of 'mouth locking', where the fish clamped their mouths on each

other's lips (unlike the open mouthed posture of the mouth wrestling) and stayed in

this embrace until one fish shook itself free, thereby, 'breaking' the lock. During a

mouth lock, the opercular beat rate was observed to increase and, following the lock,

the fish often paused and gasped heavily.

Fights ended with one fish suddenly fleeing and making no further aggressive acts

toward the opponent. Winning and losing the contest was defined by this criterion,

although there was one case where both contestants fled simultaneously. The overall

duration of escalated fighting was defined as the time from initiation of the first bout

of mouth wrestling, to the time at which the loser flees, minus the duration of any

pauses that occurred.

2.3.2.2 ( 'olour pattern changes duringfighting

The variable colour patterns exhibited by T. zi/lii in a broad range of social contexts

have been described by Hulscher-Emeis (1992). In the present study, a rather crude

and limited analysis was undertaken as a first step toward quantifying the relationship

between colour patterns and aggression. Only patterns observed to change during



fighting were recorded (tilapia patch, vertical bars, red belly and darkened ventral fins

- see Figure 2.2.2). A sample of sixteen fights was chosen for colour pattern analysis.

For each minute of time that the fish were engaged in escalated fighting, the

expression of a body colour pattern was recorded as on or off. The eye pattern was

recorded as being in one of four states (neutral, dilated pupil, barred, or blackened -

see Figure 22.2). The fight was then split into four periods, namely the first five

minutes of escalated fighting (period 1) and then three equal time divisions of the

remainder of the fight (periods 2-4).

It was clear that there was a great deal of individual variation between tights in the

expression of body colour patterns. In one case, the fight was resolved with both fish

still in neutral body colour except for the tilapia patch, whereas in others full

colouration was observed in both fish by the end of the fight. The present analysis did

not suggest any obvious colour pattern differences between winners or losers at any

period in the fight, so the data was pooled to look at how the patterns changed during

the fight. Over all fights, Cochran Q tests revealed that all body colour patterns

became significantly more likely to be expressed as the fight progressed (notably

between periods I and 2, see Figure 2.3.1 - P < 0.05 for all colour patterns).

The eye pattern was similarly variable between fights and not significantly different

between winners and losers, although there was a trend in the data that suggests

winners express the barred and blackened pattern sooner than do losers (see Figures

2.3.2a and 2.3.2b). There was quite a clear trend over all fights for eye pattern to

change from predominantly neutral and dilated pupil patterns in time period 1 to



being predominantly barred or blacked-out by the later stages of the fight. (Figures

2.3.2a and 2.3.2b).

1.0

.".,---------
Proportion of
contestants
expressing
body colour
patterns

-
0.8

0.6 ---_-
- TUapla patch

vertical bars
red belly
ventral fins

0.2 -f--------.--------. ---,
1 2 3 4

Time period

Figure 2.3.1 The proportion of fights in which each colour pattern was expressed at
each time period.

a) winners b) losers

1.0 1.0 • blacked out
CJ barred0.8 0.8 0 dilated pupillortion 0 neutralntestants 0.6 0.6

tessing
fattern 0.4 0.4

0.2 0.2

0.0 0.0
1 2 3 4 1 2 3 4

Time period Time period

Figure 2.3.2a Proportion of winners adopting each eye pattern at each time period
during the fight. Figure 2.3.2b Proportion of losers adopting each eye pattern at each
period during the fight.
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2.3.2.3 Asymmetries ill body and testis weight and (lSI in relation to victory

Out of the thirty six fights staged, nineteen were won by the larger individual,

fourteen by the smaller, one fight remained unresolved, one pair did not fight and one

pair were exactly weight-matched. Despite size asymmetries in which the larger fish

was up to 35 per cent heavier, and a slight trend for winners to be heavier, median

weights of winners and losers, 61.2 and 59.7g, respectively, were not significantly

different (Wilcoxon's matched-pairs signed-ranks test, Z = 1.73, n = 34, P = 0.08).

The most extreme case of a smaller fish winning was where the larger fish was

approximately 30 per cent heavier.

GSI ranged from 0.01 percent to 0.61 percent and was not correlated with body

weight (Pearson correlation, r = 0.12, P > 0.05, n = 72). Twenty nine fights were won

by fish with a greater GSI than their opponent, four by fish with a lesser GSI and in

one tight GSI's were equal. Median GSI's of winners and losers were 0.28 % and

0.16 %, respectively, a highly significant difference (Wilcoxon's matched-pairs

signed-ranks test, z = 4.48, n = 34, P < 0.001). Similarly, winners had absolutely

heavier testis than losers (Wilcoxon's matched-pairs signed-ranks test, Z = 4.44, n =

34,P<0.001).

Condition factor (wt/length .1 x 100) did not differ significantly between winners and

losers (Wilcoxon's matched-pairs signed-ranks test, Z = 0.35, n = 34, P = 0.73) and

there was no correlation (r = - 0.12, P > 0.05) between the condition factor and GSI,

indicating that the effect of GSI is not simply a consequence of winning fish being in



better condition. Thus, asymmetry in GSI predicts winning, rather than asymmetry in

body weight or condition.

The effects of body weight difference and GSI difference on the probability of victory

were further investigated by logistic regression. The dependent variable was the

probability of the heavier fish of a pair winning and the independent variables were

the difference in weight and the difference in GSI. The difference in weight of a pair

of fish WO (u.h ) , where a and h are the larger and smaller fish, respectively, was

expressed as:

WD (a. h) = In (wt a / wt ,,)

This has the useful property that WD (a.h) = -Wl) (h.a) and, therefore, is negative when

a smaller fish won, zero when contestants are equal and positive when the larger fish

won. The difference in testis weight was expressed in the same way.

The results of the analysis are presented in Table 2.3.2 and show that the probability

of the larger fish of the pair winning the fight is strongly related to the difference in

GSI. The effect of difference in body weight is weak (not statistically significant)

compared to the effect of difference in GSI, but non trivial. The model is best

illustrated by a three dimensional probability surface (see Figure 2.3.3) . Out of the 33

fights, the model correctly predicted 12 out of the 14 observed losers and 18 out of 19

observed winners (over 90 % of the observations) ..
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Table 2.3.2 Results of logistic regression: dependent variable was the probability of

the heavier fish of a pair winning and the independent variables were the difference in

weight and the difference in GSI.

variables B d.f. significance R

Testis weight difference 8.69 0.017 .28

.16Body weight difference 22.33 0.078
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Figure 2.3.3 Relationship between the probability that the heavier fish of a pair wins
()J axis), the difference in GSI of the larger fish (z - axis) and difference in body
weight of the larger fish (x - axis). The surface illustrates how GSI and body weight
combine; difference in GSI is a much stronger effect than difference in body weight.
The probability of the heavier fish winning is maximal when the larger fish has a
greater relative GSI but very rapidly becomes minimal as the difference in GSI
becomes negative. It is only when the weight advantage is very large (> 0.2) that a
heavier fish with a smaller GSI is likely to win the contest.
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2.3.2.4 Asymmetries ill body weight and testis weight in relation to duration (~fphases

Multiple regression was used to determine if the duration of any of the phases was

related to the difference in body or testis weight. The results of the analyses are

presented in Table 2.3.3 indicating that there was no significant effect of either body

weight or testis weight difference on either the duration of the display phase or the

duration of the mouth wrestling phase. However, the duration of the carouselling

phase was related to both difference in weight and difference in testis weight, in both

cases being negatively associated.

Table 2.3.3 Results of multiple regression analyses: dependent variables include

duration of phases of the fight and various behavioural measures referred to in the

text and independent variables were the weight difference and testis weight

difference.

duration of display F (2.30) = .07, Adj. R 2 = 0.0, P < 0.9

variables Beta t (30) significance

weight difference
testis difference

- .02
.06

-.12
.35

.90

.72

duration of mouthwrestling F (2.30) = 1.18, Adj. R 2 = 0.01, P < 0.31
Beta t (30)

- .27 -1.52weight difference
testis difference .002 .01

significance
.14
.98

duration of carouselling F (2.30) = 5.13, Adj. R2 = 0.21, P < 0.01
Beta t (30)

-.41 -2.61
-.36 -2.30

significance
.013
.03

weight difference
testis difference



Table 2.3.3 continued

proportion of mouthwrestling
bouts initiated by larger fish

F (2.30) = 11.78, Adj. R 2 = 0.40,
P < 0.001

Beta t (30) significance
.66 4.84 .001
.08 .61 .68

F (2.30) = 4.69, Adj. R 2 = 0.19,
P < 0.02

Beta t (30) significance
0.47 2.93 .01
0.17 1.06 0.29

weight difference
testis difference

proportion of mouthwrestling
bouts won by larger fish

weight difference
testis difference

proportion of bites inflicted
by winner

F (2.25) = 5.10, Adj. R2 = 0.19, P < 0.02

weight difference
testis difference

Beta
- .49
.07

t (25)

-2.81
.43

significance
.01
.66

proportion of mouth locks F (2.19) = .82, Adj. R2 = 0.0, P < 0.45
broken by winner

weight difference
testis difference

Beta
- .28
.03

t (19)

1.27
.14

significance
.22
.89

2.3.2.4 Behaviour in the mouth wrestling phase in relation to asymmetries in hody

weight and testis weight

Multiple regression was used to determine if there were any effects of difference in

body and testis weight on the proportion (arcsine transformed) of mouth wrestling

bouts initiated and won by the larger fish. The results of this analysis are presented in

Table 2.3.3 and indicate that the difference in body is strongly related to the

proportion of bouts of mouth wrestling initiated and won, whereas the difference in

testis weight had no significant effects. In other words, the greater the weight

asymmetry, the more bouts of mouth wrestling the larger fish initiated and won.



To examine in more detail the relationship between body weight difference and the

mouth wrestling behaviour, and to establish if there is a process that may be termed

'assessment', I carried out the following analysis. The sample of thirty three fights

that yielded data on mouth wrestling was divided into three equal-sized groups,

independent of eventual victory and according to the extent of the percentage weight

difference of the pair (0 - 2.5 %, n = II; 2.5 - 10 %, n = II and> 10 %, n = II). To

express the way in which the effect of body weight difference changes as the fight

progresses, the total number of mouth wrestling bouts initiated for each fight was

divided into quartiles, and the number of bouts initiated and won by the heavier fish

in each quartile calculated. For the three groups, at each quartile, the difference

between the number of bouts initiated and won by the heavier fish and the lighter fish

were analysed using the Wilcoxon's matched-pairs, signed-ranks test. The results of

the analysis are presented in Table 2.3.4 and these data are expressed as the

proportion initiated and won by the heavier fish in Figures 2.3.Sa and 2.3.Sb,

respectively. Figures 2.3.4a and 2.3.4b show that in the early stages of the fight, both

contestants in all groups initiated and won a similar proportion of bouts of mouth

wrestling and this is not different from the random expectation (0.5). In the group

where contestants are very closely matched (weight difference of 0 - 2.5), this

remained the case throughout the fight, indicating that fish that are closely matched

for weight are also closely matched in the ability to win at mouth wrestling. However,

in the groups with moderate (2.5 - 10 %) and large (> 10 %) weight disparity, as the

fight progressed (across quartiles), the heavier fish initiated and won more bouts.

Furthermore, as the weight discrepancy increased (across groups), these differences
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become greater, for instance, in the> 10 % group, in the last quartile, the larger fish

is winning on average 75 % of the bouts.

Table 2.3.4 Analysis of weight dependent differences in initiating and winning bouts

of mouth wrestling (Wilcoxon's signed-ranks matched pairs test)

Initiating
GROUP Quartile I Quartile 2 Quartile 3 Quartile 4
0- 2.5 .Yc. z = .36 z = 1.94 z = 1.22 z = .21

p= .72 P = .06 P = .22 P = .83
2.5 - to % z = .42 z = .91 z = 1.99 z = 2.13

P = .67 P = .36 P = .04 P = 0.03
> 10 % z = 1.83 z = 1.94 z = 2.49 z = 2.83

P = .07 P = .06 P = .01 P = .005
Winning

0- 2.5 % z = .87 z = .31 z = .40 z =.49
P = .39 P = .76 P = .69 P = .62

2.5 - to % z = .25 z - 1.70 z - 2.80 z = 2.29
P = .80 P = .09 P = .005 P = 0.02

> 10 % z = 2.49 z - 2.65 z - 1.47 z = 2.80
P = .01 P = .008 P = .14 P = .005
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Figure 2.3.4a (top). The proportion of bouts of mouth wrestling initiated by the
heavier fish (p) (the lighter fish won 1 - P bouts) for each quartile of the total number
of bouts initiated. White bars denote the 0 - 2.5 % weight difference group, hatched
bars the 2.5 - 10 % group, and dark bars the> 10 % group. The dashed line is the 0.5
proportion level that would be expected if there was no effect of weight difference.
Those bars marked with an * indicate that the heavier fish initiated a significantly
greater proportion of bouts (see table 2.3.3). Figure 2.3.4b (bottom) The proportion
of mouth wrestling bouts won by the heavier fish (format is identical to Fig. 2.3.Sa)
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2.3.2.5 Asymmetries in body and testis weight in relation to biting and mouth locking

Pairs of fish tended to match each othe-r bite-far-bite and, overall, there was no

significant differences between winners and losers in the total number of bites

inflicted (Wilcoxon's matched-pairs signed-ranks test, Z = 0.21, n = 33, P = 0.84).

However, upon examination of the proportion of the total count of bites inflicted by

the winning fish, a multiple regression revealed a significant effect of the difference

in body weight but no significant effect of difference in testis weight (see Table

2.3.3). Figure 2.3.5 shows the negative relationship between the proportion of bites

inflicted by the winner and the difference in weight. In other words, winners that are

much smaller than their opponents inflict relatively more bites than winners that are

larger than their opponents.

0.85

•
0.75 ••Proportion 0.65 .....

of bites ..... • •
inflicted by <, •

0.55 ..... •the winner ~ ..... '• ...., •
0.45 • , ..... •.....

•• ..... ......
0.35 ....•• ••0.25

-0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35

Weight difference index

Figure 2.3.5 The proportion of bites inflicted by the winning fish plotted as a
function of difference in weight. When the weight difference index is negative, the
winner was smaller than its opponent.



The mouth locking behaviour was the only component of fighting in which there

were consistent differences between winners and losers. Out of the fights that yielded

sufficient mouth locking data (> 10 mouth locks), winners broke a significantly lower

proportion of mouth locks (median == 0.3) than losers (median == 0.55) (Wilcoxon's

matched-pairs signed-ranks test, Z = 3.12, n == 29, P < 0.01). Further analysis by

multiple regression did not suggest that proportion of mouth locks broken was

dependent upon the difference in GSI or weight (see Table 2.3.3).

2.3.3 Discussion

2.3.3.1 Body size, (lSI and the outcome of fights

Body size (and with it, resource holding potential - RHP) has been shown to be a

major factor determining the outcome and structure of animal fights. In the staged

fights reported here between male cichlids defending territories, body size evidently

does not have the predicted effects. This is in contrast to many studies involving pair-

wise contests in fish (Enquist et al., 1990; Ribowski & Franck, 1993 & Turner &

Huntingford, 1986). These results suggest that asymmetry in GSI is a better predictor

of winning than is asymmetry in body weight.

2.3.3.2 What is thefunctional significance of variation in GSI ?

The present study is not alone in finding an effect of gonadal state on aggressive

behaviour in cichlids. Gonadal state predicted dominance in male Tilapia mariae

(Schwank, 1981), although gonadal state was only measured indirectly by the length

of the genital papilla. Similarly, Holder et al., (I991) report that male Cichlasoma
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citrinellum become increasingly aggressive the closer they get to spawning (they also

used the genital papilla as an index of proximity to spawning). Thus, there is clearly

some important functional underpinning of gonadal state in the aggressive behaviour

of cichlids. In the present study, as we standardised territory quality, this suggests that

either GSI relates to the subjective value of a territory or that it reflects stronger, fitter

males.

1: zillii breeds all year round in equatorial regions, peaking in intensity during wet

months (Siddiqui, 1979). Upon maturation, it is likely that the fish develop

endogenous reproductive cycles associated with changes in behaviour and gonadal

state. GSI is likely to increase as the fish get closer to spawning, and the closer to

spawning, the more valuable the territory becomes to that individual. Thus, the

subjective value of the territory may covary with GSI. In addition, it may be that

sperm volume is a limiting factor for the capacity to fertilise eggs (as has been shown

in some externally fertilising fish, Shapiro & Giraldeau, 1996); thus males that have

invested heavily in sperm production may value their territory more because their

absolute capacity to fertilise eggs is greater. However, to my knowledge, this aspect

of the breeding biology of Tilapia sp. has not been researched and it seems unlikely,

given that in T. zillii clutch size is comparatively small (approximately 500 - 1000

eggs, depending on body size - personal observation) because not all ripe ova are

released during a single spawning attempt (Siddiqui, 1979).

Alternatively, GSI may be a consequence, rather than a cause of dominance. Males

that are better fighters may be better able to allocate resources to the development of



gonads. In this study, the fish were isolated for seven days prior to fighting, but I

cannot be sure that the effects of previous experience and social status are not long

lasting. However, there was no evidence that difference in GSI was related to mouth

wrestling or biting, which are behaviours one might expect to be related to fighting

ability. Thus, it seems more likely that GSI is related to RV. Under this assumption,

this study presents an opportunity to evaluate different game theory models of how

RHP and RV interact to determine the outcome, duration and behavioural structure of

fights.

2.3.3.3 Is relative body size assessed?

It is not obvious whether one should expect body size to be assessed in situations

where it does not predict victory. The Sequential Assessment Game that allows for

variation in subjective resource value (Enquist and Leimer, 1987) assumes that the

assessment of RHP does take place during the fight through a sequence of displays

and interactions. The fights reported here did progress in a sequential way, from

display through mouth wrestling to carouselling. However, to test the idea that the

function of a behavior is to allow assessment of RHP, it needs to be demonstrated that

individuals respond to the candidate assessment behavior in accordance with their

relative RHP.

While the significance of the display phase is at present obscure, mouth wrestling is

clearly a key component of escalated fighting and a likely candidate for an interaction

during which the contestants assess body size; it appears to be so in other cichlid fish,

for example, Enquist and lakobssen (1986) and Turner (1994). In the present study, it
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is clear that fish heavier than their opponent initiate and win more bouts of mouth

wrestling. In addition, our results suggest that assessment of relative size is a dynamic

process. If we interpret bout initiation as reflecting motivation to engage in mouth

wrestling and winning as an index of relative strength, then these data support Enquist

and Leimer's (1983) view that at the start of the fight the contestants have little

information on relative RHP, but that this increases as the fight progresses. Relative

frequencies of bout initiation are not significantly different from random between

contestants in the first quartile of mouth wrestling, but as the fight progresses the

difference in relative strength becomes apparent and the smaller fish of a pair initiates

less. A reduced motivation to engage in this activity may indicate that information on

relative size has been exchanged. These data, therefore, provide evidence that body

size is coupled with physical strength and this asymmetry is progressively assessed

during the mouth wrestling phase. However, this is evidently not the means by which

the fight is resolved, as fish smaller than their opponent often continued to fight in

spite of information about its RHP disadvantage and frequently went on to win the

fight. The resolution of the fight must come in the final carouselling phase of the

fight.

2.3.3.4 Behaviour in the carouselling phase ill relation to relative body size and US!

According to the Sequential Assessment Game, the effect of increased RV is to

increase the cost of the fight (Enquist and Leimer, 1987). It also predicts that fighting

begins with the least costly displays, so we might expect to find an effect of relative

GSI in the later, more costly stages of the fight. Consider the two main behaviours in

the final carouselling phase, namely biting and mouth locking. Most biting occurs at



this stage and often results in injury (scale loss, skin and fin damage) and provokes

retaliation, hence it is likely to be a costly act. Thus, we might expect fish with high

GSr s to take greater risks and bite more. Surprisingly, there was no evidence to

suggest that difference in GSI was related to biting. However, it is interesting that the

proportion of bites inflicted by the winner was highest for severely weight

disadvantaged fish, decreased as the opponents became more weight matched and was

lowest for weight advantaged winners. This finding suggests that small winners are

playing a very high risk strategy. Presumably, when an individual is disadvantaged, a

high risk strategy is the only option that offers any chance of winning. Similar high

risk strategies are used by subordinate finches when they occasionally beat dominants

in disputes over food (Senar, et aI., 1992).

The data on the mouth locking behaviour strongly suggest that breaking the mouth

lock is related to the likelihood of eventually giving up. However, there was no

evidence that this behavior provided information on relative GSI. The significance of

the mouth lock is not clear, but it may be a trial in which the contestants assess the

relative costs that each opponent is prepared to incur (see section 2.3.3.6).

In summary, winners were not necessarily heavier than their opponents, but they were

likely to have a significantly greater GSI. It seems likely that the difference in relative

weight was assessed during mouth wrestling, but that the fights were resolved in later

stages. The level of risk (in terms of biting) that an eventual winner played depended

upon its relative weight; severely weight disadvantaged winners inflicting the highest



proportion of bites on their opponent. Losers broke a significantly greater proportion

of mouth locks, but there was no corresponding correlation with relative GSI.

2.3.3.5 ('010"1' pattern changes during the fight

Two possible roles of colour patterns in aggressive behaviour In fishes have been

suggested. The first is that a change in colour patterns gives general information

about motivational state. For example, male bluehead wrasse iThalasomma

bifasciatnnn rapidly change from an opalescent body colour when courting a female

to a green body colour when confronting a rival male (Dawkins & Guilford, 1993).

There is also some evidence that colour patterns may give information about specific

asymmetries during a fight. For example, Barlow (1963) has shown that in fights

between male Badis badis (a teleost), the eventual winners adopt a darker body

pattern than the losers. In the present study, despite the limited analysis, it was fairly

clear that body colour patterns were more likely to be expressed as the fight

progressed and that the eye was more likely to be in a barred or blackened state as the

fight progressed. However, the analysis did not suggest that there were any

differences between winners and losers, although the recording method may have

been too crude to detect any subtle changes. Hulscher Emeis (1992) has shown how

colour patterns in T zillii change in intensity. The present analysis did not take this

aspect into consideration, which may be more important than simply whether the

pattern was expressed or not. A more detailed analysis would be needed before

conclusions should be drawn about the role of colour pattern changes during fighting

and in assessment. Thus, for the present, the only statement that can be made in

confidence is that the patterns are more likely to appear as the fight progresses. At the
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very least, this suggests, either that they signal an increasing level of aggression

between the opponents, or that they are involved in the assessment process in a subtle

way. This is an aspect of fighting which clearly deserves further study.

2.3.3.6 How are thefights resolved?

There have been a number of attempts to model fight resolution in relation to both

variation in relative RHP and RV. In the Sequential Assessment Game with variation

in RV (Enquist & Leimer, 1987), fights are resolved when one contestant gives up

because it estimates its RHP to be lower than its opponents. However, because an

increase in RV acts to increase the degree of precision of the estimate of relative RHP

the contestant accepts before giving up, it is possible for a fish with a greater RHP to

lose because it has a lower RV and thus erroneously calculates that it has a lower

relative RHP (due to its unwillingness to pay the high costs of getting a precise

estimate). The Sequential Assessment Game may be able to account for the effect of

RV when the difference in RHP is not too asymmetric or there is a symmetrical

increase in RV (for example the spider study of Leimer et al., 1991). The results from

the present study are ambiguous in supporting the predictions of the Sequential

Assessment Game. On the one hand, our data support the prediction that only the

final phase of the fight will be negatively correlated with weight asymmetry (this was

also the case for gonad asymmetry in our study). On the other hand, the asymmetries

in weight were very large in many cases, and some of the longest fights were those in

which fish much smaller than their opponent eventually won. After such a length of

time, it seems unlikely that the larger fish gave up because it mistakenly estimated its

RHP to be lower than its opponent.
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There are at least two other possibilities of how fights could be resolved. One is that

relative RHP is assessed, but that because the stakes are so high, the contestants

continue regardless and the fight is resolved by the rule 'who has more to gain and

less to lose by persisting'. The process of resolution is similar to the Asymmetric War

of Attrition model proposed by Hammerstein and Parker (1982) and to Marden and

Waage's ( )990) .physical limitation' hypothesis to account for their observation that

contests between damselflies are won by the individual that has the highest fat

reserves. In the present context, as the fight progresses, costs accumulate and each

fish continues until the current cost of fighting outweighs the benefit to be gained

from retaining the resource. The first contestant to reach this threshold gives up and

the fight is resolved. The level of this threshold increases with increasing RV, thus

contestants with higher RV persist longer and are, hence, more likely to win. This

idea is expanded and formalised mathematically in Appendix 3.

Alternatively, the contestants may be able to assess each other's cost thresholds, that

is how long their opponent is prepared to persist in order to defend the disputed

resource. Each contestant continues to fight until one of them assesses that its costs of

fighting will exceed the benefits it stands to gain from retaining the resource sooner

than it will for the opponent. There are other studies that suggest that contestants can

assess relative RV and other asymmetries that are not directly observable, such as

energy status and motivational state. Elwood and Neil (1992) present evidence that

hermit crabs alter their fighting strategies as they acquire information on each other's

shells. Marden and Rollins (1994) have shown that damselflies can assess relative

energetic status and settle contests before physical limits are reached and Poole
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(1987) reports data for African elephants that suggests that males assess the 'rnusthe'

condition (see section 2.13).

2.3.3.7 Which model hest accommodates the datafor T. zillii ?

Enquist & Leimer's (1987) Sequential Assessment Game may be able to account for

the effect of RV when the difference in RHP is not too asymmetric or where there is a

symmetrical increase in RV (for example the spider study of Leimer, et al. 1991).

However, for the present study, where the asymmetry in weight is large in many cases

and there is no evidence to suspect that winners are at an advantage in terms of their

fighting ability, it seems inappropriate. Furthermore, the longest tights were those in

which fish much smaller than their opponent eventually won. After such a length of

time, it seems unlikely that the larger fish gave up because it mistakenly estimated its

RHP to be lower than its opponent.

In the Asymmetric War of Attrition model (Hammerstein & Parker, 1982), I propose

that the carouselling phase is the War of Attrition and that the fish enter this phase

with information regarding their relative RHP (which they obtained during mouth

wrestling). Each fish has a threshold cost that it is prepared to pay and this is

determined by its GSI. The cost of fighting has many components, but two of the

most important are likely to be physical injury and exhaustion. The main cause of

injuries in fighting in this species is biting and probably the best overall index of how

exhausting a tight has been is the duration of escalated fighting. However, there was

no evidence for any effects of relative GSI on the proportion of bites received or on

51



the duration of escalated fighting. Thus, I have no supporting data for this particular

model.

If the cost threshold assessment hypothesis is appropriate we should expect

assessment to relate to both relative RHP and GSI. We propose that assessment of

relative RH? occurs in the earlier stages of the fight (mouth wrestling), just as in the

Sequential Assessment Game. However, but because GSI affects how long the

contestants intend to persist in the fight, this involves signaling information about

motivation. Disclosing information about motivational state and the intention to

persist was originally believed to evolutionarily unstable because of its vulnerability

to cheating (Maynard Smith, 1982); however, Enquist (1985) has shown that the

signaling of intentions can be stable provided the signal honestly reflects the level of

intention and to meet this criterion the signal must be costly. It follows that if there

are behavioral indicators of GSI and that assessment is occurring, then it should be a

feature of the more escalated (costly) stages of the fight. Mouth locking is a feature of

the most escalated stage in the fight and breaking the mouth lock is associated with

the likelihood of losing. There was not, however, a significant relationship between

the proportion of mouth locks broken and relative GSI. Thus, while it seems likely,

we cannot conclude that the fish are making available reliable information about their

relative cost thresholds. It is interesting that in other detailed studies of fighting,

differences between opponents are also only detected in the last stages of fighting, for

example, Simpson's (1969) study of fighting in Siamese fighting fish (Bella

splendcus), Similarly, Marden and Rollin's (1994) study on damselflies only found a



significant relationship between energy reserves and fight duration In the most

escalated tights.

2.3.3.8 Conclusions

This experiment has revealed that asymmetry in gonadal state has a stronger effect

upon tight outcome than does asymmetry in body size (even when this is large). This

result is quite surprising but the findings do not contradict game theory, if it is

assumed that gonadal state reflects the value of the territory to the individual.

However, the study does have implications for the way the resolution of animal fights

is usually perceived. In addition to the assessment of RHP, fighting strategies may

also serve to obtain information on both how much cost each opponent has paid and

how much each opponent is prepared to pay to retain its resource. Signalling

intentions or motivation is likely to involve costly signals and thus may only be

detected in the later stages of escalated fights.
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CHAPTER3

AGGRESSIVE INTERACTIONS AND SOCIAL ORGANISATION IN A SEMI-

NATURAL ENVIRONMENT

3.1 Introduction

The functional analysis of animal behaviour is based on the principle that the animal

has evolved under the selection pressures of the natural environment. Where

experiments in behavioural ecology are carried out in the laboratory, it is assumed

that the conditions of the laboratory are equivalent to a controllable natural

environment and that behavioural adaptations can be studied by manipulating certain

variables while keeping others constant. However, there is always the risk that

observations in the laboratory are spurious artefacts of keeping animals in artificial

conditions (Martin & Bateson, 1993). Thus, to justify such an assumption, it is

essential to have some information on the behaviour in natural environments with

which to compare laboratory results. In addition, information from natural

observations and experiments can provide insights that one cannot get from designed

experiments alone (Tinbergen, 1958).

There is relatively little information on the social and territorial system of T zillii in

the wild. The only published field studies have concentrated on reproductive and

spawning behaviour rather than territoriality (Bruton & Gophen, 1991; Siddiqui,

1979) No information is available on the frequency and intensity of aggressive
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interactions or on what circumstances provoke aggressive responses. Neither is it

known whether T zillii is permanently territorial, or whether during non-breeding

phases it is like other Tilapia .\p. in forming loose social groups. These basic aspects

of the natural history would be valuable for the interpretation of the results described

in Chapter 2, especially in justifying the functional assumptions made. Furthermore, it

would be valuable to know whether the kind of fights observed in the laboratory

aquaria are similar to fights seen under more natural circumstances, rather than an

artefact of life in captivity. In the scale of the present project, a field study was clearly

unfeasible, so use was made of an artificial stream at The University Field Station,

Rowardennan.

This chapter describes the social dynamics of a group of male fish allowed to have

free range over approximately ten metres of 'river bed' during a one month period.

The main aim of the study was to record the occurrence and nature of aggressive

interactions and to make observations on the establishment of territories among a

group of males under these semi-natural conditions. In addition, I investigated how

aggression and social interactions changed when key individuals were removed and

females were introduced. The following questions were addressed:

I) What kind of aggressive behaviours are seen?

2) What kind of social organisation does T zillii exhibit?

3) What is the functional significance of aggressive interactions?
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The study was undertaken in order to generate a qualitative understanding of the

social organisation in T. zillii to help in the interpretation of the rest of the project and

provide information on which to base a more extensive and quantitative field study. It

was necessarily conducted on a small scale and was not designed to provide a

definitive quantitative analysis of aggression.

3.2 Materials and methods

3.2.1 Fish and observational set-lip

Seven sexually mature male and two female fish were selected, weighed and

individually marked with a pan-jet ink marker (individual weights of fish are given in

Table 3.2.1).

Table 3.2.1 The identity and weight (in grams) of male fish at the start and end of the

experiment and percentage weight increase during the period.

Fish I.D A B c D E F G

weight on day I 160.2 87.2 70.1 84.8 97.0 74.3 70.4

weight on day 28 104.8 87.2 124.3 132.3 82.7 84.4

IY., weight increase 20 25 47 36 11 20
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The fish were then transported to an artificial observation stream (flume) at The

University Field Station, Rowardennan. Figure 3.2.1 shows the dimensions, and the

'pool and riffle' landscape of the flume. The water in the flume was recirculated, but

had a slow trickle of fresh water and overflow drain-pipe. The water temperature was

27 ± 3DC and the light dark cycle was 12: 12. Flow rate varied according to the

landscape. Over riffles it was approximately 4 - 8 em s -1, whereas in pools it was 0 -

1 cm s -1. The study lasted for twenty eight days. On the first day all males were put

into the flume at once and observations (see below) made for five days. On the fifth

day, the top ranking fish (see below) was removed and observations continued for a

further nine days. Two gravid females were then introduced and observations

continued for the remainder of the experiment. At the end of the experiment the males

were weighed again and growth rates estimated (see Table 3.2.1).

300cm

Figure 3.2.1 Diagram of the artificial stream showing pool and riffle landscape

(shaded areas are pools). Depth was approximately 35 cm in pools.
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3.2.2 Recording behaviour

On the first day, observations were made continuously for I h and then on and off for

the rest of the day. From day 2 onwards, observations were made twice a day (at

approximately 09.30 and 15.30) for 30 min., with particular attention being paid to

aggressive interactions. Aggressive behaviours (see Chapter 2, Table 2.2.1 for further

descriptions of the component behaviours) were classified as follows:

Chases - One fish chases another, which flees immediately, making no attempt to

confront the aggressor.

Displays - Both fish raise fins and/or inflate branchiostegal membranes.

Scraps - Both fish perform tail-beating and parallel swimming but neither escalates to

mouth wrestling.

Short fights - The fight escalates to mouth wrestling but not to the carouselling phase

Escalated fights - The fight escalates to carouselling and mouth locking.

All the above interactions were terminated with one fish chasing the other or when

the interaction was interrupted by another fish.

Social dominance was scored from the outcome of aggressive interactions between

individuals. Most interactions were terminated by one fish chasing away the other; the



chaser was assigned' dominant' to the chased fish and a hierarchy was inferred on the

basis of repeated assertion of dominance (Martin & Bateson, 1993) The fish that

dominated all others was assigned rank I (or the despot), the fish dominant to all but

the rank I fish was assigned rank 2, and so on.

3.3 Results

3.3.1 Frequency ofaggressive behaviours

Chasing was the most common aggressive interaction (the median frequency per hour

for all fish was 31), followed by displaying (median frequency per hour for all fish

was 19) A total of 14 scraps, 8 short fights and I escalated fight were observed

during the sampling periods over 28 days.

3.3.2 Dominance structure

To begin with the males formed a cohesive group and were even observed to be

schooling at times. However, this did not last long and was most likely a fright

response to being introduced to a novel environment. After a few hours, the group

became less cohesive and a dominance hierarchy began to develop through aggressive

interactions. The hierarchy is presented in Table 3.2.2. A clear despot had emerged

within a few hours and second and third positions in the hierarchy were established by

the afternoon of day I. The lower subordinates did not maintain consistent positions

between sampling periods, thus, the hierarchy cannot be strictly classified as linear,

although it was usually possible to establish a linear relationship during a single

sampling period.
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With reference to Table 32.2, one can see that upon removal of the despot on day 5,

the second ranked fish became the despot, and the third ranked fish became rank 2.

The following day, the rank 2 fish was defeated in a short fight by a lower ranked

fish. Further changes in the hierarchy also occurred among the mid and low rank fish

Over the next seven days, the top of the hierarchy stabilised, but again there was

instability in the lower half of the table as the two lowest ranked fish alternated

between the lowest position.

Following the introduction of the females, there were clear changes in the dominance

hierarchy The fight between the two top ranked fish was presumably an attempt by

the second top fish to become the despot. This was not successful, as the despot won

the tight. Following this fight, the third ranking male attacked both the despot and the

second ranking fish and was successful in both instances resulting in it taking the top

position in the hierarchy. Over the next couple of days the hierarchy changed still

further. The original despot continued to descend the ranks and a previously low

ranking fish secured the number 2 ranked position. The upper region of the hierarchy

did not stabilise until around day 21.
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3.3.3 Temporal trends ill aggressive behaviours

The number of aggressive acts (summed for all fish), for each day (60 minutes of

observation) is shown in Figure 3.2.1. In the first 2 days there was a high rate of

chasing and displaying, with occasional scraps and one short fight. A single despot

was responsible for the majority of chasing and would often interrupt interactions

between other fish. Upon removal of the despot, on day 5, there was an increase in

aggression. most notably in scrapping and short fighting, between all fish. Following

this, the frequency of displays and chases decreased gradually, because low ranking

individuals were observed to actively avoid higher ranking individuals.

Following the introduction of two gravid females on day 15, there was a sharp

increase in displaying, chasing, and scrapping. Three short fights were observed and

the first escalated fight occurred the next day between the two highest ranking

individuals. The exact duration of the escalated fight lasted is not known as it was in

progress when the observation period started but it continued for 28 observed

minutes. Both fish showed signs of injury in the form of lost scales and lip damage. A

further two short fights were observed over the next few days but after this sharp rise

in aggression, the frequency of aggressive acts began to fall and remained at fairly

constant low levels from around day 20 onwards.
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3.3.4 ( 'onrtship behaviour and the establishment of territories

The first signs of territory establishment were not observed until five days after the

introduction of the females. Most of the males showed courtship behaviours toward

the females. such as quivering and digging the gravel with their mouths. The

occurrence of courtship behaviours was fairly consistent from the top two ranked

males. whereas for low ranked males it was only seen occasionally. First signs of

territory establishment, such as the digging of a nest were by a mid ranking male

(male A) However, only the two highest ranking individuals (E and D) actually

started to dig nests with females, although neither pair spawned. In these cases the

females also participated in digging the nest. The territorial pairs frequently left the

nest site and it was not obvious if there was a distinctive boundary to the territory.

The despot frequently entered the nest area of the rank 2 fish without confrontation.

3.3.5 Body weight ill relation to dominance stat us

Although the heaviest individual became the despot within the first hours, there was

no significant correlation between weight and social rank once the hierarchy had

established (~= OS, n = 7, P = 0.25). However, by the end of the experiment there

was a significant positive correlation between weight and social rank (R" = -0.94, n =

6, P < 0.0 I). In addition, the top ranked individuals had the highest growth rates.



3.4 Discussion

3.4.1 Social structure and aggressive behaviours

This study revealed a number of interesting features of T zillii social behaviour. In

the group size I worked with and in the absence of females, males did not establish

territories, although there was apparently ample time and space for them do so. The

males formed a loose, wide ranging foraging group and no individuals showed any

signs of site attachment or site defence. However, aggressive behaviour is clearly a

major component of the behavioural repertoire of this species in these conditions. The

majority of aggressive interactions were short lived chases and displays; however,

eight short fights and one escalated fight were observed. In the presence of females,

nest building was observed, but nest owners frequently left the nest and sometimes

tolerated the presence of others within the vicinity of the nest; thus the system was not

strictly territorial.

Within a few hours of being introduced into the flume, it was clear that a dominance

hierarchy was being established. The dominance hierarchy at anyone sampling period

was linear but was not stable in the long term, particularly during periods of social

change. This is similar to the 'linear but unstable social hierarchy' described by

Oliveira & Almada (1996) for the mouth brooding tilapia, Oreochromis mossambicus.



3.4.2 What arefights over :)

Chases and displays occurred at fairly high levels throughout the study and usually

did not result in any change in the hierarchy. By definition, chases always involved a

higher ranking individual pursuing a lower ranked individual. Thus, chases and

probably displays may serve to reinforce dominance relations and maintain an

individual's position in the hierarchy. On the other hand, the scraps and short fights

sometimes resulted in changes in the dominance hierarchy and were mainly confined

to periods when the hierarchy was unstable, for example during the first few days of

the experiment, in the days immediately following the removal of the despot and in

the days following the introduction of the females. Therefore, the function of scraps

and short fights may be in the establishment and challenging of the hierarchy.

The only escalated fight observed was a dispute between the rank I and rank 2 fish.

Thus, escalated fighting may be reserved for disputes over the top positions in the

hierarchy. There was no evidence for the assumption in Chapter 2 that escalated fights

occur when territory ownership is disputed, although there was no evidence against

this either. It may be the case that top rank positions are equivalent to access to a

territory. The fact that there was a dramatic increase in all aggressive interactions

among males following the introduction of females suggests that once the opportunity

to reproduce arises, there is an added incentive to challenge the established hierarchy

or to maintain a high rank.
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3.4.3 Henefit» ofbeing high ill/he social hierarchy

The two top ranked males had almost exclusive access to the females and established

nest sites. Although in T zillii it is not known whether there is active female choice of

males or if top males gain females by excluding other males, clearly being high in the

hierarchy pays off in terms of mating opportunities. In addition, the growth rates

during the experimental period were highest for the two top ranked fish, which

suggests that there may be feeding benefits to be gained from top positions in the

hierarchy, as has been demonstrated in this species (Koebele, 1985). Alternatively, it

may be that subordinates have lower growth rates as a consequence of the social stress

by imposed by dominants, as has been shown in juvenile tilapia, Oreochromis

niloticus. (Alvarenga & Volpato, 1995) and coho salmon (Ejike & Schreck, 1980).

3.4.4 The consequences of escalatedfighting

The circumstances in which the despot lost dominance are a particularly interesting

piece of anecdotal evidence for the consequences of becoming involved in an

escalated fight. It was immediately following the escalated fight between the despot

and the second ranked fish that the despot lost in a short fight to the rank 3 fish. This

suggests that the despot was exhausted due to the previous escalated fight and could

not fend off the assaults from a fresh attacker. Following its defeat the erstwhile

despot fell a further two places down the hierarchy and it was not for a few days that

it started to climb again, but it never recovered its previous status. This gives some

idea as to how costly engaging in an escalated fight can be.
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3.4.5 Implications ofthis stuJ.Y./(JI·the interpretation oflaboratory results

In this study the escalated fight was very similar in duration and degree of escalation

to tights observed in laboratory aquariums. Thus, while escalated fights may be rare

in natural circumstances, we do at least know that they happen and that the fights we

staged in the laboratory have a natural counterpart.

It was interesting that in the flume, only the top ranked fish established territories,

whereas all isolated males in the laboratory studies readily established territories.

Presumably this is because in the flume, dominant individuals aggressively prevented

territory establishment by the subordinates, whereas in the laboratory, this was not

possible. This may explain why the laboratory fights were so escalated; each fish is

playing a dominant, territory owner role and thus has much to lose in a fight.

Unfortunately, it was not clear from the flume study whether only the top ranked fish

were in breeding condition, as subordinates occasionally showed courtship behaviours

toward females and all were sexually mature.

While it is likely that during the period of territory establishment the fish invest in the

production of gonads, it is still unclear why there should be such large variation in the

GSI of the fish used in the laboratory experiment and why relative GSI should predict

winning. Clearly, the scale of the present study was inadequate to resolve such issues.
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3.4.6 ( 'onclusion

Under the 'semi-natural' conditions of the flume, the social structure of T zilli! may

be described as a loose group with an unstable dominance hierarchy. The top ranked

individuals had better growth rates, almost exclusive access to females and

established nest sites. Nest sites were defended but had no clear boundaries that

provoked attack, thus, the social system is not simply territorial. Subordinates are

prevented from establishing territories by the aggressive actions of dominants.

Aggression is clearly a major component of this species' time budget and it is likely

that the different classes of aggressive interactions served different functions. Chases

and displays appear to serve to maintain dominance relationships, whereas scraps and

short fights may be reserved for challenging positions in the hierarchy. Escalated

fighting was coincident with the introduction of females and was a result of a dispute

over the top rank position, suggesting that it is reserved for situations where the pay-

offs of winning are particularly high. As the two top ranked fish also established

territories, the possibility that the escalated fight was a territorial dispute cannot be

ruled out. Thus, in relation to the laboratory experiments, I have a better idea of why

the fights were so escalated, even if I am no closer to resolving the issue of the role of

GSI in aggressive behaviour.
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CHAPTER 4

A STUDY OF MALE MORPHOLOGY IN RELATION TO FIGHTING AND

DOMINANCE

4.1 Introduction

4.1.1 Morphometries, trade-offs and alternative behavioural strategies

In Chapter 2. the importance of body weight and gonadal state were discussed In

relation to the outcome of staged tights. However, it is important to consider such

variables in relation to other body traits to appreciate the functional morphology of

the animal as a whole (Motta et al., 1995). There are important physiological trade-

offs within the individual between the allocation of resources to the demands of

growth. maintenance and reproduction (Stearns, 1993). Furthermore, when energetic

intake exceeds these demands, the surplus is usually stored as fat in various tissues

around the body for future use when energetic intake fails to meet metabolic demands

(Sheridan, 1994). These four end points of energy partitioning (growth, maintenance,

reproduction and storage) and their interrelations are closely coupled to the life-

historv of the animal and thus central to explaining behavioural variation.

The fact that in male T. zil!ii, gonadal state and to a lesser extent body size are

important in determining dominance presents an intriguing problem. Individuals are

most likely to win tights if they are both larger and have a greater GSI than their

opponent. but quite clearly there was a wide range of outcomes, from smaller fish
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with larger GSls winning to larger fish with smaller GSIs doing so. It has been shown

in other teleosts, (for example, bluehead wrasse, Warner, 1984), that there is a trade

off between growth rate and reproductive activity, which can lead to alternative life

history strategies. The bluehead wrasse is an extreme case in which some males are

small, invest heavily in gonad production and spawn in groups, while others are

larger. defend individual spawning territories and have much smaller testes (Warner

& Schulz, 1992). A less extreme case of alternative strategies is described for the

cichlid fish Haplochromis burtoni (Fernald & Hirata, 1977); some males are

territorial and have large gonads, whereas others have small gonads, live in loose

groups and await the opportunity to acquire a territory.

Distinct strategies of a similar nature to those shown by H. burtoni may also occur in

T. zillii, which might explain why fish with large gonads fight harder to defend their

territory Alternatively, if the social system is more complex than simply territorial

(as is suggested from the findings in Chapter 3), then different combinations of body

size and gonadal state may underlie a continuum of behavioural strategies in relation

to the social hierarchy as well as territoriality. In either case, it is of interest to explore

the relationships between variables such as gonad state, body size and body condition,

since these may suggest possible trade-offs which may be interpreted as either

consequences or causes of variation in behavioural strategies. Multivariate

morphometric analysis is an appropriate technique to use in such investigations.
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4.1.2 Morphometries, internal physiological dimensions and assessment during

.fiKhfillg

In a similar vein, but from a different perspective, morphometric analysis can be used

to identify different physiological' dimensions' within the animal. In addition to traits

such as weight and length that are clearly related to overall body size, there may be

external traits that relate to, and so give information on, nutritional condition,

maturity or stage of reproduction. For example, morphological traits have been used

to estimate gonad state/stage of reproductive cycle in an cyprinodontid fish (Garcia-

Berthou & Mereno-Amich, 1993) and fat condition in Atlantic salmon (Simpson et

al., 1992). When individuals fight over resources, asymmetries in such dimensions

are often important in the outcome of the fight (see Chapter I), so it is possible that

assessment strategies are directed at acquiring this sort of information. This is likely

to be the case in T zillii males, since gonadal state is so important in the outcome of

contests (see Chapter 2). Different assessment behaviours often involve emphasis on

specific parts of the body, for example, mouth wrestling in cichlids and opercular

flaring in Siamese fighting fish (Ma, 1995). Understanding how external morphology

relates to internal physiological dimensions may, therefore, shed light on whether

certain postures and stances maximise the transmission of such information and,

therefore, why certain behaviours are used during fighting and assessment.

4.1.3 Aims ofthe study

The two main aims of this chapter were, first, to investigate the relationships between

variation in several internal and external body traits and second, to see whether

internal physiological dimensions could be assessed from external morphometries.
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Principle component analysis (PCA) followed by multiple regression was used to

explore multivariate relationships among body dimensions.

4.2 Materials and methods

4.2. t Morphometries and internal organs

The data presented in this chapter were collected from the same fish that provided the

data for Chapter 2. From a total of 59 fish, a number of body measurements were

taken, using callipers, at the time that the fish were dissected and weighed. In total,

nine morphometries were taken; weight (to the nearest IIl0th gram), length, width at

widest point, depth at deepest point of body (see Fig 4.2.1 b), mouth width (see Fig

4.2.1a) and genital papilla length (all to the nearest millimetre). In addition, to the

removal of the testis, the liver and visceral fat surrounding the intestine were

dissected out (see Figure 4.2.2) and weighed to the nearest milligram.

Prior to analysis, the nine variables were log transformed to standardise measures and

normalise the data. The PCA with varimax normalised rotation was then performed

on the correlation matrix.

75



body
depth

Mouth_th

Figm-e 4.2.1 a and 4.2.1h. Diagram showing morphometries taken.

Figure 4.2.2 A male T zillii dissected to show internal organs (SB = swim bladder, L
= liver, K = kidney, T = testis, H = heart, S = stomach, I = intestine, SC = spinal;
cord). Also shown are blood vessels (CV = caudal vein, CA = caudal artery) and the
point from which blood was withdrawn (see Chapter 6).
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4.2.2 Multivariate statistical analysis

Principle component analysis (PCA) IS a data reduction technique that describes

major trends in a correlation matrix of the original data set (Manley, 1990). For

instance, variables that are highly correlated, such as body weight and length, can be

reduced to one component that measures overall size. The first principle component

(PC 1) to be extracted accounts for the greatest amount of variance in the data. The

second principle component (PC2) is uncorrelated to the first and accounts for the

greatest amount of variance remaining after the extraction of PC 1. Mathematically,

the new axes (components) are identified by eigenvectors of the correlation matrix

and the variance of the scores of the original variables accounted for by each

component is given by the eigenvalue of the matrix. Thus, the eigenvector associated

with the largest eigenvalue identifies the largest component, that is to say, PC 1. To

obtain a clearer discrimination between components, the axes can be rotated to

maximise the variances of the component loadings across variables for each

component, so that a variable will either load highly or not at all. In theory,

components will continue to be extracted until all the variance in the data has been

accounted for, so there will be as many components as there were original variables.

In practice, as the aim is to reduce the data, a criterion for assigning significance to

components is needed. There are no rules for this, although, it is suggested that

significance should only be assigned to components that have eigenvalues greater

than average, that is to say, if there are 10 original variables, a significant component

should account for more than 10 % of the variance. However, biological intuition is

justified in interpreting the significance of a component, as PCA is merely an

exploratory technique rather than a means of testing hypotheses.
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Multiple regression is a technique used to test specific hypotheses, in this case, those

relationships exposed by the PCA. Multiple regression enables predictive statements

to be made about n number of related variables.

4.3 Results

4.3.1 Correlcuions between £1// morphometries

The correlation matrix between all variables is shown in Table 4.3.1. The correlation

matrix gives a feel for the relative importance and direction of relationships in the

data set. The most obvious are the group of significant correlations between the

different measures of body size. However, less obvious but significant correlations

were found between the internal variables and external morphometries; for example,

mouth width was positively correlated with testes weight.

Table 4.3.1 Correlation matrix of morphometries (bold coefficients = P < 0.05)

variable wcil!ht length dcpth width mouth l!cnital liver tcstis fat

weight .96 .96 .89 .65 .27 .5 -.14 .3

length .96 .91 .83 .62 .25 .47 -.15 .28

depth .96 .91 .88 .69 .27 .5 -.09 .22

width .89 .83 .88 .76 .23 .46 -.05 .13

mnuth .65 .62 .69 .76 .37 .33 .38 -.23

:,!cnital .27 .25 .27 .23 .37 .35 .26 .04

liver .5 .47 .5 .46 .33 .35 .14 .51

testis -.14 -.15 -.09 -.05 .38 .26 .14 -.19

fat .30 .28 .22 .13 -.23 .04 .51 -.19
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4.3.2 Principle component analysis Oil all morphometries

Table 4 .3.2 shows the results of the PCA. Following Oliviera & Almada (1995), a cut

off eigenvalue of 0.6 was chosen for assigning significance to a component Four

principle components were extracted, which together accounted for 92 % of the

variance in the original data. Weight, length, depth, width, and to a lesser extent

mouth width loaded heavily and positively on PC I. Testis weight was the only

variable that loaded heavily and positively on PC 2. Both liver weight and fat weight

loaded heavily and positively on PC 3 . Only genital papilla length loaded heavily and

positively on PC 4, which accounted for only a relatively small percentage of the

variance. Thus, other than body size (PC 1), the analysis suggested at least two

internal physiological dimensions in the data; PC 2 was strongly associated with testes

weight and PC 3 was strongly associated with liver and fat weight. Interestingly, the

variable loadings for PC2 and PC3 are inversely related to each other, as can be seen

in Figure 4.3.1.
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Table 4.3.2 Principle component loadings (loadings> 0.6 are denoted in bold)

PC 1 2 3 4

Eigenvalue 4.76 1.62 1.26 .67

variance 52.92 % 17.96 % ]4.01 % 7.43 %

weight .947 -.102 .234 .107

length .920 -.118 .214 .101

depth .946 -.034 .182 .106

width .944 .048 .086 .052

mouth .790 .473 -.210 .199

genital .165 .149 .081 .969

liver .384 .261 .739 .224

testis -.09 .957 -.027 .129

fat .05 -.207 .923 -.031
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Figure 4.3.1 Plot of principle component loadings of PC 1 and PC 2.
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4.3.3 External morphometric predictors (?f internal variables and genital papilla

Multiple regression was used to test whether any of the external morphometries could

predict the independent physiological dimensions of interest identified by the PCA,

namely, the 'gonadal state' dimension (PC 2) and the 'liver and fat' dimension (PC

3). The way in which this was done was to regress the original external morphometric

variables either on the single original internal variables or on specified combinations

of the original variables suggested by the PCA

To see if it was possible to predict GSI, a step-wise multiple regression was

performed USIng all external variables as independents and GSI as the dependent

variable. The analysis revealed that mouth width and body length and width were

significant predictors of GSI that combined to explain 49 % of the variance (see

Table 4.3.3). The relationship between mouth width and body width and length were

in opposite directions; GSI increased with mouth width but decreased with body

length and width. Thus, small fish with large mouths are likely to have a large GSI.

As length and width are roughly equivalent to weight, I calculated an index of relative

mouth size as mouth width/body weight. This new index was a good predictor of GSI,

accounting for almost as much, in terms of per cent variation, as the three variables

originally used in the step-wise regression (see Table 4.3. I).

~l



Table 4.3.3 Results of step-wise multiple regressions of OSI, liver weight / body

weight (HSI), fat weight / body weight (FSI), fat weight + liver weight / body weight

(FHI) on external morphometric variables

GSI F (3,55) = 19.38, Adj. R 2 = 0.49, P < 0.001

Beta R2 change p
Body length - .59 .14 .003
Mouth width .90 .33 .000
Body width -.43 .03 .043

GSI F (1,57) = 50.9, Adj. R 2 = 0.46, P < 0.001

Beta 2R change p

Mouth/weight .69 .46 .000

HSI F (1,57) = 5.63, Adj. R2 = 0.07, P < 0.02

Beta 2R change p

Body length -.30 .07 .02

FSI F (3,55) = 16.69, Adj. R 2 = 0.48, P < 0.001

Beta 2R change p
Weight 1.27 .12 .06
Mouth width -.50 .28 .000
Body width -.67 .06 .01

FHI F (2.56) = 4.97, Adj. R 2 = 0.12, P < 0.01

Beta 2 PR change
Mouth width -.51 .06 .000
Weiuht .38 .08 .02~

genital papilla F (1.57) = 9.21, Adj. R 2 = 0.12, P < 0.01

Beta R 2 change P

Mouth width 0.37 0.14 0.004
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Separate step-wise regressions were performed for relative fat levels (fat weight/body

weight X 100) and relative liver weight (liver weight/body weight X 100) on all

external variables. This revealed that weight, mouth width and body width were

significant predictors of the relative fat levels that combined to explain 48 % of the

variance (see Table 4.3.3). The relationship between mouth width and body weight

and width were again in opposite directions, but in contrast to the GSI result, fat

decreased with mouth width and increased with weight. Only length was a significant

predictor of relative liver weight which only explained 7 % of the variance (see Table

4.33) As the PCA suggested that fat levels and liver weight are correlated, once size

is allowed for, I calculated a combination index for both fat and liver weight (fat

weight + liver weight / body weight) and performed a further step wise multiple

regression. Mouth width and body weight were significant predictors and again In

opposite directions (see Table 4.3.3).

Step-wise multiple regression revealed that only mouth width was a significant

predictor of genital papilla length (see Table 4.3.3). Genital papilla length increased

with mouth width.



4.4 Discussion

4.4.1 Relationships between internal hody traits

Once the variation in overall body size (PC I) had been accounted for, the PCA

identified some interesting relationships suggestive of internal physiological

dimensions. Principle component 2 was clearly accounting for variation in testis

weight, while PC 3 was accounting for variance that came from the size of the liver

and the amount of visceral fat. As testis weight is ubiquitously correlated with

reproduction, and both the liver and visceral fat are stores of energy in teleosts

(Shennan, 1994), it is intuitive that these represent a dimension of reproductive state

and nutritional/energy reserve state, respectively.

It is interesting that these two physiological dimensions appear to be negatively

correlated; fish with large gonads tend to have lower fat reserves and smaller livers.

One interpretation of this association is that there is a physiological trade-off between

the production of gonad and the maintenance of carbohydrate energy reserves. This

was not a reflection of differences between mature and immature fish (as is

sometimes found, for example in salrnonids, Rowe & Thorpe, 1990), because all the

fish used in this study were sexually mature and from one cohort (immature fish have

virtually no testes). Thus, the trade off would be between how much to invest in

gonad once the decision to mature has been taken. While there are many studies that

demonstrate a decline of energy reserves associated with egg production, (see review

by Wooton. 1990), there are only a handful of studies that have addressed the cost of

sperm production. Although individual sperm are tiny, there is increasing evidence



for teleosts suggesting that the volume of sperm required for successful fertilisation is

often limiting, especially if fertilisation is external and in an aquatic environment or if

sperm competition with other males is prevalent (Nakatsuru & Kramer, 1982; Shapiro

& Giraldeau, 1996). The energetic cost of sperm production has received some

attention: Diana & Mackay (1979) suggest that the energy reserves of the liver are

utilised during the development of testes in Northern pike. Similarly, Chellapa,

Huntingford & Strang have evidence to suggest that the development of testes in

sticklebacks imposes a significant drain on somatic energy reserves in male three

spine sticklebacks, prior to any behavioural consequences of maturation (pers

cornm.).

Alternatively, the negative association between large gonads and low energy reserves

may be a consequence of the behavioural changes associated with the development of

gonad, rather than the production of gonad per se. This could work in two ways;

either dominant fish have to expend extra energy asserting their dominance through

costly displays and fights, whereas subordinate individuals tend to avoid these

confrontations and store surplus energy as fat. The other explanation is that there are

costs of storing fat and that these depend upon the social status of the individual

(Witter & Cuthill, 1993). In European starlings, Witter & Swaddle (1996) have

demonstrated that dominant individuals can afford not to store fat as they are likely

always to secure enough food, whereas subordinates cannot afford not to store fat as

their food supply is unpredictable and they need fat reserves as insurance against

failing to meet intake demands.
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Unfortunately, the present study was unable to establish whether this negative

association between gonad weight and energy reserves is a direct consequence of the

production of sperm or whether it results from the consequences adopting 'large

gonad' behavioural strategies. However, between the cost of producing a large

volume of sperm and the possible consequences for energy partitioning in relation to

social dominance, there is likely to be an explanation for the finding that male T zillii

with large gonads have low energy reserves.

4.4.2 jlredicfillR internal traitsfrom external morphometries

Body weight and mouth width consistently predicted both the gonadal dimension and

the energy reserve dimension. GSI increased with mouth width but decreased with

body weight; individuals with a large mouth relative to their body size are likely to

have a large GSI. The converse was true for relative fat and liver weight, which

decreased with mouth width and increased with body weight. Oliveira & Almada

( 1995) demonstrated that mouth morphology was sexually dimorphic in the tilapia,

Oreochromis mossambicus. Thus, it is likely that mouth morphology in T. zillii is also

a secondary sexual characteristic.

That it was possible to predict GSI is interesting in relation to the findings reported in

Chapter 2. On the basis of difference in body size and GSI, it was possible to

accurately predict the outcome of a fight. Given that the ratio of mouth width to body

weight is an accurate predictor of GSI and that mouth width also predicts body

weight the fish can in theory use their mouths to assess the two variables that will

enable them to make a decision about their chances of winning the fight. It cannot be



a coincidence that the majority of behavioural interactions during fighting in this

species involve the mouth. Jaw morphology is likely to undergo changes concurrently

with gonadal maturation, however, what remains a puzzle is how this finding can be

reconciled with the suggestion in Chapter 2 that GSI varies cyclically, increasing as

the fish get closer to spawning. It may be that mouth morphology changes with GSI

in a similar way that the jaw and head morphology of male Atlantic and Pacific

salmon changes rapidly as the fish get closer to spawning (Tchernavin, 1938). If this

was the case then mouth morphology should regress (as it does in salmon) during

non-reproductive periods (when the GSI is small). Clearly, the present study could

not resolve this issue; however, it should be possible to do so if a means of non-

destructively measuring GSI could be found. Ultrasound has been used by fish

biologists to measure gonad weight (Mattson, 1991) and may be a good means of

doing this.

4.4.3 Conclusion

This study has shown that variation in GSI and body size have consequences for the

physiology of the animal in relation to energy partitioning. The causal and functional

reasons for the relationship between body reserves, gonadal state and dominance

could not be demonstrated in the present work, but the information provided by this

study has set the stage for further work that could experimentally tease apart these

effects. In addition, this study demonstrates that the morphology of the mouth in

combination with body size can be used to predict GSI. This suggests that it is a male

secondary sexual characteristic and thus, may explain why so much of the fighting

behaviour of this species involves the mouth.
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CHAPTERS

PROXIMATE COSTS OF ESCALATED FIGHTING: ENERGY

METABOLISM AND INJURIES

5.1 Introduction

5.1.1 Proximate causes ofstrategic decision-making

In Chapter 2, the fighting strategies of male T. zillii were discussed within the frame-

work of game theory. Game theory approaches to animal aggression examine the

functional significance of different patterns of fighting through an analysis of their

consequences for the reproductive success of the individual (Maynard Smith, 1982).

The positive consequences, or 'benefits' of fighting, include gaining access to or

defending limited resources, and the negative consequences, or 'costs' of fighting,

may include the increased risk of predation and the time and energy expended

(Huntingford & Turner, 1987). Whatever behaviour this approach identifies as

optimal must be realised by a proximate mechanism that ensures the appropriate

behavioural option is executed in any given set of circumstances. These behavioural

mechanisms are little understood and are the focus of this chapter.

An important concept in this chapter is the behavioural decision rule and the idea of

causal factors (McFarland & Houston, 1981). As was discussed in Chapter 1, causal

factors are variables resulting from the animal's perception of the external

environment and variables relevant to the animal's internal environment. These



combine to form a motivational state variable, which provides the animal with

information relevant for making functional decisions. Decision rules are specific

responses to a given level of a motivational state variable. Elwood & Neil (1992)

extended this approach to the context of fighting where the immediate cost associated

with fighting is the relevant motivational state variable for making decisions on

whether the contestant should continue, escalate or flee from the fight. Here I build

upon Elwood & Neil's ideas in an attempt to uncover the mechanisms underlying the

making of strategic decisions during fighting in T. zillii.

The causal factors underlying the proximate cost of fighting may be defined as all

those variables that have detrimental consequences for the individual. Perhaps the

most obvious causal factor of the cost of fighting is physical injury; however, there

have been few attempts to quantify its effects. In addition to injury, further adverse

consequences associated with fighting relate to energy metabolism. It has been shown

in fish (Alvarenga & Volpato, 1995; Metcalfe et al., 1995) and reptiles (Wilson et al.,

1990) that variation in aggressive behaviour and social rank of individuals are related

to metabolic rate. More specifically, there is evidence that the metabolic

consequences of fighting, such as energy depletion and the accumulation of

metabolites such as lactate, represent a significant cost to the animal concerned

(Haller, 1995). Clearly, the role of energy metabolism is an important component in

the control mechanisms of animal aggression.

As described in Chapter 2, fights between male T. zillii in this study were often

extraordinarily long and fierce and injuries occurred as a result of biting, most often



in the form of scale loss. Scales take time to regenerate and if the numbers lost are

great, the damaged skin can become infected with fungus (personal observation).

Escalated fighting appears to be energetically costly, and in the longer fights the fish

are often observed to pause and hyperventilate for periods during and after fighting.

For these reasons, therefore, T. zillii was thought to be a good species to investigate

the role of physical damage and energy metabolism in the choice of behaviour during

fighting.

5.1.2 ( 'arbohydrate metabolism and the muscle system of fish

Fish, in general, are well suited to studies of energy metabolism because of their

relatively simple muscular system. The mytomal musculature consists of two

functionally and anatomically distinct muscle types (Bone, et al., 1995). The red

muscle system, or the m. lateralis superficialis, is a superficial layer of muscle

comprising an estimated ten per cent of the myotomal block in T. zillii. It is found

beneath the skin and particularly along the flanks beneath the lateral line. It is aerobic

and used for low intensity, sustainable swimming. The white muscle system, or 111

lateralis profundus, comprises the bulk of the mytomal block. It is anaerobic and used

for high intensity activities such as burst swimming. Escalated fighting is likely to

involve predominately the white muscle system.

Muscle glycogen reserves are the primary source of catabolisable carbohydrate for

immediate activity requirements. The other main store of glycogen is the liver but

there is contlicting evidence as to whether these reserves can be mobilised fast

enough to meet immediate activity requirements (Haller, 1991). Use of the white



muscle system results in anaerobic glycolysis and the production of lactate ions and

protons (Johnstone & Goldspink, 1973). Although anaerobic glycolysis can fuel rapid

and powerful responses, it is not sustainable because muscle glycogen reserves are

rapidly depleted and it can take hours to convert lactate back into glycogen (Gleeson,

1996) In addition, anaerobic respiration is associated with a decrease in blood pH

that disrupts fluid and electrolyte balance (Wood, 1991). Thus, anaerobic activity

quickly depletes energy reserves and is associated with considerable detrimental

effects on the physiological state of the animal. For these reasons, lactate is likely to

be a good index of metabolic cost where activity is anaerobic and has been used by

physiological ecologists to estimate the energetic consequences of behaviours such as

territorial defence in lizards (Pough & Andrews, 1985).

5.1.3 Aims ofexperiment

The aim of the experiment was to investigate the possible proximate costs of fighting

in male T. zillii, with reference to physical injury and metabolic changes. I measured

three metabolic parameters: the concentrations of total sugars and lactate in the white

muscle, and the concentration of total sugars in the liver. Injury was scored as the

number of scales lost by the end of the fight. These variables are related to the

behavioural content, duration and outcome of the fight.
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5.2 Materials and Methods

5.2.1 S{(fXil1gjixhlS and sampling procedure

Fights were staged as described in Chapter 2, but immediately after dominance was

established, the fish were electro-stunned with 180 volts of AC current for 10 seconds

delivered from a specially constructed electro-anaesthetiser (L. Ross, University of

Stirling, pers. cornm.). Control fish were treated indentically but stunned as soon as

the partition was raised (before they had time to fight). The electro-anaesthetiser

rapidly immobilises the fish and induces anaesthesia within 5 - 10 seconds. The

anaesthetised fish were then immersed in liquid nitrogen (-196°C). This is a very fast

means of killing fish and one that rapidly arrests metabolic responses. The fish were

then stored at - 70°C. The fish were then partially thawed and samples of white and

red muscle were removed from an area below the dorsal fin along the lateral line.

The liver was also removed and then all samples were stored at -70°C until the

experiment was complete at which point they were freeze dried for 24 hours.

5.2.2 (jlfamW:iIlK behaviour and injury

The criteria for defining the duration of escalated fighting, the outcome of the fight

and the weight difference and behavioural measures are as described in Chapter 2. T

zillii has large scales and it is relatively easy to score the number of scales lost as a

result of being bitten. For analysis I used the following as a measure of relative scale

loss; number of scales lost by the loser - number lost by the winner. To this value was

added 10 (to make all numbers positive).



5.2.3 Biochemical analyses

All reagents were supplied by the Sigma chemical company (Poole, Dorset). Tissue

samples were prepared for analysis using the perchloric acid (PCA) extraction method

(Gade et al., 1978). This involved adding 150 mg of powdered sample to 500 III of

chilled 0.3M PCA in an eppendorf. This was then mixed thoroughly with an

ultrasonic cell disrupter. Following centrifuging for 10 minutes at 13,000 rpm, the

supernatent was decanted off and stored on ice. A further 500 III of PCA was added to

the pellet, ultrasonicated again and centrifuged as before. The resultant supernatent

was added to the volume obtained previously. This was then neutralised by adding

2M potassium bicarbonate. Again the solution was centrifuged as before and the

supernatent decanted. This was then the working sample which was stored at - 20 QC

until used.

L-lactate concentrations were determined by an enzymatic assay based on Gutmann &

Wahlefeld (1974). The lactate is oxidised to pyruvate in a reaction catalysed by lactic

dehydrogenase .. This involved adding the 50 III of the sample solution to 1000 III of

glycine-hydrazine buffer, 50 ~L1of 40mM NAD + and 5 ul lactic dehydrogenase. The

mixture was vortexed and incubated in a water bath at 37°C for 2 hours. The

concentration of pyruvate was determined spectrophotometerically at 340 nm and

calibrated using L-lactate standards.

Total hexose and pentose sugars were determined by the anthrone method of Carrol et

al. (1956). This involves acid hydrolysis of glycosidic bonds to yield glucosyl units;

this is dehydrated to furfural, which in turn, reacts with anthrone. The concentration



of glycosyl units was determined spectrophotometerically at 620 nm and calibrated by

USIng D-glucose standards. All samples were processed simultaneously for each

assay. White muscle lactate and total hexose and pentose sugars concentrations were

determined for all pairs of fish and 16 control fish, but total hexose and pentose

concentrations for the liver were only be determined for 18 fought pairs and 10

controls. Due to difficulties of removing the thin layer of red muscle from the white

muscle, red muscle lactate and total hexose and pentose sugars concentrations were

only determined for 11 fought pairs and six controls. Metabolite concentrations of

muscle were expressed in umoles g' Idry tissue.

5.3 Results

5.3.1 Biting and scale loss in relation to weight asymmetry .. fight duration and

outcome.

From Chapter 2 I already knew that in terms of the total number of bites inflicted,

winners and losers did not differ significantly and that there was a negative

correlation between the proportion of bites inflicted by the winner and the difference

in weight. In terms of injuries, losers lost significantly more scales by the end of the

fight (median number of scales lost were 4 and 7 , for winners and losers, respectively

-Wilcoxons signed ranks matched pairs: z = 2.06, P = 0.03, n = 23 ). There was also

a negative trend between difference in scale loss and the difference the difference in

body size (see Figure 1, R, = - 0.37, n = 23, P = 0.08) suggesting that smaller winners

inflict the greatest injury. Thus it appears that winners were more effective at

inflicting damage on their opponent, especially if when smaller than their opponent.



5.3.2 Metabolic cOllsequences: glucos« depletion

Inspection of Table 5.3.1 shows that control fish had significantly higher

concentrations of white muscle total sugars than either winners or losers (t - test: t = -

2.81, d.f. = 33, P < 0.01 and t = -3.49, d.f. = 32, P < 0.01, respectively for winners

and losers) Thus, participation in a fight does deplete white muscle energy reserves,

although winners and losers did not differ significantly in this respect (paired t - test: t

= -I 15, n = 28, P = 0.26). There was a significant negative correlation between the

concentration of total sugars in the white muscle and the duration of escalated

fighting for winners, but this trend was not significant for losers (see Figure 5.3.1).

Table 5.3.1 Tissue metabolites in WInners, losers and unfought controls. All

metabolites are expressed as the mean (± standard error) in urn per g -I of dry tissue.

Tissue Metabolite Winners Losers Controls

sugars ·u~± 1.76 (n = 29) 3.9~ ± 1.98 (n = 29) 5.5 ± 1.72 (n = 16)

white muscle

lactate 2U6 ± 6.12 (n = 29) 23.I~ ± 6.23 (n = 29) 17.96 ± 6.2~ (n = 16)

sugars 6.15 ± 0.47 (n = II) 7.X4 ± (l.X5 (n = 10) 12.01 ± 1.93 (n = 6)

red muscle

lactate 19.53 ± 1.61 (n = II) 20.57 ±IA5 (n = 10) 14.86 ± 1.85 (n = 6)

liver sugars H.1J6 ± II.~ I (n = 18) 27.8 ± 11.43 (n = IX) 37.~7 ± X.94 (n = 10)
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Figure 5.3.1 Concentration of glucoside units in the white muscle (expressed as urn
per gram of dry tissue) as a function of time spent in escalated fighting. Winners are
represented as unfilled circles (correlation = - 0.43, P < 0.05 - dashed line), losers as
filled circles (correlation = - 0.26, P > 0.05 - solid line). Unresolved fights are
represented as crosses (one that never escalated i.e had zero time, and one where both
contestants gave up).
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Table 5.3.1 shows that for the red muscle, total sugars concentrations were

approximately twice those found in the white muscle (paired Hest: t = 8.56, n = 2), P

<: 0.00 I) Control fish had higher concentrations of total sugars in the red muscle than

either winners or losers (t - test: t = - 3.82 ,d.f= 15, P < 0.01; t = - 2.26, d.f= 14, P

< 0.05, respectively for winners and losers). Although winners tended to have lower

total sugars concentrations than losers, this difference was not significant (paired t -

test: t = -1.14. n = 10, P = 0.06). Thus, the red muscle was affected in a similar way to

the white muscle, though absolute concentrations of total sugars were higher in the

first place

For the liver, Table 5.3.1 shows that controls had significantly higher concentrations

of total sugars than losers (t-test: t = - 2.31, d.f. = 26, P < 0.05) but not winners (t -

test: t = - 0.6, d.f. = 26, P = 0.55). There was a trend for winners to have higher

concentrations than losers, but this was not significant (paired t - test: t = 1.78, n = 18,

P = 0.09). No correlations were detected between liver total sugars and the duration of

escalated fighting in winners (r = -.06, P > 0.05) or losers (r = 0.22, P> .05).

Thus it appears that during escalated fighting glycogen and sugar reserves are

depleted from the muscle equally for both contestants but liver reserves are only

depleted to a significant extent in losers.



5.3.3 Metabolic conseqllences: L-Iac/ate accumulation

For the white muscle Table 5.3.1 shows that control fish had significantly lower

concentrations of lactate than winners and losers (t - test between winners and

controls: t = -2.42, d.f. = 43, P < 0.05 and between losers and controls: t = 4.16, d.f. =

43, P < 0.00 I) and that losers had significantly higher concentrations of lactate than

winners (paired t - test: t = -3.06, n = 29, P < 0.01). Lactate levels increased

significantly with fight duration for both winners and losers (see Figure 5.3.2).
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Figure 5.3.2 Concentration of lactate in the white muscle (expressed as 11mof lactate
per gram of dry tissue) as a function of time spent in escalated fighting. Winners are
represented as unfilled circles (correlation = 0.38, P < 0.05 - dashed line), losers as
filled circles (correlation = 0.38, P < 0.05 - solid line). Unresolved fights are
represented as crosses (one that never escalated i.e had zero time, and one where both
contestants gave up).
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A similar pattern was found in the red muscle (Table 5.3.1), with controls having

significantly lower lactate concentrations than losers (t - test: t = - 2.46, P < 0.05) but

not winners (t - test: t = - 1.8, P = 0.09). Winners and losers did not differ

significantly (paired t-test: t = -2.14, n = 10, P = 0.06) and there were no correlations

between the concentration of lactate in the red muscle and the duration of escalated

fighting. Furthermore, there was no significant difference between the lactate

concentrations in the white and red muscle (paired t - test: t = - 19, n = 20, P = 0.8).

5.4 Discussion

5.4.1 Proximate costs of fighting

The present study is consistent with the idea that fighting incurs significant metabolic

costs (Haller, 1995), as well as physical injury and that these costs increase with fight

duration and can differ between winners and losers. Such costs need to be quantified

in order to test the hypothesis that strategic decisions are based on estimation of these

proximate levels.

5.4.2 Injuries duringfighting in relation to winning and losing

It is difficult to measure the cost of external injury directly, because there are many

aspects of skin damage; for example, inflammation, infection, ionoregulatory

disruption and localised cell death. However, measuring scale loss at the end of a

tight may give a crude idea. In addition, measuring the number of bites inflicted may

give an idea of aggression or 'intent' to injure. Biting and scale loss were evident in



all fights. but most severe in those fights won by the smaller contestant. Winners

appeared to be able to bite more effectively in terms of removing scales, especially if

they were smaller. This suggests that winners are inflicting greater costs on their

opponents than they are receiving themselves and that smaller winners inflict the

greatest relative cost.

5.4.3 J );tlerellces between the red lind while muscle system

In general, the effects of fighting on the metabolic state of the white muscle system

were greater than for the red muscle. In the red muscle, there was a lower

accumulation of lactate and the concentrations of sugars was absolutely higher. This

is not surprising given that the red muscle is well supplied with blood for aerobic

respiration. These results are congruent with the idea that the white muscle system is

utilised during intensive activity and the red muscle during sustainable swimming

(Goldspink & Johnstone, 1973). For this reason, further discussion is based upon the

results of the white muscle analysis.

5.4.4 The effect otescalatedfighting on metabolic parameters

Significant metabolic consequences of escalated fighting occurred in the white muscle

and may be attributed to the anaerobic respiration of the glycogen and sugar reserves.

The total sugar concentrations in fought fish were approximately two thirds of those

of control fish, suggesting that fighting does deplete local energy reserves. However,

there was a surprising amount of scatter in the data which may reflect considerable

variation in glycogen and sugar reserves prior to fighting. The glycogen reserves of

the liver were depleted as a result of fighting (although only significantly in losers)
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and there was a trend for controls to have higher reserves than losers. Similarly,

Chellapa & Huntingford (1989) found that in territorial fights between male three

spine sticklebacks (Gas/eros/ells aculeatusi losers had lower liver glycogen than

winners. However, there is some disagreement about whether the liver provides short

term energetic support for muscles in fish, as it does in mammals (Haller, 1991). It is

possible that liver glycogen is mobilised as a stress response (see review by Pickering,

1980), rather than in the energetic support of muscles used for fighting, which may

explain the lower levels sometimes found in losers.

As fighting appears to result in the depletion of muscle glycogen, it is not surprising

that lactate concentrations were significantly lower in the control fish than in fought

fish. Furthermore, the concentration of lactate increased significantly with the time

spent engaged in fighting. What is not clear, however, is whether the magnitude of

the difference in concentration of muscle lactate between control fish and that of

fought fish, while significant was not great and it may be questioned as to whether

this is a biologically meaningful finding. No data are available for effects of

exhaustive exercise on muscle biochemistry in T zillii. However, data from other

species suggest that the concentrations of lactate we observed are typical of fish

subjected to vigorous exercise. The mean amount of white muscle lactate for fought

fish in my study (22 urn g -1) which was slightly lower than measurements (27.02 urn

g -1) made on Rainbow trout immediately after being chased for 5 minutes (Milligan

& Girard, 1993). However, the lactate data for T zillii control fish was much higher

(17.69 urn g -1) than resting rainbow trout (5.07 urn g -1) used in the Milligan &

Girard's study. Thus, I tentatively suggest that in terms of its consequences for
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accumulation of lactate in white muscle tissue, fighting is equivalent to VIgOroUS

activity. That fighting in T zillii is energetically costly but not totally exhausting is

consistent with what has been found in wide variety of animals; crabs (Thorpe et al.,

1995), lizards (Wilson et al., 1990) and damselflies (Marden & Rollins, 1994).

5.4.5 Differences he/ween winners and losers

The only significant biochemical differences we detected between winners and losers

were in the concentration of lactate in the white muscle, with concentrations tending

to be higher in losers. Extensive anaerobic respiration is associated with a decrease in

intracellular and blood pH (Wood, 1991). This is a significant problem for fish

because this disrupts acid-base balance, causing problems with osmotic, ionic and

fluid volume homeostases. As the process of recycling lactate back to glycogen is

slow, lactate production effectively represents an end for the capacity for immediate

energy production. It follows that losers are in a worse energetic state than winners

and may suffer a more severe internal acidosis. Thus, fighting is metabolically costly

for both parties, but especially so for losers.

While the anaerobic metabolism of glycogen reserves is a significant component of

the energetic consequences of fighting and exercise, it is worth bearing in mind that

there are also other components of exercise-induced energy metabolism that have

important physiological consequences, such as the depletion of creatine phosphate,

ATP, amino acids and lipids (Haller, 1991; Wood, 1991). These may well playa role

in strategic decision-making.
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5.4.6 Proximate costs as cues for strategic decision-making

A central idea in the functional analysis of decision-making is the 'decision-rule',

which dictates the behavioural options that an optimally designed individual should

take in any given set of circumstances (McFarland & Houston, 1981). The decision-

rules in fighting can be thought of as a response to a given level of relative cost. Overt

behavioural changes, such as escalating to a specific level or giving-up the fight, are

made when the level of relative cost reaches the threshold level needed to express the

appropriate behaviour.

Do the data from the present study support such a picture of the causal basis of

decision-making? Losers did tend to incur higher costs than winners, both in terms of

physical injuries and adverse metabolic consequences. What is especially interesting

is that large losers tended to be the most severely affected by biting and consequent

scale loss. Thus, it does seem likely that high costs relative to your opponent are

associated with the decision to give up. It is possible that losers use their estimate of

high relative cost level to make the decision that they would eventually lose the fight

and thus would do better by giving up sooner rather than later.

How information is obtained regarding relative costs is a matter for speculation. It is

possible that the fish can monitor the number of scales they bite off their opponent

and the number of bites they have inflicted. Alternatively, there is an intriguing

possibility that the fish may be able to assess relative metabolic states. In Chapter 2,

the only differences that were detected between winners and losers were in a

behaviour termed 'mouth locking', in which the contestants clamp shut their mouths
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on one another's lips. They stay in this embrace until one of them suddenly shakes

itself free. The mouth lock is likely to restrict ventilation of the gills and thus may

impair oxygen uptake. Throughout the fight the fish are accumulating an oxygen debt

as a consequence of anaerobic metabolism. Thus, it may be that the fish with the

greater oxygen debt is forced to break the lock sooner and, thereby, gives away

information on its level of accumulated physiological cost. Marden & Rollins (1994)

came to a similar conclusion about territorial fighting in damselflies, where victory

can be predicted by relative fat reserves. It appears that the damselflies can assess

relative fat reserves through complex and lengthy flight displays.

A further problem concerns the manner in which individual fish integrate and

combine different causal factors (injury, lactate accumulation, depleted sugars and

any other adverse consequences) to obtain an estimate of overall relative cost. A

possible candidate for the physiological basis of such a mechanism is the

catecholamine hormone system that includes the 'fight or flight' hormone adrenaline.

There is evidence in teleosts suggesting that sub-optimal metabolic states such as

decreased blood pH, increased CO2 blood tension and increased lactate levels result in

the release of catecholamines (Aota et al. 1991; Randall & Perry 1992). In addition,

physiological responses to injury, such as inflammation, and psychological effects can

stimulate catecholamine release (Brown 1994). I have some preliminary data (see

Appendix I) that suggests, surprisingly, that winners have very much higher plasma

levels of the catecholamine hormone, adrenaline, than losers. The situation is clearly

complex and would likely require analysis at the neural level. However, the



relationship of the catecholamines with behaviour and fighting In animals may be

promising avenue for future research.

5.4.7 Conclusion

The data from this study regarding the infliction of injury and consequences of

anaerobic energy metabolism suggest that fighting is costly for both winners and

losers, but that this is especially marked for losers. Thus, it seems possible that losers

are basing their decisions to give up on such costs, although the exact mechanism by

which this is achieved is still unclear.
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CHAPTER6

SEX STEROID HORMONES IN T. ZILLII AND THEIR ASSOCIATIONS

WITH GONADAL STATE, AGGRESSION AND SOCIAL DOMINANCE

6.1 Introduction

6.1.1 The endocrine system and behaviour

The nervous system, the endocrine system and the immune system are the body's

main communication systems. All three respond to the internal state of the body and

the external environment and integrate this information. The brain is the predominant

processor of this information and enables the animal to respond physiologically and/or

behaviourally to a wide range of environmental circumstances. Although there is a

blurring between the mechanisms of action of the endocrine system and the nervous

system, one can broadly define a hormone as a molecule secreted by specialised cells

(endocrine glands) into the blood where it is transported to distant cells that have

specific receptors for that hormone (Brown, 1994). Hormone release occurs when the

endocrine cell is activated by neural or hormonal stimulation. The interaction of the

hormone with the target cell receptor is complex but ultimately leads to an activation

of genes that regulate protein synthesis in the cell. The overall effect of the hormone is

to alter cellular function in such a way that the cell has an modified sensitivity to a

particular stimulus that causes a physiological and/or behavioural change. Behavioural

endocrinology is the study of the bi-directional interaction between hormones and

behaviour (Nelson, 1995).
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6.1.2 Sex steroids and reproductive behaviour

Steroids are hormones that are synthesised in the adrenal glands and the gonads. There

is a chain of hormonal events that lead to the release of sex steroids (see Handelsman,

1995, for review). At the top of the chain are the gonadotropic releasing hormones,

which are produced in the hypothalamus in response to external and internal sensory

stimulation. The gonadotropic releasing hormones activate the production of the

gonadotropins in the pituitary, which in turn activate the production of the sex steroids

in the testis or ovary. This mechanism of action is termed the hypothalmus-pituitary-

gonadal axis. There are three types of sex steroid, the C21 steroids or progestogens, the

CI9 steroids or androgens and the CI!<steroids or estrogens (see Figure 6.1.1). The

progestogens are the precursors of all other steroids, but have also been implicated in

having specific behavioural effects themselves. The androgens have many different

roles in the stimulation of male physiology and in the maintenance of the male

phenotype and are produced in the interstitial cells of the testis. The estrogens have

many different roles in the generation and maintenance of female characteristics and

physiology. They are produced mainly in the ovaries by an enzymatic conversion of

androgens (a process called aromatisation).

During evolution, the sex steroids involved in the physiological control of gamete

maturation have been co-opted to synchronise the social behaviours that ensure there

is successful transferring of mature gametes to the opposite sex. Intraspecific

aggression IS a major component of reproductive behaviour and there is much

evidence in mammals and birds to suggest that aggression is mediated by sex steroids

(Schlinger & Callard, 1990). Many studies have demonstrated an association between
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increased plasma concentrations of testosterone and the appearance of territorial

behaviour and increased aggression, for example, in lizards (Greenberg & Crews,

1990), birds (Wingfield et al., 1987) and rodents (Gaines et al., 1985). As more

information has become available, the subtleties and complexities of androgen action

have been teased apart and our understanding of the association between androgens

and male aggression has become more refined. It is now realised that androgens have

adverse side effects such as reduced immunocompetance and parasite resistance

(Saino 1'1 0/, 1995) Thus, it is necessary to analyse the functional consequences of

androgen levels in relation to these costs. Wingfield et al. 's, (1990) Challenge

Hypothesis proposed that androgens levels are regulated in relation to aggressive

challenges and thus are only high when necessary. This may explain why there is a

correlation with aggression only during periods of repeated interactions between males

and why there is a surge of plasma androgens that occurs during and after a fight

(Wingfield & Wada, 1990)

6.1.3 Sex steroid,' in teleost fish

While the basic hypothalamus-pituitary-gonadal mechanism is similar in teleosts and

other vertebrates, the gonadal steroids and their functions differ considerably. In

addition to testosterone (T), the teleost testis produces an II-oxygenated steroid, 11-

ketotestosterone (II kT). In species studied to date, II kT is predominant to, and has

greater androgenic potency than T, suggesting that it is the major androgen in male

teleosts (Borg, 1994). Other androgens produced by the testis include 11p-

hydroxyandrostenedione, II-ketoandrostenedione and 5a-dihydrotestosterone,
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although they are all less effective than I IkT or T in stimulating male sexual

characters (Borg et al., 1993). The estrogen, 17~-estradiol (E2) is also a major teleost

sex steroid, although in species studied to date (for example, Arctic charr, Salvelinus

alpinnsi, the evidence suggests a functional role in the control of female maturation

and reproduction (Mayer et al., 1992). Not much is known about the role of E2 in

males, although in black porgy iAcanthopagrus .w.:hleKeli) it has been shown to

suppress testicular development and stimulate sex reversal (Chang et al., 1995). A

further sex steroid specific to teleosts is the progestogen, 17a,20~-Dihydroxy-4-

pregnen-3-one (17,20-P) that has been shown to have an important role in the final

stages of testicular maturation (see review by Kime, 1993) and has been implicated in

the control of spawning behaviour of salmonids (Mayer et al., 1994). The

relationships between some of these steroids is shown in Figure 6.1. I. In nearly all

teleosts studied to date there is close association between these steroids and the

expression of reproductive behaviour (see reviews by Borg & Mayer 1995; Pankhurst,

1995).

6.1.4 Sex steroid,', aggression and social dominance in teleosts

The evidence for a relationship between androgens and male aggressive behaviour in

teleosts is less clear than it is for mammals and birds. In a tilapia (Oreochromis

mossambicuss, Oliveira et al. (1996) found that in social groups, the dominant

territorial males had significantly higher urine androgen levels than did subordinates.

Perhaps the best evidence for such an association comes from an elegant field study by

Cardwell & Liley (1991), who found that dominant, territorial Stoplight parrotfish

(Sparisoma viridaev had higher levels of plasma T and 11kT than subordinate males
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and that these high levels were a consequence of repeated aggressive interactions. On

the other hand, for two salmonid species, rainbow trout iUncorhyncns mykissv (Liley

& Kroon, 1995) and kokanee salmon tOncorrhyncns nerkai (Liley et al., 1993) no

significant differences in plasma androgen levels were found between dominants and

subordinates.

6.1.5 Aims ofthe present study

In Chapter 2 it was shown that In pair-wise fights, GSI is a better predictor of

dominance than is body size. While the functional reasons for this finding have yet to

be demonstrated, it seems likely that GSI is related in some way to maturation,

proximity to spawning and hence aggression (see section 2.4.3 in Chapter 2). T, II kT

and 17,20-P have all been implicated in the physiological regulation of testis

maturation (Borg, 1994) and as such are the likely candidate components in the

mechanistic link between gonadal state and behavioural output. In an attempt to

understand the mechanism by which GSI is influencing behaviour, the present study

was undertaken to look at plasma concentrations of these gonadal steroids in relation

to GSI and success in pair-wise fights.

6.1.6 Technique for measuring steroid,'

The most commonly used technique for measunng steroids is radioimmunoassay

(RIA) The logic behind the RIA is the principle of competitive binding between an

antibody and an antigen (Barnard et al., 1995; Nelson, 1995). Antibodies can be

specifically raised to bind only to the steroid of interest. The binding affinity of the

antibody is not affected if the steroid is labelled with a measurable radioactive isotope.
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This means that in a solution composed of radiolabelled steroid and unlabelled steroid,

there wi II be competition for the binding sites of the antibody. This will equilibrate at

concentrations that are proportional to the original amounts of each present In

solution. Thus, by measuring how much radiolabelled steroid remains unbound In

solution, it is possible to work out the amount of unlabelled steroid. The technique is

very sensitive and can be used to measure picogram (10-12 gram) quantities of

hormone.

6.2 Materials & Methods

6.2.1 Fish and staging of fights

The fights staged in this experiment form a sub-set of the sample of fights reported in

Chapter 2; thus the methodology is identical with the exception of blood sampling.

This study generated individual blood samples from twenty four staged fights and ten

unfought control fish. Blood was also obtained from additional control fish for the

purposed of validating the RIA for T zillii (see section 6.2.4). In addition, for interest

and comparison, five female fish were also sampled.

6.2.2 Blood sampling and plasma extraction

Following the establishment of dominance and subsequent electro-stunning, the fish

were placed in strong bezocaine (200 mg per litre) for 60 seconds to ensure long term

anaesthesia and a blood sample withdrawn from the caudal aorta (refer back to Figure

43) using a 1 ml syringe with a 25 gauge needle primed with anti-coagulant heparin

sodium solution (supplier: leN chemicals). It was usually possible to obtain between
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200 and 500 ul of blood which was immediately centrifuged for 6 minutes at 13,000

rpm. The plasma was then decanted and stored at -70°C. Following blood sampling

the fish were killed by immersion in liquid nitrogen. All sample preparations and

RIAs were performed in the laboratory of Drs Bertil Borg and Ian Mayer, Department

of Zoology, University of Stockholm (with financial support provided by the NERC).

During the period of storage, the samples were accidentally thawed for a period of

approximately 18 hours, however, it was demonstrated that this had no detectable

effects on steroid concentrations - see Appendix 2.

6.2.2 Preparation ofplasma samples and reagents

Prior to RIA, individual plasma samples (200-300 ul) were mixed with distilled water

containing NaN~ in the ratio of I :2, and heat-treated for I hour at 80°C. Following

centrifuging (30 minutes at 13,000 rpm) the supernatant was decanted and the sample

stored at 3°e prior to assaying. Radiolabelled (radioactive tritium - 3H) T and E2 were

supplied by Amersham, International, UK Tritiated IlkT and 17,20P were

synthesised by Dr I. Mayer, University of Stockholm. Pure T and E2 were supplied by

Sigma Chemicals and pure llkT and 17,20P were synthesised by Dr L Mayer.

Antiserum for all steroids was raised by Dr. R. Schulz at the University of Leiden,

Netherlands.

6.2.4 I'alidalioll ofradioimmunoassay of steroids in T. zillii plasma

Ideally, the antibody should only react with the steroid under study, but in practice it

is often the case that many substances may compete with the labelled steroid for

binding. This 'cross-reactivity' is particularly a problem with steroids that have an
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similar molecular structure as the steroid under study. The cross reactivities of the

RIA's used had been previously determined for T, IlkT and E2 (Schulz, 1985), and

17,20P (Mayer et al., 1990a). However, when working on a new species, there is

always a risk that the antibody reacts differently in the plasma of the new species. The

RIAs were validated for use with T zillii by taking a sample of untreated plasma and

removing all steroids and proteins by adding an excess of a chilled dextran-coated

charcoal (DCC - see section 6.2.5 below). 1000 ul of the stripped plasma was then

'spiked' with known concentrations (l0 ng) of T, IlkT, E2 and 17,20P. The spiked

sample was then treated as in section 6.2.3 and the RIAs run for each steroid

according to section 6.2.5 (below). Provided the RIA accords with the known amount

of steroid in the spiked sample, the RIA can be assumed to be accurate.

6.2.5 Radioimmunoassay of plasma steroids

The original procedures for these RIA's are published in Schulz (1985) (T, llkT and

E2) and Mayer et al. (1990a) (17,20P). The following reagents used in the preparation

of standards are the same for samples; 1 I of stock RIA buffer was made up which

comprised the following reagents;

NaH2P04 + H20 - 3.87g

Na2HP04 + 2H20 - 10.67g

NaCI

- 0.05g

- 9.00g

- 1.00g

NaN3

Gelatine
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The gelatine was dissolved in 200 rnl hot distilled water. The other reagents were

dissolved in 700 ml distilled water, added to the gelatine solution and the pH adjusted

to 7.0.

Activated dextran coated charcoal was prepared by mixing 10 parts charcoal to 1 part

dextran in J 00 rnl of RIA buffer. The mixture was stirred for 1 h on ice prior to use.

The stock solutions of steroids were stored in ethanol in the concentration lOOng/SO

ul The stock solutions of radiolabelled steroids were stored in ethanol and prior to

RIA were diluted in RIA buffer to give a reading of approximately 30,000

disintigrations per minute/50 ul (see below). The stock solution of antiserum was

diluted I: 10 with RIA buffer and then further diluted (in RIA buffer) according to the

optimal 50 % binding affinity for the particular RIA (1:7 for T, 1:70 for 11kT, 1:7 for

E2 and 1:35 for 17,20P).

A set of standard curves were constructed with which to obtain calibrations for the

spiked validation sample and the real samples. A set of standards were prepared from

the stock solution of pure steroids. The stock solution was diluted with RIA buffer to

2000 pg/50~l1. The other standards (1000, 500,250, 125, 62.5, 31.25, 15.625 and

7.8125 pg per 50 ul) were prepared by I + I dilution with RIA buffer. For standard

curve assays, duplicate lOX 75 mm borosilicate vials contained 50 ul standard. To

these was added 50 ul of radiolabelled steroid, 50 ul RIA buffer and 200 ~Liantiserum.

The total volume in each vial was always equal to 3s0~ll. The procedure for assaying
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samples is identical with the exception that the volume of sample added should be

varied according to the absolute concentration of steroid in the sample. This is because

the standard curve is sigmoid and most accurate in the linear section where the

percentage bound is between approximately 25 - 75. For T and II kT 50 III was

optimal. whereas for E2 and 17,20P I00 ul was needed (in which case no RIA buffer

was added). In addition to the standards and/or samples, the following controls were

run simultaneously and in duplicate;

Total bound 50 ul 3 H steroid, 100 III RIA buffer + 200 III antiserum

Non specific bound: 50 III 3 H steroid + 300 III RIA buffer

Total radioactivity count: 50 ul 3 H steroid (no charcoal treatment)

The vials were then vortexed to mix the contents and incubated over night at 4"C. The

following day, 300 ~tl chilled Dee was added to each vial and incubated for 5

minutes to remove all unbound steroids. The vials were then centrifuged at 4°e at 400

rpm to remove the charcoal (and unbound steroids). The supernatent (containing the

bound steroid) was then decanted into scintillation vials containing 4 ml of

scintillation fluid (Optiphase "HrSafe" II, LKB Wallac, Finland). These were then

vortexed and the disintigrations per minute counted for 5 min. in a liquid scintillation

beta-counter (1214 Rackbeta, LKB Wallac, Finland) connected to a computer. For

each RIA all samples were processed together. Final concentrations were calculated as

the mean of the two duplicate samples and expressed as nanograms of steroid per ml

of plasma.
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6.3 Technical results

6.3.1 / 'alidation of radioimmunoassaysfor T. zillii.

All steroid RIAs indicated accurate measurement (+- 1.5 ng per ml plasma) of the

concentration of steroids in T zillii plasma (values for the validation tests for T, II kT,

E2 and 17.20P are presented in Table 6.3.1 The sensitivity of all RIAs was OA ng

steroid per ml plasma.

Table 6.3.1 Mean values for spiked samples (ng steroid per ml plasma)

RIA T llkT 17,20P

Mean concentration of
steroid measured in spiked
sample

9.6 ng IIA8 ng 9.35 ng 10.4 ng
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6.4 Biological results

6.4.1 (is! and body weight ill relation (0 outcome offight»

Just to reiterate, the fights from which the blood samples were collected are a sub-set

of the fights reported in Chapter 2. Within this subset GSI was still a significant

predictor of winning, whereas body weight was not.

6.4.2 I)lasma concentrat ions oftestosterone

Table 6.3.2 shows the mean concentrations of plasma T in winners, losers and

controls Two pairs of fish were excluded from the analysis because the T

concentrations of the losers were below the limit of detection (0.4 ng per ml) and both

fish had extraordinarily low GSls. A paired Hest showed that there were no

significant differences between winners and losers (t = - 0.53, n = 21, P = 0.6).

Control fish were not significantly different from either winners (t-test: t = 0.44, d.f =

31, P = 0.66) or losers (Hest: t = 0.47, d.f = 29, P = 0.64). Figure 6.4.1 shows plasma

T concentrations are not significantly correlated with GSI (r = - 0.18, n = 56, P =

0.63). There were no significant correlations between plasma T concentrations of

either winners or losers and the duration of time spent in escalated fighting (r = - 0.3,

n = 23, P > 0.05 and r = - O. 15, n = 21, P > 0.05, for winners and losers respectively).
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Table 6.3.2 Mean C± standard error) of plasma concentrations of steroids in male

winners, losers and controls, and females. ND = not accurately detectable.

Steroid T llkT E2 17,20P

Winners (n = 21) 4.56 (± 0.64) 10.77 C±1.72) ND ND

Losers (n = 21) 4.55 (±0.63) 11.94 (± l.24) ND ND

Controls (n = 11) 4.51 (± 0.56) 12.07 (± 2.92) ND ND

Females (n = 5) 23.64 (±4.51) 2.45 (±O.64) 6.43 (±2.16) ND
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Figure 6.4.1 Concentration of plasma T plotted against GSI (filled circles represent
those fish excluded from the analysis)
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6.4.3 Concentrations of plasma J JkT

The same two pairs of fish were excluded from the T data set were also excluded from

this analysis because 11kT concentrations were below the limits of detection. Table

6.3.2 shows mean concentrations of plasma 11kT in winners, losers and controls.

Plasma 1I kT concentrations were on average twice those of T. A paired t-test showed

that there were no significant differences between winners and losers in plasma I 1kT

concentrations (- 0.71, n = 21, P = 0.48). Control fish were not significantly different

from either winners (Hest: t = - 0.39, n = 31, P = 0.7) or losers (t-test: t = - 0.03, n =

29, P = 0.97). There were no significant correlations between plasma 11kT

concentrations of either winners or losers and the duration of time spent in escalated

fighting (r = - 0.1, n = 23, P > 0.05 and r = - O. 18, n = 21, P > 0.05, for winners and

losers respectively). Figure 6.4.4 illustrates a significant negative correlation between

11 kT concentrations and GSI ( r = - 0.34, n = 56, P < 0.05). There was a significant

positive correlation between 11 kT and T concentrations (r = 0.56, P < 0.01, n = 56).
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Figure 6.4.2 Concentration of plasma 11kT plotted against GSI (filled circles = those
fish excluded from the analysis).
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6.4.4 Concentrations of plasma 1-,2() P

The maximum concentration of plasma 17,20-P detected was 1.18 ng per ml and

many of the samples were below the limits of detection of the RIA. Thus, the data set

cannot be treated as reliable. Since there was no reason to suspect a technical problem,

it may be concluded that concentrations of 17,20P are very low in male T. zillii in this

study.

6.4.5 ( 'onccntrations ofplasma E2

The RIA for E2 was only carried out on six fought pairs and 3 controls, because E2 is a

female sex steroid and the concentrations were expected to be low. The maximum

concentration of plasma was 0.57 ng per ml. Thus, as with 17,20 P it is only possible

to conclude that E2 concentrations are very low in males.

6.4.6 Concentrations of plasma T, 11kT, 17,20P and E2il1females

Five female fish were blood sampled and assayed with the male samples for

comparison and general interest. The mean concentrations of T, 11kT and E2 are

shown in Table 6.3.2 (concentrations of 17,20P were below the detection limits of the

RIA) Plasma T was approximately 5 times that of males, II kT half that of males and

plasma E2 6 times that of males.
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6.5 Discussion

6.5.1 Sex steroid,' ill male T. zillii

While the gonadal endocrinology of female T. zillii has been studied (K. Coward & C

Randall, University of Stirling, pers. cornm.), there appears to be no data on the

gonadal steroids and their relative quantities in males. The validation procedure for the

use of the RIAs with T. zillii were successful and T, II kT, 17,20P and E2 were all

detected in plasma of males However, only T and II kT concentrations were present

in quantities sufficient to be measured reliably. Plasma concentrations of I IkT were

approximately twice as high as T concentrations in T zillii males, which is in

agreement with what has been found in most other teleosts studied (Borg, 1994).

These data support the general view that that 11kT is the major androgen in mature

male teleosts. The absolute plasma concentrations detected were in agreement with

what is found in other species, for example, Mayer et al., (1990b) measured plasma

II kT and T in wild male sticklebacks and found IlkT to vary from approximately 2 -

3 ng during the non breeding season up to. 20 - 30 ng per ml during breeding and T to

remain constantly around 2-3 ng per ml throughout the season.

6.5.2 SL'Xsteroid,' as a possible mechanism linking relative GS/lo victory

As with Chapter 2, GSI was still a very reliable predictor of the outcome the fights

staged in this study. This suggested that GSI influences how valuable the territory is to

the fish. In functional terms GSI may reflect proximity to and capacity for

reproduction, in that, a fish with a high GSI would have a greater vested interest in

maintaining a territory. Fish with high GSls are assumed to have a greater motivation
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In fighting, that is to say, are more aggressive. In other teleosts, for example three

spined sticklebacks iGasterosteus aculeatusv; androgen changes associated with

reproductive cycles are associated with territorial and aggressive behaviour (see

review by Borg & Mayer, 1995). That androgens are causal to increased aggression is

supported by a castration experiment on a cichlid (Haplochromis burtoniv, castrated

males had drastically reduced plasma concentrations of T and I IkT and reduced

aggression but oddly, not social dominance (Francis et al., 1992). Furthermore, the

Challenge Hypothesis, that is to say, the idea that the experience of aggressive

interactions has a positive feedback effect on androgen secretion, has been supported

by both a laboratory study of cichlid fish (Oliveira, et al., 1996) and a field study of

parrot fish (Cardwell & Liley, 1991). It should, however, be noted that at least two

studies, both on salrnonids, have failed to detect an association between androgen

levels and social dominance (Liley et al., 1993 and Liley & Kroon, 1995)

Thus, the evidence is good for androgen-mediated aggression for teleosts other than

salmon ids and for these reasons, it was thought that a similar mechanism may underlie

the persistence in fighting (and high probability of winning) observed in T zillii

males with high relative GSIs. The sex steroids T, IIkT and 17,20P have all been

implicated in the maturation of the testis (Borg, 1994) and are likely candidates as

components in the mechanism linking gonadal state to behavioural output.

6.5.3 Sex steroids ill re/a/ion /0 oil/come and duration of fights

The results of this study do not support the view that plasma concentrations of T or

II kT are associated with dominance or with particularly aggressive and persistent
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fighting strategies. The observation that unfought control fish had similar levels of T

to fought fish and the fact that there were no correlations between T and I IkT and the

duration of fighting did not suggest that fighting results in surges of T, as has been

reported for birds (Wingfield & Wada, 1989) and as was inferred by Cardwell & Liley

( 1991) for Stoplight parrotfish. Overall, there was no evidence in T. zillii that the

gonadal steroids playa simple role in mediating short-term behavioural responses.

It is possible that absolute concentrations of androgens are less important than relative

changes in androgen concentration. To identify such an effect, it would have been

necessary to take blood samples prior to staging the fight and this has problems of its

own, such that the sampling process itself causes stress. One way of overcoming the

stress problem would be to take urine sample, as was done by Oliveira et at. (1996).

However as neither the relationship between urinary concentrations of steroids and

plasma nor the time course of changes in plasma to changes in urine is known, this

approach also has problems, Ideally, one would have to some kind of micro-

cannulation of an artery of the fish, from which samples could be withdrawn by

remote control.

6.5.4 Relationships he/ween the sex steroid,' and gonadal state

To date, the function of Tin teleosts is not clear. In fact, whether it can be regarded an

androgen in the sense that it 'generates the male phenotype' is debatable as in many

teleosts (see Borg, 1994 for review) females have much higher plasma T

concentrations than males. This was certainly the case in T zillii, even though female

sample sizes were small. T is clearly produced by the testis in T zillii. as was
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indicated by the non-detectable concentrations found in the two fish with

extraordinarily small G'Sls, but no clear relationship was found between

concentrations of plasma T and GSI.

The fact that I I kT was also undetectable in the two fish that had the very low GSls

suggests that this too is a testicular product. More importantly, the negative correlation

found between GSI and II kT concentrations is interesting with regard to what is

already known about the endocrinology of sperm production in other teleosts. In the

Atlantic salmon (Salmo solar), plasma II kT levels peak during the early stages of

spermatogenesis and then decline during later stages of sperm maturation (Mayer et

al., 1(90). Sikkel (1993) similarly reported a decline in levels of plasma 11kT of the

Garibaldi iHypsopops rebicundus) as males get closer to spawning. If 11kT has a role

in the early stimulation of spermatogenesis and if a high OSI is indicative of a large

reserve of mature sperm, then one would expect I IkT concentrations to be

correspondingly low in fish with high OSIs. There can be little benefit in producing

more sperm than is necessary, thus spermatogenesis can be relaxed and the sperm

reserve maintained until such time that a ripe female is present.

The final maturation and subsequent release of sperm (spermiation) can then be

initiated. 17,20-P has been implicated in this process in rainbow trout (Olsen & Liley,

1993). Olsen & Liley's findings suggest that there are pheromones in the female urine

that stimulate the production of 17,20-P which in turn initiates spermiation. Plasma

levels of 17.20-P were very low or undetectable in all males. In light of these recent

findings, the observed low levels of this hormone in males may be due to the fact that
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they had had no stimulatory exposure to ripe females. However, the possibility that the

gonads of T. ztllii produce a further maturation-inducing steroid other than 17,20-P

cannot be excluded.

The question still remains as to the nature of the mechanism that links GSI with

winning. It is possible that II kT has an slight inhibitory effect on aggression, but it is

more likely that if aggression behaviour is mediated by sex steroids, then it is by

steroids other than those measured in this study. Alternatively, the problem is perhaps

best framed as GSI being a consequence, rather than a cause of dominance, and that

the environmental circumstances and social experiences leading to a large GSI have

led to the development of a neuronal organisation that predisposes these males to fight

vigorously and Win contests. There is some good evidence that social dominance

regulates GSI via gonadotropic-releasing hormone containing neurones In the

hypothalamus of the cichlid, H. burtoni (Francis et al., )993).

6.5.5 ( 'O/lCIIlSiol1S

It seems likely that the role of the androgen hormones measured in this experiment is

in the physiological regulation of testicular maturation and spermatogenesis. There

was no evidence that these androgens playa direct role in the mediation of aggressive

responses in the short term. The possibility that subtle effects may have been masked

because pre-fight concentrations of steroids were not measured cannot be ruled out.

However, given that the fish endocrine system differs radically from the mammalian

system, it is perhaps timely to reassess the putative role of androgens in aggression in

fish
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CHAPTER 7

GENERAL DISCUSSION

7.1 Synopsis of ai ms, approach and questions

The overall aim of this project was to examine the functional significance and

proximate causation of fighting in Tilapia zillii. To this end, I planned experiments

with three objectives in mind:

I) To examine the behavioural ecology of fighting and to test the broad predictions of

game theory regarding fight outcome, duration and intensity.

2) To obtain detailed behavioural records of fighting in order to examine behavioural

organisation and the means by which fights are resolved.

3) To investigate physiological aspects of fighting.

Once these had been accomplished, the remaining challenge was to try to show how

functional and causal analyses of behaviour are mutually beneficial for understanding

animal behaviour as a whole. In this chapter I review the main results and conclusions

of the previous chapters. I then offer my personal opinion on how I think the different

levels and approaches taken in the study interrelate and why I think this integration

between disciplines is so important to the study of animal behaviour. If, by the end of

this chapter. it can be seen that causal approaches can improve our functional

understanding of animal behaviour and vice versa, then my goal has been attained.
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'.
Tinbergen (1972) summed up this perspective when, upon describing the persuit of

ethology, he wrote "One finds oneself turning all the time from asking 'what is its

use')' to 'how is it done T",

7.2 What are male T. zlllii fighting over?

While this question is probably the most fundamental of all, it is the one that I can

answer with least certainty. This is mainly because so little information is available on

T. zillii in the wild. At the start of the project, it was clear that males showed fairly

typical territorial behaviour in the laboratory aquaria; they dug nests and would

aggressively confront and fight any intruding males. However, in the flume study

reported in Chapter 3, it transpired that the social system of 7: zillii was more

complicated than simply territorial. The fish were much more socially interactive,

forming loose groups and establishing a dominance hierarchy. The expression of

territorial behaviour appeared to be conditional on social status, as only the two top

ranked males were seen to dig nests and consistently court females. The escalated

fight observed in the flume study was between the two highest ranked fish, but as

hath had bui It nests, it was not clear whether this was a territorial dispute, a challenge

for the top position, or a dispute over both. Thus, it appears that the immediate

reasons for fighting between male T zillii depends upon the social and physical

environment. However, whatever the environment-specific reasons for aggression, be

it over social position or territory ownership, it probably ultimately boils down to the

same thing, namely, mating opportunities. Obviously, a field study of the social

organisation of T. zillii is needed to properly understand the behavioural ecology of

aggression in this species.
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7.3 Functional insights into fighting in male T. zillii

Chapter 1 showed that, as far as the outcome of tights goes, there were two important

variables, namely difference in GSI and difference in body size (RHP) Difference in

GSI had a much stronger effect than did difference body size, at least in pairs that

differed in weight by no more than approximately 30 %. Although this finding was

initially unexpected, game theory could account for it, if, as seems likely, GSI

actually reflects resource value (RV). Assuming this to be the case and that there is

simultaneous variation in RHP and RV, then predicting duration and intensity of

fights becomes much more complicated. Enquist & Leimer's (1987) Sequential

Assessment model IS sufficiently sophisticated to handle RHP and RV

simultaneously. However, in this model decisions are depicted as being made on the

basis of the accuracy of the estimate of relative RHP which is clearly inappropriate

for the present study, in which fish 30 % smaller than their opponent are able to

secure victory (see Chapter 2 for further expansion of this argument). It was certainly

the case that no simple relationships existed between either GSI or body size

difference and fight duration, although upon more detailed analysis some subtle and

complex patterns did start to emerge

Analysis of the mouth wrestling phase showed that the fish were assessing body size.

This suggested that information on relative body size is important in making strategic

decisions, but at a gross behavioural level its effect is masked by the effect of GSI

asymmetry. The two main behaviours in the highly escalated carouselling phase were

biting (and consequent nose-to-tail chasing) and mouth locking. It appeared that

smaller fish respond to information about relative RHP by biting more, the greater
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their size disadvantage. This was most marked if the smaller fish went on to win the

tight. This suggests that when a smaller fish chooses to continue a fight, it

compensates for its disadvantage by increasing its intent to inflict cost. The

magnitude of this biting response does not, however, appear to be related to GSI

difference

The functional significance of mouth locking is harder to pm down. Breaking the

mouth lock was not related to asymmetry in body size or GSI, but losers consistently

broke more mouth locks than winners, suggesting that breaking the mouth lock is

related to the likelihood of giving up. This behaviour is clearly related to resolving

the fight, but just how it relates to the determinants of fight outcome still remains

obscure. It seems asymmetries in body size and GSI, in combination, influence

behaviour in such complex ways that it is very difficult to work out the individual

contribution of each variable. If one had a large enough pool of fish, one could

experimentally tease these effects apart by carefully matching pairs for size and also

GSI (which could be done using the morphometric predictors presented in Chapter 4).

7.4 What are the behavioural mechanisms underlying decision-making during

fighting?

The behavioural mechanisms that underlie the effect of asymmetries in body size and

GSI are likely to have important differences but also share important characteristics.

An asymmetry in body size probably exerts its effects by conferring an immediate

advantage or disadvantage in terms of the ability to inflict and withstand cost. Thus,

contestants may use information on relative body size as a mechanism to weigh up



their strategic options. On the other hand, an asymmetry such as GSI probably exerts

its effects by intluencing the threshold level of cost that each contestant is prepared to

pay to retain its resource (rather than conferring any immediate (dis)advantage in

terms of the ability to inflict cost). Thus, contestants may use information on current

cost levels in relation to cost thresholds set by GSI to weigh up their strategic options.

While the mechanistic bases of the effects of RHP and RV may be different, both

must be part of one overall decision-making mechanism as both operate in relation to

the same variable, namely the proximate cost of fighting. As RHP affects the rate at

which costs accrue and RV affects the amount of cost that will be tolerated before

giving up, a contestant should ideally decide to give up when its estimate of its

current level of cost relative to that of its opponent means that it will reach its

threshold level of cost before its opponent does. Thus, it must be able to estimate its

own current level of cost, its own threshold cost and the same two variables for its

opponent. In other words, a very complicated assessment mechanism must be in

operation.

What evidence is there that such mechanisms underlie behavioural decisions in the

fights investigated in this study? As mentioned earlier, and contrary to what is

normally found, smaller fish adjust their biting upward in relation to body size

difference. Therefore, it does seem likely that information on body size asymmetry

underlies the level of risk that individuals adopt in a particular fight. In relation to

mouth locking, it may be also be the case that engaging in the activity is itself costly,

but there are at least two other possible roles for mouth locking; on the one hand it
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may provide information on the current cost that each fish has incurred; this would be

the case if. for instance, the mouth lock impairs oxygen uptake from the gills and

forces the opponent with the greater oxygen to break sooner. Alternatively, mouth

locking could give away information on the eventual costs that each contestant is

prepared to pay; this would be the case if, for instance, the degree of persistence in

anyone bout of mouth locking is proportional to how motivated the individual is to

retain its resource. In sum, it appears that the mechanisms underlying tight resolution

may be of two kinds. Firstly, there is the infliction of cost realised by behaviours such

as biting and chasing; this depends upon relative RHP. Secondly, there may also be

assessment of the relative levels of cost that have been inflicted, realised by mouth

locking; this depends on RV.

7.5 What are the physiological bases of decision-making mechanisms?

If the above idea of a 'two component' mechanism of strategic decision-making is

correct, then we should expect to find two corresponding physiological components

of the mechanism. On the one hand, we should see a set of physiological parameters

tracking the proximate cost of fighting. On the other we should also see a

physiological basis for the differential activation of strategic decisions based on the

setting of threshold levels of cost.

Possible physiological bases for the proximate level of cost were revealed in Chapter

5. As discussed there, there are significant detrimental consequences of anaerobic

energy metabolism associated with fighting, such as internal acidosis, oxygen debt

and energy depletion. Furthermore, the data suggested that winners and losers
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differed with respect to at least some of these, for example in terms of the

accumulation of lactate. In addition, the infliction of injuries also represents a

proximate cost of fighting, although the physiological basis of injury is a much more

complicated issue. Nevertheless, the biochemical analyses did suggest that differential

accruement of costs during fighting has a physiological basis, which may be used by

the contestants as cues for making strategic decisions.

In terms of the physiological basis for the variation in the threshold-setting rules of

decision-making, it seemed logical to look for some association with GSI. The

gonadal steroids were the obvious candidates, because of the various physiological

roles they play in gonad maturation and because of their association with aggression

In many animal species. Such a mechanism would have been supported if, for

example, it could have been demonstrated GSI was positively correlated with levels

of circulating androgens. One could then hypothesise that androgens act as a cue to

the setting of the threshold level of cost that should be incurred before giving up the

tight. However, this idea was not supported by the finding presented in Chapter 6

which suggested that plasma concentrations of two main androgens in this species

were not related to variation in persistence and aggression in fighting. Thus, if there is

such a mechanism linking GSI to tight outcome, its physiological basis remains

obscure.

7.6 Physiology, behaviour and evolution

In the research presented in this thesis, it has been necessary to cross back and forth

between physiology, behavioural organisation and functional outcome to eventually

1:n



make some sense of what was a complicated and unusual example of animal

behaviour. A level of analysis that was particularly fruitful was the detailed study of

behavioural interaction. Not only did this illuminate the functional significance of

body size and GSI, but it was also the starting point for the development of many of

the ideas for the physiological studies. This shows the importance of the behavioural

level of analysis. Without the insights gained from this aspect of the analysis, the gap

hetween physiology and functional endpoint might well have been too big to bridge.

With it, however, the three levels of analysis (functional, behavioural and

physiological) relate and mutually reinforce one another in an illuminating way.

7.7 Conclusion: bridges and levels

At the start of this Chapter I quoted Tinbergen because he so often stressed the

cause/function duality of the nature of ethological investigation. Few would disagree

with this perspective. However, no matter how philosophically satisfying this

perspective is, practically and intellectually, bridging levels of study is very difficult.

Thus, some may question whether, given that causal and functional studies work well

on their own, the benefits of building the bridge justifies the effort needed to do so.

My opinion is that levels and bridges are one and the same; that is to say, the causal

level is one end of a bridge and the functional level the other. Thus, convergence

between disciplines is an inevitable consequence of the advancement of the science

and should be welcomed rather than shied away from.
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APPENDIX 1

A PRELIMINARY INVESTIGATION OF THE CATECHOLAMINE

HORMONES, ADRENALINE AND NORADRENALINE IN THE PLASMA OF

T. ZILLII IN RELATION TO FIGHTING.

Introduction

The catecholamine hormone system is known to be an important component of the

physiological stress response of animals (Randall & Perry, 1992) and has been

reported to be activated in aggressive contexts (Haller, 1995). As discussed in Chapter

5, the catecholamines may playa role in the integration of qualitatively different costs

associated with fighting. Thus, this preliminary study was undertaken to establish if

two catecholamines, adrenaline and noradrenaline could be measured in the plasma of

t: zillii.

Materials & methods

Two fights were staged between male T zillii (as in Chapter 2). After the fight had

been resolved the fish were blood sampled and plasma extracted (as in Chapter 6).

One pair of control fish (as in Chapter 2) were also blood sampled. The samples were

then processed. by Dr O. Watson at Strathclyde University to determine

concentrations of the catecholamine hormones adrenaline and noradrenaline. This was

done by gas-chromatography mass-spectrometry.

Results

The results of the analysis are presented in Table a 1.1 below. Winners had plasma

adrenaline levels approximately 100 times that of losers and approximately 2-3 times

higher than controls. Winners also had higher plasma noradrenaline levels than losers,

although this result is much less striking than for adrenaline.

I·n



Table Cl 1.1 Concentration of the catecholamines adrenaline and noradrenaline in the

plasma of winners, losers and control T zillii (ND = non-detectable)

Sample winner/loser Adrenaline (ng per ml) Noradrenaline (ng per ml)

Fight I winner 128.78 2.65

loser 2.34 NO
Fight 2 wmner 346.4 13.94

loser 2.08 NO
Control A 37.01 1.58

B 52.12 0.57

Conclusions

Clearly, one cannot draw much from such a small sample size, but the differences

between winners, and controls is so marked that it seems likely that fighting is having

a major effect upon the release of these hormones. What is particularly striking is that

losers had such low levels of adrenaline compared with winners and (to a lesser

extent) controls. It is difficult to even speculate what this actually means in terms of

physiology and function but at the very least it suggests something important and

interesting is happening and that this should be investigated further.



APPENDIX 2

AN EXPERIMENT TO DETERMINE IF THERE IS SIGNIFICANT

BREAKDOWN OF PLASMA SEX STEROIDS AS A CONSEQUENCE OF

THAWING AT ROOM TEMPERATURE.

Introduction

During the work reponed in Chapter 6 there was an accidental thawing of the deep-

frozen plasma for a period of between 12 and 18 hours. I thought that there may have

been some biological breakdown of steroids and that this could give spurious results.

Thus, I planned an experiment that would show whether this was the case or not. This

involved obtaining plasma from three replicate fish and assigning the plasma from

each fish to one of three treatments: controls (continuous deep frozen at - 70°C) and

experimentals (thawed and left at room temperature (20°C) for 12 or 24 hours).

Materials and methods

Three large ( > ISOg) male T zillii were anaesthetised with benzocaine and

approximately Iml of blood was withdrawn (see Chapter 6). Following plasma

extraction (see Chapter 6), each sample was divided into three eppendorfs which were

either permanently frozen, frozen and then allowed to thaw for 12 hours and frozen

and allowed to thaw for 24 hours. Following treatment the samples were all frozen at

- 70°C until RIA (see Chapter 6).

Results

The samples were assayed for testosterone (T) and II-ketotestosterone (llkT). Table

a2. I shows that there were no detectable differences between the treatments for either

steroid.



Table a2.1 Concentrations (ng per ml plasma) of T and llkT in frozen and thawed

samples

Sample (fish) 1 2 3

time 0 12 24 0 12 24 0 12 24

T 7.2 7.24 6.64 3.83 4.31 3.63 5.93 6.29 6.47

IlkT 36.2 35.1 35.8 10.55 11.31 9.78 14.95 15.14 16.52

Conclusion

This study strongly suggests that the accidental thawing of the plasma samples In

Chapter 6 would not have caused any significant breakdown of the steroids measured.
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APPENDIX 3

A THEORETICAL STUDY OF FIGHT RESOLUTION

A3.1 Theoretical modelling in biology

Modelling is a way of formally expressing ideas about how the world works (Brown

& Rothery, 1993) Different people see the role of mathematical modelling in biology

differently. Some biologists, who are able to think and communicate very clearly in

words, can test their ideas without having to invoke any mathematics. However, for

others mathematical modelling can be a way of clarifying ideas in order that they can

be tested scientifically. In this chapter I aim to show how mathematical modelling

firstly clarified and then allowed me to test an idea that I had about how fights

between the fish were resolved. That the model's predictions were not supported by

empirical data allowed me to reject the idea, thereby progressing my understanding of

the mechanisms by which fights are resolved.

A3.2 Natural selection and modelling optimality of behavioural adaptations

As Darwin (1859) and the many who have followed him argue, adaptation IS a

pervasive feature of organisms, although not the only force that has shaped life on

Earth. Therefore, studying adaptation is one way of understanding life on Earth. The

concept of adaptation by natural selection rests upon the premise that individuals

maximise their reproductive success (or ultimate fitness). This axiom lends itself well

to mathematical analysis of the biological traits in question. A trait is assumed to have

both costs and benefits in terms of ultimate fitness (usually equated with lifetime
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reproduction) and that natural selection will act to minimise costs, maximise benefits

or obtain the best compromise between the two. This approach to the analysis of

adaptation has been termed 'optimality' theory (Parker & Maynard Smith, 1990). As

was shown in Chapter 2, much effort has been put into the modelling of fighting in

animals. Game theory is a special class of optimality models that takes into account

frequency dependent effects.

In the fights that were reported in Chapter 2, none of the published game theory

models of fighting could fully account for the observations. It was, therefore, a

priority to try and explain the observations. What follows is an account of how initial

ideas were gradually formalised and expressed mathematically as a model in an

attempt to account for the observed data.

A3.3 Characterising the problem of how fights are resolved

In Chapter 2 three main conclusions were reached about fighting in T zillii. First, the

relative GSI and body size of a pair of fish could be used to predict the outcome of

the fight. Second, body size is assessed during the mouth wrestling phase, but is

evidently not the means by which the fight is resolved. Third, resolution is attained

during the carouselling phase, where the fish chase, bite and engage in mouth locking.

The fact that the fish were prepared to escalate to a dangerous level of fighting even

when they were size disadvantaged suggested that the resolution of the fight must be

related to how much cost each individual is prepared to pay to retain its territory.

Furthermore, as it seemed that relative GSI caused the fish to fight longer, so it was
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suggested that the cost an individual was prepared to pay to retain its territory was

positively correlated to its GSI.

I was interested in examining how GSI affects behaviour during fights. There are two

possible scenarios assuming that the fight is resolved during the carouselling phase;

firstly, difference in GSI is assessed during the carouselling phase, much as

differences in body size are assessed (c.f Enquist & Liemer, 1983), and the fight is

resolved when one fish estimates its GSI to be less than that of its opponent.

Secondly, it may be impossible to assess this asymmetry (because GSI is not directly

observable), so the carouselling phase is a 'War of Attrition' (c.f Hammerstien &

Parker, 1982: Maynard Smith, 1982) in which the fish fight as hard as they can,

inflict as much cost as they can, and persist until one of them reaches its threshold

level of cost that it is prepared to pay. As fish with larger GSI have a higher threshold

they are more likely to win. This second possibility is the simpler of the two and the

one that I and Prof. Marc Mangel, University of California at Santa Cruz,

endeavoured to model. As a basis for modelling, what happens during a fight was

represented as a flow diagram with a series of decision points (see Figure 7.3.1).
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Mouth wrestle:
Assess relative RHP

GSI high enough to
warrant costs of
extra fighting?

RHP less than
opponent's?

yes no Opponent still
fighting?

no no

War of attrition:
continue until

cost x (GSI dependent)
is reached

Does opponent
give up before cost x I-------a~

is reached?

yes

no

Figure A3.3.1 Flow diagram representation of how fights may be resolved by a GSI-

dependent persistence rule
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A3,4 Formalising ideas and constructing the model

As we have no way of measuring the overall cost of fighting (see Chapter 5), we

needed some measurable correlate of this function. For this we chose the duration of

fighting because, whatever the exact nature of these costs, they must be an increasing

function of the length of the fight (for example, in Chapter 5 it was shown that lactate

production was positively correlated to fight duration). Our aim was to develop a

model that would make predictions regarding tight outcome and the duration of the

carouselling phase on the basis of asymmetries in body size and GSI. Thus, we

proposed that each fish has good information on its size asymmetry (obtained from

mouth wrestling) and that on the basis of this it can estimate the further time it will

take it to win the tight (represented as n. T takes into account difference in body size

by assuming that a tish larger than its opponent should expect to win the fight sooner

due to its advantage. Mathematically, this is handled as follows (where t is simply the

actual time since the process begins): for a pair offish (i and)) that are equal in body

size I~ (f) = T, (1) which we represent as To (i.j). Then for each increment in

asymmetry in body weight there is a proportional increase the elevation between T;(I)- -

and 1/1) (see solid lines in Figure 7.4.1 where fish i is larger than fish)). Thus

T, (I) = I;) (i.j) + k(H; - BJ - ,

where

I;) (i.i) = constant (the time it takes to win when fish have equal body weights)

(8i - Hi) = difference in body size

k = constant

, = time elapsed
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Next, we consider that each fish has a maximum time for which it is prepared to fight

for and after which it gives up because of physiological costs. Mathematically, this

time-dependent physiological state variable, is represented as P (see dashed line in

Figure 7.4.1) P is necessarily steeper than 7: that is to say, it must 'run' faster than

real time. This is handled by multiplying I by the term a (E) that is defined as being

greater than I, (although how much greater than 1 depends on body size). P also takes

into account GSI, the effect of which is defined as being additive. Effectively this

means that, a fish with a GSI above (or below) the average for the population will

have an increased (or decreased) P. P is also affected (again additively) by absolute

body size which was included because larger fish are likely to have a larger

physiological capacity and inflict and sustain absolutely more damage. Thus;

P(;)I = CHi + c l G, - a(B)1

where:

Hi = the effect of absolute body size

( ii = the effect of GSI

c and c I are both constants

a(B), = body size-dependent physiological time
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P(I)

Estimated time
to win (T)

Physiological time
prepared to incur (P)

time elapsed (t)

P(J)

T(I)

P(I)

T(J)

time elapsed (t)

Figure A3.4.1 (top) Graphical illustration of the model. A pair of fish (i and j) differ
in their body size and their GSI which determine the time it will take them to win (1)
and the time that they are prepared to fight for before giving up (P) versus the time (t)
since the carouselling phase began. Both fish persist until one of them reaches its quit
time (Tif) when T = P. The first to quit is the loser, thereby defining the duration of
the fight. In this case this is fish j. Figure A3.4.2 (bottom) shows that by increasing
the GSI of the smaller fish (j) and thereby raising P, the effect is to increase its quit
time beyond that of the larger fish (i) resulting in fish) winning the fight.
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Each fish should then fight until its time-dependent physiological function exceeds

the time it will take it to win the fight. Thus, each fish has a quit time Tq,where:

//1) = 1'/1)

This will be at the intersection of the two lines in Figure 7.4.1. The fight lasts the

smaller of Tq, and Ill; (in Figure 7.2 this is Tq, and fish i wins). Figure 7.4.2 shows

how fish j could win a fight if it had a larger GSI and fish i had a lower GSI.

However. there will come a point where body sizes are so disparate that the larger

fish wins irrespective of GSI.

The model represents a number of ideas that I had formulated regarding how fights

are resolved. These are;

1) That body size does confer an advantage (larger fish can expect to win sooner and

have a greater amount of physiological time which 'runs out' slower).

2) That difference m GSI can cause a smaller individual to wm, despite its size

disadvantage.

3) That there wi11be a 1imit to what degree of body size advantage can be overridden.

4) The longest fights will be those between fish that both have high GSIs.



A3.5 Simulation of the model with generated data

Predictions of the model regarding which fish of a pair would win and how long the

fight would last were further investigated by writing a computer program allowing

tights to be simulated. The programming was done by Prof. Marc Mangel. The

program generated a population of fish that vary randomly and independently with

respect to body weight and GSI. It then picked, at random, pairs of fish from this

population and simulated tights between them by calculating a quit time for each fish

on the basis of the equations for T and P. The fish with the shortest quit time gives up

and the output of the simulation is a figure for the duration of the fight and

information as to whether the fish that won was larger or smaller.

It is desirable to be able to iJlustrate the output from the simulation such that the

effects of body size and GSI difference on fight duration and outcome can be seen.

One way of doing this is to calculate an index of GSI-dependent weight difference.

This index is: the weight of the fish with the lesser GSI minus the weight of the fish

with the greater GSI. This means that the smaller fish of the pair can have a negative

weight difference (when it also has a lesser GSI) and a positive weight difference

(when it has a greater GSI). Conversely, the larger fish of the pair can also have a....

negative weight difference (if it has a greater GSI) and a positive weight difference (if

it has a lesser GSI). Figure 7.5.1 shows the general pattern of fight durations

generated by the simulations. Figure 7.5.2 shows how the probability of the smaller

fish winning changes as a function of weight difference.
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duration

larger fish
wins

\ smaller fish
wins--~~----~--------~-

o
Weight difference index

1

o
o

Weight difference index

Figure A3.5.1 (left) Results of the simulation for fight durations as a function of GSI-
dependent weight difference. Figure 7.5.2 (right) Results of the simulation for the
probability of the smaller fish winning as a function of GSI-dependent weight
difference.

duration

larger fish
wins

-,
-, s~aller fish

•WInS~----------+------------
o

GSI difference index

o
o

GSI difference index

Figure A3.5.3 (left) Results of the simulation for fight durations as a function of
weight dependent GSI difference. Figure A3.S.4 (right) Results of the simulation for
the probability of the smaller fish winning as a function of weight dependent GSI
difference.
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Using a similar notation, one can look at how weight dependent difference in GSI

affects fight duration. For each pair, the difference in GSI is calculated as the GSI of

the fish with the smaller body minus the GSI of the fish with the larger body. The

smaller fish of the pair can have a negative GSI difference (when it has a lesser GSI)

and a positive GSI difference (when it has a greater GSI). Conversely, the larger fish

has a negative difference in GSI (when it has a greater GSI) and a positive GSI

difference (when it has a lesser GSI). Simulated fight durations as a function of

weight-dependent GSI difference are shown in Figure 7.5.3 and the probability of the

smaller fish winning is shown in Figure 7.5.4.

In terms of when smaller fish are expected to win, a number of patterns are clear;

1) The smaller of the pair never wins if has a lesser GSI (Figures 7.5.2 and 7.5.4).

2) The probability that a smaller fish wins when it has a greater GSI starts to decrease

as the difference in weight increases (Figure 7.5.2)

3) The probability that the smaller fish wins when it has a greater GSI increases as the

difference in GSI increases (Figure 7.5.4).

In relation to the duration of the carouselling phase a general pattern emerges. The

very long fights occur firstly and as would be expected, between pairs of fish that are

closely matched for both weight difference and GSI difference. However, there is also

the counter-intuitive suggestion that fights are very long where a larger fish is

fighting a much smaller fish. Such circumstances are likely to be rare but anse

because the smaller fish has a much greater GSI (see Figures 7.5.1 and 7.5.4) .
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A3.6 Testing the qualitative predictions of the model

The model makes a number of qualitative predictions regarding the duration of the

carousel ling phase and the probability of winning as illustrated in figures 7.5.1 -

7.5.4. The simplest way to compare the model's predictions with the experimental

results is to calculate from the real data the weight and GSI difference indexes (see

section 7.5) and plot these against the duration of the carouselling phase (see Chapter

2 for definition). These data are shown in Figures 7.6.1 (weight difference) and 7.6.2

(GSI difference).

2000
0 2000 I 00 0

1500 1500 I
duration 10 • &(secs) • •1000 1000 •• T. :'1• 0 • 0• "1 00 • • I 0500 • • '8>0 0

500 ... I 0 0• •• 0 00.' • • - '00
00

• •0 0
-20 -10 0 10 20 -0.4 -0.2 0.0 0.2 0.4

Weight difference Index GSI difference Index

Figures A3.6.l (left) The duration of the carouselling phase plotted against the
weight difference index (weight of the fish with the lesser GSI minus fish with the
greater GSI). Unfilled circles are those fights won by the smaller fish of the pair and
filled cicles are those won by the larger fish of the pair. Figure A3.6.2 (right) the
duration of the carouselling phase plotted against the GSI difference index (GSI of
lighter fish minus the GSI of the larger fish). Legend is as Figure. A3.6.1.
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Al.7 Testing the quantitative predictions of the model

The experimental data (from Chapter 2) on GSI and body size differences in relation

to duration can be used to estimate the parameters in the model and test whether the

model fits observed values. Half of the data set was used to estimate the parameters in

the model and the other half was then used to test if the model could predict the

observed patterns. Parameter fitting was done by Prof. Marc Mangel. Model

predictions generally did not provide a good match to experimental observation (see

Table A3 .6. I). Including a stochastic element to the model (to accommodate the fact

that there may be some observational error) did not improve the fit to the data.

Table Al.6.1 A summary of the results of attempting to fit the model to real data.

Parameters were estimated by using half of the data. Predicted durations were then

calculated for the remainder of the data set and compared to the observed values.

Number of fights in the range

Time range of fight Observed Predicted

o -lOO 5 9

lOO - 600 14 8

600 - 900 6 14

900 - 1200 5

1200 - 1500 0

1500 - 1800

1800 - 2100 0
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A3.8 Discussion

As discussed in Chapter 2, the resolution of animal fights is complicated. There is

much evidence that asymmetries, such as the difference in body size between

contestants, are used to resolve fights. In the case of T. zillii, asymmetries in gonadal

state are more important than size asymmetries for the outcome of fights. This raises

the question as to whether asymmetries such as this, that are not directly observable,

can be assessed A simpler alternative is that there is no assessment, and that fights

are resolved by a "which individual is prepared to pay the highest cost to retain its

territory' rule. The purpose of this modelling exercise was to test this specific idea

regarding the resolution of fights. The objective was to model persistence in the

carouselling phase with a threshold giving-up time that is a function of asymmetry in

GSI and body size, such that GSI could cause a smaller fish to win.

The model predicted that GSI could override the advantage of body size and this

agrees well with the experimental results. However, the qualitative predictions from

the model regarding the duration of the carouselling phase were not matched by the

observations There was no correspondance between the model and the the

experimental results in relation to weight difference (compare fig A3.S.1 with fig.

A3.6 I) Although there was a better fit between predicted and experimental patterns

for GSI difference (compare fig. A3.S.3 with fig. A3.6.2), the correlations were not

significant. That the model failed to account for the observations was further

confirmed by the results of the quantitative test of the model (table A3.6.1). This

could be for a number of reasons;
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1) That tights are not in fact resolved by GSI dependent persistence with respect to a

cost threshold Detailed analysis of behavioural exchanged during the carouselling

phase (Chapter 2) support this view. Winners and losers showed clear differences

suggesting that assessment of something other than body size is occurring in the

carouselling phase. The next logical step would be to consider a model in which GSI

is assessed. However, modelling the complex process of assessment (see for example,

Enquist & Leimer. 1983) is beyond the scope of project.

2) That the model's assumption that time is equivalent to cost is incorrect. As shown

in Chapter 5, the costs of fighting has many components, some of which may be

unrelated to the time spent fighting. A different measure of the cost of fighting may

have been more appropriate to test the model with.

3) That there may be a large amount of observational noise in the data set because it is. ~

impossible to know when the assessment of body size finishes and carouselling 'War

of Attrition' started. The measure I used for the duration of the carouselling phase

was methodologically consistent but may not have been biologically consistent.

A3.9 Conclusions

The main benefit of modelling the resolution of fights in T. zillii has been that to

make explicit the idea in question, namely that fights may be resolved by a simple

GSI-dependent persistence rule. Simple behavioural rules have an inherent appeal,

because the mechanisms underlying their execution are biologically conceivable as

well as relatively easily modelled. As it turned out, the model suggested that fights
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are not resolved in the hypothesised way. As with a negative experimental results, a

negative theoretical result is an advance in its own right because it potentially allows

one to reject one option of many and suggests the way forward for further analysis. In

this case, it appears that the fish have a more sophisticated set of assessment rules

than they were given credit for in the model.
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