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Summary 

D6 is an atypical chemokine receptor related to CCR1-5 that binds to many 

inflammatory CC chemokines. Experiments using transfected cell lines have 

shown that upon binding to a chemokine ligand D6 does not trigger cellular 

signalling pathways, but rather acts to scavenge the bound ligand. It achieves 

this by constitutively travelling to and from the cell surface via early and 

recycling endosomes, internalising chemokines bound when it is at the cell 

surface. Over time, D6 removes a large amount of ligands from the extracellular 

compartment. In vivo, this scavenging activity is thought to regulate the level of 

CC chemokines, and thus controls inflammation locally and systemically. Lack of 

D6 has been shown to result in elevated amounts of bioavailable chemokines, 

and is associated with over exuberant inflammatory responses.  

In human, D6 mRNA and protein is highly expressed in trophoblast-derived 

gestational tissues. The expression of D6 mRNA in the placenta is by far the 

highest, compared to other solid tissues being studied. The importance of D6 in 

protecting the offspring has been demonstrated in animals. In pigs, a defect in 

D6 expression was discovered in placental attachment sites in endometrium from 

arresting fetuses. In mice, lack of D6 results in an increase in fetal loss after 

challenge with lipopolysaccharide (LPS) or antiphospolipid autoantibodies (aPL), 

and an increase in the number of abnormal pups when mouse embryos are 

transferred into fully allogeneic pseudo-pregnant female recipients. 

In view of these results suggesting a critical role for D6 in placental mediated 

complications, the expression and molecular function of D6 in primary human 

trophoblast cells were studied, as to date in vitro human studies have utilised 

the choriocarcinoma cell line BeWo or immortalised cell lines engineered to 

over-express exogenous D6. Secondly the impact of D6 deficiency on placental 

structure, chemokine expression and leukocyte abundance in mice was 

examined.  

Chapter 3 presents the results of experiments on primary human trophoblasts. 

Protocols for routine primary trophoblast isolation, purification and culture from 

fresh term placentas were optimised in our laboratory. D6 mRNA was detected in 

these primary cells. Using Western blotting, immunofluorescence and flow 
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cytometry, D6 was shown to be present predominantly in the intracellular 

vesicles of the cells. Competition chemokine uptake assays, analysed by flow 

cytometry, showed that CCL2 was internalised by trophoblasts using D6. 

Competitive chemokine scavenging assays, analysed by quantitative Western 

blot, confirmed that D6 was functioning as a chemokine scavenger on primary 

human trophoblasts and that it progressively removed substantial quantities of 

chemokine from medium bathing the cells. This is the first set of experiments 

that confirms D6 is present, and functioning as a chemokine scavenger in 

primary human cells.  

Chapter 4 contains the results from the mouse experiments. Even in an 

unchallenged environment it was shown that, on the DBA-1 genetic background, 

D6 deficiency in the mother and pups leads to higher rates of stillbirth and 

neonatal deaths, resulting in a reduction in the number of pups weaned per 

litter than their WT counterparts. By gestational age E14, pup weight was 

significantly smaller in the D6 KO mice. Using stereological techniques, the 

placenta of the D6 KO mice at this gestation was found to have a smaller 

labyrinthine zone. The volume of the labyrinthine zone was positively correlated 

with pup/placenta ratio. These phenotypes could be due to a maternal or fetal 

effect of D6 deficiency. To ascertain the answer to this question, the 

experiment at E14 was extended by breeding DBA-1 females heterozygous for 

the deleted D6 allele (D6 HET) with D6 deficient (D6 KO) males.  In this model 

the phenotypes of D6 KO pups and placentas could be compared with their D6 

HET siblings that developed in a mother expressing some D6 (i.e. D6 HET). 

Although there were no differences in pup weight, placental weight and 

pup/placenta ratio between these two groups, stereology revealed a decrease in 

labyrinthine zone volume fraction in the D6 KO placentas in comparison to their 

D6 HET siblings. The observed fetal compromise and placental defect at E14 was 

not apparent at the later gestational age of E18. Luminex multiplex protein 

assay showed an elevated level of circulating chemokine CCL2 in the serum of D6 

KO pregnant mice in comparison to their WT counterpart, so loss of chemokine 

regulation could be responsible for the defects observed in D6 deficient 

placentas. In summary, D6 deficiency results in an increase in perinatal death, a 

fundamental defect in placental formation (reduced labyrinthine zone) and 

dysregulation of circulating chemokine levels.  
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Chapter 5 discusses the mechanisms of D6 in regulating placental formation and 

reproductive outcome and the novel insights that this work provided into 

placental D6 function. It also describes the design of future experiments to 

reveal the precise role of D6 in chemokine regulation and cell signalling in 

reproductive immunology, and discusses how D6 might contribute to pregnancy 

outcome in humans.  

 

 

 

! !
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Abbreviations 

 
2D    two-dimensional 

3D    three-dimensional 

7-AAD    7-aminoactinomycin D 

ACKR    atypical chemokine receptor 

APC    antigen presenting cell 

aPL    antiphospholipid autoantibodies 

ApoE    apolipoprotein E 

APS   antiphospholipid syndrome 

bioCCL2    biotinylated CCL2  

C3    complement component 3 

CCL    CC-chemokine ligand 

CCL2AF647    AlexaFluor647 CCL2 

CCR    CC-chemokine receptor 

CCX-CKR    chemocentryx chemokine receptor 

CD    cluster of differentiation 

cDNA    complementary deoxyribonucleic acid 

COPD    chronic obstructive pulmonary disease 

CP    chorionic plate 

Crry    complement receptor-1 related gene/protein Y 

CTL    cytotoxic T lymphocyte 

CTLA    cytotoxic T-lymphocyte-associated protein 

CX3CL    CX3C-chemokine ligand 

CX3CR    CX3C-chemokine receptor 

CXCL    CXC-chemokine ligand 

CXCR    CXC-chemokine receptor 

DAF    decay-accelerating factor 

DAPI    4'-6-diamidino-2-phenylindole 

DARC    Duffy antigen receptor for chemokines 

DB    decidua basalis 

DC-SIGN    dendritic cell-specific intercellular adhesion molecule-3 grabbing                           

    nonintegrin  

DM    diabetes mellitus 

DMEM    Dulbecco's Modified Eagle Medium 
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DNAse    deoxyribonuclease 

EAE    experimental autoimmune encephalomyelitis 

ECM    extracellular matrix 

EDTA    ethylenediaminetetraacetic acid 

EVT    extravillous cytotrophoblast 

Exx    embryonic day xx 

FACS    fluorescence-activated cell sorting 

FITC    fluorescein isothiocyanate 

Foxp3    forkhead box p3 

GAPDH    glyceraldehyde 3-phosphate dehydrogenase 

GDP    guanosine diphosphate 

GPCR    G-protein-coupled receptor 

GTP    guanosine-5'-triphosphate 

HEK293    human embryonic kidney 293 

HEK-D6    HEK293 transfected with D6 expression constructs 

HET    heterozygous 

HIV    human immunodeficiency virus 

HLA    human leukocyte antigen 

HRP    horseradish peroxidase 

IBD    inflammatory bowel disease 

iEVT    interstitial extravillous cytotrophoblast 

IFN-γ    interferon-γ 

Ig    immunoglobulin 

IL    interleukin  

IUGR    intrauterine growth restriction 

JZ    junctional zone 

KC    keratinocyte chemoattractant 

KIR    killer inhibitory receptor 

KSHV    Kaposi's sarcoma herpesvirus 

KO    knockout 

LDS    lithium dodecyl sulfate 

LEC    lymphatic endothelial cells 

LIF    leukocyte inhibitory factor 

LIR    leukocyte immunoglobulin-like receptor 

LPS    lipopolysaccharide 
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LZ    labyrinthine zone 

MCP    membrane cofactor protein 

MFI    mean fluorescence index 

MHC    major histocompatibility complex 

MIF    migration inhibitory factor 

MIP    macrophage inflammatory protein 

MOG    myelin oligodendroglial glycoprotein 

mRNA    messenger ribonucleic acid 

MS    multiple sclerosis 

NaCl    sodium chloride 

NH4Cl    ammonium chloride 

NK    natural killer 

NKG2    natural-killer group 2 receptor 

NSCLC    human non-small cell lung cancer 

OVA    chicken egg ovalbumin 

PBS    Dulbecco's phosphate buffered saline 

PBST    PBS-0.05% Tween 20 

PCR    polymerase chain reaction 

PD-1    programme death-1 receptor 

PDL    programme death ligand 

PGS    PBS, 0.2% gelatine, 0.05% saponin 

PIPES    4-piperazinediethanesulfonic acid 

PMN    polymorphonuclear 

pNK    peripheral blood natural killer cells 

qPCR    quantitative polymerase chain reaction 

RA    rheumatoid arthritis  

RANTES    regulated on activation, normal T cell expressed and secreted 

RCF    relative centrifugal force 

RPE    R-Phycoerythrin 

rRNA    ribosomal ribonucleic acid 

SDS    sodium dodecyl sulfate 

SDS-PAGE    sodium dodecyl sulfate polyacrylamide gel electrophoresis 

siRNA    small interfering ribonucleic acid 

SNPs    single nucleotide polymorphisms 

ST    syncytiotrophoblast 
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TAE    Tris-acetate-EDTA 

TCA    trichloroacetic acid 

TCR    T-cell receptor 

TGF    transforming growth factor 

Th    T helper 

TNF    tumor necrosis factor 

TOP-1    topoisomerase 1 

Treg    regulatory T cells 

Tris-HCL    Tris(hydroxymethyl)aminomethane hydrochloride 

uNK    uterine natural killer 

VEGF    vascular endothelial growth factor 

vEVT    endovascular extravillous cytotrophoblast 

VT    villous cytotrophoblast 

WT    wild type 

XCL    XC-chemokine ligand 

XCR    XC-chemokine receptor 
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1 Introduction  
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1.1 Adequate placentation is crucial for a successful 
pregnancy 

Major adverse perinatal outcomes are increasingly recognised as having their 

origins in early pregnancy and abnormal placentation.  Stillbirth is a devastating 

outcome of pregnancy for women and their families, with one in 170 babies 

affected (Office for National Statistics); (Bukowski et al., 2011). Pre-eclampsia, 

part of the spectrum of the gestational hypertensive disorders is also a major 

contributor to perinatal morbidity and mortality and affects 3% of pregnancies 

(Jacobs et al., 2003, Lee et al., 2004, Roberts et al., 2005, Geelhoed et al., 

2010). Intrauterine growth restriction (IUGR), affects 10% of pregnancies and is 

associated with prematurity, cerebral palsy and neonatal death (Stoknes et al., 

2012). All of these conditions have been associated with abnormal placental 

histology at delivery. More striking are the observations that these adverse 

events in late pregnancy have their origins in early pregnancy as demonstrated 

by first trimester assessment of placental biomarkers and fetal growth (Khong et 

al., 1986, Smith et al., 2004, Bukowski et al., 2011). Despite recognition of the 

major contribution of placentation to adverse perinatal outcomes the underlying 

pathophysiology remains poorly understood.  

1.2 The placenta 

The placenta is the first organ to form during pregnancy (Rossant and Cross, 

2001), and is vital to support the survival and growth of the fetus in utero. 

Without the placenta, the procreation of the mammalian species is not possible.  

The placenta forms an interface between the mother and fetus, performing its 

main function of facilitating the exchange of gases, nutrients and metabolic 

wastes. The placenta is also a barrier, protecting the fetus from the harmful 

attack of pathogens and the maternal immune system (Rossant and Cross, 2001). 

It produces hormones and growth factors which are needed for the advancement 

and flourishing of the pregnancy; they uphold the balanced physiological 

condition in the uterus for the continuation of the pregnancy. The hormones and 

growth factors produced also affect the physiological changes of the maternal 

body, to adapt to and support the pregnancy.  
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Some authors simplify human and rodent placentas into 3 major anatomical 

structures; each structure has their specific roles in providing support for the 

placenta to function as a whole unit (Watson and Cross, 2005). The outer 

maternal layer, which consists of the maternal decidual cells and vasculature, 

provides the blood supply to the placenta. The middle junctional layer contains 

giant cells and spongiotrophoblasts that anchor the placenta to the uterus, these 

cells may also play a role in the process of decidual remodelling (Adamson et al., 

2002, Georgiades et al., 2002). The inner layer is the region where the maternal-

fetal vasculature intertwines and closely approximates each other for the 

exchange of gases and nutrients.  

The most important cells in the placenta are the fetal-derived trophoblasts. 

They are the main cells that line the maternal-fetal interface, the main 

structure for the placenta to serve its function (Rossant and Cross, 2001). 

Trophoblasts also have a major role to play in orchestrating the process of 

successful placental morphogenesis.  

1.2.1 The human placenta 

The mature human placenta is a discoid organ; its size and weight vary between 

individuals (Fig 1.1a). The mean radius of round placentas was estimated to be 

9.1cm at term, with the mean thickness at the centre of 2.5cm (Salafia et al., 

2010, Benirschke et al., 2012). The majority of placentas are round or oval in 

shape, however, in 10% of cases, the placentas have different shapes 

(Benirschke et al., 2012). They can have a smaller accessory (succenturiate) lobe 

(placenta succenturiata), be bilobal in shape (placenta bilobata) or, when the 

separation of the lobe is more pronounced, it can appear almost entirely 

detached from the main part of the placenta (placenta duplex). With these 

abnormal non-oval shaped placentas there is a significant association with lower 

placental efficiency linking with either maternal utero-placental or feto-

placental vascular pathology (Salafia et al., 2010).  
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Figure 1.1 Schematic illustrations of the anatomy and chorionic villus of the full term human 
placenta. a) Fetal blood flows from the umbilical artery into the capillaries in the chorionic villi, 
which are bathed in the maternal blood in the intervillous space. b) The human placenta is 
monochorial, the syncytiotrophoblast is in direct contact with maternal blood. Gases and nutrients 
pass through one layer of syncytiotrophoblast, and the endothelium to reach the fetal circulation. 
Adapted from (Rossant and Cross, 2001). 
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a) 

 

 

b) 

 

Figure 1.2 Schematic illustrations of the anatomy and labyrinth of mouse placenta. a) 
Maternal vessels and fetal umbilical vessels subdivide into capillaries in the labyrinth for fetal-
maternal exchange. b) The mouse placenta is trichorial as there are 3 layers of trophoblasts 
(bilayer of syncytiotrophoblasts and a monolayer of mononuclear trophoblasts) in the fetal-maternal 
membrane, distinguishable in electron micrograph (Georgiades et al., 2002). Gases and nutrients 
have to pass through these three layers of trophoblasts, and another layer of endothelial cells 
before reaching the fetal circulation. Adapted from (Rossant and Cross, 2001). 
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The side of the placenta facing the amniotic cavity is the fetal surface, also 

called the chorionic or amniotic surface. This surface appears glossy, due to the 

avascular, intact epithelium of the amnion that covers the chorionic plate 

(Benirschke et al., 2012). From the fetal surface of the placenta, the umbilical 

cord connects to the fetus. It carries the communicative vessels between the 

fetus and the placenta, which comprises one umbilical vein and two arteries that 

spiral within the cord. Surrounding those vessels is the jelly like connective 

tissue called the Wharton’s jelly. Wharton’s jelly gives the cord its sponge like 

characteristic. The site of insertion of the cord to the placenta is usually off 

centre (Pathak et al., 2010). Eccentric umbilical cord insertion has been 

associated with a decrease in placental efficiency, but has not been found to be 

linking with adverse obstetric outcome (Yampolsky et al., 2009, Pathak et al., 

2010). In slightly less than 1% of pregnancies, the cord inserts outwith the 

placenta into the membrane (velamentous cord insertion), with the blood 

vessels being exposed when they travel along the thin membrane (vasa praevia) 

before insertion into the chorionic plate (Sepulveda, 2006). This exposes the 

fetus to the danger of profuse blood loss if the vessels are punctured when the 

membrane ruptures either spontaneously or iatrogenically.  

The basal (maternal) surface of the placenta is traversed by sets of grooves, 

which divide this part of the placenta into different lobes, or cotyledons. Each 

of these cotyledons contains one or several chorionic villous trees, the principal 

functioning units of the placenta (Benirschke et al., 2012). The sub-branches of 

the blood vessels from the umbilical cord form the chorionic villous trees. The 

most common classification of the subdivision of the chorionic villi is the one 

described by Kaufmann et al. in 1979 (Kaufmann et al., 1979). The stem villi are 

the main framework providing support for the villous tree, they are formed at 

the start of the ninth week of pregnancy. These stem villi branch out, forming 

extensions called immature intermediate villi by the 16th week of pregnancy. 

Near the end of the second trimester, the stem villi also form mature 

intermediate villi, which are side branches more slender than the ones 

previously formed. By week 32, the mature intermediate villi begin to give rise 

to the terminal villi, which are grape-like capillaries forming the main fetal-

maternal interface (Schoenwolf et al., 2009). The chorionic villi channel the 

fetal blood to the fetal-maternal interface; fetal blood flows from the umbilical 
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arteries to the villi, and then returns via the umbilical vein. The chorionic villi 

are bathed in the maternal blood, which flows directly into the intervillous 

space. The fetal-maternal interface of a mature human placenta is 

haemochorial, with the mono-layered barrier of the syncytiotrophoblast, and the 

fetal endothelium separating the fetal and maternal blood (Fig 1.1b). Between 

the syncytiotrophoblast, and the fetal endothelium, there is a non-continuous 

layer of mononuclear villous cytotrophoblast, also known as the Langhans cells. 

From the first trimester until around 20 weeks, the fetal-maternal membrane 

comprises four layers: syncytiotrophoblast, cytotrophoblast, villous connective 

tissue and endothelium of fetal capillaries (Moore et al., 2013). At this stage the 

cytotrophoblast forms a continuous layer. After the 20th week of gestation, the 

continuity of the cytotrophoblast layer in most of the villi is broken due to 

cellular changes. In some of the distal villi the fetal-maternal interface becomes 

thinner, forming a vasculosyncytial placental membrane where the 

syncytiotrophoblast directly contacts the endothelium of the fetal capillaries 

(Georgiades et al., 2002). This thin surface provides close proximity for the fetal 

and maternal blood, and thereby enhances the efficiency of fetal-maternal 

exchange. 

At term, maternal blood flow to the placenta is estimated to be up to 

700ml/minute (Wang and Zhao, 2010), with a surface area for fetal maternal 

exchange of more than 10m2 (Ellery et al., 2009). This dynamism of placental 

function provides the support required for fetal survival until term pregnancy. It 

has been reported that maternal blood flow into the placenta is not established 

until at least after the first 12 weeks of pregnancy (Hustin and Schaaps, 1987), 

thereby protecting the early fetus from the oxidative stress and mechanical 

pressure from the maternal blood flow. During this period the delicate fetus is 

undergoing the important process of organogenesis (Georgiades et al., 2002).  

1.2.2 The murine placenta 

Murine placentas are widely used in research studies for greater understanding 

of the developmental, cellular and molecular structures and functions of the 

organ. Development of murine placentas is sensitive to genetic disruption 

(Rossant and Cross, 2001), and thus it is a good model for studies to gain new 

insights into the cellular and molecular biology of the placenta. Several 
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indispensible genes for mouse placental development, for example Mash2 and 

Gcm1, are also expressed in humans (Alders et al., 1997, Janatpour et al., 1999, 

Nait-Oumesmar et al., 2000), however the understanding of their functional role 

in human placental development is very limited (Rossant and Cross, 2001).  

The detailed anatomies of the murine and human placentae are not exactly the 

same (Fig 1.1 and 1.2), but grossly there are certain similarities in the structure 

of the functional units, and also the cellular mechanisms underlying their 

development (Table 1.1) (Rossant and Cross, 2001).  
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Anatomical site Structure/ cell Function(s) 

Murine Human 

Outer maternal layer Trophoblast giant cell Invasive extravillous 

cytotrophoblast 

Invasion and modelling of decidua 

Middle junctional 

layer 

Giant cell (differentiated 

from spongiotrophoblast) 

Cytotrophoblastic shell Anchoring villus (human) and labyrinth 

(murine) 

Inner layer 

 

Labyrinth Chorionic villus Fetal-maternal interface  

Single cotyledon Multiple cotyledon Containing labyrinth (murine) and chorionic 

villus (human) 
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Table 1.1 Structural and functional units of murine and human placentas. Summarised from (Georgiades et al., 2002, Rossant and Cross, 2001). 
 

 

 

Maternal-fetal 

interface (Fig 1.1b 

and 1.2b) 

Trichorial haemochorial Exchange of gases, nutrients and wastes. 

Physical barrier to hydrophilic substances. 

Invaginations on the surface facing maternal 

blood for both species, to increase absorption 

of substances. 
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Mouse placenta, like human, is discoid. Both the maternal and fetal arteries 

subdivide into smaller branches, and eventually into smaller capillaries at the 

fetal-maternal interface. The capillaries are interconnected and form a maze-

like architecture at the labyrinthine zone (LZ) in the inner layer of the placenta; 

the mouse placenta is described as a labyrinthine placenta (Georgiades et al., 

2002). LZ is the most important zone in the placenta. This is the area where the 

placenta performs its vital role of supporting the fetus in utero; the fetal 

capillaries are situated in close proximity with maternal blood, forming the 

fetal-maternal interface for crucial exchanges described above. Unlike the 

haemochorial human placenta, fetal-maternal membrane in the trichorial mouse 

placenta comprises three layers of trophoblasts, and also the fetal endothelium 

(Fig 1.2b). 

In mouse, it has been discovered that LZ continues to grow up to E18.5, even 

though the maximum volume of the placenta is reached at E16.5 (Coan et al., 

2004). This leads to an increase in the representative proportion of LZ in the 

placenta, essential in supporting the bigger pup at this gestation.  It has also 

been proven that smaller volume of LZ is related to fetal growth restriction, 

even after taking into account the size of the whole placenta in relation to the 

fetal weight (Coan et al., 2008, Coan et al., 2010). Within this functional zone, 

stereological analyses showed malformation of microstructures could also cause 

growth restriction in the fetuses. Stereology is a well established method for 

generating absolute three-dimensional (3D) quantities from two-dimensional (2D) 

paraffin and resin histological sections (Coan et al., 2004). This method of 

analysis showed that compromised fetuses had smaller surface area of fetal and 

maternal trophoblast membrane, shorter total capillary length, and also larger 

mean fetal-maternal membrane thickness; these lead to poorer theoretical 

diffusion capacity in the fetal-maternal interface (Coan et al., 2008).  

Recent studies of placental development in rats show that the pattern of 

placental invasion of this species may be more representative of human 

placentation (Caluwaerts et al., 2005, Carter et al., 2006). Trophoblast invasion 

in rats involves a deeper part of the placental bed, leading to the development 

of an area called the mesometrial triangle. The mesometrial triangle is an 

extension of the decidua, consists of a mass of decidualised cells and uterine NK 

cells, and also numerous loops of spiral arteries (Caluwaerts et al., 2005, Carter 
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et al., 2006). In contrary, the invasion of trophoblasts in mice is merely 

restricted to the decidua. The mesometrial triangle in rat pregnancy is thought 

to be somewhat comparable to the invasion of the inner myometrium in human; 

structural arterial changes in this area has been studied to understand the 

process of uterine spiral arteries remodelling in rat pregnancy (Caluwaerts et 

al., 2005, Vercruysse et al., 2006, Geusens et al., 2010). It has been suggested 

that trophoblast invasion may play a more important role in rat pregnancy in 

comparison the mouse (Carter et al., 2006). It will be interesting to follow the 

development of further comparative studies. Perhaps in the future the rat will 

be more frequently used for placental research when more experimental genetic 

model systems are available for this species.  

1.3 The critical role of successful placentation in 
pregnancy 

For successful placentation, the decidua has to tolerate the invasion of the 

embryo, and also protect this semi-allogeneic tissue from maternal 

immunological rejection. The decidua is subjected to modification of the tissues 

and blood vessels for adequate formation of vasculature to the placenta for an 

increased and undisturbed blood supply (Georgiades et al., 2002).  

As early as day six in human pregnancy, the blastocyst comes into the close 

proximity of the uterine epithelium, a process referred to as apposition (Hannan 

and Salamonsen, 2007). This is followed by the process of adhesion (Hannan and 

Salamonsen, 2007), and then invasion of the endometrium by 

syncytiotrophoblast at day seven to nine (implantation). Prior to implantation, 

the blastocyst consists of only 50-60 trophoblasts, thus vast proliferation of 

trophoblast happens after endometrial invasion (Cross, 2000). After 

implantation, cytotrophoblasts from the trophectoderm proliferate and 

emanate, breaking through the primitive syncytium to reach the basal plate 

(Knofler and Pollheimer, 2013). On the distal sites, proliferative cell columns of 

these cytotrophoblasts give rise to invasive extravillous trophoblasts. During 

placentation, the formation of vascular network involves branching 

morphogenesis of the epithelial surface along with underlying stroma. This is an 

embryonic developmental mechanism to construct large areas of maternal-fetal 

interface for exchanges of nutrients and gases (Cross et al., 2003). 



   32 

In the subsequent weeks, the extravillous trophoblasts erode the maternal 

connective tissues and spiral arteries via two routes. The first route of invasion 

is directly into the decidual stroma, the extravillous trophoblasts that invade via 

this route are termed interstitial extravillous trophoblasts. The second group of 

extravillous trophoblasts, termed endovascular extravillous trophoblasts, 

migrate to the lumen of the spiral arteries following the erosion of the maternal 

endometrial tissues. These two groups of extravillous trophoblasts play a major 

role in the remodelling of the spiral arteries within the decidua and the inner 

third of the myometrium (Pijnenborg et al., 1980). They contribute to the 

destruction of the endothelium, vascular smooth muscle and elastic lamina, and 

the replacement of these structures by fibrinoid (Lyall et al., 2013). A recent 

study systematically quantified changes in spiral artery features in human; it 

revealed a major defect in myometrial spiral artery remodelling in pregnancies 

associated with pre-eclampsia and fetal growth restriction (Lyall et al., 2013). 

Immunostaining detected differences in the quantity and functional status of 

extravillous trohoblasts in the myometrial vessels between these pregnancies 

and the normal pregnancy. Less fibrinoid deposition was detected in abnormal 

pregnancies, associated with inadequate spiral artery remodelling. The study 

also demonstrated the capability of extravillous trophoblasts to migrate deeply 

into the myometrium during placentation. Endovascular extravillous trophoblasts 

are also believed to serve the purpose of controlling the timing and amount of 

maternal blood flow into the placenta (Hamilton and Boyd, 1966, Pijnenborg et 

al., 2006, Knofler and Pollheimer, 2013). This regulatory process of placentation 

eventually allow the flow of maternal plasma and blood into the intervillous 

space of the placenta in the late first trimester, forming the maternal-fetal 

interface for the placenta to carry out its primary function (Huppertz, 2007, 

Burton et al., 2010).  

Human is not the only species with haemochorial placenta. The placenta from 

higher and lower simian primates are also haemochorial (Rosenberg and 

Trevathan, 2007, Cole, 2009). In comparison with trichorial placenta as 

described earlier, there are fewer layers separating the maternal-fetal blood in 

the haemochorial interface, allowing more efficient exchanges to happen. In 

human, the degree of trophoblast invasion is unusually deep in comparison to 

other mammalian species, and up to the first third of uterine myometrium and 
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spiral arteries are invaded by trophoblasts during the process of implantation 

(Hannan and Salamonsen, 2007). Even in higher simian primates like baboon and 

orang-utan, only one tenth of the myometrium is invaded (Cole, 2009). The 

depth of placental invasion in human gives rise to adequate remodelling of spiral 

arteries in both the decidua and myometrium, transforming them into distended, 

thin-walled flaccid vessels (Lyall et al., 2013). These remodelled vessels form a 

vast network for maternal blood flow into the placenta at low pressure, creating 

a large surface area for feto-maternal exchange without subjecting the placenta 

to the stress of high pressure flow. This mechanism provides sufficient blood 

supply to the feto-maternal membrane, bringing essential nutrients and oxygen 

needed for the development of the brain of the human fetus. Via evolution, 

human has a uniquely large brain to body mass ratio in comparison to other 

mammals, and even our closely related primates; relative to other mammals it is 

thought that the development of the human brain requires ultra high energy and 

nutritional provision from the maternal blood supply (Gibbons, 1998, Rosenberg 

and Trevathan, 2007, Cole, 2009, Carter and Pijnenborg, 2011). This high 

demand of placentation predisposes human to pathological processes, for 

example pre-eclampsia/eclampsia, which is believed by some to be unique to 

pregnancy of human species (Rosenberg and Trevathan, 2007, Cole, 2009). 

Humans also have a higher pregnancy failure rate (41% vs. ≤10%) in comparison 

to other mammalian species (Wilmut et al., 1986). Interestingly, pre-eclampia 

has been reported in gorillas and chimpanzees (Thornton and Onwude, 1992, 

Carter and Pijnenborg, 2011). Similar to human pregnancy, during placentation 

in these great apes deep invasion of the interstitial and spiral arteries extends 

into the inner myometrium (Carter and Pijnenborg, 2011).  

A significant number of miscarriages and diseases in pregnancy are caused by 

failed implantation and inadequate placentation. While it is difficult to 

accurately determine the causes of miscarriages, it has been reported that 

failure of implantation accounts for up to 75% of miscarriages, which occurs in 

up to 50% of pregnancies before 20 weeks of gestation (Norwitz et al., 2001, 

Macklon et al., 2002, Christiansen et al., 2006). Failed implantation also 

potentially contributes to recurrent implantation failure in assisted conception. 

Besides determining the continuation of pregnancy at the early stages, 

inadequate placentation has also been associated with complications in later 
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gestational ages. Shallow invasion and inadequate placental villous formation 

are linked with severe pre-eclampsia, intrauterine growth restriction (IUGR), 

late sporadic miscarriage and preterm labour (Kim et al., 2003, Ball et al., 2006, 

Brosens et al., 2011, Kovo et al., 2013, Lyall et al., 2013). At the other extreme, 

excessive invasion of the trophoblasts can result in abnormally adherent 

placenta to the myometrium (placenta accreta) or even the uterine serosa and 

adjacent organs (placenta percreta), collectively classified as placenta creta in 

pregnancy (Norwitz et al., 2001). This poses a risk of major haemorrhage during 

the time of delivery. Recent studies have shown the importance of the decidua 

in regulating extravillous trophoblast invasion and spiral artery modelling; the 

absence of decidua is associated with placenta creta (Tantbirojn et al., 2008, 

Hannon et al., 2012).  

1.4 Communication between maternal and fetal cells 
during placentation 

During implantation, the female reproductive tract is not immunologically inert. 

Specialised immune cells are recruited to precise locations to aid the 

appropriate invasion of the developing placenta into the endometrium, 

remodelling of the endometrial vessels, and also providing immunological 

sanctuary for the conceptus. During the female menstrual cycle, the number of 

immune cells (decidual leukocytes) increases substantially from proliferative 

towards mid-secretory phase to prepare for implantation of the embryo (Bulmer 

et al., 2010). In early pregnancy the majority of cells (up to 70%) in the decidua 

are leukocytes (Red-Horse et al., 2004). These immune cells consist of 

neutrophils, uterine natural killer (uNK) cells, macrophages, T cells and 

dendritic cells.  

Optimal crosstalk between the maternal and fetal cells determines the success 

of implantation, and the outcome of pregnancy. The endometrium is only 

receptive to implantation during a very short period in the menstrual cycle 

during the mid-secretory phase, known as the ‘window of receptivity’ 

(Dimitriadis et al., 2010). Following the priming with oestrogen, and under the 

influence of progesterone, the endometrium undergoes decidualisation. Besides 

the infiltration of large number of leukocytes, the process is also characterised 

by the differentiation of stromal cells in the endometrium, the modification of 
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the extracellular matrix (ECM), and the increase in vascular permeability 

(Garlanda et al., 2008). In the mid-secretory phase, regulatory molecules such as 

LIF, CX3CL1 and CCL14 are released into the uterine lumen (Dimitriadis et al., 

2010), affecting the behaviour of the cells in the blastocyst coming into contact 

with the decidua. Fetal cells in the blastocyst are first presented to the uterine 

epithelial cells during apposition. At this very first stage of implantation, 

dialogues are established between these two groups of cells, utilising soluble 

mediators being released and regulated precisely locally. This crosstalk not only 

influences the receptivity of the endometrium to the implantation of the 

blastocyst, but also triggers the expression of a unique repertoire of surface 

adhesive molecules on both fetal and maternal cells, for example L-selectin on 

the trophoblasts, and integrins on the endometrium (Genbacev et al., 2003, 

Hannan and Salamonsen, 2007, Mangale and Reddy, 2007). Within the placenta 

throughout pregnancy, there are also other stages where fetal cells are in close 

contact and directly communicating with maternal cells: the migration of the 

invasive interstitial extravillous trophoblast into, but not through, the inner third 

of the myometrium; the remodelling of the wall of the uterine spiral arteries by 

the endovascular trophoblast; and the role served by villous syncytiotrophoblast 

as an endothelial-like lining soaking in maternal blood in the placental 

intervillous space (Huppertz, 2007). These cellular and molecular interactions 

ensure placentation is successful to serve its function in supporting and 

protecting the fetus throughout pregnancy, and at the same time not over 

adherent so that it can be separated after delivery to avoid haemorrhage.  

1.5 Receptivity of decidua to the invasion of semi-
allogeneic embryo 

In prehistoric life, placental pioneers (the group of mammals whose young 

develop inside their bodies) appeared 135-65 million years ago in the Late 

Cretaceous period (Lambert et al., 2001). Prior to this era, even mammals are 

thought to have produced eggs where the shells separated the offspring from 

their mother’s body. One reason for this is that placentation requires complex 

immunological regulation, and it took millions of years for this adaptation to 

emerge. Interestingly there are exceptions to this biological evolution. 

Monotremes such as duck-billed platypus and spiny anteaters are modern egg-

laying mammals. Marsupials are pouched mammals which delivers their offspring 
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at a very early fetal stage, where the young lived in the pouch, completing the 

maturation by attaching to the teats which lactate milk with specific 

components, controlling the development of the babies (Trott et al., 2003). 

Although the pregnancy of marsupials occurs over a relatively short period of 

time, in some species of marsupials there is evidence showing the presence of 

maternal recognition of pregnancy, leading to changes necessary in the uterine 

environment to accommodate the growing fetus (Renfree, 1972, Renfree, 2000).  

Understanding the immunological regulation of embryonic implantation into the 

decidua remains a huge challenge. The embryo carries histocompatibility 

antigens from the father (Bulmer et al., 2010), and yet the mother’s decidua can 

tolerate the invasion of this foreign body and coexist with it until the delivery of 

the fetus. One experiment in the 1970s revealed female mice could carry the 

fetuses fathered by allogeneic or semi-allogeneic males, but readily rejected 

organs transplanted from the same males (Borland, 1975). This phenomenon 

shows the uniqueness of the immunomodulation of the female reproductive tract 

during the time of implantation and pregnancy. Different experiments have been 

performed to study the tolerogenic properties of the maternal immune system 

towards the placenta, leading to various models being constructed. The 

following sections provide a summary of some of the models described. The role 

of chemokines in pregnancy will be discussed later in section 1.7. 

1.5.1 Regulation of antigen presentation in the placenta 

During pregnancy in both humans and mice, there seems to be mechanisms in 

place to regulate the presentation of fetal antigens to the maternal immune 

system to avoid the phenomenon of graft rejection. 

It is well known that T cells only recognize an antigen when it is associated with 

a major histocompatibility complex (MHC) molecule, in humans it is also called 

human leukocyte antigen (HLA). The MHC is a region of multiple loci that 

function as antigen-presenting structures; they play major roles in determining 

whether transplanted tissue will be accepted as self (histocompatible) or 

rejected as foreign (histoincompatible). T cells interact with the MHC either 

through the direct or indirect pathway. Most cells express MHC class I. In the 

direct pathway CD8+ T cells directly engage MHC I complexes on the surface of 
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the transplanted cells. Host CD8+ T cells that recognise peptides in the context 

of MHC I kill the transplanted cells by this direct pathway. In the indirect 

pathway, peptides have to be presented, or cross-presented, by host antigen 

presenting cells (APCs) in a host MHC-restricted fashion. MHC II are only 

expressed by APCs; CD4+ T cells are activated by engaging with these MHC 

complexes. APCs also prime CD8+ T cells by cross-presenting antigens on MHC I.  

In mouse pregnancy, the fetal allograft is presented exclusively through the 

indirect pathway; T cell engagement requires the uptake and processing of 

fetal/placental antigen by maternal APCs (Erlebacher et al., 2007). Mouse 

pregnancy has the ability to avoid direct antigen presentation for T cell 

recognition.  This relatively minor allorecognition pathway removes a major 

threat to fetal survival, since it avoids the large number of T cells that typically 

drive acute transplant rejection in mouse, through their ability to directly 

interact with foreign MHC I molecules. In these experiments it was also observed 

that T cells that indirectly recognise the fetus were poorly primed and 

underwent clonal deletion.  

Collins et al described that the mouse fetus and placenta are encased by the 

decidua, a stromal cell-derived structure (Collins et al., 2009). The authors 

discovered that dendritic cells stationed at the fetal-maternal interface were 

unable to travel to the lymphatic vessels of the uterus and thus reach the 

draining lymph nodes. Dendritic cells function as critical antigen-presenting cells 

for naive T-cell activation. After capturing antigen in the tissues, dendritic cells 

usually migrate to various lymphoid organs where they present the antigen to 

lymphocytes. Entrapment of dendritic cells at the fetal maternal interface is 

therefore an important mechanism by which the alloantigen (fetus and placenta) 

can escape the T cell response.  

In human, HLA class II molecules are immunogenic cell surface markers 

associated with allogeneic transplant graft rejection (Ober, 1998); thus 

prevention of direct antigen presentation may not effectively avoid fetal 

rejection. Fetal derived trophoblast cells have unique patterns of HLA expression 

in comparison to other nucleated cells. These trophoblasts, which are in contact 

with the maternal immune system, do not express HLA-A and HLA-B (HLA class I 

gene), or HLA-DR, HLA-DQ and HLA-DP (HLA class II genes) (Hunt et al., 1987, 
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Mattsson, 1998, Ober, 1998, Rizzo et al., 2011). Instead these cells express HLA-

G, a non-classical class I molecule, and also low levels of HLA-C, HLA-E and HLA-

F (Ishitani et al., 2003).  

Although there is a lack of major histocompatibility complex (MHC) molecules 

expression in the trophoblasts, maternal antibodies against paternally derived 

HLA expressed by the fetus are detectable in pregnancies. The maternal immune 

system is probably sensitised by fetal nucleated cells that have escaped into the 

maternal circulation. Paradoxically, incompatibility of HLA expression between 

the parents is thought to be beneficial for pregnancies. In prospective and 

retrospective studies, HLA-A and HLA-B matched couples were observed to have 

higher miscarriage rates (Schacter et al., 1979, Ober, 1998). In pregnant 

subjects with rheumatoid arthritis (RA), women with pregnancy-induced 

amelioration of their RA had more maternal-fetal disparities in the alleles at 

HLA-DRB1, HLA-DQB1 and HLA-DQA1 loci, compared with pregnancies affected 

by active RA (Nelson et al., 1993). These observations suggest increased 

variability of HLA expressions in the offspring may have an important role in 

immunomodulation during pregnancy. The exact mechanism of this process is yet 

to be explored.  

HLA-G is strongly expressed during pregnancy. It was initially detected only in 

fetal cells at the maternal-fetal interface, but expression was later found in 

thymus, cornea, erythroid and blood cells, and also in non-physiological 

environment in transplantation, cancer, infections and autoimmunity (Rizzo et 

al., 2011). HLA-G is a HLA gene that has an intron-exon structure identical to 

other class I genes, with a premature stop in exon 6 resulting in a much shorter 

cytoplasmic tail with six amino acids (RKKSSD) (Park et al., 2001). The truncated 

tail lost its potential endocytosis signals found in the cytoplasmic tail with a 

tyrosine or dileucine-based motif in all other MHC class I molecules. This results 

in a slower turnover and prolonged expression of HLA-G at the cell surface, and 

a diminished retrieval of this molecule upon assembly with high affinity 

peptides; HLA-G is not an efficient molecule to present exogenous peptides 

(Park et al., 2001). Due to this characteristic, it is thought this molecule’s main 

function is in immunomodulation. HLA-G is presented in many different 

transmembrane and soluble isoforms due to alternative splicing; in the soluble 
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forms, transmembrane and cytoplasmic domains are absent in the molecules 

(Ober, 1998).  

HLA-G has been found to suppress the proliferation and cytotoxic ability of T 

cells and natural killer (NK) cells. Through its ability (HLA-G5 isoform) to induce 

the differentiation of T cells into regulatory T cells (Treg), it may also be 

responsible for better graft acceptance (Le Rond et al., 2006). In another 

experiment, HLA-G1 transfected antigen-presenting cells (APCs) were capable of 

inhibiting the proliferation and induce anergy of CD4+ T cells and providing non-

antigen specific, inhibitory or proapoptotic signals (LeMaoult et al., 2004). 

Soluble HLA-G can induce apoptosis in CD8+ T cells, possibly via the Fas ligand 

(FasL) pathway (Contini et al., 2003). In human placenta, HLA-E is found to be 

co-expressed in all cells that express HLA-G. It is thought that HLA-G and HLA-E 

act synergistically, binding to CD94/NKG2 receptor on NK cells, leading to their 

inhibition (Ishitani et al., 2003). In the context of in vitro fertilisation in assisted 

reproductive treatment, HLA-G expression was associated with better quality 

embryos with higher cleavage rates; pregnancy rates were better when their 

sibling embryos from the same treatment cycle were replaced (Jurisicova et al., 

1996a, Jurisicova et al., 1996b).  

1.5.2 The role of regulatory T cells (Treg) in pregnancy 

Balance between the subtypes of CD4+ helper T cells is one of the classic models 

described in immunohomeostasis in pregnancy. CD4+ T cells can be classified 

into Th1 cells, which are involved in cellular immunity; Th2 cells, which are 

involved in humoral immunity; Th3 cells, which produce immunosuppressive 

cytokine transforming growth factor (TGF)-β; Treg 1 cells, which produce 

immunosuppressive cytokine interleukin (IL)-10; and also CD4+CD25+ regulatory T 

cells (CD4+CD25+ Treg) (Saito et al., 2007). Other Th subsets have also been 

described more recently (e.g. Th17 cells). Traditionally the model of Th1/Th2 

shift has been used in pregnancy, where successful pregnancy was believed to be 

a Th2 phenomenon; this model is now thought to be an oversimplification 

(Chaouat, 2007). The role of immunoactivation is played by Th1 and Th2 cells, 

while Th3 and Treg 1 cells are responsible for immunoregulation (Saito et al., 

2007).  
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Recent studies discovered that CD4
+
CD25

+ 
Treg is essential in maintaining 

tolerance of semi-allogeneic fetus in mouse. These cells are increased 

significantly during pregnancy. This phenomenon occurs in the conception of 

both syngeneic and semi-allogeneic fetuses, thus is independent of the exposure 

of paternal alloantigen (Aluvihare et al., 2004). Mice depleted of CD4
+
CD25

+ 
Treg 

carrying semi-allogeneic fetuses are shown to have no successful pregnancy, 

while 50% of those carrying syngeneic fetuses had normal pregnancies (Aluvihare 

et al., 2004). In vitro, CD4
+
CD25

+ 
Treg transfer has been shown to inhibit the 

proliferation and secretion of interferon-γ by lymphocytes from the spleen and 

decidua; in vivo it prevents fetal rejection in mice prone to abortion, produced 

by mating CBA/J females with DBA/2J males resulting in the initial abortion rate 

of 18% (Zenclussen et al., 2005). These results confirmed that CD4
+
CD25

+ 
Treg 

have an important role in protecting fetuses in mice.  

In human, systemic CD4
+
CD25

+ 
Treg level is increased in pregnancy. It starts to 

elevate from the early gestational period, peaks during the second trimester, 

and declines after delivery (Somerset et al., 2004). A few theories of the 

regulation of CD4
+
CD25

+ 
Treg in pregnancy have been presented. CD4

+
CD25

+ 
Treg 

expresses chemokine receptor CCR4 (Curiel et al., 2004). CCR4 has two ligands, 

CCL17 and CCL22, which are known to be secreted by the maternal and fetal 

tissues in pregnancy. These chemokines may be responsible to attract Treg cells 

to the decidua, similar to the mechanism of Treg being attracted to tumours 

secreting CCL22 (Curiel et al., 2004). In a different study, the authors discovered 

oestrogen treatment increased the expression of Foxp3 in vivo and in vitro 

(Polanczyk et al., 2004). Foxp3 is a transcription factor that controls the 

phenotype and function of Treg, it is also a reliable marker for CD4
+
CD25

+ 
Treg 

cells (Fontenot et al., 2003).  

Collectively the above findings suggest pregnancy upregulates and attracts 

CD4
+
CD25

+ 
Treg cells locally to modulate the maternal immune system. Recent 

observations suggest in human CD4
+
CD25

+ 
Treg can be subgrouped into 

CD4
+
CD25

high 
and CD4

+
CD25

low
; CD4

+
CD25

high
 Treg has a strong immunoregulatory 

role, and should be studied specifically to ascertain the role of CD4
+
CD25

+ 
Treg 

in pregnancy (Saito et al., 2005, Saito et al., 2007).  

 



   41 

1.5.3 Uterine natural killer (uNK) cells 

As part of the innate immune response, natural killer (NK) cells are bone 

marrow-derived lymphocytes that are able to secrete cytokines and kill target 

cells without prior sensitisation. This characteristic gives NK cells important 

roles in tumour immunity, host defence against intracellular pathogens, 

rejection of bone marrow transplants, and the development of acquired 

immunity through the production of specific cytokines (Riley and Yokoyama, 

2008). During the first trimester of human pregnancy, more than 75% of the 

immune cells in the decidua are uterine natural killer (uNK) cells, a subset of NK 

cells with the cell surface phenotype of CD56bright/CD16- (Bulmer et al., 1991, 

Moffett-King, 2002). In the periphery this subset only makes up 10% of the total 

number of peripheral blood NK (pNK) cells (Cooper et al., 2001). CD56bright/CD16- 

NK cells produce abundant cytokines following activation by 

monocytes/macrophages, but have low cytotoxicity. When macrophages 

encounter pathogens as part of the innate immune response, they produce 

monocyte-derived cytokines (monokines) such as IL-12 and IL-15. When activated 

by these monokines, CD56bright/CD16- NK cells produce much more interferon γ 

(IFN-γ) compared with CD56dim NK cell subset. The IFN-γ released by 

CD56bright/CD16- NK cells is requisite for the elimination of the pathogens, it also 

elicits a positive feedback response resulting in further release of monokines 

from the monocytes (Cooper et al., 2001).  

Comparison of uNK and CD56bright/CD16- pNK cells showed differences in the 

expression of 278 genes, the majority of which encode surface proteins 

(Koopman et al., 2003). uNK cells in first trimester gravid uterus have also been 

found to be distinctive from the uNK cells in non-pregnant cycling endometrium 

(Kopcow et al., 2010). uNK cells in pregnancy (decidual NK) preferentially 

express cholesterol 25-hydroxylase, which may affect the synthesis of 

cholesterol and steroid hormones in the decidua (Kopcow et al., 2010). Other 

decidual NK cells specific molecules may have immunomodulatory functions 

during pregnancy, for example CCL4, interleukin 16 and CD9 (Koopman et al., 

2003, Kopcow et al., 2010). These findings suggest uNK are specialised cells, 

playing an important role during pregnancy. 
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The receptors on uNK cells can be classed as activating (for example NKp46, 

NKp44, NKp30, NKG2d, and 2B4) or inhibitory (for example LIR-1, KIR2DL4, and 

CD94/NKG2A) (Bulmer et al., 2010). During pregnancy, the expression of KIR2D 

on uNK cells is upregulated (Verma et al., 1997, Sharkey et al., 2008, Male et 

al., 2011). The KIR2D receptor recognises maternal and fetal HLA-C, which is 

expressed on extravillous trophoblasts and uterine stromal cells when the 

endometrium transforms into decidua in pregnancy (King et al., 2000, Chazara et 

al., 2011, Male et al., 2011).  This pregnancy related transformation biases uNK 

cells towards HLA-C interaction, which appears to regulate trophoblast invasion 

and vascular remodelling (Hanna et al., 2006, Lash et al., 2006, Male et al., 

2011). The pattern of expression of KIR and HLA-C are highly polymorphic. While 

KIR2DL4, KIR3DL2 and KIR3DL3 are present in all individuals, the expression of 

other KIRs is variable (Nowak et al., 2011). Two different haplotypes are 

commonly described: “A” haplotypes consist of seven mostly inhibitory KIR 

genes, while “B” haplotypes have additional activating KIR genes in addition to 

the inhibitory ones; HLA-C is classified to C1 and C2 allotypes based on a 

dimorphism at position 80, each of these allotypes binds to different sets of KIRs 

with different affinities (Male et al., 2011). It is thought that the combination of 

different maternal and fetal KIR and HLA-C variants can affect the depth of 

placentation and the outcome of pregnancy (Hiby et al., 2004, Hiby et al., 2008, 

Hiby et al., 2010, Male et al., 2011). Women with KIR AA genotype have an 

increased risk of adverse pregnancy outcome, particularly if this is combined 

with certain maternal and fetal HLA-C genotypes (Hiby et al., 2010, Nowak et 

al., 2011). 

As mentioned above, it is believed CD94/NKG2A reacts with HLA-G and HLA-E 

leading to the inhibition of uNK cells. Binding of HLA-G to KIR2DL4 on uNK cells 

led to the production of cytokine IFN-γ, which may have roles of controlling the 

invasion of trophoblasts, or modulating inflammation at the fetal-maternal 

interface (Rajagopalan et al., 2001, Hunt et al., 2005, Hu et al., 2006).  

uNK cells also secrete many other different cytokines, some of which were found 

to stimulate (CXCL8 and CXCL10) or inhibit (TNF-α, TGF-β1 and IFN-γ) 

trophoblast invasion (Bulmer et al., 2010). It was demonstrated that differences 

in gestational age affect the pattern of cytokines release from uNK cells (Lash et 

al., 2006, Bulmer et al., 2010). In theory, perhaps the cytokines produced by 
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uNK cells also differ depending on their location. This in turn can control the 

process of trophoblasts invasion up to the precise depth required. In human, 

research of uNK cells in pathological pregnancy has produced inconsistent results 

(Zenclussen et al., 2001, Bulmer et al., 2010). However, there is some evidence 

that an increased abundance of uNK cells in mid-secretory phase endometrium is 

linked to recurrent miscarriage, and is predictive of future miscarriage in 

subsequent pregnancy; severe IUGR and pre-eclampsia have also been associated 

with an alteration in the number of uNK cells in the decidua (Quenby et al., 

1999, Eide et al., 2006, Bulmer et al., 2010).   

1.5.4 Decidual macrophages 

Macrophages are the second most abundant leukocytes in the decidua next to 

uNK cells. They represent 20% of white blood cells in the maternal-fetal 

interface during pregnancy (Lessin et al., 1988). In general, functionally 

polarised macrophages can be broadly grouped as classically activated, M1, or 

alternatively activated, M2 (Mantovani et al., 2004, Rozner et al., 2011). M1 has 

cytotoxic property, and usually responds to inflammatory stimuli; M2 is more 

involved in immunoregulatory processes, and also tissue remodelling and 

regeneration. Studies suggested macrophages in the decidua are distinctive 

subsets of cells, not fitting in the conventional pro-inflammatory (M1) or anti-

inflammatory (M2) macrophages (Houser et al., 2011). Phenotypically, most of 

the decidual macrophages express CD14, with about 70% expresses C-type lectin 

CD209 (DC-SIGN) (Kammerer et al., 2003). CD14 is frequently used as a marker 

for the identification of decidual macrophages (Bulmer et al., 2010). The role of 

macrophages during placentation is not fully understood. Decidual macrophages 

constitutively produce abundant IL-10 and CCL18, suggesting their characteristic 

is closer to M2 (Lidstrom et al., 2003, Gustafsson et al., 2008, Erlebacher, 2013). 

Contradictorily, in vitro they have been shown to induce pro-inflammatory 

cytokines such as IL-6 and TNF-α with LPS stimulation (Li et al., 2009, 

Erlebacher, 2013). One study comparing the cells of Rhesus Monkey showed that 

decidual macrophages release higher level of CCL3 and CCL4, and same level of 

CCL2 and CXCL8 comparing to peripheral blood monocyte-derived macrophages 

(Rozner et al., 2011). Helige et al. revealed decidual macrophages have the 

ability to restrained uNK cells from killing extravillous cytotrophoblasts, 

controlled by a TGF-β dependent mechanism (Helige et al., 2013). There has 
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been some interest in studying the functional roles of the two separate groups of 

decidual macrophages: CD209+CD11CLO macrophages and CD209-CD11CHI 

macrophages (Houser et al., 2011, Erlebacher, 2013). As mentioned above, 

majority (~70%) of the macrophages consists of the earlier group. CD209-CD11CHI 

macrophages are able to process protein antigen, and are believed to be the 

major antigen-presenting cells (APCs) in the decidua (Houser et al., 2011, 

Houser, 2012). They are not known to migrate to the draining lymph nodes of 

the decidua, thus provide the advantage of avoiding immune recognition by T 

cells. The lack of DCs in the decidua suggests that CD209-CD11CHI decidual 

macrophages may be the most important APCs during placentation.   

1.5.5 B7 family T-cell co-stimulatory molecules 

There has been some research interest into the role B7 family of co-stimulatory 

molecules in regulating immune responses in pregnancy. Based on the two-signal 

model of T-cell activation, APCs interact with T cells by presenting the antigen 

associated with MHC, for ligation to the T-cell receptor (TCR) (first signal). A 

second co-stimulatory signalling between these two cells is provided by the co-

stimulatory B7 receptors. This set of receptors regulates the immune response 

by their stimulatory or inhibitory effects upon binding to their ligands. B7-1 

(CD80) and B7-2 (CD86) were expressed by cultured human decidual stromal 

cells, and the cells were able to stimulate allogenic T cells in vitro (Olivares et 

al., 1997). In vivo studies revealed that blockade of these receptors at the time 

of implantation inhibits maternal rejection of the allogenic fetuses in abortion 

prone mouse matings (Jin et al., 2005). At the fetal-maternal interface, 

inhibitory co-stimulatory receptors were also detected. Cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4), a negative regulator of T cell activation was 

detected on human placental fibroblasts throughout gestation (Kaufman et al., 

1999). Paradoxically women with spontaneous miscarriage had a higher 

expression of this molecule. Recurrent miscarriage was associated with a higher 

ratio of expression of CTLA-4 to CD28, another co-stimulatory receptor, 

suggesting a more complex mechanism of action (Wang et al., 2006b). The 

programme death-1 (PD-1) receptor, as its name suggest, has the character of 

initiating inhibitory pathway (Khoury and Sayegh, 2004). Its ligands, PDL1 and 

PDL2, were detected in human trophoblasts and mouse placenta (Petroff et al., 
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2003, Guleria et al., 2005). Blockade of PDL1 signalling was shown to result in 

rejection of allogeneic, but not syngeneic, concepti (Guleria et al., 2005).  

1.5.6 Other modulating pathways 

Complement regulatory proteins such as decay-accelerating factor (DAF, CD55), 

membrane cofactor protein (MCP, CD46) and CD59 were detected in human 

placenta from 6 weeks gestation until term (Holmes et al., 1992). The 

importance of these proteins was shown in the phenotype of mouse pregnancies 

in a study (Xu et al., 2000). Mouse Crry is a complement regulatory protein that 

controls C3 activation, like human DAF and MCP (Xu et al., 2000). Survival of 

Crry-/- mouse embryos was compromised, caused by C3 complement deposition 

resulting in placenta inflammation. The lethality of Crry-/- embryos was rescued 

by breeding to C3-/- phenotype, confirming the pathway of this protein in the 

regulation of fetal-maternal tolerance.  

Other immunomodulatory models being studied in pregnancies include 

macrophage migration inhibitory factor (MIF), a cytokine being expressed at the 

fetal-maternal interface (Arcuri et al., 2001). MIF regulates innate and adaptive 

immunity by affecting the trafficking and behaviour of macrophages and 

lymphocytes (Vigano et al., 2007). During pregnancy, MIF is thought to play a 

role in modulating trophoblastic invasion of the decidua by regulating cytolytic 

activity of NK cells; and secondly by controlling macrophages trafficking in the 

placental bed (Vigano et al., 2007). Elevated level of MIF has been observed in 

patients with pre-eclampsia, supporting the role of aberrant inflammatory 

process involved in this pathological process (Todros et al., 2005). Recurrent 

miscarriage was associated with suppressed level of MIF (Yamada et al., 2003).  

Collectively, these various studies have shown that during implantation, the 

interaction of the decidua with the semi-allogeneic embryo involves complex 

immunological pathways. A healthy immuno-regulatory environment is crucial to 

ensure a successful pregnancy. The evidence strongly suggests the presence of 

specialised leukocytes in the decidua is necessary during implantation. The 

trafficking of leukocytes to the organs in the body is highly dependent on 

chemoattractants. The family of chemokines is one of the most important groups 
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of chemoattractants; this group of proteins, and their receptors are explored in 

more details in the next section.   

1.6 Chemokines and their receptors 

1.6.1 Introduction to chemokines 

Chemokines, a large family of chemotactic cytokines, are small secreted 

proteins (Calderon et al., 2005). They are essential for the chemoattraction and 

activation of leukocytes and other type of cells, with a role to selectively moving 

subsets of these cells into, and between, microanatomical domains within 

tissues (Mackay, 2001). A cysteine motif in the N-terminal region of the mature 

chemokine molecule is highly conserved and adopts distinct arrangements that 

are used to classify chemokines into four subgroups:  C chemokines, CC 

chemokines, CXC chemokines, and CX3C chemokines (Bacon et al., 2002, 

Calderon et al., 2005). In C chemokines there is only one cysteine residue in the 

N-terminal region; in CC chemokines two cysteine residues are directly 

juxtaposed; in CXC chemokines the two cysteine residues are separated by a 

non-conserved amino acid; and in CX3C chemokines three amino acids separate 

the cysteine residues (Fig 1.3) (Zlotnik and Yoshie, 2000, Bacon et al., 2002). 

The cysteine residues are involved in forming disulphide bonds in the mature 

protein that maintain the structure of the protein.  Chemokines act by binding 

to their G protein-coupled receptors on the surface of the target cells. The N-

terminal tail of the chemokine is important in receptor activation, whilst the 

body of the chemokine mediates initial tethering of the chemokine to the 

receptor.  Other determinants, particularly at the C-terminus, are involved in 

mediating interactions with extracellular matrix components, including 

glycosaminoglycans, and this is important for the function of chemokines in vivo. 

A two-step model has been described for the activation of chemokine receptors: 

after the initial binding of the body of the chemokine to the receptor (first 

step), the chemokine undergoes conformational change due to the flexible N-

terminal tail (second step) (Fernandez and Lolis, 2002). The receptor is 

activated by the N-terminus of the chemokine following the conformational 

change, leading to the exchange of bound GDP to GTP in the α subunit of the G 

proteins. Subsequently, the G proteins dissociate from the receptor and trigger a 

cascade of signalling events within the cytoplasm of the cell (Fig 1.4). In relation 
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to leukocyte trafficking, each chemokine attracts a distinctive set of white blood 

cells (Le et al., 2004). Generally CC chemokines attract mononuclear cells, 

eosinophils and basophils; C chemokines attract T cells; CX3CL1 is chemotactic 

to T cells, natural killer cells and monocytes. The CXC group of chemokines are 

further subclassified into ELR
+
 and ELR

-
, depending on the presence of a triplet 

amino aced motif (Glu-Leu-Arg) that precedes the first cysteine residue in the 

primary amino acid sequence of the chemokines. ELR
+ 
CXC chemokines have 

angiogenic property and attract neutrophil, while the ELR
- 
group is angiostatic 

and attracts lymphocytes (Le et al., 2004). CXCL12 is an exception, it is an 

angiogenic ELR
- 
CXC chemokine (Salcedo et al., 1999, Le et al., 2004).  

 

a)                                                                                   b) 

      

 

 

 

c)                                                                                    d) 

 

 

 

   

         β sheet                  α helix                 mucin domain                     disulphide bond 

Figure 1.3 Schematic illustrations of the major secondary structural motifs of the four 
chemokine subfamilies.  a) CX3C chemokine, CX3CL1 can occur as a transmembrane protein as 
shown, or after cleavage forming a soluble form; b) CXC chemokine; CXCL16, similar to CX3CL1 
as described above, is also produced as a transmembrane form that can be cleaved to be released 
as a soluble form; c) CC chemokine; d) C chemokine, depicted with dotted line as structure not fully 
known. Adapted from (Frederick and Clayman, 2001). 
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Figure 1.4 Structure and function of G protein coupled chemokine receptor. Interaction of 
chemokine ligand results in the exchange of GTP for GDP in the α subunit of the G protein. This 
dissociates the heterotrimeric G protein complex from the receptor into an α monomer and a β/γ 
dimer, triggering a cascade of signalling events. Information from (Fernandez and Lolis, 2002). 
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The production, localisation and destruction of chemokines are finely regulated 

by spatial and temporal controls (Comerford et al., 2007, Rodriguez-Sanabria et 

al., 2010). Chemokines are characterised as being either inflammatory or 

homeostatic. Inflammatory chemokines e.g. CCL3 are released in response to 

inflammatory stimulus, and they usually have rapid local effects and are short 

lived (Hannan and Salamonsen, 2007). Pathological conditions such as 

rheumatoid arthritis and airway inflammation have been associated with 

dysfunctional expression of inflammatory chemokines (Fox and Pease, 2005). 

Homeostatic chemokines are expressed constitutively for physiological 

maintenance of cells and tissues. For example CCL19 and CCL21 coordinate 

thymocyte trafficking within the thymus, and also control entry of T cells into, 

and movement within lymph nodes (Charo and Ransohoff, 2006, Teng et al., 

2011). The distinction of chemokines for their inflammatory or homeostatic roles 

is not absolute, as some chemokines can have both characters (Fox and Pease, 

2005), depending on the space and time of their release. The effects of 

chemokines locally and systematically are targeted and precise, but the 

mechanisms of their action can be very complex. In the process of cell 

signalling, chemokines have promiscuous interactions with the target cells; a 

responsive cell will usually have multiple receptors for different chemokines, 

and no chemokine is solely active on one leukocyte population (Borroni et al., 

2008). When required chemokines exert their influence multi-dimensionally, by 

binding to different receptors they selectively recruit specific populations of cell 

types. As a consequence, chemokines are known to play major roles in the 

biological functions of lymphoid trafficking, lymphoid organ development, 

wound healing, Th1/Th2 development, angiogenesis/angiostasis, metastasis, cell 

recruitment, and inflammation (Table 1.2) (Rossi and Zlotnik, 2003). 
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Receptor Chemokine ligands Examples of physiological functions and 

pathological connections 

CCR  

CCR1 CCL3  CCL5  CCL7  CCL14 RA; MS 

CCR2 CCL2  CCL7  CCL8  CCL13  

CCL16 

atherosclerosis; RA; MS; resistance to 

intracellular pathogens; type 2 DM 

CCR3  CCL5  CCL7  CCL8  CCL11  

CCL13 CCL26 CCL28 

allergic asthma & rhinitis 

CCR4 CCL17  CCL22 parasitic infection; graft rejection; T-

cell homing to skin 

CCR5 CCL2  CCL3  CCL4  CCL5  

CCL7  CCL8  CCL11  CCL13 

CCL14  CCL16 

transplant rejection 

CCR6 CCL20 mucosal humoral immunity; allergic 

asthma; intestinal T-cell homing 

CCR7 CCL19  CCL21 transport of T cells & dendritic cells to 

lymph node; antigen presentation; 

cellular immunity; T cells development 

in thymus 

CCR8 CCL1 dendritic-cell migration to lymph node; 

type 2 cellular immunity; granuloma 

formation 

CCR9 CCL25 homing of T cells & IgA+ plasma cells to 

the intestine; IBD; T cells development 

in thymus 

CCR10 CCL27  CCL28 T-cell homing to intestine & skin 

CXCR  

CXCR1 CXCL6  CXCL8 inflammatory lung disease; COPD 

CXCR2 CXCL1  CXCL2  CXCL3  

CXCL5  CXCL6  CXCL8   

inflammatory lung disease; COPD; 

angiogenic for tumour growth; 

improvement of neutrophil homing 

CXCR3-A CXCL9  CXCL10  CXCL11 inflammatory skin disease; MS; 

transplant rejection; T cell homing to 
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virally infected tissue 

CXCR3-B CXCL4  CXCL9  CXCL10  

CXCL11 

angiostatic for tumour growth 

CXCR4 CXCL12 HIV-1 coreceptor (T-cell-tropic); 

tumour metastases; haematopoiesis; 

blood vessels, brain and heart 

development 

CXCR5 CXCL13 formation of B-cell follicles; formation 

of lymph nodes and Peyer’s patches 

CXCR6 CXCL16 inflammatory liver disease; 

atherosclerosis 

CX3CR  

CX3CR1 CX3CL1 atherosclerosis 

XCR  

XCR1 XCL1 RA; IgA nephropathy; tumour response 

Table 1.2 Human chemokine receptors, their ligands, and involvement in physiological and 
pathological processes. RA: rheumatoid arthritis; MS: multiple sclerosis; DM: diabetes mellitus; 
IBD: inflammatory bowel disease; COPD: chronic obstructive pulmonary disease. Adapted from 
(Charo and Ransohoff, 2006), with updated information from (Bachelerie et al., 2014). 
 

1.6.2 Chemokine receptors 

Chemokine receptors are members of the G-protein-coupled receptors (GPCRs) 

superfamily. Their length ranges from 340 to 370 amino acids in general 

(Calderon et al., 2005). They display seven sequences of 20-25 hydrophobic 

residues that form α-helices that span the plasma membrane; an extracellular N-

terminus; three extracellular loops; three intracellular domains; and an 

intracellular C-terminal tail that contains numerous serines and threonines that 

become phosphorylated upon ligand binding to the receptor (Fig 1.4) (Calderon 

et al., 2005, Valles and Domínguez, 2006). As described earlier, binding of 

chemokines leads to dissociation of G proteins from the receptors. The target 

cells, utilising their surface receptors, gather information about the chemokines 

present and respond accordingly. The signalling cascades can result in 
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cytoskeletal reorganisation, integrin activation, and other processes that lead to 

increased cellular adhesion, migration and activation (Calderon et al., 2005). 

Mutational analyses of chemokine receptors have identified the specific regions 

that react with the ligands. It is believed that the chemokine binding and 

receptor activation sites are not the same; binding sites are spread throughout 

the polypeptide (Fernandez and Lolis, 2002). The activity of some chemokine 

receptors is also affected by post-translational modifications, for example 

sulfation of tyrosines in CCR5 is essential for the receptor to function effectively 

(Farzan et al., 1999, Fernandez and Lolis, 2002).  

Chemokine receptors are subdivided into groups depending on the subclass of 

chemokine that they typically bind to. Thus there are 10 CC chemokine 

receptors (CCR), six CXC chemokine receptors (CXCR), and one receptor each for 

CX3CL1 and XCL1, termed CX3CR1 and XCR1, respectively. Chemokines interact 

with their subgroup of receptors with considerable promiscuity.  Most receptors 

bind to multiple ligands and most ligands interact with more than one receptor 

(Zlotnik and Yoshie, 2000, Mackay, 2001, Murphy, 2002). This is particularly 

prominent amongst chemokines and their receptors that are involved in 

controlling leukocyte migration during inflammation. It is thought that this 

brings flexibility and robustness to inflammatory responses.  Pathogens, 

including viruses, bacteria and parasites have evolved ways of trying to subvert 

inflammatory chemokine networks and so receptor/ligand promiscuity may help 

ensure that leukocytes can still be recruited to infected tissues even if some of 

the components of the chemokine network have been subverted. Chemokine 

receptors have been detected on cancer and human immunodeficiency virus 

(HIV), thus they have received considerable attention in the search of 

therapeutic targets for these diseases (Frederick and Clayman, 2001).  

1.6.3 Role of chemokines in diseases 

The expression of chemokines has been studied in various disease models. The 

following sections provide a few examples of the role of chemokines in diseases. 



   53 

1.6.3.1  Inflammatory diseases 

A number of chemokines promote infiltration and activation of specific 

leukocytes into injured or infected tissues in acute and chronic inflammatory 

conditions. This process is necessary for the removal of foreign microbial 

invaders, and also dead cells in would repair (Le et al., 2004). In sepsis, CC 

chemokines, for example CCL3 and CCL5, exert their pro-inflammatory effect by 

regulating organ specific leukocyte influx (Standiford et al., 1995, VanOtteren et 

al., 1995, Le et al., 2004). In mouse, overexpression of CXCL1 in the lung has 

been shown to provide resistance to Klebsiella pneumonia (Tsai et al., 1998). 

CCL2 and CCL22 protect mice from lethality in peritoneal sepsis (Matsukawa et 

al., 1999, Matsukawa et al., 2000). Not all chemokines are protective in 

infection. In the case of fulminant hepatic failure induced by Propionibacterium 

acnes in mice, CCL17 can markedly worsen liver damage by recruiting CCR4+ 

CD4+ T cells (Yoneyama et al., 1998, Le et al., 2004).  Interestingly, 

dysregulation of chemokine expression has also been implicated in a range of 

inflammatory disorders.  

In asthma, it is thought that the airway epithelial cells and macrophages release 

chemokines to attract mainly eosinophils, and also other asthma-related 

leukocytes such as basophils and Th2 lymphocytes (Lukacs, 2001). CCL5, CCL7 

and CCL13 have been detected in the airways of asthmatics (Wang et al., 1996, 

Lamkhioued et al., 2000). These are ligands for CCR3, which is highly expressed 

on eosinophils (Stellato et al., 1997). High levels of CCL2, CCL3 and CCL5 were 

associated with status asthmaticus, a life-threatening form of severe asthma 

(Tillie-Leblond et al., 2000, Lukacs, 2001). In patients with chronic obstructive 

pulmonary disease (COPD), CXCL8 and CXCL10 levels are increased, correlating 

with the infiltration of T cells expressing CXCR3, which is the receptor for 

CXCL10 (Saetta et al., 2002). Neutralisation of CXCL10 seems to depress allergic 

airway inflammation (Medoff et al., 2002).  

In rheumatoid arthritis, high concentration of CXCL1, CXCL5 and CXCL8 were 

detected in the sera, synovial fluids and synovial tissues, believed to be 

responsible for promoting angiogenesis and the recruitment of neutrophils to the 

joints (Szekanecz et al., 2009). Abundant CCL2, CCL3 and CCL5 have also been 

found in the tissues; these chemokines are chemoattractants to monocytes (Le 
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et al., 2004). CXCL12 is also present, and is believed to recruit CXCR4-expressing 

CD4 memory T cells (Nanki et al., 2000). The chemokine may also block T cells 

from activation-induced apoptosis, and also induce the migration of dendritic 

cells from the blood stream into the local area (Le et al., 2004).  

The role of chemokines in other inflammatory diseases has been studied. In 

animal models of acute glomerular or tubule-interstitial disease, CCL2, CCL3, 

CCL4 and CCL5 are expressed only in the diseased compartment of the kidney 

(Anders et al., 2003). Inhibition of CCL2 and CX3CR1 in rats, and also CCL5 in 

mice has been shown to reduce leukocyte infiltration, resulting in the 

improvement of renal function (Lloyd et al., 1997, Wenzel et al., 1997, Feng et 

al., 1999, Anders et al., 2003). In patients with active Crohn’s disease, mucosal 

biopsies showed a correlation of the expression of CXCL8 mRNA with clinical 

disease activity (Stallmach et al., 2004). Experiments using biopsies from 

inflammatory skin diseases including lichen planus and psoriasis demonstrated 

recruitment and maintenance of CXCR3 expressing T cells into the local area, 

regulated by the expression of CXCL9, CXCL10 and CXCL11 (Flier et al., 2001).  

1.6.3.2  Multiple sclerosis (MS) 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder of the 

central nervous system. It is associated with immune cells infiltration which 

consist of 10% CD4
+
 and CD8

+
 T cells, and 90% macrophages derived from 

infiltrating monocytes and resident microglia (Traugott et al., 1983, Charo and 

Ransohoff, 2006). The T cells express CCR5 and CXCR3; CCR7 expression in these 

activated effector cells is down-regulated (Balashov et al., 1999, Kivisakk et al., 

2004). Infiltrating monocytes express CCR1, CCR2 and CCR5 (Simpson et al., 

2000, Trebst et al., 2001). These monocytes down-regulate CCR1 when they 

mature into phagocytic macrophages in the later stages of MS (Trebst et al., 

2001). The ligands for these receptors (CCL2, CCL3, CCL4, CCL5, CCL8 and 

CXCL10) were detected in the lesions of multiple sclerosis (Charo and Ransohoff, 

2006). In animals, the model related to MS is autoimmune encephalomyelitis 

(EAE). This condition has similar pattern of chemokine expression as MS; 

expression of CCL2, CCL3, CCL4, CCL5 and CXCL10 is positively correlates with 

the severity of the disease (Godiska et al., 1995). Neutralising antibodies to 
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some of these chemokines can either inhibit the onset, or attenuate the severity 

of EAE (Karpus and Kennedy, 1997, Liu et al., 2001).  

1.6.3.3  Atherosclerosis 

The pathogenesis of atherosclerosis involves chronic inflammation of arterial 

blood vessels, characterised by accumulation of leukocytes, smooth muscle cells 

and lipids within the vessel wall (Ross, 1993, Reape and Groot, 1999, Calderon et 

al., 2005). The formation of fatty streaks, which consists of lipid-laden 

macrophages (foam cells), is the hallmark of early atherosclerotic lesions (Charo 

and Ransohoff, 2006). The expression of CCL2, CXCL8, CXCL12 and CX3CL1 has 

been associated with atherosclerosis. Expression of CCL2 is increased in human 

atherosclerotic plaques (Nelken et al., 1991). Production of CCL2 in endothelial 

and smooth-muscle cells is induced by the presence of minimally oxidised low-

density lipoprotein (LDL) cholesterol (Nelken et al., 1991). It is believed that 

CCL2 recruits foam cells into the vessel wall (Boring et al., 1998, Charo and 

Ransohoff, 2006). This chemokine has also been shown to enhance vascular 

smooth muscle proliferation in the presence of serotonin, a vasoconstrictor 

released by aggregated platelets (Watanabe et al., 2001). High level of serotonin 

is expressed in the coronary sinus of patients with coronary arterial disease 

(Rubanyl et al., 1987). In addition, CCL2 enhances the production of tissue 

factor by smooth muscle cells; tissue factor initiates the process of coagulation, 

and may play a role in the formation of thrombus and contribute to plaque 

instability (Schecter et al., 1997). In mice, deletion of CCL2 reduces the risk of 

diet-induced atherosclerosis (Gosling et al., 1999). In mice with apolipoprotein E 

deficiency (ApoE-/-) which were fed with a high-fat diet, the deletion of CCR2 

prevented macrophage accumulation and the formation of atherosclerosis 

(Boring et al., 1998). In contrast, the lack of CCR5, which is the receptor for 

CCL3, CCL4 and CCL5, in mice does not change their vulnerability to 

atherosclerosis (Kuziel et al., 2003). In human, the transcription of CCL2 gene is 

enhanced by a polymorphism in the promoter of CCL2, with the substitution of G 

for A at position -2518 (Rovin et al., 1999). Individuals who are homozygous for 

this polymorphism have an increased risk for conorary arterial disease (Szalai et 

al., 2001). CXCL8 is another chemokine with an increased expression in human 

atherosclerotic plaques (Wang et al., 1996).  Similar to CCL2, CXCL8 and its 

receptor CXCR2 have been linked to macrophage recruitment to atherosclerotic 
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lesions (Boisvert et al., 1998). In addition, CXCL8 also induces vascular smooth 

muscle cells proliferation and migration (Yue et al., 1994). CXCL12, on the other 

hand, induces platelet aggregation and activation, and is believed to promote 

thrombus formation during plaque rupture and vessel occlusion (Abi-Younes et 

al., 2000, Calderon et al., 2005). CXCL12 is highly expressed by smooth muscle 

cells, endothelial cells and macrophages in human atherosclerotic plaques (Abi-

Younes et al., 2000). The CX3CL1 chemokine is found in human atherosclerotic 

lesions that contain high numbers of macrophages (Greaves et al., 2001). 

Genetic variation of its receptor CX3CR1 results in a decreased number of CX3CL1 

binding sites on monocytes, fewer calcific atherosclerotic lesions formation and 

confers protection against coronary artery disease (McDermott et al., 2003, 

Calderon et al., 2005). In an animal model, the development of atherosclerosis 

was lower in the double knockout mice (CX3CL1-/- and ApoE-/-) in comparison to 

the ApoE-/- group (Combadiere et al., 2003).  

1.6.3.4  Chemokines in tumour development 

Chemokines regulate tumour growth broadly via the mechanisms of modulating 

angiogenesis and stimulating autocrine growth (Frederick and Clayman, 2001). 

Studies of G protein-coupled receptor (GPCR) encoded by Kaposi’s sarcoma 

herpesvirus (KSHV) support the idea that chemokine is also responsible for 

cellular malignant transformation. KSHV-GPCR is somewhat similar to CXCR2; it 

is constitutively in an activated state, though its reactivity is further enhanced 

by binding to CXCL1 and CXCL8. In mice, overexpression of KSHV-GPCR is 

associated with the development of lesions with features resembling Kaposi’s 

sarcoma (Yang et al., 2000). Constitutive activation can be induced in CXCR2 by 

introducing a point mutation. Cells transfected with this CXCR2 mutant undergo 

malignant changes (Burger et al., 1999).  

CXC chemokines has been shown to play a central role in the dysregulation of 

angiogenesis required for tumour development. Increased expression of ELR 

positive CXC chemokines is discovered in several tumours (Frederick and 

Clayman, 2001, Rosenkilde and Schwartz, 2004). For instance, expression of 

CXCL8 has been shown to enhance the growth of human non-small cell lung 

cancer, metastatic melanoma, ovarian carcinoma and colon carcinoma (Smith et 

al., 1994, Brew et al., 1996, Kunz et al., 1999, Ivarsson et al., 2000); in 
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bronchogenic carcinomas this chemokine enhances tumourigenesis by accounting 

for 40-80% of angiogenesis of the tumour (Rosenkilde and Schwartz, 2004). The 

rate of tumour growth can be attenuated by neutralising antibodies against 

CXCL8 (Smith et al., 1994). Other ELR positive CXC chemokines that promote 

angiogenesis in tumours include CXCL1, CXCL3, CXCL5 and CXCL6 (Luan et al., 

1997, Arenberg et al., 1998, Rosenkilde and Schwartz, 2004). For example, 

overexpression of CXCL1 and CXCL3 following transfection of non-tumourigenic 

mouse melanocytes results in the formation of highly vascular tumours in nude 

mice. Conditioned medium from these mice is shown to be angiogenic, and this 

character can be blocked by neutralising antibodies (Luan et al., 1997). Non-ELR 

CXC chemokines, via their angiostatic effect, has been shown to reduce tumour 

growth. CXCL9 and CXCL10 both have inhibitive effect on tumour growth 

(Arenberg et al., 1996, Addison et al., 2000). CXCL10 inhibits angiogenesis, 

tumour growth and spontaneous metastasis in a model of human non-small cell 

lung cancer (NSCLC) in severe combined immunodeficiency (SCID) mice; 

neutralisation antibodies against this chemokine resulted in enhanced tumour-

derived angiogenic activity (Arenberg et al., 1996).  

Some chemokines act as autocrine growth factors, in which they stimulate 

proliferation by binding to the receptors on the same tumour cells that produce 

them. An example for this includes CXCL1, which by binding to CXCR2 has 

growth stimulating activity on malignant melanoma (Richmond et al., 1988, Luan 

et al., 1997). CXCL8 is also an autocrine growth factor for certain melanomas 

and also tumour cells lines from cancers of the colon, stomach, liver, pancreas 

and skin (Miyamoto et al., 1998, Metzner et al., 1999, Brew et al., 2000, 

Fujisawa et al., 2000, Frederick and Clayman, 2001). Besides their autocrine 

effect, some chemokines are thought to play a role in the regulation of tumour 

metastasis. Chemokine receptors CXCR4 and CCR7 are highly expressed in human 

breast cancer cell lines and malignant breast tumours; their ligands CXCL12 and 

CCL21 have been detected in the metastatic organs of these tumour cells (Muller 

et al., 2001). The chemotactic effect of the CXCL12-CXCR4 reaction has been 

shown in a migratory assay of NSCLC cells (Phillips et al., 2003).  
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1.7 Chemokines and placentation 

The distribution of expression of different chemokines in the endometrium and 

decidua has been found to be distinctive, suggesting their specific roles in the 

process of placentation. The kinetic of chemokine expression changes in 

different phases of the menstrual cycle; this dynamism is believed to play an 

important role in the process of endometrial modifications. In the early luteal 

phase of the menstrual cycle, the endometrium undergoes secretory changes, 

creating an optimal environment for embryo implantation. This transformation is 

induced by the progesterone released in the luteal phase. In human the patterns 

of chemokine expression in the endometrium have been studied. The expression 

of CXCL1 and CXCL14 in the endometrium is higher in the secretory phase in 

comparison to the proliferative phase (Nasu et al., 2001, Mokhtar et al., 2010). 

Endometrial stromal cells have been isolated to study the production of CXCL1; 

the expression of this protein is enhanced by in-vitro decidualisation of the cells 

by progestin treatment (Nasu et al., 2001). The exact role of these chemokines 

in the process of secretory changes of the endometrium is yet to be discovered; 

in vitro experiment showed CXCL14 is a chemoattractant for uterine natural 

killer (uNK) cells, which are the most abundant white blood cells during 

decidualisation (Mokhtar et al., 2010). Besides CXCL1 and CXCL14, elevated 

production of other chemokines such as CCL4, CCL8, CCL14 and CX3CL1 has also 

been detected during the mid-secretory phase of menstrual cycle (Hannan et al., 

2004, Jones et al., 2004, Hannan and Salamonsen, 2007).  

During the late-secretory period, alteration of the chemokine profile has been 

discovered; this mechanism is believed to induce menstruation in the absence of 

embryo implantation. Progesterone withdrawal in mouse is associated with the 

expression of CXCL1, CXCL5 and CXCL14 (Cheng et al., 2007). In human, CCL7, 

CCL21, CCL22, CXCL8 and CX3CL1 are detected close to the spiral arteries in the 

pre-menstrual phase (Jones et al., 2004, Evans and Salamonsen, 2012). Their 

presence at this phase of the menstrual cycle provides the mechanistic insight 

into the initiation of menstruation. It seems like menstruation is an 

inflammatory process induced by white blood cells bearing the receptors to the 

chemokines expressed. These leukocytes are chemoattracted to the 

endometrium in the late-secretory phase.  
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During pregnancy, the distribution of chemokine expression can be broadly 

categorised into 4 groups: diffuse expression originating from decidual stromal 

cells; focal expression from decidual leukocytes or fibroblasts; expression from 

invading cytotrophoblasts; and localised expression in cells lining the uterine 

vessels (Red-Horse et al., 2001, Red-Horse et al., 2004). The different 

chemokines expressed by the cells in the fetal-maternal interface are shown in 

Table 1.3. In placental development, it is believed chemokines act as regulators 

of leukocyte recruitment, trophoblast differentiation and localisation, and also 

angiogenesis. Table 1.4 summarises the chemokine receptor expression by 

human cytotrophoblasts and decidual leukocytes at the fetal-maternal interface. 

Interestingly, in a recent study miscarriage of human pregnancy has been 

associated with a reduction of CXCL8 expression (Pitman et al., 2013). In the in 

vitro experiment of the study, CXCL8 was shown to disrupt vascular smooth 

muscle morphology in a model of spiral artery remodelling. Perhaps lack of 

CXCL8 results in inadequate spiral artery remodelling and subsequently non-

continuation of pregnancy. 
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Chemokine Receptor/s Ligand localisation  

Endometrial 

epithelium 

mid-

secretory  

Decidual 

cells  

Invasive 

cytotrophoblast 

CCL 

CCL2 CCR2 & CCR5 + + NT 

CCL3 CCR1 & CCR5 NT + + 

CCL4 CCR5 + + NT 

CCL5 CCR1, CCR3 & CCR5 NT ± NT 

CCL7 CCR1, CCR2, CCR3 & 

CCR5  

+ + NT 

CCL8 CCR3 & CCR5 + ~ ~ 

CCL11 CCR3 & CCR5 + + NT 

CCL14 CCR1 & CCR5 + + + 

CCL16 CCR1, CCR2 & CCR5 + + NT 

CCL21 CCR7 + + NT 

CCL22 CCR4 + + NT 

CXCL  

CXCL1 CXCR2 + + - 
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CXCL6 CXCR1 & CXCR2 NT + + 

CXCL8 CXCR1 & CXCR2 ± + + 

CXCL9 CXCR3 + NT NT 

CXCL10 CXCR3 NT + NT 

CXCL11 CXCR3 + + NT 

CXCL12 CXCR4 NT NT + 

CXCL14 Unknown + + NT 

CX3CL  

CX3CL1 CX3CR1 + + NT 

Table 1.3 Chemokine expression during human embryo implantation. + present; - not present; 
± present/ not present (conflicting findings); ~ minimal expression; NT not tested. Adapted from 
(Hannan and Salamonsen, 2007), with updated information from (De Oliveira et al., 2010, Mokhtar 
et al., 2010, Pitman et al., 2013, Bachelerie et al., 2014). 
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Chemokine receptor Expression in 

cytotrophoblasts 

Expression in decidual 

leukocytes 

CXCR 

CXCR1 + + 

CXCR2 + + 

CXCR3  +++ 

CXCR4 +++ +++ 

CXCR5  + 

CXCR6 +++ +++ 

CCR 

CCR1  +++ 

CCR2 + +++ 

CCR3 +  

CCR4  + 

CCR5 +++ +++ 

CCR7 +++ +++ 

CCR8  + 
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Table 1.4 Chemokine receptor expression at the fetal-maternal interface. +++ expression 
detected in the majority of samples tested; + expression detected in a minority of samples 
detected. Adapted from (Red-Horse et al., 2004), with updated information on the expression of 
CXCR1 in cytotrophoblasts (Pitman et al., 2013). 
 

1.7.1 Leukocyte recruitment 

As described earlier in section 1.4, the fetal-maternal interface is infiltrated 

with specific leukocytes to aid the process of implantation, and also modulate 

fetal tolerance. There is a striking concordance between the expression of 

chemokines in the human uterus and their corresponding receptors on decidual 

leukocytes, supporting the hypothesis of the recruitment of these white cells by 

the chemokines in the fetal-maternal interface (Red-Horse et al., 2001). In the 

uterine wall in human pregnancy, high RNA level of CX3CR1, CXCR3, CCR1, CCR2, 

CCR5 and CCR7 were detected; these chemokine receptors are typically 

expressed by NK cells, T cells and monocytes. Complementary ligands, CX3CL1, 

CXCL10, CCL2, CCL3, CCL14 and CCL21, were abundantly detected in the 

decidua in a reciprocal pattern (Red-Horse et al., 2001).  

As described above, CD56bright/CD16- natural killer (NK) cells are the most 

abundant leukocytes in the fetal-maternal interface. In the decidua these cells 

are termed uterine NK (uNK) cells, majority of NK cells in the decidua are 

displaying this phenotype; they also have a different gene expression in 

comparison to their counterpart in the peripheral blood (Koopman et al., 2003). 

The origin of uNK cells has long been debated. As mentioned earlier, microarray 

analysis of ~10,000 genes showed significant differences of 278 genes when uNK 

cells in the decidua were compared with peripheral NK cells (Koopman et al., 

2003). This shows that uNK cells during pregnancy are distinctive cells, 

potentially a matured subset from the peripheral NK cells. Alternatively they 

may arise from a different haematopoietic precursor either originated from the 

CX3CR  

CX3CR1 + +++  
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local tissue or homed from the peripheral blood or other organs. Reports from 

several experimental models supported the concept that uNK cells renew from 

local precursor cells in the endometrium. Xenotransplantation of normal human 

endometrial tissue into immunodeficient mice showed that local production of 

lymphocytes and uNK cells in the transplanted endometrial tissue was possible, 

in an environment where precursors for the white blood cells from the 

peripheral were lacking (Matsuura-Sawada et al., 2005). The presence of cells 

with haematopoietic stem cell phenotype in adult human endometrium has also 

been demonstrated (Lynch et al., 2007). On the other hand, it has been 

discovered that human CD56bright/CD16- NK cells express receptors for all the 

chemokines produced by endothelial and stromal cells from the decidua, 

supporting the theory that peripheral NK cells are selectively chemoattracted to 

the endometrium, and further differentiate into uNK (Carlino et al., 2008). 

Potential haematopoietic precursors for uNK cells have also been discovered in 

the thymus, peripheral lymph nodes and blood in human and mouse (Freud et 

al., 2005, van den Heuvel et al., 2005, Vosshenrich et al., 2006). In a mouse 

model, the researchers confirmed the population of uNK cells in the decidua 

were recruited from other sites, rather than expanding locally through 

proliferation (Chantakru et al., 2002). In this experiment, uterine segments from 

NK cell-competent mice were grafted into NK/uNK cell-deficient or wild-type 

mice. uNK cells were only detected in wild-type recipients, concluding that uNK 

cells or their predecessors do not self-renew in the uterus. In another mouse 

model, L-selectin dependent adhesion of peripheral blood CD56bright cells became 

exaggerated during a peri-ovulatory window, potentially improving the migratory 

characteristic of these cells into the endometrium (van den Heuvel et al., 2005). 

The mechanism of NK cells recruitment to the pregnant uterus in mouse is 

probably CXCL14 dependent. In comparison to CXCL14+/- pregnant uteri,    

CXCL14-/- pregnant uteri had significantly decreased uNK cells (Cao et al., 2013). 

In view of the results from the experiments, some authors concluded that in 

human the origin of uNK cells is a mixture of progenitors from locally and also 

the periphery (Kitaya, 2008, Zhang et al., 2011).  

The expression of chemokine receptors in uNK cells differs from the peripheral 

blood NK cells (Carlino et al., 2008). It has been discovered that human 

CD56bright/CD16- uNK cells, in comparison to the CD56bright/CD16- peripheral blood 
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NK cells, typically bear CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, 

and also low levels of CXCR4, the receptor for CXCL12. In migratory assays, 

CD56bright/CD16- peripheral blood NK cells were able to migrate through decidual 

endothelial and stromal cells following chemotaxis of CXCL10, CXCL12 and 

CX3CL1. In contrast, CD56bright/CD16- uNK cells migrated only to the first two, but 

not the last chemoattractant.  

A recent study in mice showed that lack of chemokine expression in decidual 

cells is associated with impaired accumulation of T cells in the feto-maternal 

interface (Nancy et al., 2012). A mouse model was designed, in which wild-type 

females were crossed with males hemizygous for the Act-mOVA transgene to 

generate concepti expressing antigen chicken egg ovalbumin (OVA). OVA was 

expressed by the trophoblasts in direct contact with the fetal-maternal interface 

in as early as embryonic day 7.5 (E7.5). The exposure of maternal tissue to this 

surrogate antigen should in principle lead to priming of the T cells, thus resulting 

in the fetus being susceptible to the attack by antigen specific cytotoxic T 

lymphocytes (CTLs). However, in mice the antigen-specific fetal loss did not 

occur, even when systemic CTL activity was induced in late gestation 

(Erlebacher et al., 2007). In the samples, unexpectedly there was a lack of T cell 

infiltration in the decidual stromal cells. On the contrary, the accumulation of T 

cells in the adjacent myometrium, and endometrium from the interimplantation 

sites was clearly displayed. It was discovered that the expression of T helper 

(Th1) /T cytotoxic (Tc1) chemoattractants (CXCL9, CXCL10 and CCL5) in the 

decidua was low. Epigenetic silencing of these key T cell attracting 

inflammatory chemokine genes, CXCL9, CXCL10 and to an extent CCL5, was 

demonstrated in decidual stromal cells. In the experiment, the evidence of 

promoter accrual of repressive histone marks in these cells was displayed. This 

characteristic was not present in the adjacent myometrial stromal cells from the 

same experimental mouse samples. The findings led to the conclusion that 

during the process of decidualisation of endometrial stromal cells, epigenetic 

modification limits effector T cell trafficking to the feto-maternal interface, 

thus promoting feto-maternal immune tolerance.  

At placentation sites in the first trimester, decidual macrophages, along with 

uNK cells, were found to be in close proximity to invasive trophoblasts, 

indicating these cells migrate towards the trophoblast invasion front (Helige et 
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al., 2013). In an in vitro experiment, Rhesus monkey decidual macrophages and 

primary Rhesus trophoblasts were co-cultured (Rozner et al., 2011). This co-

culturing led to the decrease in the level of CCL3, CCL4 and CXCL8, when it was 

compared to the decidual macrophages being cultured alone. In the migratory 

assay, decidual macrophages migrated towards the trophoblasts. Reciprocally 

the trophoblasts also showed significantly enhanced migration towards the 

decidual macrophages; interestingly there was no migration of the trophoblasts 

towards peripheral-derived macrophages when they were co-cultured with these 

cells. In human, decidual macrophages have elevated expression of CCL2, 

supporting the theory that decidual macrophages recruit blood-borne 

monocytes, which subsequently differentiate into decidual macrophages 

(Gustafsson et al., 2008, Erlebacher, 2013). Some studies suggested that there is 

an exaggerated recruitment of macrophages in pathological pregnancies such as 

pre-eclampsia and miscarriage (Vassiliadou and Bulmer, 1996, Reister et al., 

1999, Lockwood et al., 2006). In pre-eclampsia, it is thought that the expression 

of CCL2 is dysregulated by TNF-α and IL-1β, leading to the elevated number of 

macrophages (Bulmer et al., 2010). In one study, the expression of CCL2, CCL5, 

CXCL2, CXCL3 and CXCL8 was elevated up to 975-fold when cultured first 

trimester human decidual cells were exposed to IL-1β (Huang et al., 2006).  

The recruitment of CD4+CD25+ Treg in mouse is regulated by CCR5. It was shown 

that more than 70% of CD4+CD25+ cells in the gravid uterus and placenta 

expressed CCR5, whereas CCR5 expression of Treg in the spleen, blood and other 

secondary lymphoid organs was less than 30% (Kallikourdis et al., 2007). In the in 

vitro experiment, the authors demonstrated that the majority of the CD4+ cells 

that migrated towards CCL4 expressed CCR5. In one of the mouse models, 

semilymphopenic female recipients lacking CD4+ T cells (F5xRag1-/-) were 

adoptively transferred with wild-type CD25-depleted splenocytes reconstituted 

with CD25+ cells prepared from either CCR5-deficient or wild-type mice. Then 

the females were allogeneically mated with BALB/c males. The average litter 

size (7) and the number of resorbing fetuses (2%) were similar between the 

control and the F5xRag1-/- mice that had received CD25+ cells from wild-type 

mice. In contrary, the percentage of resorbing fetuses (17%) was significantly 

higher in the F5xRag1-/- mice that had received CCR-deficient CD25+ cells. In 

order to follow Treg cells in vivo, the authors designed another experiment 
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where they transduced Treg cells from either wild-type mice or CCR gene 

deletion mutant mice with a retroviral vector carrying a constitutively expressed 

GFP gene, and then adoptively transferred the cells into wild-type females. The 

recipients were allogeneically mated. In the pregnant uteri they found only half 

as many tagged CCR-deficient Treg as their wild-type counterparts. From these 

experiments, the authors concluded that homing of CD4+CD25+ Treg into the 

gravid uterus in mouse is regulated by CCR5, the ligand responsible for this 

chemoattraction can be CCL4.  

Collectively, the above findings show the complex regulation of leukocyte 

recruitment in the decidua during placentation. Human leukocytes, along with 

other cell types in the decidua, not only express chemokine receptors, but also 

release chemokines themselves (Red-Horse et al., 2001). The cellular pathway of 

implantation warrants further exploration in order to gain further understanding 

of this delicate process.   

1.7.2 Trophoblast differentiation and localisation 

Precise regulation of trophoblast outgrowth, invasion, differentiation and 

localisation is required for a successful pregnancy. During the process of 

apposition, the human blastocyst is immersed in the endometrial 

microenvironment dominated with chemokine molecules (Jones et al., 2004). 

Chemokine receptors, for example CCR1, CCR2, CCR3 and CX3CR1 were detected 

in trophoblast cell lines, suggesting the importance of their ligands in influencing 

the character of these cells in vivo (Hannan et al., 2006). In vivo villous 

cytotrophoblasts (VT) undergo differentiation into syncytiotrophoblasts (ST), 

forming a thin multicellular layer in the fetal-maternal interface for efficient 

exchanges. Some other cytotrophoblasts differentiate into interstitial 

extravillous cytotrophoblasts (iEVT) and endovascular extravillous 

cytotrophoblasts (vEVT), for invasion and vascularisation during implantation (Fig 

1.5) (Damsky et al., 1992, Shih et al., 2006, Ahmed et al., 2012). CX3CR1 and 

CCR1 were detected in the human EVT, particularly the vEVT, indicating the 

specific function of the ligands of these receptors in regulating the migration of 

these specialised trophoblasts during placentation (Sato et al., 2003, Hannan et 

al., 2006). Migration assays have been used to demonstrate the migration of 

trophoblasts cell lines in response to CX3CL1, CCL14 and CCL4, and also to 
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endometrial cell conditioned media, which contain these chemokines. 

Neutralising antibodies to CX3CL1 and CCL4 attenuated the migration of these 

cells (Hannan et al., 2006). In a more recent study, invasion of EVT from human 

placental explants was shown to be stimulated by CXCL8. However, trophoblast 

invasion seems to be only partially regulated by this chemokine. Unstimulated 

CD8+ T cells did not alter EVT invasion, despite expressing CXCL8 at a level 

similar to uNK cells. Although the EVT invasion was stimulated by uNK cell 

supernatant, CXCL8 neutralising antibody only partially attenuated the degree of 

invasion (De Oliveira et al., 2010).  

 

Figure 1.5 Villous trophoblasts undergo differentiation during placentation. Schematic 
representation of trophoblast populations surrounding the villous tree. ST= syncytiotrophoblasts; 
VT= villous cytotrophoblasts; CC= cell column; iEVT= interstitial extravillous trophoblasts; vEVT= 
endovascular extravillous trophoblasts. Adapted from (Hannan et al., 2006). 
 

There are also findings showing trophoblasts control the level of chemokines, by 

expressing chemokines themselves, and also regulating the secretion of 

chemokines in the decidua. Human endometrial stromal cells treated with 

conditioned media from human trophoblasts had upregulated expression of 

CXCL1 and CCL8 (Hess et al., 2007). On the other hand, it has also been 

discovered that cytotrophoblasts express CCL3, and that cytotrophoblast 

conditioned medium has chemotactic effect on NK cells, monocytes and T cells 

(Drake et al., 2001). EVT expresses CXCL12, the ligand for CXCR4, which is 
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expressed on CD16- NK cells. CXCL12 is a chemoattractant for these cells (Hanna 

et al., 2003). This ligand-receptor interaction may be responsible for the precise 

localisation of trophoblasts and uNK cells during placentation, it may also induce 

differentiation of progenitors into uNK cells in the decidua.   

Collectively, these findings confirm that chemokines play a central role in the 

regulation of trophoblast invasion and localisation. Alongside with careful 

localisation and activation of the decidual leukocytes, it is likely that successful 

placentation is indispensably dependent on the orchestration of chemokines in 

the decidua.  Chemokines act as an essential communicative tool, aiding the 

crosstalk between trophoblasts, decidual cells and leukocytes. 

1.7.3 Angiogenesis 

Adequate vascularisation is important to ensure successful placentation, which is 

essential to support fetal growth, and prevent pathological conditions like pre-

eclampsia. EVT has the role of shaping and remodelling maternal arteries in the 

decidua during implantation. As described above, these cells preferentially 

express specific chemokine receptors CX3CR1 and CCR1, believed to be involved 

in targeting their migration into specific locations in and around the decidual 

blood vessels. They also secrete CXCL12, attracting CD16- NK cells, a phenotype 

of uNK cells, which in an in vitro study has been shown to work alongside EVT in 

the process of angiogenesis (Zhang et al., 2011).  

The CXC group of chemokines has been discovered to have either angiogenic or 

angiostatic properties, depending on whether the particular molecule contains 

the ELR motif (Strieter et al., 1995). There is considerable interest in 

determining the expression of CXC chemokines in the fetal-maternal interface. 

CXCL11, and its receptor CXCR3 have been detected in human endometrial and 

placental cells (Hirota et al., 2006). In an experiment, the authors developed a 

complex three-dimensional spheroid model for in vitro studies of placental 

vasculogenesis with regard to cell-cell interactions (Baal et al., 2009). The 

expression of CXCL12 and its receptor CXCR4 was studied, as CXCL12/CXCR4 

signalling plays a critical role in the process of embryonic vasculogenesis (Chen 

et al., 2007). In this model enhanced expression of CXCL12 and its receptor 

CXCR4 was detected in the physiological environment with low-oxygen 
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concentrations, in comparison to the pathological environment with high-oxygen 

concentrations. In another study, a trophoblast cell line was discovered to 

express CXCL2, CXCL3, CXCL6 and CXCL8 which are chemokines that bind to 

CXCR1 and CXCR2 receptors. These chemokines are known to stimulate 

angiogenesis.  They were also shown to be chemoattractive to lymphocytes; the 

recruited lymphocytes may have an effect on spiral artery modelling via the 

release of angiogenic factors (Cavanagh et al., 2009). Another CXC chemokine, 

CXCL1 was also detected in human first-trimester trophoblasts; CXCL1 incited 

chemotaxis of NK cells and monocytes (Chen et al., 2010).  

In mouse, CXCR3 deletion has been shown to reduce uNK cells recruitment to the 

decidua basalis, and mesometrial lymphoid aggregate of pregnancy; this was 

associated with abnormal formation of placental spiral arterioles with narrow 

lumen (Xie et al., 2005). CXCR3
-/-

 mice also appeared to have hypocellular 

decidua basalis with increased intercellular space on the implantation sites. In 

another mouse study, treatment of gravid females with a CXCR4-specific 

inhibitor caused impaired homing of CXCR4
+
DC during early gestation, resulting 

in a disorganised decidual vasculature (Barrientos et al., 2013). Later in 

gestation, this group of mice had impaired spiral artery modelling and a 

decrease in fetal survival. The authors showed that in a different model, DC 

depleted mice had similar phenotype of extremely low fetal survival. In this 

model, adoptive transfer of CXCR4
+
DC into the mice rescued the pregnancy, by 

promoting vascular growth in the decidua, and enhancing the availability the 

VEGF. It is thought that VEGF is essential for adequate remodelling of the spiral 

arteries.  

Collectively, these findings confirmed the important role of angiogenic CXCL in 

the process of placental angiogenesis. Angiogenic CXCL can exert a direct effect 

on angiogenesis; by recruiting the leukocytes they also further enhance the 

process to ensure adequate vascularisation of the placenta.  

1.8 Atypical Chemokine Receptors 

Atypical Chemokine Receptors (ACKRs), also known as chemokine decoy 

receptors, share structural similarity with other chemokine receptors. Not unlike 

other receptors, they have high affinity for specific subsets of chemokines. 
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However, upon binding to their ligands there is no activation of signalling 

pathways, as occurs with other G protein coupled receptors. At present four 

ACKRs have been described: DARC, D6, CCX-CKR and CXCR7 (Graham, 2009). The 

lack of signalling through these receptors, is thought to be due to subtle 

alterations in the canonical DRYLAIV motif found in the second intracellular loop 

of the signalling chemokine receptors; interestingly modification of the DKYLEIV 

motif of D6 to DKYLAIV results in weak ligand-induced signalling activity (Nibbs 

et al., 2009).  

The ligands of the ACKRs are shown in Table 1.5. Based on in vitro study, it is 

thought that ACKRs can act as chemokine transporters to regulate chemokine 

abundance and localisation (Nibbs et al., 2003, Mantovani et al., 2006, Graham 

et al., 2012). D6, CXCR7 and CCX-CKR have also been found to have scavenging 

properties; in vitro these molecules have the ability to remove (scavenge) large 

quantities of extracellular ligands (Nibbs et al., 2009).  

D6 is abundantly expressed in the placenta and forms a key focus of the studies 

described in this thesis.  Thus, a more detailed of what is known about this 

molecule, and its potential reproductive function is described in different 

sections later in this chapter. The characteristics of DARC, CCX-CKR and CXCR7 

are summarised below. 
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ACKRs Ligands 

DARC Strong CCL2  CCL5  CCL7  CCL11  CCL13  CCL14  CCL17  CXCL1  CXCL2  

CXCL3  CXCL4  CXCL5  CXCL6  CXCL8  CXCL11 

Weak CCL1  CCL8  CCL16  CCL18  CXCL9  CXCL10  CXCL13 

D6 CCL2  CCL3  CCL3L1  CCL4  CCL5  CCL7  CCL8  CCL11  CCL13  

CCL14  CCL17  CCL22 

CCX-CKR CCL19  CCL21  CCL25 

CXCR7 CXCL11  CXCL12 

Table 1.5 Ligands of atypical chemokine receptors (ACKRs) in human. Data from (Nibbs et al., 
2009, Hansell et al., 2011a). 
 

1.8.1 DARC (Duffy antigen receptor for chemokines) 

DARC is traditionally known as the Duffy antigen. At first it was recognised as 

the entry point on erythrocyte for the malarial parasite Plasmodium Vivax (Rot, 

2005). It is a seven transmembrane spanning receptor that binds inflammatory 

CC and CXC chemokines with high affinity (Gardner et al., 2004, Graham, 2009). 

Structurally DARC has 40% similarity with other chemokine receptors, however it 

lacks the DRY motif in the second intracellular loop (Chaudhuri et al., 1993, 

Graham, 2009). Besides erythrocytes, expression of DARC is detected on vascular 

endothelial cells; the expression of this receptor is upregulated in the presence 

of inflammatory stimuli (Lee et al., 2003a, Comerford et al., 2007). More than 

95% Africans in malaria-endemic regions and 70% of African Americans lack 

expression of DARC in their erythrocytes, probably as a result of selection 

advantage provided by resistance against the infection of Plasmodium Vivax 

(Miller et al., 1976, Mantovani et al., 2006).  

DARC binds promiscuously to 11 pro-inflammatory CC and CXC chemokines; it 

does not interact with homeostatic chemokines (Gardner et al., 2004). It has 

been shown that DARC is probably responsible for the process of transcytosis of 
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chemokines, where the proteins are internalised and transported across 

endothelial cells, and are presented on the tips of lumimal microvilli (Middleton 

et al., 1997, Hub and Rot, 1998, Nibbs et al., 2003). It has also been proposed 

that the presence of DARC on erythrocytes allow the cells to act as a ‘sink’ or 

reservoir for chemokines, regulating the amount of free pro-inflammatory 

chemokines available for binding with other receptors (Darbonne et al., 1991, 

Hadley and Peiper, 1997). DARC-deficient mice phenotypically have normal 

development and haematological parameters; in a model of endotoxaemia they 

show increased granulocytic infiltration in the lungs and liver (Dawson et al., 

2000). In one experiment, mice where engineered to overexpress DARC on 

endothelial cells (Du et al., 2002). These mice showed reduced angiogenic 

responses to certain CXC chemokines, suggesting that DARC may be limiting the 

chemokines available for binding with CXCR2 on the endothelial cells. In a 

prostate cancer experiment using transgenic model, DARC-/- mice demonstrated 

greater tumour growth; they were unable to clear angiogenic chemokines 

produced by the cancer cells (Shen et al., 2006). This result is interesting, as 

African-American men, majority lacking DARC in the erythrocytes, has increased 

occurrence of mortality from prostate cancer (Lentsch, 2002). Wang et al. 

demonstrated that high DARC expression in breast cancer cell lines could limit 

tumour growth and metastasis (Wang et al., 2006a). Contradictorily, in a mouse 

model the level of injected CCL2 fell more rapidly in the plasma of DARC-/- mice 

(Fukuma et al., 2003). Similar pattern was noted in human, where erythrocyte 

DARC negative individuals have reduced CCL2 plasma levels (Jilma-Stohlawetz et 

al., 2001). Moreover, different experiments in DARC mouse model assessing the 

response of neutrophil infiltration following LPS administration produced 

conflicting results (Dawson et al., 2000, Lee et al., 2003b). Collectively these 

show the complexity of the regulation of pro-inflammatory chemokines by DARC.  

1.8.2 CCX-CKR (Chemocentryx chemokine receptor) 

CCX-CKR binds to CCL19, CCL21 and CCL25, homeostatic chemokines which 

involve in the regulation of leukocyte and thymocyte migration, and also 

formation of secondary lymphoid organs by interacting with CCR7 or CCR9 

(Gosling et al., 2000). There is no signalling event when the ligands bind to CCX-

CKR, thus CCX-CKR has been classified as an ACKR. This is due to the alteration 

of the DRY motif in the second intracellular loop of CCX-CKR to DRYVAVTKV in 
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human and DRYWACTKA in mouse (Comerford et al., 2007). CCX-CKR appears to 

be able to target their ligands for intracellular degradation. Unlike CCR7, there 

is no ligand-induced desensitisation in CCX-CKR. One study showed that CCX-CKR 

is able to continuously internalise and degrade large quantity of CCL19 over time 

(Comerford et al., 2006). 

Initial assessment of the expression of CCX-CKR showed that this receptor is 

broadly expressed, for example in the haemopoietic cells, lymphoid tissues, and 

also the heart, kidneys and lungs (Gosling et al., 2000). In a separate study using 

CCX-CKR-EGFP heterozygous knock-in mice, CCX-CKR protein was not detected 

in the tissues previously shown, instead it was expressed in thymic epithelial 

cells, and also potentially in the lymph vessels of the gut, stromal cells in the 

lymph nodes and epidermis (Heinzel et al., 2007). In the same study, the authors 

demonstrated the role of CCX-CKR in modulating adaptive immunity, by 

affecting the transport of DC to skin-draining lymph nodes, and homing of 

embryonic thymic precursors to the thymic anlage. The effect of CCX-CKR on the 

thymus has been studied; in one study CCX-CKR deficient mice were found to 

have CCL25 dysregulation, and also marked differences in the localisation and 

abundance of thymocyte subsets (Bunting et al., 2013). However, this finding 

was not consistently demonstrated in another study (Heinzel et al., 2007). It has 

also been discovered that aged CCX-CKR knock out mice spontaneously 

developed autoimmune disease resembling Sjogren’s Syndrome (Bunting et al., 

2013).  

1.8.3 CXCR7 

CXCR7 is another ACKR that has the ability to degrade chemokines (Nibbs and 

Graham, 2013). Its ligands are CXCL11 and CXCL12 (Burns et al., 2006). Similar 

to other ACKRs this molecule lacks the typical canonical DRY motif (Nibbs and 

Graham, 2013). In mouse studies, this receptor was initially only detected in the 

fetus (Graham, 2009). During fetal development, high expression of CXCR7 was 

detected in cardiac microvessels, indicating its involvement in cardiac 

development. CXCR7 deficiency led to ventricular septal defect and 

malformation of the heart valves, resulting in an increased risk of mortality in 

perinatal period and adulthood (Sierro et al., 2007). The role of CXCR7 in 

primitive vertebrate development has been studied using zebrafish; it was shown 
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that this receptor has an important role in the coordination of primordial germ 

cell migration in the lateral line primordium (Valentin et al., 2007).  

Expression of CXCR7 in adult mice has been detected recently by using 

CXCR7GFP/+ reporter mice (Cruz-Orengo et al., 2011a, Cruz-Orengo et al., 2011b). 

CXCR7 expression was detected in the brain endothelial cells. CXCR7 antagonists 

inhibited CXCL12 internalisation by the receptor, leading to an increase in 

abluminal CXCL12 level. It was opined that this mechanism prevents CXCR4+ 

leukocytes from preferentially migrating into the parenchyma. As a result, 

administration of the antagonists prophylactically and therapeutically decreased 

EAE disease activity induced by encephalogenic T cells. The benefit of CXCR7 

antagonists is also shown in a collagen-induced arthritis model in mice 

(Watanabe et al., 2010). Administration of antagonists for CXCR7 improved the 

severity of arthritis; the group of mice that received antagonists had less blood 

vessel formation in the inflamed joints. Interestingly, in human CXCR7+ vessels 

have been detected in patients with rheumatoid arthritis. These findings 

strongly suggest CXCR7 has an angiogenic effect in arthritis. 

CXCR7 immunoreactivity has been detected on tumour cells and their 

vasculature in a number of human malignancies. In vitro studies showed that 

CXCR7 can regulate angiogenesis and also tumour cell proliferation and 

migration, thus may affect the survival and metastasis of cancers (Nibbs and 

Graham, 2013). CXCR7 exerts its regulatory mechanism by interacting with its 

ligand CXCL11 and CXCL12, and also by collaborating with CXCR4.  

1.9 D6-mediated chemokine scavenging: evidence from 
in vitro and in vivo studies   

D6 is related to chemokine receptors CCR1-5 structurally and binds to many 

inflammatory CC chemokines as shown above. However unlike the other CCRs, 

upon binding to the chemokine ligands it does not trigger a cellular signalling 

pathway e.g. calcium ion fluxes (Martinez de la Torre et al., 2007), instead D6 

scavenges the ligands bound. It achieves this by constitutively travelling to and 

from the cell surface via early and recycling endosomes, internalising 

chemokines bound when it is at the cell surface (Weber et al., 2004). Unlike 

other chemokine receptors, there is no need for signalling induced by the ligands 
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for D6 to traffic into the cells. This mechanism has the advantage of avoiding 

receptor desensitisation and surface receptor depletion. The endosomes in the 

cells have very low pH; D6 is particularly sensitive to this change of acidity, and 

rapidly releases its bound ligands for retaining in the cells, which subsequently 

are degraded in the lysosomes. After releasing the ligands in the endosomes, D6 

constitutively finds its path to the cell surface for performing its role in further 

chemokine scavenging. Over time, D6 removes a large amount of ligands from 

the extracellular compartment. This effect regulates the level of CC 

chemokines, and thus controls inflammation locally and systemically.  

Different immune-regulatory in vitro and in vivo models have been used for the 

study of D6. In vivo studies have shown D6 KO mice have elevated amount of 

bioavailable chemokines, associated with over exuberant inflammatory 

responses (Jamieson et al., 2005). These findings were consistent with the 

results from in vitro experiments. Induction of skin inflammation led to a 

transient inflammatory reaction in wild type mice. On the contrary, mice lacking 

D6 have been shown to be associated with exacerbated inflammatory response, 

with close similarity to human psoriasis (Jamieson et al., 2005, Martinez de la 

Torre et al., 2005, Singh et al., 2012). This was associated with increased 

abundance of chemokines in the cutaneous sites and draining lymph nodes 

(Jamieson et al., 2005, Martinez de la Torre et al., 2005). In humans with 

psoriasis, skin biopsies showed expression of D6 was markedly elevated in 

uninvolved skin more than 8cm distant from the psoriatic plaques. In the 

psoriatic lesional and peri-lesional skin, there was a big drop in D6 expression 

(Singh et al., 2012). In an inflammation-driven skin tumourigenesis model, D6 KO 

mice were shown to have an increased susceptibility to invasive squamous cell 

carcinoma, associated with T cell and mast cell recruitment, which are known to 

contribute to skin tumours in the mouse model used (Nibbs et al., 2007). In 

humans, recently D6 has been discovered to have protective effect against 

disease progression of breast cancer. D6 expression in breast cancer is inversely 

correlated to lymph node metastasis and clinical stages, but positively 

correlated to disease-free survival rate (Wu et al., 2008). 

In a colitis mouse model, D6 deficiency has been associated with an increased 

susceptibility to colitis-associated cancer in the distal colon (Vetrano et al., 

2010). In a different study, D6 expression was discovered to be preventing 
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insulitis, and thus is protective against diabetes in mice (Lin et al., 2011). In this 

instance D6 inhibited the autoreactivity of lymphocytes, and prevented the 

migration of T and B lymphocytes into the pancreas. D6 also limited acute toxic 

liver injury in vivo, as lack of D6 was associated with increased protein levels of 

intrahepatic inflammatory chemokines CCL2, CCL3 and CCL5, leading to a higher 

amount of CD45+ T and NK cells infiltration and inflammation (Berres et al., 

2009). The role of D6 in altering the susceptibility of mouse to colitis is less well 

understood, with two different mouse studies producing contradictory results 

(Bordon et al., 2009, Vetrano et al., 2010).  

Expression of D6 was detected in infarcted myocardium from human and mouse 

(Cochain et al., 2012). In mice with myocardial infarction, D6 deficiency 

increased the likelihood of cardiac rupture, and functional analysis showed 

features of adverse cardiac remodelling with left ventricle dilation and reduce 

ejection fraction. In the ischaemic hearts of these animals, there were increased 

levels of CCL2 and CCL3, with infarcts showing increased pathogenic neutrophils 

and monocytes infiltrations (Cochain et al., 2012). In a pulmonary model, low 

dose intranasal introduction of Mycobacterium tuberculosis into D6 KO mice, at a 

dosage similar to control WT mice, rapidly killed the former animal group. This 

was associated with abnormal elevation of chemokine ligands of D6 and 

cytokines, and also increased infiltrations of macrophages, dendritic cells, CD4 

and CD8 T lymphocytes in the broncho-alveolar lavage locally and serum 

systematically. High levels of cytokines, tumour necrosis factor α, interleukin 1β 

and interferon γ, were discovered in the mice with liver and kidney damage, 

resulting in failure of those organs (Di Liberto et al., 2008). In a different study, 

allergen ovalbumin was injected into the peritoneum of the mice. Experiments 

on the airway and lung parenchyma showed increased levels of CCL17 and 

CCL22, and high abundance of dendritic cells, T cells and eosinophils in D6 KO 

mice. Interestingly, these D6 KO mice showed attenuated airway reactivity to 

methacholine (Whitehead et al., 2007).  

The role of D6 in lymphatic endothelium has been studied in in vitro and in vivo 

experiments. In human, D6 was detected in the lymphatic endothelial cells 

(LECs) (Nibbs et al., 2001). The receptor removes inflammatory CC-chemokines 

from lymphatic surfaces, minimises interaction of inflammatory leukocytes in 

this area, and therefore enhances chemokine-driven recirculation of leukocytes 
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through the lymphatics.  In mice, D6 deficiency led to elevated CC chemokine 

ligands adherence to LECs, inducing inappropriate perilymphatic accumulation of 

inflammatory leukocytes, which caused lymphatic congestion at peripheral 

inflamed sites and draining lymph nodes. This subsequently resulted in impaired 

movement of antigen-presenting cells and fluid from inflamed sites to lymph 

nodes (Lee et al., 2011).  

Besides the action of chemokine scavenging, there is evidence that D6 can 

regulate the immune system by other mechanisms. In the process of the 

resolution of acute inflammation in humans and rodents, the expression of D6 

was detected in apoptotic inflammatory polymorphonuclear (PMN) cells 

(Pashover-Schallinger et al., 2012). In a mouse ex vivo model, the receptor 

improved the interactions of the PMN cells with macrophages, controlling their 

efferocytosis and cytokine secretion. These interactions were thought to 

enhance the immune silencing phenotype of the macrophages, leading to the 

resolution of inflammation. The immune silencing effect of macrophages was 

attenuated, when D6 deficient PMN cells were used to interact with these 

phagocytes (Pashover-Schallinger et al., 2012). In contrast to the above findings 

showing the immuno-regulatory character of D6, a couple of models showed D6 

deficiency offered protection from disorders with pathologically elevated 

immune response in certain context. In one of the mouse model, D6 KO mice had 

increased number of Ly6Chigh monocytes in the circulation and secondary 

lymphoid tissues, regulated in a CCR2-dependent manner. This group of 

monocytes derived from D6 KO mice had enhanced immunosuppressive activity, 

inhibited the development of adaptive immune responses, and offered some 

protection against graft-versus-host-disease (Savino et al., 2012). In an 

experimental autoimmune encephalomyelitis (EAE) mouse model, D6 KO mice 

were unexpectedly resistant to the induction of EAE following the introduction 

of myelin oligodendroglial glycoprotein (MOG) peptide. There were reduced 

spinal cord inflammation and demyelination in the D6 KO mice. In the adoptive 

transfer experiment, MOG-primed D6+/- T cells equally triggered the disease in 

all the recipient groups regardless of their D6 expression status, whereas cells 

from D6 KO mice transferred the disease poorly even in D6+/- recipients (Liu et 

al., 2006). 
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In summary, the findings above confirmed the important role of D6 as a 

chemokine scavenger in the immune regulatory process. D6 also has an effect on 

other immune cells; in specific models these cells behave differently in the 

presence of D6.   

1.10 D6 in reproductive immunology 

In humans, in early studies D6 mRNA was found to be highly expressed in the 

placenta. In fact, the expression in the placenta was discovered to be by far the 

highest, compared to other solid tissues being studied (heart, brain, thymus, 

ovary, muscle, liver, kidney, spleen, lung) (Nibbs et al., 1997b). Apart from 

lymphatic endothelial cells and some leukocyte populations (Nibbs et al., 2001, 

McKimmie et al., 2008), D6 protein was highly abundant in first trimester and 

term placenta according to immunohistochemistry using a validated D6-specific 

antibody (Martinez de la Torre et al., 2007, Madigan et al., 2010). 

Immunostaining of other gestational tissues also showed exuberant expression of 

D6 in the decidua and membranes throughout pregnancy (Madigan et al., 2010).  

D6 was found to be expressed exclusively by trophoblast-derived cells in the 

placenta, this was confirmed by staining of the adjacent sections with the 

trophoblast marker anti-cytokeratin 7 antibody (Madigan et al., 2010). In the 

chorionic villi from the first trimester placenta, D6 was detected in 

cytotrophoblasts and the syncytiotrophoblast layer. In the third trimester, the 

syncytium lining the chorionic villi was strongly stained. D6 protein was apical, 

clustering towards the surface of the villi where they were in contact with 

maternal blood. There was no consistent difference in the intensity of D6 

immunoreactivity across samples from different gestational ages. In the 

gestational membranes of pregnancies between 32 and 41 weeks, the staining of 

D6 was abundant in the chorion laeve, separating the maternal decidua from the 

fetal amnion which themselves were D6 negative. On these trophoblast-derived 

cells, D6 protein was mostly localised inside the cells in a manner not unlike D6 

transfected cell lines. From here, it is thought that D6 constitutively traffics to 

and from the cell surface to mediate chemokine scavenging.  In the decidua, 

extravillous trophoblasts were expressing D6 when they were invading into the 

maternal decidua. This staining suggested that D6 plays a specific role in 

gestational tissues, delineating the fetal-maternal interface where the tissues 
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from mother and baby meet each other. By scavenging the surrounding 

chemokines, D6 probably was prepared to protect the fetal tissues from the 

attack of maternal chemokine-responsive leukocytes. It is also postulated that 

D6 may play an important role in controlling the action of trophoblasts, directing 

their movement during implantation, and affecting the formation of the 

placenta and wellbeing of the fetus. The expression of D6 was consistently 

strong in all the placental histological sections; in our laboratory placentas have 

been routinely used as a standard positive control for D6 expression studies. In 

pathological pregnancies (hydatidiform mole and choriocarcinoma), D6 

expression is also retained by trophoblasts (Madigan et al., 2010). As before, this 

was determined by immunostaining of the adjacent sections with anti-

cytokeratin 7 antibody. Similar to the normal placentas, D6 was strongly stained 

in organised trophoblast layers in a polarised manner in all the samples. In 

hydatidiform mole, D6 immunoreactivity was confined to the area of 

circumferential excess lined with trophoblasts; the staining of the swollen 

mucoid stromal core was negative. In choriocarcinomas, large patches of 

trophoblasts showed weak immunostaining, lacking the distinctive pattern seen 

in the villi and chorion in normal pregnancies.  

At term, the chorionic villi in the placenta have an estimated surface area of 

about 10m2, and blood flow through the placenta is about 600-700ml/minute 

(Wang and Zhao, 2010). With the blood flowing over a large surface with 

abundant D6, it is not surprising if D6 can affect the systemic levels of its ligands 

in the maternal blood stream. In the placenta, high expression of chemokines 

(CCL2 and CCL3) has been shown by quantitative PCR. One would expect the 

protein level of these chemokines to be elevated during pregnancy. On the 

contrary, study of D6 ligands CCL2, CCL3 and CCL11 showed that the levels in 

the plasma of pregnant women are reduced in comparison to non-pregnant 

controls. The levels were reduced in first trimester, and continued to drop 

further in term pregnancies. There was no difference in the levels of non-D6 

ligand CXCL10 between non-pregnant, first trimester and term samples. 

Interestingly in women with pre-eclampsia, which is associated with an 

exaggerated inflammatory response, the level of CXCL10 was significantly raised 

in pregnancy, whereas the levels of D6-binding chemokines were still subdued. 

Quantitative PCR of term placentas showed that the expression of D6 was 
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significantly higher in women with pre-eclampsia compared with controls. This 

shows the potential effectiveness of D6 as a scavenger, controlling the levels of 

D6-binding chemokines systematically, may prevent over exuberant 

inflammation in pregnancy (Madigan et al., 2010). In pathological condition like 

pre-eclampsia, D6 expression in the placenta may be increased to cope with a 

more pro-inflammatory environment.   

The cellular in vitro studies nearest to reflecting the function of D6 in 

trophoblasts was performed using the choriocarcinoma cell line BeWo (Martinez 

de la Torre et al., 2007, Madigan et al., 2010). BeWo cells express D6 

endogenously; prior to these studies, the detailed understanding of D6 structure 

and function has been primarily from experiments on transfected cell lines. 

Staining of D6 protein on BeWo cells showed D6 was predominantly found in 

intracellular vesicles, and was not detectable on the cell surface (Madigan et 

al., 2010). In these cells, D6 specifically internalised and degraded labelled 

CCL3, one of its ligands. The effect can be competed with other non-labelled D6 

ligands, whereas non-D6 ligands had no competitive effect. Using siRNA, D6 was 

successfully knocked down, and the scavenging of labelled CCL3 was abolished. 

In the same study, the authors incubated term placental pieces with 

radiolabelled chemokines. They found the syncytiotrophoblast layer lining the 

chorionic villi positively interacted with radiolabelled CCL2, a D6 ligand, but not 

CXCL8, a non-D6 ligand. This provided further confirmation that trophoblasts in 

situ express D6 and specifically bind to its chemokine ligands.  

In the mouse placenta, the expression of D6 mRNA is roughly the same as adult 

liver, and at a level much lower than the lungs (Madigan et al., 2010). In 

contrast to humans, where the placenta has the highest expression of D6, in the 

mouse placenta D6 is less abundantly expressed. However, the level of overall 

D6 expression in the mouse uterus still may be very high during mouse 

pregnancy, due to the multiparity nature of mouse pregnancy. Alternatively, one 

could postulate D6 expression in mouse placenta need not be as high, as the 

invasion of mouse trophoblasts into the decidua is not as drastic as the human 

placenta. The expression of D6 in the mouse placenta is fetal derived, as D6 

deficient embryos, growing in heterozygous females (D6 HET) expressing D6, 

showed negative D6 detection in the placenta (Madigan et al., 2010). This 
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supports previous human findings of D6 being expressed exclusively by 

trophoblasts, which originate from the fetus.  

In animal in vivo studies, D6 has been shown to play an important role in 

protecting the fetuses. D6 deficiency has been associated with adverse fetal 

outcomes. A defect in D6 expression was discovered in placental attachment 

sites in porcine endometrium from arresting fetuses. In healthy littermates no 

defect was detected (Wessels et al., 2007). In one key study, wild-type (WT) and 

D6-deficient mothers carrying D6-deficient pups where challenged with 

lipopolysaccharide (LPS) or antiphospholipid autoantibodies (aPL) purified from 

patients with antiphospholipid syndrome (APS) (Martinez de la Torre et al., 

2007). LPS is an endotoxin that triggers inflammatory response associated with 

adverse pregnancy outcome, for example miscarriage, or preterm labour. 

Patients with APS have higher incidence of thrombosis, fetal loss, IUGR and pre-

eclampsia. aPL-containing Ig fractions, when injected into pregnant mice, 

caused placental inflammation, necrosis and increased the rate of fetal loss; 

injection of IgG fractions from healthy women had no effect on pregnancy 

outcome (Martinez de la Torre et al., 2007).  

Comparing WT and D6 deficient mice, LPS injection resulted in a significantly 

higher rate of fetal loss in the D6 deficient group. The increase in fetal loss 

could be completely reversed by the introduction of antibodies that blocked 

inflammatory CC chemokines. D6 binding chemokines were elevated in the 

placentas and sera of pregnant D6 deficient mice compared to WT counterparts. 

There were no differences in the levels of non-D6 binding chemokines between 

the two groups. Study of leukocyte infiltration revealed the number of 

macrophages and T lymphocytes were higher in the D6 deficient placenta, 

whereas the level of neutrophil was similar between the two groups. This finding 

led to a model in which D6 deficiency resulted in higher abundance of D6-binding 

CC chemokines, which selectively attracted macrophages and T lymphocytes. D6 

deficiency also led to enhance aPL-induced fetal loss, confirming the role of D6 

in protecting the fetus from inflammatory challenge (Martinez de la Torre et al., 

2007).  

In an unchallenged environment in normal mouse breeding, D6 is currently 

thought to be dispensable for successful pregnancy for both syngeneic and 
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semiallogeneic embryos. However, embryo transfer in mice was carried out to 

study the role of placental D6 in an unchallenged, but fully allogeneic 

environment (Madigan et al., 2010). In fully allogeneic pseudo-pregnant wild 

type female recipients, the proportion of abnormal fetuses was higher in the 

transferred D6 deficient littermates, in comparison to their D6 expressing 

siblings. This difference in phenotype was not observed when the embryos were 

transferred into syngeneic recipients. In the abnormal pups, the placentas were 

often structurally defective, and infiltrated with macrophages and T 

lymphocytes. Interestingly, recent work from the Nibbs/Nelson lab suggests that 

D6 deficiency in DBA-1 mice may lead to increased syngeneic pup loss. This 

observation forms the basis for one arm of my study.  

1.11 Experimental design 

Drawing on these published data, it was hypothesised that by scavenging 

chemokines, and regulating trophoblast responses to chemokines, D6 plays a role 

in placental function to limit fetal loss, stillbirth, and neonatal death. 

Two specific areas of experimentation form the focus of the work. One arm of 

the study aims to investigate the molecular function of D6 in primary human 

trophoblasts; the second examines the basis for reproductive defects observed in 

D6 deficient DBA-1 mice. Collectively these studies aim to provide novel insights 

into the role of placental D6. 

1.11.1 Molecular characterisation of D6 function in primary 
human trophoblasts 

The function of D6 on primary cells has not been explored. The overall intention 

for this part of the research was to examine D6 expression, distribution and 

function in primary human trophoblast cultures from term placentas. Firstly, 

expression of D6 mRNA will be assessed by real time PCR. Following that the 

protein expression and localisation of D6 will be assessed by various protein 

detection techniques including flow cytometry, immunofluorescent staining and 

Western blotting. Transfected and untransfected HEK293 cell lines will be used 

as my controls. 
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To reveal the functional activities of D6, chemokine uptake assays will be 

carried out using fluorescent D6-binding chemokine CCL2. The uptake of this 

chemokine will be tracked by flow cytometry and immunofluorescence 

techniques. Known D6 ligands CCL2, CCL3L1, CCL4, CCL5, CCL7, CCL8, CCL11, 

CCL13, CCL17 and CCL22 will be used as competitive chemokines (Hansell et al., 

2011a). CCL24 and CCL26 are not known to be D6 ligands, and will be used as 

negative controls. Once again HEK293 cells will be used as controls.  

It is thought that the main task of the D6 molecule is to act as a scavenger. This 

characteristic will be studied by chemokine scavenging assays. This will be done 

by tracking the removal and destruction of biotinylated CCL2, over time, from 

media bathing cultured trophoblasts. The levels of biotinylated CCL2 at the 

various time points will be assessed by quantitative (relative) Western blot. 

Unlabelled CCL3L1 (D6 ligand) and CCL26 (non-D6 ligand) will be used as 

competitive chemokines. 

Collectively these experiments will determine, for the first time, whether D6 is 

expressed in primary human trophoblasts in culture, and if so whether this D6 

can mediate the uptake and scavenging of chemokines. This will provide novel, 

physiologically-significant insight into D6 function at the feto-maternal 

interface, and aid the interpretation of subsequent in vivo experiments.  

1.11.2 Impact of D6 deficiency on placental structure, 
chemokine expression and leukocyte abundance 

The trends of increased perinatal deaths, and decreased pup weaned/litter were 

observed in D6 deficient mice in comparison to their WT counterparts in DBA-1 

background. A complete and expanding dataset will be collected from Central 

Research Facility, University of Glasgow to confirm this finding. To ascertain the 

wellbeing of the pups postnatally, perinatal deaths and weight changes during 

neonatal period will be followed up for a cohort of mice.  

It was hypothesised that D6 deficient mice on this genetic background have 

fundamental defects in the structure of the placenta.  To test this, a detailed 

temporal comparative analysis of placentas from WT and D6 deficient DBA-1 

mice will be performed. First, in close collaboration with Professor Burton 



   85 

(University of Cambridge), a detailed stereological analysis of the placenta 

across gestation at E10, E14 and E18 will be carried out. Wet weights of 

placentas and whole fetuses will also be recorded. These analyses will provide 

detailed comparative insight into the placentas from these animals, allowing the 

study of the differences in the three dimensional (3D) volumes of the functional 

zones in the placentas. The impact of the differences in these placental 

functional volumes to the fetal growth (weight) will be explored. If there are 

differences in the placentas between WT and D6 deficient group, heterozygous 

DBA-1 mice will be used to ascertain whether the observed phenotype is due to 

either fetal or maternal effect of D6 deficiency.  

Alongside this structural analysis, the impact of D6 deficiency on local and 

systemic chemokine expression and abundance, and also infiltration of white 

blood cells will be examined. Real time PCR will be used to compare the 

expression of the genes of D6-binding chemokines CCL2, CCL3, CCL4, CCL5, 

CCL11, CCL12, CCL17 and CCL22 in the placentas of WT and D6 deficient mice. 

Depending on the results of the expressions of these chemokines, markers of 

relevant white blood cell infiltration will be assessed using real time PCR on the 

placentas. To study the systemic effect of D6 scavenging property, Luminex 

multiplex protein assay will be performed on the serum of the pregnant mice to 

assess the differences in the levels of D6 binding chemokines between WT and 

D6 deficient group. 

These animal experiments will define indispensable roles for D6 in controlling 

placental structure, function and leukocyte content; identify the principal 

chemokines involved in leukocyte/trophoblast regulation in this tissue; and 

provide insight into how D6 regulates the local and systemic abundance of these 

chemokines. Along with the human trophoblast work above, this study will 

provide new insight into the role of D6 in the placenta.   
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2 Materials and Methods 
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2.1 In vitro study (primary human trophoblasts) 

2.1.1 Trophoblast isolation and culture 

The isolation and purification of trophoblasts from term placentas was 

performed using a modification of Kliman’s technique (Kliman et al., 1986).  

2.1.1.1  Preparation of reagents 

Cytomedium and Percoll solutions were prepared before obtaining the placentas 

for these experiments. The cytomedium was made up of medium 199 

(Invitrogen, Life Technologies, Paisley, UK) supplemented with 10% heat 

inactivated fetal bovine serum (Sigma-Aldrich, Dorset, UK) and 1% 

antibiotic/antimycotic solution (Gibco, Life Technologies, Paisley, UK). Different 

concentrations of Percoll solutions were made up in 50ml centrifuge tubes and 

stored in 4
o
C (Table 2.1). The different concentrations of Percoll were layered in 

three Kimber round bottom glass centrifuge 30ml tubes (Fisher Scientific UK Ltd, 

Loughborough, UK) to form a gradient of different densities, for separating 

different cell types from a placenta and allowing the identification of 

trophoblast layers (Table 2.2). To prevent disruption of the layers, the three 

tubes of Percoll gradient were kept at 4
o
C until the purification step when it was 

used in the procedure.  
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Concentration 

(%) 

Percoll 

volume (ml) 

Sterile water 

volume (ml) 

10x HBSS 

volume (ml) 

Total volume 

(ml) 

70 35 10 5 50 

60 30 15 5 50 

55 27.5 17.5 5 50 

50 25 20 5 50 

45 22.5 22.5 5 50 

40 20 25 5 50 

35 17.5 27.5 5 50 

30 15 30 5 50 

20 10 35 5 50 

10 5 40 5 50 

Table 2.1 Solutions for different Percoll concentrations. The stock Percoll solution was from 
Sigma-Aldrich, Dorset, UK; the 10x HBSS was from Invitrogen, Life Technologies, Paisley, UK.  
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Percoll gradient 

Top     

         2ml     10% 

         2ml     20% 

         4ml     30% 

--------------------------mark tube 

         2ml     35% 

         2ml     40% 

         2ml     45% 

         2ml     50% 

         2ml     55% 

--------------------------mark tube 

         2ml     60% 

         3ml     70% 

 

Table 2.2 Layering of the Percoll gradient for separating trophoblasts from other cells in the 
placenta. Trophoblasts typically layered out in between the two marked lines in the glass tubes 
after centrifugation. 
 

2.1.1.2  Collection and dissection of placenta 

The study was approved by the West of Scotland Research Ethics Committee 5 

(REC reference number: 10/S1001/14). Term placentas were collected from 

patients having elective Caesarean sections, with written consent obtained. In a 

primary cell culture sterile cabinet, the umbilical cord and the edge of the 

placenta were removed. Vertical dissections of the placenta were performed, 

cutting the placenta into two to three inches long cubes. The placenta was 

dissected in such a way that the cubes contained both the chorionic and basal 

surfaces for better orientation. The cubes were washed in sterile PBS twice. The 

basal plate from the cubes was removed for access to healthy tissues within the 

cubes. Following that, villous material was dissected into smaller pieces, about 

5mm
3
 in size. Areas that were pink were preferable, as overall these tissues 

typically gave a higher purity of trophoblasts. Tissues with visible blood vessels, 

fibrous area, and clotted blood were avoided. A small amount of PBS was needed 

to moisten the tissue. These steps were continued until about 45g of tissue was 

obtained. Then it was rinsed through gauze with PBS. Following this the tissue 

was minced with fine scissors, removing remaining visible vessels.  
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2.1.1.3  Isolation of cells 

The placental fragment underwent three steps of digestion with HBSS 

(Invitrogen, Life Technologies, Paisley, UK), 2.5% trypsin (Invitrogen, Life 

Technologies, Paisley, UK) and DNAse (Roche Diagnostics Corporation, 

Indianapolis, IN, USA). Multiple digestion steps are required for adequate yield of 

trophoblasts; this method has been performed in most experiments of 

trophoblast isolation in the past (Kliman et al., 1986, Le Bellego et al., 2009). 

The HBSS and trypsin were pre-warmed and maintained at 37oC. Firstly, placenta 

was placed in a 1L conical flask, incubated with 150ml of HBSS, 15ml of trypsin 

and 76200Kunitz units of DNAse for 30 minutes, on a shaker at 100rpm at 37oC. 

After the incubation period, 100ml of the supernatant was removed. 25ml of the 

supernatant was layered over 5ml of heat inactivated newborn bovine serum 

(Invitrogen, Life Technologies, Paisley, UK) in a centrifuge tube; the trypsin in 

the cell suspension would be neutralised when it was centrifuged through the 

newborn bovine serum. The process was repeated until four tubes were obtained 

using up all the 100ml supernatant collected. For the second digestion, 100ml of 

HBSS, 10ml of trypsin and 50800Kunitz units of DNAse were added into the 

conical flask containing the explants for similar incubation as the first step. 

100ml of the supernatant was collected for the same treatment as before. In the 

last digestion, 75ml of HBSS, 7.5ml of trypsin, and 38100 Kunitz units of DNAse 

were used. After the incubation, as much supernatant was pipetted and layered 

onto newborn bovine serum as before. While removing the supernatant, care 

was taken not to include the solid materials in the flask. Typically 100-150ml of 

supernatant was collected in the third digestion. The layered supernatant with 

newborn bovine serum was centrifuged at relative centrifugal force of 500 

gravities (RCF) for 10 minutes. After centrifugation, the supernatant, including 

the white fluffy layer at the bottom, was decanted. About 1ml of DMEM was 

added to each pellet. The pellets were disrupted, and pooled into a centrifuge 

tube. The combined cell solution was topped up with DMEM to about 50ml in 

total to fill up the centrifuge tube. It was centrifuged at 500RCF for 10 minutes. 

The supernatant was discarded after centrifugation.  
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2.1.1.4  Purifying and maintaining the trophoblasts 

Following the above steps, 6ml of DMEM was added to the pellet. 3ml of cell 

solution was layered at the top of each of the first two tubes of Percoll gradient 

prepared. The remaining cell solution left was layered at the top of the third 

tube of Percoll gradient. The Percoll/cell layers were centrifuged for 30 minutes 

at 1000RCF, with the brake off.   

After centrifugation, different cells and tissues were localised in different 

Percoll layers. Bands of trophoblasts, with densities between 1.028 and 

1.062g/ml, could be visually identified between the two lines marked at 35% and 

55% Percoll concentrations (Fig 2.1). The lower density layers above the marked 

lines consist of mostly debris, Hofbauer cells and fibroblasts. Below the marked 

lines, the higher density cells were mostly white cells (Blaschitz et al., 2000). 

Tissues and cells of the layers above the trophoblast layers were removed 

carefully, with the aim to remove as many non-trophoblastic cells as possible 

while not disrupting the trophoblast layers. Then the trophoblasts were 

collected, leaving the other layers at the bottom of the tubes. The trophoblasts 

collected were pooled together in a centrifuge tube and topped up with 

cytomedium to the rim, with the total volume of at least 45ml. The trophoblast 

solution was centrifuged at 500RCF for 10 minutes. The pellet was resuspended 

with 1ml of cytomedium. Cells were counted and plated out according to the 

needs of the subsequent experiments to be performed on the cells. The number 

of cells was counted manually under the light microscope using the Neubauer 

haemocytometer. The number of cells in the four corner and the middle 

1/25mm squares was counted. The count from these five squares was divided by 

0.02 to give the total number of cells in a cubic millimetre. The number of cells 

in a millilitre (cells/ml), the same as 1 cubic centimetre, was obtained by 

multiplying the last number of count by 1000. Generally, for maintaining the 

trophoblasts, they were plated on 90mm petri dishes. The maximum cell count 

plated out was 13 x 106 cells in each dish.13ml of cytomedium was needed to 

cover the culture surface of each dish. The cells were incubated in a humidified 

atmosphere of 5% CO2/95% air with standard level of 20% O2 at 37oC. 3ml of 

cytomedium was added into each dish daily for supplementation of the 

cytomedium. For the reporting of the in vitro experiments using the 
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trophoblasts, the day of the placenta collection and trophoblast isolation will be 

described as day 0.    

 

Figure 2.1 Percoll gradient showing the two lines marked at 35% and 55% layers, and the 
bands of trophoblasts in between these two lines.  
 

2.1.2 Assessment of purity of trophoblasts by flow cytometry 

An assessment of the purity of the trophoblasts was performed on day 1 and 2 

after the cells were isolated and plated. Cytokeratin 7 and vimentin, for their 

positive and negative staining respectively, are reliable intracellular markers to 

assess the purity of trophoblasts (Maldonado-Estrada et al., 2004). Flow 

cytometry has been to shown to be highly objective and quantitative for this 

assessment (Pötgens et al., 2001). For the preparation of this experiment, 

initially the supernatant from the cells in the petri dish was collected into a 

centrifuge tube. 10ml of Non-enzymatic Cell Dissociation Solution (Sigma-

Aldrich, Dorset, UK) was added into the dish and incubated at 37
o
C for 10 

minutes. Then the surface of the dish was gently scraped with a cell scraper to 

dislodge adherent cells. This suspension of adherent cells was pooled together 

with the supernatant collected earlier containing floating cells. The combined 

cell suspension was centrifuged for five minutes at 500RCF. The supernatant was 

decanted. 1ml of cytomedium was added, the number of cells was counted 

manually as described in section 2.1.1.4. Single colour flow cytometry was used 

to analyse the staining of the cells. The cells were aliquoted into three wells at 

3 x 10
5
 cells/well on a round bottom 96-well plate, for staining with cytokeratin 

7, vimentin and isotype primary antibodies separately (Table 2.3). The cells 

were incubated with human FcR blocking reagent (Miltenyi Biotech Ltd, Bisley, 

Trophoblast layers 
between marked lines 



   93 

UK), and permeabilised with Cytofix fixation buffer (BD, Franklin Lakes, NJ, 

USA). After the washing steps with Cytoperm permeabilisation buffer (BD, 

Franklin Lakes, NJ, USA), they were incubated in primary antibodies, at 

2.5µg/ml in 100µl/well of permeabilisation buffer. Only one primary antibody 

was used in each well, as this is a mono-colour flow cytometry analysis. The cells 

were washed again, and incubated further with secondary antibody (Table 2.3), 

with the volume of 1µl in 50µl of permeabilisation buffer. After more washing 

steps, the cells were suspended in FACS buffer before analyses in BD FACSCalibur 

flow cytometer (BD, Franklin Lakes, NJ, USA). Before the experiment samples 

were being fed through, the machine was set up for optimal data acquisition. 

The mode of the detectors was set as linear for the forward and side scatters, 

and log for the other parameters that measure the fluorescent intensities. The 

voltage and amp gain were adjusted so that the populations of interest were on 

scale in the dot plots. Then each sample was fed into the machine, left running 

until the fluid in the FACS tube was at the lowest level of the probe before it 

was manually stopped; this method allowed the maximal number of cells in each 

sample to be measured. Data were analysed using Flowjo 8.7.1 (Tree Star, 

Ashland, OR, USA). A cell was defined as being positive for a particular protein if 

it was brighter than 95% of the cells that had been treated with the isotype 

control antibody.  
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Antibody Primary/ secondary Specific/ isotype Supplier 

Monoclonal mouse 

anti-cytokeratin 7; 

Clone: OV-TL 12/30; 

Isotype: IgG1, κ  

Primary Specific Dako UK Ltd, 

Ely, UK 

Monoclonal mouse 

anti-vimentin; Clone: 

V9; Isotype: IgG1, κ 

Primary Specific Dako UK Ltd, 

Ely, UK 

IgG1, κ isotype 

control from murine 

myeloma 

Primary Isotype Sigma-

Aldrich, 

Dorset, UK 

Polyclonal rabbit anti-

mouse Ig (FITC) 

Secondary N/A Dako UK Ltd, 

Ely, UK 

Table 2.3 Antibodies used for assessment of purity of trophoblasts. FITC, fluorescein 
isothiocyanate. 
 

2.1.3 HEK293 cells maintenance and passage 

Wild type HEK293 and HEK293 stably transfected with D6 were maintained for 

use as control cells in the experiments. They were passaged every two to five 

days. The cytomedium for wild type HEK293 was made up of DMEM with sodium 

pyruvate (Gibco, Life Technologies, Paisley, UK), 1% of penicillin-streptomycin 

100x solution (Gibco, Life Technologies, Paisley, UK), 10% of non heat-

inactivated South American origin fetal bovine serum (Gibco, Life Technologies, 

Paisley, UK) and 1% of L-Glutamine solution (Sigma-Aldrich, Dorset, UK). For 

HEK293 transfected with D6, the cytomedium was the same as above but 

supplemented with G418 at 1mg/ml. The D6-expression plasmid transfected into 

HEK293 cells included a G418 resistant gene, so inclusion of G418 in the medium 

ensures that only cells containing the plasmid will grow thereby preventing loss 

of D6 expression.  
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2.1.4 Assessment of D6 mRNA expression 

On the day of isolation (day 0), trophoblasts were plated out on 24-well plate at 

1 x 106 trophoblasts per well in 0.5ml cytomedium. Cells in different wells were 

collected at day 1, 2 and 3 of culture for assessment of mRNA expression. For 

each RNA sample, four wells of cells from the same placenta were collected. 

The cytomedium in the four wells was removed. The wells were washed with 

0.5ml of cytomedium. After removing this cytomedium, 1ml of TRIzol Reagent 

(Invitrogen, Life Technologies, Paisley, UK) was added into the first well. The 

well was gently scraped to dislodge adherent cells. After pipetting up and down 

several times, the cell suspension was moved to the next well. Similar processes 

were repeated, until all the 4 wells were treated. The cell suspension was stored 

in a labelled cryogenic tube for freezing at -80oC. D6 transfected and 

untransfected HEK293 cells were used as control for comparison of D6 

expression. During HEK293 cell passaging, for each RNA sample 4 x 106 cells were 

collected, centrifuged, treated with 1ml of TRIzol Reagent (Invitrogen, Life 

Technologies, Paisley, UK) and frozen at -80oC. 

The samples were passed through 25G needle on a syringe for 10 times. RNA 

extraction was carried out using TRIzol Reagent (Invitrogen, Life Technologies, 

Paisley, UK) and chloroform (Sigma-Aldrich, Dorset, UK). The extracted RNA was 

precipitated using isopropanol (VWR, Lutterworth, UK) and stored in 75% 

ethanol. Then it was solubilised in nuclease free water. The RNA concentration 

was determined using NanoDrop ND-1000 spectrophotometer (Thermo Scientific, 

Wilmington, DE, USA). The samples were stored in -80oC.  

The RNA underwent DNAse treatment using a DNAse treatment and removal kit 

(DNA-free, Ambion, Life Technologies, Paisley, UK). Following that, cDNA 

syntheses were carried out using High Capacity cDNA Reverse Transcription Kits 

(Applied Biosystems, Life Technologies, Paisley, UK), plus superasin (Ambion, 

Life Technologies, Paisley, UK) according to the manufacturer’s instructions. 

Expression of cytokeratin 7, D6 and CCR2 was measured using the synthesised 

cDNA. Each biological sample was analysed in duplicate. cDNA, 1x Taqman 

Universal PCR Mastermix (Applied Biosystems, Life Technologies, Paisley, UK), 

appropriate probe (Table 2.4), and nuclease free water were added for the 
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samples for loading into the 7900HT Fast Real-Time PCR System machine 

(Applied Biosystems, Life Technologies, Paisley, UK). The incubation condition 

was 95oC for 10 minutes, and then 40 cycles of 95oC for 15 seconds and 60oC for 

one minute. Data were analysed using 7900HT Sequence Detection Systems v2.3 

(Applied Biosystems, Life Technologies, Paisley, UK). The final results were 

formulated using 2-ΔC
T. CT of the endogenous control gene, TOP-1, for each 

sample was subtracted from CT of the target gene; this difference was depicted 

as ΔCT. ΔCT was normalised by antilog to base 2, and subsequently multiplied by 

100 for displaying the final results in percentages (Goldman and Shalev, 2006). 

Target gene (human) Product ID 

D6 Hs00174299_m1 
 

CCR2 Hs00356601_m1 
 

Cytokeratin 7 Hs00818825_m1 

GAPDH (*endogenous control) 4310884E 

TOP-1 (*endogenous control) Hs00243257_m1 

B-actin (*endogenous control) 4310881E 

18s rRNA (*endogenous control) 4310893E 

Table 2.4 Target specific and endogenous control human probes used for mRNA expression 
measurement. All products were from Applied Biosystems, Life Technologies, Paisley, UK. 
 

2.1.5 Assessment of D6 protein expression 

In-house monoclonal human D6 antibody is available in our laboratory in Glasgow 

Biomedical Research Centre at University of Glasgow. The details of the 

generation and characterisation of this antibody has been described previously 

(Nibbs et al., 2001). The antibody has been used in many subsequent 

publications (Weber et al., 2004, Madigan et al., 2010).   
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2.1.5.1  Western blotting 

To prepare the reagents for trophoblast lysis, one tablet of Complete Protease 

Inhibitor Cocktail (Roche Diagnostics Corporation, Indianapolis, IN, USA) was 

dissolved in 10ml of CelLytic MT Cell Lysis Reagent (Sigma-Aldrich, Dorset, UK). 

The lysis reagent was stored in -20
o
C. 

Protein lysates were collected from two placentas, each at different day of 

trophoblast culture. For the first placenta, lysates were prepared at day 3 of 

culture. From the petri dish, the culture surface was gently scraped with a cell 

scraper. The cells were collected, centrifuged and resuspended in cytomedium. 

Six samples of lysate were prepared from this placenta; they were aliquoted into 

microcentrifuge tubes at 1 x 10
6
 cells each. The samples were centrifuged at 

450RCF for 5 minutes, at room temperature. The supernatant was discarded, 

1ml of PBS was added to each tube. After this washing step, the tubes were 

centrifuged as before and the supernatant was discarded. Following this, the cell 

pellets were resuspended in 250µl of lysis reagent. Then the cell suspensions 

were vortexed, and left on the shaker on ice for 15 minutes. After the 

incubation, the cells were passed through a 21G needle on a syringe for ~30 

times. The tubes were centrifuged for 15 minutes at 15000RCF, at 4
o
C. Finally 

the lysates were collected into new microcentrifuge tubes and stored in -80
o
C.  

The lysates were prepared on day 2 of culture for the second placenta. For this 

placenta floating and adherent cells where prepared separately for different 

sets of lysates. The culture media were pooled into a centrifuge tube for the 

collection of suspension cells. For the adherent cells, each plate was incubated 

with 10ml of Non-enzymatic Cell Dissociation Solution (Sigma-Aldrich, Dorset, 

UK) for 10 minutes at 37
o
C, gently scraped and the resulting cell suspension 

pooled into a tube. 2.585 x 10
6
 of suspending cells and 8.46 x 10

5 
of adherent 

cells were collected. The process of lysate preparation was the same as the first 

placenta. For each type of cells, 125µl of lysis reagent was used.  

In the Western Blotting, each protein sample was prepared, comprising 20µl of 

the lysate, 5µl of NuPAGE LDS Sample Buffer (Life Technologies, Paisley, UK), 

and 2.5µl of NuPAGE Sample Reducing Agent (Life Technologies, Paisley, UK). 

Then the samples were incubated at room temperature for 10 minutes; to 
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prevent D6 aggregation they were not boiled (Blackburn et al., 2004). The 

process of electrophoresis of the protein was preformed on NuPAGE 4-12% Bis-

Tris Gel 1.0mm, 10 well precast minigels, on the Novex NuPAGE Sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) Gel System (Life 

Technologies). First the wells were washed and filled up with NuPAGE MES SDS 

Running Buffer (Life Technologies, Paisley, UK). The gel was secured in the 

system, followed by loading of the samples into the wells. The chambers were 

filled with the running buffer until the wells were fully covered, electrophoresis 

was run at 200V for 52 minutes. This process was followed by transferring of the 

protein onto a Whatman nitrocellulose membrane. The gel was sandwiched with 

the nitrocellulose membrane, carefully rolling out excess air bubbles, and 

cushioned with filter papers and sponges. The sandwich was placed in the 

system and covered with the transfer buffer (NuPAGE Transfer Buffer (Life 

Technologies, Paisley, UK) + 10% methanol). The transferring process was run for 

1 hour at 30V. After this, the nitrocellulose membrane was rinsed with distilled 

water, and incubated in 20ml of non-fat milk (5% Marvel in PBS-0.05% Tween 20 

(PBST)) as a blocking agent overnight at 4oC. After the incubation, the 

nitrocellulose membrane was cut into two parts, for staining separately with in-

house D6 antibody (1:10 in 10ml PBST), and cytokeratin 7 antibody (1:1000 in 

10ml PBST) (Table 2.3). The staining of cytokeratin 7 was to confirm of the 

presence of trophoblast cells. This incubation of primary antibodies took 2 hours 

on the shaker at room temperature. After this, the nitrocellulose membrane was 

washed with PBST for three times, at room temperature for five minutes in each 

time, before incubating with the detection antibody (1:10,000 in 10ml PBST) for 

60 minutes at room temperature. The detection antibody was anti-mouse IgG 

HRP linked whole antibody from sheep (GE Healthcare, Little Chalfont Bucks, 

UK). After this incubation, the membrane was washed for another three times 

with PBST, covered with 2ml total of Supersignal West Femto Stable Peroxide 

Buffer and Supersignal West Femto Luminal/ Enhancer Solution at 1:1 ratio, and 

exposed to the X-ray film. Then the film was developed by Kodak X-Omat 

processor (Kodak, Rochester, NY, USA). 
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2.1.5.2  Flow cytometry 

2.1.5.2.1 Intracellular staining 
 
The process of mono-colour intracellular staining for D6 is similar to the staining 

for the assessment of trophoblast purity, as described above. Two different anti 

human D6 antibodies (mouse and rabbit) were used for the detection of 

intracellular D6. For the mouse anti-D6 antibody, the primary and secondary 

antibodies were 2.5µg/ml of in-house mouse anti-human D6 antibody and 

fluorescein conjugated goat F(ab’)2 anti-mouse IgG (R&D Systems Inc., 

Minneapolis, MN, USA) respectively. Mouse IgG2a (Dako UK Ltd, Ely, UK) was 

used as isotype control. For the staining using rabbit antibody, the primary and 

secondary antibodies were 2.5µg/ml of rabbit anti human D6 antibody (Sigma-

Aldrich) and fluorescein conjugated goat anti-rabbit IgG (R&D Systems Inc., 

Minneapolis, MN, USA) respectively. The isotype control was rabbit IgG (Dako UK 

Ltd, Ely, UK). Untransfected HEK293 cells were used as control cells.  

2.1.5.2.2 Surface staining 
 
The process of surface staining was largely similar to the description above, 

except that the cells were not permeabilised. Following plating on 96-well round 

bottomed plate, the cells were resuspended in 50µl/well in FACS buffer (PBS + 

3% fetal bovine serum + 2mM EDTA + 0.01% NaN3) containing 2µl human FcR 

blocking reagent (Miltenyi Biotech Ltd, Bisley, UK). After 10 minutes of 

incubation, primary in house mouse D6 or isotype antibodies at 2.5µg/ml in 

100µl/well FACS buffer were introduced. The cells were incubated for 20 

minutes on ice, and washed twice with FACS buffer before further incubation 

with 1:50 secondary antibody in 50µl/well FACS buffer. The cells had two further 

FACS buffer washes, and were then resuspended in 350µl of FACS buffer 

containing 7µl/well of 7-AAD staining solution (BD, Franklin Lakes, NJ, USA) for 

analysis in BD FACSCalibur. 7-AAD staining was used for dead cell exclusion. 

Compensation was adjusted for the dual colour staining, where live dot plot was 

set up with both channels of 7-AAD and fluorescein shown on the axes on the 

same graph. While running one of the samples prepared for compensation, with 

only 7-AAD or fluorescein staining, the compensatory controllers were calibrated 

until the overlapping or underlapping of the spectrum was corrected. The 

calibration process was repeated using the other untested (7-AAD or fluorescein) 
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sample, to compensate for the overlapping or underlapping on the opposite 

channel. Transfected and untransfected HEK293 cells were used as control cells.   

2.1.5.3  Immunofluorescence 

Trophoblasts, or transfected or untransfected HEK293 cells were seeded on 8-

well chamber slides, at 2.4 x 104 cells/well with 400µl of corresponding media. 

Cells were cultured at 37oC, 5% CO2. During the process of optimisation, 

different concentration of primary and secondary antibodies were used. The 

primary in-house mouse D6 and isotype antibodies were the same as those used 

for flow cytometry; the secondary antibody used was Alexa Fluor 488 F(ab’)2 

Fragment of Goat Anti-Mouse IgG (Invitrogen, Life Technologies, Paisley, UK) or 

FITC conjugated Polyclonal rabbit anti-mouse Ig (DAKO UK Ltd, Ely, UK). 

Immunofluorescent staining was performed on day 2 of cell culture, at room 

temperature. The media were removed, and the cells washed with PBS. This was 

followed by ten minutes of fixation with 3.5% paraformaldehyde. The cells were 

washed twice with PBS, then incubated in 50mM NH4Cl for 20 minutes to quench 

autofluorescence of unreacted aldehyde groups. After another step of washing 

with PBS, the cells were incubated with PGS (PBS, 0.2% gelatine, 0.05% saponin) 

for 30 minutes. Following that, PGS containing primary anti-D6 or isotype 

antibodies was introduced. After one hour of incubation, there were two further 

washes with PGS. Secondary antibody in PGS was introduced, and the cells were 

protected from light, incubated for 30 minutes. After three washes with PGS, 

the cells were incubated in 3.5% paraformaldehyde for a further 10 minutes. 

Finally the supernatant was removed, and the slides mounted with VECTASHIELD 

mounting medium with DAPI (Vector Laboratories Inc., Burlingame, CA, USA). 

Nail varnish was applied to secure the coverslips. The slides were viewed under 

fluorescent microscope Zeiss Imager.M2, the images were processed using 

Axiovision Rel 4.8 software. 

2.1.6 Chemokine uptake assay 

2.1.6.1  Immunofluorescence 

Trophoblasts and HEK293 cells were incubated with the chemokines before 

staining with D6 antibodies. Cells were cultured for two days on 8-well chambers 

slides as described in immunofluorescence protocol above (section 2.1.5.3). The 
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media were replaced, with fresh medium containing 10nM synthetic human 

AlexaFluor647 CCL2 (Almac Group Ltd, Craigavon, UK) (CCL2AF647) +/- 

competition of 100nM of CCL2 (Peprotech, Rocky Hill, NJ, USA) into relevant 

wells. The cells were incubated for one hour in cell culture incubator at 37oC, 5% 

CO2. After the incubation period, the cells underwent fixation and staining for D6 

protein detection as previously described. 

2.1.6.2  Flow cytometry 

Day 1 trophoblasts on petri dishes were collected and seeded on 96-well round 

bottom plate at 3 x 105 cells/well as described in previous flow cytometry 

protocols. The cells were centrifuged, and resuspended in 50µl of cytomedium 

containing 25nM CCL2AF647, with or without 10-fold excess (250nM) of unlabelled 

competitor chemokines (Peprotech, Rocky Hill, NJ, USA). They were incubated 

at 37oC, 5% CO2 for one hour. This was followed by two washes with FACS buffer, 

and subsequent resuspension of the cells in 350µl FACS buffer containing 7µl 7-

AAD staining solution (BD, Franklin Lakes, NJ, USA) for dead cell exclusion, 

before analysis in BD FACSCalibur. Compensation was adjusted for the two 

colours. Controls were performed using the HEK293 cells.  

2.1.7  Chemokine scavenging assay with quantitation by Western 
Blot 

2.1.7.1  Optimisation process 

 
100ng/µl of synthetic human biotinylated CCL2 (Almac Group Ltd, Craigavon, 

UK) (bioCCL2) was prepared, by reconstituting 10µg of the lyophilised chemokine 

with PBS. The chemokine underwent serial dilutions, to allow the determination 

of the minimum concentration detectable by Western blot. During the 

optimisation process for the Western blotting, different blocking agents, timings 

of blocking, enhanced chemiluminescent reagents and chemokine dilution 

reagents were tried to obtain the best signal to noise ratio on the films. The 

optimised protocol is outlined in the next section. 
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2.1.7.2  Chemokine scavenging assay on trophoblasts 

1.5 x 106 cells/well of primary trophoblasts were seeded on 6-well plates in  

1.5ml of cytomedium after cell isolation and purification from placentas and 

cultured at 37oC, 5% CO2 overnight. The next morning, at day 1 of culture, 0.75µl 

of 100ng/µl bioCCL2 was added into all the wells, resulting in a final 

concentration of 5nM. In relevant wells, 7.5µl of 100ng/µl CCL3L1 (Peprotech, 

Rocky Hill, NJ, USA) was added as competitor chemokine, to a final 

concentration (50nM) that was 10x greater than the bioCCL2. Immediately after 

the chemokines had been introduced into the wells, 60µl of medium was 

collected from each well; these samples were the 0-hour samples. Following this 

the trophoblasts were returned to the incubator. At set time points, a series of 

aliquots of medium were collected from all the wells, up to 72 hours after 

chemokine addition. 

Western blotting was performed on the samples from different time points to 

determine the level of bioCCL2 in the supernatants. Comparisons were made 

between samples with and without the competitor CCL3L1 chemokine. Wells 

without cells were used as negative control. The experiment was also repeated 

using non-D6 ligand CCL26 as the competitive chemokine. For the preparation of 

each sample, 20µl of harvested medium was added with 5µl Nupage LDS sample 

buffer (Invitrogen, Life Technologies, Paisley, UK) and 2.5µl 1x Nupage sample 

reducing agent (Invitrogen, Life Technologies, Paisley, UK). Samples were boiled 

at 70oC for 10 minutes, and loaded onto the wells of 10-well precast minigels, 

for the process of electrophoresis and transferring of the protein on the Novex 

NuPAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Gel System (Invitrogen, Life Technologies, Paisley, UK). The electrophoresis was 

run at 200v for 36 minutes, and the transfer was run at 30v for 1 hour. After the 

transfer, the nitrocellulose membrane was blocked with 5% skimmed milk 

(Marvel) in PBST for 1 hour at room temperature on the shaker. This was 

followed by five shake rinses, and 4x five minutes washes with PBST at room 

temperature on the shaker. Then the membrane was incubated for 60 minutes at 

room temperature with 1:2500 of streptavidin-HRP (Invitrogen, Life 

Technologies, Paisley, UK) in 15ml PBST on the shaker. After the washing steps 

as before, the membrane was dried, placed in a sheet protector and covered 

with 2ml of Novex ECL Chemiluminescent Substrate Reagent Kit (Invitrogen, Life 
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Technologies, Paisley, UK). It was placed in the film cassette for exposure to the 

X-ray film. The films were developed by Kodak X-Omat processor. The films were 

scanned into TIFF files, for the calculation of Adjusted Volume in Quantity One 

version 4.6.2 software (Bio-Rad Laboratories Ltd, Hemel Hempstead, UK). The 

method of drawing the boundaries for calculation of Volume and Background 

Volume is as shown in Figure 2.2. 

a) 

      

b) 

 

Figure 2.2 Comparison of the intensities of the pixels of the bands (Adjusted Volume of the 
boundaries) from four different set time points. Volume is defined as the sum of the intensities 
of the pixels inside the volume boundary drawn, times the area of a single pixel (in mm2). a) U1 to 
U4 were four boundaries of the same size drawn to completely include the four bands of interest 
from different set time points. The intensities of the pixels (Volume) within the boundaries were 
calculated by the software. B1 box is the boundary drawn within the unstained area of the 
nitrocellulose membrane, to determine the average intensity of the pixels in the Background 
Volume. Adjusted Volume of U1 to U4 were analysed, whereby the average intensity of the pixels 
in the Background Volume was subtracted from each pixel in these four boundaries. Any pixels 
inside U1 to U4 that have the same intensity as the average background will be reduced to zero, 
thereby eliminating them from the quantitation. b) The result of the calculations of Volume and 
Adjusted Volume.  
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2.2 In vivo study (mouse model) 

2.2.1 Animals 

DBA-1 mice, and DBA-1 mice homozygous (D6 KO) and heterozygous (D6 HET) for 

deletion of the D6 gene, were bred and maintained in the Central Research 

Facility, University of Glasgow. D6 deficient animals were derived from C57BL/6 

D6 deficient mice but had been backcrossed for >10 generations with DBA-1 

mice. All procedures were carried out in accordance with the regulations of 

United Kingdom Home Office. The youngest age for the adult mice used in our 

experiments was eight weeks and close age-matching was done where possible. 

2.2.2 Data on stillbirth, neonatal death and pups weaned/ litter 

Data were provided by the staff in Central Research Facility. A cohort of wild 

type (WT) and D6 KO mice were placed in a breeding programme. Females in 

late pregnancy were checked for newborns daily. Once all the pups were born 

and being nursed, the number of live pups and dead carcasses were counted. 

Carcasses that were noticed when the litter was first discovered were counted 

as stillbirths; the numbers of live pups were recorded as well. Pups that did not 

survive to weaning at day 18 to 21 after birth were recorded as neonatal deaths.  

2.2.3 Record of perinatal deaths and weight changes during 
neonatal period 

This experiment was carried out over a period of two months. WT or D6 KO 

females were caged with individual males with the same genetic background. 

The females that showed sign of pregnancy were removed from their male 

partners. Females that appeared to be in late stages of pregnancy were checked 

every 11-13 hours for the appearance of pups. Females that were in labour were 

subject to minimal disturbance. Once all the pups were born and being nursed, 

the number of live pups and dead carcasses were counted. The live pups were 

weighed and returned to the cages with the mothers. This process of counting 

and weighing live pups was repeated daily until they were six days old, and then 

alternate days thereafter until either all the pups were successfully weaned at 

day 18-21 of life, or when there was no live pups left in the litter. Females that 

were no longer nursing any live pups were caged with individual males with 
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similar genetic background again until they became pregnant for repeats of the 

experiment. 

2.2.4 Timed mating of the animals  

2.2.4.1  WT and D6 KO females 

WT and D6 KO females were caged with individual males of the same genetic 

background overnight. The next morning the females were checked for evidence 

of a copulation plug demonstrating that copulation had taken place. Those 

females that exhibited a plug were caged separately, and the day the plug was 

discovered was recorded as embryonic day, E1, of gestation. At E10, 14 or 18, 

pregnant females were humanely sacrificed in accordance with Schedule 1 of the 

Animals (Scientific Procedures) Act for tissue collection.  Those females that did 

not have a plug were placed back into the cage with appropriate males, with 

repeated timed mating. They continued to be checked daily, and were 

separated once the copulation plug was observed.  

2.2.4.2  D6 HET female 

After discovering the difference in the phenotype between the WT and D6 KO 

pups at E14, a different experiment was designed to ascertain whether the 

placental defect was due to a maternal or a fetal effect. Females heterozygous 

for the deleted D6 allele (D6 HET) were bred with D6 KO males, generating D6 

HET and D6 KO pups in the same litter. This allowed the phenotype between 

these two groups of siblings, in a D6 expressing HET mother to be compared. For 

this study, D6 HET were caged together with individual D6 KO males overnight. 

They were separated the following morning regardless of the presence of 

copulation plug. At E14, those females that were pregnant were sacrificed by 

schedule 1 for tissue collection. Timed mating was repeated for the non-

pregnant females until they conceived. 

2.2.5 Tissue collection and processing 

Pups and placentas were dissected and transported in Dulbecco’s phosphate 

buffered saline (PBS) alongside their respective placentas. The wet weights of 

the pups and placentas, and also pup/placenta ratios were recorded. The 
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placentas were sectioned into two equal halves. One-half was stored in RNAlater 

RNA stabilisation reagent (Qiagen, Manchester, UK) for not more than a week, 

snap frozen with liquid nitrogen and stored at -80oC, for RNA isolation. The other 

half was processed for stereology analysis. They were stored in 4% 

paraformaldehyde/0.1 M 1,4-piperazinediethanesulfonic acid (PIPES) solution 

overnight at room temperature, and transferred to 0.1 M PIPES buffer the 

following day. After a night in the PIPES buffer they were ready for tissue 

processing and embedding in paraffin. If there was any delay in tissue 

processing, the placentas were transferred to 75% alcohol after two nights in the 

PIPES buffer. During embedding, the half placentas were orientated such that 

the hemisectioned side of the placentas was facing downwards, directed towards 

the surface of the paraffin blocks for cutting. This side of the placentas became 

the starting point for the microtome sectioning process in stereological analysis.  

Pups from D6 HET females were retained for genotyping. The PBS used for 

transporting was decanted, and the pups were kept in -20oC. Maternal blood was 

collected and centrifuged; the plasma was collected and frozen at -80oC.  

2.2.6 Stereology 

2.2.6.1  Microtome sectioning, mounting and staining 

Four pregnant mice were used for each of the WT and D6 KO groups for 

comparison of placental stereology at each time point. For each pregnant 

mouse, two placentas with the pup/placenta ratio closest to the mean were 

chosen for stereological analysis.  

In the D6 HET model, two D6 HET females were used for the experiment. For 

each of these females, four placentas with the pup/placenta ratio closest to the 

mean were chosen for each pup genotype group, resulting in the total of eight 

placentas for D6 HET and D6 KO siblings in each D6 HET female being used for 

stereological analysis.   

Unfortunately due to the small size of mouse placentas, occasionally they would 

break during microtoming. If this occurred, the next placenta within the litter 

with the pup/placenta ratio closest to the mean was chosen.  
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The technique of stereology for human and mouse placenta has been described 

in the literature (Mayhew and Burton, 1997, Coan et al., 2004, Coan et al., 2005, 

Coan et al., 2006, Coan et al., 2008, Coan et al., 2010). To begin this 

experimental method on the mouse placentas, the selected embedded half 

placentas were exhaustively sectioned at 8µm until the entire tissue was 

sectioned. Sections were then collected from the beginning until the end of the 

sample, aligned according to the sequence of the sections. The total number of 

sections obtained per placenta was recorded. 

15 sections, and backups, from a placenta were chosen systematically for 

mounting onto microscope slides. At the start of the process, a random number 

between one and 10 was generated using random integer generator on the 

internet: www.random.org. That random number generated would represent the 

first section to be chosen for mounting. The next section was also mounted as 

backup for the first mounting section. Then the subsequent number of sections 

left was divided by 15 to obtain a number (n). From the first mounted section, 

every nth sections were selected for mounting unto the slides until 15 sections 

and backups (30 in total) were mounted.  

The mounted sections underwent haematoxylin and eosin staining. For E14 

placentas, all 15 sections for each placenta were analysed by stereology. At E18, 

due to the higher volume of placenta that was needed to be analysed, eight out 

of the 15 sections per placenta were chosen for stereology analysis; these 8 

sections were randomly selected using the random integer generator, with the 

number from one to 15 randomly generated. With the introduction of systemic 

and randomised, unbiased sampling at different levels in stereology, this 

experimental method validly and efficiently extrapolated three-dimensional (3D) 

volumes from systemic plotting of areas in two-dimensional (2D) sectional 

images (Mayhew and Burton, 1997).    

2.2.6.2  Image analysis 

The sections chosen for inclusion in the stereological analysis were magnified 

100x under light microscope. The image was projected onto the computer screen 

using Image Pro 6.2 Plus (Media Cybernatics, Rockville, MD, USA). With this 

magnification, a number of fields were captured for a section to be completely 
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visible. The fields were aligned such that there was no overlapping, and the 

whole section was included for the analysis (Figure 2.3). Within each field, five 

grid points were randomly assigned using the grid of LineOrth.grd within the 

programme, where each grid point was shown as a ‘+’ (Figure 2.4). The 

functional zones (decidua basalis, junctional zone, labyrinthine zone, chorionic 

plate) where the centre of each grid point fell upon were recorded. The total 

numbers of grid points that fell on each zone were added up for each placenta. 

Then the total number of grid points in each zone were divided by the total 

number of grid points in the placenta. The result was multiplied by 100 to give 

the calculation of volume fraction (% of total placental volume for each zone).    
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Figure 2.3 An example of the fields for a section of mouse placenta. The fields are non-
overlapping, they include the whole section for stereological analysis.  

 

 

Figure 2.4 An example of five grid points being placed randomly for a field within a section 
of a mouse placenta. 
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2.2.7 Relative mRNA expression measurement by quantitative 
polymerase chain reaction (qPCR) 

8 placentas from each of the WT and D6 KO group were chosen for the 

comparison of mRNA expression. These total of 16 placentas were the same as 

the ones selected in the experiment of stereology (section 2.2.6.1).  

The processes of RNA extraction, DNAse treatment, cDNA synthesis and mRNA 

expression analysis were the same as the previous description in section 2.1.4, 

using the primers shown in Table 2.5. Expression of D6, chemokines and 

leukocyte markers was measured using the synthesised cDNA. 2-ΔC
T was 

formulated; the endogenous control gene was GAPDH. 

Target gene (mouse) Product ID 

CCL2 Mm00441242_m1 
 

CCL3 Mm99999057_m1 
 

CCL4 Mm00443111_m1 
 

CCL5 Mm01302428_m1 
 

CCL11 Mm00441238_m1 
 

CCL12 Mm01617100_m1 
 

CCL17 Mm00516136_m1 
 

CCL22 Mm00436439_m1 
 

D6 Mm00445551_m1 
 

Foxp3 Mm00475162_m1 
 

F480 Mm00802529_m1 
 

CD3 Mm00438095_m1 
 
 
 
 

GAPDH (*endogenous control) 4352932E 

B-actin (*endogenous control) 4352933E 

Table 2.5 Target specific and endogenous control mouse probes used for mRNA expression 
measurement. All products were from Applied Biosystems, Life Technologies, Paisley, UK. 
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2.2.8 Genotyping of pups from HET females crossbreeding with 
D6 KO males 

5mm of tissues were removed from the head of the pups and incubated with 

100µl of lysis buffer (Table 2.6) and 100µl of 100µg/ml proteinase K (Promega, 

Madison, WI, USA) overnight at 55oC to prepare the samples for the genotyping. 

The following morning the samples were incubated at 85oC to denature the 

proteinase K. Then 500µl of sterile water was added to each sample. 

Genotyping lysis buffer 

100mM Tris-HCL pH 8.5 

5mM EDTA 

0.2% SDS 

200mM NaCl 

Table 2.6 Reagents for tail tip lysis buffer. 
 

For each PCR reaction, 2.5µl of primer mix (Table 2.7) and 2µl of each sample 

were added into a pre-aliquoted ready-mix master mix, flat cap thermo tube 

(Thermo Fisher Scientific, Waltham, MA, USA). This triplex approach to PCR 

reveals the 2 bands of 506bp and 357bp, for the wild type and the targeted 

alleles respectively. The presence of both bands would indicate a D6 HET.  

Table 2.7 Primer mix for genotyping. The primers were synthesised by Integrated DNA 
Technologies, Coralville, IA, USA. 
 

PCR was run on a Veriti 96 Well Thermal Cycler (Applied Biosystems, Life 

Technologies, Paisley, UK). The PCR conditions were 94oC for five minutes, 

Primer/ solution DNA sequence Concentration 

D6 wild type AGC ACG AAG ATC AGG CTG TAG AC 1µM 

 

 

 

D6 common TGG GGA TAC AGT CTT CAT GGT TC 2µM 

3 IRES CCC TAG ATG CAT GCT CGA CG 1µM 
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followed by 35 cycles of 94oC for 15 seconds, 55oC for 30 seconds, 68oC for 45 

seconds; and the final step of 68oC for 10 minutes. The gel was made up of 1.5g 

Seakem LE Agarose (Lonza, Basel, Switzerland) in 100ml TAE buffer (1.5%), with 

10µl of SYBR safe DNA gel stain (Invitrogen, Life Technologies, Paisley, UK). 

Electrophoresis was at 100 volts for 30 minutes. The ladder used was 1Kb Plus 

DNA Ladder (Invitrogen, Life Technologies, Paisley, UK). After electrophoresis, 

the gel was transilluminated on the Alphalmager gel imager (Alpha Innotech, 

Proteinsimple, Santa Clara, CA, USA). 

2.2.9 Quantification of chemokine levels in plasma using Luminex 
multiplex protein assay 

Chemokine levels were measured in the plasma from the pregnant females using 

Luminex protein assay. We used the inventoried singleplex bead kits for the 

chemokines, plus the buffer reagent kit from Life Technologies, Paisley, UK 

(Table 2.8).  

Mouse singleplex/ buffer 

reagent kit 

Bead region Product ID 

MCP-1(CCL2) bead kit 29 LMC1011 

MIP-1α (CCL3) bead kit 26 LMC1021 

RANTES (CCL5) bead kit 21 LMC1031 

KC (CXCL1) bead kit 41 LMC1061 

Extracellular protein buffer 

reagent kit for mouse or rat 

- LMB0001 

Table 2.8 Bead regions for the chemokine singleplex bead kits, and the product ID for the 
bead kits and buffer reagent kit for the Luminex protein assay. All products were from Life 
Technologies, Paisley, UK. 
 

The Luminex was run in collaboration with Dr Chris Hansell, postdoctoral 

researcher in Dr Nibbs’s chemokine research group. The assay was carried out 

following the procedure described in the manual, on the 96 well filter plate 
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supplied with the buffer reagent kit. All reagents were supplied with the kit. The 

wash solutions, antibody beads, biotinylated antibodies and streptavidin-RPE 

were supplied as 10x concentrates: they were diluted to 1x concentration prior 

to starting the experiment. The antibody beads and biotinylated detector 

antibodies from the four different chemokines were combined while being 

diluted into the 1x dilutions. A standard curve was made by preparing serial 

dilutions of reconstituted lyophilised standards provided with the kits. Aspiration 

of liquid from the filter plate was performed on a vacuum manifold with gentle 

vacuum lower than 5mmHg.  

For the Luminex assay, the minimum volume required for each reaction was 

50µl. The volumes of plasmas obtained were variable. Samples with more than 

100µl of volume were run in duplicates. The chemokine levels were determined 

by using the average of the two wells. Samples with less than 100µl, but more 

than 50µl available were run as singles. Some samples had less than 50µl of 

plasma and in these cases we added assay diluent to make the volumes up to 

50µl. For this group the concentrations of proteins were adjusted post-hoc 

according to the dilution factors.  

All samples were clarified by 10 minutes centrifugation before the assay. The 

assay wells were pre-wet with wash solution and incubated for 30 seconds, 

before the liquid was aspirated. Then 50µl of the vortexed and sonicated diluted 

bead solution was pipetted into each well. The plate was protected from light 

from this point as the beads were light sensitive. 200µl of wash solution was 

added into each well. It was incubated for 30 seconds before liquid aspiration. 

The wells were washed with 200µl of wash solution. After aspiration, 50µl of 

incubation buffer was added into each well. For the wells designated for the 

standard curve, 100µl of relevant standard dilutions were pipetted. For the rest 

of the wells, 50µl of assay diluent followed by 50µl of samples were added. The 

plate was incubated for two hours on a shaker. After the incubation, 2 washing 

steps were performed, before adding 100µl of biotinylated detector antibodies 

into each well. This was followed by one hour incubation on the shaker. The 

procedure was followed by two washing steps, before incubated with 100µl of 

Streptavidin-RPE for 30 minutes on the shaker. After three further washes, 100µl 

of wash solution was added to each well. The plate was left overnight at 2oC. 

The next morning, the wash solution on the wells was aspirated before 100µl 
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fresh washing solution was added. The plate was left on the shaker for 5 minutes 

to re-suspend the beads before analysed through the Bio-Plex System machine 

(Bio-Rad Laboratories Ltd, Hemel Hempstead, UK). Data were analysed by Bio-

Plex Manager Software 4.0. 

2.3 Statistical analysis 

Appropriate statistical tests were applied for the analyses of the data using 

Graphpad Prism Software and are indicated in the legends to the data figures in 

the results chapters. For the analysis of the result from the mouse serum 

chemokine levels by Luminex, linear mixed effect modelling was used to take 

into consideration the different embryonic age of E14 and E18 within the WT and 

D6 KO groups. Linear mixed effect modelling analysis was performed using SPSS 

version 19. P<0.05 was considered statistically significant for all analyses. 
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3 Studying the Function of D6 on Cultured 
Primary Human Trophoblasts 
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3.1 Selecting primary cell culture over immortalised 
trophoblast-derived cell lines  

D6 protein is abundant in the human placenta (Martinez de la Torre et al., 2007, 

Madigan et al., 2010). Given the protective effect of D6 observed on mouse 

reproduction, there is interest in understanding the distribution and function of 

D6 in human trophoblasts. Studies of the expression, distribution and action of 

D6 using human choriocarcinoma cell line BeWo have been carried out in the 

past (Martinez de la Torre et al., 2007, Madigan et al., 2010). Using this cell line 

for the experiments showed what D6 could potentially do in human trophoblasts, 

but the results may not be representative of the true property of D6 in the 

physiological environment in the human placenta. Immortalised cancer-derived 

cell lines have been modified, maintained, and passaged in a regulated, artificial 

in vitro environment over a long period of time. Therefore they may have 

undergone huge transformation, producing very different gene expression 

profiles and phenotypes in comparison to the original cells (Whitley, 2006). In 

contrast, primary cells are more closely reflective of the biological process in 

the human body, and their study brings us closer to the understanding of the 

role of D6 in the placenta in this instance. Thus for my in vitro study primary 

human trophoblasts were used.  

Using primary trophoblasts from fresh placenta did have some technical 

disadvantages. Firstly a significant amount of time and effort had to be invested 

to obtain ethical approval for the research. For each of the experiments, there 

was the inconvenience of obtaining fresh placenta and culturing trophoblasts. 

The lifespan for these primary cells is not long; trophoblasts proliferate poorly in 

culture before undergoing replicative senescence (Whitley, 2006, Orendi et al., 

2011). They form multinucleated syncytial complex within 48 to 72 hours (Newby 

et al., 2005). Due to the above reasons there was limited time to carry out the 

experiments once the cells were plated. It was appreciated that there was 

heterogeneity between placentas, and the culture from primary cells will not be 

as pure as maintained cell lines. Furthermore, at the time when the experiments 

were conducted, trophoblast isolation and culture had not been performed in 

the laboratory. The technique had to be established, and the technology for 

routine primary trophoblast isolation and culture from fresh placentas had to be 

set up. Despite these difficulties, the efforts of culturing trophoblasts are 
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worthwhile, because to gain a more realistic insight of D6 function in the human 

placenta, it is crucial to look at the function of D6 on primary cells.  

3.2 Optimising the protocol for trophoblast isolation 

The isolation, purification and analysis of trophoblasts was not routinely 

performed in our laboratory at the beginning of the project. It took much longer 

than expected to optimise the protocol, due to the fastidious steps and time 

spent on familiarisation with the batch-to-batch physical and cellular variability 

of the placentas. The aim of refining the protocol was to achieve high 

trophoblast purity, and yield optimal number of cells. Flow cytometry was used 

to assess the purity of trophoblasts, as it is more objective and quantitative than 

cytospin preparation or staining on the culture plate (Frank et al., 2001). The 

recommended antibodies for the identification of trophoblasts from other cells 

are anti-cytokeratin 7 and anti-vimentin. Trophoblasts should express 

cytokeratin 7 and not vimentin (Pötgens et al., 2001). For the staining for these 

intracellular cytoskeletal proteins, the cells were permeabilised. Cytokeratin 7 

was chosen as it is the most specific protein for all subpopulation of 

trophoblasts, in comparison to other isoforms of cytokeratin which can be 

expressed even in the mesenchymal cells of the placenta (Frank et al., 2001). 

For instance cytokeratin 18 and cytokeratin 8 had been identified in stroma of 

stem villi and cells from the lineage of a first trimester fibroblast-myofibroblast 

respectively (Blaschitz et al., 2000).  

For trophoblast isolation, it is well recognised that there can be substantial 

batch-to-batch variability of the purity of the cells. It has been recommended 

that preparations with 50% or more cytokeratin positive cells should be used in 

trophoblast research (Frank et al., 2001). In the experiments the number of cells 

and purity of trophoblasts isolated varied between placentas; however they 

improved over time as the protocol was being established. After optimisation of 

the techniques, there was no difficulty in repeatedly obtaining cultures that 

contained over 50 million cells from a single placenta; more than 70% of the 

cells were trophoblasts when analysed at day 1 of culture (Fig 3.1).  The viability 

of the cells at day 1 was between 14 to 36%. As the experiments spanned across 

two to three days, the purity and viability of the cells were also analysed at day 

2 of culture.  At this time of culture, the purity was maintained at between 67 
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to 80%, whereas the viability varied between 12 and 34%. The method of 

physical gating based on forward (FSC) and side-scatter (SSC) characteristics of 

the trophoblasts was not dissimilar to that previously described (Maldonado-

Estrada et al., 2004, Trundley et al., 2006), eliminating events with very small 

FSC and SSC, which are probably non-viable cell fragments. Figure 3.2 shows 

views of trophoblasts under light microscope at different days of culture. 

Typically on day 1, the cultured cells in suspension started to form colonies. By 

day 2, more cells had adhered to the tissue culture dish but many of the cells 

had died. On day 3 and 4, most of the cells had adhered together to form larger 

colonies; at this stage the trophoblasts should have gone through the process of 

syncytialisation (Newby et al., 2005). The appearance of the cultured cells on 

the dish was showing the characteristics resembling multinucleated syncytial 

units. However, more tests would be necessary to confirm that cell fusion has 

occurred in these cultures.  
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Figure 3.1 Purification process of placental cells using Percoll gradient yields satisfactory 
purity of trophoblasts. Assessment of trophoblast purity by flow cytometry from the cells isolated 
and purified from one placenta. Permeabilised cells were stained with either isotype control mIgG1, 
cytokeratin 7 or vimentin antibodies. First they underwent physical gating (top left); then the 
negative gating was set to including 95% of cells treated with the isotype control antibody (top 
right). For this placenta the yield of trophoblasts was 85.6% based on cytokeratin 7 positivity 
(bottom left), and confirmed by vimentin negativity (84.6%) (bottom right). 

 

 

 

 

 

 

 

Physical gating Isotype staining 

Cytokeratin 7 staining Vimentin staining 
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a)                       Day 1                                             b)                           Day 2 

 
 
 

 

 

 
 
 
c)                          Day 3                                               d)                          Day 4      

 
 
 
 
 

 

 

Figure 3.2 Views of trophoblasts under light microscope at 100x magnification. Photos of 
trophoblast culture on 90mm petri dishes on a) day 1; b) day 2; c) day 3 and d) day 4 of culture. 
Over time the cells adhered and formed colonies, this may be due to the effect of syncytialisation. 

3.3 Assessment of D6 mRNA expression in cultured 
primary trophoblasts 

The first step of the experiment in trophoblast culture was to examine if the D6 

gene was expressed in the cultured cells.  HEK293 cells transfected with D6 

expression constructs, and untransfected parental HEK293 cells, were included 

in the analysis as it was expected that they would act as positive and negative 

controls, respectively. To study the expression of D6 mRNA, first an appropriate 

endogenous control gene had to be established. The expression of 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), topoisomerase 1 (TOP-1), 

B-actin and 18s rRNA was assessed in the samples, identifying the ones with low 

variability of expression between HEK293 cells and trophoblasts at different days 
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of culture. These housekeeping genes have been used in primary and cell lines 

for trophoblasts and HEK293 cells (El-Shewy et al., 2006, Goldman and Shalev, 

2006, Hannan et al., 2006, Escobar et al., 2011). For my experiment, TOP-1 was 

chosen as my endogenous control; it was found to have the smallest standard 

deviation of expressions between trophoblasts and HEK293 cells (data not 

shown). For assessment of D6 expression, the probe/primer set that spanned an 

exon junction was chosen to reduce the risk of genomic DNA amplification. CCR2 

expression in the primary trophoblasts was also analysed, as it had been 

reported to be expressed in cells from the fetomaternal interface, and shares 

some of the ligands with D6 (Hannan et al., 2006). It was planned that later in 

the experiments, CCL2, a chemokine ligand for D6 and CCR2, was to be used to 

explore the function of D6 on trophoblasts. Thus, insight into CCR2 expression 

was considered important at this stage. As a positive control, the expression of 

cytokeratin 7 was analysed. In these experiments, the genes of interest were 

analysed by relative quantification, normalising to the expression of the 

housekeeping gene TOP-1, which had low variability of expression between 

samples. Thus by qPCR the expression of D6 and other genes could be 

quantitatively compared between different cells. 

In trophoblasts, cytokeratin 7 was expressed at a very high level and D6 was also 

expressed abundantly. Although there was a drop in cytokeratin 7 expression on 

day 2 of culture, this was not accompanied by a reduction in D6 expression. The 

drop in cytokeratin 7 on day 2 may be an artefact due to technical variability, as 

the high expression of these transcripts was detected using one placenta. There 

was some expression of CCR2 transcript, albeit detected at a level much lower 

than D6 (Fig 3.3). Thus, it appears that D6 transcripts are more abundant than 

those encoding CCR2, although it is possible that differences in the efficiency of 

the primers used to detect D6 and CCR2 contributed to apparent differences in 

expression of the two receptors.  

Using the same primers, D6 mRNA was not detected in HEK293 cells that had 

been stably transfected with D6 expression constructs. This was not initially 

expected. Following this discovery the design of the construct used to make the 

transfected HEK293 cells was discussed with other team members in the 

research group, and it was confirmed that the D6 cDNA used did not contain the 

exon junction of the primers used for the detection. Thus, retrospectively the 
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result from HEK293 transfected with D6 expression constructs was exactly what 

would have been expected.  

              

 

 

 

 

 

 

 

 

 

Figure 3.3 D6 is expressed in abundance in trophoblasts at mRNA level. Expression of D6 
and CCR2 were detected in trophoblasts. Using our probe, D6 was undetectable on HEKD6 cells, 
as transfected D6 did not contain the exon junction of the primers used for the detection. Results 
from one placenta. D1, D2, D3 troph= Day 1, 2 and 3 trophoblast culture. HEKD6= HEK293 
transfected with D6 expression constructs. HEK= untransfected HEK293. ND= not detected. 
 

3.4 Assessment of D6 protein expression in cultured 
primary trophoblasts 

3.4.1 Western blotting 

The qPCR data suggested strong expression of D6 transcripts by primary cultured 

trophoblasts from days 1 to 3. Next, the expression of D6 protein in cultured 

trophoblasts was explored. Two placentas were used in this experiment, and 

controls were HEK293 +/- transfection with D6 expression constructs. For the 

first placenta, 8 x 104 adherent and floating trophoblasts at day 3 (sample T1) 
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were pooled together prior to preparing the cell lysate. For the second placenta, 

lysates were generated separately from 1.35 x 105 adherent (sample T2a) and 

4.14 x 105 floating cells (sample T2b) at day 2. All samples were electrophoresed 

on polyacrylamide gels and Western blots prepared (Fig 3.4). These blots were 

probed with antibodies against cytokeratin 7 and D6. All 3 placental samples 

stained positively for cytokeratin 7, confirming the presence of trophoblasts. 

Sample T2a clearly contained the most cytokeratin 7 protein followed by T1 and 

then T2b (Fig 3.4a). This suggested that the quantity of trophoblasts present 

between the samples was different, either due to them being more abundant in 

the T2a sample, or that a more concentrated cell lysate had been used. D6 

staining showed that the protein was most detectable in sample T2a, but it was 

also faintly present in sample T1. In sample T2a, there were two weakly stained 

bands that electrophoresed in a manner similar to those seen in the HEK293 cells 

transfected with D6 expression constructs (HEK-D6). In HEK-D6 cells there were 

two major bands on the blot at approximately 46 and 49kDa. The higher 

molecular weight band is due to N-linked glycosylation which is dispensable for 

chemokine binding by D6 (Blackburn et al., 2004). Much of the trophoblast D6 

protein was slightly larger than the bands in the HEK-D6 cells suggesting that it 

might have undergone additional post-translational modifications in 

trophoblasts. Thus, cultures of human trophoblasts prepared fresh from human 

placentas contain cells expressing D6 protein.  
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Sample     T1   T2a  T2b                         H1  H2   T1   T2a T2b                        H1   H2  T1  T2a T2b                    

a)                                             b)                                                c)                     

    

 

 

 

 

                                                             Long exposure time                          Short exposure time        

     Cytokeratin 7 staining                  D6 staining (same blot with different time of exposure)            

Sample Code Sample Number of cells 

H1 Untransfected HEK293 80 x 103 

H2 D6 transfected HEK293 80 x 103 

T1 Day 3 floating and adherent cells 80 x 103 

T2a Day 2 adherent cells 135 x 103 

T2b Day 2 floating cells 414 x 103 

Figure 3.4 D6 protein detected on trophoblasts by Western blot.  a) Cytokeratin 7 staining; b) 
and c) for better appreciation of the bands for both HEK293 and trophoblast cells, two different 
exposure times were shown for the same blot stained with D6 antibody. In this experiment three 
lysates were prepared from two placentas. Lysate T1 was prepared from adherent and floating 
cells from one placenta. Lysates T2a and T2b were adherent and floating cells respectively, from a 
different placenta. T2a had the strongest staining of D6, corresponding with the highest number of 
trophoblasts based on its cytokeratin 7 staining.  

           

49kDa 
46kDa 

49kDa 
46kDa 
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3.4.2 Immunofluorescence to explore subcellular distribution of 
D6 in cultured trophoblasts 

D6 protein has been successfully detected in and on HEK293 transfected with D6 

expression constructs by immunofluorescence. In HEK293, most D6 is inside the 

cells associated with early and recycling endosomes (Weber et al., 2004, 

McCulloch et al., 2008), and this also appears to be the case in trophoblasts in 

placental sections (Madigan et al., 2010). Thus the cells were examined to 

ascertain whether D6 had a similar subcellular distribution in cultured 

trophoblasts. The results using HEK-D6 cells shown in previous experiments could 

be replicated in our laboratory (Fig 3.5). No anti-D6 immunostaining was 

observed in untransfected HEK293 cells, and isotype-stained HEK-D6 cells were 

also negative. Using the same staining method, D6 was also detected in 

trophoblasts on day 2 of culture (Fig 3.6). The experiment was conducted on day 

2 because by this time there would be fewer cells being lost during wash steps, 

as trophoblasts become more adherent in comparison to day 1. The pictures of 

trophoblasts were not as impressive as the ones on HEK293. The background 

staining was higher on trophoblasts; the staining of D6 was detectable but not as 

bright as the control cells. This could be due to the presence of contaminating 

non-trophoblastic cells from the culture. By day 2, a number of trophoblasts 

would have syncytialised, causing heterogeneity in cell architecture and D6 

expression. The result can also be explained by the lower physiological 

expression of D6 protein, as opposed to the artificially transfected HEK293 cells. 

However, in those cells in the trophoblast cultures that were convincingly 

stained with the anti-D6 antibody, it appeared that the majority of the D6 was 

inside the cells in a similar manner to that seen in D6 transfected HEK293 cells. 

Previous work has shown that D6 continuously traffics to and from the cell 

surface in HEK293, with only <5% on the cell surface at any one time. This is 

important for its scavenging activity in these cells.  
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a) x20 magnification 

D6 transfected HEK293 cells stained 

with anti-D6 antibody 

D6 transfected HEK293 cells stained 

with isotype 

  

Untransfected HEK293 cells stained 

with anti-D6 antibody 
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b) x40 magnification 
 

D6 transfected HEK293 cells stained 
with anti-D6 antibody 

D6 transfected HEK293 cells stained 
with isotype 

  

Untransfected HEK293 cells stained 
with anti-D6 antibody 
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c) 

 

 

 

 

     x40 magnification 

 

d) 

 

 

 

 

     x63 magnification 

 

Figure 3.5 Immunofluorescence protocol optimised for D6 antibody staining on HEK293 
cells. Cells were permeabilised, stained with in-house anti-D6 primary antibody or isotype, and 
AF488 or FITC conjugated secondary antibodies (green). a) and b) Comparison of anti-D6 antibody 
and isotype staining. Nuclei are stained blue with DAPI. The image settings for the comparative 
anti-D6 antibody and isotype fields were synchronised for standardisation. c) and d) D6 transfected 
HEK293 cells stained with anti-D6 antibody at different magnifications; in these two figures the 
nuclear staining with DAPI is not shown. The staining of anti-D6 antibody can be seen as 
punctation in the cytoplasm associated with intracellular vesicles. 
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a) x20 magnification (3 fields) 

Anti-D6 antibody Isotype 
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b) x63 magnification (3 fields) 

Anti-D6 antibody Isotype 
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c) x63 magnification (representative photo showing punctate staining with anti-D6 antibody) 

 

Figure 3.6 D6 protein is stained in trophoblasts and is predominantly in intracellular 
vesicles. Immunofluorescence of permeabilised primary trophoblast cells. Primary antibody was 
in-house anti-D6, with AF488 conjugated secondary antibody (green). Nuclei are stained blue with 
DAPI. The image settings for the comparative D6 antibody and isotype fields were synchronised for 
standardisation. Z-stack was performed to confirm intracellular staining. The photos of the fields 
were taken from one representative placenta. 3 biological replicates were performed. In low 
magnification in a), D6 was seen as bright spots in the cytoplasm. In higher magnification in b) and 
c), the staining of D6 can be seen in the cytoplasm associated with vesicles.  
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3.4.3 Flow cytometry 

Next surface D6 expression in trophoblast was assessed by flow cytometry (Fig 

3.7). HEK-D6 cells were used as controls for this experiment initially and D6 on 

the surface of these cells was detectable by flow cytometry using anti-D6 

antibodies (Fig 3.7a). In contrast surface D6 was virtually undetectable on 

trophoblasts with only a few cells showing positive staining compared to isotype 

control stained cells (Fig 3.7b). Intracellular staining on permeabilised 

trophoblast cells was also performed using two separate anti-D6 antibodies and 

appropriate isotype controls (Fig 3.8). With mouse anti-human D6 antibodies (Fig 

3.8a), there did appear to be some specific intracellular staining and this was 

also seen in HEK-D6 cells. However, untransfected HEK293 cells gave similar 

results. This was also the case with the rabbit anti-human D6 antibody (Fig 

3.8b). This type of experiment has been performed on other cell types in our 

department, with similar problems being encountered. Without effective control 

cells to support the result, it was not possible to conclude that the positive 

staining inside trophoblasts was truly due to the presence of D6 protein. It is 

interesting to see that intracellular staining using the same mouse antibody 

worked on these cells in immunofluorescence; perhaps in flow cytometry the 

process of detaching the adherent cells into suspension had disrupted the 

cytoskeletal architecture of the cells, thus resulting in the high background 

staining from non-specific isotype binding of the antibodies. Nonetheless, it 

appears that surface D6 is barely detectable on the surface of cultured human 

trophoblasts even though it was found on HEK-D6 cells. This might be due to the 

relatively lower level of D6 expression in the physiological environment, as 

opposed to the artificially transfected HEK293 cells. In addition, perhaps in 

trophoblasts the predominantly intracellular localisation of D6 is even more 

pronounced, leaving very low level of D6 detectable on the cell surface.  
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a) 

            

 

                                                                                                                      

Anti-D6 antibody 
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b) 

            

 

          

 

 

 

 

 

 

 

Figure 3.7 D6 protein is virtually undetectable on the surface of trophoblasts. Surface staining of trophoblasts with anti-D6 antibody and isotype; cells were 
analysed by flow cytometry to detect the presence of D6 protein. HEK293 cells with or without transfected D6 were used as controls for this experiment, as shown in 
a). The cells underwent physical gating based on FSC and SSC characteristics, then viable cells were selected based on negative staining by 7-AAD viaprobe. 95% 
inclusion of isotype staining was set as the negative gating for comparison with D6 antibody staining.  The result from trophoblasts shown is representative of three 
biological replicates.                                                                     
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10.4% positive 

Trophoblasts surface 
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a) Mouse anti-D6 antibody staining 
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b) Rabbit anti-D6 antibody staining 

 

 

 

     

 

 

 

 

 

     

 

  

   

 

 

 

 

 

Figure 3.8 Staining permeabilised cells with anti-D6 antibodies. Cells were permeabilised, 
stained with anti-D6 antibodies or isotype control antibodies and analysed by flow cytometry to 
detect the presence of D6 protein. The cells underwent physical gating based on FSC and SSC 
characteristics. Experiments performed using mouse (a) and rabbit (b) antibodies. Trophoblast 
results were from a single placenta.   

     D6 transfected HEK293                                 

 

Untransfected HEK293                                  

 

   Trophoblasts                                          

Isotype control Rabbit anti-D6 



137 

3.5 Chemokine uptake assay 

3.5.1 Detection using fluorescent microscopy 

The observations using qPCR, Western Blotting, immunofluorescence and flow 

cytometry suggested that D6 is expressed by cultured trophoblasts and shows a 

subcellular distribution that is not dissimilar to that seen in D6 transfected 

HEK293 cells. It would be interesting to explore whether this D6 was functional 

for chemokine uptake and scavenging. To do this, fluorescently labelled CCL2 

which has been used successfully to assess D6 activity on mouse leukocytes and 

D6 transfected HEK293 cells was utilised (Hansell et al., 2011b). Control samples 

are used in which an excess of unlabelled CCL2 is included. Non-specific 

pinocytosis of labelled chemokine will not be inhibited by this unlabelled 

chemokine, but receptor-mediated uptake will be. As expected, CCL2AF647 was 

internalised by HEK-D6 when assessed by fluorescent microscopy although cells 

were not particularly bright when analysed in this way (Fig 3.9). However, the 

uptake was successfully competed with a 10-fold molar excess of unlabelled 

CCL2. Untransfected HEK293 cells were used as negative control and these cells 

failed to internalise any CCL2AF647. This uptake was undetectable when the assay 

was performed on trophoblasts. There was a concern about the sensitivity of 

fluorescent microscopy to detect internalised CCL2, so flow cytometry was 

studied to ascertain whether it was a better approach.  
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a)    

D6 transfected HEK293 cells incubated 

with CCL2AF647  

D6 transfected cells with no chemokine 

during incubation (negative control) 

  

Untransfected cells incubated with 

CCL2AF647 (negative control) 

D6 transfected cells incubated with 

CCL2AF647, with a 10-fold molar excess 

of unlabelled CCL2 
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Figure 3.9 Uptake of CCL2 in D6 transfected HEK293 cells. HEK293 cells with or without D6 
expression constructs were incubated with CCL2AF647 (red) +/- 10-fold molar excess of unlabelled 
CCL2. Nuclei were stained blue with DAPI. Z-stack was performed to confirm intracellular staining. 
a) Assessment of CCL2 uptake and competition, comparing with negative controls. Image settings 
were synchronised for standardisation b) DAPI staining of nuclei turned off, showing positive 
intracellular CCL2AF647 uptake. 
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3.5.2 Detection of quantitation of CCL2AF647 uptake using flow 
cytometry 

In comparison with fluorescent microscopy, flow cytometry proved to be a much 

more sensitive and quantitative way of detecting uptake of fluorescent 

chemokine (Fig 3.10-3.13). HEK293 cells expressing human D6 internalised large 

quantities of CCL2AF647, and this uptake could be effectively blocked by inclusion 

of a large excess of unlabelled human CCL2 (Fig 3.10-3.11). Control 

untransfected HEK293 cells internalised very little CCL2AF647. Moreover, robust 

CCL2AF647 uptake was seen with cultured trophoblasts. Next, competition assays 

were performed in which a 10-fold molar excess of a range of unlabelled 

chemokines were individually included along with the CCL2AF647 during the 

uptake incubation period (Fig 3.11-3.12). Known D6 ligands were used as 

competitors i.e. CCL2, CCL3L1, CCL4, CCL5, CCL7, CCL8, CCL11, CCL13, CCL17 

and CCL22. CCL24 and CCL26, which are not thought to be D6 ligands, were also 

included. As expected, most of the known D6 ligands were able to prevent, to a 

greater or lesser extent, CCL2AF647 uptake by D6-expressing HEK293 cells (Fig 

3.11). CCL24 showed some ability to reduce uptake, but CCL26 was ineffective. 

Surprisingly, CCL4 was also a poor competitor, although it was possible that the 

batch of CCL4 that was used was defective. No positive control for its bioactivity 

was undertaken. When cultured trophoblasts were analysed in these assays, a 

similar profile of competition was observed (Fig 3.12). Cultured trophoblasts 

from the first placenta analysed showed that unlabelled CCL2 was the most 

effective competitor, but CCL3L1, CCL5, CCL7, CCL8, CCL11, CCL13, CCL17 and 

CCL22 all reduced CCL2AF647 uptake (Fig 3.12). CCL24 showed some weak activity 

as a competitor, but CCL26 was ineffective. As with D6-expressing HEK293 cells, 

CCL4 failed to compete CCL2AF647 uptake. Cultured trophoblasts from a further 

three placentas were then analysed to explore the reproducibility of the 

findings, and data from all four placentas were combined to produce the graphs 

show in Figure 3.13a-b. When gating for positive events, there was no 

statistically significant difference seen by the inclusion of competitor 

chemokines. When the MFI of the entire population was examined, while clear 

reductions were apparent these again failed to achieve statistical significance. 

However, if the MFI of positive events was assessed, then unlabelled CCL2, 

CCL3L1, CCL5, CCL7, CCL8, CCL13, CCL17 and CCL22 were all able to 

significantly reduce CCL2AF647 uptake by trophoblasts, while CCL4, CCL11, CCL24 
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and CCL26 were not. These data are consistent with CCL2AF647 uptake by cultured 

trophoblasts being mediated by a receptor that has ligand specificity that is very 

similar to D6 expressed in HEK293. Bearing in mind the preceding analysis of 

cultured trophoblasts, this receptor is most likely to be D6.  

The uptake assay showed a broad range of CCL2AF647 uptake by trophoblasts 

when they were gated according to the strategy shown in Figure 3.10. Since it 

was known that trophoblast cultures contained a mixture of cell types, gating 

was explored to see whether it could be refined to focus more effectively on 

cells internalising CCL2AF647. Thus, histograms of CCL2AF647 uptake (in the absence 

of any competitor chemokine) were back-gated to explore the forward scatter 

and side scatter characteristics of the CCL2AF647-high and CCL2AF647-low cells (Fig 

3.14). This clearly showed that CCL2AF647-high cells were, on average, larger than 

CCL2AF647-low cells, consistent with them being trophoblasts. Bearing this in 

mind, the CCL2AF647 uptake data was reanalysed by drawing a tighter gate with a 

FSC cut-off greater than 400 (Fig 3.15a). The histogram from this gating method 

showed a higher proportion of CCL2AF647-high cells. Combination of the data from 

four placentas using this tighter gate (Fig 3.15b) showed broadly similar pattern 

as the graphs from previous gating (Fig 3.13b), with more significant reductions 

in CCL2AF647 uptake when MFI of the entire population was examined.  

Syncytialised BeWo cells were found to have larger size when analysed by flow 

cytometry in the past (Kudo et al., 2003). Assuming trophoblasts have the same 

characteristics of syncytialisation as the BeWo cells, it may be possible that the 

population of CCL2AF647-high cells were syncytialised trophoblasts. Further 

exploration to confirm this theory is worthwhile in future experiments. If there 

is a low variability in the difference of chemokine uptake between these cell 

groups, this chemokine uptake assay can potentially be utilised effectively, to 

become a marker to differentiate subpopulations of trophoblasts in future 

experiments.  
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Figure 3.10 Trophoblast cells demonstrated CCL2AF647 uptake. Cells were incubated with CCL2AF647 and analysed by flow cytometry. The cells underwent physical 
gating, followed by exclusion of dead cells. HEK293 cells were used as controls. FACS plots and histograms from a representative placenta.                                                                     

  Physical                                                    7AAD viaprobe                                               CCL2AF647 uptake                                                 HEK293 cells 
 

Trophoblast cells 
   Physical                                                    7AAD viaprobe                                                CCL2AF647 uptake                                                 

D6 transfected cells 
- no chemokine 
 

 No chemokine 
 

Untransfected cells 
- CCL2AF647 incubation 
 
 



143 

CCL2AF647 incubation 
 

CCL2AF647 + unlabelled 
competitive chemokine 
incubation 
 

  

 

 

     

 

 

 

 

 

 

CCL2                                                                CCL7                                                               CCL8 

CCL13                                                            CCL3L1                                                             CCL4 

 No chemokine 
 

D6 transfected  
HEK293 cells 
 



144 

 CCL2AF647 incubation 
 

CCL2AF647 + unlabelled 
competitive chemokine 
incubation 
 

!  

 

 

      

 

 

 

 

 

 

 

 

 

Figure 3.11 D6 ligands effectively compete CCL2AF647 uptake by HEK293 cells transfected with D6 expression constructs. Cells were incubated with CCL2AF647 

+/- a 10-fold excess of unlabelled chemokines and analysed by flow cytometry (page 142 and 143). Gating of the cells was shown in fig 3.10. 
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Figure 3.12 D6 mediates CCL2AF647 uptake by trophoblasts. Competition chemokine uptake assays revealed the presence of active D6 in trophoblasts. Cells were 
incubated with CCL2AF647 +/- a10-fold excess of unlabelled chemokines. Histograms from a representative placenta (page 144 and 145). Gating of the cells was shown 
in fig 3.10. 
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Figure 3.13 Analyses of D6 mediated CCL2AF647 uptake by trophoblasts. a) Examples showing 
calculation of % of positive events. Positive event was defined as any fluorescent events above the 
95% threshold from the curve where the cells were not incubated with any chemokine, as shown 
on the histogram on the left. Thus the percentage of positive events when there was no chemokine 
was 5%. This threshold was used to compare with other curves where the cells were incubated 
with CCL2AF647 +/- competition chemokines. b) Bar graphs of the positive events, and also mean 
fluorescence index (MFI) showing median + interquartile range, derived from the histograms of four 
biological replicates. The first columns show the results with CCL2AF647 incubation; the second 
columns show the results when no chemokine was introduced; from the third columns onwards 
they show the results with the presence of unlabelled competitive chemokines. * p<0.05 (Mann-
Whitney test compared with the first column).  
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Figure 3.14 Cells in trophoblast cultures positive for chemokine uptake were larger than 
cells with weak chemokine uptake. Gating method similar to figure 3.13a. Subpopulation of 
positive and negative cells from the chemokine uptake histogram were backgated to determine 
forward scatter (size) (FSC) and side scatter (granularity) (SSC). Plots are representative of data 
from four placentas. 
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Figure 3.15 Gate with FSC cut-off of greater than 400 contains more CCL2AF647-high cells. a) 
Gating of cells with FSC cut-off of greater than 400, followed by exclusion of dead cells. FACS 
plots and histograms from the same samples as Fig 3.12. b) Bar graphs of the positive events, and 
also mean fluorescence index (MFI) showing median + interquartile range, derived from the 
histograms of four biological replicates, with FSC cut-off readjusted to greater than 400. The first 
columns show the results with CCL2AF647 incubation; the second columns show the results when no 
chemokine was introduced; from the third columns onwards they show the results with the 
presence of unlabelled competitive chemokines. * p<0.05 (Mann-Whitney test compared with the 
first column).  
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3.6 Chemokine scavenging assay by Western Blot 

D6 is believed to act as a chemokine scavenging receptor. To ascertain whether 

D6 acts as a scavenger in the primary cultured human trophoblasts, chemokine 

scavenging assays were performed. Biotinylated CCL2 (bioCCL2) was used to 

study the scavenging of this D6 ligand from the supernatant over time. As this 

assay had never been performed in our laboratory with trophoblasts, firstly the 

protocol had to be optimised, and the minimal amount of bioCCL2 detectable by 

Western blot had to be determined. The result showed 100pg of bioCCL2 was 

detectable with little background (Fig 3.16). Based on this result, it was 

concluded that for performing this experiment, at least 1ng of bioCCL2 must be 

present in an aliquot of medium harvested to effectively study the scavenging 

effect of the chemokines by quantitative Western blot.   

In this experiment, bioCCL2 +/- a 10-fold excess of unlabelled CCL3L1 (D6 

ligand) and CCL26 (non-D6 ligand) were added into the wells of trophoblast 

cultures. An aliquot of medium was harvested from each well immediately after 

the addition of the chemokines (0 hour samples); this aliquot of medium 

contained 3ng of bioCCL2, based on the optimisation process described earlier. 

Subsequently at set time points, a series of aliquots of medium were collected 

from all the wells to study the scavenging effect mediated by D6. As the bands 

of bioCCL2 from the medium with trophoblasts faded over time on the Western 

blots, the result showed bioCCL2 was scavenged by trophoblasts; this effect was 

attenuated by addition of 10-fold excess of unlabelled CCL3L1 (D6 ligand) (Fig 

3.17). Non-D6 ligand CCL26 was used as a negative control for the competition of 

scavenging, and it failed to prevent bioCCL2 removal by trophoblasts (Fig 3.18).  
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        10          10          1            1          0.1        0.1       0.01    0.01 

          Serial dilutions of biotinylated CCL2 (ng) in duplicates 

Figure 3.16 Optimisation process to ascertain the minimal quantity of biotinylated CCL2 
(bioCCL2) detectable by Western blot. The indicated quantities of bioCCL2 were run on a 
polyacrylamide gel and a Western blot prepared. The bioCCL2 was detected with HRP-coupled 
streptavidin. 
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Curve Designation Description 

A 
 

Medium with no cells incubated with biotinylated CCL2 (negative control) 
 

B 
 

1.5 x103 cells incubated with biotinylated CCL2 + 10-fold excess unlabelled 
CCL3L1 
 

C 
 

1.5 x103 cells incubated with biotinylated CCL2  
 

Figure 3.17 Trophoblasts contain D6, which scavenges biotinylated CCL2 (bioCCL2) from 
the medium over time. The scavenging effect can be competed with CCL3L1 (D6 ligand). 
Scavenging assay of primary trophoblasts was performed; bioCCL2 was added into the wells of 
trophoblast cultures. At set time points, a series of aliquots of medium were collected from all the 
wells. Quantification of bioCCL2 was carried out by Western blotting. a) Western blot from the 
scavenging assay from one representative placenta. The bands of bioCCL2 faded over time due to 
the scavenging effect of trophoblasts. The effect was noticeably being attenuated with addition of 
10-fold excess of unlabelled CCL3L1 (D6 ligand) due to competition. b) Curves showing mean + 
standard deviation, showing changes of densitometry of the bands of bioCCL2 from four biological 
replicates of the experiment. 
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ANOVA statistical analyses 
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1.5 x103 cells incubated with biotinylated CCL2+10-fold excess unlabelled 
CCL26 
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1.5 x103 cells incubated with biotinylated CCL2  
 

Figure 3.18 Trophoblasts contain D6, which scavenges biotinylated CCL2 (bioCCL2) from 
the medium over time. The scavenging effect is not competed with CCL26 (non-D6 ligand). 
To further support the previous finding showing the scavenging effect of D6, we used CCL26, a 
non-D6 ligand as our negative control for competition. a) Western blot from the scavenging assay 
from one representative experiment. The bands of bioCCL2 faded over time due to the scavenging 
effect of trophoblasts. The effect was not being competed with CCL26. b) Curves showing mean + 
standard deviation, showing changes of densitometry of the bands of bioCCL2 from three technical 
replicates from a placenta. 
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3.7 Summary 

For greater insight of D6 function in the human placenta, primary human 

trophoblasts that had been purified and cultured in vitro were used. It was 

hypothesised that D6 is present in these cells where it serves an important 

chemokine scavenging role and that this helps to protect the fetus.  

The protocol for routine primary trophoblast isolation, purification and culture 

from fresh placenta was optimised in the laboratory. D6 mRNA was detected in 

abundance in trophoblasts and Western blotting showed the presence of D6 

protein in these primary cells. Despite not producing excellent pictures by 

immunofluorescence, D6 protein was successfully stained in what appeared to be 

the intracellular vesicles of trophoblasts and flow cytometry showed D6 protein 

was barely detectable on the surface of primary trophoblasts. Competition 

chemokine uptake assays, analysed by flow cytometry, showed that CCL2 was 

internalised by trophoblasts using D6. Competitive chemokine scavenging assays, 

analysed by quantitative Western blot, confirmed D6 was functioning as a 

scavenger for its ligands and that it progressively removed substantial quantities 

of chemokine from medium bathing the cells.  

Collectively these results reaffirmed my initial hypothesis, that D6 is present, 

and plays a role in scavenging specific chemokines in the human placenta.  

3.8 Limitations 

Purity and viability of the cells were assessed at day 1 and 2 of culture. All 

experiments, except the chemokine scavenging assay and Western blotting to 

assess D6 protein expression, had been completed by day 2; both of these 

experiments were completed by day 3 (72 hours) of culture. By 72 hours, the 

cytotrophoblasts would be expected to syncytialise (Kliman et al., 1986, Newby 

et al., 2005). As shown by the purity assessment, other cells were present in the 

trophoblast culture due to the nature of the trophoblast isolation.  
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4 Exploring the Impact of D6 Deletion on 
Pregnancy in DBA-1 Mice  
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4.1 Stillbirth, neonatal death and pups weaned/litter in 
DBA-1 mice 

As discussed in the Introduction, D6 deficiency is associated with fetal loss in 

animal models. Wessels et al demonstrated that arresting porcine attachment 

sites have reduced expression of D6 in comparison to their viable counterparts 

(Wessels et al., 2007). Martinez de la Torre et al showed that lack of D6 in 

mother and pup results in an increased rate of fetal loss when pregnant mice 

were challenged with LPS and antiphospholipid autoantibodies (Martinez de la 

Torre et al., 2007). Madigan and colleagues showed that transferred allogeneic 

D6 deficient fetuses were preferentially lost from wild type recipients (Madigan 

et al., 2010). In our laboratory, anecdotal evidence suggested that D6 deficient 

mice on a DBA-1 background generated fewer pups per litter than WT 

counterparts. Therefore data on the stillbirth rate, neonatal death rate and pups 

weaned/litter in unchallenged WT and D6 deficient DBA-1 (D6 KO) mice were 

collected. Interestingly, D6 KO mice had higher stillbirth and neonatal death, 

resulting in a significant reduction in the number of pups successfully 

weaned/litter (Fig 4.1). This observed phenotype was not present in C57BL/6 

mice (R Nibbs, personal communication, from animal breeding data collected by 

the Central Research Facility, University of Glasgow). D6 deficient mice on a 

C57BL/6 background did not show any change in pup survival or pups 

weaned/litter (data not shown). 

WT DBA-1 mice were not particularly good breeders in our facility, and stillborn 

pups or neonatal death were not uncommon in this strain (Fig 4.1). The 

combined stillbirth and neonatal death (perinatal death) rate was 27%. The 

influence of strain on the rate of litter loss has been reported. Mortality rate of 

up to 32% of the litters in a laboratory mouse strain has been described in the 

past (Weber et al., 2013).  In our laboratory the reason for the high perinatal 

death rate for DBA-1 mice was not known. A number of antenatal or postnatal 

factors may be responsible for this phenotype. Postpartum maternal care can 

vary for different strain of mice, it has been reported that in certain strains the 

mothers have shorter latencies to nestbuild, and also to retrieve, crouch over 

and groom their pups (Champagne et al., 2007).  However, this variation in 

maternal behaviour has not been shown to be responsible for the difference in 

the fetal survival rate during perinatal period. The abnormal behaviour of 
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maternal cannibalism has also been described in DBA-1 mice (Carter et al., 

2002). On the other hand, it is also possible that the low survival rate of DBA-1 

pups is due to a suboptimal antenatal development, predisposing them to a 

compromised phenotype in the neonatal period. The observed phenotype in D6 

KO mice may be due a compound effect. The lethal effect of compound mutants 

has been described before. For example, compound mutants of Tcf1/Lef1 

transcription factors resulted in abnormal placentation and death of the pups at 

mid-gestation, but neither Tcf1 nor Lef1 standalone mutants have any placental 

phenotypes (Galceran et al., 1999, Rossant and Cross, 2001).  Perhaps in DBA-1 

there is an inherent defect in placentation and embryogenesis; the compound 

effect of this defect along with D6 deficiency could be responsible for the higher 

perinatal loss in the D6 KO group. This model provides a unique opportunity for 

the exploration of the role of D6 during placentation.  
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Figure 4.1 D6 KO mice had higher stillbirth and neonatal deaths, resulting in lower pups 
weaned/litter. Mean numbers of pups born/litter +/- SEM were 5.7 +/- 0.28 (n= 83 litters) for WT, 
and 5.4 +/- 0.25 (n= 77 litters) for KO; p=0.38 (Mann Whitney). Females in late pregnancy were 
checked for newborns daily. Once all the pups were born and being nursed, the number of live 
pups and dead carcasses were counted a) Carcasses that were noticed when the litter was first 
discovered were counted as stillbirths; n= 474 for WT, n= 418 for D6 KO; p<0.0001 (X2 test); data 
from first 3 weeks from birth. b) Pups that did not survive to weaning at day 18 to 21 after birth 
were recorded as neonatal deaths; n=400 for WT, n=322 for D6 KO; p<0.0001 (X2 test); data from 
first 3 weeks from birth. c) Pups weaned per litter; n= 80 litters for WT, n=75 litters for D6 KO; graph 
shows mean +/- SEM; p= 0.0018 (Mann Whitney). 

p<0.0001 

p<0.0001 

p=0.0018 
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4.2 Perinatal deaths and weight changes during neonatal 
period 

In view of the evidence of the increase in stillbirth and neonatal death, a more 

in depth study of the phenotype of the neonates from our DBA-1 mice was 

performed. Pregnant females were examined twice a day (at 11-13 hours 

intervals) from the time they appeared to be in late gestation, through delivery 

and nursing of the pups, for the charting of survival and weight changes of the 

pups until the neonates reached weaning age. This method allowed me to 

collect data on the timing of neonatal deaths, and also any evidence of failure 

to thrive of the pups. D6 KO mice appeared to have a higher perinatal death rate 

than the WT group, and the majority of deaths occurred either before being 

born (stillbirth) or within the first week of life. For the surviving pups however, 

there was no difference in the average weight changes between the two groups 

(Fig 4.2). The difference of the survival rate between WT and D6 KO was not 

statistically significant, however the pattern of perinatal death was rather 

similar to the data generated previously (Fig 4.1). It would be interesting to 

study the survival curve on a sample size as large as that group. Due to limited 

resources, a larger sample size could not be generated for this study. 

Nevertheless, the data reveal that in WT and D6 KO mice, most deaths occurred 

in the perinatal period within the first week, after which D6 deficiency had no 

effect on pup weight gain.  
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Figure 4.2 D6 KO mice appeared to have a higher perinatal death rate than the WT group. 
Over a period of 2 months, WT and D6 KO females were mated with males with the same genetic 
background. The number of live pups and dead carcasses were counted until all the pups were 
successfully weaned, or when there was no live pups left in the litter. The weight of the live pups 
was plotted until they were successfully weaned. a) Survival curve covering the period of study. 
n=43 for WT, n=33 for D6 KO. Majority of deaths occurred either before being born (stillbirth) or 
within the first week of life. Log rank (Mantel-Cox) test, p= 0.12 b) For the surviving pups, there was 
no difference in the average weight gain between the two groups. n=10 litters for WT; n= 6 litters 
for D6 KO. 
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4.3 Relative mRNA expression of chemokines in mouse 
placentas 

It is well known that in humans and mice, the phenotypes of neonates and 

fetuses are highly affected by placental function. Placental deficiency is often 

associated with growth restriction and perinatal death. The postnatal phenotype 

of D6 deficient mice, and the fact that D6 is expressed by fetal cells in the 

placenta (Madigan et al., 2010), suggests the reason for perinatal death of D6 

deficient pups may lie within the formation and function of the placenta.  

To study if there was any evidence of inflammation in D6 deficient placenta the 

expression of D6 ligands in the placentas of D6 KO mice in comparison to WT was 

examined. qPCR was carried out to quantify the mRNA expression of CCL2, CCL3, 

CCL4, CCL5, CCL11, CCL12, CCL17 and CCL22, comparing WT and D6 KO 

placentas harvested at E18 (Fig 4.3). D6 was also analysed. As an endogenous 

control that is unlikely to be affected by D6 deficiency, GAPDH and B-actin 

expression were analysed for each sample. Between the samples, the expression 

of both of these housekeeping genes was stable; GAPDH was used for normalising 

all the results for the mouse placentas. Eight placentas from each group were 

analysed, these placentas are the same ones selected for the stereology study 

(see section 4.5). As expected, D6 mRNA was readily detected in WT placentas, 

but not in D6 deficient placentas (Fig 4.3). There was considerable variation in 

the expression of the chemokines studied, however this can be due to the 

difference in the efficiency of the primers used for their detection. All the 

chemokines analysed were not differentially expressed between WT and D6 

deficient placentas, with the exception of CCL17 transcripts which were found 

to be higher in the D6 KO group (discussed further in section 5.2.2.2). This 

finding was confirmed by qPCR to analyse the expression of CCL17 in all the 

other available E18 mouse placentas dissected from well-formed pups (Fig 4.4). 

Thus, D6 deficient E18 placentas show higher expression of the CCL17 gene. 

 

 



163 

         

          

         

Figure 4.3 mRNA encoding CCL17 was higher in the D6 KO placenta. Analyses of mRNA 
expression of D6 and its ligands by qPCR. n= 8 in each group. Placentas were harvested at E18. 
RNA was extracted, cDNA was generated and the samples were then subjected to qPCR 
analyses. Graphs show median + interquartile range and individual data points. Mann-Whitney test.  
 

      

Figure 4.4 Confirmation of higher mRNA expression of CCL17. More placentas from well 
formed pups were analysed to confirm earlier finding from eight placentas in each group. WT n= 
23, D6 KO n= 24. Graphs show median + interquartile range and individual data points. Mann-
Whitney test.  
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4.4 Relative mRNA expressions of white cell markers in 
the mouse placentas 

D6 may regulate chemokine abundance, and D6 deficient placentas contain 

higher levels of CCL17 mRNA. Thus, more leukocytes may be recruited to D6 

deficient placentas. To examine this the expression of white cell markers in the 

placentas was studied. Besides D6, CCL17 is also a ligand for CCR4, which is 

expressed in regulatory T cells (Treg) (Leber et al., 2010). Perhaps without D6, a 

higher expression of CCL17 in the D6 KO group acts as a compensatory 

mechanism to regulate inflammation by attracting more Treg to localise in the 

area. Apart from Treg, monocyte/macrophages and T cells also migrate in 

response to D6 ligands. Therefore D6 deficiency may also affect the level of the 

markers for these white cells. However, analysis of the same 8 placentas used 

earlier for chemokine expression showed there were no differences in the 

expression of Foxp3 (Treg), F480 (macrophages) or CD3 (T cells) between the 

groups (Fig 4.5). Thus, there appears to be no detectable increase in the 

recruitment of these cells to the D6 deficient placenta.  

                  

Figure 4.5 No difference in the expression of white cell markers between WT and D6 KO 
placentas. Analyses of mRNA expression of white cell markers by qPCR. n= 8 in each group, the 
same samples used in Figure 4.3. Graphs showing median + interquartile range and individual data 
points. Mann-Whitney test.   
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4.5 Stereology of mouse placentas 

To gain further insight into the D6 deficient placenta, pup weights, placental 

weights and pup/placenta ratios were examined; stereology on the placentas at 

early (E10), mid (E14) and late (E18) gestations of the mice was also performed.  

Stereology is a well established technique using systemic uniform random 

sections (Coan et al., 2004), allowing minimally-biased and economical 

quantitation of the 3D structure and function of the placenta from cellular to 

whole tissue levels (Mayhew, 2009). In the experiments the volume fractions 

(percentages of total volumes) of different functional zones of the murine 

placentas were studied. These 4 different functional zones were: decidua basalis 

(DB), junctional zone (JZ), labyrinthine zone (LZ) and chorionic plate (CP). There 

was a particularly interest in the LZ. This is the zone where the irregularly 

shaped maternal blood spaces are closely juxtaposed to fetal capillaries. This 

fetal-maternal interface represents the principal site of haemotrophic exchange 

(Coan et al., 2004). Previous studies have shown that genetic or environmental 

factors that result in low pup weights are associated with reduced LZ volume in 

mice (Coan et al., 2008, Coan et al., 2010). 

Experiments at E10 were abandoned because the placentas at that stage were 

too small, friable and technically challenging to section. Professor Burton’s 

group at the Centre of Trophoblast Research, University of Cambridge was 

consulted for advice regarding this difficulty. They confirmed that mouse 

placentas in very early gestations are unsuitable to be used for stereology study 

due to this technical issue.   

Comparison of WT and D6 KO pups at E18 showed there was no difference in pup 

weight, placental weight and pup/placenta weight ratio (Fig 4.6). Stereology of 

the placentas did not show any differences in all the functional zones at E18 (Fig 

4.7). However, at E14 the pup weight was lower for D6 KO than WT (Fig 4.8). 

The functional volumes were lower for LZ, and higher for JZ in the D6 KO group 

compared with WT counterparts (Fig 4.9).  

This phenotype in the D6 deficient placenta at E14 could potentially be due to a 

maternal or a fetal effect of D6 deficiency. To examine this, females 
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heterozygous for the deleted D6 allele (D6 HET) were bred with D6 KO males, 

generating D6 HET and D6 KO siblings in the same D6 HET mother. Pups were 

genotyped to ascertain their genetic background. Out of the total of 20 pups 

from two D6 HET females, there were 11 D6 HET and nine D6 KO pups, close to 

the expected ratio of 1:1 (Fig 4.10).  

Stereology of the placentas showed reduced LZ and increased CP volume 

fractions in the D6 KO siblings at this gestation (Fig 4.11). However, pup weight, 

placental weight and pup/placenta weight ratio were the same between the 2 

groups of D6 HET and D6 KO siblings (Fig 4.12). The result of placental stereology 

from the two HET mothers was similar to the finding in the experiment 

comparing WT and KO mice, therefore we did not have to sacrifice more HET 

females for this study. Collectively, the stereology report indicates that 

formation of placenta early to mid gestation is dependent on the D6 genotype of 

fetus. However, the weight of the D6 KO pups was not affected by fetal D6 

deficiency in the presence of D6 expression by the mother and siblings; although 

the group size is smaller this result is different from the data comparing the 

offspring from WT and D6 KO females.   

To ascertain the importance of labyrinthine zone in supporting fetal growth, the 

correlations between the volume fraction of different functional zones and 

pup/placenta weight ratio were analysed. It is more reasonable to compare the 

placental function with pup/placenta weight ratio rather than pup weight, to 

normalise the size of the placenta in the analysis. For this analysis, all the 

placentas with data from stereology as described above were included. At E18, 

the placentas from WT and D6 KO females bred with males of the same genetic 

background were included. At E14, the placentas included were from WT and D6 

KO females bred with males of the same genetic background, and also from D6 

HET females bred with D6 KO males. There were significant positive correlations 

between pup/placenta weight ratio and labyrinthine zone volume fraction at 

both E18 and E14 (Fig 4.13 and 4.14). The volume fractions of junctional zone 

(E14 and E18), and to a certain extent chorionic plate (E14), were negatively 

correlated to pup/placenta weight ratio, presumably as a result of replacement 

of the loss in the volume of labyrinthine zone. 
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Collectively, stereology of mouse placentas showed D6 deficiency of the fetus 

leads to a decrease in the functional volume of labyrinthine zone in the placenta 

in early to mid gestation. The functional volume of labyrinthine zone is essential 

in supporting fetal growth, as there are significant positive correlations between 

pup/placenta ratio and labyrinthine zone volume fraction. 

 

              

Figure 4.6 No differences in pup weight, placental weight and pup/placenta weight ratio 
between WT and D6 KO at E18. Comparisons of wet weight of pups and placentas, and also 
pup/placenta ratio at E18 between the two groups.  WT n=36; D6 KO n=25. Graphs showing 
median + interquartile range and individual data points. Mann-Whitney test. 
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Figure 4.7 No difference in the volume of the functional zones in the placentas between WT 
and D6 KO at E18. One half of each placenta was serially sectioned at 8µm, and aligned in the 
correct order from the beginning until the end. At fixed interval, representative sections from each 
placenta were mounted on slides, and stained with haematoxylin and eosin. Stereology was carried 
out where the sections were gridded and randomly plotted to compare the volume of different 
functional zones. n=2 placentas from each litter, four litters for each group. Graphs showing the 
mean of each litter and median + interquartile range for each group. Mann-Whitney test. 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 4.8 Pup weight was significantly less in D6 KO in comparison to WT at E14. 
Comparisons of wet weight of pups and placentas, and also pup/placenta ratio at E14 between the 
two groups. Placental weight and pup/placenta ratio were similar between the two groups. WT 
n=47; D6 KO n=24. Graphs showing median + interquartile range and individual data points. Mann-
Whitney test. 
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E14 WT mouse placenta 

a)     

 

 

 

 

 

 

b) 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9 Decreased labyrinthine zone and increased junctional zone in D6 KO at E14. 
Stereology analyses of the placentas comparing WT and D6 KO groups at E14. a) n=2 placentas 
from each litter, four litters for each group. Graphs showing the mean of each litter and median + 
interquartile range for each group. Mann-Whitney test. b) Histological sections showing thickened 
junctional zone and smaller labyrinthine zone in D6 KO at E14. DB= decidua basalis; JZ= junctional 
zone;  LZ= labyrinthine zone; CP= chorionic plate. 
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Figure 4.10 1:1 ratio of D6 HET and D6 KO pups. Genotype of pups from two D6 HET females 
bred with D6 KO males. Columns with two bands depicted genotype of D6 HET pups; one band 
depicted genotype of D6 KO pups. One HET female had 12 pups (columns 1 to 12); the other had 
8 pups (columns 13 to 20). Samples taken from pups, and genomic DNA isolated. PCR was 
performed using three primers, one common to both WT and D6 KO alleles, and one specific to 
each allele.  
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E14 D6 KO mouse placenta 
 

 
a) 
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Figure 4.11 Decreased labyrinthine zone and increased chorionic plate in D6 KO comparing 
with their D6 HET siblings at E14. Stereology analyses of the placentas comparing D6 KO and 
their D6 HET siblings at E14. The pups were genotyped. a) n= 4 placentas for each litter for each 
group, two litters in total. Graphs showing the result for each placenta and median + interquartile 
range for each group. Mann-Whitney test. b) Histological sections showing thickened chorionic 
plate in D6 KO at E14. DB=decidua basalis; JZ=junctional zone; LZ=labyrinthine zone; 
CP=chorionic plate. 
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Figure 4.12 No differences in pup weight, placental weight and pup/placenta ratio between 
D6 HET and their D6 KO siblings at E14. Comparisons of wet weight of pups and placentas, and 
also pup/placenta ratio at E14 between the two groups. The pups were genotyped. D6 HET n=10; 
D6 KO n=9. Graphs showing median + interquartile range and individual data points. Mann-
Whitney test. 
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Figure 4.13 Pup/placenta ratio significantly correlates to labyrinthine zone volume fraction 
at E18. Significant positive correlations to labyrinthine zone and negative correlations to junctional 
zone. Spearman rank correlation coefficient. n=16; placentas from WT and D6 KO females bred 
with males of the same genetic background.. DB= decidua basalis; JZ= junctional zone; LZ= 
labyrinthine zone; CP= chorionic plate. 
 

 

Figure 4.14 Pup/placenta ratio significantly correlates to labyrinthine zone volume fraction 
at E14. Significant positive correlations to labyrinthine zone and negative correlations to junctional 
zone. There is also a trend showing negative correlations to chorionic plate. Spearman rank 
correlation coefficient. n=32; placentas from WT and D6 KO females bred with males of the same 
genetic background, and also from D6 HET females bred with D6 KO males. DB=decidua basalis; 
JZ=junctional zone; LZ=labyrinthine zone; CP=chorionic plate.                                         
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4.6 Quantification of chemokine levels in plasma using 
Luminex multiplex protein assay 

In humans, D6 is much more highly expressed in the placenta in comparison to 

other solid tissues (Nibbs et al., 1997b) . Furthermore, in term human placenta, 

the chorionic villi are thought to have a surface area of about 10m2 (Biswas et 

al., 2008). One would expect the level of D6 ligands to be reduced in pregnancy, 

as the maternal blood flows through the large surface area of D6 abundance in 

the placenta. The results from Madigan et al suggest that this postulation is true 

in humans (Madigan et al., 2010).   

In mouse, D6 is also expressed in the placenta, albeit at a lower level than in 

humans (Nibbs et al., 1997a). Stereological analysis shows the surface area of 

maternal blood space in a mouse placenta at E18.5 to be 23.87cm2 (Coan et al., 

2004). Given that a litter can consist of more than 10 pups, the combined 

surface area of maternal blood space in the placentas of a pregnant mouse is 

substantial. Thus the placentas in a pregnant mouse may have a major 

contribution in regulating the level of D6 ligands in the blood. Perhaps if there 

are differences in the systemic levels of D6 binding pro-inflammatory 

chemokines between WT and D6 KO, they also play a major role in determining 

the phenotype of the offspring.   

Luminex multiplex protein assay showed that in mouse plasma, the level of CCL2 

(D6 ligand) is higher in pregnant D6 KO mice than pregnant WT animals. The 

difference is more marked at E14 in comparison to E18. However, due to 

insufficient power, the difference of CCL2 between WT and D6 KO did not reach 

statistical significance when E14 and E18 were analysed separately. There is no 

difference in the level of D6 ligands CCL3 and CCL5, or the non-D6 ligand CXCL1 

between the two groups of mice (Fig 4.15).  
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E18 D6 KO mother 

 

 

 

 

 

 

 

 

Figure 4.15 D6 KO pregnant mice had significantly higher CCL2 in the plasma. Quantification 
of chemokine levels in the plasma for pregnant mice at E14 and E18 by Luminex multiplex protein 
assay. CCL2, CCL3 and CCL5 are known D6 ligands. CXCL1 is a non-D6 ligand, used as a 
negative control. **Linear mixed effect statistical modelling; difference between WT and D6 KO p= 
0.001; difference between E14 and E18 p= 0.03. n=11 for WT and n=7 for D6 KO; one sample was 
excluded each for WT and D6 KO due to the level of chemokines clearly not representative of the 
rest of the group, shown as significant outliers from the rest by Grubbs’ test (http://graphpad.com/ 
quickcalcs/Grubbs1.cfm). Individual analysis of CCL2 level at E14 and E18 showed the difference 
between WT and D6 KO was more marked at E14, however this did not reach statistical 
significance due to inadequate sample size, resulting in an underpowered study. 
 

4.7 Summary 

Animal models showed that D6 deficiency is associated with fetal loss. In this 

chapter, the phenotypes of D6 deficiency in the placentas and pups of DBA-1 

mouse was studied in order to understand the pathophysiology underlying these 

compromised features. The initial hypothesis was that, the suboptimal 

reproductive outcome in D6 KO pups was due to a fundamental defect in the 

formation of functional anatomy of the placenta.  

D6 KO DBA-1 mice cohort had higher stillbirth and neonatal deaths, resulting in 

lower pups weaned/litter in comparison to their WT counterpart. A more 

detailed analysis showed the majority of deaths in both groups occurred either 

E14 D6 KO mother 
 

E14 WT mother 

E18 WT mother 
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before birth (stillbirth) or within the first week of life. For the surviving pups, 

there was no difference in the average weight gain between the two groups.  

At E18, there was no difference in mRNA expression of D6 ligands in the 

placentas apart from CCL17. mRNA expression of CCL17 was higher in D6 KO 

placentas. Despite the higher level of expression of this chemokine in the D6 KO 

group, there were no differences in the expression of the markers for Treg, 

macrophages or T cells. 

At E18, no differences were detected in the pup weight, placental weight and 

pup/placenta weight ratio between WT and D6 KO. At this gestation, stereology 

showed no difference in the volume fractions of the functional zones in the 

placentas between WT and D6 KO. However at the earlier gestational age of E14, 

the pup weight was significantly smaller in the D6 KO mice. Stereology analysis 

at this gestation showed a decrease in labyrinthine zone volume fraction. The 

experiment at E14 was extended, breeding D6 HET DBA-1 females with D6 KO 

males, to compare the phenotypes of D6 KO pups and placentas with their D6 

HET siblings that developed in a mother expressing some D6 (i.e. D6 HET). 

Although there were no differences in pup weight, placental weight and 

pup/placenta ratio between these two groups, stereology revealed a decrease in 

labyrinthine zone volume fraction in the D6 KO placentas in comparison to their 

D6 HET siblings.  

Analysis of the correlation between pup/placenta ratio and different functional 

zones of the placentas showed that at all gestations there were significant 

positive correlations of the pup/placenta ratio to the labyrinthine zone volume 

fraction, and significant negative correlations to the junctional zone volume 

fraction.  

Quantification of chemokine levels in plasma using Luminex multiplex protein 

assay showed D6 KO pregnant mice had significantly higher CCL2 in the serum in 

comparison to the WT counterpart. No differences were detected in the level of 

CCL3 and CCL5 (both D6 ligands), and also CXCL1 (non D6 ligand). 
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Thus, D6 deficiency in DBA-1 mice is associated with increased neonatal death, 

reduced labyrinthine zone size, and dysregulation of circulating chemokine 

levels.  These findings are discussed in greater depth in the Discussion section. 

4.8 Limitations  

WT and KO mice have been bred as separate colonies for many generations, thus 

genetic drift could have occurred as a result and affected the phenotypes of the 

mice. For the WT and KO comparison, we relied on the detection of copulation 

plug for the determination of the gestational age. This technique is known to be 

an efficient way for conducting mouse experiments within a set time limit, 

albeit not the most accurate method of dating mouse pregnancies. The results 

from HET mice from subsequent experiments were helpful in confirming the 

findings on WT and KO mice; in this experiment the method of timing of 

gestational period was improved.  

The frequent intervention of weighing the pups in the neonatal period could 

have caused distress to the mothers and pups, this may have also affected the 

behaviour of the mothers. However, despite the intervention in the neonatal 

period, the rate of neonatal death is similar to the data provided by the staff in 

the Central Research Facility.  

The study of mRNA expression of the chemokines in the mouse placentas 

indicated the pattern of protein synthesis, however the level of protein in the 

tissues may not be truly reflected by this experiment. On a related note, the 

study of mRNA expression of white blood cell markers would not have shown any 

difference in the pattern of distribution of the cells. These experiments can be 

complemented by studies of protein levels.  

The sample size of the animals needed was difficult to be determined before 

starting the stereology experiment. Prior to the experiment, it was not known 

whether the expression of D6 would have caused any difference in stereological 

analysis. Taking the welfare of the animals into consideration, the aim was to 

sacrifice as few mice as possible. We started the stereology experiment with 

four litters in each arm. As shown in the results, no difference was detected in 

our first experiment at E18. In this instance it is difficult to gauge whether any 
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difference will be detected if a larger sample size is used. However by studying 

the patterns of pup/placenta ratio at E18 and also the correlations between 

labyrinthine zone volume fraction and pup/placenta ratio, it is postulated that 

no difference will be detected even if a larger sample size is used.
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5 Discussion 
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During implantation, the decidua has to be receptive to the implantation of the 

semi-allogeneic embryo. This delicate process, along with the formation of the 

placenta, requires intimate cross-talk between fetal trophoblasts cells, maternal 

stromal cells in the uterine wall, and specialised maternal decidual leukocytes, 

which are recruited to the decidua during pregnancy.   

The placenta serves to support the nutrition, survival and wellbeing of 

mammalian fetuses until they are mature and ready to be delivered from the 

uterus. A good pregnancy outcome is greatly dependent on successful 

placentation, with adequate depth of invasion into the myometrium. Abnormal 

placentation is one of the common findings in pregnancies that lead to 

intrauterine growth restriction and stillbirth (Khong et al., 1986, Bukowski et al., 

2011); it has also been shown to be related to late sporadic miscarriage and 

preterm labour (Kim et al., 2003, Ball et al., 2006, Brosens et al., 2011, Kovo et 

al., 2013). There is also a report that a risk of stillbirth can be predicted by 

placental function in the first ten weeks after conception (Smith et al., 2004). 

Placentas that invade too deeply into the myometrium result in placenta 

accreta, which poses a great risk of haemorrhage to pregnant women during 

delivery. On the contrary, inadequate placentation in human is associated with 

the above complications in pregnancy and also pre-eclampsia and eclampsia, 

with significant risk of fetal and maternal morbidity and mortality in pregnancy.  

Chemokines play a major role in regulating the process of placentation. By 

binding to G-protein coupled receptors, chemokines become important 

communication tools between leukocytes and trophoblasts. They are believed to 

be one of the central mechanisms that control the infiltration and localisation of 

specific cells in the placenta and decidua. In the decidua, the distribution of 

expression of different chemokines and their receptors are distinctive, defining 

the specific role they play in the process of placentation (Red-Horse et al., 2004, 

Hannan and Salamonsen, 2007) 

D6, an atypical chemokine receptor, is highly expressed in the placenta, and is 

postulated to exert its role as a scavenger of CC chemokines in the organ. It is 

expressed by fetal trophoblasts at the feto-maternal interface that separates 

fetal cells from the maternal tissues, and it has been proposed to play a role in 

protecting the embryo from immunological detection and attack from maternal 
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leukocytes (Madigan et al., 2010). Previous in vivo experiments showed that D6 

has an indispensible protective role in pregnancy in challenged and fully 

allogeneic models (Martinez de la Torre et al., 2007, Madigan et al., 2010, 

Kliman et al., 1986). In vivo experiments using BeWo cells reported D6 is present 

in this trophoblast-derived choriocarcinoma cell line, and acts as a chemokine 

scavenger (Madigan et al., 2010).  

At present, the pathophysiology of abnormal placentation, a process that starts 

at early gestation, is poorly understood. Based on previous findings, it is 

plausible that dysfunction in chemokine regulation could greatly affect this 

delicate process, resulting in the pregnancy disorders described. The abundance 

and precise localisation of D6 in the placenta indicate that it plays an important 

role in regulating the bioavailability of chemokines at specific microanatomical 

locations. The findings in this thesis lend further support to the idea that D6 on 

trophoblasts scavenges chemokines.  Moreover, they demonstrate that loss of D6 

can lead to fundamental defects in placental structure that appear to 

compromise the health of neonates. 

5.1 Molecular function of D6 

5.1.1 Approaches to exploring D6 function in vitro  

Much of what we know about the function of D6 has come from the analysis of 

its behaviour when it is over-expressed in an immortalised cell line.  In this 

context, D6 binds with high affinity to many pro-inflammatory CC chemokines 

but appears unable to couple to signal transduction pathways that are typically 

activated by chemokine receptors.  However, because of its trafficking 

properties in these cells lines, D6 can continuously remove chemokines from the 

extracellular environment and it is this behaviour that has led to the concept 

that the function of D6 in vivo is to act as a non-signalling chemokine scavenger 

in vivo.  This idea has been supported by the analysis of D6 function in 

immortalised choriocarcinoma cells (BeWo) and is consistent with many of the 

phenotypes observed in D6 deficient mice.  However, the function of D6 had not 

been explored on primary human cells, yet this is important to get a more 

reliable insight into D6 function in vivo. 
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Primary cultured human trophoblasts are arguably the most representative cells 

in which to explore the function of D6 in the human placenta. This approach is 

far more technically challenging than using immortalised cell lines, which are 

easy to culture, store and analyse, and there is no limitation on the number of 

cells that can be generated.  In contrast, when working with primary 

trophoblasts careful planning was required to obtain a regular supply of fresh 

placentas and isolate the cells, and these cells only have a limited lifespan and 

undergo syncytialisation within 48 to 72 hours of isolation (Whitley, 2006, Orendi 

et al., 2011). Moreover, only a limited number of cells could be purified from 

each placenta, and the time period available for performing experiments was 

restricted by the time that these cells survive in culture. A considerable amount 

of time was spent establishing and developing this technique to effectively and 

reproducibly isolate and culture trophoblasts from fresh samples.  Nonetheless, 

despite the difficulties and inconveniences, using primary human trophoblasts is 

the optimal method of studying D6, because it is in these cells that it will show 

its characteristics closest to its biological form in the body. Importantly, this 

work is the first experimental report of D6 on primary human cells.  

In my experiments, human placentas underwent enzymatic digestion and cells 

were purified in layered Percoll gradients. This technique was first described by 

Kliman et al., and is known as a high-yielding protocol of isolating primary 

trophoblasts with sufficient purity (Kliman et al., 1986). This approach of 

trophoblast isolation and purification was adopted even in experiments in recent 

years (Aye et al., 2010, Desforges and Westwood, 2011). Immunoselection 

methods may produce a higher purity of trophoblasts (Pötgens et al., 2003), but 

this was not practical in our laboratory, due to the scale and time required for 

the experiments. For each placenta collected, limited time was available for 

performing different experiments before the cells lost viability or syncytialised.  

Concentration of oxygen may affect the behaviour of the cells in trophoblast 

culture. In vivo, the level of oxygen in the placenta fluctuates from the start of 

placentation until the end of the first trimester. As described earlier, after 

implantation endovascular extravillous trophoblast cells migrate to the lumens 

of the spiral arteries and occlude them. This limits the maternal blood flow into 

the placenta. At this stage the partial pressure of oxygen in the placenta is less 

than 20mmHg; thus the embryo is protected from free radicals (Rodesch et al., 
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1992, Burton and Jauniaux, 2004). Incomplete plugging of the arteries leads to 

premature intervillous circulation, which can result in abnormal placental 

development and pathological conditions in pregnancy (Jauniaux et al., 2003, 

Burton and Jauniaux, 2004). Normally the low oxygen environment is maintained 

until about 10-12 weeks of gestation, and begins to rise when maternal blood 

starts entering the intervillous space. After the twelfth week of gestation, the 

oxygen partial pressure rises to 40-60mmHg (5-8% oxygen); the oxygen 

concentration continues at this level until the third trimester (Rodesch et al., 

1992, Burton and Jauniaux, 2004). In vitro studies showed that when 

trophoblasts were exposed to hypoxic conditions with oxygen concentration of 

2% or below, the epigenetic profile, and also gene and protein expression of the 

cells altered (Newby et al., 2005, Oh et al., 2011, Yuen et al., 2013). In this 

environment the cells also differentiated poorly, and did not cease to 

proliferate; this regulatory mechanism that influence the behaviour of 

trophoblasts is thought to be crucial in determining the success of placental 

development (Genbacev et al., 1997). Interesting, in the same experiments the 

authors did not detect any change in the phenotype of the trophoblasts when 

they were cultured in 8% oxygen concentration in comparison to the standard 

incubating oxygen concentration of 20% (Oh et al., 2011, Yuen et al., 2013). In 

my experiment, the trophoblasts from term pregnancies were cultured in the 

standard oxygen concentration of 20% to avoid the conditioning effect of 

hypoxia.  

The purity of trophoblasts was assessed using flow cytometry, the most 

objective and quantitative technique described (Frank et al., 2001). 

Recommended reliable markers cytokeratin 7 and vimentin were used for 

staining (Frank et al., 2001, Pötgens et al., 2001). Despite initial poor yields and 

low viability, routine cultures of placental cells that contained 50-100 x 106 

cells, with 70-85% of which were trophoblasts based on expression of cytokeratin 

7 and lack of vimentin were established.  With these cultures, experiments were 

carried out to explore D6 expression and function. 
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5.1.2 Expression and function of D6 in primary human 
trophoblasts 

By examining RNA and protein, the results clearly demonstrated high expression 

of D6 in primary cultured trophoblasts. Moreover, immunofluorescence stained 

D6 protein predominantly intracellular, with no detectable receptor on the 

surface. This is interesting because this subcellular distribution of D6 is similar 

to that observed for endogenous D6 in BeWo cells, D6 in trophoblasts in situ in 

gestational membranes (Madigan et al., 2010), and exogenous D6 overexpressed 

in HEK293 cells (Weber et al., 2004, Madigan et al., 2010). In HEK293 cells, this 

distribution is caused by the ability of D6 to rapidly internalise into endosomes 

after reaching the cell surface, a process that is critical for the ability of D6 to 

scavenge chemokines in these cells.  Thus, this observation implied that D6 

might show similar trafficking properties in primary cultured trophoblasts.  More 

importantly, the chemokine uptake and scavenging assays directly demonstrated 

that D6 in primary trophoblasts can act as a chemokine scavenger and lead to 

the progressive removal of extracellular pro-inflammatory CC chemokines.  

Therefore, in many respects, D6 in trophoblasts is behaving as reported in 

previous studies using immortalised cell lines.  

In the experiments assessing the chemokine uptake activity of D6, a slight 

variation in its specificity in primary trophoblasts in comparison to the D6 

transfected HEK293 cells was discovered. D6 in trophoblasts was shown to have a 

broadly similar ligand binding profile as D6 in HEK293 cells, but CCL11 appeared 

not to be a ligand for D6 in trophoblasts, despite binding D6 in HEK293. In 

addition, D6 in HEK293 appeared to have a much stronger affinity for CCL22 than 

CCL2, but this was not apparent in primary trophoblasts. The molecular basis for 

these discrepancies is not clear.  However, it is worth noting that Western 

blotting revealed differences in the molecular weights of D6 protein between 

HEK293 cells and primary trophoblasts. Much of the D6 protein in trophoblasts 

was of a higher molecular weight than that seen in HEK293 overexpressing 

exogenous D6.  Higher molecular weight of D6 has been reported in the past, 

and found to be due to N-linked glycosylation of the molecule. It was shown to 

be dispensable for CCL3 binding by the molecule, but a full analysis of ligand 

specificity of glycosylation-free D6 was not performed (Blackburn et al., 2004). 
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Thus, it is possible that differences in the post-translational modification of D6 

in HEK293 cells and trophoblasts are responsible for subtle alterations in ligand 

binding specificity.  This would not be surprising as negative charge on 

chemokine receptors (in the form of negatively-charged amino acids, sulphated 

tyrosine residues, and/or glycosylation) is important for forming initial 

interactions with chemokines during the binding process.  An alternative 

explanation is that D6 in trophoblasts contains additional protein-coding exons 

and that this alters ligand specificity and affinity.  It is possible that the splice 

sites within the intron of D6 gene are different, resulting in the variations in the 

mRNA generated. This phenomenon has been observed with other human 

chemokine receptors, most notably CXCR3.  It exists in two forms, CXCR3A and 

CXCR3B, which differ at their extreme C-terminus.  This alters ligand specificity 

and signalling activity (Lasagni et al., 2003).  Further work will be required to 

more fully analyse the specificity and affinity of chemokines for D6 in 

trophoblasts, and define the molecular basis for any differences between its 

properties in trophoblasts and HEK293 cells. 

Due to time constraints, the analysis of D6 expression and chemokine uptake by 

subgroups of trophoblasts in the cultures was not carried out. However, gating of 

the histograms from the flow cytometry for CCL2AF647 uptake showed that the 

CCL2AF647-high group consisted of larger cells than the CCL2AF647-low group. 

Perhaps this difference in CCL2AF647 uptake was due to the presence of different 

groups of trophoblasts (villous cytotrophoblasts, extravillous cytotrophoblasts 

and syncytiotrophoblasts) (Pötgens et al., 2003). Syncytiotrophoblasts are known 

to be larger than cytotrophoblasts in flow cytometry analysis (Kudo et al., 2003). 

Further experiments may be able to differentiate the subgroups with CCL2AF647-

high and CCL2AF647-low cells. D6 may have a different scavenging activity 

depending on the type of trophoblast that expresses it. Alternatively, the 

difference in CCL2AF647 uptake can also be due to distinctive pattern of D6 

expression in different group of trophoblasts. With further studies, it may be 

possible to use CCL2AF647 uptake to purify certain types of trophoblasts directly 

from the culture.  

Following the findings from the above studies, the experiments of D6 in 

trophoblasts could be expanded to further understand the regulation of 

expression, function and distribution of this protein in these cells. For instance, 
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trophoblasts could be exposed to different pH’s to assess the ability of D6 to 

bind its ligands. One would expect the affinity of the receptor to its ligand to be 

reduced in low pH environment. This character of D6 is believed to ensure 

chemokines bound to D6 are retained inside cells, as when D6 encounter low pH 

in the endosomes, it releases them for endosomal passage instead of bringing 

them back to the surface of the cells (Weber et al., 2004).  

Trophoblasts could also be pretreated with unlabelled D6 ligands before 

chemokine uptake and scavenging assays are performed. This would assess 

whether the receptor is desensitised over time, after repeated exposure to the 

ligands. In HEK293 cell line, there was no apparent desensitisation of this 

receptor to subsequent chemokine uptake (Weber et al., 2004).  

The scavenging property of D6 can be complemented by experiments using 

radioligand degradation assays. After introducing radiolabelled chemokine e.g. 
125I-mCCL3 to trophoblasts, the degree of degradation of the ligand over time 

can be measured, correlating to the emergence of non-trichloroacetic acid (TCA) 

precipitable radioactivity of the supernatant. SDS-PAGE analysis of the 

supernatants may be able to detect these degraded radioiodinated amino acids 

or short peptides, represented by diffuse bands with slower electrophoretic 

mobility than intact 125I-mCCL3 (Weber et al., 2004). Over time, the bands of 

intact and degraded 125I-mCCL3 from cell lysate and supernatant can be 

compared quantitatively to picture the pattern of chemokine scavenging activity 

of D6. The degradation of D6 ligands by lysosomes has been shown to be 

inhibited by neutralisation of vesicle acidification by NH4Cl in HEK293 cell line, 

this study can be carried out in trophoblasts to explore whether similar results 

are shown (Weber et al., 2004).  

By regulating the availability of chemokines, D6 probably has a role to play in 

orchestrating the chemotactic migration of white cells, and perhaps trophoblasts 

in the decidua. To investigate this further, migration assays could be performed 

to explore whether trophoblasts have the ability to migrate towards D6 ligands. 

In addition, white cells e.g. THP1, a human monocytic cell line, and also Treg or 

NK cells can be used to study their migratory potential towards trophoblast 

medium supplemented with chemokine ligands. 
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The expression of D6 in BeWo cell line has been successfully subdued by the 

siRNA approach (Madigan et al., 2010). If by using this method the protein 

expression is significantly reduced, my experiments on chemokine uptake and 

scavenging, and also migration assays could be repeated to assess the impact of 

D6 downregulation. D6 activity could also be potentially interfered by using 

transient transfection methodology to introduce mutant versions of proteins 

known to interfere with endocytotic pathways, as shown in HEK293 cells in the 

study by Weber et al (Weber et al., 2004).  

In summary, this work demonstrates that cultured primary trophoblasts express 

D6 protein, and that, in this context, D6 is capable of efficiently scavenging 

extracellular chemokines.  These data lend important support to the idea, 

developed using immortalised cell lines, that D6 protein regulates chemokine 

abundance in vivo particularly at the fetomaternal interface, which is by far the 

richest source of D6 in the human body. 

5.2 Role of D6 during reproduction in DBA-1 mice 

Two previous studies have investigated the impact of D6 deficiency on 

pregnancy.  In one study, it was shown that D6 deficient mothers carrying D6 

deficient pups were more susceptible to LPS- or aPL-induced fetal loss (Martinez 

de la Torre et al., 2007).  In the second study, D6 was demonstrated to enhance 

the survival of embryos transferred into allogeneic pseudopregnant recipients 

(Madigan et al., 2010). The data in this thesis clearly show that the survival of 

fully syngeneic pups is compromised in D6 deficient DBA-1 mice in comparison to 

WT DBA-1 counterparts. This is the first time that exaggerated perinatal death 

has been observed in D6 KO mice, and it is not seen when D6 is deleted from 

C57BL/6 mice. The majority of deaths observed in DBA-1 were stillbirths, or 

neonatal deaths that occurred within the first week of life.  The surviving pups 

for both WT and D6 KO continued to thrive postnatally. It appears that WT DBA-1 

pups, even in an unchallenged environment, are prone to neonatal death and 

many WT DBA-1 pups were stillborn or died shortly after birth.  This was 

enhanced by loss of D6.  Perhaps in this strain of mouse the trophoblasts and 

leukocytes are highly sensitive to the precise localisation of chemokines required 

for successful placentation and that lack of D6, by causing deregulation of this 



188 

process, results in dire consequences for some of the pups. Clinically this is an 

exciting finding because it shows that D6, influenced by other genetic factors, 

can play an indispensible role in protecting fetuses, even in an unchallenged 

environment.  Due to the known expression of D6 by fetal cells in the placenta 

(Madigan et al., 2010), it seemed likely that the enhanced neonatal death of D6 

deficient pups could be due to a defect in the placenta.  Indeed, stereology 

revealed a marked difference in the structure of the placenta feeding D6 

deficient pups at E14 in mothers homozygous or heterozygous for the deleted D6 

allele.   

5.2.1 Stereology reveals labyrinthine zone defects in the E14 D6 

deficient placenta 

Stereology is an effective, albeit time consuming, way to study the structure and 

function of an organ. In contrary to two dimensional (2D) histological sections, 

this systematic, and randomised method allows nonbiased, accurate assessment 

of the sample, making it possible to obtain a three dimensional (3D) picture of 

the functional architecture.  

On discovering the enhanced neonatal death of D6 deficient pups, one of the key 

subsequent aims of the project was to examine whether there were fundamental 

defects in the structure of the D6 deficient placenta. By stereology, it was 

possible to compare the volumes of different functional zones in the placentas 

of the mice. The labyrinthine zone (LZ) is the main area where the placenta 

performs its function in supporting the fetus. This is the zone where maternal 

blood spaces are interfacing with the fetal blood vessels, supplying nutrients and 

gases, and removing waste. The fact that the size of the LZ significantly 

correlated with pup/placenta ratio at all gestations studied shows its importance 

for feto-maternal exchanges, and for supporting the wellbeing of the fetus. 

Thus, the smaller the LZ volume, the smaller the fetus.  

Comparison between WT and D6 KO mice at E14 showed significant reduction in 

the LZ functional volume in the D6 KO group, supporting the initial hypothesis 

that D6 deficiency is responsible for a defect in the structural formation of the 

placenta. This defect in the functional volume of feto-maternal interface 
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resulted in a significant reduction in the pup weight, and a trend towards 

reduced pup/placenta ratio. In the model where we crossbred D6 HET females 

with D6 KO males, there was also a difference between the placentas supporting 

D6 HET and their D6 KO siblings. D6 deficiency caused a significant reduction in 

LZ functional volume, and a trend towards reduced pup/placenta ratio. This 

confirmed that the placental phenotype associated with D6 deficiency was 

caused by a fetal effect rather than lack of D6 in the mother.  

It was notable that the placental phenotype and reduced pup weight observed at 

E14 were not apparent at E18. Perhaps at the later stages of pregnancy, D6 is 

dispensable for the subsequent development of the placenta, and the LZ 

continues to grow up to E18 of mouse gestation (Coan et al., 2004).  Thus, it 

appears that the functional volume of the LZ in the placenta of D6 KO pups 

catches up with their WT counterparts and normalises as pregnancy advances. 

The placental defect and fetal compromise at the early ages of pregnancy may 

have a long lasting effect on the wellbeing of the offspring, leading to the 

increase in perinatal deaths in the D6 deficient group in DBA-1 mice. In human, 

illnesses in adulthood are linked to relatively brief periods of fetal compromise 

during a sensitive stage of in utero development (Lapillonne and Griffin, 2013). 

The detrimental effect may not be reversed even if the child’s growth is 

normalised during early infancy. For this study while the link between the 

phenotypes in early pregnancy and perinatal period is biologically plausible, 

more experiments are needed to confirm the hypothesis.  

The reduction of LZ volume fraction in the mouse placenta reflects a reduction 

of the area available for fetal-maternal exchanges. The evidence of poor pup 

growth associated with the reduction in LZ volume in mouse pregnancies has 

already been shown by stereology in the past. Environmental and genetic factors 

can cause the reduction in LZ volume, and subsequently affecting the growth of 

the pups (Coan et al., 2008, Coan et al., 2010). This finding of placental 

insufficiency can be translated to human pregnancies. Reduced efficiency of 

maternal-fetal exchanges in the human placenta is known clinically to be a 

cause of fetal growth restriction, resulting in fetal compromise. Recently there 

is interest in confirming this placental pathology by stereology, first described 

by Mayhew et al in 1997 (Mayhew, 1997). Reductions in the volume of 

syncytiotrophoblast and placental villi have been associated with exposure to 
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polychlorinated biphenyls (PCBs), and also in pregnancies associated with pre-

eclampsia and fetal growth restriction (Odibo et al., 2011, Tsuji et al., 2013). 

Syncytiotrophoblast and placental villi are important areas for maternal-fetal 

exchanges in human placenta, playing similar role to LZ in mouse placenta. PCBs 

are an environmental pollutant, whereas pre-eclampsia is an illness in human 

pregnancy, but both are known to be associated with fetal growth restriction. In 

clinical practice there have been many instances where placental insufficiencies 

are detected by histology in pregnancies with fetal growth restriction and fetal 

death; often no aetiology has been found to be the cause of this defect. Perhaps 

in a number of these patients there is a lack of, or reduced expression of D6. D6 

expression in the human placenta may be regulated by more complex 

mechanisms, for example single nucleotide polymorphisms (SNPs). Further 

exploration of D6 expression in the human placentas associated with growth 

restriction, pre-eclampsia or other conditions that affect fetal growth could 

prove informative and interesting.  

5.2.2 Role of D6 in the regulation of chemokine abundance   

Based on the studies of D6 in immortalised cell lines, and this work here using 

primary human trophoblasts, it seems likely that D6 in the placenta functions 

primarily to control chemokine abundance and distribution.  As outlined in the 

introduction, chemokines likely serve several roles during placentation; 

therefore elevated level of chemokines arising from loss of D6 could deregulate 

leukocyte recruitment into the placenta and/or alter the behaviour of 

trophoblasts.  

5.2.2.1  D6 regulates the plasma level of chemokines in pregnancy 

There is evidence of chemokine dysregulation in pregnant D6 deficient mice.  

The protein levels of D6 binding chemokines in the blood have been studied on 

pregnant mice injected with LPS. D6 binding CCL2, CCL11 and CCL22 were found 

to be higher in the D6 KO mice than WT controls, whereas there was no 

difference in the level of non-D6 ligand CXCL2 (Martinez de la Torre et al., 

2007). The surface area of placenta where the maternal blood flows through is 

significant in size. Together with other mouse organs, the placenta probably 

makes a major contribution in scavenging the ligands, affecting their levels 
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systematically. In human, plasma level of chemokine ligands CCL2, CCL3, CCL4 

and CCL11 is reduced from the first to the third trimester of pregnancy, as the 

placenta grew when pregnancy advanced. In contrast, the level of CXCL10, a 

non-D6 ligand, did not change between those different periods of pregnancy. 

Interestingly, in women with pre-eclampsia CXCL10 was significantly elevated, 

while no significant difference was detected in the earlier D6 ligands between 

these women and the control group (Madigan et al., 2010). This suggests that 

the levels of D6-binding ligands are well regulated in pregnancy, even in an 

environment when there is robust expression of these pro-inflammatory 

chemokines.  

In the Luminex multiplex protein assay of DBA-1 mouse plasma in my work, 

among all the D6 binding chemokines studied (CCL2, CCL3 and CCL5), only CCL2 

showed a significant difference in DBA-1 mice. The reason for this selective 

difference is yet to be explored. In the study of Martinez de la Torre, the level 

of plasma CCL3 in challenged pregnant mice was similar between WT and D6 KO 

mice, while the levels of other D6 binding chemokines (CCL2, CCL11, CCL22) 

were elevated in the D6 KO group (Martinez de la Torre et al., 2007). In 

comparison to the other D6 ligands, CCL3 disappeared very quickly from the 

circulation after LPS administration, even in the WT mice. The explanation of 

the quick disappearance of CCL3 is yet to be discovered. However from the 

result D6 seems to be dispensable in removing CCL3 from the circulation. In this 

experiment, no difference was detected in the plasma protein level of CCL3 and 

CCL5 between WT and D6 KO mice in an unchallenged environment. Perhaps the 

level of CCL5, like CCL3, fluctuates quickly in the mouse circulation. D6 may be 

more important in the regulation of the systemic level of ligands with higher 

protein stability in the circulation. The significantly higher plasma level of CCL2 

in the D6 KO mice was not due to the differences in placental expression of this 

chemokine. Like almost all the other chemokines examined this experiment, the 

expression of CCL2 transcript was not different between WT and D6 KO 

placentas at E18.  

Following the interesting findings above, further investigations of chemokine 

abundance in the plasma of D6 deficient mice are worthwhile in future 

experiments.  First, as the difference in chemokine abundance discovered was 

more marked at E14, the experiments should be repeated with an increased 
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sample size for E14 to enable the study of more D6 binding ligands with 

sufficient power. In addition, it will also be interesting to see if non-pregnant D6 

deficient DBA-1 mice have elevated levels of CCL2 (and other D6-binding 

chemokines) in their plasma.   

The relationship between fetal survival and the plasma level of D6 binding 

chemokines is still unclear. It is possible that the elevated systemic level of D6 

ligands in the D6 KO mice affects the structure and function of the placenta, or 

alternatively it may directly influence the survival of the pups in this group. The 

answer may be found by examining circulating chemokine levels in pregnant D6 

heterozygous mothers carrying a mixture of D6 heterozygous and D6 deficient 

pups.  In this experiment D6 deficient placentas in the pregnancies of D6 

heterozygous mothers were abnormal. The presence of D6 expression by the 

mother and by the D6 heterozygous placentas might be expected to prevent 

elevated CCL2 in the plasma, if this is true perhaps the local regulation of 

chemokines in the placenta itself might be more important than systemic 

chemokine control. 

5.2.2.2  Role of D6 in the local regulation of chemokines in the 
placenta 

In the study the abundance of transcripts encoding chemokines in WT and D6 

deficient placentas was compared.  Apart from CCL17, there were no significant 

differences between the placentas of WT and D6 KO mice. These results show 

that D6 does not affect the production of most chemokines locally, and it will 

now be interesting to examine protein levels of D6 binding chemokines.  It would 

not be surprising to find that the levels for these chemokines are lower in the 

WT group, due to the scavenging effect from D6. These subdued protein levels of 

D6 binding chemokines have been demonstrated in a study. In comparison to the 

D6 KO mice, the pregnant WT animals injected with LPS were found to have 

lower protein levels of CCL2, CCL3, CCL11 and CCL22; the non-D6 binding CXCL2 

level was similar between the 2 groups (Martinez de la Torre et al., 2007). The 

higher level of CCL17 transcript in D6 KO than WT DBA-1 placentas in this 

experiment was unexpected. The placentas might elevate CCL17 production to 

counteract the effect of D6 deficiency. If this is a compensatory mechanism, the 

exact pathway is still unknown. By expressing CCR4, regulatory T cells are known 
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to respond to CCL17 and could be recruited more effectively to the D6 KO 

placenta.  However, there was no difference in expression of FoxP3, a marker of 

regulatory T cells, between WT and D6 deficient placentas. In addition, there 

were no differences in the expression of markers for macrophages (F480) or T 

cells (CD3). Thus, my study provided no evidence of altered leukocyte 

recruitment to the placenta in response to D6 loss.  However, in future, the 

experiment could be expanded to include other populations of white cells, such 

as mast cells, NK cells and neutrophils.  Moreover, these various cell types 

should be enumerated and localised in WT and D6 deficient placentas by 

immunocytochemistry.  

5.3 Conclusions and future directions 

This project brings our understanding of the importance of D6 in reproductive 

tissues to a higher level. Together the results from animal in vivo and human in 

vitro cellular studies provide valuable information on function of D6 in the 

placenta.  

By studying D6, for the first time, in primary human cells it showed that it is 

capable of performing the scavenging function ascribed to it in transfected 

HEK293 and BeWo cells (Weber et al., 2004, Madigan et al., 2010). In DBA-1 

mice, D6 deficiency affects the growth of fetus in the early gestational age 

(E14), and has a detrimental effect of fetal survival in the neonatal period. A 

fundamental defect in the formation of labyrinthine zone at E14 was detected in 

D6 KO placenta, which, by using D6 HET females, was shown to be due to D6 

deficiency in fetal cells, most likely the trophoblasts of the placenta. 

Further experiments are required to determine the exact mechanism by which 

D6 protects offspring. Chemokines may exert chemotactic effect to trophoblasts, 

controlling its migration into desired location. By scavenging chemokines, D6 

may directly influence the character of trophoblasts and their responsiveness to 

chemokines when invading the decidua, modifying existing and forming new 

blood vessels, and shaping the formation of functional units of the placenta. In 

addition, D6 may also alter the signalling behaviour of trophoblasts with other 

cells. The ability of D6 in affecting the migratory potential of the cells 
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expressing the receptor has been demonstrated before (Hansell et al., 2011b). 

Innate-like B cells in mouse uniquely and universally express D6. D6 was shown 

to suppress the chemotactic responsiveness of these cells to CXCL13, a non-D6 

ligand. It was thought that D6 regulates this response by controlling β-arrestin 

redistribution, therefore alters signalling and subsequent migratory responses of 

the B cells to CXCL13 mediated by CXCR5.  

The abundance of CC chemokine is also likely to influence leukocyte 

recruitment. Perhaps the efficiency of embryo implantation, and the process of 

placentation, is indirectly influenced by the interaction between trophoblasts 

and leukocytes locally and systemically. Locally in the gestation tissues, precise 

control of the level of chemokines could steer and localise leukocytes to assist, 

or play a direct role, in ensuring a successful implantation and placentation. 

Delicate orchestration of the level of chemokines may also prevent inappropriate 

leukocyte adhesion on the vessels of gestational tissue, which could possibly 

reduce the efficiency of gaseous and nutrient exchange in the feto-maternal 

interface. Systematically, uncontrolled, overabundance of chemokines could 

lead to the desensitisation, and subsequently inadequate response of the 

leukocytes to chemokine stimulation. The phenomenon of desensitisation of 

chemotactic response of leukocytes towards ligand chemokines has been 

demonstrated. Leukocytes overexposed to chemokines have been shown to have 

reduced migratory responsiveness (Noso et al., 1994, Uguccioni et al., 1995). 

Many G-protein coupled chemokine receptors on these cells, unlike D6, are 

internalised and desensitised to further ligand uptake following prolonged 

exposure to agonist activation (Uguccioni et al., 1995, Vila-Coro et al., 1999, 

Weber et al., 2004, Escola et al., 2010). Thus by regulating the level of 

chemokine systematically, D6 might ensure the robust response of leukocytes to 

chemokines is maintained, and thus increasing leukocyte migratory potential.  

To complement the findings from the in vitro study, further cellular and 

molecular experiments of D6 can be performed on first trimester placentas, and 

also placentas from abnormal pregnancies, for examples miscarriages, and 

pregnancies with pre-eclampsia, or being diagnosed with placental insufficiency. 

Early pre-eclampsia occurring before 34 weeks is often more severe and 

associated with a worse perinatal outcome in comparison to the later onset 

disease (Gong et al., 2012). It would be interesting to compare the status of D6 
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expression from the placentas between these two groups. Besides the techniques 

that have been described in this project, other techniques like stereology could 

be utilised in human placentas to further understand the three-dimensional 

pattern of distribution of D6 and leukocytes. Considering that variation in D6 

expression might be due to the presence of single nucleotide polymorphisms 

(SNPs), studies could be carried out to detect any such variants and whether 

they are associated with any particular placental defects. 

In conclusion, the phenotype and cellular discoveries from this project provide 

novel physiologically significant insight into D6 function in the placenta. It also 

opens the door to aid the design of future experiments to reveal the code of 

chemokine regulations of D6, and its precise role in determining the outcome of 

pregnancies.
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